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Transformation of Multidirectional Sea - Field and Computational Study - Suzana Ilic 

Abstract 

A computational model based on the evolution equation for water waves (Li, 1994b) 
derived from the original Berkhoffs (1972) "Mild Slope Equation" is tested against 
multidirectional sea data. The model accounts for reflection as well as diffraction-
refraction processes, which is important for applications involving coastal structures. The 
accuracy and convergence of the numerical solution, as well as the possibility of the 
implementation of an adaptive numerical scheme are investigated and implemented. The 
model was firstly tested using laboratory measurements (Briggs et a/, 1995) of random 
directional wave diffraction around a semi-infinite breakwater on a flat bottom. These tests 
confirm the need to use "directional modelling" (using the principle of linear 
superposition) for the prediction of wave heights behind the breakwater. 

The model was then tested using directional wave data records, which were chosen from 
4500 wave records collected in the field campaign, by the University of Plymouth and the 
University of Brighton, at Elmer - Sussex, UK from September 1993 - January 1995. The 
results showed that the representation of the measured random sea by monochromatic wave 
runs can introduce a significant error in wave height predictions shoreward of the 
breakwaters in the diffraction region, thus confirming the importance of directional 
modelling for random wave simulation. Evidence strongly suggests that non-linear wave 
effects have a significant influence (40-60%) on the accuracy of the model. Consequently, 
further tests are needed, which should also consider the influence of wave-current 
interaction, wave breaking, bed fiiction and transmissive boundaries. Over all the model 
predictions are more accurate for the controlled environment in the laboratory (5-13%), 
than for field conditions where the directional modelling accuracy varied from 8 - 32%. 

A summary of the data, collected by the author as a member of the University of Plymouth 
Research Team and a database of spectral and directional parameters is also presented in 
this thesis. Field validation of the numerical model required accurate estimates of measured 
data. Emphasis was placed on identifying a suitable directional analysis method, which 
accurately predicted direction and directional spread in the far-field from structures where 
reflection is still present. The non-phase-locked (hfPL) methods developed for a 
homogeneous sea are found to be appropriate. The anzdysis of two NPL methods, the 
Maximum Likelihood Method (MLM) and Bayesian Directional Method (BDM), 
directional estimates for simulated data shows that both methods can predict accurate 
incident wave height and direction. Both methods tend to overpredict directional spread 
and give non-accurate reflection estimates. The MLM method is easier to implement than 
the BDM method, which is sensitive to the chosen starting value of the hyperparameter u. 
As the difference between estimates of the two methods for numerical data is small, the 
MLM method's estimates were chosen for model testing. 
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Figure 5.2 An example directional spectrum measured at the offshore position 109 

Figure 5.3 The practical guideline for effective use the MMLM and the MLM method related to US ratio 
(courtesy Huntley and Davidson, 1998). The line which separates PL and non-PL regions is vertical as a 
result of assuming that waves are in shallow water. If the dispersion is taken in account, the line will 
curve to the right with increasing L/T. The inclined lines are the locations of spectral frequency 
estimates. 111 

Figure 5.4 Time lag L / segment length S ratio for the field data. The marker, • , stands as an indication of 
US and L/T values for frequency estimates (S is here number of points [2 s/points]) 113 

Figure 5.5 Directional spectra contour plots given in the percentage of the peak energy when MLM was 
applied. For cases 1,2,3,4 respectively spectral smoothing was used. For cases 5,6,7 respectively 
frequency smoothing was used. ( - I^,3and5%;—10:10:100%) 115 

Figure 5.6 Directional spectra contour plots given in the percentage of the peak energy when the MMLM was 
applied. For cases 1,2,3,4 spectral smoothing was used. For cases 5,6,7 respectively frequency 
smoothing was used. (-1,2,3 and 5% ;—10:10:100%) 116 

Figure 5.7 Directional distribution for the energy summed over all frequencies ( - ) , and only for frequencies 
<0.2 Hz(-),case2 119 

Figure 5.8 Directional contour plot for narrow frequency spectra, case 2 ( - 1.2,3 and 5% ; — 10-100% with 
an interval of 10%) 119 

Figure 5.9 Directional contour plot for bimodal spectrum, case 2 ( - 1,2.3 and 5%;— 10-100% with an 
interval of 10%) 120 

Figure 5.10 Directional contour plot for wide spread spectnmi. case 2 ( - 1,2,3 and 5% ; — 10-100% with an 
interval of 10%) 120 

Figure 5.11 Frequency dependent reflection coefficient for cases 1-7 when the MLM was applied. Reflection 
coefficient is given by *o* and the energy spectra normalised by the maximum value is given in the 
background (—) 122 

Figure 5,12 Energy spectra for case 4 for offshore field data measured at the five positions (see Figure 3.2 
and 3.3b). The bar indicates lower and upper 95% confidence levels for energy density = lOm ŝ 123 
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Chapter 1 

Introduction 

// is then seen that this other way in which the numbers are beginning to function has little 
or nothing to do with science-as-such at all, but it clearly has quite a lot to do with how 
science is applied in our world of name and form. Correspondingly, research in this 'other 
way of functioning of the numbers', which is of the essence of research in 
hydroinformatics, is NOT SCIENTIFIC RESEARCH, even though it can be construed as 
research upon how science is applied, or how it participates in the 'bringing forth' that is 
technology. In this way, as 'research into revealing', hydroinformatics research belongs 
very essentially to RESEARCH IN TECHNOLOGY. 

MAbbott (199Ja) 

The development of numerical models for wave transformation, wave hydrodynamics and 

morphological changes has proceeded at a fast pace during the last thirty years. The 

creators of these models have exclusively used them in the late sixties and seventies. Most 

computation and interpretation of results was performed in some of the leading 

computational centres. With the development of PC's, the models are now being used by a 

number of clients outside the development centres. At the same time the development of 

computing hardware and new numerical methods means that once impossible solutions 

now become possible (e.g. new numerical methods enable solution of the Navier-Stokes 

equation) and that data assimilation; inverse modelling or Genetic Algorithms (GA) can be 

used to tune the existing models. Also the imknown parameters and processes which 

cannot be described in the traditional way through physics and mathematics are being 

replaced with so called black boxes and solved by some of the new techniques such as 



Neural Networks (NN)' . Through the use of such tools, with their graphical user 

interfaces, the coastal engineer, the environmental scientist, the oceanographer and most 

others involved in analysis, planning, design and management of water-based assets have 

become the manipulators of numbers and symbols. 

This research is, then, concerned with the 'where' and the 'how' of the coming to presence 
and the bringing forth of this other way offunctioning of the numbers in our outer world. It 
has to do, at least initially, with how works are currently designed and how they might 
better be realised in the future, with how complete systems are currently MANAGED AND 
HOW THEY MIGHT BETTER BE MANAGED IN THE FUTURE, and so on. Although it 
must always start from where those that it serves, its clients, are presently situated, it must 
also always seek to lead these that it serves to another, higher place. As we shall see, one 
of the places where this process begins is in simulation using numerical models, even as it 
already proceeds much further, into areas that have apparently very little to do with 
simulation using numerical models. 

M Abbott (1991 a) 

With the widespread use of models and with ever faster computers, the most often asked 

questions are how accurate and how applicable are the models. The clients, engineers, 

planners and managers wish to know where and how to apply the models. The developers 

wish to know the limitations of existing models. The answer to these questions lies in the 

validation of the numerical models using physical model data^ and field data. The 

validation of models is then research in technology, verifying the capabilities and 

limitations of the tools, in this case numerical models. The result of research wil l provide 

guidelines for the model's applications. This can also be useftil in the ftiture when the 

numerical models are envisaged to be used through the internet or intranet. A database of 

the existing models with their applicability and limitations wi l l assist a design engineer in 

making a choice of a proper model for the particular project. Most such research these 

days is based on verifying not only numerical models but also indirectly the existing theory 

behind them"*. Therefore, new projects (such as the new European projects e.g. COAST3D 

and NICOP) place emphasis on numerical model validation. Such studies are in hand for 

straight and parallel contour beaches'*. However, situations such as the area around 

detached breakwaters are more complicated and wi l l take a few years to be completely 

validated. 

They arc also used with hydrodynamic models. 
It is interesting to mention that with the wide use of numerical models physical models were abandoned by 
researchers and practitioners. In recent years, there has been a new boom in the use of physical models as part of 
composite modelling which also incorporates numerical modelling and field measurements. One purpose of physical 
models is to provide the data for the numerical model validation. Another is to understand physical processes better. 
Most of the models are based on Newtonian principles. 
The COAST3D studies are also planned for a beach with a structure. 



Shore-parallel or offshore breakwater units or schemes have been used for the shore 

protection or beach protection since the beginning of this century. They alter the nearshore 

wave climate and hence sediment transport. Their local effect on the coast is to form 

salients or tombolos. The main design consideration is which of these shapes wil l develop, 

but not only in terms of visual aspects or water quality aspect but also of their impact on 

the longshore transport budget and the influence on the downstream coast. When a 

tombolo develops the longshore transport through the scheme wil l be stopped or redirected 

seaward of the structure, which again completely changes the shoreline equilibrium. 

Detached breakwaters were only recently built in the UK. Existing design guidelines are 

based on experience in other areas of the world, with the most recent publications being the 

CERC Technical Report 'Engineering Design Guidance for Detached Breakwaters as 

Shoreline Stabilisation Structures' and 'Beach Management Manual' (Simm et al, 1996). 

Firstly these methods are empirical methods which did not prove to be satisfactory in the 

past and very often they needed to be accompanied by expensive physical modelling. 

Shoreline change or beach response numerical models can be used instead. However to 

model the wave field around breakwaters a series of parameters need to be taken into 

accoimt and it is not possible to include them all in such numerical models. Apart from 

that, the majority of research and experience relates to sand beaches in a microtidal 

environment (tidal range <4m) . Hence they are not applicable to UK situations where the 

conditions are macrotidal (tidal range >4m) and the many of the beaches are shingle 

beaches. 

Alternatively, breakwater design can be based on a morphological model which consists of 

a wave transformation model, a current model^ a sediment transport model and a bed 

evolution model. The development of morphological models is currendy al the stage that 

the simulation can be performed over a period of time long enough to approach equilibriiun 

conditions. Models of wave induced currents, which gives the input for sediment transport 

are based on the results of wave models. 

As wave transformation modelling is the starting point of morphological calculations, the 

validation of an appropriate tool for a design will start with this model. In the context of 

the present study, a few considerations motivated the choice of wave transformation model 

based on the Mild Slope Equation (MSE). The MSE model is applicable for the situation in 

' Alternatively one numerical model which predicts wave heights and current field can be used. 



which strong diffraction, refraction and reflection are all present. Those processes are 

believed to be the main physical processes around breakwaters. It is also a linear type of 

model, which is easy to implement and is economical in use of CPU time. It has already 

been used in industry for the design of harbours and other coastal structures. Because of its 

linear character it can be applied to random waves using superposition of results obtained 

for computations for a series of frequencies and directions. Finally, MSE models are also 

included in some of the existing morphological models produced by research centres such 

as HR Wallingford and Danish Hydraulic Institute. 

The first generation of wave transformation models assumed regular waves with height and 

period being the same as those of significant waves. Neumann (1953) was the first in 

proposing a functional form of wave spectrum^ to account for randomness. While 

engineers continued to design coastal structures assuming wave transformation of regular 

waves, measurements of ocean wave spectra were carried on and the importance of 

considering the full directional wave spectrum was gradually realised and started to be used 

for engineering applications first in Japan in theI970's. 

Since around 1990, coastal and port engineers in the world seem to have finally realised 
the necessity to introduce the directional wave spectrum intro wave analysis for design 
works. 

It will not be far away when various technical manuals in the world will list the directional 
wave analysis as the standard approach to the engineering design. 

Goda (1998) 

Vincent and Briggs (1989) carried out laboratory experiments using directional random 

(short crested) waves for wave diffraction-refiraction over an elliptic mound and Briggs et 

al (1995) for wave diffraction around a breakwater. They illustrated the importance of 

incorporating directional spread in wave transformation modelling. The data from these 

studies among the others (e.g. Sand et al, 1983 and O'Connor et al, 1995) are providing a 

basis to calibrate numerical schemes for directional spectral calculations. 

Developments in information technology have resulted in the use of computational models 

for design and decision making purposes. Also it has enabled the development of analysis 

for random waves measurements and the simidation of random seas in the laboratory. A 

further step is the use of numerical models for random sea simulation, which have still not 

been validated against field data. 

The wave spectrum describes how the wave energy is spread over frequencies and directions. 



Therefore the aim of this thesis is to evaluate a Mild Slope Equation model that predicts the 

wave transformations caused by refraction, diffraction and reflection using field data with 

emphasis on the transformation of random directional seas. 

The study is presented as follows 

Chapter 2 - gives the necessary background information on detached breakwaters, the 

numerical model used in this thesis and directional analysis enabling the 

definition of the objectives of the study. 

Chapter 3 - describes the field site and deployment 

Chapter 4 - consists of field data processing and analysis of results 

Chapter 5 - evaluates directional estimates from numerical and field data 

Chapter 6 - provides results of the numerical model validation 

Chapter 7 - gives final conclusions of the study and the guidelines for ftiture work 

By this means, this thesis can be viewed as a contribution to the following aims identified 

by Goda(1998): 

// will be a task for researchers to clarify physical mechanisms, to provide numerical 
schemes easy to use, and to prepare technical manuals based on the random wave 
approach. By doing so, the random wave approach can truly become a design tool of 
practitioners 

Goda (1998) 



Chapter 2 

Literature and Background 

Try to learn something about everything and everything about something 
Text on the memorial of Thomos Henry Huxley 

2.1. Introduction 

The evaluation of a wave transformation computational model using field data can be 

divided into three parts. The first part is the field deployment and measurements of wave 

properties. The choice of the equipment and deployment location offshore and nearshore is 

facilitated by prior general knowledge of main physical processes for the specific site, 

accompanied by computational model information. In the second stage the appropriate 

processing and analysis technique needs to be chosen to minimise the uncertainty of wave 

data accuracy. The third part is wave transformation simulations using the computational 

model. The input and boundary conditions are taken from the field measurements at the 

offshore position. Once the computation is finished, the results are compared to the inshore 

measurements and qualitative and quantitative comparisons are made. 

This chapter begins with a short description of offshore (shore-parallel) breakwaters and 

discusses their general operation and design consideration. Then the necessary background 



and literature review for the evaluation of the computational model using the field data 

collected around an existing scheme of offshore breakv^aters is presented. The 

computational model, which was chosen, is of the linear type derived on the basis of the 

Mild Slope Equation. The "Mild Slope Equation" is a differential equation of elliptic form. 

The main consideration in the last twenty years has been to find a very rapid means for 

solving this equation. A history of the derivation and modelling of the Mild Slope Equation 

is, therefore, briefly presented in section 2.3. The different forms of the original equation, 

boundary conditions and solution techniques are summarised. The section finishes with a 

short description of examples of validation and evaluation of Mild Slope Equation models. 

The data collected offshore of the detached breakwater scheme at Elmer and in the lee of 

one of the breakwaters were processed using spectral and directional analysis. Spectral and 

directional analysis techniques using linear wave theory are now well established and are 

succinctly described in Isobe and Kondo (1984), Goda (1985) and Benoit et al (1997). 

However, their practical application is quite complex and in section 2.4, short summaries 

on the relevant theory and its practical application are presented. The emphasis is on 

stochastic methods in homogeneous fields and fields with reflection and currents present. 

The chapter concludes with the aim and objectives of this study. 

2.2. Offshore* breakwaters and field examples 

2.2.1 History 

The first offshore breakwaters in UK were built back to the last century. The main purpose 

of those structures was to protect harbours (e.g. Plymouth rubble mound offshore 

breakwater). The use of offshore breakwaters for beach protection is more recent. The 

earliest application of a single unit breakwater was at Venice, California, 1905 (Dally and 

Pope, 1986). A single breakwater was built near the shoreline to protect an alongshore 

amusement pier. 

Since then, offshore or detached breakwaters have been widely used for beach protection, 

particularly in areas with small tidal oscillations. They have been extensively built in the 

Mediterranean region. Hundred of kilometres of Italian coast have been protected by 

onshore breakwaters are also described as shore-parallel or detached breakwaters in the literature. 



offshore breakwaters (Liberalore, 1992) and they have also been employed and monitored 

in Israel (Nir, 1982). A few examples of detached breakwaters schemes protecting 

artificial beaches can be found on the Mediterranean coast of France and Spain. There is 

also considerable evidence of construction and monitoring during the seventies eind eighties 

in Japan. Sawaragi (1992) wrote that 630 km of detached breakwaters were constructed in 

Japan. Dally and Pope (1986) summarised the multiple units schemes built in USA^ The 

largest of these, at Presque Isle, on Lake Erie (1978), comprises the scheme of 52 units. It 

was constructed along with a sand beach fill to protect an 11 km long sand spit. Similar 

schemes were also built in Denmark, Australia and more recently in the UK. 

The first offshore structure for beach protection in the UK, a single breakwater, was built at 

Leasowe Bay in 1976 (Barber and Davies, 1985). Other schemes have been built, at 

Happisburgh and Winterton (MAFF, 1994), at Monks Bay, on the Isle of Wight, and most 

recently at Sidmouth in Devon (Axe, 1999). A scheme of eight breakwaters, constructed to 

provide protection from flooding and beach erosion at Elmer, in 1993, was chosen for the 

field study. 

2.2.2 General operation of detached break>vaters 

Detached breakwaters protect the beach from direct wave action and transform the 

incoming waves. Their effect on wave propagation is similar to the combination of effects 

caused by natural shore parallel sand bars or reefs and artificial islands. The wave energy is 

dissipated on or reflected from the structure and the diffraction of waves around the 

breakwater ends results in a lateral spread of wave energy as it reaches the shore. The wave 

energy is significantly reduced in the area immediately behind the breakwater - in the 

shadow zone. The net effect is the entrainment of sediment in the energetic regions which 

is subsequently transported by mean flows into the shadow zone. This causes the 

development of salients along the shore. If the salient becomes connected to the structure, 

it is called a tombolo as illustrated in Figure 2.1. 

The advantage of detached breakwaters compared to other more traditional shoreline 

structures (e.g. groynes) is that, in generally they actually decrease the heights of incoming 

waves, and reduce offshore losses. They control not only longshore transport* but also 

cross-shore transport. Even though the main aim of these schemes is to protect the 

^ They can be found in Massachusetts, Virginia, Louisiana and Ohio. 
^ Some material is still transported through the scheme. 



shoreline and the beach from erosion, sometimes such schemes introduce additional side 

effects. A potential problem is the formation of tombolos behind the structures, which may 

interrupt longshore sediment transport, and cause additional erosion ftirther alongshore. 

Some problems connected with the use of detached breakwaters are reported by Toyoshima 

(1976, 1982/. 

Incident 
Wave 
Crest 

Gap 
Breakwater 

Shadow 
Zone Resulting 

Tombolo 
Salient 

Original 
Shoreline 

Figure 2.1 The general operation of detached breakwater for the shore protection (after Dally and Pope, 
1986) 

The primary interest to the coastal engineer when designing a detached breakwater scheme 

is the equilibrium beach plan form and the stability of the salient whilst minimising the 

side effects. The design procedure is still rather empirical, although the understanding of 

the behaviour of such systems is slowly progressing. There are several design methods 

available. First, there are empiric^ methods (characterised as rules of thumb by Bos et al 

1997), based on field and laboratory experience .̂ Summary of geometrical plan-form 

models can be found in Axe et al (1996). These methods can be used as a first estimates 

but it is advisable to support them with physical model and pilot cases prior to construction 

(Dally and Pope, 1986). 

The second method is the application of so-called one line numerical models. These 

models work on the assumption that the coastal profile is more or less constant in slope and 

the longshore transport is related to the local angle of incidence of waves. One of the most 

* Therefore, in Italy and in Japan, surface piercing breakwaters were replaced with submerged breakwaters and beach 
nourishment in the eighties. 

' For example, Sawaragi (1992) summarised the empirical knowledge about wave heights behind a group of detached 
breakwaters and transmission coefllcient through the structure. 



used one line numerical models is the GENESIS^ shoreline model (Hanson, 1989), Hanson 

and Kraus, 1989). The model does not take cross shore transport into account and assumes 

an equilibrium profile. Recently more complex 'area models' have been developed taking 

into account waves, currents, sediment transport and bed evolution simulations (e.g. 

O'Connor et al 1992, Pechon and Teisson, 1996, Zyserman et al, 1998 ). They can be run 

over a period which is long enough to approach equilibrium conditions (Johnson et al, 

1994). The new morphological models integrate the wave, currents and sediment transport 

and bottom changes model. A flow diagram of a morphological model components is given 

in Figure 2.2. 

wave model 

currents model 

B 

sediment 
transport 

bottom 
change 

D 

Figure 2.2 Flow chart for morphological modelling (after Bos et al, 1996) 

Firstly a wave transformation computation is carried out for a given bathymetry (A), 

followed by currents calculation (B). The wave and current model can be then iterated for 

wave-current interactions. This is used as an input to a sediment transport module (C). 

After each run the bathymetry can be updated (D) and computation can proceed, ideally, 

until a beach equilibrium is obtained'. However, the result of testing contemporary 

morphological models with laboratory data and its intercomparison (Nicholson et al 1997, 

Pechon et al 1996) show good results and form the basis for ftirther development. 

A generalised shoreline change numerical model 
This is sometimes very difficult to achieve. 
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2.2,3 Monitoring examples 

Dally and Pope, (1986) advised the monitoring of the existing schemes in order to help 

with the design of new schemes and to better understand physical processes. There are 

several published examples of field monitoring offshore breakwater schemes. 

Kraus (1983) validated his shoreline evolution model on data collected at a breakwater 

protected beach at Oarai in Japan. Wave data was recorded for seven and a half months 

with wave gages deployed at 21.8 m depth. Wave breaking near the shore was also 

measured. Hanson e/ al (1989) evaluated GENESIS, which included transmission using 

field data measured at Holly Beach, Louisiana. The monitoring programme consisted of 

periodic vertical aerial photography, quarterly beach profile surveys and visual observation 

of local waves and nearshore circulation. A five year monitoring program for a project site 

at Lakeview Park, near Lorrain Harbour, at Lake Eire, was reported by Pope and Rowen 

(1983). Aerial photographs and bathymetric surveys were taken on regular basis. 

Monitoring information was also used to validate the wave transmission coefficient in the 

GENESIS model (Hanson et al, 1989 and Hanson and Kraus, 1990). To form a one year 

representative wave data set, hindcasting was used firom Lorain. There are also examples of 

monitoring in Israel (e.g. Nir, 1982) and Spain (e.g. Galofire and Montoya, 1999). The 

emphasis was mostly on the shoreline change behind the breakwaters, less information on 

the wave and currents transformation around detached breakwaters is available. 

Summary 

The effect of surface piercing breakwaters on incoming waves, wave induced currents, and 

the transport and deposition of sediment is a complex three dimensional phenomenon. In 

many circumstances, the accurate prediction of shoreline change behind those structures is 

still beyond the present state of knowledge. The evaluation of existing models fi-om field 

data can help in further understanding of the processes around offshore breakwaters and 

give guidelines for further model developments and design tools. As the computation of 

morphological changes starts v r̂iih a wave transformation model, the field measurements 

and evaluation of wave transformation models is firstly required. In the morphological 

models the wave transformation is still computed mostly by linear wave models. One of the 

most developed and used linear models is based on the Mild Slope Equation. In the next 
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section the development, advantages and disadvantages of Mild Slope Equation models are 

given. 

2.3 Mild slope equation - wave transformation model 

2.3.1 Introduction 

A wave transformation model transforms wave properties (e.g. wave height, period, and 

direction) from one position at sea to another due to physical processes. The main physical 

processes causing wave transformations are 

- Shoaling, the change in wave length and amplitude due to spatial variations in depth 

- Refraction, the change in the direction and amplitude of wave propagation due to spatial 

variation in depth 

- Diffraction, the transmission of energy in a direction perpendicular to the wave rays, 

caused by structures and by seabed features 

- Energy dissipation due to sea bed friction and wave breaking 

- Interaction of waves and currents and seabed changes 

- Refraction of waves due to currents 

- Wave breaking due to depth, bed slope and currents 

- Wave reflections from submerged and surface piercing objects 

- Energy gain and loss due to winds and spectral evolution due to wave-wave interaction 

Linear and non-linear models can describe wave transformation processes from offshore to 

inshore. The non-linear models are still being developed (e.g. MacDonald, 1998). Also 

they are usually computationally demanding and not so simple to apply in the practical 

engineering field. Unlike the non-linear models, linear models are mostly developed, and 

they are easier to implement. Most of the linear models are already installed on PCs and 

notebooks and used for design and consultancy purposes. Great care is however required in 
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the use of models of this kind in view of the whole chain of assumptions that are made. 

The modeller should be aware of those restrictions and as Abbott (1991b) said: 

"An analogy is sometimes made between instability and a "nervous breakdown". If a 

person is obliged to do something but at the same time is constrained in his actions in such 

way that he cannot in fact possibly do it, then a common consequence is a nervous 

breakdown." 

Linear models are derived from linear wave theory. They are based on the assumption that 

waves amplitudes never become very large for a given water depth, so that wave profiles 

can be approximated to a reasonable degree of accuracy by the familiar sinusoidal shape. It 

should be taken in account that linear theory will fail when wave heights become very large 

(and wave profiles differ markedly from the sinusoidal shape) or when waves break. Also 

they cannot accurately predict shallow water processes such as wave-wave interactions. The 

non-linear models, e.g. those based on the Navier - Stokes Equation, and weakly non - linear 

models, based on Boussinesqu Equation, should be used instead in such conditions. 

Assuming that diffraction, refraction and reflection govern the wave transformation processes 

around detached breakwaters and that non-linear processes have only a minor effect; linear 

wave period - averaged diffraction-refraction models can be used to predict wave heights 

around those structures. Most of the wave models are monochromatic. To simulate a real 

sea, however, a range of components (directions + frequencies) is usually needed. The 

advantage of linear models is that they can model random sea as a series of monochromatic 

waves. The final result is a simimation of results for each component. Using such 

techniques, energy transfer between components is not possible. However, in conditions 

where those processes might be of second order, the implementation of a linear model has 

the advantage that it is simpler and quicker to run than a non-linear model. 

The most frequently used linear diffraction-refraction models in the last twenty years or so 

are the wave transformation models based on Mild Slope Equation. There are a vast 

number of publications describing developments of these models, their application in case 

studies or research. The results of these kind of models as well as otiier types of wave 

models are also used as a starting point in the morphological modelling (e.g. O'Connor et 

al 1992, Nicholson et al 1997). In Uie next section a summary of Uie development and 

applications will be given. 
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2.3.2 Development 

Possibly, one of the first mathematical models for wave transformation was developed at 

the University of California in about 1939 (Goda, 1998). These models were further 

developed during the Second World War . By 1960, it was quite common, at least in the 

USA, to use calculations to predict wave refi*action. Those first models were based on the 

concept of wave rays. They are still used today but have been improved in recent times to 

include many processes including diffraction (e.g. Yoo and 0*Connor (1986a, 1988a)), 

wave current interaction (see e.g. Yoo et al (1988b)). 

On the other hand, diffraction around breakwaters was calculated using diagrams, based on 

optical theory. With the development of computers and numerical schemes, the modelling 

of wave transformation equations became ever more advanced. Refraction models were not 

able to simulate diffraction, and produced caustics. It was therefore necessary to develop a 

new model capable of dealing with refraction and diffraction. 

To overcome the limitation of refraction models in the treatment of caustics where 

diffraction becomes important, combined refraction-diffraction models have been 

developed, Berkhoff (1972, 1976), developed the so-called "Mild Slope Equation" (MSE), 

which was the first attempt to formulate and solve numerically, an equation of linear short 

wave transformation^. The original Berkhoff equation was derived taking energy 

conservation in account and applying the Galerkin method (Booij 1981). He showed that 

the equation could be reduced to forms of the wave-ray method (see also Yoo et al (1989)). 

The Mild Slope Equation can also be derived following slightly different principles than 

Berkhoff originzdly used***. Booij (1981) and Dingemans (1997) derived the transient 

form*' of the mild slope equation using Luke's variationzd method and the Hamiltonian 

variational principle respectively. It is assumed that the waves are almost periodic with a 

frequency in the neighbourhood of the main angular frequency. BerkhofPs original 

harmonic form can be retrieved from this equation and the frill derivation is given in 

Appendix A. Behrendt and Jonsson (1984) obtained the mild slope equation by requiring 

* A wave refraction model was first used for D-day landings in 1943. 
' There were attempts to derive mild slope type of equation before. Eckart (1952) was the first to propose a form of the 

mild slope equation. 
'° Independently, Smith and Sprinks (1975) and Lozano and Meyer (1976) in iheir studies of wave scancring by circular 

islands gave a much clearer derivation of the equation than originally BerkhofT did. They all derived the steady state, 
elliptic equation for harmonic waves. 

" The transient form of the MSE is the hyperbolic time dependent equation and it is for nearly harmonic waves 
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conservation of wave energy. Two different ftinctionals were constructed in a way which 

leads to a better physical understanding. Copeland (1985a) used the assumption that the 

rate of change of wave energy is equal to the rate at which work is done by extemal 

pressure and obtained the transient form of the Mild Slope Equation. 

The models based on the Mild Slope Equation are rapidly replacing ray refraction models 

for areas with complex topography and structures, although they must be applied with care 

due to assumptions made in their derivation. They are: 

- The fluid is an ideal fluid (no viscosity). 

- The fluid is incompressible and homogeneous. 

- Gravity is the restoring force. 

- Motion is irrotational, which leads to a potential formulation. 

- Infinitesimally small amplitude waves. 

- A motion which is only simple harmonic in time. 

To by-pass restrictions imposed by the derivation of the model a number of different mild-

slope equations have been derived, where the difference is due to assumptions in bottom 

geometry (smooth bed/rippled bed) or the inclusion of frirther physical processes (i.e. 

current refraction or inclusion of evanescent modes). 

Booij (1981) included the effects of reflection by a nonuniform current in an extended 

form of the MSE. Kirby (1984) corrected his derivation and therefore Kirby's version of 

the extended equation was used further*^. Massel (1993) and Dingemans (1997) extended 

the MSE considering the evanescent modes. 

During early applications and verifications of the models it was found that including non-

linearities in the model produced better results in non-linear environments such as behind a 

shoal. Booij (1981) included the influence of non-linearity on the phase and group 

velocities by taking Hedges (1976) simple formulation of the dispersion relation. Kirby and 

Dahymple (1986) extended Booij's work and proposed a dispersion relation for 

Yoo et a/(1989) and O'Connor and Yoo (1988) incorporaicd dissipative processes and wave current interactions in 
the energy approach of Copeland (1985a) and showed that in shallow water the resulting equations were almost 
equivalent to Kirby's (1984) elliptic equation. 
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monochromatic wave models in order to model non-linear effect over a broad range of 

depths. The non-linear modification to the time-dependent form of the linear Mild Slope 

Equation provides a smooth prediction of wave parameters for the entire range of water depth 

even in the case of weakly non-linear waves. In shallow water the Hedges simple 

formulation is obtained and the limit for deep water is the second order Stokes 

formulation*^. Later a time dependent model which preserves wave group behaviour and it 

is applicable for bounded and free long waves was developed (Kirby et al, 1992). 

It was also found necessary to include dissipative processes by bottom friction and wave 

breaking when the model was used for design purposes (Booij, 1981). Dingemans (1985) 

and Kirby (1986a) took the effects of a ripple bed in account whereas, Rojanakamthon et al 

(1990) derived an equation for waves propagating over a porous bed under the mild-slope 

assumption 

Further information on the MSE and related approaches can be found in reviews presented 

by Copeland (1985a), Yoo et al (1989), McDowell (1988), Liu (1990), Dodd and 

Brampton (1995). The validity of the equation is given by Jonsson (1979,1981) and 

Dingemans (1985). Most recently, Dingemans (1997), summarised his latest work on the 

MSE and compared it with other existing models. He also describes all addidonal 

parameters (e.g. bottom friction, wave breaking) and the manner in which they may be 

included into the original equation. 

2.3.3 Mild Slope Equation forms 

2.3.3.1 EUiptic forms 

The original mild slope equation derived by Berkhoff (1972) is a differential equation of 

elliptic form , given by 

Vrcc,V<D; + ccgit'<I> = 0 (2.1) 

where: 

c = phase celerity, Cg = group celerity, k = wave number, <D = complex wave potential 

flmction 

Zhao and Anastasiou (1993) made their expression for dissipation more explicit 
'* Yoo and O'Connor (1986b) included both dissipation processes, wave current interaction and wave breaking in 

alternative refract ion-diffraction model. 
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Very often the elliptic equation is slightly modified in order to speed convergence and 

execution time. With the transfomiation 

O = ip{cc^ ) T (2.2) 

the MSE (2.1) may be written in the form of a Helmholtz equation 

V^y/+kly/ = 0 (2.3) 

The Helmholtz equation for purely harmonic waves is also elliptic. 

The elliptic model needs boundary conditions for the whole domain and simultaneous 

solution over the whole area. Any error occurring at a boundary will be manifested 

throughout the entire solution domain, which makes the whole solution prone to error. 

Numerical solutions 

The elliptic mild slope equation can be solved numerically in two ways. One way is to use 

the finite element method and the second is to use iterative numerical methods. In both 

cases the large number of equations needed to be solved makes the implementation of the 

elliptic models difficult. Therefore, a few authors have worked on the development of 

numerical techniques in order to improve and speed up the computation. 

BerkhofPs (1972) numerical solution of the original equation was based on the finite hybrid 

element method. Behrendt and Jonsson (1984) using the ftmctional derived from the MSE 

improved the finite element solution*^. The first ftinctional is based on a finite/infinite 

element formulation and the second one on a hybrid finite element formulation. Austin and 

Bettes (1982) used the finite element method for solving the equation with the formulation 

of a 'damping' boundary, which absorbs the wave and so removes any artificial reflections 

from the boundary. 

The iterative methods, which were used to solve the elliptic MSE, avoid using a direct 

Gauss elimination matrix method to solve the system of linear equations, which requires 

larger computer storage. Panchang et al (1988) has developed a model of the elliptic type 

based on the "Error Vector Propagation" method. A fiirther development was the 

'' Bcttes and Zicnkiewicz (1977), Houston (1981) and Tsay and Liu (1982) among others have also worked on the 
numerical solution by applying finite element methods. 
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introduction of a conjugate gradient iterative method for solving the original equation 

(Panchang et al, 1991). To accelerate the speed of convergence the preconditioning method 

should be used, which increases the computer storage requirements. A further contribution 

was the introduction of a Gauss transformation in order to produce a stable conjugate 

gradient scheme for the linear system of the elliptic mild slope equation (Li, 1994a)'̂ . 

Li and Anastasiou (1992) presented two models based on the mild slope equation. Both 

formulations are solved using a modified form of the multigrid method which was 

originally developed by Brandt (1977). Accurate solutions were obtained using only two or 

three points per wavelength. The accuracy and the small computer storage requirement 

enables the model to be used for a number of practical problems. 

2.3.3.2 Parabolic forms 

In the early 1970's, computational difficulties existed in modelling larger coastal areas using 

the elliptic differential equation. These problems lead to the derivation of a parabolic 

approximation by Radder (1979). The derivation was based on the use of a splitting matrix, 

which divides the wave field into transmitted and reflected components. It is assumed that 

wave propagation takes place mainly in one direction, then wave diffraction in that 

direction can largely be ignored but in the direction normal to the main wave direction it is 

kept in the formulations. This results in following equation 

di 1 ^34, (kccX 
— = (cc —) — 
ac Ikcc^dy^ ^ dy Ikcc 

( c c . ^ ) ' ' - ^ A (2.4) 

where A is an amplitude function and ^(x,y) = A{x,y)e'^ 

The equation is usually solved in this form since the amplitude is much less rapidly-varying 

than the exponential form (which contains the 'waviness' of the basic incident wave). The 

implication is that this equation can not be used in a field with strong diffraction. For an 

uneven bottom, the wave field is to be split into a forward scattering field and a backward-

scattering field. Hence the parabolic approximation consists in neglecting the backward 

field and to some extent the effects of varying bathymetry or reflection will not be taken in 

account. 

Tozer and Lawson (1994) used the conjugate gradient scheme as well. 
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However, the main advantage of this approach is in consuming two times less 

computational effort, because the parabolic equation uses a marching method with 

boundaries at the initial hne, and along the lateral sides. Therefore, large number of authors 

have used Radder's approach and tried to modify and improve the solution through the 70's 

and 80's. This resulted in fiirther developments of parabolic approximations to the mild 

slope equation and suitable methods to solve them. 

Tsay and Liu (1982) and Liu and Tsay (1983) improved the parabolic approximation of the 

MSE combining the approximation for the forward scattered wave with that for the 

backward scattered wave to form a more general solution. They could even study weak 

reflections fi-om a submerged shoal. Firstly Kirby (1986b) and then Dalrymple and Kirby 

(1988) and Dalrymple et al (1989) extended the parabolic model for refraction and 

diffraction to 90 degrees including irregular bathymetry. The new parabolic model 

presented by Li (1997) does not have the angle limitation either. Kirby and Dalrymple 

(1986) applied a non-linear modification to the parabolic iequation for refraction and 

diffraction in order to include non-linear effects. Nonlinearity is incorporated in the model 

by correcting the wave parameters iteratively using an empirical non-linear dispersion 

relationship. 

Numerical solutions 

The most used numerical scheme to solve parabolic equations is the finite difference Crank 

- Nicolson scheme. Generally, the scheme is unconditionally consistent and stable. It is also 

an inexpensive higher - order accurate scheme. It has an error of 0( At^ , Ax" ) with 

properly chosen weighting. Unfortunately this scheme can lead to unrealistic oscillating 

solutions when the forward step Ax is large. Booij (1981) and Radder (1979) used an 

implicit higher order scheme with separate discretisations in x and y directions to overcome 

these problems. 

23.33 Hyperbolic forms 

The MSE given by expression 2.1 for purely harmonic motion is elliptic. A hyperbolic 

form of the purely harmonic case is obtained noting that for harmonic motion with 

frequency co it can be shown that 

-̂ 0 
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And using equation 2.5 for the last term of 2.1, Copeland (I985a,b) obtained a hyperbolic 

equation 

Y(cc,Ys)-^^ = 0 (2.6) 

He split equation 2.6 into a system of two first order hyperbolic equations 

c a Ve + - ^ ^ = 0 (2.7) 

+ cCgV^ = 0 (2.8) 

where Q is introduced as a pseudo flux and the time co-ordinate is treated as an iteration 

parameter. His model includes intemal boundaries of arbitrary reflective properties and a 

driving boundary of transmissive and reflective waves. 

Madsen and Larsen (1987) provided a more efficient solution of Copeland's equations by 

extracting harmonics from the system of equations. They included intemal generation of 

waves and partial reflection from breakwaters in their model. 

At this point it is worth mentioning a transient form or the time dependent form of the Mild 

Slope Equation which can be derived using the Luke or Hamiltonian Variational Principle. 

This type of equation is for nearly harmonic waves, thus some small modulation of co and 

k are permitted. As given by Dingemans (1997).'^ 

-0 + V[ccs/<p) - [co' -k'cc^)^ = 0 (2.9) 

where ^>(x,/)= Re{(D(x)e-""} 

For the surface excursion equation 2.9 becomes 

+ v(cc,V^) - {w' - k'cc^)g = 0 (2.10) 

" Kirby ei a/ (1992) derived their own time dependent MSE model. 
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Numerical solutions 

Madsen and Larsen (1987) used the Alternative Directions Implicit (ADI) finite difference 

scheme rather than the explicit scheme, which Copeland (1985a,b) or Yoo et al (1989) used 

previously to solve the system of hyperbolic equations. It was also necessary to introduce a 

time varying time step, the so-called Dynamic Alternative Directions Implicit method 

(DADI). To decide when the solution reaches the steady state, an additional condition was 

applied as the average of the residuals between the present and previous solution steps. 

Larger time steps were used at the beginning of the calculations and were reduced when the 

solution almost reached the steady state. Dissipation due to wave breaking also had a 

beneficial effect on the convergence towards a steady state and is easy to implement 

because of the marching solution technique. The disadvantage of hyperbolic models is that 

they require very high grid resolution of at least 10 points per wavelength. 

2,3.3.4 Other forms 

Ebersole (1985) modified the original equation in order to obtain a system of three equations. 

These three equations along wdth the dispersion relation are used to describe the refraction-

diffraction phenomena, under the assumptions that the bottom slopes are small, the waves are 

linear, harmonic and irrotational, wave reflection is negligible, and any energy losses due to 

bottom fiiction or wave breaking are neglected. He used an iterative method to solve the 

system of equations. Kim (1992) modified Ebersole's approach to include wider angle 

diffraction and interfaced it v«th analytical diffraction solutions for wdthin harbour 

predictions. 

Li (1994b) derived a new parabolic model. He used the perturbation method to obtain a 

time dependent evolution equation, which is also based on the original mild slope equation. 

A two-dimensional parabolic equation is derived by assuming that the second derivative of 

the amplitude function with the respect to the slow time variable is negligible. Exclusion of 

harmonic time in the model enables a fast convergence. However, this model is parabolic 

in time and therefore unlike previous mentioned parabolic models is capable of dealing 

with refraction, diffraction and reflection. Li (1994b) used a time** iterating approach 

applying the Alternative Directions Implicit finite difference scheme. The advantage of the 

Time is here a time for iteration and is not time of evolution, so that the solution converges to a steady state. 
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model is an easier implementation compared to the hyperbolic model, particularly in 

respect of boundaries. Also the solution is quicker compared with the ful l elliptic model. 

2.3.4 Boundary conditions for MSE 

The following types of boundary conditions are required for applications 

1. Radiation conditions at open boundaries for application to harbour waves and 

oscillations there is also a need for 

2. Reflection (partial) against structures like quays, breakwaters. 

3. Wave transmission (partial), through permeable breakwaters boundaries; (see 

Kostense et al, 1986) 

4. A wave-maker conditions for verification purposes in laboratory to be able to test 

the model on different laboratory experiments 

2.3.5 Applications and verifications 

The previous section illustrates the large activity in the MSE model development and 

accompanying publishing. However, there are only a few examples of MSE model 

validation from field data, which were undertaken (or published), in the last two decades. 

Berkhoff e( al (1982) verified a model using a laboratory experiment of wave 

transformation around an elliptic shoal. This set of results became the standard test to 

verify all new models. Tables 2.1 and 2.2 give a brief summary of some of the models and 

their application and verification. 

2.3.5.1 Regular waves 

Most of the models have been applied for regular waves. Here only the few applications 

and verifications which may be relevant to offshore breakwater study wi l l be outlined. 

Dalrymple et al (1986) used their own MSE model to study waves trapped by breakwaters. 

The numerical results were compared v^th laboratory measurements and good agreement 

was found. Pos and Kilner (1987) investigated experimentally and numerically (using the 

MSE model) the influence of the breakwater gap on the wave height in the shadow zone. 
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Author Equation 

Kostense et al Elliptic 
(1986) 

Pos and Kilner Elliptic 
(1987) 

Hurdle et al Elliptic 
(1989) 

Izumiya Elliptic 
(1990) 

Rojanakamthon et al Elliptic 
(1990) 

Panchang et al Helmholtz 
(1991) 

Li and Anastasiou Helmholtz 
(1992) 

AI-Mashouk et al Ellitptic 
(1992) 

Tsay and Liu Parabolic 
(1982) 

Liu and Tsay Parabolic 
(1983) 

Kirby and Dalrymple Parabolic 
(1984) 

Dingemans et al Parabolic 
(1984) 

Kirby Parabolic 
(1986b) 

Dalrymple et al Parabolic 
(1986) 

Table 2.1 Summary of the som 

Numerical scheme iVaves Validation 

+dissipation with combined reflective 
and transmissive boundaries 

+ dissipation 

+ breaking criteria 

+ weak reflection 

Stokes waves 

+ currents, dissipation due to breaking 
and bottom 

Standard FE Regular 

FE (finite/infinite) Regular 

+ currents, breaking/bottom dissipation FE with CG 
+ reflective/ transmissive boundaries method 

FDS 

FDS 

Crank-Nicholson 
FDS 

Numerical 
Iterrative Scheme 

Crank-Nicholson 
FDS 

Crank-Nicholson 
FDS 

Crank-Nicholson 
FDS 

Random 

Regular 

Regular 

Second order FDS Regular 
+ CG 

Multigrid Method Regular 

Multigrid Method Random 

Regular 

Regular 

Regular 

Regular 

Regular 

Regular 

Physical model of harbour 
oscillations 

Physical model of diffraction 
through the gap 

Harbour Ijmiden, Venice Lagoon, 
Rotterdam Port* 

Physical model of transmission 
over submerged breakwater 

Elliptic shoal lab experiment 

Elliptic shoal lab experiment 

Elliptic shoal lab experiment and 
comparison with other models 

Elliptic shoal lab experiment with 
random waves 

Experimental data- breakwater 
perpendicular on shore, shoal. 

Comparison to the results of the 
other models 

Elliptic shoal lab experiment 

Elliptic shoal lab experiment 
Field data from Harincvliet 

Circular shoal lab experiment 
Shore attached breakwater exp. 

Lab experiment of trapping 
waves by breakwater 

elements and CG for conjugate gradient method (• stands for application only) 



Author Equation Additional parameters Numerical scheme Waves Validation 

Dalrymple and Kirby 
(1988) 

Parabolic Wide angle of approach Spectral Fourier 
Method 

Regular Physical model of diffraction 
around breakwater 

Dalrymple e/ al 
(1989) 

Parabolic Wide angle of approach + irregular 
bathymetry + nonlinear effects 

Spectral Fourier 
Method 

Regular Circular shoal lab experiment 

Panchang et al 
(1990) 

Parabolic Random Elliptic shoal lab experiment with 
random waves 

0 Reilly and Guza 
(1991) 

Parabolic FDS? Random Random waves elliptic shoal 
exp. 

Ozkan and Kirby 
(1993) 

Parabolic + wide angle + currents + breaking 
criteria + nonlinear effects 

FDS? Random Random waves elliptic shoal exp. 
Random waves beach exp. 

0 Hare and Davies 
(1993) 

Parabolic 
(coupled) 

Extended for ripple bed Crank-Nicholson Regular Laboratory data for ripple bed 

Li 
(1997) 

Parabolic + currents FDS Regular Elliptic shoal lab experiment and 
comparison with other models 

Copeland 
(1985 a,b) 

Hyperbolic FDS Regular Field data from detached 
breakwater scheme 

Smallman and Tozer 
(1990) 

Hyperbolic 
Parabolic 

Explicit FDS 
Evolutionary FDS 

Random Physical model of harbour 
entrance 

Kirby et al 
(1992) 

Hyperbolic Linear and nonlinear version Higher order FDS Irregular Random waves elliptic shoal exp. 

Helm-Petersen and 
Brorsen(1997) 

Hyperbolic Explicit FDS Random Physical model of harbour 

Ebersole 
(1985) 

Modified 
elliptic 

Forward and 
central FDS 

Regular Lab experiment for linear 
refraction 

Li 
(1994b) 

Parabolic 
in time 

ADl Regular Elliptic shoal lab experiment 
Semi infinite breakwater analit. 

Table 2.2 Summary of the some of the developed MSE models and their validation Part 2; FDS stands for finite difference scheme, FE stands for finite 
elements and CG for conjugate gradient method 



They found that measured wave heights in the shadow zone are larger than ones predicted 

theoretically due to the secondary waves generated at the breakwater tips and wave 

orthogonal spreading near the gap centreline. 

They concluded that the linear theory provides conservative wave height estimates outside 

the shadow zones, but underpredicts the wave height estimates in the shadow zone as a 

function of breakwater gap and wavelength ratio'^. 

The results of model comparisons are helpful when the choice o f an appropriate model 

needs to be made. Smallman and Tozer (1990) validated the hyperbolic MSE (Copeland, 

1985b) and parabolic MSE (Dodd, 1988) on physical model data for a typical harbour 

approach bathymetry. The results were also compared with a refraction ray model. The 

refraction ray model performed better for shorter period waves and incident directions, 

which were not aligned with the line of the channel. For longer period waves and where the 

waves were directly incident along the channel, the parabolic model gave a good 

representation. However, it does require the grid alignment to be coincident with the main 

wave propagation direction. The hyperbolic model did not appear to offer any significant 

advantages in terms of accuracy over the parabolic model and its run-times were 

significantly longer. 

Dong and Al-Mashouk (1989) compared hyperbolic and elliptic model results to the 

analytical solution of the classical fully open harbour. The two models were in good 

agreement for long wave propagation. For shorter waves, the imperfect boundary for the 

hyperbolic model tended to distort the results more severely. One of the reasons was an 

inadequate explicit scheme accompanied with not enough time to reach the steady state. 

Thus, the problem with numerical solutions of hyperbolic models was highlighted. 

Examples of field validation of the MSE models are rarely found in the literature. 

However, Dingemans' et al (1984) validation of the parabolic model on laboratory data and 

field data collected at Haringvliet became a foundation for such work. They presented a 

summary of the quantitative verification work, calculating bias, percentage error and rms 

error (Wilmott, 1981). Copeland (1985a) verified his model on field data collected around 

the offshore breakwater at Leasowe Bay UK. While, Kim (1992) and O'Connor et al 

Yoo and O'Connor (1986b) validated their model with laboratory data from detached breakwater experiment 
(Gourlay, 1974). 

25 



(1992) found good agreement using the modified elliptic approach with wave buoys data 

from an open beach situated at Chukpyon Harbour, Korea. Further guidelines for model 

verification and validation can be found in Dingemans (1997). 

2.3.5.2 Irregular and random waves 

In nature the incident wave field is random and has directional spreading. A number of 

authors, Mobarek and Wiegel (1966), Goda (1978,1985), Briggs et al (1995), Girolamo 

(1995), indicated the importance of calculating diffraction taking into account irregular 

waves and directional spreading. Diffraction coefficients calculated, taking only regular 

waves into account, are underpredicted in the shadow zone or in the lee of the breakwater. 

Vincent and Briggs (1989) conducted experiments on wave propagation over an elliptic 

shoal using multidirectional waves. They showed the importance of including (spectral) 

multiple frequencies and directions in wave transformation models. It was concluded that 

the degree of directional spreading was a more significant parameter than the spread of 

energy in frequency space. Briggs et al (1995) found similar results when the difft-aclion of 

multidirectional waves around a semi-infinite breakwater was measured in the laboratory. 

Hence a need for the development of numerical spectral models exists. The behaviour of 

multidirectional waves can be described by solving governing equation for a number of 

firequencies and directions using linear superposition. This is an advantage of linear models 

like the MSE and therefore the MSE models started to be used for directional modelling in 

the 90's. However, these models are still time consuming and therefore there are only few 

examples of'directional modelling'. 

Isobe (1987), Panchang et al (1990), Grassa (1990) and L i ei al (1993) have each 

developed models, which operate by first discretising the spectrum into individual 

monochromatic directional components and then running each component in a separate 

parabolic model. Results from the segmental runs are superimposed in order to obtain 

estimates of statistical wave heightŝ **. O'Reilly and Guza (1991) have further extended this 

formulation and have pointed out that the model could be used (in linear form) to develop a 

transfer function between onshore and offshore conditions. Thus, the incident spectrum can 

be simply transformed using the computed transfer function. This is however, valid for 

^ Hurdle efn/( 1989) used the same principle for the full elliptic equation when the modelling for a harbour at Ijmuiden 
was performed. Kirby era/(1992) applied a linear and non-linear version of the lime dependent form of the MSE for 
wave transformation of irregular waves around a circular shoal. The non-linear model gave better agreement between 
measured and predicted wave heights. 
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beach conditions and not around the structures where reflection is present which depends 

on wave height and frequency. 

Firstly, they validated their model on laboratory measurements of regular and irregular 

wave transformations around a circular shoal. Further, the model was validated using field 

data from the beach in San Diego California with smooth coastal bathymetry. The 

importance of directional wave spreading in wave transformations over simple bathymetry 

was found. Also, the accuracy of the field measurements appeared to have a significant role 

in the model validation. 

The 'directional' or 'spectral' modelling was further used to study specific wave conditions 

which is illustrated in the following three examples. A l Mashouk et al (1992) applied a 

spectral model to Li's (1992) multigrid version of the MSE. The elliptic equation was 

solved for a set of frequency and direction bins and computing time was reduced even in 

comparison with a parabolic equation. Firstly, the model was validated on laboratory data 

from Vincent and Briggs (1989) experiment. The application of the model to the 

Marsexlokk bay showed overestimation of wave heights when only the regular wave model 

was used. 

Ozkan and Kirby (1993) used the parabolic MSE to determine breaking directional spectral 

waves in the nearshore zone. The two dimensional spectrum was divided into discrete 

components which were simultaneously computed using the parabolic model. Statistical 

quantities were computed at each forward step in the parabolic scheme and used to construct 

a statistical wave-breaking model. The breaking criteria based on energy of all components 

rather than wave height limit^* is built into the model. Computed results for cases without 

breaking showed good results. However, the model did not accurately predict the shoaling 

and decay of the wave height for a multidirectional random sea. This might be caused by the 

incorporated energy dissipation model, which does not account for directional effects, or 

because of pronounced non-linear effects. More studies need to be done to understand 

breaking and non-linear processes.̂ ^ 

Helm-Petersen and Brorsen (1997) using the time dependent MSE (Kirby et al, 1992) for 

random waves studied reflective boundaries and reflection from a rubble mound breakwater. 

" The wave breaking criteria which is used for regular waves does not have any efTect when dIrectionaJ modelling is 
applied. The wave height of each component is small compared to the water depth. However, the waves do break in 
the Held. 

^ This work was improved even though it still has limitations 
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The numerical results were verified with physical model data of Grenaa Harbour. Hence a 

fiirther application of the model for wave reflection prediction is demonstrated. 

As for the case of regular waves there are not many cases of validation of the model from 

field data presented in the literature^"'. One of the reasons is that the main effort in the past 

twenty years was on the model development and accordingly its numerical solutions. Also, 

the field campaigns are expensive and rare. 

Summary 

The Mi ld Slope Equation provides a solution for one given frequency at a time, but is 

applicable in both deep and shallow water and applies to all frequencies. It can model 

refraction, diffraction and also reflection with properly chosen boundary conditions. By 

introducing the effects of wave breaking, bed friction anid wave-current interaction it can 

even be used over the whole coastal zone. The models based on the MSE can also be used 

to obtain estimates of the radiation stress tensor of periodic waves hence the longshore 

current. 

Al l of the models based on the MSE suffer from some restrictions. The ful l elliptic models 

solved by the finite element method cannot be applied to large coastal areas because of the 

large computer memory requirements. The more economic multigrid model for the elliptic 

equation could not produce accurate solutions in wave fields with strong reflection. Parabolic 

models have physical restrictions (like for example they are not able to model reflection or 

other rapid changes). Hyperbolic models need large numbers of iterations and a very fine 

grid solution and also special treatment of boundaries. This suggests that there is still a 

need to find a fast and accurate solution to the original elliptic equation or find a suitable 

compromise. Li's (1994b) time parabolic model seemed to be the best choice at the time 

the present study started. The model accounts for reflection which is important for a field 

with structures. Also, the numerical solution is stable and is thus easy to implement. The 

model is owned and used for consultancy purposes by Halcrow, UK. 

The examples given in section 2.3.5.2 indicate that MSE model predictions are more 

accurate when random directional wave modelling is applied. There is however a lack of 

the validation of these models using field data. Therefore, the time evolution parabolic 

model (L i , 1994b), which can model refraction, diffraction and reflection in its random 

" Some of the validations are probably not published and might be only available in internal reports of some Institutes. 
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mode, wi l l be validated using field data. The validation of the random model requires 

accurate directional estimates of measured data. In the next section a review of directional 

methods for field data analysis will be given. 

2.4. Directional analysis 

2.4.1. Introduction 

One of the priorities of field measurements of wave climate has been to obtain accurate 

estimates of directional wave spectra by using directional analysis. A range of directional 

analysis techniques have been developed and published in the literature. The most 

prominent of these have most recently been reviewed and classified by Benoit et al (1997). 

The methods were classified as stochastic methods (in which the phase of individual 

components is randomly distributed), deterministic methods (which retain the phase 

infomiation inherent in the data set) and time domain analysis methods (which use lime 

domain variables to estimate the directional spreading fianction (DSF) rather than 

frequency domain variables. 

Panicker and Borgman (1970,1974) probably developed the first deterministic methods^''. 

Except for recent work by Prislin et al (1996) all deterministic methods were confined to 

single point measurements. Even though some of the methods gave good results, the 

physics behind it was questionable. Two new methods - Single Direction Analysis and 

Double Direction Analysis - by Schaffer and Hyllested (1994) gave results comparable 

with the Maximum Entropy stochastic method. The time domain analyses are quite sparse 

in operational application. Therefore, the stochastic methods have developed faster and are 

more commonly applied to the analysis of field data (e.g. O'Reilly and Guza (1991), 

Hashimoto et al (1988) and others). Here, the emphasis wi l l be given to stochastic 

methods. 

2.4.2 Measuring devices 

The measuring devices for directional seas can be classified into three groups (Benoit et al 

1997) 

There are still doubts whether this method Is being used in practice (Benoit et al (1997)). 
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A single point system measures simultaneously at the same location (horizontal and 

vertical) several properties of the waves. The most widely used are the heave-pitch-

roll buoy and a two component current-meter associated v^th a pressure sensor or 

wave elevation probe. 

Gauge arrays comprise several sensors set up at various locations over a fixed 

frame. The sensors may be identical or of various types including for instance 

currents meters and pressure transducers. 

Remote-sensing systems are based on spatial rather than time correlation. The 

common principle is to make an "image" of the wave field over a given area. The 

Fourier transform of the surface elevation field is used to produce a directional 

spectrum assimiing a homogeneous wave field over an "image area". These systems 

include microwave radar, aerial stereo-photography techniques and video imaging 

(ARGUS). They have been significantly developed in recent years for example with 

the use of Synthetic Aparture Radar (SAR), on the satellite ERS-1 and 2. 

Remote sensing systems are sparse and expensive^^ for field campaigns. Also, the analysis 

of the images is still time and computational demanding. Thus, the choice of measuring 

device is commonly between single point and multiple point measurements devices. 

O'Reilly and Guza (1991) addressed the problem of predicting an accurate directional 

spectrum using single point measurement by pitch-roll buoy. Young (1994) showed the 

superior performance of multipoint gauge arrays compared to single point measurements. 

A laboratory comparison of measurements and analysis techniques carried out by Benoit 

and Teisson (1994) led to the same conclusion. Bird (1993), Bird et al (1994) and 

Chadwick et al (1995a,b) demonstrated the satisfactory performance of an array of pressure 

transducers and wave probes respectively. It should be noted that it is beneficial to choose 

irregular transducers positions and that effort should be made to maximise the different 

spatial lags between transducers in order to reduce data redundancy and maintain good 

directional resolution (e.g. Davis and Regier, 1977). Taking into account the experience of 

Bird and Chadwick; the multipoint gauge arrays have been chosen for field deployment in 

the present study. Hence, the analysis methods based on temporal analysis of wave signals 

at a limited number of locations wi l l be further considered. 

" Video imaging techniques are probably an exception. 
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2.4.3 Basic definitions 

Multidirectional waves can be described as an infinite sum of sine^^ waves with different 

amplitudes, frequencies and phases (obeying a dispersion relationship between wave 

frequency, wave length and water depth). However a more complete description of a two-

dimensional wave field must recognise that every sine wave is travelling in a different 

direction. Hence, surface elevation, ri(x,y,t), of a given point is a function not only of time 

but also of its space co-ordinates relative to an arbitrary axis [x,y] 

M 
n{^>y>t) = S C^i^m^^OSe^ + ^ ^ C O S ^ , - CO^t + 9^) (2,11) 

m=l 

In this expression surface elevation is written as superposition of M elementary sine wave, 

and each component satisfies the linear dispersion relationship = gA:tanh(/:^£y)where g 

is specific gravity, k is a wave number and d is water depth. 

Under the assumption that the phases Sm are randomly distributed over [0, 27t], the 

following relationship holds between the directional variance spectrum and the amplitudes 

of the wave components in the two dimensional range [ / , / -\-df ]x[^ , 6 + d6\ 

f-^dfe*de 1 

Y.'L^l=sif,e)dfde (2.12) 
f 0 ^ 

The directional variance spectrum S(f,9) is proportional to the energy spectrum S(f,0) = 

E(f,9)/ pg. The directional energy spectrum represents the energy distribution over both 

frequency and direction of propagation. 

It should be noted that the directional variance spectrum may alternatively be expressed as 

a function of wave number and direction (k,0) 

" They are usually called sine waves even though the cosine functions are included in equations. 
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2.4.4 Stochastic analysis methods for a homogeneous wave field 

The stochastic methods for directional analysis are based on a mathematical relationship 

between the directional spectrum and the cross-power spectra. Isobe and Kondo (1984) 

define the relationship between cross spectra and directional spectra for each of two 

arbitrary wave properties with following equation 

P^„{CD) = j H„iK,co)H '„{K,c})cxp{-iK{X„ - X^)}s{K,co)dK (2.14) 
k 

In this equation, o is an angular frequency, K is the wave number vector, Pmn(tt>) is the 

cross-power spectrum between m-th and n-th wave properties (properties measured at m & 

n station). Hm(K,co) is the transfer ftmction from the water surface elevation to m-the wave 

property, i is an imaginary unit, Xm is location vector of the wave probe for the m-th wave 

property, S(K,co) is a directional spectrum as a fimction of wave number and frequency 

(* denotes conjugate complex). The wave dispersion equation is given by the equation: 

CO ={2nff =gktanh/ui (2.15) 

Equation 2.14 can be rewritten as a ftmction of the frequency and the direction of wave 

propagation 

0 (2.16) 

ism{k{x„„cose-^y^ smO)}] S{f,O)d0 

The directional spectrum S(f,0) can also be expressed as a product of the frequency 

spectrum, S(f), and directional spreading fimction, G(f,0) 

S{f,e) = S{f)f3{j,e) (2.17) 

The directional spreading fijnction (DSF) satisfies two important properties 

G ( / , 6 » ) > 0 over [0,2;r] (2.18) 
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2ir 

\G{eif)de=\ (2.19) 
0 

The first condition defines that the DSF is a non-negative expression and the second is a 

consequence of the following relationship 

']s{f,e)dO = S { f ) (2.20) 

The transfer ftmction, Hm(f,0), is usually given in the following form 

/ / . ( / . ^ ) = K{fyos{a^e)sm{P„e) (2.21) 

For the water surface elevation - fijnction hm(f)=l and parameters am and Pm are equal to 

zero. For the other properties refer to Hashimoto et al (1987) and Benoit et al (1997). 

The directional methods proceed in two steps 

1. Spectral analysis of the recorded time series is performed resulting in computing the 

cross-spectra between each pair of signals. The details on a spectral and cross-spectra! 

analysis are given in Appendices D and E. 

2. The determination of the directional spectrum S(f,9) can then be achieved by the inverse 

of the equation 2.14. As the measuring devices have a limited number of measuring 

points (usually 3-10, Benoit et al (1997)), the mathematical problem is not fully defined 

and some additional assumptions need to be introduced. In practice, this is not 

straightforward and several methods have been developed to solve this problem. 

The lAHR working group (Benoit et al, 1997) stated that in the case of multidirectional 

incident sea slates the stochastic methods comprising the Maximum Likelihood Method, 

the Maximum Entropy Method and the Bayesian Directional Method offer superior 

resolving power when applied to spatially separated multipoint wave gauge arrays. Hence, 

a brief description of each of these methods is given. 
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2.4.4.1 The Maximum Likelihood Method ( M L M ) 

The Maximum Likelihood Method, M L M , was originally developed by Capon et al (1967) 

for the analysis of seismic waves with a sensor array. It was later adapted to obtain the 

directional wave spectrum. It is designed to minimise the variance of the difference 

between the estimate and the true spectrum under the constraint that the amplitude of 

unidirectional plane waves, with no contamination by noise, is passed without bias, as 

described by Pawka (1983). 

The M L M is based on the assumption that the estimate of the DSF may be expressed as a 

linear combination of the cross-spectra 

G(f, 0) = ̂ T ( / . ( / ) ^^'^^^ 

Where,P"'mn is an mn element of the inverse matrix P'' (co) and a is a proportionality 

constant. 

The estimates are related to the actual DSF by following relationship 

2:r n 23) 

Where 

.i{0^a) = X a„„{f.0)H„(f.0)H:(f,e) (2.24) 
m,n 

Hence, the M L M estimate may be seen as a convolution product of the actual DSF by a 

window fimction w (9,9'). This estimate wi l l approach the actual DSF as the window 

ftmction tends towards a Dirac ftmction. 

The estimate that best satisfies this condition is given by Isobe et al (1984). 

G{f,e) = Ki (2.25) 
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This expression includes the transfer function Hm(f,0), thus enabling directional spreading 

estimates from measurements of different properties. 

Tests on numerical and laboratory data (Benoit and Teisson, 1994) show that this method 

usually produces broader directional peaks compared to the target directional spectra 

particularly in the case of single point measurements. The cross-spectra computed from the 

M L M estimates differ from the cross-spectra computed from wave measurements. Pawka 

(1983) and then Oltman-Shay and Guza (1984) proposed an iterative refinement to the 

M L M in order to get a consistent estimate. It does require more computing time, but it is 

recommended for use with the single point measurements. 

Chadwick et al (1995a,b) found that the M L M provides good estimates when applied to a 

star array with at least four measuring sensors and when suitable spectral analysis are 

performed. The M L M method usually exhibits acceptable estimates with relatively short 

CPU time and is therefore widely used (Benoit, 1993). 

2.4.4.2 Maximum Entropy Method (MEM) 

The Maximum Entropy Method has been adapted from the theory of probability to 

directional wave analysis due to similarities between a DSF and a probability density 

function (PDF). The principle of these methods is to define an 'entropy' function, which 

has to be maximised under the various constraints given by the cross-spectra equations. 

Two such methods have been proposed depending on the definition used for the entropy 

(Benoit a/, 1997). 

The first definition for entropy was proposed by Barnard (1969) and then adapted to the 

single point measurements systems by Lygre and Krogstad (1986) ( M E M l ) . The M E M I 

estimates are consistent with the cross-spectral data, but the method overpredicts the height 

of directional peaks, and sometimes gives two peaks for unidirectional cases. Benoit et al 

(1997) advised to use this method only for comparison purposes. 

The Maximum Entropy Method proposed by Kobune and Hashimoto (1986) is based on 

Shannan's definition of entropy (SE). The entropy which needs to be maximised is: 

SE - JG(/ , 6')ln G ( / , e)dO (2.26) 
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The estimate of G(f,9) which maximises SE is called the maximum entropy estimate. For 

the single point measurement, it is given by following equation: 

G ( / , e ) = exp{- /lo - A,cose-A^s'mO- cos W - sin lO] (2.27) 

Where the coefficients ̂  . . .^4 are the Lagrange's multipliers which are determined by 

solving non-linear equations as given by Kobune and Hashimoto (1986). 

The method is iterative and for the case of three measured elements, the solution is quite 

straightforward. However, it has the disadvantage of not converging for very narrow 

spreading functions. Nwogu et al (1987) extended the Maximum Entropy Method to 

improve convergence for narrow spreading functions. Their analysis is based on a 3-sensor 

array consisting of 1 elevation sensor and a biaxial current sensor. The final equation is 

similar to equation 2.27, but is extended for four properties. 

The method is not simple to implement (especially for wave probe arrays) and requires 

more computing time due to the iterative procedure of solving non-linear equations. 

Recently Kim et al (1994) proposed some approximations to the numerical scheme in order 

to remove convergence problems, which may occur for real data. The MEM is 

recommended for single point measurements by Benoit et al (1997). 

The extended M E M (EMEM) derived by Hashimoto et al (1994) improves the technique 

for array measurements. Tests on numerical data sets show that results for an array are now 

comparable to the other methods. 

2.4.4.3 The Bayesian Method (BDM) 

This method is based on the Bayesian technique used in probability theory. Akaike (1973) 

introduced the Bayesian approach for regression analysis problems where the number of 

parameters to be determined was large compared with the sample size. The estimation of 

the directional spectrum can be considered as a regression analysis, to find the most 

suitable model from limited data. Therefore, the Bayesian approach can be useful to obtain 

the most reasonable model (directional spreading function) which best approximates the 

sample (cross-power spectrum) and which also satisfies the nature of the physical 

phenomenon, i.e. continuous and smooth variation of its value. 
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Hashimoto et al (1987) applied this principle to directional wave analysis. The method is 

not easy to implement but has powerful capabilities in resolving the DSF shape with no a 

priori assumptions. The so-called, hyperparameter, u, is introduced to take into account the 

balance of the two requirements imposed on the model, that is, to maximise the likelihood 

of the model given by equation 2.14 and to include smoothness conditions. 

It is assumed that the directional spreading fiinction is expressed as a piecewise - constant 

function over each segment of the directional range from 0 to 2n (kA0=27i). It is defined by 

a series of K values Xk(each corresponds to the logarithm of the constant value of the BDM 

estimate of each segment): 

\nlG{e,)\=x,{f), {k = l...,k) when 9,={k-\/2)Ae ^"^^ 

G (^)=Xexp(x , ) / ,W with / , ( ^ ) | ^ otherwise ^^"^^^ 

The system of non-linear equations given by the co- and quad spectra (see Appendix E) is 

completed by the smoothness condition of the estimated DSF. This is mathematically 

expressed by the following relationship between three consecutive values of the estimate 

| ; ( x , , , - 2 x , + x , _ , ) ^ - ^ 0 (2.30) 

The most suitable values of the hyperparameter, u, is determined as the one which 

minimises the ABIC (Akaike Bayesian Information Criterion, (Akaike, 1973)). 

Due to its large number of degrees of freedom, the BDM is able to represent almost all 

kinds of DSF shapes. Its main applicability is to a multi-component array and it is 

considered to be a most powerful technique. 

2.4.5 Stochastic methods for a reflective fleld 

Reflective wave fields caused by coastal structures can be usefully divided into a near 

structure field and a far field. The near structure field is characterised by the formation of 

partially standing waves caused by phase locking of incoming and outgoing (reflected) 

waves. A l l the stochastic methods were originally developed for a homogeneous field and 

therefore fail to give accurate directional spectra estimates in the near field. Two methods, 
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the Modified Maximum Likelihood Method ( M M L M ) (Isobe et al, 1984), and Modified 

Bayesian Directional Method (MBDM) (Hashimoto and Kobune, 1987) take into account 

not only the relative distance between sensors but also their position relative to the 

reflector. The M M L M has previously been successfully used to analyse measurements 

taken in the near structure environment (Bird et al, 1994). A brief summary of the method 

will be given in the next section. 

2.4,5.1 Modified Maximum Likelihood Method ( M M L M ) 

Isobe and Kondo (1984) proposed an equation to estimate the directional spectrum. It is 

given by the equation: 

S{k,co) = J J]Y.^-:{co)K{k,co)H„{k,cu)cxp{ik{x„-x^)) - Z 
/ \_ m n 

where 

P''mn - mn element of the inverse matrix P"* (co) 

K - proportionality constant 

(2.31) 

nr -^mr. 

^ = - ' ; TT T — (2.32) 

where Xnr and Xmr are distances from the reflector. 

However, this phase sensitive method tends to produce spurious peaks when applied to the 

data measured far from the reflector. Huntley et al (1995) described the sensitivity of the 

M M L M used for co-located sensors and the problems in applying the method. Davidson et 

al (1998) subsequently demonstrated that this method could produce very accurate 

estimates in the near field for multipoint measurements, provided that the effective 

reflection line is iteratively determined. 

2.4.5.2 Applicablity of the phase-locked and non phase-locked methods 

For the far field, Huntley and Davidson (1998) postulated that the frequency dependent 

node/antinode structure implies that for random wave field, phase locking between 
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incoming and outgoing waves is linked to the frequency resolution (bandwidth) used in the 

spectral analysis. I f the frequency bandwidth is wide enough to encompass frequencies 

with both nodes and antinodes of the partially standing waves at the sensor location then in 

effect the node/antinode structure is smoothed over. This would allow the use of non-

phase-locking methods (NPL) for data analysis. On the other hand i f the frequency 

bandwidth is small compared to the frequency interval between a standing wave node and 

antinode, the phase locking effect is significant and a phase-locked method (PL) must be 

used. Huntley and Davidson (1998) show further that, since the node/antinode frequency 

interval is determined by the time of wave travel to the reflector and back, L, and the 

frequency bandwidth in spectral analysis is determined by the length of time series used, S, 

then the ratio, US, can be used to determine whether or not a phase-locked method should 

be used. 

Their analysis did not take into account directional spreading which will tend to decrease 

the phase locking between incident and reflected waves. Inclusion of directional spreading 

might extend the applicability of non phase-locking methods. 

2.4.6 Stochastic methods for a field with currents 

Al l previous mentioned methods were developed for analysis of random (directional) seas 

in the absence of currents. However in reality, waves rarely propagate on quiescent water. 

The presence of a tide or other current alters the speed of the wavelength and the observed 

wave period (see for example Hedges et al 1992, 1993). Thus the proper wave number 

needs to be taken into account in directional analysis. Nakagawa et al (1996) proposed a 

modified directional analysis taking the effects of currents into account by altering the 

linear dispersion equation. 

The dispersion relation given as 

m'={27rfy =gk,\zi^k^ (2.33) 

calculates the wave number in directional analysis when no current is present. However, 

when a current is present, the dispersion relation becomes 

{o) - UX cosO^y = gk^ tanh (2.34) 
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However, their solution is limited to a homogeneous field, which impUes uniform currents 

in space, and in time e.g. tidal or large-scale currents. Thus, the wave number also depends 

on the direction and magnitude of the currents. The problem of refraction associated with 

wave encountering sheared flow from quiescent water to water with a current, or from a 

field of one current speed to a field with another current speed is not taken in account. This 

would have an influence on the shape of directional distribution (see for example Hedges et 

a/(1993)). 

Summary 

In the field around offshore breakwaters where a certain amount of reflection can be 

expected, a proper choice of directional analysis needs to be made. The most verified 

methods are methods for homogeneous fields or the so called non-phase-locked methods. 

However they can fail in the estimation of DSF when they are applied in other 

circumstances (Teisson and Benoit, 1994). The validation of the methods was performed in 

the laboratory. The field measured data give the opportunity to test which method, phase-

locked (PL) or non-phase-locked (NPL), is more applicable for field data analysis taking 

into account Huntley and Davidson's (1998) recommendation. The M L M method, which 

gives accurate estimates when the proper spectral analysis is applied, wi l l be considered as 

the NPL method. It is easy to implement and uses a small amoimt of CPU time compared 

to the other methods. As the PL method, the M M L M method wi l l be considered. The NPL 

estimates are also compared with the BDM method estimates. The RDM method was 

found by Teisson and Benoit (1994) to be the most powerfijl method in laboratory 

validation. 

2.5 Objectives of the study 

With the exception of a few examples (e.g. Kraus et al 1983) monitoring of offshore 

breakwater schemes have mostly concentrated on shoreline change. Wave measurements 

were mostly taken offshore or for only short periods of time. Also, most of the schemes 

were built in a microtidal environment and therefore there is a need to monitor the new 

macrotidal schemes and their influence on hydrodynamics and morphology. The newly 

constructed scheme at Elmer, West Sussex, offered an opportunity to measure directional 

wave transformation. Two different measuring systems were deployed. An array of 

pressure transducers was deployed offshore and an array of wave probes was deployed in 

the shallow water in the lee of the breakwaters. The measurements of both equipment prior 
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to deployment were compared in order to verify the compatibility of the two measuring 

systems. Also there was a need to utilise the same spectral analysis to analyse both data 

sets. 

Wave transformation models have been mostly used for regular wave fields. There is 

evidence from field and laboratory measurements taken to date that the diffracted wave 

field for regular waves is overpredicted compared to diffracted random waves. The linear 

model based on the Mild Slope Equation can be used for a random field by superposition 

of separate frequency and direction computational results. There is little information in the 

literature on validation of these models from field data. So far they have been validated for 

regular waves or for random waves on a plane beach. In order to improve the wave 

transformation model effectiveness more validation with field data particularly on complex 

bathymetries and around structures is necessary. The MSE model chosen for validation 

from field data is Li's (1994b) model. Li (1994b) has already verified his model with 

laboratory measurements for the regular waves. In the present work, verification of Li's 

model wil l be extended using 'directional modelling'. Firstly, the model will be verified 

using laboratory measurements of the diffraction of random waves. The next step is to 

validate the model from field data taking the multidirectional sea into account. Possible 

non-linear effects might also be detected when applying this linear model to such a 

complex environment. 

When validation of the model from field data is performed, there are two uncertainties -

the accuracy of the model and the accuracy of the data. It is therefore worth repeating 

O'Reilly and Guza (1991) statement: 

Accurate estimation of the incident wave spectrum will be a vital component in any field 

tests of refraction-diffi-action models. 

Therefore, a proper directional analysis needs to be applied to obtain accurate directional 

estimates. So far, the non-phase-locked (NPL) methods have been carefully checked in the 

non-reflected field. Also, phase-locked (PL) methods seem to give accurate results when 

applied in the areas of strong reflection, close to the reflector, providing the reflection line 

distance is known. However, in the present study the measurements are to be taken 

offshore of and behind the breakwaters. The locations are not in the vicinity of the reflector 

but still a certain amount of reflection can be expected. The applicability of the PL and 
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NPL methods needs to be investigated first. Then the sensitivity of the chosen method can 

be checked with validation from numerical data sets and compared with another PL or NPL 

method, such as BDM or modified BDM, 

To summarise, the objectives of the present study were as follows: 

- to organise field deployment of equipment and to collect data for a year 

- to lest the compatibility of two different measuring systems (pressure transducers and 

wave probes) 

- to develop a single spectral analysis software package for both measuring devices, to 

allow a comparison of data 

- to investigate the applicability of phase- (PL) and non-phase-locked (NPL) directional 

analysis methods 

- to check the sensitivity of the directional analysis method using simulated data and field 

data with respect of - direction, directional spread, wave height, reflection and currents 

- to validate the Li 's (1994) MSE numerical model in a multidirectional measured sea 

- to check sensitivity of the model vAih respect to a size of the grid and number of time 

steps to bring the solution to steady state 

- to check the prediction of the model for pure diffraction 

- validate Li's model from field data with a search for non-linear effects 
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Chapter 3 

Field work 

In (he field of observation, chance only favours those minds which have been prepared. 

Louis Pasteur (1822-1895) 

3.1 Introduction 

Dally and Pope (1986) highlighted the need for post-construction field monitoring of 

detached breakwater schemes to evaluate their performance. The primary reason to choose 

the Elmer site, West Sussex for such a monitoring exercise was that the scheme was 

completed in September 1993. Therefore, it was possible to monitor wave transformation 

and concurrent beach evolution fi-om an early stage o f the scheme. The other reason to 

choose the Elmer scheme for the field campaign was the existance of previous wave 

measurements and beach monitoring data. Arun District Council (ADC) and the National 

River Authority (NRA) have been monitoring the shoreline changes at Elmer through the 

1980's and the University of Plymouth has measured reflection characteristics of one of the 

two original breakwaters (see Chapter 1). These data together with the data collected in the 

course of this study can provide a valuable resource for the future evaluation of different 

defence techniques. 
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The field monitoring campaign has spanned over more than a year. The measurements 

were concentrated on wave transformation and shoreline change. Two different wave 

measurement systems were deployed offshore of the breakwaters and in the lee of the 

breakwaters. A pressure transducer £irray was deployed about 500 m offshore of the 

breakwaters. A wave probe array and two satellite probes were deployed in the lee of the 

breakwater, the gap and shoreward of the gap, respectively. The measurements were 

continuous for more than a year and more than 4500 data sets were collected. Aerial 

surveys of the shoreline change were taken on a regular three monthly basis. 

The present chapter starts with a brief description of the new scheme in section 3.2.1. The 

history of the coastal defence works at Elmer is described in section 3.2.2. A summary of 

available data is given in section 3.2.3. The two wave measurement systems are described in 

section 3.3. 

The field deployment and details of the concurrent measurements are summarised in 

sections 3.4.1. and 3.4.2. Additional measurements are given in section 3.4.3. and the 

chapter concludes with a summary in section 3.5. 

3.2 Field site description 

3.2.1 General 

The fieldwork took place at Elmer, which lies, on the South coast of the UK, 38 km west of 

Brighton, in West Sussex (Holland and Coughlan, 1994). The Elmer coast forms part of the 

Sesley Bi l l to Beachy Head coastal cell (Figure 3.1). The average beach line at Elmer has a 

bearing of 76** over a distance of some 12km. This is the most seaward protrusion of an 

almost straight stretch and acts as a headland feature (Figure 3.1). The defence scheme, 

which protects 2 km of headland area from flooding and beach erosion, was completed in 

September 1993. 

The scheme, which is shown in Plate 3.1 and Figure 3.2, is based on a soft defence 

philosophy and consists of 8 shore-parallel rock island breakwaters and a terminal groyne 

protecting a renourished sand/shingle beach. The structures are low-crested 'reef type 

rubble moimd breakwaters. The structural form of the breakwaters is quite simple and 

44 



consist of rock armour placed on a modest bedstone layer to provide a permeability 

transition to the beach. The bedstone layer was laid on the chalk platform. The breakwater 

lengths vary between 70 m and 140 m and the length of the gaps between them vary from 

70 m to 152 m. Crest elevations are 4.5 m above Ordnance Datum, with the exception of 

the two easternmost breakwaters which are Im lower. This is in order to reduce the 

downdrift impact of the scheme. The breakwaters have a slope of 1:2 (seaward) and 1:1.5 

(landward faces), respectively, with a widened roundhead at each end of the structure with 

a slope of 1:2.5. The rock armour blocks used were of Norwegian syonite, with an effective 

mean weight of between 7.5 and 8.5 tonnes. A minimum rock density of 2.6 tonnes/m^ was 

specified for the single layer armourstone and bedstone. 

The newly renourished beach consists of 139 000 m*' of mixed sand and shingle, supplied 

from offshore dredging areas. The upper beach consists mainly of shingle (D5o=l 1.0 mm) 

with a gradient of 1:7 overlying a sandy toe (D5o=l 15|im) of gradient 1:50. The defences at 

Elmer were commissioned jointly by ADC and the NRA. A fuller description of the site and 

details of the construction may be found in Holland and Coughlan (1994). 

3.2.2 Background 

The new scheme provides protection for residential areas and for agricultural land. The 

previous coastal protection was reinforced concrete seawalls, timber breastworks and 

timber groynes. Groynes with a terminal groyne on the Eastern end can be seen on the 

Ordnance Survey Map dating back to 1879. However the residential area was built only 

just before, and after the First World War. Concrete sea walls were built in the 1960's to 

protect a new residential area. Pool Place groyne (Eastern terminal or end groyne in Figure 

3.2) acted as a terminal feature ensuring the stability of the updrift shingle beach and bank. 

The beach nourishment started from the 70's onwards. Despite beach nourishment, erosion 

continued. Additionally, some of the existing defences along the fi^ontage were coming to 

the end of their useful life in the late 1980's. Erosion of the shingle beach in front of the 

sea walls emd breastworks highlighted the very real risk of a breach in the defences. In 

addition the lower beach levels allowed considerable overtopping of the defences in storm 

conditions, causing extensive flooding to properties. An upper wave return shaped face 

wall was constructed in 1988. 
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However, the shingle beach crest in the front of the walls was low and did not provide 

protection against overtopping. Following a flood in 1989/1990 ADC and NRA built 

short-term protection (two shore-parallel breakwaters and a rock revetment) with a view to 

incorporate this work into a long-term strategy. 

Subsequently a 3D physical model with a mobile bed was constructed in a wave basin at 

HR Wallingford (1990-1992) to find the optimum shore protection scheme. An area of 

approximately 2.65 km by 0.65 km was modelled at a scale of 1:80. A mobile anthracite 

beach was included together with facilities for measuring wave overtopping. Several 

layouts were tested, comprising offshore breakwaters, rock groynes and a recharged beach. 

They were tested under random wave conditions from three offshore wave directions and 

with sea states representing storm events with joint probability return periods ranging from 

1 in 5 years to 1 in 200 years. It was found (HR, 1992) that the offshore breakwater scheme 

was the most effective in terms of reducing both wave overtopping and shoreline recession. 

Given the disadvantages of physical modelling related to scaling problems, it was desirable 

to monitor the performance of the new scheme in the field. A one year monitoring 

programme was set up by, Coastal Research Team from the University of Plymouth and 

the University of Brighton following the completion of the scheme. 

3.2.3 Available data 

Geology 

Generally, the natural coast at Elmer comprises a clay (brick earth) c l i f f deposit overlying 

chalk whereas the shingle beach overlies a thin veneer of sand on the top of the chalk 

platform. 

Robert West and Partners (RWP), consulitng engineers examined number of trial pits and 

analysed historiczd maps prior to the construction of the brekwaters. The findings were 

summarised in their report (RWP, 1991) in which beach deposits on the frontage were 

identified as follows' 

a) fine, medium and coarse shingle (2 - 60mm) 

b) sand intermixed with a relatively small proportion of shingle (0.6 - 2.0mm) 

Grain sizes arc given in accordance with British Standard Material Size Classification (e.g. Simm et a/, 1996). 
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c) fine and medium sand (0.06 - 0.6mm) 

d) soft to firm alluvial silt deposits (0.002 - 0.06mm) 

e) in situ upper chalk (grade 5 or 6 (RWP, 1991)). 

Shingle and sandy shingle was found to be present to a depth of approximately 3m below 

Ordnance Datum while approximately I m of sand was found to lie between the shingle and 

chalk. The seabed was found to consist of a wave cut platform of Cretaceous chalk, with 

occasional exposed flint nodules. The indications were that the chalk rises from an 

approximate lowest level of 1.5 m OD to a level of approximately Im AOD at the far 

eastern end o f the surveyed area. The seabed slope approaching the shingle bank and 

seawalls was of an average order value of 1 : 115 in the central surveyed area. However, 

the chalk platform had a very mild slope of approximately 1:180 in the central part. 

Tidal levels 

The tidal levels can be found from two available tidal stations at Littlehampton and Bognor 

Regis, respectively. The tidal range varies from 2.9 - 5.3m on neap and spring tides, 

respectively (RWP, 1991). 

Wave conditions offshore 

The coast at Littlehampton is orientated fi^om east to west and is thus open to wave action 

from the south-west, south and south-east. Beachy Head and Sesley Bi l l shelter the areas 

from the east and west respectively. The Isle o f Wight reduces wave fetches in the 

directions between 255 - 270** ^ and the greatest fetch lies to the south of 255°. The 

coastline is subject to swell firom the Atlantic and also to the storm and wind waves 

generated locally along the English Channel. The swell waves are generally small due to 

diffraction along the English Channel. The wave activity is mostly caused by onshore 

winds. However, surges occur during strong offshore winds. It was observed by RWP 

(1991) that the overtopping along the fi-ontage was related to the occurrence of surge. 

HR Wallingford (1986) operated a non-directional wave rider buoy o f f Littlehampton in 

1985/86. The buoy was located just east of Kingmere rocks approximately eight and half 

km offshore of Littlehampton and in 10 m of water. This recorded a max. wave height of 

South equals 270**. 
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3.3 m with a zero upcrossing period of 5.8 s. It was found that wave heights measured less 

at Littlehampton due to shallow water effects, refraction across the Ower Bank Shoals and 

some shelter from the southwest by the Isle of Wight. 

Currents 

Both tidal and wave-induced currents exist on the Elmer foreshore. However, tidal currents 

inshore rarely exceed 0.7 m/s ( RWP, 1991) and they generally run parallel to the coast. 

RWP (1991) carried out float tracking at Elmer and the results were very close (RWP, 

1991) to those measured by HR Wallingford (method unknown) o f f the entrance to 

Littlehampton Harboiu*. Easterly currents were found not to exceed 0.3 m per second and to 

reverse approximately 2 hours before high water. 

3.3 Instrumentation 

Selection of an appropriate technique for wave measurements depends on several factors 

such as the environment, site access and cost. The sensors for the present study were to be 

deployed at three positions just above lowest astronomical tide, in the tidal zone and 

offshore in deep water. Considering the advantages and disadvantages of the measuring 

equipment given in Chapter 2, a pressure transducer system, was chosen by Research 

Team, for the offshore measurements only. The simple and well established wave gauge or 

staff was selected for the inshore or shallow water measurements. 

3.3.1 The inshore wave climate monitor 

The Inshore Wave Climate Monitor (IWCM) had been previously designed to meet the 

following criteria (Brown, 1994 and Chadwick et al, 1995b): 

a) accurate measurement of shoreline directional wave spectra; 

b) capability of long term measurements v^th on-site data storage and analysis; 

c) robust design capable of withstanding breaking storm waves on a beach; 

d) portability and transportability allowing rapid erection/dismantling on any beach 

site; 
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e) to be structurally self contained such that beach movements do not affect the 

integrity of the device. 

Additionally, IWCM measures instantaneous depth and it is easily fabricated at low cost. 

Sensor and Acquisition Systems 

The wave gauge consists of a 6 metre resistive sensor mounted on an aluminium scaffold 

tube held vertically from the seabed, on a triangular base frame. The triangular sensor 

support frame is constructed from readily available aluminium scaffold tubes held by 

cadmium plated steel swivel fittings. Once on site, erection of the IWCM takes less than 

an hour and scaffold tubes driven into the beach material effect attachment to the seabed. 

Each sensor was formed by a helical winding of 80 metres of resistance wire on a non

conducting support previously treated with anti-fouling paint to reduce contamination by 

marine organisms. A small sensor excitation and signal conditioning module was mounted 

directly on the top of each sensor to provide a filtered +/-5V signal directly proportional to 

water surface elevation. A l l sensor modules included an on board filter to attenuate the 

signal noise at source. Prior to measurement, each signal was passed through a 6 pole anti

aliasing low pass Bessel filter^. A l l modules were directly connected by armoured cable to 

a central termination unit also mounted on the sensor support frame. A larger marine cable 

was used to connect the sensor array to a secure base station well above the high water 

mark. In the absence of mains electricity supplies the complete sensor array can be 

operated from two 12-volt batteries. 

A remote microcomputer-based data acquisition system was used to control timing, 

measurement and storage of data, followed immediately by on line spectral and directional 

analysis of waves incident on the shoreline. The flexibility of the microcomputer-based 

system allowed instant on site modification to data acquisition or analysis software and 

immediate logging o f unscheduled events of particularly interesting activity. Graphical 

visualisation of wave activity during recording was also useftil for verification of correct 

operation and calibration checks. 

The data acquisition software was written by David Pope, from the University of Brighton, 

in compiled BASIC. Before each logging event a check on still water level and wave height 

' Bessel filter has a cut-off frequency of 2Hz and roll off at 36dB/octave effectively passing all wave data with 
frequencies less than 0.75 Hz and with 80% attenuation at 4 Hz. 
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was made to avoid storage of unnecessary data files. An Amplicon PC74 A/D card in the 

differential mode was used to discretely sample the analogue output from the signal filters 

and each sensor was selected sequentially and read within a period of 10msec. A l l raw data 

were stored in encoded form to reduce disk space and all file names reflected the date and 

time of each event. 

Initial static calibration of each wave sensor is achieved by graduated immersion of the 

complete sensor and module in still seawater. Dynamic response was tested in the 

laboratory and the sensor was found to be dynamically accurate. Further details of the 

calibration may be found in Borges (1993)-

3.3.2 Offshore wave recording system (WRS) 

This system had been designed by Paul Bird and previously deployed at a few locations 

e.g. Plymouth breakwater, Elmer's original emergency two breakwaters scheme (Bird, 

1993). The system was designed to be self contained and situated on the seabed, measuring 

pressure at several locations. Taking account of functionality, purpose and working 

environments the following criteria were met: 

a) It measures water pressures at several locations simultaneously, therefore also the 

directional wave spectra and also records times and dates of measurements. 

b) It has sufficient data and battery capacity to record pressure data over a fairly long 

period'*. 

c) It is robust enough to survive storms, and can be located to avoid unauthorised 

interference. 

d) Performance specification provides accuracy limits for the steady component of -

+/- 1% of the pressure reading and for the varying component - +/- 1% of the 

pressure reading or 5 mm. 

e) It is seabed mounted with integral power supply and data store. 

f) The only communications link to the user is a cable link normally lying on the sea 

bed that can be hauled or lifted aboard a boat. The operator needs to visit the site 

^ The envisaged capacity was about 4 million readings and battery life of four months. 
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boat, haul aboard the cable and connect it to a personal computer to download the 

data onto the computer's disc. However, the measuring cycle needs to be an 

automatic operation and subject to pre-set timing (typically 17 min every 3 hours, 

but alterable). Thus, it should enable the user to set up measurement parameters, 

and to check for the correct operation from time to time, without f i i l l recovery of 

the equipment. 

The wave recording system consists of eight separate units: six transducer assemblies, the 

recorder and a portable computer interface unit. Interfaces are in analog form via marine 

Subcon connectors and cable. Six transducers are seabed mounted in a linear array with 

one offset transducer. 

Sensor and Aquisition systems 

The PDCR 130 pressure sensor from Druck was chosen by Paul Bird to record the absolute 

pressure (Bird, 1993). Correction to each record from a barograph is added at the analysis 

stage. It was decided to place only pre-amplifiers with the pressure transducers and to link 

the high level analog signals to a central recorder unit which would contain all the other 

functions. Plate 3.3 shows the pressure transducer and its housing. 

The functional sections of the wave recorder (WR) are a signal conditioning unit, power 

supply, microcomputer and data storage. The signal conditioning units convert the 

information in six analog signal inputs into a stream of binary numbers, which can be then 

read by the microprocessor. The microprocessor's role is to control the track/hold circuit, 

multiplexer, programmable gain amplifier and analog to digital converter on a signal 

conditioning board. The power supply section consists of a printed circuit board assembly 

and battery pack. Its function is to provide electrical power for the six remote transducers 

and the analog digital circuitry. A pack of twenty-eight D size alkaline-manganese cells 

provide the wave recorder's electrical power requirements for approximately four months. 

A batteiy-backed static random access memory was chosen for data storage. 

Signals from all sensors are sampled simultaneously by a track and hold circuit to avoid 

any delay between readings taken at the different locations. The first operation after the 

signal enters the signal-conditioning imit is to put the signal through a low pass filter, 

which removes any 'high' frequency content (above one Hertz)^. Analog signal 

* Its characteristics are as follows less than +/- 0.02 dB attenuation up to 0.4 Hz, less than +/- 0.1 dB up to 0.5 Hz and 
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conditioning is complete at the output of the amplifier and the signal is then ready for 

conversion into digital form. The controlling program handles measurements (scheduling 

transducer readings), measurement processing (compressing the readings, time and date 

stamping the records), memories, power supply and the communication link. 

The wave recording electronics and pressure transducers were fitted into watertight 

pressure housings capable of reliable long-term sealing to a depth of 100 metres in 

seawater. The recorder housing is of tubular construction, with removable end caps sealed 

by 'O ' rings and retained by nuts and bolts through the flanges. Connectors for the 

transducers are fitted to the end caps and also sealed using 'O ' rings. The materials, which 

were used, are all corrosion resistive and enable a good seal. Aluminium alloy was selected 

for the housing as it is easy to machine and weld and it is light and cheap. The high 

corrosion rate was overcome by the application of a hard anodic oxide coating. Three 

elastomeric torodial sealing rings seal the joint between each end cap and the tube. The 

transducers are made from stainless steel, which can corrode, badly after prolonged 

immersion in seawater. A special casing was therefore designed for the transducers. 

The laptop personal computer (PC) acts as a terminal to the wave recorder's 

microcomputer and provides mass storage to collect the data. A proprietary 

communications package is run on the PC, giving the user control over its serial interface^ 

and disc drive. 

The offshore wave recording system is calibrated at a number of stages in order to give the 

greatest possible assurance that the readings obtained are accurate. Each part of the system 

is firstly tested and calibrated separately. Then the system as a whole is set to take the 

record at ambient pressure and compared to mercury-in-glass precision aneroid barometer. 

More details can be found in Bird (1993). 

3.4 Deployment and measurements 

As the currents are relatively small (less than 0.7 m/s) and the monitoring budget was 

limited it was decided by Research Team to give an emphasis on the directional wave 

measurements. The wave measurements offshore and inshore were accompanied by an 

aerial surveying of the shoreline change. The positions of the equipment was located 

greater than 40 dB at 1 Hz and above. 
* (800 kb/hour about 265kb/rampack; 16 rampacks takes about 3h and 36 min ) 
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considering natural site conditions described in section 3.2.3., capabilities of equipment 

and requirements of numerical model. 

3.4.1 Offshore wave measurements 

The deployment of the WRS took place on 23 September 1993. A team from the 

University of Plymouth deployed it 650 m offshore and about 500-m from the completed 

breakwater scheme (see Figure 3.2). The mean water depth offshore was 6 m. The location 

was chosen to provide the seaward boundary for the numerical model. For the WRS array 

design, the recommendations of Isobe and Kondo (1984) were followed: a linear array of 

exponentially increasing spacing, with values chosen to suit the range of wavelengths 

expected. In addition, one extra sensor was placed off-line to determine the wave directions 

different to the orientation of the array. 

A rectangular steel platform of about 400-kg was provided for the recorder and six smaller 

platforms of concrete and steel^ for the transducers. These platforms minimise the 

movement and tilting of recorder and transducers. Transducers with cables attached were 

bolted on to platforms. The chain, which connects the wave recorder platform and 

transducer platforms, was pre-cut to define the spacing. Cables were tied up to the chain. 

First, the steel recorder platform and transducers on concrete transducer mounting blocks 

were deployed. Plates 3.2 and 3.3 show the transducers prepared for the deployment. They 

were dragged by the vessel and cut free and sunk at the appropriate locations. Divers 

adjusted the final position on the sea bed. In the next stage the recorder was taken dovm to 

its platform and bolted on. The cables were then unrolled from the transducers to the 

recorder and tied at intervals to the chain. Finally the connectors were mated at the 

recorder, and the locking rings tightened. After deployment a survey was made to establish 

the actual locations and connections of the WRS (see Figures 3.3 a, b) and 3.4 a). 

The system was visited regularly by Philip Axe in order to download data imtil early 

November 1993. Between this lattermost time and early January '94, bad weather 

prevented the system from being downloaded and restarted. In January *94, it was found 

that the mooring line had been fouled by fishing equipment, and had to be replaced. This 

was repaired at the beginning of February '94 and the system restarted again. The system 

was successftilly operated between this lattermost date and 16th January 1995. A 

' concrete filled tyres 
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'deployment', a term, which will be used further on is the period normally limited by 

battery life. The batteries were changed twice during the field campaign resulting in 

three'deployments'. Deployment 9 ran from 23rd September 1993 until 10th of March 

1994 (715 pressure records collected). Deployment B followed fi"om 11th of March until 

23rd of July 1994 (916 pressure records collected). Deployment D started with the last 

change of batteries on 4th of August 1994 and lasted until 14th January 1995 (1147 

pressure records collected). 

A 'measurement operation' is defined as the period between two start commands, which is 

limited by the memory or full data store. Af^er every measurement operation, data had to be 

downloaded by PC. Downloading of data usually took about 2-3 hours. Each operation is 

composed of a number of measuring cycles (rampacks) lasting typically 3 hours each. Data 

from each transducer in the offshore system were collected every 3 hours 6 minutes with a 

sampling frequency of 2 Hz. The recorder was switched on for 10 - 20 min in each cycle. 

In this case it was switched on for 11.3 min. The WRS was comprehensively calibrated 

before and after deployments, and was found to have changed very little over the period. 

Any small corrections were incorporated into the data analysis procedure. 

3.4.2 Inshore wave measurements 

Inshore deployment was completed on the 5th October 1993. The Research Team deployed 

an IWCM in the lee o f breakwater number three to record directional wave spectra and two 

satellite probes to record simultaneous spectral wave data at nearby locations (see Figure 

3.2). The array geometry of the IWCM was based on the four guidelines as described in 

Goda (1985) and is repeated here. 

i) No pair of wave gauges should have the same vector distance between gauges 

ii) The vector distance should be distributed uniformly in as wide a range as possible 

iii) The minimum separation distance between a pair o f wave gauges should be less 

than one half of the smallest length of the component waves for which the directional 

analysis is to be made 

iv) The greater the number of probes the greater the resolution 
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Plate 3.2 Pressure 
transducers prepared for the 
offshore deployment 

Plate 3.3 Pressure transducer 
and its housing prepared for the 
offshore depolyment 
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Figure 3.3 Transducer positions and connections at Elmer offshore (marked as offshore WRS in Figure 
3.2): a) surveyed co-ordinate of the array deployment B; b) surveyed co-ordinate of the array 
deployment D; where R=3m 
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Figure 3.4 The equipment postions ct Elmer: a) surveyed coordinate of the pressure transducer array 
offshore - deployment 9 (marked as offshore WRS in Figure 3.2); b) surveyed coordinates of 
the inshore start array (marked as IWCM array in Figure 3.2 - inset); where R-3m 
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The star array satisfies condition (i) and is sufficient for condition (ii). Condition (ii i) is 

met by limiting the cut-off frequency and condition (iv) for a star array produces six 

independent pairs of cross-correlation measurements. 

The star array and two satellites were firstly assembled on the top of the beach. The 

triangular support frames constructed from aluminium scaffold tubes were assembled 

around the measuring poles. The frames were moved to the lower beach after completion. 

Once on the site, they were attached to the seabed by scaffold tubes driven into the beach 

material. The marine cables (length of 150m) which connect the sensor array and the PC 

station were buried in prepared trenches. The data logging system was placed in a shed in 

the garden of a nearby resident for the whole duration of the field campaign. Plates 3.4 and 

3.5 show assembly of IWCM on the top of the beach and the final position of the system in 

the lee of the breakwater. 

A schedule of site visits every one to two weeks was followed throughout the monitoring 

period. At each visit data was collected, synchronisation times adjusted and, i f tidal 

conditions allowed, a through inspection was made of all sensors and supports. Calibration 

checks of all sensors were made at suitable times throughout the monitoring exercise and 

small adjustments made where necessary. Occasional interruptions to the logging sequence 

occurred, resulting in the loss of a few days of data due to power supply disturbances. The 

locations of the star array in the lee of the breakwater and the satellite probe shoreward of 

the gap were swapped between 13th to 16th July 1994. Logging was re-established on the 

24th July. The star array stopped recording on 2 November 1994, but the two satellite 

probes continued recording data imtil 13th December 1994 (1550 data sets collected). Data 

were collected every 3 hours 6 minutes (when the IWCM was in more than 0.5 m of water) 

for 17 minutes with a sampling frequency of 4Hz. 

The WRS and IWCM systems measured data simultaneously. The position of both inshore 

and offshore equipment was surveyed during the operation. 

3.4.3 Other measurements 

Beach surveying 

The length of the coastline under investigation precluded the use of traditional leveling 

techniques for beach surveying. It was decided instead to use aerial stereo-photogranmietry. 
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Plate 3.4 Assembling of IWCM on the top of the beach 
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Plate 3.5 IWCM and one of satellite probes during deployment in Elmer 
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After the breakwater scheme contractor-completion survey, flights were flown at quarter 

year intervals at low tide, giving four aerial surveys over the wave-recording period. 

Surveys included information on surface material (mud, sand, shingle, concrete or rock), in 

addition to the beach level information. 

Sediment size distributions were studied by the analysis (to BS 812) of 22 beach samples 

taken in the bay between breakwaters 3 and 4 by Philip Axe. Twelve of these were 

'random' samples, giving a description of the overall beach composition (Axe, 1994). The 

other ten were to show any variation in particle size with distance from the salient tip. 

Video recording and photographs 

At each visit to the site, photographs of beach features along the entire frontage were taken 

by Philip Axe and Richard Brown. More than 350 photographs have been studied, and 

form the basis of an internal report by Axe (1994). Richard Brown was taking video 

recordings of particularly interesting wave conditions (storm events) and their effects on 

the beach. 

3.5 Summary 

The field campaign involving wave measurements and beach changes started immediately 

after the new defence scheme was completed. The advantage of such an early start is that 

the development of the equilibrium beach profile related to the measured wave conditions 

could be observed. The field measurements were taken almost continuously for more than a 

year. The equipment resisted several major storms without any damage and all together 

about 4500 wave data sets were collected. The aerial surveying captured the rapid beach 

changes in the early stage until equilibrium was almost achieved. The wave data and the 

beach surveying data form a uniquely valuable database. This wil l allow the validation of 

existing wave transformation and morphological numerical models and evaluation of the 

effectivness of the beach protection scheme. 

The IWCM and WRS systems incorporated data recording, ease of deployment and very 

precise data handling. However, there are some limitations in both systems, which should 

be improved in the future. 

The deployment of offshore pressure transducers by divers becomes very difficult in deep 
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water, particularly with low subsurface visibility. To fix the transducers at the proper 

position and to connect the cables to the right transducers is very difficult. A new offshore 

deployment technique should be investigated. The measuring cycles and time for the WRS 

is automatically pre-set. The IWCM measuring time was set up manually, hi concurrent 

measurements like this, it is very important to have the same recording time offshore and 

inshore. Unfortunately, this was not working properly during the whole field campaign 

time. It was impossible to access the offshore wave recorder during high storm conditions. 

The possibility of a single operation system for both devices should be investigated. Also, 

the measurement cycle offshore was limited by the constraints of the control programme 

software. It should be extended from the existing 11 min to at least 17 min. Downloading 

of the data offshore from the boat lakes about 2 to 3 hours (maximum 5 hours). Bad 

weather conditions can prevent the downloading operation. The gap in the measurements 

occurred in the winter 1993 for the same reason. Therefore there is a need for the 

development of a telemetric operation system. The array shape can influence the directional 

analysis. Special care should be given to the array design in the fliture. 
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Chapter 4 

Data processing and analysis 

Science is spectrum analysis. Art is photosynthesis. 
Karl Kraus (1868-1952) 

4.1 Introduction 

Measured wave properties are stochastic processes by their character. Thus the choice of an 

optimal spectral analysis routine is very complex. Different spectral analyses with different 

degrees of freedom and confidence levels can produce different results (Sand, 1985). Two 

devices, the IWCM and the WRS deployed at Elmer, measure different wave properties -

surface elevation and pressure respectively. Existing original data processing routines, for 

these two devices were also different. Thus the measured wave climates offshore and 

inshore could contain differences arising fi-om the measurements and analysis techniques. 

It is important to minimise the input errors for the computational model validation. The 

input data needs to be acciu-ately pre-processed and also needs to be comparable in 

accurracy to the data which are used for the validation. Thus, evaluation of different 

spectral analysis techniques is essential. However, measurements of different wave 

properties can influence the final comparison results. It was decided to compare 

measurements and different analysis techniques before the field campaign started in 
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September 1993. 

In section 4.2 first the existing IWCM and WRS spectral analysis routines are compared. 

This is followed by a comparison of the measurements taken at the same location by the 

two measurement devices. These lattermost analyses highlighted a fiiture need for a 

uniform data processing technique to be able to compare the offshore and inshore 

measurements. The uniform processing procedure is outlined in section 4.3. A summary of 

data collected and analysis results are given in section 4.4. The chapter is summarised in 

section 4.5. 

4.2 Data processing and measurements comparisons 

4.2.1 Data processing considerations 

Spectral analysis (see Appendix D) not only gives cross-spectral (see Appendix E) 

information as the basis for the directional analysis but can also be used to derive fi-equency 

domain statistical parameters, such as significant wave height and peak period. However, 

for stochastic processes, spectral computations require an enhanced degree of attention. 

Considering a stationary stochastic process, that is a time series of length T, the spectrum 

of the whole stochastic process should be determined. The real, true spectrum is unknown, 

hence by use of statistical methods the true spectrum should be estimated. From one time 

series, it is possible to calculate several different spectra (illustrated later in section 4.2.3). 

Therefore it is necessary to compare the reliability of the given estimates. 

The important concepts related to the spectral estimates are as follows: 

- variance of spectrum values 

- bias of a smoothed estimator 

- spectral window 

- spectral bandwadth 

- data window 

- degree of fi-eedom 

- confidence interval 

Each of these is outlined in turn 

Variance of spectrum values 

By means of Parseval's theorem (e.g. Press et al, 1986) the variance of the process can be 
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expressed in terms of An, B 

a = i | : (A^+5„^) (4.1) 

since the spectrum relates the variance as a function o f fi-equency. The first raw estimate 

(sample spectrum) becomes: 

5 ; ( / ) = ^K^+B„^) /A/ (4.2) 

S'qii(f) is an estimator of the true spectrum STiii(f). From (4.1) it can be concluded that the 

area under the spectrum equals the variance of the process, and is constant. On the other 

hand the variance of a certain spectrum value may vary 

Var(S;^( f ) )^ const. (4.3) 

S\r\if) varies considerably even inside a small band of the raw spectrum. Therefore a 

smoothing procedure must be introduce to reduce the variance Var (S'TiTi(f)). 

Bias of a Smoothed Estimator 

By smoothing over a certain number of frequencies, the difference between estimates and 

the true spectrum is influenced by the adjacent frequencies. The difference, or the error, 

between the smoothed estimate and the true one is given by 

5 ( / ) = £ { 5 ; , ( / ) } - 5 ^ ( / ) (4.4) 

and is called bias. Smoothing decreases variance but on the other hand increased bias, 

therefore the balance between variance and bias should be foimd in each specific situation. 

Spectral window 

Smoothing is very often performed by a spectral window on the spectral estimate in the 

frequency domain. The Bartlett spectral window is very often used which corresponds to 

splitting up the actual time series into p subseries each of length M=T/p and calculating 
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where 8',^ is a smoothed spectral estimator. 

This last technique is the so called ensemble averaging and is widely used because with the 

development of computing technology, it is quite quick to perform the FFT on large 

numbers of subseries. The advantage of the method is that it reduces the variance and 

smoothes the estimate proportionally to the number of subseries. The overlapping of the 

subseries can be fi-om 10-75 % (Welch, 1967). 

Spectral Bandwidth 

The spectral bandwidth, b is the width of a spectral window for smoothing. Smoothing 

over a larger number of frequencies widens the spectral bandwidth which corresponds to 

length of subseries (M) in ensemble averaging. 

0.5 

a) cosine bell window 

0.1 T 0.9 T T 

b) windowed time series 

20 40 60 80 100 

c) overlaped windowed subseries 

120 

Figure 4.1 a) Cosine - bell window where T stands for a length of whole series; b) Its influence on time 
series; c) Subseries prepared for spectrum computation where M stands for a length of segment 
(number of points) and overlap is 20 %; 
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Data Window 

I f a difference between the end and start values appears in any of the subseries (i.e. i f a 

discontinuity is present) when ensemble averaging is performed, the Fourier coefficients of 

a given frequency wi l l be spread over neighbouring frequencies. This contributes to the 

total error or bias of the estimate. Therefore, it is advisable to equalise the boundary values 

before the Fourier transformation by means of a data window. A taper window which has a 

value of unity over 60 - 80 % of the series, and decreasing to zero at the end is widely used. 

One such window is a cosine bell window which is illustrated in Figure 4.1. 

Degrees of Freedom 

The spectrum estimator is a stochastic variable and it can be shown that it is (chi-

squared) distributed. The distribution has v degrees of freedom, where v is the number of 

linearly independent or "ft'ce" squares entering the expression (v=2 for the raw spectrum). 

Degrees of freedom are interpreted as a measure of the stability of the estimate. Increasing 

V corresponds to increasing the stability and decreasing the variance of the spectral 

estimate. 

Generally, combined frequency smoothing and ensemble averaging gives spectral estimates 

with 2lp degrees of freedom, where p is the number of segments for ensemble averaging 

and I is the number of adjacent frequency bins. Some authors (Jenkins and Watts, 1968 and 

Goda, 1985) take in account the percentage of segments overlapping in ensemble averaging 

or the influence o f the window. 

Confidence interval 

The distribution is also used to calculate confidence limits for the true spectrum SnTi(f) 

i.e. 

Prob 1̂  < i f ) - S^^ ( / ) < ^1 = 1 - a (4.6) 

The probability that the true parameter Ŝ n is in interval S',,̂  - B and S'j^r\ • A corresponds 

to 1- a. This interval is called a confidence interval for Snii(f). 
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4.2.2 Existing data processing comparison 

Two different spectral analysis routines had been previously developed independently by 

Bird and Chadwick for each of the measurement systems. Both spectral analysis techniques 

were performed on surface elevation data. As mentioned in the previous section, different 

spectral techniques wi l l give different estimates, therefore it was desirable to compare the 

methods performance on the same measured record. A short summary of the existing 

methods is given in the next two sections. 

The existing processing method for WRS data 

The usual number of data points sampled was 1356, with a sampling interval of 0.5 sec. 

They were stored as coded and compressed files as outlined in Chapter 3. Two Fortran 

programs paginate and decode, were written to convert coded and compressed dump files 

into pressure records in standard form Bird (1993). The role of paginate is to split the 

dump file up into files containing one measurement record each. It also forms six columns 

of data, one for each transducer. Decode's function is to work out the actual pressure 

readings from the compressed values in the Paginated files, applying to those the values of 

the amplifier gain and offset settings, the transfer function and the pressure transducer 

characteristic. 

The decoded pressure data are converted to surface elevation time series by the program 

psurf (Davidson, 1992). Tne program also takes the calibration factors into account. It 

operates by applying a spectral weighting function (based on linear wave theory) to Fourier 

components of the pressure time series, then reverse transforms the data back to the time 

domain. The routine has several advantages over the alternative time domain approach. 

These are as follows: 

- phase is perfectly preserved 

- much less data is lost 

- the spectral gain function of the filter can be rigidly controlled. 

The maximum value of the weighting function is set to a value of 10. The value of 10 was 

chosen to limit the steepness of the function and thus to control the impulse response 

characteristics. Also, i f the factor is allowed to be higher than 10, it might lead to noise 

amplification. 
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Figure 4.2 The weighting ftinction for transfer of pressure to surface elevation 

The frequency limits depend on the overall water depth and the height of the transducer 

above the seabed. As the water depth increases the frequency limit decreases'. This impHes 

in an incorrect transfer of pressure to the surface elevation i f there is a significant energy 

contribution from frequencies above the Hmit. Therefore, the weighting flinction is reduced 

linearly with frequency down to zero for frequencies greater than 0.33 Hz (0.5 Hz in the 

new weighting fxinction as is illustrated in Figure 4.2). The main purpose of the ramp is to 

control the impulse response characteristic. Sharp vertical edges in the frequency domain 

filter lead to a ringing in the time domain (see Press et al, 1986). The ramp, which is 

chosen, gives function values equal to zero for frequencies greater than 0.56 Hz. The upper 

depth limit to the application of the software is about 15-20 m. 

Spectral analysis was then carried out on the surface elevation series. The spectral 

procedure was as follows 

- subtract the mean from the data series 

- apply a Parzan (triangular) window 

- Fourier Transform the data using a routine from NAG library (bandwidth was 1.479 * 10" 

^Hz) 

- average 5 adjacent frequency bins to smooth the spectrum (after frequency smoothing 

over 5 bins, the bandwidth became 7.396 • lO"' Hz. This yields 10 degrees of freedom, 

' The frequency limit of 0.33 Hz is reached at a water depth of 7 m. 
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and 0.48-3 as lower and upper 95% confidence limits) 

- the output spectral estimates were expressed as a peridiogram where the sum of the 

Fourier components to the Nyquist frequency is equal to the time domain variance 

The existing processing method for the I W C M data 

The usual number of data points sampled was 2048, with a sampling interval of 0.5 sec. 

The stored data were coded and compressed. A BASIC program, diran4, was written to 

process the data (Chadwick et al, 1995 a). It consists of a decoding routine and spectral and 

directional analysis routine. The spectral analysis consisted of the following procedures 

- detrend the data to eliminate the tidal influence; splitting wave records into segments and 

calculating change in mean water depth using Coda's (1985) polynomial function 

- demean the data 

- cosine bell window applied (first order cosine function, 10% taper) 

- ensemble averaging (3 FFT segments with 50% overlap) 

- average adjacent frequencies (smoothing over 2 adjacent frequency bins. This yields in 

bandwidth of 3.9*10"^ Hz; 12 degrees of freedom, and 0.5 and 2.75 as the lower and upper 

95% confidence limits), respectively. 

- the spectra estimates were normalised to the time domain variance (a) in the frequency 

domain, by the following relationships 

Sn' = S n ( — ) (4.7) 
fTtO 

^ = ljt(^r'n/ (4.9) 

where mo is frequency domain variance and x] a surface elevation. 

4.2.3 Evaluation of WRS and IWCM spectral analysis 

As spectral analysis for the data collected by the WRS and IWCM differ from each other, 

prior to the field measurement campaign and data processing, both techniques were 

compared and analysed. The data chosen for analysis were recorded at the same site where 

the new field exercise was planned. Both measurement devices were deployed at Elmer in 

the summer of 1992. The WRS was deployed in front of the one of the two original 
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breakwaters and the IWCM was deployed on the beach in the lee of the two original 

breakwaters. 

Comparison of the spectral energy 

First, the comparison between total variance (or energy) obtained by time series analysis 

and first spectral moment mo (or energy) obtained by the spectral analysis was made. The 

spectral analysis routine was the WRS routine, which comprises triangular window without 

normalisation^. Seven files were compared. The total variances for four chosen pressure 

transducers for six data files were larger than the total variances obtained by time series 

analysis. One of the reasons is that the wave excursion data files prepared by psurf contain 

the tide elevation. I f the mean surface level is not properly adjusted then the spectral 

estimate near f^O appears large, which wil l have an influence on the total energy value. 

However the energy can also leak to other neighbouring frequencies which is difficult to 

discem. 

Influence of windows, starting points, FFT length 

The spectral analysis procedure for the IWCM was then applied to the WRS data measured 

in the front of the breakwater. As the IWCM analysis was developed for a star array and 

four measurement points only the data from transducers 2,3,4 and 6 were taken for 

comparison purposes as it outlined in Figure 4.3. 

B reakwater 

6 

Figure 4.3 The wave recorder position scheme (the dotted lines connect the transducers which were taken 
into comparison) 

According to the considerations outlined in the section 4.1, the influence of the following 

^ The results are not unwindowed nor nomialised on the lime series variance. 
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parameters and their combinations were investigated 

- application of the data windows 

- starting points for the data analysis'* 

- FFT segment length and corresponding number of segments, which influences the degrees 

of freedom 

- energy normalisation to time series variance (a) 

Two different windows were applied 

a) Cosine bell window 

b) Triangular window 

Natural wave records are non-stationary. Therefore it is intuitive that the resulting spectrum 

will be dependent to some extent on the start point of the FFT within the record. The 

difference between number of recorded data (1320) and those chosen for analysis (1024) 

allowed different starting points. Starting points (ST) were chosen as follows 

a) ST = 0 

b) ST =148 

c) ST = 296 

Further two different FFT segment lengths were examined 

a) segment length - 1024 data points (1 segment), and averaging over 4 adjacent 

frequencies which gave a frequency interval of 0.0078 Hz, 8 degrees of freedom and 0.46-

3.6 as the lower and upper 95% confidence limits 

b) segment length - 512 data points (3 segments), and averaging over 2 adjacent 

frequencies which again gives a frequency interval of 0.0078 Hz, but in this case, 12 

degrees of freedom and 0.5-2.75 as the lower and upper 95% confidence limits 

The data measured in the front of the breakwater showed more spatial and time variation 

then the data measured on the beach, which may be due to the presence of reflection. The 

influence of the same parameters on the spectral analysis results for IWCM data, measured 

on the beach, were tested as follows: 

a) segment length - 2048 data points (1 segment), and averaging over 12 adjacent 

frequencies which gives a frequency interval of 0.0234 Hz, 24 degrees of freedom 0.6-1.9 

as the lower and upper 95% confidence limits 

^ Only 2° data are considered for the FFT analysis. Thus in case when number of points differ from 2°, the different 
starting point can be chosen. 
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b) segment length - 1024 data points (3 segments), and averaging over 6 adjacent 

frequencies which again gives frequency interval of 0.0234 Hz, but in this case, 36 degrees 

of freedom and 0.65-1.7 as the lower and upper 95% confidence limits 

Comparison of different windows 

The results obtained after the applications of the triangular and cosine bell window were 

compared. The starting point and the number of segments were kept constant. The 

comparison was performed for data collected in the front of the breakwater and on the 

beach. The total energy is 1.2 - 1.6 times lower when the cosine bell window without 

normalisation was applied and about 3 times lower when the triangular window without 

normalisation was applied. The bigger discrepancies were noticed for the data measured 

near the breakwater. This highlighted a necessary normalisation or unwindowing 

procedure. When the results were normalised by ratio V/nio, the differences were not 

significant. It can be concluded that both windows can be applied when the data are 

normalised'' as it is shown in Figures 4.4 and 4.5. 

Comparison of different starting points 

The influence of the choice of starting point for both sets of data measured near the 

breakwater and on the beach was also investigated. From Figures 4.6 and 4.7, it can be seen 

that for the data measured near the breakwater, the choice of the starting point has an 

influence on the energy distribution over frequencies and on the energy magnitudes for 

both applied windows. Whereas, the shifting of the starting points applied on the data 

measured on the beach caused only slight changes. Thus, the choice of the starting point 

has a larger influence on the data measured near the breakwater than measured on the 

beach. This can be explained by the presence of reflection near the breakwater which 

caused larger variations in the wave excursion time histories. 

Comparison of different number of segments for the Fast Fourier Transform Method 

As was expected, a different number of segments for spectral analysis cause a change in the 

energy distribution for both data sets. The energy spectra become smoother for larger 

number of segments of FFT. 

* It is well known thai when a window is applied the data needs to be normalised. 
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Figure 4.4 Comparison of spectral energy normalised results obtained using cosine bell and triangular 
window (data measured near the breakwater) 
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Figure 4.5 Comparison of spectral energy normalised results obtained using cosine bell and triangular 
window (data measured on the beach, notice smoothing) 
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Figure 4,6 Comparison of spectral energy normalised results obtained using cosine bell window - starting 
points 0; 148; 296 (data measured near the breakwater) 
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Figure 4.7 Comparison of spectral energy normalised results obtained using cosine bell window - starting 
points 0; 148; 296 (data measured on the beach) 
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At the same time, the degrees of freedom are increasing and hence the confidence levels. 

There is a lower limit to the segment size of a record and therefore the number of segments 

into which a record may be split. This is of course governed by the maximum bandwidth of 

a frequency bin that is permissible in the spectral estimate, and additionally by the lowest 

energetic frequency present in the spectrum. However, the WRS (near the breakwater) 

results were additionally averaged over four and two adjacent frequency bins for 1 FFT and 

3 FFT segments respectively. The IWCM (on the beach) results were averaged over twelve 

and six adjacent frequency bins for 1 FFT and 3 FFT respectively. Thus the frequency 

intervals remained the same and confidence levels increased for larger number of 

segments. The results are plotted in Figures 4.8 and 4.9. The changes in spectral energy 

distribution can be observed from both figures. Thus the combination of ensemble 

averaging and frequency averaging can produce different results which effects the 

directional wave analysis. 

Even though the same detrending routine was applied for the data measured near the 

breakwater and on the beach, the presence of low frequency energy can be observed for the 

data measured near the breakwater (Figures 4.4, 4.6 and 4.8). This was possibly due to the 

method for transferring pressure to surface elevation records. 

Both spectral analysis techniques with varying, windowing technique, starting point of 

analysis and number of segments for FFT, were applied on one data file measured in the 

front of the breakwater and examined. The observed result difference might be related to 

the different smoothing technique or to different cut o f f frequencies in both programs. As it 

was expected, the difference disappears with the normalisation. Details are given in Ilic 

(1993). 

The analysis and comparisons of the results obtained by two different analysis techniques 

opened some additional questions such as which data points should be included in the 

analysis or where to start with the data windows and which window gives more accurate 

results. The method of analyses (i.e. window fimction and spectral smoothing technique 

used) has an effect on the form of the resulting spectrum. This seems to be particularly true 

in reflective wave fields. 
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Figure 4.8 Comparison of spectral energy normalised results obtained using triangular window - I and 3 
FFT segments (data measured near the breakwater) 
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Figure 4.9 Comparison of spectral energy normalised results obtained using triangular window - I and 3 
FFT segments (data measured on the beach) 
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Recommendation 

One recommendation can be given on the basis of the presented analysis. A full triangular 

window applied across the whole record will waste too much data. Many of the alternative 

10% windows (e.g. cosine bell) however, exhibit poor leakage characteristics. Since, the 

selection of an appropriate window is a subtle 'trade-off between making the central 

frequency as narrow as possible and minimising leakage to side-lobes. Thus, the ful l data 

windows are recommended as optimal data windows (for e.g. Hanning). For more details 

see Harris (1978). 

Peridiogram estimates must be normalised in accordance with the type of window 

functions used. There are two possible approaches: 

- Normalise the peridiogram estimate with the variance of the record computed in the time 

domain (Parseval's Theorem). 

- Compute the theoretical normalisation factor using the following expression for the 

window squared and summed (Press et al, 1986) 

'=> (4.10) 

Where w is the time domain window function. Note that this reduces to N^ for no window 

(box-car window). The total variance is then given by 

^ = — Z ( R e ^ I m f ) (4.11) 

The second technique may result in incorrect estimates in the total variance i f the record is 

not perfectly stationary or i f there is significant energy v^th periods of similar length to that 

of the data segment. It may be favourable therefore to adopt the first method in the future 

for normalisation of spectra. However the first method might lead to problems in 

directional analysis and prediction of reflection coefficients. 

It would be appropriate to composite a unique spectral routine for IWCM and WRS 

devices taking the mentioned recommendations in account. 
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4.2.4 Measurements comparison 

The compatibility of the spectral results for two measurement systems wil l not only depend 

on the spectral analysis routine but also on differences between measured data. Therefore a 

comparison of the two measurements systems (WRS, IWCM) was undertaken prior to the 

main field deployment. 

The deployment of the pressure transducers system at Felpham beach in spring 1993 (Axe 

and Bird, 1994) was used for the comparison exercise. One of the IWCM probes was 

deployed next to the most shoreward pressure transducer through June 1993. The data were 

recorded simultaneously. Visual observations of the sea level by video recorder and 

surveying were undertaken subsequently with data recording. Richard Brown and Philip 

Axe were responsible for these tasks. Plate 4.1 shows both devices during the Felpham 

field exercise. The measurement comparison also enabled a test of the new spectral 

analysis routine unique for both devices. Thus, this section wil l start with its description. 

4.2.4.1 Spectral analysis 

Davidson (1993) investigated the effect of different data windows and different smoothing 

on computation of wave spectra. In order to test the performance of the windows, a 

synthetic data set was produced (details are given in Davidson (1993)). Six different 

windows were examined including the; boxcar (no window), 10 % Cosine bell, Bartlett 

(triangular window). Harming, Hamming and Blackman windows. This study concluded 

that either Bartlett, Hanning or Hamming window should be selected in order to minimise 

the side-lobe leakage. 

W r a k m - Cosine befl < t m ) 

Frequency (Hz) 

Figure 4,10 The side effects of window from Davidson (1993) 
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Plate 4.1 WRS and IWCM deployed at Felpham beach during June 1993 

Three different smoothing techniques were compared in the same study. Ensemble 

averaging, frequency smoothing and the combination of both were taken in account. The 

combination of ensemble averaging and frequency smoothing produced the most 

satisfactorily results. Those findings were implemented in a new spectral analysis routine 

for WRS data. The new program, specopt4, uses Matlab routines for the FFT (Davidson, 

1993). 

The new spectral analysis program specopt4 were used to analyse data recorded by WRS 

and IWCM. To enable a detailed comparison, a cross-correlation analysis was performed 

using the cross-spectrum routines from the specopt4 program. 

Both surface elevation records contain the influence of tide level variation. To correct the 

s: 



data, specopt4 uses a linear detrending routine from M A T L A B . It also provides analysis 

using different windows - cosine bell, Manning and Welch with unwindowing. Thus the 

calculated spectrum in specopt4 is modified as follows: 

Sn- = Sn-j- (4.12) 
rV ss 

Specopt4 were based on 1024 points and 3 FFT segments, chosen for both data sets (in this 

case every second point from the IWCM data set was chosen as it recorded at 4 Hz). 

Frequency smoothing which simply means addition, (not averaging) of spectral estimates 

from adjacent frequency bins was applied over six frequency bins for both data sets ( 6 x 2 

Hz/512). This gives 36 degrees of freedom and 0.65-1.70 the lower and upper 95 % 

confidence limits for both data sets. 

4.2.4.2 Comparison 

The comparison consisted of several steps, which are described, consecutively in the 

following paragraphs. 

Data logging 

The IWCM probe was deployed only for several days (from 09/06 to 18/06 1993) during 

the WRS deployment in Felpham in the spring of 1993. Al l together, fifteen readings were 

taken simultaneously with the pressure transducer readings. The WRS measurement cycle 

was three hourly and the sampling frequency was 2Hz. The IWCM measurement device 

operated simultaneously in those cycles with 4Hz sampling frequency. Visual observations 

of the surface levels were taken parallel with IWCM data logging on 11^,14^15^,17^ and 

18^ of June 1993. 

Pressure to surface elevation transformation 

The pressure data were transformed to the water surface elevations using program 

psurf_bl (Davidson, 1992) as described in section 4.2.2. 

Time series analysis 

Time series analysis was performed on the IWCM raw measured data and on WRS surface 

elevation data. For these analyses previously described program diran4 (section 4.2.2) was 
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used. The calculated mean water depths were plotted and compared. Differences in the 

range from 5 to 18 cm were observed. There are at least two possible reasons for the 

difference to occur. There was no site device to measure atmospheric pressure. The 

variations in the atmospheric pressure were included in the transformation procedure. 

However the difference of Imb in the pressure can cause 1-cm difference in the water 

level. Beside, the IWCM sensors are subject to a small drift in the zero voltage offsets, 

which is temperature dependent. However, the combination of both can increase the 

difference. 

IWCM mean water level and wave excursion 

The IWCM surface elevation time series were analysed. The minimum and maximum 

water levels were obtained and compared with visual observations. The calculated mean 

water depths (MWD) differed from the visually observed water levels. There was the 

possibility of an error in the visual readings. The video recording and surveying were taken 

from the shore. The distance and weather conditions could influence the accuracy of 

readings. This was supported by the fact that the readings, which were taken during a clear 

day, have the lowest difference. Taking this in account together with tidal effect and 

IWCM offset, the four data sets given in Table 4.1 were chosen for further analysis and 

comparison. The summary of analysis is given in Table 4.1. 

time A^WD Hs Diffl Diffl 

11/06/1993 17h26min 3.55 0.33 0.11 0.18 

18/06/1993 14h26min 1.06 0.35 0.11 0.08 

18/06/1993 l l h 2 6 m i n 3.38 0.74 0.02 0.17 

14/06/1993 l l h 2 6 m i n 0.82 0.42 0.17 0.14 

Table 4.1 In the first column the mean water depth (MWD) for IWCM data is given. Hs is calculated for 
IWCM data. Diffl is the difference between MWD and visual observation. Diff2 is the 
difference between MWD for IWCM and MWD for WRS data. 

The average difference between the IWCM measured mean water depth and the visual 

observation are smaller than the average difference between IWCM and WRS measured 

mean water level. However, the IWCM measured mean water level is an average 10 cm 

higher than the WRS measured water level. 
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Cross-correlation 

When the calculated excursions^ for both devices were plotted, firstly a time lag was 

observed, secondly the amplitudes were slightly different because the wave excursions 

shapes differed from each other. The WRS data were filtered with a weighting function 

which is zero for frequencies higher than 0.33 to 0.4 (depending on the water depth). The 

use of such a filter smoothed and attenuated the wave excursion curves. 

TTie first task was to find and define the time lag. The cross-correlation function was used 

to calculate the time difference between the two series. Time differences were in the range 

from a few seconds to some minutes. Thus the measured WRS and IWCM records (1320 

and 2250 measured points respectively) were long enough to select a sufficient number of 

points which were collected at the same time, for further analysis. 

Spectral analysis 

Figure 4.11 shows the difference in spectral energy density for the IWCM and WRS data 

measured at the same time and analysed using the same spectral analysis routine. Comparing 

the spectral energy density graphs for the IWCM and WRS data, there is a clear difference in 

the energy for frequencies higher than 0.4 Hz which was the cut o f f frequency in the filter 

technique used in the transformation of the data from pressure to surface levels. 

c 0.04 

© 0.02 

u 
Q. 0.4 0.6 

Frequency [Hz] 

Figure 4.11 The spectral energy density for IWCM and WRS data measured on 18/6/93 using MATLAB 
program specopt4 with cosine bell window 

Obtained by diran 4. 
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The slight difference in the infragravity band can be caused by different treatment of the 

tidal influence in the psurf and specopt4 programs or with the measurement devices 

themselves. Figure 4.12 shows the spectral energy density for WRS data and filtered 

(described later in this section) IWCM data. There is very small difference present. 

The spectral energy density was then calculated using specopt4 with different windows -

cosine bell, Manning and Welch, for IWCM and WRS data sets. Comparisons of the results 

showed no or minor differences using those three windows as are illustrated in Figure 4.13. 

Also, the sum of spectral energy density varies only slightly as a function of the windowing 

technique. 
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Figure 4.12 The spectral energy density for filtered IWCM and WRS data measured on 18/6/93 using 
MATLAB program specopt4 with cosine bell window 

The spectral energy densities in the gravity band (frequencies greater than 0,05 Hz) for 

IWCM and WRS data were compared. For the spectra with clearly defined peak (e.g. swell 

spectra with peak fi-equency ~ 0.1), there is small difference (13 - 15 %) in the sum of the 

spectral energy density (SED) between the two data sets. For broad spectra, there is a larger 
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difference in SED between the two data sets (40%)^. However, the time series variances 

were calculated for unfiltered IWCM data and for filtered WRS data. Thus the differences 

indicate the energy contained in frequencies greater than 0.33 Hz. 
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Figure 4.13 Spectral energy density results for IWCM and WRS data recorded on 11/06/93, using 
specopt4 and Manning (- -), Welch ( : ) and cosine bell windows (—) 

Cross-spectrum analysis between two measurements 

Coherence, transfer function or amplification function and phase lag were calculated firom 

the cross-spectrum between two measured surface elevation series, performed by specopt4. 

This is illustrated in Figure 4.14. It was evident that within the gravity band 0.05 - 0.33Hz, 

the value of coherence is very high and almost equal to 1, and it drops slightly in the 

infragravity band. The value of transfer function or amplification factor is also around 1 but 

varies more than coherence, and its range is from 0.9 to 1.3 for the different data sets. The 

phase difference is less than n or higher than -n in the gravity interval. From the phase lag 

the time delay was czilculated. The time delay is less than +/- 0.2 sec what is acceptable, as 

the measuring time intervals were 0.25 and 0.5 sec. This indicates that the data are highly 

correlated. 

' This high difTcrcncc occurs for the data when the most energy is present in higher frequencies, thus is influenced by cut 
off frequency 
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Figure 4.14 Cross-spectral analysis results for IWCM and WRS data recorded on 11/06/93 at 17.26, using specopt4 program; a) cross-spectrum, b) coherence, 
c) transfer function, d) phase 
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Figure 4,15 The coherence confidence intervals for IWCM and WRS data measured on 11/6/93 
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Figure 4.16 The phase confidence intervals for IWCM and WRS data measured on 11/6/93 

The confidence intervals for smoothed coherence and phase were calculated (Appendix E) 

as illustrated in Figures 4.15 and 4.16. The confidence intervals were calculated with 36 

degrees of freedom. The coherence confidence interveils are significantly different than the 

zero coherence upper limit confidence interval, which is 0.162, calculated by following 
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equation: 

c 
2 _ = l-a^2 (4.13) 

where n is number of degrees of freedom and a =0.05 for 95% level. 

The confidence limits are uniformly distributed with firequency. However, there are 

significant differences between confidence limits for infragravity and gravity band'. The 

small difference between lower and upper confidence limits show that the calculated 

coherence and phases are most likely very close to the real values. From Figure 4.16 it can 

also be seen that the phase is almost linearly dependent on frequency which produces a 

constant time delay. 

Data filtering 

To try to define how different the spectral results are in the gravity band both data sets were 

filtered using a sharp weighting function. The cut of f frequency was 0.33 Hz for both data. 

Wave excursions for both filtered data sets as shown in Figure 4.17, had the same shape and 

amplitude. The energy density spectra for filtered data coincide with each other (Figure 4.12). 

Whereas, coherence and transfer function values differ from 1. Phase difference results show 

quite a lot of disturbances. It can be concluded that filtering interfered the high correlation 

between data sets and the value of correlation significantly decreased. The complete analysis 

is given in Ilic (1994). 

4.2.43 Conclusion 

It may be concluded that the measured data from the two different devices are highly 

correlated and coherent. The influence of different windows using unwindowing or 

normalisation technique, on the spectral energy density results has been shown to be very 

small. The observed differences in the time series analysis and in the spectral analysis can 

be attributed to analysis methods rather than to the measurements. However, given that the 

two devices produce equivalent measurements, it is still necessary to use the same analysis 

procedures for both devices. 

' After Kinsman (1965), the infragravity band applies to wave periods between 5 min and 30 s (for frequencies between 
0.00333Hz and 0.0333 Hz) and the gravity band to wave periods between 30s and Is (for frequencies between 0.0333 Hz 
and 1 Hz). 
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Figure 4.17 Wave excursions for filtered IWCM and WRS data recorded on 14/06/93 



4*3 Uniform data processing routine 

Spectral analysis 

The measurements and data processing comparisons summarised in sections 4.2.2 and 

4.2.3 showed a need for a uniform set of spectral analysis routines for offshore and inshore 

wave data. This would enable a direct comparison of results. Conclusions fi-om section 

4.2.3 resulted in creating a new MATLAB™ spectral analysis routine, which consists of 

the following items: 

1. Detrending of instantaneous depth to produce instantaneous excursion using Coda's 

(1985) second order polynomial method to discard tidal effect 

2. Spectral analysis using Welch (fiill) window^, ensemble-averaging with 50% overlap and 

frequency smoothing over two frequency intervals. It was proposed to use adjustable 

overlap for the WRS to enable the whole-recorded data set to be used. This yields 16 and 

28 degrees of freedom for WRS and IWCM data respectively. The lower and upper 95% 

confidence limits are 0.55-2.3 and 0.62-1.8 of the calculated value for WRS and IWCM 

respectively. 

3. Statistical analysis in accordance with lAHR proposal (Darras, 1987) to calculate spectral 

parameters in frequency band from 0.05Hz to the chosen cut o f f frequency. 

Directional analysis 

The preliminary analysis showed that at the measurement positions, offshore (500 m from 

the breakwaters) and inshore in the lee of the breakwater, there wil l not be any phase-

locked wave components. Therefore, non-phase locking methods were considered for the 

directional analysis. Considering the number of data sets to be processed, the accuracy and 

advantages of different NPL methods given in Chapter 2, the M L M has been chosen as the 

most suitable method. A summary of the data processing routine using the MATLAB 

package is given in Figure 4,18. 

It should be noted that spectral and directional analyses rely on the application of linear 

wave theory. In shallow water, significant wave non-linearities arise which might be 

expected to invalidate the results. In particular, waveforms become asymmetric which 

* Also, cosine bell, Manning, Hamming, Bartlett, triangular windows were included. 
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when transformed into the frequency domain produce harmonics in the frequency spectra. 
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Figure 4.18 The scheme of new spectral and directional program 
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Guza and Thornton (1980) who analysed the field data from the Torrey Pines Beach, San 

Diego, investigated this phenomenon. They concluded, however, that using linear theory 

produced errors o f less than 20% in calculating total variance and energy density in a 

particular frequency band both inside and outside the surf zone, except in the immediate 

vicinity of the breakpoint. 

This offers some reassurance that the application of linear theory to shoreline 

measurements will still produce realistic results with the possible exception of when 

measurements are taken at the initial wave breakpoint. 

4.4 Wave data summary 

4,4.1 Processing and archiving of wave data 

A large amount of data were collected and processed during the measurement programme, 

which are summarised in Table 4.2. The IWCM data were originally compressed and 

stored on diskettes. The compressed WRS data were retrieved on diskettes and then stored 

on tape. Subsequently, the results from the wave data analysis were stored in the 

spreadsheet package EXCEL, enabling additional analyses of these results. This approach 

enables easier manipulation of the data, including comparisons between data and results 

collected at different locations recorded at the same time. 

Deployment period Location Equipment No of records collected 

June-Aug 1992 Seaward of breakwater 4 WRS 2 586 

June-Aug 1992 Inshore of breakwater 3 IWCM 296 
Sept 1993-Jan 1995 Offshore WRS2 2,776 
Oct 1993-Dec 1994 Inshore of breakvraters 3 IWCM and 1,550 

and 4 Satellites 
Feb-Apr 1994^ Seaward of breakwater 

4 
WRS 1 364 

Table 4.2 Field data and database summary 

' Directly seaward of one breakwater, another WRS was deployed between February and April 1994 for the reflection 
studies. 
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4-4.2 Spectral and directional analysis of wave data 

A l l records were processed using spectral and directional analysis. The basic statistics were 

computed in accordance with lAHR guidelines (Darras, 1987) which give the following 

parameters for each record: mean water depth (MWD) (m); signal variance (a^ ) (m^ ); 

spectral moments mo to nij (mVs" where n is from 0 to 4) from which various spectral wave 

parameters have been derived including spectral significant wave height Hmo (m), peak 

frequency fp (Hz), average periods TQI (S) and T02 (s), spectral peakedness and width 

parameters - Qp , 62, 64; principal wave direction 9p (degrees); incident and reflected spectral 

moments - moj, mo,r (m^) and incident and reflected spectral significant wave heights - Hmo.i 

and HmOr (m); reflection coefficient Kr- breakwater position only. 

4.4.3 Summary of results contained within the database 

Once the database was formed, some basic analysis of recorded and processed data were 

made. Here, only a brief summary is given which then can be used as a guideline for the 

selection of the data for the computational model validation or design purposes. 

Mean water depth (MWD) 

Figure 4.19 shows a comparison of the mean water depths for the offshore pressure 

transducers and the following IWCM poles, sensor 6 - in the gap between breakwaters 3 

and 4, sensor 5 - part of the star array shoreward of breakwater 3, sensor 1 - directly 

shoreward of sensor 6, during 6 days in October 1994 (see Figure 3.2). The full set of graph 

show a maximimi mean water depth of 8.3 metres offshore and 4.5m between the two 

breakwaters recorded in early April 1994. Minimum mean water depth recorded offshore 

was 2.1 metres. The water depth in the lee of the breakwater was about 3m for the high tide 

and about 1.5 m for intertidal measurements'^. For the linear wave propagation validation 

only the data collected during high tide wi l l be considered. 

Spectral energy (mo) 

The maximum energy recorded offshore was 0.55 m^. The corresponding energy recorded 

in the breakwater gap was 0.34 m^, while in the breakwater lee it was 0.09 m^. 

'° Assuming a period of 10 sec, the ratio between water depth and deep water wave length for 3 m water depth is 0.019 
and for 1.5 m water depth is 0.0096 which is less than 0.01. 
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Figure 4.19 Mean water depths offshore and inshore during October 1994. For locations refer to 
Figures 3.2, 3.3b and 3.4b 
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Thus, the energy measured offshore was reduced six times in the lee of the breakwaters. 

Large storm events occurred in December 1993 and in March, April, June and December 

1994. Figure 4.20 shows spectral energy recorded at channel 1 offshore during six days in 

October 1994. 

Signiflcant wave height (Hmo) 

The maximum significant wave height recorded offshore was 2.85 m. The corresponding 

wave height between the two breakwaters was 2.32 m, and in the lee of the breakwater was 

0.45 m. The reduction in wave height between the two breakwaters, when compared with 

the offshore wave height ranges between 6 and 35%. Wave height in the lee of the 

breakwater is 38-75% of that recorded offshore. This however depends on incoming wave 

direction, mean water depth and frequency, thus also wave breaking. Figure 4.21 shows a 

comparison of the spectral significant wave height measured offshore and inshore at the 

positions in the gap and shoreward of the gap during October 1994. 

Peak Period (Tp) 

A wide range of peak wave periods (2 to 20 seconds) was recorded. Large numbers of 

events had peak period of about 10 seconds (about 10% in the water depth higher than 5.8 

m). Higher wave periods were associated with swell waves. The largest storm event which 

was recorded in April 1994 had a peak period of 10 s. There is an evidence of a change in 

the spectral peak period as the wave propagate inshore which is illustrated in Figure 4.22. 

Figure 4.22 also shows the wide range of wave periods recorded both offshore and inshore 

in October 1994. The change of peak period in the lee of the breakwater can be associated 

with diffraction (Goda, 1985). However there is a possibility of non-linear processes in the 

gap which might change the peak period and this could be further investigated. 

Significant wave height versus mean water depth (Hmo versus MWD) 

Figure 4.23 shows graphs of significant wave height plotted against mean water depth. The 

limiting ratio of 0.33 between significant wave height and mean water depth offshore 

indicates that no depth-limited waves were recorded at this position. In between the 

breakwaters, the wave heights are limited to 0.53 of the mean water depth. At this point, 

the waves became depth limited on a large number of occasions, and the gap between 

breakwaters lay within the surf zone, thus in those the processes can not be explained by 

linear theory. 

97 



384 385 386 387 388 389 
Time (days) 

390 

•offshore position 1 —o— inshore position 1 —•— inshore position 6 

Figure 4.21 Comparison of spectral significant wave heights offshore and inshore in October 1994 

20 

18 

384 385 386 387 388 

Time [days] 

389 390 

'offshore position 1 —o— inshore position 1 —D— inshore position 6 

Figure 4.22 Comparison of wave periods offshore and inshore in October 1994 
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Principal Wave direction (0p) 

Principal wave directions recorded offshore during the field programme varied from -60° 

(Southeast) to -104° (Southwest). Nearly 50% of the waves comes from south (-90** or 

shore normal direction), which indicates that the waves approaching the shore are already 

refracted. Also, as mentioned in Chapter 3, the Island of Wight protects the shore from 

most westward approaches. Behind breakwater 3 (see Figure 3.2) in the wave diffraction 

zone, waves from -40° to -100° were recorded. Refraction-diffraction processes cause the 

difference in the principal direction. Figure 4.24 shows the comparison of the recorded 

wave directions during October 1994 for offshore and inshore positions. 

Additional analysis 

Once the database was formed by the author, it allowed additional analysis. An example is 

additional statistical analysis which were performed by Philip Axe (see Chadwick et al, 

1997) for the beach evolution study. Here only a brief summary of this statistical analysis 

wil l be given. More details can be found in Chadwick et al, 1997. 

Histogram of wave height and direction 

A complete histogram of wave directions (referred to compass bearings) is shown in Figure 

4.25. For each directional increment (12°), the percentage of occurrence of waves in class 

intervals of 0.5 m is given, derived from the offshore measurements during the period 

February 1994 to January 1995. Nearly 50% of the waves came from due south which also 

contained all waves greater than 2 m. The other two most frequent directions are only 12° 

east or west from the beach normal direction. Thus for the numerical model validation, 

these lattermost directions need to be considered. The data used to compose this figure is 

particularly valuable for friture coastal evolution studies as it contains a complete year of 

directional wave data. 

Wave height/period scatter plot 

A scatter plot of wave height/wave period is shown in Figure 4.26, which also provides 

lines of equal wave steepness, number of occurrences of particular wave height and period 

and a contouring of the number of occurrences. Only 2 1 % of the data have a wave height 

above 1.0m, The most frequent waves have 5-7s period. Thus during the measurement 

period of a year, the most frequent were low energy wind waves. 
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Figure 4.24 Comparison of wave direction offshore and inshore 
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However this figure clearly shows the existence of some large period swell waves which 

cannot have been generated in the English Channel due to the short fetch, which need to be 

taken in account in beach evolution or for design purposes. 

IVave periods: comparison with HR data and seasonality 

Figure 4.27 shows a comparison of the relative occurrence of waves with peak period lying 

between 4 and 20 seconds as supplied to Arun District Council for their "Contractors' 

Guide" by HR Wallingford (1994). This clearly shows that the HR estimates significantly 

underestimate wave periods in excess of 8 seconds and do not predict any wave periods in 

excess of 15 seconds, which in reality are present. The highly seasonal occurrence of the 

low frequency waves are illustrated in Figure 4.28, which shows the number of occurrences 

of waves with periods in excess of 14 seconds and their associated heights plotted against 

time. Most of these waves are present between October and March. Generally, the higher 

wave periods and heights both occur between October and March. 

Extreme value analysis of wave heights 

Axe (see Chadwick et al, 1997) investigated 5 statistical distributions (Weibull, Fisher-

Tippet, Frechet, Gumbel, Gompertz) with the probabilities being calculated using the 

observed 0.25m class intervals. The Weibull, Fisher-Tipper and Gumbel distributions all 

produce good fits to the data with the predicted 100 year return period wave heights 

varying between about 3.5m and 4.2m. Given that the measured wave heights were taken 

in transitional/shallow water, the absolute maximum wave height will be controlled by 

depth. In this case the maximum depth is of the order of 8 m which will limit the 

maximum significant wave height to the order of 4.4m (neglecting any extreme surge 

levels). 
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Histogram of wave directions. Elmer Offshore. 
February 1994- January 1995 
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Figure 4.25 Histogram of wave directions, Elmer offshore, February 1994 - January 1995 
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Figure 4.26 Wave height/period scatter diagram for Elmer 
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Wave Periods at Elmer: Comparison of 
Prediction and Measurements 
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Figure 4.27 Wave periods at Elmer: Comparison of prediction and measurements 
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Figure 4.28 Occurrence of low frequency spectral peaks at Elmer 
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4.5 Summary 

Firstly, the data collected at Elmer in the summer of 1992 were analysed by the author 

using two different spectral analysis techniques (IWCM and WRS spectral techniques). 

Also, the parameters such as different types of windows, different starting points, different 

number of segments for FFT and normalisation of spectra energy with time domain 

variance was investigated. 

It was found that the use of a triangular window in comparison with a cosine-bell window 

reduced the measured energy. A different starting point for the FFT resulted in different 

total energy and distribution in the front of the breakwater whereas in the lee of the 

breakwater it did not demonstrate such an influence. The difference in the influence of the 

starting point for data in front and in the lee of the breakwater could be connected to 

spectral analysis technique and the measured time series itself Those series include the 

partially standing waves caused by the presence of the reflector. 

As was expected, a higher number of FFT segments smoothed the spectra distribution, 

increased the degrees of freedom and confidence levels. It was recommended to normalise 

spectral energy. It was concluded that the same spectral routines should be implemented on 

both data sets. This would enable their frirther comparison and make them suitable for 

computational model validation. 

The WRS and IWCM deployment at Felpham during spring 1993 gave an opportunity to 

test whether the two device's measurements were equal or comparable. Data sets, which 

were measured at the same time, were chosen and compared. They were analysed by a 

newly developed spectral analysis routine which took into account the recommendation 

from the comparison of WRS and IWCM spectral techniques. 

The WRS measured pressure data are transformed to surface elevation using a weighting 

fiinction. When the IWCM surface elevation data were filtered in the same way as the 

WRS data, the data records were equal. Again, it was shown that full comparison could 

only be made when the same spectral routines are applied to both data sets. 

The conclusion and recommendation from the two comparison exercises (measurements by 

WRS and IWCM and spectral analysis for IWCM and WRS) were the foundation for the 

new spectral analysis routine applicable to both data sets. This was then applied to a large 
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number of data sets, which were collected in the field campaign at Elmer form September 

1993 - January 1995. The processed data were stored in an EXCEL database. A summary 

of the main wave parameters found from the analysis has been given as a guideline for the 

selection of data selection for numerical model validation. 
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Chapter 5 

An assessment of methods for the evaluation of 
multidirectional waves parameters 

Some problems are Just too complicatedfor rational logical solutions. They admit of insights, not answers. 

By Jerome Bert Wiesner 

5*1 Introduction 

The validation of the wave transformations models using field measurement of 

multidirectional waves requires an accurate input of its parameters. Those models usually 

require the accurate input of incident significant wave height and reflection coefficient at 

the boundaries. When directional modelling is applied, the accuracy of the direction and 

directional spread estimates become important as well. Therefore, for the purpose of this 

study it is necessary to discern these parameters v^th the maximum possible accuracy. 

The determination of the directional spectrum of real sea waves is a heterogeneous 

problem, requiring careful consideration of a number of factors. These include the nature of 

the sea state categorised, the type and detailed design of the wave measuring system, and 

the spectral and directional analysis techniques to be employed. Each of these factors can 

have an interactive effect with the others. The difficulties are compounded by the fact that 

at full scale, the sea state is unknown, a priori^ and thus cannot be used directly to ascertain 
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the accuracy of the derived directional spectra. 

It is desirable to utilise a measuring system and associated spectral and directional analysis 

techniques that are capable of accurately determining the true directional spectrum for 

complex sea states. Such sea states may encompass simple unimodal incident waves, 

bimodal incident waves, multidirectional incident waves and combinations of such incident 

waves with reflected waves from either coastal structures or beaches. These reflected 

waves may or may not be phase-locked to the incident waves at the measurements position. 

In section 5.3, a new non-dimensional framework for application of phase-locked 

(Modified Maximum Likelihood Method - MMLM) and non phase-locked (Maximum 

Likelihood Method - MLM ) methods is investigated. In section 5.4, further study has been 

carried out using two non-phase-locked directional analysis methods - Maximum 

Likelihood Method (MLM) and Bayesian Directional Method (BDM) - to detennine the 

directional spectrum from the measured data. Their capabilities are first compared using a 

range of synthetically generated data composed of both incident and reflected waves. The 

effects of varying the spectral analysis techniques are highlighted in this part of the study 

and are placed within a theoretical framework enabling an informed choice of spectral 

analysis technique to be made. The tests using synthetically generated data also provides a 

means by which the accuracy of the two methods may be quantitatively determined. The 

results of these tests are summarised and conclusions drawn. Section 5.5 presents the 

results from an investigation of over 80 data sets measured at the same time offshore and 

inshore in the lee of the breakwaters, covering a wide range of environmental conditions. 

In applying these techniques to field data, another important consideration is the effects of 

currents. Such currents may comprise tidal and/or wave-induced currents. Consequently, 

the influence of currents on the field measured directional spectra is investigated in section 

5.6. The results are very clear and were found to follow the same trends discerned from the 

simulation tests, allowing conclusions to be drawn in section 5.7. 
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Figure 5.1 Energy spectra measured at five offshore positions (see Figures 3.2 and 3.3b), the bar indicates 
lower and upper 95 % confidence levels for energy density =10 m ŝ 

The methods used to predict directional spectra have been developed for either a sea state 

with dominant phase-locking between incident and reflected waves (near reflectors) or for 

a non-phase-locked sea state further offshore (far from the influence of the reflector). When 

the measurements are taken in the area between these two extremes an appropriate choice 

of the method must be made. Usually in such conditions where only partial phase-locking 

occurs both methods fail to give accurate estimates. It was initially assumed that incident 

and reflected waves are not phase-locked at the measurement positions offshore and 

inshore in the lee of the breakwaters. Database analysis revealed a certain amount of 

reflection measured offshore of the breakwater and inshore in the lee of the breakwater. 

Figure 5.1 shows an example of energy spectra measured at 5 different positions offshore. 

From the figure it can be seen that for some frequencies there is more variation in the 

spectral density frmctions between different locations than for the other frequencies. This 
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can be caused by uncertainties associated with the spectral analysis technique used, limited 

record length, non-stationarity' and the presence of the reflection. The variation becomes 

pronounced for frequencies greater than 0.2 Hz which is caused by non-stationarity. 

Figure 5.2 is an example of a directional spectrum measured at the offshore position and 

obtained using the MLM method. The incident wave field is in the direction interval from 

-180 to 0 and the reflected wave field in the direction interval from 0 to 180 degrees. In this 

example the measured reflection coefficient offshore was between 0.5 - 0.8. However, at 

the same time, 2D analysis for the data measured right in the front of the structure 

(Davidson et al 1996) estimated reflection coefficients of 0.2 - 0.6. It was anticipated that 

the reflection coefficient offshore would be less than that inshore as a proportion of the 

incident waves penetrates through the breakwater gaps and dissipates on the beach and also 

attenuates with offshore propagation. As the apparent reflection coefficient offshore was 

greater than that measured inshore this raises the question as to how accurate were the 

reflection coefficients as determined by the MLM. This illustrates the difficulty in 

interpreting the 'reflected' wave field offshore which may be associated with directional 

ambiguity rather than with actual reflection. 

E 0.6^ 

^̂ 0̂.4 

0.2 ^ / 

frequency [Hz] Direction (degrees] 

Figure 5.2 An example directional spectrum measured at the offshore position 

' This is probably the dominate influence for the frequencies greater than 0.2 Hz and the reflection is the dominate 
influence for frequencies smaller than 0.2 Hz. 
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The Modified Maximum Likelihood Method (MMLM) developed by Isobe and Kondo 

(1984) has been successfully applied to the data collected in the strongly reflective wave 

field, in the front of the breakwater (Davidson et al, 1997). However this was not the case 

when the method was applied by the author for the data measured at the offshore position. 

This method takes into account the reflected wave by introducing the known distance from 

the reflector to the WRS. It was observed that the MMLM is very sensitive to the position 

of the reflection line. At large distances offshore from the reflector, the MMLM can 

produce spurious peaks leading to potential difficulties with the method when dealing with 

a partially reflected wave field. Therefore, the method is not used in such conditions. 

5.3 The validation of the non-dimensional frame work 

The purpose of this section is to assess, the performance of phase-locked and non-phase-

locked methods in determining the directional spectrum from field data measured offshore. 

The assessment is related to the measurement locations and the frequency bandwidth used 

in the spectral analysis. 

5.3,1 Theoretical Framework 

The reflected wave field around the structures can be divided into a near structure field and 

a far field. The near structure field is characterised by the formation of partially standing 

waves caused by phase locking of incoming and outgoing (reflecting) waves. Methods, 

such as the MLM (Capon et al, 1969), which were developed for a homogeneous field fail 

to give accurate directional spectra estimates in such an environment. Subsequently the 

MMLM (Isobe and Kondo, 1984), which takes into account not only the relative distance 

between sensors, but also their position relative to the reflector, was developed, and was 

successfully used to analyse measurements taken in the near structure environment. 

However, this phase sensitive method tends to produce spurious peaks when applied to the 

data measured far fi^om the reflector^. On the other hand, any phase-locking which is still 

present closer to the reflector affects the accuracy of the MLM method. 

^ Hunlley et a/ (1996) described the sensitivity o f the M M L M used for co-located sensors and the problems in 
applying the method. 
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Huntley and Davidson (1998) show that ratio, L/S, can be used to determine whether or not 

a phase-locked method should be used. Where L is the time of wave travel to the reflector 

and back which determines the node/antinode frequency interval. S is the length of time 

series used for spectral analysis which determines the bandwith of this spectral analysis. 

ZONE OF 
R£DUCD<G 

REsaturioN 

NEOF 
FULL MLAl 

0.3 0.4 0.5 0.6 0.7 

Time tag, L f Scgatcnt lengtb, S 

Figure 5.3 The practical guideline for effective use the MMLM and the MLM method related to US ratio 
(courtesy Huntley and Davidson, 1998). The line which separates PL and non-PL regions is 
vertical as a result of assuming that waves are in shallow water. If the dispersion is taken in 
account, the line will curve to the right with increasing L/T. The inclined lines are the locations 
of spectral frequency estimates. 

There are two possible ways of increasing the bandwidth. The first one is to decrease the 

FFT segment length, thus to increase the number of segments and bandwidth. The second 

one is a frequency smoothing which also increases the bandwidth. Huntley and Davidson 

(1998) using unidirectional simulated data showed for both a co-located and spatially 

distributed array that i f the time of each FFT segment is shorter than the time for a wave to 

travel to the reflector and back, then the segment will not contain any phase-locked waves. 

The summary of their investigation and a practical guideline is given in Figure 5.3. On the 

basis of the ratio L/S, the domain of applicability is divided into the PL region (where PL 

methods are more applicable) and into the NPL region (where NPL methods are more 

appropriate). The PL region, L/S smaller than 0.2, is divided into three subsection A, B and 

A' , I f one needs to distinguish real reflection from spurious peaks, L/S need to be less than 
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0.025 and the L/T criterion can be relaxed (zone A')- I f L/S is between 0.025 and 0.2, the 

same result can be obtained if L/T is less than 0.4 (zone A). The spurious peaks will be 

obtained for L/S and L/T from zone B. Changing the segment size, they were able to use 

successftilly both methods. In the case of a spatial array, the MLM method had frill 

resolution for L/S greater than 0.5. The MMLM method worked well for a wider range of 

frequencies when L/S less than 0.1. 

5.3.2 Tests and results for offshore field data 

Data measured at the offshore position during high tide were selected which implies 

intermediate or deep water conditions^. The length of segments for the spectral analysis 

was reduced in order to minimise the effect of possible phase locking. The effects of both 

varying the length of the FFT segments and frequency smoothing were tested. 

The Fast Fourier Transform was performed using a Welch Window and 50% overiapping 

segments. Firstly the spectral smoothing influence was investigated. Four different cases 

were tested with varying length of segments, S. The segment lengths were 512, 256, 128 

and 64 points (cases 1-4 in Table 1). Additionally frequency smoothing was introduced to 

enlarge the frequency bandwidth to encircle the frequencies with possible nodes and 

antinodes for the data measured offshore (cases 5-7 in Table 5.1). 

Using a segment length of 512 points, three different cases were investigated with 

smoothing over 2, 4 and 8 adjacent frequency bands respectively. The time lag, L, for all 

seven cases was calculated depending on frequency due to the dispersive effect of the 

waves in intermediate depths. These values varied slightly from file to file depending on 

the measured water depth. The L/S ratio was recalculated by the author using Huntley and 

Davidson's (1998) guideline. Their graph was modified by the author, taking dispersion in 

account, to suit field data and it is given in Figure 5.4. From Figure 5.4, it can be noticed 

that for all four chosen segment lengths, L/S is greater than 0.5, which is classified as in the 

NPL region. Thus S equal to 128 or less should be used for accurate estimates. Table 5.1 

gives the summary of all these seven cases for the offshore array (WRS). 

' For average water depth o f 7.5m, D/Lgreater thanO.5 for 3s waves, which implies deep water conditions. For same 
water depth, 0.05<D/L<0.5 for 6s and 12s waves, which implies intermediate water conditions. 
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Figure 5.4 Time lag L / segment length S ratio for the field data. The marker, Q , stands as an indication 
of L/S and L/T values for frequency estimates (S is here number of points [2 s/point]) 

Case S smoothed Limits of US df Degrees of 95% 
No (sec) frequ. bins Lower f Highest f freedom confidence 

limits 
1 256 1 0.54 1.27 0.0039 6 0.42-4.8 
2 128 1 1.09 2.53 0.0078 14 0.54-2.4 
3 64 1 2.17 4.97 0.0156 30 0.63-1.8 
4 32 1 4.36 9.63 0.0313 62 0.73-1.4 
Smoothedfrequency bins 
5 256 2 0.54* 1.27* 0.0078 12 0.5-2.7 
6 256 4 0.54* 1.26* 0.0156 24 0.6-1.9 
7 256 8 0.54* 1.24* 0.0313 48 0.7-1.6 

Table 5.1 Summaiy of tests performed using different segment lengths and different number of frequency 
bins\ 

Both MLM and MMLM methods, with directional resolution of 12°, were then applied and 

the directionzd results compared. 

The influence of spectral smoothing 

The offshore data have a broad frequency distribution with an evidence of both swell (peak 

frequency — 0.1 Hz) and wind energy (peak frequency greater than 0.1 Hz). Figures 5.5 and 

• stands for absolute values o f L/S. To obtain the effective L/S, segment length S needs to be divided by the number o f 
averaged frequency bins. Thus efTeciive \JS become, for lower f = 1.08 and for highest f = 2.54, 2.52 and 2.48 
respectively. 
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5.6 illustrate typical energy contour plots for all seven cases when the MLM/MMLM 

methods respectively were applied. The solid line contours are given in intervals of 10 % of 

the peak energy and the dashed line contours are 1, 2, 3 and 5% of the peak energy. There 

is evidence of a small amount of energy (less than 5% of the peak, dashed line contours) 

randomly distributed for frequencies above 0.2 for all cases in Figures 5.5 and 5.6. The 

directional results from both the MLM and the MMLM showed die presence of reflected 

energy (in interval of 0** - 180°). 

Figure 5.5, cases 1-4, show the sensitivity of MLM to the chosen segment length. With a 

reduction of the segment length, there is still an indication of the reflected energy. With 

decreasing segment length, the energy is concentrated in frequency bands lower than 0.2 

Hz. Also the incident peak is more distinguished with the reduction of the segment length. 

The reduced segment length does not noticeably improve the resolution of the reflected 

wave energy. The sum of energy for all frequencies versus direction reveals the presence of 

a small amount of background energy evenly distributed over all directions (Figure 5.7). If 

only the energy for frequencies less than 0.2 Hz is summed, then the background energy 

diminishes (Figure 5.7). Thus also the ratio of reflected/incident energy decreases. 

When the MMLM method was applied (Figure 5.6, cases 1-4,) there is an evidence of 

increase of spurious peaks with decreasing segment length. The MMLM was applied 

outside its zone of applicability. The results proved that MMLM can not be accurately 

applied for US greater than 0.5. With larger distance fi*om the reflector and also with 

decreasing of segment length, the phase-locking effects are encompassed. Huntley and 

Davidson (1998) found that in such conditions the MMLM amplifies strongly the noise in 

the cross-spectrum at locations predicted to be nodes. 

The influence of frequency smoothing 

The directional spectra contour plots for different frequency smoothing are given in Figure 

5.5 (cases 5-7) when the MLM was applied. Comparing those three cases with cases 1-4, a 

very similar trend in the change of directional distribution of energy with decreasing S or 

increasing number of frequency bins can be observed. The frequency interval, df, was 

similar in those cases. However, the degrees of freedom and confidence levels were 

different (see Table 5.1). The representative fi-equencies for the firequency bandwidth 

differed fi-om those used in cases 1-4. 
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Figure 5.5 Directional spectra contour plots given in the percentage of the peak energy when MLM was 
applied. For cases 1,2,3.4 respectively spectral smoothing was used. For cases 5,6,7 
respectively frequency smoothing was used. ( - 2 and 5% ; — 10-100% with an interval of 
10%) 
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Figure 5.6 Directional spectra contour plots given in the percentage of the peak energy when the MMLM 
was applied. For cases 1,2,3.4 spectral smoothing was used. For cases 5.6,7 respectively 
frequency smoothing was used. ( - 2 and 5% ; — 10-100% with an interval of 10%) 
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Figures 5.6 (cases 5-7) are contour plots for directional spectra when frequency smoothing 

and the MMLM were applied to data. The different representative frequencies and thus the 

different wave numbers used in the directional analysis made the spurious peaks more or 

less distinctive. Thus for the MMLM accuracy not only the value of L/S but also the value 

of L/T is important. In the last case when frequency smoothing over 8 frequencies was used 

the spurious peaks became the most pronounced. In this case, the representative frequency 

and wave number had more influence on results than the frequency interval, df 

The L/S ratios for all cases were larger than those recommended for applicability of the 

MMLM. Thus, as was expected, the MMLM failed to give accurate directional analysis 

estimates. The MMLM was successfully applied in the front of the structure where the ratio 

between segment length and time lag, L/S, was 0.02. It was found that the offshore data set 

needed to be larger in order to obtain the same L/S. This was a limitation that precluded 

further analysis. 

Main direction and spreading width 

The main direction and spreading width were calculated for each of seven MLM cases in 

accordance with the lAHR guidelines for multidirectional waves (Frigaard et al 1997). The 

main direction is defined as the expected value of the stochastic variable, direction as a 

function of frequency, having a probability density function determined by the 

corresponding spreading function, that is: 

K / 2 

d^, = £ [ © , ( / ) ] = ^̂ =77i 
Z G{f,e,) 

0^, = £ [©«( / ) ] = ^ (5.2) 

The spreading width is defined as the standard deviation of the same directional spreading 

fiinction. 
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Kt2 

2 _ * = I 
0, K / 2 

(5.3) 

al , (5.4) 

k=K/2+\ 

The difference between main incident directions varied from 0-12 degrees, using different 

FFT segments, when the MLM was apphed (cases 1-4). The directional interval was 12 

degreeŝ , thus an error of 12 degrees could be expected. The directional spreading width 

varied from 26-33 degrees when the MLM was used to analyse data for cases 1-4. The 

minimum spreading width was found for case 1 and maximum spreading width for case 4. 

This confirms that the spreading width increases with decreasing FFT segment size. 

The difference in the main incident direction estimates varied from 0-10 degrees, when the 

MLM was applied using different frequency smoothing (cases 5-7). The directional 

spreading width varied from 23-34 degrees (cases 5-7). The minimum value was found for 

case 5 and the maximum value for case 7. Again, as for cases 1-4, the spreading width 

increases with increasing frequency smoothing. Spreading width depends on the way in 

which it is estimated, and is a frinction of the content of the energy in a particular fiiequency 

bin (equations 5.3 and 5.4). From Figures 5.7 and 5.8, it can be seen that there is a certain 

amount of 'background noise' present in the directional distribution. This noise is usually 

associated with frequencies above 0.2 Hz and with frequencies which contain small 

amount of energy (Figure 5.5). The energy content in each frequency bin becomes larger 

with increasing smoothing. When smoothing is applied, 'noise' becomes associated with 

frequencies containing more energy and influences the directional spreading results. 

* The first analyses were performed on 486 PC. therefore the directional interval was only 12 degrees to speed up the 
computation. 
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Figure 5.7 Directional distribution for the 
energy summed over all frequencies 
( - ) , and only for frequencies < 0.2 
Hz ( - - ) . case 2 

Figure 5.8 Directional contour plot for narrow 
frequency spectra, case 2 ( -- 2 and 
50/0 - — 10-100% with an interval 
of 10%) 

Frequency spectra shape 

Even though all the measured frequency spectra have a broad distribution they can be 

classified into three groups - narrow frequency spectra when swell waves dominate wind 

waves ,̂ bimodal with swell and wind waves, and broad frequency spectra when wind 

waves dominate swell waves .̂ 

The influence of energy spectra shape on directional distribution was also investigated. For 

the narrow frequency spectra, the energy was concentrated between 0.05-0.12 Hz. Those 

were usually swell dominated waves and some reflection from the structure was expected. 

* Most of the energy is contained within frequencies below 0.1 Hz. 
' Most of the energy is conuiined within frequencies above 0.1 Hz. 
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Figure 5.9 Directional contour plot for 
bimodal spectrum, case 2 ( - 2 and 
50/0 . — 10-100% with an interval 
of 10%) 

Figure 5.10 Directional contour plot for wide 
spread spectrum, case 2 ( — 2 and 
5% ; — 10-100% with an interval 
of 10%) 

The directional distribution for case 2 (see Table 5.1) type analysis (S=128s) was used to 

show the presence of energy in reflected directions (see Figure 5.8). Also, there is evidence 

for energy present at frequencies above 0.2 Hz, which is randomly spread in different 

directions. Decreasing the segment length, there is still evidence of energy in the reflected 

directional intervals. However, the sum of reflected energy over all frequencies and 

directions decreases with increasing smoothing. 

Bimodal seas with two distinguished peaks (usually swell and wind peaks) generally have 

two different main directions. It was possible to detect those peaks applying the MLM and 

MMLM. Even when more smoothing was introduced by reducing segment length, different 

directional peaks were still preserved (Figure 5.9). Decreasing the segment length caused 

the estimate of the reflected energy to also decrease. This was a similar trend to the case of 

the narrow frequency spectra. 

Broad frequency spectra were measured when waves were generated by strong local winds 

(short fetches). Broad frequency spectra were also obtained when swell waves were 
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accompanied with strong wind. The directional distribution obtained using the MLM show 

the presence of'reflected' energy. However, it is still not clear what is the real reflection or 

what is the background noise for the higher frequencies. In the case when energy was 

almost equally distributed over the wider range of frequencies, the directional spread was 

higher (Figure 5.10). The method cannot accurately resolve the frequencies above 0.2 Hz. 

Reflection 

As the MLM can be potentially used for the estimation of incident and reflected wave 

height and subsequently for the estimation of the reflection coefficient, the frequency 

dependent reflection coefficient was investigated. Figure 5.11 shows the frequency 

dependent reflection coefficient for all seven cases (see Table 5.1) when the MLM was 

applied. The coefficient was only calculated for frequencies with energy greater than 5% of 

peak energy. In general, frequency-averaged reflection coefficient estimates decreased with 

increasing smoothing. The smaller estimates were also closer to the estimates obtained 

using the 2D method for the data measured at the structure (between 40%-60% from 

Davidson et a/(1996)). 

On closer observation of all seven cases and the different amounts of smoothing, it was 

found that the reflection coefficient is not only a function of frequency but also energy 

dependent. Higher coefficient estimates were obtained for the widely spread frequency 

spectra when the energy was evenly spread over all frequencies. Also, it is observed that 

the method overpredicts the amount of reflection for smaller energies. The trend of 

increasing reflection coefficient for frequencies above 0.2 Hz was observed. It was 

expected from the measurements at the structure that the reflection coefficient for such 

frequencies would be in the range around 0.2/0.3 because those waves are most likely to 

break and reflect less energy back. The reflection coefficient values are higher for 

frequencies which contain lower amounts of energy than for the adjacent frequencies which 

contain higher amounts of energy. 
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Figure 5.11 Frequency dependent reflection coefficient for cases 1-7 when the M L M was applied. 
Reflection coefficient is given by *o' and the energy spectra normalised by the maximum 
value is given in the background (—) 
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Summary 

The results agreed in general with the concept tested on simulated data by Huntley and 

Davidson (1998). For all chosen lengths of segment, the value of L/S is larger than 0.5, 

which is in the NPL region. As it was expected the MLM gave stable results and the 

MMLM produced spurious peaks. These analyses showed that the non-phase locked 

method is more applicable to analyse offshore field measured data. 

< 10 

0.1 0.2 0.3 
frequency [Hz] 

0.4 0.5 

Figure 5.12 Energy spectra for case 4 for offshore field dau measured at the five positions (see Figure 
3.2 and 3.3b). The bar indicates lower and upper 95% confidence levels for energy density = 
lOm^s 

Figure 5.12 shows the energy spectra for case 4 (L/S = 4.36 - 9.63). I f this energy spectra is 

compared to the energy spectra in Figure 5.1 for case 1 (L/S = 0.54 - 1.27) then it can be 

seen that v^th increasing smoothing the spatial variation in energy has decreased but the 

spatial difference in energy is still present for the frequencies greater than 0.2. This can be 

related to the array size or non-stationarity, which will be addressed later in the present 

chapter. 

The directional estimates varied with increasing smoothing thus L/S ratio. The accuracy of 

the method's prediction is still not clear. The choice of a segment length, which increases 

L/S, clearly results in a significant reduction in spectral resolution. As it was envisaged that 
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it is more useful to have a larger number of components for the directional modelling of 

random waves, it was chosen to proceed with results from case 5. 

Considering the MLM limitations, it was thought desirable to test the performances of the 

other non-phase locked method and compare the estimates from both methods. The 

Bayesian Directional Method (BDM) as one of the most powerful technique available was 

chosen for a comparison. The BDM method is also a NPL method, however it can estimate 

directional distribution in the front of the reflector. Unfortunately, it has been found that its 

frequency dependent reflection coefficient estimates are not accurate in such environment 

(Helm-Petersen, 1995). 

5.4 Numerically generated data 

In order to compare the two non-phase-locked methods of prediction (MLM and BDM), 

synthetic directional wave data sets were created composed of an incident directional 

spectrum and the corresponding partial reflections from a reflector at a distance of 500m. 

Surface elevations were created for an array of six transducers using the geometry from 

offshore deployment 9 (Figure 5.13). 

Surface elevation time series were generated by means of white noise filtering in the time 

domain. The software is courtesy of Jacob Helm Petersen (personal communications 

(1994)) from Aalborg University and details are given in Appendix F. Digital filters were 

designed to provide proper phase locking between incident and reflected waves. The time 

lag between incident and reflected waves takes in account the array locations in the field. 

The filter length was 245 elements. Linear wave theory was applied. To ensure wave 

directionality, incident waves were generated in 40 directions over a range of 180 degrees. 

Time series with a duration of 640 seconds* were generated with a sampling frequency of 2 

Hz. Wave energy spectra were applied as discussed in the next paragraph. It was 

considered desirable to obtain simulated data similar to the measured data.' The length of 

time series used and the array configuration were, therefore, fixed by the field 

measurements. It is less likely to have the phase-locked components offshore. However, 

this simulated data containing phase-locked components wall provide a more rigorous test 

for both methods. 

* This gives approximately 83 waves in the case of 8 sec waves and 165 waves in the case of 4 sec waves. 
' Consequently the coherence between signals measured at different sensors was not high and the same was observed 

for the coherence between simulated signals. 
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Figure 5.13 Offshore array layout used for generation of synthetic wave data 

The Jonswap and Pierson Moskowitz frequency spectra were chosen to cover a wide range 

of measured wave spectra and The Mitsuyasu directional spreading ftmction (Mitsuyasu et 

aU 1975) was applied to these frequency spectra, with values of s=25 for swell with short 

decay distance and s=10 for wind waves. A wave period of 8.0s was chosen to simulate 

swell and 4.0s to simulate wind waves conditions and significant wave heights of 0.5, 1.0 

and 1.5m were selected. Three different main directions were investigated, normal 

incidence (-90°) corresponding to southerly direction at the field site, slightly oblique 

towards the south-west direction (10° to normal) and more oblique towards the south-east 

direction (25° to normal). 

The frequency independent wave reflection coefficient values of 0.2, 0.3, 0.4 and 0.6 were 

chosen to simulate reflective components of time series. Combinations of these different 

parameter values yielded 45 different wave data sets to be tested. Additionally, three other 

data sets were created with a reflection coefficient equal to zero, a Jonswap frequency 

spectrum, a wave height of 1 m and three different directions (-100°, -90°, -65°). 

Table 5.2 summarises the parameters used for numerical simulations. 
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Label Spectrum Hsi 
m 

Tp 
s 

e 
de^ 

s Kr 

1110 Jonswap 1.0 8.0 -100 25 0 
1120 Jonswap 1.0 8.0 -90 25 0 
1130 Jonswap 1.0 8.0 -65 25 0 
1111/2/3 Jonswap 1.0 8.0 -100 25 0.6/0.4/0.3 
1121/2/3 Jonswap 1.0 8.0 -90 25 0.6/0.4/0.3 
1131/2/3 Jonswap 1.0 8.0 -65 25 0.6/0.4/0.3 
1211/2/3 Jonswap 1.5 8.0 -100 25 0.6/0.4/0.3 
1221/2/3 Jonswap 1.5 8.0 -90 25 0.6/0.4/0.3 
1231/2/3 Jonswap 1.5 8.0 -65 25 0.6/0.4/0.3 
2111/2/3 Pierson- 0.5 4.0 -100 10 0.4/0.3/0.2 

Moskowitz 
2121/2/3 Pierson- 0.5 4.0 -90 10 0.4/0.3/0.2 

Moskowitz 
2131/2/3 Pierson- 0.5 4.0 -65 10 0.4/0.3/0.2 

Moskowitz 
2211/2/3 Pierson- 1.0 4.0 -100 10 0.4/0.3/0.2 

Moskowitz 
2221/2/3 Pierson- 1.0 4.0 -90 10 0.4/0.3/0.2 

Moskowitz 
2231/2/3 Pierson- 1.0 4.0 -65 10 0.4/0.3/0.2 

Moskowitz 
2311/2/3 Pierson- 1.0 8.0 -100 10 0.4/0.3/0.2 

Moskowitz 
2321/2/3 Pierson- 1.0 8.0 -90 10 0.4/0.3/0.2 

Moskowitz 
2331/2/3 Pierson- 1.0 8.0 -65 10 0.4/0.3/0.2 

Moskowitz 
Table 5.2 The input parameters for the numerically generated wave data 

5.4.1 Results of the analysis for the numerically generated data 

Spectral analysis of the numerical simulations 

Spectral analysis was performed using the Fast Fourier Transform applying a Welch 

Window, 50% overlapping segments*̂  and normalisation of the resulting spectral variance 

to the time domain variance. Two segment lengths were used, 512 points uith additionally 

frequency smoothing over two frequencies (case 5) and 128 points (case 3a) for 5 

sensors.** Additionally the analysis was performed for all 6 sensors, with segment length of 

128 points (case 3b). The three cases investigated (with different L/S values) are 

summarised in Table 5.3 and named in accordance with Table 5.1. 

'° The overlapping varied slightly lo enable ihe use of the whole data set as described in Chapter 4. 
" For most of the field data, only 5 sensors were operational. 

126 



Case No S 
(sec) 

smoothed 
frequ. 

bins 

Limits 
Lower f 

of US 
Highest f 

df Degrees of 
freedom 

95% 
confidence 
limits 

3 (a,b) 
5 

64 
256 

1 
2 

2.17 
0.54* 

4.97 
1.27* 

0.0156 
0.0078 

30 
16 

0.63-1.8 
0.55-2.3 

Table 5.3 Summary of spectral analysis test cases (case 3a for 5 sensors, case 3b for 6 sensors, case 5 for 
5 sensors); *The effective L/S is 1.08 and 2.54 respectively 

Directional analysis of the numerical simulations 

Initially the Maximum Likelihood Method (MLM) and Bayesian Directional Method 

(BDM) were applied to case 5 spectral analysis results. The results were evaluated by 

considering the prediction of the incident significant wave height, the main direction, the 

directional spreading and the reflection coefficient. These were only evaluated over the 

frequencies with an energy content greater than 5% of the maximum energy content. 

The incident significant wave heights obtained by directional analysis were compared to 

the 'normalised target' values* .̂ The 'normalised target' values were calculated using Goda 

and Suzuki's (1976) recommendation for the significant incident wave height, Hsi, for 

irregular waves. The Hsi is defined as follows: 

" ' - j ^ (S.5, 

where r|nns is the average root-mean-square water surface displacement measured at all 

offshore positions at all offshore locations and Kr is the reflection coefficient. The main 

direction and directional spreading were calculated using equations 5.1-5.4. 

Results for incident significant wave height with purely incident waves 

The incident significant wave height (Hsi), calculated by BDM was very close to the target 

as shov^ in Figure 5.14. From Figure 5.15, it can be seen that the best BDM estimate was 

obtained for SW direction and the least accurate for the S direction. The MLM slightly 

underpredicts Hsi for the S, gives accurate predictions for the SW direction and 

underpredicts for SE, Predicted Hsi differed by less than 6% of the normalised target values 

over all data sets and both methods used. The direction of wave propagation and array 

orientation appeared to influence the amount of incident energy detected by both methods. 

The significant wave height for the simulated lime series difTer from the target values. It was reduced for the SW and 
the S direction. This indicates that the direction of wave propagation and array orientation along with the amouni of 
reflection had an influence on the amount of energy simulated. 
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However, the wave heights predicted by MLM and BDM for these conditions were very 

similar and the percentage difference is less than 1% (also shown in Figure 5.15). 

Results for main direction with purely incident waves 

The main direction predicted by both the MLM and BDM differed only by ±2** from the 

target direction over all data sets (see Figure 5.17). Correspondingly, the BDM/MLM 

percentage differences were only up to 4 % in the SW direction and - 1 - -1.72 in other 

two directions. Given that the directional interval used for analysis was 12° these errors do 

not appear to be significant. 

Results for directional spreading with purely incident waves 

The directional spreading predicted by the MLM was 25-41% larger than the target 

spreading (see Figure 5.19). The largest difference was for waves from the southerly 

direction and the smallest difference was for waves from the SE. The difference between 

estimated and target values was 40-60% for all directions when the BDM was applied. The 

BDM/MLM percentage differences were -1.7 % -13% (see Figure 5.19). 

Results for reflection coefficient with purely incident waves 

The expected reflection coefficient was equal to 0 for all three data sets. Both methods 

predicted some reflection. The predicted reflection coefficient using the MLM method was 

from 4.1% in S direction to between 6.9% and 7.1% in the SW and SE direction 

respectively. The reflection coefficient calculated by the BDM was between 7.3% and 

7.6% for the S and SW directions and 8.5% for the SE direction (see Figure 5.21). 

Results for Incident significant wave height in partially reflective wave Held 

Both methods gave quite similar results (1.4% and 1.3% average difference) and it is 

difficult to distinguish which one gives the best estimates. The influence of the Jonswap 

and Pierson-Moskowitz frequency spectra, used for numerical simulation, on the results 

was investigated. No obvious influence of these frequency spectra shapes on results was 

found. However, the influence of the simulated wave direction on the prediction of incident 

wave height was found to be significant. The best match between predicted and target 

values is obtained for the SW direction. The predicted values start to deviate from the 

The positive percentage values mean overprediction and the negative percentage values mean underprediction. 
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target values for the S direction and the difference increased for the SE direction. The 

results are plotted in Figure 5.14. The MLM produces the lower estimates. Underestimation 

is in the range of -16 to -2 % for both methods. Thus, it was concluded that the array shape 

and orientation combined with the main wave propagation direction was influencing the 

results, which will be addressed later in this chapter. It also became apparent that the 

reflection coefficients, wave period as well as the directional spread were influencing the 

prediction of wave height. This is illustrated in Figures 5.15 and 5.16, where percentage 

difference between predicted and target values are plotted versus direction and the value of 

the simulated reflection coefficient for different periods. 

For a wave period of T=8 sec and directional spread of s=25 (Figure 5.15), the BDM gave 

the best estimate for the SW direction. The MLM estimates became closer to the 

normalised target value when waves were from the SW and the reflection coefficient was 

0.6. The closest estimates were obtained with the BDM method for a wave period of 

T=8sec and directional spread, s=10. Also, the largest difference between BDM and MLM 

was observed for this case (up to 8%). 

For a wave period of T=4 sec and directional spread width, s=10 (Figure 5,16), the 

percentage difference between both methods estimates and normalised values increase. The 

estimates were more influenced by direction than by reflection. 

Results for main direction in a partially reflective wave field 

Very good agreement was found between the predicted main directions using the MLM and 

BDM and target directions. The differences were in the range of ±12°, which was the 

directional interval used for the analysis, therefore the error is within the limits expected. 

The maximum observed difference is 14° in two cases when BDM was used. The average 

difference between two methods is only -2 to 3.5 % in most cases. The influence of the 

chosen frequency spectra for data simulation on the prediction of the main direction has no 

obvious influence. It appears that the direction of incoming waves had more influence on 

the prediction of the main direction. The percentage difference between the predicted main 

directions obtained by the two methods and the target values and also the differences 

between predictions as functions of direction and reflection are plotted in Figures 5.17 and 

5.18. 
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Figure 5.14 Predicted Hs versus normalised target (Hs=I.Om) values when M L M and BDM were 
applied for both spectral analysis cases for a) SW; b) S and c) SE direction. MLMO and 
BDMO stand for a case of purely incident waves. Notice the poor performance of the field 
array when waves are incident from the SE. 
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The smallest percentage difference is found for the wave period T=8 sec and directional 

spread s=10 (the M L M for the SW direction 1%). For a wave period of T=8 sec and a 

directional spreading of s=25, both method underpredict for the SW direction (-3 to 2%) 

and overpredict for the SE. The largest percentage difference is for the wave period of T=4 

sec (Figure 5.18) and directional spread s=10 (up to 19% for the BDM). 

Results for directional spread in a partially reflective wave field 

The percentage difference between results obtained by the two methods and target values 

and also the percentage differences between the two predictions are plotted in Figures 5.19 

and 5.20. For a wave period of T=8 sec and directional spread of s=25, both methods 

introduced the largest overprediction with the M L M providing the better estimates. For 

wave periods of T=8 sec and T=4 sec and a directional spread of s=10, the smallest 

differences are observed for the BDM. 

Overall, both methods overpredict the directional spread and it is evident that both methods 

give better estimates for a broad directional spread. This overprediction is related to the 

directional ambiguities for some frequencies in the case of the M L M and failure of the 

BDM for the same frequencies. 

Results for reflection coefficient in a partially reflective wave field 

The M L M generally overpredicted the reflection coefficient values''*. The difference 

between predicted and target values was between -18 and 120%. The biggest discrepancies 

occurred in analysing data sets with the lowest reflection coefficient. The influence of 

spectral energy shape on prediction of reflection coefficient was investigated and found not 

to be significant. Figure 5.21 shows the influence of main direction of incident wave 

approach on the relation between predicted and target reflection coefficient. The 

differences between predicted and target value increases with changing directions from the 

SW to SE. Generally there is overprediction of the reflection of all three directions using 

the M L M method. The B D M reflection estimates are closer to the target in the case of the 

SW direction than in the case of the S and SE direction. The results show that both 

methods are not reliable in predicting reflection coefficient for the simulated field situation. 

First ly, the ref lec t ion coef f i c i en t at each frequency is computed as the rat io o f the reflected and incident energy. The 
averaged ref lec t ion coef f i c i en t is calculated then taking in to account the amount o f energy in each frequency. 
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Figure 5.17 Percentage difference between BDM and MLM direction estimates and target values and BDM and MLM estimates for T=8sec, s-25. for case 5 in the upper row 

and for case 3 in the lower row. The percentage difference is given in the legend. 
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Figure 5.18 Percentage difference between BDM and MLM direction estimates and target values and BDM and MLM estimates for case 5 and for T=8sec in the upper 
row and for T=4 sec in the lower row; s=10. The percentage difference is given in the legend. 
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Figure 5.19 Percentage difFer«nce between BDM and MLM directional spreading estimates and target values and BDM and MLM estimates for T=8sec, s=25 for case 
5 in the upper row and for case 3 in the lower row. The percentage difference is given in the legend. 
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Figure 5.22 Frequency dependent reflection 
coefficient predicted by MLM 
method (pre-defined reflection 
coefficient = 0.4) 

Figure 5.23 Frequency dependent reflection 
coefficient predicted by BDM 
method (pre-defined reflection 
coefficient = 0.4) 

Reflection as a function of frequency 

Even though the reflection coefficient was not preset as frequency dependent in the 

simulations, both methods produced results showing a variation of the reflection coefficient 

as a function of frequency as it is shown in Figures 5.22 and 5.23. In the case of the M L M 

(Figure 5.22), the values tended oscillate around a mean value. 

Conversely the B D M results (Figure 5.23) varied quite markedly with frequency but did 

not oscillate from one frequency bin to another. Despite this, the B D M method produced 

average reflection coefficient values closer to the simulated coefficient than did the M L M . 

The average percentage difference is for the M L M +57.51 % and for the B D M +29.37 %. 

The influence of segment length on the directional analysis results 

As discussed in section 5.3 of this chapter, the influence of the segment length of the FFT 

on the directional analysis results was expected to be significant. This was tested by 

comparing the directional results obtained using the case 5 spectral analysis with those 
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obtained using the case 3 spectral analysis (in which the segment length was reduced from 

512 points to 128 points hence increasing the L/S ratio (see Table 5.3)). The numerically 

simulated data enabled the quantification of the difference in accuracy of estimates when 

smoothing is applied. The percentage error between estimates and target values obtained by 

the BDM and the M L M method for incident significant wave height, direction, directional 

spreading and reflection coefficient have been calculated. This is illustrated in Table 5.4 

with values of rms for 7 selected files. 

Significant wave height 

For the simulated data without reflection, the wave height estimates are higher for case 3 

than for case 5. The predicted significant wave height for the wave period of T=8 sec and 

directional spreading of s=25 differ less from the target values for case 3 than for case 5 

when the BDM was used (Figure 5.15). The M L M estimates for case 5 and case 3 are only 

slightly different {rms= 0.046 and 0.047). 

Direction 

For the simulated data without reflection, the differences between estimated and target 

values decrease in case 3 for both methods'^. From Figure 5.17 it can be seen that direction 

estimates improved for case 3 of data simulated with reflection for the S direction when the 

M L M was used. It seems that the min and max. differences are smaller but the average 

error is usually higher for case 3. Generally the B D M estimates have been improved with 

increasing smoothing and also when all 6 transducers were taken in accoimt. 

Directional spreading 

For simulated data without reflection, the directional spreading increases for all directions, 

for case 3, when the M L M was used. In case 3 when the B D M was used the reduction in 

directional spreading has been observed for all directions. The same was observed for the 

data simulated in the reflection. The BDM estimates are closer to the target directional 

spreading because the previously unresolved frequency components are overcome by 

smoothing. The percentage differences for directional spreading for the data simulated with 

reflection included are given in Figure 5.19 and in Table 5.4. 

" Except f o r the B D M eslimatcs f r o m S W 
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Reflection 

The reflection coefficient, in case 3, increased when the M L M was used and decreased 

when the B D M was used to analyse the simulated data without reflection. The difference 

between reflection coefficient estimates and target values for the simulated data with 

reflection obtained by both methods decreased in case 3. Generally the difference 

decreased with increased smoothing {rms decreases from 0.071 to 0.070 for case of the 

M L M and from 0.043 to 0.036 for the BDM). 

Summary 

In Table 5.5 the method with the lowest error is shown for each set of test parameters. 

Overall the B D M (B) gives closer estimates of incident wave height and directional 

spreading and the M L M (M) gives more accurate main directions. The M L M gives the best 

estimates for all parameters for cases without reflection. For all parameters and cases the 

percentage error and root mean square errors are calculated and given in Table 5.4. 

wave height direction directional 
spreading 

reflection 

case 5 
(cor.) 

case 5 
(cor.) 

case 5 
(cor.) 
case 3 
(cor]_ 

M L M 
1.419 

0.015 

0.046 

0.047 

percentage of difference 
B D M M L M B D M M L M B D M 
1.315 0.992 1.157 8.689 9.982 

root mean square 
0.014 0.726 0.794 1.643 1.743 

root mean square for 7 selected files 
0.044 1.496 2.386 4.964 6.079 

0.039 1.420 1.662 5.281 3.307 

M L M 
9.269 
9.238 

0.026 
0.026 

0.073 
0.071 
0.070 
0.070 

B D M 
105.059 
6.359 

0.365 
0.019 

1.713 
0.043 
0.045 
0.036 

Table 5.4 Percentage difTerence and root mean square values where (cor.) means corrected values - the 
frequencies which were not resolvable were not taken in account (Kr greater than 1.0) 

The same trend, the improvement of BDM results for case 3, can be observed from Table 

5.4 and Table 5.5. The percentage difference values show that the M L M and BDM 

estimates are only a fraction o f a percentage different in most o f the cases. The largest 

difference of 3% is observed in reflection prediction. The directional estimates obtained by 

both methods differ by less than 10% from the target values. Wave height and direction are 
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predicted with only 1-2% difference. The resuks depend on direction of wave approach, 

which is related to the array shape and orientation. For some of the simulated data the 

BDM estimates are closer to the target values and for the others the M L M estimates are 

more accurate. The BDM predicts more accurate wave height, even though the M L M 

estimates are very similar. The M L M method predicts better direction and directional 

spreading. 

Kr 1 Hi 1 1 Di 1 1 SI i 

case 5 case 5 case 5 

s=25 T=8 -100 1 -90 t -65 -100 1 -90 ^ 5 -100 1 -90 1 -65 

0 M M M B M M M M M 
0.3 8 B B M M B B B B 
0.4 B B B B M B B B B 
0.6 M M B M B M M M M 

1 1 1 1 1 
s=10 T=8 

0.2 B M 8 M M M B B B 
0.3 B M 8 M M M B B B 
0.4 B M B B B M B M B 

1 1 1 
s=10 T=4 

0.2 B B M B B B B B M 
0.3 B B M B B M B B M 
0.4 B M M B B M B B M 

1 1 t 
cases case3 case3 

s=25 T=8 -100 -90 1 -65 -100 -90 1 -65 -100 -90 1 -65 

0 
0.3 B B B B M B B B B 
0.4 B B M M B B 
0.6 B M M B B B 

Table 5.5 The method with the closest estimates to the target values"^ 

Additionally it can be seen from Table 5.4 that overall the accuracy of the estimates ftirther 

improves with reducing segment length (case 3). However, this is more significant for the 

BDM than the M L M results. 

5.5 Directional analysis of field data 

In this section, the same analysis is undertaken on the field data. The difference between 

directional estimates of two methods, BDM and M L M , is calculated and related to the 

BDM/MLM difference for simulated data in order to find out the most appropriate 

Where H i = incident s ignif icant wave height, D i = incident main d i rec t ion , Si ~ incident direct ional spreading, 
s=dircct ional spreading, Kr=renec t ion coefTicient 
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estimates for the numerical model validation. 

5.5.1 Offshore data 

Data selection 

Forty-two data sets were selected. These data sets were classified into three groups (as in 

section 5.3) by referring to frequency shape, narrow frequency spectra*^, bimodal spectra 

and broad frequency spectra. The main direction for the selected data was from the south 

(almost normal incidence to the breakwaters) or slightly south-west with only five data sets 

having a main direction from the south east. Prior to the directional analysis, spectral 

analysis was performed in the same way as was carried out on the numerically simulated 

data described in section 5.4. A l l the data sets were analysed using the case 5 spectral 

analysis and 18 o f these were re-analysed using the case 3 spectral analysis. 

Results for incident significant wave height 

Incident significant wave heights, normalised by the M L M estimates are shown in Figure 

5.24 for both case 3 and case 5 spectral analysis. The B D M estimates are generally higher 

than estimates obtained using M L M . The case 3 spectral analysis increases the significant 

wave height. Table 5.6 summarises the percentage differences between the BDM and 

M L M estimates. 

BDM/MLM 

percentage 

overall 

case 5 case 3 

T<6 sec 

case 5 case 3 

T>6 sec 

case 5 case 3 
min -9.193 -5.362 -9.193 
max. 28.066 20.293 28.066 
abs min 0.270 0.270 1.263 
average 7.270 2.540 10.495 

18 selected data files 
min -9.193 -18.612 -4.954 -1.191 -9.193 -18.612 
max. 22.684 20.255 4.669 11.017 22.685 20.255 
abs min 0.27 0.11 0.27 0.11 1.263 1.159 
average 3.837 5.792 1.804 5.446 5.464 6.069 

Table 5.6 Percentage difference between BDM and MLM significant wave height estimates 

" N a r r o w frequency spectrum stands f o r spectrum when energy is accumulated around lower frequencies (swell type) . 
However , there is always a presence o f some energy fo r higher frequencies ( w i n d waves). 
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These results show the same trends as was found from the numerically simulated data. 

However, the percentage difference between the B D M and M L M are larger than for the 

simulated data. The same was found for re-selected data with spectral and directional 

distribution similar to the simulated data. The larger differences are observed for a peak 

period higher than 6s (10.5%) and for waves approaching from the South. The average 

difference is 7.27%. The maximum difference is 28.07% and the minimum difference is 

2.54% for peak wave periods T less than 6s. 

Results for main direction 

Figure 5.25 shows the predicted main incident directions. Both methods predicted almost 

the same direction. The direction interval for analysis was 12^ which could be considered 

as a tolerable difference between results obtained by the two methods. There are four cases 

where the differences are larger than 12 A reason for such disagreement is related to the 

unstable M L M results when energy is distributed almost uniformly over all directions. 

The percentage difference between BDM and M L M is summarised in Table 5.7. The 

percentage difference between the BDM and M L M is again larger than for the simulated 

data. The larger differences were observed for the normal (South) direction and for the 

peak wave period less than 6 s. The average percentage is almost the same for case 5 and 

case 3 spectral analysis as was found using the numerically simulated data. The average 

difference is 3,76% and the maximum difference is 18.2%. Overall average percentage 

difference is less than 1% for case 3. 

BDM/MLM 

percentage 

overall 

case 5 case 3 

T<6sec 

case 5 case 3 

T>6 sec 

case 5 case 3 
min -9.186 -9.186 -3.565 
max. 18.202 13.686 18.20 
abs min 0.152 0.878 0.152 
average 3.764 2.858 4.382 

18 selected data files 
min -1.723 -9.312 -1.723 -9.312 -0.630 -4.447 
max. 10.733 6.364 10.733 2.88 7.811 6.365 
abs min 0.152 0.236 0.878 0.236 0.152 0.480 
average 2 All -0.405 3.109 -3.329 1.870 1.933 
Table 5.7 Percentage difference between BDM and MLM direction estimates 
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Results for directional spreading 

The largest difference between the BDM and M L M was found for directional spreading. 

The BDM generally predicts a narrower directional distribution than the M L M thus the 

maximum difference was -35%. The average difference is -16%. The difference increases 

with smoothing (case 3) as shov^ in Table 5.8. 

BDM/MLM overall T<6 sec 7>6 sec 

percentage case 5 case 3 case 5 case 3 case 5 case 3 
min -35.628 -22.887 -35.628 
max. 13.424 13.424 -8.122 
abs min 0.423 0.423 8.122 
average -16.418 -9.184 -21.350 

18 selected data files 
min -26.431 -39.367 -22.887 -26.675 -26.431 -39.367 
max. 13.424 -15.002 13.424 -15.002 -8.122 -21.484 
abs min 5.211 15.002 5.211 15.002 8.122 21.484 
average -13.380 -26.790 -10.177 -22.566 -15.943 -30.169 
Table 5.8 Percentage difference between BDM and MLM directional spreading estimates 

The largest difference is observed for case 3 when the M L M constantly produces a larger 

directional spread as was found for the simulated data. This is evident from Figure 5.26 

where directional distributions for case 3 and 5 for both methods are given. 

BDM/MLM overall T<6 sec T>6 sec 

percentage case 5 case 3 case 5 case 3 case 5 case 3 
min -61.569 -52.347 -61.569 
max. 22.033 22.033 -25.009 
abs min 4.163 4.163 25.009 
average -35.087 -18.461 -46.422 

18 selected data files 
min -55.107 -75.225 -52.347 -74.667 -55.107 -75.225 
max. 22.033 -38.079 22.033 -44.366 -25.009 -38.079 
abs min 8.506 38.079 8.506 44.365 25.009 38.079 
average -35.051 -59.893 -27.935 -60.178 -40.743 -59.666 
Table 5.9 Percentage difference between the BDM and the M L M reflection coefficient estimates 

This is fo r case w h e n ref lec t ion coefTicicnt is corrected. 
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Figure 5.26 The MLM and BDM directional distribution; a) MLM case 5; b) MLM case 3; 
c) BDM case 5; d) BDM case 3; ( - 5% ; — 10-100% with an interval of 10%) 
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Results for reflection coefficient 

Reflection coefficient estimates are shown in Figure 5.27. The MLM estimates are 

generally higher than the estimates obtained using the BDM and using the case 3 spectral 

analysis reduces the reflection coefficients. 

These results show the same trends as was found from the numerically simulated data but 

the differences are again higher. This is also illustrated in Table 5.9. The highest 

differences are observed for wave periods greater than 6 sec. The difference between the 

estimates of the two methods also increases for the case 3 spectral analysis. The average 

difference is -35% and the maximum -61.56%, (The differences increase for case 3). 

An example of the frequency dependent reflection coefficient is given in Figure 5.28. The 

MLM estimates are higher for the lower frequencies, but also higher than expected for 

higher frequencies where a certain amount of energy was expected to be dissipated in 

breaking as was already mentioned in section 5.3. hi the case of the BDM, the reflection 

varies quite strongly with frequency. The same was observed for case 5 and case 3. 

5.5.2 Inshore field data 

Forty-two data sets were selected measured at the same time as the offshore data. These 

wave measured data were collected inshore of the breakwaters (Figure 3.2) using the 

IWCM and therefore the only wave reflections present were those from the beach face. 

This is a very interesting case to study as the nature of the reflection is more complex than 

from a structure. The existing spectral analysis of the data was considered. As shown in 

Table 5.10, the value of L/S has been estimated in the interval 0.54 - 1.27'̂ . The MLM and 

BDM directional analysis were performed v^th these data. The starting value of 

hyperparameter u for the BDM method was originally set to 20, as with the offshore and 

the simulated data. It was found that the method failed to produce results for some 

frequencies, therefore the value of hyperparameter u was changed to 2. 

" As data were recorded here for a longer period than offshore the value of S is larger than for the offshore data but the 
value of US has been preserved as for the case 5 spectral analysis offshore. 
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Case S smoothed Limits of US df Degrees of 95% 
No (sec) frequ. Lower f Highest f freedom confidence 

bins limits 
5 256 2 0.54 1.27 0.0078 28 0.63-1.8 

Table 5.10 L/S values for the inshore field data 

Results for incident significant wave height 

Significant wave height estimates normalised by the MLM are shown in Figure 5.29. 

Again, the estimates obtained using the MLM are generally lower than those obtained by 

the BDM. The percentage difference between the BDM and the MLM is given in Table 

5.11. They are similar to those for the offshore field data. The maximum difference is 

23.71% and the average difference 9.33%. 

Results for the main directions 

The agreement between the BDM and the MLM direction estimates is excellent. The 

maximum difference between predictions obtained by the two different methods was 6° 

whereas the average difference was between 0°and 2°. The percentage difference between 

the BDM and the MLM is given in Table 5.11. The maximum and minimum values are 

smaller than in the case of offshore data and the average difference is only -1.81 % . The 

maximum difference is -7.65% compared to 18.2 % for the offshore data. 

Results for the directional spreading 

The difference between the BDM and the MLM directional spreading estimates is also 

given in Table 5.11. The values are very similar to the values obtained in the case of the 

offshore data sets. However, the differences are not consistent. The BDM does not produce 

a narrower directional spread than the MLM for all inshore field data. The maximum 

difference is -35% as for offshore data. When the BDM, with a starting value of 

hyperparameter u=2 was applied, an almost identical directional distribution was obtained 

as for the MLM. This is illustrated in Figure 5.30. 

Results for reflection coefficient 

The reflection coefficients derived using the MLM method have higher values than those 
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estimated by the BDM. The coefficients derived from the MLM results are in the range 

from 0.3 to 0.75 whereas the coefficients derived from the BDM results are in the range 

from 0.08 to 0.55. 

A summary of the percentage differences is given in Table 5.11. The average differences 

when the BDM with a starting value of hyperparameter u=20 was used are very similar to 

the differences for the offshore data. However, when the hyperparemeter was changed to 

u=2.0, the most noticeable difference occurred in the estimation of the reflection 

coefficient. The maximum difference is -74% and the average difference is -54%. 

Figure 5.31 shows the frequency dependent reflection coefficients. The values of reflection 

coefficient oscillate around a mean value in case of the MLM as it was observed for the 

simulated data. The values of the reflection coefficient in case of the BDM are lower for 

u=2.0 than for u=20.0. These estimates vary randomly with frequency and seem to be 

um-eliable. 

wave height direction directional reflection 
BDM/MLM spreading coefficient 
percentage 

u^2.0 u=20.0 u=2.0 u=20.0 u=2.0 u=20.0 u=2.0 u=20.0 
min 1.04 -11.56 -7.65 -6.41 -35.36 -24.24 -74,22 -57.88 
max. 23.71 4.07 2.13 7.34 15.02 38.46 -24.73 72.90 
abs min 1.04 0.08 0.03 0.26 0.34 0.02 24.73 0.01 
average 9.33 -1.75 -1.81 0.57 -13.10 4.87 -53.79 -3.49 
Table 5.11 Percentage of differences between BDM and MLM parameter for the inshore data 

Summary 

The BDM and MLM estimates for field data differ more than their estimates for simulated 

data. The same trend was observed when increased smoothing was applied. However, 

smoothing had more influence on the BDM than on MLM results as was established in 

section 5.3. The BDM method is sensitive on the initial value of hyperparameter u. 

5.6 Influence of currents 

One of the parameters which is not taken in account when the numerical data were 

generated is the influence of currents. Even though, the currents have not been measured, it 

is worth checking its influence on directional estimates before the final conclusions are 

made. 
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Nakagawa et al (1996) investigated the influence of currents on the estimation of 

directional spectra finding that these could be significant. The current influence can be 

accounted for by suitable modifications to the wave dispersion equation. 

When the current is present, the dispersion relation becomes 

{a}-U,k^cose,y =^/:,tanhA:, (5.6) 

where Uc is the current speed, and 9r is relative angle between current and wave 

propagation direction. This relationship is valid for wave propagation over a uniform 

current in space and time. Thus, the wave number also depends on the direction and 

magnitude of the currents. 

In general, there is no unique solution to equation 5.6. A discussion of the full solution of 

the dispersion relationship for waves on uniform current is provided by Peregrine (1976) 

and also by Hedges (1987). There are four different solutions 

1. When the current is positive 

2. When is no current or when the current is perpendicular to the direction of wave 

propagation (kc=ko). 

3. When UcosGr is just equal and opposite (left side of equation is 0) to the wave energy 

propagation velocity. The wave cannot propagate upstream and if they were generated 

on still water they v^ll break. Or the waves are propagating upstream and the wave 

group as a whole is being swept downstream (UcosGr < ccg). 

4. When UcosGr greater than c, in this condition not only is the wave group swept 

downstream, but also all individual waves. 

Usually, the waves of engineering interest have group velocities which are greater than any 

current velocities. Thus only cases 1 and 2 will be further considered. 

The influence of the current on the wave number was investigated for the conditions 

related to the field data. Assuming water depth of 7m, and a current magnitudê ** of 1 m/s, 

the ratio of kc/ko as a function of the relative angle was calculated and plotted in Figure 

°̂ The tidal currents do not exceed 0.7 m/s in Elmer. 
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5.32. For adverse currents (-180°), the ratio is larger than 1, thus the wave number with 

currents included is larger than the wave number calculated without currents taken in 

account. There is a larger influence for the smaller wave periods, therefore in case of the 

wave period of 2 s, the current speed exceeds the wave celerity for relative angles larger 

than 120° or smaller than -120°. It was observed that there is no positive solution for the 

dispersion relation given in equation 5.6 for smaller wave periods and current speed larger 

than 1 m/s at this deptĥ V The cut frequency was 0.5 Hz for all analysis, thus the smallest 

considered wave period is 2s. 

Figure 5.33, shows the ratio of kc/k© against relative angle, for a current of smaller 

magnitude (0.5 m/s) in the same water depth. The ratio between the two wave numbers 

becomes smaller with the reduction of the current speed. There is again a significant 

difference for the small period waves. 

Further, the influence of the current magnitude on wave number for the same water depth 

was investigated which is illustrated in Figure 5.34. The wave number with currents 

included becomes larger than the wave number with no current effect included (kc/ko 

greater than 1) in the case of an adverse current. The ratio kc/ko is smaller than 1 in case of 

a following current. The current speed exceeds the wave celerity in case of an adverse 

current speed of -0.5 m/s for a wave period of 2 s, and current speed of -1 m/s for a wave 

period of 4 s. The influence of current speed and direction is larger for smaller wave 

periods. 

Since the wave number is modified in the presence of currents, the pressure transfer 

ftmction needs to be modified as well. The transfer ftmction for surface elevation from 

hydrodynamic pressure is expressed by follov^dng equation (see e.g. Nakagawa et al 

(1996)): 

TXm = ̂  " f , y , (5.7) 

in the case when no current is present or taken in account. 

When the smaller period waves propagate over the jet, they become steeper until they finally break. 
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However, this expression becomes (see e.g. Nakagawa et ai (1996)): 

TXf,0) = ± - f . y , (5.8) 
yOg coshA:̂ (/i + 2 ) 

in the case when a uniform current is present. 

The ratio of the two transfer functions with and without currents included (TC/TQ), in depth 

of 7 m is given in Figure 5.35, The ratio was calculated for adverse and following currents 

of 0.5 m/s and for wave periods of 2, 4, 10 and 15 s. The ratio between two transfer 

function is very close to 1 (max. 1.02 and min 0.98) for larger wave periods. However, the 

ratio, Hc/Ho. increases to 5 for following currents and wave period of 2 s. The transfer 

fimction with included currents effect becomes almost zero in case of the adverse current 

and wave period of 2 s. The ratio increases towards the sea bed, therefore the current effect 

has an influence on the data measured on the sea bed. 

This analysis shows that the influence of currents on wave number and on pressure transfer 

function is significant in case of smaller period waves (less than 4 s) for adverse and 

following currents. Therefore, it is necessary to use a modified transfer fimction and to 

include the modified dispersion relationship into the directional analysis in such conditions. 

Field data 

At the chosen field site, the main wave directions are largely normal to the direction of the 

tidal currents. Hence, the wavelength and pressure attenuation factors are largely 

unaffected for the main direction. However, due to the directional spreading, effects v^ll 

exist for wave angles other than the main direction. 

At the chosen field site, tidal currents rarely exceed 0.7 m/s on a spring tide and the 

measurement depth at the offshore location rarely exceeds 8m. Based on these conditions, 

the effects of tidal currents were calculated. Some of the derived directional spectra were 

re-analysed assuming the presence of a 0,5 m/s current orthogonal to the main direction (or 

crossing) and parallel with the main direction (or following). Three different data sets as 

representative of a wide range of field data measured offshore were chosen. The first set 

has a narrow fi^quency spread ( peak fi-equency around 0.1 Hz), the second set has a broad 

energy over fi-equency distribution and the third case was bimodal (swell and wind waves). 
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Figure 5.36 show directional distribution for the narrow and Figure 5.37 for broad and 

bimodal frequency spectra respectively. There is only a slight difference between the 

directional distribution between the case with no current taken into account and the case 

with a crossing current taken into account for all three data sets. The difference in 

directional distribution becomes more pronounced between the case with no current taken 

into account and the case with a following current taken into account. The difference is 

present around peak frequencies, particularly for the bimodal data set. 

Figure 5.38 shows the sum of energy over all frequencies against directions for cases 

without and with crossing or following currents taken in account for the chosen data sets. 

There is very small difference in directional distribution between crossing currents taken in 

account and v^thout crossing currents taken in account. However, the difference can be 

seen when the following current is taken in account. The peak direction contains less 

energy and directional spreading is larger. In case of a bimodal sea, the second peak 

become more distinguished when a following current is taken in account. 

The statistical parameters main direction, directional spreading, incident wave height and 

reflection coefficient differ only slightly between the case with no current and crossing 

current taken in account ( the ratio is max. 1.04 and min 0.96). The main direction remains 

the same and the directional spreading increases when a following current is taken in 

account. 

The influence of currents on directional analysis estimates is introduced by using the 

modified dispersion relationship. Thus the wave number and thus its relationship to array 

size is changed. The error in wave number estimation can introduce directional ambiguities 

into the directional distribution and influence the values of the statistical parameters. The 

results presented in Figures 5.36 - 5.38 show very small difference between cases with no 

currents and cases with ciurents included. There was no significant difference between 

results v^th and without a crossing current being taken in account. 

Additionally, given that the actual currents were not measured, any corrections introduced 

to account for them would have to be based on astronomical predictions using chart data. 

Such estimates would not be very accurate and the results might not be improved. 
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5.7 Summary, discussion and conclusion 

Summary on theoretical framework for phase-locked and non-phase-iocked methods 

The concept of applicability of the M L M and the M M L M methods regarding L/S proposed 

by Huntley and Davidson (1998) was confirmed for the NPL region (L/S greater than 0.5). 

The M M L M method applied in the far field (L/S greater than 0.5) tend to produce spurious 

peaks. With increasing L/S, the directional spread increases, and several spurious peaks can 

be detected. This was in good agreement with the concept that the M M L M method is 

applicable for wider frequencies range when L/S less than 0.1. As it was expected the 

M L M was successfully applied in the zone of its ful l applicability. 

It was demonstrated that the M L M method can detect reflection. The frequency-averaged 

reflection coefficient calculated from the M L M results varied with the amount of 

smoothing (increasing L/S). However, increasing L/S has not significantly influenced the 

energy-weighted reflection coefficient. Incident wave height estimates were generally 

increasing with increasing L/S, however this was not the case for energy-weighted incident 

wave height. Increased smoothing increases directional spreading and alters the main 

direction estimates. 

Summary on the numerical simulations 

The directional analysis of the numerical data sets demonstrated that the results obtained 

were sensitive to the value of predetermined reflection coefficient. Larger discrepancies 

occurred between the values obtained and expected as the input values of reflection 

coefficient increased. The results were also influenced by the direction of incoming waves. 

The best agreement between predicted and target values were from the Southwest 

direction. The peak period and directional spread also influenced the results. The best 

agreement was obtained for a peak period of 8s and a directional spread of s=10. The 

different combinations of the controlling parameters had different influences on the BDM 

and the M L M . The results were not sensitive to the frequency distribution. 

Increasing L/S improved the B D M estimates. However the wave height, direction and 

reflection coefficient estimates only slightly improved for the cases when the M L M method 

was used. The directionzil spread estimate increases v^th increasing L/S parameter in the 

case of the M L M . The B D M estimates improved when the data simulated at six positions 
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were taken in account. This does not seem to have an influence on the M L M estimates. The 

differences in wave height estimates obtained by the B D M and the M L M are only -2% to 

4%. The direction estimates difference is also small from - 1 % to 9 % and differences in 

spreading estimates are up to 30%. 

Summary on the field data 

The differences between the B D M and M L M for field data are larger than in the case of the 

simulated data. This is not surprising knowing that it is only possible to generate a limited 

length of time series containing a limited number of frequencies and directions and that the 

reflection from the breakwaters was simulated as being frequency independent. This is not 

the case for the field data where the reflection coefficient is frequency dependent. The 

difference between wave height estimates increased to 3.8% - 5.7% particularly for the 

waves with peak period greater than 6s, The predicted main directions using the B D M and 

M L M differed only by a maximum of 6°. 

In general the differences between the BDM and the M L M estimates inshore are similar to 

the differences between the BDM and the M L M estimates offshore even though the values 

are slightly smaller. The analysis of the field data sets measured inshore showed that both 

methods predicted reflection fi-om the beach in the lee of the breakwater. The M L M 

predicts higher reflection than the BDM. 

The B D M gave more stable results when more smoothing was introduced in the spectral 

analysis (larger US). Thus, consequently the difference in estimates between the two 

methods increased. However the B D M stability and accuracy depends on the chosen 

starting value of the hyperparameter u. The BDM with starting value of the hyperparameter 

u=20 fails to give estimates for "noisy" higher fi-equencies for inshore field data. The B D M 

with starting value o f the hyperparameter u=2.0 (case 3 inshore field data) deals with the 

"noise" better and accumulates the energy around the peaks in the incident and reflected 

area. 

The largest differences between the two methods were observed for the case when the main 

energy is accumulated around lower frequencies with a certain amount of energy spread 

over all higher fi^quencies. One of the reasons is the array size and shape. From the 3D 

directional plots it can be seen that both methods have a problem in resolving the 

frequencies lower than 0.08/0.1. This is related to the array size which wil l be addressed in 
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the next section. The other possible reason can be a presence of currents which are not 

taken in account. The transfer function from pressure to surface elevation with included 

currents would also affect the directional analysis. However, the currents at Elmer are 

relatively small (less than 0.7 m/s) and the sensitivity tests showed that their influence on 

directional distribution is not significant. 

Discussion 

It was observed that accuracy of directional estimates for the simulated and field data 

depend on wave direction. This indicates possible influence of the array shape and size as 

directional estimates are not only a function of the cross-spectral estimates but also the 

relative distance between sensors. Only the influence of spectral analysis was tested in the 

previous section. 

The accuracy of the estimate depends on the instrumentation capabilities, position and 

spatial distribution of the instruments units, and on the spectral and directional analysis. 

Young (1994) and Chadwick el al (1995a) previously investigated the accuracy of the 

M L M method depending on the number of sensors and their position. With increasing 

number of sensors the accuracy of the estimates increases. It was also found that the peak 

of the directional spreading distribution increases with the number of sensors. Also the 

accuracy is higher for an irregularly rather than regularly spaced sensors. 

Young (1994) also pointed out that the critical parameter in the design of the spatial array 

is the so called co-array, on the basis o f co-array lags given by the equation: 

For an optimum array the co-array should have lags evenly and densely distributed in 

spacing and direction. I f there are N sensors at positions (Xn, yn), then there are pairs of 

sensors, v^th relative positions (Xmn, Ymn) where X^n = Xn - Xm and Ymn = Yn - Ym, 

m=l,2,...N and n=l,2,...,N. It is possible to calculate the cross-spectrum only for these 

shifts, however only N(N-1)+I values are independent. 
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In our case, there was a limited number of measurement points of only five sensors 

offshore (the most seaward transducer (5) did not work continuously) and four sensors 

inshore (see Figures 3.2 and 5.39). The co-array and co-array lags for the offshore array 

(see Figure 5.39) indicates that space lags are not densely and evenly distributed over all 

directions which can cause larger directional spreading for some frequencies and 

directions. The array orientation is towards the SW therefore the estimates from SW are 

more accurate. This explains why the results from this direction were more accurate. 

The co-array and co-array lags for inshore array are given in Figure 5.39. The co-array lags 

are more evenly distributed (except for directions -135** and -45°). The error in spatial 

distribution is highest for L/R=l (thus L = 3m in this case) when spatial alliasing occurs. It 

reduces for higher values of ITR and then again increases for L/R greater than 100 (thus L 

= 300m in this case) (Young (1994)). 

It was observed that for certain frequencies (frequencies of 0.141, 0.156 Hz) the amount of 

reflected energy is higher than in adjacent frequencies for offshore field data. From 

directional distribution plots (e.g. Figure 5.5), directional ambiguities were observed for 

combinations of these frequencies and directions (frequencies of 0.141, 0.156 Hz and 

directions of -102, -90, -78 degrees). For those frequencies, for particular directions the 

distance between two transducers is around half the wave length. The method can not 

distinguish the waves travelling in positive or negative directions relative to the reflected 

structures in these circumstances. The reflection coefficients were also higher for the lower 

frequencies (frequencies 0.05-0.06). In this case the array size is small comparing to the 

wave length and those frequencies can not be resolved accurately. The same implies 

inshore thus a much larger array would be required in order to resolve infragravity 

frequencies. Also, the resolution is poor for higher frequencies (higher than 0.2) when the 

wave length is small in comparison with the array distances. 

Conclusion 

It was proved that the M M L M method is not applicable for a partially reflected sea in the 

region of non-phase locked methods when US ratio is greater than 0.5. Both methods, the 

M L M and the BDM, succeed in producing estimates in an environment outside their 

domain of application where non-lineeu* processes and reflection are present. With regard to 

the directional analysis method, it was found that both methods can successfrilly estimate 

incident and reflected wave fields in the far field where L/S greater than 0.5. 
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The small differences could indicate that both methods produced good results, or 

conversely that both methods failed to produce the correct result. Directional spread wil l 

tend to decrease the phase locking and thus also improve BDM and M L M performance. 

However the directional spread was quite narrow which in combination with high 

reflection may introduce the instability into both methods. A l l this could influence the 

directional distribution and produce the differences in results. However, both methods do 

not estimate accurate reflection coefficients at the measured position. Therefore the 

reflection coefficient for the numerical model boimdaries needs to be estimated fi-om the 

data measured in the vicinity of the structure. 

The L/S ratio needs to be greater than 0.5 and the same recommendation as for spectral 

analysis can be given that the L/S ratio which increases confidence levels and preserve 

frequency resolution should be used. However, it becomes apparent that accuracy of the 

estimates is not only a function of the spectral analysis but also of the array shape and size. 

The array of measuring devices needs to be designed carefully. The increased number of 

sensors and irregular spacing can improve directional resolutions. Additionally the new 

concept of optimum L/S ratio and simulated data can be used to design the array size and 

shape to use one of methods optimally. 

The BDM method produced more accurate parameter estimates of wave height for 

simulated data, but there is still room for improvement. However, the M L M estimates do 

not differ more than 2% from B D M estimates. The BDM method is sensitive to choice of 

starting value of hyperparameter u and results can vary depending on this parameter. Thus 

it is still more difficult to implement the B D M than M L M method. Taking in account these 

problems and that the differences for the directional analysis estimates between the M L M 

and B D M are not large, the M L M method results wi l l be used for the numerical model 

validation. The errors in parameter estimates need to be taken into account. 
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Chapter 6 

Validation of the Mild Slope Evolution Equation 
Computational Model 

Zippy: "Nature doesn 7 have a GRID SYSTEM does it Griffy? " 
Grij^: "No, Zip... Nature's organisation is strictly NON-LINEAR!" 

Things FLOW& hdlNGLE rather than LINE UP or INTERSECT " 
Zippy: "Are you trying to tell me LA TITUDE and LONGITUDE aren 7 real? " 

And "Arizona " is Just a concept? " 
Griffy: "Arizona is just a concept. Zippy! We NAME things in order to CONTROL them, but 

is all an illusion!" 
Zippy: "I knew there was no such thing as MINNEAPOLIS!" 

By Bill Griffith 

6.1 Introduction 

The work presented in this chapter is a continuation of the validation of Li's (1994 b) MSE 

model by the author of this thesis. The earlier work was undertaken once the field 

measurements at Elmer and data processing were completed. Li's model (Li , 1994 b) was 

validated using this field data The results of this early validation work (Die and Chadwick 

(1995) were presented at the Coastal Dynamics '95 Conference by the author of this thesis 

and are given in Appendix G. Here, a brief summary of this work is given to provide a 

context for the subsequent work that forms the main focus of this chapter. 
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About 70 data sets, allmeasured synchronously offshore and inshore during high tide and with 

significant wave height greater than 0.5 m, were chosen fi-om the database for use in the 

model validation. A computational area of 2000m alongshore and 850m cross-shore covered 

the complete scheme of eight breakwaters and wave measurement positions offshore and 

inshore. The beach changes were included in four different bathymetries for model 

evaluation. The known incident wave field was specified and the reflective waves were 

allowed to propagate out of the field at the offshore boundaries. Shoreward and lateral 

boundaries were applied to the outgoing and reflected waves. Only, reflection fi-om the 

breakwaters was taken into account at this instance. 

First, the offshore measured directional spectra were presented by the peak fi^quency, the 

main (principal) wave direction and significant wave height for the monochromatic 

modelling. Disagreement of 33-46% was found between measured and computed wave 

heights in the bay. The largest disagreement was in the lee of the breakwater where the wave 

heights were underpredicted. Wave heights were overpredicted in the gap between 

breakwaters The influence of spectrum shape and frequency distribution on the results was 

investigated and no relationship was found. The greatest influence was caused by the lack of 

transmitted energy by radiation in the lee of the breakwater. This was proved in the second 

part of the validation when directional modelling was considered. 

The next step was to simulate directional waves assuming the validity of linear superposition 

as a method for the description of random waves. The energetically equalised discretisation 

method was chosen to discretise (see section 6.3.2 or Appendix G) the measured directional 

spectra. Three data sets with wave height greater than 1 m and small offshore measured 

reflection energy (reflection coefficient in range from 0.15 to 0.2) were selected for this 

purpose. Two series of tests were performed. Directional spectra were represented by 64 

monochromatic waves for each firequency interval and with only one main direction in the 

first test, hi the second test, the directional spectra were replaced by 28 monochromatic waves 

for 7 fi^uency and 4 directional intervals. The computed energy was greater than measured 

energy inshore for the first test. The measured and calculated energies for each fi^uency 

summed over all directions were found to be in very good agreement except for low and high 

fi^quency for the second test. However, the calculated energy summed over all fi^uencies 

for each direction differed from the measured one. Overall the agreement between calculated 

and measured wave height improved and the difference was between 8-12%. 
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Agreement between measured and predicted wave height depends on the accuracy of data 

used for the model validation and on the accuracy, capabilities and limitations of the 

numerical model. The accuracy of the data was analysed in a previous chapter (Chapter 5 ). In 

this chapter the accuracy of the numerical solution is investigated. The model is linear and 

does not take in account wave breaking, bed friction and wave current interaction. It does 

include reflective boundaries but not wave transmission through the structures. In fiirther 

work presented in this chapter, the sensitivity of the model on reflection and transmission will 

be investigated. Also, the effect of non-linearities on the solution wil l be stressed. 

The model was developed for regular waves but it was shown in the early stage of validation 

that it can be used for random waves. However, in such a complex environment around the 

structures, it was difficult to determine the importance of directional modelling. Therefore, 

laboratory measurements of random wave diffraction were chosen to validate the model for 

the case of pure diffraction. 

Next, in this chapter, in section 6.2, theoretical investigations of the model stability, accuracy 

and convergence are considered . The prediction of diffraction coefficients around semi-

infinite breakwater on a flat bed is validated using laboratory data in section 6.3. The 

validation of the model using field data with emphasis on directional modelling is given in 

section 6.4. The sensitivity test results are discussed in section 6.4.3. Section 6.5 summarises 

conclusions from all sections. 

6.2 The Computational model 

6.2.1 Governing equation based on the velocity potential 

Li (1994) derived a model with a time-dependent evolution equation from the transient form 

of the "mild slope equation", given by the equation: 

2(oi dm —1 , 2 

cc^ ot 
(6.1) 

where: co = wave angular frequency, cp = T(c Cg)"̂  and <l)(x,y,t) = T(x,y,t*) e 

Harmonic time is excluded to achieve fast convergence. The model is capable of dealing with 

refraction, diffraction and reflection, overcoming the main disadvantage of some previous 
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models based on the mild slope equation (see Chapter 2) . The derivation of the "mild slope 

equation" and Li's model is given in Appendix A. 

Boundary conditions 

The boundary conditions are the same as for the elliptic equation. This makes it easier to 

solve than hyperbolic models based on the transient form of the equation. The offshore 

boundary is specified with the following equation: 

^ = ik{(p^ -<Pr)= H<Pi -{(p-<Pi)) ^^'^^ 
dx 

Where cpi is the incident wave and x is the direction of incident wave. Thus the incident wave 

field is known, and reflected waves propagate out of the field. 

Shoreward and lateral boundaries are applied to the outgoing and reflected waves. They are 

given with the following equation 

dn 

Where n is the direction normal to the boundary, and y is related to the complex reflection 

coefficient, y - \-r . The value of y varies with the type of the boundary and may have to be 

determined empirically. 

Behrendt (1985) showed that this condition has a sufficient accuracy for near-normal 

incidence waves, but the accuracy decreases with the wave's obliqueness. Dingemans (1997) 

based on Kostense's (1986) approach related the complex reflection coefficient, r, to the 

physical real reflection coefficient R with f o l l o v ^ g expression 

Re'^ — 1 

'• = ' • ' 1 ? ^ ' ° ' ^ (6.4) 
There is an obvious dependence of, r, on the angle of incidence, 0. The phase shift, 9 , is 

difficult to determine. It is expected not to be large. The dependence on i9 is therefore 

generally ignored. 

' One of the main disadvantages of the fast parabolic models was their inability to take into account rapid changes such 
as reflection. 
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6.2,2 Numerical solution, accuracy and stability 

The numerical scheme which is used for the numerical solution is the unconditionally stable 

Alternating Direction hnplicit Scheme (ADI) (e.g. Peaceman and Rachford, 1955). The 

numerical scheme of the ADI for equation 6.1 after L i (1994b) is 

P.1 i=s\<p7r ^ki'^Dp.y^T ^ ^ > " p . - { [ ' ^ D ^ y . . ^^-^ 

P.9 1/2A/ 

Where 

-2co 

g>p,q 

(6.7) 

(6.8) 

(6.9) 

'^"^•^ 

where p,q defines a grid point. 

In each direction a tridiagonal algebraic system is generated and it is solved by the Gauss 

elimination method. Li (1994) showed, using Von Neumann's stability analysis that the 

numerical scheme is unconditionally stable. 

offshore shoreline 

Ay 

Ay 

p.q+i 

p-i.q p.q P+l.q 

p.q-i 

Axl Ax2 Ax3 Ax4 Ax5 Ax5 

Figure 6.1 The computational domain schematisation where Ax2=vAxl; Ax3=vAx2 etc. 
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It is desirable to have an adaptive scheme, particularly in the direction of wave propagation. 

As the wave propagates towards the shore, the wavelength decreases. To describe the wave at 

least 3 points per wavelength are necessary. Thus, to be able to have reasonably accurate 

coverage on the shore part of the computational domain, the grid size needs to be relatively 

small. However, when this is then applied over whole domain, it increases the number of 

calculation points and consequently the time of calculation. 

Here, the possibility of applying a different mesh size and its influence on stability is 

investigated. Linear analysis by means of Fourier series expansion is performed for the 

general numerical scheme. A change of grid space Ax to u Ax is allowed in the direction of 

wave propagation and the grid space orthogonal to the direction of propagation, Ay, remains 

constant. The value of the parameter u is in the interval between 0 and 1. Taking into account 

the grid points in the area of transition from Ax to uAx, equation 6.5 can be rewritten as 

follows 

- ( - 2 / - 2Cry + G)<pl^ - Cry<p"^^^^, = 0 

(6.10) 

And equation 6.6 

+(-2/ + ICry - G)q>";l - Crytp";],^, = 0 

(6.11) 

Where 

2Q) Ax^ Ico Ay^ 2 2<D 

Following the linear stability analysis introduced by von Neumann (see Appendix B), a 

solution of the fmite difference scheme can be written as a Fourier series in complex 

exponential form for any time level n, and grid point p,q in the form 
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k 

Where k is a wave component index, 4\ is the Fourier coefficient for wave number k at time 

level n, mAx =27i/Lx Ax = a = 27i/Nx, where Nx is the number of grid points per wave length, 

nAy = 27i/ Ly Ay = P= 27i/ Ny, where Ny is the number of grid point per wave length 

Initially, the analysis is performed for any individual wave number k, representing the 

function 

(pV<,= re-"''e''"'. (6.13) 

Introducing now the amplification factor A defined as = A^" and substituting A=e^, 

where y=27i/T, ^" can be expressed as e^. 

Substituting now the function values in the finite difference scheme by Fourier series form 

(see details in Appendix B), the following is obtained 

^ - 2 / + G-4Crvs in '>g /2 (6.14) 
* ~ - 2 / - G + 2Crxn 

- 2 / + G - 2 C r x n 
- 2/ - G + 4Crvsin ' pjl (6.15) 

Where 

(1 + L>)(cos a + i sin a ) - (cos(ua + a) + i sin(L?a + a)) - u (6.16) 
n = 

u(l + u)(cos a + i sin d) 

The total amplification factor, which should be < 1 for stability is given as: 

\A\ = \A,A,\ = ̂ Rc'{A,A,)^lm'{A,A,) = 
[C' - D' -c' +d') +{2CD-2cd) 

({C^cf^iD^dyf 

(6.17) 

where C=f(Crx,Cry,G.Re(n)); D= f(Crx,Cry,G,Re(n)); c=f(Crx,Im(n)) and 

d=f(Crx,Cry,Im(n)) 

From equation 6.17, the following can be concluded. The amplification factor is equal to 1 
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when c=d=0. Thus the scheme is unconditionally stable. This implies that the imaginary part 

of expression n is equal to 0, and the real part of expression n becomes 2sin\aJ2). This is 

obtained f o r u = I . 

Closer inspection of the amplification factor shows that the scheme is unconditionally stable 

only when u = 1. This means that the change of grid size in the direction of propagation will 

influence the stability of the solution. Therefore it is not advisable to change a grid size 

during the computation. Nevertheless, the computation can first be performed on the coarser 

grid and then repeated for the restricted area on a finer grid. From the amplification factor it 

can be concluded that Ay does not need to have the same value as Ax. Thus Ay can be taken 

larger than Ax, which is beneficial for the computation over the beach with parallel contours^. 

Consistency analysis 

Next the consistency of the numerical solution with the differential equation was checked by 

the author. The consistency analysis is performed by the author of this thesis in such a way 

that each of the unknowns in the finite difference approximation is replaced by its Taylor's 

series expansion (see e.g. Abbott (1979) or Abbott and Basco (1990)). Taylor's series is a 

fiindamental tool of numerical methods providing a translation between discrete and 

continuum description of phenomena. It also provides the efficiency of the translation. The 

difference between the continuum differential equation and the discrete difference 

approximation is called the truncation error. The truncation error for equations 6.5 and 6.6, as 

a result of consistency analysis is given in Appendix C 

2(0 
TE = — -GAt—^ + — / A / ^ — ^ + — Crx ^ + —Cry— — 

8 ^t^ . 24 dt^ 12 Ai dt' 12 A/ dt' 

(6.18) 

It is obvious that the scheme is consistent with partial differential equation because the 

original partial differential equation wil l be recovered with shrinking of Ax, Ay and At. The 

scheme is second order accurate^. However, consistency gives only a relation between 

equations. The convergence relation between equations when Ax, Ay and At 0 can be 

fiirther studied. This is not pursued here but therefore it is enough to know that the truncation 

^ Li (personal communication) has started to implement the model with different Ax and Ay. 
The scheme is of second order because the derivatives in the truncation error are multiplied by Ax, Ay and At lo the power 

of two and higher. 
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error disappears when Ax, Ay and At —> 0. 

The oscillations aroimd the main solution and dispersive waves are usually introduced by the 

presence of third and odd order space derivatives in the truncation error. However, this is not 

the case here. Therefore, some other effects cause the observed oscillations around the 

solution. The oscillations might be caused by interaction between the second order scheme 

used in computational domain and the first order scheme used for the boundaries. The 

computation begins with a cold start from known initial offishore boundaries. Thus it actually 

becomes the propagation of a steep fi-ont, which is one of the most severe tests for the 

numerical scheme accuracy. Many even higher order schemes used for such computations 

suffer from wiggles, which are spread over the computational domain. Furthermore, some 

other MSE models, which are solved with different numerical methods, suffer from the same 

effect''. This might be one reason for the presence of the oscillations. And the other possible 

reason is that the shoreline (or possibly offshore) boundaries are not property defined. In the 

next section the influence of oscillations is investigated further. 

6.2.3 Model convergence 

The time variable in the model is considered as an iterative parameter without physical 

meaning and only influences the convergent speed of the model. As the stability analysis 

showed, the stability of the solution does not depend on the size of the time step. However, 

the accuracy, as has been shown in consistency analysis, depends on the chosen size of time 

step. The scheme v^nll be more accurate when a smaller time step is chosen. However, the 

convergence time depends on the time step size. Thus the small time step chosen will 

increase the time to achieve convergence. 

To find an optimum time step size, one needs to trade between the time of computation and 

accuracy. L i (1994b) has already acknowledged the problem associated with the 

determination of the optimal time step in his original work. A routine is built into Li's 

numerical model, which calculates the minimum required number of steps as a fimction of 

the domain length, phase celerity and chosen time step. Thus the choice of the time step is left 

fi^e. 

* See the MSE model results in Nicholson cl al (1997). The same is observed for the time dependent MSE model from 
personal communication with Michael Brorsen. 
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Test Wave period Time step T/A! Wave length L UAx 
TfsJ [m] 

Grid size Ax=1.0 r n R=0.0 e =0° 
A 1.1 3.0 0.38 7.89 14.02 14.02 
A 1.2 3.0 0.60 4.97 14.02 14.02 
A 1.3 3.0 0.75 3.97 14.02 14.02 
A 1.4 3.0 1.51 1.99 14.02 14.02 
A 1.5 3.0 2.27 1.32 14.02 14.02 
A2.1 4.5 0.32 14.06 29.20 29.20 
A 2.2 4.5 0.63 7.14 29.20 29.20 
A 2.3 4.5 0.74 6.09 29.20 29.20 
A 2.4 4.5 1.48 3.05 29.20 29.20 
A 2.5 4.5 2.22 2.03 29.20 29.20 
A3.1 6.0 0.41 14.78 44.26 44.26 

A 3.2 6.0 0.61 9.84 44.26 44.26 
A 3.3 6.0 0.76 7.86 44.26 44.26 
A 3.4 6.0 1.53 3.92 44.26 44.26 
A 3.5 6.0 2.24 2.68 44.26 44.26 
A4 . I 9.0 0.39 23.02 72.38 72.38 
A 4.2 9.0 0.61 14.73 72.38 72.38 
A 4.3 9.0 0.73 12.26 72.38 72.38 
A 4.4 9.0 1.52 5.94 72.38 72.38 
A 4.5 9.0 2.20 4.09 72.38 72.38 
A 5.1 12.0 0.39 30.53 99.32 99.32 
A 5.2 12.0 0.61 19.80 99.32 99.32 
A 5.3 12.0 0.75 15.91 99.32 99.32 
A 5.4 12.0 I.5I 7.96 99.32 99.32 
A 5.5 12.0 2.29 5.23 99.32 99.32 

Table 6.1 Summary of tested conditions for flat bed 

During the preliminary validation of the model using field data and Chadwick, 1995) and 

the validation of the model using the laboratory data (see next section), it was observed that 

the minimum number of time steps obtained by this expression is not always enough to 

obtain a stationary solution. It was also found that the magnitude of oscillations around the 

main solution decreases v«th increasing number of time steps used. When the solution gets 

closer to the steady state, the magnitude of the oscillations begins to change more slowly. 

This initiated further investigations of the convergence criteria. A series of tests on a flat and 

sloping bed were undertaken. Different time periods, size of time steps and number of steps 

were used in order to find the required number of time steps for model convergence or some 

other convergence criteria to take effect. 

Firstly the tests were performed for a flat bed. The size of computational domain was 351 x 

351 m, and grid size Ax = Ay = 1.0 m. The water depth was 7.5 m which created deep water 
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or intermediate water conditions for the chosen wave periods^. The wave periods varied from 

3 - 12 s and the wave height was 1.0 m. Table 6.1 summarises the tests performed and the 

chosen parameters for the flat bed tests. 

For each test and each time step the wave heights at the central profile were saved and 

compared. Also, residuals defmed as 

£ -

(6.19) 

p g 

p <i 

were stored after each time step for each test. Once the calculation was completed, the 

numerical model predictions were compared to exact solutions and the standard deviation 

was calculated for each solution. 

X 10 

<D 0 

r 1 • 1 1 1 1 1 1 1 1 

I M l 

III,!, 
i i i i 

100 200 300 400 500 600 700 800 
Number of time steps (N) 

Figure 6.2 The residuals difference versus the number of time steps for the conditions of the flat bed 

The f o l l o v ^ g was observed 

for the same L/Ax, variance of the solution is a function of T/At and the number of time 

steps. 

* For 3 s wave period D/L>0.5 which means deep water and for other wave periods 0.05<D/L<0.5 which means 
intermediate water. 
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when UAx increases, the variance decreases .̂ 

Some of the models (e.g. Larsen and Madsen MSE model (1987)) have convergence criteria 

based on minimum error. Hence, the values of the residuals at the end of the calculation were 

checked. Their values vary depending on L/Ax and T/At and they increase with increasing' 

L7Ax and decreasing T/At. For different L/Ax and T/At, but for the same residual value, the 

standard deviation will be different. Thus, it was difficult to find a unique formulation, which 

connects those parameters. 

In Figure 6.2 the differences between two subsequent values of residuals for each time step 

are plotted. The function monotonically convergences to a particular value with the exception 

of a few sudden jumps. The same pattern was observed for all tests. These sudden jumps 

occur for the time step when the computation over the whole domain is completed (the time 

step N l ) . As the solution iterates until it converges to the steady state solution, the residuals 

decrease to zero oscillating. 

The possibility of relating the residual difference to chosen L/Ax; T/At and number of time 

steps was further tested. This time, a sloping bathymetry (slope 1/50) was used for 

computation^. The computational domain was again 351 x 351 m. Three grid sizes were 

chosen Ax = Ay = 1.0 m; 2.0 m; 5.0 m. The time period varied fi-om 3 -12 sec. Additionally, 

tests with oblique waves and reflective boundaries were performed. The parameters are given 

in Table 6.2 a,b,c. 

Again, wave heights for the central cross-section and residuals for each time step were 

calculated and stored. The standard deviation was calculated for each solution comparing the 

computational results with analytical results for shoaling waves. It was not possible to relate 

the number of required time steps to the standard deviation of the solution, or L/Ax and T/At 

parameters. Therefore, the residuals difference is calculated and the standard deviation for it. 

In Figure 6.3, the residual difiference versus number of time steps is plotted. The same 

features as for the flat bed are observed. The change of residuals is almost a monotonic 

function except for a few jumps. They occur later than in the case of the flat bed^. 

The exception from this rule might be related again to the number of time steps. 
The same was observed when L was constant and Ax was changed and when L was changed and Ax was constant 
The reason for this choice of slope is that it will be easier to relate the results to the Elmer field later on. 
One of the reasons is that the phase celerity, c, is greater in the case of a flat bed than in the case of the sloping beach. 
Thus the solution propagates more quickly. It should be noted thai, in this case the change of cCg is equal to zero. 
Thus the expression 1?^= l̂ o > which again speeds up the calculations. 
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Test Time period 
Tfs] 

Time step 
Alfs] 

T/At IVave length L 
[m] 

Grid size Ax=I.O m R=0.0 6 =0° 
B 1.1 3.0 0.30 10 12.68 12.68 
B 1.2 3.0 0.60 5 12.68 12.68 
B 1.3 3.0 0.75 4 12.68 12.68 
B 1.4 3.0 1.50 2 12.68 12.68 
B 1.5 3.0 2.25 1.33 12.68 12.68 
B2 . I 4.5 0.30 15 21.98 21.98 
B2.2 4.5 0.60 7.5 21.98 21.98 
B2.3 4.5 0.75 6 21.98 21.98 
B2.4 4.5 1.50 3 21.98 21.98 
B2.5 4.5 2.25 2 21.98 21.98 
B3.1 6.0 0.30 20 30.72 30.72 
B3.2 6.0 0.60 10 30.72 30.72 
B3.3 6.0 0.75 8 30.72 30.72 
B3.4 6.0 1.50 4 30.72 30.72 
B3.5 6.0 2.25 2.67 30.72 30.72 
B4.I 9.0 0.30 30 49.09 49.09 
B4.2 9.0 0.60 15 49.09 49.09 

B4.3 9.0 0.75 12 49.09 49.09 
B4.4 9.0 1.50 6 49.09 49.09 
B4.5 9.0 2.25 4 49.09 49.09 

B5.1 12.0 0.30 40 74.65 74.65 

B5.2 12.0 0.60 20 74.65 74.65 

B5.3 12.0 0.75 16 74.65 74.65 
B5.4 12.0 1.50 8 74.65 74.65 

B5.5 12.0 2.25 5.33 74.65 74.65 

Table 6.2 a The parameters for tests on the sloping bed and grid size Ax=1.0 m 

183 



Test Time period 
T[s] 

Time step 

Atfs] 

T/At Wave length L 
[m] 

UAx 

Grid size Ax=2.0 m R=0.0 G =0° 

C2.1 4.5 0.30 15 10.99 10.99 

C2.2 4.5 0.60 7.5 10.99 10.99 

C2.3 4.5 0.75 6 10.99 10.99 

C2.4 4.5 1.50 3 10.99 10.99 

C2.5 4.5 2.25 2 10.99 10.99 

C2.6 4.5 0.18 25 10.99 10.99 

C2.7 4.5 0.12 37.5 10.99 10.99 

C3.1 6.0 0.30 20 15.36 15.36 

C3.2 6.0 0.60 10 15.36 15.36 

C3-3 6.0 0.75 8 15.36 15.36 

C3.4 6.0 1.50 4 15.36 15.36 

C3.5 6.0 2.25 2.67 15.36 15.36 

C3.6 6.0 0.20 30 15.36 15.36 

C3.7 6.0 0.15 40 15.36 15.36 

C4.1 9.0 0.30 30 24.55 24.55 

C4.2 9.0 0.60 15 24.55 24.55 

C4.3 9.0 0.75 12 24.55 24.55 

C4.4 9.0 1.50 6 24.55 24.55 

C4.5 9.0 2.25 4 24.55 24.55 

C 5 . I 12.0 0.30 40 37.32 37.32 

C5.2 12.0 0.60 20 37.32 37.32 

C5.3 12.0 0.75 16 37.32 37.32 

C5.4 12.0 1.50 8 37.32 37.32 

C5.5 12.0 2.25 5.33 37.32 37.32 

Grid size Ax=2.0 m R=0.5 9 =0° 

D4.1 9.0 0.30 30 24.55 24.55 

D4.2 9.0 0.60 15 24.55 24.55 

D4.3 9.0 0.75 12 24.55 24.55 

D4.4 9.0 1.50 6 24.55 24.55 

D4.5 9.0 2.25 4 24.55 24.55 

Grid size Ax=2.0 m R=0.5 0 =20° 

E4.1 9.0 0.30 30 24.55 24.55 

E4.2 9.0 0.60 15 24,55 24.55 

E4.3 9.0 0.75 12 24.55 24.55 

E4.4 9.0 1.50 6 24.55 24.55 

E4.5 9.0 2.25 4 24.55 24.55 

Table 6.2 b The parameters for tests on the sloping bed and grid size Ax=2.0 m 
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Test Time period Time step T//M IVave length L 
T[s] AtfsJ [m] 

Grid size Ax=5.0 m R=0.0 0 =0° 

F3 . I 6.0 0.30 20 5.66 5.66 
F3.2 6.0 0.60 10 5.66 5.66 

F3.3 6.0 0.75 8 5.66 5.66 
F3.4 6.0 1.50 4 5.66 5.66 
F3.5 6.0 2.25 2.67 5.66 5.66 

Table 6.2 c The parameters for tests on the sloping bed and grid size Ax=5.0 m 

The standard deviation of the residual difference, based on the moving mean, becomes almost 

constant v^th increasing number of time steps. Unfortunately, the presence of the oscillations 

in the residual differences and in standard deviation values disqualified them as criteria for 

calculation completion. However, it was possible to find the time step when the first jump in 

residual difference occurs for each case (Nl ) . This time step appeared to be roughly twice the 

number of time steps (Ns) when the solution reaches the onshore boundary in the middle 

cross-section^. Besides, the required number of time steps for the calculation (N) was 

determined on the basis that the standard deviation of residual difference becomes constant 

(small difference between consecutive steps). 
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Figure 6.3 Residuals difference plotted versus number of time steps for sloping bed 

* The computation starts from the, so called, cold start All values In the computational domain are set to zero. Only 
initial conditions at the offshore boundary are known. The solution propagates from offshore to onshore and from leA 
to right boundaries. 
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0.002 

140 

Figure 6.4 Standard deviation of the solutions as a function of L/Ax and T/At; — contours for standard 
deviation every 0.0001 from 0 to 0.001, every 0.0002 from 0.001 to 0.002 and every 0.002 
from 0.002 to 0.014; - contours for number of steps (details in Figure 6.5) 
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140 

Figure 6.5 The number of time steps required for the calculation as a function of L/Ax and T/At; 
contours for number of steps; every 100 from 0 to 1000 and every 200 from 1000 to 2000 
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Figure 6.6 N/Ns a function of L/Ax and TMt (calculated); — contours for N/Ns every 1 from 0 to 20, 
every 2 from 20 to 40. every 4 from 40 to 80, every 10 from 80 to 120 
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This number sometimes coincided with the model calculation of required time steps, but 

usually was larger. The values of N/Ns versus T/At were plotted for all tests and the 

relationship on the basis of the best fit between N/Ns and T/At was found. This relationship 

enabled correct determination of the required number of time steps. Lastly, the values of 

N/Ns, N and standard deviation are plotted versus T/At and L/Ax in Figures 6.4, 6.5 and 6,6 

using a linear interpolation routine. These graphs can only be used as a rough guide to choose 

the required number of time steps for the calculation. 

The relationship between these parameters is very complicated as it is illustrated in Figures 

6.4, 6.5 and 6.6. It is important to choose the minimum time step with the minimum standard 

deviation. However, the largest standard deviation plotted on the graph in Figure 6,4 is 0.012, 

which gives an oscillation amplitude of 0.017 m. Hence the graphs are based on a wave 

height of 1.0 m. The oscillations, in the worst case, contribute only 2% of the solution. 

6.2.4 Dynamic Alternating Direction Implicit (DADI) method 

The stability of this scheme does not depend on the time step size, thus a different time step 

size can be chosen for each time step. The determination of an optimum sequence in the case 

of the similar equation, for example diffusion equation, is relatively simple (e.g. Abbott and 

de Leeuw, 1966). The choice becomes more complex in the case of "more dynamic 

problems" and is a research subject in its own right (e.g. see Basco and Abbott, 1990). 

Madsen and Larsen (1987) applied the so called Dynamic Alternating Direction Implicit 

(DADI) method based on work by Doss and Miller (1979) to the completely automatic 

change of the time step size (iteration parameter) At. The method did not only speeded up the 

computation but also stabilised the numerical solutions. 

The method is briefly summarised here. The parabolic equation 

w, ={A-\-B)u-f (6.20) 

is considered whose steady state (t = o c ) solution solves the elliptic equation 

L{u) = {A-^B)u = f (6.21) 

Equation 6.20 can be discretised in time with time step At, applying the ADI method, solving 
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on odd numbers steps (n+I) implicitly in A and explicitly in B, 

u"*' -u" =At{Au"'' +Bu" - / } (6.22) 

reversing the process on even numbered steps (n+2), solving implicitly in B and explicitly in 

A, 

- ir' = At{Au"'^ + Bu"'' - f ] (6,23) 

The Doss and Miller (1979) approach consists of calculating two double sweeps from time n 

to time level (n+4) with time step At; then the calculation is repeated from time n to time 

level (n+4) by a single double sweep with step size 2At. This time level is defined as (n+4)* 

to differentiate the two sets of results. Once both calculations are completed, the following 

parameter is calculated 

TP = \\u"'' - W " * ' * ' | | / | | M " * ' (6.24) 

using the I2 norm, given by following equation: 

where double summation represents summation in x and y direction respectively. 

Then the time step, At, is changed or remains the samedepending on the TP value. The 

strategy they have adopted is as follows: when TP falls in intervals (-oc, .05],(.05, .1], (.1,.3], 

(.3,.4], or (.4,.6], the present calculation and time step are accepted. Time step At, for the next 

calculation, is changed by a factor of 4,2,1,1/2 or 1/4 respectively. When TP falls in the 

interval (.6, oc), the present computation is rejected and the calculation starts with a new At 

changed by 1/16. 

The same method is now tried for Li's (1994 b) model. The parameter TP is calculated as 

(6.26) 

using the I2 norm as in equation 6.25. 
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Figure 6.7 TP values (upper curve), residuals between two time steps (2At-middle curve) and residuals 
between two time steps (At-lower curve) as a function of the number of time steps (Ax 
=Ay=2.0m, Cr=1.0, T=6.0s) 

The results from tests performed for periods (T=2,4,6 s) with different Ax (Ax =Ay=1.0, 2.0 

m) and different Cr (and thus different At) showed that the automatically chosen At will 

decrease as the computation proceeds. Thus a larger number of time steps is needed to 

complete the computation than when computation is performed with constant At. For a 

smaller time step (Cr=0.5), the TP value is almost constant and is in the range (.1, .3] and 

there is no change of At. I f this time step is doubled (Ci=l .0) then TP is greater than .3. For 

this TP value the time step is automatically reduced and the TP value is again in the range (. I , 

.3]. 

Next the change of TP is examined for the constant time step. Figure 6.7 shows the change of 

TP values versus the number of time steps for T=6.0 s. Ax =Ay=2.0m, Ci=l .0. The calculated 

TP values showed that its value asymptotically reaches a value of 0.96. Sudden changes are 

observed for the same time step for which the jump in the residual difference occurs. This 

behaviour was observed for different values of chosen time step. 
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6.3 Validation of the model on laboratory data 

Assuming that diffraction is one of the main processes in wave transformation around the 

structures, the laboratory measurements of Briggs et al (1995) were chosen to validate the 

importance of directional modelling on diffraction prediction. 

6.3.1 Physical model 

Briggs et al (1991) conducted physical model tests designed to develop and verify a 

numerical model for the prediction of diffraction of incident directional wave spectra. The 

physical model tests and measurements were performed in CERC's directional wave basin 

(see Figure 6.8). The collected data became widely available for the purpose of verifying 

wave transformation numerical models particularly those which use the directional 

modelling approach. 
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Figure 6.8 Layout of physical model test. Measurements are taken in the area behind the breakwaters at 
distances of x/Lp =1 ; 2 ; 3 from the tip of the breakwater. Lp is the nominal wavelength for the 
modelled wave period. 

Incident waves were generated using CERC's 27.43 m long directional spectral wave 

generator. A 0.61 m high by 18.22 m long vertical-faced breakwater was located 8.38 m in 

front of and parallel to the wave generator, and extended from generator centreline to the 
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basin side wall. The breakwater was constructed of 1.27 cm thick plywood backed by 2 x 4 

lumber, and was therefore a reasonably thin, rigid, vertical structure. Incident and 

diffracted wave heights were measured using nine parallel-wire resistance type wave 

sensors mounted on a frame. More details can be found in Briggs et al (1995). 

One monochromatic and four directional spectral wave conditions were generated. The 

four directional spectra represent the four combinations of narrow and broad frequency 

distributions with narrow and broad directional spread. Briggs et al (1995) used the TMA 

shallow water frequency distribution (Bouws et al 1985) and the so called wrapped normal 

directional spreading frinction (Borgman, 1990) to generate irregular waves in the physical 

model tests. The wrapped normal directional spreading function is given by the equation: 

In n 
(6.27) 

Where 6 m ' s the principal direction and Om is a circular standard deviation in radians 

In the physical model , both 9 \ and ai were set to zero, which removed the frequency 

dependence in the directional spreading frmction. 

Waves were normally incident to the semi-infinite brezikwater. A summary is given in 

Table 6.3. 

Case Incident Wave Conditions 
Description 

M4 Monochromatic 
N l Broad Frequency Distribution Narrow Directional Spread 
N2 Narrow Frequency Distribution Narrow Directional Spread 
B l Broad Frequency Distribution Broad Directional Spread 
B2 Narrow Frequency Distribution Broad Directional Spread 

Table 6.3 Description of laboratory simulated wave conditions 

The target incident spectral parameters in the T M A frequency distribution and the wrapped 

normal directional spreading fruiction are listed in Table 6.4. The values of y =2 and y=20 

used in the physical model test represent extremes of sea and swell conditions, respectively. 
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Wrapped Normal 
TMA Frequency Distribution Directional 

Fimction 
Spreading 

Hs Oin 

Case cm sec a y degrees degrees 
M4 7.75 1.3 
N l 7.75 1.3 0.0144 2 0 10 
N2 7.75 1.3 0.0044 20 0 10 
B l 7.75 1.3 0.0144 2 0 30 
B2 7.75 1.3 0.0044 20 0 30 
Table 6.4 Parameters for TMA spectra and directional wrapping function (where a is Philip's constant 

and y is peak enhancement factor) 

Diffracted waves were measured at 27 locations in the lee of the breakwater within three 

nominal wavelengths of the breakwater tip. The fi-ame was positioned on three radial 

transects from the breakwater tip covering a 60 degrees sector of the shadow zone. 

Transects were 30, 60, and 90 degrees from the breakwater, as shown in Figure 6.8. 

Walsh's prediction model 

Walsh (1992) developed the numerical model DIRSPDIF to calculate diffraction coefficients 

for the multidirectional sea in the lee of the breakwater. He compared the model results with 

the measurements by Briggs and found good agreement (5-20 % difference). It was envisaged 

by the author, that the comparison of two models (DIRSPDF and MSE) results for random 

waves is useful for future model applications. The brief description of the Walsh's model is 

given here. The diffraction coefficients for each spectrum component as a function of 

frequency and direction for each measured position are first computed, using the d i fec t ion 

theory for regular waves from the Shore Protection Manual (1984). Next, the diffracted 

spectrum is calculated. The diffracted frequency spectrum, Sdp(f,x,y), is predicted by the 

numerical model using the following expression 

37 . (6.28) 

where 

S i (f,9j) is the discretised incident directional spectrum; K<i(f,Gj,x,y) is frequency dependent 
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diffraction coefficient; AG is directional bandwidth; x,y are horizontal spatial co-ordinates 

The zero moment, mo, of each incident, measured and predicted diffracted frequency 

spectrum was then computed summing up the energy in all frequency bands. Spectral 

diffraction coefficients K<is were given as the ratio of diffracted (measured or predicted) 

and incident zero moment wave height 

^ ^ H K x , (6.29) 

This approach is similar to the one recommended by Goda (1985). 

6 .3 .2 Numerical mode! tests and results 

Assuming the validity of the linear superposition method for describing random waves, 

they can be simulated applying the numerical wave transformation model to 

monochromatic wave representatives of the directional spectrum. There are two methods, 

which can be used to discretise, the spectrum - a constant step method or energetically 

equalised discretisation. Grassa (1990) specified a few advantages of the latter method. The 

first advantage is the grouping of wave components around the spectrum peak both in the 

frequency and the directional domain. The grouping in direction is important because for 

the large oblique waves the boundary effects are more significant. The second advantage is 

that each of the equalised components has the same amount of energy and it can contribute 

equally to the disturbance at a given point. Therefore, fewer components are needed for a 

description of the directional spectrum. This was also supported by the sensitivity analysis. 

The results obtained by equalised discrete components converged in a stable way towards 

the assumed solution and did not improve much for more than 100 components. 

Therefore, the energetically equalised discretisation was chosen for the evaluation of the 

model. The directional wave spectrum is given by S(f,0) = S(f) G(f,9) where G(f,9) is a 

normalised spreading function between given cut-off values, (fmin, fmax), (^min, 6max) in Nf, 

Ne components each of which is defined by a corresponding frequency, direction and wave 

amplitude (fi,9ij, ay, i = l , Nf, j =l,Ne) where 

/' (m ^ ( 6 3 0 ) 
/ isgivenby. \s{f)if= ^ { i - 0 . 5 ) 
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^. is given by: \G{f,e)de= — 0 -0-5) 

(6.31) 

' ~ i N , N , (6.32) 

It should be noted that there are some small differences between these equations and the 

technique used in practice as the spectral shape is not directly integrable and depends on 

the frequency and direction increments derived from the spectral and directional analysis. 

Firstly, the bathymetry was discretised into 176 x 146 points with equal spacing Ax =Ay = 

0.2 m. Additionally, the same bathymetry was discretised into 351 x 291 points with equal 

spacing Ax =Ay = 0.1 m. The water depth was constant at 0.46 m. 

However the optimum number of directional and frequency components need to be 

determined for each case separately. Goda (1985) and Grassa (1990) recommended that a 

larger number of directional components than frequency components need to be used for 

cases involving diffraction. Therefore, the number of directions has been varied to test its 

influence. 

It was difficult to resolve the measured directional spread. Therefore, Walsh (1992) used 

incident directional spectra calculated from measured incident frequency spectra and the 

calculated*® directional spreading frmction. These were also used as an input to the MSE 

model in preference to measured incident spectra. 

The monochromatic wave was represented first with one direction and one wave period. 

The size of time step varied from test to test (details are given in Table 6.5). The 

computation was performed for both computational domains. The frequency spectrum, 

which was derived by Walsh (1992) from measured surface elevations for the 

monochromatic wave, enabled a computation involving the linear superposition of all 

frequencies from the wave spectrum (case 6). 

'** Calculation was based on the previously meniioned directional distribution (Equ. 6.27). 
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Case Incident Wave Conditions Description 

c 
.2 c 
1-2 I " 

U T3 

IJ 

C 

.2 c 

I " 

1 
.2 c 

I " I ̂  

M4 
Mono Case 1 
Mono Case 2 
Mono Case 3 
Mono Case 4 
Mono Case 5 
Mono Case 6 
NJ 

Case 1 
Case 2 

Case 3 

Case 4 

N2 

Case 1 
Case 2 

Cases 

Case 4 

Bl 

Case 1 
Case 2 

Case 3 

Case 4 

B2 

Casel 
Case 2 

Case 3 

Case 4 

Monochromatic 
At=0.37 s, Ax=0.2 m, time steps 200 
At=0.74 s, Ax=0.2 m, time steps 200 
At=0.18 s, Ax=0.2 m, time steps 200 
At=0.18 s, Ax=0.2 m, time steps 800 
At=0.18 s, Ax=0.1 m, time steps 800 
Linear superposition of all frequencies, Ax=0.1 m, time steps 200 
Broad Frequency Distribution 
Narrow Directional Spread 
One frequency, one direction Ax=0.1 m , lime steps 200 
Linear superposition of 8 frequencies and one direction, Ax=0.1 m, 
time steps 200, (8 components) 
Linear superposition of 8 frequencies and 8 directions, Ax=0.1 m, 
time steps 200, (64 components) 
Linear superposition of reduced number of 8 frequencies and 5 
directions, Ax=0.1 m, time steps 200, (40 components) 
Narrow Frequency Distribution 
Narrow Directional Spread 
One frequency, one direction Ax=0.1 m ,time steps 200 
Linear superposition of 4 frequencies and one direction, Ax=0.1 m, 
time steps 200, (4 components) 
Linear superposition of 4 frequencies and 14 directions, Ax=0.1 
m, time steps 200, (56 components) 
Linear superposition of reduced number of 4 frequencies and 5 
directions, Ax=0.1 m, time steps 200, (20 components) 
Broad Frequency Distribution 
Broad Directional Spread 
One frequency, one direction Ax=0.1 m ,time steps 200 
Linear superposition of 7 frequencies and one direction, Ax=0.1 m, 
time steps 200, (7 components) 
Linear superposition of 7 frequencies and 21 directions, Ax=0.1 
m, time steps 200, (147 components) 
Linear superposition of reduced number of 7 frequencies and 10 
directions,Ax=0.1 m, time steps 200, (70 components) 
Narrow Frequency Distribution 
Broad Directional Spread 
One frequency, one direction, Ax=0.1 m, time steps 200 
Linear superposition of 4 frequencies and one direction, Ax=0.1 m, 
time steps 200, (4 components) 
Linear superposition of 4 frequencies and 21 directions, Ax=0.1 
m, time steps 200, (84 components) 
Linear superposition of reduced number of 4 frequencies and 10 
directions, Ax=0.1 m, time steps 200 

Table 6.5 Summary of the tests performed for five different wave conditions generated in the laboratory (M4, 
NI,N2, B l and B2) 
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Four different cases of directional seas were computed in four different ways. Firstly, the 

spectrum was represented with one direction and one wave period (case 1). A linear 

superposition of the maximum number of frequencies obtained by equalised discretisation 

and one main direction was applied next (case 2). The directional modelling or linear 

superposition of maximum number of fi-equencies and directions*' was next carried out 

(case 3). Finally, directional modelling as the linear superposition of the same number of 

frequencies and reduced number of directions was used to represent the incident wave 

spectra (case 4). Table 6.5 summarises the details of the computations performed. 

For the spectral and directional runs, firstly the energy over all runs was summed. Wave 

height was then calculated as 

For consistency v^th the customary presentation of diffraction diagrams and the Walsh 

(1992) results, the diffraction coefficients were calculated for all MSE computational runs. 

They were calculated as the ratio of the diffracted wave heights in the measured points in 

the lee of the breakwater and the incident wave height. The measured spectral diffraction 

coefficients and the spectral diffraction coefficients predicted by the MSE and DIRSPDF 

models are shown in Figures 6.9, 6.10, 6.11, 6.12 and 6.13. 

Figure 6.9 displays good agreement between measured and calculated diffraction 

coefficients in the case of the monochromatic wave M4. The MSE predicted coefficients 

are closer to those measured in the vicinity of the tip of the breakwater than those predicted 

by DIRSPDF. The best agreement was achieved with the linear superposition of all 

frequencies and when the bathymetry with the smaller grid size was used (see Figure 6.9 -

case 5 and case 6). Also it was observed that better agreement is achieved closer to the tip 

of the breakwater than in the shadow zone. Therefore, the MSE predictions are closer than 

the DIRSPDF predictions to the measured ones in the zone near the tip of the breakwater. 

For wave condition N l , diffraction coefficients are contoured in Figure 6. 10. The contours 

predicted by MSE are very close to those measured and they are also close to those 

predicted by DIRSPDF when directional modelling (case 3) was used (Figure 6.10 - case 

3). 

" This number varies depending on a method used for the discretisation and it varies with the given frequency and 
directional intervals of the measured incident spectr\im. 
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Figure 6.9 Diffraction coefficients contours for the monochromatic wave. - measured; — predicted by 
DIRSPDF model; - predicted by MSE model. Only the area behind the breakwater is plotted 
here (contours in 0.1 intervals). 
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Figure 6.10 Diffraction coefficients contours for the Nl directional waves, -measured; ~ predicted by 
DIRSPDF model; - predicted by MSE model. Only the area behind the breakwater is plotted 
here (contours in 0.1 intervals). 
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Figure 6.11 Diffraction coefficients contours for the N2 directional wave,-measured; ~ predicted by 
DIRSPDF model; - predicted by MSE model. Only the area behind the breakwater is plotted 
here (contours in 0.1 intervals). 
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Figure 6.12 Diffraction coefficients contours for the B1 directional wave,-measured; — predicted by 
DIRSPDF model; - predicted by MSE model. Only the area behind the breakwater is plotted 
here (contours in 0.1 intervals). 
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Figure 6.13 Diffraction coefficients contours for the B2 directional wave, - measured; — predicted by 
DIRSPDF model; - predicted by MSE model. Only the area behind the breakwater is plotted 
here (contours in 0.1 intervals). 
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It is noticeable, that the solution is worse when less frequency and directional components 

are used for modelling. Thus when only one frequency and one direction was used (case 1), 

the worst agreement was obtained. 

The results for wave condition N2 are given in Figure 6.11, The same trend was perceived 

as for wave condition N l . Again, the best agreement was obtained when directional 

modelling (case 3) was used with the larger number of frequency and directional bands. 

There was an over prediction of the diffraction coefficient immediately behind the tip of 

the breakwater for the other three cases. 

Figure 6.12 shows the diffraction coefficients for the wave condition B l . Once more the 

best solution was obtained when a larger number of frequency and direction bands were 

used in computation. The worst agreement was obtained when only one frequency and one 

direction (case 1) was used. The contours of calculated diffraction coefficients are closer to 

the measured ones in the entrance area, than in the sheltered area. For all cases, there is an 

over prediction of the diffiaction coefficient immediately behind the tip of the breakwater 

(measurement point 10). The same features are observed for wave condition B2 in Figure 

6.13. 

Generally, the model underpredicts the diffraction coefficients for wave condition N l and 

N2 for all four different model runs. When directional modelling, mono or all frequencies 

modelling (cases 1-3) was used for wave condition 8 1 , diffraction coefficients were 

underpredicted. The reduced frequency and directions run (case 4) overpredicted the 

diffraction coefficients. When directional and reduced directional modelling (case 3 and 4) 

were used for wave condition B2, the diffraction coefficients were overpredicted. They 

were underpredicted when all frequencies and mono runs (case 1 and 2) were performed. 

For the monochromatic wave, M4, all runs generally underpredict diffiaction coefficients. 

It is interesting to note that Walsh's numericzd model underpredicts diffraction for wave 

conditions N l , N2 and overpredicts for wave conditions B l , B2, M4. It is not known why 

the different results were obtained for M4*^. However, 22 frequency and 37 directional 

bands (814 components) were used in DIRSPDF to predict directional diffiaction 

coefficients. The number of components, which were used for MSE modelling, is specified 

However, it is not clear from Walsh's (1992) report whether he took a pure regular wave or the whole frequency 
spectrum into account 
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in Table 6.5, but does not exceed 150 components. 

The rms difference using the same formulation as Walsh (1992), for easier comparison, 

was calculated using the following equation 

rms difference = ^ (6.34) 

where K^sp is the predicted spectral diffraction coefficient; IQsm is the measured spectral 

diffraction coefficient; N is the number (= 27) of spectral diffraction coefficients computed 

for each wave condition. 

The rms values are calculated for all directional wave conditions and all computational 

wave conditions. The computed rms for the MSE and DIRSPDF model results versus 

measurements are given in Table 6.6. 

MSE 
Case J Case 2 Case 3 Case 4 Case 5 Case 6 

DIRSPDF 

M4 0.064 0.068 0.055 0.065 0.050 0.051 0.052 
All points 
N l 0.133 0.137 0.029 0.137 0.025 
N2 0.128 0.133 0.047 0.133 0.029 
B l 0.175 0.173 0.111 0.173 0.042 
B2 0.144 0.144 0.124 0.144 0.075 
Excluding point 10 
N l 0.063 0.067 0.028 0.025 0.023 
N2 0.072 0.069 0.046 0.055 0.028 
B l 0.134 0.130 0.022 0.025 0.040 
B2 0,095 0.094 0.048 0.035 0.074 

Table 6.6 The rms values when the MSE and DIRSPDF predictions are compared to the measurements 13 

" The results in the lower part of tabic were calculated excluding predicted values in point 10. This was the point where 
the results diftered the most. 
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MSE DIRSPDF 
Case } Case 2 Case 3 Case 4 Case 5 Case 6 

M4 18.95 19.49 16.67 17.93 15.22 14.19 10.87 
All points 
Ml 19.44 22.69 8.5 14.33 5.89 
N2 24.87 24.41 13.37 20.75 7.66 
B l 34.94 34.52 9.88 11.18 11.99 
B2 28.6 29.26 15.73 13.59 19.72 
Excluding point 10 
N l 14.01 17.21 8.42 8.33 5.51 
N2 20.72 19.93 13.41 16.22 7.59 
B l 30.78 30.27 5.08 6.19 11.81 
B2 24.34 24.96 10.75 8.65 19.54 

Table 6.7a The percentage error difference between MSE and DIRSPDF model predictions and 
measurements 
- absolute values (case 1 - mono; case 2 -all frequencies and one direction, case 3 - directional 
case 4 - reduced directional) 

MSE DIRSPDF 
Case J Case 2 Case 3 Case 4 Case 5 Case 6 

M4 -5.6 -10.87 -10.49 -9.6 -5.82 -7.07 9.14 
All points 
N l -5.26 -10.45 -8.5 -1.72 2.77 
N2 -13.82 -13.70 -12.77 -10.36 -2.47 
B l -24,34 -23.77 6.55 9.38 11.99 
B2 -17.71 -18.82 13.96 11.54 19.72 
Excluding point 10 
N l -11.63 -17.21 -8.42 -8.33 2.26 
N2 -19.46 -19.93 -12.78 -16.11 -2.93 
B l -30.78 -30.27 1.62 4.32 11.81 
B2 -23.74 -24.96 8.9 6.52 19.54 

Table 6.7b The percentage error difference between MSE and DIRSPDF model predictions and 
measurements - relative values (case I - mono; case 2 - all frequencies and one direction, case 3 
- directional; case 4 - reduced directional) 

Additionally the percentage difference between model predictions and measurements was 

calculated for each of those wave conditions and for the DIRSPDF and MSE results. The 

computed absolute percentage difference values''' are summarised in Table 6.7a. The 

'* The absolute values of calculated percentage dinerence for each point are taken, summed and then divided by the 
number of points. 
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relative percentage difference values'^ are given in Table 6.7b and they show under-

(negative values) and over-prediction (positive values). Comparing the values in both 

tables, it can be observed that the relative values are smaller than the absolute values for 

some cases, which means that under- and over-predictions cancelled each other out. 

Generally, the best agreement between measured and computed values was for case 3 and 

case 4, directional and reduced directional modelling, (8-15 % ) . The largest discrepancy 

occurred for case 1, when the wave field was represented by the monochromatic wave (14-

31%). 

When directional modelling was applied, the smallest difference was obtained for wave 

condition B l which is a broad frequency and broad directional spectrum*^. The opposite 

effects were observed for wave condition N2, the narrow frequency and narrow directional 

specUnm. 

The results given in Tables 6.6 and 6.7 show good agreement between MSE and DIRSPDF 

predictions. Therefore the reasons for possible discrepancies might be found in the physical 

experiment and presentations of the measurements. Also, the way in which the input 

incident spectra were discretised might have caused the difference in results. This may 

have introduced energy into the portion of spectrum that was not actually generated in the 

physical model. 

Also the 90-degrees angle is in the region of high gradients in wave energy as wave energy 

passes along the crest fi'om the unsheltered to the sheltered region. For incident waves with 

some degrees of directional spreading, the gradient is smoothed over a wider region. The 

measured diffraction coefficient along the 90-degrees intersect is in the range from 0.5 to 

0.6. However the diffraction coefficients in the unsheltered area is equal to 1.0, thus a large 

gradient is present in that area which is difficult to model (see Figure 6.14). Also there 

might be some reflection present from the walls of the basin and basin oscillations. 

Additionally, the oscillations around the mean solution were observed. Their amplitudes 

were larger for mono waves than in the case of the directional modelling when the MSE is 

used. The smaller oscillations in the final directional modelling resuh may resuh from 

linear superposition of the component waves. 

The relative values of calculated percentage difference for each point are taken, summed and then divided by the 
number of points. 

Also the larger number of components was used in this case. 
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Figure 6.14 The measured diffraction contours for four directional cases; — wave condition N1 
wave condition N2; - wave condition B l ; - wave condition B2. The area behind the 
breakwater is only plotted here. 

It can be concluded that the model predicts the diffraction coefficient for the directional 

wave spectra around a semi-infinite breakwater with an accuracy of 5-15%. The accuracy 

depends on the shape of directional spectra and number of frequencies and directional 

components taken into account for the calculation. Reducing the number of directions for 

directional modelling can either slightly improve or worsen the results. The largest 

difference between predicted and measured values are obtained when only one frequency 

and one direction are used. It can be concluded that the results depend on the number of 

increments used, but also how those increments represent the incident spectrum. Taking in 

account Grassa's (1990) recommendations that the results should not change for more than 

100 components and the fact that the smallest difference was obtained for the largest 

number of components (147), it can be concluded that more directional components need 

to be taken in account. However this need to be bedanced with the hardware capabilities 

and a length of computational time. 
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The results also indicate that the directional spreading should be considered in diffiaction 

analysis. From Figure 6.14 it can be seen that the diffiaction process is sensitive to the 

directional spread and to a lesser extent to the frequency spread. Thus in the specific field 

studies the measured spectra need to be taken in account. 

6.4 Validation from field data 

The transformation of the directional sea around detached breakwaters consists of 

refi-action, diffiaction, shoaling, reflection and transmission. In the previous section, it has 

been shown that the directional modelling can accurately predict diffiaction of an irregular 

sea. Here the validation will be further extended to see how accurately the combination of 

diffiaction and other effects can be predicted. 

The emphasis wi l l be given on directional modelling. One of the conclusions of the 

preliminary validation was that proper reflection coefficients needs to be taken into 

account. The evaluation of the multidirectional parameters in Chapter 5 has enabled more 

accurate model inputs. Also, the numerical model has been slightly changed. The reflective 

boundaries for the oblique waves, similar to ones given v^th equation 6.7, have been 

incorporated. An additional improvement is that the number o f steps to bring the solution 

close to the steady state can be determined fi-om the 'rough guides' given in Figures 6.4, 

6.5, 6.6. Three data sets used for the preliminary validation of directional modelling are 

used for the new validation. Additionally three new data sets were chosen to cover the 

variety of the wave conditions. A l l data sets were chosen on the basis of criteria given by 

Ilic and Chadwick (1995) and similar to Dingemans et al (1984) 

synchronous wave measurements t - 20 min < to > t + 20 min (91% data are in time 

interval ± 10 min) 

wave height > 0.5 m 

high tide - to have reasonable depth of water in the area behind breakwaters ( i .e . depth 

between 2.6 and 3.6 m inshore and between 6.8 and 8.0 offshore ) 

small values of the reflection coefficient'' measured offshore 

" This crilcria is not so important after the evaluation of the directional parameters has been done 
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6.4.1 Computational set up 

The mild slope bathymetry of the site (except the steeper shingle beach at the shoreline 

boundary) and the measurements positions are given in Figiu-e 6.15. The offshore depth 

contours are based on a survey provided from Robert West and Partners (1991). The 

shoreline bathymetry has been processed from aerial surveys (Axe, 1994). 

A computational area of 2000 m (alongshore) x 2000 m (cross-shore) was chosen. A grid 

spacing of 2 x 2 m was used (401 x 401 points). A l l of the chosen data were measured in 

October 1994, thus the bathymetry from the aerial survey in September 1994 was used for 

all 6 data sets. 

The reflection coefficient used for the reflective boundaries at the breakwaters was 

calculated using following formula 

/:r = 0 . 1 5 1 ( 6 . 3 5 ) 

where non-dimensional parameter R is given by 

d,L\\2XiP (6.36) 

where dt is water depth of the toe of the breakwater; tan P is slope of the breakwater and D 

is a characteristic diameter of rock armour (W50/p)*^. 

Davidson et al (1996) on the basis of the measurements taken in the front of the breakwater 

4 derived the formula given in equation 6.36. The reflection coefficient was calculated for 

each frequency independent o f the wave direction. 

Unlike the breakwater reflection, the reflection from the beach has not been directly 

measured. One of the reasons is that those measurements are very difficult. However, the 

reflection coefficient can be calculated from the equation: 

Kr'=^ (6.37) 

the ratio of the reflective and incident energy based on the M L M estimates from the 

directional measurements taken in the bay. 
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The reflection coefficients are quite high (close to 1) for lower frequencies. From 

numerical tests in Chapter 5 it was found that the reflection coefficients can be 

overpredicted by 9%. However, there are only a few measurements from shingle beaches 

which can be used for the verification. Mason et al (1997) measured reflection from a 

shingle beach and found quite high reflection coefficient values for swell conditions. Elgar 

et al (1997) also found a high reflection for swell waves from a steep sand beach. 

Therefore, despite its high values the M L M estimates of reflection coefficients were 

incorporated into the shoreline boundaries.*^ The reflection coefficients were calculated for 

the same frequency bands, which were taken as representative ones for the directional 

modelling using equation 6.37. In this way the coefficients were frequency but not 

directionally dependent. 
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Figure 6.15 The model bathymetry and measurement positions 

During the preliminary validation, the refleciive boundaries at the beach were not included 

211 



The next parameter which, needs to be chosen is the minimum water depth to be able to 

give accurate results. The recommendation*^ by Li is to set such water depth for which 

L/Ax is larger than 6. To preserve the validity of linear theory, the minimum depth was 

checked using two additional criteria. The first criteria is the breaking criteria, thus the 

water depth needs to be d > H/0.78. When directional modelling is implied this becomes 

irrelevant, as the wave height of each component is very small. However, the waves still 

break in reality. This problem was addressed by Ozkan and Kirby (1993) (see Chapter 2), 

but there is still no satisfactorily solution. The second criteria is that the Ursell Number^^ is 

smaller than I . The Ursel! Number is a non-dimensional parameter which gives a 

quantitative measure of the linearity of the waves (Guza and Thornton, 1980) and is given 

by the following formula 

Ur 
2d(kd) (6.38) 

where d = water depth; k = wave number. Strong nonlinearities can be expected for Ur> l . 

Thus the water depth chosen on the basis of the second criteria was compared with the 

water depth chosen on the basis of L/Ax larger than 6. The larger water depth was chosen 

as the minimum water depth in the model. 

Case Set Tp 0p o„ Rm S H WD DL 

wind 64 5.70 -66 0.37 4.20 -68.57 0.32 32.85 1,02 7.31 2.87 
Bi 65 9.50/ -90 0.51/ 5.04 -81.34 0.36 32.89 0.69 7.32 2.85 
modal 5.45 0.37 

wind 69 5.7 -90 0.36 4.50 -80.65 0.33 29.65 1.19 7.57 •2.2 
/3.04 

swell 72 15.08 -90 0.57 10.26 -98.07 0.48 29.75 0.83 7.43 2.82 
swell 73 9.50 -90 0.48 9.50 -97.67 0.48 27.86 0.62 7.46 2.9 
wind 75 5.96 -102 0.36 4.84 

101.18 
0.33 27.41 1.3 7.31 2.68 

Table 6.8 Summary of offshore wave conditions used as input for model validation - monochromatic 
case 

" It was found that when L/Ax reduces to only a few points, disturbances from the boundaries propagate back offshore. 
°̂ The inshore incident wave height was not known a priori, therefore the incident wave height was approximated by 

offshore wave height multiplied by shoaling coefficient 
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Case 
wind 

Bi 
modal 

wind 

swell 

swell 

wind 

Set T„ 

64 5.70 

0„ R WD 

78 4.06 -82.29 0.40 31.05 

65 13.5 -90 6.72 -88.37 0.41* 34.46 

69 5.7 -90 4.53 -86.71 0.42 28.41 

72 11.15 -90 7.00 -92.27 0.64 32.49 

73 12.21 -90 7.63 -91.13 0.66 32.34 

75 6.58 -90 4.69 -89.70 0.31 28.34 

0.55 
0.60 
0.93 
0.63 

0.52 
0.84 
0.88 
0.80 
1.30 
0.68 
0.58 
0.93 
0.70 
0.52 
0.90 
0.93 
0.56 
1.14 4.04 

3.33 
2.82 
4.24 
3.33 

2.81 
4.22 
3.5 
2.99 
4.41 
3.32 
2.79 
4.19 
3.35 
2.82 
4.22 
3.18 
2.64 

Table 6.9 The summary of inshore wave conditions used for the model validation. 
The parameters are given for the position shoreward of the gap unless stated otherwise. H** 
and WD * * are given for 3 positions, first for the shoreward of the gap. secondfor the lee of the 
breakwater and third for the gap^'. 

The number of time steps required to complete the calculation was chosen from the 'rough 

guide' in Figures 6.4, 6.5, 6.6. The number of time steps per wave period, T/At, was set to 

8. Thus to reduce the variance of the oscillations, the ratio L/Ax, was between 10-11. 

The offshore wave field conditions used for model validation are given in Table 6.8. The 

wind data sets are characterised by a broad frequency distribution. The bimodal sea has two 

distinctive peaks - usually swell and wind peaks. Swell conditions are characterised by a 

narrow frequency band. The following parameters are given in Table 6.8: Tp is the peak 

period, 0p is the principal direction, Rp is the reflection coefficient calculated for Tp, Tm is the 

mean period, 0m is the mean direction, Rm is the reflection coefficient calculated for Tm, S is 

directional spreading, H is the incident wave height from M L M analysis, WD is the offshore 

21 * indicates the case when R Is derived for higher frequencies (for the bimodal sea). 
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water depth, DL is the limited water depth^^. 

The shoreline reflection coefficient is given together with the other parameters derived 

from the inshore measurements, taken at the same time, in Table 6.9. The same parameter 

as in Table 6.8 are specified. 

It can be observed from both tables that for wind waves (except set 75 when only a slight 

change occurred) there is no change in peak period, Tp, between offshore and inshore wave 

conditions. However, there is a change in Tp between offshore and inshore wave conditions 

for the swell and bimodal sea. The principal wave direction^ has changed from offshore to 

inshore for all three types of sea. The wave direction has become close to the normal, 

unless it was shore normal already (the star array was positioned shoreward of the gap for 

these measurements). 

6.4.2 Tests and results 

Three different monochromatic model runs for each data set were performed in the first 

stage. First, the offshore measured directional spectra were represented by the peak 

frequency, the principal wave direction and the significant incident wave height. This wil l 

be referred to as mono - case 1. Mono - case 1 also included reflection from the breakwater 

and from the beach. Next, the offshore measured directional spectra were represented by 

the main frequency, main direction and significant incident wave height. The main 

direction was calculated using equation 5.1 in Chapter 5, The main frequency was 

calculated in the same way. This case also included the reflection from the breakwater and 

the beach and it wi l l be referred to as mono - case 2. Finally, mono - case 1 was repeated 

without including reflection from the beach. This is called mono - case 3. 

The second stage was to simulate directional waves under the assumption of the validity of 

linear superposition. Thus the measured wave spectrum was represented by a number of 

monochromatic waves. Tests were then carried out which took into account several 

frequency intervals ( 5 - 1 0 ) and four to seven directional intervals. This wi l l be referred to 

as the directional case. 

" • indicates the case when both frequency are taken in account for D L estiniation. 
" The peak direction in directional distribution of energy. 
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Figure 6.16 Typical model output (file 64 - directional modelling results) 

Typical model output of calculated wave heights is given in Figure 6.16. Standing wave 

fields can be observed in the front o f the breakwaters, as can wave height attenuation 

behind the breakwaters due to diffraction. The wave penetration through the gap and 

standing wave field around the shoreline in the gap can also easily be seen. This result 

looks realistic and convincing. However a detailed comparison between predicted and 

measured wave height is necessary in order to validate the model. 

Figure 6.17 a,b,c show the comparison between measured and calculated wave heights for 

the three inshore positions where the field measurements are compared with both the 

monochromatic model results and the directional case. Figure 6.17 a compares model 
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results and field measurements for the position in the lee of the breakwater. There is quite a 

high percentage difference (up to 70%) observed for mono cases. A possible reason for the 

large disagreement between predicted and calculated wave heights is due to the lack of 

energy transmission by radiation^'*, into the lee of the breakwater, when using the 

monochromatic wave model. In the position shoreward of the breakwater gap, there is 

better agreement between measured and calculated wave heights (Figure 6.17b) where the 

percentage of difference decreases (the difference is below 20% for most cases). In the 

third position in the breakwater gap (Figure 6.17c), there is an overestimate of the 

calculated wave heights. Thus the percentage difference increases again. The same trend 

was observed during the first validation tests. 

A quantitative measure of the accuracy of the results has also been made, using a relative 

root mean square difference between measured values and numerical model predictions for 

three different positions inshore given by 

(6.39) 

where Hm is a measured wave height. He is the wave height calculated by the numerical 

model and N is the number of tests - only six in this case. 

The summary of results is given in Table 6.10. The use of the monochromatic wave model 

to represent real irregular waves with directional spreading confirmed that significant 

underestimation of wave conditions behind the breakwater occurred. 

Position Relative mean square 
difference 

Error Percentage 

Casel Case 2 Case 3 Case 1 Case 2 Case 3 

in the gap 0.41 0.32 0.38 38.15% 22.50% 32.99% 

shoreward of the gap 0.30 0.28 0.19 19.39% 16.18% 15.20% 

in the lee of breakwater 0.39 0.37 0.40 35.06% 32.75% 36.43% 

Table 6.10 Summary of results for monochromatic case - (case 1 - peak frequency and principal direction 
with reflection, case 2 - mean frequency and mean direction with reflection, case 3 - same as 
case 1 without reflection) 

^ When random waves penetrates through the gap, depending on the direction of approach, part of the energy directly 
radiates and part of the energy diffracts around the breakwater. Each position in the bay is differently related to the 
approaching wave direction, thus the ratio of the radiated and diffracted energy will be different 

216 



70 

o 60 
c 
e 50 

40 •D 40 
O 
t3> 30 

c o 
u 20 
k_ 
Q. 10 

0 

u 
c 
e 

•o 
o 

c 

70 

60 

50 

40 

30 

20 

10 

0 

a) 

1 4 Directional 
• Mono 1 
A Mono 2 
# Mono 3 

3 

Data set 

b ) 

^ Directional 
• Mono 1 
A Mono 2 
• Mono 3 

3 
Data set 

c ) 

bU - 1 k 8 70 
c 

1 e 60 • 
o 1 1 1 1 ^Directional 

• Mono 1 
A Mono 2 
• Mono 3 

£ 50 1 1 1 

^Directional 
• Mono 1 
A Mono 2 
• Mono 3 

o 40 - i • • 

^Directional 
• Mono 1 
A Mono 2 
• Mono 3 B 30 

c * » 1 1 t i 

^Directional 
• Mono 1 
A Mono 2 
• Mono 3 

£ 10 -
0 -

* 
1 1 

— • 1̂ 

£ 10 -
0 -

i I \ 1 i * £ 10 -
0 -

[} 1 2 3 4 5 6 

Data set 
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The directional measurements and directional modelling results (for the wind data set 64) 

are presented in Figure 6.18 a-h. The results for the other wind, bimodal and swell data 

files are given in Appendix H. The measured and calculated energies for each frequency 

interval summed over all directions was found to be in very good agreement except for 

very low and very high frequencies. This possibly explains better results for the case o f the 

wind waves than in the case of swell and bimodal seas. The good agreement for wind data 

set 64 between model predicted energies and inshore measurements is illustrated in Figure 

6.18 e, f. Disagreement for the lower frequencies could be due to an increase of energy in 

the infiagravity band inshore. Disagreement for high frequencies (Figure 6.18 g,h) could be 

due to the factor of the cut o f f frequency of 0.35 when the offshore pressure data are 

transferred to the surface elevations. Therefore, there is no offshore energy above this 

frequency band. However the inshore data were measured up to 0.5 Hz. Also it was shown 

in Chapter 5 that directional estimates are less accurate for higher frequencies. Besides, 

waves of such small wave period can be locally generated and not propagate from offshore 

which is not included in the model. 

A reasonable agreement between measured and predicted directions for the wind data set 

64 can be observed in Figure 6.18 c and for the other two wind data sets in Appendix H. 

Generally, the directional energy distribution predicted by the model does not agree with 

the measured directional energy distribution. The predicted directions are calculated from 

the phase information. When the reflective boundaries are included, it is difficult to 

determine directions accurately because of phase locking. 
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Good agreement between predicted and measured wave heights was obtained for the wind 

spectra (broad frequency and directional spectra), wind data sets 64 and 69 (see Appendix 

H). The measured inshore frequency spectra peaks remain the same as the offshore ones for 

those two data sets. Underprediction of the wave heights in the lee of the breakwater is 

larger for data set 69 than data set 64. This can be associated with the angle of wave 

approach, which is almost normal to the beach for data set 69. In the case of data set 64, the 

waves are approaching from the SE. Thus the energy in the lee of the breakwater is 

combined by radiation and diffraction for data set 64 and mostly by diffraction for data set 

69. Also, the directional spectrum is narrower for data set 69. Therefore, only 5 directional 

bands (six for data set 64) were taken for the directional modelling. It was observed from 

laboratory measurements, in section 6.3, that the energy propagates further into the shadow 

zone with the broader directional spectrum (Figure 6.14). 

Data set 75 presents again wind spectra conditions, with wide frequency spectra and 

moderately narrow directional spectra. The energy in the measured inshore frequency 

spectra is reduced over all frequencies except in the infragravity bands. The model 

predictions in the bay are in very good agreement with the measurements. But the 

predictions in the lee of the breakwater are underestimated and overestimated in the gap. 

The possible reason for it could again be the direction of the wave propagation and number 

of directional bands used for the modelling. The principal direction is from SW, thus even 

less energy than in the previous two cases is diffracted into the lee of the breakwater where 

the measurements were taken. 

The agreements are not very good in the lee of the breakwater for bimodal spectra, data set 

65 (see Appendix H). For swell type waves (or in this case the swell part), significant 

transmission through the porous breakwater can be expected which is not taken in account. 

These discrepancies are reduced in the bay and in the gap. From the measured frequency 

spectra inshore, it is possible to see that the frequency peak has been moved and there is 

more energy in the lower frequency band than in the same low frequency band offshore. 

The reasons for this could be strong reflection from the beach, non-linear interactions or 

the combination of both. 

The swell type sea, data set 72 (see Appendix H), has a narrow frequency and moderately 

broad directional spectrum offshore. The frequency peak inshore has been moved and the 

energy is significantly reduced in all frequency bands. The directional plot of the measured 
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inshore spectrum indicates the presence of reflection for the peak frequency. The predicted 

energy calculated from predicted wave heights are in reasonable agreement at all three 

positions. There is a slight overprediction of the energy in the lower frequency band. 

Unfortunately, the predictions for the swell conditions, data set 73 are not so good. This 

time the model underpredicts energy in lower frequencies. This data set has narrow spectral 

and directional spread offshore. The peak of the measured frequency spectrum inshore has 

been moved to a lower frequencies. Also there are no energy reductions evident over the 

frequencies bands. There is high reflection for the peak frequency. Thus the difference in 

directional spread and the number of directional bands used probably had an influence on 

the computational estimates. 

The percentage difference between predicted and measured wave heights for the directional 

case is also given in Figures 6.17 a b c. The predictions and the percentage error vary from 

case to case. Root mean square differences between measured and predicted results as well 

as error percentage for the three positions inshore are shown in Table 6.11. 

Position Root mean square difference Error Percentage 

in the gap 0.27 22.62 % 

shoreward of the gap 0.24 19.16% 

in the lee of 0.36 32.23 % 
breakwater 

Table 6.11 Summary of results for directional wave modelling 

Contrary to expectations, the results in Table 6.11 and in Figures 6.17 a, b, c are very 

similar to the results obtained using the mono waves and are also worse than the directional 

modelling results in the preliminary validation (see Appendix G). However, this time a 

different number o f frequencies and directions were used to represent the offshore 

directional spectra. Therefore, the band representative frequencies and directions differed 

from the ones in previous tests. However, a change of number of directions, thus also 

representative directions, introduced 1-3% difference in error percentage for laboratory 

conditions. The next important difference is that the reflection from the beach is included 

in the shoreline boundaries in the new tests. The combination of chosen limited-depth and 

the reflection at the shoreline introduced differences in wave height prediction. The wave 
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heights in the lee o f the breakwater were further underpredicted and the wave heights in the 

gap were fxirther overpredicted. 

The model predictions were more accurate for wind waves than for swell conditions. This 

coincides with a broader directional spectra and larger number of directional bands used for 

modelling and also with smaller reflection from the beach and the absence of non-linear 

interactions. Here the comparison with only three measurement points is given and 

therefore the numbers can be misleading. Even though it does not appear that the 

directional modelling is a more superior technique, the contour plots show much smoother 

results than in the case of the monochromatic waves ( see Plate 6.1 on the end of the 

chapter). 

6.4.3 Discussion 

The disagreement between measured and calculated wave heights could have several 

causes. First, the model is linear and even though the model was used with the data 

recorded at high water, some non-linearity may be present which Li's model can not 

reproduce. Wave breaking, bed friction and wave-current interaction are also not taken into 

account. Transmission through the breakwaters is not included in the model either. 

However, the most important errors occur in the estimation of the wave heights in the lee 

of the breakwater using the regular (monochromatic) wave model, or from not using 

enough directional components. Hence, the model does not reproduce the effects caused by 

wave direction and directional spread. Because of these lattermost limitations the induced 

errors are larger in the lee of the breakwater than in the gap or shoreward of the gap. The 

errors could also be caused by errors introduced by input and boundary values, for example 

incorrect estimation of the reflection coefficient and limited water depth at the shoreline . 

The cross-shore evolution of the sea surface elevation spectrum is dependent upon the 

refraction, diffraction and shoaling caused by both bathymetry and currents. The spectra 

also include the effects of reflections from both the breakwater and the beach which cause 

spatial modulations of the spectrum and the effects of non-linear interactions resulting in 

exchange of energy between frequency components. There are also the effects of 

dissipation caused by bathymetry and the breakwaters. Wind generation and bottom 

friction are considered negligible over the relatively short distance of a few hundred 

meters. The sensitivity of the model to changes in some o f those parameters wi l l be 
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qualitatively rather than quantitatively assessed. 

Wave-wave interactions 

Nonbreaking water waves evolve substantially as they propagate shoreward in shallow 

water. As the depth decreases, wave amplitudes increase and initially symmetric wave 

profiles become non-symmetric (Freilich et a/, 1990). Two effects are seen. Firstly, the 

waves become sharp crested with broad troughs, thus they become asynmietrical with 

respect to the horizonteil. This is referred to as the skewness or skewed profile. Secondly, 

close to the breaking point, the wave faces steepen and the wave shapes become 

asymmetrical with respect to the vertical. This is referred to as the asymmetry or 

asymmetric profile. 

Both linear and non-linear processes act simultaneously to alter the frequency-directional 

characteristic o f shoaling waves. Non-linear interactions between a pair of wave 

components with frequencies and wave numbers ( f j , k i ) and ( f 2 , k 2 ) theoretically force 

secondary waves with the sum and difference frequency and wave number ( f 3 = f i ± f 2 ) and 

( k 3 = k i ± k 2 ) (super- and subharmonics respectively). Thus, in the frequency domain, 

nonlinearities may result in significant cross-spectral energy transfer over relatively short 

distances. In this case the phase relationship between those three waves Fourier 

components is no longer random, instead there is a phase coherence or fixed phase relation 

between those triads of frequency. 

Elgar and Guza (1986), Doering (1988), Freilich et al (1990) and Elgar et al (1993) have 

used bispectral techniques (Appendix I) to elucidate details o f non-linear triad interactions 

in a shoaling wave field. They showed that bicoherence (Hasselman et al, 1963) can be 

used as a measure o f non-linear coupling between modes for shoaling waves. Large 

bicoherence magnitudes indicate phase coupling between modes at different frequencies 

and small bicoherences indicate the absence of significant non-linear interactions between 

the corresponding modes. From bispectrum phase, biphase, a measure for skewness and 

asymmetry can be derived (see Appendix I) . 

Freilich et al (1990) and Elgar et al (1993) extended work studying non-linear effects on 

directional spectra. They considered non-linear, near-resonant triad interactions. The near 

resonant triad interactions means that both the frequencies and the vector wave numbers of 

the interacting waves must sum to (nearly zero): 
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/ . ± / 2 ^ / 3 = 0 (6.35) 

k, t k j T k j = k j (6.36) 

k ^ | / | k , 2 3 | « l (6.37) 

where k^j is a mismatch or the difference between the free Ikjjand the sum 

k, + k j l wave number magnitudes. For example, i f bicoherence maximum is due to near-

resonant triad interactions then a wave number o f the second harmonic (f3=2fi) must be 

oriented in nearly the same direction as ki and must be nearly 2ki (k i=|k , | ) in magnitude 

(k3/2ki~l). Interaction between waves propagating in different directions results in a larger 

wave number mismatch. 

The bispectrum for all data sets was calculated using Simmonds' (personal 

communications) bispectral analysis. The description of the method is given in Appendix I 

and for more details refer to Doering (1988) and Ozanne (1998). 

The bispectrum, B ( f l , f2), will be zero unless there are waves present at frequencies f l , f2, 

and O and there is phase coherence, or a phase relation between the waves at these 

frequencies. There are non-zero values of the bispectrum detected in ahnost all measured 

positions for all data sets. However, offshore bispectrum values are small compared to 

inshore ones. Several peaks can be detected in the gap, which is evidence for larger wave-

wave interactions. For wind data sets 64, 69 and 75 the bispectrum values arc smaller than 

for swell, data files 72 and 73 and for the bimodal case, data file 65. The bispectrum peaks 

are larger and coincide with the peak frequencies. It was observed that the peak frequency 

inshore does not coincide with the peak frequency offshore for data files 65 and 73. Also 

the energy has been moved from one frequency band to another. Therefore further analysis 

of bispectra results for data files 65 and 73 for offshore and inshore spectra wi l l be given. 
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Figure 6,19 The spectrum, biamplitude, real part of bispectrum for the ofTshore measured data set 65; a) energy spectrum; b) real part of bispectrum; c) 
biamplitude; d) imaginary part of bispectrum; (only the energetic part of bispectrum is plotted here) 
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Figure 6.20 The spectrum, biamplitude, real part of bispectrum for the inshore measured data set 65; a) energy spectrum; b) real part of bispectrum; c) 
biamplitude; d) imaginary part of bispectrum; ( only the energetic part of bispectrum is plotted here) 
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Figure 6.21 The spectrum, biamplitude, real part of bispectrum for the offshore measured data set 73; a) energy spectrum; b) real part of bispectrum; c) 
biamplitude; d) imaginary part of bispectrum; (only the energetic part of bispectrum is plotted here) 
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Figure 6.22 The spectrum, biamplitude, real part of bispectrum for the inshore measured data set 73; a) energy spectrum; b) real part of bispectrum; c) 
biamplitude; d) imaginary part of bispectrum; (only the energetic part of bispectrum is ploned here) 



Figure 6.19 shows the spectrum, real and imaginary components of the bispectrum and the 

biamplitude for the offshore measured data set 65. Although the values are small, 

bispectrum peaks can be detected for frequency band 13 ( f l ) and frequency band 13 (f2), 

involving frequency band 26 (O). This indicates phase coupling between the primary and 

first harmonic. Peaks can also be detected for frequency band 14 ( f l ) and frequency band 

11 (f2), involving frequency band 23 (f3). This coupling coincides with a secondary peak 

of the directional spectrum in frequency band 23. The real part and imaginary part of the 

bispectrum identifies the contribution of triad interaction to skewness and asymmetry, 

respectively, of the wave train. However, their contributions are very small as can be seen 

from Figure 6.19. 

The spectrum, bispectrum components and biamplitude values for inshore measurements 

are given in Figure 6.20. Peak energy is now in frequency band 10. There is a bispectrum 

peak for frequency band 10 ( f l ) and frequency band 10 (f2) involving frequency band 20 

(f2). From the other bispectrum peaks, a coupling between frequency band 10 ( f l ) and 

frequency band I I (f2) involving the frequency band 21 (f3) can be also detected. 

However, the bispectrum does not show the direction of the energy transfer. Figure 6.20c 

shows coupling between peak and infragravity frequencies. Physically, this is attributed to 

an interaction between neighbouring frequencies; the resultant wave group forces a long 

wave which is then phase-coupled to the gravity waves. The negative values of the 

skewness arising from phase-coupling between v^nd-wave frequencies and wind-wave and 

infragravity frequency can also be detected in Figure 6.20b. The positive values o f the 

imaginary part show a tendency for waves to slope backwards. 

Figures 6.21 and 6.22 show the spectra, bispectra components and biamplitudes for data set 

73. Because bispectrum values are small, it can be concluded that there is no significant 

coupling between frequencies offshore. However, several peaks can be observed from the 

inshore bispectrum. Non-linear self-interactions are present for peak frequency bands 10, 

11 and neighbouring frequency band 9, involving frequency bands 20, 22 and 18, 

respectively. There are also interactions between frequency bands 11 ( f l ) and 9 (f2) 

resulting in the frequency band 20 (O); frequency bands 12 ( f l ) and 9 (f2) resulting in 

frequency band 21 (D) and also frequency bands 10 ( f l ) and 12 (f2) resulting in the 

frequency band 22 (G). However, bands 10 and 11 are the bands with the most energy and 

therefore the coupling between those frequencies wi l l be most influential. The peaks for the 

same frequency bands were observed from plots of the real and imagineuy part of the 
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bispectrum in Figure 6.22 b,d. Therefore, these triads also contribute to skewness and 

asymmetry. Positive asymmetry is related to waves sloping backwards (Figure 6.22 d) 

which might be associated with reflection. The values of k3/(kl+k2)^^ for these triads were 

somewhat larger than those (-7%) observed by Freilich ei al (1990), which could indicate 

the presence of near-resonant triad interactions^^. 

The bispectrum analysis in this case is applied in an environment with high reflection. 

Also, the number of degrees of freedom was quite small (Elgar and Guza used up to 200) 

which might influence the bispectral analysis results. Thus, the question remains whether 

this analysis is applicable in such an environment. More analysis need to be done to 

determine the validity of this method for flow around breakwaters. Therefore, the 

bispectral analysis results given here can identify only qualitatively non-linear interactions 

or the presence of wave - wave interactions. However, this shows that linear modelling is 

not adequate in such an environment. 

Reflection 

The equation 6.35 (Davidson et al, 1996) was used to calculate the reflection coefficient at 

the brekwater boundaries. The sensitivity of the model predicted wave heights in the bay 

for a change of reflection coefficient was performed. 

The sensitivity tests were performed for data set 64 for mono - case 3. First the reflection 

coefficient at the breakwater obtained by equation 6.35 was decreased to 80 % and then 

increased to 110 % of the original value. Figures 6.23, 6.24, 6.25 show a very small 

influence of the change of reflection coefficient on wave heights at the three measured 

positions as was expected. Indirectly, this proves that the error in reflection coefficient 

caused by error in incident wave height estimation wi l l not influence the results in the bay. 

" For band 9 self inlcraction, value of k3/2kl is 1.097; for interaction between band 10 and 12, value k3/(k!+k2) is 
1. 1027and similar for bands 10 and 11. The wave number mismatch is 9.7 % and 10 % respectively. 

" Elgar ci al (1997) stated that non-linear Interaction between incident and reflected components are far from 
resonance, and thus do not contribute to non-linear energy exchange. 
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Figure 6.23 The results of the sensitivity tests for the position in the lee of the breakwater: a) sensitivity 
on change of beach reflection; b) sensitivity on change of breakwater reflection; c) sensitivity 
on change of breakwater transmission; d) sensitivity on change of frequency and direction 
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The value of the beach reflection coefficient is more uncertain. The interference of incident 

and reflected waves causes partial standing wave patterns with observed swell heights 

modulated by as much as a factor of 2. Here the value of reflection coefficient at the 

shoreline boundary was changed from 0 - 100 % of the original value. The tests were 

performed for data sets 64 £md 73. The predicted wave heights are more sensitive to a 

change of beach reflection. There is more sensitivity in the case of data set 73, which is to 

be expected because the values were higher. For data set 73, the predicted wave height was 

decreasing with increasing values of the reflection coefficient. Which might indicate that 

the measured positions are only in the area of the trough of the standing waves. 

Transmission 

Transmissive boundaries are not included in the model. Dingemans (1997) suggested 

incorporating transmissive boundaries including not only a transmission coefficient value 

but also the phase shift. However, the phase information needs to be known. Simmonds ei 

al (1997) presented the results of transmission field measurements. At the moment only the 

values o f the transmission coefficients are available. These values vary from 0.2 to 0.6 for 

a particular wavelength, dependent on parameters such as wave height, water depth. 

Simmonds (personal commimications) is still working on the parameterisation. 

To test the influence of transmission on predicted wave heights, linear superposition was 

again used. Only the area behind the breakwater was modelled. The input wave height was 

20 %, 40 %, 60 % of the offshore incident wave height. The bathymetry was rotated by 16 

degrees so that breakwater boundaries were parallel with the grid. Thus, it was possible to 

use only transmissive wave heights as input. Transmission had only a very small influence 

on the predicted wave height shoreward of the gap. As expected, the influence is higher in 

the lee of the breakwater and, for T=0.6, the predicted and measured wave heights 

coincided with each other. The influence of transmission is clearly demonstrated in Figure 

6.26. Even though this is not a proper way of including transmission in the model, the 

figure gives an indication of how important transmission is in predicting wave heights 

behind a porous breakwater. 

Sensitivity on chosen representative frequencies and directions 

The directional sea can be represented as a regular wave taking either peak fiiequency emd 

principal direction or main fi-equency and main direction into account. These tests have 
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been already performed as monochromatic cases 1 and 2. However, there may be an error 

in the calculation of those values which could influence the result. Therefore, the 

sensitivity tests were performed for file 64 with different combinations of the main and 

principal frequencies and directions. First, the directional waves were presented by the 

peak frequency and main direction and then by main frequency and principal direction. The 

results for two previous cases and two new additional tests are given in Figures 6.23, 6.24, 

6.25. Different combinations of those input parameters can overpredict or underpredict, 

depending on the location and the wave conditions at the measured points (0.8 - 1.1 of 

measured value). It can be concluded that the parameters, frequency and direction, both 

individually and in combination, have an influence on the final results. A similar result was 

noticed when the test for file 73 was repeated on the rotated bathymetry for the 

transmission sensitivity. Figure 6.26a shows contours in the bay for the original layout and 

Figure 6.20b shows contours for the rotated bathymetry. The wave height predictions are 

closer to the measured ones in this case. 

These performed tests demonstrate the sensitivity of the model to the input parameters. The 

M L M estimates for the numerical simulated data, in Chapter 5, differed only slightly from 

the target estimates in the case of direction and wave height ( 1 % and 1.4%). The 

differences were larger for directional spreading and reflection (8.7 % and 9.3%). Thus the 

main influences on the results are directional spreading and directional distribution 

discretisation. 

Sensitivity to the number of directional intervals used when directional modelling was 

applied for field data was not checked. However, the results show that when a larger 

number of directional intervals was used the wave height predictions were closer to the 

measured wave heights. Thus, directional modelling seems to work better for broad 

directional spectra when a larger number of directional increments is chosen. For a narrow 

directional spectrum, fewer bands, closer to each other, are chosen. Thus, radiation is 

included only where there is a small number o f components. Consequently, the results are 

similar to cases where monochromatic waves are used. 

When reflection is present, standing waves occur. Therefore, the measurement position 

may be on the crest or in the trough of the wave depending on the chosen frequency, with 

consequent differences in predicted estimates. The model results are sensitive to the values 

chosen for reflection from the beach. Thus, the accurate estimation of the reflection 
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Figure 6.26 The wave height contours in the bay for file 73: a) original bathymetry with no transmission 
and no beach rettection taken into account; b) rotated bathymetry with no transmission and no 
beach reflection taken into account; c) rotated bathymetry with added transmission effect and 
no beach reflection taken into account (grid points are given on axis, contours are at 0.1 m 
interval) 
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coefficient is necessary. 

Additionally a few tests were performed with different input wave heights. The relationship 

between predicted and input wave heights was almost linear as it was expected. 

The results wi l l also depend on the chosen analysis technique for the measured data. It was 

shown in Chapter 5, that the results for directional estimates obtained by the two methods, 

M L M and BDM, can differ by up to 30% for the field wave height, which can cause larger 

differences in the numerical model results. This indicates that one needs to take special 

care when handling input data and interpreting the results. The results will also partly 

depend on an individual's choice of bathymetry orientation, discretisation technique etc. 

Thus further work on model optimalisation is required. 

6.5 Conclusions 

The theoretical analysis showed that the model would become unstable with progressive 

decreasing of grid spacing towards the shore. The model is more accurate when Ax, Ay and 

At are smaller. A 'rough guide' has been given in Figures 6.4, 6.5 and 6.6 for the choice of 

Ax, At and the number of time steps required to bring the model to nearly steady state. 

Li 's model predicts the diffraction o f directional wave spectra with 5 - 1 5 % accuracy for a 

semi-infinite breakwater on a flat bed. The predictions were more accurate with broad 

frequency and directional spectra, for all measurement points except one (10), when 

directional modelling was applied (5%). 

The results from validation using field data show that Li's linear model based on the Mild 

Slope Equation deals successfully v^th combined refraction, diffraction and reflection. 

However it is very important to take directional effects and model constraints into account. 

For example, when directional modelling was used for the laboratory case, the percentage 

error was reduced from 19-34% to 8-15%. 

The results appear to be similar for monochromatic and directional modelling, in the case 

of field data when beach reflection was taken into account. Monochromatic wave runs 

introduce a significant error into wave heights predictions shoreward of the breakwaters in 

the diffraction region. Therefore it is important to consider random or multidirectional 
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waves. The percentage error for monochromatic modelling was 19-38% and 19-32% for 

directional modelling. In Plate 6.1 more spatial variations in wave heights can be observed 

than in the case with directional modelling. These results are supported by the fact that 

when beach reflection was not taken in account (Ilic and Chadwick, 1995) the error for the 

monochromatic modelling was 32-46% and for directional modelling was 8-12%. 

Therefore directional modelling is recommended. 

Using random waves, it appears that directional spread has more influence than frequency 

spread in determining wave heights in the diffraction zone. This was clearly evident from 

tests performed with laboratory data. The errors when all frequencies and only one 

direction was taken into account were 23-34%. Sensitivity tests showed a large influence 

for transmission on wave heights behind the breakwater. When the transmissive wave 

height was increased, the predicted and measured wave height in the lee of the breakwater 

were the same. However, the model does not deal with transmission and this factor should 

be incorporated. Also, the importance of taking the proper reflection coefficient from the 

beach needs to be further investigated. Similarly, the influence of wave breaking, bed 

friction and wave current interactions merit further investigation (see e.g. Yoo et al 

(1984)). 

Overall the model predictions are more accurate for the controlled environment o f the 

laboratory than for field conditions where directional modelling accuracy varied fi-om 8-

32%. It should not be used for areas where non-linear interactions are present and dominate 

the other wave transformation processes, such as the surf zone. Where there is significant 

transmission, the model in this form can be used only for rough estimation of wave height. 

However, the model can be improved by implementing transmissive boundaries based on 

transmission measurements. 
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Chapter 7 

Summary and Conclusions 

The important thing in science is not so much to obtain new facts as to discover new ways 
of thinking about them 

Sir William La\\^rence Bragg 
(1890-1971) 

Field data and spectral analysis 

The directional wave data records for model validation were chosen from 4500 wave 

records collected in the field campaign at Elmer from September 1993 - January 1995. The 

data were measured 500m offshore from the detached breakwater scheme and in the bay 

behind the breakwaters (see Figure 3.2). Together with data collected during the reflection 

measurements (500 measured records), in the front of the breakwater, they form a database. 

Special care was taken in the recording of data and analysis to reduce uncertainties o f input 

errors affecting model prediction. The measurements of two different devices, pressure 

data from WRS and surface elevation from IWCM, were compared in a deployment at 

Felpham prior to the field campaign. There was no difference in the measurements 

recorded by the two devices. It was shown that a ful l comparison is only possible when the 

same spectral routines are applied to both data sets. These comparisons also showed that 

measurements of mean sea level were not accurate enough for examination of the spatial 
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variations in wave set-up. 

Directional analysis 

It was shown in Chapter 5 that the model predictions depend on the direction and 

directional spread information. Thus, it is important to use a suitable directional analysis 

method which accurately predicts direction and directional spread. The applicability of a 

theoretical framework for phase-locked (PL) and non-phase-locked (NPL) directional 

analysis methods was first investigated. The M M L M (PL) method (Isobe and Kondo, 

1984) used in the analysis of offshore data (far reflected field L/S > 0.5) tends to produce 

spurious peaks. This was in agreement with the theoretical framework (Huntley and 

Davidson, 1998) based on the time of a wave travelling from the measurement point to the 

structure and back (L) and the length of the FFT segment used for spectral analysis (S). 

Huntley and Davidson (1998) state that the M M L M method is best suited, for a wider 

frequency range when L/S<0.1 and the NPL method (e.g. M L M (Capon, 1967)) is more 

appropriate when L/S>0.5. 

Therefore, two non-phase-locked methods the M L M and B D M (Hashimoto et al, 1988) 

were chosen to evaluate the accuracy of directional analysis estimates. Both methods were 

first tested on numerical data sets. The results were dependent on predetermined direction, 

directional spreading and reflection. The best agreement was achieved for the SW 

direction, spread s=10 (wind waves), and a smaller amount of reflection. The directional 

sensitivity can be explained by the orientation of the array and the corresponding co-array. 

The smaller amount of reflection and larger directional spread which minimises phase 

interference works in favour of the NPL methods. A predetermined frequency spectrum or 

wave height did not have any influence on the predicted directional parameters. The 

accuracy of the B D M results increases with increasing number of transducers and 

increasing L/S (more smoothing). The M L M results did not show strong dependence on the 

number of transducers (5 or 6) and L/S. Thus L/S ratio > 0.5, which does not reduce the 

spectral frequency resolution can be recommended, for spectral analysis at other sites. 

The differences between the B D M and M L M estimates for field data are larger than in the 

case of the simulated data described in the previous paragraph. One possible reason is that 

the reflection from the breakwaters for numerical data was simulated as being frequency 

independent. This is not the case for the field data where the reflection coefficient is 
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frequency dependent. The small differences could indicate that both methods produced 

good results, or conversely that both methods failed to produce the correct result. It was 

also found that both methods can estimate incident and reflected wave fields in the far field 

where incident and reflected wave are not dominantly phase locked, provided that a 

suitable choice of the US ratio is possible in practice. Directional spread v^ l l tend to 

decrease the phase locking and thus also improve B D M and M L M performance. However, 

neither method estimates accurately reflection coefficients at the measured position. The 

presence of currents can change the directional analysis results. However the currents at 

Elmer were relatively small < 0.7 m/s and orthogonal to the main wave propagation 

direction. A sensitivity test in Chapter 5 showed that these conditions have only a small 

influence on the directional estimates. 

From the numerical tests, the BDM appears to be more accurate. However, it was found in 

Chapter 5, that the B D M method was sensitive to the choice o f the initial value of the 

hyperparameter u and results can vary depending on this parameter. The M L M estimates 

were very close to the B D M estimates for the numerical data. Also, the method is very easy 

to implement and the computation of results is faster than is the case for the BDM. 

Therefore the M L M estimates were chosen for the model validation. However, the M L M 

reflection coefficient estimates are not accurate and therefore the reflected boundary 

conditions were obtained fi-om reflection measurements in front of the breakwater. Both 

methods tend to overpredict directional spread, therefore these inbuilt errors need to be 

taken into account when considering model results. 

Special care needs to be taken in designing the array of measuring devices. The analysis 

showed that lower fi^quencies with wavelengths larger than the size of the array and higher 

firequencies with wavelengths which are small compared to the array spatial lags were not 

resolvable. An increased number of sensors and irregular spacing can improve directional 

resolutions. Additionally the new concept of optimum US ratio introduced by Huntley and 

Davidson (1998) can be used with simulated data, in the selection o f the optimum 

directional method and in the design of array size and shape. 

Validation of the M S E model from experimental data 

The model was first tested in Chapter 6 using laboratory measurements of random 

directional wave diflfi-action around a semi-infinite breakwater on a flat bed (Briggs ei al, 
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1995). The differences between model results and measurements for five different 

directional spectra were in the range of 5 - 13 %. The smallest difference was obtained for 

broad ft-equency and directional spectra when directional modelling was applied. The 

largest differences were obtained when diffraction was computed using monochromatic 

waves as representative of directional random waves. This confirmed the need to use 

'directional modelling' for the prediction of wave heights behind the breakwater. 

Validation of the M S E from field data 

The wave transformation model was applied to field conditions, and successfully dealt with 

combined refi*action, diffraction and reflection. The representation o f the measured random 

sea by monochromatic wave runs was found to introduce a significant error into wave 

heights predictions shoreward of the breakwaters in the diffraction region. Therefore it is 

important to consider directional modelling for irregular wave simulation. The directional 

spread has more influence than the frequency spread in determining wave heights in the 

diffraction zone when directional modelling is used. 

The discrepancies between measurements and predictions arise due to constraints of the 

model, numerical errors and the accuracy of the measurement estimates. The largest 

difference (> 30%) between prediction and measurements was found for field data with 

non-linear couplings present. The model is linear and therefore its predictions are not 

accurate for the field where non-linear interactions are present. The influence of wave 

current interactions, wave breaking or bed friction is not included in the model. However 

the contribution of this influence to the accuracy of the results is not known at this stage. 

The model does not incorporate transmissive boundaries. Thus in the area of significant 

transmission (e.g. behind permeable breakwaters), the model results can be used only as a 

rough estimate. This can be improved by incorporating proper transmissive boundaries based 

on field measurements. The model predictions depend not only on the accuracy of the 

numerical model but also on the reliability of the input and boundary data. Thus the 

validation results are a function of the model's capabilities and the accuracy of the 

measured data. 

Analysis of the numerical solution 

Numerical accuracy depends on the chosen numerical method (scheme) for the 

computation of the governing equation and boundaries. The Alternative Direction Implicit 
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method was used in Li's model for the computation of the main equation. The scheme is 

unconditionally stable and is second order accurate. Thus, the model is more accurate when 

Ax, Ay and At are smaller. Use of the flow adaptive scheme, in which the grid size reduces 

with as wave length decreases, would speed up the computation. However, from the 

theoretical analysis for the flow adaptive scheme, it has been shown that the model would 

become unstable with a grid spacing that progressively decreases towards the shore. It was 

found with the same analysis that the number of grid points in the lateral direction can be 

smaller than in the main direction which can reduce the computation time for a plane 

beach. Computation can also be performed by dividing the computational area into 

subareas with larger (offshore) and smaller (shoreward) grid spacing. In this case the 

results from the computation on the larger grid offshore become input for the computations 

on the more refined grid near the shore. The model wave height results were found to 

oscillate around the mean wave height. The oscillations are most likely caused by 

inappropriate treatment of the boundaries (physically or numerically) and initial conditions 

(propagation of steep front). This needs to be investigated further. However, the 

oscillations can be minimised with a properiy chosen Ax, Ay and At and computation time. 

A way of selecting the required number of time steps to bring the model near steady state 

with minimum magnitude of oscillation magnitude, is given in Chapter 6. 

Conclusions 

A large number of wave records have been collected and analysed. They can be used for 

wave propagation numerical model validation. The collected data cover seasonal changes 

and therefore together with aerial survey data, they can also be used for the validation of 

morphological model. With additionzd measurements of transmission and currents, they 

form a basis for understanding the complex processes around detached breakwaters. 

Both directional analysis methods, B D M and M L M , when tested on simulated data, with 

narrow and broad directional spread, gave the most accurate results for the data with broad 

directional spread. At the same time, the wave propagation results were most accurate for 

wave conditions vAth broad directional spread in the case of pure diffraction and also in the 

case of field data. Thus, for most sea conditions in English Channel which are generated by 

local wind and therefore have broad directional spread, the model wi l l give accurate 

predictions of wave height on the shore. However, the model requires accurate input 

parameters. Even though the differences between the model results and measurements 
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appear to be similar for monochromatic and directional modelling in the field measurement 

points, directional modelling is recommended. This fact is supported by the results from 

the validation of the model from laboratory data in Chapter 6. 

Input Output Error 
Error 

Position 1 Position 2 Position 3 

Incident 2-16% 2-16% 2-16% 2-16% 
Wave Height 

Reflection 10-20% 1 - 2% - - 1 % - 1 % 
from 
Breakwater 

Reflection 30%* 2-11% 2-7% 5-7% 
from Beach 

Transmission 40%** 12% 1% 

Direction of 1% Different Direction 
propagation 

3% 8% 11% 

Directional Narrow directional spreading 
Spread 

9% 
8%*** 

Broad directional spreading 
5% *** 

Different 7-12% 9-10% 30-45% 
frequency 

Numerical 3-5% or for quicker solution 9-11% 
solution 

Table 7.1 The accuracy of the model for the given initial conditions accuracy for three positions; 
Position 1 - in the lee of the breakwater, Position 2 - shoreward of the gap. Position 3 - in 
the gap between breakwaters' 

The accuracy o f the model predictions depend on the accuracy o f input and boundziry data, 

accuracy of the numerical solution and limitations of the model describing physical 

processes. On the basis of data analysis, numerical accuracy of the model, testing of the 

' •difference between no reflection and reflection taken in account; •* diflcrence between no transmission and 
transmission taken in account; values are taken from validation with laboratory data 
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model with field and laboratory data and sensitivity tests, the overall accuracy of the model 

is summarised in Table 7.1. This is valid only i f there are no interactions between variables 

which is usually not the case. Therefore, one needs to take care interpreting these results. 

Future work 

With the fast development of computing technology, directional modelling started to 

replace more and more the traditional monochromatic modelling of random seas. So far, 

the directional modelling results are indicating that it is more important take in account a 

larger number of directional components than frequency components to represent the 

measured directional spectra. It would be useful to find the optimum number of directional 

increments for directional modelling related to the directional spread, providing accurate 

results without increasing computational time. The MSE model should be extended to 

incorporate wave current interactions, bed fiiction and wave breaking. With further 

development of computing memory and power, it wil l be possible to perform directional 

modelling parallely for each component which wi l l enable incorporation o f wave breaking 

criteria. It is advisable to investigate the implementation of transmissive boundaries and the 

influence of transmission on the sea state behind the breakwaters, since the tests in Chapter 

6 showed the sensitivity of results to the amount o f transmission. 

However, the validation o f the model is not complete unless the wave-induced currents 

calculated on the basis of the wave transformation model results are validated. This wil l 

enable the evaluation of the model for further applications as a module of morphological 

models. The advantages o f Li 's model are that it is easy to implement and can be applied 

for large areas. The disadvantages are that the model is linear and does not take wave 

interactions in account. Thus, the model results need to be compared with nearly non-linear 

or non-linear model results to be able to determine the domain of its application for the 

hydrodynamics and morphologiced predictions. 

The real field conditions are very complex and therefore provide a difficult test for the 

validation of the numerical model. However, field measurements also suffer from the 

errors introduced by the measurement equipment or by the data analysis methods. Thus 

there is still room for improvement in the collection and analysis of field data. 

The Plymouth University measurement systems, IWCM and WRS, should be further 

improved in the future. Both systems need to operate as a single system enabling 
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synchronised measurements. The array shape and spacing needs to be designed for every 

site on the basis of the local wave conditions. Simpler methods of deployment should be 

investigated as these would probably lead to reduced error. The WRS measurement cycle 

needs to be extended to at least 17 min and the sampling frequency needs to be increased to 

4 Hz. It is desirable to use a telemetric system to download the offshore WRS data. 

Improvements to the directional analysis techniques and their applications for beach 

reflection prediction should be emphasised in the future. 

The sea state around offshore breakwaters is very complex and it is still not possible to 

include all wave transformations and hydrodynamics in a single wave numerical model. A 

composite modelling approach integrates the benefits of numerical, physical models and 

field measurements. Such an approach is currently used for the Elmer breakwater scheme 

and should provide better understanding of the physical processes. Furthermore, physical 

laboratory measurements wil l be used for the numerical model validation and development. 
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A P P E N D I C E S 



A P P E N D I X A 

Derivation of the Mild Slope Equation 

Z.W 

v.v 

MWL x.u 

L . T 
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Figure A . l Definition scheme for the Mild Slope Equation derivation 

Restrictions which are taken in account for the derivation of the Mild Slope Equation 

(MSE) (see e.g. Dingemans, 1997) 

- ideal fluid 

- waves of small amplitude 

-A-l 



- irrotational flow => it is possible to use a velocity potential to describe velocities 

v=(u,v,w) of the fluid by v = VcD" 

(A.1) 

- incompressible and homogeneous fluid 

- gravity force field 

In this case continuity equation (conservation of mass) is given by 

divy = 0 (A,2) 

which gives Laplace's equation 

^cD° ^'O' ^'cD« ^ 

Boundary conditions are taken from linear theory. At the free surface when z=0 

q = — (A.4) 
g dt 

and at the bottom which is rigid and impermeable when z=-h(x,y) 

O X + C D > ^ + O X = 0 (A.5) 

The first two terms on the left side of the equation (A.5) are neglected for the mild slope. 

For constant depth and waves of constant form the following expressions are valid 

. 0 / /g cosh A:(2 + / i ) . / , X 
= -—^ —-—%m(pA - kx) (A.6) 

Ixo cosh/:/? ^ ^ 

1 r . 2kh^ (A.7) 

In an area of varying depth, assuming zero pressure at the surface, the vertical structure of 

wave motion can be given by a function f(z,h), where the dependence of the horizontal co

ordinates (x,y) is only weak through h(x). A velocity potential can then be written in the 

form: 

-A-2 



(A.8) 

For the derivation of the MSE, a variational principle is used. The Hamiltonian, which is 

the total energy (potential + kinetic) constitutes the variational principle when it is 

expressed in terms of the fi-ee surface elevation C„ and the value of the velocity potential at 

the fi-ee surface 

(A.9) 

As shown by Zakharov (1968); Broer (1974); Miles (1977), a Hamiltonian is given by 

H=l\dxdyH= jjdx dy{V + T) (A.10) 

and a variational derivative 

m = S\dxH = 5\dx{V + T) = 0 (A.11) 

where V and T are potential and kinetic energy respectively, given by 

(A.12) 

(('••) 
T = -P ] dz 

•h(x) 

(A.13) 

To ensure finites of H , and and their derivatives go to zero fast enough for I x I ^ oo. 

The evolution equation for the surface elevation, ^(x,t) and the velocity potential at the free 

surface 

<t>Ux,t)=<^'[x,(;(x.t)j\ (A.14) 

are given by Hamilton's canonical equations. (The derivation has been proved by 

Dingemans (1997)) 

dt ~ 5(p' 
(A.15) 

and 
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Also it was shown that potential at the free surface is 

d ( 1 ^2 ^<P 

(A.16) 

(A.17) 

For linear wave motion it is sufficient to include ̂  =<t>, and the canonical equation becomes 

(A.18) 

These two equations (A. 15) and (A.16) give the boundary conditions at the free surface 

written in terms of and ([>. Taking oV,z,t)=(j)(x,t) f(z,h), where f(z,h) is a function of 

horizontal space x through h(x) and k(x) 

VO^ =/V^S + ^!iV/ (A. 19) 

The kinetic energy is 

TJ--p\A{^^)'f\z.h)^<^^ 
-h 

(A.20) 

The common assumption for the mild slope equation is used, thus all expression with V f 

are neglected and expression for T becomes 

(A.21) 

Assuming that for linear wave motion, kinetic energy is at most a quadratic function of the 

unknowns (i.e. C, and (t>), it results in the approximation of the upper limit integration z=0 

instead of z=C, 

-h 

(A.22) 

Introduction of the foUovdng expressions 
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-h 

yields the following equation for T 

r = - ip[F(V^J) '+G^J ' ] (A.24) 

Hamiltonian density is then defined by the equation: 

H = ^/^F{V<py ^G<p' (A.25) 

which is valid for linear waves with the effects of the bottom slope, Vh, on the total energy 

have been ignored. 

Canonical equations (A. 15) and (A. 16) become 

^ = G < * - V ( F V f l J ) (A.26) 

-~: = -gC (A.27) 
at 

and coupling them by eliminating ^ results in 

^ - V(gF(V^d) + gGiP) = 0 (A,28) 

which is a form of the time dependent MSE. 

Assuming that vertical structure, which is valid for linear waves on horizontal bottom is 

given as 

, ^ cosh\k(z + h) 

and is valid at least locally for the uneven bottom case, yields 

-A-5 



S 

op- - k^cc 
G = • 

8 

(A.30) 

(A.31) 

Using these expressions, equations (A.26) and (A.27) become 

gK = (^^ - k'cc^)^ - v(cc,V^>) (A.32) 

i = -^^ (A.33) 

Coupling them together by eliminating the time dependent MSE is obtained 

- • ^ + v ( c C g V ^ ) - ( t y ' -A 'ccJ^J = 0 (A.34) 

eliminating <|), the following expression is obtained: 

+ v(cc,VC) - {o>' - k'cc^Y^O (A.35) 

The original Mi ld Slope Equation derived by Berkhoff (1972) can be recovered from 

equation (A.34) for purely harmonic motion: 

<l>{x,t)=Re{<^{x)e''^] (A36) 

as 

V{cc^ VO) + A'cCgO = 0 (A.37) 

Li (1994b) introduced the slow co-ordinate for the time variable t*=et 

<^{x,y,t)-yf[x,y,r)e-'^ (A.38) 

Substituting into equation (A.34) yields 
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.2coiXs-V{cc^Vv^)-{k'cc^y = 0 (A.39) 
^t dt 

noting 

^ = and 4t = ''4^ 
yields 

^ - 2 t » / ^ - v(cc^V - {k'cc^xii = 0 (A.41) 

The second order smaJl terms are ignored, thus equation (A.41) becomes 

-2Q)i^ = v{cc^V^) + [k'cc^)y/ (A.42) 

Using the transformation introduced by Radder (1979) 

(A.43) I— 
^cc 

equation (A.42) can be rewritten as so called time evolution equation (Li , 1994b) 

_ 2 a , / ^ = V > + ; t / < P (A.44) 

^t 

where 

^2^^2_Zl£i (A.45) 

•A-7 



A P P E N D I X B 

Linear stability analysis 

An evolution equation based on Mild Slope Equation (L i , 1994b) is given by 

_ ^ ^ = V V + ; t > (B.1) 
dt 

and it can be written in finite difference form using Alternating Direction Implicit Scheme 

as 

where 

K) 
(B.4) 

\cc„ I 
P.<7 

^ 2 „ ^ f ^ K ^ J l ^ ^ k l ^ ^ L (B.5) 

Sy<P,, —i (B.6) 

These equations are applied over the complete computational domain when Ax is constant. 

Li (1994b) showed that in this case the scheme is unconditionally stable. Here the 

possibility of applying a flow adaptive scheme and its stability wil l be investigated. The 

grid size, Ax, decreases accordingly to the wavelength reduction fi^om offshore to the shore 

as it is schematised in Figure B. I . 



offshore shoreline 

Ay 

Ay 

Axl Ax2 ^ Ax3 ^ Ax4 ^ Ax5 ^ Ax5 ^ 

Figure B . l The computational domain schematisation where Ax2=uAxU Ax3=uAx2, Ax4=uAx3, 
Ax5=uAx4 etc. 

A change of grid space Ax to oAx is allowed in the direction of wave propagation but the 

grid space orthogonal to the direction of propagation Ay remains constant. The value of the 

parameter u is in the interval between 0 and 1. Taking into account the grid points in the 

area of transition from Ax to oAx, equation (B.5) can be revmtten as follows 

. 2 « ^U.-(^^^)K.^<pU. 
1 + D 

(B.7) 

Substitution of expressions (B.7) into (B.2) and (B.3); multiplication by At and definition 

of following expressions 

Crx = 
A/ 

20) Ax^ 
Cry = cCg At 

2co ^y^ 

1 , A/cc^ 
G = -k' 

20) 
(B.8) 

yields following equations 

- ( - 2 / - 2Cry + G)<z.;, - C ryp ; , . , = 0 
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(B.9) 

+(-2/ + 2Cry - G)qf;l - Cry^.;;',. = 0 

(B.IO) 

Following the analysis introduced by von Neumann, it is supposed that a solution of the 

finite difference scheme can be written as a Fourier series in complex exponential form for 

any time level n, and grid point p,q in the form 

<P\,-Y.^>"^^"^ * = 1.2,3,...M ( B . l l ) 

The linear stability analysis method determines how each individual Fourier coefficient 

behaves (grows, decays or stays constant) in time for any wave number k. hiitially the 

analysis is performed for any individual wave number k, representing the function 

<p\„=^-e''^e'^ (B.12) 

Introducing now the amplification factor A defined as 4"^' = A^" and substituting A=e^ 

then ^" can be expressed as e^. 

At each time step and for any wave number k, the Fourier coefficient is multiplied by the 

factor Ak, which is called the amplification factor. For stable finite difference schemes, the 

Fourier coefficient, should not grow without bound, so that lAk I < 1 should be valid for 

stability. 

Substituting now the fiinction values in finite-difference scheme by Fourier series form, 

given in general form as 

(p^^^e^e^'^e'^ (B.13) 

The equations (B.8) and (B.9) read as 
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"e"^(-Crx-^ + e'""*"^'e"^e"^[-2i + C r x - - g1 + 
\ \ + vJ V u / 

a<p*o)^ip, i Crye'"e"^e'^"'-'> - (-2i - 2Cry + G)e'"e"'e'^ -

\ v(\ + u)J 

-Crye'"e"^e""''*'> = 0 

(B.14) 

and 

' ^ f . C r x ^ - l + e'*"-^"V^e"^f2/ + Crx-- G 
\ l + uJ V u 

c - V ^ f - C r x 
V u(l + v)J 

+(-2/ + 2Cry - G)e"""e"'e"^ - -Crye^(-"e"'e"'"*" = 0 

(B.15) 

Division of the equation (B.14) by e^ e'"̂ "̂ '̂  e'"̂ "*') and substituting A,=e^'^, yields 

(-2/ - 2Cry + G) + Crye'^ + Crye''" (B.16) 

(-2/ + Crx G) - Crx—r r 
V u{\ + u) 

-Crx 
\ + u 

or rewritten 

-2i+G-4Crysin (I] 
-^1 = 

-2i-G + 2Crx 
({\ + u){cosa + / sina)-(cos(Da + a ) + zsin(ua + a)) - u 

o(\ + u)(cosa + / sin a) 

(B.17) 

In the case when o = l , the equation (B. 17) reduces to the form: 

- 2 / + G - 4Crvsin (i] 
- 2 / - G + 4Crxsin1 — 

(B.18) 

which was given by Li (1994b). 

Division of equation (B15) by ê "̂ *̂ ^ e'"^*> e'**̂*»̂*> and substitution of A2=e^'', yields 
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(-2i - C r x - + G ; + Crx , g'"" + C r x - ^ e " ' " 
t; L>(l + u) 1 + u 

(-2/ + 2Cry - G) - Grye'^ - Grye 
(B.19) 

or rewritten 

>'2 = 

({\ + u)(cosa + /sin a) - (cos(ua + a) + / sin(t;a + a)) - u 
-2 / + G-2Grjc -r r} r'.—~\ 

u\\ + L>j(cos a + / sm a j 

- 2 / - G + 4Grvsin (0\ 
\2) 

In the case when o = l , the equation (B.20) reduces to the form: 

{B.20) 

-2 / + G - 4Grjcsin 
'a 
<2. 

-2i - G + ACrysxn 
K2 

(B.21) 

The total amplification factor is then given by the equation: 

(B.22) 

Substituting following expression 

n = 
(1 + u)(cos a + / sin a) - (cos(ua + a) + / sin(ua + a)) - u 

u(\ + t;)(cosa + /sin a) 
(B.23) 

where the real part is given by the equation 

u{\ + u) 

( l + u) cos^ a - cos(ua + a)cosa - ycosa + ( l + u)sin^ a 

-sin{ua + a)s\na 
(3,24) 

and the imaginary part is given by the equation 

n' = — r - ^ ^ — r f- sinfua + a) + cos(ua + a) sin a +1; sin a (B.25) 

When u = l then real and imaginary parts become 
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= 2 s i n ' 

n' = 0 

a 
(B.26) 

(B,27) 

The total amplification factor is now given by the equation: 

[C^ -D^ -c' +d^) +{2CD-2cd) 

({C^cY-^(D^dY) 
(B.28) 

where 

C = - 4 + G ' - 4 C r v G s i n ' | - 2 G C r y + 8Crx C r y s i n ' ( B . 2 9 ) 

£) = -4G + 8Crvs in^^ + 4C/-x W ^^ ^0) 

c = 4Crxn' (B.31) 

d = 2GCrxU'- ^Crx Cry sin ' | O ' (B.32) 

For stable and accurate solutions, the amplification factor needs to be ideally equal to 1. 

From equations (B.28-B.32), it can be concluded that this is not the case, unless c =d=0. 

When u = l , c=d=0 and amplification factor becomes equal to 1 what was previously proved 

by L i (1994b). From these equations, it can be also concluded that when u = l , Ay does not 

need to be equal to Ax for a stable solution. 
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A P P E N D I X C 

Truncation error analysis 

n+1 

n+1/2 

Figure C . l The ADI scheme used by Li (1994b) 

An evolution equation based on the Mild Slope Equation (Li , 1994b) is given by 

(C.1) 
CCg ^ 

can be written in finite difference form using Alternating Direction Implicit Scheme as it is 

shown in Appendix B, equations (B.9) and (B.IO), taking u = l 

-(~2i + 2Cry + G)<p" - Cryip^^,, = 0 
(C.2) 
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K-ll {-Cr^) - KT (2' + 2Cr^ - G) - {-Crx) - C r j . ^ - , + 

+(-2i + 2Co' - G;«>;;' - Cryg>'';l, = 0 

where 

^ cc M ^ cc td \ tsicc 
2co ^ 2o) Ay 2 2ry 

The sum of equations (C.2) and (C.3) can be written as 

+(-2/ + ^ ) ^ " ; ; + c^;:; , = 0 

where coefficients a,b,c,d are defined as 

a = -Crx 
b = 2Crx-G 
c = -Cry 
d = 2Cry-G 

(C,6) 

The truncation error analysis wi l l be made through a Taylor's series expansion around the 

central point [pAx,qAy,(n+I/2)At] following the formulation of Taylor's series for 

functions o f three independent variables as it is given in equation (C.8). The derivatives in 

all further derivations wi l l be noted as 

^0 dm dm 
^y"^ '̂=^57 dx ^ dy dt 

^ - - ^ ^ " " ^ (C.7) 

dxdy dxdt dydt 

etc. 
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x + a,y + fi.l+r) = <P + J-,{<^<Ps +PVy +79,) + 

+ - ^ ( « > x . . +P^(pyy+Y^9..+'2-aP<p,<p,+2ay(p^(p, + 2/3y(p ̂ (p,] + 

3/ 

^ « > x « +P'<Pyyy+r'<P,n +^(^^P<P:oc<Py+^Oc'y(p^<P, + 

^ « V x « , + ^ > » ^ + y V „ „ +4a'/79>^«!>^ + 4 a V « ' . „ ^ , +^ 

+4afi'g),<p^„+4/j'y(p^(p, +4ay'(p,<p,„ +4Py'(p^<p„, + 

4/ 

+\2a'Py<p^(p,q), + \2a/J^ yq> ^(p, +\2aPy^q),<p^(p„ ) 

+ h.o.l. 

(C.8) 

where cp and all partial derivatives are taken at point (x,y,t). 

Taylor series expansion wi l l be provided around the central point with values of a, P and y 

as shown in Table (C. l ) . 

Point a r 

p-l,q,n+l/2 -Ax 0 0 

p,q,n+l/2 0 0 0 

p+l,q,n+l/2 Ax 0 0 

0 -Ay -At/2 

0 0 -At/2 

p,q+l,n 0 Ay -At/2 

p,q-l,n+l 0 -Ay At/2 

P,q.n+1 0 0 At/2 

p,q+l,n+l 0 Ay At/2 

Table C . l Steps in the Taylor's series expansion 

In a first step the terms of the various orders wi l l be collected separately, giving 
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ZERO ORDER 

k^cc 

(C.9) 

FIRST ORDER 

(-C c c c 

{-2a + 2a)tsx(p, +{-c + c - c^-c)Ly<p y + y — + - + d + d - i-ij^t(p, = 

= -liMq), 
(C.IO) 

SECOND ORDER 

(C.U) 

THIRD ORDER 

{-2a + 2a)Ax + (-c + c - c + c)^y^(Pyyy + 

( c c c c d d i i\ % T 3c 3c 3c 3c^ 
^ 8 8 8 8 8 8 4 4/ V 2 2 2 2>' 

^ 4 4 4 4 / 

(C.12) 
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FOURTH ORDER 

J _ 

24 

{2a + 2a)Ax + (c + c + c + c)Ay'(p^ + 

c c c c d d /' ' V 4 ^ ^ ^ \ 3. 
+ — + — + — + — + — + — + A/ Vm, +\2.c-2c-2c + 2c)Ay^hl<pm, 

\\6 16 16 16 16 16 8 8̂* ^ ' ^ 
c c , (2, 3 3 3 , , 

24 
(C. l 3) 

Collecting all zero, first, second, third and fourth order terms and neglecting higher order 

terms (h.o.t) gives, after multiplication by A/^y/cCg 

2ar , 2 2(o 

cc. cc 

V A / / 8 24 12 
A' Vxxxr + 

WW 384 
-LcJ^VArV 
12 I A / ; ^ 

The truncation error is the expression on the right side of the equation. 

+ h.o.t. 

(C.14) 
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A P P E N D I X D 

Theory of Spectral Analysis Summarised 

Here, a summary of spectral analysis theory is given. For a more detailed theoretical 

appraisal of the Fourier Transform and its applications, the reader is referred to Jenkins and 

Watts (1968) for example. 

D . l General 

A Fourier series of a periodic function with period T can be written 

Tl(0 = Z^n^^27t/;/ + 3 „ ) (D . l ) 

where 

Cn -amplitude or height of oscillation 

& n - phase angle or phase shift 

fn - particular frequencyojO - angular frequency 

. . . 271 271 

(Do T 

Let us consider one particular sinusoidal function expressed generally as: 

7l(/)=C, C05(cOo/ + &,) (D . l ) 

Equation (D.2) can be rewritten 

r|(/) = c, co.y(cOo/).coj8, - s i n { < S i ^ t ) . s i n ^ ( D . 3 ) 

or 

y\{t) = co5(cOo/) + 5, sin{(ii^t) (D.4) 

where 
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B^ = -c^ sin^ (D.5) 

this yields 

01 =arctan (D.6) 

and 

(D.7) 

or in general: 

A„=c„cos&„ 

0„ =arctan 

B„=-c„ sind„ (D.8) 

(D.9) 

and 

(D.IO) 

The function expressed (i.e. in time domain) could be plotted versus time or versus 

frequency where / ~ ^ • 

When plotted in the time domain a curve of wave excursion results. In the frequency 

domain the equivalent is a line spectra. 

D.2 Fourier Transform 

The Fourier integral is the primary tool for the Fourier transform, for analysing aperiodic 

wave forms. It can be derived from the exponential form of the Fourier series. 

/(')= Z ( D . l l ) 

where f(t) represents any periodic function in time domain and 
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1 " 
c,=- I f i t y ^ ^ " (D.12) 

where coo = 2n/T and k = 0, 1,2, 

The transition from periodic to a non periodic ftinction can be effected by allowing the 

period to approach infinity, so the function never repeats itself and becomes aperiodic. 

At)=:^]F{io>,y-^'dco, (D.13) 

and the Fourier coefficient becomes a continuous function. 

F{i<u,)= ' j / i t y - d , (D.14) 
—CO 

The function F(i(Oo) given by expression (D.14) is called the Fourier integral of f(t). 

The major difference between the Fourier series and the Fourier transform is that the 

Fourier series converts a continuous, periodic time-domain function to frequency-domain 

magnitudes at discrete frequencies, and the Fourier transform converts a continuous time-

domain to a continuous frequency-domain function. 

D.3 Discrete Fourier Transform (DFX) 

Assuming that the wave profiles are given a sequential form of N data points n(At), n(2At), 

n(NAt) sampled at a constant interval At, where T = N . At, a continuous Fourier series 

can be written as 

r]{t) = 4jcos(0.fyo0+ ^oSin(O.G>o/) 

+ cos{Q}Qt)-^ ByS\n{o)Qf) 

+ A2 cos(2fyo/)+ B^.sinila^ot) (DAS) 

or 

nif) = ^0 -^YM- co%{nw^t)+B^ sin(/ifl;oO] (I>-16) 
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where 0)^ = IT^Q 

With a few transformations, the coefficients can be calculated by the following 

expressions: 

A„=-lrj{t)cos{na?,t)dt (D.17) 
T 

and 

B„=-]n{t)sin{ncOot)dt for n = 1,2, N (D.18) 
To 

Considering that the fiinction was sampled at regular time intervals, At and 

T = N.A t. the above integrals (D.17) and (D.18) can be replaced by summations. 

= Z n * cos(nco 0 kAl)M (D. 19) 
NAt t„o 

5 " = T ^ l i ^ * s ' " H o * A / ) A / (D.20) 

^n=ll.^.cos[^2n] n = 0 N - 1 (D.21) 

^-.=^Zn*sinf^27:] n = 0 N - 1 (D.22) 

It can be seen that 

B „ = 0 (D.23) 

^ n=0 

(Note for wave excursion Ao becomes 0) 

When n(t) taken at time tk, a Discrete Fourier Transform can be written as: 
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D„ = X'?*^""*"" for n = 0 to N = I p . 2 5 ) 
fr=0 

and the inverse Fourier Transform as: 

1 
7],=j^Y.^n^'"*"" for k = 0 to N - 1 (D.26) 

where cOr. - — 
' A' 

Equations (D.25) and (D.26) represent the discrete analog of the equations (D.l3) and 

D.l4), respectively. 

D.4 The Fast Fourier Transform (FFT) 

The so called Fast Fourier Transform is a faster method of calculating the Discrete Fourier 

Transform and it exploits the periodicity and symmetry o f trigonometric functions to 

reduce the number of operations fi-om to Nlog2N. The idea behind it is to decompose a 

DFT of length N into successively smaller DFT's. 

The equation (D.25) can be expressed as 

where W^e ^""^ 

Dividing the sample into two, equation (D.27) in terms of the first and last N/2 points 

becomes: 
2 

rearranged: 

*-0 *=0 ' * 2 
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or 

^-1 
2_ (D.30) 

Recognising that e"'"" = (-1)", for even points is equal to 1, and for odd points is equal to -1 

The equation (2.30) can be separated according to even values and odd values of n. 

For even values 

t=0 

(D.31) 

or 

k=0 

\ 
w Ikn (D.32) 

And for odd values 

7 - ^ 

£=0 

(D.33) 

A=0 

p . 3 4 ) 

These even and odd expressions can be interpreted as being equal to the transforms of the 

N/2 - length sequences 

(D.35) 

for k=0, N/2-1 p . 3 6 ) 

It follows that 
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= g„ (D,37) 

= h„ for n=0, N/2 - 1 (D.38) 

The DFT is computed by first forming the sequence gn and hn and then computing the N/2 

DFT's to obtain the even and odd-numbered transformations. 

2.5. The Frequency Spectrum 

The periodic function r|(t) can be presented in the frequency domain as a frequency 

spectrum when Dn versus f is plotted. Plotting Dn versus f, a two sided frequency 

spectrum is obtained. Considering that N time sample values are real numbers then only 

N/2 frequency components values are complex numbers, the other N/2 are their conjugates. 

Because the modulus of a conjugate is equal to the modulus of the complex number, the 

two sided frequency spectrum is obtained. 

The value of the frequency over which the spectrum is folded is called the folding 

frequency or the Nyquist frequency. The frequency spectrum up to the Nyquist frequency is 

proportional to the sea energy per unit area. 

Equation (D.25) can be rewritten, using Euler's identity 

e*" = c o s « ± / s i n a (D.39) 

1 N-\ / , 2n\ . . r , 271Y 
\ NJ V NJ 

(D.40) 

Comparing with equations (D.21) and (D.22) 

Dividing Cn^/2 by A f (chosen frequency interval), the new function is obtained which 

represents the energy density function. 
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A P P E N D I X E 

Cross-spectral analysis theory summarised 

Cross-spectral analysis determines the relationship between two data series in the 

frequency domain by evaluating the contribution of specific frequencies in both series to 

the total cross-covariance. The computation technique used for the crosspectra is 

essentially identical to that used for power spectra (e.g. Ilic, 1993). For more details, the 

reader is referred to Jenkins and Watts (1968), for example. 

The cross-correlation function between two stationary processes x(t) and y(t) is estimated 

according to the formula 

y]E^(0)Eyy(o) 

where Pxy(s) '^Pyx(s) and 

where !Exy(s) is the cross-covariance function 

E^(s) = Vim — [x(t)y(t - s)dt (E.2) 
T^'^ 2T ^ 

and x(t) and y(t) represent sample functions of the processes x(t) and y(t). 

The cross spectrum is defined as the Fourier transform of the cross-covariance function 

P:^(fJ = ^]E^(s)e''''ds (E,3) 

Or using the FFT 

P ^ ( f J = P . ( f J P y ( f J (E.4) 

where and Py represent the FFTs of the two time series. The asterisk denotes the complex 



conjugate (note that Px and Py are autospecU-a ). 

Being a complex quantity Pxy(fn) can be written as 

where co(fn) is the co-spectrum ( a measure of the in-phase covariance), and q(fn) is the 

quadrature spectrum ( a measure of the out of phase covariance). 

This can be written as 

co( f j = Rex Key + Inu Imy 

fn) = 'T Rey - Rex Imy) 

The CO - spectrum measures the contribution of oscillations of different fi-equencies to the 

total crossvariance of lag zero between two time series. The quadrature spectrum measures 

the contribution of the different harmonics to the total cross-covariance between the series 

when all the harmonics of the series x(t) are delayed by a quarter period but the series y(t) 

remains unchanged (Rodriguez, 1969). 

From Cramer's spectral representation, any stationary series can be considered as a sum of 

components of frequency bands, each component being statistically independent of the others 

(Cramer, 1940,1942 in Rodriguez, 1969). The theory of stationary processes tell us that not 

only is the component with centre fni independent of all the other components of the variable, 

but it is independent of all components of another variable except the component centred on 

fni (Granger & Hatanaka, 1964 in Rodriguez, 1969). 

Considering the process y(t) as the output of the system an important relation holds between 

Pxx(fn). Pyy(fn) and the frequency response function of the system, R(fn), defined as the Fourier 

transform of the unit impulse response function. This relation is 

Pyy(fn)=\^(fJP^(fn) (E-T) 

For linear systems. It holds true that 

Because Pjtx(fn) is positive, it follows that 
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\P.y(fJ\-P»(fJ\R(fJ\ (E.9) 

and I R(fn) I is usually called gain function or transfer function 

\R(fJ\-^jYf^l (E.10) 

or as used for analysis 

Thus fi^om previous relations 

The transfer function is related to the cross-spectrum and one of the auto-spectra which does 

not give the complete information. 

A direct measure of the square of amplitude correlation at frequency fn is given by the 

coherence function 

or 

Zff J==^JIS!LU^ (E.14) 

where 0 < "?(fn) ^ 1, and the overbar ( ) means smoothed and windowed spectrum to 

suppress leakage 

I f rxy(fn) = 1, there is perfect coherence at the discrete frequency fn. I f rxy (fn)=0, there is no 

coherence. The absence of coherence does not indicate that records are independent, it merely 

states that there exists no linear relation between them (Rodriguez, 1969), 

Even i f amplitudes are fully correlated, it is possible that the corresponding fi-equency 
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components will have different phases. The phase lag at each frequency is given by 

' ^ y ( f j - t a n ' [ ^ ^ ] ( E . 1 5 ) 

I f 0<9̂ <n then the x(t) record leads the y(t), i f -n<9 <0 then the x(t) record lags the y(t) 

record. 

Confidence limits for coherence and phase spectra are functions of the number of degree of 

freedom (d.o.f = v(n)) of the smoothed cross-spectrum. D.o.f is equal to 2pl where p is the 

number of ensemble averaging and 1 is the number of frequency points for frequency 

smoothing. 

Jenkins and Watts (1968) showed that the observed smoothed coherence 

K^y = yjF^ is related to normzdly distributed, random variable Yxy such that; 

?;09 = arctanh|:^69l=4w^^^7^; ( E . 1 6 ) 

The distribution of this random variable with independent variance can be approximate with 

the Normal distribution. Tables exist for unit normal distribution functions. The 100(l-a)%, 

confidence interval limits on Yxy (f) are given by 

Y^±na-^)^ ( E . 1 7 ) 

where v presents the number of degrees of freedom. 

Such limits can be transformed back to the original scale using the inverse of equation (E.16). 

Calculation of the phase confidence limits is still very poorly known. Jenkins and Watts 

(1968), suggested a method of calculation and produced a graph for 95% confidence intervals 

as a function of degrees of freedom and coherence. This graph was used in further analysis. 
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A P P E N D I X F 

Generation of synthetic wave data 

There are several existing numerical synthesis model classification. According to Borgman 

(1969), there are two basic methods to generate synthetic wave data: 

-wave superposition and 

-linear filters. 

Wave superposition methods can be either single or double summation models. The 

numerical simulation of random sea waves with a double summation model is well 

described in Goda (1985). One of the earliest double summation model was given by 

Borgman (1969) 

r]{x,y,t) = pia,jCOs(co^jt - k.xcosO^j - kjysinO.j + 5,.) (F. l ) 

where 

the amplitude ajj are determined by 

a,. = ^2S^{f,,0j)AeAf = pS^(f)G{^0j)AOAf (F.2) 

= spectral density 

u = phase angles which are randomly selected from a uniform distribution 

U(0,7l) 

The double summation is carried out for I fi-equencies, each of which has J directional 

components. Sand and Mynett (1987) described the implication of limited number of 

frequencies on the simulation results using a double summation model. An incoming and 

reflected wave at the same frequency will create a phase locked pattern. The resulting 

spectrum will depend on the selected phase angle .To avoid this effect, it is important not 

to add up the components with different directions at the same frequency. The alternative is 

a single summation model (e.g. Sand and Mynett, 1987), that is: 
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(F.3) 

b^j sm^o)yt - k.xcosOij - kjysinO^j^ 

The amplitudes are chosen as 

a5 + 65=25^(/)A/ (F.4) 

Only one direction of propagation is chosen at each frequency. It also takes a small band of 

frequencies to describe a whole directional distribution. 

Simulation by linear filtering is based on determination of the digital filter values. Digital 

filters are designed to be applied to an initial sequence on number to produce a new 

sequence with the desired properties. White noise is very convenient for simulation of the 

initial sequence. This is the random input which has spectral density of unity. It remains to 

determine the digital filter to simulate sea surface elevation which has determined spectral 

density. Borgman (1969) presented surface elevation simulation in the time domain using a 

non-recursive linear digital filter. Christensen (1996) extended the time domain method for 

numerical unidirectional wave generation to multidirectional wave conditions. Applying a 

non-recursive linear digital filter signal at any position y can be determined (Christensen, 

1996) as follows: 

X{y,nAt)^Y^Y^hfai_,r-n = l'N (F.5) 

where the desired gain D and phase <|) of the filter operator h are given by the equation: 

where 

^ sin kd cosh kd + kd 
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d)'(o)) = -Ay sin ^ , 
, , ' (F.8) 

and represents a sequence of independent standard normal distributed random numbers 

cc^n:c/r(0,l). 

The surface elevation in the combined wave field with present reflection can be written as 

follows 

r]{x,y,t) = i ; Sfl,.^ COS{A,XCOS<9^ + .̂̂ ŝin̂ -̂ - o^t + S,j) + 
(F.9) 

therefore the previously mentioned Christensen (1996) model was adapted by Helm-

Petersen (private communication) for the reflected sea. 

To determine the parameters in the equations (F.2, F.4) and (F.6) the directional spectrum 

Sii(f,9) should be known, where 

SXf,e) = S{f)G{f,9) (F.IO) 

The frequency spectrum S(f), of fully developed wind waves can be approximated by one 

of the following formulae (see e.g. Goda, 1985) 

Pierson Moskowitz 

0̂ 004558 ;['"(^)'. 

where 

fp=Tp-' 

orJonswap based on the observations on North Sea (see e.g. Goda, 1985) 
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s { f ) = 
r 

(F.12) 

where 

0.0624 
a = i= 

0.230 + 0.0336;'-
0.185 

\.9 + y 

(F.13) 

= 0.07 for f < f ^ 

= 0.09 for / > / , (F.14) 

and fp=Tp''; y=\-l (mean 3.3) 

And directional spreading function, G(f,9) is for example determined by Mitsnyasu model 

(Mitsuyasu et al, 1975 or see e.g. Goda, 1985) 

G ( / . e ) = G o C o s ^ { | (F.15) 

where 

° ;r r(25 + l) (F.16) 

s=10 correspond to wind waves 

s=25 correspond to swell with short decay distance 

s=75 correspond to swell with long decay distance 

-F-4 
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Evaluation and Validation of the Mild Slope 
Evolution Equation Model Using Field Data 

Suzana llic and Andrew Chadwick' 

Abstract 

This paper describes the application of a new version of the mild slope equation to 
a detached offshore breakwater scheme. Details of the computational model are briefly 
described with aspects of its capabilities. The field site at Elmer, Brighton, U K is then 
described. The field measurements, analysis and data selection for model evaluation 
are summarised with particular attention focussed on the spectral and directional 
results. Monochromatic and directional model nms are described. Results from the 
model are compared to the comprehensive recorded field data from which a 
preliminary evaluation of its performance is made. 

Introduction 

The evolution of the shoreline behind offshore detached breakwaters is principally 
determined by wave diffraction. However, wave transmission through permeable 
breakwaters has also been suggested by Hanson et al (1989,1990) to have a strong 
influence in determining the shoreline changes. One way to predict the resultant 
morphology requires known wave conditions around the breakwaters. These wave 
conditions can be predicted using a Refraction - Diffraction Model (preferably 
including wave transmission) with a known offshore wave field. Such predictive 
models have been developed but remain largely untested against comprehensive field 
data sets. Field measurements, at a site at Elmer - UK, recently completed by the 
Universities of Brighton and Plymouth as reported by Chadwick et al (1994), provide 
the opportunity to evaluate and validate such computational models. 

' Research Assistant and Reader, School of Civil and Structural Engineering, University of Plymouth, 
Palace Court, Plymouth PL I 2DE, UK 
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Computational model 

Berkhoff (1972) developed a combined refraction-diffraction model based on the 
so called 'mild slope equation', given by 

V(cc V<I>)+cc ^2^>=0 

where 
c =phase celerity, Cg = group celerity, k = wave number, <I> = complex wave 
potential function 

It can model refraction, diffraction and reflection. B y introducing the effects of 
wave breaking it can be used over the whole coastal zone. Such models have largely 
replaced refraction models for more restricted areas, although they must be applied 
with care due to assumptions made in their derivation. T h e 'mild slope equation' is an 
elliptic differential equation. V e r y often the elliptic equation is slightly modified in 
order to speed convergence and execution time. L i (1994) derived a model with a time-
dependent evolution equation based on the original mild slope equation given by 

where 

dt 

CO = wave angular frequency, (J) = Y ( c Cg)"^ and <J»(x,y,t) = T ( x , y , t ) e '"* 

Harmonic time is excluded to achieve fast convergence. T h e model is capable o f 
dealing with refraction, diffraction and reflection, overcoming the main disadvantage 
o f some previous models based on the mild slope equation. T h e boundary conditions 
are the same as for the elliptic equation, making this model easier to solve than 
hyperbolic models. T h e offshore boundary is specified as the known incident wave 
field, and reflected waves propagate out o f the field. Shoreward and lateral boundaries 
are applied to the outgoing and reflected waves, where the reflection coefficient is 
taken in account, and varies with the type o f boundary and may have to be determined 
empirically. T h e numerical scheme which is used is the unconditionally stable 
Alternating Direction Implicit Scheme, 

A series o f preliminary tests using Li ' s model has been undertaken for the E l m e r 
scheme in which the model boundary conditions were taken from offshore field 
measurements, and the model predictions compared with both inshore and shoreline 
measurements. 

Field measurements 

Fie ld measurements were taken at E l m e r near Brighton, Sussex, U K where a 
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scheme of eight offshore breakwaters were constructed in Summer 1993 ( see Figure 
1). Their role is to maintain the renourished beach which protects the hinterland from 
flooding. The beach behind the breakwaters lies on a wave cut platform of Upper 
Cretaceous chalk with a gradient of approximately 1 in 50. Above the chalk, a layer 
of sand 0^50 =115 \xm) forms a low tide terrace, and the upper beach is mainly 
composed of shingle (D50 = 11 mm). The area is macro-tidal, with a mean range of 
5.3 m on spring tides and 2.9 m on neaps. 

Depths'm meucs (below OD) 

Scale 
400 m 

Rock rcvolmenl 

in

shore WRS 

0 

2-5-----
^Replenishment zone 

Oo 

rWCM array 
JWCM siafr--. 

lirtCM staff 

Scate Inshwc WRS 

Figure 1 Site and instrumentation location and siting 

Two different types of equipment were deployed for the wave measurements. Their 
locations are given in Figure I. An array of six pressure transducers over an area of 60 
X 16 m was deployed offshore to measure directional waves approaching the shoreline. 
Data were collected every 3 hours for 12 minutes with a sampling frequency of 2 Hz. 
A star array of four surface piercing wave resistance staffs was deployed in the lee of 
breakwater 3 to give directional information inshore after waves were refracted and 
diffracted. Two additional independent wave probes were deployed one in the gap 
between breakwaters 3 and 4 and another one shoreward of the gap. They collected 
data every 3 hours for 17 minutes with sampling frequency of 4 Hz but were only 
operational for approximately half the tidal cycle. Additionally an array of 6 pressure 
transducers was deployed in the front of breakwater 4 to measure reflection for a 
period of two months in Spring 1994. Wave recorders were deployed from September 
1993 until January 1995 and measurements were taken continuously for a year. 
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Data selection for model evaluation 

All data were processed using the Fast Fourier Transform algorithm in conjunction 
with a full width Welch window with overlapping subsets of data. Ensemble averaging 
of the resulting Fourier coefficients was then applied together with spectral smoothing 
as described by Chadwick at al (1995 a,b). Assuming that offshore incident and 
reflected waves were not phase locked, the Maximum Likelihood Method (MLM) was 
used for directional analysis at both the offshore and inshore locations. Figure 2 shows 
the directional energy recorded offshore and inshore for a particular event in April. 
Here the modification of directional spectra from offshore to inshore is evident. The 
broad spectrum containing reflection offshore becomes a narrow spectrum inshore 
with a very small amount of reflection. 

a) 0.r Oireciional wave spocuvm offshore on 9/04/1994 23h ZOmin b) Diroclional wave spectrum instwe on 9/04/1994 23n 20mjn 

Bhorclino 10 

frequency |H2) 
direction (degrees) frequency [Hz) dtreoion (degrees] 

Figure 2 Example spectral and directional analysis result (a) offshore, (b) 
inshore 

The following criteria were applied to choose the data for the model evaluation 
(similar to Dingemans et al 1984) 

- synchronous wave measurements I - 20 min ^ to ^ t + 20 min (91% data are in 
time interval ± 10 min) 
- wave height > 0.5 m 
- high tide - to have reasonable depth of water in the area behind breakwaters (ie 
depth between 2.6 and 3.6 m inshore and between 6.8 and 8.0 offshore) 
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- small values of offshore reflection coefficient (It should also be noted that the 
MLM was found to be incapable of completely resolving all of the offshore wave 
energy into incident and reflected components for some of the field data sets. This 
presented considerable difficulties in determining the true incident offshore wave 
field boundary condition for the model,) 

About 70 data sets were chosen based on the above criteria. The frequency spectra 
were then classified as follows 

- monochromatic (narrow frequency band) 
- bimodal (with two distinguished peaks - usually swell and wind peaks) 
- wide frequency spread (broad frequency distribution - wind spectra) 

Computational area 

A computational area of 2000 m (alongshore) x 850 m (crosshore) was chosen. A 
grid spacing of 5 x 5 m was used which gives 401 x 171 points. Additionally a grid 
spacing of 2 x 2 m was also used for a more restricted area (401 x 401 points). The 
beach changes behind breakwaters were surveyed by aerial photography and 
processed every 3 months (Axe, 1995). Offshore bathymetry is very stable, but the 
beach changes are included in four different bathymetries for model evaluation. 

Results 

Typical model output with wave height contours is shown in Figure 3. Standing 
wave fields could be observed in the front of the breakwaters as could the wave height 
attenuation behind the breakwaters due to diffraction. 

mm 

mm 

Figure 3 Typical model output 

Figure 4 a,b,c show the comparison between measured and calculated wave heights 
for the three inshore positions where the field measurements are compared with 
monochromatic model results. Each of the offshore measured directional spectra are 
represented in the monochromatic model by the peak frequency, the main wave 
direction and significant incident wave height. Figiire 4a compares model results and 
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field measurements for the position in the lee of the brezikwater. There are several 
discrepancies. A possible reason for the large disagreement between predicted and 
calculated wave heights is due to the lack of energy transmission by radiation, into the 
lee of the breakwater, when using the monochromatic wave model. In the position 
shoreward of the breakwater gap, there is better agreement between measured and 
calculated wave heights (Figure 4b). In the third position in the breakwater gap (Figure 
4c), there is a small overestimate of the calculated wave heights. 

The influence of the spectrum shape and frequency distribution on the results were 
then invesdgated. So far no relation has been observed. It could be expected that the 
errors in results depend on frequency ( because the value of the reflection coefficient 
is related to the frequency), and some ftirther investigations need to be carried out. A 
quantitative measure of the accuracy of the results has also been made, using a relative 
root mean square difference between measured values and numerical model 
predictions for three different positions inshore given by 

H 

N 

where: 
Hm = measured wave height, He = calculated wave height by numerical model, 
N = number of tests 

The summary of results is given in Table 1 

Table 1 Summary of results for monochromatic case 

Position Relative mean square 
difference 

Error Percentage 

in the eap 0.32 32.69 % 

shoreward of the gap 0.52 40.49 % 

in the lee of breakwater 0.54 46.50 % 

The monochromatic model was also used to predict wave heights in front of 
breakwater 4 and compared with the measurements of Davidson and Bird (in press). 
The reflection coefficient for this case was 0.4 evaluated from the measurements. The 
calculated and measured wave heights were compared and the relative mean square 
difference was only 0.0669 which shows very good agreement and the capability of the 
model to predict accurately the wave height in the front of the structures in a regime 
of strong reflection. 
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The use of the monochromatic wave model to represent real irregular waves with 
directional spreading confirmed that significant underestimation of wave conditions 
behind the breakwater occurred. This has also been found by Goda (1978,1985), 
Grassa (1990), Vincent and Briggs (1989), Briggs et all (1995). 

i ) Comparison of calculated and measured wave heights in lee of 
breakwater 

0.2 0.4 0.6 

Measured H (ml 

0.8 

b) Comparison of calculated and measured wave heights shoreward of 
breakwater gap 

Measured H (ml 

c) Comparison of calculated and measured wave heights in 
breakwater gap 

McBSured H (m) 

• bimodd cpoctrum O monochromatic Bpoctrum • vvida sprosd «pocmjm A frort of breskwator 

Figure 4 Comparison of calculated and measured wave heights for 
monochromatic case-(a) lee of breakwater, (b) shoreward of 
breakwater gap, (c) breakwater gap 

Directional modelling 

The next step was to simulate directional waves under the assumption of the 
validity of linear superposition as a method for the description of irregular waves. Thus 
the measured wave spectrum could be represented by a number of monochromatic 
waves. There are two methods which can be used to discretise the spectrum - a 
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constant step method or energetically equalized discretisation. The latter one was 
chosen for the evaluation of the model. The directional wave spectrum is given by 
S(f,0) = S(f) G(f,6) where G(f,6) is a normalized spreading ftinction between given 
cut-off values, (f^i„, f̂  J , (e^i„, 6^ J in Nf, NQ components each of which is defined 
by a corresponding frequency, direction and wave amplitude (fi,6ij, â j, i=l, N ,̂ j = 1 ,No) 
where 

/ . given by. [ S{f)df={--^){i'0.5) 

0.. given by: jG(/;eye=(-^)(/-0.5) 
e. ° 

mm 

a..= 
2W(j 

It should be noted that there are some small differences between these equations and 
the technique used in practice as the spectral shape is not directly integrable and 
depends on the frequency and direction increments derived from the spectral analysis. 
The advantages of this method are described by Grassa (1990). 

Tests and results 

Irregular model tests have been carried out for three data sets measured in October 
1994. The incident wave heights were greater than 1 m offshore and the measured 
averaged reflection coefficient was low (about 0.15 - 0.2). Tests were carried out to 
investigate the sensitivity to the chosen number of frequency intervals. The directional 
spectrum was represented by sixty four monochromatic waves for each frequency 
interval and one main direction (the frequency dependence of the reflection coefficient 
was also taken in account). It was found that the inshore calculated spectrum had the 
same shape as the measured spectrum offshore. The calculated inshore energies in 
each frequency interval were overestimated (see Figure 5a). 

Tests were then carried out taking into account only seven frequency intervals but 
introducing four directional intervals. The measured and calculated energies for each 
frequency interval summed over all directions were found to be in very good 
agreement except for very low and very high frequencies (Figure 5b). The energy 
siunmed over all frequencies for particular direction intervals is not in such good 
agreement (Figure 5c). This suggests that insufficient direction intervals were used. 
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a) Spectral energy for representative direction for 19/10/94 
measured offshore 

measured inshore 

calculated Inshore 

0.3 

Frequency (Hzj 

0.4 0.5 

0.01 
N 0.01 

0.01 
0.01 
0.01 

0 
O 
O 

b) Spectral energy over all directions for 19/10/94 

O measured offshore ^ measured Inshore ^ calculated inshore 

n r -

d 6 
Froquency IHz) 

0.01 

c) Directional energy over all frequencies for 19/10/94 

calculated inshore Q measured inshore 

-104.97 •86.95 -59.72 

Direction (deg) 

•31.19 

Figure 5 Directional results summary - (a) spectral energy, (b) spectral energy 
over all directions, (c) spectral energy over all frequencies 

Table 2 Summary of results for directional irregular wave modelling 

I Position 
V ... - ' r.-. . .. ... - - .-'̂  

Relative mean square 
differerice 

Error>Percenlage 

in the gap 0.1044 8.45 % 

shoreward of the gap 0.1152 9.7 % 

in the lee of breakwater 0.1454 12.24% 
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A relative root mean square difference between measured and predicted results for 
the three positions inshore, are shown in Table 2. The results in Table 1 and Table 2 
will be compared when validation is completed. 

Discussion 

Figure 6 a,b,c show the summary of all results and tests carried out. The 
disagreement between measured and calculated wave heights using monochromatic 
model runs can be clearly seen. This disagreement could be caused by several reasons. 
First the model is linear and even though the model was used for the larger recorded 

i ) Comparison of calculated and measured wave heights in 
breakwaters gap 
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Figure 6 Comparison of calculated and measured wave heights - summary - (a) 
breakwater gap, (b) shoreward of breakwater gap, (c) lee of breakwater 
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water depths, some non linearities may be present which can not be modelled by this 
particular model. Wave breaking, bed friction and wave current interaction are also not 
taken in account. Transmission is not included in the model either. However, probably 
the most important errors occur in estimating the wave heights in the lee of the 
breakwater using the regular (monochromatic) wave model which does not take 
account of the directional effects. From these reasons the induced errors are larger in 
the lee of the breakwater than in the gap or shoreward of the gap. The errors could also 
be caused by incorrect estimation of reflection coefficient. The model is very sensitive 
to reflection so the proper estimation of the coefficient is necessary. Choosing a non-
directional irregular field with a larger number of frequencies did not improve the 
results. Better agreement was obtained for directional irregular modelling when the 
effects of directional spread were taken in account. The results also show that a larger 
number of directional intervals should be chosen to represent the directional sea 
properly. So far the results show that the linear model based on the Mild Slope 
Equation can be used to model the sea state eiround breakwaters but it is very important 
to take directional effects in account. It is felt that it is necessary to take some more 
measurements to evaluate transmission and wave currents effects, and this research 
has now started (Chadwick et al (1995c)). 

Conclusions 

The wave transformation model successftilly deals with combined refraction, 
diffraction and reflection. Monochromatic wave runs can significantly overpredict or 
underpredict wave heights shoreward of the breakwaters in the diffraction region. 
Therefore it is important to consider irregular waves. Using irregular waves, it appears 
that directional spread has more influence than frequency spread in determining wave 
heights in the diffraction zone. The importance of taking the proper reflection 
coefficient needs to be further investigated. The model does not deal with 
transmission, which may be important in forming the beach behind the breakwaters. 
This should be implemented in the model. The influence of wave breaking, bed 
fiiction and wave current interactions should also be ftirther investigated. The final 
evaluation of the model will determine its capabilities and limitations with regard to 
these factors and hence its applicability to design process for coastal works. 
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Directional Results Summary 

Files: 65 - bimodal sea in Figure H. 1 

69 - wind sea in Figure H.2 

72 -swell sea in Figure H.3 

73 -swell sea in Figure H.4 

75 -wind sea in Figure H.5 
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Figure H . l Directional results suinmar>' - File 65-a) sum of energ>' over all frequencies versus direction (line plot) and energ>' in directional bands chosen for 
modelling offshore (bar plots); b) sum of energ>' over all frequencies versus direction (line plot) and cnerg>' in directional bands chosen for modelling 
inshore (bar plots); c) measured inshore (line plot) and model predicted energy versus direction (circles plots); d) sum of energj- over all directions versus 
frequency (line plot) and energ>' in frequenc>' inter\'als chosen for modelling offshore (bar plots): e) sum of energ>' over all directions versus frequenc)' 
(line plot) and energ>' in frequency inten-als chosen for modelling insiiore (bar plot); 0 measured inshore (line plot) and model predicted energ>' versus 
frequency (bar plot) 
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Figure H.2 Same as for Figure H. 1 - Directional resulls summar>' - File 69 
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Figure H.3 Same as for Figure H. 1 - Directional results summar>' - File 72 
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Figure H.4 Same as for Figure H. I - Directional results summar>' - File 73 
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Bispectral analysis theory summarised 

David Simmonds (personal communications) developed the bispectral analysis software 

used in this thesis. Bispectral analysis was first carried out by Hasselmann et al (1963) to 

study the non-linear interactions of ocean waves. The bispectrum has been defined as the 

Fourier transform of the two-dimensional autocorrelation ftinction K^^*pp(Tj jk) of a time 

series r|(t) 

^ ( / . . / . ) = ( ^ ] K ^ ( ^ . ^ * > " ' ' ' ' ' ' ^ ' ' ' * ^ ^ ^ ^ ^ * a.i) 

where 

where t is a lag, f is the frequency, E[ ] is the expected value, or average, operator. 

The bispectrum can also be expressed in terms of Fourier coefficients as: 

5(/,./,)=4^///./';,..] a.3) 

where A^. is the complex Fourier coefficient of frequency fj, and * denotes the complex 

conjugate. 

The bispectrum is zero if the average triple product of Fourier coefficients is zero. It means 

that the bispectrum is zero unless there are waves present at the frequencies f j , fk and fj+k or 

there is a phase coherence, or phase relation, between the waves at these frequencies. If the 

sum or difference wave fj+k is generated through an interaction between fJ and fk then a 

phase coherence will exist and the expected value will be nonzero. 

The bispectrum amplitude, biamplitude, is defined as: 

•i-l 



B [ f j . A ) = \ B [ f j J , ) a.4) 

The bispectrum phase, biphase, is defined as: 

P(/y-A) = tan*'-< 
Im 

Re 
a-5) 

where Re and Im denote the real and imaginary parts respectively. The biamplitude 

indicates the nature and relative strength o f the interactions, and the biphase gives a 

measure o f the relative importance o f the real and imaginary parts o f the bispectrum. 

^ - f N / 2 i f l ~ fN/2 

f i = f N , f w = 0 

f j=0 , fk=0 

Figure I . l Plan view of a unique bifrequency space 

Integrating the real part o f the bispectrum (Hasselmann et aly 1963) yields to the third 

moment (m"*). The skewness is obtained by normalising the integration by the variance to 

the power o f 3/2 (Doering, 1988). Elgar and Guza (1985) related the imaginary part o f the 

bispectrum to a measure o f asymmetry o f the temporal derivative o f time series. 

Because o f the symmetries, it is enough to eveiluate the bispectrum in a bifrequency octant. 

For a digital t ime series wi th Nyquist frequency f N , the bispectrum is defined wi th in a 

triangle in a ( f j , f k ) - space defined in Figure 1.1. 
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The bispectrum may be expressed in a normalised form defined as the bicoherence 

spectrum given by K i m and Powers (1979): 

a.6) 

•1-3 



WAVE AND CURRENT INTERACTION IN THE COASTAL ZONE 

by 

KAREN ROSE STAPLETON 

A thesis submitted to the University o f Plymouth in 
partial fulf i lment for the degree of 

DOCTOR OF PHILOSOPHY 

Institute of Marine Studies 
Faculty of ScienSs J 

In collaboration with 
the MAST GSM project 

September 1996 



LIBRARY STORE 

REFERENCE ONLY 

UNIVERSfW O F PLYMOUTH 
item No. 

Date - 7 i-hB 1997 
Class No. 
Cent). No. 

U B R A P V ^ErtVJCES 

90 0308851 1 



Plate I : Field station in Nieuwpoort. Belgium, showing incoming tide and typical weather 
conditions. 



This copy of the thesis has been supplied on the condition that anyone who consults it is 
understood to recognise that its copyright rests with its author and that no quotation 
from this thesis and no information derived from it may be published without the author's 
prior written consent. 



A B S T R A C T 

Wave and Current Interaction in the Coastal Zone 

Karen Rose Stapleton 

This project was set up as part o f the M A S T GSM project to study wave and current 
interaction in the field and to compare the results from the field with model estimates. 

A history o f the study of wave and current interaction is presented including the 
turbulence modelling and field studies carried out to date. 

The field work carried out for this project was performed on a wide, shallow, ridge and 
runnel beach wi th a strong tidally driven longshore current. Velocity and pressure data 
were collected over twelve tidal cycles. 

These data were used to estimate shear stresses calculated using three methods; the 
inertial dissipation method ( I D M ) , the turbulent kinetic energy method (TKE) and the 
Reynolds stress method, (REY). The results were compared to look for evidence of 
which method, i f any, gave more consistent results under the conditions experienced. 

The parameterised wave and current interaction models of Huynh-Thanh and Temperville 
(1992), Soulsby et al. (1994), Fredsoe (1984) and Grant and Madsen (1979) were 
compared for a range of waves, currents and bottom roughnesses. The results, when 
compared, highlighted the need for accurate current velocities and, even more 
importantly bottom roughnesses. 

The models were run for the field conditions and the results were compared with the field 
estimates of shear stress. The models were run using both observed and modelled 
estimates of bottom roughnesses. The comparison of field and modelled results showed 
that the models worked well when the wave to current ratio was small but underestimated 
the shear stresses when the waves were bigger and steeper. Reasons for this have been 
invesfigated and conclusions drawn. 
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Chapter 1 

Introduction and Overview of Thesis 

1.1 Introduction 

Waves and currents give rise to the dominating hydrodynamic forces over the whole of 

the continental shelf. Their importance has long been recognised but until recently the 

effect of the interaction between waves and currents has been little studied. The first 

model 10 take wave and current interaction into account was developed in 1967, however 

it was not until the late 1970's that more work was done to model and measure these 

effects. 

The main predicted effects of waves within the bottom boundary layer are the enhanced 

shear stress felt at the bed and the effect on the flow above the wave boundary layer 

which is equivalent to an enhanced bottom roughness. The shear stress within the bottom 

boundary layer is important in the study of sediment transport. As wave and current 

interaction affects the shear stress felt at the bed, its effects, if not taken into account 

could result in low estimates when modelling sediment transport or the effects of waves 

and currents on structures. 

1.2 Aims 

The main aims of this project can be presented in three main categories: 

1) To collect field data in the nearshore in the presence of waves and a current, to 

include a range of wave and current conditions. 

2) To estimate shear stresses from field data using three methods and to establish 

which, if any, are more suitable for the various conditions experienced during 



the field campaign. Also, to identify under which conditions the methods do 

not work. 

3) To compare the results of the three methods used to estimate shear stress with 

models of wave and current interaction and to improve and extend the range 

of prediction schemes. 

1.3 Overview of Thesis 

A review of the literature available on waves and currents is presented in chapter 2. A 

brief history of turbulence modelling and how these models are used is given. As part of 

the MAST GSM project several wave and current interaction models have been 

parameterised to make them more readily available to engineers. This parameterisation 

will be explained in chapter 2. There have been a number of field campaigns carried out 

where the data collected has been used to investigate wave and current interaction. 

These campaigns will be described giving an insight into the methods used and results 

obtained. 

In chapter 3 the field campaign carried out for this project is described. The choice of 

field site, instruments used and problems overcome, anticipated or unexpected, are all 

presented. The instrument calibration methods are also explained and there is a detailed 

description of the environmental conditions experienced. 

Methods used to analyse the data are shown in chapter 4 and a detailed description of the 

three methods used to estimate shear stresses is given. The means of some of the data are 

presented to give an indication of the hydrodynamic conditions encountered. 

Chapter 5 presents the results of the shear stress estimates and shows a comparison of 

these field estimates with shear stress estimates from other field campaigns. 

In chapter 6 an inter comparison of the parameterisaiion of four wave and current 

interaction models is made for a variety of wave, current and bed roughness conditions. 

Model results for the conditions experienced during the field campaign are then 

compared with the estimates made from the field data. 



Chapter 7 is a discussion of the implications of the results, conclusions and suggestions 

for future work. 



Chapter 2 

Review of the Literature 

The literature available for wave and current interaction falls into 4 main categories: 

1) Boundary layer turbulence 

2) Models which include the effects o f wave and current interaction 

3) Field studies 

4) Comparisons o f 2) and 3). 

The hydrodynamic environment within the bottom boundary layer w i l l be described along 

with the way in which wave and current interaction affects the bottom boundary layer. 

Models which have been evolved to explain and predict wave and current interaction w i l l 

be presented and discussed in section 2.4. A description o f field experiments set up to 

explore the nature of wave and current interaction and to compare wi th model predictions 

w i l l be given in section 2.5. 

2.1 Wave and Current Interaction: An Introduction 

The coastal zone is dominated by two equally important elements: waves and currents. 

The waves are usually wind generated, but the currents are generated by a number of 

factors. These factors include the tides, wind and waves, also density gradients and 

outflows from rivers. The wave and current interaction acts through a number of 

mechanisms, (Soulsby et al. (1994)): 

a) refraction o f the waves by horizontally sheared currents 

b) modification of the wave kinematics by the (possibly vertically sheared) current 

c) generation by the waves of "mass transport" or "streaming" currents 



d) generation by the waves of radiation stresses giving rise to currents, particularly 

longshore currents in the surf zone 

e) enhancement o f the bottom frict ion felt by the currents, due to interaction wi th the 

wave boundary layer 

f) enhancement o f the bed shear stresses and energy dissipation o f the waves due to 

interaction with the current boundary layer. 

For this thesis attention w i l l be focused on the mechanisms e) and f ) , more particularly on 

e). The reasons for this wi l l be revealed in subsequent sections and chapters. The study 

w i l l therefore concentrate on the bottom boundary layer. 

2.2 Bottom Boundary Layer 

A general definition for the bottom boundary layer, given by Bowden (1978) is: 

'*the layer adjacent to the seabed in which flow is affected by the processes 
at the boundary and in which strong gradients o f physical, chemical and 
biological properties may occur. It is the layer within which exchanges 
between the water column and sediment takes place." 

Also: 

" i t may also be said to extend a short distance of the order o f centimetres or 
decimetres downwards into the sediment." 

The velocity of the fluid at the bed is zero and reaches free stream velocity, Uoo, at the 

top o f the boundary layer providing the water is deep enough. The boundary layer 

thickness, 5, is defined by Soulsby (1983) using the mean velocity such that U ( 8 ) = U ^ , 

where U(z) is the mean velocity at height z. In shallower water the boundary layer affects 

the entire water column and hence the boundary layer thickness is the water depth, h. 

Figure 2,1 is a diagrammatic view of these boundary layers showing both the boundary 

layer w i th free stream velocity above and the boundary layer which occupies the entire 

water depth. The forces acting on the flow in the boundary are generally defined as force 

per unit area, i.e. stress. The stress acting perpendicular to the bed is the pressure (p) 

caused by the water mass, the stress acting along the bed, parallel to the boundary layer, 

is the shear stress (x). I f TQ , the bed shear stress, exceeds a threshold value then sediment 

may be moved. An interesting effect of this shear stress is its effect on tidal currents 

which, ultimately, leads to a reduction in the Earth's rotation (Bowden (1978)). Direct 



measurements o f stress are not easy, in many cases impossible, since instruments to 

measure stress in situ are either too delicate to be used in the f ie ld or are still at the 

inception stage. Therefore estimates for stress are derived either f r o m velocity profiles or 

turbulent fluctuations. 

Outer layer 

Logonthmic layer 

Bed layer 

Currem Speed 

Free stream flow 

Outer layer 

Bed layer Loganthmic layer 

Current Speed 

Figure 2.1 Diagrammatic illustrations of the boundary layer, (a) For the boundary layer 
which occupies the whole water depth; (b) for water which is deeper than the boundary 
layer thickness; bed, logarithmic and outer layers are not to scale. 

The above is a description o f a boundary layer in which no effects f rom waves are felt. 

On the continental shelf the most common environment is one in which both waves and 

currents interact. This is especially true during storms when there is enhanced wave 

activity. Waves o f period 5-15s start "feeling" the bottom in about 20 -180m water depth 

(Grant and Madsen (1979)). The simultaneous presence of current and waves over a 

hydrodynamically rough bottom results in a non-linear interaction that changes both the 

f low and the associated bottom stress. By scaling arguments (Soulsby (1983)) it is 

possible to show that two distinct vertical boundary layers exist for this combined f low. 



A wave boundary layer is a layer close to the bed in which the shear stress is dependent 

on a non-linear combination of both waves and currents and a roughness associated with 

the physical bottom roughness. The height 5^ = K T J . ^ / C O , where O) is the wave frequency, 

the subscripts w and c indicate waves and currents respectively, u .^ i s the fr ict ion 

velocity associated with the wave and current interaction and K is the von karman 

constant, is the l imi t to which the wave induced turbulence, i.e the turbulence caused by 

the presence of the waves, can diffuse and limits the region o f wave turbulence to the 

wave boundary layer. Above this height, the turbulence is associated wi th current only. 

However, the flow in the upper layer is considerably affected by the presence of the wave 

boundary layer. This is due to the highly dissipative turbulent flow in the wave boundary 

layer extracting energy from the flow above, causing an enhancement o f the shear stress 

in the outer region (Lyne et al. (1990)). This enhanced shear stress is, effectively, 

equivalent to an enhanced roughness length for the flow in the outer region. 

2.3 Turbulence within the Boundary Layer 

Many flows in nature are turbulent, and it is therefore important to understand the 

mechanisms at work within such flows. Turbulent flows are unsteady and contain 

fluctuations that are random in space and time. Fully developed turbulent flows contain a 

fu l l range o f length scales from large eddies which fit within the flow region to the 

smallest scale possible due to the dissipative process. Turbulence occurs in nature 

because low viscosity flows become unstable at high Reynolds numbers and cannot be 

maintained indefinitely as steady laminar flows. The first step f rom steady to ful ly 

turbulent flow, (i.e. transitional flow) is instability to small disturbances. 

2.3.1 A Br ie f History ol' Turbulence 

Whilst turbulent motion has been around since the beginning o f lime, the first serious 

investigations into the nature of turbulence were not carried out until the latter half o f the 

19th century (Landahl and Mollo-Chrisiensen (1986)). Osborne Reynolds and Lord 

Rayleigh were the first to investigate flow instability. The investigations carried out by 

Reynolds (1883) into pipe flow clearly demonstrated that two modes o f fiow existed, 

laminar and turbulent (sinuous, as Reynolds termed it) . Reynolds found that a non-

dimensional parameter could determine the type of flow that could be sustained. This 

now famous, and ubiquitous, Reynolds number can be calculated for any fiow, 



Re = 
U L 2.1 

where U is a typical velocity, L a typical length scale and v is the kinematic viscocity. 

The Reynolds number is a ratio of typical acceleration to typical viscous stress gradients. 

I f it is greater than some critical value, for pipe fiow 2300, turbulent f low can be 

sustained, i f it is less laminar f low can be sustained. Reynolds (1894) also derived the 

equations o f motion for turbulent mean f low, see section 2.4, which lead to the 

introduction o f the Reynolds stresses, which are parameters with the same dimensions as 

stress but physically cannot be measured as stresses. The idea behind the Reynolds 

stresses and turbulent mean flow, that turbulent flow may be treated as laminar flow wi th 

different fluid properties, was first proposed by Boussinesq (1877). Boussinesq assumed 

the turbulent shear stress is proportional to the velocity gradient, just as viscous shear 

stresses are in laminar flow, but with a different, (generally higher), coefficient of 

proportionality. The turbulent (or "eddy") viscosity approximation is commonly used in 

the modelling of mean flow in turbulent conditions. 

Figure 2.2 Concepiualisation of mixing and momenium transfer (shear stresses) in turbulent 
boundary layers. 

In the 1920's work done by Prandil and von Karman developed methods of calculations 

which enable one to obtain approximations to the mean velocity flow field, based on a 

small number of empirical parameters. The mixing length hypothesis was first used by 

Taylor (1915) and later employed by Prandtl (1925). This hypothesis utilises the average 

distance a fluid particle deviates f rom the mean streamline, see figure 2.2. An 

approximate expression for the mean momentum transfer by turbulent mixing in terms of 

the mixing length was set out by Prandtl. He assumed that the mixing length was 

proportional to the distance from the wall/bed, and thence determined the mean velocity 

distribution near the wall using one empirical constant. Many more complicated and 



different hypotheses o f momentum transfer by turbulent fluctuations have been put 

forward since Prandtl but there is still no practical calculation o f the mean f low field 

based on the Navier-Stokes equations without using some empirical data. This is due to 

the non-linearity in the dependence of the instantaneous f low field on the mean velocity 

distribution. 

Until Prandll, the study of hydrodynamics, and hence turbulence, had been split into two 

parts. Classical hydrodynamics was one pan, an elegant mathematical development of 

the theory o f inviscid f luid f low, usually incompressible and irrotalional which slipped 

freely over surfaces but did not generally focus on regions close to boundaries. The other 

part was hydraulics. This was based on formulae and data sheets developed from 

experiments and experience. Prandtl brought these two fields o f study together 

establishing a logical basis on which subsequent developments in the field of modern 

Huid dynamics have been built. This basis is Prandtfs boundary layer theory which he 

first presented in 1904. 

In 1937 Taylor and von Karman gave the fo l lowing definition: 

'Turbulence is an irregular motion which in general makes its appearance 
in fluids, gaseous or l iquid, when they fiow past solid surfaces or even 
when neighboring streams of the same f lu id past or over one another". 

Taylor formulated many of the fundamental ideas in the statistical theory o f turbulence. 

He introduced the concept of velocity covariances: 

R , ^ = ( u , ( x ) u . ( x + g) 2.2 

between one velocity component, u-, (in Cartesian tensor notation) at a point x with 

another component o f the How, U j , where i and j can be equal or not and the angled 

brackets, ( ) , imply averaging. The covariances may be regarded as generalisations of 

the Reynolds stresses where ^ = 0 . Velocity covariances, equation 2.2, can be thought of 

as a measure o f the energy of eddies whose lengths in the direction o f ^ are greater than 

the magnitude of ^. The integral o f the velocity covariances: 

2.3 



where R is a non-dimensional form of the covariances. Equation 2.3 is used in 

modelling as a length scale defined in terms of the velocity fluctuations. Taylor also 

introduced the special representation of turbulence. 

During the I940's and 50's developments in the statistical theory o f turbulence were 

made by a group in the USSR, including Kolmogorov, Mil l ionshikov and Obukhov, and 

in Cambridge where Taylor, Batchelor and Heisenberg were working. Historically, the 

first length scale used to characterise a turbulent field was the microscale introduced by 

Taylor (1935) and named after him: 

j E ( k ) d k 
, . ^ _ o 2.4 

T 

| k ' E ( k ) d k 

where E(k) is the energy density of the velocity spectrum and k is the wave number. 

Another set length scales was developed soon after, the Kolmogorov scale. These are 

typical length and velocity scales for dissipating eddies and were developed from 

dimensional analysis: 

^ . . 3 ^ X 2.5 
V 

^ £ y 
and V = (ve)''^ 

where is the Kolmogorov microscale and v the velocity scale, e is the dissipation rate 

of the velocity fluctuations. 

In more recent times the theory of chaos, (Thompson and Stewart (1986)) has been 

applied to the inherently non-linearity of fluid flows. This has lead to a highly complex 

branch of computational fluid dynamics and because of the need for very accurate 

measurements and the comparative crudity o f instruments available for field 

measurements this w i l l not be considered for this project. 

Even wi th all the advances made in the last century there is still no completely deductive 

theory for isotropic turbulence, and work still continues. 

The random nature o f turbulent flows requires statistical methods to describe the flow. 

This description w i l l be presented in section 2.4. 
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2.4 Modelling the Turbulent Boundary Layer 

There is a hierarchy of turbulent boundary layer models. According to Young (1989) the 

modelling processes can be broadly classified as follows: 

(1) Simple applications of the eddy viscosity concept combined wi th the Prandtl mixing 

length concept - ihe so called zero equation models. 

(2) The eddy viscosity concept is expressed as the product o f a characteristic velocity and 

length derived from modelled or simplified forms of the transport equations for turbulent 

quantities, usually the kinetic turbulent energy and dissipation - the so-called one or two 

equation models. 

(3) The additional use of modelled forms of the Reynolds stress transport equation but 

without the eddy viscosity concept - the so-called Reynolds stress transport models. 

These forms may be either algebraic or differential. 

(4) The time averaged Navier-Stokes Equations are solved for the larger eddies but the 

small eddies are empirically modelled using a sub-grid scale hypothesis. This is known as 

the large scale simulation process. 

The governing equations associated with modelling o f wave and current interaction are, 

as with fluid flows in general, the Navier-Stokes equations. It is assumed, f rom 

dimensional arguments and for all the models described below, that the convective 

accelerations as well as the Coriolis accelerations are negligible. Also assumed is that the 

flow is incompressible, i.e. that the term dp/di in the continuity equation can be ignored. 

This leads to the fol lowing equations: 

au 1 „ aTx^ 2.6 
at p ^ dz 

where t is the time variable, V is the vector operator: 

IP 

V = — i + — • 
3x dz 
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p is the pressure 

and U is the velocity vector 

and u*'* is the vector 

P = p + p ' 2.8 

U = u + u ' 2.9 

u ( U ( u ( > , w ( > ) 2.10 

The superscript ' indicates the components due to the waves and turbulence (or unsteady 

component) and the unmarked component is the current (the steady component). T and p 

are the stress, that is the force per unit area acting parallel to the bed, and density o f the 

water. 

These equations, however, are not a closed set as they contain second order products, the 

Reynolds stresses, within the stress term; the Reynolds stress transport equations contain 

third order products (as well as other unknown turbulence quantities) and so on. The 

Reynolds stress transport equations are obtained from the instantaneous Navier Stokes 

equations, i f the equation for u is multiplied by w' and u'. The resulting equation for w is 

multiplied by u'. The resulting equations are then added together and the mass weighted 

time mean subtracted from the result, this leads to the equation 

a(u>u.u.) 2.11 

8t 3x 

that is the triple correlations. An infinite set o f time-mean equations would be needed lo 

reproduce all the information in the instantaneous Navier-Stokes equations. To close the 

set o f equations the set of equations must be truncated by using experimental data or 

"inspired guesses" (Bradshaw el al. (1981)). 

The simplest closure able to account for the variability o f turbulent mixing is the mixing 

length concept introduced by Prandtl (1925). The mixing length is the average vertical 

distance (normal to the boundary) travelled by a fluid particle over which its initial 

momentum (or vorticity, Taylor (1935)) was conser\'ed, but at the end o f which it mixed 

with its surroundings. Physically this means that it must be assumed that the streamwise 

pressure forces and viscous stresses are comparatively small and hence unimportant, and 

this may be justif ied i f the eddies are "f la t" in the sense that the vertical dimensions are 
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much smaller than the horizontal. I f an element ( f lu id particle) is displaced vertically a 

small distance, /, its apparent perturbation velocity w i l l be : 

u ' = u ( z ) - u ( z + / ) = - / ^ 
dz 

2.12 

Figure 2.2 shows this momentum transfer schematically. By considering the momentum 

transfer due to the interchange of the two "envelopes" o f fluid with streamwise velocities 

of - I 3 u / 3 z and \du/dz respectively, Prandtl (1925) reasoned that the z component 

could be taken as l|3u/9z| . Thus the shear stress 

• P ( u ' w ' ) - P ( ' 0 f 
8u 

3z dz 

2.13 

where /„ =(( / ' ) )^ is the Prandtl mixing length. 1^ may be taken to be proportional to the 

distance from the boundary, i.e. = Az. For the constant stress region this gives 

au rPiiiX 2.14 
V — + pA 

dz {dz, 
pu 

where u , is the friction velocity. 

Solving the quadratic equation 2.13 for du/dz 

du 

dz 

2.15 

and using the scaling arguments u* = u /u . and z^ = z u . / v yields 

For large z^ this gives 

air 
az* 

au 

az* Az* 

2.16 

2.17 

Integration o f 2.17 yields the logarithmic law of the wall and hence A = K the von 

Karman constant taken as - 0.4. This approach for modelling wave and current 

interaction was taken by Bijker (1967). 
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The eddy viscosity concept was first introduced by Boussinesq (1877). It assumes that 

the eddy shear stress - p u ' w ' and the mean rate o f stress dujdz are linearly related as in 

laminar flow : 

3u 3u 2.18 
T = - p u ' w ' = ^ , — = pv. 

where | i i is the eddy viscosity coefficient, a function o f the local flow conditions. 

Similarly, v, can be regarded as the eddy kinematic viscosity coefficient. The two 

coefficients are determined by local flow conditions, and this is generally done by a 

combinauon of dimensional reasoning plus the analysis o f experimental data leading to 

useful empirical relations. 

A large number of more complicated turbulence models have been proposed since 

Prandtl's initial work. In his own work, Prandtl (1945) assumed that the eddy viscosity 

was related to the mean turbulent kinetic energy q = l / 2 ^ U j U j ^ as fol lows: 

V , = A q ^ A 2.19 

where A is a constant and A is a length scale. This correlation function is known as an 

integral length scale. Jones and Lauder (1972) proposed a relation of the form 

C.q^ 2.20 
V = — ^ 

e 
where C, is an empirical constant and e is the dissipation rale. To use this relation, one 

needs in addition a model for the dissipation, as well as the energy equation, suitably 

modelled. This introduces .several more empirical constants and better possibilities to 

achieve good fits to experimental flows. The model proposed by Jones and Lauder 

(1972) is the so-called k-£ model (k is the kinetic energy), and several versions o f this 

model exist. 

2.4.1 Modelling Wave and Current Interaction. 

There are many more closure schemes for modelling turbulent flows, including spectral 

models, Reynolds stress transport models and other models that introduce more and more 

equations. These models tend to be used more in aerodynamic flows than in 

hydrodynamic flows. 

14 



In the study o f the continental shelf boundary layer, particularly wave and current 

interaction the most often used models are those based on the zero-, one-, or two-

equation models, as described above. Before 1977 the only models that had been 

developed for these flows were simple, linear models for a current in the presence o f a 

wave for both co-directional and perpendicular flows. Both Smith (1977) and Grant and 

Madsen (1979) developed models to hypothesise the non-linear-interaction mechanism 

and to treat the flow for the wave and the current in both boundary layer regions 

simultaneously. Both these models looked at near-bottom flow and used simple time 

invariant, linearly varying eddy viscosity closures to model the flow while adopting 

different velocity scales in their closures. The Grant and Madsen model is formulated in 

such a way as to treat waves and currents at arbitral^ angles. A description o f a boundary 

layer using the eddy viscosity hypothesis is given below. 

Smith (1977) and Grant and Madsen (1979) were the first to consider non-linear wave 

and current interaction. They agree on the use o f an eddy viscosity which varies linearly 

with depth but di f fer on the equation taken for u , . Smith assumes l h a l u . is the sum of 

u , ^ , a friction velocity associated with the waves, calculated f rom an oscillatory 

turbulent boundary layer model, and a steady flow frict ion velocity u,^.. Above the wave 

current boundary layer the wave component o f the eddy viscosity is taken to be constant. 

Both the mean and oscillatory flows exhibit modified logarithmic layers, for the mean 

flow 

in the inner layer and 

where z, = 5 „ 

u — 

U = - ^ l n 
K 

z + 5. 

in the current boundary layer, where ^ = 
u 

2.21 

2.22 

The flow in the wave and current boundary layer is identical to the form for waves only 

but with the friction velocity replaced with the total wave and current fr ict ion velocity. 
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The effect of the presence of waves is an increase in the bottom shear stress. This effect 

can be perceived as an apparent increase in the law of the wall derived f rom equation 

2.12 and hence, the lowering of the ratio of U to u . f o r a given Z / Z Q . This effect is 

significant even for small waves; for example, i f u . ^ /u . ^ = 1/4then the boundary shear 

stress is increased by approximately 56% (Huntley, 1988). This enhanced shear stress is 

important for sediment transport, particularly as bedload. 

Grant and Madsen (1979) use the quadratic stress law for a combination of waves and 

current conditions to compute appropriate values o f fr ict ion velocity in the inner and 

outer layer. They consider the general case in which the wave and steady current 

directions are at an angle to each other. They argue that since the bed stress and the 

relative magnitude of wave and mean flows are inter-related in a complex non-linear 

manner, it is not clear which is the appropriate mean current to use in the quadratic stress 

law. Therefore, the mean flow and direction in the shear stress law are taken as 

unknowns. The solution is given in the form of a zero order Kelvin integral. 

Bed stress and velocity profiles are computed by an iterative process. Mean fiow speed 

and direction are known for a given reference height and various values o f flow speed 

and direction are tried within the stress equations until the resulting mean flow profile 

matches this reference flow speed and direction . 

As with Smith's model the profile found by Grant and Madsen's model in the outer 

regions has an apparent bottom roughness much larger than z^as the wave amplitude 

increases relative to the flow. Observations supporting the enhanced bottom roughness in 

the presence of large waves were quoted by Grant and Madsen (1979) f rom Forestall et 

al .( l977) who when using a simple log velocity profile model determined an apparent 

bottom roughnesses as high as 6m over a mud bottom. The wave heights were up to 7.3m 

and current speeds greater than 1.5ms"' in 21m of water during tropical storm Delia in the 

Gul f o f Mexico. 

The Grant and Madsen model is claimed to be the better method to use when wave and 

current interaction is being studied in a wave dominated environment whilst Smith's is 

more appropriate in current dominated flows, (Wiberg and Smith (1983)). 
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Christoffessen and Jonsson (1985) presented two eddy viscosity models, which make an 

analytical model solution possible, to describe the velocity field and shear stress under 

waves and current motion. The models have the same eddy viscosity in the current 

boundary layer but different wave boundary layer eddy viscosities. These two eddy 

viscosities ensure coverage of the whole rough turbulent regime. 

A straightforward relationship between instantaneous bed shear stress and the current -

wave motion is introduced which avoids the use of the reference velocities and Kelvin 

integrals used by Grant and Madsen (1979) and allow the analytical solution. 

Fredsoe (1984) calculates the mean velocity profile in wave and current motion using a 

depth integrated momentum equation. T w o velocity distributions are assumed inside and 

outside o f the wave boundary layer, both logarithmic, which allows description o f the 

flow for the whole range f rom pure wave to pure current motion and for any angle. The 

momentum equation used is: 

J P—(us in ( t ) -u ,^ s inY)iz = - T , s i n ( t ) 
u 2.23 

where ^ is the angle between the instantaneous flow direction in the boundary layer and 

the mean current, y is the angle between the mean current direction and the direction of 

wave propagation and u^^ is the velocity at the top of the wave boundary layer. 

The analogy between wave and current boundary layer flow and planetary layer flow is 

utilised in the model o f Myrhaug and Slaattelid (1990) by using similarity theory. The 

analogy is well known (Soulsby (1983) and Grant and Madsen (1982)) and is used 

fol lowing the work o f G i l l (1982). The turbulent current is described using a simple eddy 

viscosity representation which varies linearly wi th depth. Comparisons made wi th the 

experiments of Kemp and Simons (1982) and Bakker and Van Doom (1978) gave 

generally good agreement with model results. 

Davies et al. (1988) introduced a ful ly numerical model based on a two equation - k-£ -

turbulence closure model. A feature o f this closure scheme is that no assumptions are 

used other than those used successfully in modelling wave and current boundary layers 
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separately. This means that this approach works equally well wi th strong current and 

weak waves, weak current and strong waves and any intermediate condition. Many o f the 

previous methods were designed with one or other end o f the continuum in mind. This 

model does not have the discontinuities o f the earlier models as the boundary layer is not 

separated into parts associated with waves or currents. 

The final model to be discussed here is the model o f Huynh-Thanh and Temperville 

(1992) using another turbulence closure scheme, k-1, (turbulent kinetic energy - mixing 

length). In three dimensions Huynh-Thanh and Temperville (1992) investigated the 

effect o f wave and currents on the boundary layer. The ful ly numerical model was 

developed in Cartesian co-ordinates to study flat bed wave and current interaction and in 

orthogonal curvi-linear co-ordinates in order to investigate oscillatory turbulent flow over 

a rippled bed. Results f rom the model were compared with those of DuToi t and Sleath 

(1981). The models were shown to work well in predicting both velocity profiles and 

frict ion velocities as well as the complex flow properties over rippled beds. 

The principal conclusions of these models, for example greatly enhanced apparent bed 

roughness as *'seen" by the outer flow, are qualitatively similar. The results o f various 

model runs for a selection o f the models presented, using the parameterised versions (see 

section 2.4.2) w i l l be shown in chapter 6. 

More advanced models of the bottom boundary layer that include the effects o f sediment 

stratification, armouring and bioturbation have been developed. The effects o f the Earih*s 

rotation and stratification effects induced by temperature and salinity gradients in the 

outer boundary layer have also been included in some models (Grant et al. (1983), Glen 

and Grant (1987)) and Myrhaug and Slaattelid (1990) but are not included here. 

2.4.2 Parameterisation of the Models as done by the M A S T G S M Project 

Soulsby et al. (1994) presented results f rom eight different models in terms o f non-

dimensional parameters, y = T ^ / ( T , - f - T ^ ) a n d Y = T ^ / ( x ^ - l - T ^ ) , where is the bed 

shear stress produced by the current alone having the same depth averaged speed, , 

as for the combined case, is the maximum bed shear stress o f a wave alone having the 

same bottom orbital velocity amplitude, u ^ , as for the combined case, x^ is the mean 

bed shear stress and x ^ is the maximum shear stress. These eight models were chosen 
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by the M A S T G8 group as the ones either used by or devised by members o f the G 6 M 

group. Both analytical and ful ly numerical models are included. The analytical models 

include the time invariant, eddy viscosity models o f Grant and Madsen (1979) and 

Christofferson and Jonsson (1985); the analytical mixing length models o f Bi jker (1967) 

and van Kestem and Bakker (1984), the momentum defect model o f Fredsoe (1984) and 

the similarity model o f Myrhaug and Slaattelid (1990), The fu l ly numerical models o f 

Davies et al. (1988) and Huynh-Thanh and Temperville (1992) were also included, the 

former a two equation k-e model and the latter a one equation k-mixing length model. Y 

and y are plotted against x, where x e T , / ( T ^ + T ^ ) is a measure o f the relative strengths 

of the current and wave, x ranges from 0 for wave alone to 1 for current alone conditions. 

The stresses and T^are calculated directly f rom the input variables U^^„ and u ^ , 

using the relationships T ^ = p C ^ U ^ ' a n d = 0.5pf^Ub^. where is the drag 

coefficient for the current , on its own, f^ is the fr ict ion factor associated wi th the 

orbital velocity u^^, and p is the water density. The drag coefficient was obtained f rom 

the logarithmic profile expression 

0.4 2.24 

and the wave fr ict ion factor was calculated using the explicit formula of Swart (1974) 

f^ = 0.0025 lexp 

= 0.3 

5.21 for " v j ^ > 1.57 

for ^y(. < 1.57 

2.25 

In the absence o f any non-linear interaction, for waves at an angle o f ^ to the current, 

+ ( l - x)^ + 2 x ( l - x)cos(l) , by linear vector addition. For the special case of 

co-linear waves and currents Y = 1. Since in the absence of non-linear interaction the 

mean shear stress equals the stress due to the current for all angles, ()), y = x . 

The other input parameters required for the models are z ^ / h , and A ^ / Z Q , where Z Q is 

the physical bottom roughness, h is the mean water depth and = u^^/o is the wave 
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orbital excursion amplitude, where o is the absolute wave frequency, a = 27c/T, T is the 

wave period and is the bottom roughness associated wi th the grain size. 

The models chosen were run for 24 combinations o f z ^ / h , A^/z^ and and enough 

values o f x to resolve the curves. A n example o f the results is given in figure 2.3, 

(Soulsby et al. (1994), figure 7). 

A l l of the above models are computationally expensive and as such are not ideal for using 

in morphodynamic models. It was decided that simple algebraic expressions would be 

preferable for this purpose. 

The functions chosen give y and Y as functions o f x, as defined above, in the forms: 

y = x [ l + b x P ( l - x ) " ] 2.26 

Y = l + a x " ^ ( l - x ) " 2.27 

where a, m, n, b, p and q are fitting coefficients. These equations are not physically 

meaningful, in that they have no base in physics and were chosen only because they were 

suggested by the shape o f the result curves f rom the inter-comparison exercises. 

Equations 2.26 and 2.27 were fitted by a non-linear least squares technique to the results 

f rom each o f the models in the inter-comparison. Values for the fitting coefficients were 

calculated for each model. Comparisons between the parameierised models and the 

calculated models were made and reasonable agreement was found. In nearly all cases a 

relative standard error of between 1 and 3% and a maximum relative error o f 5 to 10% 

were found. This accuracy was considered acceptable as the errors are smaller than the 

differences between the models. These equations and coefficients, it was concluded, give 

a computationally efficient and acceptably accurate approximation to the maximum and 

mean shear stresses predicted by the models. 
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Figure 2.3 An example of ihe curves used in the parameterisation from Soulsby et al. (1994) 
showing the maximum and mean shear stresses calculated for each model. 
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Soulsby et al. (1994) and Simons et al. (1995) used equations 2.26 and 2.27 to produce a 

parameterised model based on field data. A least squared fit o f 131 field estimates o f 

maximum and mean shear stresses was carried out using 2, 3 and 13 coefficients. These 

coefficients were used in the same way as the parameterised models to then estimate 

shear stresses f rom other field data. 

2.5 Field Studies 

With the development of the models suitable for demonstration and prediction o f wave 

and current interaction it became necessary to collect data to test the accuracy of the 

model predictions. 

Cacchione and Drake (1982) collected a set of data during a storm on the Bering Sea 

shelf. The relatively large and steady currents and high waves generated during the storm 

made it a satisfactory set of data for testing these models. 

The field site was located in Norton Sound, Alaska. The Geoprobe tripod system was 

situated in approximately 18m of water on a relatively smooth bed o f fine grained non-

cohesive material wi th a mean diameter of 70jxm, (Cacchione and Drake, 1982). The 

data set was comprised o f measurements o f pressure and horizontal components of 

current velocity measured at four levels above, but within one metre of, the seabed. The 

data were collected in bursts of 60 seconds every hour at a frequency of I Hz. Also at 2m 

above the bottom values o f percent light scattering and light transmission were recorded 

hourly and subsequently converted to suspended sediment concentration units. 

Cacchione and Drake analysed their data using the logarithmic profile to estimate bottom 

stresses and bottom roughness and compared the results wi th the Gram and Madsen 

model predictions. They concluded that the large values o f apparent bottom roughness, 

Zo, indicated by their measured data were not fu l ly explained by the wave and current 

interaction model. 

Wiberg and Smith (1983) did a comparison of field data and theoretical models using 

some of the data collected by Cacchione and Drake (1982). They used the Grant and 

Madsen (1979) model and the Smith model wi th a few alterations: first the total shear 

stress was found by summing the enhanced boundary shear stresses associated wi th 

waves and currents rather than by summing the respective shear velocities. Second, the 
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model was altered to take into account differences between wave and current directions. 

Stratification effects resulting f rom the near bottom suspended sediment were included in 

the Smith model also. The effect o f stable stratification inhibits vertical momentum and 

mass transfer and hence reduces the shear stress near the bottom. 

Wiberg and Smith (1983) suggested that the frame of the Geoprobe station settled or 

scoured several centimetres into the soft bottom, thereby reducing the distance between 

the instruments and the bed. This settling/scour could have caused the velocity profiles, 

determined from the data, to curve relative to the ideal semi-logarithmic profile and to 

yield physically unrealistic values o f the roughness parameter. Also they found that the 

lowest current meter appeared to be within the wake caused by one of the support legs of 

the instrument tripod, with the result that the velocity measured at that height was low. 

This reduction in velocity was corrected for using turbulent wake theory. The velocity 

profiles were adjusted for the change in distance between the bed and the current meters 

by decreasing the distance until each profile was straight. The change in height above 

bottom and current velocity resulted in lower values of the shear (fr ict ion) velocity, u*, 

and roughness parameters, Z Q . The Smith and Grant and Madsen Models were able to 

predict the adjusted profiles well . 

Wiberg and Smith (1983) used a density stratification correction incorporated into the 

Smith model fol lowing procedures outlined by Smith and McLean (1977) and Long 

(1981). The presence of stable stratification inhibits vertical momentum and mass 

transfer, thereby reducing the shear stress near the bottom. Long (1981) presented a 

model to estimate the effect of stable density stratification on the vertical dif fusion of 

mass and momentum. Applying this stratification model, however, does create a 

problem, since the density stratification correction is not time dependent, and the effect of 

the waves on the suspended sediment was not clear. Wiberg and Smith decided that since 

the average particle fell at most 1.1 cm per half wave cycle, less than half the wave 

boundary depth, the error introduced by the neglecting o f the time dependence is small 

and so time dependence was ignored. 

They concluded that the results o f the model were sufficiently similar that there is no 

basis upon which to single out one of the models as being superior over the other. Also 

that 
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'^Estimates of the reduction in vertical dif fusion o f momentum and mass as 
a result o f near-bottom suspended sediment indicate that no sediment 
stratification correction is required in this case." 

It was also found that the models provided a better estimate o f the measured shear 

velocity than can be obtained when only the currents are included in the calculations. 

The Coastal Ocean Dynamics Experiment - (CODE) - (Allen et al. (1982)) on the 

Northern Californian continental shelf provided an excellent opportunity to investigate 

the structure of the bottom stress field on a geomorphologically simple continental shelf. 

The overall objectives of the CODE experiment were to identify and study important 

dynamical processes that govern the wind driven motion of coastal waters over the 

continental shelf. A 4 year research program was initiated to collect high quality data sets 

of all the relevant physical variables needed to construct accurate kinematic and dynamic 

descriptions of the response of shelf water to strong wind forcing in the 2-10 day synoptic 

scale. T w o small scaled densely instrumented field experiments each o f 4 months were 

carried out in the spring of 1981 and 1982. Data including wind speed and direction, 

solar radiation, temperature, surface currents, bottom pressure and near bottom currents, 

as well as shipboard observations of temperature, conductivity and surface fiuxes, and 

aircraft and satellite derived measurements, were all collected over these periods. 

Grant et al. (1983) presented results o f the bottom current measurements made as part of 

the bottom boundary layer and bottom stress component o f CODE-1 . Geoprobe 

(Cacchione and Drake, 1982) was deployed in 90m water depth at a midshelf location in 

the CODE-1 area for up to two months. The tripod measured velocity profiles every two 

hours along wi th a set of supporting data variables. These measurements were analysed to 

give long lime series o f stress and near bottom fiow. 

A shorter term experiment was set up, consisting of an array o f Woods Hole 

Oceanographic Institution bottom tripods ( W H O I BASS W ) deployed for between 3 and 

5 days. Three components o f velocity were measured al four levels above the seabed to a 

maximum height of 2m above the seabed, using a repeating sequence of continuous 

measurements for up to several hours and a shut-off period o f approximately an hour. 

The current meters, acoustic-travel-iime meters, measured velocity averaged over a 15cm 
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diameter sphere. The data were collected at 5 Hz. The bottom boundary layer 

measurements were analysed for velocity profiles, roughness lengths and shear stress 

estimates using dissipation and profile techniques. The results o f the analyses were 

compared with predictions made using Grant and Madsen's 1979 model. I t was found 

that roughness length and shear velocity value estimates were much larger than could be 

explained by physical bottom roughnesses and mean flow alone. Support data on 

temperature, salinity and variables demonstrated that the observed u* and Z Q values 

cannot be attributed to their influence. 

Comparisons between the data estimates and predictions using the combined wave and 

current model o f Grant and Madsen (1979) show good agreement between estimated and 

predicted u* and zo values. There was found to be a minor problem wi th the prediction 

scheme, involving the estimation of physical bottom roughness over the bioturbated 

bottom characteristic of the midshelf region. The values had to be estimated empirically 

which, it was stated, did not affect the validity o f the results but did complicate 

predictions unless photographs or box cores existed. Grant et al. (1983) concluded that 

the correspondence between the estimates f rom the dissipation and profi le techniques was 

a good measure o f the quality of the data set. They point out that care must be used when 

interpreting and applying stress values estimated in the field and that the field 

measurements provide good support for the general importance o f wave and current 

interaction to bottom stress behaviour and boundary layer processes on continental 

shelves. However, there was some uncertainties about the contribution o f bedforms to 

the large measured stresses (Huntley (1985) and Grant and Wil l iams (1985)). Gust 

(1985) also pointed out two apparent errors in their use o f the dissipation method for 

estimating bottom stress. The Grant et al. (1983) results were revised and discussed in 

Huntley (1988). 

Huntley and Hazen (1988) describe field measurements made on the Nova Scotia 

continental shelf in two separate deployments. In July 1984 the tripod was deployed in 

25m water depth in Cow Bay, Nova Scotia, the second deployment site was on Sable 

Island Bank in a depth of 45m in September 1984. The instruments on the tripod 

consisted o f 2 or 3 pairs of electromagnetic current meters ( E M C M ) deployed 

orthogonally at different heights, each measuring one horizontal and the vertical 

component o f the flow. Also, an array o f heated thermistors was used in one o f the 
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deployments which helped in the determination o f the zero flow offset. Other sensors 

attached to the tripod included a stereo camera, to help with the small scale topographic 

scales, an optical transmissomeler, a digital compass and direction vanes for monitoring 

mean flow direction. 

The paper discussed the estimation of mean flow friction (shear) velocity for the two sites 

where both mean f low and waves were present. Friction velocities were estimated by the 

modified dissipation method described by Huntley (1988). 

The number o f observations discussed was small, covering a restricted range o f waves 

and mean flow conditions. The measured values o f the frict ion velocity were consistently 

larger than can be readily explained by a boundary layer where mean flow effects alone 

are important. It was impossible to rule out entirely the possibility that the observations 

were the result o f extremes o f bottom roughness, but it is unlikely to have been the case 

at both sites. It was concluded that it was reasonable to suggest that enhanced bottom 

stresses were due to the presence o f wave motion. 

The results were compared with the predictions based on the Grant and Madsen (1979) 

model. The predictions based on the significant wave velocity were in close agreement 

with the observations. This agreement was encouraging and suggested that, at least for 

low energy conditions, the Grant and Madsen model accurately predicted the influence of 

waves. 

Lyne ei al. (1990) investigated sediment movement along the U.S. east coast continental 

shelf and estimated bottom stress using the Grant and Madsen model and near bottom 

wave and current measurements. They took the position that the shear stress model 

results were correct and compared these with conventional drag law estimates o f shear 

stress. A long term programme of measurements of bottom pressure fluctuations and 

currents over the M i d Atlantic Bight continental shelf and the southern flank o f the 

George's Bank was carried out between 1976 and 1984. One of the objectives o f the 

programme was to assess the spatial and temporal variability of bottom stress, and its 

implications for sediment transport. The instruments were deployed on a bottom 

mounted tripod system. Time series o f current speed and direction were measured, at 

approximately I m above the bed, by a Savonius rotor and small vane sensor. Pressure 
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was measured by a quartz crystal transducer and turbidity was measured by a 

transmissometer. Time lapse photographs o f the seabed were also taken. Samples were 

taken at a burst rate o f 4s for a period of 48s (12 samples) repealed every 3.75 or 7.5 

minutes The tripod was deployed at 4 stations along the U.S. north-eastern continental 

shelf which spanned a wide range o f tidal currents and bottom sediment texture, in water 

depths varying from 64 to 80m. Sediment varied f rom coarse - 200| im median size wi th 

megaripple sand wave field to finer texture sediment wi th asymmetrical sand ripples a 

few centimetres in height. 

Bottom stress was computed using the Grant and Madsen (1979 and 1982) models but 

uncertainties in the bottom stress were found to be due to errors in measured waves and 

bedforms. Lyne et al, (1990) found that the Savonius rotor and vane sensors provided 

adequate current observations during most of the observation period except when the 

waves were large and mean currents weak. 

Computations of stress and roughness which incorporate moveable bed effects, such as 

ripple formation and sediment transport, suggest large increases and decreases in 

effective bed roughness during storms. At one station predicted ripple roughnesses were 

almost twice as large as those based on observed ripples. Lyne et al. (1990) concluded 

that the moveable bed effects are a l imit ing factor in using the models to predict bottom 

stress and that further field and laboratory studies were needed to refine and validate both 

fixed and moveable bed models in realistic field conditions. They also concluded that, 

assuming the model to be right, the bottom shear stress calculated f rom the corrected 

wave and current were accurate to within 10-20% except when the bottom wave speed 

exceeded the current speed. When this occurred stress estimates were considerably larger 

than predicted, this was attributed to a problem with the sensors and sampling scheme 

rather than the model. 

Data were collected in Marsden Bay on the N.E. coast of England in approximately 24m 

water depth by Green et al. (1990). Instruments were attached to a tetrapod and included 

an array o f 5 E M C M ' s , a camera and fiash, a transmissomeier, an altimeter and a logging 

processing unit. The current meters measured two orthogonal components o f the 

horizontal fiow at 5 elevations above the bottom, f rom 13cm to 133cm above the bed. 

Sampling was carried out in bursts of 10 minutes out o f every 30 minutes and consisted 
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of 500 points wi th a sampling interval o f 1.2 seconds. Using a logarithmic profile 

method they found that the magnitude o f the frict ion velocity inferred by the measured 

velocity profiles appeared to decrease wi th the near bed wave energy, which is consistent 

with wave/current theory. Also, the discrepancy between roughness inferred by the 

measured velocity profiles above the wave boundary layer and the expected roughness 

was greatest when the waves were most energetic, as would also be expected wi th wave 

and current interaction. 

A two layer time invariant eddy viscosity model o f the wave/current boundary layer was 

used to predict the time averaged friction velocity and the predictions compared well with 

observations with the exceptions that formed two groups. The first group, in which the 

modelled estimates were underestimates o f the observations, comprised observations 

from the time of peak observed bed stress. Green et al. (1990) suggest that a plausible 

explanation for this discrepancy is that an evolving ripple field an/or saltating layer was 

unaccounted for in the predictions. The second group, in which model predictions were 

over estimates of the observations, comprised observations for times of min imum 

observed bed stress. These bursts also had the lowest observed roughness Reynolds 

number, all of which fell below the critical value for transition to fu l ly rough turbulent 

now. Since laboratory measurements imply wave and current interaction does not occur 

within a the smooth turbulent boundary layer, (Green et al. (1990)), the predictions of 

lime averaged velocity were repeated using a smooth turbulent pure current model. The 

predictions were significantly improved, thus supporting the suggestion that ripples could 

be forming. 

Soulsby and Humphrey (1989) present data collected over an immobile rough bed, a 

featureless mixture o f gravel sand and shell. The measurements were made in October 

1986 at a site in the English channel 7.5 km south west o f the Isle o f Wight . The 

instruments were mounted on a self-recording frame - S T A B L E - (Sediment Transport 

And Boundary Layer Equipment) and consisted of four E M C M ' s , two of which measured 

two horizontal components of velocity at heights o f 10 and 80 cm and an orthogonal pair 

mounted at 40 cm to record all three components of the flow. A pressure transducer 

measured tidal variation but failed to record wave induced pressure fluctuations. Data 

were collected at 4 Hz for 8.5 minutes with one record made every 3 hours. 
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Figure 2.4 Soulsby and Humphery (I989)'s Figure 9 shows ihe drag coefficient. 
= " C o / p U , . „ . as a function of wave to current r a t i o , a , ^ / U , 

The data collected were used to estimate bottom stresses using three different methods: 

^2 
logarithmic profile, Reynolds stress method (i.e. = p^u'w'^ + v ' w ' ^ j ^ ) and a new 

technique o f splitting the spectrum into Huctuations due to waves and fluctuations due to 

turbulence. Soulsby and Humphrey concluded that the three methods o f deriving the bed 

shear stress gave essentially similar values under all wave and current conditions and that 

the bed shear stress and turbulent kinetic energy increased strongly with the wavexurrent 

ratio. Figure 2.4 is a copy of their results, their figure 9, which shows the drag coefficient 

as a function of the wave to current ratio, 

2.6 Model of Tidal Currents over the inner shelf, at Nieuwpoort, 

Belgium, as a Large Scale Method to Estimate Bed stress. 

Another method to estimate shear stresses was suggested by O'Connor et al. (1995). This 

large scale method used the relationship between the tidal elevation and the tidal current 

to estimate a linear fr ict ion coefficient. 

Studies al or just offshore from the proposed field site for this project have revealed a 

difference between tidal fiows measured offshore and those measured al the coast. 

Lanckneus et al. (1994; quoting Van Cauwerberghe (1992)) described the tidal f low " o f f 
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Nieuwpoort" as lagging the elevation by about one hour at low tide and between one and 

two hours at hightide, implying the easterly tidal flow increases in magnitude over high 

tide. O'Connor et al. (1995) found, in contrast, that beach measurements show a 

consistent decrease over high tide, with maximum eastward flow as the sensors were 

covered and a decreasing flow until the instruments emerged. In order to explain this 

phase shift a simple model of the alongshore tidal flow due to the tidal wave propagating 

from west to east along the Belgian coast was proposed. 

Assume a simple linearised equation for depth-averaged flow, with a linear fr ic t ion 

coefficient, such that the alongshore tidal current is dependent only on tidal elevation and 

water depth, i.e. 

dy___ ^ _ K y 2.28 

d\~ ^dy h 

where v is the alongshore tidal flow, r| is the tidal elevation, K is the linear fr ic t ion 

coefficient, with dimensions of velocity, h is the water depth, the y co-ordinate is 

orientated alongshore, positive to the east, and g is the acceleration due to gravity. 

It is also necessary to assume that the tidal elevation gradient term is independent o f the 

water depth, i.e. has no dependence on cross-shore distance. 

Wri t ing: 

dy 

v = v,e"'^-"* 2.30 

where k is the tidal wavenumber and the wave propagation is assumed to be in the 

positive y direction (eastwards), substituting into equation 2.28 gives: 

^ K v , 2.31 
- l a v , = - F , 

h 

rearrangmg gives f K ^ 2.32 
- - + i a Fo 
h J 

— -f-a^ 
h 

Since it is only necessary to be concerned with the phase of v relative to the elevation 

gradient it is possible to assume that F̂  is real, i.e. that it has a phase o f zero. Hence: 

V o = v,e '^ 2.33 
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where \ \ h 2.34 
v„ = ^ 

,2 

and 
q = tan 

^Oh^ 

K 

2.35 

Thus as K tends to zero, when friction can be considered negligible, the phase between 

the elevation gradient and the current approaches 7 i / 2 , i.e. the elevation and current are 

in phase and the tide is just an eastward progressive wave. When the frict ion dominates, 

q —> 0, the elevation and current are in quadrature, as for a standing wave. This model 

implies that as the depth decreases towards the shore the tidal wave becomes more like a 

standing wave wi th maximum flows occurring inshore earlier than offshore. This 

prediction agrees with obser\'ations made o f f the Belgian coast (Van Cauwcnberghe 

(1977, 1985 and 1992)), and presents an explanation for the observed fiows. 

O'Connor et al. (1995) used this model to give a rough estimate o f the linear fr ict ion 

coefficient for the beach alongshore currents. By fiuing a sinusoid of M2 period to the 

data From a tidal cycle using a least squares method they found estimates for the quadratic 

drag coefficient, Cd, in the range (0.5 - l .5 )x 10"'. They suggest that whilst there is 

ample room for refinement, the methodology showed promise. This method w i l l not be 

used to estimate shear stresses, those chosen w i l l be described in detail in chapter 4. 

2.7 Sediment transport under waves and currents 

Wave motion by itself does not produce any net sediment transport. However, the waves 

are a very effective stirring mechanism (Dyer (1986)), and can create suspension at a 

much lower equivalent velocity than a steady current. Once in suspension the sediment 

can be moved by relatively small currents which by themselves would not be able to 

move the sediment. 

When water flows over a bed of loose grains there is a velocity at which the combined l i f t 

and drag forces on the top particles are great enough to dislodge the sediment particles. 

This velocity is known as the critical or threshold velocity. Related to this is the critical 

or threshold shear stress. 
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For a high Reynolds number regime the l i f t and drag coefficients are independent o f the 

grain Reynolds number: 

Re .=M 2.36 
V 

where d is the mean sediment grain size. The Shields entrainment function, 0, is a 

dimensionless function which compares the shear stress w i th the immersed weight o f a 

unit grain thickness layer o f the bed: 

T 2.37 

( P s - P ) g d 

where is the density o f the sediment. Shields produced a threshold curve (see Dyer 

(1986), p i 12) relating the grain Reynolds number to the Shields parameter. I f the critical 

Shields parameter is exceeded then sediment transport occurs. This however does not 

mean that there is no sediment transport below its threshold. Bursting events can occur 

within the viscous sublayer which may result in the movement o f some of the exposed 

grains. 

Sediment transport has been modelled under waves and currents, for example Glen and 

Grant (1987) using an eddy viscosity closure scheme, but these models have not been 

used in subsequent chapters and w i l l not be discussed here. 

2.8 Conclusions drawn from the review 

Wave and current interaction has been studied extensively over the last two decades. A 

wide range o f models exist, all predicting the enhanced mean f l o w bed stress in the 

presence of waves and currents. Field measurements conf i rm this enhancement, 

however, there is still considerable uncertainty about its magnitude. This is especially 

true for the relatively large wave conditions experienced in the nearshore zone. Hence, 

the work described in the fol lowing chapters w i l l , in some part, remedy this situation. 
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Chapter 3 

Fieldwork and Data Collection 

3.1 Rationale 

There has been little work until recently on the effects of wave and current interaction 

(WCI) in the nearshore zone. In section 2.5 field studies were presented in which the 

data collected were used to investigate wave and current interaction. A l l o f these studies 

were carried out in water depths o f greater than 20m where wave action was still present, 

but none were carried out in the intertidal zone. The problems of collecting data in the 

inter-iidal zone are many: the equipment is only covered for short periods of time on 

either side o f high tide and hence there is only a short time to collect data over each tidal 

cycle. The surf zone is an intensely dynamic environment and breaking waves can 

produce enormous forces which are potentially damaging to both the instruments and 

their rigs, as experience has shown. There is also the problem of sediment movement, 

not just in the surf zone but when the sea covers the beach area the seawater permeates 

into the sand and the sand-seawater mixture acts as a liquid. This liquefaction effect is 

felt for as much as I m below the seabed, (Huntley, Pers. Comm). To keep the equipment 

steady it is necessary to have the bottom of the rigs deep enough to minimise the 

instability caused by the liquefaction o f the sediment. These problems were just some 

which were anticipated; other problems were encountered and overcome and w i l l be 

described as the situations occur. Most studies carried out have been in environments of 

co-linear or nearly co-linear waves and currents; but the object of the field campaign was 

to gain knowledge of W C I in a natural setting and to obtain data of a sufficient quality to 

make comparisons with turbulence models being developed as part of the M A S T GSM 

project. Another objective was to establish the conditions under which existing methods 
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for estimating bed shear stresses can be used and to ascertain the predictability o f the 

results. Whilst there are other data sets available it was anticipated that the new data set 

would expand the breadth o f useful data sets by collecting data in the presence o f a larger 

wave to current ratio. 

Since wave and current interaction occurs wherever there are waves and a current 

present, whether in estuaries or on beaches, in shallow or in deep water, it was 

unnecessary to set up a specific and separate field campaign. This made it possible to 

collaborate with another project. The data were collected as part o f the M A S T IT C S T A B 

(Circulation and Sediment Transport Around Banks) project (contract MAS2-CT92-

0024). Collaborators on this campaign included Southampton University; University of 

Liverpool; University o f Reading; Birkbeck College, London, University o f Lisbon, 

Portugal and Bordeaux University, France. 

To study wave and current interaction in the field, only two things are necessary, waves 

which affect the entire water column and currents o f sufficient velocities to enable the 

turbulent fluctuations to be perceived by the current meters. This statement w i l l be 

explained in more detail in chapter 4, (figure 4.6), but briefly, velocities greater than 

15 cms" are required. 

3.2 Instrumentation 

Three types o f instruments were used in the deployment - electromagnetic current meters, 

pressure transducers and optical backscatter sensors. 

3.2.1 Electromagnetic Current Meters (EMCM) 

Two types o f EMCM's were used, Series 800, 5.5 cm spherical and 17 cm annular, (see 

figure 3.1), made by Valeport of Dartmouth, Devon. Both types o f EMCM's work by the 

same principle. In the head o f each instrument is a coil which sets up a magnetic field. 

Two pairs o f electrodes are arranged around the head so that each electrode is 

diametrically opposed to its mate and each pair is orthogonal to the other. By Faraday's 

law of induction when an electrical conductor o f a given length passes through a 

magnetic field o f a known strength at a velocity in a direction at right angles to both the 

magnetic field and its length an electromotive force E is generated 
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E^V 3.1 

where V is the velocity. The length of the electrical conductor for the current meters is 

the diameter of the sensing volume, given in table 3.1, £ is measured in the field and the 

constant of proportionality is the calibration gain. 

Annular Electrodes Spherical 

5. Sent*' 

17.5 cm 

Figure 3.1 Two types of electromagnetic current meters were used, the annular (left) and 
the spherical (right). 

Figure 3.1 shows the two heads of the instruments used. At the top of these heads are 

stainless steel fixing points which enable the instruments to be attached to the 

deployment frame. A 3 m cable runs from the top of each meter to a watertight canister 

containing all the electronic equipment controlling the sensing ability of each instrument. 

The arrangement of the instruments will be described in more detail in section 3.3.5, and 

the data logging system will be described in section 3.3.6. 

3.2.1.1 Filter Characteristics 

The EMCM's each have a manufacturer's low-pass filter in the instrument pod attached to 

the 3 m cable from the pod to the head. The filter insures against aliasing of the signal, 

which can occur when fluctuations at higher frequencies than the Nyquist frequency, half 
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the digitisation rate, are interpreted as fluctuations due to lower frequencies. The 

manufacturers specified that the filters supplied had a cut-off of 1.25 Hz, that is that at 

1.25 Hz the signal was at half power, -3dB. To collect data with turbulent fluctuations at 

a higher frequency than 1.25 Hz the filters had to be changed. This involved changing a 

number of resistors, (30), in each instrument pod. Because of the intricacy of this 

operation only two current meters were changed from 1.25 to 4 Hz. Despite this change 

subsequent analysis of data collected in a previous campaign indicated that the filters 

were not working in the anticipated way. 

(a) 

3dB cut-otf 

Frequency (Heriz) 

(b) 

3dB cut-off 

0.1 

Frequcncy(Hz) 

Figure 3.2 Filler characteristics of the EMCM's before, (a), and after, (b), resistors were 
changed. 
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An examination of the filter description in the manufacturer's manual revealed that the 

filters had a cut-off of 1.25 Hz. However, there were three of these filters in series within 

each of the instrument pods. As a result the signal at 1.25 Hz was actually at -9dB after 

going through the three filters, that is not 1/2 but 1/8 power. 

The filters were checked by sending signals of a known frequency and amplitude into the 

filters and comparing these with the output. The results are shown in figure 3.2. Figure 

3.2(a) are the results from the manufacturer's original filters showing a -3dB cut-off at 

0.8 Hz and figure 3.2(b) shows the results from the filters that were changed giving a cut

off of 2.4 Hz, which is consistent with a -9dB at 1.25Hz and 4Hz, respectively. 

The technical data for the two types of EMCM's is listed in table 3.1 below. 

Spherical 0.055m diameter Annular 0.17m diameter 

Sensing Volumes 3 times sensor head 0.1 m diameter sphere 
diameter 
0.175m diameter sphere 

Noise < 0.015 ms*'rms <0.01ms"'rms 
Typical errors to linear < 0.02ms*' < 0.002ms"' 
calibration fit 

Table 3.1 Comparison of the technical data of iwo EMCM types, from Valeport technical 
data sheet. 

3.2.1.2 Calibration of the EMCM's 

Calibration of the instruments took place both before and after the field campaign. 

3.2.1.2.1 Gains 

The instruments were calibrated in a large lowing tank at the Royal Naval Engineering 

College (RNEC), Manadon. The tank was 30m long and 5m wide and varied in depth 

from 2 to 3 m, figure 3,3. A gantry above the tank could be moved down the length of 

the tank by computer controlled stepper motors at speeds ranging from 5 cms ' to 3 ms''. 

The instruments were suspended from the gantry above the water using the frames which 

would be used in the field campaign as field stations and submerged to a depth of 

approximately 0.3 m beneath the water surface. Sensor orientation was accomplished as 

follows: at the lop of each current meter is a notch, denoted as the "y-notch", to indicate 
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the orientation of the flow meter, that is the nominal positive y axis when the notch is 

into the flow. The instrument pods were attached to the gantry above the water to insure 

that they did not drag through the water and interfere with the flow over the instruments. 

A cable, known as the beach cable ran the length of the tank and was suspended away 

from the gantry by a pole so as not to impede the movement of the gantry. The complete 

system to be used in the field, including the data logging system, was used to ensure 

calibration of the system as it would be used in the field. A more complete description of 

the data logging system is given in section 3.3.6. 

Cabinet 
3m 

Gantry 

/ 
30m 

Figure 3.3 Diagram of lank used in calibration of both pressure transducers and 
eleciromagneiic current meters. 

An initial run of 2.5 ms' was carried out to look for any misalignment of the instruments 

into the flow. A misalignment would manifest itself as an increase in the voltage 

recorded for the electrodes normal to the flow, showing that the electrodes were sensing a 

change in the magnetic field caused by the velocity of the instruments through the water. 

Sets of data were recorded for velocities ranging from 0 to 2.5 ms ', first with the y notch 

into the flow then with the y-notch at 90° to the flow. A run of 3 ms ' was done for one 

set of instruments but bubbles of air were observed forming around the instrument head, 

due to the wake caused by the post connecting the head to the rest of the instrument and 

so the data had to be discarded. 

Data collected from each run were processed and a straight line of best fit for voltage 

versus towing speed was calculated for each instrument channel. Table 3.2 gives the 

calibration gains found in the experiment, with the r̂  values and degrees of freedom. 

Figure 3.4 shows the calibration data from the current meter B3Y, (chosen for having the 
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lowest r value). Whilst the gains vary considerably between instruments, ranging from 

0.99 and 1.35 at the extremes, it is satisfying to note the similarities between each current 

meter pair. 

• - B3Y 

Linear (B3Y) 

0 0.2 0.4 0.6 0,8 I 1.2 

Velocity (m/s) 

1.4 1.6 1.8 

Figure 3.4 Calibration results from EMCM B3Y showing linear line of best fit. 

Current Channel Gain r^For Degrees of 
Meter Volls/(m/s) Linear Fit Freedom 

A l X 1.29 0.996 9 
Y 1.30 0.997 10 

A2 X 1.02 0.998 9 
Y 1.08 0.992 10 

A3 X 1.35 0.999 10 
Y 1.31 0.9995 10 

B l X 0.99 0.995 9 
Y 1.01 0.993 9 

B2 X 1.23 0.999 9 
Y 1.21 0.998 9 

83 X 0.99 0.996 9 
Y 0.96 0.992 9 

Table 3.2 EMCM calibration constants, giving the degrees of freedom of the linear best fit. 

3.2.1.2.2 Offsets 

It is known that offsets of the EMCM's vary depending on the environment in which the 

EMCM's are found. For this reason offsets taken in field conditions are used in 

subsequent analysis. Examples of variation in the offsets are given in table 3.3; the 

disparity is quite considerable and could lead to a difference in velocity of as much as 
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50cms"' in the worst case. It was suggested, Humphery (Pers. comm.) that the offsets 

changed when the instruments dried out, however a subsequent field deployment at a 

shelf edge site, (Chatwin (1996)), where rotor current meters were also deployed, 

revealed a continuous drift in the offsets over the entire deployment, two weeks, although 

the instruments were covered for the whole campaign. Consultation with the 

manufacturers revealed that they were unaware of this problem and details of the 

observations made were sent to them. The manufacturers suggested that the differences 

in offsets in the Manadon data were caused by high frequency noise due to the stepper 

motors used to run the gantry. 

Reasons for the drift in the offsets are not completely understood. The EMCM's are very 

sensitive to changes in the magnetic field surrounding them and electrical interference 

can cause a significant difference in the zero-offset voltage. Huntley and Hazen (1988) 

found that the offset variations lead to uncertainties in the mean flow of 2-3 cms ' ' . 

Errors from offsets of the order of tens of centimetres in the field are unlikely to occur as 

the magnetic field surrounding the instrument station would not be of the same strength 

as those in the laboratory. Also, an enormous error in offsets such as this would show up 

when the velocities from the different current meters are compared. It was decided to use 

the offsets taken in the field to calculate the flows from the time series. 

Current 
Meter 

Channel Offsets 
Manadon 

Laboratory Belgium 

A l X 0.0563 0.1836 -0.1552 
Y 0.0647 0.0048 -0.0873 

A2 X 0.0661 0.0656 -0.0246 
Y 0.2608 0.0053 0.1138 

A3 X -0.2136 0.4668 -0.0544 
Y -0.0313 0.1063 0.0941 

B l X 0.1329 -0.1093 0.2258 
Y -0.0572 -0.0708 

B2 X -0.1705 -0.0031 0.0575 
Y -0.1886 0.0315 0.0201 

83 X 0.0825 0.0855 0.0572 
Y 0.0825 0.1216 0.0224 

Table 3.3 Table of offsets in volts taken at the time of calibration at Manadon RNEC, in 
the laboratory and in the field. 
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The offsets and gains are used to convert voltage to velocity using a linear equation of 

the form: velocity = (voltage - offset)/gain. 

3.2.2 Pressure Transducers. 

The pressure transducers used were Druck PTX 164 pressure sensors manufactured by 

Druck Limited of Leicester, England, shown schematically in figure 3.5. The sensors are 

piezo-resistive strain gauges and use high performance silicon diaphragm technology to 

translate pressure signals to a voltage output. The deformation of the diaphragm causes a 

change in the resistance of the material which is recorded as a fluctuation in the voltage 

output. The PTX 164 model is particularly recommended for salt water applications as it 

is built of titanium in order to be corrosion resistant. The two PT's used in the 

experiment had the specifications shown in table 3.4. 

c 
Restricted inlets 

15cm 

Cable 

Figure 3.5 Diagram showing dimensions of pressure transducer. 

Red Blue 

Pressure Range 2 bars absolute 

Input Output 

Low Pressure 200 mbars 5.530 mA 

High Pressure 2000 mbars 20.012 mA 

2 bars absolute 

Input 

35 mbars 

2000 mbars 

Output 

4.275 mA 

20.000 mA 

Table 3.4 Technical data for the pressure transducers. 

3.2.2.1 Calibration 

The PT's were calibrated statically in a deep tank at RNEC, Manadon, where each 

transducer was lowered to a pre-specified depth below the surface of the water. Readings 

were taken to a depth of 3.5m and lines of best fit of output voltage against depth were 
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calculated for both PT's. The results of the calibration can be seen in figure 3.6. The r̂  

values in table 3.5 show the fit to a straight line to be excellent. The gain and offset 

convert voltage to meters using a linear equation of the form 

depth = (voltage - offset)/gain , as the independent variable for the regression is depth. 

1.5 2 

Depth, metres 

2.5 3.5 

Figure 3.6 Calibration results for ihe pressure transducers, PTl and PT2 are the pressure 
transducers on Station 1 and 2 respectively. 

Pressure Transducer Blue 2 Red 1 
Manufaciurcn; Manadon Manufacturers Manadon 

volts/pascal volts/pascal volLs/m 

Gain 124.96 4.9 124.29 4.9 

Offset -499.2 4.0 -487.3 3.0 

Table 3.5 PT Calibration details calculated by manufacturer and taken at Manadon. 

The offsets were measured each day as initial and final data runs, when the equipment 

was out of the water. Figure 3.7 shows the offsets for the duration of the field campaign. 

There is some drift in the offsets over the period of the field campaign which could be 

attributed to change in atmospheric conditions. However, the two pressure transducers 

do not vary in exactly the same way, as might be expected i f the cause of the drift were 

solely attributable to atmospheric conditions, but the difference between the extremes of 

the offset estimates results in an error of only 1 cm and affects only the mean water 

depth, not the wave height. 
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To check the depths and ensure that there was no attenuation of the signal due to the 

depth a second method was used to validate the other calibrations. The manufacturer 

supplied calibrations were used to convert voltage to pressure. To transform these 

pressure time series to water depth the hydrostatic equation is invoked 

P-Po = P g ( h - h o ) 3-2 

where p is the pressure at depth h, po is the pressure at a known depth ho. g is the 

acceleration due to gravity, taken as 9.81 ms'̂  and p is the density of sea water taken to 

be 1025 kg/m^. In this case po is the pressure at the air-sea interface which was taken 

from data collected at the beginning and/or end of the tidal cycle data runs when the 

instruments were out of the water, ho was also taken as zero. 

" 2.96 

PT2 
PT1 

bp CP da dp ea ep fa 
Tidal cycle 

fp ga gp ha 

Figure 3.7 Offsets of pressure transducers measured after the instruments emerged from the 
water. Nomenclature explained in section 5.1. 

3.3 Field Campaign, Nieuwpoort, Belgium. 

3.3.1 Introduction 

As mentioned previously, to study wave and current interaction waves and currents are 

the only necessary factors. For a successful field deployment several other factors must 

be considered. From the hydrodynamics point of view, a strong current must be present 

to enable the current meters to register the turbulent fluctuations, see section 4.3. The 

tidal range, the difference in height between consecutive high and low waters, must be 

large so that the instruments are well covered by water al high tide. The waves have to be 

unbroken over the instruments, as the breaking of waves adds turbulence to the water 

column, which could affect shear stress estimates made using turbulence methods. 
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Plate 2: The beach al low tide showing ridges and runnels, the instrument stations were 
placed on the ridge between the two runnels seen. The beach was over 450m wide al low 
tide. 
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From a more practical point of view easy access to the field site is important, (although 

not vital), as much of the equipment is cumbersome. The availability of power is another 

consideration, although it is possible to use generators to power the equipment. 

/ 

Figure 3.8 Chart of field site taken from chart number 125. Hydrographic Office. North Sea 
- Belgium, Approaches to Oosiende. scale 1:50 000, The location of the site is indicated 
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The beach, section 3.3.3 below, chosen by the CSTAB project was ideal for our purposes. 

It was known to have a strong tidally driven longshore current and due to dissipative 

nature of the beach the waves are rarely large enough to damage or cause movement of 

the equipment.. 

3.3.2 Aims of the Field Campaign 

From the CSTAB standpoint the objective of the field campaign was to provide data on 

wave current and sediment movements on the Middlekerke beaches during winter storms 

so as to assess the effects of the offshore banks on the beaches (Technical Annex of 

MASTn Project CSTAB). From the point of view of this project the aim was to collect 

data of sufficient quality to make comparisons of shear stress with numerical models of 

wave and current in order to test whether the models can be used to predict wave and 

current interaction in this extreme environment. 

3.3.3 Beach Site 

c 

a 
I < 

Station 1 

Station 2 

iOO 150 200 

Metres from Arbitrary Datum 

250 300 

Figure 3.9 Transect of beach at Nieuwpoort, Belgium, showing ridge and runnel features 
and approximate positions of the instrument stations. 

The site, at Nieuwpoort. Belgium, (see figure 3.8) is located at 5r09 'N 2°43'E. The 

chosen site for the caravan, which contained the data logging equipment, was located at 

the top of the beach on the raised berm, amongst the dunes. Access to power was 

provided by a local hospital on the landward side of the dunes. Armoured cable ran from 

an electrical outlet beneath the mortuary across the main entrance to the hospital and 
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from there over the dunes to the field site. Where possible the cable was buried beneath 

the sand, but the dunes were a conservation area and the cable was left exposed with 

warning signs to inform the public of the danger. The beach itself is very wide and 

dissipative with a short fetch and a tidal range of greater than 5m, plates 1 and 2 show 

views of the beach. The inter-tidal (springs) zone is greater than 450m. It has ridge and 

runnel features (see figure 3.9). Most of the runnels did not drain completely even at 

low spring tide although a new runnel which formed at the top of the beach during the 

field experiment did drain. Anecdotal evidence, provided by local windsurfers, suggests 

that this runnel appears after a period of greater wave activity and fills in again during 

quieter periods. 

3.3.4 Grain Size Analysis 

The beach was made up of sand and shell fragments. Sediment samples were collected at 

the time of the deployment and were analysed on return from the experiment. The 

samples were washed and then dried. The dried sand was put through a set of sieves at 

1/2(1) intervals ranging from 3.75<)) to -0.75(j). The results of the analysis are shown in 

table 3.6, giving a mean grain size of approximately 200|im, calculated using the Folk 

and Ward (1957) index for the mean: 

Size |im 1700 1180 850 600 425 300 212 150 106 75+ 

Weight 
grams 

4.195 3.722 3.271 3.466 3.206 4.698 15.490 50.945 9.018 0.064 

Table 3.6 Results of grain size analysis, the mean grain size is ~ 200\im 

j^^^q>.6+950+^84 3.1 

3 

where (p̂  is the phi value at a% 

A cumulative percentage chart is given in figure 3.9. The distribution of grain sizes is 

positively skewed, SK = 0.612 . This was calculated using equation 3.2, below 

Cp^^^l6+<PS4-2(P50 ^ 9 5 + ^ 9 5 - ^ 9 5 0 3.2 

2 ( 9 8 4 - 9 , 6 ) 2((p ,3-(P3) 

Folk and Ward (1957). 
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Figure 3.10 Grain size analysis 

3.3.5 Placement of Equipment 

Two instrument stations were placed on the beach. There were three major factors 

contributing to the precise location chosen for the stations. 

1) The beach cables were 200m long, the maximum possible length of cable without 

too great a loss of signal to the data logger. 

2) Time to rig the stations and place equipment whilst the beach is uncovered. The 

stations are posts knocked into the beach to sufficient depth to remain solid even 

during the liquefaction of the upper layers of sand and are braced with guy wires. 

The instruments have to be connected to the power supply and attached to the posts. 

Al l the pods containing the electronics and excess cable heads need to be buried to 

minimise the disturbance of the flow around the station. It is possible to leave some 

of the setting up of instruments for the next low water but much of the connecting 

must be done before the water returns to ensure the equipment remains watertight. 

3) For the sake of the CSTAB project, a rig on either side of a ridge was required. 

Taking aJl these points into consideration the two stations were deployed on the first 

ridge, station I , on the near shore slope about 100m from the top of the beach, and the 

second, station 2, on the offshore side about 30m farther out, (see figure 3.9). The 

instrument stations each had a set of three EMCM's and a PT. Station 2 additionally had 

six OBS's arranged at various heights, see table 3.7. Brackets on the table indicate the 

following. 
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Plate 3: Station 1 on the landward side of the ridge, showing the placement of the 
electromagnetic current meters and pressure transducers 
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Plate 4: Station 2 was situated on the seaward side ot the ridge. 6 optical backscatter 
sensors were arranged on the post with the electromagnetic current meters and pressure 
transducer. The difference between the annular and spherical current meters is plainly seen. 
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Plate 5: The top of the ridge was the px̂ int at which the flat bet changed into a rippled bed, 
this is shown up well in this plate. 
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Plate 6: Station I before instrument arrangement was altered, highlighting ripples formed 
around station. 
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No brackets, first measured heights of the day. 

Parentheses ( ) measured after tidal cycle. 

Braces { } indicate measurements after manual movement of equipment. 

Figure 3.11 shows the arrangement of the instruments after 26/02/94. Plates 3, 4 and 6 

show the instrument on the stations and the different arrangements. The instruments 

were rearranged to enable recording of velocity data at - I m above the bottom. 

Instrument heights were altered according to the water level predicted by the Admiralty 

tide tables. The neap-spring cycle 

E M C M 

Pressure 
Transducer 

51 ^ 

Figure 3.11 Arrangement of instruments from 26.02.94, showing positioning of E M C M ' s 
and PT's 

experienced during the field trip is shown in figure 3.12. The daily records of instrument 

heights are given in table 3.7, (at the end of the chapter). As well as manual movements, 

some of the daily variations in heights are due to sediment erosion and accretion. 

Surveys of the beach surrounding the field site were carried out at low tide, when daylight 

and weather permitted, to monitor the movement of sediment on the beach. 

From the instrument stations cables ran up the beach and into the field station. A 

diagrammatic view of the data collection system is shown in figure 3.13. The cables were 

attached to a cabinet which contains the filters for the OBS's and PT's and power sources 

for all the instruments. The data from the equipment were then passed through the 
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Microlink board which samples the data at a pre-specified rate, converting the continuous 

analogue signal to the discreet digital time series required for further data analysis. The 

data is in a mulitiplexed form due to the sampling technique. The Microlink samples 

from each channel of data coming into the system sequentially and almost 

instantaneously, at a pre-set sampling frequency. The data sets are then saved onto the 

computer in this form, all channels for each data run in one file. This can then be de

multiplexed at a later date. The software package used to control data collection and 

store it is High Speed Data Collection (HSDC). Data were collected at either 4 Hz or 8 

Hz whilst the equipment was submerged. 

7 T 

5 4-
c 

4—» 

o 
t: 4 

o 
cd 

3 + 

19/02/94 21/02/94 23/02/94 25/02/94 27/02/94 01/03/94 03/03/94 05/03/94 

Date 

Figure 3.12 The neap-spring cycle experienced during the field trip. 

3.3.6 Channel Recognition 

The cabinet containing the filters, power sources and Microlink board had to be 

dismantled to fit it into the caravan that was to be used as the field station. The data 

coming into the Microlink board were from 20 different sources, (12 EMCM, 6 OBS and 

2 PT channels). Due to wiring complexities within the cabinet and the uncertainty of the 

manufacturer's, (Valeport), sensor identifications, particularly that of the polarity of the 

EMCM's, it was necessary to affirm which data channel was which. This was done in a 

variety of ways. 
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1) The main way was to view the data coming in and, using experience gained on other 

field campaigns, identify channels by their appearance. It was possible to distinguish 

between the three types of data by eye. 

2) To discover the orientation of instruments and their positions on the stations, the data 

runs were examined to see in which order the instrument emerged from the sea. 

Comparison of data channels within each run enabled the orientation of each channel 

to be identified. Table 3.7 shows the channels and their identification. 

3) A third way to discover the links was to test the equipment when they were out of the 

water. The EMCM's and PT's were placed in buckets of water, the changes in the 

readings were possible to detect, easily in the case of the EMCM's as the signal is 

saturated when they emerge from the water. The PT's were more difficult but the 

method described in 2) above worked for the PT's. The OBS's sense particles within 

5 cm of the head, so passing something in front of the head can be seen as a change in 

the signal. 

Using these methods described above is was possible to be very confident that (he 

channel designation was correct. 

Channel Instrument Orientation 

1300 EMCM B I X Cross shore 
1301 B I Y Long shore 
1302 B2X Long shore 
1303 B2Y Cross shore 
1304 B3X Cross shore 
1305 B3Y Vertical 
1400 A I X Cross shore 
1401 A I Y Long shore 
1402 A2X Long shore 
1403 A2Y Cross shore 
1404 A3X Cross shore 
1405 A3Y Vertical 
1406 OBS Rl 
1407 R2 
1408 R3 
1409 B l 
1410 B2 
1411 B3 
1412 PT BLUE 
1413 RED 

Table 3.7 Channel Identincaiions. 
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Figure 3.13 Diagrammatic view of the data collection system. 

3.3.7 Environmental Conditions 

3.3.7.1 Weather Conditions 

For the first week of the two week field campaign the weather was very cold, with snow 

and sleet on several days. The seawater in the runnels froze and icicles formed on the 

instruments and stations. There was litde or no wind during this period and visibility was 

restricted due to fog. The second of the two weeks was milder with rain and drizzle on 
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most days. Wind speeds, measured with a hand held anemometer, varied from 

approximately I ms"' to 8 ms"' (about 16 knots), force 4-5 on the Beaufort scale 

(moderate to fresh breeze). 

3.3.7.2 Wave Climate 

Large waves were not anticipated because of the wide and shallow nature of the beach. 

Wave heights experienced varied from 20 cm to 80 cm over the period of the field 

campaign. Waves were normal to the beach for much of the field campaign, although on 

2 March the angle of approach altered to approximately 30°. 

3.3.7.3 Bedforms 

Ripples were present around station 1 after the tidal flow receded, examples of the ripples 

formed can be seen in plates 2 and 6. The bed was fiat around station 2 after each tidal 

covering this can be seen in plate 3. The point at which the bed changed from rippled to 

fiat was well marked at the top of the ridge and is shown in plate 5. 

For a more detailed day to day description of environmental conditions see table 3.9. 

3.3.8 Data Quality 

Once initial technical difficulties were overcome the data collected were of sufficient 

quality to be used for the purpose intended. The OBS's failed to work successfully, 

reasons for this are unclear and so data from these instruments are not subsequently used. 

Wave and current conditions varied over the period and promised to make data 

interesting from the WCI point of view. A description of the data collected is given in 

table 3.7, and includes details of instrument heights bedforms around the stations and 

problems encountered over the field campaign. 
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"N633am*6î )5 i Ti5).62 
AV.:}.?.}. i 
0.19 ""6."925 

i 
'j'6'525 

j 
1"EMcSil"*B" 1 0.16 "I'ljoi [ 6 ^ * 3 

! N033pmOI-08 1 X=0.075 1 

: 1 i \ j O B S R i 0.09 i 0.16 0.265 
j j 1 i 

! 1 O B S B 1 0.41 1 0.525 1 1.00 

04/03/94 N043am01-I0 i 71=0.01 j E M C M A j 0.18 1 0.90 \ 0.49 j E M C M B i 0.175 1 1.03 1 0.545 
i X=0.08 1 1 

1 
i 

! 
1 O B S R j 0.105 ! 0.175 1 0.28 

1 i 1 i j 1 O B S B j 0.425 i 0.54 i 1.015 
i i PT .012 i i PT j i i 



s f 

I 

X 

1 
n 

a c a. 
3 

cro 

Date i Weather Conditions 
i 

j Observed Wave 
1 Height 

1 Comments i High Tide 

20/02/94 

"2I702/94" 

1 Wind: SW light, cold, watery sunshine. 

1 Snow, very coid 
i 

1 0.75m 

i 

1 Placement of two stations 1 1: A set of EMCM red PT 
1 i 2: B set of EMCM blue PT Red and Blue 

4 i..OBS 
j Problems with power connection to hospital 

j 07:35 
j 20:20 

1"68:5b 

22/02/94 
j Rain later wind increasing 
1 
i 
t 

i 
I 
1 

1 Replaced power cable to hospital 
j Instruments lowered to ensure good covering by water 
i Some erosion around station 2 pods uncovered 

1 10:10 
1 22:30 

23/02/94 i Snow thawing fresh breeze WSW dropping 
i 1 Too wet for survey 1 11:00 

1 approaching from the SW 
1 0.4m growing more j New runnel formed at top of beach 1 11:50 

25/02/94 

"26/02/94" 

1 Cold cloudy Winds light N&-2ni/s Later cioud 

1 Sunny am wind increasing -4m/s 

i beach 
"r'a2iii 

1 Drop in power noticed for filter power supply during evening run 

1 ciiangoJ instrument arrangement 

! 00:00 
j 12:20 

'l"oi*:00 

! 
! 
t 

i 0.2-0.3 m up to 0.4m at 
1 breakpoint. Three lines 

i 
1 

1 01:30 
i 14:00 

I 

"62/03/94"* 

"o¥63794" 

i 
t 

1 Dry, broken cioud wind 2-3m/s SW increasing 
! 9m/s rain "wet, windy, woeful" 

1 "Nasty" Rain 6m/s W Rain increasing Srr i / s^^ 

j 0.5m isolated white 
[horses 
1 0.3m increasing to 
1 0.5m angle of approach 

.L.~?9.1\?..?.!l¥:,!?!ra9.t! 
i 0.2-0.3m choppy 

i 

j 03:00 
i 15:25 

i"03:45 
1 16:15 

["64:30 

i 
j 0.5ni/s twolines of 
j breakers 

1 1 05:30 
j 18:00 

I 
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Chapter 4. 

Data Analysis 

4.1 Introduction 
Statistical analysis of the data was carried out to quantify the conditions experienced over 

the period of the field campaign. Means and significant wave heights and velocities were 

calculated to give an indication of overall conditions and bottom stresses were estimated 

to be used in comparison with model results. Owing to the extreme hydrodynamic 

conditions it was anticipated that some of the data would be unsuitable for analysis, 

perhaps from additional turbulence caused by breaking or spilling waves or conditions 

too extreme to be recorded accurately by the instruments available. 

4.2 Statistical Analysis 

To establish the prevailing hydrodynamic conditions experienced for each time series 

means, variances and significant wave height and velocities were calculated. Figure 4.1 

shows the significant wave height and mean velocity, for the duration of recording the 

mean velocity was generally long shore, in an easterly direction, for each tidal cycle at a 

particular water depth. Since all of the data runs shown are outside of the breaker zone 

the long shore current is assumed to be essentially lidaliy driven and not due to wave 

breaking. Over the period of the field campaign a wide variety of conditions was 

experienced, from current dominated at the beginning of the week to wave dominated 

conditions in the latter half. The terms wave dominated and current dominated, for this 

thesis, are defined, for wave dominated as when the near bottom wave orbital velocity is 

greater than the depth averaged current and current dominated as when the depth 
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averaged current velocity is greater than the near bottom wave orbital velocity. Figure 

4.1 shows clearly that for the first 4 tidal cycles the current is greater than the waves and 

for the latter part the waves dominate. 

t 0.9 
Trend Lines 

a v g v 

— m a x h s i g 

Tidal Cycle 

f p g a gp h a 

Figure 4.1 Mean velocities :ind wave heights for similar depths over the whole field 
campaign. The two dotted lines indicate the trends of both mean velocities (avgv) and 
significant wave heights (max hsig) as indicated by the legend. 

4.2.1 Means 

Means of long shore, cross shore and vertical velocity and water depth time series were 

calculated, by finding the arithmetic mean of the lime series of calibrated data. Figure 

4.2 shows examples of long shore cross shore and vertical flows and depth over a period 

of the field experiment. 

Arithmetic means were calculated for each time series giving mean flow and depth data 

for each data run, resulting in a series of points for each tidal cycle. Figure 4.2 shows the 

mean flows and depths for station 2, the outer station, over the period of the field 

campaign. The mean long shore flow is always positive, easterly towards Holland, and is 

at a maximum at the beginning of data collection for each tidal cycle, just before high 

tide and decreases over the tidal cycle. 
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Figure 4.2 Mean tlows of long shore cross shore and vertical E M C M ' s and mean depths 
for the outer station for the whole field campaign. Nomenclature explained in section 5.1. 
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Figure 4.3 Shows lag in tidal velocity phase observed during field campaign. 

Comparison of the long shore velocities and depths with predictions from the nearest 

tidal diamond (Tidal diamond G, Hydrographic Office, North Sea - Belgium, Approaches 

to Oostende, scale 1:50 000, chart number 125) showed that the lag between tidal along 

coast velocity and elevation was substantially different to that predicted. Figure 4.3 

highlights these differences. O'Connor et al. (1996) suggest a simple model of the 

alongshore flow which could be employed to illustrate this phase shift, section 2.6. 

Tidal diamond G is the closest diamond to the field site but it is quite a long way 

offshore, some 4.5 km and in much deeper water, approximately 13 m. There is another 

diamond, H, closer to the shore, just over 1 km off, but further west off the coast of 

France. The difference between high tides at these two diamonds is only a few minutes. 

Comparing the predictions from these two diamonds shows that the model of O'Connor 

el al. (1996) predicts qualitatively what occurs. Whilst figure 3.8 does not cover the area 

of the tidal diamonds, the positions are indicated at the edge of the chart. As the water 

depth decreases, the phase between the velocity and tidal height changes, with the 

greatest change in phase occurring between the inner tidal diamond and the measured 

flow, as the model predicts. 

4.2.2 Depth averaged velocity 

The depth averaged velocity was required as an input for the parameterised models. To 

calculate the depth averaged velocity it was assumed that the long shore velocity had a 
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logarithmic profile and from this assumed profile the depth averaged velocity was 

interpolated. 

4.2.3 Spectral Analysis 

It is accepted that any function periodic in time can always be expressed as an infinite 

trigonometric (Fourier) series of the form 

/27tkt^ f2nkt\ 4.1 

where ai and b\ are the Fourier coefficients, T is the period and t is the time. The Fourier 

coefficients can be expressed as integrals: 

, Y'- 4.3 
^ 0 = - jx(t)dt 

a. =^L^x ( t ) cos^^J 

b. =-J.,^x(t)sm 

dt, k > 

dt, k > 

4.4 

4.5 

MATLAB, an analysis software package, was used for the spectral analysis of the data.. 

A method known historically as the Welch's averaged periodogram was used. Each time 

series is divided into K segments, each segment containing m points (where m is an 

integer power of two). Each pair of adjacent segments, K - l in total, are taken together 

forming a lime series containing 2m points and a window function is applied. The 

application of the window function involves multiplying the time series of 2m points by a 

smooth, continuous, symmetrical curve that varies from zero to one and then falls again 

to zero. The window function chosen was the Hanning window: 

w. = — 
' 2 

-cos 
27rj 

I N . 

N = 2 m j = 1 . . . N - I 
4.6 
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The reason for windowing will be explained later. The fast Fourier transform (FFT) of 

the data is then calculated for each double segment of 2m data points. The FFT is an 

algorithm used to compute the discrete Fourier transform efficiently. 

All of the estimates are then averaged over each frequency bin. A frequency bin extends 

from the halfway from the preceding discrete frequency to halfway to the succeeding one. 

The spectral estimate at the discrete frequency, f^, is representative of the spectral 

estimate for the whole frequency bin. Using this estimator the spectral variance per data 

point is minimised. It can be shown (Press et al. (1992)) that the Manning window 

method reduces the variance by a factor of approximately 9K/11, which is a greater 

reduction than i f the same number of data points are segmented without overlapping, and 

so increase the confidence level in the peaks within the spectrum. 

If no window is applied the analysis is equivalent to applying a square window to the 

data. When a Fast Fourier Transform (FFT) of the data is calculated the square window 

introduces substantial components at higher frequencies effectively smearing the power 

associated with a given frequency bin into the surrounding bins. The application of the 

window function is to reduce this spectral leakage or side lobe distortion. There are other 

windows available but the choice of Manning window was made to reduce the spectral 

leakage to a minimum within two frequency bins of the central frequency. 

4.2.3.1 Significant Wave Statistics 

The significant wave height is calculated from the variation in wave height associated 

with the wind wave band. It is first necessary to correct for the hydrodynamic filter 

effect. The pressure transducer is situated near to the bottom of the water column. The 

water between the sensor and the surface acts as a filter, damping the higher wavenumber 

fluctuations. Corrections for the hydrodynamic filtering effect were done using the 

following: 

h ' = ^ 
Pg 

cosh(kh) 

^^cosh[k(z+ h ) ] j 

4.7 
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where h ' is the fluctuation amplitude associated with the wavenumber, k, h is the mean 

water depth, z is the depth of the sensor (negative downwards) and k is the surface wave 

number. 

From the corrected spectrum of the depth time series the wind wave band is selected, and 

the area between the limits and under the curve is calculated using the trapezium rule: 

area = 
Po + Pn n-l 

i= I 

4.8 
Ak 

where pj is the value of the spectrum at the ith point, Ak is the increment wavenumber 

between each estimation of the spectrum. The corrections were small, less than 10% at 

the maximum. The area under the curve is the variance associated with the wind wave 

band, o^^\ The H is directly proportional to the variance: 

H , = 4 o ^ ™ . 4 . 9 

The significant wave height is proportional to the square root of the total variance of the 

wind wave band (Guza and Thornton (1980)), assuming that the processes are Gaussian 

and narrow banded. 

4.2.3.2 Wavenumber 

The wave number is calculated from the dispersion relation: 

k ' c ' =(o ' = g k ( l + e T . ) t a n h ( k h ) 4.10 

(Crapper 1984) where is a parameter giving the relative importance of surface tension 

to gravity. For this study it was assumed that this parameter could be considered as 

unimportant and was not included. The wavenumber for a given frequency was 

calculated using the Newton Raphson method to an accuracy of order ( lO" ' ) . 

4.2.3.3 Maximum Near Bottom Wave Orbital Velocity and Maximum Orbital 

Diameter 

The maximum near bottom orbital velocity, u^,, and maximum orbital diameter, d^, 

were calculated using standard linear theory: 
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7cH, 4.11 
Tsinh(kh) 

and ^ 4,12 
sinh(kh) 

where T is the period of the water waves. Grace (1976) showed that linear wave theory is 

invalid for breaking waves. The Miche parameter was used to determine when breaking 

occurred: 

' h 

4.2.3.4 Peak Wave Frequency 

The peak wave frequency was obtained from the spectrum of the depth time series, by 

selecting the most prominent peak of the wind wave band, (see for example Figure 4.5). 

4.3 Estimating Bottom Sliear Stresses 

Direct measurement of bottom shear stresses in turbulent environments is difficult, i f not 

impossible, in the field. There are several indirect methods for estimating these stresses 

using current meter data. The three chosen to work with on this data were the inertial 

dissipation method, the turbulent kinetic energy method and the Reynolds stress method. 

It was not possible to use the logarithmic layer method as there were only three EMCM's 

in the vertical array and only two of these were sensing the long shore direction. 

4.3.1 The Inertial Dissipation Method 

If the wave numbers at which turbulent energy is produced and dissipated are well 

separated, the region of separation in wavenumber space is known as the inerlial sub

range. In this range the fiux of energy from low to high wavenumber is equal to the 

dissipation rate, as there are no sinks or sources of energy within the wavenumbers of the 

sub-range. The spectrum, in a given direction within this range, is given by 

<!>, =a.e-'^k-^'^ 4.14 

where k is the one dimensional wave number, oti is the one dimensional Kolmogorov 

constant, e is the energy dissipation rate and the subscript i represents a given direction. 
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It is necessary to make two assumptions in order to estimate bottom shear stress from the 

above equation: 

1. There is a local balance between production and dissipation of turbulent energy. 

The production rate of turbulent kinetic energy is given by T / p — and in the 
/ dz 

logarithmic layer ^ = U . / K Z , where T = Qui is the stress felt at the bottom, u is the 

az 

velocity in the x direction, p is the density of the water (taken as 1025 kg/m^), K is 

von Karman's constant (taken as 0.4), u* is a parameter known as the friction velocity 

and z is the height of measurement above the bottom. The parameter friction velocity 

has the dimensions of velocity but has no physical meaning, in that it is not a velocity 

and cannot be measured as such. 

2. The measurements are made within the constant stress part of the logarithmic 

boundary layer. Within this part of the boundary layer local stress is equal lo the 

bottom stress. 

These assumptions give, after some rearranging, 

u . = « l ) i , ( k ) k ^ ' V a , ) ' " ( K z ) ' " 4.15 

Turbulence measurements are generally in the form of time series and therefore provide 

spectra as functions of frequency and not wavenumber. The Taylor concept of 'frozen 

turbulence' is used lo convert wave number spectra to velocity spectra, 

<t>ii(tc) = « i i ( f ) u / 2 7 r , 4.16 

where u = mean velocity in the i direction and f = frequency. For this concept to be 

valid it is necessary that the time scale of a turbulent eddy with wavenumber k must be 

much longer than the time taken for the eddy to advect past the point of measurement. 

For this to be true it is required that 

k<t)ii(k)/u' « 1 
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For an environment with significant oscillatory flows it has been suggested that Taylor's 

Hypothesis would need to be significantly revised. Huntley (1988), following the 

theoretical work of Lumley and Terray (1983) suggests that, for isotropic turbulence, 

horizontal wave velocities much greater than vertical wave velocities, and small values 

of the waves to mean current ratio, the correction to friction velocity due to the wave 

advection is approximately 

/ - . ' 4.18 
G - = ( l - O . I 6 ( u _ / u ) ^ ) 2 u . , 

where = the root mean square horizontal velocity 

The inertial sub-range will only exist in flows where the low wavenumbers (where 

energy is produced) are well separated from those where energy is dissipated. Tennekes 

and Lumley (1972) suggest that this will only occur in flows where the turbulent 

Reynolds number (Re) is greater than some critical Reynolds number (Rcc), 

Re = u , K z / v > Re^. 4.19 

Estimates for the critical Reynolds number range from 2500-4000 (Huntley, 1988). 

Taking a different perspective of equation 4.19, assuming that it is generally valid, it is 

possible to derive a critical height above which measurements must be made to ensure an 

inertial sub-range 

z , , - R e , v / ( K u . ) . 4.20 

However, it is also a requirement that the measurements are made within the constant 

stress part of the logarithmic layer (see assumption 2). It is possible that, in certain 

circumstances, these two height requirements cannot both be satisfied, i.e. that there is no 

height at which the instrument is high enough to satisfy the Reynolds number criterion 

whilst also being within the constant stress layer. If this is found to be true, Huntley 

(1988) suggests a modification to the inertial dissipation method so that this method may 
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be used. In the data discussed further here, equation 4.19 is readily achieved and an 

inertia! dissipation range is therefore expected. 

In the spectrum, (see figure 4.4), the wind wave band can be seen and is indicated on the 

diagram. The limits marked on the spectrum, figure 4.5, are the theoretical limits within 

which the inertial sub-range is expected to occur. These wi l l be explained in more detail 

in subsequent paragraphs. Within these limits, an approximate -5/3 run-off can be seen 

as predicted by theory, equation 4.14. 

Peak lA-ave frequency 

Wind wave band 
0.00 

0.0001 

0.00001 
0.01 0.1 I 

Frequency, (Henz) 

10 

Figure 4.4 Spectrum of pressure transducer time series indicating limits of wind wave 
band and peak period. 

There is a limit to the physical size of the turbulent motions that the current meters can 

sense. This is due to the physical dimensions of the EMCM. This upper limit for the 

sub-range is given, (Soulsby, 1983), as 

k = 2.3/d, 4.21 

where d is the distance between the electrodes on the sensing head of the EMCM, 55 mm 

and 100 mm for the two types of EMCM used in this experiment. 
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There is also a lower limit to where the k'^^ roll-off wil l occur, figure 4.5. This is given 

by 

k = 2TC/Z 4.22 

For a sensor at height z above the bed the peak turbulent energy is expected close to 

k = 7i/z, but for the assumed value of the Kolmogorov constant to be valid, it has been 

suggested (Huntley and Hazen (1988)) that wavenumbers greater than twice the expected 

peak should be used. If effects of wave energy from the surface prevent the confirmation 

of the turbulent peaks then the lower wavenumber limit can be chosen to be at or larger 

than the number found from equation 4.22. 

i 0.(1)1 

(uni)i 

i i r i t i a l s u t i a i n : 

FroquencyCHz) 

Figure 4.5 Spectrum of vertical velocity time series showing limits on inertial subrange 
and the -5/3 roll-off 

However, since frequency is measured and not wavenumber, it is necessary to convert 

wavenumber to frequency. This is done using the formula, 

k = 27cf/u 4.23 

where f is the frequency. Substituting equation 4.23, into equations 4.21 and 4.22 and 

rearranging gives two new equations. 
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and 

f = u/z, 

f = 2.3u/2nd 

4.24a 

4.24b 

which are linearly dependent on the magnitude of the mean velocity at a given height. 

These are plotted in figure 4.7 as solid lines. 

A very important consideration in measuring turbulence with electromagnetic current 

meters is the high frequency cut-off filter in the sensor. The current meters in this study 

contained 9th order Elliptical low pass filters and the -3dB frequency was set at 2.4 Hz. 

This cut-off and the filter characteristics were verified by laboratory measurement, in 

figure 4.6 the filter limit is shown as a single frequency boundary at 2.4 Hz (all data in 

this thesis are collected with this type of filter), and the sharp roll-off of the 9th order 

filter ensures that spectral amphtudes are not reduced by more than 20% for frequencies 

below 2 Hz. 

2.5 

2 4 

1.5 

0.5 

Low-poss fillercui-off 

j/^ Predicted limits of ^ ^ ^ ^ 
Inertial Subrange ^-""^'^ 

Equation 4,24a / 

Equation 4.24b 

Incident wave 

0.1 0.2 0.3 0.4 

Mean Current Velocity - nVs 

0.5 0.6 

Figure 4.6 Showing limiis of where the inerlial subrange might occur and where the 
current tiieters can sense turbulence. 

The lower frequency limit for the turbulence is set by the upper frequency limit of the 

incident wave band, and will vary with conditions at the time of data collecting. The 

72 



lines defining the limits of the inertial sub-range are calculated using the equations 4.24a 

and b given above. 

4.3.2 The Turbulent Kinetic Energy Method 

Instantaneous velocity, at time t, in the x direction for example, can be written as 

u(t) = u + u^(t)-l-u,(t) , 4.25 

where u is the mean (time averaged) velocity and the subscripts w and t refer to 

fluctuations due to waves and turbulence respectively. Since u,(t) is, by definition, not 

correlated with u^(t)then it can be seen from the equation that the variance of a lime 

series can be attributed to either waves or turbulence, i.e. u^ = u^ uf where u^ is the 

total variance of the time series. There is no hard and fast rule for separating these 

fluctuations in frequency space but Soulsby and Humphery (1989) suggests it can be 

done by interpolating across the base of the wave band, as shown in figure 4.7. 

^ 0,1 

J" 0,(»1 

— — 

/ Rucituiion.s \ 
/ due lo waves \ 

RuctuDtions due to 

(urtiulcRce 

l iu idLiu u a v e bjj id 

1 
0.1 I 

Frequency (Henz) 

Figure 4.7 Spectrum of cross shore velocity split into fluctuations due to waves and those 
due to turbulence. 

The area above the line is taken to be the wave variance and the area below, the variance 

due to turbulence. The same procedure can be applied to both the u and v components of 

flow. The vertical component, w, is assumed uncontaminated by waves and 

consequently all fluctuations are taken to be due to turbulence. When the velocity 

measurements are made well above the seabed it is possible that the wave motion will 

have an effect on the vertical velocity time series and if this is found to be the case, the 
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fluctuations due to the waves can be removed in the way described above. Removal of 

the wave energy could also be useful i f the alignment of the instruments was not perfect. 

The turbulent kinetic energy, E, is calculated from the definition 

E = i p ( u : + v > v v : ) . 4.26 

From this it is possible to calculate the bed shear stress. In the region close to the bed 

where energy production equals energy dissipation the bed shear stress is proportional to 

the turbulent kinetic energy density. Using the constant of proportionality observed in a 

wide range of fiows (Soulsby 1983) the bed shear stress can be calculated 

T = 0.i9E. 4.27 

The value 0.19 is assumed constant under diverse conditions (Soulsby, (1983)). 

4.3.3 The Reynolds Stress or Eddy Correlation Method. 

The Reynolds stresses pu'w'and p v \ v ' measure the flux of momentum and hence the 

stress at the measured height. As with the previous methods it is necessiiry to assume 

that all measurements are made within the constant stress layer. The turbulence is 

assumed anisotropic and the waves are assumed lo have no vertical component. This 

being so the correlation between the vertical and long shore/cross-shore fiow is due 

entirely to the turbulence. 

The errors associated with this method due to misalignment of instruments can be ver>' 

large, as much as 156% per degree of misalignment in wave dominated fiow, (Soulsby 

and Humphery (1989)). Efforts taken during the fieldwork ensure this was kept to a 

minimum by ensuring that the EMCM's were kept vertical or horizontal (as required) and 

that all electrodes reading cross shore or long shore were parallel. There is also the 

problem of establishing where the horizontal plane lies, in that the bottom slope was not 

horizontal which could affect the way in which the waves move past the sensors. By 

plotting the horizontal components of the flow against the vertical flow it was possible to 

establish i f it was necessary to rotate the axes. Because of this problem it was decided to 

look at the long term averages of the horizontal and vertical velocities to look for any 

trend that might indicate that the sensors were misaligned. For example i f the vertical 
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velocity mean showed some correlation to either or both horizontal components of the 

flow. Examination of the plots showed that there was no need to rotate the axes. 

4.4 Data Selection 

All three methods above were used to calculate estimates for the stresses felt at the 

bottom and hence friction velocity, u». The results of these methods wil l be given in the 

next chapter. However, because all of the above methods are based on measurements of 

turbulence generated from the seabed boundary it was necessary to remove all parts of the 

data set where turbulence from other sources was introduced into the system. Time series 

where breaking or spilling waves were present at or near to the equipment stations were 

removed, also tidal cycle 'gp\ see section 5.1, was removed as there were "white horses'* 

present during the entire tidal cycle. The existence of breaking was determined by the 

Miche parameter, (equation 4.13), and by observations made at the lime of data 

collection. 

Figure 4.8 -4.10 give examples of the raw velocity data, given in physical units. Figure 

4.8 shows a short burst of data from the first tidal cycle considered for this study to be 

current dominated. The long shore current, mean = 40 cms"', is greater than the 

maximum cross shore velocity which is associated with the waves. 

The data presented in figure 4.9 are from the final tidal cycle, considered to be wave 

dominated, the cross shore velocity varies between more than ±50 ems'', and can be 

seen to be much greater in variance than the long shore velocity. 

Figure 4.10 is from tidal cycle 'gp\ and are examples of data that were rejected. Whilst 

the instruments were covered there were waves breaking at or very close to the station. 

This phenomenon can be seen as a dramatic increase in the vertical velocity an the wave 

plunges past the station. 
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Figure 4.10 Velocity data from a data run w hich was discarded as being unsuitable for 
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Chapter 5 

Results of Field Work and Comparison with Other 

Work 

Data from the field campaign described in chapter 3 were used to estimate shear stresses 

using the three methods outlined in chapter 4. In the succeeding sections these results, 

from both instrument stations, will be presented and compared with the results of the 

field campaigns conducted by Cacchione and Drake, (1992) (CD92), and Soulsby and 

Humphery, (1989), (SH89); these campaigns are described in detail in section 2.5. 

Whilst there are other field campaigns, section 2.5, the two used below are the only two 

with data in tabular form which makes an accurate comparison possible. 

5.1 Introduction to the Nomenclature used in the Results 

Table 5.1 below shows the rationale behind the nomenclature used in the description of 

the results. Each day was first labelled with a letter, from a lo h, starting on 25/02/94 and 

ending on 04/03/94. If data collecting began in the morning the next part of the label was 

an "a" and, i f the collecting began in the afternoon the second letter of the label was a 

*'p'\ The next two digits in the labelling system are the run numbers: 01 to 11. Hence, 

fp03, was collected on 02/03/94 with the data collection in the afternoon and it was the 

third run in the series. 
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The first data runs, "aa" and *'ap", collected on 25/02/94 were not used as the instruments 

were not all covered for most of the tidal cycle and also the instruments had to be 

rearranged so that the vertical fluctuations could be recorded. 

Date Letter am/PM Run Numbers 
26/02/94 b a 01 - 10 

P 01 -08 
27/02/94 c P 01 -09 
28/02/94 d a 01 -08 

P 01-11 
01/03/94 e a 01 -09 

P 01 -10 
02/03.94 f a 01 - 10 

P 01 - 10 
03/03/94 g a 01 -05 

P 01-11 
04/03/94 h a 01-11 

Table 5.1 Explanation of the nomenclature used in presenting the field results. 

5.2 Estimates of Shear Stress from Field Data 

Not all data collected were suitable for using in the analysis as data collection started 

before all instruments were covered and continued after the top instruments were 

uncovered. The period of data collection included periods of waves breaking on or near 

the instrument stations which could affect the shear stress estimates made using methods 

which rely on turbulence. It was necessary to remove all data sets in which it was 

suspected that either or both of these phenomena occurred. To establish if breaking 

occurred during the data run the Miche parameter - equation 4.13 - was used. Careful 

examination of the time series revealed when the instruments were uncovered as the 

EMCM's record a saturated signal when out of the water. Also, observations made at the 

lime of data collection relating to the waves and water depth proved invaluable. The 

minimum water depth was found for each time series using M A T L A B , a software 

package, which simply finds the minimum value within a vector. If the minimum depth 

was below that of the highest instrument then the time series was discarded and not used 

in the subsequent analysis. Table 5.2 below shows the data runs which were considered 

suitable to use in the subsequent analysis. 
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It was not possible to arrange the instruments such that all three components of the flow 

were read at the same height. This was due to the need to read the cross shore flow at 

three heights above the bed for the CSTAB project. For the three methods used to 

calculate the 

Date Tidal Cycle Time series used in subsequent analysis 
Station 1 Station 2 

26/02/94 ba 02-05 02-07 
bp 02-05 02-07 

27/02/94 cp 02-06 02-07 
28/02/94 da 01 -04 01 -06 

dp 03-06 02-07 
01/03/94 ea 02-05 02-07 

ep 02-05 02-07 
02/03.94 fa 02-05 02-07 

fp 03-07 02-07 
03/03/94 02-04 02-05 

gP 'white horses' .*. not used 
04/03/94 ha 03-07 03-07 

Table 5.2 The data runs suitable for use in subsequent analysis, tidal cycle 'gp' was not 
used as white horses were present at the time of recording. 

A'-
L m n IIMCM 
T I T E M C M 

•EMimatnl 

Prcquciicy. Hz 

Figure 5.1 Spectra of velocity data from longshore flow components and from estimated 
time series. 

shear stresses at the bottom, it would have been ideal to have all three components of the 

flow measured at the same height above the bed. This was not feasible, hence the time 

series for the longshore component of the flow at the mid height was estimated from the 

other two longshore current meter lime series. This was done by assuming a logarithmic 
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profile and calculating the velocity time series at the height of the mid current meter from 

the assumed profile. This interpolation might have a smoothing effect on the estimated 

time series, diminishing the turbulence, and hence slightly lowering the estimates of shear 

stress. Figure 5.1 shows the spectra of the two measured and one estimated components 

of the flow, as can be seen, the estimated spectrum does vary slightly, the variance of the 

estimated time series is 0.0012 m" as compared with 0.0015 m~and 0.0012 m^ of the top 

and lower EMCM's respectively. 

5.2.1 Station 1 

Station 1, the innermost station was positioned on the inshore side of the ridge feature on 

the beach, as shown in figure 3.9. The instruments were covered by unbroken waves for 

approximately two hours over each tidal cycle. In the figures of results the small groups 

of 4 or 5 points represent the results calculated for each data run over a tidal cycle, 

starting on 26/2/94 and concluding on 4/3/94. Figure 5.2 shows the values of shear stress 

calculated by the three methods. Results using each method show a general increase in 

the estimated shear stress from the beginning to the end of the field campaign, with a 

slight dip in the penultimate tidal cycle, "ga". This dip corresponds exactly with the 

decrease in the wave conditions experienced during the campaign, shown in figure 4.1. 

25 

20 

15 

10 4 

• T a u T K E I 

- T o u l D M I 

• T a u R E Y I 

tM i n 
S3 ^ 

i / l ^ 
a a a 

Run Number 

Figure 5.2 The results of the three methods used lo calculate shear stresses for station 1 

81 



5.2.2 Station 2 

In Figure 5.3, the results from the outer station are shown, station 2, and very similar 

trends can be seen in the results. The instruments on the station were covered for 

between two and a half to three hours. Again there is a dip in tidal cycle "ga" where the 

significant wave height lessens for the tidal cycle. 

Comparisons of the results from the two stations for each of the three methods are shown 

in figure 5.4 a), b) and c). It is reassuring to note the very similar results under the very 

similar hydrodynamic conditions experienced by each instrument rig. 

•Tau TKE2 

•Tau tDM2 

•Tau RF,Y2 

c\j t n 
a. CD (Q 
U T 3 -O 

T 3 -D O O G) C3 
u> cy i n ^ 

o . Q. (C ( • 
— — cn CD 

Run Number 

Figure 5.3 Results of shear stress esiimaies from station 2. 

Figure 5.5 shows a plot of the results from station two plotting the turbulent kinetic 

energy method against the results from the other two methods. Ft is noticeable from the 

plot that the TKE method tends to give comparatively larger results than the other 

methods for the larger shear stresses. There is considerable scatter, but the trends are 

similar and all results are within an order of magnitude 
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Figure 5.4 Highlights the similarities between the shear stress estimates made at the two 
stations. 
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Figure 5.5 Plot of the turbulent kinetic energy method against the Reynolds stress method 
and the inertial dissipation method, showing the scatter 

5.3 Error Analysis 

Errors in the inenial dissipation method can be caJcuIaied f rom the degrees o f freedom of 

the spectra used in the calculations. The degrees o f freedom for this experiment are 

calculated from: 

D f = 3.82* N - 3 . 2 4 5.1 

(Nuttal (1979))» where N is the number of non-overlapping time series segments used to 

calculate the spectra. In this case D f = 27. The confidence intervals are found using: 

D f 
p ( f ) ^ P(f) 

D f 
P (0 

5.2 

where ( l -a )*100 is the confidence interval required, p ( f ) is the spectral estimate 

calculated from the data using the method described in section 4.2 and p ( f ) is the true 

spectrum. From the chi-squared probability distribution, using the degrees o f freedom 

calculated above and choosing a 95% confidence interval the errors associated wi th the 

spectra are approximately = ±0.35 . 

Errors for the mean f low are a little more problematical as the mean flow, unlike the 

turbulent fluctuations, is affected by the choice o f offset. The offsets taken in the field 
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were used to calculate mean flows. Green and McCave (1995) suggests that errors in the 

mean flow attributable to the current meters are no more than 5%, however because of 

the doubts in the magnitude of the mean flow a 10% error was allowed. Since only 

velocities o f greater than 20 cms ' have been used the 10% margin leads to errors o f ± 2 

cms ' or more, which corresponds to errors experienced by Huntley and Hazen (1988). 

For the inertial dissipation method of calculating shear stress, using the errors for the 

spectra and mean flow, the errors are estimated f rom equation 4.14 wi th equation 4.15 

substituted into it. This equation becomes: 

f J 5.3 
e r ror (u . )= ( l ± 0 . 3 5 ) x 

V 0 ± 0 . 1 ) j 

Using Maclaurin series expansions, the error for u , is given as ( I ± 0.30), hence the error 

associated with the shear stress is, conservatively, is (1 ± 0 . 6 0 ) , i.e. ± 60%. 

The turbulent kinetic energy method is based solely on spectral analysis and consequently 

the errors are (1 ± 0.35), i.e. ± 35% for the shear stress. 

The Reynolds stress method is very sensitive to errors in the alignment to the vertical of 

the current meters, in very wavy conditions as much as 156% error per degree (Soulsby 

and Humphery (1989). Huntley (1988) proposes that alignment accuracy of one tenth o f 

a degree is necessary to provide accurate estimates. This degree o f accuracy is not 

possible in the field and cannot be supposed to have been obtained. Assuming an 

inaccuracy of approximately one half a degree to the vertical in wavy conditions an error 

of 50% is assumed for the Reynolds stress method. Figure 5.6 a) and b) show the error 

bounds of each of the methods applied to the results. 

The error bars overlap for most o f the estimates, but not for all , for example for run 

number ha3 the error bars for the T K E and REY methods do not overlap. The 

differences between the methods do not show any systematic changes; none are 

consistently bigger than any of the others and there is no significant correlation between 

the differences. 

As mentioned before, all of the methods used to calculate the shear stresses are 

turbulence based and, hence it was decided to take the mean of the three methods to give 
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just one estimate for the shear stress for comparison in later sections. However, at times, 

all three methods may be presented. 

(a) 

E r i D r B a r s 

(b) 

T a u T K E I 

• T a u R U Y l 

Run Number 

Error Bor.s 

V 
•Tau T K I - 2 

•Tau m M 2 

•Tau R E Y 2 

Run Number 

Figure 5.6 (a) and (b) show the estimates of shear stress with the errors associated with 
each method marked in the top left hand corners. 
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5.4 Comparison with other Field Results 

In this section the results f rom two previous f ield campaigns are compared wi th the 

results presented above. A more detailed description o f these field deployments is given 

in chapter 2. Soulsby and Humphery, (1989, table 1, ) give 30 values o f current speed, 

Uioo, orbital wave velocity, Owave. and bed shear stress, estimated using the velocity 

profile method, the Reynolds stress method and the turbulent kinetic energy method. 

Using the relationship: 

5.4 

the drag coefficient was calculated as was the wave to current ratio, O^yavfi/^ioo • 

Similarly, Drake and Cacchione, 1992, present their results in the fo rm of the drag 

coefficient, C^ , and Gwave but give Uig , the velocity at 18 cm above the bed, as the mean 

current velocity. The values o f the shear stress were calculated by the log profile method 

and values of bottom roughness, z q , for the profiles were given in their table 2. For 

comparison with our results and those o f Soulsby and Humphrey we have calculated Uioo 

using the formula below: 

^.00 = In 
^100^ 5.5 

where k is von Karman*s constant, taken as 0.41 
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Figure 5.7 Drag coefficients from Soulsby and Humphery (1989) and those calculated from 
Drake and Cacchione (1982). 
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A plot o f the drag coefficient as a function o f the wave to current ratio f rom both o f the 

field campaigns is shown in figure 5.7. The general trend for the data is an exponential 

curve which appears to increase rapidly once the wave to current ratio is greater than one. 

Introducing the drag coefficient, estimated f rom the data collected in this study, to the 

plot, figure 5.8 shows that they are consistent with the other field data. The points at the 

lower end f rom the study fit in at the upper end o f the Soulsby and Humphery data and 

the data f rom Drake and Cacchione and intermingle wel l , and then extend the range of 

data to greater values o f the wave to current ratio in a manner consistent wi th the line o f 

fit suggested by Soulsby and Humphery. 

0.01 

0.001 
0.01 0.1 1 

Wave to Curreni Raiio 
to 

O S u b u n 2 

• Suaoa 1 

X C D 9 2 

Figure 5.8 Comparison of drag coefficient with those of Cacchione and Drake (1982) and 
Soulsby and Humphery (1989). 

The line shown on the graph is an exponential line o f best fit for all o f the data points 

presented. The equation for this line is: 

C, =0.00330'"'''" 5.6 

with an r^ value of 0.8843, where x = a^,,,/U,oo . Figure 5.9 is identical to figure 5.8, 

but the lines of best fit for each individual field site are shown. The two equations for 

stations 1 and 2 are similar in shape and the two for the other field campaigns show 

similarity but there is a distinct and large difference between the lines o f best fit for this 

field campaign and the other two. The equations for these lines and for the line o f best fit 

for all points are listed in table 5.3. 
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Figure 5.9 Showing lines of best fit for each field station. 

Field Site Equation value Equation 

Station 1 (Mean) C , = 0 . 0 0 3 1 e x p ( 2 . 0 0 3 8 a _ / U . , J 0.88 5.7 

Station 2 (Mean) C , = 0 . 0 0 3 9 e x p ( l . 8 7 5 a _ / U , J 0.84 5.8 

SH89 C , = 0 . 0 0 3 1 e x p ( l . 0 2 1 1 a _ / U . J 0.63 5.9 

CD92 = 0 . 0 0 3 4 e x p ( 0 . 8 0 5 7 a _ / U , „ ) 0.53 5.10 

A l l C , = 0 . 0 0 3 3 e x p ( l . 8 7 4 1 a _ / U . J 0.84 5.1 1 

Table 5.3 The equations of the lines of best fit for the data presented in figure 5.9. 

There is a remarkable similarity between the constants of the equations in table 5.3 and 

also a notable change in the exponential; these similarities/differences w i l l be discussed 

in the next chapter. 

The scatter is large, almost an order of magnitude in the extreme, between drag 

coefficients o f similar wave to current ratios. The spread is greater for the higher wave to 

current ratio but it is still quite large for the lower ratios, with some estimates of a given 
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ratio 3-4 limes larger than others o f a similar one. Again, reasons for this scatter w i l l be 

investigated in the final chapter. 
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Chapter 6 

Inter-comparison of Models and Comparison of Models 

with Field Results 

6.1 Inter-comparison of Models 

The models and their parameterisation chosen for the comparison were described in 

detail in chapter 2. S A N D C A L C , a package supplied by H.R. Wal l ingford , was used to 

calculate the model results. This package uses the parameterised versions o f the models 

for quick calculation o f the model estimates. To compare the models a range of the input 

parameters was chosen. Wave and current velocities ranging f rom 0.2 m/s to 1 m/s were 

chosen. Three values of bottom roughness were chosen. 0 .1 , 1 and 10 mm; these 

roughnesses were taken as representative of flat, small ripples and larger ripples to cover 

the different roughnesses possible. Wave periods o f 5s and 10s were taken as 

representative of conditions experienced and an angle o f 90° between the waves and 

current was chosen for the same reason. 

Model Abbreviations Modell ing techniques 
Huynh Thanh and 

Temperville 
HT92 One equation, fu l ly numerical k-1 turbulence 

closure scheme. 
Grant and Madsen GM79 Two layer eddy viscosity, zero equation 

turbulence closure scheme. 
Soulsby 13 Soulsby 13 Line of best fit o f field data, in the same form 

as parameterised models. 
Fredsoe Fredsoe Momentum defect assumption. 

Table 6.1 A synopsis of the models used in the following analysis. 
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Table 6.1 gives a brief reminder o f the assuptions made in each o f the models, for 

a more in depth description see chapter 2. 

Representative results have been chosen to highlight the differences between the models. 

Table 6.2 below gives the key to all the figures o f model results in this section. Figure 6.1 

shows the predictions for the four models for bed roughnesses o f 1 cm and a period o f 

10s. As given in table 6.2 each depth averaged velocity is represented by a different 

colour and each model by a different line style. So, for example, the Fredsoe model for a 

depth averaged velocity o f 0.4 m s ' ' is represented by a solid black line. 

K e y to f i g u r e s 

Velocity, (m/s) Colour Model Line Style 

0.2 pink Huynh Thanh and 

Tempcrvillc 

0.4 black Grant and Madscn 

0.6 green Soulsby 13 . . . 

0.8 red Frcdsoc 

1.0 blue 

Table 6.2 Ke>' to figures 6.1 to 6.3, showing line st>'les and colours for each model and 
each velocity. 

0,4 0.5 0,6 0.7 0.8 

W o v e Orb i ta l Ve loc i ty Ampl i tude al Seabed, mfi 

Figure 6.1 Model results for the four models showing comparison at different wave and 
current velocities. 

Overall, the Grant and Madsen, (1979), model gives the largest results over the range 

whilst the Fredsoe model tends to give the smallest results with the Huynh Thanh and 
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Temperville (1992) giving very similar results to the Fredsoe model. The Soulsby 13 

model gives similar results as the H T and Fredsoe models except at the higher 

roughnesses where the results tend to be larger but not as large as the G M model. 

Comparisons between the results fo r the different wave periods reveals that the period has 

little effect on the predictions, figure 6.2. The shorter period gives the slightly larger 

results. As an example, the Soulsby 13 model for Zg = 1 m m , the wave orbital velocity 

magnitude, 0.8m/s, and depth average velocity, 0.6m/s, gives for T = 10s, x = 2.6 N m " \ 

and for T = 5s, t = 2.8 N m " ' . This gives a difference o f less than 10%, which is typical 

for all estimates and all models. 

12 

I " 

2.5 7.5 

Period ( K ) 

10 12.5 

Figure 6.2 The effect of period on ihe models is not great, in the Soulsby model it is a 
little greater. 

Errors in velocities when working with E M C M ' s are to be anticipated, as has been 

described in chapter 5. Looking at figure 6.2 and comparing wave orbital velocities, the 

changes in the gradients o f each o f the lines o f different colour, shows that errors o f as 

much as 20 cm/s in the wave orbital velocity amplitude wi l l give errors in the shear 

stresses less than 20% in the Grant and Madsen model estimates and less than that for the 

other models. On the other hand, comparing lines o f different colours, errors o f similar 

magnitude in the depth averaged velocity wil l give much larger errors o f reaching nearly 

70%, in the most extreme cases. 
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Figure 6 3 The effect of bottom roughness is quite marked 

The other factor which has been looked at is the bottom roughness. Figure 6 3 shows a 

range o f bottom roughnesses from 10 ' m to 1 0 ' m . Errors in representing the value o f 

bottom roughness could result in very large errors. If , for example, the bed roughness is 

estimated from the grain size, say 0 1 mm but the actual roughness is due to the presence 

of ripples, with an equivalent bottom roughness o f the order o f 10 cm, there is an error o f 

almost 500% for a depth averaged velocity o f 1 0ms ' This error could occur i f a flat bed 

assumption is made when ripples are present In the field study it was not possible to 

record the bottom roughness during the tidal cycle, observations made at the beginning 

and end o f the tidal cycle and the grain size analysis carried out after the fieldwork are the 

only evidence available f rom which to estimate bottom roughness I f the hydrodynamic 

conditions were such that ripples formed during the tidal cycle and were wiped out as the 

water receded the flat bed assumption could lead to massive errors in the estimates 

6.2 Estimation of Bottom Roughness 

The model comparison has highlighted the need for accurate bottom roughness estimates 

The only estimates available for this study are the observations made after the tide had 

receded and the grain size analysis carried out after the experiment Field records showed 

that whenever station 2 was uncovered the bed was flat, this, however, gave no indication 
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bottom roughness estimates could lead to large errors in shear stress predictions. 

Similarly for station 1, although ripples were observed after the tide had ebbed, this was 

no real indication of bottom roughnesses throughout the tidal cycle. 

It is necessary in the first instance to establish whether the hydrodynamic conditions were 

such that sediment transport would occur. Ripples form when the bottom shear stress is 

great enough to overcome the stabilising forces acting on the sediment particles. It might 

be expected that sediment transport would occur, given the shallow water depth and 

comparatively large waves and currents. A more detailed description o f the processes is 

available in chapter 2. 

In a study on Sable Island Bank, the Scotian Shelf, Canada, Amos et al. (1995) observed 

ripple formation and erosion in orthogonal or near orthogonal wave and current 

conditions, described in chapter 2. Amos et al. (1995) in their figure 5 plotted the wave 

Shield's parameter against the current Shields and inserted limits for the thresholds of 

sheetflow, for saltation/suspension and for traction. The threshold conditions were 

derived using skin friction only, (Dyer, 1986). In table 6.3 below the equations used to 

define the limits are listed. 

0 . 0 0 

Shields C 

Figure 6.4 After Amos el al. (1995) figure 5, showing a plot of current Shields parameter 
against wave Shields parameter to estimate when sediment movement occurs. The three 
lines represent the limits between no sediment movement and ripple formation, this is 
represented by the heavy solid line; the transition from ripple formation to ripple 
degradation, the dotted line; and the limit between ripple degradation and sheetflow, the 
lighter solid line. 
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Amos et al. (1995) assumed that at very small waves (currents) the Shields parameter for 

the limits for sediment movement are equivalent to the current (wave) limits expressed in 

equations in table 6.3. A combined wave against current Shields parameter was then 

calculated for these limits by interpolating using a straight line between these points. 

Figure 6.4 shows these limits worked out for the environmental conditions found at the 

field site. Plotted in figure 6.4 are the current against the wave Shields parameters 

calculated f rom the data collected in this study for both station 1 (diamonds) and station 2 

(squares). The filled and empty symbols w i l l be explained in the fo l lowing section. 

From the diagram it can be seen that sediment transport in some form is occurring at all 

times during the period of data collection. 

L i m i t s f o r Shields Parameter Equa t ion Reference 

Wave 

Sheetflow y : = 0 . 4 1 3 D , / - ^ Komar and 

Miller (1975) 

Saltation/suspension Nielsen (1986) 

Bedload 
M/: = 0 . 1 f : ( 2 A , / D , o ) ^ 

Komar and 

Miller (1975) 

Curren t 

Sheet flow \|/^ = CQ t ana Bagnold (1966) 

Saliation/suspension , 0.64pW^' 

A p g D , , 

Bagnold (1966) 

Bedload pu.^ 
\i/ = — 

ApgDjo 

Yalin(l977) 

Table 6.3 The equations used lo calculate the critical Shields parameters for sheetflow 
saltation/suspension and bedload transport for wave alone and current alone cases. 

Ab is the maximum wave orbital amplitude, Co is Bagnold's (1966) static volume 

concentration, taken as 0.65, D50 is the mean grain diameter, f^ is the pure wave fr ic t ion 

factor, W j is the settling velocity, a is the internal fr ict ion angle (tan a =0.963 after Al len 

and Leeder (1980)), r | is the ripple height, X, the ripple wavelength, Ap is the relative 

density and \\f' is the Shields parameter associated wi th the skin friction wi th subscripts c 

or w for current or waves. 

96 



From these results it was decided to use the mean hydrodynamic conditions experienced 

over each data run to predict a temporally varying bed roughness. 

6.3 Estimating Ripple Size 

Wikramanayake and Madsen, (1990), found, by trial and error, that the form o f skin 

ff ic t ion Shields parameter, , providing the best correlation between ripple geometry, 

T | / ^ , for field data, was 

Z = ^ 6.1 
S. 

where S. is the sediment-fluid parameter defined below, (equation 6.7) and the subscript 

m implies the mean. The equations for the empirical relations for the ripple geometry in 

the field are: 

_Q 
A b 

1.8 X 10"' ' 0.0016 < Z < 0.012 

7 . 0 x l O " * Z - ' " 0.012 < Z < 0 . 1 8 

6.2 

and 

1.5 X 10"' Z " " * ^ 0.0016 < Z < 0.012 

1 . 0 5 x l O - ' Z - ^ " 0 . 0 1 2 < Z < 0 . 1 8 

6.3 

where the lowest and highest range of validity indicate the range covered by the 

experimental data used in Wikramanayake and Madsen, (1990). 

Ripple size was estimated for each data run fo l lowing Madsen (1993), using the 

prevailing hydrodynamic conditions. Calculations were made employing the fo l lowing 

algorithm: 

1) Calculate wave shear (friction) velocity, u^^^ (the prime denotes skin frict ion and the 

subscripts w and m denote wave and maximum respectively). This is done by first 

calculating the wave (skin) friction factor, f^ , and using the equation: 

6.4 
bm 
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The frict ion factor associated with the skin fr ict ion is calculated using an iterative 

process. The equation used in this process is: 

1 

A 

log.o 4 ^ - 0 . 1 7 ! - l o g , 4r + 0.24x<"' ^ ' ^ 

where the superscript denotes the iteration step, x = 4-Jf^ , and the iteration is started 

withx'*** = 0 . 4 

2) From 1) calculate the skin fr ict ion Shields parameter, \ | /^ . 

/ 6.6 

= "-Jiflll = .^^ ^ 

^"^ ( s - l ) p g D ( s - l ) g D 

where s is the specific weight of the sediment (p^ /p ) , and D is the grain size diameter. 

3) Evaluate S* as defined in the fol lowing equation: 

6.7 
. / ( s - l ) 2 D 

4v 

4) Determine the critical Shields Parameter, \|/^^. 

=0.1S.- ' ' ' for S. <0 .8 

=0.06 for S, > 3 0 0 6.8 

for 0.8 < S. < 300 is obtained f rom figure 6.3 

5) I f < l / 2 \ | / „ , (for field measurements) there is no sediment mofion and hence no 

ripples. Bed roughness is assumed to be the sediment grain diameter, D, unless other 

information is available. 

6) I f \ | /^ > 0.35, saltation/suspension or sheet flow is assumed. The bed is eroding or fiat 

and bed roughness is the moveable bed roughness, Smith and McLean (1977). 

7) I f 1 / 2 < M ' m <0.35 the parameter Z, equation 6.1, is computed. 

T| and k are calculated f rom equations 6.2 and 6.3 depending on the value of Z. 
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The limits described above are different from the ones used by Amos et al. (1995) as the 

new limits and Shields parameter take wave and current interaction into account whereas 

the ones used before are limits which do not. 

The algorithm above is a concise outline of the procedure to estimate ripple size and 

hence bottom roughness from the prevailing hydrodynamic conditions. This was used to 

calculate bottom roughnesses which were then applied to the models, the results of which 

are shown below in figure 6.5. 

In figure 6.4 the filled squares and diamonds are the results where ripples were predicted 

to be present and the empty ones are those where the bedforms were predicted to be 

eroding or eroded. This fits well with the limits suggested by Amos et al. (1995). There 

are a few exceptions and reasons for this are being investigated. 

0.013 

5 0,0 K) + 

•o o.ons 

a 0.006 

O.I)(V4 

l),(H)2 + 

0 1 ^ ^ 
Run Number 

Figure 6.5 The estimaied bottom roughnesses for station 2, the station where a flat bed 
roughness based on the grain size was used. 

6.4 Comparison of Rippled and Flat Bed Model Results. 
The input quantities required for the models were depth averaged current, near bottom 

orbital velocity, water depth, peak wave period and the bottom roughness length, Z q . The 

bottom roughness was calculated in the first instance using the observed bedforms, for 

the inner station, station 1, 

= 2 7 . 7 / 3 0 x V A . 6.9 
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Figure 6.6 (a) and (b) Comparison of the modelled shear stress results for both field 
stations. The results using the rippled estimates are plotted against those using the 
observed estimates of bottom roughness. 

A!I the estimates for the bottom roughness were then used in the wave current interaction 

models with the data collected during the field campaign. 
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(Grant and Madsen (1982), Madsen (1993)), where T | and X are the ripple height and 

length respectively. r| and X were recorded during the field campaign, see table 3.7, the 

table of environmental conditions experienced over the period of the field campaign. For 

station 2, the outer station, the bed was flat for all observations when the station was 

uncovered, Zo was calculated from the mean grain size, D 5 0 , 

z^ = Dj30. 6.10 

Bed roughnesses were also calculated from the model results predicting ripple size using 

equation 6.9. 

Figure 6.6 a) shows the results of the model runs using the field data collected at station 

1 and figure 6.6 b) the results from station 2. The model results using the roughnesses 

calculated from the ripple and bedload models are plotted as the abscissa and the model 

estimates using the observed bed roughness as the ordinates. There is very good 

agreement between models, less than a factor of 2 between the extremes, the Grant and 

Madsen model gives larger results than the others. This is particularly noticeable in the 

wave dominated tidal cycles. There are very significant differences between the flat and 

rippled assumptions up to about 500% in the extreme, figure 6.6 b). The differences 

between the station 1 estimates is less marked as ripples were observed after the tide had 

receded. In a few cases, for station 1, the observed bed roughness is greater than the 

predicted and gives larger shear stresses. 

6.5 Comparison of Model Results with Data from the Field Experiment. 
Figure 6.7 shows the mean field estimates of shear stress plotted with the model results 

using the observed ripple size to estimate bed roughness and the modelled ripple size 

estimates of bottom roughness for station 1. The two sets of model predictions are close 

to the field estimates for the first five and the penultimate tidal cycles. The other tidal 

cycles show considerable scatter and do not fit within the range of the model estimates. 
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Figure 6.7 (a) and (b) Plot of field results with model estimates from station I, (he Huynh-
Thanh and Temperville (1992) model was chosen as being one of the intermediate models 
to make this comparison. 
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Figure 6.8 Comparison of the HT model results for boih rippled and flat bed assumptions 
with field shear stress results, station 2. 

Similarly, figure 6.8 shows the model results plotted with the field results for station 2. 

Again the results are good for the same tidal cycles as before but field measurements are 

much larger than the model results for the other tidal cycles. Reasons for this 

discrepancy wil l be discussed in the section 6.7. 
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6.6 Comparison of Drag Coefficients from the Field Data with the 

Parameterised Equation 
In section 2.4.1 the parameterisation of the models was introduced. Equation 2.13 was 

chosen as it had a shape similar to the lines given by the model results. To reiterate, 

equation 2.13 was of the form: 

y = x l - b x P ( l - x y 6.11 

T X 
where y = — , and x = — , b, p and q are the fitting parameters and depend 

on which model is being parameterised, T^. = pCjU^^ and = l/2pf^Ub^ -

Introducing the equations for y and x into equation 6.11 and after some rearranging the 

following relationship is found: 

c = r 1 + b 
1 + 

p+q 

c y 

6.12 

where the subscripts c, w and wc indicate current, waves or wave and current interaction 

respectively. In chapter 5, table 5.3 four estimates for C^ .̂̂ , as a function of \J^/U^ , 

from three different field campaigns. Although these equations are in a different form to 

6.12 above and direct comparison is not possible, it is possible to compare the equations 

in the extreme, where there are no waves, i.e. when \J^/\J^ = 0 . In this extreme the 

drag coefficients are those associated with the current alone and this is equal to the 

multiplicative constant at the beginning of each equation. 

For the equations in table 5.3 taken in order the drag coefficients associated with the 

current alone are listed below in table 6.4: 
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Field Site Current Drag Coefficient 

Station 1 0.0031 

Station 2 0.0039 

CD92 0.0034 

SH89 0.0031 

Table 6.4 Drag coefficient associated with current alone, from the parameierised equations. 

These values are consistent with values found for current alone drag coefficients in 

previous work carried out by Soulsby (1983), his table 5.4. It is interesting to note that 

the drag coefficient for station 2 is large and corroborates the hypothesis that ripples may 

have been formed during the tidal cycle. 

6.7 Discussion 
In the shallow water, as experienced during the field campaign, the waves will almost 

inevitably be non-linear, but as it has been shown, the models can predict shear stresses 

quite accurately under certain circumstances. One suggestion is that the mean shear 

stresses are greater under cnoidal waves than under linear waves. 

The circumstances under which the models no longer accurately predict the shear stress 

was investigated. To establish the form of the waves experienced during the field 

campaign, a plot of wave height divided by the square of the period against the water 

depth divided by the square of the period, after Le Mehaute (1976) was made. The plot 

was turned into a non-dimensional form following Davies (Alan G., lecture notes, 

UNCW, Bangor) by dividing the ordinate and abscissa by the acceleration due to gravity. 

Figure 6.9 shows the results of this procedure using the waveheight and water depths 

measured during the fieldwork. The two dotted lines are the limits of cnoidal waves, the 

upper limit is the Miche formula (equation 4.13), the breaking criterion. The lower 

dotted line is the limit between cnoidal and Stokes waves. As anticipated, all of the 

waves fall into the non-linear region, most are cnoidal, some second or third order Stokes 

waves. 
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The potential function for a Stokes wave travelling over a constant depth at a second 

order approximation is found to be: 

- H k 
2m 

( coshm(h + z)^ 
sinh mh 

sin(kt - mx) 
8 

cosh2m(h + z) 
s i n ( k t - m x ) 

sinh'*mh ^ 6.13 

where m = L is the wavelength of the waves, k is the wavenumber, h is the water 

depth and H the wave height. The term in H is the solution obtained by taking only the 

local inertial terms into account, the term in is the most significant correction due to 

convective inertia. The ratio of these two inertial terms, the relative importance of the 

convective inertial term, leads to the Ursell number introduced by Kortevveg and de Vries 

^ 0 L 6.14 

where Tjg is the maximum elevation above the still water level. 

In very shallow water with long waves the Ursell number can be difficult to use since the 

interpretation of L, the wavelength, can be unclear, Le Mehaute (1976). Le Mehaute 

suggested that H/h might be a more significant parameter to assess the importance of the 

non-linear terms. He took the vertical inertial force to be negligible and the only 

significant term for the convective inertia to be pu(9u/3x). It is then possible to 

calculate the ratio of the amplitude of the convective inertia to the amplitude of the local 

directly. In shallow water h/L is very small, therefore: inertia, ^ ' pdu/di 

u = 
90 
9x 

H k 
2 mh 

After some manipulation Le Mehaute found 

cos(mx - kt) 
6.15 

du 

max 

du 

max 

2h 
6.16 

The solid line on figure 6.9 is the line H/h = 0.2, this line can be interpreted as the line 

where the convective inertia is 10% of the local inertia. On the diagram, the squares and 

diamonds represent the results from stations one and two respectively. The solid squares 

and diamonds are those where the modelled and field estimates of shear stress were 

judged to be similar, the empty squares and diamonds are those where the field shear 
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stress estimates were much greater than the model results. It is possible to conclude from 

this that the models work well for the non-linear waves when the convective inertial 

terms are small compared with the local inertial term. 
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Sljuon 
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0.0001 0.001 
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Figure 6.9 Plot of nondimensional wave height against nondimensional water depth showing 
line of where the ratio of convective inertia to local inertia equals 10%. The two dotted 
lines show the limits of cnoidal wave theory, the upper being the Miche parameter, the 
lower the limit between cnoidal and Stokes waves. 
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Chapter 7 

Conclusions 

The project has been successful overall in fulfi l l ing the aims set out at the beginning. 

Several problems have been highlighted and some interesting conclusions wil l be drawn 

in the subsequent sections. As a result of both problems and conclusions suggestions for 

future work will be made. 

7.1 Field Campaign and Data 
The field campaign was conducted successfully, with 12 tidal cycles during which data 

were successfully collected. Conditions were such that the range of wave/current data 

was good, varying from current to wave dominated conditions over the period of the data 

collection period. Observations of wave conditions at the time of data collection proved 

very useful when eliminating data runs during which waves were breaking. In all it was 

necessary to discard 50% of the data runs mostly owing to data collection after one or 

more instruments were uncovered. Some, less than 7%, were discarded as there were 

waves breaking close to the instrument stations. 

One problem which arose in the subsequent analysis was the lack of measured bed 

roughnesses for each data run. This problem was overcome by modelling ripple 

formation and erosion. More accurate and more frequent observations of bed roughnesses 

during the tidal cycles would have contributed to the success of the campaign and 

subsequent data analysis. 
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7.2 Shear Stress Estimates 
Three methods for calculating shear stresses were used, all of which were turbulence 

based methods, it was not possible to use the logarithmic profile method to estimate shear 

stresses as only two current meters were reading the longshore velocity profile. Each 

method was calculated for all runs in which there was no evidence, mathematical or 

observational, that waves were breaking adding extra turbulence to the water column and 

thereby, possibly affecting the amount of turbulence measured by the current meters. 

Comparisons of the three methods revealed that there were no systematic differences with 

no one method consistently larger or smaller than either of the others. Correlations 

between the shear stress estimates and other parameters suggest that the scatter, in 

extremis 500%, cannot be attributed to any of the external parameters. Soulsby and 

Humphery (1989) found that the greatest scatter between estimates was discovered at the 

low current speeds, in this case the data cycles where low current speeds were 

experienced were removed prior to data analysis because of the size of the sensor head 

and the advection of turbulent eddies past the sensor, the EMCM's cannot sense 

turbulence at low speeds, see figure 4.6. Reasons for the observed scatter have not 

therefore been identified. 

7.3 Modelling of Wave and Current Interaction 
The four parameterised models investigated in this project all showed that an enhanced 

shear stress would be expected in the presence of waves and currents. The magnitude of 

the enhancement was different for each model with the Grant and Madsen (1979) model 

being generally the greatest and the Fredsoe (1984) model giving the smallest stresses. 

The differences between models even at the extremes was always less than 100%. 

A point raised by the comparison was the importance of both current velocity and the 

bottom roughness. An error in either of these parameters was shown to lead to massive 

errors in the estimation of the bottom shear stress. A 20% error in current velocity 

measurement could lead to a 70% error in the estimation of bed stress. If a flat bottom 

bed roughness is used where ripples are present errors of the order of 500% are possible. 

Errors in other parameters such as wave period or wave orbital velocity amplitude have a 

much smaller effect on the shear stress produced by the models, errors of less that 10%. 

However, it is interesting to note that the Soulsby et al. (1994) model which is based on 
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field data (section 2.4.1) is more affected by the wave period than any of the other models. 

Reasons for this difference are unclear and, perhaps, would warrant further investigation. 

7,4 Comparison of Model and Field Results 
Shear stresses from model runs using the observed and measured parameters were 

compared with the shear stress estimates made using the three methods described . 

Observed and modelled bed roughness model predictions from the Huynh Thanh and 

Temperviile (1992) model were used in the comparison. This model was chosen as it was 

one of the two models which gave the intermediate values from amongst those studied. 

The model estimates encompassed the mean shear stresses for the first four tidal cycles 

and most of the fifth as well as the penultimate tidal cycle. However, the other five tidal 

cycles were much less good. Reasons for this discrepancy were sought. Reviewing figure 

4.1 shows that for all the tidal cycles in which the shear stress estimates were greater than 

the modelled estimates were tidal cycles in which the wave orbital velocity amplitude was 

greater than the mean current. Also, the period of the waves during these tidal cycles was 

shorter, typically 5-6 second waves as compared with 8-9 second waves in the other tidal 

cycles. 

7.5 Future work 
This project has highlighted the need for accurate observations and estimates of bed 

roughnesses. Investigations into the effects of bed roughnesses on wave and current 

interaction could prove to be very interesting and perhaps, looking into new and improved 

ways to record bedforms, bedload and suspended sediment transport would be beneficial. 

In modelling wave and current interaction the inclusion of more realistic waves, non

linear waves, for the shallow water environment of the nearshore zone would increase the 

range of conditions under which the models could be used. If the turbulence added to the 

water column by breaking and spilling waves was also included the whole of the surf zone 

could be modelled. This would enable wave and current interaction effects to be used in 

the modelling of longshore currents and the resulting sediment transport. 
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It might also prove to be interesting to use equation 6.12, for the wave and current drag 

coefficient, to provide curves using the b, p and q, for each model and appropriate C d . and 

fw values to calculate Cdwc for comparison with the data. Alternatively, the data could be 

fitted to the parameterised model equation, instead of the exponential equation used, for 

the values of roughnesses, and velocities associated with each data point. 

Another large scale method for calculating the drag coefficient was introduced in chapter 

2, this method was not used due to difficulties fitting sinusoids to the small amounts of 

data available over each tidal cycle. It would be very interesting to be able to use this 

model in conjunction with data collected perhaps in deeper water to compare the results of 

the model with other methods of estimating the drag on the seabed. 

I l l 



APPENDIX 

1 12 



EARTH SURFACE PROCESSES AND LANDFORMS, VOL. 20. 807-815 (1995) 

SEABED STRESS DETERMINATIONS USING T H E I N E R T I A L 
DISSIPATION METHOD AND T H E T U R B U L E N T K I N E T I C 

E N E R G Y METHOD 

K. R. STAPLETON AND D. A. HUNTLEY 

Institute of Marine Studies, University of Plymouth. Plymouth. PL4 8AA. U.K. 

Received 10 March 1995 
Accepted 26 May 1995 

ABSTRACT 

Direct mcasuremcnis of seabed stress are difficult, especially in field conditions. Several methods for estimating these stres
ses using current meter data are available. Two of these methods, the Inertial Dissipation Method and the Turbulent 
Kinetic Energy Method, are described below, and a Matlab program is used to analyse data from a wave-current environ
ment. 

KEY WORDS wavc-currcm data; turbulence: seabed stress 

I N T R O D U C T I O N 

Determination of bottom shear stresses in turbulent environments is difficult, if not impossible, by direct 
means. There are, however, several indirect methods available for estimating these stresses using current 
meter data. The logarithmic profile method (Soulsby, 1983) requires a vertical array of current meters meas
uring within the logarithmic layer. This can prove to be a problem, particularly in shallow water environ
ments. The Reynolds stress, or *eddy correlation' method (Soulsby, 1983) uses turbulent momentimi fliw 
to estimate stress at the instrument height. This method is particularly sensitive to sensor misalignment 
and can give errors of as much as 156 per cent per degree of misalignment in wave-dominated conditions, 
(Soulsby and Humphrey, 1989). 

The two methods described below use the spectra of the turbulent fluctuations to make estimates of the 
bottom stress. The inertial dissipation method uses the well known kT^^^ relationship between wavenumber 
(k) and spectral energy, {4>) within a sub-range of the spectrum (Huntley, 1988) to infer turbulence. Soulsby 
and Humphrey (1989) uses the premise that the variance of a current meter time series can be separated into 
fluctuations due to waves and fluctuations due to turbulence, and infer bed stress from the level of turbulent 
energy. These two methods were chosen as they require instruments at only one height and the methods are 
far less sensitive to alignment errors. In an empirical test of sensitivity to aUgnment errors, the inertial dis
sipation method was shown to have errors of only 0-8 per cent in stress per degree of misalignment (Huntley 
and Hazen, 1988). 

D A T A C O L L E C T I O N 

Measurements were made at a variety of beach field sites using an array of electromagnetic current meters 
(EMCMs), pressure transducers (PTs) and optical backscatter sensors (OBSs). The data presented her« were 
collected on a beach at Nieuwpoort, Belgium in February 1994, as part of the C S T A B experiment. Data were 
collected at a rate of 8 Hz; filtering of the E M C M s was at 2-4 Hz, to ensure minimal aliasing of the signal. 
Aliasing occurs when energy from frequencies higher than the Nyquist frequency (half the sampling 
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frequency) is interpreted as belonging to lower frequencies. This can distort the results of the spectral ana
lysis. To prevent this, filtering is carried out at the time of data collection, prior to digitization. 

I N E R T I A L D I S S I P A T I O N M E T H O D ( I D M ) 

If the wavenumbers at which turbulent energy is produced and dissipated are well separated, the region of 
separation is known as the inertial sub-range. In this range the flux of energy from low to high wavenumber 
is equal to the dissipation rate, as there are no sinks or sources of energy within the wavenumbers of the sub
range. The spectrum, in a given direction within this range, is given by: 

where k is the one-dimensional wavenumber, a, is the one-dimensional Kolmogorov constant, c is the energy 
dissipation rate and the subscript / represents a given direction. Equation 1 has been found using dimen
sional analysis and is not given in detail in this paper. 

It is necessary to make two assumptions to order to estimate bottom shear stress from the above equation. 

1. There is a local balance between production and dissipation of turbulent energy. The production rate of 
turbulent kinetic energy is given by T/p{du/dz) and in the logarithmic layer du/dz — w,//cz, where 
T = pu^ is the stress felt at the bottom, u is the velocity in the x direction, p is the density of the water 
(taken as 1025 kgm"') /c is von Karman's constant (taken as 0-4), u, is a parameter known as the friction 
velocity and z is the height of measurement above the bottom. The friction velocity parameter has the 
dimensions of velocity but has no physical meaning. 

2. The measurements are made within the constant stress part of the logarithmic boundary layer. Within this 
part of the boundary layer local stress is equal to the bottom stress. 

These assumptions after some rearranging, give: 

Turbulence measurements are generally in the form of time series and therefore provide spectra as functions 
of frequency and not wavenumber. The Taylor concept of Trozen turbulence' is used to convert wavenumber 
spectra to velocity spectra: 

Mk) = <i>uW)u/2n (3) 

where u = mean velocity in the / direction a n d / = frequency. For this concept to be valid, the time scale of 
the eddy must be much longer than the time taken for the eddy to advect past the point of measurement. For 
this to be true it is required that: 

kMkyu" « 1 (4) 

For an environment with significant oscillatory flows it has been suggested that Taylor's hypothesis would 
need to be significantly revised. Huntley (1988) suggests that for isotropic turbulence, horizontal wave velo
cities much greater than vertical wave velocities, and small values of the wave velocity/mean current ratio, 
the correction to friction velocity due to the wave advection is given approximately by: 

0. = l\-0\6{u^Ju)'\^u, (5) 

where is the root mean square horizontal velocity. In the data set used here, this new approximation is 
less than 1 per cent smaller than the original estimate and, hence, is not a major source of error. 

The inertial sub-range will only exist in flows where the low wavenumbers. (where energy is produced) are 
well separated from those where energy is dissipated. Tennekes and Lumley (1972) suggest that this will only 
occur in flows where the turbulent Reynolds number (Re) is greater than some critical Reynolds number 
(Re,): 

Re = u.Kz/v > Re, (6) 

Estimates for the critical Reynolds number range from 2500 to 4000 (Huntley, 1988). 
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Figure 1. Spectrum of vertical velocity time series showing predicted limits of inertial sub-range and -S/3 roU-ofiT 

Taking a different perspective of Equation 6, assuming that it is generally valid, it is possible to derive a 
critical height above which measurements must be made to ensure an inertial sub-range: 

^ Rect^/i^u.) (7) 

However, it is also a requirement that the measurements are made within the constant stress part of the loga
rithmic layer (see assimiption 2). It is possible that, in certain circumstances, these two height requirements 
cannot be satisfied, i.e. there is no height at which the instrument is high enough to satisfy the Reynolds 
number criterion whilst also being within the constant stress layer. I f this is found to be true, Huntley 
(1988) suggests a modification to the inertial dissipation method so that this method may be used. In the 
data discussed further here. Equation 6 is readily achieved and an inertial dissipation range is therefore 
expected. 

In the spectrum, (see Figure 1), the wind wave band can be seen and is indicated on the diagram. The limits 
marked on the spectnmi are the theoretical limits within which the inertial sub-range is expected to occur. 
These will be explained in more detail in subsequent paragraphs. Within these limits, it is possible to see an 
approximate -5/3 nm-ofif as predicted by theory. 

There is a limit to the physical size of the turbulent motions that the current meters can sense. This is due to 
the physical dimensions of the E M C M . This upper limit for the sub-range is given (Soulsby, 1980) as; 

k = 2-3/d (8) 

where is the distance between the electrodes on the sensing head of the E M C M , 
There is also a lower Umit to where the k~^^^ roll-off will occur. This is given by: 

k = 2n/z (9) 

For a sensor at height z above the bed, the peak turbulent energy is expected close to k = T T / Z , but for the 
assumed value of the Kohnogorov constant to be vahd, it has been suggested (Huntley and Hazen, 1988) 
that wavenumbers greater than twice the expected peak should be used. I f effects of wave energy from the 
surface prevent the confirmation of the turbulent peaks, then the lower wavenumber limit can be chosen 
to be at or larger than the number found from Equation 9. 
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Figure 2. Umils on inertial sub-range for velocities between 0 and 0-6 ms"' 

However, since frequency is measured and not wavenumber, it is necessary to convert wavenumber to 
frequency. This is done using the formula: 

k = 2nf/a (10) 

where / is the frequency. Substituting Equation 10 into Equations 8 and 9 and rearranging gives two new 
equations: 

f = u/z (11a) 

and 

f = 23u/2Trd ( l i b ) 

which are linearly dependent on the magnitude of the mean velocity at a given height. These are plotted in 
Fig. 2 as solid lines. 

A very important consideration in measuring turbulence with electromagnetic current meters is the high 
frequency cut-ofif filter in the sensor. The current meters in this study contained a ninth order eUiptical low 
pass filter and a -3 dB frequency was set at 2-4 Hz. This cut-ofiT and the filter characteristics were verified by 
laboratory measurement. In Figure 2. the filter limit is shown as a single frequency boundary at 2-4 Hz (all 
data in this paper are collected with this type of filter), and the sharp roll-off of the ninth order filter ensures 
that spectral amplitudes are not reduced by more than 20 per cent for frequencies below 2 Hz. 

The lower frequency limit for the turbulence is set by the upper frequency limit of the incident wave band, 
and will vary with conditions at the time of data collection. The hnes defining the limits of the inertial sub
range are calculated using Equations 8 and 9. 

T U R B U L E N T K I N E T I C E N E R G Y M E T H O D ( T K E M ) 

Instantaneous velocity, at time /, in the x direction, for example, can be written as: 

(12) 
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Figure 3. Spectrum of cross-shore velocity time series showing areas of variance due to waves and to turbulence 

where u is the mean (time averaged) velocity and the subscripts w and t refer to fluctuations due to waves and 
turbulence respectively. Since u,(/) is, by definition, not correlated with u„(t) then it can be seen from the 
equation that the variance of a time series can be attributed to either waves or turbulence, i.e. 

= -H wf, where is the total variance of the time series. There is no hard and fast rule for separating 
these fluctuations in frequency space but Soulsby and Humphrey (1989) suggest that it can be done by inter
polating across the base of the wave band, as shown in Figure 3. 

The area above the line in Figure 3 is taken to be the wave variance and the area below, the variance due to 
turbulence. The same procedure can be applied to both the u and t; components of flow. The vertical com
ponent, w is assumed to be uncontaminated by waves and consequently all fluctuations are taken to be due to 
turbulence. When the velocity measurements are made well above the seabed it is possible that the wave 
motion will have an effect on the vertical velocity time series and, if this is found to be the case, the fluctua
tions due to the waves can be removed in the way described above. 

The turbulent kinetic energy density, E is calculated from the definition: 

£ = l / 2 p ( i J ? + t;? + ivf) (13) 

From this it is possible to calculate the bed shear stress. In the region close to the bed, where energy produc
tion equals energy dissipation, the bed shear stress is proportional to the turbulent kinetic energy density. 
Using the constant of proportionahty observed in a wide range of flows (Soulsby, 1983) the bed shear stress 
can be calculated: 

r = 0 1 9 £ (14) 

The value 019 is assumed constant under diverse conditions (Soulsby, 1983). 

M A T L A B P R O G R A M S 

Matlab is a commercially available mathematical package which can deal with very large data sets easily. 
Macros for Matlab are simple to run from within the package, and using a language related to C it is pos
sible to write programs and macros. Two of these are listed below. The first calculates the bottom shear stress 
using the inertial dissipation method and the second uses the turbulent kinetic energy method. In both cases 
the inputs are three vectors of current meter data, one for each component of the flow, and z, the height of 
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the instrument above the bottom. For this data set we lake the vertical Kolmogorov constant = 0-69. and 
the height of the instrument above the bottom z = 0-545 m. 

In the inertial dissipation method the spectrum of the vertical time series is used, because it is less affected 
by wave motion than the horizontal components of the flow. The frequency limits between which the inertial 
dissipation sub-range is predicted to occur are calculated, and from this is predicted. The following algo
rithm gives the method in more detail. 

1. Check for the validity of Equation 4; in this case the inequaUty is valid at all frequencies. 
2. Calculate the spectrum of the time series (see Hardisty, 1993); averaging is done automatically within 

Matlab dividing the time series into segments of a specified length (usually a power of 2 for simplicity 
when calculating using fast Fourier transforms) which overlap by 50 per cent of the length of the seg
ment. For example, if the time series has 8192 points, it can be divided into 15 shorter series of 1024. 
This overlapping is done to increase the number of degrees of freedom of the spectrum. 

3. Calculate predicted hmits of inertial sub-range from Equations 1 la and 1 lb. 
4. Plot the spectrum on log-log axes to check for -5/3 roll-off. 
5. Calculate the mean of logarithm of the inertial sub-range frequency and amplitude, <i>{f). This gives a 

mean point within the inertial sub-range through which a line with a gradient of -5/3 may be plotted. 
The intercept of this line with the log 4> (i.e. where log/ = 0) axis gives a value for logQ,e^/^(27r/w)"^^^, i.e. 

taking logs gives: 

\og[<t>nW)] = log[a,-c2/3(2^/u)-2/3] _ 5/31og(/) 

so where log(/) = 0, (i.e. / = 1): 

log(^6,) = \og[a,^^\2n/u)-'^'] 

6. Use the value found in step 4 to calculate a value for u, using Equation 2, and the given values for z and K. 
Since, within the inertial sub-range, <^„(/r) oc k~^^^, then the *̂s cancel out. 

7. Use Equation (5) to correct u, for wave advection. 
8. Calculate bottom stress using the relationship r = pul. 

Matlab program for the inertial dissipation method: 

function (taul=idm(cross.long,vcfticaI. hcighi); 

% program to calculate a value for ustar using the 
% Incrtial Dissipation Method (Huntlcy.1988). 

% Calculate mean speed 
a=mean(cross); 
b=mean(Iong); 
c=mcan( vertical): 
magvcl=(a''2+b'̂ 2-H:'^2r.5: 
urms=std(cross); 

% Calculate predicted limits on incrtial subrange 
fl=magvcl/hcight; 
f2=2.3»magvcl/(2*pir055); 

% Calculate spectrum of vertical time scries 
(p.n=spcctn]m(verticaU 12.256.512,8); 

g=256; 
p=p(:.1V4; 
efl=<ceil(n*64)>+l; 
ef2=(noor<f2*64))+l: 
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if ef2>g 
cf2=g; 

end 

mcanfrcqsnieanOoglO(r(efl :ef2))): 
muuiphi=nicannog 10(p(en :ef2))}: 
logconst=<meanphi)+5/3*(nicanfreq); 
uhat=(I0^logcons0*(2*pi/raagvcI)^2/3)/.69)*.5*(.4»height)My3); 
ustan=( I -. 16*(unns/magvel>*2)^ J*ulmu 

uiu=1025*usiar*2; 
rcr=30O0*.O0O00I/(.4»ustar) 

To run this program load cross.asc, long.asc and vertical.asc into the Matlab workspace. Type 
tau = idm(cross,long,vertical,.545) into the workspace. The estimate for the stress will then be produced. 

For the kinetic energy method it is necessary to calculate the spectra for all three components of the flow. 
From the cross-shore spectra the incident wave band is found and is used to remove the turbulence due to the 
waves. The algorithm is as follows. 

1. Calculate the spectnmi of the cross-shore time series. 
2. From this spectrum estimate the hmits of the incident wave band. 
3. Split the spectrum into four parts: the low frequency turbulence, the variance due to waves, the variance 

within the wave band not due to waves, and the higher frequency turbulence. 
4. Calculate the area under the spectrum due to turbulence. 
5. Repeat steps 1, 3 and 4 for the other horizontal component of flow. 
6. Calculate area under spectrum of vertical fluctuations. 
7. Add areas found in steps 4, 5 and 6 together and divide by 2, as in Equation (13). 
8. Calculate bottom stress using Equation (14). 

Matlab program to calculate bottom stress using the turbulent kinetic energy method: 
function [cau]=tkcsouls(crossJong,vertical ̂ i gh t ) 

% Calculation of friction velocity (shear stress) using Soulsby 

. % method of splitting the spectrum. 

fdoscCall-); 

cncrgy=0; 

% Calculate spectrum of cross shore data 

tp^=spcctnim(cn)ss^ 12^6312,8); 

loglog(f.p(:.IV4) 

hold on 

% Choose the incident wave band using graphical input, dick ^ 

% on the plot at the extremes of the incident 

% wave band with the mouse. 

(xl.yIl=ginpuK2); 

% Plot line separating tuitulenoe and wave fluctuations 

' loglog(xl.yl) 

x2=floor(xl»64); 

% Calculate tuitjulent kinetic energy using the trapezium rule. 

cncrgy=l/256*(.5*(p(l.l>+p(x2(1).l)>«um(p(2:x2(I>l.l))); 
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energy=eneiEy+.25nf(x2(2))-ax2( I )))»(p(x2( I) . I H)(i2aXI )V2;-

energy=energy+ l/256*(.5*(p(x2(2). I Hp(256.1 )>«uin(p(x2(2HI :255,1))); 

hold oa 

% Calculate spccmim of long shore data 

Ip.n=spectrum(long^ 12.256,512,8); 

ciieiBy=cnergy+l/256V.5«(p(IJHp(x2(l)J)>«uni(p(2:x2<l)-l.l))); 

enerEy=energy+.25^f(x2(2))-a)t2(l)))-(p(x2(l).lHp(x2a)J)V2; 

cnergy=«icrBy+l/256^^«(p(x2(2)J>4i)(256.l)HsuraW 

% Calculate spectnim of venica] doia 

(p.fl=spectnim(vertical,5l2,256^I2,8); 

eneTgy=enogy+l/256n.5»(p(IJ>+p(x2(l)J)Hsum(p(2:x2<I>I.I))); 

energy=enci:gy+.25*(f(x2(2))-fi[x2(l)))*(p(x2(l).l>+p(x2a).l)V2: 

energy=cncrgy+ l/256*(.5'(p(x2(2).l Hp(256.1 )VKum(p(x2<2H ̂  :25S. 1))); 
fcloscfair); 

end 

tau=(0.19* J'encrey)* 1025; 

Use in the same way as the inertial dissipation program. 
The two methods give estimates for the bottom stress which are very similar, r = 1-99 Nm"^ for l O M and 

T = l -77Nm~^ for T K E M , but it is necessary to check for the validity of the methods before using them. 
It is not always possible to collect data with the necessary three orthogonal time series. With the I D M only 

an estimate of the mean current and a time series are required, not necessarily the vertical. If one of the two 
other components of flow is used, the appropriate Kolmogorov constant should be used. Three components 
of flow are required for the T K E M . However, it might be possible to estimate a value for any one component 
of the flow from the others. This could be done either by using the ratio of components found from the steady 
boundary layer ratios: 

: ivf =2-42 : 1-9̂  : 1.2̂  (15) 
It might also be possible to use components of flows at different heights above the bottom to interpolate 
flows at the necessary height. 
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