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ABSTRACT 

This thesis examines a typical 'drowned* river valley of south-west England. 
The River Erme drains southern Dartmoor and, in common, with other rivers of 
the region, has a buried channel graded to c. -50m OD. The channel has been 
infilled with a variety of sediments, of which the top 6-7m have been analysed 
for this study. Augered cores have been collected from the modern floodplain 
and salt marsh areas in the lower part of the valley and have been studied 
using particle size, diatom, molluscan and radiocarbon analyses. 

The main sediment types recovered include a fine silt unit representing the 
most recent phase of fluvial deposition, v^ich overlies variable horizons of 
fluvial granitic sands and gravels and brackish organic sands and silts. These 
are, in places, replaced at depth by shelly silts, sands and gravels deposited 
under more estuarine and marine conditions. The organic layer has been 
radiocarbon dated to between 1000 and 2000 years BP and has been 
correlated with a former area of marshland recorded in the tithe maps of the 
region. It is suggested that the Erme valley was previously more estuarine 
than today and that alluviation and infilling of the Erme's channel in the last 
1000-2000 years has been aided by forest clearance and tin mining on 
Dartmoor. 

All of the sediments recovered from the buried channel are derived from local 
sources of bedrock and have probably been deposited in the last 4000-6000 
years. Evidence from the tithe maps suggests that the channel'has been 
stable in the past 200 years. 

This work seeks to contribute to the Quaternary knowledge of the south-west 
of England, and because of the paucity of data concerning these burled rock 
channels, makes this study of the River Erme a preliminary model against 
which other rivers in the South West may be compared. 
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CHAPTER 1 INTRODUCTION 

During the Quaternary^ growth and decay of ice sheets caused oscillations in 

sea level. There were traditionally thought to be a maximum of four or five 

cold stages In the Quaternary but oxygen isotope analysis of deep sea 

sediments suggests at least eight in the last 700ka, and in the whole of the 

Quaternary at least 17 (Bowen 1978). in East Anglia West (1980) considered 

there to be seven cold stages of which five are confirmed by evidence of 

permafrost and periglacial sediments and three by glacigenic sediments. This 

therefore suggests there have been marked changes in sea level throughout 

the last two million years at least. It has been estimated that with the growth of 

the last ice sheet, during the Devensian, sufficient water was removed from 

the world's oceans to produce a eustatic lowering of sea level by over 100m. 

With these numerous oscillations of sea level, one should expect to find 

evidence of river channels graded to lower levels than today. Many examples 

worldwide have been cited of lower sea levels and in the UK these include the 

Thames estuary (Devoy 1979, Conway et a/. 1984), the Bristol Channel 

(Kidson and Heyworth 1973), north-west England (Tooley 1978) and the Fens 

(Shennan 1982a). This particular study concerns the south-west of England 

where in the drowned coastlines of the south-west peninsula, there is 

Indisputable evidence of rock channels in the river valleys with 'floors' at c. 

150ft (45m) below sea level (e.g. Codrington 1898, McFarlane 1955, Durrance 

1971). These 'buried rock channels', as they have been termed, have been 

infilled with suites of sediments, the age of which can only be considered to 

range across part of the Quaternary; and may include sediments that have not 

been reworked during the Holocene. 

As Orme (1964) stated there has been little work carried out on the buried 

channels of the West Country. Although Codrington (1898) presented some 

fairly detailed descriptions from nineteenth century engineering works of the 

depth and shape of rock channels in the South Devon area, there has been 

little study on the nature and age of sediments filling these valleys. Previous 



research in the area has been more concerned with the mapping of planation 

surfaces and attempting to assess the impact of any glacial action. The 

research presented in this thesis will attempt to redress the balance by an 

analytical study of some of these valley sediments. This study will focus on a 

typical river in South Devon, the Erme, drowned during the rise in sea level 

following the melting of the last ice sheets at the end of the Devensian cold 

stage. The location of the River Erme is shown in figure 1.1 and the mouth of 

the river at low tide in plate 1.1. Although this is not a study of denudation 

chronology, it may be possible to link the sediments found in the Erme 

channel with the older geomorphological studies of South Devon to form a 

more complete understanding of Quaternary events that have affected the 

south-west peninsula. In addition, because of the lack of data relating to these 

buried rock channels, this study of the Erme may present an initial model 

against which others may be compared. 

The buried channel of the Erme was first positively identified using geophysical 

techniques by McFarlane (1955). The course of the River Erme (figure 1.2) 

begins at c. 480m OD on the Dartmoor granite and descends steeply to the 

town of Ivybridge on the edge of the moor. It continues through floodplain and 

terrace deposits, salt marsh flats and finally tidal flats at the mouth of the river 

at Mothecombe over a distance of 24km. The channel must have been cut at 

a time when sea level(s) were lower than today, either in the last cold stage, 

the Devensian, or in previous cold stages. With the Flandrian rise in sea level, 

new sediments have infilled the channel and thus the channel is likely to 

include estuarine and river sediments of varying ages. The aims of this study 

are to examine the sediments filling the buried channel, and derive some 

conclusion(s) on the episodes that have affected the development of the River 

Erme and its valley. 

Because of the difficulties involved in extracting sediment from the channel, 

we were forced to accept shallow cores to a maximum depth of 7m. They 

were obtained from fairly regular intervals from the lower half of the Erme 
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PLATE 1.1 

An aerial viewf of the mouth of the River Erme, 
South Devon, England 
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valley and cover a range of environments such as floodplain, reclaimed marsh 

and present day salt marsh. 

The aims of this study can be summarized here as follows: 

a) To examine the sediment collected from boreholes at a number of sites 

covering a range of environments. 

b) The analysis of the sediments recovered from the boreholes where particle 

size analysis demonstrates changes in lithology of the channel deposits, which 

may aid correlation between the sediments obtained from different cores. 

c) To differentiate between deposits of marine, estuarine and fluvial origin by a 

study of molluscan shells and diatoms preserved in the sediments. 

d) To determine the relationship between sediments recovered from the 

channel and events that have occurred in prehistoric and historic time using 

documentary records from the Erme valley and evidence of tin mining and 

forest clearance on Dartmoor. 

e) To assess the effect of the Flandrian rising sea level upon the River Erme, 

and the magnitude of fluvial activity in the channel during the late Flandrian. 

f) To derive a series of conclusions relating to the development of the Erme 

valley and other river valleys in the south-west of England during the Flandrian 

stage and also in relation to events from earlier stages of the Quaternary. 

In Chapter 2 the evidence available to support the former existence of 'high' 

and 'low' sea levels in the study area during the Quaternary will be reviewed. 

The Flandrian marine transgression In the UK and subsequent alluviatlon are 

considered. The geological and geomorphological characteristics of the study 

area are examined in Chapter 3. Chapter 4 highlights the field methodology 

employed in the collection of samples from the study area. This section 



includes a description of the core-augering locations and the lithology of the 

cores. Details of the particle size distribution and the possible origin of the 

gravels in the sediment are examined. Chapter 5 considers the use of diatom 

analysis in an attempt to separate deposits of fluvial, estuarine and marine 

origin and the mollusc shells and shell fragments identified in the deposits are 

discussed in chapter 6. Chapter 7 reviews historical changes in the Erme 

estuary which includes a study of old tithe maps of the Erme and 

archaeological changes in the catchment such as the effects of tin mining on 

Dartmoor. All these aspects are considered in Chapter 8 as a discussion of 

the origin and relative age of the sediments filling the buried channel of the 

River Erme in relation to the evolution of the surrounding landscape over time. 

The conclusions of this research and suggestions for future work are 

presented in Chapter 9. 

^The term 'Quaternary' is used throughout to include the Pleistocene and 
Holocene epochs. 'The geological status accorded to the Quaternary has 
varied. Charlesworth (1957) for example, referred to it as an Era, thus logically 
continuing the classification of Primary (Palaeozoic), Secondary (Mesozoic) 
and Tertiary. 'Tertiary' and 'Quaternary' are in a sense anachronistic because 
Primary and Secondary are no longer used: instead both are incorporated 
within the Cenozoic Era.' (Bowen 1978). 

It is however recognised (as suggested by eg. Flint 1957, West 1968, 1977, 
Stuart 1982, Lowe and Walker 1984) that there is no need for a geological or 
climatic differentiation between the Tertiary and Quaternary Periods, nor the 
Pleistocene and Holocene Epochs, as many believe that the current warm 
period is part of a long term climatic cycle and comparable to previous warm 
episodes of the Quaternary. The Pleistocene should therefore be considered 
as the most recent epoch of the Tertiary, and the Holocene as the most recent 
stage of the Pleistocene rather than as a separate series. This would make 
the terms Quaternary and Holocene redundant. The term Flandrian will be 
used here to replace the name Holocene, and Quaternary and Pleistocene will 
be used interchangeably, but to abandon totally the use of 'Quaternary' may 
be misleading, as it is already entrenched in the literature. 



CHAPTER 2 A CONSIDERATION OF THE FACTORS CONTROLLING 
THE FORMATION AND DEVELOPMENT OF RIVER 
VALLEYS IN SOUTH-WEST ENGLAND 

2.1 Introduction 

The geographical extent of this review mainly relates to Devon, but other 

areas of the south-west of England are included as are parts of the English 

Channel coastlands including Brittany. The probable conditions that affected 

the Erme valley during the course of its development are discussed. As much 

of south-west England is believed to have been beyond Quaternary ice limits, 

the most important controls on river valleys in Devon have been the effects of 

periglacial climatic change, sea level variations over time and Flandrian fluvial 

activity. These changes have affected the depths to which rivers have incised 

their valleys, and their sediment infill. This chapter will consider the causes of 

such sea level variations and their effects on the area of study, incorporating 

evidence for higher and lower sea levels than today. The most recent rise in 

sea level following the melting of the Devensian ice sheets and changing 

fluvial conditions during the Flandrian are also considered in detail. These 

processes have had considerable influence on the development of the Erme 

and neighbouring river valleys; it is hoped to identify the most important of 

these processes which contribute to the present landscape. 

2.2 The Effect of Quaternarv Glaciations on the Area of Study 

Much of the south-west of England has long been held to lie outside the limits 

of glaciation. Figure 2.1 shows the conventionally held views of ice sheet limits 

in the western part of Britain. It shows the Devensian ice limit to pass through 

Shropshire, South Wales and across the Irish Sea, and an earlier ice limit to 

impinge upon the north coasts of Devon, Cornwall and Somerset. The 

terminology used by Bowen (1973) in this diagram shows that most discussion 

concerning glaciation has been related to whether glacial deposits are seen 

above or below the raised beach that is generally thought of as Ipswichian and 

which occurs around much of the coastline of Wales and southern England. 
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The timing of this earlier glaciation is open to dispute and some, for example 

Scourse 1984, have suggested that all glacial deposits in the South West can 

in fact be thought of as Devensian in age. The evidence for glacial deposits in 

Devon, Cornwall and Somerset will be considered below. 

Since the 1960s evidence for such an ice advance has been provided at a 

number of locations. Glacial deposits have been proposed at Barnstaple Bay 

(Maw 1864, Mitchell 1960, Stephens 1966, 1974a. Kidson and Wood 1974, 

Bowen 1977), the Isles of Scilly (Barrow 1906, Mitchell and Orme 1967, 

Scourse 1984. 1985a). Trebethenwick Point, North Cornwall, (Dewey 1913, 

Arkell 1943) and Kenn in Somerset (Gilbertson 1974). More speculatively ice 

is saidno have penetrated by way of the Somerset Levels to southern England 

(Kellaway 1971) with one or more glacial advances taking place along the 

English Channel (Kellaway et al. 1975). 

2.2.1 North Devon and the Isles of Scillv 

There is some dispute over the evidence for and dating of an ice advance in 

North Devon. At Fremington, sediments have been likened to a glacial till and 

various glacial deposits have been described inland and at the coast. These 

include a red till overlying a stoneless till named the 'Fremington Clay' and 

glacial erratics at Croyde and Saunton. Mitchell (1960) and Stephens (1966) 

both considered that raised beaches are overlain by glacial deposits and 

Mitchell (1960) proposed that the 'Fremington Till' was of Wolstonian age and 

hence the underlying raised beach was attributed to the Hoxnian or an older 

interglacial. Others (eg. Zeuner 1959, Kidson 1971) considered that nowhere 

do glacial deposits overlie raised beach deposits and Kidson and Wood (1974) 

considered that lenses of till had been incorporated in head deposits at 

Croyde by solifluction processes and that they are not comparable to the 

Fremington Till in terms of texture or microfauna. Furthermore they stated that, 

at Saunton, the glacial suite is overlain by raised beach deposits. Kidson and 

Wood (1974) also attributed the gravels under the Fremington clay at 
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Brannam's clay pit to be of glacial outwash rather than raised beach origin and 

thus sequences could not be directly traced to the coast. 

More recently, Croot (1987) examined an eleven metre exposure of the 

Fremington deposits, and described 7m of clay over 2m of river gravels 

topped by 2.5m of head. He attributed the structures in the clay to a marine or 

lacustrine rather than glacial origin. 

Mitchell and Orme (1967) described a section in the Isles of Scilly of two 

raised beaches interbedded with glacial and periglacial deposits. However, it is 

commonly thought the sequence is more one of Devensian solifluction 

incorporating beach material and till overlying a raised beach (KIdson 1971). 

Recently Scourse (1984) has stated that the sequence includes till of 

Devensian age and has dated it to the Late Devensian maximum by organic 

deposits above and below the till. If correct, this has important consequences 

for the rest of the deposits in south-west England. Indeed the presence or 

absence of Wolstonian deposits in the Midlands and East Anglia has been 

debated in the last few years (Sumbler 1983, Rose 1987). 

Arber (1977) described straight-tusked elephant remains from a probable 

interglacial deposit at Summerland Street brickworks in the terrace deposits of 

the Taw valley in North Devon; she considered these to be of Ipswichian age. 

This evidence suggests that the Taw valley was cut prior to the Devensian 

cold stage. The relationship of these deposits to the Fremington Till has not 

been identified, but because there are so few Interglacial sites in the region, 

this site could form an important link between deposits in establishing the 

Quaternary chronology of the North Devon area. 

2.2.2 The English Channel and South Devon 

Evidence for glaciation of the area was put fonward as early as 1872 by 

Pycroft who described erratics with occasional flat polished sides around 

Dawlish and by Inglis (1877) who attributed the deep closed depression on the 
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floor of Plymouth Sound to glacial action. Inglis was later supported by 

Codrington (1898), Worth (1898) and Kellaway et al. (1975) but Ussher (1907) 

was not convinced of the glacial origin of 'stiff red clay with granite boulders* 

adhering to bedrock. Yet Kellaway et al. (1975) pointed out that the bedrock 

profile of the Tamar above Saltash is almost flat for 3.2km while below this it 

drops to the Hamoaze and Plymouth Sound where depths of 52-55m have 

been recorded. Worth (1898) remarked that the profile does not differ from 

Welsh valleys known to have been glaciated, and described the shape of the 

rock channels of other rivers in Devon (steep valley sides and flat bottoms) as 

being indicative of a glacial origin. According to Kellaway et ai (1975) there is 

little doubt that ice at some time flowed off Dartmoor as deeps occur where 

the erosive power of the ice would have been greatest. Similarly Durrance 

(1971) noted the negative gradient on the buried rock floor of the Teign which 

Clark (1970) considered to be consistent with glacial action, either ice erosion 

or the presence of a sub-glacial tunnel valley. 

It may be that at some time in the Quaternary, ice sheets had a greater 

influence in the South West than is generally supposed. Deposits of such 

episodes may have been removed or reworked into later periglacial deposits, 

but the evidence so far presented is at best debatable and incomplete. 

2.3 Periqiacial Deposits 

With most of the south-west of England and all of the Erme valley lying 

beyond former ice margins, the area probably experienced severe periglacial 

conditions during the Quaternary. The most extensive periglacial deposits 

consist of soliflucted material, for which de la Beche (1839) proposed the term 

'head'. This overlies most of the raised beaches and wave cut platforms in 

Devon and Cornwall. A typical section through the Devon coast is shown in 

figure 2.2. Mottershead (1971) carried out an extensive study of the head on 

the South Devon coast. The mean particle size of 18 samples was -1.28Phi 

with a standard deviation of 2.21 Phi showing the variable size distribution. In 

many places head was found to be coarsest at the bottom and much finer at 
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the top. This is in common with many of the deposits in south-west England 

which has led to naming the deposits the Main head and an Upper head 

(Mitchell 1960. 1972. Stephens and Synge 1966). This is obviously a very 

simple model and there are exceptions, for example. Stephens (1966) noted 

coarse layers at the top of a head section in North Devon. The head sections 

are similar to those described in the Isles of Scilly (Mitchell and Orme 1967) 

and the Lizard peninsula (Combe et al. 1956, Roberts 1985). In some places 

head is reported as being interbedded with raised beach material. Some 

authors have ascribed the two head deposits to belong to different cold stages 

but without conclusive evidence of an intermediate 'warmer' stage. 

These head deposits are generally considered to have formed during the latter 

part of the Devensian. and in the Isles of Scilly, twenty one radiocarbon dates 

indicate that solifluction deposits were formed between 34.000 and 21,000 

years ago (Scourse 1987). 

Loess sediments have been incorporated into the head that has been mapped 

in the Isles of Scilly (Barrow 1908). the Lizard (Combe et al, 1956) and in East 

Devon (Harrod etal. 1973). Roberts (1985) described the head in the Lizard 

area and suggested that the fine head deposits are probably thin loess 

sediments although in some places the loessic silt might be a weathering 

product derived in situ. Catt and Staines (1982) suggested that the Cornish 

loess is derived from the Irish Sea, the sea floor of which would have been dry 

in places and covered in glacial deposits. Wintle (1981) however, stated that 

loess sediments are derived from the North Sea since they show a decrease 

in particle size westwards across the southern part of England. Wintle (1981) 

has dated loess on the Lizard peninsula to 15,900 years BP. 

Further evidence of periglacial conditions in south-west England is given by 

Guilcher (1950). Waters (1961). Palmer and Nielson (1962). Dineley (1963), 

Stephens (1966). Hamblin (1973. 1974). Jenkins and Vincent (1981) and 

Scourse (1987). There has been much debate as to whether the granite tors 

of the south-west were formed by periglacial processes (Palmer and Nielson 
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1962) or deep chemical weathering in the Tertiary (Linton 1955). Eden and 

Green (1971) stated that many tors have been exhumed and modified by 

periglacial processes and suggested the degree and depth of any chemical 

weathering to be far more limited than described by Linton (1955). They have 

at least been modified by periglacial processes and widespread clitter and 

solifluction deposits on the slopes and valley bottoms below tors are evidence 

of frost action. 

Scourse (1987) identified some possible ice wedge casts from around the 

River Camel area in West Cornwall, which if Late Devensian, indicate the 

presence of permafrost further south and west in Britain then previously 

considered. 

There are few examples of periglacial river deposits in the south-west of 

England. Valley gravels of the River Axe in East Devon have been described 

either as fluvio-glacial, derived from meltwater flowing from an ice margin 

north of the Chard Gap (Stephens 1970. 1974b, 1977) or largely derived from 

gravel patches of Tertiary age on the interfluves and head deposits of slopes 

(Green 1974). Shakesby and Stephens (1984) suggested the latter is more 

likely since the valley gravels contain no far travelled erratics and because of 

the lack of glacial deposits in the Somerset Levels. They were attributed to a 

Mid-Late Pleistocene cold environment with pollen evidence (Scourse in 

Shakesby and Stephens 1984) indicating some deposition within a Mid-

Pleistocene interglacial or interstadial. 

Thus in the south-west peninsula there is little evidence of direct glacial action 

where studies rather indicate a former extensive periglacial climate which most 

probably represents the Devensian stage. The recognition of periglacial 

deposits older than this depends on the finding and confirmation of dateable 

interglacial deposits. 
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2.4 Quaternary Sea Level Changes 

As many previous studies in south-west England have evoked high 

Quaternary sea levels in the creation of planation surfaces and low Quaternary 

sea levels to explain the buried channels of many rivers, the reasons for the 

sea level changes with particular reference to the likely effects on the River 

Erme and its valley will be discussed. Actual evidence for higher and lower 

sea levels than today will be discussed in later sections. 

There are a number of principal factors that govern sea level variations over 

time; of most importance are long term tectonic changes, glacial isostasy. 

hydro-isostasy, geoid changes and glacial-eustatic movements. These will all 

have affected the study area to varying extents. 

2.4.1 Long Term Tectonic Changes in the Earth's Crust 

An overall regression of the sea is said to have occurred in the Late Cenozoic 

due to continental collision and shortening of countries' coastlines. Bloom 

(1971) calculated that due to sea floor spreading (estimated at 16cm/year by 

Bullard (1969); in Bloom (1971)). oceans have grown by 2.6 x 1 0 ^ km^ over 

the last 100.000 years. He suggested that this expansion in ocean water has 

accommodated 6% of the returned meltwater from the last glaciation and 

therefore if correct. Holocene shorelines should be 8m lower than the 

interglacial shorelines of 125ka. One could extrapolate from this that early and 

middle Quaternary shorelines may be found at relatively higher altitudes. 

However, Donovan and Jones (1977) considered that the rate of increase in 

the capacity of the ocean basins to be too slow and Donn et al. (1962) 

concluded that sea level has been stable rather than there being a secular 

lowering during the Pleistocene, a conclusion supported by Bowen (1978) and 

Stienstra (1983). 
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2.4.2 Glacial Isostasv 

Isostasy is the state of balance existing in the earth's crust, so depression of 

the crust by adding a load of sediment, water or ice in one location will be 

compensated for in another by a rise of the crust elsewhere. This state of 

approximate equilibrium is maintained by flowage of material at depth in the 

earth's mantle. The most important isostatic movements are those that have 

resulted from expansion and contraction of Quaternary ice sheets with the 

direct effect of the load of ice caps on land. For example, Walcott (1972) 

suggested that maximum loading occurs near the centre of an ice sheet, with 

a gradual rise in crust level towards the ice sheet margins. It has been 

suggested that marginal displacement of the crust involving a degree of 

upward bulging may be one aspect of compensation, in which case the effects 

of glacial loading may have extended for tens/hundreds kms beyond the ice 

sheet margin (Andrews 1975). In many areas, isostatic recovery is not 

complete in spite of total ice removal. 

Therefore, even though it is generally believed that south-west England did not 

experience direct glacial action during the Devensian, the region may still have 

been affected by considerable isostatic loading as a result of the ice sheet on 

the north of the country. Isostatic adjustment probably produced a depression 

of the crust in the south of Britain because of localised tilting or crustal 

warping. Churchill (1965) placed the tilt line between Pembrokeshire and the 

Tees in accordance with the distribution of submerged forests seen only at 

exceptionally low spring tides. However this simple picture of tilting by which 

Scotland rises and the South East subsides is inadequate. Flemming (1982) 

used 143 sea level index points to derive a map of the UK showing rates of 

vertical isostatic displacement showing different movements for the South 

East, East Anglia. Scotland and the South West, although his study confirmed 

that the current data base is inadequate to produce anything other than 

general trends (Shennan 1983b). 
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2.4.3 Hvdro-lsostasv 

Walcott (1972) suggested that melting of the ice and release of large 

quantities of water Into the oceans, would lead to crustal warping through the 

process of hydro-isostasy. Chappell (1974) estimated that following 

deglaciation in the last 7000 years, ocean basins were depressed by about 

8mm on average and that hydrostatic upwarping could have introduced 

differences of up to 30% in estimates of marine transgression rates between 

ocean islands and continental crusts. At the same time continents rose 16m 

relative to the centre of the earth. It has been suggested that although total 

melting of Antarctic ice would raise world sea levels by about 60m, the 

compensatory hydrostatic sinking of ocean floors would reduce this figure to 

about 40m. 

2.4.4 Geoid Changes 

It has been generally assumed that the free ocean surface parallels that of the 

equator but as the earth is not spherical irregularities exist caused by 

gravitational variations determined by the earth's rotation and rts structure and 

gravity. Of particular significance is that change in the distribution of ice in 

glacial and interglacial periods results in gravitational changes which lead to 

variations in the geoidal surface (Morner 1976). Therefore the suggestion that 

the geoidal ocean surface can intersect different land masses simultaneously 

at different absolute altitudes (Tooley 1978) cannot be upheld. 

Momer (1976) suggested that the geodetic sea level (the equipotential surface 

of the geoid) varies by as much as 180m as the present geoid configuration is 

not stable, and therefore sea level changes can no longer be taken as a priori 

evidence of glacial volume changes. This does not affect sea level curves for 

individual localities, but does raise questions of applicability of such curves to 

areas other than for which they were derived. 
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2.4.5 Eustatic Sea Level Chances 

World wide sea level changes resulting from fluctuations in the amount of 

water held in the ocean basins are termed eustatic. Of most importance are 

the glacio-eustatic changes caused by ice sheet variations. These oscillations 

are believed to be superimposed on a long term trend of falling sea level 

throughout the Tertiary and Quaternary, but bearing in mind Morner's (1976) 

observations as stated above. 

Various authors have put sea level during the last glaciation at 160m (Donn et 

al. 1962). 130m (Stride 1962) and 100m (FairtDridge 1962, Curray 1961) below 

present (D'Olier 1972). It has been suggested that sea level was close to the 

present day in the Mid-Devensian interstadial at 30000 years ago (Thom 

1973), but a depth of -40 to -50m seems more realistic as temperature 

conditions, the vegetation cover in Europe and deep sea records do not show 

interglacial conditions (Goudie 1983). 

Glacial eustatic changes are known in greatest detail for the last 15000 years 

during which the Laurentide. Fennoscandian and British ice sheets 

disappeared completely, with details provided by a considerable literature (eg. 

see Godwin etal. 1958, Shepard 1963, Jelgersma 1966, Kidson 1982). 

Minor eustatic changes have resulted from the addition of sediments to the 

ocean basins, which tends to lead to a sea level rise. The addition of juvenile 

water from the earth's interior, variation of water level according to 

temperature and isostatic decantation may also effect minor sea level 

changes. 

2.4.6 Miscellaneous Causes of Changes in Sea Level 

These include orogenic activity such as caused by seismic activity, volcanism 

and mountain building, compression of sediments such as peat by the weight 
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of overlying material, and grov^h of Pleistocene ice sheets causing sufficient 

gravitational attraction for sea level to rise locally relative to the land. 

All these factors may have influenced the development of the Erme valley, 

although the recent sea level changes in the area of study are most likely due 

to eustatic changes of sea level during the last glacial-interglacial cycle and to 

a lesser extent isostatic adjustments caused by the weight of glacial ice to the 

north. Changes of sea level in the Early Quaternary and Tertiary may be due 

to a combination of the above factors. 

2.5 High Quaternary Sea Levels 

It is generally believed that there has been a long term trend of falling sea 

level throughout the Tertiary and Quaternary (Colquhoun and Johnson 1968. 

Mercer 1968). most probably as a result of sediment deposition and tectonic 

activity from continent movement (Lowe and Walker 1984). Consequently, 

various workers have identified a series of planation surfaces at descending 

levels on the hills of south-west England. Evidence for sea levels higher than 

today is said to be seen in planation surfaces on Dartmoor and South Devon 

and in raised wave cut platforms and beaches along the coastline. Others 

(Waters 1961. Guilcher 1950) have invoked a periglacial origin for the 'high 

shorelines* rather than high Tertiary or Quaternary sea levels. The evidence 

for these features in the Erme valley will be discussed here. 

2.5.1 Planation Surfaces 

Planation surfaces are shaped by either prolonged wave action or a 

combination of subaerial processes in which rivers, weathering and slope 

recession are important (Orme 1964). The type area for recognising higher 

stands of sea level is the Mediterranean/Morocco region against which other 

localities have been compared. Fairbridge (1961.1971) outlined a model where 

sea level descended from Early Pleistocene elevations in a series of glacio-

eustatic oscillations imposed on a longer term fall. This was based primarily on 
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the Mediterranean data and reflected the pioneer work of de Lamothe and 

Deperet (Hey 1971). These early twentieth century workers proposed a suite 

of characteristic high levels which could be related to glacial events; Sicilian 

(80-100m), Milazzian (55-60m), Tyrrhenian (30-35m), Monastirian (15-20m, 0-

7m) and Flandrian. This work by Deperet (1918-1922) was used by many to 

correlate levels over wide areas. Data from Mediterranean coast shorelines 

and terraces of European rivers were correlated with the Alpine glaciations 

and this led Zeuner (1959) to recognise at least 13 shorelines from the 

Calabrian to the Postglacial. However. Guilcher (1969) objected to this model 

on the grounds that it is inapplicable to the whole world as some areas are 

subject to isostatic recovery whilst others are subsiding. 

Fairbridge (1971) used his model to suggest that low 'glacial' sea levels of the 

earlier glaciations may have coincided with the position of the modern 

coastline and thereby emplaced exotic erratic pebbles on the British 

coastlines. He further suggested that wave cut rock platforms of these and 

other mid latitude coasts were fashioned under cold climates. 

Some workers, however, consider that sea levels have not dropped during the 

Quaternary. Frenzel (1973) pointed out that total melting of the two main 

current ice caps, Greenland (2480 km^) and Antarctica (22,100km3) would 

raise world sea level by 7m and 59m respectively but since deep sea core 

evidence suggests that they did not melt in the Pleistocene sea level would 

have been only a few metres higher than today. Oxygen isotope curves also 

imply that at stage 5e. assigned to the Ipswichian interglacial, sea level was 

higher than on any other previous or subsequent occasion during the 

Quaternary (Shackleton and Opdyke 1973) and therefore any raised shoreline 

features higher than last interglacial must have been raised to their present 

positions by tectonic uplift (Shackleton 1975). The highest fossiliferous Middle 

Pleistocene intertidal deposits in the British Isles have been described by 

Holyoak and Preece (1983). They identified Middle Pleistocene estuarine 

deposits at 38-40m OD from a site at Bembridge on the Isle of Wight and did 

not rule out Pleistocene upwarping to account for the height of the deposits. 
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2.5.2 Evidence for Former High Sea Levels in South-West England 

Many studies have attempted to trace Early Quaternary and Tertiary stands of 
sea level in the south-west of England; Green (1949), Wooldridge (1954), 
Waters (1960) on Dartmoor; Brunsden (1963) for the River Dart; Kidson 
(1962) for the River Exe and Orme (1961,1964) in the South Hams. There is 
no agreement on the number of shorelines present or their manner of 
fashioning. For example. Brunsden noted 17 different shorelines in the vicinity 
of the River Dart. Extensive discussion will not be entered into here, although 
surfaces in the study area, the 690' Calabrian Shoreline (at c.210m) and sites 
where there is depositional evidence will be considered. 

In the River Erme area, between the Dart and the Yealm. Orme(1960) 

mapped the erosion surfaces. He considered that the summit plain at 1620-

1520 ft (494-463m) was shaped in Early Tertiary times and later tilted south by 

the Alpine earth movements. The summit plain is flanked by a less extensive 

1350-1300ft surface (412-396m) and outlying summits to descend to 1050ft 

(320m). Two unwarped subaerial surfaces of probable Late Tertiary age are 

preserved on the granite and metamorphic aureole rocks of Dartmoor near 

South Brent and ivybridge at 930-875ft (284-267m) and 820-730ft (250-223m). 

Orme also supported the concept of a 690ft (210m) sea drowning the surface. 

In the north-east the South Hams drained eastwards to a proto-Harbourne 

river and the western sector drained eastwards to the Erme and Yealm rivers. 

Later Pleistocene still-stands were recorded at 600ft (183m), 550ft (168m). 

460ft (140m), 327ft (100m). 150ft (46m) and 25ft (7.6m). Strandlines less than 

690ft (210m) are considered horizontal, thus suggesting the movements in 

base level were eustatically controlled. Orme (1964) suggested the Erme and 

Yealm probably united south of Hanger Down to flow south-west to an 

extended Tamar estuary. Other surfaces in the South Hams noted by Orme 

are at 675ft (206m). 650ft (198m). 627ft (191m), 530-480ft (162-146m). 475ft 

(145m). 430ft (131m), 400ft (122m), 375ft (114m), 350ft (107m). 300ft (91m), 

280ft (85m). 126ft (38m) and 14ft (4.3m). 

23 



The most universally recognised of these erosion surfaces is the Calabrian 

shoreline; rt is believed to have been formed at the time of the Pliocene-

Pleistocene boundary and has been correlated to the marine Crag deposits in 

the south-east of England at Netley Heath at an altitude of 183m (Chatwin 

1927, Dines and Edmunds 1933. West 1972). It has been mapped by 

Wooldridge and Linton (1937) over much of the chalk at heights generally over 

550ft (168m) and tends to a shoreline at 690ft (210m). It is regarded by many 

as Early Pleistocene age and equivalent to the 600ft (183m) platforms of 

Wales, Dorset and the Bath-Radstock areas (Wooldridge 1961). Kidson (1962) 

stated that a comparison with the Calabrian sea level of the Mediterranean, 

dated to the Pliocene-Pleistocene boundary was not unreasonable, hence the 

690ft sea platform became known as the Calabrian shoreline. 

This has been contested by Simpson (1964) who believed the sea was 

probably never higher than 400ft (122m) in Devon after the Tertiary Alpine 

Earth movements. Simpson suggested the 690' surface to be a sub-Mesozoic, 

probably Upper Cretaceous, surface and the 690' shoreline to be an exhumed 

Upper Cretaceous shoreline. 

A 430ft (131m) surface was recognised in 1907 by Reid and Flett and called 

the 'Pliocene platform ' to which the only undoubted marine deposits have 

been related. If however the 690ft surface is Early Pleistocene this calls into 

question the age of the 430ft surface and other lower surfaces. 

Kidson (1977) summed up the difficulty with planation surfaces as follows: 

"It is the paucity of supporting depositional evidence which leaves the 
Pleistocene chronology of the South West in such an imprecise state 
and makes untenable the correlations with Mediterranean stages". 

2.5.3 Depositional Evidence Of Higher Sea Levels in South-West England 

Deposits indicating high sea levels have been described from two sites in 

south-west England; at St. Erth and St. Agnes in West Cornwall. 
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i) St. Erth 
At St. Erth in Cornwall deposits described as marine Pliocene by Reid (1890) 

partially conceal a degraded cliff face marking the 430ft (131m) platform. 

Sections show sand and clays overlain by head. The marine fauna of the 

clays showed strong Mediterranean affinities and had many extinct species. 

Reid compared the assemblage to the Lenham Beds of south-east England 

and suggested they were deposited in a water depth of 91m due to the 

dominance of deep water species. Although the deposit is found at 30m OD 

he suggested they were laid down by a sea cutting a platform at 131m. 

They were re-examined by Mitchell (1965) wrho suggested they were 

deposited in the Cromerian interglacial and the lenses of 'boulder clay' would 

have been thrust into them during disturbance by glacial ice. If the marine clay 

is in its primary position he calculated sea level would have been at 56m. 

Earlier workers suggested the deposit was partly glacial. A later investigation 

by Mitchell (1973) of the mollusca, foraminifera, ostracoda and plants showed 

the deposit to be of Pliocene age and no younger than the Boytonian unit of 

the Coralline Crag in East Anglia. A water depth of 10m was suggested and 

therefore a sea level 45m above present OD. 

Mitchell (1960) considered gravels at Hele near Barnstaple (56m) and in the 

Isles of Scilly to be equivalent to the St. Erth Beds, however, Kidson and 

Wood (1974) considered that they were more likely to belong to a sequence of 

glacial outwash deposits. 

ii) St. Agnes Beacon 

High level sands and clays were described by Reid and Scrivenor (1906) 

around St. Agnes Beacon in Cornwall at a height of 128-107m OD and were 

described as an old shore deposit. Atkinson (1980) described an exposure 

from Beacon Cottage Farm Pits and Dobban Pits of an upper sand/clay unit 

overlying a clay layer over a lower sand deposit resting on an iron pan. 

Mitchell (1965) identified microfauna of Oligocene age in a piece of lignitic clay 

from these deposits. If the lignite is not derived and the underlying sands are 
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indeed of marine origin, then it is possible that the erosion platform and the 

overlying deposits are of Pliocene age. This would suggest a greater age than 

the St. Erth Beds even though there are considerable mineralogical affinities 

between the two sets of deposits. 

Atkinson etal. (1975) suggested the beds are Middle-Upper Oligocene in age 

and the upper sands are fluvial in origin. Boulter, (in Atkinson et a/.), by 

looking at the flora of the lignitic clay, suggested the deposit to be a basal 

remnant of a mainly fluvial deposit of Late Oligocene age. Atkinson (1980) 

considered a third possibility that the lignite was derived and washed into 

deposits of Coralline Crag age. making it comparable to the St. Erth Beds. 

2.5.4 The Problems of Identifvino and Mapping Erosion Surfaces 

Some of the difficulties associated with the correct identification and mapping 

of these so called planation surfaces are considered here. One of the biggest 

sources of inaccuracy in mapping and correlating high level platforms is the 

field methodology employed. For example field mapping with an aneroid 

barometer (as undertaken by Orme 1960. for example) will not give precise 

heights above OD and thus this renders correlations between sites 

meaningless. Problems also exist in using the long profiles of rivers to 

estimate base levels since 'long profiles demonstrate the polycyclic nature of 

stream erosion without revealing the location of successive base levels' 

(Kidson 1962). Similarly use of river terrace levels are not indicative of base 

level changes; they are attributed more to structural variations in the 

Palaeozoic sediments and the granite and arise from the multiplication of knick 

points associated with rejuvenation to which creation of the lower surfaces are 

due (Brunsden etal. 1964). 

The question must also be asked whether periglacial conditions in the 

Pleistocene have had more influence on present day morphology than older 

marine stillstands. Extensive head deposits mask low level wave cut platforms, 
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block river valleys and smooth interfluves, as emphasized by Waters (1971). 

He stated: 

"the broad *flat' topped interfluves of Bodmin and Dartmoor can no 
longer be interpreted as the trimmed surfaces of pre-Pleistocene 
planations; they are rather surfaces at the base of their zone of 
weathering stripped of their mantles of waste". 

Guilcher (1950) supported this concept and related all minor forms of hills in 

Brittany and North Devon, that rise to around 300m, to Pleistocene frost 

action. He considered that they display snow shaped notches and altiplanation 

terraces as seen in periglacial environments today. These nivational landforms 

were described as being a few meters to 120m in width and 40-200m in 

length. 

Scourse (1987) stated that: 

"aside from the underlying structural control almost all the major 
geomorphological features of the Isles of Scilly and West Cornwall owe 
their existing form to cold climate processes With the exception of the 
Lizard and north Penwith platforms, almost all flat surfaces are 
solifluction or cryoplanation terraces and not erosion surfaces as 
Wooldridge (1950) suggested." 

Thus high Quaternary and pre-Quaternary sea levels are difficult to recognise, 

map and correlate between areas, and either periglacial processes were of 

such intensity that they contributed to the lack of depositional evidence of high 

sea levels as suggested by Kidson (1977) or the slopes of south-west England 

depict a relict periglacial landscape rather than a relict marine-formed 

landscape. As mentioned previously the deep sea record does not imply a 

falling sea level throughout the Quatemary. Without dateable deposits, no 

precise chronology of Early Quaternary sea level changes in south-west 

England can be developed. 

2.5.5 Raised Beaches 

Raised beaches are evidence of sea levels at or higher than modern sea 

level. Unlike the planation surfaces described earlier in this chapter, they are 

generally attributed to the later stages of the Quaternary and are easier to 
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recognise in the field. The number of raised beaches represented on the 

Devon and Cornwall coasts is open to dispute. The most commonly referred to 

beaches occur at '65ft' (19.8m). '240' (7.3m) and 'Uf t ' (4.3m) OD. 

The •65ft' (19.8m) raised beach is revealed on Plymouth Hoe on a limestone 

shelf (Hennah 1817) and at Mousehole in Cornwall. The '24ft' (7.3m) shoreline 

is the most extensively mapped and is commonly known as the Patella beach 

due to the occurrence of Patella vulgata in Its sediments. It runs for 

approximately 1000 miles along the British and French coasts (Everard et al. 

1964) and in South Devon it is well developed between Plymouth Hoe and 

Hope's Nose. Torbay. Cut into this is the '14ft' (4.3m) raised wave cut platform 

best seen at Great Matchcombe Sands and Lannacombe Bay in the South 

Hams (Orme 1960). 

Mitchell (1977) suggested the 24' beach is probably Late Hoxnian in age and 

that erratics, present in the beach sediments in the North Devon area, are 

from the Wolstonian cold stage. Hence Mitchell considered that ice floes 

deposited the erratics before the sea level fell too tow. Zeuner (1959) 

however, dated the higher two beaches to the Ipswichian; the '65ft' (18m) 

beach was related to an early part of the last interglacial (Main Monastirian) 

and the '24ft' (7.5m) to the Late Monastirian. later on in the interglacial. The 

'14ft' beach was related to an early interstadial of the Devensian (Epi-

Monastirian). 

Two raised beaches have also been found in Cornwall (James 1968). Brittany. 

Normandy (Dangeard and Graindor 1956. Guilcher 1969, Mitchell 1977) the 

Channel Islands (Keen 1980). at Angle in west Wales.(Bowen 1973) and in 

the Clevedon-Brean Down area in Somerset (Gilbertson and Hawkins 1974). 

They have been assigned to the Hoxnian and Ipswichian by some (Mitchell 

1960. 1972, Stephens 1966, 1974a) or the Ipswichian only by others (Zeuner 

1959, Kidson 1971, Kidson and Wood 1974). Bowen (1971) considered that 

on faunal, floral, stratigraphic. geomorphic and palaeosolic grounds all the 

beaches are Ipswichian in age. although the wave cut platform may be older, 
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and that all overlying deposits are Devensian in age. Miller (1979) 

distinguished two other beaches that may be younger than Hoxnian in age as 

well as an Ipswichian beach. 

The situation is further complicated by recent excavations in the Gower caves 

of Minchin hole and Bacon Hole in South Wales where two beaches have 

been found. Sutcliffe and Kowalski (1976) described an Inner beach believed 

to relate to a warm stage not previously recognised between the Hoxnian and 

Ipswichian, and a Patella beach believed to be Ipswichian in age. They have 

been differentiated on the basis of faunal deposits, although their pollen 

records are similar. The Inner Beach has been dated to 210ka by Davies 

(1983) and the two beaches have been attributed to stages 7 and 5e of the 

deep sea record by Sutcliffe and Kowalski (1976). Amino acid dating of shells 

from the two beaches also suggest a considerable time separation (Bowen in 

Sutcliffe 1981). Similarly, Davies and Keen (1985) mapped two distinct raised 

beaches on different sides of Portland Bill in Dorset and attributed them to 

stage 5e (c. 125,000 BP) and stage 7 (c.210,000 BP). Like those from the 

Gower, they have different lithologies and fauna. Davies (1984) also dated the 

raised beaches at Saunton and Godrevy to stage 7. which may have 

implications to the age of glacial deposits in the North Devon area. Since 

many beaches along the southern coasts remain undated, and the stage 5e 

and 7 beaches occur at similar altitudes, they cannot be assigned 

automatically to the Ipswichian (5e) stage. 

2.6 Low Quaternary Sea Levels 

Evidence for lower sea levels than present in the south-west of England, can 

be seen in the form of drowned river valleys (termed rias where the geological 

structures are parallel to the coast), drowned shorelines and submerged 

forests. 
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2.6.1 Buried River Channels 

Nineteenth century engineering works for railway bridges and tunnels, and 
more recent studies have revealed many buried rock channels. The earlier 
studies (Jones 1882, Codrington 1898) included the Severn, the Dart, the 
Tamar and the Fal and later studies examined the valleys of the Erme and 
Taw-Torridge (McFarlane 1955). the Exe (Durrance 1969, Clarke 1970), the 
Teign (Durrance 1971), the Bristol Avon (Hawkins 1962). the South Wales 
valleys (Anderson and Blundell 1965; Al-saadi and Brooks 1973) and the 
English Channel (Dingwall 1975. Dyer 1975). On the north coast of France, 
studies of the Somme. Meuse and Seine show similar features to the river 
valleys of the South West (Comment 1910; Lamothe 1965; Larsonneur 
1971a,b), as do the Rivers Loire and Vilaine in southern Brittany (Horn et a/. 
1966). More recent studies of buried channels have generally been away from 
the South West, as in the case of the Crouch/Roach river system in Essex 
(Conway etal. 1984). 

Borehole records from engineering works of the railway bridges for the Laira, 

Millbay and the Hamoaze in the Plymouth area (see figure 2.3) were 

investigated by Codrington (1898) and interpreted by Worth (1898). The rock 

valley of the Laira was found to have side slopes as steep as 1 in 2, a rock 

base at 87ft (27m) below the level of Low Water Spring Tides (LWST) and a 

practically level floor for 212ft (65m) at the centre of the channel. A rock 

bottom of 73ft (22m) below LWST was found in Millbay. The greatest depth 

found between Millbay and Drakes Island was 108ft (33m). A depth of 138ft 

(42m) has been recorded opposite Eastern King Point, 150ft (46m) in nearby 

Firestone Bay and a deeper place outside the entrance to the Hamoaze. The 

Hamoaze channel follows the western shore to opposite Drakes Island and 

then bends north passing by Eastern King Point, Millbay and the Hoe to the 

mouth of Cattewater where it turns south. Soundings of 20-23 fathoms occur 

along this line opposite Millbay and 14-15 fathoms opposite the Hoe. Outside 

this, to the breakwater, the Sound is nowhere deeper than 9 fathoms with a 

bottom of blue clay which Codrington considered to cover deeper channels in 
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the rock; the 10 fathom line lies 0.75 miles (1.2km) outside the Sound and it is 

not until 1.5 miles (2.4km) outside the breakwater before a depth as great as 

at the entrance to Homoaze is reached. 

The greatest depth to the rock bottom of the River Dart was found to be 110ft 

(34m) below LWST at Maypool. This was buried beneath 85ft (26m) of mud 

and silt with the slope of the valley side being 1 in 3. At Kingswear Jetty, rock 

was proved at 71-73ft (21.6-22.3m) below LWST. The depth of the rock at 

Maypool Is not reached again until about 2miles (3.2km) outside the mouth of 

the Dart (Codrington 1898). 

McFarlane (1955) carried out a seismic survey of the Erme in South Devon 

and the Taw-Torridge In North Devon. His seismic lines for the River Erme 

investigation are shown In figure 2.4 and a longitudinal profile of the channel in 

figure 2.5. The greatest depth of the Erme was found to be 88ft (27m) near 

Owens Point at the mouth of the river. He suggested this represented a sea 

level of 150-140ft (46-43m) lower than today. Greater than one mile from 

shore echo sounding failed to detect any channels in the Red Sandstone. This 

can be compared to McFarlane's study of the Taw-Torridge where at the 

mouth, 100ft (30.5m) of recent sediment overlies the Lower Culm. A gradient 

of 1 in 600 was calculated and from this McFarlane calculated the shoreline 

was probably 13km (8 miles) out Into Bideford Bay. 

A more complex picture emerges for the Exe estuary. Using a 12 geophone 

shallow seismic refraction unit, Durrance (1969) produced a diagram of 

contours of the New Red Sandstone under Dawlish Warren (see figure 2.6). 

Buried channels appear to be cut into the solid rock and gravels of older 

periods of channelling were also detected (figure 2.7). Durrance suggested 

this represents two episodes of terrace formation and channelling. Older 

terraces occur at -25m, -31.4m and -36m and later episode terraces at -5.8m, 

-10.4m, -13.7m, -17.1m, -22m and -27.1m. The youngest group imply a 

gradient of 1 in 150. The older channels are cut to depths in excess of -52m 

and the younger to -30m. Where the younger channels have re-excavated the 
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older channels, they have always deepened even further into the New Red 

Sandstone. Durrance suggested this was either a result of lower sea level or 

regrading more easily through the gravels than the solid rock. Durrance 

suggested the -52m channels were cut during either a penultimate cold stage 

or the Early Devensian and the -30m channels to the Late Devensian. 

Towards the head of the estuary at Exeter, Durrance (1969) found the channel 

to be 10m deep, and suggested that the deeper channels at the mouth of the 

river are not as extensively developed as the younger channel since they do 

not extend as far upstream. 

Thirteen shell and auger boreholes for the Newton Abbot by-pass were 

studied at the head of the Teign by Durrance (1971). The buried channel 

drops from -10.2m at the head of the estuary to -22.9m at Teignmouth, with a 

gradient of 1 in 470 (Durrance 1975). He compared this to Clarke's (1970) 

study of the Exe where bedrock was found at -22.5m. Clarke suggested that a 

negative gradient for a distance of 4.2km in the Teign was therefore necessary 

before rt meets the Exe. Durrance (1975) however, considered this as 

unreasonable. He correlated the -10.1m and -14.3m terraces of the Teign to 

the -10.4m and -13.7m terraces of the Exe and agreed with Clarke that the 

Teign had a lesser influence in the Early Devensian than the Exe. The 

gradient of the Exe was found to be 1 in 540. 

Similar studies have been undertaken on buried channels in northern France. 

Comment (1910) noticed the Seine and Somme were eroded to deep levels 

and suggested a Late Tertiary or possibly Miocene age with aggradation in the 

Quaternary. Larsonneur (1971b) and Robert (1969) thought that many of the 

north flowing rivers off the north coast of France have offshore infill channels 

which are probably tributaries of the Seine palaeovalley. North of the Cotentin 

peninsula, Dingwall (1975) identified a major system of buried erosion 

channels with 'large areas of overdeepened steep sided linear hollows - long 

and sinuous valley like forms' and a large variation in infill material. The buried 

channel of the Seine also shows two erosion levels upon which rest pebbles 

and gravels overlain by post-glacial deposits. The upper level -3.7--20.7m 
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NGF (French Ordnance Datum) was considered to be Early Weichselian and 

the lower level, -24m NGF at Tancan/ille to -50m NGF at Le Havre, related to 

the last part of the Weichselian (Hault et a/. 1975). 

A number of palaeovalleys have been recognised in the English Channel. 

Seismic profiling in the Hampshire basin (Dyer 1975) showed Southampton 

Water and the Solent were once part of a larger river which flowed eastwards 

as a continuation of the present Frome and Hampshire Avon, through the 

Solent into the English channel. Figure 2.8 shows the Frome-Solent system 

linking up with the Seine in the English Channel as described by Dingwall 

(1975). Dyer considered the Proto-Solent-Frome river developed with rising 

land in the Pleistocene, thereby supporting the concept of a Tertiary drainage 

pattern. 

Two important infill systems meet north of Cherbourg and converge on Hurd 

Deep. Trending east-west is the English Channel palaeovalley and ESE-WNW 

the Seine palaeovalley. The greatest width at the confluence is 14km and 

material occurs to a depth of 200m below the sea bed. At least three periods 

of deposition occur in places. Dingwall (1975) suggested some of the valleys 

are fault guided and are remnants of two major river systems eroded in low 

Quaternary sea levels and swollen by glacial meltwater. which etched out the 

principal-structural and stratigraphic weaknesses. Destombes etaL (1975) and 
r 

Kellaway et al (1975) described channels in the Fosse-Dangeard system as 

being characteristic of subglacial channels. 

Some of the south trending valleys in South Wales also have deep buried 

channels. Anderson and Blundell (1965) described the Rhymney. Ely and Taff 

valleys in the Cardiff area as being mostly filled by estuarine clays and 

covered by glacial deposits. The greatest depth of the Taff is -42ft (12.8m) OD 

and probably -50ft (15.7m) OD near Cardiff docks. This is of similar order to 

the -65ft (19.8m) given by Hawkins (1962) for the maximum depth of the 

buried valley of the Bristol Avon, on the opposite side of the channel. 

Anderson and Blundell proposed the Taff. Ely and Rhymney join up to form an 
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extension of the Severn. Soundings show the rock floor of the former course 

of the Severn first reaches a depth of -100ft (30.5m). 5.5miles south of 

Penarth. Similarly a buried valley system in the Swansea Bay area shows a 

deepening to -130ft (39.6m) which Al-saadi and Brooks (1973) suggested to 

be overdeepened by ice along pre-glacial river courses. 

Buried valleys therefore appear to be either cut by rivers as in Devon, 

Cornwall and Brittany or ice eroded as in the Welsh and East Anglian valleys. 

The English Channel palaeovalleys are linked more to the latter in their form, 

although their origin still remains problematical. 

2.6.2 Drowned Shorelines 

Evidence of lower sea levels also exists in the form of relict shorelines which 

have been drowned. Offshore work by Donovan and Stride (1975) has 

suggested the presence of three drowned coastlines around Devon and 

Cornwall. These have been revealed by contouring the soundings given on 

Admiralty Charts. A slope, continues from the base of the modern cliffs from 

LWMST to depths of -7 to -20m. These are not recognised near sandy 

beaches or seaward of the major rivers presumably because of burial. A 

gentle slope then continues seaward to a depth of -27 to -37m; this is widest 

in Bigbury Bay, off Plymouth Sound and Whitsand. St. Austell and Falmouth 

Bays. In deeper water, three groups of cliffs are recognised (depths of base 

are given); upper cliff at -38 to -49m. middle cliff at -49 to -58m and the lower 

cliff at -58 to -69m. Seaward of this the floor is remarkably planar with 

gradients of 1:200 just beyond the cliffs to 1:1000 in mid channel. 

Clarke (1970) considered the upper cliff to be pre-Flandrian since it is masked 

by deposits of Flandrian age. Donovan and Stride (1975) suggested they are 

not Late Quaternary as sea level data and theoretical considerations 

(Shackleton and Opdyke 1973) show steep rises and falls without stillstands in 

the -40 to -70m range, not long enough for bench and cliff formation. They 

consider it more likely that they were cut at times of low sea level which they 
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also consider responsible for cutting the floor of the English Channel; probably 

in the last ten million years of the Miocene. 

In the Start Bay area, Kelland (1975), mapped a variety of geological features 

v^lch are shown In figure 2.9. A break of slope at an average depth of -42m 

was found, approximately parallel to the modern coastline, between 0.5 - 7km 

offshore. This compares to Donovan and Strides' upper cliff and to that 

described by Cooper (1948) near Plymouth. It is steepest in the vicinity of the 

River Dart where it outcrops at the sea bed to form a continuation of the 

present day cliffs. A number of buried channels extend between the -42m sub-

contour and the present shoreline. 

Wood (1974) also identified a submerged platform of marine abrasion around 

the South West. Palaeozoic rocks extend as a gently sloping platform. 16km 

seawards off the coast of south-west Wales. 18km off Ireland and for 15km off 

north-west Cornwall. Wood also considers the platform too wide to have been 

cut during a Pleistocene low sea level stage; he suggested that it is older than 

the St. Erth beds, considered to be of Pliocene age by some authors, and 

younger than the Lenham beds of Miocene age in south-east England. 

Similarly the river valleys crossing the shelf are thought to be older than 

Quaternary. 

Shorelines which have been drowned have also been detected off northem 

France. Soundings off the south coast of Brittany revealed a shoreline -35 to 

-40m below the present shoreline with well preserved features (Pinot 1966). 

The foreshore is at -37m Implying a sea level drop of at least this magnitude. 

In the Bay of Audierne a beach conglomerate resting on solid rock includes 

pebbles and shells which have been investigated by divers and radiocarbon 

dated to 15000 years BP (Saint-Requier and Guilcher 1969). Other similar 

features have been recognised at -52m (Pinot 1966, Guilcher 1967). During 

investigations on the French continental shelf in the English Channel and the 

Bay of Biscay. Verger (1970) described shorelines at -200m, -106m, -55m, 

-37m and -20m which he related to stages of the Flandrian transgression. 
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Other less significant ridges have been identified off the English coast and 

attributed to Late Quaternary sea levels. Stride (1962) found north-west 

trending ridges between the south coast of Ireland and the latitude of the Scilly 

Isles which he suggested were formed in the Late Pleistocene. The Flandrian 

rise in sea level is thought to have cut shorelines in uncompacted material and 

tidal current action may have cut isolated trenches along the strike of Jurassic 

Clays and soft sandstones off the Dorset coast. Near Weymouth trenches are 

1 Smiles (24km) long, greater than one mile (1.6km) wide and 150ft (46m) 

deeper than the surrounding ground (Donovan and Stride 1961). 

Thus there are a number of differing views concerning the age of the drowned 

shorelines; these range from suggestions of Tertiary age to Late Quaternary. 

Sissons (1979) suggests the -42 to -43m platform around south-west England 

may be the same erosional phase that created the Main Lateglaciat Shoreline 

in Scotland in the Loch Lomond Stadial. However, it is only by looking at the 

nature of the deposits adhering to these platforms that an indication of age will 

be obtained. 

2.6.3 Deposits Associated With Low Sea Levels 

It is expected that with oscillations in sea level, most of the sediments filling 

the buried channels and adjacent offshore areas would have been scoured out 

in the last regression of the sea and refilled by Flandrian deposits or earlier 

reworked Pleistocene deposits. These may consist of marine, estuarine or 

fluvial deposits depending on the extent and influence of these conditions at 

different times. It is likely that much of the sediment in the upper horizons is a 

result of Late Flandrian fluvial activity. 

There have been few studies attempting to examine the nature of deposits 

filling these valleys, those that have will be discussed below. Cores obtained 

by early workers show layers of silts, intertidal muds and sometimes a lag of 

basal gravel in the buried channels. Typical sections as revealed in the 

nineteenth century railway borehole logs of the South Devon estuaries show 
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silt layers overlying stiff clays with granitic boulders. At Kingswear Jetty on the 

River Dart, for example, 51ft (15.5m) of silt overlying 4ft (1.2m) of stiff red clay 

and stones was described and at the base of the rock channel of the River 

Tavy a stiff yellow clay with granitic boulders (Codrington 1898). Similar 

sections occur in the Millbay area of Plymouth. The earlier workers likened the 

'stiff clay with boulders' to a glacial till but the ambiguity of the description 

does not lend any clues to whether it is or it is not. 

Durrance (1971) described sediments from a flat bottomed channel to 10m 

depth at the head of the Teign estuary. Gravel deposits to 2.7m thick overlie 

the Devonian slate and dolerite bedrock, succeeded by 5-7m of silt and fine 

sand and 0.6-1.3m of clay and modern soil. A thin peat horizon was found in 

the silt. Similar deposits were described from the buried channel of the Exe at 

Exeter where a series of boreholes showed the channel to be filled with 3-4m 

of silty-clay overlying 4-6m gravels. The channel depth was found to be at 

-10m CD which Durrance (1975) considered similar to the Teign. 

Clarke (1974) described a valley section from a small estuary at Forth Mear 

Cove, North Cornwall, of head, terrace gravel and a lacustrine clay. The 

estuary was impounded by a storm beach creating a lake. A peat band within 

the clay was radiocarbon dated to 3024±126BP. 

More recently, Scourse (1985b) described a suite of intertidal sediments from 

the Amble valley, a tributary of the River Camel, in North Cornwall. The site is 

about 10 km inland from the mouth of the River Camel and has previously 

been called the Trewoman Lake Flat'. Scourse (1985b) described 4.6m of 

sediment retrieved using a wing auger; this showed 1m of grey silty clay over 

1.5m of blue grey clay overlying 2m of grey silt. Pollen extraction from two thin 

bands of sedge peat at the base of the blue grey clay suggest a temperate 

climate of Late Flandrian age. Similar deposits of stiff grey clay with peat 

bands were seen in builder*s excavations to 3.5m depth and in a sewer trench 

to 14.4m depth (Clarke in Scourse 1985b). Scourse considered this tributary of 

the Camel to be an anomaly as it has an extensively developed floodplain 

whereas the other tributaries are typical rias with steep bedrock slopes. 
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Clarke (1970) in an extensive study of the sediments of the west part of Great 

West Bay (Start Bay) showed most of the sediments to be of intertidal origin 

with a marine shelly fauna being introduced in the Flandrian transgression. 

Also in Start Bay, Hails (1975) analysed approximately 50 vibrocore and 200 

bottom samples and found three discrete lithological units of barrier, bay and 

bank deposits. Barrier deposits consist of shingle or beach gravel including 

flint and quartz pebbles making up 85% of the total; bay deposits of medium 

fine sand, shells, clay and silt and buried channel deposits of gravel set in a 

coarse-fine sand matrix of mainly flint and quartz. Hails noted that the nearest 

barrier deposits have been reworked on several occasions and transported 

shoreward in the latter part of the Holocene. Denudation chronologists would 

suggest that the Tertiary rivers carried the flints to the sea with the erosion of 

the Cretaceous chalk cover, thus providing a local source of flint. 

Core samples of the sea bed between Brittany and Comwall show a few 

inches of gravel overlain by sand facies (Stride 1963). The western part of the 

English Channel has coarse gravels showing evidence of gelifraction (Boillot 

1964) and the bottom of the Iroise. a body of water off west Brittany, is 

covered down to more than 100m with poorly wom pebbles which Guilcher 

considered remnant solifluction deposits. Hault et a/. (1975) described deposits 

of the Seine from cores and seismic data as follows: i) Flandrian sediments 

representing brackish and marine formations, ii) freshwater post-glacial 

deposits and iii) basal gravels and pebbles on bedrock. 

These studies show there has been no extensive work on the deposits filling 

the buried rock channels of south-west England although more is known about 

the sediments covering the offshore areas. 

2.7 The Flandrian Transoression 

After about 14ka. the glacial lowering of sea level was reversed with the 

melting of the world's ice caps. The main discussion points have centred on 

the rate of the sea level rise, whether the rise was smooth or oscillating, the 
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time at which sea level reached near present levels and whether at any time, 

sea level was higher than today. These will be discussed here to identify the 

possible implications for the Erme valley. 

2.7.1 The Nature of the Sea Level Rise 

Evidence for the Flandrian sea level rise has been cited by many, (Fairbridge 

1961, Shepard 1963. Jelgersma 1966. 1971) and in the British Isles the 

general rise in the last 10,000 years has been calculated at numerous points 

around the coastline (e.g. Kidson and Heyworth 1973, Devoy 1977a,b. Tooley 

1978, 1985b, 1985c, Shennan 1980. Greensmith and Tucker 1973). Their 

evidence is usually on the basis of radiocarbon dating of peat layers 

intercalated with marine and estuarine sediments found below present sea 

level. 

Up until 6000 years ago the rate of sea level rise is believed to have been 

very rapid. Some estimates of sea level for the first 2000 years of the 

Flandrian are given in table 2.1. 

YEARS DEPTH BELOW 
BP OD 

9600 43-47m 

9300 40m 

9000 34m 

8600 28m 

8300 22m 

8000 17m 

AUTHOR 

Fairbridge (1958) 
Curray (1961) 

Jelgersma (1961) 

Jelgersma (1961) 

Jelgersma (1961) 

Jelgersma (1961) 
Carr and Baker (1968) 

Jelgersma (1961) 

TABLE 2.1 ESTIMATES OF SEA LEVEL IN THE EARLY FLANDRIAN 
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Godwin et a/. (1958) suggested a rate of sea level rise of c. lm rise per 

century and Jelgersma (1966) 60cm / century for the 2000 years after 8300 

BP. Speed was especially great at c. 8ka due to the final collapse of the 

Laurentide ice sheet. In Lancashire, Tooley (1978) suggested that a rate of 

perhaps 7m in 200 years was not unreasonable. Highest rates of sea level 

rise occur where low angle shelves exist and Evans (1979) suggested that sea 

transgressed 15km/ 1000 years in the Bristol Channel. 

After 6000 years ago it is generally accepted that the rate was reduced. 

Shepard (1963) suggested that sea level has continued to rise to the present 

day, although the rate has diminished with time, whereas others have 

suggested that sea level reached near present day levels between 3-5000 

years ago. For example, Godwin et al. (1958) suggested that sea rose steadily 

until c. 3600 BP and has since been fairly constant, and Jelgersma (1966) 

produced a model of sea level rising steadily, reaching Its present level 

between 5 and 3.6ka BP 

Fairbridge (1958), Momer (1971) and others, consider that the Late Holocene 

sea level has oscillated to slightly above and below present OD. Fairbridge 

argued that sea level was between 1-4m higher than today at least six times 

between 6000BP and the Middle Ages; at 5700. 4900. 3700, 2400, 2200 and 

1000 years BP. Morner (1969) believed many curves do not show this due to 

lack of information although he considered the amplitude of the oscillations to 

be much smaller than Fairbridge's (1961) data. Morner (1969) considered sea 

level has reached a maximum of 0.4m higher than today. He noted (1971) that 

Holocene climatic and glacier variations show correlations with eustatic 

transgressions and regressions and Binns (1972) found evidence of a number 

of shorelines related to a fall in sea level in the cold neoglacial phase c. 2500-

2400 years BP. 

Thus there has been some debate as to whether sea levels have been higher 

than today in the Holocene. Jelgersma's (1966) data have however, failed to 

show this, as has Flemming's (1969) detailed archaeological research in 
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relatively stable parts of the Mediterranean. He found that there has been no 
eustatic change in the last 2000 years, to within an accuracy of ±0.5m. 
Similarly Kidson (1981) disproved Fairbridge's claim of higher sea levels. 

In Western Europe, the post glacial high sea level is called the Dunkirkian. In 

Brittany, at Penmarc'h at Beg an Dorchenn (Guilcher 1948), a pebble beach 

caps truncated sand dunes and shells associated with the pebbles have been 

dated to 1100BP. Kidson (1981) suggested however, that at 2-3m above 

present sea level, this could be an exceptional storm beach rather than 

representative of a higher sea level than today. Work on deformation of the 

earth's crust, for example by Walcott (1972). Chappell (1974), Clark et.al 

(1978), Clark and Bloom (1979). demonstrated that even those post glacial 

strandlines higher than present sea level may be explained by isostasy. 

especially hydro-isostasy rather than eustatic change. 

The present tide gauge records show that following the current post-neoglacial 

(Little Ice Age) amelioration in climate, there has been a rise in sea level. 

Historical records for London, show high tide and surge levels related to 

Newlyn OD are becoming progressively higher with an increase of 1.3m. 

between 1791 and 1953. It is however, difficult to isolate the separate effects 

of subsidence, eustatic rise, embanking, changes in water temperature 

affecting tides by viscosity of water and changes in climatic conditions (Bowen 

1972, Horner 1972) that will have contributed to sea level rise relative to the 

land. 

In the south-west, Rossiter (1972) in an analysis of the 1916-1980 Newlyn 

records of secular variation (measured changes in sea level), suggested that 

sea level is currently rising at a rate of 2.2mm/year. This compares well with a 

value of 2.1 mm/year for Brest on the opposite side of the channel. In relative 

terms, Scotland is rising relative to south-east England by at least 1.5mm/year, 

irrespective of eustatic variations. 

Thomas (1985) suggested that around the Isles of Scilly sea level is rising at a 

rate of 97century or 2.4mm/year. He considered this figure was slightly 
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different from Newlyn because of isostatic differential; Scilly is 60km west of 

Newlyn. Thomas noted that the sea level fall at Malin Head (northern tip of 

Ireland) is exactly the same as the rise at Scilly at 2.4mm/year (Carter 1982). 

2,7.2 Important Sites in Flandrian Studies 

In Britain, many sites have been studied in pursuit of a picture of the rising 

sea levels. In Scotland, for example, complex sequences of marine and 

freshwater sediments in the Firth/Clyde lowlands have been described. North

west England could be described as the type site for identifying Flandrian sea 

level changes; Tooley (1982) identified twelve transgressive and regressive 

overlaps dated from 85 radio-carbon dates. At no single site are they all 

represented, and they are not synonymous with the transgression sequences 

Lytham l-IX (Tooley 1974. 1978, Huddart et al. 1977) which used mixed 

criteria to estimate limits, and should not therefore now be used. 

Greensmith and Tucker (1973) recognised six transgressive and five 

regressive sequences defined on the basis of retreats and advances of salt 

marsh fronts in deposits on the Essex coastal plain. They believe the 

controlling factor to be eustatic despite subsidence in the North Sea basin. 

Similar features exist on the Dutch coast (Jelgersma 1961). in the Fens of 

East Anglia (Shennan 1982a,b) and the Somerset Levels (Kidson and 

Heyworth 1978). Data obtained in locations near to the study area will be 

considered here. 

i) The Somerset levels 

In the Somerset Levels, rivers were still graded to lower than -30m around 

4ka; infilling of valleys led to seawards movement of the shoreline (Jardine 

1981). The seaward ends of these valleys are filled with blue-green clay to 

approximate sea level; the clay which is probably of brackish origin, was 

succeeded by freshwater marsh and sphagnum bogs. These were probably 

deposited during fluctuating sea levels in the Bronze Age between 3-2.5ka. An 

increase in wetness meant wooden trackways had to be constructed, which 
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were inundated in Romano-British times at around 2ka. with further deposition 

of marine clay. To what extent this inundation was due to a sea level rise, 

occasional high tides or storm surges is a matter of controversy (Kidson 

1977). Further movement due to artificial drainage and building of 

embankments has occurred in the last 2ka (Jardine 1981). 

ii) The Bristol Channel 

Kidson and Heyworth (1978) produced a sea level curve for the Bristol 

Channel area using pollen, macroscopic plants, forams, diatoms, peats and 

trees in situ. Before 5000 BP, sea level showed a very rapid rise whilst from 

4000 BP sedimentation was in equilibrium with the rate of sea level rise, and 

peat formation occurred. A fluctuating coastline was suggested between 5.5-

4Ka. If the curve is extrapolated, at 10.000 yrs ago, sea level appears to be 

-50m below mean high water level (MHW). Kidson and Heyworth suggested 

there may have been a pause in sea level rise ending at 10000 BP with the 

formation of a submerged cliff line at -45m OD. No significant difference was 

found between sea level change in the South West and Cardigan Bay. 

iii) Devon 

Hawkins (1969) dated the submerged peats off Torquay and concluded that 

sea level was -150ft {46m) below HWST at 10.000BP. implying that the Bristol 

Channel would have been largely dry. Submerged forests have been seen 

along the South Devon coast at Blackpool Sands (seen in 1802 and 1850), 

North and South Sands at Salcombe, Bigbury and Thurlestone Sands 

(Pengelly 1866). The latter was described by Pengelly as being 15' wide 

extending seawards 94', broken by 30' of sand and continuing for another 50'; 

oak trunks up to 18" were found in the submerged forest. Blue clay containing 

hazelnuts was found at the LWST line at Blackpool Sands by Pengelly (1869). 

Foraminifera from Holocene sediments in Start Bay were studied by Lees 

(1975) and showed that c. 8000 yrs ago an area of lagoons, salt marshes and 

river channels occurred. Peat dated at 8108±60 yrs BP showed sea level to 

be 20m lower than today. Morey (1983) considered that the development of 

the Start Bay coastline corresponds with models suggested by Halsey (1979) 

4 8 



and Oertel (1979) where estuaries were kept clear by scour during the Early 

Holocene transgression but around 3000 years BP, gravel became less mobile 

and accumulated as barriers allowing lagoons to develop. 

Rogers (1946) described a kitchen midden site with Mesolithic flints 

immediately below a submerged forest at Westward Ho! in North Devon. 

iv) The Isles of Scilly 

Thomas (1985) calculated the position of sea level on Scilly at various times 

using the archaeological Minimum Occupational Layer (M.O.L) concept. This 

theory involves the placing of settlements at the lowest possible levels; thus 

with rising seas they subsequently became drowned. Thomas concluded that 

separation of the land mass into distinct separate islands was completed in 

early historic times. This partly coincided with a linguistic change from Comish 

to English and thus place-names may confirm the fomier coastlines. Thomas 

suggested that the isles attained their present form in Tudor times. 

v) Northern France 

On the Atlantic coast of France, several Neolithic buildings, dolmens and 

standing stones are more or less submerged at high tide. On the Isle of Er 

Lannig in southern Brittany, there is a double circle of stones, the upper is 

partly above and partly below HWM, the lower is completely submerged, even 

at low tide (Declosmadadeuc 1882, Le Rouzic 1930 in Guilcher 1969). The 

upper was suggested to be Neolithic and the lower was reinvestigated by 

Decatoire 1964-5, who found that mean sea level at 4.5-5ka was 10m less 

than today. These figures do not correlate with the evaluations of Jelgersma, 

Shepard and Curray, which assumed sea level to be -4 to -5m at Ska and 

-10m at 7ka. Guilcher considered that no subsidence was likely to have 

occurred there and thus there is a discrepancy between the figures of the two 

sets of workers. 
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2.7,3 Inaccuracies in the Collection and Interpretation of Data 

These differing views concerning the nature of the Flandrian sea level rise 

have arisen largely as a result of lack of understanding about the conditions in 

which the deposits were formed, and errors in their collection. There are a 

number of sources of potential errors; these include differential consolidation 

and compaction of peat layers (cf. Veenstra 1970). inaccurate measurements 

of altitude of deposits and benchmarks, the assumption that tidal range had 

remained constant as sea level changed in constructing sea level curves 

(Tooley 1985a), choice of sea level indicators (Shennan 1982a), different 

isostatic upwarpings or subsiding elements and errors in radiocarbon dating 

(Heyworth and Kidson 1982). In addition, many studies have failed to define 

'present sea level' or have used datums which make comparisons with other 

work difficult (Kidson and Heyworth 1979). 

Van der Plassche (1977) defined the indicative meaning of a coastal sample 

as the relationship of the local environment in which it accumulated to a 

contemporaneous reference tide level. In Brittany Gerrard et al. (1984) noted 

the difficulties of comparing data from one bay to the next because of the 

indented nature of the coastline, and warned that any model of reconstruction 

of past regional sea level will need to accommodate wide local variations. 

Even where marine/brackish inorganic and freshwater organic deposits 

altemate, and a full range of biostratigraphic techniques are used there is still 

a problem of defining the point of sea level rise and the relation to sediment 

accumulation. Kidson and Heyworth (1973,1976) argued that with the 

decreasing rate of sea level rise in the Holocene, sea level would variously fall 

below or exceed the rate of sedimentation; thus alternation of marine and 

terrestrial sediments could be emplaced without a fall or rise in sea level. 

Streif (1978) favours phases of low sea level rise as the most favourable 

conditions for the development of intercalating peat layers. 
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One of the major problems in assessing whether sea levels were ever higher 

than today in the Holocene is because 

"most of the evidence is based on the misconception of the operation of 
marine processes. Evidence could well be interpreted in the context of a 
change in energy levels, for example, the growth of sedimentary 
structures or infilling of lagoons or estuaries" (Kidson 1981). 

In some cases where evidence is cited for higher shorelines than today, 

insufficient allowance is made for the considerable height range over which 

the present sea operates and for changes of energy levels, for example, 

resulting from spit growth over time. Kidson (1981) suggested only biological 

evidence where fossil material with a clear relationship to former sea levels 

can be accepted at face value. Erosional forms and transported material 

cannot be used without strong supporting evidence. 

With the realization that climatic and sea level changes in the last 10000 years 

have not been uniform over the earth, a great deal has been written about the 

terminology applied in the study of sediments (e.g. Jardine 1981, Shennan 

1980, 1982a, 1983a, Tooley 1982, 1985a, Jennings and Smyth 1985). As the 

sea level literature is full of references to the terms 'transgression* and 

'regression'. Shennan (1980, 1982a) and Tooley (1982) suggested that these 

were unsuitable as formal chronostratigraphic terms and should only be used 

as process and lithostratigraphic descriptions. The term 'contact' was 

introduced where there is a change from minerogenic to biogenic material, or 

vice versa, within a single borehole, and 'overlap' where a change can be 

traced laterally between one or more boreholes. Hence points of changing 

sediment types in a borehole are described as 'transgressive contact', 

'transgressive overlap', 'regressive contact' and 'regressive overlap'. 

Thus there has been much debate over the nature of Flandrian sea level 

changes, largely because of the difficulties in measuring and interpreting 

evidence for sea level changes and the difficulty in applying sea level curves 

for sites other than for which they were derived. It is now apparent that the 

concept of global sea level changes can no longer be supported. This is 

shown by the project IGCP 61 (1975-82) which aimed to establish a graph of 
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trend of mean sea level in the past 15000 years. Conclusions from this project 

suggested that local conditions were of great importance and thus IGCP 200 

(1983-87) was set up to identify and quantify the processes of sea level 

change by considering local tectonic, climatic, tidal and oceanographical 

fluctuations. (Tooley 1985a). This was expressed by Pirazzoli (1985) who 

gives examples of sea level curves for different zones of the sea surface. 

Evidence arising from the project IGCP 200 indicates that sea levels in the 

northern hemisphere reached near present levels in the past few thousand 

years, whilst in the southern hemisphere by around 6000 years BP. Overall 

the rise occurred in phases rather than a smooth or exponential rise (Devoy 

1986). 

2.8 Fluvial Activity during the Late Flandrian 

Many of the upper units filling the buried valleys in Devon are undoubtedly 

fluvial in origin, and although there have been limited studies of the more 

estuarine deposits (for example Scourse 1985b, Ranwell 1974, Richards 1979) 

there is little or no investigation of the fluvial sediments. Some researchers 

have considered the geomorphological aspects of the rivers instead (Kidson 

1962. Brunsden 1963). In many situations one would expect to find sediments 

of both fluvial and estuarine origin. 

In Devon, the few studies of mention are the works of Green (1949) on the 

River Dart and Kidson (1962) on the Exe who identified major stages in valley 

development along these rivers. They dated these stages by looking at their 

long profiles which were eroded to progressively lower sea levels. Cant (1973) 

suggested a considerable time would elapse before the effects of such base 

level changes are transmitted to the upper reaches, and in studying the upper 

Exe basin, he considered the actual changes to valley morphology would be 

slight. 

Hooke (1977) examined river channel pattern changes in Devon by looking at 

old maps such as the Tithe maps and OS county series. If lateral movement 
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was occurring then questions could be asked about changes in discharge, 

sediment load etc. She found that in East Devon, most of the streams had 

altered their course but in West Devon only on short isolated reaches. She 

attributed this difference to the fact that streams on the resistant rocks of 

Dartmoor are relatively stable, except where erosion of superficial material has 

occurred. In East Devon, it seems that the rivers are becoming more sinuous, 

although it is difficult to assess how much is due to agricultural practice, field 

drainage and urban activity. 

Human activity on Dartmoor may have contributed to the fluvial sediments. It 

is well documented that forest clearance first began in the Neolithic and in 

other parts of Britain, recent studies of floodplain sediments suggest they are 

often associated with human modification of catchment areas. Some recent 

examples are provided in table 2.2, where the pattem of floodplain 

sedimentation has been altered by forest clearance, change of agricultural 

techniques or mining. 

AUTHOR 

Limbrey 

Shotton 

Robinson 

Hazledon 
& Jarvis 

Brown & 
Barber 

Burrin 

Macklin 
etal. 

Saunders 
etal. 

SITE 

1978 Lowland 
1983 Britain 

1978 Severn-Avon 

1978 Upper Thames 

1979 Windrush Valley 
Oxfordshire 

1985 Ripple Brook 

1985 R.Ouse. Weald 

1985 LoxYeo Valley 

1989 llston River. 
Gower 

AGE 

Neolithic 

Late Bronze 
Age, after 2.7ka 

Iron and Roman Age 

After 2.6ka 

Late Bronze Age 
& Early Iron Age 

Iron Age, Roman 
Age and 15th 
century mining 

17th-19th century 
mining 

Post Medieval 
coal mining 

TABLE 2.2 EXAMPLES OF HUMAN INFLUENCES ON FLUVIAL PROCESSES 
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Some discussion has also centred around the incorporation of loess into 

floodplain units. Catt (1978) suggested a former more extensive cover of loess 

sediments over southern England has been removed by natural erosional 

processes resulting from a wetter climate and erosion induced by agriculture. 

The thickness of loess covering western Dartmoor is relatively thin in 

comparison to those deposits recognised in the south-east of England, 

however some loess may have been incorporated into the valley sediments of 

the rivers draining the moor. 

The extent to which these aspects of floodplain alteration have influenced the 

Ernie valley will be considered in detail in this study. 

2.9 Conclusions 

This chapter has considered some of the aspects affecting development of 

river valleys in Devon and south-west England. Quaternary climatic 

fluctuations have produced oscillations in sea level. This has affected rivers in 

that they graded to sea levels higher or lower than today and is evidenced in 

the identification of buried rock channels at depths of up to c. -50m below 

MHWST. As south-west England is believed to have escaped any significant 

glaciation during the last cold stage of the Pleistocene (the Devensian) one 

can expect to find a mixed suite of deposits filling these channels. Sediments 

may originate from periglacial processes, the postglacial rise in sea level and 

fluvial activity. Solifluctlon deposits flank much of the landscape: they are best 

seen in coastal exposures and have been described as incorporating loess in 

many areas. In lowland England, recent work has suggested that many 

floodplain deposits have formed as a result of anthropogenic modification of 

catchments. 

Previous studies have not attempted to investigate in detail the 

sedimentological sequences filling these channels. The exception LOQ-S J the 

exploration during early nineteenth century engineering works that extracted 

sediment from great depths within the channels. By considering deposits from 
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the buried channel of the Erme. it is hoped to provide more evidence on the 

nature and origin of these channels and establish an initial model for 

development of rivers and their valleys in south-west England during the 

Quaternary. 
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CHAPTER 3 THE STUDY AREA 

3.1 Introduction - The River Erme Valley 

In this chapter the Erme catchment area will be described in terms of the 

geology, geomorphology, vegetation, soils, climate and current river discharge. 

The River Erme has its source high on Dartmoor, close to the source of its 

neighbouring rivers, the Yealm and the Avon. Like these, it is drowned in its 

lower reaches and as described in chapter 2 has a buried channel. 

The River Erme drains southern Dartmoor. The upper course is characterised 

by impeded drainage and associated upland bog, followed downstream by a 

meandering valley tract and then through salt marsh to tidal flats at the coast. 

The river is 24km long and the catchment covers an area of 105 square km 

making it one of the smaller rivers of Devon. It is shown in relation to the other 

rivers in Devon in figure 3.1 and a general location map is provided in figure 

3.2. The catchment area, drainage and height of the river above sea level are 

shown in figure 3.3. 

The river begins on the high moor (442m OD) at Erme Head and descends 

over 13km and through two gorges to Ivybridge (at an altitude of 76m OD). 

The first gorge occurs 6km north of Ivybridge near Harford Moor at Higher 

Piles. This shelters the ancient woodland of Piles Copse (c.300m OD), 

believed to be a remnant of the forest which once covered Dartmoor. The 

second gorge ends at Ivybridge. The Erme continues over a 6km stretch 

through Ermington to Sequer's Bridge (at 23m OD). Ludbrook, a significant 

tributary joins the river at Ermington and just below Sequer's Bridge the river 

is tidal. The river continues through a floodplain used for grazing and an area 

of reclaimed marsh; these often become flooded during high spring tides. At 

the salt marsh stretch another tributary, Ayleston Brook, enters the estuary 

before it turns to tidal mud and sand flats at Mothecombe. 
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3.2 Solid Geoloqv 

The solid geology of the valley is relatively simple with the Erme flowing off 

the granite at and above Ivybridge, over the metamorphic aureole and then 

over progressively older rocks of Devonian age (Staddon Grits, Meadfoot 

Group, Dartmouth Slates) to the sea. A geological map is shown in figure 3.4. 

The succession of different geological types along the course of the Erme can 

be considered as a number of marker horizons. The changing facies of the 

slates and the igneous intrusions of volcanic tuffs and diabase along the Erme 

valley are shown in table 3.1. 

The granite around Ivybridge is a coarse blue crystalline granite incorporating 

minerals from the surrounding lithologies. CartDoniferous shales and 

limestones which occur just north-east of Ivybridge and at south Brent 

between the granite and Devonian beds, were metamorphosed to form calc-

flinta. Calc-flinta was formed when limestone was replaced by lime silicates, 

producing hard, fine grained rocks. Felsite was quarried at the Rutt granite 

quarry half a mile north of Filham Qust south of Ivybridge). 

The Dartmouth Slates are of Lower Devonian age and form the base of the 

succession. They are composed of river, lake and delta deposits and include 

coarse conglomerates, coarse and fine sands, shales and quartz veins 

(Perkins 1974). They are dominantly argillaceous and vary in colour from 

purple, green to grey. Dolerite intrusions break up the Lower Devonian 

outcrops which are seen in the lane between Oldaport and Kingston. Near 

Oldaport pink felsite and white quartz are seen at Torr Rock. Volcanic tuffs 

mark the beginning of vulcanicity which continued through the Devonian into 

Carboniferous times. The Dartmouth Slates are overlain conformably by the 

Meadfoot Beds, a succession of finely alternating siltstones and sandstones 

with rare but persistent limestones of marine origin. Volcanic activity is seen in 

the form of coarse agglomerates and tuffs and form a ridge south of the 
tohere 

Ermington-Avonwick road, they are known locally as dunstones and make 

valuable farm land (Perkins 1974). The Staddon Grits appear to follow in 
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nomnal succession above the Meadfoot Beds but are probably in part 

equivalent age. They consist of sandstones, intraformational conglomerates 

and thin limestones. In Middle Devonian times, thick limestones accumulated 

around Plymouth, Torquay and Chudleigh. The nearest outcrops to the Erme 

occur in a small area at Sequer's Bridge and can be seen with volcanic tuffs in 

a cutting on the main Plymouth-Kingsbridge road. They are seen as pink 

limestones at Eastern Torrs quarry and at Yealmpton where they form the 

Kitley Caves. 

It is anticipated that the sediments filling the buried channel of the Erme will 

reflect the area's bedrock since, as discussed in Chapter 2. South Devon is 

believed to be beyond former glacial limits. 

3.3 Geomorpholoaical Relationshios 

It is generally believed that South Devon escaped glaciation during the 

Quaternary but experienced severe periglacial activity. In this study area there 

is no evidence that the southem Dartmoor area has been glaciated or that the 

Erme has an over deepened valley cut by glacial ice. Worth (1898), however, 

considered that many of the river valleys are indicative of glacial action, 

including the Erme. He considered the cross valley profile of the Erme at 

Ermington and likened the steep sides to a glacial valley modified by fluvial 

processes. The steep sides and flat valley floors of other rock channels in the 

region, as detailed by Codrington (1898) from engineering works, convinced 

Worth(1898) that the area has been extensively glaciated. These views, 

however, are not generally supported. Cross sections across the Emne valley 

at Ivybridge. Ermington and towards Mothecombe are shown in figure 3.5. The 

vertical scales have been exaggerated to show the depth of the channel and 

general relief.; b a t they do not indicate a glacial origin for the channel. A 

maximum depth for the Erme was found at Owen's Point at the mouth of the 

river, at -27m OD (McFarlane (1955) and this is entirely in keeping with a low 

Quaternary sea level. 
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The hills and interfluves of the area are typical of South Devon in that they 

have rounded summits, strongly convex hillslopes, steep slopes and limited 

concave elements. The steepest slopes occur on Dartmoor at Ivybridge and 

near Piles Copse where deep gorges have been cut into the granite. In the 

more estuarine reaches, the slopes are steeply wooded. Orme explained the 

absence of wide floodplains by rivers attempting to grade to lower base levels 

thus involving considerable down cutting and little time for valley widening and 

also to the presence of resistant rocks. Brunsden (1968) compared the steep 

wooded rivers draining Dartmoor with the Rivers Exe and Teign which are 

wider and shallower since they have been cut into permo-triassic rocks. 

As Orme (1964) described, the major river valleys in the South Hams 

generally disregard the structure and cut across the dominant grain of relief, 

bub their tributaries are controlled by the east-west trending geological 

structures. This is partly seen in the Erme valley, for example, part of Lud 

Brook, that begins near Ugborough, flows along the boundary of the Middle 

Devonian slates and the schalsteins and tuffs. Between Ermington and 

Sequer's Bridge the main channel is controlled by the boundary between the 

Middle Devonian slates and Lower Devonian Staddon Grits. The longest 

tributaries have developed on the eastern side of the main channel, these are 

Lud Brook, Sheepham Brook and Ayleston Brook. Other tributaries are less 

than 3km in length. 

The multiple suites of planation surfaces mapped by Orme in the area were 

not investigated during the field study. However, of mention is the 730-820 

foot (225-250m) surface between Lee Moor and Ivybridge believed to be a 

Late Tertiary surface and the 690-700 foot (c. 215m) surface at Ivybridge. 

Orme believed that the Erme and the Yealm probably united south of Hanger 

Down to flow south-west to an extended Tamar estuary as there is an 

anomalous bend in the Erme's course south of Ivybridge. Gilbertson and Sims 

(1974) however likened this feature more to diversion of the Erme along the 

western margin of an alluvial cone spreading from the Ivybridge gorge, forming 

river cliffs (bluffs) at Westover Wood and Filham Moor. 
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Terrace deposits appear to be present around Ermington and Ivybridge but the 

lack of exposures in the area makes detailed study difficult. However during 

construction of the A38 cuttings revealed large (up to 2m diameter) boulders 

of granite, slate and calc-flinta in a sandy matrix spreading out from the foot of 

the gorge at Ivybridge as described by Gilbertson and Sims (1974). This led 

Gilbertson and Sims (1974) to suggest the presence of an alluvial fan formed 

by periglacial processes. Figures 3.6-3.9 show the fan and sections through it. 

revealing head and loam deposits overlying fluvial sands and boulder beds. In 

the Filham Moor area south of Ivybridge, the oldest deposits are jumbled 

boulders and gritty sands which pass laterally into imbricate boulder beds 

(figure 3.7a). These are overlain by sandy loams and platy head, and 

channels cut into the platy sandy loams are infilled with coarse sand, resting 

on the boulder units (figure 3.7b). 

The jumbled boulder deposits of granite, slate and calc-flinta appear to fan out 

of from the Erme gorge. This led Gilbertson and Sims to suggest deposition 

under a periglacial environment maybe as earth flows. The imbricate boulder 

beds however showed evidence of fluvial reworking (figure 3.9), implying 

powerful river conditions and the authors suggested that aggradation of the 

alluvial fan led to diversion of the Erme along the westem margin which may 

have caused the river to form the large cliff feature at Westover Wood which 

has a face 50m high and over 1km long. 

Similar massive granitic boulder deposits were described in the bottom of the 

gorge of the River Teign between Sandy Park and Clifford Bridge by 

Somervail (1901a,b). 

Further downstream, at Ivybridge and Ermington, there is evidence of usage of 

granite beyond the moorland border in housing and field walls. The blocks are 

water worn and appear to have been obtained from the river bed rather than 

transported from the moor (Perkins 1972). These blocks may have also been 

obtained from terrace deposits found when building the village of Ermington 
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into the hillside. This suggests the river once had a higher discharge than 

today (if the granitic boulders were river transported to Ermington). 

Evidence of periglacial activity is widespread and can be seen in the extensive 

mantles of solifluction deposits on the plateau and valley slopes below 

Ivybridge and on the clitter-strewn slopes of the granite moorlands, where the 

Dartmoor tors are also a characteristic feature related by Palmer and Nielson 

(1962) to phases of periglacial processes. Sharp Tor occurs in the Erme 

catchment area on the sides of the valley at Harford Moor (figure 3.3). 

Gullcher (1950) described altiplanation terraces formed under periglacial 

conditions rather than marine planation surfaces, and snow shaped notches as 

further evidence for periglaciation of the area. Catt and Staines (1982) 

mapped loess deposits on Dartmoor where in places, they are greater than 

0.3m thick. 

Although extensive head deposits occur at the mouth of the Erme at 

Mothecombe. there are also shallower deposits occurring over the rest of the 

valley. Some of these are noted on the Ivybridge Geology Sheet (No. 349) 

and coincide with the area mapped as an alluvial fan by Gilbertson and Sims 

(1974). The effect of the local bedrock in determining the nature of the head 

can be obtained by comparisons at different sections within the valley. 

Gilbertson (1973) noted the various types of heads used to construct 

hedgebanks in the Ivybridge area. On Devonian slopes bordering the granite, 

he found an upper loam overlying a platy head with occasional boulders of 

harder slates, calc-flinta and granite as illustrated in figure 3.8. On the 

metamorphic siliceous rocks and dolerites of Henlake Down, on the edge of 

Dartmoor, a coarse sandier head with angular rock fragments and more 

cobbles than on the Devonian rock was described. Further south Gilbertson 

found that hedgebanks on the floodplain of the Erme in the Filham Moor area 

were composed of floodplain sediments containing up to 3m diameter boulders 

in a gritty sand matrix. Between the floodplain and the Middle Devonian slates 

of Godwell Hill, the head is composed of sand and silt with occasional 2m 

diameter cobbles and boulders which overlie jumbled boulder deposits. 
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Further head deposits are seen at the coast at Mothecombe and a typical 

section of the head at the mouth of the Erme is shown in plate 3.1. The head 

shows variable characteristics from shattered bedrock to large boulders 

overlain by angular head and which in places grades to a finer laminated 

head. It is not clear whether any aeolian derived sediment has been included 

in the head, as described by Mottershead (1971) for other parts of the South 

Devon coast, or whether the finer layers are a weathering product. The head 

is often 3m or more thick, and forms the classic sequence seen in the South 

West of head overlying a raised wave cut platform as detailed in chapter 2. 

The sediments filling the Erme channel will include some of these head 

deposits reworked as fluvial sediments. No raised beach deposits can be seen 

overlying the raised wave cut platform in the vicinity of the Erme. 

3.4 The Age of the Erme Valley and it s Deposits 

Complex theories of superimposed Tertiary drainage patterns, and associated 

upland erosion surfaces are difficult to assess in relation to the formation of 

the River Erme. Many older studies suggested at least a Tertiary age for the 

drainage system on Dartmoor. Simpson (1964) considered that the drainage 

pattern is best understood as superimposed from an Upper Cretaceous cover. 

This hypothesis invoked an original drainage pattern on an easterly sloping 

Cretaceous surface, seen in the west-east flow of the Rivers Exe and Teign. A 

Mid-Tertiary uplift imposed a southerty tilt leading to the establishment of the 

Rivers Tamar, Plym, Avon, and Erme, development was interrupted in the 

Late Tertiary by a transgression of the 690ft sea, leaving Dartmoor as an 

island. When the sea regressed, most rivers reoccupied their old valleys, 

except the Dart which started to flow south-east rather than east. (Brunsden 

1968). 

Alternatively the Erme valley may have been cut during the Quaternary. Worth 

(1898) suggested that these channels owe their form to glacial origins and any 

glacial deposits will have been almost entirely removed and replaced by 

alluvial deposits; these views are generally not supported today. Durrance 
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PLATE 3.1 

A section of the head overlying the Dartmouth 

Slates at the mouth of the River Erme 
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(1975) suggested that the Teign. comparable in size to the River Erme, was 

formed in a recent cold stage of the Pleistocene, such as the Devensian and 

that the Exe was created during an earlier stage of the Pleistocene (Durrance 

1969). The presence of a buried channel and the incised nature of the 

drainage below Ivybridge suggests that the Erme was not cut in the Devensian 

although an earlier Quaternary date cannot be dismissed. 

It is likely that some of the deposits filling the buried channel are older than 

the current interglacial if the valley was cut before the Devensian. However 

their recognition will depend on dateable interglacial deposits. Undoubtedly the 

channel and lower parts of the valley will be filled with a large proportion of 

Flandrian sediments. 

Gilbertson and Sims (1974) attributed the boulder deposits and the overlying 

platy loams making up the alluvial fan at Ivybridge, to two separate periglacial 

episodes, and suggested dates of perhaps Wolstonian and Devensian age. 

This cannot be substantiated from the evidence provided, as can neither their 

suggestion that the Ernie valley and the gorge are of pre-Upper Pleistocene 

age respectively. 

The head deposits are all considered to be of Devensian age and the 

underlying raised wave cut platform is conventionally thought to date from the 

last interglacial. 

3.5 Climate and Current River Discharge 

The present day rainfall on Dartmoor varies from 2500mm (c, 100") on the 

highest parts of the northern moor to 1300mm (c. 50") at the eastern margin. 

On the lower surrounding land, rainfall is between 850-IOOOmm (c. 35-40") per 

annum. Severe storms causing flooding are rare but there are a few cases of 

extreme flooding as in 1929 when a famous flood affected the Yealm, Meavy 

and Teign (Gill 1970). It is very probable that the Erme was similarly affected. 
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Streamflow data from a gauging station on the River Erme (station SX65f051) 

near Ermington havebeen plotted as a flow duration curve (figure 3.10) using 

the method described by Gregory and Walling (1973). The mean daily flow, for 

a ten year period between 1974-1983, was used to display the frequency with 

which magnitudes of flow are equalled or exceeded. To prevent details of the 

lowest flows being obscured, the discharge values in cubic metres/second 

have been plotted on a log scale. The curve gives a useful indication of the 

variability of flow but has the disadvantage that any seasonality of flow is not 

displayed. The curve shows the highest discharge recorded to be 30 cumecs, 

99% of the time to be less than 10 cumecs and 50% of the time less than 1.1 

cumecs. Steep curves throughout indicate 'flashy' whereas a more gentle 

curve indicates groundwater or surface storage. 

Selected storm hydrographs, derived from the 10 years of data of mean daily 

flow, are shown in figure 3.11 to indicate the general flow characteristics of the 

river in response to high rainfall. These indicate that the river generally rises 

and falls within 24 hours. 

Browne (1978) constructed streamflow recession curves for a number of 

streamflow gauges in Devon including the River Erme. The stations at 

Chudleigh on the Teign and on the Erme had lower recession values than the 

other Dartmoor rivers which Browne attributed to the northern Teign draining 

hard metamorphosed impermeable culm rocks and the large area of blanket 

bog at the head of the Erme indicating poor drainage. 

3.6 Present Sea Level and Tides 

The present tidal limit of the Erme is as far upstream as the weir just south of 

Sequer's Bridge. During high tides, the land in this area is often flooded, but is 

situated above the level of the present salt marsh. Salt marsh covers an 

extensive area in the middle part of the estuary. Ranwell (1972) stated that 

generally salt marsh develops in estuaries in i) the upper estuary where there 

is an absence of wave action ii) in mid-estuary where the greatest amount of 
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silt deposition occurs and iii) at the mouth if protected by a coastal barrier. Salt 

marsh may be found between Mean High Water Neap Tides and the extreme 

high water of Spring Tides. 

It is believed that the South West is fairly stable in terms of crustal movements 

and current estimates of sea level rise are 2.2mm/year at Newlyn (Rossiter 

1972) and 2.4mm/year on Scilly (Thomas 1985). This figure will be assumed 

for the Erme mouth. 

3.7 Veoetation and Soil Development Durino the Flandrian 

Today the Erme valley and adjacent interfluves and plateaux below Ivybridge 

are used for agricultural purposes. On Dartmoor all the forest has been 

cleared except for Piles Copse, a small sheltered woodland in a deep valley 

on the moor, and the moor is used mainly for grazing. Between Ivybridge and 

Ermington there is a variety of land usage, the agricultural practices being 

mainly livestock farming. The steeper hill slopes tend to be forested. 

Downstream of Sequer's Bridge the land forms part of a private estate and is 

used for livestock farming, with some forestry of the steeply sloping valley 

sides. The expected sediment yield to the river directly from agricultural 

practises is therefore likely to be low. However, since this study is more 

concerned with former sediment yields and deposition, the effect of prehistoric 

activities in the catchment area will be considered. Earlier land clearance in 

the upper Erme catchment will have had an effect on the discharge and 

sediment yield of the River Erme. To assess the potential influences that there 

have been on the river regime, it is necessary to consider the vegetation 

changes on Dartmoor since the end of the Devensian glacial stage. 

In the Late Glacial, open tundra like vegetation was present, succeeded In 

pollen zone IV by juniper scrub and then birch. Until 7000 years ago and 

with a warming climate, nearby Bodmin Moor was covered in oak woodland 

with elm (Brown 1979) and Dartmoor is thought to have had a similar cover to 

400-450m altitude (Simmons 1964). Signs of Palaeolithic and Mesolithic 
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occupations are rare on Dartmoor. Staines (1979) considered that during the 

Mesolithic (7000-5000 years ago) there was probably low intensity activity on 

the moor with little widespread effect on vegetation. Pollen evidence indicates 

some light demanding trees such as rowan, bracken and grasses indicating 

some deforestation (Gill 1970). Blanket bog is thought to have been present 

above 460m OD at around 6000 years BP (Hammond 1979). 

During the Neolithic (5300-4500 BP) bigger clearings occurred in a continental 

climate with slightly higher temperatures than today. This marked the 

beginning of some soil leaching and peat formation (Gill 1970). Staines (1979) 

considered possibly that Mesolithic and Neolithic activities had greater 

influences so that the subsequent clearance in the Bronze Age would be 

thought of as secondary vegetation. At the beginning of the Bronze Age 

around 4000 BP, it seems the land was cultivated to 455m. This is just at the 

end of the climatic optimum when temperatures were 2-3 degrees Centigrade 

greater than today (Beresford 1981). The habitat became increasingly open 

with the spread of pastoralism and agriculture. There was a steady clearance 

of the woodland with little tree regeneration and a subsequent spread of 

bracken. This continued throughout the Middle and Late Bronze Age (3500-

2460 BP) with the formation of peaty gleyed soils from brown earths. From 

about 2900 BP onwards there was a climatic deterioration into the Sub-Atlantic 

with cooler temperatures and a more variable climate. The spread of hill peat. 

Sphagnum and Eriophorum reduced the grazing capacity. Around 2500 BP 

desertion of the higher altitudes to less than 300m had taken place (Staines 

1979). 

During the Iron Age (2500BP onwards) even wetter conditions pushed 

activities to the edge of the moor, with little evidence of re-occupation over 

300m in the Mid- or Late Iron Age, or even in the Roman Age. There may, 

however, have been some summer grazing. 

Clearance continued into the Roman, Saxon and Medieval periods. From 400-

1200 AD (1550-750 BP), another climatic optimum with temperatures 1-2 
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degrees Centigrade higher than today allowed cultivation to 395m between 

800-1000 AD (1150-950 BP). In 1204, legal permission was given for forest 

clearance on Dartmoor (Roberts 1983). Between 1200-1400 AD (750-550 BP) 

mixed weather of floods and droughts, mild and severe winters meant retreat 

to valleys and any settlements left were abandoned in the thirteenth and 

fourteenth centuries (Beresford 1981). Total clearance of the moor was 

probably complete in Medieval times, possibly by Medieval tinners (Taylor 

1975). 

There is evidence for agricultural activity in the upper Erme catchment. Harris 

(1975) suggested the 'ancient' woodland of Piles Copse may be younger than 

is commonly believed. Pollen evidence from the site seems to show that 

deliberate replanting occurred both before and after deforestation in Roman 

times. It was then cut again and the present woodland possibly originates from 

the end of the eighteenth century. Roberts (1983) considered that the smelting 

of tin ore led to cutting and deliberate planting of Piles Copse at several points 

throughout the last few centuries. Pollen evidence indicates the presence of 

Oak at the base of the soil profile examined. 

At Redlake clay works analysis of pollen across a peat-soil boundary was 

dated to pollen zone Vila (Taylor 1975). An increase in heather and grass with 

a decrease in hazel and bracken was identified. A soil examined at Piles Hill 

at 300m showed a very thick iron (Bs) horizon with evidence of woodland 

clearance. The presence of charcoal fragments at depth in the subsoil are of 

aider rather than oak and therefore suggest perhaps secondary woodland after 

the burning of early oak forest. Taylor suggests that the warming of the 

climate in the Iron Age may have led to an increase in woodland. 

The soils in the study area have developed from weathered parent material 

and head. On Dartmoor they are derived from granite and granitic heads and 

on the Devonian outcrops from slate, slate head or river sediments. Thus they 

tend to be more podzolic or peaty on the moor with a transition to a brown 

earth soil group in the lower valley. The following soil descriptions are taken 
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from the Soil Survey Map of England and Wales. Harrod et al. (1976), Hogan 

(1977) and Kent and Sims (1991). 

The Crowdy 2 Soil Series, an oligomorphous peat, occurs over much of the 

central moor at the head of the Erme. The Princetown Series, a stagnohumic 

gley. occurs just north of Ivybridge. and is characterized by peat overlying a 

sandy loam. Towards the edge of the moor, the Moor Gate and 

Moretonhamstead Series both belong to the brown podzolic soil group and are 

characterized by gravel, sand and sitt loams. 

On the edge of the moor, at the granitic boundary, the Manod Series occurs; 

this soil is a brown podzol derived from slate and slate head forming a clay 

loam. The Yeolland Park Series covers an area to the south-east of Ivybridge 

and is classed as a cambic gley, of clay loam. Over the surrounding 

interfluves as far as the south coast, the Ivybridge Soil Series is present. It 

forms a fine loamy soil classed as a gleyic brown earth. The Teign Soil Series 

is a coarse loamy sandy soil, grouped as a Ranker-like alluvial soil, formed 

from granitic derived alluvium it occurs in the valley bottoms. 

Thus, on Dartmoor peaty soils are generally present including blanket bog, 

gleyed soils and podzols developed upon granite or growan. On Devonian 

rocks, the soils are free draining, fine textured brown earths. In low lying valley 

areas gleyed brown earths are present (Brunsden 1968). 

3.8 Archaeological Data 

There is some evidence of occupation by prehistoric groups in the Erme 

valley. Abundant stone rows and circles are believed to date from the Bronze 

Age. The longest stone row is 4km long which starts above Harford Moor and 

continues past Redlake to Green Hill at 474m OD. This was probably 

constructed between 2000-2500 BC by the Beaker Folk arriving towards the 

end of the Bronze Age (Gill 1970). A prehistoric trackway extends between the 

Erme and the Plym which used to have standing stones. Fox (1964) visualised 
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the stone rows occupying open swathes in oak forest rather than 'marching* 

across open moor. 

In the lower valley evidence of earlier occupation is almost totally lacking. The 

only location known is at Mothecombe where a vertical face of soil, 1.2-1.5m 

above high tide exposed an occupation layer and has been described by Fox 

(1961) (figure 3.12). The main feature was a hollow 1.5-1.6m wide and 0.8m 

deep, lined with yellow clay, filled with charcoal, dark soil and burnt daub and 

covered with stony debris. Fox suggested this to be the remains of a 

temporary occupation by traders. The pottery was identified as imported 

amphorae of post-Roman Age similar to that found at Bantham (Fox 1955). It 

was dated to the 5th or 6th century A.D, corresponding to the so-called Dark 

Ages. Sand dunes burying the occupation layer must have formed since the 

5th or 6th centuries. The dunes at Mothecombe can be compared with those 

in Perran Bay, North Cornwall, which show two phases of dune accretion, the 

first during prehistoric time and a resurgence of growth in the twelfth century 

(French 1983). A palaeosol buried by dunes at Praa Sands, on the southern 

Cornish coast has been dated to 1290±70 BP (Keeiey unpublished - in French 

1983). Thus there has been an active phase of sand dune formation during 

the last 1000 years around parts of the Devon and Cornwall. At present the 

Mothecombe dunes are being eroded. 

Other archaeological data has been obtained from the Erme valley at Oldaporl /vve 

where a fort and harbour are said to have existed possibly in Roman times 

(Farley and Little 1968) and indicates siltation of the lower Erme estuary in 

recent centuries. Greeves (1981) studied the evidence for Medieval tin mining 

and earlier tin streaming on Dartmoor. He identified a large number of sites in 

the upper Erme valley, above Ivybridge. Both these will be discussed in a later 

chapter concerned with historical evidence, in an attempt to reconstruct 

channel changes of the River Erme and the extent of silting of the estuary in 

historical times. 
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FIG 3.12 Section of the occupation site at Mothecombe 
(from Fox 1961) 
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3.9 The Area to be Studied 

This study concentrates on the sediment filling the channel of the lower Erme 

below Sequer's Bridge. Apart from the data from the early nineteenth century 

engineering works, there is little information concerning the sediments filling 

the buried channels of the rivers in south-west England. A drilling programme 

has been undertaken in the lower valley below Sequer's Bridge. This area was 

chosen because a reasonable depth of sediment could be expected to be 

retrieved and because of the variety of environments that the area covers. 
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CHAPTER 4 LITHOLOGY OF THE VALLEY SEDIMENTS: FIELD 
METHODS AND LABORATORY ANALYSIS 

In this chapter the field and laboratory methods used to collect and analyse 

sediments from the floodplain and buried channel of the River Erme are 

described. 

4.1 Field Methods 

Two separate drilling programmes were undertaken; the first was unsuccessful 

in obtaining sediments for analysis because of difficulties with equipment. 

Instead the borings were used to try and ascertain depths to bedrock across 

parts of the current floodplain. A second drilling programme was successful in 

collecting sediment from the buried channel of the Emrie, thus providing the 

data for most of the study. 

4.1,1 Drilling into Floodplain Deposits 

Initial work in the early part of this study in the Erme valley concentrated on 

trying to ascertain the depth to bedrock in the channel of the Erme. Using an 

Atlas Copco power driven drill a series of attachable rods were driven into the 

valley sediments in an attempt to determine the depth of sediment infill. 

Bedrock was assumed to be reached when the rods could penetrate the 

sediments no further and considerable resistance was met. Two transects 

were made across the floodplain near to Sequer*s Bridge (see figure 4.1) and 

at the mouth of the Erme one site in the centre of the valley was drilled (see 

figure 4.2). The most important aspect of this study relates to the depths 

representing a minimum channel thickness at the sampled points. These 

minimum depths are listed in table 4.1. At the mouth of the Erme (drilling point 

C in figure 4.2), opposite the lime kiln the depth reached by drilling was 14m. 

representing a minimum depth for the channel at this point. 
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FIG 4.2 Drilling point C at the mouth of the River Erme 
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DEPTH(M) 

HOLE TRANSECT TRANSECT 
A B 

1 4.0 4.9 
2 6.5 6.4 
3 6.7 7.6 
4 7.7 8.1 
5 8.2 8.5 
6 8.1 7.5 
7 5.9 7.1 
8 5.5 
9 6.3 
10 5.7 
11 8.0 
12 8.2 
13 7.2 
14 6.5 

TABLE 4.1 MINIMUM DEPTHS ALONG TRANSECTS A AND B 

The second drilling programme was Instigated to collect sediment from the 

floodplain. The Atlas Copco drill was prevented from collecting cores because 

of the resistant granitic sands and waterlogging of the sediment. Instead a 

Craelius *Minuteman' was used. Drilling was carried out in three separate 

episodes lasting a week each; these were in January 1985. April 1985 and 

August 1985. Although the sediments were collected by augering, they will be 

referred to as cores or augered cores, and their sites of drilling as boreholes. 

4.1.2 Location of Drilling Sites 

The sites that have been investigated in the Erme valley are shown in figures 

4.3-4.8. Figure 4.3 shows locations of all the boreholes and figures 4.4-4.8 

show the locations in more detail. Figure 4.4 shows sites in the main valley 

just below Sequer's Bridge and figure 4.5 sites around and downstream of the 

Park Driving Bridge. Figure 4.6 shows the tributary valley of Sheepham Brook 

that enters the rhain valley from Goutsford bridge, figure 4.7 locations on the 

reclaimed land and figure 4.8 boreholes on the salt marsh near Efford House. 
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FIG 4.3 Location of all drilling sites 
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FIG 4.4 Location of coring sites at Sequer's Bridge 
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The boreholes have been named according to their location; those in the main 

valley are prefixed by 'BH', those in the tributary valley by 'A', at Sequer's 

Bridge by 'SB', from the reclaimed land by 'RM' and from the salt marsh by 

'S'. These prefixes were originally used in the field sampling and have 

remained in use throughout the study to avoid confusion of samples. The Atlas 

Copco drill and drilling sites in the main valley and on the salt marsh are 

shown in plates 4.1 and 4.2. 

The boreholes in the main valley run approximately down the centre of the 

valley (SB1. SB2. BH1. BH2. BH9. BH11. BH12.) and across valley at the 

Park Driving Bridge (BH1. BH2. BH4. BH5. BH7). This was the only location 

where the valley was wide enough and accessible enough for a cross-valley 

transect to made. Further downstream, boreholes were drilled in the drained 

salt marsh (RM1-4) and the existing salt marsh area (SI and S2). It was 

hoped that these boreholes would give a general indication of the range of 

sediments occurring in the main valley. After sediment was collected from 

BH6, further samples were obtained from the Sheepham Brook valley (A1-4). 

the main tributary valley where drilling was possible. Throughout the study 

area the locations of the cores were determined largely by the accessibility of 

various fields, the length of the valley section, the range of environments to be 

covered and the time available. 

All cores will be discussed in a standard order throughout the text. This order 

is SB2. SB1. BH6. A l . A2, A3. A4. BH1. BH4 BH7, BH9. BH11. BH12. RM4. 

RM3. RM2. RM1. SI and S2. This is generally from north to south, although 

the cores in the tributary valley (A1-A4) are discussed between BH6 and BH1. 

4.1.3 Collection of Samples 

Borehole samples were obtained from an auger powered by a Craelius 

'Minuteman' drill. Auger flights of 3' (0.915m) long were used and whilst there 

was no difficulty in drilling the auger flights into the ground, problems arose in 

extracting the auger string plus sediment. This limited the depth to which 
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PLATE 4.1 

Drilling in the main valley at location BH12. 

Drilling at site BH5 next to the Park Driving Bridge 
next to the River Erme. 
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PLATE 4.2 

Extraction of the auger flights from 
a drilling site on the salt marsh. 
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coring was feasible, a maximum of 7m or less in many locations. Augers had 

to be lifted from the ground after every two flights, which le^d to the holes 

caving in before the next flights were added and thus some contamination of 

the sides of the sediment occurred. This was later removed in the lab during 

initial examination of the sediment. 

Recovery of sediment was successful in the case of fine sand, silt and clay 

but where sandy/gravel horizons were encountered, the sample was 

sometimes lost. Samples were taken from the auger flights in the field (as 

shovm in plate 4.3) at 20cm intervals (BH 1-12) and at 10cm intervals (A1-A4. 

S1,S2, SB1.SB2, RM1-4) and examined in the laboratory. The extent of 

recovery of sediment from these boreholes is shown in figure 4.9. No 

sediment was retained from drilling at locations BH3, BH5. BH8 and BH10 

because of difficulties in extracting the augers from the borehole and 

waterlogging of the deposits. 

4.1.4 Survevino to Ordnance Datum 

The boreholes have been surveyed relative to the Ordnance Survey 

benchmark (7.003m OD) at Sequels Bridge (benchmark no. G5027 at Grid 

Ref. 63205187) and a benchmark in Holbeton village (Grid Ref. 61765017) at 

28.64m OD. Both refer to Ordnance Datum Newlyn. Although other 

benchmarks are marked on the OS 1:2500 maps of the area they were 

impossible to find. Temporary benchmarks were therefore established in the 

field area. Surveying was necessary to relate the top of each borehole to 

Ordnance Datum and plot their positions on 1:2500 maps of the area. The 

heights of the top of each borehole and depth of sediment collected are shown 

in table 4.2. It can be seen that the tributary valley is lower than the main 

floodplain and the sites at RM1-3 are lower than the current salt marsh. 
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PLATE 4.3 

Collection of sediment from the auger cores. 
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B O R E H O L E TOP OF DEPTH OF SEDIMENT 
C O R E SEDIMENT R E C O V E R S 
(m OD) R E C O V E R E D (m OD) 

(m) 

SB2 5.06 0.1-4.4 4.96-+0.66 
SB1 4.53 0.1-5.6 4.43-1.07 
BH1 3.97 0.0-7.1 3.97-3.13 
BH2 3.95 0.0-5.0 3.95-1.05 
BH4 3.74 1.4-6.0 2.34-2.26 
BH6 3.67 0.0-5.45 3.66--1.79 
BH7 3.24 0.0-5.0 3.24-1.76 
BHg 3.46 1.5-4.3 1.96-0.84 
BH11 2.82 1.2-7.0 1.62-4.18 
BH12 2.34 0.0-5.8 2.38-3.42 
A1 2.94 0.1-4.15 2.84-1.21 
A2 2.59 0.1-3.8 2.49-1.21 
A3 2.71 0.0-4.0 2.71-1.29 
A4 2.91 0.0-3.5 2.91-0.59 
RM4 2.33 0.1-3.6 2.23-1.27 
RM3 1.76 0.1-6.5 1.66-4.74 
RM2 1.60 0.1-7.3 1.50-5.70 
RM1 1.20 0.1-7.3 1.10-6.10 
S1 2.19 0.0-4.1 2.19-1.91 
S2 2.23 0.0-5.2 2.23-2.96 

T A B L E 4.2 SEDIMENT R E C O V E R E D FROM A U G E R E D C O R E S 
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4.2 Laboratory Methods 

The analysis techniques used are described in the next few sections. The 
sediment was initially logged to provide a general description of the different 
horizons found. Particle size analysis, some mineralogical and S.E.M. study 
was also undertaken. 

4.2.1 Loaaing of Sediment 

The position of boundaries between differing sediment types was undertaken 

in the laboratory. As far as was possible the sediment was examined to 

remove contamination and a general description was produced for each core. 

Criteria used in the description are particle size, nature of clasts (composition, 

size, roundness), presence of organic horizons, bits of wood, seeds etc., 

presence/type of molluscan shells, and colour using Munsell colour charts. 

4.2.2 Particle Size Analysis of Samples 

Borehole sediments chosen for particle size analysis were from BH1.BH4. 

BH6, BH7. BH9, BH11. BH12, A3 and SB2. These are mainly from the upper 

part of the study area. They were chosen because they cover a range of 

sediment types, whereas those further seawards tended to be more uniform 

and estuarine in nature. Sediment size analysis was undertaken in order to get 

an accurate indication of the grain size making up the deposKs and aid 

correlation between cores. 

4.2.2.1 Sieving 

Samples for size analysis from each core were chosen according to changing 

lithology in order that the smaller horizons were not overlooked; if a regularly 

spaced sampling pattern had been used then this may have happened. Where 

a sediment appeared uniform samples were taken at regular intervals. These 

intervals depended on the length of the uniform sequence, but were about 
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every 40cm. About lOOg of sediment was used for size analysis. The samples 

were first oven dried and weighed and then broken down using a pestle and 

mortar and dry sieved in accordance with the British Standard method for test 

sieving (BS1796). British Standard sieves (BS410) were used, with a size 

range of -4 to +4 Phi (16-0.063mm). The stacked sieves were placed on a 

mechanical sieve shaker for 10-15 minutes. The different fractions retained by 

the sieves were weighed. It was found necessary to also wet sieve the 

samples due to the problems of binding caused by the high proportions of silt 

and clay sized material. The silt and clay sized material that was obtained 

from dry sieving was retained for later use in pipette analysis. 

The material to be wet sieved was weighed and left in water for at least 24 

hours before wet sieving. The same sieve sizes were used and samples were 

wet sieved until the water running through the sieves was clear (usually 20-25 

minutes). The sieves and the sieved fractions were then dried and re-weighed. 

Amounts of the total silt and clay content in the sample were calculated by the 

weight loss in wet sieving. 

4.2.2.2 Pipette Analysis 

The silt and clay (< 0.063mm) fraction was analysed using the Andreasen 

pipette method as outlined in the British Standards guide BS1377. This 

method calculates the amount of sediment that settles through 10cm depth in 

liquid at a given temperature; it is thus dependent on Stoke's Law. 

Organic material was removed by treating the samples with 50ml of Hydrogen 

Peroxide. The sample was weighed and mixed in a mechanical stirrer with 

distilled water and 50ml Calgon (a mixture of 50g Sodium 

Hexamefaphosphate, 5.7g Sodium Carbonate and 1000ml distilled water) for 

15 minutes. Samples were transferred to a 500ml tube in the pipette 

apparatus, and allowed to reach a temperature of 23 degrees Centigrade in a 

water bath. 
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At 23 degrees Centigrade, the times taken for sediment to settle through 10cm 

are: 

size fraction time 

50|im 37 sees 

20nm 4mins 28secs 
9.8|xm 18mins 37secs 
2|im 7hrs 26mins 

Samples were taken at these times and collected In pre-weighed glass jars. 

These were oven dried and re-weighed. 

4.2.3 Mineral Composition of Sediments 

Sediment from cores BH1. BH6, BH7 and A3 was chosen for an analysis of 

their mineral content. These cores were chosen as they extend across the 

valley and to test whether clasts from BH1, BH6 and BH7 in the main valley 

and from A3 in the tributary valley have similar origins. It might be expected 

that A3 would have a higher amount of slate derived sediment since 

Sheepham Brook drains mainly Devonian rocks. 

Clasts were counted for size fractions -4Phi. -3Phi, -2Phi. - IPhI and 0 Phi. 

Two main groupings were used, a granitic class and a slate class to reflect the 

two main rock types that the river flows through. Divisions of the former were 

quartz, feldspar, mica, hornblende. A granitic class was used for clasts which 

were too large or were a combination of differing minerals, thus preventing 

assignment to any one of the above groups. The slate group was divided into 

slate, metamorphosed slate and vein quartz and any other minerals were 

individually specified. Up to 500 clasts have been sampled for each size 

fraction, depending on the total obtained from the wet sieved fraction. This 

was considered to be a statistically significant number and large enough to 

include any foreign clasts that might be present. 
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4.2.4 Scanning Electron Microscope (S.E.M) Analysis Of Sediment 

4.2.4.1 The Method 

S.E.M. is used to study surface textures occurring on quartz grains as these 

are believed to show characteristics indicative of different depositional 

environments. A preliminary investigation of sediment from two boreholes in 

the Erme valley was undertaken in order to assess the varying environments 

through which the sediment may have travelled. As some of the material 

occurring in the cores was predominantly fine sand and silt the possibility 

existed that there had been some incorporation of loess from head deposits 

on nearby Dartmoor and the surrounding interfluves. S.E.M. analysis of the 

quartz would also help assess the effect of fluvial erosion on the grains. 

The underlying principle of the S.E.M. technique Is that the assemblage of 

different microtextures occurring on a quartz grain is attributable to its 

environmental history (Krinsley and Dc^nkamp 1973). Both mechanical and 

chemical weathering processes produce surface textures on the grains and a 

number of different groups of features have been recognised. Initial work by 

Biederman (1962). Porter (1962) and Krinsley and Takahashi (1962) 

established a set of features attributed to aeolian, beach and glacial 

environments. This work was enhanced by Krinsley and Donahue (1968) 

where a more comprehensive classification of surface textures, distinguishing 

littoral, aeolian, glacial and diagenetic environments is provided. 

Quartz grains tend to be used more than other rock types as quartz is 

relatively resistant to chemical and mechanical breakdown. It has been noted 

that different mineral types will have a different set of surface textures for the 

same environment and that any analysis of the surface textures of quartz will 

depend on a knowledge of quartz crystallography. Some studies have 

identified a number of different environmental cycles through which quartz 

grains have passed by a succession of surface textures occurring on a grain. 
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It is also possible that many grains will have the same end product but are the 

result of a number of differing environments, i.e. they are equifinal. 

Detailed analyses of quartz grains have often been carried out on a presence 

and absence basis of surface textures, which had been devised by Margolis 

and Kellner (1969) using the presence / absence of 30 different textures. 

However Bull (1978) stated that: 

"Attention must be drawn not only to the number of grains required but 
also to the combination of features which are themselves diagnostic". 

Hence some have developed this into a more rigorous statistical analysis by 

various grouping methods and cluster analysis in order that some general 

grain surface characteristics could be ascribed to different groups of sediment. 

4.2.4.2 Selection of Material for Analysis 

Samples for S.E.M. analysis were chosen from two boreholes in the Erme 

valley: SB2, near Sequers Bridge (figure 4.4) and A3 (figure 4.6) from the 

tributary valley. Both these cores contained fine-grained sands and silt in their 

upper horizons, and hence may include sediment of aeolian origin. Samples 

were initially obtained from four horizons in each core; in SB2 from depths of 

0.1-0.2. (fine sand) 1.3-1.4 (sand). 2.9-3 (sand). 4,3-4.4 (sandy-gravel), and in 

A3 from 0.7-0.8 (silt-sand). 1.2-1.3 (sandy-gravel), 2.8-2.9 (sand). 3.6-3.7 

(silty-clay). These samples reflect the main sediment layers from these cores 

and a preliminary analysis should identify any sediment of aeolian origin. 

Bull (1978) noted that there was a lack of any uniform acceptance of the 

number of grains needed for analysis. Studies have used from 10 grains per 

sample (e.g. Fitzpatrick and Summerson 1971), to 30 grains (e.g. Campbell 

1984), to 200 (Vincent 1976). However. Bull (1978) also suggested that 20 

grains were probably sufficient and between 15-20 as a standardization to 

compare with other research work. For an initial analysis nine quartz grains 

from each horizon were chosen as this is a convenient number to fit on to an 

S.E.M. stub. In addition Bull (1978) suggested that medium sized grains 

displayed the best surface textures to indicate depositional environments. 
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Krinsley and Takahashi (1962) used grains between 0.5-2 microns, whilst 

Whalley and Krinsley (1974) used grains between 0.25-1.0 microns. The 

grains for this study of the Erme sediments ranged from 0.5-2 microns. Quartz 

grains were selected under a low powered microscope from material that had 

been wet sieved and mounted on stubs with double sided adhesive tape. The 

grains and stubs were coated with a thin layer of gold in a standard vacuum 

evaporator. They were examined at magnifications from 35 to 5000x, although 

most frequently between 100 and lOOOx. Photographs were taken during 

routine examination to aid in identification of the surface textures present. 

4.3 Results 

In this section, the results of the physical analyses of the sediments will be 

presented. 

4.3.1 Description of the Cores 

Descriptions of the sediments from each of the boreholes are shown in figures 

4.10-4.28. The solid lines indicate distinct changes in sediment type and the 

dashed lines, gradual boundaries. The main layers identified in each core are 

described below. 

SB2 

SB2 (figure 4.10, map 4.4) is the furthest upstream and most northerly of all 

the cores. The top 1m is mainly of sand with some silt and has occasional 

large rounded pebbles of granite in the top 40cm. This coarsens to sand 

between 1.1 and 1.7m with no gravel sized material. Between 1.7 and 3.5m a 

uniform material of silty sand occurs with occasional bark and twigs. This 

overlies a sand unit at 3.5-4.1m, and between 4.1-4.3m, sandy gravels with 

rounded pebbles of slate and granite. The fine nature of most of the sediment 

in this core makes it comparable to the fine-grained sediments in the cores 

from the tributary valley and some of the horizons of the other main valley 

cores. 
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FIG 4.10 SEDIMENT DESCRIPTION - SB2 
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. S I L T 
^2.5V4/2 dark greyish brown, 10YR3/1 very dark grey 

^TOUGH S I L T some clay, banded, with 
weathered slate and rounded granite to 4cm and 
some twigs 
5Y5/3 ol ive. 5Y6/3 pale ol ive, 5t6/l light grey, 
2.5Y7/6 yellow, 5Y5/2 olive grey, 2.5Y4/2 dark greyish 
brown 

FIG 4.11 SEDIMENT DESCRIPTION-SB1 
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SILT - FINE SAND with some 2mm granitic 
and slate gravel 

dark yellowish brown 

SILT - FINE SAND becoming fmer to SILT 
10YM/3 brown 

SILT with some clay, organic material between 
1.45-1.65m 
10YR^/3 brown, 10YR4/2 dark greyish brown, 10YR3/2 
very dark greyish brown 

ORGANIC SANDS of peaty nature with bark, 
wood and twigs, fibrous 
10YR2/1 black, 10YR2/2 very dark brown, 10YR3/1 very 
dark grey, 5Y2.5/2 black 

SILT with 2mm granitic, quartz and slale 
gravel, some organic material between 3.25-
3.45m 
5Y2.5/2 black, 5Y3/1 very dark grey 

SILT - SAND with 1cm slate and granite, bark 
and twigs between 4.25-4.45m 
5Y3/1 very dark grey 

SILT - SAND becoming sandier; 3cm sized 
granitic and slate gravels increasing in 
percentage of the total to 5.25m. Some organic 
material - bark, twigs between 4.75-5.05m 
5Y2.5/1 black, 5Y2.5/2 black 

SILT with 4mm sized granite and slate 
5YR2.5/2 black 

FIG 4.12 SEDIMENT DESCRIPTION - BH6 
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FINESAND 
7.5YR5/6 strong brown 

FINE SAND / SILT becoming finer with some 
clay 
7.5YR5/6 strong brown 

SILT some clay, with 2mm-lcm rounded slalc 
and granitic gravel 

10TR4/4 dark yellowish brown, 10YR4/3 brown 

NOT COLLECTED 

SAND with some 5mm rounded slate and 
granite 
2-5Y3/2 very dark greyish brown 

SAND and SILT layers with up to 2cm slate, 
granitic and quartz pebbles, bark, twigs and 
wood fragments, banded 
5Y2.5/2 black. 2.5Y3/2 very dark greyish brown. 
2.5Y4/2 dark greyish brown. 5Y3/2 dark o l i v e grey 

SILT / CLAY with 1cm rounded slate and 
granitic clasts, some organic layers 
2.5Y3/2 dark greyish brown. 5Y6/1 l i g h t grey, 2.5Y4/2 
dark greyish brown 

FIG 4.13 SEDIMENT DESCRIPTION-A1 
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FINE SAND 
7.5YR4/6 Strong Brown 

FINE SAND increasing silt and clay 
7.5VR5/6 strong brown, 7.5YR6/4 l i g h t brown, 7.5YR4/6 
strong brown, 7.5YR5/4 brown 

SILTY CLAY dark organic layers 
10YR4/3 dark brown, 10YR3/2 very dark brown, 2.5YN2/0 
black. 10YR4/3 brown 
SANDY SILT 1mm slate and quartz, 2 small 
wood fragments, organic layers 

^2.5YN3/0 very dark grey, 2.5YN2/0 black 
SILT 1mm slate and quartz, a few twigs 
2.5YH3/0 black, 2.5YN2/0 black, 10YR4/2 dark greyish 

^ brown 
SILTY CLAY 1mm sized clasts and small pieces 
of wood, banded red and black layers 

\ 7.5YR6/6 reddish yellow, 2.5YN3/0 black, 10YR4/2 very 
Xdark brown, 2:5YN2/0 black 

^ SILT some organic material 
\ 2.5YH2/0 black, 10YR4/3 brown 

SILT becoming coarser to SAND at 3.4m, 
lmm-3cm slate and quartz gravel, and lots of 
twigs and wood fragments 
2.5YN2/0 black, 10YRA/2 very dark brown, 7.5YR6/6 

^ reddish yellow 
^ SAND with 5cm sub-rounded and shattered 

slate and quartz, some organic material 
7.5YR6/6 reddish yellow i n 10YR4/2 dark greyish brown 

FIG 4.14 SEDIMENT DESCRIPTION - A2 
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FINE SAND and SILT increasing in silt until 
CLAYEY SILT at 0.9m 
10rR4/3 brown, 7.5rR5/4 brown. 7.5YR5/6 strong brown 

SAND with 2cm rounded slate and quartz, rich 
in wood fragments 
10YR4/3 brown. 10YR4/4 dark yellowish brown 

SILT some clay and organic material 
10YR4/4 dark yellowish brown, 2.5Y3/2 very dark 
greyish brown, 10YR4/3 brown 

FINE SAND and SILT BANDS with 1mm-1cm 
sized angular gravels, some bits of wood and 
seeds of Scirpus sp. or Blymus sp. 
10YR4/2 dark greyish brown, 2.5Y4/2 dark greyish 
brown, 2.5YN2/0 black 

SILT organic material, fibrous, I-2mm gravel 
2.5Y4/2 dark greyish brown, 2.5Yn2/0 black 

SILT CLAY, 2cm angular slate, especially from 
3.8m depth, yellow, grey and brown layers, 
some seeds. 
2.5YW2/0 black, 10YR4/2 dark greyish brown, 2.5Y7/4 
pale yellow, 5Y6/1 l i g h t grey, 10YR6/2 t i g h t o l i v e 
grey, SY6/3 pale o l i v e , 10YR5/3 brown 

FIG 4.15 SEDIMENT DESCRIPTION - A3 
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FINE SILT / SAND 
7.5YR5/4 brown 

SILT increasing CLAY to SILTY CLAY at 
1.5m, banded 
7.5YR5/6 strong brown, 10YR5/4 yellowish brown, 
10YR4/2 dark greyish brown. 10YR3/2 very dark greyish 
brown 

ORGANIC SILTS 
10YR2/1 black 
NOT COLLECTED 

SILTY CLAY with I-2mm sized slate at 2.2m 
depth, organic layers 
7.5YR6/4 l i g h t brown, 7.5YR5/4 brown. 10YR3/2 very 
dark greyish brown. 10YR2/1 black, 7.5YR6/6 reddish 
ye11ow 
SILT organic layers 
10YR4/3 brown. 10YR2/1 black. 10YR3/2 very dark 
greyish brown 
SILT SAND 
10YR2/1 black, 10YR3/2 very dark greyish brown. 
2.5Y4/2 very dark greyish brown 
SILTY CLAY 2-3mm slate in basal lOcm, some 
organic material 
2.5Y4/2 dark greyish brown, 10YR3/2 very dark greyish 
brown 

FIG 4.16 SEDIMENT D E S C R I P T I O N - A 4 
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SAND with l-3cin rounded pebbles of quartz, 
granite and slate 
10YR4/3 brown 

SILTY SAND 3cm rounded granitic and slate 
pebbles 
2.5Y3/2 very dark greyish brown, 2.5Y2.5/1 black 

SILT FINE SAND 2mm gravel, occasional 2cm 
dasts 
5Y2.5/2 black, 5Y3/1 very dark grey 

SILTY SAND l-3mm slate and granitic dasts 
2.5Y3/1 very dark grey, 5Y2.5/2 black 

FINE SAND 1cm slate and granitic dasts 
lOYA/1 dark grey 

SILTY SAND 2-3cm rounded slate and granite 
10Y4/1 dark grey 

NOT COLLECTED 

SILT 1cm rounded granite and slate dasts 
2.5Y3/2 very dark greyish brown 

NOT COLLECTED 

SILTY CLAY lots of 3cm rounded pebbles 
7.5YR6/4 l i g h t brown, 10YR6A t i g h t yellowish brown, 
7.5YR7/4 pink. 7.5YR6/6 reddish yellow 

FIG 4.17 SEDIMENT DESCRIPTION - BH1 
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UNCOLLECTED 

SAND with 2-3mm slate and granitic gravel 
10YR4/3 brown 
FINE SAND uith 2-3mm gravel 
10YR4/3 
FINE SAND • SILT with 2-3mm slate and 
granitic gravel 
10YR4/3 brown 
FINE SAND 2mm gravel 
10VRA/3 brown 
SILT - FINE SAND becoming Oner to sUt 
10YR4/3 brown, 10YR3/3 dark brown 

SILT 
10YR3/3 dark brown 
SILTY- SAND 
10YR4/3 brown 
SAND 
10YR4A dark yellowish brown 
SILT a few wood fragments 
7.5YR4/2 dark brown 
SILT 
7.5YR4/2 dark brown 
SILT-SAND 
7.5Y4/2 dark brown 
SILT - SAND with 2mm gravel 
10YR4/2 dark greyish brown 
SANDY GRAVEL sand and some silt bands 
with up to 3cm rounded quartz, slate and 
granite gravels. Gravels become more angular 
between 5,6-6m depth 
10YR4/3 brown, 10YR4/2 dark greyish brown, 10YR3/3 
dark brown 

FIG 4.18 SEDIMENT DESCRIPTION - BH4 
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NOTCOIXECTED 

SILT 
10YR4/4 dark yellowish brown 
SILTVCLAY 
10YR4/3 brown 

SILT with some day, 2min-2cm rounded 
granite and slate dasts 
10YR4/4 dark yellowish brown, 10YRft/2 dark greyish 
brown, 10YR4/3 brown 

SILTV SAND up to 2^cm sized granitic and 
slate gravels 
10YR3/3 dark brown, 2.5Y3/2 very dark greyish brown, 
5Y2.5/2 black 

SAND 3cm rounded slate and granitic gravels, 
increasing percentage of gravel with depth, 
bark fragments between 4-4.2m 
5Y2.5/2 black, 2.5Y3/2 very dark greyish brown, 
2.5Y4/2 dark greyish brown, 5Y3/1 very dark grey, 
10YR4/2 dark greyish brown, 10YR4/4 dark yellowish 
brown 

FIG 4.19 SEDIMENT DESCRIPTION - BH7 
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UNCOLLECTED 

^ SILT SAND 
10YR4A dark yellowish brown 

/ S I L T SAND with lmm-3mm sized gravels 
10YR4/4 dark yellowish brown, 10YR4/3 brown, 10YR5/3 
brown. 10YR3/3 dark brown 

SILT some sand with 1cm rounded slate and 
^ granitic gravels 

10YR3/3 dark brown 
/ SILT with 3mm gravel 

10YR3/3 dark brown 
^ SAND 

10YR3/3 dark brown 
COARSE SAND with 1mm and some 2cm 
rounded pebbles of granite and slate 
10YR3/3 dark brown 

^ ^ COARSE SAND GRAVEL 2cm rounded pebbles 
10YR4/2 dark greyish brown 
COARSE SAND GRA\XL up to 6-7mm 
granitic and slate clasts 
10YR3/3 dark brown 
SANDY GRAVEL with 3cm rounded granite 
and slate 
10YR4/2 dark greyish brown 

FIG 4.20 SEDIMENT DESCRIPTION - BH9 
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NOT COLLECTED 

SILT / FINE SAND high clay l-3cm slate and 
quartz dasts 
10YR«/3 brown 

SILTY - CLAY 
10YR5/3 brown, 10YR3/3 dark brown 

SANDY - SILT 2-3mm quartz and slate gravels 
10YR4/2 dark greyish brown, 2.5T3/2 very dark greyish 
brown 

SAND 2mm slate and quartz gravels 
2.5Y3/2 very dark greyish brown 
SANDY SILT 2-3mm slate and quartz gravels 
2-5Y3/2 very dark greyish brown 

NOT COLLECTED 

SAND with 1mm - 1cm rounded dasts of slate 
and granite, shell fragments at 4.5m and 5.5m 
depth 
5Y3/2 dark o l i v e grey. 5Y3/1 dark grey. 2.5Y3/2 very 
dark greyish brown 

SANDY GRAVELS to 3cm of rounded slate and 
granite 
5Y3/2 dark o l i v e grey, 2.5Y2/0 black 

SAND with l^cm slate and granite, shell 
fragments 
5Y3/2 dark o l i v e grey, 5Y3/1 very dark grey 
SAND - SILT 1cm slate and granite with shells 
and shell fragments 
5V3/2 dark o l i v e grey 
SILT 1.5cm slate and granite dasts, shells and 
shell fragments 
5Y3/2 dark o l i v e grey 

FIG 4.21 SEDIMENT DESCRIPTION - BH11 
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S I L T / F I N E S A N D 
10YRA/2 dark greyish brown 

S I L T / F I N E S A N D with 2cm rounded granitic 
and slate pebbles and 1 twig 
10YR3/3 dark brown, 10YR5/4 yellowish brown 

S I L T and C L A Y l-2mm quaru and slate clasts 
10YR4/3 brown, 10YR3/3 dark brown 

S I L T increasing in size to sand at l ^ m , up to 
6mm sized clasts 
2.5Y3/2 very dark greyish brown. 5Y2.5/2 black 

C O A R S I E ; S A N D and G R A V E L 2cm rounded 
slate and granitic gravels 
2.5Y4/2 dark greyish brown 

S I L T Y S A N D with some shells 
5Y3/2 dark olive brown 
S A N D Y G R A V E L 2ram- 1cm granite and slate 
clasts. Whole shells and shell fragments and 
some bark 
5Y3/2 dark olive grey. 5Y3/1 very dark grey 
S A N D occasionally some 1cm gravel, shell 
fragments 
5Y3/2 dark olive grey 

S I L T Y S A N D rounded pebbles of granite and 
slate to 2cm, shell fragments, some bark 
5Y3/2 dark olive grey. 5Y3/1 very dark grey, W/^ 
dark grey 

S A N D 1cm slate and granite pebbles and some 
bark fragments 
5Y3/2 dark olive grey, 5Y3/1 very dark grey 

FIG 4.22 SEDIMENT DESCRIPTION - BH12 
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SAND, silt increases and gravel decreases with 
depth 
10YR3/3 dark brown 

SILT, SAND and a little gravel 
10YR3/3 dark brown, 10YR4/3 brown. 10YR5/3 brown 
SILT - increase in fmt sand to 1.4m depth, a 
little gravel 
10YR5/3 brown. 10YR4/2 dark greyish brown. 2.5Y4/2 
dark greyish brown 

SILT / FINE SAND layers 
5Y3/2 dark o l i v e grey 
SANDY GRAVEL - 2-3ram gravel 
5Y3/2 dark o l i v e grey 

COARSE SAND becoming gravelly with depth 
2.5Y4/2 dark greyish brown 

SAND / SILT / GRAVEL bands 
5Y3/2 dark o l i v e grey. 5Y3/1 very dark grey 

SAND some 2mm slate and quartz 
5Y3/1 very dark grey. 5Y3/2 dark o l i v e grey 

COARSE SAND and GRANTL 1cm slate and 
granitic gravels, some organic material • twigs 
and bark at 3.4-3.5m 
5Y4/2 o l i v e grey 

FIG 4.23 SEDIMENT DESCRIPTION - RM4 
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FINE SAND, some silt, a little gravel 
10YR4/4 dark yellowish brown, 10YR4/3 dark brown 

SILT - increasing day percent 
10YR4/2 dark greyish brown, 5Y3/1 very dark grey, 
5Y4/2 o l i v e grey 

SANDY GRAVEL - 2cm granitic dasts 
2.5Y4/2 dark greyish brown 

COARSE SAND - 1cm gravel 
2.5Y4/2 dark greyish brown, 10YR4/2 dark greyish brown 

COARSE SAND and GRAVELS 0.5-2cm 
rounded dasts 
2.5Y4/2 dark greyish brown, 2.5Y4/3 

SILT, SAND with gravel l-2cm, some organic 
material 
10YR4/1 dark grey, 2.5YA/1 dark grey, 2.5Y4/2 dark 
greyish brown, 5Y3/1 very dark grey 
FINE SAND/SILT, some 2mm gravels, black 
organic layers 
2.5Y4/2 dark grey, 5Y3/2 dark olive grey, 5Y4/1 dark 
grey, 5Y3/1 very dark grey 
SAND with up to 1.5cm gravel, shell fragments 
and some organic material 
5Y3/1 very dark grey 

FINE SAND/SILT some 1cm slate gravels, 
shells 
5Y4/1 dark grey 

SILT with 1cm mixed gravels decreasing to 
6.1m depth, shells 
5yA/2 olive grey, 5Y3/2 dark olive grey 

SHELLY SILT 
5Y4/2 olive grey 

FIG 4.24 SEDIMENT DESCRIPTION - RM3 
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SILT/FINES AND 
10YR4/3 brown 
SAND with some granitic gravel 
10YR4/A dark yellowish brown 

SANDY GRAVEL - rounded granite between 
0^2an 
10YR5/5 yellowish brown. 10YR5/4 yellowish brown 

SILT/ FINE SAND - with some 2mm gravel 
10YR5A yellowish brown. 5Y4/1 dark grey 

COARSE SAND 2mm-5mm gravels, some shell 
fragments 
5Y4/1 dark grey 
COARSE SAND and GRAVEL to Icm/ming 
downwards, shells and shell fragments 
2.5Y4/2 dark greyish brown 
SAND 
2.5Y4/2 dark greyish brown 
SILT / SAND 3mm gravel, shells and shell 
fragments 
5Y4/1 dark grey. 2.5Y4/2 dark greyish brown 

SILT 3mm gravel, and occasionally some 1cm 
size gravel, organic material-bark, shells 
5Y4/2 dark greyish brown 

SILT/ FINE SAND organic material and shells 
5Y4/2 dark greyish brown 

FINE SAND 5mm gravels, a few shells and 
organic material 
5Y4/2 dark greyish brown 
SILT organic material and shells 
5Y4/2 dark greyish brown 

SILT 2mm and some 2cm gravels, shells and 
some organic material between 5.8-5.9m 
5Y6/2 dark greyish brown 

SILT Fining downwards, shells and a little 
organic material 
5Y4/2 dark greyish brown 

FIG 4.25 SEDIMENT DESCRIPTION - RM2 
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SAND with sill and rounded slale and granitic 
gravels to 2cm 
10YR5/4 yellowish brown, 2.5Y4/2 dark greyish brown 

SANDY GRAVEL - rounded granite and slate 
0^-2cm, decreasing in size with depth 
2.5Y4/2 dark greyish brown, 2.5Y4/4 o l i v e brown. 
10YR5/4 yellowish brown 

COARSE SAND a Uttle gravel 
2.5YA/2 dark greyish brown 

o o O SANDY GRAVEL 
' o O 2.5Y4/2 dark greyish brown 

' 9 . 
A ' ' • 

COARSE SAND - little gravel, with shells and 
organic matter from 3.1m 

• 7 10YR3/1 very dark grey. 5YA/1 dark grey, 2.5Y4/2 very 
O o • 0 o dark grey 

. ^ o . o SANDY GRAVEL shells and some organic 
/ f material 

SYA/2 dark yellowish brown, 5YA/1 dark grey. 2.5Y3/1 

o • a o 
9 • * 

COARSE SAND decreasing gravel size, shells 
and organic material 

y / - to 2.5Y4/2 very dark grey 
9 . 

• 9 • 7 • SAND organic material and shells 
. o - » J? 5Y4/2 dark greyish brown 

' ;> 

6.9-7m, a few sheik 
5Y4/1 dark grey, 10YR3/2 very dark greyish brown 

FIG 4.26 SEDIMENT DESCRIPTION - RM1 
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S I L T Y C L A Y 
lOYM/3 brown 

S I L T Y C L A Y with sand lenses 
10YR4/4 dark yellowish brown. 10YR5/3 brown 

S I L T Y C L A Y organic material between 0.7-
13m, 13*1.4m small gastropods, motlUng 
5Y6/1 grey, 10YR5/3 brown, 2.5Y4/2 dark greyish brown, 
5Y4/1 dark grey 
S I L T Y C L A Y and S A N D shells, organic 
material and l-2mm gravels 
5Y3/2 dark o l i v e grey 
F I N E S A N D and S I L T shells 
5Y3/2 dark o l i v e grey 

S A N D coarsening downwards, shells 
5Y3/1 very dark grey, 5Y3/2 dark olive grey. 5Y^/1 
dark grey 

C O A R S E S A N D shells and mottling 
7.5YR4/4 dark brown i n 5Y3/1 dark grey 
C O A R S E S A N D 3-4mm gravel, shells and 
organic material 
2.5YV2 dark greyish brown. 10YR6/4 
S I L T Y C L A Y 3-4mm gravel 
2.5Y7/2 l i g h t grey. 2.5Y8/2 white. 10YR7/4 very pale 
grey with lenses of 5Y3/1 very dark grey 
R O U N D E D G R A \ T : L in S I L T C L A Y with 
organic layers 
2.5Y4/3 o l i v e brown, 2.5Y7/2 l i g h t grey. lOYR 6/3 pale 
brown. lOYR 4/2 dark greyish brown 

FIG 4.27 SEDIMENT D E S C R I P T I O N - S I 
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SILT current salt marsh, roots 
10tR3/3 dark brown, 10YR4/2 dark greyish broim, 
10YR5/2 greyish brown 

SILTY CLAY with fibrous roots 
2 . 5 U / 2 dark greyish brown 

SILT organic streaks, shells from 1 ^ depth 
and organic layers 
10TR4/1 dark grey with 2.5YM2/0 black. 5Y4/1 black 

S I L T / F I N E SAND occasional 2mm sized 
gravel beyween 1.6-2m, shells and some organic 
material 1.6-1.7m 
5Y3/1 very dark grey. 10YR6/2 dark greyish brown, 
5Y4/1 dark grey 

SILTV CLAY very organic, reddish brown 
10YR5/3 brown, 10YR5/2 greyish brown 
SAND shells and 2-3ram gravel between 3-
3.2m, orange layers 
5Y3/1 very dark grey, 2.5Y4/2 dark greyish brown, 
10YR4/6 dark yellowish brown, 10YR4/4 dark yellowish 
brown, 2.5YM3/0 very dark grey 

COARSE SAND AND GRAVEL with a few 
shells and grey silt lenses at 3.9m 
10YR5/4 yellowish brown and streaks of 2.5YA/2 dark 
greyish brown, 5Y4/1 dark grey 
SILT SAND sheUs 
5Y4/1 dark grey 
SANDY GRAVEL shells 
5Y3/1 very dark grey 

COARSE SAND shells with some slate gravels 
to 1.5cm between 4.9-52ra depth 
5Y3/1 very dark grey 

FIG 4.28 SEDIMENT DESCRIPTION - S2 

128 



SB1 

SB1 (figure 4.11. map 4.4) has coarser material than SB2 and the two 

sequences of sediment are not very comparable. The top 60cm is composed 

of silt-fine sand bands; this overlies a unit of 20cm of sand. From 0.8-3.2m. 

bands of silt and sand similar to the middle units of SB2 alternate with gravel 

layers (absent from SB2). This overlies horizons of sandy gravel between 2.8 

and 3.2m. From 3.2m to 4.7m the unit is predominantly silt with some banding, 

no gravel and some organic material; this can probably be correlated with 

similar sediments from SB2. Between 4.7m-5.6m a tough silty-clay material is 

present and contains up to 4cm sized granite, quartz and slate material and is 

similar to the tough units recognised in the tributary valley at the base of the 

cores. 

BH6. A1. A2. A3. A4 

In boreholes 6 and A1-A4 (map 4.6) the top horizons (1.8m in 6. 1.5m in A4. 

1m in A3, A2 and A1) are similar in that they are predominantly composed of 

fine sand, silt and silty-clay material fining downwards. In most cases they 

contain little or no gravel and show some mottling, varying between strong 

brown to yellowish brown in colour. 

BH6 

The upper layers of BH6 (figure 4.12. map 4.6) are mainly of silt and fine 

sand. Between 1.85 and 3.05m in BH6 a black organic silty-sand (sand=50%) 

is present containing twigs and bark. From 3.25-4.05m. 2mm sized slate 

(33%) and quartz (67%) are present in a silt (65%) matrix. At 4.25m. this 

changes to a silty-sand matrix with up to 3cm rounded granite (66%) and slate 

(34%) pebbles and also containing organic material. Between 5.05-5.25m 

gravel makes up 4 1 % of the total (70% granite. 30% slate). The clasts are 

predominantly granite in BH6. usually accounting for c. 70% of the total. The 

exception is at 2.65m where 50% of the material is slate. This lower unit may 

be equivalent to sandy gravel units in A1-3 which contain organic material. 

129 



M 
Between 1.1m and 1.4m depth in A1 (figure 4.13, map 4.6). 1cm sized gravel 

In a silt matrix is present. From 2.25m in A1. a mixture of silt, sand and fine 

gravels occur. Rounded pebbles (up to 2cm in size) of slate, granite and 

quartz and lots of fragments of baric and twigs occur from 2.75m to 3.75m and 

it is probable that this correlates to the lower middle portion of A3 and A2. 

This overlies a unit of tough silty-clay from 3.75-4.15m depth with large (1-

2cm) pieces of slate which is probably equivalent to lower units in A3 and A4. 

A2 

Between 1.4m-2.3m in A2 (figure 4.14, map 4.6). a horizon of sandy-silt 

grades to silty-clay with 1-2mm clasts of slate and vein quartz. This overlies a 

horizon grading from silt to fine sand, and sand and sandy gravel with slate 

gravels increasing in size from 1-2mm at 2.7m depth to 5cm at 3.8m. Organic 

material in the form of bits of wood occurs from 1.5m down to the base. 

A3 

From 0.9-3.2m in A3 (figure 4.15, map 4.6) sand and silt layers with Imm-lcm 

sized rounded gravels occur; At 1.2m depth the sediment is composed of 30% 

gravel and 30-50% sand. Bark and twigs are present throughout this unit with 

an increased concentration at 2m depth. Between 3.2-4m. pale yellow and 

light grey silts with angular slate to 3cm size was found (gravel 36%. sand 

37%). this is similar to the base unit in A1. A2 and SB1 without any large slate 

input. Seeds, obtained during wet sieving, were found between 0.8m to 3.9m 

and are most probably Scirpus or Blvmus. Most of the sediment of 0.5mm size 

or larger is slate and vein quartz, although granite makes up 37% of the 

gravels and sands in the top 0.5m of the core, whilst between 3.6-4m, slate 

makes up 89-93% of the total. Between these two layers, slate accounts for 

47-79% with varying amounts of vein quartz. 

A4 

Sediments from core A4 (figure 4.16. map 4.6) are of silt-sand and silt-clay 

horizons with a band of organic silts at 1.5-1.7m depth. Some 2-3mm sized 
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slate occurs at the base at 3.5m. The basal horizon is a tough olive grey clay 

with silt. Some organic matter in the form of twigs and bark is present between 

3.1-3.5m. The base unit is probably equivalent to that in SB1 and A1-A3. 

BH1 

In BH1 (figure 4.17, map 4.5) the top 2.3m is composed of 2-3cm rounded 

pebbles, mostly granitic (89%). in a sand and silty-sand matrix. Below this, 

between 2.3-3.3m, smaller 2-3mm sized gravel occurs in a finer silty (32-36%) 

sand (50%) matrix. This overlies a unit of 1-3cm sized gravel (21%) in sand 

(44%) and silt. Sediment from the middle part of the core was too saturated to 

collect. At 6.3m a reddish yellow silty-sand containing 3cm rounded pebbles of 

granitic and slate rocks, with up to 10% clay and 37% gravel is present. This 

horizon may be equivalent to the base layers as described in the cores above, 

although it is different in colour and the gravels are more rounded. 

BH4 

Sediments from BH4 (figure 4.18, map 4.5) are comparable to those from the 

tributary valley. The top 1.4m was not collected because of waterlogging. The 

units from 1.4m to 3m are of sand with 2-3mm slate and granitic gravels, 

decreasing in size with depth to a silt with little gravel. From 3m to 4.4m, a silt 

to silty-sand horizon with organic material was found; this may be considered 

as equivalent to the 1.85-3.05m horizon in BH6. Between 4.4m-6m. sand, silt 

and gravel horizons with rounded pebbles of granite, slate and quartz to a 

maximum diameter of 3cm are present; the pebbles become more angular at 

5.6m. This unit may be equivalent to the lower unit of BH6. 

BH7 

Core BH7 (figure 4.19. map 4.5). on the opposite side of the valley to BH1. 

has an upper fine layer of silt (66%) and clay (17%). This overlies a mixture of 

sand (25-42%) and silt (14-49%) dominant units which contain up to 2.5cm 

rounded gravels. These continue to 5m depth, where gravel makes up 42% of 

the total; this horizon is possibly equivalent to the gravel horizon in BH4. BH7 
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is composed of mainly granitic material which varies from 62-89% of the total; 

slate accounts for 39% at 3.7m. 

BH9 

The top 1.5m of BH9 (figure 4.20, map 4.5) was not collected because of 

difficulties in drilling. BH9 contains silt-sand units in the upper part of its core 

between 1.5-3.5m, with small 1-3mm sized gravel. At 1.5m. clay makes up 

12% of the total, silt 44-39% and sand 41-55%, thus it is probably comparable 

to the upper fine units in some of the other cores. These change to coarse 

sandy gravels (26-38% gravel. 56-44% sand and 13% silt) between 3.7m-4.3m 

where pebbles of up to 3cm occur; this is probably equivalent to the gravel 

horizons in cores BH4 and BH7. 

BH11 

The top 1.2m of BH11 was not collected (figure 4.21. map 4.5). From 1.2-2.2m 

silt and clay (16%) predominate with some rounded pebbles of 3cm at 1.5m. 

Between 2.2 and 3.2m, silt-sand (40% sand. 44% silt, 11% clay) containing 2-

3mm gravel is present, with a sand layer at 2.7m (56%sand, 6% clay). 

Between 3.8m-6.2m, sandy gravel is present and contains variable sized 

rounded gravel from 1mm to 3cm; the total gravel percentage varies between 

11-35% and sand from 47% to 63%. At 4.5 and 5.5m shell fragments occur. 

From 6.2-7m, sand (52%) grades to silt (57%) and includes gravel to 1.5cm 

diarhfeter; many shell fragments and whole shells are present in this horizon. 

BH12 

The top horizon in BH12 (figure 4.22. map 4.7). from 0-1.8m. grades from a 

silty sand with 2cm sized gravel (24%) to silt (49%) with 2mm (3%) sized 

gravel and 14% clay and then to a silt-sand (37% sand. 37% silt) at 1.6m. 

Between 1.8m-2.8m, coarse sand with 2cm rounded pebbles of granite occur 

(36% granite, 50% sand). From 2.8m to 5.8m. sandy gravel and silt-sand units 

with up to 2cm rounded pebbles of slate and granite are present; the sand 

percentage varies from 37-49% and silt from 27-51%. Mollusc shells and shell 
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fragments are present from a depth of 3m; this unit must be comparable with 

the horizon from BH11 which also contains shells. 

RM4 

The top 60cm of RM4 as shown in figure 4.23 (map 4.7). is composed of sand 

and silt bands with some granitic gravel, these grade to silt with fewer clasts 

between 0.8 and 1.4m. From 1.4m to 3.6m depth sand and sand-gravel 

horizons are present. 

RM3 

The top 1m of RM3 (figure 4.24. map 4.7) is composed of sand and silt with 

little gravel. This becomes sandy gravel at 1.1m and sandier between 2.5-

3.6m. Between 3.6-5.3m horizons of silt-sand with some gravel and shells 

from 4.7m occur and from 5.3m-6.5m shelly silt is predominant with some 1cm 

sized gravel. 

RM2 

The top half metre of sediment from RM2 is of silt and sand (figure 4.25. map 

4.7). Sandy-gravels are present for the upper part of the sediment in RM2 with 

shell fragments from at least 2.6m depth. This is characterised by bands of silt 

and sand with gravels varying from 2mm to 2cm in size. From 3.7m most of 

the core is silt rich, with occasionally 2mm-1cm sized slate gravels and many 

shell fragments. 

RM1 

The top 2.8m of RM1 (figure 4.26. map 4.7) is composed of sandy gravel 

containing 2cm sized rounded granitic and slate pebbles. This overlies coarse 

sand to 5.7m depth containing some gravel bands; after which there is a 

general decrease in particle size to sand between 5.7m and 7.3m. Molluscan 

shell fragments are present from 3.1m and occasionally pieces of wood are 

found. 
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SI 
The top 1.4m of S1 (figure 4.27, map 4.8) is silty-clay with some small 

amounts of wood fragments and no gravel. Between 1.4m and 3.2m silt 

grades to coarse sand. Mollusc shell and shell fragments are common 1.3m 

depth. At 3.2m there is a distinct change to a horizon of coarse sand with 3-

4mm slate fragments: this grades to a silty horizon with rounded pebbles. 

S2 

The top horizon of S2 (figure 4.28. map 4.8) is predominantly silt and silty-

clay. at 1.3m a change to shelly silt-sands takes place, with a distinct silt clay 

layer between 2.3-2.4m. Shelly-sands occur between 2.4m-3.2m where coarse 

sand and gravel sediments with few shells is present followed by coarse sand 

at 4.3m. Large slate gravels occur at the base of this core at 5.2m. 

4.3.2 Size Analvsis 

The weight and percentages of the different sized fractions have been 

calculated and are presented as histograms and cumulative frequency graphs 

in figures 4.29-4.43. Summary diagrams of the change of particle size with 

depth for each borehole are shown in figures 4.44 and 4.45; they are divided 

into textural classes of gravel, sand, silt and clay according to the Wentworth . 

Scale. Tffeiisummary data are-provided in appendix 1. 

These diagrams show that in cores BH6. BH7. BH9. BH11 and BH12 the clay 

fraction decreases with depth. In BH1 the clay percentage is fairly uniform 

throughout the core with an increase at the base where some pinkish-red clay 

with large clasts was found. The clay and silt fractions were not separated out 

from cores SB2 and A3. The silt fractions similarly decrease with depth in 

BH1. BH7. BH9 and BH6 initially due to an increase in the sand content and 

then an increase in gravel at the base of these cores. Core SB2 has very little 

gravel content, with a slight increase at the base, it is predominantly sand with 

an increase in silt between 2 and 3m OD. Changes in the silt and clay content 

in core A3 are due to increases in gravel at 1.5. -0.5 and -1m OD. In BH11 
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and BH12 increases in gravel occur at Om OD and in BH11 at -1m and -3m 

OD. Towards the base of core BH11. silt increases whereas in BH12 the silt 

content decreases. 

Some of these increases in gravel content can be traced between a number of 

the cores: at 1.5m OD gravel increases in SB2, BH6. A3 and BH7, at Om OD 

in BH11 and BH12 and at -1m in BH6. A3. BH1, BH9 and BH11. 

The values for the mean, sorting, skewness and kurtosis have been 

calculated, and are shown in table 4.3. The formulae used are as follows: 

Mean 

„^ *16+*50+*84 
MZ= 

Sorting 

„ « 8 4 - * 1 6 ^ * 9 5 - * 5 
4 6.6 

Skewness 

, ^16+^84-2^5^ ^5+^95 + ^2^5 
2 ( « 8 4 - * 1 6 ) 2 ( * 9 5 - « 5 ) 

Kurtosis 

svr - * 9 5 - * 5 
2.44 ( * 7 5 - * 2 5 ) 

These are the mean, the inclusive graphic standard deviation, the inclusive 

graphic skewness and graphic kurtosis after Folk and Ward (1957). 
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SAMPLE MEAN SORTING S K E W N E S S KURTOSIS 

BH6 
0.25-0.45 4.85 2.50 0.39 1.03 
1.05-1.25 6.37 2.26 0.06 0.87 
1.65-1.85 6.10 2.26 0.10 0.95 
2.05-2.25 2.86 3.35 0.06 0.76 
2.65-2.85 
3.25-3.45 4.65 2.92 0.14 1.36 
4.05-4.25 3.53 3.57 0.05 0.79 
4.45-4.75 3.03 4.14 -0.11 0.96 
5.05-5.25 0.44 4.22 0.23 0.77 

BH1 
13-1.6 1.49 3.96 0.36 0.87 
2.3-2.6 3.36 3.24 0.09 0.97 
3.0-3.3 2.91 2.95 0.06 1.25 
3.6-4.0 1.88 3.84 0.01 1.10 
5.6 -0.14 3.47 0.40 1.01 
6.3-6.5 2.08 4.18 0.29 0.79 
6.5-6.7 2.66 4.14 0.25 0.78 
7.0-7.1 1.14 4.25 0.31 0.79 

BH7 
0.6-0.8 6.27 2.46 0.03 0.88 
1.0-1.2 4.10 4.12 -0.24 0.81 
1.6-1.8 1.36 4.12 0.37 0.80 
2.2-2.4 2.11 3.94 0.09 0.81 
3.0-3.2 1.06 4.25 0.29 0.87 
3.6-3.8 0.89 4.03 0.32 0.94 
4.2-4.4 0.32 3.35 0.19 0.73 
4.8-5.0 0.36 4.61 0.25 0.70 

T A B L E 4.3a DESCRIPTIVE STATISTICS FOR SEDIMENT SIZE ANALYSIS 
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SAMPLE MEAN SORTING S K E W N E S S KURTOSIS 

BH9 
1.5-1.7 4.88 2.95 0.16 0.96 
2.1-2.3 4.43 2.92 0.01 1.0 
2.5-2.7 3.90 2.94 0.07 1.04 
3.1-3.3 4.20 2.33 0.30 1.19 
3.7-3.9 1.36 3.54 0.15 1.16 
4.1-4.3 0.64 4.02 0.17 0.92 

BH11 
1.2-1.4 4.63 3.83 -0.04 0.92 
2.0-2.2 5.45 3.08 0.01 1.01 
2.2-2.4 4.13 3.69 -0.09 0.70 
2.6-2.8 2.08 3.44 0.63 0.76 
3.0-3.2 4.08 3.64 -0.04 0.80 
3.8-4.0 1.73 3.33 0.39 0.98 
4.4-4.6 1.78 3.41 0.18 1.04 
4.8-5.0 2.61 3.31 0.27 1.14 
5.4-5.6 1.83 3.51 0.20 1.12 
5.8-6.0 0.79 3.82 0.17 1.16 
6.2-6.4 2.71 3.27 0.12 0.94 
6.6-6.8 3.75 3.23 0.04 1.21 
6.8-7.0 4.38 3.41 -0.15 1.49 

BH12 
0.2-0.4 2.43 3.95 0.15 0.79 
0.8-1.0 4.95 3.28 0.05 0.85 
1.6-1.8 2.83 3.90 -0.03 0.81 
2.2-2.4 0.46 3.02 0.36 1.19 
3.2-3.4 2.16 3.37 -0.08 0.98 
4.0-4.2 4.05 2.30 0.02 1.97 
4.8-5.0 4.08 2.60 -0.07 1.87 
5.2-5.4 3.28 3.23 -0.12 1.13 
5.6-5.8 2.61 3.13 -0.18 1.12 

T A B L E 4.3b DESCRIPTIVE STATISTICS FOR SEDIMENT SIZE ANALYSIS 
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All of the means of the sediments analysed lie in the coarse silt and sand 

range on the Wentworth Scale, except for BH11 2-2.2m which has a mean of 

medium silt size and BH7 0.6-0.8. BH6 1.65-1.85 and BH6 1.05-1.25 v\̂ hich 

have means in the fine silt range. 

If a distribution is symmetrical, then the mean and the median will be equal. 

Most of the samples have medians differing from the mean by 1 phi or 0.5 phi; 

BH11 1.3-1.6, BH7 1.6-1.8 and BH11 2.6-2.8 show a greater difference 

between the mean and the median differing between 1-2 phi. 

Folk and Ward (1957) suggested a verbal scale to describe the sorting 

characteristics of a sediment; values between 2-4 are suggested to be very 

poorly sorted, and values greater than 4, extremely poorly sorted. All the 

sediment in the cores collected are either very, or extremely poorly sorted. 

This suggests that the sediments are multi-component and thus include 

sediments of different origins. 

Skewness is a measure of the deviance of the median from the mean; BH11 

2.6-2.8m has a higher skewness value than most of the sediment analysed. 

Most of the samples have tails of fine material rather than coarse material. 

Kurtosis measures the peakedness of a distribution; values of between 0.7-1.5 

occur for these samples, except for samples BH12 4.8-5 and 4-4.2m v\rtiich 

are between 1.8-2; thus being more peaked than the others. 

4.3.3 Mineral Composition 

The results of the analysis of mineral composition of the cores are shown in 

figures 4.46 and 4.47. They have been plotted as mineral group against depth 

in the core. There was found to be no difference in mineral type between the 

size fractions and hence results for the different size ranges have not been 

displayed separately. 
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Quartz and quartz related sediments make up most of the composition of the 

cores, apart from sediments from core A3 which are predominantly of slate 

origin (figure 4.46). This short tributary valley of the Erme drains mainly 

Devonian slates. No foreign clasts were found in any of the samples analysed. 

The top horizons in all the four cores examined were of granitic sediments 

including those from A3. The 'other' category included calc-flinta, banded 

sandstone and limestone, all of v^^ich outcrop in the catchment area. In BH1, 

BH6 and BH7 clasts derived from slate bedrock increase at around Om, -1m 

and 0.5m OD respectively at the expense of the granitic derived clasts. 

These can be compared with the summary particle size diagrams to see if 

there is a relationship between particle size and rock type. At 2.5m OD in BH6 

the sediments are mainly silt and the clasts granitic. At 2m OD there is an 

increase of slate clasts although there is no corresponding change in grain 

size. At 1.5m an increase in the sand content matches a return of granitic 

sediments. An influx of slate just below 1m OD does not appear to have any 

significant affect on grain size and around Om OD an increase in the silt 

content is matched by more granitic gravels. It is thus difficult to correlate 

changes in sediment size with mineral composition. Similarly grain size 

changes in BH1 do not correlate with changes in rock type. BH7 shows an 

increase in slate derived sediment between 0 and -1m OD and if anything a 

slight increase in gravel content. At 1.5m and 0.7m in A3 however, increases 

in granite and metamorphosed slate respectively correlate with increases in 

gravel sized sediment, although other variations in mineral type have no 

bearing on sediment size. 

4.3.4 S.E.M Analvsis of the Cores 

Most of the quartz grains examined had the appearance of freshly weathered 

quartz. The surface textures present were sometimes similar to primary 

mechanical features such as conchoidai fractures, breakage blocks, arc-

shaped steps and parallel steps. There was little rounding of any grains with 
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the sharp corners usually preserved. The grains were compared with 

photographs of quartz derived from the River Traney, Northem Ireland, which 

drains granitic rock and thus may be a similar environment to the Erme. They 

were also compared with photographs of decayed granite grus and 

tourmallzed granite from Laughter Tor Quarry on Dartmoor. The grains from 

Traney Rjver were similar to those studied here and had little edge abrasion. 

Many of the features from the Laughter Tor samples were similar to the Erme. 

some 'grotty', some clean faces. Some typical grains from the samples 

examined are shown in plate 4.4. 

Some grains were indicative of granite weathering products (grus), with 

occasionally several quartz grain crystals or quartz and other minerals 

occurring in one grain. 

Higgs (1979) suggested that conchoidal fractures are indicative of either 

glacial environments or material freshly liberated from a crystalline source. 

Semi parallel steps are related to these and orientated etch pits are formed by 

the dissolution of quartz (Elzenga etal. 1987). All these features were seen in 

the Ernie samples studied. 

Evidence for fluvial erosion is often characterised by very round grains 

(Whalley 1979), with randomly orientated, very dense V-pitting and crescentic 

scars. This is suggested by Hey ef a/. (1971) to result from high energy 

subaqueous conditions, although Bull (1978) suggested V-pitting to be a result 

of time rather than high energy levels. None of the grains from the Erme 

samples showed substantial evidence of fluvial transport. Features said to be 

indicative of an aeolian environment, abraded, generally smooth surfaced, 

disc-shaped cavities, separated by meandering ridges and upturned plates, 

formed by grain to grain impacts, and a variety of chemical and precipitation 

features were also absent from any of the grains examined. Photographs of 

Nigerian aeolian deposits (Smith and Whalley 1981) and periglacial aeolian 

and fluvial sands (Elzenga et al. 1987) were compared with the Erme 

sediments. 
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PLATE 4.4 

^ A3 0.7-0.8 xlOOO 

Fresh quartz surface. 

A3 0.7-0.8 x350 
« 

Sharp edge of a grain indicating 
little abrasive action. 

A3 0.7-0.8x1000 

Quartz grain shows typical 
weathered granite grus. 

SB2 0.1-0.2 x500 

Shows primary mechanical surface 
textures and typical breakage 
features typical of freshly 
weathered Dartmoor granite. 
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4.4 A Brief Discussion 

Final assessment of the data presented in this chapter will be made in 

Chapter 8 along with the results from other analyses. However, some general 

points will be made here. 

A variety of sediments have been recovered from the top 7m or so of the 

buried channel of the River Erme. Depth of augering was limited because of 

difficulties in extracting long auger flights from the ground. The earlier drilling 

programme reached maximum depths of 8m below the surface which may 

indicate the base of the channel or a resistant boulder layer. At point 10 on 

transect A, a maximum depth of 5.7m was found although sediments were 

later extracted from a depth of 6m from nearby BH4. This may be explained 

either by a resistant horizon or by local variations in the bedrock channel. In 

the tributary valley and around the Sequer's Bridge area, shallower cores were 

obtained, and a sediment layer indicative of bedrock or a head or fluvial 

deposit near to bedrock was retrieved. 

Fine silts and clays were present as the upper horizons of many of the cores. 

These overlie an organic unit around the Park Driving Bridge area and granitic 

gravels or sands at other locations. Some cores are predominantly of fine 

sand and silt units. In the Sheepham Brook tributary valley, sediment most 

probably indicating bedrock or head overlying bedrock was recovered. 

Seawards, the lower horizons of the cores contain molluscan shell fragments 

in variable matrices of gravels, sands and silts. The sediments do not appear 

to be derived from any parent material that does not outcrop in the Erme's 

catchment area. 

Some of the sediments can be correlated between cores on the basis of 

sediment size analysis. Some show a decrease in silt and clay content with 

depth, others can be correlated on the basis of changing gravel input. The 

increase in gravel at 1.5m in some of the upper cores may be equivalent to 

that at Om OD in BH11 and BH12. There appears to be little correlation 
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between changes in sediment size and mineral content of the cores. 

Sediments from the tributary valley are almost exclusively of slate derived 

sediments whereas those from BH1. BH6 and BH7 have both granitic and 

slate elements. 

S.E.M. analysis of some of the quartz grains suggests little fluvial rounding 

and no evidence of an aeolian origin for these grains. As most of the grains 

examined were still angular it is probable that they have not travelled very far. 

or have been transported in a low energy environment. If most of the quartz 

originated from the Dartmoor granite (the boundary of the granite being 5km 

from SB2) it is possible that either the quartz grains were transported in a 

flood, where there was little attrition, or in a very slow moving current. Some 

quartz may have originated from the slate, and thus would not need to have 

been carried very far. None of the grains showed evidence of aeolian 

weathering, thus suggesting there has been little incorporation of loess from 

the head deposits on Dartmoor and the surrounding area. 

The sediments suggest that deposition has been relatively stable in the recent 

past. The upper fine deposits are possibly due to Flandrian land clearance as 

suggested by other research workers for similar valley fills. The organic sands 

and silts suggest either freshwater, salt marsh or backchannel swamp 

conditions preceding the recent alluviation. Prior to these phases, the river 

discharge was generally higher allowing gravels to be carried. Different 

conditions existed in the southern half of the study area which had a more 

estuarine influence. Further discussion on the sediments recovered will be 

presented in chapter 8, where the main sediment groups will be identified 

using results from all the analyses. 
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CHAPTER 5 A DETAILED STUDY OF DIATOMS P R E S E R V E D IN THE 
BURIED CHANNEL DEPOSITS 

5.1 Introduction 

Diatoms (Bacillariophyceae) are microscopic unicellular algae with an outer 

shell (frustule) made of silica. They thrive in freshwater, brackish and marine 

environments and many species have salinity and depth preferences. 

Generally they live as self sufficient individuals but sometimes they form 

chains living as colonies for common benefit (Palmer and Abbott 1986). 

The silica shell is well preserved in freshwater and marine sediments and thus 

diatoms are often ideal tools in environmental reconstruction. Diatoms are 

extremely useful palaeoecological indicators because some species have 

definite ecological requirements and tolerances. Many palaeoecological studies 

using diatom analysis have been concerned with the study of lake sediments. 

They have, for example, been used in studies of lake eutrophication 

(Battarbee 1978), zonation of Late Devensian and Flandrian diatom 

assemblages (Haworth 1976. Pennington 1943, Round 1961), as indicators of 

acid rain (Aimer et al. 1974) and in varve analysis (Simola and Tolonen 1981). 

Since many species are sensitive to changing salinities diatoms have also 

been used for elucidating changes in water quality involving brackish, marine 

and freshwater sediments, and are of use therefore in sea level studies by 

identifying transgressive and regressive sequences. Much of this type of work 

has been done in Scandinavia, for example, in attempting to identify lake 

isolation in areas of active land uplift (eg. Miller and Robertsson 1979). Similar 

studies have been carried out in north-west England (Tooley 1978), the 

Thames Estuary (Devoy 1979). Scotland (Cullingford et al. 1980) and Northern 

Ireland (Battarbee et al. 1982). Diatoms have also been used to demonstrate 

changes in floodplain hydrology as a result of variations in river regime (Brown 

and Barber 1985). 

It was considered that the study of any diatoms preserved in the buried 

channel deposits of the River Erme might provide information on both the 
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estuarine and fluvial sediments. This would be useful in deducing the varying 

environmental conditions at different times during sedimentation in the Erme 

vaWey^for example, in ascertaining v^^ether the sediment was deposited 

during predominantly estuarine or freshwater floodplain conditions, or whether 

flood events interrupted marine / estuarine sequences. The use of diatom 

analysis will also assist the cross-correlation of cores. Studies using diatom 

analysis of most relevance to this research and the various ways of grouping 

species to fomri palaeoenvironmental interpretations will be outlined below. 

Diatoms have been commonly grouped according to depth, salinity, based on 

chloride ion content, and pH preferences. 

5.2 Classification and Identification 

Identification and classification of diatom species is based on the shape and 

features of the diatom frustule. Some of the standard features are shown in 

figure 5.1. The frustule is composed of two valves, one of which is slightly 

larger and overlaps the other (figures 5.1a-b). The size of the frustule ranges 

from 4 microns to 1 millimetre, but in British coastal waters they are generally 

between 40 and 200 microns. They are seen in either girdle view (figure 5.1c) 

or valve view (figure 5.1d). 

Classification of species is based on whether the frustules are circular (centric) 

or elliptical (pennate) in valve view (figure 5.Id); these comprise the two 

orders of diatoms - Centrales and Pennales as recognised by Hendey (1964). 

Further subdivision depends on the nature of the raphe (a longitudinal groove 

down the middle of each valve). The raphe is absent in Centrales but in 

Pennates, lines the centre with an interruption in the middle for the centre 

nodule and terminates at the ends by polar nodules, as illustrated in figure 

5.1e. The Pennates are divided into suborders depending on the nature of the 

raphe; Biraphidineae have a proper raphe on both valves such as Navicula 

spp. and Pinnularia spp. (figure 5.1e). Monoraphldineae have a raphe 

present on the hypovalve and a pseudoraphe on the epivalve, as in 
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FIG 5.1 Diatom terminology (partly after Brazier 1980) 
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Achnanthes spp. (figure 5.If) and Araphldineae have pseudoraphes where 

there is a space in the axial area, for example Fragilaria spp. (figure 5.1g). 

Further classification and identification is based on the structure of the frustule, 

the arrangement of punctae (simple holes, some occluded by sieve 

membranes - thin transverse plates with numerous holes), reticulations 

(areolae) and canals and ribs (costae) on the valve. Arrangement of punctae 

in lines give rise to the striae, sometimes separated by imperforate ridges 

(costae) (Brasier 1980). Some of these characteristics can be seen in the 

diatoms in plates 5.1-5.4 which show some of the main species encountered 

during this study. 

5.3 Ecological Groupinos of Diatoms 

Diatoms can be grouped according to whether they are planktonic. benthic or 

epiphytic. Planktonic diatoms are free floating, benthic taxa and live attached 

to hard substrates or in fine sediments^and epiphytic species live as floating 

masses of aquatic plants or on leaves of aquatic plants. Pennate diatoms 

dominate freshwater planktonic and epiphytic niches, although they also thrive 

in benthic marine habitats, whereas centric diatoms thrive as plankton in 

marine waters. Stream communities are often benthic or epiphytic rather than 

planktonic. 

As diatom communities tend to be interdependent, large changes in the 

frequency of one taxon should not be stressed too much; overall changes in 

the floral assemblage should rather be noted (Tooley 1981). Various workers 

have overcome this by grouping species according to salinity. Hustedt (1937-

39) for example, divided diatoms into five categories on the basis of pH 

tolerances as shown in table 5.1. Such a distribution is especially useful in the 

analysis of lake sediments. 
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PLATE 5.1 

From left to right, starting top left: 

Podosira stelliger (Bailey) Mann 

Coscinodiscus spp. 

Pinnularia mesolepta (Ehrenberg) W. Smith 

Naicuta avenacea De Br6bisson 

Diploneis interrupta (Kutzing) Cleve 

Rhaphoneis amphiceros Ehrenberg 

Cyclotella meneghiniana Kutzing 
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PLATE 5.2 

From left to right, starting top left: 

Diploneis didyma (Ehrenberg) Cleve 

Diploneis ovalis (Hilse) Cleve 

Pinnulaha viridis (Nitzsch) Ehrenberg 

Achnantties microcephala (Kutzing) Grunow 

Navicula peregrina (Ehrenberg) Kutzing 

Opephora martyi H6ribaud 
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PLATE 5.3 

From left to right, starting top left: 

Diploneis smithii (De Br6bisson) W. Smith 

Caloneis formosa (Gregory) Cleve 

Achnanthes brevipes Agardh 

Melosira sulcata (Ehrenberg) Kutzing 

Amphora ovalis Kutzing {var libyca (Ehrenberg) Cleve) 

Gomphonema gracile Ehrenberg 
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PLATE 5.4 

From left to right, starting top left: 

Cymbella ventricosa Kutzing 

Gomphonema constrictum (Ehrenberg) 

Synedra pulchella (Ralfs) Kutzing 

Eunotia pectinalis (Dillwyn) Rabenhorst 

Cocconeis placentula Ehrenberg vareuglypta 

Fragilaria virscens Ralfs 
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CATEGORY 

Alkalibiontic 

Alkaliphilous 

Indifferent 

Acidophitous 

Acidobiontic 

PH 

>7 

c. 7 but with widest distribution 
at >7 

Equal occurrence on both sides. pH=7 

pH about 7 with widest 
distribution at > 7 

<7. with optimum distribution at 
pH=5.5 and under 

T A B L E 5.1 H U S T E D T S (1937-39) DIATOM CATEGORIES BASED ON pH 

Many species of diatoms can also be classified according to their salinity 

preferences; Kolbe (1927) and Hustedt (1957) developed the following 

ecological groupings shown in table 5.2. 

CATEGORY 

Polyhalobian 

Mesohalobian 

Oligohalobian 
(-!- into Halophilic 
and Indifferent) 

Halophobe 

Euryhaline 

ENVIRONMENT 

Marine 

Brackish 

Freshwater 

Freshwater 

Broad Range of Salinity 

SALINITY 

(parts/000) 

> 3 0 

2-30 

< 2 

T A B L E 5.2 CLASSIFICATION OF DIATOMS ACCORDING TO SALINITY 
after Kolbe (1927) and Hustedt (1957) 
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Miller (1964) also identified a similar set of salinity groups of marine, 

euryhaline marine brackish, brackish, halophilous and freshwater shown in 

table 5.3. 

C A T E G O R Y 

Marine 

Euryhatine 
marine-brackish 

Brackish 

Halophilous 

Freshwater 

SALINITY 
parts/000 

30-40%. 

5-40%. 

5-20%. 

<5%. 

<2%. 

COMMENT 

Upper Brackish 
Stages 

Indifferent or 
Halophilous 

T A B L E 5.3 CLASSIFICATION ACCORDING TO SALINITY 
(after Miller 1964) 

Similarly Van der Werff and Huls (1958-74) have identified seven salinity 

groups according to the chloride ion content of water as shown in table 5.4. 

CATEGORY CHLORIDE ION CONTENT (mg/L) 

Marine >17.000 

Marine-Brackish 10.000-17.000 

Brackish-Marine 5.000-10,000 

Brackish 1.000-5.000 

Brackish-Fresh 500-1.000 

Fresh-Brackish 100-500 

Fresh < 100 

T A B L E 5.4 CLASSIFICATION OF DIATOMS 
(after Van der Werff and Huls 1958-74) 
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By summing the proportion of taxa within each halobian category and 

expressing these values as a percentage of the total number of species in the 

sample a measure is obtained of changes in water quality and direction of 

change in a freshening or progressively saline succession. This manner of 

approach has been successfully applied by a number of workers to elucidate 

environmental changes across a range of environments. 

Berglund (1964) used diatom analysis in a study of post glacial shoreline 

displacement in Sweden. His data lec^ divided into six groups varying between 

freshwater and marine. Similarly Miller and Robertsson (1979) produced an 

ecological diagram grouping taxa into nine categories according to the 

halobian system of Kolbe (1927) and Hustedt (1957). This approach was also 

followed by Kjemperud (1981). 

In north-west England, deposits at Lytham (Downholland Moss) have been 

studied by Huddart et ai (1977) and Tooley (1978, 1985c). The latter grouped 

data according to the Marine-Brackish-Freshwater (M-B-F) system of Van der 

Werff and Huls (1958-74); this showed three brackish to strongly brackish tidal 

clay layers separated by phragmites peat layers which formed in times of 

decreasing marine influence. 

Devoy (1979) carried out a biostratigraphical study of interleaved Flandrian 

biogenic and inorganic deposits of the lower Thames estuary. Taxa were 

grouped according to the M-B-F system and the halobian system of Hustedt. 

This latter approach divided the taxa into planktonic. benthic and epiphytic 

species within the five salinity groupings (polyhalobian, mesohalobian. 

oligohalobian halophiie, oligohalobian indifferent and halophobe). 

In Scotland, diatom studies have been used for identifying early land and sea 

level changes in Lower Strathearn (Cullingford et ai 1980), the Firth of Tay 

Carselands (Smith et ai 1985) and Beauly Firth (Haggart 1986). 
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Brown and Barber (1985) used diatom analysis in a study of prehistoric 

vegetation change and the effects on a lowland catchment (Ripple Brook); this 

identified changes in the hydrology of the site, showing perhaps increasing 

floodplain wetness and flooding. 

Thus by using one of the salinity classifications above, it is possible to indicate 

the changing influence of freshwater, brackish and marine conditions in a 

sequence of deposits. 

5.4 MethodolOQv 

In this section the selection and preparation of samples for diatom analysis are 

described. 

5.4.1 Choice of Samples 

Six cores from the valley fill were used for diatom analysis. These were from 

locations SB2. BH6, A3, BH11. RM2 and S2 (see figure 4.3 in chapter 4). The 

cores were chosen to enable material to be sampled from a wide variety of 

locations in the study area, but still be sufficiently close for correlations to be 

made. SB2. BH11, RM2 and S2 are fairly regularly spaced and BH6 and AS 

correlate the main valley with the Sheepham Brook tributary valley. 

In the selection of material from each core, sub-samples were taken from each 

of the major horizons. A maximum of 12 samples were analysed from each 

core at a minimum spacing of 40cm. This was felt to be a representative 

sample for the type of study involved since the sediments were obtained in 

units of every 10 or 20cm and cores of up to 6m are being analysed. In a 

more specific analysis of sea level change samples would be taken at closer 

intervals to identify minor fluctuations. However, in this study we are 

concemed more with broad environmental changes and correlations between 

sites. 
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5.4.2 Preparation of Samples 

Samples were prepared for diatom analysis following the procedures outlined 

in Battarbee (1979). To remove any organic matter, sub-samples of 1-2g were 

heated with 20-30ml of 30% hydrogen peroxide. The samples were 

centrifuged and washed twice with de-ionized filtered water to remove the 

excess hydrogen peroxide. In cases where minerogenic material would have 

prevented good slide preparation, coarse grained material was removed by 

sieving. 

5.4.3 Slide Preparation 

The diatom solutions were diluted to an appropriate concentration with 

deionized filtered water and thoroughly mixed. A small amount of solution was 

dropped onto a cover slip using a disposable pipette and placed on a slide 

warming plate. Once the water had evaporated, the coverslip was mounted 

using Naphrax, a resin of high refractive index (R.l.=1.74). 

5.4.4 Examination and Identification 

The slides were examined using a magnification of x1000 under oil immersion. 

A camera attached to the microscope made rt possible to photograph the 

various species encountered during counting. 

Diatoms were identified using the following floras: Cleve-Euler (1951-55). Van 

der Werff and Huls (1958-74). Hustedt (1930). Bourelly (1981). Hendey 

(1964). Heurk (1896) and Patrick and Reimer (1966). The locations of 

unidentified species were recorded using the mechanical grid locations 

engraved upon the microscope stage in order to relocate them for later 

identification. 
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5.4.5 Counting 

The basic counting unit was a single valve and a complete frustule was 

counted as two; where chains of frustules were intact each valve was counted 

individually. Fragments of diatoms were counted as whole if more than half 

remained or where a characteristic feature was seen, thus ensuring diatoms 

were not counted more than once. A representative section of the slide was 

examined by counting along continuous traverses. Diatoms generally settle out 

with the largest face uppermost, depending on whether the top (valve) or side 

(girdle) of the frustule is larger (Tooley 1981). In the case of the latter 

identification of the species was sometimes difficult and the species was 

assigned to an 'unknown' category. It is more common for species to be 

presented in valve view. 

Battarbee (1979) recommended that a count of between 300 and 600 valves 

per slide was adequate for routine analysis. This was based on the fact that 

there are marked differences in the percentages of species between a count 

of 100 and 200 individuals, whilst there is little change between 400 and 500. 

Palmer and Abbott (1986) recommended a count of 300 valves suitable for a 

general impression of salinity changes, whilst Kjemperud (1981) successfully 

counted 200 valves exclusive of Fragilaria species. On this basis 400 valves 

were counted per slide. However, in some cases, diatoms were not well 

preserved and this limited the total valve counts on a few slides to 300. 200. 

100 or 50 individuals. 

5.4.6 Presentation of Results 

To enable comparisons to be made between the cores and thus derive some 

conclusions as to the nature of the sediment the species encountered were 

grouped according to salinity. A summary diagram of change in salinity with 

depth for each core was produced by assigning the individual taxa to one of 

Van der Werff's salinity groupings (Fresh, Fresh-Brackish, Brackish-Fresh. 

Brackish, Brackish-Marine. Marine-Brackish, Marine). The presentation of this 
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data is based on a similar approach used by Tooley (1978) in a study of the 

diatoms of the Flandrian Lytham deposits. Van der Werff's grouping was used 

as this was the most comprehensive flora in terms of diagrams and ecological 

groupings and most of the taxa identified were present in this flora. Where 

species were not included in the Van der Werff flora, information from other 

floras was used enabling the species to be assigned to one of the broad fresh, 

brackish or marine groups. An eighth 'Unknown' category included those taxa 

not identified and those whose salinity preference is not known. The proportion 

of each taxa within each category was then calculated and plotted as 

frequency versus core depth for each of the halobian categories. These are 

shown in figures 5.2-5.7. The left hand side of the figures indicate the depth in 

the core and the depth relative to Ordnance Datum. The location of each 

sample is indicated by a dot and the number of valves counted for each slide, 

if less than 400. are indicated on the right hand side of the figures. 

Diatom diagrams of frequency versus depth for the predominant taxa at 

various levels within each core are shown in figures 5.8-5.13. These express 

the number of occurrences of a particular species as a percentage of the 

number of valves counted. Species representing 5% or more of the whole 

sample are included in these diagrams, after Eronen etaL (1987). All the 

species counted at each horizon are listed in appendix 2 along with a list of all 

the species identified from the sediments from the Erme and their ecological 

grouping according to Van der Werff and Huls (1954). The numbers of species 

in each halobian category for each sample are also given in appendix 2. 

5.5 Results of Diatom Analvsis 

The combined salinity diagrams will firstly be discussed followed by a 

consideration of the diagrams showing individual taxa. 
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B O R E H O L E S2 - DIATOM DIAGRAM 
% M-B-F TAXA 

• 300 

• 50 

200 

FIG 5.7 
i FRESH 

FRESH-BRACKISH 
BRACKISH-FRESH 

0 BRACKISH 

BRACKISH-MARINE 
MARINE-BRACKISH 
MARINE 
UNKNOWN 

1 0 0 

188 



CD 

QD. 

l 4 4 

2^3 

0 10 20% 
1 1 1 

F I G 5.8 Borehole SB2 - Diatom Diagram 



O 

4* 

QQ 
2 

2-L 

A ft> . ft o.> ftV A> 

0 ' <^ rf>' 

0 10 20% 

F I G 5.9 Borehole A3 - Diatom Diagram 



J" 

O .ft 

I -

5 

CD, 

3 

2 

0 10 20% 

FIG 5.10 Borehole BH6 - Diatom Diagram 



«J3 

s 
*• 

« / / / >^/%-
»• • • t 

y >• • >>* y y 
1 -

QD • mm 

1- 1 

2 

> 

0-
3- • » 

-1- 9 
4 

"2-
5- • • 

m • • 1 a 1 

"3-
6-6- • • • » i 1 mm » 

-4-
-7- 1 • > 1 

» 1 t 
k • 1 

0 10 20% 

FIG 5.11 Borehole BHll - Diatom Diagram 



QD 
0-

1-

1 -

0-
2-

-1-
3-

-2-
4-

•3 
5-

-4-

6-

-5-
7-

0 10 20% 
I I 1 

FIG 5.12 Borehole RM2 Diatom Diagram 



QDl 
0-

2- * 

1-
1- _ 

0- 2-

-1-
3-

2-
4- • D 1 

5-

- • t 

3-

0 10 20% 

FIG 5.13 Borehole S2 - Diatom Diagram 



5.5.1 Combined Salinity Diagrams 

In the sediments recovered from the buried channel of the Erme, most taxa 
are in the fresh (F), fresh-brackish (FB), brackish (B) and marine (M) salinity 
groups, with the brackish-fresh (BF), brackish-marine (BM) and marine-
brackish (MB) groups having noticeably smaller numbers of diatoms 

The results of the diatom analysis will be discussed from north to south, that 

is. SB2, A3, BH6, SB2, RM2 and S2. The sediment recovered from location 

SB2 (see figure 5.2) contained predominantly fresh and fresh-brackish diatoms 

accounting for up to 80% of the total diatom count. Marine and marine-

brackish species account for less than 2% of the total. The main variations in 

the salinity of the sediment occur between 1.6-2.8m depth (3.4- 2.2m OD) and 

between 3.4-4m depth (1.6-1m OD) where the fresh water group of diatoms 

increase as a percentage of the total. At 2.8m depth (2.2m OD) there is a 

small Influx of brackish-fresh diatom species, and below 4m depth (1m OD) 

the brackish-fresh proportion increases to its greatest value in the core. In the 

top 1m of the sediment very few diatom valves were present and the prepared 

slides were covered in very fine sediment. Thus at 0.4m depth it was only 

possible to obtain a count of 50 valves and at 0.9m depth, 200 valves. 

Generally, the sediments become more fresh-brackish towards the top of the 

core. 

The sediment analysed from location A3 (figure 5.3) is lower relative to OD 

than SB2, and spans 2.7m - -1.25m OD. The largest salinity group is the 

fresh-brackish group, which accounts for a maximum of 60% of taxa. The 

fresh and brackish groups account for a maximum of 30%. Below OD, the 

marine salinity groups make up 9% of the total species encountered. Above 

this level the main variations are due to slight changes at between 1.2-2.1m 

depth (1.5-0.6m OD) where the number of brackish diatoms increase. Up to 

10% of taxa could not be identified in the samples from this core. 

In the sediment recovered from BH6 (figure 5.4) between 3.6m OD and -2m 

OD, no main salinity group is dominant as there is a change from fresh and 
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fresh-brackish to marine and brackish species with depth. In the surface 

horizons the fresh-brackish group accounts for more than 50% of the total 

species counted. This decreases to 30% at 1.6m depth (2m OD) and c. 10% 

at Ordnance Datum. Here the marine groups make up 50% of the total and 

the brackish 25%. Below this the marine influence decreases to 30% and the 

brackish to about 15%. As with the upper sediments from SB2, samples 

contained a large amount of very fine material, thus permitting a count of only 

200 individuals. 

The upper sediments recovered from BH11 are almost exclusively of fresh and 

fresh brackish diatoms (see figure 5.5); this decreases to c. 50% between 2.6-

3.6m depth (0 -1 m OD) and 25% between 4.6-6.6m depth (-2"4m OD) 

Correspondingly, the brackish and marine groups increase with the latter 

accounting for the largest proportion of the total count. As in the sediment 

from the upper horizons at SB2 and BH6, a count of only 50 valves was 

possible at the surface because of the interference of fine sediment on the 

slide. Around 4.6m depth (-2m OD) three samples were analysed and counts 

of only 200, 300 and 200 individuals were possible. In these three instances, 

many of the diatom valves were fragmented and considerable quantities of 

fine matter was present. 

Eight slides were prepared from the top 4m of the sediment from RM2 but 

could not be counted because of interference of fine material and the absence 

of diatom valves. A further eight were prepared from the lower 3.2m, and 

because the diatom assemblages showed little difference between samples, 

only four of these were counted. This lower 3m of the core (shown in figure 

5.6) show sediments to be 60% marine decreasing to 45% at the base. Marine 

brackish, fresh brackish and brackish are the next largest categories. These 

are uniform throughout the sequence with the fresh and brackish-fresh 

categories increasing in importance with depth. 

The salinity diagram for sediment from S2 (figure 5.7) shows dramatic shifts 

between fresh and marine diatoms. The main fresh and fresh-brackish peaks 
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occur at c. 0.2m, 2.2m, 3.2m and 5m depth (2m. Om, -1m and -2.8m OD). The 

intennediate groups of brackish-fresh, brackish-marine and marine-brackish 

account for less than 10% of the total throughout the core. The dramatic 

swings at 2.2m and 3.2m depth (Om and -1m OD) may be due to flood 

deposits; the first peak shows an increase in fresh-brackish water species and 

the second fresh water species. The latter is based on a count of only 50 

species which may not therefore be a true representation of the salinity of the 

sample. At this level and where only 200 valves were counted the slides 

showed mainly fragmented fresh water valves and perfect marine forms. This 

may be indicative of flood conditions, although broken valves need not indicate 

long distance transport. 

Some general points can be made concerning the salinity diagrams. SB2 and 

A3 are mainly fresh and brackish with small variations through the sediment 

sequence. BH11 and BH6 are predominately fresh-brackish at the surface and 

show an increase in marine species with depth followed by a return to a more 

fresh-brackish environment. At the base of BH11. marine species once again 

increase. S2 has mainly marine species but with some fluvial-brackish 

interruptions to the sequence. The increase in marine taxa at -1.5m OD in S2 

may be equivalent to that in BH11 at approximately the same level and to BH6 

at Om OD. The fluvial interruptions in S2 may possibly be equivalent to the 

fluvial conditions at depth in BH6 and BH11. There is little variation in the 3m 

of sediment analysed from RM2 and the results show a slight increase in 

marine sediments upwards. 

There will obviously be regional variations in both the timing and effect of any 

changing conditions at different locations which must be considered when 

comparing the results from cores. A detailed look at the actual species 

identified within the deposits will provide more information on the environments 

of deposition of sediment in the buried channel. 
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5.5.2 Individual Species 

The actual diatom species identified in the sediments from the Erme's channel 

will be discussed in this section. 

Achnanthes microcephala is found in SB2 and A3 and at one horizon in S2. 

The SB2 and A3 units are probably of equivalent phases. The peak in S2 is 

most likely due to sudden flood conditions rather than a long term fluvial 

environment. Patrick and Reimer (1966) considered the species to be 

indicative of eutrophic conditions. Other Achnanthes species are present in all 

cores except SB2; the presence of Alanceolata in A3 suggests a fluvial-

brackish environment, although it occurs in a wide range of ecological 

conditions especially in well aerated flowing waters (Patrick and Reimer 1966). 

The presence of A. haukiana in BH6, S2 and at depth in BH11 implies slightly 

brackish conditions. 

Achnanthes delicatula and Opephora pacifica are both episammic (living on 

sand grains), and indicate an intertida! or sub-tidal zone on sand flats and 

beaches (Vos and de Wolf 1988). The former is present in BH6 and BH11, 

and the latter in RM2. 

Cocconeis placentula var euglypta is quite common in the samples from this 

study area and is an example of a species that has a broad salinity tolerance 

of fresh and brackish water (Vos and de Wolf 1988). It is present mainly in 

samples from SB2 and A3 and to a lesser extent in BH6 and BH11 reflecting 

the fluvial brackish nature of the cores. It generally peaks in the upper 

horizons of the cores. 

Cocconeis scutellum indicates brackish lagoons and ditches; it is present in 

RM2 and S2. 
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The Cymbella group of species. C. ventricosa and Cymbella sinuata are most 

prevalent in SB2 and A3. with lesser numbers in BH6, BH11 and Rf^2 

suggesting a fresh-brackish environment. 

The presence of Dipioneis interrupta, D. ovalis, Navicula cincta and Navicula 

rotaena in sediments from BH6, A3 and S2 suggest a large salinity range and 

salt marsh environment. D. ovalis var oblongella is indicative of a drying out 

area as the species is aerophilous (Haworth 1976), it can be found living in 

clayey sediments in an intertidal zone such as a mudflat or creek environment 

(Vos and de Wolf 1988). Here it is seen in samples from S2 and BH6. 

Dipioneis didyma and Caloneis fomosa were also found to occupy the same 

environment by Vos and de Wolf. The former is present in BH11 and the latter 

in S2. 

Eunotia spp. tend to occur in acidic cool waters. £ pectinalis was the most 

common from the Erme sediments although E. diodon and E. exigua amongst 

others, indicative of bogs, springs and small streams were present in much 

smaller numbers. 

The Fragilaria group of species are widely distributed in fresh water; they are 

indicative of freshwater lagoons, lakes, pools and ditches. Fragilaria 

construens occurs most frequently in SB2, at the surface in BH6 and BH11 

and at depth in A3. Fragilaria virescens occurs to a lesser extent in SB2 and 

F. virescens var oblongella and F. breviastrata with depth in A3. 

Hantzschia amphyioxys (in sediment from 1.5m depth in BH11) suggest wet 

soils, flood banks and salt marsh environments (Vos and de Wolf 1988). 

Haworth (1976) considered H. amphyioxys \o indicate solifluction when found 

in Late Glacial deposits, and Brown and Barber (1985) suggested their 

presence indicated soil erosion. 

Melosira granulata occurs throughout SB2 and BH11 and at the surface 

horizons in BH6; it is at a peak at 1.8m in SB2, 0.8m in BH6 and 1.5m in 
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BH11, rt is planktonic and indicative of fluvial conditions in not too shallow 

freshwater (Vos and de Wolf 1988). 

Melosira sulcata was frequently encountered, and present as a large 

percentage of the total in S2, BH11, RM2 and BH6. It also occurred as a small 

percentage near the base of the sediment in A3. It is found in marine-littoral 

environments, in particular in tidal inlets and large tidal channels (Vos and de 

Wolf 1988). If there is a tidal gradient between BH6 and BH11, then the peak 

of Melosira sulcata at around Om OD in BH6 may be equivalent to that at 

-1.7m OD in BH11 and -1.7m in S2. The top units of S2. obviously represent a 

more recent phase of sedimentation within a salt marsh environment. The low 

numbers in A3. may suggest a slight marine influence at the same time as in 

BH6. An absence in SB2 suggests this was too high up the valley to have 

been affected by a previous tidal environment on a large scale. Hendey (1964) 

noted that M. sulcata tends to be washed ashore during stomris. Vos and de 

Wolf (1988) grouped Melosira westii\nXo the same ecological category as M. 

sulcata in a study of Holocene coastal deposits in the Netherlands. It occurs in 

small numbers in BH11 and S2. Rhaphoneis amphiceros and R, surrirella 

were also considered to be part of the same group; these occur in many of the 

samples analysed but never more than 5% of the total. 

Navicula pereghna, N. peregrina var miriorand N. aver^acea are most visible 

in A3 and BH6 and imply a brackish environment. They thrive in sandy 

sediments in an intertidal zone (Vos and de Wolf 1988). Navicula palpebralis 

and N. forcipata are considered to occupy similar ecological niches by Vos 

and de Wolf; N. palpebralis occurs in brackish to marine environments (Patrick 

and Reimer 1966). These two species are seen in many of the samples, but 

form less than 5% of the total. 

Navicula pusilla, present in BH6 at c. 2m depth, suggests fresh or slightly 

brackish water. 
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Opephora martyi, present in RM2. indicates lagoons, ditches and abandoned 

meanders (Vos and de Wolf 1988) such as shallow freshwater rivers and 

lakes (Patrick and Reimer 1966). Gomphonema angustatum and Tabellaria 

fenestrata occur in similar environments and are seen in SB2 and BH11 

respectively. 

Pinnularia borealis (in surface sediments from BH6) indicates cool low mineral 

environments and is often found in rivers (Patrick and Reimer 1966). 

Synedra pulchella occurs in fresh water or slightly brackish conditions; it forms 

a large percentage of the total in SB2. A3. and to a lesser extent in BH11 and 

BH6. 

The distribution of these species in the cores / 5 discussed here. 

SB2 

The diatom diagram in figure 5.8 shows that the upper units are dominated by 

Cocconeis placentula vareuglypta and Fragilaria construen$\ the assemblage 

indicates a freshwater environment with some brackish influence and some 

shallow ditches and ponds. Below 1m depth, Achnanthes microcephala, 

Melosira granulata and Gomphonema parvulum are present and at about 1.7m 

depth Melosira granulata becomes dominant, replaced at 2.1m by Achnanthes 

microcephala. These species suggest a deeper freshwater environment with a 

less brackish component than above. Below 3.5m, Achnanthes microcephala, 

Synedra pulchella and Cymbella ventricosa become dominant and indicate an 

increase in brackish conditions. 

A3 

Cocconeis placentula var euglypta and Navicula avenacea are the most 

prevalent species in this core (figure 5.9). At the surface. Synedra pulchella, 

Eunotia pectinalis, Gomphonema angustatum, Navicula avenacea and 

Achnanthes lanceolate are the dominant species. The first three of these 

decrease with depth, allowing Cymbella sinuata and Cocconeis placentula var 
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euglypta to increase to around 1.3m depth. This assemblage generally 

suggests a fresh, slightly brackish environment with some shallow areas of 

ponds and ditches and some cool acidic water. Below 1.3m, the increase of 

Achnanthes microcephala and Navicula avenacea suggest a more eutrophic 

and also more intertidal environment. From 2.8m, Synedra pulchella, Fragilaria 

breviastrata, Fragilaria construens var venter, Fragilaria virescens var 

oblongella and Navicula rotaena are the main species, with Navicula avenacea 

also increasing with depth. These suggest a more freshwater environment, 

with some shallow ponds or ditches but also some salt marsh. The 

introduction of Melosira sulcata implies a limited intertidal influence. 

BH6 

A greater variety and number of species are found in the sediments from this 

core (see figure 5.10), reflecting the mixture of marine, estuarine and fluvial 

species. At the surface, Cocconeis placentula var euglypta with lesser 

numbers of Eunotia pectinalis, Pinnularia spp. and Fragilaria construens are 

present indicating a cool freshwater environment with some shallow pools or 

ditches. At 0.85m depth, the presence of Melosira granulate implies deeper 

fluvial conditions and between 1.5-2.3m depth Melosira sulcata, Diploneis 

ovalis var oblongella, Navicula peregrine, N peregrine var minor aryd Navicula 

pusilla suggest a more intertidal influence with sand or mudflats and some salt 

marsh. Below this. Melosira sulcata is dominant with lesser numbers of 

Achnanthes hauckiana, Achnanthes delicatula, Navicula peregrine, Navicula 

forcipata and Opephora martyi. These imply a more widespread intertidal 

channel with sand flats, the increase of Cyclotella antique and Melosira 

granulate at the base suggest an increasing freshwater component. 

BH11 

Melosira granulate, Hantzschia amphioxys v. capitate, Nitzschia palea and 

Cocconeis placentule var euglypta are present in the upper sediments of 

BH11 (see figure 5.11) indicating a freshwater, shallow, floodbank environment 

of deposition, the occurrence of Cymbella ventricosa, Fragilaria construens 

and Synedra pulchella between 1.5 and 2m suggests slightly deeper 
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conditions with a brackish influence. Between 2 and 4m depth, a mixed fluvial 

intertidal environment is indicated by the presence of Melosira granulata and 

M. sulcata. From around 4m depth, Melosira sulcata tends to dominate much 

of the remaining profile. Dipioneis stroemiand Melosira granulata between 4-

5.5m depth indicate mixed fluvial and tidal creek conditions. Below 5.5m 

Achnanthes delicatula and Achnanthes hauckiana suggest more widespread 

intertidal sand flats. 

RM2 

Although sixteen samples were prepared for diatom analysis from RM2, only 

those from below 4m depth were suitable for counting. The resultant 

distribution is shown in figure 5.12. Melosira sulcata dominates the distribution 

with lesser numbers of Cocconeis scutellum, Navicula forcipata and Opephora 

martyi. This assemblage implies a mixed intertidal environment with sand flats, 

tidal inlets and shallow ditches or lagoons. 

S2 

The diatom diagram for sediments from S2 is displayed in figure 5.13 and 

shows dramatic shifts in the assemblages through the core. At the surface 

Nitzschia pa/ea, Navicula cincta, Caloneis formosa and Melosira sulcata are 

present and indicate tidal creeks with sand and mud flats. M. sulcata 

dominates the distribution at 1.2m depth indicating an increasing intertidal 

environment. The sudden appearance of Navicula cincta, Caloneis formosa 

and Nitzschia pa/ea at 2.3m depth indicates deposition in a mudflat and salt 

marsh environment. Between 2.5-2.9m slightly brackish-freshwater conditions 

are indicated by the presence of Achnanthes hauckiana and Cyclotella 

antiqua. At 3.1m Achnanthes microcephala and Cocconeis scutellum indicate 

more fluvial eutrophic and ditch/lagoon conditions and at 3.8m depth, Melosira 

sulcata and Melosira wesW suggest a massive influx of marine water perhaps 

as a storm event. They are replaced around 4.4m by Navicula greveiisWW 

indicating marine.conditions, but at 5m depth M. sulcata once again increases 

along with Achnanthes hauckiana to indicate mixed fluvial and intertidal 

waters. 
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5.6 Discussion 

The diatom species found in the sediments from the Erme indicate a range of 

environments from fresh water to salt marsh to intertidal mud and sand flats. It 

is likely that these environments co-existed and that the diatom analysis 

generally implies a mixed fluvial estuarine environment with occasional influxes 

of marine water. Since there are a number of factors \Nh\ch affect diatom 

growth and distribution apart from salinity, the presence of some of the 

species encountered may be due to very localized conditions; these are 

considered here. 

The life span of diatoms is variable: a dominant living population can be 

replaced by another bloom during a single season, thus responding rapidly to 

changing environmental conditions. However, continuous mixing of sediment, 

helps to reduce the importance of blooms that would otherwise bias results 

(Palmer and Abbott 1986). In addition, some species tend to live in mud and 

migrate up and down the top few centimetres, and can thus distort sampling if 

undertaken at a fine interval. 

Temperature, light and nutrients in water determine which species develop 

most abundantly. For example, cooler more consistent temperatures at the 

headwaters of streams may be preferable to some species rather than 

downstream where currents are stronger and temperatures more variable. 

Light is determined by the depth of water, surrounding vegetation and 

suspended sediment. Thus flood conditions with higher sediment yield affect 

populations. Large beds of floating aquatic species develop if stream waters 

are rich in nutrients. Some species also tend to have a particular preference 

for a certain sediment type such as sand or silt. 

In a fluvial environment large meanders and oxbow lakes encourage the 

development of diatom floras. Large tidal flats exposed at low tide are good for 

preservation of floras as withdrawal of water may allow oxidation or rapid 

sedimentation (Haggart 1986). Planktonic flora thrive in open parts of an 
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estuary, and show a mixture of brackish and marine species. At shallower 

parts, benthic species occur. Haggart (1986) suggests that a large mixture of 

fluvial, brackish and marine species represents an environment high in the 

tidal range. BH6 and BH11 indeed have a large mixture of fresh, brackish and 

marine taxa. An indication of the diversity of the taxa in samples from the 

River Erme sediments is given in table 5.5. 

C O R E >5% >2.5% All 

SB2 14 24 102 
A3 15 40 144 
BH6 25 44 138 
BH11 22 36 143 
RM2 5 11 87 
S2 16 29 82 

T A B L E 5.5 NUMBER OF DIFFERENT DIATOM S P E C I E S THAT 
ACCOUNT FOR MORE THAN 5%, 2.5% AND A L L OF THE 
TOTAL COUNT 

This shows that 138 taxa were identified from sediments in core BH6 and 25 

of these account for 5% or more of any one sample from the core. Thus when 

comparing the number of species that make up 5% or more of the total 

diatoms counted, it can be seen that BH6 and BH11 are the most diverse. 

Cores A3. BH6 and BH11 have the most diverse diatom assemblage when all 

species identified in the core are considered. About 40 extra species are found 

in these three cores compared to SB2. RM2 and S2 showing that they are 

more diverse and thus have a greater mixture of sediments. 

Palmer and Abbott (1986) also considered that all the halobian classes should 

be anticipated in coastal sediments where changes of sea level are most 

effectively preserved. All the cores illustrate this, in particular BH11 and BH6. 

and even in the more freshwater cores of A3 and SB2. some brackish and 

marine species are present. 
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A major problem in palaeoecological research of diatoms in the tidal 

environment is the distinction between diatoms that have lived at their place of 

deposition (autochthonous) and those transported from elsewhere by water or 

wind (ailochthonous) (Vos and de Wolf 1988). One method of differentiating 

the two populations has been to look at the degree of fragmentation of valves 

to indicate long distance transport. As Vos and de Wolf pointed out however, 

compaction and diagenesis also damage valves, and pennates tend to break 

more easily then centrales. An example is provided by marine and brackish 

taxa being carried far up into estuaries increasing the ailochthonous population 

(Beyens and Denys 1982). Some of the samples from S2 had many 

fragmented pennates and perfect centrales, such as Melosira sulcata, and 

may represent sediments incorporating some long distance fluvial units that 

have been broken during transport. The brackish and marine species encoun

tered from sediments in BH6 were also well preserved, and may also indicate 

some transport by marine waters upstream. The inclusion of ailochthonous 

valves may explain some of the conflicts seen in the diatom diagrams where 

freshwater and marine intertidal species occur together. 

The top metre of sediment recovered from SB2, BH11, BH6, and the top 4m 

of sediment from RM2 was difficult to count because of fragmented or absent 

diatom valves and lots of very fine sediment. This fragmentation may be due 

to damage by compaction, soil forming processes and agricultural practices. 

An important question is the relationship of diatoms to sea level. Eronen et a/. 

(1987) stated that a rich marine-brackish diatom flora can live below the limit 

of the level of regular highest tide; this is the approximate upper boundary of 

frequent salt water influence. Thus diatoms can be indicative of the upper limit 

of the normal tidal range and the brackish-marine sediments deposited at 

location BH6 may indicate this. Eronen et al. pointed out that exhaustive 

studies have not been carried out to define the vertical distribution of diatoms , 

in present day tidal marshes, hence more specific interpretations of these 

diatom results for former conditions in the Erme estuary await further 

research. 
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5.7 Conclusions 

The diatom analysis undertaken here has provided a useful study of the 

conditions under which sediment was deposited in the palaeochannel of the 

Erme. Overall the diatom analysis indicates more estuarine and marine 

conditions in the lower part of the study area with an increasing fluvial 

environment through time. The combined salinity diagrams show that the 

surface units in BH11. SB2 and BH6 were deposited during fresh-brackish 

water conditions. With depth BH6 and BH11 have more estuarine units. On 

the whole BH6. BH11 and S2 display similar trends with stronger local 

influences in S2. SB2 and A3 show predominantly fresh and fresh-brackish 

environments. 

The main difficulty in comparing particular species between sites is that most 

of the taxa that account for a high proportion of the sample at one site, do not 

tend to occur as such a large percentage elsewhere and as already 

mentioned, since diatom populations are often very diverse, it is unwise to 

make palaeoenvironmental interpretations on the basis of one taxon alone 

(Palmer and Abbott 1986). The individual diatom diagrams show that a 

number of species of the same ecological groupings increase and decrease 

together. Environments of deposition range between marine tidal inlets, salt 

marsh, fresh-brackish and freshwater rivers and wet soils and floodbanks. The 

relationship between this study and the other analyses will be further 

considered in chapter 8. 
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CHAPTER 6 MOLLUSCAN FAUNA OF THE BURIED CHANNEL 
DEPOSITS 

6.1 Introduction 

The study of moiluscan shells preserved in sediments can be used to indicate 

various environmental conditions such as water quality and depth at the time 

of deposition. Hence, if a sufficient number of species occur at different levels 

within a sedimentary sequence their study could be used to infer the 

depositional history, and in particular, whether they represent freshwater, tidal 

or marine sedimentation. More commonly, molluscs have been used in 

palaeoenvironmentai studies of land deposits particularly in the chalk regions 

of southern and eastern England where they tend to be well preserved in 

solifluction sediments (Kerney 1963). However, studies by West and Sparks 

(1960). Anderson etal. (1970), Gilbertson and Hawkins (1978) and Tooley 

(1981) have been concerned with analysis of marine and intertidal molluscs 

and are therefore more relevant to this research. 

During initial examination of the sediments a number of the cores obtained 

from the palaeo-channel of the River Erme were found to have fragments of 

mollusc shells. These sediments were used for a more detailed study in the 

hope that they would shed some light on the environment of deposition and 

enable cross-correlation between the cores. 

6.2 Methodoloqv 

6.2.1 Extraction of Moiluscan Shell Fraoments from the Samples 

The cores with shell fragments present that were selected for further study are 

from the southern part of the Erme valley at locations BH11, BH12, RM2, RM1 

and S2. Cores SI and RM3 also have mollusc fragments but those selected 

are considered to cover the area under study sufficiently. The highest horizon 

containing shell fragments in each core was identified and sub-samples were 

taken at intervals below this level. The number of sub-samples was 
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determined by the original sampling interval (see Chapter 4) used in collecting 

sediment in the field; this was at 20cm intervals at sites BH11 and BH12. and 

every 10cm at sites RM1, RM2 and S2. 

The samples were oven-dried at 70 degrees centigrade and then weighed. 

(Temperatures of greater than 100 degrees centigrade would lead to 

shattering of the shells (Gilbertson and Hawkins 1974)). The samples were 

then immersed in a solution of water and washing up liquid, which acts as an 

effective dispersant. Each sample was sieved through a 0.5mm mesh and 

dried. The molluscan shells and fragments were separated and sorted into 

different species from the remaining >0.5mm fraction using a low powered 

binocular microscope and a moistened paintbrush. 

6.2.2 Counting of Species. Identification and Presentation of Results 

In all cases, there were far more shell fragments than whole shells preserved. 

A standard method was adopted to count the fragments and whole shells; in 

the case of bivalves, individuals were counted when the greater part of the 

hinge was present and the total number was halved. Whole gastropods were 

counted and where shells were only partly preserved, the number of apexes or 

apertures were recorded. In all cases the total number of individuals did not 

reflect the large number of fragments present. The total number of individuals 

of each species has been expressed as a percentage of the total weight of 

each sample to enable comparisons between different horizons. An average 

weight of sample for each core was used for the adjustment, generally around 

lOOg. Gilbertson and Hawkins (1974) considered that a sample of 30 

individuals represents the minimum sized sample to be statistically reliable. In 

most cases this has been satisfied, the exception being those samples from 

BH11 and some from BH12. 

Molluscan species present were initially identified with the help of Dr. David 

Gilbertson of the University of Sheffield and thereafter using standard 

identification keys (Beedham 1972. Tebble 1976). The most commonly 
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occurring species are shown in plates 6.1-6.5. Some of the species could not 

be positively identified and if present in sufficient quantities they have been 

labelled with a letter. Juvenile forms of species made the identification of some 

of these difficult. The large amount of data from this analysis was stored on a 

mainframe computer using MINITAB. a statistical package designed to 

manipulate a large volume of data. A graphics package (TELL-A-GRAF) was 

used to produce graphic representations of some of the data. The number of 

individuals counted for each core are given in appendix 3. 

Molluscan diagrams have been produced for boreholes BH12. RM2, RM1 and 

S2. and are displayed as variance in absolute number of species (adjusted 

according to weight) with depth relative to Ordnance Datum. These are shown 

in figures 6.1-6.4. Results from BH11 have not been plotted as so few 

individuals were counted in the samples analysed. 

6.3 Results 

The main mollusc species present in the buried channel deposits of the Ernie 

are Macoma balthica, Cardium edule, Hydrobia ventrosa, Hydrobia ulvae and 

Rissoa parva. Their environmental significance is discussed below. 

Macoma balthica lives in thick mud, muddy sand and muddy gravel in British 

waters from the upper regions of the tidal zone to low water. It is tolerant of 

low salinities and can be found burrowing in mud in shallow brackish water. 

Cerastoderma edule (Linnaeus) (=Cardium edule) appears to require a tidal 

environment (Russell 1971) and is therefore a significant environmental 

indicator. Its habitat is the middle to lower shore, burrowing in mud, sand or 

gravel in estuaries. 

Rissoa parva lives on the extreme lower shore in shallow water and is usually 

associated with coralline seaweeds and is found under stones. 
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PLATE 6.1 

The top 3 rows show shells and fragments of 

Macoma balthica and the bottom fragments 

belong to Cardium edule. 

211 





PLATE 6,2 

Hydrobia ulvae (Pennant) is shown in the top 

two rows and Hydrobia ventrosa (Montagu) in 

the bottom two. 
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PLATE 6.3 

The top two rows show Rissoa parva and the 

bottom two rows some unidentified juvenile 

species. 
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PLATE 6.4 

The three largest fragments belong to Littorina 

saxatilis and the bottom 3 shells are Turbonilla 

spp. 
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PLATE 6.5 

The top two lines show a shell with pink and 

white markings of Gibberula spp. and the 

bottom shells are some unidentified juvenile 

species. 
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Hydrobia ventrosa (Montagu) and Hydrobia ulvae (Pennant) are characteristic 

brackish water species. Although they appear somewhat similar they can be 

separated by their characteristic spire and whorl shape. H. ulvae is considered 

to be the more tolerant of saline conditions whilst H. ventrosa is associated 

with the less saline parts of the intertidal zones (Gilbertson and Hawkins 

1978). 

All the species present in the upper sediments of the buried channel of the 

River Erme indicate estuarine water temperatures not very different from 

today. 

Mollusc shells are distributed throughout core BH12, (see figure 6.1) although 

they are in insufficient numbers to form definite comparisons with the other 

cores. The two Hydrobia and M. balthica are the most common species 

present, and occur in largest numbers between 0.5-2m depth in the core. 

In RM2, (figures 6.2a and b) the peak distributions of most species occur 

between -2.5 to -3m OD, and at -4.5m OD. Rissoa parva, Cardium edule, M. 

balthica and the Hydrobia spp. are the most prevalent and changes in 

population numbers are consistent between the 5 species. 

Rissoa parva and Macoma balthica are the most common species in 

sediments from RM1 (figure 6.3) with peak distributions at -4.5m and -5.5m 

OD. A number of interruptions to the sequence occur, the largest at -5m and 

-3m OD. Cardium edule, the Hydrobia spp. and species A occur in smaller 

numbers but peaks and troughs coincide with the Macoma and Rissoa 

distributions. 

In the sediments from S2 (figures 6.4a and b). Hydrobia ventrosa and 

Macoma balthica show peak distributions between 1 and Om OD, and 

Hydrobia ulvae, M. balthica and Rissoa parva between -2 and -3m OD. 

Smaller peaks occur at c. -1.5m OD. The other mollusc species present 

generally go along with these trends. There are two main breaks in the 
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depositionary sequence at -1m OD and -2.2m OD, corresponding to a change 

in lithology to a coarse gravel unit. 

In a study of marine interglacial sands and gravels at Kenn, Somerset, 

Gilbertson and Hawkins (1978) identified that a marine transgression had 

occurred by the changing ratios of H. ulvae and H. ventrosa with depth. As 

mentioned above H. ventrosa is the less saline of the two species. This 

technique was developed from the work of West and Sparks (1960) in a study 

of the marine Ipswichian interglacial deposits at Selsey. Sussex. As a large 

number of Hydrobia species were present in the Erme deposits it seemed 

worthwhile to apply the technique here and hence the distribution of the two 

brackish water species Hydrobia ulvae and Hydrobia ventrosa from all the 

cores are displayed in figure 6.5. 

The expected distribution of Hydrobia ulvae and Hydrobia ventrosa with 

respect to water level is clearly seen in core S2 as H. ventrosa occurs 

between 1m and -0.5m OD in peak numbers, whilst H. ulvae is most abundant 

at -3m OD. At -1m OD and -2.3m OD a change in sediment type from silts to 

coarse gravel corresponds with a decrease in the total number of individuals 

at these levels. Core RM1 has fewer Hydrobia individuals with a total absence 

above -2m OD coinciding with coarser sandy gravels. The numbers of the two 

species in RM1 are near equal and there are no depth distinctions between 

them. Three small peaks in their numbers occur at c. -2.1m, -4.5m and -5.5m 

OD. In RM2 both species peak at between -2 and -3m OD, with H. ulvae 

having slightly greater numbers; this corresponds to the similar peak in 82 at 

-3m. Below about -4m OD most of the Hydrobia species present are Hydrobia 

ulvae. Cores BH11 and BH12 further upstream have fewer occurrences of the 

two species and there is no depth preference between them. In core BH12 

most of the individuals are found at -0.3m to -2.5m OD and in core BH11 

between -3.4 to -4m OD. The relationship found by Gilbertson and Hawkins 

(1978) is therefore seen only in core S2 and maybe to a limited extent in RM2 

where towards the base of this core only Hydrobia ulvae is present. 
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6.4 Discussion 

The cores can be considered comparable in terms of the main peaks and 
troughs in species distribution and numbers of individuals. This is evidenced in 
the Hydrobia diagram (Figure 6.5). v /̂here S2, RM1 and RM2 peak between -2 
and -3m OD and RM1 and RM2 have a lesser increase between -4 and -5m 
OD. The main breaks in the sedimentary sequence appear to be at levels of c. 
-5m, -3.7m, -2m and -1m OD and these are recognised to a greater or lesser 
extent between cores. 

On the whole the molluscan shells occur in silts or fine sands. The breaks in 

the mollusc deposition sequence correspond to changes in lithology; where 

the sediment changes to a coarser sandy gravel few molluscan remains are 

found. These interruptions may be due to/fluvial-inspired)floods. The largest 

break is seen in S2 at -1m, but these gravels may also correspond with the 

highest coarse sand and gravel horizons of the cores on the reclaimed marsh 

(RM1-4). Other reasons for the abrupt changes must also be considered. For 

example, the River Erme may have reworked previous sediment layers to give 

the breaks in deposition as a result of lateral migration across the floodplain. 

Alternatively the surviving sediment may have resulted from erosional 

episodes leaving a long time span between various horizons. Similarly, storm 

surges and high tides may also have meant interruptions to the deposition 

sequence. It is likely that a combination of the above have influenced 

sediment deposition in this part of the study area. 

A progression from more marine species to more brackish species with a 

decrease in depth OD can be seen in some of the cores. In S2. Rissoa parva, 

which tends to be found on the lower shore, Macoma balthica and Hydrobia 

ulvae all are present between -2 and -3m OD whilst the more brackish 

Hydrobia ventrosa is dominant between 1 and Om OD. In RM1 Macoma 

baltliica and Rissoa parva both peak around -4.5m and -5.5m OD, but both 

the Hydrobia spp. are more common between -2 and -3m OD. Similarly in 

RM2, Rissoa parva is more abundant at a lower level than Macoma balthica 
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v^^ich in turn peaks at a slightly lower level than the Hydrobia spp. This may 

indicate a decrease in water salinity leading to more brackish conditions. 

As S2 is the only core in which shells occur above Ordnance Datum (cores 

RM1-3 are lower in level and protected by a dyke) they are probably of fairly 

recent origin and represent current salt marsh conditions today. This most 

recent phase of deposition in S2 in which Hydrobia ventrosa is the dominant 

species is absent from the other cores; thus suggesting that conditions today 

are more brackish than when the lower sediments containing H. ulvae were 

deposited. In RM1 and RM2. the H. ulvae deposits are succeeded by fluvial 

gravels suggesting changes in the fluvial regimes of the river or a hiatus in the 

depositional sequence. If the land around the RM cores was protected after 

these gravelly units were deposited it would have been impossible for salt 

marsh conditions to redevelop. 

Core S2 shows the differentiation of Hydrobia with depth, and it can be 

suggested that the sediments from RM2 are equivalent to those in S2 since 

both show a peak of Hydrobia ulvae at -3m OD. Below this depth in RM2. 

Hydrobia ulvae is the main species present and thus it can be argued that 

some differentiation with depth is also seen here. If the sediment sequences 

from RM2 and S2 are combined, a more complete picture of the increase in 

brackish conditions with time is seen. 

In cores BH12 and BH11, Hydrobia spp. were not present in sufficient 

numbers to provide a representative sample. The low numbers of molluscan 

shells found in BH12 and BH11 make it hard to be confident about the results 

from these cores. In BH12, the molluscan remains do not correspond to any of 

the other cores, but as BH12 is some distance upstream of the salt marsh this 

may be due to tidal differences at the different locations. A period of higher 

tides may have swept these shells and shell fragments as far as coring site 

BH12, or they may have been deposited after the reclaimed area of land was 

protected by the embankment. In these cases it is difficult to identify which 

shells were deposited in situ and which are derived. 
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Very few of the shells or fragments extracted from the cores have signs of 

being water worn and in the case of the Macoma fragments the edges are 

sharp and the external surfaces do not show signs of wear. It is a possibility of 

course that the drilling procedure may have fractured some shells. 

However, the very existence of molluscan shells at various horizons within 

these cores suggests that at one time conditions were of a more estuarine 

nature than today and that sea level was relatively lower than at present. 

Anderson etaL (1970) reported that in Morecambe Bay maximum densities of 

Macoma balthica and Hydrobia ulvae occur on a fine sand to silty substrate 

from lower shore levels to just above Mean High Water of Neap Tides (in 

Morecambe Bay 1.8m-2.7m OD). As the greatest depth from which these have 

been recovered is -6m OD it could be inferred that the sediments recovered 

from the Erme valley could have been deposited when sea level was some 7-

9m lower than today; a more precise figure is dependent on knowledge of the 

former tidal range present in an old Erme channel. The dominance of Macoma 

balthica in some samples would suggest that the sands represent estuarine 

conditions with some nearshore sandbanks. Presence of Hydrobia species 

implies a slightly more brackish habitat and perhaps an environment marginal 

to the main river channel. 

6.5 Conclusions 

The results of the molluscan analysis from sites in the lower part of the Erme 

valley study area generally show a change to more brackish and marine 

conditions at lower horizons within the cores. Interruptions to the molluscan 

record may be due to flood events or storm surges, but these interruptions 

generally coincide with coarser sand and gravel sediment horizons and can be 

correlated between the sites investigated. All the molluscs present can be 

found as living or dead shells in intertidal zones of a typical muddy and sandy 

estuary in South West England today; their distribution in the cores to at least 

-6m OD would suggest lower sea levels of perhaps 7-9m lower than present. 
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This technique has served the purpose of allowing some correlation between 

cores from the lower part of the study area and has shown that the Erme once 

had more extensive estuarine conditions than today. 
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CHAPTER 7 EVIDENCE OF CHANGES IN HISTORIC TIME IN THE ERME 
VALLEY 

7.1 Introduction 

In recent years there has been a growing awareness that many of the physical 

features and associated sediments examined in various environments may 

have resulted from human impact upon the landscape, rather than simply 

natural processes. This together with a study of historical documentation and 

dating of deposits has led to a greater understanding of sedimentary 

sequences laid down in the more recent past and in particular the latter part of 

the Flandrian. Work of particular relevance here in relation to sedimentation in 

river valleys is that of Brown (1982, 1983), Brown and Barber (1985) and 

Macklin et ai (1985). These authors have identified the impact of human 

activity on river floodplain formation in the Late Flandrian and in particular the 

effect of forest clearance and mining activities in the upper catchments of the 

rivers under investigation. 

We have already seen in Chapter 3 that the upper Erme catchment above 

Ivybridge was extensively cleared of vegetation during the Late Flandrian. In 

this chapter historical records of tin mining on Dartmoor will be reviewed with 

particular reference to the upper Erme catchment, upstream of Ivybridge. Tin 

deposits may have been mined by the same population that was responsible 

for forest clearance, as well as at a later stage when the moor was relatively 

deforested. It is believed that some of the sediments examined from the lower 

Erme valley may have been derived from these tin mining phases. The effect 

of tin mining and forest clearance may have affected the river channel position 

within its floodplain causing general valley floor changes and may thus be 

recorded in documentary sources. These changes will be examined using the 

old tithe maps of the local parishes and records of changes in the lower Erme 

valley. This will be followed by a discussion of the results of C-14 dating of 

some of the organic sediments in the cores retrieved from the buried channel 

of the River Erme. Dating of samples from the cores will be useful to 

demonstrate how the sediments relate to the historic timescale and human 
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activities in the Erme catchment. The findings of this chapter will be discussed 

in relation to the sediments discovered in the channel of the Erme in chapter 

8. 

7.2 Mining Activities on the Moor 

7.2.1 Introduction 

Many of the river valleys in the granitic areas of south-west England have 

been exploited for tin, both in prehistoric times and especially in the tin boom 

years between the 15th QwllSth centuries. The practices employed in 

extracting tin from granitic rocks often affected the river regimes by 

disturbance of valley bottom and valley side slope sediments, and even the 

bedrock. 

The tin deposits of Dartmoor were formed from solutions which accompanied 

the gases and fluids of the granite as it intruded into the surrounding Devonian 

rocks at c.290 million years ago (Dearman 1964). The mineralized area 

emerged from the granite and separated into zones forming the metamorphic 

aureole. Tin solidified closest to the granite, followed by copper, lead/zinc and 

iron. Most of the Dartmoor mineralization occurs as shallow lode deposits on 

the western and south western corners of the moor, and in the Dart valley on 

the eastern moor. The tin ore takes the form of cassiterite, a tin oxide, and 

throughout south-west England occurs as fissures and veins. It occurs in 

granitic alluvial deposits derived from periglacial and later conditions that 

weathered the veins and deposited the tin bearing sediment in streams. In the 

vicinity of the Erme, variable tin lodes occur in quartz-tourmaline veins at 

greater depths than in the surrounding moorland. 

Price (1979) noted that of the 250 square miles of Dartmoor approximately 

130 square miles bear evidence of tin working, and Greeves (1981) stated that 

"Every stream which has its source on the granite has alluvial 
deposits of tin bearing sand and gravel. Some deposits extend 
well below the limits of the metamorphic aureole..."; 
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He also considered that: 

"Probably every valley in the tin bearing zone has been worked at 
some time". 

Thus it is extremely unlikely that the Erme valley will not have been 

prospected and mined for tin at some time in its past. There was also some 

limited early twentieth century china clay extraction in the upper Erme 

catchment which may have influenced sedimentation in the valley. The 

evidence will be considered here for both prehistoric and later mining of tin 

and china clay. 

7.2.2 Evidence of Prehistoric Tin Minino 

One of the problems in assessing the extent of any prehistoric tin mining or 

streaming is that the more recent phase of mining in Medieval times may have 

obscured the former land surface and thus evidence of any older mining 

phases. As a result of this Hoskins (1972) considered there to be no evidence 

of prehistoric mining on Dartmoor. In Cornwall, however, there is substantial 

evidence for prehistoric exploitation of tin (Greeves 1981) and it is unlikely that 

Dartmoor will not have been similarly affected. Pearce (1979) suggested that it 

is the alluvial gravel deposits that were most likely exploited in the prehistoric 

period. Bronze produced in the Bronze Age consisted of 90% copper and 10% 

tin and although copper was quite common, tin was not. Pearce (1979) 

thought rt likely that Devon and Cornwall were the principuX suppliers for British 

and Continental bronze workers, although she noted that there is evidence for 

tin mining in Brittany in the Bronze Age. 

There is a little evidence to support early mining on Dartmoor. At the head of 

the River Avon there are extensive Bronze Age settlements, beneath which 

pebbles of tin ore and slag were discovered. Toulson (1984) considered that 

these groups were likely to have been the first 'tinners' on the moor. Similar 

evidence has also been found at Duck's Pool at the head of the Plym 

(Toulson 1984). Sims and Gomez (1983) provided two C-14 dates for organic 

deposits in the valley of the Narrator Brook in south-west Dartmoor. They 

2 3 6 



related the formation of associated fluvial deposits to firstly, Bronze Age 

clearance (after 4040±60 BP) and secondly, to the work of tin streamers (after 

630 BP). In the Erme valley evidence for the presence of Bronze Age 

communities is seen in the two mile long stone row crossing the river near 

Red Lake as described by Worth (1906). Crossing (1912) suggested that this 

stone row actually crossed some tin workings with the stones being set up on 

waste heaps although Greeves (1981) thought this evidence inconclusive. 

Price (1981. 1982) has also tackled this subject by a study of the settlement 

pattern of the Bronze Age populations. His map in figure 7.1 shows the 

distribution of hut circles on,the southern moor and in particular in the upper 

Erme valley around Hartord Moor. He suggested (1981) that although there 

was little evidence for mining this explanation was more likely than that the hut 

circles represented an agricultural settlement. It seems that the hut circles are 

aligned along the valleys of the rivers between the Tavy and the Avon, and 

Price considered that this clustered pattem indicated a tin mining origin. 

However. Hammond (1979) thought the huts were aligned to the rivers 

because of a ready supply of water and because a more sheltered and 

wooded environment meant that construction material was at hand. From 

Price's work it can be seen that a number of settlements occur in the Erme 

catchment area and thus early tin mining on the moor is a likely possibility. 

Hammond (1979) counted there were 109 huts in the Erme catchment above 

230m, making 15 huts/square mile in 7.2 square miles of catchment. In the 

Harford Moor area. Price (1981) counted nine settlements with 134 huts in a 

distance of 2.8km. 

7.2.3 Later Tin Mining 

The first mention of mining in Devon was in the Pipe Roll of 1156 A.D. 

(Hoskins 1972). Greeves (1981) and Hoskins (1972) found no evidence of 

eariier mining in Roman times on Dartmoor although there is evidence of 

tinning in Cornwall in the Roman Age. However, from 1156 A.D. to the end of 

the century the rich alluvial deposits of Dartmoor produced all the tin of 

Europe, whilst that from neighbouring Cornish mines was negligible. Cornish 
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production overtook that of Devon in the early 13th century as the Dartmoor 

deposits had been quickly exhausted (Hoskins 1972). Production was reduced 

to one eighth of that in the 13th and 14th centuries and increased again during 

the 16th century, a period of increased exploitation of the mineral. Towards 

the end of the 16th century, production again decreased, with only a short 

lived 'boom' in the earty eighteenth century. It is very possible that the 

increased production in the 16th century was due to the introduction of the 

new technology of shaft mining, whereas previously alluvial streaming had 

been the main extraction method. These various methods and sites of tin 

extraction will be discussed further in relation to their impact on river 

catchments. 

7.2.4 Methods of Tin Extraction and their Resultino Effects on the Landscape 

Various methods of extraction of tin have been practised on the moor, ranging 

from tin streaming and open cast mining to shaft mining. These methods will 

have altered the local drainage pattern and will have-had a profound effect on 

the landscape. There is evidence of extensive stream workings on the 

moorland stretches of the Rivers Plym, Yealm. Erme and Avon in particular 

(Greeves 1981). 

The streaming process involved separating pebbles containing tin from clods 

of loose earth by washing in running water. Stream tin is purer than lode tin, 

as during transport by rivers it has been separated from waste. The heavy tin 

bearing stones of crystals of cassiterite could therefore be dug or washed out. 

To extract the cassrterite pebbles the rivers and streams were diverted and 

trenches dug to remove gravels, as often the heavy tin stones occurred near 

the base of the valley bottom deposits. This practice of digging and washing of 

tin must have involved sending a vast amount of sand and waste products 

downstream thereby increasing the discharge of the river creating flood 

conditions. Between 1450-1750, Dartmoor was continually scarred by fresh 

diggings in the hillsides and valleys, and for much of this time the rivers and 

streams ran red with waste from the tin works (Greeves 1981). This was 
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documented by several people and severe silting occurred at Plympton, 

Totnes and Dartmouth (Smith 1907). Although no records have been found for 

the Erme that suggest severe silting, it is highly probable that it did suffer but 

because there was no major port at the mouth of the river formal protests 

were not made. In 1637, the Plymouth Corporation reported to the Priwy 

Council that Plymouth harbour was still being sifted up as a result of tin 

workings and mills on the Plym and Meavy. The extent of this silting led to the 

introduction of a bill in 1512 by Richard Strode to prevent tin working in the 

vicinity of sea ports and in 1531 it was amended specifically for the ports of 

Devon and Cornwall; it had however little effect (Greeves 1981). 

The landscape was also scarred by the digging of peat and charcoal for the 

smelting of tin. Lode tin was best smelted with equal amounts of wood and 

peat charcoal. Tin was extracted from stones by subjection to intense heat by 

piling the stones in holes in the ground and lighting fires on top. Smelting was 

later carried out in Blowing Houses where a furnace was kept blazing by 

bellows operated by a small water wheel (Toulson 1984). The digging of peat 

and chopping of trees would itself have caused some erosion of the Dartmoor 

slopes and increased the discharge of water-borne sediment downstream. 

As the deposits of stream tin became exhausted new methods were 

developed by extracting tin from the parent lodes. Strode tin, the concentration 

of larger tin stones in river banks nearer the parent lodes, and stream tin were 

used to find the parent lode. Open cast mining of parent lode material on the 

hillsides above the valleys was carried out in beamworks. Trees were needed 

for these mines which were up to 30m deep when being worked. Shaft mining 

was probably not used until the 16th century when the most easily accessed 

tin resources had already been exploited. These later methods probably had a 

reduced effect on the river discharge. 
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7.2.5 Sites of Tin Mining in the Erme Catchment 

In this section, actual sites are identified in the Erme catchment to give an 

indication of the extent of the mining operations. Much of the evidence for 

these tin mining locations is taken from the work of Greeves (1981). He 

studied a number of public records for the whole of Dartmoor to identify sites 

of tinning, and attempted to match these to field evidence. 

A list of the possible tinning sites in the Erme valley are given in tables 7.1 . 

7.2 and 7.3. This information has been extracted from the work of Greeves for 

the whole of Dartmoor, and is quoted here to show the full extent of mining in 

the Erme catchment. Table 7.1 shows sites of tin works, table 7.2 known tin 

mills and table 7.3 doubtful or unverified tin mills in the Erme catchment 

between 1450-1750. The dates do not refer to actual dates of operation but to 

dates of reference when the tin workings were noted. These sites have been 

marked on a location map and are shown in figure 7.2. A large number of 

probable mining sites between Ivybridge and the source of the Erme are seen. 

Some unlikely gaps exist in the upper Erme where later china clay workings 

may have destroyed sites (as in the case of the lower reaches of the Plym). At 

Red Lake, for example, 20th century china clay mining uncovered tinners 

gullies which were sunk through 6-7 feet of peat and then 10-12 feet of tin 

bearing clay. 

There are many names for tinners mills, for example, 'knocking*, 'stamping' 

and 'blowing', and always within a few metres of streamings in the tin-bearing 

zone, or outside in alluvial deposits. Blowing houses are seen today as ruins 

often sited by waters of leats or small channels that originally produced power 

to work the furnace (Toulson 1984). On the moor previous tinning sites can be 

recognised by haphazard heaps or heaps of parallel or concentric ridges of 

material with a retaining wall on one side. Some good examples can be seen 

at Lower Dry Lake and Left Lake and Knocking Mill (figure 7.2). Greeves 

thought that these are probably pre-1600 in age, although mining was 

practised on a very small scale into the 19th century on Dartmoor. 
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NAMES GRID R E F HEIGHT DATE 
(approx.) (m) 

Adecombe 648582 244 early 17th 
Armehead 621669 427 1531 
Armed Pit 623668 411 1671 
Blackland 7627594 191 early 17th 
Blakpole 7620590 213 1530-1553 
Brode Park, The 7649557 61 early 17th 
eater's Beam 635690 472 ? 
Combeshead Mead 642584 ? 1583 
Erme ?7early 17th 
Henlake Downe 631572 198 1581.82.96 
Henlake Downe Combe 631572 198 1581,82.38 
Hooke Lake 650650 427 1661 
Hokelake, Little 640650 366 early 17th 
Lukyslande 641578 183 early 17th 
Marenalned 662590 335 1608. early 17th 
Munks Moore 674573 152 1639 
Pethele Woode 636579 152 early 17th 

or 532607 61 
Pope Mede 635570 91 1581. 1582 
Pyles Corner 648621 366 early 17th 
Redelake, Little 640664 411 early 17th 
Redelake, Riche 640664 411 early 17th 
Shillalake 642592 244 early 17th 
Shillalakehedd 650595 290 early 17th 
Stoford 641570 137 1527 
Stofordcombe 639570 122 1527,1538 
Stoford Park 641570 137 1538 
Verabrokehedd 655605 366 early 17th 
Whelkers More 630585 183 early 17th 
Wenfur Hill 620690 457 1601, 1625 
Wollack 630675 427 1671 

T A B L E 7.1 LIST OF DEVON TIN WORKS (c.1450-1750) 

(Compiled from Greeves 1980) 
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NAMES 

Butter Brook 

Duckspool stream 
Right bank 

Hook Lake 

Ivybridge/ 
Harford 

Left Lake, 
below 

GRID R E F 

64225920 

62936766 

63936509 

63655665 

HEIGHT DATE 

236 ? 

435 

366 

76 

C.64135273 290 

1532-3 
1537-9 

MILL T Y P E 

B?/S 

T 

Early 16th BIK/T 
century 

T A B L E 7.2 KNOWN DEVON TIN MILLS C . 1450-1750 

NAMES GRID R E F HEIGHT MILL 

Blaoklane Brook 62906690 412 T? 

Dry Lake, Lower 64006337 305 T? 

Dry Lake, Upper 63366636 389 T? 

Duckspool 
Stream, Left bank 

62966767 435 T? 

Ivybridge, 
above 

63555758 122 S? 

Knackersmill 
Gulf 

c.635652 397 K? 

Knocking Mill c.631661 412 K? 

Stowford c.641571 137 ? 

T A B L E 7.3 UNVERIFIED OR DOUBTFUL TIN MILLS C. 1450-1750 

B = Blowing S = Stamping K = Knocking T = Tin 

Compiled from Greeves (1980) 
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As already mentioned, Price (1981) suggested that the distribution of hut 

circles reflects a pattern of prehistoric tin mining. Touison (1984) noted that at 

Stall Moor on the western side of the Erme valley there are remnants of hut 

circles and tinners dwellings. Several good exposures are found on the 

tributary streams of the Erme at Hartonsford Bottom, Knocking Mill and Red 

Dry Lake, each of which were extensively worked for tin. Beehive huts occur 

on the right bank of the Erme, and it is possible that sites of prehistoric hut 

circles were reoccupied and rebuilt by tinners. Greeves considered that there 

Is evidence for this secondary occupation. 

Whilst it is fairly easy to calculate the amount of tin extracted in historic times 

from the amount of tin collected at the four main stannaries, it is much harder 

to calculate tin production in prehistoric times. By attempting to correlate the 

various sequences of sediment in the Erme channel with known episodes of 

tin production, a relative sequence of events may be derived. This will 

determine how much tin mining on the moor has affected the Erme and allow 

some comparison with other studies in Britain in which human activities have 

been found to initiate and accelerate geomorphological processes. 

7.2.6 China Clav Production 

In the study area vast deposits of china clay are present between the Rivers 

Erme and Avon on the upper moor. The clay has been worked at Redlake and 

Left Lake on the banks of the Erme but no pit has yet bottomed the china clay 

deposits. This is mainly because of the distance from the main communication 

lines which make its exploitation uneconomic. 

The only period of extraction was in the early twentieth century. In 1910. a 

three-foot gauge tramway was built from Bittaford to Redlake, a distance of 

7.5 miles. The tramway was built to carry the workers, the clay being 

suspended in water and piped down to the main railway line where it was 

dried. Left Lake was worked from 1922-1932. Although the effect of these 

workings on the Erme is unknown it is possible that some of the china clay 
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may have escaped into the channel directly affecting the sediment yield and 

siltation downstream. Richards (1979) looked at changes produced by china 

clay quarrying upstream of the River Fal and considered the large suspended 

sediment of kaolin to have influenced the channel shape. 

An earlier venture onto the moor in 1846 to cut peat and peat charcoal was 

also unsuccessful. It is likely to have had only a limited effect on the river. 

These aspects will be considered further in the discussion, after a 

consideration of map evidence for changes along the course of the River 

Erme. 

7.3 Documentary Evidence of Changes in the Lower Vallev 

Old records and maps are an important source of information for the study of 

changes in a floodplain environment over historic time. Tithe maps are some 

of the oldest documentary evidence of land use and were produced in the 

1800*s. Such historic records have been used for studies of rivers in East 

Devon (Hooke 1977) and Northumberland (Macklin 1986. Macklin and Aspinall 

1986) and for the River Exe (Parkinson 1981). 

The tithe maps for the parishes of Holbeton, Kingston and Modbury in the 

lower Erme valley were examined at the Devon Record Office. They are 

generally at a large scale and include details of buildings, field boundaries, 

field owners, field names, dates of ownership and plantation type or land use. 

The position of the river and the field boundaries were traced from the tithe 

maps and information for each field looked up in the accompanying records of 

land-use. The river appears to have generally followed the same course since 

the map was surveyed, with major variations only at the mouth of the river at 

Mothecombe. The main exceptions to this are the short channels that join the 

western side of the Erme between Sequer's Bridge and Flete Mill; the tithe 

map shows a stream running down the side of the valley passing through 

Flete Mill before joining the Erme (see figure 7.3). 
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The most important information arising from this study came from looking at 

details of the fields and in particular the field names. Figure 7.3 shows the 

names of the fields bordering the banks of the Erme at the time the tithe map 

was produced. Although the field usage was detailed as pasture, arable, 

orchard etc., the names bordering the river are indicative of a former marsh 

environment, for example in the Sequer's Bridge area there are field names of 

Salmon Pool Marsh and Hoppy Marsh. Thus boreholes SB2 and SB1 were 

from fields formerly known as Higher Pool Marsh, BH6, A1-4 and BH7 from 

Goutsford Marsh, BH1, BH4 and BH7 from Salmon Pool Marsh, BH9 and 

BH11 from Hoppy Marsh, RM4 and RM3 from Higher Marsh, RM2 from Middle 

Marsh and RM1 from Lower Marsh (see figure 4.3 in chapter 4 for the actual 

locations of the boreholes). The origin and age of these names is uncertain 

but the evidence suggests that at some time in the not too distant past the 

valley floodplain was considerably wetter than today. 

Further downstream in the present salt marsh region there are records of 

changes in historic time. Evidence suggests that the estuary was previously 

more used and navigable than it is today, Oldaport Fort lies on a spur of land 

rising to 150' (46m), on either side of which runs a small creek, as illustrated 

in figure 7.4. At the tip of the spur, the two creeks join with a short arm of the 

Erme forming a natural harbour 1.5 miles from the sea. A plan of the fort is 

shown in figure 7.5. Worth (1933) quoted from Pole (c.1635) who had stated 

that Oldaport took its name from an old fort or gate and Cottrill (1935) 

considered it not unreasonable to associate the existing remains with a 'port'. 

Hoskins (1954) thought the structure of the fort is largely of 16th century date 

but there is reference to it in 1310 and 1332 (Gover et al, 1931-32). Cottrill 

(1935) considered Oldaport to be assigned to between the Late Roman or the 

succeeding Dark Ages whilst more recent investigations by Farley and Little 

(1968) show the fort is of at least two periods with a possible Roman building 

of rectangular design and a later secondary walled enclosure incorporating the 

Roman port, of Roman, Dark or Medieval Age. It is possible that the fort may 

have originally been built in the Roman Age as there are signs of occupation 
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at Mothecombe in the fifth and sixth centuries. Cottrill (1935) considered there 

to be no simple reason for the existence of a Roman port as he stated the 

"site stands in no obvious relation to the late Roman tin mines of 
Cornwall or Exeter". 

although tin mining during the Roman Age may have been more extensive 

than generally believed. 

Today the harbour at Oldaport is too heavily silted for use. A causeway was 

constructed in the late 19th century which crossed both creeks and touched 

the tip of the spur linking Clyng Mill and Orcheton Wood. As late as 1844 the 

western creek. Ayleston Brook, was navigable by barges for a further distance 

upstream towards Modbury (Lewis 1844). The estuary has silted to such a 

degree in recent years that the fords between Efford and Saltergrass and 

between the coastguard cottages at Mothecombe and Wonwell Beach (see 

figure 7.4 for the locations) are rio longer passable even at low tide. Thus is 

seems there is confirmatory evidence that in recent years the lower part of the 

Erme valley has silted up. 

Near the mouth of the Erme there are also records of dramatic swings in the 

river position. In the past 200 years or so the river channel has been recorded 

as changing position dramatically. In 1835 a large expanse of grass In front of 

the coastguards cottages existed, large enough for an annual fair to be held 

there (Britton and Bragley 1803). They documented that this grassed area 

nearly crossed the harbour, confining the Erme close to the eastern cliff. In 

1798 a storm formed another such area across the harbour, as large and as 

firm as the old one. joining to the eastern cliff. Consequently the river was 

forced to flow across the harbour by the side of the new obstruction after 

clearing the old one. Several months later this obstruction was washed away 

in another storm leaving the ancient peninsula untouched (Mildmay-White 

1985). 
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7.4 Radiocarbon Dating 

Radiocarbon dating has become an established tool in methods of Late 

Quaternary reconstruction, and has been used to date sediments of at least 

50,000 years old. There has been much discussion on the limits and accuracy 

of dating because of the natural variation in carbon dioxide over time, the 

random process of decay, hard water error, especially in areas of carbonate 

rocks, and contamination of samples by old carbon and carbon exchange. 

Actual years have been correlated to radiocarbon years by C-14 dating of tree 

rings. 

C-14 dating of marine and freshwater sequences has been used to try and 

establish sea level curves for various locations around Britain. In particular 

The Wash and north-west England have been studied in some detail by 

Shennan (1980, 1982a) and Tooley (1978. 1982) respectively. There are a 

number of problems however in the derivation of sea level curves as 

discussed in chapter 2. C-14 dating has also been used in dating of Late 

Flandrian fluvial sequences, for example by Brown and Barber (1985). 

In dating some of the deposits recovered in this study it is hoped to relate 

sediments from the buried channel of the Erme to documented events in 

historical time and to earlier prehistoric events on Dartmoor. The choice of 

samples for dating and their preparation before submitting to the radiocarbon 

laboratory are described, followed by an interpretation of the timing of events 

in the study area. 

7.4.1 Choice of Samples for Radiocarbon Dating 

The choice of samples submitted for analysis was limited by the quantity of 

organic material present in the sediment recovered and by the number of 

horizons that contained organic material. The nature of the organic deposits 

varied considerably; twigs, bark fragments and some seeds were present in 

some of the gravel horizons, whilst other horizons appeared to be 
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predominantly 'organic silts*, containing small plant fragments whilst some of 

the organic units were more fibrous. The gravels containing organic fragments 

did not yield enough organic material from any horizon to be considered for 

dating. 

In order to extract the most useful and reliable information from C-14 dating 

samples were chosen from the organic sequence that could be traced 

between a number of cores in the floodplain area around Sequer*s Bridge. The 

thickest organic layers occurred in cores SB1. A4 and BH6 (figure 4.3 in 

chapter 4) and samples were submitted from the top and bottom-most part of 

the organic horizon. Thus two samples were submitted from each core in an 

attempt to date the start and end of organic deposition at each location. 

Organic matter from the cores towards the lower part of the valley, at locations 

S1-2. RM1-4, BH11 and BH12, was not present in sufficient quantity for dating 

since it was mainly composed of fragmented twigs and bark and may have 

been contaminated. Thus the dating of the sediment will, on the whole, relate 

to the fluvial deposits from the Sequer's Bridge area rather than the more 

estuarine deposits at depth in the lower valley. 

i) Samples from SB1 

Material submitted for dating from core SB1 was from 4.3-4.4m (0.13-0.23m 

OD) and 4.1-4.2m (0.33-0.43m OD) depth in the core. (58g of sediment was 

submitted from the lower unit and 77g from the upper unit.) These samples 

occurred near the base of the total sediment column collected and were 

composed of a mixture of sand and organic material with some plant remains. 

They overlie the tough silt unit with large rounded granitic gravels found in the 

upper part of the study area and the tributary valley and underlay various 

horizons of silts, sands and gravels. Because of the method of collecting 

sediment in the field samples of 10cm thickness had to be submitted. Hence, 

if the sediment had accumulated over a long time period, any date will reflect 

an average for the sample and will not therefore mark the exact end or 

beginning of organic deposition. 

2 5 3 



ii) Samples from A4 

Samples of 247g and 21 Og were submitted from core A4 from horizons at 2.4-

2.5m depth (0.51-0.41m OD) and 2.7-2.8m depth (0.21-0.11m OD). These 

units had a higher organic content than those from SB1 because of a lower 

proportion of sand. They occurred above the tough silty-clay horizon as In SB1 

and below mainly silty-clays or silt-fine sand horizons. A higher organic horizon 

at approximately 1.7m depth in the core did not contain sufficient organic 

material for dating. 

iii) Samples from BH6 

Core BH6 had by far the most organic material present out of all the cores, 

spread through a 1m thick horizon, at a depth of 2.05-3.05m. There was also 

some organic material in smaller quantities outside this horizon but in 

insufficient quantities for dating. Samples were chosen from the top and 

bottom layers at 2.05-2.25m depth (1.41-1.61 m OD) and 2.85-3.05m depth 

(0.81-0.61m OD). The dry weight submitted was 195g and 141g from the top 

and bottom samples respectively. These samples span a 20cm thick layer 

which represents the smallest unit of sediment collection from BH6. Both the 

samples had a small amount of contamination by sand and also contained 

some plant remains. 

Because of the proximity of the three coring locations it is likely that the 

organic layer is fairly continuous over the area and thus of the same general 

age. The C-14 dates obtained from each sample may differ considerably if 

erosion of some of the organic units has occurred or organic deposition 

continued for longer in one place than the others. 

The samples were submitted for dating to the Groningen Radiocarbon 

Laboratory which requires information on the type of sample, the location of 

coring as well as an estimate of the age of the deposits. 
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7.4.2 Results of Radiocarbon Analysis 

The dates received from the Groningen Radiocarbon Laboratory are listed in 
table 7.4 and include the Groningen Lab code number. 

LAB CODE SAMPLE NAME CARBON DATE 

GrN-13986 Erme A4 2.4-2.5 1175±30 BP 

GrN-13987 Enne A4 2.7-2.8 1425150 BP 

GrN-13972 Erme BH6 2.05-2.25 1185150 BP 

GrN-13973 Erme BH6 2.85-3.05 2130140 BP 

GrN-13974 Ernie SB1 4.1-4.2 1985150 BP 

GrN-13975 Erme SB2 4.3-4.4 2290145 BP 

T A B L E 7.4 RADIOCARBON DATES OF SEDIMENTS 
FROM THE ERME CHANNEL 

They are also shown as a schematic diagram in figure 7.6. The solid black 

lines indicate the sampling horizon and the cross hatches the rest of the 

organic unit. The diagram shows the dated units relative to Ordnance Datum. 

In order to gain a better understanding of the way in which the samples relate 

to each other they have been plotted as altitude (metres OD) against age in 

radiocarbon years in figure 7.7. Because of the random process of decay of 

carbon atoms all dates are plotted as a band within one standard deviation of 

the mean. This graph is not meant to be a direct comparison with the work of 

Tooley and Shennan in producing a time altitude graph to predict sea level at 

various times but it is merely to show the relationship between the six samples 

dated and their sphere of overlap in time and space. One possibility arising 

from this graph is that there were two different periods of organic matter 

deposition since the dates from SB1 and A4 are separated by nearly 500 

years. Alternatively, the same event may have been responsible for the 

organic units although it may not have been synchronous at locations A4 and 
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SB1. It seems that organic deposition occurred for almost all of the time at 

location BH6, so it is equally possible that erosion of organic material may 

have occurred at SB1. reducing the thickness of the organic layer. As A4 

occurs in the tributary valley, it may not have experienced organic deposition 

conditions for the same length of time as those in the main valley. 

Care must be taken in the interpretation of radiocarbon dates because of the 

limitations of the technique. Radiocarbon years are not equal to calendar 

years because of the natural variation in carbon production in the atmosphere 

over time; during the time period being considered however, there is little 

deviation between the two time scales. De Jong and Mook (1981) expressed 

concem that sea level rise curves may show false steps because of the 

fluctuations in the C-14 time scale; for example, a series of dates from a peat 

sequence with a constant sea level rise would give the impression of 

successively slow and fast rates of sea level rise. They also stated that it 

leads to a clustering of C-14 dates at certain intervals, one of which is 2400-

2200 BP. Neither of those are considered a problem here as this study is not 

attempting to date a long sequence of closely spaced organic units, but rather 

to give an impression of the age of sediments and correlation between units. 

Any date will be an average of the sample and since sediment was collected 

from 20cm and 10cm thick horizons, 20cm of organic deposition may 

represent a long time span and thus in reality the top of the organic units 

could be much younger than the dates suggest, and conversely those at the 

base may be older. 

Some small scale contamination of samples may also have occurred in the 

field due to the collection of samples using a screw auger. Since all the 

samples were at least 2m below the floodplain, it is unlikely that the dates 

have been contaminated by young carbon from current soil formation 

processes. The possibility that some old organic material has been washed 

into the samples cannot be ruled out. thou^jk the organic deposits submitted 

for dating seemed to be a single unit. These points all suggest that care must 
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be taken in interpreting these radiocarbon dates. However, the dates compare 

well with each other and they do tend to match the tithe map evidence which 

suggested a former marsh environment in the Park Driving Bridge Area and 

thus one can be confident that they are representative of the actual age of the 

deposits. 

7.5 Discussion 

The results from radiocarbon dating will be discussed further in Chapter 8, but 

brief mention will be made here as to their agreement with historical records. 

Core SB1 was extracted from the former Higher Pool Marsh and BH6 and A4 

from Goutsford Marsh. Although the time of the marsh formation is not known 

the fields may have retained their names for a number of centuries and as all 

the dates lie between 2400-1100 years BP it is likely that the sediment 

deposited between these years corresponds with the records of marshland on 

the tithe maps. 

Of importance also is the upper sediment overlying these units, which must 

have been deposited in the last 2000 years. At location BH6 2m of sediment 

must have been deposited in 1200 years, at A4 2.4m of sediment in 1200 

years and at SB1 4m in 2000 years, that is at a rate of c. 0.2cm/year. 

Sedimentation is unlikely to have been at a steady rate and may have been 

affected partly by mining activities on the moor and partly by forest clearance 

in Roman, Saxon and Medieval times. As noted in chapter 3, official 

permission was given for clearance of the remaining Dartmoor forest in 1204 

which may have led to an increase in sedimentation in the lower catchment. 

Since however, most of the Dartmoor forest clearance took place earlier than 

2000 years ago, the upper sediment layers are probably a result of mining and 

forest clearance associated with the mining activities rather than widespread 

forest clearance. Greeves (1981) noted that the greatest period of tinning on 

the moor was in the second half of the 12th century when Devon tin 

production exceeded that of Comwall. It is likely that streaming was the main 

extraction method since at this time the stream deposits would have been the 
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most accessible. The main sedimentation in the Ernie channel may have 

occun-ed during this time since streaming is the most likely of all the extraction 

methods to have altered river discharge, although tin mining undoubtedly 

continued to influence the development of the Erme throughout the Medieval 

mining phase. The effects of the china clay extraction early in the twentieth 

century are difficult to assess, as the period of extraction was relatively short 

and unsuccessful; thus the effects on the Erme are likely to be limited. The 

wood fragments and charcoal recovered from river gravels below the C-14 

dated sediments, may be related to the earlier periods of forest clearance from 

the Neolithic onwards and possibly prehistoric mining activities on the moor. 
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CHAPTER 8 DISCUSSION 

8.1 Introduction 

This chapter aims to consider all aspects of the analyses undertaken in this 

study in order to derive conclusions as to the evolution of the Erme valley 

especially during the Flandrian. Firstly, the main points arising from the 

previous chapters are summarized. This is followed by identification of the 

various sediment layers and an attempt to date the various stages using the 

radiocarbon and historic data. This will lead to the presentation of a model of 

evolution for the Erme valley during the Late Quaternary. 

8.2 A Summary Of Results From Earlier Chapters 

Evidence presented in chapter 2 indicated that the age of the Erme river valley 

is uncertain. Some would suggest that the drainage pattern of the South West 

was formed in the Cretaceous, and shaped in the Tertiary by higher sea 

levels, whilst others have suggested the valleys were cut during the 

Pleistocene (e.g. Durrance 1971). Erosion surfaces related to higher Tertiary 

and Pleistocene sea levels have been identified on Dartmoor by some (e.g. 

Brunsden et a/. 1964), whilst others would liken the features more to nivation 

terraces (e.g. Guilcher 1969). Since the study area is believed to be beyond 

former limits of glacial ice, periglacial conditions will have been more important 

in shaping the landscape. This is supported by the head deposits that flank 

the valley sides of the Erme. The buried channels of the Erme and other rivers 

of the South West were cut during a period or periods of lower sea level than 

today and the Flandrian rise in sea level has since drowned the mouths of 

these rivers with subsequent infilling of the channels with a mixture of marine 

and fluvial sediments. Sedimentation in the latter part of the Flandrian may 

have been aided by human activities in the catchment such as forest 

clearance, mining and agriculture. Previous to this research there has been 

little detailed study of the sediments occupying the uppermost horizons within 

these buried channels of south-west England. 
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Chapters 4.5 and 6 examined sediment from 20 locations in the lower Ernie 

valley. A summary of the sites and the analyses undertaken is shown in figure 

8.1. These analyses showed the sediments to be variable with horizons of 

sandy-gravels and estuarine silts occupying large parts of the cores, an 

organic layer, at approximately 2m below the current floodplain, traced around 

the Park Driving Bridge area, and in most cases an upper fine sand/sitt layer. 

The sediments are derived from granitic and slate bedrock and diatom and 

molluscan analyses indicate deposition under a variety of fluvial, intertidal and 

marine conditions. 

Questions arising from these studies concern the age of the sediment, under 

what environmental conditions the channel was in-filled, the relationship to sea 

level, whether the sediments have been reworked, the contribution of forest 

clearance and mining activities on Dartmoor to the sediment yield and the 

likelihood of any deposits older than Flandrian. These questions will be 

addressed in the following discussion while attempting an integrated 

explanation of events that have controlled the development of the Erme valley 

in the later stages of the Flandrian. 

8.3 Correlation of Sediments 

The similarities between the cores will be discussed here, thus aiming to 

identify horizons of sediment common to a number of cores. The cores will be 

examined starting with those from the upper part of the study area and tracing 

the marine influence downstream, that is from north to south. Wherever 

possible diagrams will be used to illustrate correlations found. The borehole 

locations in the study area are repeated here as figure 8.2. The main links 

between the cores are shown in figures 8.3-8.6. These diagrams have used all 

the evidence to equate sediment bands; symbols have been used to match 

sediments in terms of diatom, mollusc and radiocarbon evidence. 

Comparisons between some individual diatom species are shown in figures 

8.7-8.14 and molluscan species in figures 8.15-8.17. these were used in the 

preparation of figures 8.3-8.6. 
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Starting at the northern part of the study area, at Sequer's Bridge, matching 

sediments in SB2 appear to be about 0.5m higher than those from SB1 (see 

figure 8,3). They are predominantly sand in their upper horizons overlying 

layers of gravel and sand. SB1 has an organic unit overlying a tough gravel-

silt unit at the base of the core whereas SB2 has a unit of sandy-gravel rather 

than the organic unit. The radiocarbon dating of the organic units near the 

base of the core at c. Om OD in SB1 suggests that units in both these cores 

are mostly younger than 2000 years old. The sediments from SB2 and SB1 

have some similarities v̂ ith those recovered from BH6 (figure 8.4); the organic 

unit in SB1 occurs at c.O.Sm lower than a much thicker organic layer in BH6. 

Diatoms in SB2 can be compared with those in BH6 at approximately 0.5m 

lower; in particular the diatoms Cocconeis placentula (Figure 8.8) and Melosira 

granulata (Figure 8.11) peak at c. 0.5m lower in BH6 then SB2. Below 2m OD 

in BH6, the diatoms obtained from organic units indicate more marine 

conditions (see figure 5.4 in Chapter 5); these units are absent in SB1 and 

SB2. Although the organic unit is present in SB2 it does not have a very large 

brackish or marine diatom population; this may be because it was on the edge 

of the organic-forming environment. 

The sediments in SB2 and SB1 have fewer gravels than BH1 (figure 8.3) 

although they both have sand and gravel layers with low silt and clay content. 

There is no fine sand or silt-sand unit at the surface at BH1 as at many other 

sampling locations, but BH1 does have a tough gravel unit at the base, as 

seen in SB1. BH4 (figure 8.3) can be compared more to BH6 than to SB1 and 

SB2 as it has mainly fine sand and silt in the top 3m and a thin organic unit 

containing wood fragments between 3.6-3.8m depth (c. Om OD). These overlie 

c. 1.5m of gravels that can be compared to those in BH1. The uppermost 

1.5m of sediment from BH4 was lost during drilling but was mainly of gravels 

and thus comparable to the gravels throughout BH1. 

The deposits from Sheepham valley (figure 8.4) are comparable to those from 

BH6 and a radiocarbon date from A4 is useful in correlating the sediments. 

Generally all the five cores have very fine sediments of sand and silt and clay 
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overlying organic deposits and some gravels. A4 has the finest units of all. 

The very tough silt-sand-gravel unit at the base in the A1-4 cores is probably 

very close to bedrock as the drilling equipment could not penetrate this layer. 

It contained some large rounded and angular gravel (except at A4) in a silt 

matrix. It Is comparable to that also recorded at sites SB1 and BH1 and may 

indicate the bottom of the channel. Diatoms were present in this horizon, as 

shown in the analysis of sediments from core A3, suggesting that it is not only 

bedrock or head but does include sediments that have been worked by fluvial 

action. A mainly fresh-brackish flora (including Fragilaria spp. and Navicula 

rotaena) is present with a slight marine influence shown by the presence of 

Melosira sulcata. 

The sediments from A3 were mainly derived from the slate outcrops whereas 

those in the main channel have a higher granitic component. Diatom 

correlations can be seen between BH6 and A3 on the basis of the distribution 

of Melosira sulcata (Figure 8.12), the presence of this marine-intertidal diatom 

suggests an incursion of marine water in the lower sediments recovered from 

AS. There is some similarity between the distribution of Synedra pulchella in 

AS and SB2 (figure 8.14). Correlations can also be drawn between SB2 and 

AS based on the presence of the diatom Cymbella sinuata between 2m to -1m 

OD in AS and c. 4m to 1m OD in SB2 (figure 8.9) and Achnanthes 

microcephala at Sm in SB2 and 0.5m in AS (figure 8.7). Thus sediments from 

SB2 may be between 2-3m higher than equivalent units in AS. The species 

Navicula peregrine is present in SB2 and BH6 but in AS is replaced by 

Navicula avenacea (figure 8.1 S). Both are brackish water species, and thus 

similar conditions occurred in the SB2-BH6-AS area. 

Ignoring core BH1 for the moment, cores BH6 and BH11 (figure 8.5) appear 

similar over a distance of 0.5km, with deposits occurring 2m higher at BH6 

than BH11. Both have a fine silt-clay horizon at the surface although BH11 

does not have an organic layer. Both have lower gravels although those in 

BH11 include some mollusc shell fragments. The shells may have been swept 

into this area as there are few whole individuals in comparison with the other 
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cores that contained shells and fragments. Correlations are based on the 

presence of the diatoms Fragilaria construens (figure 8.10), Melosira granulata 

(figure 8.11) and Melosira sulcata (figure 8.12). The summary M-B-F diatom 

diagrams (see figures 5.4 and 5.5 in Chapter 5) also support this with very 

high percentages of fresh water diatoms in the top layers and a gradual 

increase in the brackish and marine influence in the lower sediments. 

Core BH1 (figure 8.3) consists mainly of sand-gravels and is difficult to 

correlate with many of the other sediments discussed so far; however deposits 

in BH7 below 1.5m OD also contain more than 40% gravel (figure 8.5) and 

core BH4 (figure 8.3) has gravels below c. -1m OD. These coarser sediments 

may suggest that a different system was operating in the middle of the 

floodplain or that the deposits are of a different period of floodplain 

construction, and were deposited as localised flood or point-bar sediments. It 

is possible that the material in BH7. being near the valley sides, represents an 

old terrace deposit. The top 1m of sediment from BH7 is a fine silt-clay as 

seen in the cores towards Sequer's Bridge. 

Moving downstream, an upper fine layer also occurs at locations BH9, BH11. 

BH12 and RM1-4 (figures 8.5 and 8.6); these all show high (12-17%) clay 

fractions. Further correlations are provided by the gravel units in BH7 which 

can be equated to sediments c. 1-2m lower in BH9 and in BH11. 

Core BH9 has 2 metres of sand and silt overlying sandy-gravel horizons and 

is comparable to BH4. Like BH4 the surface sediments could not be retained 

because they were waterlogged gravels. Units in core BH9 appear similar to 

those in BH11 on the basis of sediment size (figure 8.5); sediments containing 

25% gravel in BH9 match sediments 2m lower in BH11 but at the same level 

in BH12. Both BH11 and BH12 have high silt and clay percentages in their 

upper horizons grading into sand and sand-gravel layers followed by shelly 

sandy-gravels. Towards the base of BH11 the sediment is mainly a shelly silt 

whereas in BH12 the distribution of sand and silt is more even. It may be that 

the sediments from BH11 represent an old channel or deepening as BH11 
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occurs in the centre of the floodplain whereas BH12 is towards the side of the 

valley. 

The upper layers from core BH12 are similar to those from RM4, RM3 and 

RM2 (figures 8.5 and 8.6) in that they all have sand and silt horizons overlying 

gravels with occasional organic material. These overlie shelly sands or silts 

with the exception of RM4 where sediment was not obtained from below -2m 

OD. The shell horizons in RM3 are about 1.5m lower than those in BH11; 

those in RM2 at approximately 1m higher than BH11 and in RM1 at about the 

same level, possibly because of local differences in the tidal range. At the time 

of deposition of these sediments, the area probably resembled a wide tidal flat 

environment as seen in the lower valley today. 

Sediments from core BH12 would appear to be c. 1.5m higher than those from 

RM2 based on the presence and distribution of the molluscs Hydrobia ulvae, 

H. ventrosa, Macoma balthica and Rissoa parva (figures 8.16 and 8.17 and 

see also figure 6,5 in Chapter 6), although the actual numbers of individuals in 

RM2 are higher than BH12. Thus it appears there is a difference of 1.5-2m in 

altitude over a distance of c. 800 metres between the two drilling sites 

because of the tidal range and the gradient of the river. The sediments in core 

BH12 at these levels appear to have a higher percentage of gravel than those 

in RM2 which is composed of silty-sands. This may be because of a more 

fluvial environment at site BH12 and more estuarine conditions in the RM core 

area. 

Cores RM2 and RM1 are similar due to the distribution of Hydrobia ulvae, 

Hydrobia ventrosa, Cardium edule (figure 8.15), Macoma balthica (figure 8.16) 

and Rissoa parva (figure 8.17) and also because the peaks in species and 

changes in sediment type appear at the same altitude relative to OD. 

The cores obtained from S I and 82 (figure 8.6) are very similar; shell 

fragments occur at the same level and both have a clay-silt horizon between 

1-2m OD. These grade into silts and then silty gravels with only minor 
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variations between them. With depth. S2 has more sand and S2 more silt. The 

peak in Hydrobia ulvae and Hydrobia ventrosa at c. -2.8m OD in cores RM1 

and RM2 is probably equal to the peak in S2 at the same level (see figure 6.5 

in chapter 6); and similarly for the peak in Macoma balthica (figure 8.16). The 

sediments from RM2-1 and S1-2 are comparable below c. -1m OD as they are 

mostly gravels and sands, with more silty-gravel units towards the base of 

RM2 and S I . Above this, S2 and S I are different from the RM1-4 cores both 

in sediment type and molluscan fauna and indicate that sedimentation in S I 

and S2 continued in a marine environment whereas RM1 and RM2 became 

predominantly fluvial. This may be connected with the draining and embanking 

of the land on the eastern side of the river changing the environmental status 

of the RM1-4 sites. Alternatively, cores S2 and S I may once have had 

sediments equivalent to those of the RM cores, but which have been 

subsequently eroded and redeposited as newer horizons. The historical 

records show that the harbour at Oldaport has silted up in recent times thus 

suggesting the S1 and S2 units are fairly recent and represent contemporary 

deposition in the Erme channel. 

8.4 The Main Sediment Tvpes Recorded in the Lower Erme Vallev 

It can be suggested that many of the cores have common sediment bands 

and dip downstream in relation to the gradient of the river and the tidal 

influence. The sediments can be sorted into 11 basic groups on their differing 

properties. There are variations in these sediments between locations but 

generally the main units found are shown in figures 8.18-8.20 and can be 

described as follows: 

1) The upper fine silts can be seen in all the cores except BH1 and RM1. 

which have a high gravel content, SB2 which consists of sand and BH4 and 

BH9 where the sediments could not be collected and were waterlogged 

gravels. Various amounts of silt, sand and clay are present, up to 17% clay in 

some samples. The diatom analysis indicates generally a freshwater flora, 

except in the salt marsh cores S I and S2 which are predominantly marine. 
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The salt marsh sediments however are not considered to be a direct 

equivalent of the deposits upstream because of their more dynamic coastal 

situation. 

2) The middle 'fine' units can be subdivided into sands, organic sands and 

'middle fines' which are generally of silt but include some sand layers. Some 

of the sites have more than one of these 'middle' units and because there is 

no definite order of deposition It is suggested that they are alt broadly 

contemporaneous. The sands are present in SB2, SB1. BH4, BH9 and BH11, 

the organic sands in SB1, BH6. A2-A4 and to a limited extent in BH4, and the 

middle silty-sands in SB2, SB1, BH6. BH4, BH9, and BH11. These are 

probably equivalent in age as they occur at a similar location and depth OD. 

Diatoms indicate they were deposited in a brackish environment, becoming 

more freshwater towards Sequer's Bridge and more interlidal at the Park 

Driving Bridge. This may suggest a ponding and mixing environment where 

the salt water met the river. 

3) f^iddle gravels are seen in varying thicknesses in many of the cores; they 

sometimes contain organic material in the form of wood fragments and twigs, 

and have therefore been sub-divided into gravels and organic gravels. The 

gravels are present in BH1, BH7, and RM4-1, to a lesser extent in BH4, BH9 

and BH12 and in a limited amount in BH6. The organic gravels occur mainly in 

the upper part of the study area in cores SB2, BH6 and A1-A3 although some 

were found in RM4 and RMS. They are considered to be two distinct units as 

the gravels sometimes form thick deposits as in the case of BH1, whereas the 

organic gravels are more variable and occur below the middle sands, organic 

sands and fines. The gravels from RM2 were subject to diatom analysis but 

the diatom frustules were not well preserved and difficult to count. Diatom 

analysis of the organic gravels in BH6 and AS showed brackish-marine and 

fresh-brackish environments respectively. 

4) Base Units of large angular and rounded granite and slate clasts in a tough 

silt matrix were recovered from SB2, SB1. A1-S, BH1 and BH4 and a tough 
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silt horizon in A4. It is suggested that this layer may indicate proximity to 

bedrock since the drill could not penetrate the sediments any further. The 

layer may be a tough river gravel overlying bedrock or a mixture of old head 

deposits and river sediments and weathered bedrock. The presence of 

diatoms suggests there has been some fluvial working of these sediments. 

5) Lower estuarine sediments were characterised by the inclusion of 

molluscan shell fragments. These sediments have been subdivided into shelly 

silts, shelly sands, shelly gravels and mixed shelly deposits. The shelly 
silts occur at the base of cores RM3. RM2 and BH11 and the shelly sands at 

the base of RM1 and higher in S1 and S2; these two units represent the 

deepest sediments recovered from the buried channel of the Erme. The shelly 

gravels are present only in BH11 and BH12 and may be a mixture of fluvial 

and marine sediments. The mixed shelly deposits occur below the shelly 

gravels of BH11 and BH12 and above the shelly silts and sands of RM3, RM2, 

RM1 and BH11. They also occur in S2 and S1 below the shelly sands. This 

suggests that the sands from SI and S2 are not equivalent to those from 

RM1. especially in view of the altitudinal and site differences between the two 

locations. The shelly silts contain predominantly marine diatoms, the sands 

from S2 a mixture of fresh, brackish and marine diatoms, the gravels in BH11 

had a mainly marine and brackish diatom flora and the mixed deposits were 

predominantly marine in S2 and RM2. 

Deposits from the tributary valley seem to have a higher percentage of slate 

derived clasts whereas those in the main valley have a mixture of granitic and 

slate clasts. Since there is little correlation between changes in sediment size 

and mineral content, the sediments from the tributary valley are considered 

comparable to those from the main valley and have been placed in the same 

sediment groupings. 

The depth of drilling was limited by the number of flights that could be 

extracted from the Erme channel infill and by resistant layers of sediment or 

bedrock. It is possible that granitic boulders as described around Ivybridge 
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(Gilbertson and Sims 1974) and Ermington (Perkins 1974) also occur in the 

channel infill in the area of study. Around the Sequer's Bridge area, the cores 

are shallower than those downstream and thus drilling may have been 

obstructed by large boulders. It is unlikely, however, that they are present in 

the smaller tributary valley. 

8.5 Age of Sediment 

Combining the results of the radiocarbon analysis and sediment correlations 

between cores, it is possible to tentatively assign dates for sediments from the 

sites in the lower valley. A correlation of the dated sediment from cores BH6, 

SB1 and A4 in terms of radiocarbon age is shown in figure 8.21. 

Deposits in SB1 and BH6 at around 0.5m OD are approximately 2000 years 

old. Those in BH6 can be compared with those from BH11 at c. -1.3m and 

BH11 can be matched with those in BH9 at c. 0.7m. It is likely that similar 

aged deposits occur at approximately -0.6m in BH12, and by comparing BH12 

with RM2 at about -1.3--1.6m in RM2 and -1.3m in RM1 and -1.3m in S2 

(comparing RM1, RM2 with S2, and BH11 with S2). Links between SB1, BH6 

and the A sequence can be made although corresponding dates are at a 

lower level ( d m ) in A4 than BH6. Most of the sediment in the Sheepham 

valley has been deposited in the last 1000 years or so. 

It is more difficult to trace the date of 1185 BP in BH6 down valley. It is likely 

to be around 1-0.5m OD in BH11 and 1-1.5m OD in BH12, possibly 1m OD in 

RM2 and 0.8m in S2 (the latter is based on tentative links between S2 and 

BH6). 

These correlations would suggest the gravel units found at depth in some of 

the cores are older than 2000 years ago, whereas upper fine sediments are 

less than 1000 years old. The middle fine units including the organic layer are 

of 1000-2000 years old. with the other fine sand units being slightly older or 

younger. The organic gravels must be older than 2000 years as they occur 
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below the organic deposits. The long gravel sequences in BH1 and BH7 are 

difficult to date and may represent deposition over a long time span. The 

evidence suggests that most of the estuarine deposits were deposited prior to 

2000 years ago. No age can be suggested for the base unit. 

8.6 A History of the Erme Vallev 

The development of the lower Erme valley in the Flandrian will now be 

discussed with some reference to its earlier evolution during the Quatemary. 

It is difficult to relate the formation of the lower river valley to early events on 

the high moor, such as the creation of planation surfaces, and it is generally 

outside the scope of this study. The effect of periglacial action in shaping the 

Dartmoor landscape may be more important than planation, creating 

solifluction and cryoplanation terraces rather than shorelines. Evidence for the 

superimposition of a Tertiary drainage pattern determining the present day 

river course can be neither substantiated or disproved, neither can the views 

presented by Worth (1898) and Kellaway et al. (1975) that these buried rock 

channels were cut by glacial ice. It can be deduced, however, that the Erme 

actually has a buried channel grading to a lower level than at present, cut in 

the Pleistocene at a time of low sea level. 

Durrance (1975) considered the burled channels of the Erme, Teign, the upper 

channels of the Exe and Taw-Torridge to probably have been cut during the 

Devensian. As the raised wave cut platform extends along the sides of the 

Erme, the channel must predate the last interglacial and is thus older than 

Durrance suggested. Similarly, Guilcher (1969) considered that river courses 

on the French side of the Channel were cut before the Normannian 

(=Flandrian) transgression since in Brittany several beaches of Lower 
Normannian age (=Eemian ^Ipswichian) have been discovered inside them 
(Guilcher 1948). 

This study is concerned rather with events affecting the Erme in more recent 

times: these events include the state of the river in the last cold stage, the 
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following Flandrian rise in sea level and the most recent fluvial input to the 

channel. The data obtained from the Erme valley will be used to discuss the 

development of the Erme from the Devensian to the present day. A summary 

of events that have shaped the Erme valley is presented in table 8.1. This 

table relates the sediments recovered and geomorphological characteristics of 

the Erme valley to an approximate timescale, the vegetation and mining status 

of Dartmoor, sea level and other events in south-west England during the Late 

Quaternary, 

8.6.1 The Devensian 

At the time of the maximum extent of ice over Northern Europe, sea levels 

around the west coast of Britain were at least 50m lower than today (Heyworth 

et al. 1985). Even in Devensian interstadials, Harmon et al. (1983) suggested 

sea levels were probably not above -30"40m (Campbell and Shakesby 1986). 

During the initial exploration of the Erme valley augering reached a depth of c. 

-14m OD near the mouth of the Erme estuary opposite the lime kiln (see 

figure 4.2 in chapter 4). This was most probably a tough gravel or boulder 

layer rather than bedrock and it can be assumed that rock head in the estuary 

is actually deeper than this when compared to other studies of rivers in the 

South West and indeed, McFarlane (1955) detected the channel to be •29.2m 

near Owens Point (see Figure 2.4) and 21-27m (70-88ft) deep between 

Saltercrease and Mothecombe. McFarlane failed to find any evidence of the 

channel greater than one mile from the shore and he therefore suggested that 

at the time the flat bottomed channel formed the sea shore was not far off, 

whereas in North Devon, he considered the shoreline to be 8miles out into 

Bideford Bay. The age of the drowned shorelines around the coastline of 

south-west England is debataMe.undestimates have ranged from Miocene 

(Donovan and Stride 1975) to Late Quatemary (Sissons 1979). 

During the Devensian. severe periglaciation on Dartmoor, frost shattering of 

the granite and lots of snow suggest that the Erme had a higher discharge 

and load than today. These conditions may have also formed the large 
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boulder bed at Ivybridge, termed an 'alluvial fan* by Gilbertson and Sims 

(1974). This bed is predominantly of large granitic and calc-flinta boulders of 

up to 3m diameter. There is no dating evidence to suggest an age for this unit, 

although Gilbertson and Sims thought it could be 'Wolstonian'. It is best 

however to avoid assigning stage names when there is so much doubt about 

the validity of a Wolstonian glaciation, and the fact that the Quaternary record 

is more complex than once realised. There is no reason why the boulder bed 

could not be Devensian or even Early Flandrian in age. Similar boulder 

deposits were also described in the Teign gorge by Somervail (1901a,b) and it 

could be suggested that other rivers draining Dartmoor also have such 

features. 

Downstream at Ermington, large rounded boulders of granite of c. 1m 

diameter can be seen in the walls of houses. It is possible that these were 

dragged up from the river bed rather than transported from Ivybridge. Since 

the village is built on the western side of the valley, the boulders may have 

been found whilst digging foundations into the terrace slopes. If this is the 

case then the discharge of the River Erme must have been far higher than 

today and a periglacial climate would seem most favourable. 

During this periglacial episode head deposits formed in the valley. The best 

exposures of head are seen at the coast where they are derived from the 

Dartmouth Slates and form platy sediments to 3-4m thick. In cross section 

they are seen as the typical cliff profile of South Devon, that is of head forming 

a concave slope overlying a raised wave cut platform (as shown in figure 2.2). 

Some have suggested the head deposits of the South West have loess in their 

upper layers as described on the Lizard peninsula (Coombe et a/. 1956) and 

West Cornwall (Scourse 1987). Roberts (1985) alternatively suggested that in 

some cases the finer head may be a weathering product derived in situ. The 

presence of loess in the Erme head deposits has not been proved, although it 

has not been excluded as a possibility. These head deposits overlie a raised 

wave cut platform which, around the south coast of England has been 

conventionally assigned to the last interglacial. Recent dating of raised beach 
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deposits overlying wave cut platforms has suggested that beaches of different 

ages (stage 5e and 7 of the deep sea record) occur at similar altitudes along 

the south coast. No raised beach deposits have been found overlying this 

wave cut platform in the vicinity of the River Erme. 

All the sediments examined from the channel of the Erme are younger than 

Devensian in age, although they may include reworked head deposits from 

Dartmoor and valley side slopes. All the sediments are derived from local 

bedrock, and do not include any erratic material that could be used as 

evidence for glaclation of the area. 

8.6.2 The End of the Devensian (10.000) to 6.000 Years BP 

Prior to 6000 years ago, the rising sea level is the most important event in the 

lower Erme valley. Between 18,000 and 6000 years ago, Pirazzoli (1985) 

suggested that sea levels were rising at rates often greater than 10mm per 

year. None of the sediments recovered from the channel have been positively 

identified as being of this age. By considering the environment in Start Bay it 

is possible to envisage the type of situation that would have been affecting the 

River Erme. Lees (1975) dated some sediments from Start Bay at -20m OD to 

8,108±60 BP. At this time the shoreline was further out in the bay and 

bordered by lagoons, salt marshes and rivers. Thus the Erme would have 

been grading to a sea level lower than today although McFarlane considered 

the shoreline to be near the present coastline. 

8.6.3 6000-2000 Years BP 

Although most of the Flandrian sea level rise is assumed to have occurred by 

6000 years ago there is evidence to suggest that since then sea level has still 

continued to rise slowly. At Newlyn sea level has been dated to -6m chart 

datum (where chart datum is the lowest astronomical tide) at 4000 years ago, 

-3.5m CD at 3000 years ago, and -2m 2000 years ago (Thomas 1985). Since 

sediment has been recovered from -6m OD it is likely to overlap with this date 

range, although there will be differences dependent on the tidal regime of the 
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Erme and depth of water. The lowest units recovered, such as from cores 

RM1, RM2. BH11 and BH12 may date back to 4000-5000 years BP on this 

evidence. These sediments are generally the lower estuarine units and 

possibly some of the middle gravels as described above. It is difficult to define 

the point of sea level at which these lower sediments from the Erme channel 

were deposited, and as Devoy (1979) stated all Flandrian sediments must now 

occur at lower heights than when they were formed because of compaction 

and compression, thus increasing the problem of defining former sea levels. 

After sea level reached near the present day position the Erme was 

characterised by deposition of both estuarine and fluvial sediments in the 

study area. Oscillations of sea level as suggested by Morner (1969) and 

Fairbridge (1971) may imply multiple layers of fluvial and estuarine units. 

However, the method used here of extracting sediment in 10 and 20cm layers 

from boreholes may have destroyed any fine layering. On the whole, for the 

Erme region, the sediments indicate a straight forward transgressive rise of 

sea level, becoming more fluvial towards the top of the cores. In the lower 

study area, cores contain a mixture of estuarine silts, sands and gravels which 

were probably deposited with rising sea levels. The diatom studies indicate 

deposition in marine tidal inlets, salt marsh and wide mud and sand flat 

environments. The molluscan analysis showed an increasing brackish fauna 

with time, with a change from Macoma and Rissoa species at depth to 

Hydrobia at higher levels in the estuarine sequences examined in cores RM1, 

RM2 and S2. In the upper part of the study area brackish-marine sediments 

overlie a more freshwater horizon as seen towards the base of cores BH6 and 

BH11, suggesting a transgressive episode. 

The fluvial sediments underlying the organic layers, dated to around 2000 

years ago, may be related to forest clearance on Dartmoor, which began on a 

small scale in the Mesolithic, increasing into the Neolithic and the Bronze Age. 

Forest clearance was not complete until Medieval times, so sediment erosion 

of the moor, aided by human activities, has acted for the past 5-6000 years. A 

number of horizons have organic fragments, (the organic gravels), thus 
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supporting the evidence for erosion induced by land clearance. Bronze Age tin 

streaming may also have contributed to sedimentation in the lower Erme 

valley. 

8.6.4 2000 vears BP to the Present 

From 2000 years ago the dating of the sediments is less tenuous because of 

the radiocarbon analysis of the organic layers. At this time a large marshy 

area existed in the Park Driving Bridge region, extending to the Sheepham 

Brook tributary valley. The records from study of the tithe maps suggest the 

marsh extended as far downstream as location RM1. This stagnant water or 

pond-like feature may represent a transgressive episode of the sea. Parkinson 

(1981) considered that tidal movements along the Exe were greater in 

previous centuries and in Roman times may have extended to Exeter. Thus 

the River Erme may have been meeting a rising sea where conditions were 

favourable for the 'ponding' of substantial quantities of water during high tides. 

Differences in freshwater diatom and brackish-marine species over this area 

may relate to differences in timing of deposition or proximity to the river 

entering the marsh land. The situation may be compared to the River Exe, 

studied by Parkinson (1981), where in the higher regions of the estuary, at 

Clyst St Mary, the present tidal rise is caused by holding back the river water 

rather than by actual salt water advance. Therefore the author inferred that 

any 'tidal' flooding of upper marshes in the past would have produced 

freshwater marsh rather than salt marsh. Similar conditions may have existed 

in the Erme thus explaining the variable diatom units within the organic 

deposit. 

A regressive episode followed with a deposition of fluvial sediments. This may 

be because of an increase in siltation in the marsh area rather than an actual 

fall in sea level, as demonstrated by Ranwell (1974) in the case of the Fal 

estuary, Cornwall. In the Fal example, there is evidence of a transition from 

salt marsh to woodland within the last century and this is independent of 

isostatic and sea level adjustments; marsh formation has extended seawards 
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by BOOm in 100 years. Thus the change from marsh to fluvial conditions in the 

Ernie valley may have occurred independently of any sea level changes. 

At the time of this marsh phase, the lower valley may have been characterised 

by estuarine salt marsh and mud flats. Since brackish sediments overlie fluvial 

sediments at the base of BH11 and BH6 then the lower fluvial gravels from 

sites further seawards could be dated to before the marsh phase. 

Alternatively, since in the lower cores, estuarine sediments nowhere overlie 

any fluvial deposrts. the lower fluvial gravels may be younger than 2000 years 

old and thus equivalent to the upper fine sediments from the cun-ent floodplain 

area. If so. most of the sediments extracted from the Erme will have been 

deposited in the last 2-3000 years. Erosion of some sediments may have 

removed evidence of estuarine sediments overlying fluvial deposits. 

Fine alluvial sediments were deposited after the marshland episode, at a 

general rate of 0.2cm/year. Four metres of sediment Ujere deposited in 2000 

years at SB1. 2m in 1200 years at BH6 and 2.4m in 1200 years at A4. The 

upper catchment has been cleared of forest and mined for tin during this time, 

and thus it is likely that sedimentation was increased as a result. Whether a 

rate of 0.2cm/year could be attributed to natural erosion is debatable. The 

channel has been stable in the past 200 years and erosion is unlikely to have 

been acting at a continuous rate for 2000 year^ thus annual rates of 

deposition will have been higher and lower than this. Current records of river 

discharge cannot be used to assess the former characteristics of the Erme 

because of the differences in land use, and as Burrin (1985) stated, 

contemporary hydrological records have little value in understanding former 

hydrological and sediment regimes and their relation to floodplain 

development. 

Other studies have suggested that forest clearance and mining activities can 

influence fluvial processes. For example. Macklin etal. (1985) correlated 

concentrations of heavy metals in the alluvial sediments in the Lox Yeo valley, 

Somerset with documented 17th-19th century mining and earlier known mining 
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periods. Scourse (1985b) considered the Amble valley. North Cornwall to have 

silted up because of higher discharge caused by alluvial tin mining. Hazledon 

and Jarvis (1979) described 0.5-1 m of clay overlying sandy limestone gravels 

in the Windrush valley, Oxfordshire. Wood found between the two deposits 

was dated to 2660 BP which led the authors to ascribe clay deposition to a 

rapid increase in forest clearance. 

It can be argued that sedimentation in the Erme has been similarly influenced 

by anthropogenic activities. Deposition of sand and gravel deposits followed 

the marshland development possibly as a result of further clearance on the 

moor and the beginning of Medieval tin extraction. As mentioned in chapter 7. 

legal permission for forest clearance on Dartmoor was given in 1204 (Roberts 

1983) although by this stage much of the vegetation cover had already been 

removed by prehistoric groups, Greeves (1981) noted that the greatest tin 

production in Devon occurred in the second half of the twelfth century when 

production overtook that of Cornwall, and thus many of the sediments may be 

of this age. It is highly probable that later mining during Medieval times will 

have continued to contribute to sedimentation in the Erme channel and the 

fine silt units present in the upper horizons of the cores may be related to 

tinning as records suggest that widespread siltation of the estuaries in the 

area occurred in the 15th and 16th centuries. 

The methods by which sedimentation occurred in the study area can also be 

discussed. Floodplain formation is generally attributed to lateral accretion by 

point bar construction and to a much lesser extent by overbank deposition as 

in the Leopald-Wolman model of 1957. However, in recent years there has 

been a general opinion that the processes are more complex. Brown (1985) 

attributed the fine alluvial deposits of many rivers as evidence of long term 

overbank deposition consequent on human induced accelerated erosion in the 

Late Flandrian. Burrin and Scaife (1984) and Burrin (1985) found the most 

important processes for the Rivers Ou&e and Cuckmere were solifluction and 

colluviation transporting loess from the slopes to valley bottoms where it was 

reworked by rivers and deposited to form the floodplains. They considered that 
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development of silty braided channels does away with the need for overbank 

deposition. In the case of the River Erme, the combined effects of forest 

clearance and tin mining on Dartmoor, the 'upland' nature of the catchment 

and the absence of thick loessic silts suggest that much of the upper sediment 

in the Erme will have accumulated more by overbank deposition rather than 

other processes. Lambert and Walling (1987) attempted to measure 

contemporary rates of floodplain sedimentation in the River Culm in Devon. 

They found that coarsest sediment is deposited more easily as overbank 

deposits, but high clay amounts in overbank sediments were attributed to clay 

deposited as aggregates. This may explain the high proportion of clay found at 

some sites, such as in the upper horizons of BH7. 

There is no evidence of incorporation of loess in the fluvial sediments, in spite 

of descriptions of loess on Dartmoor and in the head of South Devon (for 

example Mottershead 1971). Burrin and Scaife (1984) noted that although 

there is a significant contribution of loess to valley sediments in south-east 

England, because the significance of loess decreases westwards (as 

described by Catt 1977) the proportion of locally derived material will increase 

in the same direction (Jones 1981). This is certainly true in the case of the 

Erme, where all the sediments are derived from local sources of bedrock. 

Burrin (1985) showed there has been little floodplain reworking or valley 

development in the past 500 years in many of the lowland valleys in Britain, 

and in the case of the Wealden Ouse, the past 200 years. He therefore 

suggested that the Wealden floodplairehad been formed during an earlier 

episode of Holocene alluviation. Although the rivers draining Dartmoor have 

different characteristics to the low lying catchments in south-east England, the 

position of the River Erme has changed little since the Ordnance Survey map 

of the early 1800's, suggesting that in the past 200 years at least, conditions 

have remained stable. This can be compared with East Devon where Hooke 

(1977) found that rivers have generally become more sinuous in the past 100-

150 years. 
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Drainage of the land in historic time has meant considerable silting of the 

estuary towards Mothecombe. The salt marsh has continued to develop since 

the reclaimed marsh on the opposite bank of the river was drained and 

embanked, resulting in the former being at a lower level. The causeways at 

Clyng Mill and Mothecombe are no longer passable at low tide. 

8.6.5 The Present Dav 

River activity today is generally much lower as indicated by the discharge 

records and Ordnance Survey maps. However, little is known about 

contemporary rates of deposition for rivers in Britain, as noted by Lambert and 

Walling (1987). 

The effect of current farming and landuse practises on the supply of sediment 

to the Erme today are unknown. Embankment of the. land and draining the 

farmland with ditches has confined the river flow. Flooding occurs in the lower 

valley in the salt marsh area and in the Park Driving Bridge region inundating 

some areas for a few months or so at a time in spite of the drainage ditches in 

the area. This is probably because of spring tides coinciding with higher 

rainfall, greater river discharge and storm surges. Active salt marsh growth is 

occurring, where generally plant species thrive to MHWST. As sea level is still 

believed to be rising at a rate of around 2.25mm/year (Thomas 1985) this is 

undoubtedly influencing the salt marsh grov4h. Thus the lower part of the 

Erme valley in the salt marsh region is less stable than the drained floodplain 

area where the channel position remains unchanged since the production of 

the tithe maps in the early nineteenth century. Sediment transported by the 

river may be deposited in the salt marsh areas or carried out to sea rather 

than deposited as overbank deposits in the upper floodplain area. 

8.7 Correlations with Other Sites in the South-West of England 

There is little investigation of sediments filling the channels of other rivers in 

the South West with which to compare the Erme. The 'stiff red clay with 

granitic boulders' recovered in the nineteenth century engineering works 
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cannot be compared with sediments from the Erme since drilling did not reach 

bedrock in the main channel. 

The buried channel fill in the upper estuarine reaches of the Exe and Teign as 

described by Durrance (1969, 1971) may be considered comparable to that in 

the Emie. The channels at both locations contained silty-clay or silt and fine 

sand overlying gravels. A thin peat horizon was found in the silt from the Teign 

channel although it has not been dated. Durrance found bedrock at -10m OD 

in the Exe at Exeter and in the Teign near Newton Abbott and since 

Codrington also reported rock at -9.5m in the channel of the Dart at Totnes, 

the depth to bedrock in the Erme channel may be about 10m in the Sequer's 

Bridge area. The initial drilling programme in the Erme valley reached depths 

of around 8m, although it is unclear whether the layer reached was bedrock or 

a resistant gravel horizon. 

Durrance recognised other levels of channelling, at -14m and -22.5m OD, at 

the mouths of the Rivers Exe and Teign. He thus considered that the deeper 

channels of these two rivers are not as extensively developed as the younger 

channels since the deeper channels do not extend as far upstream. It is of 

course possible that the Erme has more than one level of channelling at the 

mouth, and it is tempting to correlate the -14m level found by Durrance with 

that reached at the lime kiln near the mouth of the Erme in the initial drilling 

programme. However, further study of the channel depth at the mouth of the 

Erme is needed before definite correlations with the Exe and Teign can be 

made. 

Scourse (1985b) described a mixture of silts, clays and intercalated peats from 

4.6m depth in the Amble valley in West Cornwall. Pollen analysis of the peat 

indicated deposition in temperate conditions of the Late Flandrian and the 

more intertidal nature of the sediment makes it comparable to the cores 

obtained from the lower Erme field area. 
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It can be suggested that the Erme is a fairly typical river of the south-west of 

England. The sediments analysed are of Late Flandrian age and consequent 

on human modification to the environment. Those larger and deeper channels 

of other rivers in the South West may contain more complex suites of 

sediments and those draining to the north coast may even contain sediments 

of glacial origin. Although the Erme is much smaller than the larger Rivers 

Tamar, Taw and Torridge. it can be regarded as a simple model against which 

to start comparing the development of river valleys in the South West during 

the Quatemary. 
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CHAPTER 9 CONCLUSIONS 

In this chapter the main conclusions arising from the study of the sediments 

filling the buried channel of the River Erme will be presented. 

Burled channel deposits from up to seven metres deep have been studied 

from 20 locations in the lower valley of the Erme and five basic groups of 

sediment have been recognised: upper fine silts, middle fine units, middle 

gravels, base units and lower estuarine sediments. 

In the modern floodplain area, the upper fine silts of fine silt and sand are 

present in the upper horizons of the channel fill. These overlie a variety of 

fluvial sands and gravels, grouped as middle fine units and middle gravels 

and include a horizon of organic sands, traced between a number of cores in 

the area. This organic horizon has been radiocarbon dated to 1000-2000 

years BP. Base units were recovered from the base of cores in the 

Sheepham Brook tributary valley. Seawards, the cores become more estuarine 

and much of the sediment recovered is of shelly silts, sands and gravels, 

grouped as lower estuarine sediments. 

The radiocarbon dating of the organic horizon indicates that the overlying 2-

4m of alluvial sediments have been laid down in the last 1000-2000 years at 

an average rate of deposition of 0.2cm/year. It is likely that siltation of the 

Erme's channel in the past 2000 years has been increased by forest clearance 

and Medieval tinning on Dartmoor. Records show that the Erme river system 

has been fairly stable in the past 200 years as there seems to be little 

difference In the channel position on the tithe maps produced in the early 

nineteenth century and the position of the channel today. At the mouth of the 

Erme, however, there have been swings in the position of river due to various 

storms. 

The evidence from radiocarbon dating of the organic layer and the tithe maps 

suggests that around 1000-2000 years ago, an area of marshland was present 
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over much of the study area. This may have been caused by a change of sea 

level and resulted in a ponding of fresh water against salt water. 

Older granitic, sometimes organic, gravels underlying the organic layer and in 

the more seaward cores may have been deposited during earlier forest 

clearances of Dartmoor in the Iron Age and Bronze Age. The extent of tinning 

during these times is unknown, although it is considered that there was some 

tin streaming during the Bronze Age on Dartmoor. 

Much of the estuarine and marine sediment from the lowest horizons, 

recovered from depths of -6m OD, was probably deposited with rising 

Flandrian sea levels. Diatom and molluscan analyses suggest deposition in a 

former mud flat and salt marsh environment and generally indicate increasing 

brackish conditions with time, showing a change from more intertidal or marine 

conditions, to a salt marsh environment with siltation in the channel. It is likely 

that all the sediments recovered from the buried channel have been deposited 

in the last 4000-6000 years of the Flandrian. 

The maximum depth of the channel may have been found in the vicinity of 

Sequer's Bridge and in a small tributary valley, where a sediment resembling 

head or basal river gravels close to bedrock was found. Seawards though, the 

depth of the buried channel is still dependent on McFarlane's 1955 study. 

The age of the river valley is uncertain; it was probably cut during the 

Pleistocene or Late Tertiary, but it is at least older than Devensian since 

raised wave cut platforms, conventionally dated to the Ipswichian interglacial, 

are present on the sides of the estuary. 

This study is important in that it has implications for the nature of sediment 

filling other buried rock channels and their relationship to the surrounding 

landforms. As the South West had the richest tin deposits in Britain it is 

extremely likely that many of the valleys in Devon and Cornwall are filled with 

sediments arising from periods of tin mining. Indeed Scourse (1985b) also 
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considered that tin mining, and streaming in particular, has contributed to the 

sediments filling the River Camel in North Cornwall. Forest clearance during 

the Bronze and Iron Ages will have also increased sediment deposition and 

may be responsible for some of the older fluvial units recovered from the 

Erme's buried channel. 

This study is also important in that it substantiates the views that South Devon 

has not been affected by direct glacial action, but rather suffered a severe 

periglacial climate during the Devensian and earlier glacial periods. A glacial 

origin for these steep sided flat bottomed channels as described by Codrington 

cannot be either substantiated or disproved. The early workers described stiff 

clays with granitic boulders lying in the bottoms of the channels and the 

presence of such granitic boulders at Ivybridge (Gilbertson and Sims 1974) 

and in the Teign gorge (Somervail 1901a,b) suggest former periglacial 

conditions with high river discharge. The sediments extracted from the channel 

of the Erme are generally of slate and granitic origin and thus can be 

considered to be derived from local sources. In spite of the fact that many of 

the periglacial head deposits in the South West are said to contain loess 

deposits in the finer upper horizons, an initial examination of the fine river 

sediments did not reveal any inclusion of aeolian derived quartz grains. Like 

many recent studies of alluviation in lowland areas in England the effect of 

human activities appeaisto have greatly influenced the nature of erosion and 

deposition in the catchment. 

In terms of wider implications for this study, there has been much debate on 

the derivation of sea level curves for wide areas and whether global or local 

factors have more influence on particular areas. In the region where organic 

brackish deposits have been found, it is difficult to assess whether they were 

formed because of widespread changes in sea level or more possibly because 

of local changes in sediment yield to the river, or localised 'ponding' of water. 

In addition, drainage and reclamation of marshland will have significantly 

altered the natural processes operating in the Erme valley. 
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This research reported in this study has highlighted the difficulties of cross 

correlating sediments from a range of environments even in a fairly small area. 

Using a number of different techniques however, it has been possible to 

correlate sediments of varying types using particle size, mollusc and diatom 

analyses. The main difficulties have been in the extraction of sediment from 

the channel at depths greater than 6-7m. This was because of the very tough 

granitic gravels that were found in the channel at depth and the pressure 

exerted by the water table, making extraction of cores difficult. At Ermington 

some rounded granitic boulders appear to have originated from the channel of 

the Erme; these may also have hampered exploration if they continued to fill 

the channel further downstream in the main study area. Attempts at 

geophysical profiling, using a hammer seismograph, also failed because of 

interferences caused by the water table. Far more powerful drilling equipment 

is needed in order to penetrate the sediments filling the channel to greater 

depths than those recovered in this study. 

Future work can be suggested as a result of this study. Detailed probing of the 

sediment from Ivybridge to Mothecombe could be undertaken to assess the 

depth to bedrock, in order to calculate the approximate amount of sediment 

held in the channel of the Erme. More detail on sediment from different sites 

would aid in calculating the rates of erosion in the catchment at differing times. 

The sediments could be analysed for their heavy metal content (cf. Macklin et 

a/. 1985) to look at variation in tin content through time. This may shed some 

light on amounts of tin production in the Bronze Age since little is known about 

prehistoric mining activities on Dartmoor at present. It may also be possible to 

correlate rates of sediment deposition with known changes in tin production 

during the Medieval Age. The calculation of the volume of the fine alluvial 

sediments infilling the Erme's channel below Ivybridge could possibly be 

related to tin production figures and the total rock removed from Dartmoor by 

the tin streamers. 

Other buried channels in the South West could also be investigated for similar 

deposits. It may be that those on the north coast of the peninsula will have 
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glacial as well as fluvial and estuarine deposits. The more extensively 

developed rivers of the South West, such as the Tamar. the Fal and the Taw-

Torridge may include more complex sequences of sediments. 

Thus this research can be regarded as a pioneer study of the valley sediments 

filling the burled rock channels of the south-west of England and in spite of 

obtaining fairly shallow cores compared to the depth of the valley, the Erme 

represents an Important site for Late Quatemary studies of the region. It is 

believed that the Erme represents a typical river channel and the sediment 

sequences found may present a preliminary model against v^ lch other rivers 

of the region may be compared. Because of the size of the catchment area, 

and because the Ernie Is believed to lie o u t s i d e g l a c i a l limits. It can be 

considered to represent one of the simplest setof deposits that one might 

encounter In the peninsula. 
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APPENDIX 1 SEDIMENT SIZE ANALYSIS DATA 

SEDIMENT SIZE DATA FROM BOREHOLE SB2 

Depth Gravel Sand Silt and Clay 
(m) (as a % of the total) 

0.1-0.2 3.8 63.8 32.4 
0.5-0.6 0.5 60.2 39.3 
0.9-1.0 0.1 68.9 31.0 
1.3-1.4 2.7 62.4 34.9 
1.7-1.8 0.0 65.2 34.8 
2.1-2.2 0.1 42.5 57.4 
2.5-2.6 0.4 49.1 50.5 
2.9-3.0 3.4 46.9 49.7 
3.3-3.4 0.6 59.2 40.2 
3.7-3.8 0.5 75.2 24.3 
4.0-4.1 3.5 63.7 32.8 
4.3-4.4 12.7 58.1 29.2 

SEDIMENT SIZE DATA FROM BOREHOLE 6 

Depth Gravel Sand Silt Clay 
(m) (as a % of the total) 

0.25-0.45 0.2 41.6 47.5 10.7 
1.05-1.25 0.07 12.3 72.0 15.6 
1.65-1.85 0.1 17.9 67.9 14.1 
2.05-2.25 9.0 50.0 36.3 4.5 
2.65-2.85 . 0.1 53.9 <~ -46.0—> 
3.25-3.45 1.7 25.7 64.8 7.8 
4.05-4.25 7.1 47.1 36.4 9.4 
4.45-4.75 17.6 38.2 36.9 7.3 
5.05-5.25 41.2 33.1 21.8 3.9 
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SEDIMENT SIZE DATA FROM BOREHOLE A3 

Depth Gravel Sand Silt and Clay 
(m) (as a % of the total) 

0.1-0.2 0.1 43.0 56.9 
0.7-0.8 0.2 28.1 71.7 
0.9-1.0 0.4 51.5 48.1 
1.2-1.3 30.6 45.4 24.0 
1.6-1.7 1.7 38.3 60.0 
2.0-2.1 9.2 32.2 58.6 
2.4-2.5 15.6 43.9 40.5 
2.8-2.9 24.6 40.7 34.7 
3.1-3.2 23.2 30.9 45.9 
3.4-3.5 9.5 25.4 68.6 
3.6-3.7 36.0 27.0 37.0 
3.8-3.9 32.0 37.5 30.5 

SEDIMENT SIZE DATA FROM BOREHOLE 1 

Depth Gravel Sand Silt Clay 
(m) (as a % of the total) 

1.3-1.6 32.8 38.4 24.8 4.0 
2.3-2.6 6.8 51.3 36.3 5.6 
3.0-3.3 13.1 50.0 32.4 4.4 
3.6-4.0 21.3 44.3 29.1 5.3 
5.6 48.8 35.9 12.8 2.5 
6.3-6.5 29.3 35.1 29.5 6.2 
6.5-6.7 21.7 39.0 29.1 10.2 
7.0-7.1 36.9 34.0 20.9 8.3 

SEDIMENT SIZE DATA FROM BOREHOLE 7 

Depth Gravel Sand Silt Clay 
(m) (as a % of the total) 

0.6-0.8 0.2 16.7 65.8 17.3 
1.0-1.2 15.1 24.6 48.5 11.8 
1.6-1.8 34.5 36.1 23.7 5.7 
2.2-2.4 26.0 38.9 28.8 6.3 
3.0-3.2 36.3 38.5 18.8 6.5 
3.6-3.8 37.8 42.1 13.9 6.2 
4.2-4.4 42.4 37.3 < " -20.3 —> 
4.8-5.0 42.3 33.6 19.4 4.7 
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SEDIMENT SIZE DATA FROM BOREHOLE 9 

Depth Gravel Sand Silt Clay 
(m) (as a % of the total) 

1.5-1.7 2.3 40.6 44.9 12.1 
2.1-2.3 0.9 43.0 47.4 8.7 
2.5-2.7 2.1 49.5 42.1 6.3 
3.1-3.3 0.4 55.2 39.1 5.3 
3.7-3.9 25.7 56.1 13.4 4.9 
4.1-4.3 38.2 44.1 12.9 4.8 

SEDIMENT SIZE DATA FROM BOREHOLE 11 

Depth . Gravel Sand Silt Clay 
(m) (as a % of the total) 

1.2-1.4 8.8 37.3 38.1 15.8 
2.0-2.2 1.5 33.9 49.6 15.0 
2.2-2.4 4.4 40.2 44.0 11.4 
2.6-2.8 9.3 58.9 25.7 6.1 
3.0-3.2 4.4 42.1 42.1 11.3 
3.8-4.0 18.8 59.0 16.3 5.9 
4.4-4.6 20.1 53.3 19.0 7.6 
4.8-5.0 10.8 62.5 19.2 7.5 
5.4-5.6 20.4 55.6 19.3 4.6 
5.8-6.0 34.5 47.0 15.2 3.3 
6.2-6.4 11.2 52.1 32.2 4.5 
6.6-6.8 9.1 43.0 42.3 5.6 
6.8-7.0 9.6 26.2 57.2 7.0 

SEDIMENT SIZE DATA FROM BOREHOLE 12 

Depth Gravel Sand Silt Clay 
(m) (as a % of the total) 

0.2-0.4 24.0 38.5 30.8 6.7 
0.8-1.0 2.5 35.0 48.6 13.9 
1.6-1.8 20.0 36.6 37.0 6.4 
2.2-2.4 36.3 49.5 12.2 2.0 
3.2-3.4 19.9 49.4 27.3 3.4 
4.0-4.2 4.4 42.4 47.7 5.6 
4.8-5.0 5.8 37.4 51.4 5.4 
5.2-5.4 11.2 42.1 42.1 4.6 
5.6-5.8 13.7 48.4 34.8 3.1 

337 



APPENDIX 2 DIATOM ANALYSIS DATA 

DIATOM TAXA COUNTS FROM BOREHOLE SB2 

COSCINODISCUS 
C. apiculatus 

V. ambiguous 

CYCLOTELLA 
C. antique 
C. bodanica lemanensis 
C. meneghiani 
C. sp. 

CYMBELLA 
C. gracilis 
0. sinuata 

V. ovata 
C. ventricosa 

DEPTH IN CORE 
0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.0 4.3 

SPECIES 0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.1 4.4 

ACHNANTHES 
A. brevipes 
A. devei 

1 
1 

1 1 

A. delicatula 1 
A. hauckiana 1 11 1 3 3 1 
A. hungarica 
A. lanceolate 3 

1 
1 3 6 3 6 2 3 2 

V. rostrata 1 4 1 17 1 
V. ventricosa 1 1 

A. niarginulata 
A. microcephala 2 6 41 29 81 103 

1 
57 53 119 141 54 

AMPHORA 
A. ovalis 1 

V. libyca 
A. turgida 

1 
1 

ANOEMOENEIS 
A. follis V. honnae 1 2 1 3 3 2 4 
A. serians v. in'egularis 1 1 1 

CALONEIS 
C. formosa 2 
C. silicula v. ventricosa 1 
C. sp. 1 2 

COCCONEIS 
C. pettoides 
C. placentula y. euglypta 15 49 43 20 

2 
16 23 38 32 20 13 25 

3 7 . 8 2 9 
3 6 37 16 11 13 25 34 14 

3 
1 21 49 24 3 

5 
22 

19 32 34 49 40 76 

DIDYMOSPHENIA 
D. geminate 
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SB2 (cent.) DEPTH IN CORE 
0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.0 4.3 

SPECIES 0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.1 4.4 

DIPLONEIS 
D. ovalis 1 2 1 4 3 1 1 1 

V. oblongella 2 1 

EUNOTIA 
E. diodon v. minor 2 4 
E. exigua 1 1 1 1 3 1 
E. faba 1 3 2 13 1 
E. major compacta 3 
E. pectinalis 7 20 19 19 37 6 25 5 4 2 

f. elongata 2 1 
f. impressa 1 

E. robusta v. tetradon 2 
E. sp. 1 1 1 

FRAGILARIA 
F. breviastrata 5 
F. capuclna ' 3 3 
F. construens 7 44 34 32 23 18 23 26 13 13 4 

V. venter 1 
F. pinnata 1 1 1 
F. virescens 2 3 11 28 14 7 20 5 

V. oblongella 1 1 3 7 14 5 11 13 2 8 
F. sp. 3 

GOMPHOMNEMA 
G. acuminatum v. coronata 2 3 1 1 1 
G. angustatum 4 2 1 4 
G. constrictum 3 4 2 1 5 7 1 5 
G. gracile 2 5 4 3 1 1 
G. lanceolatum 4 
G. parvulum 3 11 52 16 35 13 35 33 22 44 

V. exillislum 6 1 4 1 

GRAMMATOPHORA 
G. marina 2 

GYROSIGMA 
G. attenuatum 2 2 2 

HANTZSCHIA 
H. amphioxys 1 

f. capitata 1 

MELOSIRA 
M. granulata 2 7 32 93 51 55 39 47 13 10 4 
M. sulcata 1 

MERIDION 
M. circulaire 3 3 3 

NAVICULA 
N. cincta 3 1 2 2 5 2 3 
N. dementis 1 
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SB2 (cent.) DEPTH IN CORE 
0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.0 4.3 

SPECIES 0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.1 4.4 

N. digito-radiata 1 2 1 
1 N. e legans 3 1 1 

N. flanatica 4 3 6 
N. has ta 2 1 
N. hungarica v. capitata 2 2 
N. mutica f. cohnii 1 1 1 1 
N. radiosa 3 
N. peregrina 1 3 18 5 22 21 2 1 

V. minor 19 36 26 1 5 3 4 
V. polaris 1 1 1 

N. pusilla 1 
N. rhyncocephala 1 
N. rotaena 2 
N. s p . 1 

NEIDIUM 
N. s p . 1 1 1 

NITZSCHIA 
N. linearis ' 2 
N. pa lea 1 6 9 3 2 1 2 3 

OPEPHORA 
O. martyi 2 2 
O. pacifica 1 

PINNULARIA 
P. bilobata 1 3 
P. borealis 2 7 6 5 3 1 3 1 
P. major 2 1 3 1 3 
P, microstauron 1 4 2 1 2 
P. obscura 2 1 6 
P. viridis 1 4 5 7 1 4 1 1 2 
P. s p . 1 1 4 

PLEUROSIGMA 
P. aestuarii 2 1 

RHABDONEMA 
R. minutum 2 1 3 

SURRIRELLA 
S. fastuosa 1 3 1 1 
S. ovata 1 2 1 

SYNEDRA 
S. parasitica 1 5 12 2 
S. pulchella 5 13 34 18 27 6 55 19 42 74 89 

V. lanceotata 1 2 2 3 14 3 5 
S. tabulata 1 
S. ulna 3 
S. vaucher iae 1 1 5 21 
TABELLARIA 
T. fenestrata 2 4 1 1 
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DIATOM TAXA COUNTS FROM BOREHOLE BH6 

0.0- 0.85 1.45 2.05 2.65 3.05 3.65 4.45 5.2i 
SPECIES 0.25 1.05 1.65 2,25 2.85 3.25 3.85 4.75 5.4 

ACHNANTHES 
A. brevipes 2 2 5 3 2 

V. parvula 1 
A. delicatula 4 31 22 45 10 18 
A. hauckiana 1 9 17 43 15 18 
A. hungarica 2 1 14 14 5 8 4 4 11 
A. lanceolata 1 1 1 19 8 5 5 

V. ventricosa 6 15 6 
A. marginulata 7 7 7 5 1 2 
A. microcephala 4 2 3 2 1 1 5 
A. septrionalis v. rhombica 2 7 

ACTINOPTYCHUS 
A. undulatus 2 1 3 1 1 2 

AMPHORA 
A. ovalis 6 3 7 

V. libyca 3 1 8 9 7 23 10 13 6 
A. turgrda 2 1 

BIDDULPHIA 
B. rhombus 1 

CALONEIS 
C. formosa 6 10 4 4 
C. procera v. parallela 3 3 

COCCONEIS 
C. peltoides 3 
C. placentula v. euglypta 45 13 11 6 3 2 3 13 2 
C. scutellum 7 2 3 3 5 12 4 

COSCINODISCUS 
C. ambiguous v. apiculatus 1 1 2 1 6 
C. sp. 2 2 1 2 4 

CYCLOTELLA 
C. antiqua 1 4 14 1 2 3 9 20 
C. bodanica v. lemanensis 1 
C. meneghiani 1 

CYMATOSIRA 
C. belgica 1 2 1 1 

CYMBELLA 
C. norvegica 2 
C. sinuata 4 10 1 2 3 7 3 

V. ovata 2 7 
C. turgida 1 1 1 
C. ventricosa 37 2 1 2 

341 



BH6 (cont.) DEPTH IN CORE (m) BH6 (cont.) 
0.0- 0.85 1.45 2.05 2.65 3.05 3.65 4.45 5.21 

SPECIES 0.25 1.05 1.65 2.25 2.85 3.25 3.85 4.75 5.41 

DIMEREGRAMMA 
D. minor 3 1 

V. nene 4 

DIPLONEIS 
D. eestuerii 2 3 2 4 2 
D. didyma 1 5 1 1 
D. fusee V. subrectengularis 2 
D. Intenupte 11 20 1 3 1 1 
D. ovalis 2 6 4 4 1 1 13 

V. oblongella 2 2 27 77 8 9 1 5 
D. smithii 12 20 3 1 1 3 
D. stroemii 1 3 2 4 2 2 4 
D. weissflogii 2 1 1 
D. sp. 1 

EUNOTIA 
E. exigua 1 1 
E. faba 1 
E. major compacta 1 
E. pectinalis 13 23 6 1 2 2 4 4 

V. elongate 2 2 

FRAGILARIA 
F. breviastrate 5 
F. cepuclna 1 
F. construens 18 21 1 1 1 1 

V. venter 1 2 8 2 2 
F. pinnate 1 3 1 8 7 
F. schulzl 4 3 1 
F. virescens 2 3 1 1 1 2 2 

V. oblongella 3 1 3 

GYROSIGMA 
G. ettentuetum 1 2 1 4 1 

GOMPHOMNEMA 
G. engustatum 1 9 9 1 1 1 2 1 
G. constrictum 20 3 1 
G. acuminatum v. coronate. 16 
G. gracile 2 10 1 10 
G. lenceoletum 3 3 
G. pen/ulum 7 1 1 4 1 4 8 

GRAMMATOPHORA 
G. marina 1 2 
G. oceenice v. mecilente 1 3 1 1 

HANT2SCHIA 
H. emphioxys 8 4 1 1 

f. capitate 4 2 
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BH6 (cont.) DEPTH IN CORE (m) 
0.0- 0.85 1.45 2.05 2.65 3.05 3.65 4.45 5.25 

SPECIES 0.25 1.05 1.65 2.25 2.85 3.25 3.85 4.75 5.45 

MELOSIRA 
M. arenaria 1 
M. granulata 9 113 3 4 1 2 9 
M. monoliforTnis 1 
M. sulcata 1 49 46 37 94 114 106 60 
M. westii 4 1 1 4 

MERIDION 
M. circuiaire 3 2 3 1 2 

NAVIULA 
N. avenacea 1 32 3 4 2 8 
N. cincta 2 1 12 6 2 4 6 
N. dementis 2 7 2 1 3 1 
N. digitoradlata 2 4 3 5 17 2 1 
N. elegans 1 3 
N. fianatica 1 2 3 
N. forcipata 3 5 28 4 4 
N. grevillei 1 
N. jarnefetii 1 
N. lyra v. elliptica 3 1 1 
N. miitica 10 2 1 

f. cohnii 1 4 2 1 2 1 7 
N. patpebralis v. angulata 2 1 1 1 2 6 5 
N. peregrina 6 34 28 19 4 8 8 

V. minor 31 39 1 13 
N. plicata 1 
N. punctata v. marina 8 
N. pupula 2 
N. pusilla 15 35 15 4 2 2 8 
N. radiosa 5 
N. rhyncocephala 1 3 1 
N. rotaena 1 34 16 2 2 2 15 
N. sp. 1 1 

NEIDIUM 
N. sp. 1 

NITZSCHIA 
N. hungarica 7 3 4 2 
N. linearis 3 3 7 2 11 7 4 11 
N. navlcularis 2 4 2 
N. palea 6 5 2 1 
N. pandurifomiis 1 2 
N. punctata 1 1 2 1 2 
N. tryblionella 8 5 7 . 1 6 

OPEPHORA 
0. martyi 1 3 7 19 7 13 14 
0. pacifica 1 2 9 31 22 
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BH6 (cont.) DEPTH IN CORE (m) 
0.0- 0.85 1.45 2.05 2.65 3.05 3.65 4.45 5.25 

SPECIES 0.25 1.05 1.65 2.25 2.85 3.25 3.85 4.75 5.45 

PINNULARIA 
P. bilobata 1 1 
P. borealis 16 5 3 
P. gibba 1 
P. microstauron 12 2 1 3 
P. obscura 14 1 2 1 
P. viridis 4 5 1 2 1 1 1 1 
P. s p . 8 2 1 1 

PODOSIRA 
P. stelliger 4 3 7 3 6 5 3 

RHABDONEMA 
R. minutum 2 

RHAPHONEIS 
R. amphiceros 2 1 2 

V. elongata 1 
R. nitida 2 2 2 
R. sunirel la 1 1 5 5 5 7 1 

RHOICOSPHENIA 
R. curvata 6 3 8 4 6 20 

SCOLIOPLEURA 
S. tumida 1 
S. s p . 1 

STAURONEIS 
S. phoenicenteron 1 1 
S. parvula v. producta 1 3 1 
S. s p . 1 

SURRIRELLA 
S. fastuosa 1 
S. ovata 2 2 1 1 1 1 
S. smithii 1 1 

SYNEDRA 
S. parasitica 1 1 16 
S. pulchella 9 27 3 3 1 3 4 3 1 18 

V. lanceolata 3 
S. vaucher iae 7 1 

TABELLARIA 

T. fenestrata 7 1 1 1 

TRACHYNEIS 

T. a s p e r a 1 1 3 

TRACHYSPHAENIA 
T. austral is 1 5 1 
TRICERATIUM 
T. a l temans 1 
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DIATOM TAXA COUNTS FROM BOREHOLE A3 

DEPTH IN CORE 
0.1 0.7 0.9 1.2 1.6 2.0 2.4 2.8 3.1 3.4 3.6 3.8 

SPECIES 0.2 0.8 1.0 1.3 1.7 2.1 2.5 2.9 3.2 3.5 3.7 3.9 

ACHNANTHES 
A. brevipes 1 3 
A. clevei 1 
A. delicatula 1 3 7 4 1 1 4 
A. hauckiana 1 5 4 18 2 2 9 
A. hungarica 2 1 2 1 1 5 16 9 6 7 
A. lanceolata 25 28 13 24 21 11 17 25 16 10 1 5 

V. rostrata 1 1 1 4 2 
V. ventricosa 4 1 1 4 3 1 

A. marglnulata 1 1 3 3 4 
A. microcephala 1 3 2 1 57 73 45 28 3 8 25 

ACTINOPTYCHUS 
A. undulatus 

AMPHORA 
A. ovalis 2 3 6 

V. libyca 3 2 8 7 3 1 9 12 11 
A. turgida 3 2 

CALONEIS 
C. formosa 1 1 1 1 
C. procera v. parallela 1 1 3 3 1 
C. sllicula 

V. ventricosa 1 3 
C. sp. 2 2 1 4 1 

COCCONEIS 
C. distans v. bahuensis 3 
C. peltoldes 3 
C. placentula v. euglypta 38 70 80 66 57 47 49 46 8 32 41 
C. scutellum 5 

COSCINODISCUS 
C. apiculatus v. ambiguous 1 1 1 

CYCLOTELLA 
C. antlqua 1 2 1 8 1 1 
C. meneghiana 3 1 13 2 1 1 3 

CYMBELLA 
C. amphicephala 2 1 

v. intermedia 2 2 1 1 
C. aspera 2 2 1 
C. gracilis 2 2 1 
C. sinuata 15 29 54 42 10 7 12 20 3 6 5 11 

v. ovata 2 4 2 2 2 1 1 1 1 
C. turgida 6 5 3 4 4 9 3 6 11 6 
C. venticosa 1 2 1 2 14 8 10 4 7 5 

DIMEREGRAMMA 
D. minor 
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A3 (cont.) 

SPECIES 

DEPTH IN CORE 
0.1 0.7 0.9 1.2 1.6 2.0 2.4 2.8 3.1 3.4 3.6 3.8 
0.2 0.8 1.0 1.3 1.7 2.1 2.5 2.9 3.2 3.5 3.7 3.9 

DIPLONEIS 
D. didyme 
D. fusca 

V. subrectanguleris 
D. intemipto 
D. ovelis 

V. oblongelle 
D. smtthii 
D. stroemii 

1 1 

1 
16 

5 
12 1 

1 

11 11 
2 

2 
13 
1 

25 
1 
1 

EUNOTIA 
E. entique 
E. diodon v. minor 
E. febe 
E. grunowii f. subundulete 
E. major compacta 
E. pectinalis 

v. elbngete 
f. impresse 

E. robuste v. tetredon 
E, sp. 

1 
42 21 12 12 
1 1 2 1 

1 1 
16 8 

1 
1 

FRAGILARIA 
F. breviastrate 
F. capucina 
F. construens 

V. venter 
F. lepostauron 
F. pinnata 
F. virescens 

v. oblongella 
F. sp. 

4 1 19 19 26 7 
3 3 4 7 1 1 2 

1 2 1 5 1 3 
1 6 6 9 3 6 13 30 16 

3 
11 

3 6 3 6 5 13 3 13 
3 2 1 4 1 1 10 2 6 6 

6 3 3 1 8 9 27 3 32 9 

GOMPHOMNEMA 
G. acuminatum v. coronate 7 2 1 2 1 
G. angustatum 39 19 7 17 7 3 4 7 9 8 
G. constrictum 8 4 1 1 2 1 1 
G. gracile 4 7 1 2 2 13 6 1 1 2 4 
G. lanceolatum 1 
G. pan/ulum 12 15 4 10 7 6 12 13 4 3 1 

exillisium 6 2 5 1 5 
G. sp. 2 6 2 2 

GRAMMATOPHORA 
G. oceenice v. macilente 

GYROSIGMA 
G. attentuatum 1 1 5 1 3 6 3 

HANTZSCHIA 
H. amphioxys 

f. capitete 
1 

7 5 
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DEPTH IN CORE 
0.1 0.7 0.9 1.2 1.6 2.0 2.4 2.8 3.1 3.4 3.6 3.8 

SPECIES 0.2 0.8 1.0 1.3 1.7 2.1 2.5 2.9 3.2 3.5 3.7 3.9 

MELOSIRA 
M. granulata 3 1 1 1 7 1 
M. sulcata 1 1 1 10 19 22 6 
M. westii 2 

MERIDION 
M. circulaire 6 

f. constricta 17 3 6 9 4 2 5 2 4 1 

NAVICULA 
N. avenacea 26 56 71 35 116 121 55 29 27 42 32 58 
N. cincta 1 4 9 6 6 4 20 1 9 20 4 
N. dementis 1 
N. digito-radiata 10 
N. elegans 2 5 1 2 3 1 
N. forcipata 4 
N. grevillei 4 3 
N. hasta 1 1 1 4 2 3 
N. humerosa 1 4 
N. hungarica v. capitata 1 1 2 
N. Jamefetii 2 
N. mutica 2 1 4 

f. cohnii 2 1 1 2 8 1 
N. palpebralis v. angulata 1 
N. peregrina v. polaris 7 1 6 5 1 4 1 2 1 3 
N. pupula 1 4 1 1 2 
N. punctata v. marina 1 
N. pusilla 2 5 11 19 8 7 14 
N. radlosa 2 1 3 10 4 7 
N. rhyncocephala 11 3 6 
N. rotaena 1 1 4 2 4 5 2 35 13 19 9 
N. sp. 1 1 2 1 

NEIDIUM 
N. sp. 

NITZSCHIA 
N. hungarica 
N. linearis 
N. palea 
N. punctata 
N. tryblionella 
N. sp. 

10 
1 

1 

2 
17 

14 13 
7 4 
1 

OPEPHORA 
O. martyi 
O. pacifica 

1 1 
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DEPTH IN CORE 
0.1 0.7 0.9 1.2 1.6 2.0 2.4 2.8 3.1 3.4 3.6 3. 

SPECIES 0.2 0.8 1.0 1.3 1.7 2.1 2.5 2.9 3.2 3.5 3.7 3. 

PINNULARIA 
P. bilobata 2 2 2 1 2 
P. borealis 1 5 1 4 1 4 2 2 1 
P. gibba 10 4 1 1 2 1 1 
P. lata V. minor 1 1 1 2 
P. nnajor 5 2 1 1 2 1 3 
P. microstauron 3 6 3 2 1 3 1 2 3 

V. ambigua 2 1 
P. nobilis 2 
P. obscura 15 4 9 5 2 3 5 2 1 3 2 
P. viridis 3 2 2 14 1 1 6 2 6 11 10 4 
P. sp. 6 5 4 1 13 2 5 3 5 3 

PODOSIRA 
P. stelliger 1 1 1 3 1 

RHAPHONEIS 
R. amphiceros 1 1 
R. belgica 2 
R. surrirella 3 

RHAPOLODIA 
R. gibberula v. producta 1 1 1 1 

RHOICOSPHENIA 
R. curvata 1 5 3 

STAURONEIS 
S. anceps 1 1 1 1 
S. parvuta v. producta 1 1 2 1 1 
S. phoenicenteron 2 2 1 3 1 1 
S. smithli 1 1 1 1 
S. sp. 1 1 1 

SURRIRELLA 
S. ovata 1 2 1 

SYNEDRA 
S. parasitica 3 3 1 2 2 1 1 2 1 

V. lanceotata 1 1 1 1 
S. pulchella 65 17 29 38 16 20 14 19 2 27 34 2( 

V. lanceolata 1 1 1 1 
S. tabulate 10 1 
s. ulna 6 
S. vaucheriae 2 5 2 6 2 11 1 4 

TABELLARIA 
T. fenestrate 2 1 1 1 1 3 2 

TRACHYNEIS 
T. aspera 

TRACHYSPHAENIA 
T. australis 
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DIATOM TAXA COUNTS FROM BOREHOLE BH11 

1.2 1.4 2.4 3.0 3.8 4,4 4.8 5.4 6.0 6.6 6.8 
SPECIES 1.4 2.0 2.6 3.2 4.0 4.6 5.0 5.6 6.2 6.8 7.0 

ACHNANTHES 
A. brevipes 4 2 3 1 2 1 
A. clevei 1 
A. delicatula 7 8 5 2 3 4 31 42 11 
A. hauckiana 6 4 8 1 7 4 26 23 5 
A. hungarica 6 5 4 1 2 1 1 
A. (anceolata 3 1 3 1 8 4 10 

V. rostrata 1 
V. ventricosa 1 1 1 

A. marginulata 1 1 2 
A. microcephala 1 6 17 8 4 3 3 2 8 4 
A. septentribnalis v. rhombica 1 3 1 
A. sp. 11 

ACTINOPTYCHUS 
A. undulatus 1 2 2 3 1 1 3 

AMPHORA 
A. ostraeria 2 1 
A. ovalis 22 9 1 7 

V. libyca 4 4 30 14 8 17 7 8 5 20 
A. turgida 1 2 1 1 1 

ANOEMOENEIS 
A. follis V. homae 3 1 

CALONEIS 
C. amphisbaena v. subsalina 1 1 
C. formosa 2 1 1 1 2 
C. procera v. parallela 1 
C. sp. 1 

COCCONEIS 
C. peltoides 1 1 2 
C. placentula v. euglypta 4 36 11 10 13 6 7 5 5 16 18 
C. pseudomarginata 1 
C. scutellum 3 2 3 3 4 12 10 5 

V. stauroneiformis 2 2 

COSCINODISCUS 
C. apiculatus v. ambiguous 1 1 2 2 1 2 2 
C. nitidus 1 
C. sp. 2 2 2 1 1 2 

CYCLOTELLA 
C. antiqua 1 4 10 25 5 2 5 20 20 
C. bodanica lemanensis 2 1 2 1 1 
C. meneghiana 2 

CYMATOSIRA 
C. belgica 1 3 1 
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1.2 1.4 2.4 3.0 3.8 4.4 4.8 5.4 6.0 6.6 6.8 
SPECIES 1.4 2.0 2.6 3.2 4.0 4.6 5.0 5.6 6.2 6.8 7.0 

CYMBELLA 
C. amphicephele v. intermedia 1 1 
C. gracilis 2 1 
C. turgida 25 21 1 4 4 6 1 1 
C. sinuate 1 25 26 15 11 2 13 5 7 2 4 

v. ovete 2 1 
C. ventricose 7 5 2 1 3 3 

DIMEREGRAMMA 
D. minor 1 1 5 

v. nana 4 1 3 6 3 1 

DIPLONEIS 
D. aestuerir 1 2 2 1 2 2 
D. crebo 1 
D. didyme 3 9 7 10 5 3 1 1 3 
D. fusee 1 

v. subrectengularis 1 
D. interrupta 2 1 1 1 
D. ovelis 4 5 5 3 1 1 1 

V. oblongelle 1 2 1 
D. stroemi 1 11 24 23 11 17 8 4 1 
D. weissflogii 1 1 
D. sp. 2 1 2 

EUNOTIA 
E. diodon v. minor 1 1 
E. exigue 1 
E. faba 2 1 1 1 1 
E. major compacte 20 
E. pectinalis 1 14 3 3 1 1 1 3 6 9 1 

V. elongete 1 1 
E. robusta v. tetredon 1 

FRAGILARIA 
F. breviastrate 1 
F. construens 2 42 8 6 7 2 5 6 4 1 1 

v. venter 2 3 3 1 1 1 
F. pinnete 1 2 1 1 1 1 
F. schultzi 1 1 1 4 8 
F. virescens 1 4 2 1 2 1 

V. oblongella 11 7 4 4 3 1 1 

GOMPHOMNEMA 
G. ecuminatum v. coroneta 2 1 1 
G. angustatum 1 3 2 1 1 1 3 
G. constrictum 1 
G. gracile 2 1 
G. lenceoletum 4 
G. parvulum 5 12 2 3 2 2 1 
G. sp. 1 6 
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1.2 1.4 2.4 3.0 3.8 4.4 4.8 5.4 6.0 6.6 6.8 
SPECIES 1.4 2.0 2.6 3.2 4.0 4.6 5.0 5.6 6.2 6.8 7.0 

GRAMMATOPHORA 
G. macilenta 3 2 2 
G. marina 1 1 
G. oceanica v. macilenta 1 2 1 3 4 

GYROSIGMA 
G. attentuatum 1 1 2 1 1 2 

HANTZSCHIA 
H. amphioxys f. capitata 7 1 1 

MELOSIRA 
M. arenaria 1 
M. granulata 10 82 31 55 46 14 16 18 3 4 2 
M. nnonolrformis 1 1 
M. sulcata 21 60 55 57 73 38 93 83 140 
M. westii 1 1 4 10 2 12 6 16 

MERIDION 
M. circulaire 1 1 5 

f. conslricta 1 4 1 1 ^ 1 1 

NAVIULA 
N. avenacea 28 19 7 5 16 11 5 
N. cincta 16 6 5 6 11 1 3 2 
N. dementis 3 3 1 1 1 
N. digito-radiata 1 4 3 3 2 1 2 2 
N. flanatica 2 3 
N. fordpata 2 2 3 2 
N. grevillei 1 
N. humerosa 1 3 2 1 2 1 1 
N. Jamefetii 1 1 1 
N. mutica 2 1 1 2 

f. cohnii 1 1 1 7 1 
N. palpebralis v. angulata 3 2 1 2 1 1 1 
N. peregrina 1 2 8 2 2 3 

V. minor 5 5 8 8 2 12 4 
N. pundata v. marina 1 
N. pusilla 10 2 2 2 2 2 1 3 
N. radiosa 1 
N. rotaena 1 
N. sp. 2 

NITZSCHIA 
N. hungarica 5 3 2 1 3 4 2 
N. linearis 2 2 4 1 4 2 6 1 2 
N. navicularis 3 3 3 1 2 1 1 
N. palea 6 3 4 1 20 3 2 
N. panduriformis 1 1 1 2 2 
N. pundata 1 1 1 3 
N. rhyncocephala 1 
N. tryblionella 1 1 1 2 1 
N. sp. 2 
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BH11 (cont.) DEPTH IN CORE (m) 
1.2 1.4 2.4 3.0 3.8 4.4 4.8 5.4 6.0 6.6 6.8 

SPECIES 1.4 2.0 2.6 3.2 4.0 4.6 5.0 5.6 6.2 6.8 7.0 

OPEPHORA 
O. martyi 1 2 2 6 10 4 1 4 8 16 13 
O. pacifica 5 
O. schwartzii 1 1 4 1 1 7 4 

PINNULARIA 
P. borealis 1 2 1 3 1 
P. lata 1 1 
P. major 1 1 1 1 
P. microstauron 3 1 1 1 3 
P. obscura 4 3 1 
P.viridis 1 1 3 1 1 1 1 1 
P. sp. 7 2 3 3 1 3 

PODOSIRA 

P. slelliger 1 1 4 3 1 8 4 4 3 12 

RHABDONEMA 

R. minutum 1 

RHAPHONEIS 
R. amphiceros 1 1 1 1 
R. belgica 1 
R. nitida 1 1 
R. sumrella 1 4 2 3 1 3 2 2 6 
RHOICOSPHENIA 

R. curvata 12 4 6 15 1 20 15 

SURRIRELLA 
S. fastuosa 1 
S. ovata 1 . 1 1 4 2 
SYNEDRA 
S. pulchella 35 25 34 13 2 22 1 2 7 1 3 

V. lanceolata 1 1 1 
S. parasitica 4 1 1 1 1 1 

V. subconstricta 1 
S.tabulata 1 1 2 
S. ulna 1 2 1 2 
S. vaucheriae 2 1 2 
TABELLARIA 

T.fenestrata 3 8 4 1 3 2 1 1 

TRACHYNEIS 

T.aspera 4 2 1 1 1 1 2 

TRACHYSPHAENIA 
T. australis 2 1 1 5 2 
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DIATOM TAXA COUNTS FROM BOREHOLE RM2 

4.1- 5.0- 6.0- 7.1 
SPECIES 4.2 5.1 6.1 7.2 

ACHNANTHES 
A. delicatula 7 13 10 17 
A. exigua 1 
A. hauckiana 18 7 6 9 
A. lanceolata 1 9 2 8 
A. marglnulata 1 
A. microcephala 2 3 2 8 
A. turgida 2 3 1 

ACTINOPTYCUS 
A. undulatus 1 2 1 

AMPHORA 
A. ovalis V. libyca 2 7 5 

ANOMOENEIS 
A. follis V. homae 1 

CALONEIS 
C. procera v. parallela 1 
C. sp. 1 

CAMPYLODISCUS 
C. adriaticus 1 

COCCONEIS 
C. placentula v. eugtypta 5 5 8 5 
C. scuteilum 15 28 23 16 

V. slauroneiformis 2 2 

COSCINODISCUS 
C. aplculatus 2 1 4 11 
C. nitidus 1 

CYCLOTELLA 
C. antiqua 2 5 29 

CYMATOSIRA 
C. beigica 5 2 2 8 

CYMBELLA 
C. sinuata 1 
C. ventricosa 1 1 1 

DIMEREGRAMMA 
D. minor 4 3 1 6 

V. nana 3 4 6 10 
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RM2 (cont.) DEPTH IN CORE (m) RM2 (cont.) 
4.1- 5.0- 6.0- 7.1 

SPECIES 4.2 5.1 6.1 7.2 

DIPLONEIS 
D. aestuarii 5 6 6 5 
D. didyma 3 2 1 2 
D. ovalis 1 
D. stroemi 3 2 
D. weissflogii 1 1 

EUNOTIA 
E. diodon v, minor 2 
E. exigua 2 
E.faba 4 1 
E: major compacta 3 
E. pectinalis 1 4 4 2 
E. SP. 1 

FRAGILARIA 
F. breviastrata 1 1 4 
F. construens 1 

V. venter 1 5 
F. lepostauron 1 2 2 
F. pinnata 3 2 2 1 
F. schuizi 2 
F. virescens 3 3 1 

V. obtongella 2 2 

GOMPHOMNEMA 
G. parvulum 2 2 5 

GRAMMATOPHORA 
G. marina 2 5 
G. oceanica V. macilenta 4 

GYROSIGMA 
G. attentuatum 3 2 1 7 

MELOSIRA 
M. sulcata 225 190 185 11-
M. westii 6 3 3 

MERIDION 
M. drculaire 1 

NAVICULA 
N. cincta 3 7 4 3 
N. digitoradiata 2 7 6 
N. flanatica 2 1 3 7 
N. forcipata 13 12 29 21 
N. humerosa 2 1 3 
N. lyra v. elliptica 1 
N. palpebralis v. angulata 2 
N. peregrina 

V, minor 1 1 
V. polaris 2 
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RM2 (cont.) DEPTH IN CORE (m) 
4.1- 5.0- 6.0- 7.1 

SPECIES 4.2 5.1 6.1 7.2 

N. pusilla 2 
N. radiosa 1 
N. sp. 1 

NITZSCHIA 
N. hungarica 4 16 18 
N. linearis 3 2 1 
N. navicularis 1 
N. palea 1 3 6 
N. panduriformis 1 1 3 
N. punctata 1 

OPEPHORA 
0. martyi 24 10 4 4 
0. pacifica 4 3 3 

PINNULARIA 
P. microstauron 1 1 
P. sp. 1 

PLAGIOGRAMMA 
P. staurophonum 1 

PODOSIRA 
P. stelliger 6 7 1 6 

RHAPHONEIS 
R. amphiceros 4 1 1 1 
R. belgica 1 1 
R. nitida 5 
R. sunirella 9 12 9 9 

RHOICOSPHENIA 
R. Curvata 3 

SCOLIOPLEURA 
S. tumlda 1 

SURRIRELLA 
S. ovata 1 

SYNEDRA 
S. pulchella 1 1 1 7 
S. vaucheriae 1 

TRACHYNEIS 
T. aspera 2 1 4 

TRACHYSPHAENIA 
T. australis 1 1 

TRICERATIUM 
T. favus 4 
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DIATOM TAXA COUNTS FROM BOREHOLE S2 

SPECIES 

DEPTH IN CORE (m) 
0.1 0.5 1.2 1.6 1.9 2.3 2.5 2.7 3.2 3.8 4.4 5.0 
0.2 0.6 1.3 1.7 2.0 2.4 2.6 2.8 3.3 3.9 4.5 5.1 

ACHNANTHES 
A. brevrpes 

V. pan^ula 
A. devei 
A. delicatula 
A. hauckiana 
A. lanceolata 

V. rostrata 
V. ventricosa 

A. microcephala 

8 4 
12 10 12 14 34 

9 

1 1 

9 10 
43 41 1 
4 14 

2 
1 
18 13 17 

4 8 
33 62 

4 

ACTINOPTYCHUS 
A. undulatus 

AMPHORA 
A. ovalls 

V. libyca 
A. turgida 15 

ANOMOENEIS 
A. follis V. homae 
A. serians 

V. irregularis 

CALONEIS 
C. formosa 48 16 51 8 10 

CAMPYLODISCUS 
C. balearicus 

COCCONEIS 
C. distans bahuensis 
C. peltoides 
C. placentula v. euglypta 
C. scutellum 

V. stauroneiformis 

1 
5 1 
10 8 

4 
28 

1 
4 
12 
8 
1 

9 5 
11 18 
5 4 

COSCINODISCUS 
C. apiculatus 

V. ambiguous 
C. nitidus 
C. sp. 

11 8 
2 

22 21 12 3 

CYCLOTELLA 
C. antiqua 
C. meneghiana 

5 17 15 14 25 
5 2 

22 32 3 17 

CYMATOSIRA 
C. belgica 
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S2 (cont) DEPTH IN CORE (m) 
0.1 0.5 1.2 1.6 1.9 2.3 2.5 2.7 3.2 3.8 4.4 5.0 

SPECIES 0.2 0.6 1.3 1.7 2.0 2.4 2.6 2.8 3.3 3.9 4.5 5.1 

CYMBELLA 
C. gracilis 1 
C. turgida 1 5 1 1 
C. norvegica 2 5 1 
C. sinuata 2 1 

DIMEREGRAMMA 
D. minor 1 1 3 1 1 2 1 2 

V. nana 2 6 2 4 4 3 1 6 4 

DIPLONEIS 
I 1 

5 

14 3 
27 

D. aestuarii 3 2 3 7 5 3 
D. didyma 5 24 3 11 4 8 2 
D. fijsca 

V. subrectangularis 1 1 
D. interrupta 5 1 
D. ovalis 2 1 11 1 1 

V. oblongella 2 7 1 2 16 2 
D. smithii 
D. stroemii 1 6 9 4 2 1 
D. weissflogii 3 5 

EUNOTIA 
E. bidentula 1 
E. diodon v. minor 1 
E. exigua 1 2 1 
E. faba 1 6 
E. major compacta 1 1 
E. pectinalis 1 3 3 2 
E. robusta v. tetradon 1 
E. sp. 3 1 

FRAGILARIA 
F. breviastrata 1 1 
F. construens 1 1 1 3 1 

V. venter 
F. pinnata 

1 F. virescens 1 
V. oblongella 1 2 5 

F. sp. 1 

GOMPHOMNEMA 
G. graclle 2 3 1 
G. pan/ulum 1 1 1 1 4 

GYROSIGMA 
G. attentuatum 

HANTZSCHIA 
H. amphioxys 

f. caprtata 16 

1 

1 
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0.1 0.5 1.2 1.6 1.9 2.3 2.5 2.7 3.2 3.8 4.4 5.0 
SPECIES 0.2 0.6 1.3 1.7 2.0 2.4 2.6 2.8 3.3 3.9 4.5 5.1 

MELOSIRA 
M. arenaria 1 
M. granulata 1 1 

82 M. sulcata 60 114 237 191 93 76 89 69 7 112 5 82 
V. siberica 1 6 5 

M. westii 43 

NAVICULA 
N. avenacea 1 
N. cincta 65 63 5 2 125 2 11 3 1 
N. digito-radiata 5 20 1 
N. elegans 2 5 1 
N. flanatica 3 3 3 4 2 31 4 
N. forcipata 2 16 
N. gracilis' 9 * 

N. grevillei 1 9 3 23 29 184 26 
N. halophiia 1 7 
N. humerosa 1 3 1 2 1 1 
N. Jamefetii 1 
N. lyra v. elliptica 8 4 2 2 2 3 5 11 19 21 
N. mutica f. cohnii 1 1 1 
N. palpebralis v. angulata 1 3 2 3 3 
N. peregrina 

1 V. minor 2 6 1 3 2 1 1 4 
V. polaris 1 1 1 1 2 

N. plicata 6 
N. radiosa 1 5 5 1 1 
N. rhyncocephala 1 
N. rotaena 1 
N. sp. 8 2 1 

NEIDIUM 
N. sp. 1 

NITZSCHIA 
N. hungarica 5 5 3 2 5 8 5 
N. linearis 1 1 1 1 2 2 2 1 1 
N. littoralis 1 
N. navicularis 2 1 1 18 
N. palea 59 4 3 3 48 5 14 5 7 
N. pandurifomriis 2 1 2 2 
N. punctata 1 2 2 1 1 2 

1 N. tryblionella 1 
N. sp. 1 5 1 

OPEPHORA 
O. martyi 7 1 4 8 5 4 10 8 1 5 
0. pacifica 3 2 3 2 1 
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S2 (cont.) DEPTH IN CORE (m) 
0.1 0.5 1.2 1.6 1.9 2.3 2.5 2.7 3.2 3.8 4.4 5.0 

SPECIES 0.2 0.6 1.3 1.7 2.0 2.4 2.6 2.8 3.3 3.9 4.5 5.1 

PINNULARIA 
P. borealis 2 2 
P. lata V. minor 9 1 
P. microstauron 1 2 1 
P. sublanceotata 1 
P. viridis 1 
P. sp. 1 

PLEUROSIGMA 

P. aestuarii 1 5 1 

PODOSIRA 

P. stelliger 3 8 25 15 9 1 14 4 6 5 

RHAPHONEIS 
R. amphiceros 1 2 2 1 2 

V. elongata 1 
R. nrtida 4 10 2 
R. sun-irella 4 1 4 2 5 1 9 7 3 4 4 
RHABDONEMA 

R. minutum 1 

RHOICOSPHENIA 

R. cun^ata 1 1 

SCOLIOPLEURA 
S. tunmida 2 5 
S. sp. 1 
SURRIRELLA 
S.fastuosa 2 1 1 1 1 
S. ovata 3 2 
SYNEDRA 

S. pulchella 2 2 5 6 2 4 3 1 2 

TABELLARIA 

T. fenestrata 2 3 

TRACHYNEIS 

T. aspera 2 2 3 3 1 

TRACHYSPHAENIA 

T. australis 1 1 3 2 

TRICERATIUM 
T. favus 2 5 3 1 
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DIATOM SPECIES AND SAl IMITV G R Q U P I N Q C , pp. i^p |N A L L CQRF.< ; 

ACHNANTHES 
A. brewoes Agardh 
A. brevipes Agardh v. parvula (KOtzing) Cleve D 
A. clevei Grunow ° 
A. deiicatula (Kulzing) Grunow 
A. exioua Grunow ° 
A. hauckiana Grunow ^ 
A. hunaarica Grunow ^ 
A. lanceolata (de Briblsson) Grunow f ? 
A. lanceofata (de Brebisson) Grunow v. rostrata (Ostrup) Hustedt 2B 
^ J a n c ^ ( d e B r e b i s s o n ) Grunow £ i m ^ f o 
A. niararnulata Grunow ^ ° 
A. microcephala (Kutzing) Gmnow 
A. septentrionalis (Oslrup) v. rhombica (Ostrup) A. Cleve 

ACTINOPTYCHUS 
A. undulatus (Bailey) Ralfs 

ANOMOEONEIS 
A. serians (Br§bisson) Cleve v. irreqularisfDonkln^ (Z) 
A. follis V. hannae ^ ' 

AMPHORA 
A. ostrearia (De Brebisson) lyj 
A. ovalis (Kutzing) 2B 
A- ovalis (Kutzing) v. Iibyca (Ehrenberg) Cleve ZB 
A. turqida Gregory 

BIDDULPHIA 

B. rhombus (Ehrenberg) W. Smilh M 

CALONEIS 
C. amphisbaena (Bory) Cleve v. subsalina (Donkin) Cleve B 
C. formosa (Gregory) Cleve g 
C. procera (Ostrup) v. parallela 
C. silicufa (Ehrenberg) Cleve 2B 
^- s't'cuta (Ehrenberg) Cleve v. ventricosa (Donk) (ZB) 
CAMPYLODISCUS 
C. adriaticus Grunow 
C. balearicus 

COCCONEIS 
C. distans (Gregory) bahusiensis 
C. peltoides Hustedt l̂ g 
Cjolacentuja Ehrenberg v. euqlvota (Zg) 
C. pseudonarqinata Gregory 
C. scuteKum Ehrenberg 

C. scutellum Ehrenberg v. stauronerformis W. Smith MB 

COSCINODISCUS 
C. apicilatus Ehrenberg v. ambiguous Grunow M 
C. nitidus Gregory ^ 
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CYCLOTELLA 
C. antiqua W. Smith 
C. bodanica Eulenst lemanensis 
C. meneghiniana Kutzing 

CYMATOSIRA 
C. belgica Grunow 

Z 
(Z) 
BZ 

CYMBELLA 
C. amphicephala Naeg. 
C. amphicephala v. intermfidia Cleve 
C- gracilis (Rabenhorst) Cleve 
C. norveaica Grunow 
C. sinuata Gregory 
C. sinuata Gregory v. ovata Hustedt 
C. turgida (Gregory) Cleve 
C. ventricosa KOtzing 

DIDYMOSPHENIA 
D. geminata (Lyngberg) M. Schmidt 

DIMEROGRAMMA 
D- minor (Gregory) Ralfs 
P' "^'"Qf (Gregory) Raifs y j iana (Gregory) Van Heurck 

DIPLONEIS 
D. aestuarii Husterft 
D. crabo Ehrenberg 
D. didvma (Ehrenberg) Cfeve 
D- fusca (Gregory) Cleve 
D J u s ^ (Gregory) Cleve v. subrectanoularis Cleve 
D. interruDta (KOtzing) Cleve 
D. ovalisfHilse) Cleve 
p. ovalis (Hilse) Cleve v. oblonoella (Naegeli) Cleve 
D- smithii (De Brebisson) W. Smith 
D. weissffoaii (Schmidt) Cleve 
D. stroemi Hustecft 

Z 
Z 
ZB 

ZB 
ZB 

M 
M 

BM 

M 
(M) 
B 
ZB 
ZB 

M 
M 

EUNOTIA 
E. antiqua A. Bg. 
E. bidentula W. Smith 
E. diodon Ehrenberg v. minor Grunow 

exigua (de Br^bisson) Rabenhorst 
E- faba (Ehrenberg) Grunow 
E. grunowii forma subundulata 
E. major (W.Smith) Rabenhorst compacta 
E. pectinalis (Dillwyn) Rabenhorst 
E. pectinalis (Dillwyn) Rabenhorst f. elongata V. Heuri< 
E. pectinalis (Dillwyn) Rabenhorst f. impressa (Ehrenberg) Hustedt 
E. robusta Raffs v. tetradon 

Z 
(Z) 
(Z) 

FRAGIURIA 
F. breviastrata Grunow 
F. capucina Desmazieres 
F. construens (Ehrenberg) Grunow 
F (Ehrenberg) Grunow v. venter (Ehrenberg) Grunow 
F. lepostauron (Ehrenberg) Hustedt^ 
F. pinnata Ehrenberg 

ZB 
Z 
ZB 
ZB 
Z 
ZB 
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F. schuizi Brockmann 
F. virescens Ralfs 2 
F. vrrescens Ralfs v. oblonoella Grunow (2) 

GOMPHONEMA 
G. acuminatum Ehrenberg v. coronata (Ehrenberg) W Smith 28 
G. anqustatum (KOtzing) Rabenhorst 7B 
G. constrictum Ehrenberg 7D 
G. gracile Ehrenberg 2B 
G. lanceolatum Ehrenberg 
G. pan/ulum KOtzing 2B 
G. pan/ulum Kutzing v. exillissimum Grunow (2B) 

GRAMMATOPHORA 
G. macilenta W. Smith 
G. marina (Lyngbye) KOtzing ^ 
G. oceanica (Ehrenberg) Grunow v. macilenta (W. Smrth) Grunow M 

GYROSIGMA 

G. attenuatum (Kutzing) Rabenhorst 2B 

HANTZSCHIA 
H. amphjoxvs (Ehrenberg) Grunow 28 
H. amphioxvs (Ehrenberg) Grunow f. capitata (Muller) ZB 
MASTOGLOIA 

M. lacustris Grunow v. alpina Btvn. 

MELOSIRA 
M. arenaria Moore 2 
M. qranulata (Ehrenberg) Ralfs 28 
M. monilifomiis (MOIIer) Agardh nju, 
M. sulcata (Ehrenberg) Kutzing jy, 
M. sulcata (Ehrenberg) Kutzing v. siberica 

M. westii W. Smith ^ 

MERIDION 
M. ciroulaire Agandh 28 
M. circulaire Agardg f. constricta (Ralf) van Heurck ZB 
NAVICULA 
N. avenacea de Br6bisson o 
N- cincta (Ehrenberg) Van Heurck 28 
N. dementis Grunow D 
N. digitoradiata (Gregory) Ralfs p 
N. distans ° 
N. eleqans W. Smith D 
N. ffanitica Grunow l̂ o 
N. forctpata Greville vlz 
N- gracilis (Ehrenberg) Kutzing 2B 
N. qrevlllei Agardh w 
N. halophila (Grunow) Cleve o 
N. hasta ^ 
N. humerosa De Br^brsson 
N. hunqarica Grunow v. capitata (Ehrenberg) Cleve 7 
NJamefetli Hustedt 
N. Ivra Ehrenberg v. elliptica 
N. mutica KOtzing g2 
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^^\ca KOtzing v. cohnii (Hilse) Gnjnow O T 
N. oblonoa Kutzing 
N. palpebralis v ang.rî fo f/̂ >-̂ ^̂ ry) cfnrr 7.7. 
N. pereqrina (Ehrenberg) Kutzing 
N. pereqrina (Ehrenberg) Kutzing v. minor D7 
^. pereqnna (Ehrenberg) Kutzing v. polaris (Lagst.) Cleve 
N. plicate Donkin ^ J 
N. punctata W. Smith v. marina (Raffs) 
N. pupula KOtzing 
l!LEy§!!!a W.Smith ^ ? 
N. radiosa Kutzing 
N. rhvncocephala Kutzing f P 
N. rotaena (Rabenhorst) Grunow 2 
NEIDIUM 
Neidium sp. 

NITZSCHIA 
N. hunoarica Grunow 
N. linearis W. Smith p 
N. tittoralis Grunow 
N. navicularis (De Br^bisson) Grunow o 
N- Patea (KOtzing) W. Smith 
N. panduriformis Gregory f. 
N. punctata (W. Smith) Grunow o,-
N. trvblionella Hantzsch 

OPEPHORA 
O. martvi H r̂ibaud ZB 
O. pacifica (Gnjnow) Petit 
O. schwartzii (Grunow) Petit 

PLAGIOGRAMMA 
P. staurophorum (Gregory) Heiberg 

M 

PINNUURIA 
P. bllobata 
P. borealis Ehrenberg 
P. qibba Ehrenberg | ° 
P. lata (De Br^bisson) W. Smith 
EJata ( De Br^bisson) W. Smilh v. minor Grunow 
P. major (Kutzing) Cleve 
P. microstauron (Ehrenberg) Cleve Z 
P. microstauron (Ehrenberg) Cleve v. ambiaua Meister 7 
P- nobihs Ehrenberg % 
P. obscura Z 
P. sublanceolata (Boye Petit) Cleve 
P- v'ridis (Nitzsch) Ehrenberg 2B 

M 

PLEUROSIGMA 

P. aestuarii (De Br§bisson) W. Smith BM 

PODOSIRA 

P. stelliqer (Bailey) Mann ^ 

RHABDONEMA 
R. minutum Kutzing 1̂  
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RHAPHONEIS 
R. amphiceros Ehrenberg 
R. amphiceros Ehrenberg v. elonoata Per. 
R. belgica Grunow 
R- nitida (Gregory) Grunow 
R. surirella (Ehrenberg) Grunow 

RHOPALODIA 

R. qibberula (Ehrenberg) v.producta (Grunow) (B) 

RHOICOSPHENIA 

R. cun/ata (Kutzing) Grunow 2B 

SCOLIOPLEURA 

S- tumida (Oe Br§bisson) Rabenhorst 

STAURONEIS 
S. anceps Ehrenberg 2 
S. parvula v. producta 
S. phoenicenteron Ehrenberg 2B 
S. smithii Grunow 2B 
SURIRELU 
SJastuosa (Ehrenberg) KOtzing 
S. ovata KOtzing 7D 
S. smrthii RaJfs 
SYNEDRA 
S. parasitica W. Smith 2B 
S. parasitica (W. Smith) Hustedt v. lanceolata (ZB) 
S. parasitica (W. Smrth) Hustedt v. subconstricta Grunow ZB 
S. pulchella (Raffs) Kutzing ' B2 
S. pulchella (Ralfs) Kutzlng v. lanceolata B 
S. tabulata (Agardh) KOtzing BM 
S- ulna (Nitzsch) Ehrenberg 2B 
S. vaucheriae Kutzing 2 
TABELLARIA 
T. fenestrata (Lyngbye) KOtzing 2B 
T. flocculosa (Roth) Kutzing 2 

TRICERATIUM 
T. altemans Bailey 1̂1 
T. favus Ehrenberg ^ 

TRACHYSPHAENA 

T. australis Petit 1̂  

TRACHYNEIS 
T. aspera (Ehrenberg) Cleve 1̂  

Brackets indicate the salinity group of the main species. 
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NUMBERS OF TAXA IN EACH SALINITY GROUPING FOR EACH C O R E 

MBF SB2 

Depth in Fresh Fresh- Brackish Brackish Brackish Marine- Marine Unknown Total 
core (m) Brackish -Fresh -Marine Brackish 

0.5-0.6 12 3 0 5 2 0 0 0 1 5 0 

0.9-1.0 6 0 106 14 19 0 0 1 0 2 0 0 

1.3-1.4 132 185 3 4 41 0 0 1 5 3 9 8 

1.7-1.8 118 2 2 5 18 31 1 0 4 3 4 0 0 

2.1-2.2 195 141 2 7 2 2 0 0 0 17 4 0 2 

2.5-2.6 2 1 5 166 7 2 0 0 0 4 16 4 2 8 

2.9-3.0 138 158 5 5 3 4 1 0 1 13 4 0 0 

3.3-3.4 175 182 2 0 18 0 0 3 10 4 0 8 

3.7-3.8 211 117 4 3 19 0 0 2 7 3 9 9 

4.0-4.1 193 108 75 6 0 0 2 16 400 

4.3-4.4 159 124 89 11 1 0 3 19 4 0 6 

MBF BH6 
Depth in Fresh Fresh- Brackish Brackish Brackish Marine- Marine Unknown Total 
core (m) Brackish -Fresh -Marine Brackish 

0-0.25 7 0 108 10 7 0 0 4 1 2 0 0 

0.85-1.05 7 0 2 7 3 2 8 3 2 0 0 2 7 4 1 2 

1.45-1.65 5 7 6 139 5 5 4 8 5 10 7 8 13 4 0 5 

2.05-2.25 3 4 153 5 3 7 8 2 5 7 3 2 4 0 0 

2.65-2.85 19 133 3 8 113 9 12 71 5 400 

3.05-3.25 2 6 9 7 19 105 6 16 128 5 4 0 2 

3.65-3.85 7 52 11 105 6 40 171 1 3 9 3 

4.45-4.75 2 8 112 7 47 6 2 7 169 4 4 0 0 

5.25-5.45 7 2 9 0 49 6 2 2 14 104 12 4 0 5 

MBF AS 

Depth in Fresh Fresh- Brackish Brackish Brackish Marine- Marine Unknown Total 
core (m) Breckish -Fresh -Marine Brackish 

0.1-0.2 7 8 2 0 2 68 3 3 0 0 0 13 394 

0.7-0.8 6 2 2 4 3 2 0 6 0 0 0 3 6 3 9 4 

0.9-1.0 51 2 1 7 2 9 8 0 0 0 3 19 3 9 9 

1.2-1.3 5 2 2 4 6 42 41 0 0 3 17 401 

1.6-1.7 94 186 16 123 0 0 4 10 4 3 3 

2.0-2.1 109 137 3 5 135 0 0 2 19 4 3 7 

2.4-2.5 8 7 193 15 6 9 0 0 1 3 5 4 0 0 

2.8-2.9 9 6 195 2 5 5 7 0 0 15 3 3 421 

3.1-3.2 103 184 16 4 6 2 2 3 4 2 0 4 0 7 

3.4-3.5 5 9 193 2 9 5 9 0 8 3 5 18 401 

3.6-3.7 7 9 154 21 4 5 4 4 31 56 394 

3.8-3.9 9 0 168 2 3 7 0 0 0 2 0 2 9 4 0 0 
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MBF BH11 

Depth in Fresh Fresh- Brackish Brackish Brackish Marine- Marine Unknown Total 
core (m) Bracldsh -Frosh -Marine Brackish 

1.2-1.4 13 3 6 0 0 0 0 1 2 5 2 

1.8-2.0 106 2 0 0 3 8 3 9 0 1 7 9 4 0 0 

2.4-2.6 6 5 185 2 7 51 6 7 48 11 400 
3.0-3.2 3 4 148 41 2 4 3 5 123 2 3 401 

3.8-4.0 52 146 18 4 7 6 10 115 10 4 0 4 

4.4-4.6 8 5 8 3 10 1 10 107 3 2 0 0 

4.8-5.0 21 6 5 2 7 3 5 5 12 124 10 2 9 9 

5.4-5.6 2 8 5 3 13 2 7 3 3 6 5 9 201 
6.0-6.2 2 4 104 12 9 0 0 21 132 7 3 9 0 

6.6-6.8 42 91 14 8 6 2 2 3 121 10 389 

6.8-7.0 41 9 2 7 3 5 5 11 2 0 5 4 400 

MBF RM2 

Depth in Fresh Fresh- Brackish Brackish Brackish Marine- Marine Unknown Total 
core (m) Brackish -Fresh -Marine Brackish 

4.1-4.2 7 41 1 2 7 5 41 2 7 0 8 400 

5.0-5.1 19 42 6 2 7 6 5 8 125 19 4 0 2 

6.0-6.1 17 3 7 18 2 5 7 65 2 1 3 19 401 

7.1-7.2 40 4 8 2 5 2 6 6 5 3 174 21 3 9 3 

MBF S2 
Depth In Fresh Fresh- Brackish Brackish Brackish Marine- Marine Unknown Total 
core (m) Brackish -Fresh -Marine Brackish 

0.1-0.2 . 5 174 12 71 6 18 107 7 400 

0.5-0.6 2 3 8 5 7 6 8 4 19 197 6 4 0 9 

1.2-1.3 19 19 5 17 5 2 4 309 3 401 
1.6-1.7 2 2 2 0 7 2 4 8 3 8 2 8 0 1 400 

1.9-2.0 41 3 3 12 42 5 13 146 6 2 9 8 
2.3-2.4 4 199 2 5 7 7 2 6 8 9 2 2 406 

2.5-2.6 52 6 4 12 5 9 8 2 0 164 2 2 401 
2.7-2.8 67 7 3 9 6 7 6 18 148 14 4 0 2 

3.2-3.3 2 3 5 1 4 2 3 10 2 5 0 

3.8-3.9 6 11 0 5 3 5 170 0 2 0 0 

4.4-4.5 1 67 0 3 9 0 3 7 2 3 5 49 4 2 8 

5.0-5.1 41 4 9 4 100 0 18 158 31 401 
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APPENDIX 3 MOLLUSCAN ANALYSIS DATA 

MOLLUSCAN SHELL COUNTS FROM BOREHOLE S2 

Species 

depth weight Hv Hu Mb Ce Rs Gb Lt Av A 
(m) (g) 

0.3 61.7 - - - - - - - - -
0.8 81.9 - - - - - - - -
1.1 94.5 - - - - - - - -
1.2 97.5 - - 1 - - - - -
1.3 118.7 - 2 8 1 - - - 1 
1.4 200.1 84 - 27 1 - 1 - 1 
1.5 183.5 129 1 7 1 - -
1.6 137.5 93 13 6 1 - - - 1 
1.7 135.0 60 18 4 1 - 1 
1.8 157.3 54 37 18 2 1 - - 1 
1.9 162.4 45 11 6 2 1 - - 1 
2.0 130.0 13 12 2 1 1 - 1 1 
2.1 168.9 25 5 8 1 - - - 1 
2.2 156.9 3 8 2 1 1 - -
2.3 120.3 19 6 10 1 1 - 1 1 
2.4 143.9 7 8 1 1 1 1 -
2.5 172.9 5 1 1 1 - - 1 
2.6 155.2 3 6 4 4 1 - - 1 
2.7 113.9 2 5 1 1 1 - 1 1 
2.8 94.4 3 - 1 1 1 - -
2.9 78.2 1 - 1 - - - - 1 
3.2 116.0 1 - 1 - • - -
3.4 114.2 - - - - - - -
3.5 97.7 - - 1 1 1 - - 1 
3.6 143.1 1 1 3 1 - - - 1 
3.7 184.5 4 7 4 3 - - 1 
3.8 139.5 26 28 1 1 1 - -
3.9 97.8 7 2 1 1 - - 1 
4.0 114.3 1 2 7 1 1 1 - 1 
4.1 138.9 2 7 4 1 6 2 - - 1 
4.2 109.8 2 3 8 3 8 1 - 1 
4.3 238.4 2 7 15 1 21 1 - 2 
4.6 137.7 17 7 9 6 3 1 - 1 
4.7 213.9 4 32 25 3 30 1 - 3 6 
4.8 129.5 5 23 21 1 11 1 1 • 7 
4.9 171.4 5 44 37 2 18 3 1 - 3 -
5.0 140.7 49 205 47 8 19 5 1 - 2 6 
5.1 101.7 15 108 21 3 8 - - - 1 

Key to Species Names: 

Hv Hydrobia ventrosa 
Hu Hyrobia ulvae 
Mb Macoma balthica 
Ce Cardium edule 
Rs Rissoa parva 

Gb Gibberula spp. 
Lt Littorina saxatilis 
Av Alvania spp. 
Tb Tubonilla spp. 
A.B.C.D.E.U Unknown 
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MOLLUSCAN SHELL COUNTS FROM BOREHOLE RM2 

Species 

ciepth weight Hv Hu Mb Ce Rs Gb Lt Av A B C 
(m) (g) 

2.6 91.0 2 - 1 1 - -
2.8 81.6 - 1 1 1 - -
2,9 68.8 - - 1 1 - -
3.0 91.8 - - 1 1 1 - 1 - - - -
3.1 88.0 1 1 1 1 1 - 1 - - - -
3.2 77.5 - 1 1 1 1 - -
3.3 86.8 - - 1 1 2 . . . - - -
3.4 94.9 1 1 1 1 - -
3.5 68.6 - - 1 1 - -
3.6 93.6 4 8 1 1 1 . . . 1 1 -
3.7 72.1 8 17 6 1 1 - -
3.8 62.6 8 14 6 4 1 - -
3.9 45.3 6 12 2 3 3 - • - - - -
4.0 75.9 20 24 14 3 1 - 1 1 1 - -
4.1 71.1 30 69 5 4 1 - 1 1 1 
4.2 59.2 13 32 18 1 1 - 1 - • - -
4.3 60.9 13 15 12 1 2 - - - - - -
4.4 49.9 3 9 3 1 1 . . . . - 1 
4.5 52.2 7 19 14 1 1 - -
4.6 55.2 13 16 11 1 3 - 1 - 1 - 1 
4.7 53.1 4 14 8 3 5 - - - - - 1 
4.8 46.1 2 11 7 1 6 1 - - - - -
4.9 53.0 4 6 3 2 3 - - - - 2 -
5.0 50.1 7 21 6 3 1 - -
5.1 54.1 3 9 11 2 6 - - - - - 3 
5.2 62.5 3 15 7 3 9 - - - - 1 4 
5.3 64.6 1 5 4 4 6 1 - - 2 - 1 
5.4 80.5 2 3 2 4 - 2 
5.5 65.0 2 2 6 2 3 - - 1 1 - -
5.6 70.3 1 4 5 1 3 1 - - 2 - 2 
5.7 72.1 1 10 2 1 3 1 - - - 2 2 
5.8 79.4 2 9 6 7 5 - - - 3 - 4 
5.9 64.7 2 9 8 2 8 - - - - - 3 
6.0 78.4 - 12 18 3 11 1 - - 1 2 2 
6.1 91.4 - 9 11 3 7" 1 - - 1 - -
6.2 98.2 - 14 9 4 8 - - - 1 - -
6.3 82.1 - 16 17 4 10 1 - - 2 1 5 
6.4 76.2 - 9 9 2 5 - - - 1 - -
6.5 70.0 - 3 1 1 1 . . . 2 1 1 
6.6 98.8 - 8 10 1 5 . . . . 1 1 
6.7 78.2 - 4 3 - 3 1 1 - - - -
6.8 85.0 2 5 12 1 3 - - - - - -
6.9 85.3 - 4 3 - 2 - - - 1 1 -
7.0 90.5 - 2 6 1 1 - 1 - - - -
7.1 63.6 - 5 1 1 1 - - - - - 1 
7.2 66.6 2 8 4 1 2 . . - - 1 -

Key to Species Names: 
Hv Hydrobia ventrosa 
Hu Hyrobia ulvae 
Mb Macoma balthica 

Gb Gibberula spp. 
Lt Littorina saxatilis 
Av Alvania spp. 

C e Cardium edule 
Rs Rissoa parva 
A.B.C.D.E.U Unknown 
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MOLLUSCAN SHELL COUNTS FROM BOREHOLE RM1 

Species 

depth weight Hy Hu Mb Ce Rs Gb U Av Tb A B c 0 E u 
(m) (g) 

3.0 67.0 . 1 - 1 - 1 . 1 1 - 1 - - -
3.1 74.7 1 - 1 - - - - - - - - -
3.2 66.1 - 1 1 1 - - 1 - 1 • - -
3.3 70.0 - 1 4 - 2 1 - - - -
3.4 63.7 2 4 2 1 2 1 1 - - - - -
3.5 70.7 3 2 1 2 1 • - - - -
3.6 75.3 1 3 2 3 - 2 1 1 - - - -
3.7 121.5 3 3 2 6 2 2 - 1 1 - -
3.8 99.5 3 3 4 1 2 - 1 1 - 1 -
3.9 115.0 1 3 3 1 2 1 2 1 - 1 -
4.0 128.5 1 - 2 1 2 1 1 - - - -
4.1 98.9 - - 10 1 6 1 1 - 4 - -• - -
4.2 123.5 1 - 1 - 1 1 1 1 - - 1 
4.3 99.0 - - 3 2 - - 1 - - - -
4.4 74.3 - - 4 1 1 - 1 - - 1 -
4.5 103.1 1 1 1 4 10 1 1 2 - 1 1 
4.6 74.1 - - 4 3 1 - 1 1 - - -
4.7 87.4 - 1 1 2 2 - 1 1 - - -
4.8 97.4 1 - 1 1 2 - 2 1 - 1 2 
4.9 98.9 - 1 3 3 2 1 1 - - 1 -
5.0 73.3 - - 2 1 6 - - - 1 - -
5.1 97.1 - 10 4 14 2 1 - 5 1 - -
5.2 108.1 1 2 8 1 7 1 1 1 1 - - - -
5.3 103.2 - - 6 2 4 - 1 - - -
5.4 81.4 - 3 1 1 7 2 1 1 - 1 - - - -
5.5 106.4 3 2 9 1 8 - 1 1 - -
5.6 138.7 4 6 20 5 24 1 1 7 - 1 2 1 1 
5.7 105.3 - 3 23 2 34 1 6 5 1 2 2 
5.8 119.1 1 2 28 11 23 2 2 7 2 5 - - 2 
5.9 104.2 - 1 12 4 28 2 1 1 - 3 2 - • 2 
6.0 85.0 - 2 12 3 13 - 1 1 4 - 3 2 1 
6.1 72.5 - - 8 1 9 1 1 1 - 2 - -
6.2 79.7 - - 8 4 5 - 1 - - - -
6.3 85.4 1 1 4 2 1 - 1 1 - - 1 
6.4 70.5 1 1 6 1 2 1 1 - - 1 -
6.5 96.4 - 2 11 1 18 - 2 4 - 3 1 1 
6.6 100.2 1 2 16 1 38 1 1 4 4 2 1 
6.7 72.5 - 2 8 1 8 - 2 - 1 1 1 
6.8 80.0 - 1 5 1 3 - 2 1 - 1 - -
6.9 86.3 - - 1 1 1 1 1 1 1 - -
7.0 115.6 - - 1 1 2 - 1 1 - - - - 3 
7.1 112.0 - 1 2 - - - 1 - - - -
7.2 40.7 - - 2 - 1 - - - - - -

Key to Species Names: 

Hv Hydrobia venirosa 
Hu Hyrobia uh/ae 
Mb Macoma balthica 
C e Cardium edule 
Rs Rissoa parva 

Gb Gibberula spp. 
Lt Uttorina saxatHis 
Av Atvania spp. 
Tb Tubonilla spp. 
A.B.C.D.E.U Unknown 
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MOLLUSCAN SHELL COUNTS FROM BOREHOLE 12 

Species 

depth weight Hv Hu Mb Ce Rs Gb Lt A B C 
(m) (g) 

2.6 184.4 . - - -
2.8 83.8 3 7 1 -
3.0 181.7 1 2 1 1 
3.2 84.5 4 1 7 1 
3.4 81.8 5 4 2 1 - - -
3.6 86,2 1 6 1 -
3.8 88.6 3 9 6 1 . - -
4.0 94.1 1 4 3 1 1 - - -
4.2 89.1 3 3 5 1 1 
4.4 136.4 2 4 4 1 - - -
4.6 92.2 1 5 1 -
4.8 155.5 4 3 4 1 - - 1 
5.0 134.1 - 1 1 1 - - - 1 
5.2 80.2 1 2 1 - 1 
5.4 74.5 - 1 1 1 - - - -
5.6 73.2 - 2 2 - -

MQLLUSCAN SHELL COUNTS FROM BOREHOLE 11 

depth weight 
(m) (9) 

4.2 
4.4 
4.6 
4.8 
5.0 
5.2 
5.4 
5.6 
5.8 
6.0 
6.2 
6.4 
6.6 
6.8 

85.1 
103.2 
128.6 
113.3 
131.1 
129.3 
166.6 
141.5 
133.8 
134.8 
145.5 
154.7 
91.2 
119.9 

Species 

Hv Hu Mb Ce A 

1 

Key to Species Names: 

Hv Hydrobia ventrosa 
Hu Hyrobia uh/ae 
Mb Macoma balthica 
Ce Cardium edule 
Rs Rissoa parva 

Gb Gibberula spp. 
Lt Littorina saxatilis 
A.B.C Unknown 
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