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Chapter 1 Introduction




1.1 Context

The review of the literature presented herein indicates that a fractional calculus
approach has not been used to model the rainfall-streamflow process at the storm event
timescale. However, there is evidence from applications in the_related areas of longer
period time-series analysis, pollution-transport hydrology and systems analysis that the

approach has potential for use in modelling the rainfall-streamflow transformation.

1.2 Aim and Objectives
The aim of the programme of study was to apply the fractional calculus to deterministic
rainfall-streamflow modelling at the storm event timescale. The objectives of the work

were.

e to develop a theory for the conceptual modelling of the rainfall-streamflow
transformation using a fractional order systems approach;

e to fit the parameters to the derived models using observed rainfall-streamflow event
data for a range of catchment scales;

e to assess the validity of the model forms and investigate the sources of uncertainty;
and

e to identify potential areas for future development.

1.3 Contribution to knowledge

A programme of research was undertaken which involved the novel application of the
fractional calculus technique to deterministic rainfall-streamflow modelling at the storm

event timescale. A new theoretical framework was developed, tested and evaluated.



1.4 Thesis Structure

Chapter 2 presents a review of the research literature on the computational approaches
to deterministic rainfall-streamflow modelling and identifies the limitations of existing
methods and some of the key challenges for future research. This provides a context for
the programme of work. The key features of the fractional calculus and the recent
applications to science and engineering that are relevant to the problem of rainfall-
streamflow modelling are reviewed in Chapter 3. The theory of fractional order
hydrologic systems is developed in Chapter 4 and the new model equations are derived.
The computational model testing methodology together with details of the catchments
studied is presented in Chapter 5. Chapter 6 contains the model test results for a range
of catchment scales and events. The validity of the theoretical models is discussed in
the light of the test results in Chapter 7, and the conclusions and recommendations are

summarised in Chapter 8.



Chapter 2 Review of Deterministic Computational
Rainfall-Streamflow Modelling




2.1 Computational Rainfall-Streamflow Modelling

Computational modelling of the transformation of rainfall to streamflow is important for
a number of civil engineering applications, for example flood and drought forecasting,
flood defence design, and predicting the effects of climate and land use change on the
hydrological response of | catchments. The mathematical modelling of this
transformation is not precise, however, because of the complex behaviour of the
hydrologic processes, the heterogeneity of the flow pathways, and uncertainties in the
measured data used. This is evident in the numerous models that have been developed
(Beven 2000; Singh and Woolhiser 2002). The selection of the model by the user
depends on the application, the physical and temporal scales of the catchment processes
to be represented and the availability of data (in particular whether the catchment is
gauged). These factors influence the “perceptual model” of the user (Beven 2000). The
approximate formulation of the user’s perceptual model as a mathematical model may
be carried out in a number of different ways, and may be classified (Wheater 2002) as
metric, conceptual, hybrid-metﬁé-conceptual or physics-based. The model may also be
categorised in terms of whether it represents the variation in physical processes across
the area of the catchment explicitly (a distributed model)} or uses spatially averaged
processes (a lumped model). Furthermore it is possible to distinguish between
stochastic and deterministic models where stochastic indicates that some of the model

variables can take random values according to pre-defined probability distributions.

2.2 Metric Models for Runoff

2.2.1 Linear models
Metric (black box) models use a systems-based approach to transform inputs to outputs
through fitting parameter values to a predefined mathematical transfer function using

observations. They do not describe processes. The most commonly used in rainfall-



runoff modelling is the unit hydrograph (UH) technique developed from the work of
Sherrﬁan (1932). It assumes that the system is a causal, linear, time-invariant process
that represents the conservation of the volume of rainfall that becomes outflow (Dooge
1973). Causality refers to systems where the output only depends on inputs up to the
present time, which is true for streamflow. The linearity assumption permits the use of
the principles of superposition and proportionality in the solution of the system
equations. In addition, the time-invariance assumption implies that the catchment
characteristics are unchanged over the duration of the streamflow event so that the
coefficients in the system equations are constants. These latter two assumptiohs are

approximations for streamflow systems (Minshall 1960).

Typically, in the development of the perceptual UH model for effluent streams, the total
streamflow hydrograph associated with a given rain storm event is assumed to be made
up of stormflow (sometimes referred to as runoff) from the event rainfall plus baseflow
draining from water stored in the catchment following infiltration from previous rainfall
events. In order to satisfy volume conservation over storm event timescales, the
effective rainfall that is net of “losses” due to infiltration, evapotranspiration, and
surface ponding, needs to be derived from the observed rainfall. Similarly the
stormflow needs to be derived from the observed streamflow hydrograph.
Consequently, the assumed closed system of effective event rainfall transformed into
stormflow may be approximated by the unit hydrograph analysis. This can be
expressed mathematically as the stormflow (runoff), (), at a time 7 due to an impulsive,
effective rainfall input, i(rj, at an earlier time 7 which is obtained through the

convolution integral for a linear system on a continuous time scale (equation (2.1)):
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where A(t) is the impulse response function or instantaneous unit hydrograph (IUH).
The IUH is a theoretical construct that represents the runoff response to a given volume

of effective rainfall falling instantaneously rather than in a finite duration.

The effect of the rainfall losses and the baseflow on the relationship of the observed
(total) rainfall to the observed (total) streamflow is sufficiently non-linear to warrant
modelling separately to the process of short term stream response (i.e. effective rainfall
to stormflow) to a rainfall event. Consequently, over storm event timescales, the actual
catchment system is open (non-conservative). In order to use the UH technique it is
necessary, therefore, to apply a loss model to estimate the effective rainfall hyetograph,
calculate the stormflow using the UH, and separately predict the baseflow so that the

total streamflow can be obtained.

However, the identification of a definitive loss model remains an open problem, and a
number of approaches have been proposed. Horton (1933) assumed that the generation
of runoff takes place when the rainfall intensity exceeds the rate of infiltration into the
soil. Field measurement of infiltration capacity at the plot scale typically shows a
power law decay curve with time, tending towards a constant rate as the soil becomes
saturated. Horton (1940) showed that this rainfall loss rate by infiltration can be
modelled as an exponential decay curve. However, in practice, there is often substantial
variation in infiltration rate across the catchment area making it difficult to identify
uniquely and antecedent conditions influence the starting infiltration rate (Beven 2000).
A simplification, at catchment scale, is to assume a constant loss rate such that the
volume of effective rainfall equates to the runoff volume. This is the basis of the W-
index and ¢-index methods, where the former allows for the interception of water by

vegetation and the retention of water in surface ponding (Cook 1946). However, these



indices are event specific, and, therefore, somewhat arbitrary for a given catchment.
Correlation of rainfall-streamflow records with meteorological and catchment
characteristics including antecedent moisture conditions has been used to develop
catchment-specific predictor charts and equations for losses, including the antecedent
precipitation index, 4P/ (Kohler and Linsley 1951), and the related catchment wetness
index, CWI (Natural Environment Research Council 1975a). The CWI concept has been
further utilised in the formulation of non-linear filters that separate losses from rainfall
(Whitehead er al. 1979; Jakeman er al. 1990). In this approach the CWI represents
catchment soil moisture content and is estimated by applying a first-order discrete time
filter (i.c. low pass filter) to antecedent observed rainfall (similar to the calculation of
the AP/). The rainfall can be adjusted to take account of evapotranspiration changes
through empirical multipliers that depend on temperature. Young and Beven (1991;
1994) simplified the rainfall filter by replacing CWI by streamflow on the basis that
streamflow results from a low pass filtered rainfall series. In this way the effective
rainfall can be calculated as a function of the product of observed rainfall and time-
lagged streamflow. The alternative approach of a water balance at the lumped
catchment scale to calculate losses based on the conservation of volume allowing for
evapotranspiration and soil moisture deficit has been successfully applied for daily data
rather than at the hourly timescale (Natural Environment Research Council 1975a;
Evans and Jakeman 1998). The UK Flood Studies Team (Natural Environment
Research Council 1975a) developed a percentage runoff (PR) to represent conceptually
the contributing area effect of a proportion of the whole catchment to stormflow. As
with the W-index and #-index methods, the PR is estimated such that the volume of
effective rainfall equates to the volume. of runoff. However, Webster and Ashfaq
{(2003) found that the predictor equations obtained from regression analysis of observed

event runoff estimates with catchment characteristics were not robust. Consequently the



revitalised FSR/FEH rainfall-runoff method (Kjeldsen er al. 2005) in the UK uses a
moisture balance approach but with the Probability Distributed Model (PDM) of Moore
and Clarke (Moore and Clarke 1981; Moore 1985) to represent the assumed distribution

of soil moisture storage capacity over the area of a catchment.

The separation of baseflow from the observed streamflow so that the stormflow can be
identified and matched to effective rainfall (e.g. for estimation of PR or the ¢-index) is
also subject to considerable uncertainty (Tallaksen 1995). Horton (1933) defined the
“master depletion curve” (master recession curve) as that part of the observed
streamflow recession hydrograph that results from baseflow after the stormflow has
-ceased and noted that it can be modelled by Maillet’s (1905) exponential decay equation
which assumes that baseflow is proportional to the remaining storage volume for no
recharge. This is equivalent to a linear reservoir model with no inflow. However, Clark
et al (2009) have found that single linear reservoir modelling of baseflow recession
becomes less accurate with increasing catchment size. The parameters of the
exponential decay equation form of the master recession curve can be found by curve
fitting to the recession limb of observed hydrographs. The point at which the master
curve departs from the observed hydrograph denotes the end of stormflow and
continuation of baseflow. Simpler methods for determining this end point include
evaluating the change in curvature of the recession hydrograph or the use of filters
Tallaksen (1995). However tracer experiments by Sklash and Farvolden (1979) have
shown the significant contribution of groundwater stored in the catchment (prior to a
storm event) to the whole streamflow hydrograph, emphasising that stormflow and
baseflow are not independent processes and, consequently, the premise of baseflow

separation is no longer appropriate.



A key aspect of the linear systems approach is to identify the unit hydrograph (i.e. the
deconvolution problem). For gauged catchments (i.e. with records of observed rainfall

and stormflow) it is possible to express equation (2.1) in discrete form as equation (2.2):
R ,
re=Y ih_,, fork=1,273.. (2.2)

where the rainfall, outflow and unit hydrograph are sampled at the same time interval.
The resulting set of simultaneous linear equations is over-determined for the unknown
ordinates of the unit hydrograph. The methods of solution that have been attempted
(including substitution, iterative, least squares, linear and quadratic programming, and
transformation techniques) with varying degrees of success are discussed in full by
Dooge and O’Kane (2003). In general the unit hydrographs identified from the
observed data tend to be sensitive to errors in the measurements, often magnifying the
effects. Furthermore, some methods can produce conceptually unrealistic hydrographs
with negative or oscillatory ordinates. Smoothing techniques have been developed
(Boorman and Reed 1981) together with the use of catchment average hydrographs to
account for the variation in hydrographs identified from different storms. However, the
latter variation can be substantial for small catchments (Minshall 1960; Pilgrim 1976;
Wang er al. 1981) and has been observed in larger areas also (Robinson e al. 1995;
Goodrich e al. 1997). This observed behaviour is counter to the proportionality and
superposition properties of the linearity assumption as well as the time-invariance

underlying equation (2.1).

An alternative approach has been to prescribe the shape for a synthetic IUH and fit its
parameters using observed data, for example the kinked triangle used in the Revitalised
Flood Hydrograph (ReFH) model in the UK (Kjeldsen er al. 2005) and the triangle used

in the Natural Resources Conservation Service (formerly the Soil Conservation Service,
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SCS) in the USA (Natural Resources Conservation Service 2007). A particular merit of
this approach is that it can lend itself to more parsimonious models (i.e. with fewer
parameters than the unit hydrograph deconvolution). These parameters can be related to
physical characteristics from gauged catchments by using regression techniques with a
view to developing predictor equations for ungauged catchments. For example see the
Flood Estimation Handbook (FEH) catchment descriptors (Institute of Hydrology 1999)
and their use in the ReFH model in the UK (Kjeldsen et al. 2005). The development of
conceptual model approaches that approximate the synthetic IlUH are reviewed in
section 2.3. In spite of the imperfections of the unit hydrograph technique such models
require relatively little data and are often used in real-time flow forecasting but are
restricted to the calibration range used in fitting the UH and for individual storm events

(Young 2002).

2.2.2 Non-Linear models

Non-linear models of rainfall-runoff have been found to provide closer approximations
to observed streamflow than linear models and can be used to relate the gross measured
rainfall to the total streamflow, ¢(¢), without the need for separating out the net rainfall
and runoff used in UH methods. Amorocho (1973) gives an overview of the initial
development of non-linear black box models in terms of Volterra series which take the
general form:

q(t)=ZN: [ L;n(r,,...,r")ll[h(r—ri)dri 2.3)

n= i=l
the first term of which is the linear convolution relationship of equation (2.1).
The difficulty with this approach is that the identification of the kernels of these models
is generally ill-posed because of the size of the function space being searched, and the

goodness of fit of the model to the data can be misleading (Napiorkowski and
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Strupczewski 1984). A possible way forward would be to reduce the function set to that
which generates a unique stable solution when there is uncertainty in the observed data
(Napiorkowski and Strupczewski 1984). In a similar way to linear metric models, the
general non-linear approach has no direct physical interpretation.  However,
Napiorkowski and Strupczewski (1979) have developed a conceptual model of a
cascade of non linear reservoirs which can be approximated by the first two terms of the

Volterra series,

2.3  Conceptual Models

Conceptual models use a simplified representation of actual processes at large scale but

usually do not have physically based measurable parameters.

2.3.1 Cascades of Reservoirs

Typically the conceptual representation has taken the form of a virtual reservoir storage
component through which an inflow is routed. The conservation of mass for a single
reservoir can be expressed using the continuity equation assuming negligible

acceleration (Chadwick et al. 2004):
i{)-qt)= 2~ (2.4)

where i(f) is the inflow rate at time ¢,
q(?) is the outflow rate, and
V is the storage volume in the reservoir.
In order to solve for the outflow, a relationship between the outflow and the storage is

required. This is often assumed to take the following form (Dooge and O'Kane 2003):

V= Kg* (2.5)

where K and c are parameters specific to the reservoir’s behaviour.
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The simplest type of conceptual reservoir is the linear case proposed by Zoch (1934)
where:
V=Kq (2.6)

and K is defined as the storage delay time of the reservoir (K > 0).

Nash (1957; 1960) applied the conceptual reservoir approach to represent the rainfall-
runoff process for a catchment by routing a delta impulse function through a series
(cascade) of n identical linear reservoirs (i.e. with identical K values) and applying the
convolution integral (equation (2.1)). The resulting equation for the ordinates, h(¢), of

the IUH is:

) __'_( t ) oK @.7)

K (n=1) K
For integer values of n, [(n) = (n—1)! (Spanier and Oldham 1987) so equation {2.7) has

the form of the 2-parameter gamma distribution (with n the equivalent shape parameter

and nK the equivalent scale parameter):

hr)=— &Jk e 2.8)

For application to a particular catchment the parameters n and K need to be fitted using
observed rainfall-runoff data. In order to use the model for ungauged catchments Nash
(1960) obtained 2 predictor equations based on multiple linear regression of catchment
characteristics for a range of gauged catchments in the UK. Whilst the fit for the first
equation was good (correlation coefficient of 0.9) that of the second was less reliable

(coefficient of 0.5).

14



Numerous variants on the use of linear stores for representing the flow routing have
been developed; for a comprehensive review see Singh (1988). Of particular note is the
inclusion of linear channels that represent a time delay which a single linear reservoir
does not model. Dooge (1959) introduced the linear channel and derived a general
theory for the unit hydrograph that was based on a cascade of linear channels and
reservoirs in series. Chow and Kulandaiswamy (1971) showed that the cascade models
can be denived from a general ordinary linear differential equation relating storage and
flow continuity. Valdes er al (1979) extended the reservoir cascade concept to the
modelling of natural surface drainage channel networks — the geomorphological
instantaneous unit hydrograph and Wang et a/ (1981) generalised the IUH to allow for

time variation in the rainfall history (the instantaneous response function).

Dooge (1973) wams that strictly any proposed form of equation for the IUH can only be
described as a “synthetic” unit hydrograph model if its parameters can be demonstrated
to be related to physical characteristics of a catchment. This is particularly important
when the model is to be applied to the prediction of streamflows for ungauged
catchments. Kachroo and Liang (1992) and Dooge and O'Kane (2003) present reviews
of a number of forms of synthetic IUH. Jeng and Coon (2003) have identified
improvements that could be made to Nash’s original [UH model in terms of the validity
of the assumed initial condition of zero inflow and the use of spatially distributed
rainfall inputs by means of sub-catchment IUH’s. Furthermore Singh (1964; 1988) has
derived other UH forms using classical methods which could also be investigated from
a fractional calculus viewpoint, and could be extended to the case of a cascade of equal

non linear reservoirs (Diskin et a/. 1984; Ding 2005; Dooge 2005).
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2.4 Physics-Based Models

Physics-based models have developed from the blueprint of Freeze and Harlan (1969),
for example the “SHE” model (Abbott er al. 1986a; Abbott et al. 1986b). They are
based on the coupled partial differential equations representing the conservation of mass
and momentum for free surface overland flow and the sub-surface saturated and
unsaturated flow processes solved numerically on a gnd. Through the use of physics-
based theoretical and semi-empirical equations derived from laboratory scale tests it is
possible to make use of measurable parameters, which makes this approach attractive
for scenario testing, for example land use change predictions (Williams et al. 2004).
However, the “upscaling” to represent the flow processes at the much larger catchment
grid scale assumes without proof that the grid point parameters are an averaged
(lumped) representation of the sub-grid heterogeneity of the catchment (e.g. topography,
soil, vegetation, etc); and that the process scales are the same (Beven 1989; Bloschl and
Sivapalan 1995). The number of parameters required to solve the different process
equations at each grid potint is substantial and the values are likely to vary over the time
of the rainfall events being simulated. This leads to problems in the calibration of the
model given the limited quantity and resolution of observed data for a given catchment
(Beven 2006a). Yawson et al (2005) have demonstrated the utility of systems-based
models over higher complexity models particularly where data is scarce. Furthermore,
there are issues concerning the use of different time steps for the stable solution of the
coupled overland and subsurface flow equations; the non-linearity introduced by the
modelling of soil moisture characteristics; and the difficulty in representing preferential

flow pathways (Loague and VanderKwaak 2004).

In an attempt to overcome the issues of these point scale equations for distributed

physics-based models is the formulation of the conservation law integral equations for
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control volumes at the megascale of representative elementary watersheds (REW5s)
(Reggianit et al. 1998; 1999; Reggiani and Rientjes 2005). The subdivision of a
catchment into REWs (i.e. subcatchments) is based primarily on topography. For each
REW the conservation balance equations for each phase of flow in each internal zone
(overland, channel, unsaturated, saturated, etc) are derived. This results in an unknown
flux term for each equation which represents the area-integrated rate of exchange of the
mass, momentum or energy between each phase, zone and REW. In order to solve
these equations it is necessary to propose closure relations that express the unknown
fluxes over the control surface of the REW in terms of either physically measureable
quantities or a conceptual function of the internal states (which requires parameter
fitting by approximate methods). As yet there is no method for measuring the boundary

fluxes at REW scale nor an agreed functional relationship (Beven 2006b).

2.5 Data-Driven and Hybrid-Metric-Conceptual Models

A generalisation of the metric approach is to apply data-driven models such as artificial
neural networks and genetic programming where both the model structure and
parameters are unspecified in advance and a heuristic computational search technique is

used to fit a model to the observed data.

2.5.1 Data-Based Mechanistic Modelling

Young and Beven (1994) advocate a top-down approach particularly where the lack of
data does not support model complexity — the data-based mechanistic model. The
important feature of this approach over a pure systems identification technique is that
the user proposes a model structure in response to the outcome of initial tests using
catchment data. In this way the model form becomes catchment-specific (Sivapalan et

al. 2003). This does not restrict the user to a specific model form, although some
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knowledge of viable mathematical forms is necessary. Young (2003) has successfully
developed a technique for identifying linear models for catchments on the basis of 2
transfer functions: one to represent fast response (runoff); the other to represent slow
response (baseflow) and incorporates a power law rainfall loss model. Lees (2000} has

demonstrated how the technique can be used with nonlinear models.

2.5.2 Artificial Neural Networks

Artificial neural networks (ANNs) are based on conceptualisations of the learning
behaviour of the human brain. They comprise several simple computational units
(“neurons”) that have weighted connections with other neurons to form a network.
Observed rainfall data is passed to a set of input units, which, depending on the
weightings, pass a signal to connected units, and so on through the network until an
output is produced. This is compared with observed streamflow data and the weights of
the connections are iteratively adjusted until the error between the network output and
the observation is minimised (i.e. the network is “trained”). Hall and Minns (1993;
Minns and Hall 1996) were the first to apply ANNs to rainfall-runoff modelling. In this
form ANNs are non-linear black box models although some work has been done to
attempt to derive physically-interpretable process relationships from the network
(Sudheer 2005). Jain and Srinivasulu (2004; 2006) have developed “grey-box models”
by coupling an ANN with a deterministic and a conceptual model. Napiorkowski and
Piotrowski (2005) compared an ANN with a non-linear model based on the Volterra
series and found similar performance. In general, ANNs have been observed to forecast
well provided the input da¥a is consistent with the training set used (Schiitze er al. 2005;
Shrestha et al. 2005), but are subject to the risk of over-fitting during the training
(calibration) with a consequential loss of predictive performance when used with new

input data (Gaume and Gosset 2003).
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2.5.3 Genetic Programming

Symbolic regression using Genetic Programming (GP) (Koza 1992) is an automated
search of a user defined set of mathematical functions and sets of arguments (i.e.
constants and the rainfall data for a catchment). It is guided by an evolutionary
computation technique in which an initial population of randomly selected models
(combinations of functions and arguments) is tested for model fitness (by comparing
predictions with observed streamflow) and a new population of models is evolved by
applying reproduction, crossover and mutation operations on selected members of the
parent population. The selection is made using a probabilistic rule weighted according
to fitness. The process is repeated with a view to evolving fitter populations. Whigham
and Crapper (1997) were one of the first to apply GP to rainfall-streamflow modelling.
Davidson et al (2003) used a GP constrained by user-defined rules to allow polynomial
expressions to be generated in order to control the growth of the model code (bloat) and
to improve parameter fitting in each model of the population. Dorado et al (2002)
constrained the GP function and argument sets to search for unit hydrographs for
rainfall-runoff modelling in urban catchments. Babovic and Keijzer (2002) showed
that, particularly for flow forecasting, the identification of GP-based models is
improved through the use of domain knowledge (i.e. coupling with conceptual model
output). Similarly, Jayawardena et a/ (2006) found that the GP approach was not as
accurate as a conceptual model for smaller catchments. Minns (2000) has compared the
performance of an ANN and GP and found that the ANN performed better but gave no
insight to the proc;esses unlike the GP, although some GP runs produced equations with

no recognizable interpretation in terms of physical processes.
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2.6 Rainfall-Streamflow Model Identification

2.6.1 Parameter Calibration

An essential aspect of computational rainfall-streamflow modelling is calibration of the
parameters for the model to fit a set of field observed data. However, the multi-
dimensional nature of many models (particularly conceptual types), parameter
interaction and sensitivity often results in non-smooth, multimodal response surfaces
leading to problems in the attempt to identify the model uniquely (Gupta ez al. 2003b).

In many instances this behaviour is due to over-parameterisation (Kirchner 2006).

Duan er al (1992) identified the existence of a number of regions of attraction in the
parameter space for a typical conceptual model where the calibration algorithm can
converge to a solution. These regions were found to contain numerous minor local
optima. The response surfaces tended to be discontinuous and non-convex with areas of
parameter interaction. These types of spaces make the search for an optimum set of
parameter values by traditional gradient-based methods difficult or impossible.
Consequently, emphasis has been placed on the use of evolutionary search techniques,
such as genetic algorithms (GA). GA search operates in a similar manner to Darwinian
natural selection (Holland 1975; Goldberg 1989). In the algorithm an inmitial population
of randomly selected sets of parameter values 1s tested for fitness (by comparing model
predictions using each set of parameters with observed streamflow) and a new
population of parameter sets is evolved by applying reproduction, crossover and
mutation operations on selected members of the parent population. _The selection is
made using a probabilistic rule weighted according to fitness. The process is repeated
with a view to evolving fitter populations. Goldberg and Kuo (1987) were the first to
apply the GA to a flow problem in civil engineering, by optimization of a pipeline.

Wang (1991) first used a genetic algorithm-based automatic calibration of multi-
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parameter conceptual rainfall-runoff models. This application has been further tested by
a number of researchers (Liong et al. 1995; Franchini 1996; Wang 1997; Yang and

Douglas 1998; Ndiritu and Daniell 1999).

Similarly, Dong (2008) achieved improved fitting of the Nash cascade IUH model using
the GA for an observed flood hydrograph on the Qing river in China. Furthermore,
Rigden and Borthwick (2008) studied a Genetic Algorithm (GA) used to identify the
parameters of 7 conceptual IUH model forms. The GA outperformed the traditional
method of moments (Dooge and O'Kane 2003) for [IUH model fitting, and was shown to
be better suited to parameter identification for observed hourly rainfall-runoff data from

4 different sized UK catchments.

2.6.2 Uncertainty Measures

Although techniques have been developed for automatic calibration of models (Duan ef
al. 2003), there is evidence to suggest that there are different sets of parameter values
with Similarly acceptable fitness, which Beven (1993) defines as “equifinality” (Beven
2006a). Furthermore, the equifinality concept can be extended to multiple behavioural
models (acceptable predictions) rather than just different parameter sets for the same
model structure. In this way the problem is one of mapping the landscape space to a
model space containing several behavioural models (Beven 2002) and uncertainty is
manifest in the model structure, parameters and data. For example, Uhlenbrook et al
(1999) showed that even conceptually unrealistic sets of parameter values could

produce good predictions.

In order to attempt to investigate the equifinality problem a number of methods of

quantifying the uncertainty have been proposed. Kuczera (1983) used a Bayesian
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approach to estimate the posterior probability distribution of the model parameters,
expressing the uncertainty using a statistical likelihood function based upon an assumed
behaviour of the measurement errors. This technique was later developed into the
“Metropolis algorithm” using a random walk (Kuczera and Parent 1998). Beven and
Binley (1992) introduced the Generalised Likelihood Uncertainty Estimation (GLUE)
technique where the user pre-selects a likelihood objective function (to allow for the
combined effect of structural, parameter and input errors) for evaluating models the
parameter values for which are sampled with a Monte Carlo simulation. Non-viable
models can be automatically rejected and the likelihood values of the remaining models
can be rescaled before ranking to generate the cumulative distribution of output whicﬁ
can be interpreted in terms of the uncertainty (Beven and Freer 2001; Montanari 2005).
In the light of criticism of the potentially arbitrary choice of likelihood in the GLUE
method Gupta et al (1998) have noted that it may not be possible to propose a
statistically correct likelihood function. Additionally, the statistical properties of the
model predictioﬁ errors can depend on the catchment or the flow processes and may be
both spatially and temporally correlated (Engeland and Gottschalk 2002). Furthermore
a Bayesian Total Error Analysis (BATEA) framework (Kavetski er a/. 2002) has been
developed to attempt to account for all sources of error as well as the error model

structure.

2.6.3 Objective Functions

The fitness of a given set of parameter values for a model is defined by one or more
objective functions which provide a numerical measure of the level of agreements
between model predictions and observed streamflow. A number of reviews have been
undertaken of the use of common single objective functions in rainfall-streamflow

model calibration (Diskin and Simon 1977; Cooper et al. 1997; Legates and McCabe
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1999). In many cases the simple least squares (or root mean square error, RMSE) or the
Nash-Sutcliffe efficiency, NSE (a normalized version of the RMSE) has been used, but

these tend to emphasize the fitting of peak flows.

Jakeman and Homnberger (1993) have indicated that the use of single measures of
fitness for calibration of models with just rainfall and streamflow data enables up to 5 or
6 parameters to be identified. Consequently to avoid the proliferation of behavioural
models, multi-objective calibration to reflect the application requirements rather than
single measures of fitness has been employed which extracts more information from the
observed data and thereby constrains the calibration. Yapo et al/ (1998) developed a
multi-objective complex evolution technique (MOCOM-UA) derived from the shufflted
complex evolution (SCE-UA) method (Duan et al. 1992) which uses Pareto ranking and
has been tested using 2 objective functions on the Sacramento soil moisture accounting
model with observed data; and extended to 3 objectives (Gupta et al. 1998). Madsen
(2000) used 4 objectives to represent the runoff volume, hydrograph shape, peak flows
and low flows and then computed an overall fitness measure using the Euclidean
distance incorporating user-defined transformation constants for each component
c;bjective function. This was then optimized using the SCE-UA. Gupta et a/ (2003a)
followed Boyle et al (2000) and partitioned the streamflow hydrograph into driven and
non-driven components and used the root mean square error for each component as the
objectives in the MOCOM-UA technique, but found that the endpoints of the Pareto
optimal parameter sets identified were not well defined. Consequently, Vrugt et al
(2003) developed the multi-objective shuffled complex evolution Metropolis
(MOSCEM-UA) algorithm based on the SCE-UA but using the Metropoiis Hastings
sampling strategy in place of the downhill simplex to avoid convergence on a single

optimum. This permits the estimation of the most likely parameter set based on Pareto
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dominance and the underlying posterior probability distribution to attempt to quantify
uncertainty. However, the use of multi-objective calibration involves large numbers of
model runs with the associated computational overhead. With the exception of
selecting at least one objective function which takes account of the error in the
measurement data (for example Sorooshian and Dracup (1980) have introduced the
heteroscedastic maximum likelihood estimator (HMLE) to account for non-constant
variance error in the observed streamflow data) there does not appear to be a consensus

on which group of objective functions should be used in multi-criteria calibration.

An alternative approach has been to measure the correspondence between predicted and
observed hydrograph peaks (using the RMSE) coupled with that of the hydrograph
slopes, using a simple weighted average. This permits a comparison of both the shape
and timing of the hydrographs with a relatively small computational overhead,
overcoming the limitations of the single RMSE measure. This approach has been
successfully applied to conceptual models (de Vos and Rientjes 2007; Borthwick et al.

2008).

Alongside the development of automatic calibration tools has been work on
incorporating the expertise of the hydrological modeller through user interaction.
Visualization helps the modeller to observe the complexity of the parameter and
objective function spaces and assists in the process of selecting a set of parameter values
for the particular watershed application. Wagener ef al (2001) have developed a toolkit
for identifying both the model structure and calibration of the parameters which uses
Monte Carlo sampling of the parameter space over the time scale of the rainfall-
streamflow process being modelled using low order (parsimonious) conceptual or

metric models and provides the user with a selection of visualization techniques for the
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parameter and objective function spaces. Borthwick et a/ (2008) have demonstrated the
use of clustering and visualization, together with interactivity to exploit the expertise of
the user for the calibration of a conceptual rainfall-streamflow model using the

interactive visualization system developed by Packham e¢ a/ (2005).

2.7 Summary

The multitude of computational modelling forms highlights the difficulty in
representing the rainfall-streamflow transformation for natural catchments in a
consistent manner. For a model to be useable it needs to be based on some agreed
observed (or assumed) behaviour that can be represented in the form of parsimonious
equations that can be applied to recorded rainfavll data, such as the unit hydrograph
approach. One of the simple IUH models is the 2-parameter gamma function developed
by Nash (1957) given in equation (2.7). In the derivation Nash suggests that the
resulting equation can be used for a fractional number of reservoirs (equation (2.8)) in
spite of using integer order integrals in the proof. Interestingly, using non-integer
values of n enables flexibility in fitting the parameter values (and hence fitting the UH
model to the catchment data). This has been selected to be a suitable starting point for

applying a fractional calculus approach to conceptual rainfall-runoff modelling.
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Chapter 3 Review of Fractional Calculus Relevant to
Hydrology
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3.1 Typical Applications of the Fractional Calculus

Fractional calculus is concerned with derivatives and integrals of arbitrary order (i.c.
including non-integer order). Although it was first conceived in correspondence
between L’Hépital and Liebniz in 1695 and has been developed in the mathematics
literature since, its broader application to science and engineering problems, including
hydrological modelling, has really only been undertaken in the last 40 years (see
Oldham and Spanier (1974) for a review of the range of early applications). In recent
years there have been advances in the solution techniques for fractional differential and
integral equations suited to the mathematical modelling of the behaviour of systems and
materials that exhibit memory, many of which occur in science and engineering
(Podlubny 1999). Debnath (2003b; 2003a) reviews a number of recent applications in
science and engineering, including fractional order dynamical systems control,
fractional order impedance in electrical circuits, viscoelasticity, electrostatics,
electrochemistry, the behaviour of neurons, and fluid mechanics. | Qustaloup et al
(1999) have developed the CRONE controller which uses fractional order integrators
and differentiators as more efficient alternatives to Proportional-Integral-Derivative
(PID) controllers for the control of fractional order dynamical systems. In a related
aspect of the development of the CRONE controller, Qustaloup and Sabatier (1995)
proposed an electrical analogue model that is equivalent to a fractional order dynamical

system for the damping effect of water flowing into a porous flood embankment.

3.2 Applications of Fractional Calculus Relevant to Rainfall-

Streamflow Modelling

3.2.1 Stochastic Analysis of Hydrologic Time Series Exhibiting 1/f* Noise
The existence of long-range statistical dependency (persistence or long memory) in

hydrologic time series was first identified by Hurst (1951) in assessing the design
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capacity of reservoirs using annual flow records for the River Nile, and has since been
observed in a wide variety of other geophysical time seric;s (Koutsoyiannis 2002,
Mandelbrot 2002). It is commonly referred to as the Hurst phenomenon. The
examination of very long records of geophysical data such as rainfall, river flow, wind
power, and temperature, when averaged over relatively long durations (e.g. annually)
for several locations shows periods of persistent positive or negative departures from
the mean. For stationary time series this behaviour appears to indicate a very long
memory process (longer than the timescale of easily identifiable causative physical
processes that would give rise to short-memory effects). Such a series can be classified
as a type of 1/ noise whose power spectral density, S(f), follows a power law
relationship proportional to 1/ where [ is frequency. For a series of statistically
independent variables B = 0 and 1s defined as a white noise process, where white noise
is the derivative of classical Brownian motion (Bras and Rodriguez-Iturbe 1985). Series
exhibiting long-memory are characterised by the range 0< B < 1. Mandelbrot and Van
Ness (1968) were the first to apply a fractional Brownian motion process to simulate the
long term memory effect in hydrological time series. This was obtained from the
moving average of a past white noise and is represented by the fractional derivative of
classical Brownian motion (i.e. the fractional derivative arises because of the
convolution operation of the noise with a power law function (Lovejoy and Schertzer
2006)). Hosking (1981) extended the application by fractional differencing of discrete-
time white noise to generate the fractional autoregressive integrated moving-average
process (FARIMA) which has the flexibility to represent both long term and short term
memory effects. It should be noted that the use of these fractional Brownian motion
(and the associated fractional Gaussian noise) models theoretically assumes an infinite
memory process, which can only be approximated computationally. In view of the lack

of a physically-based theory (Klemes 1974) to explain the long-memory behaviour then
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these models can be classed as conceptual. Indeed other model forms have been
proposed, for example the use of lag-one autoregressive random processes that are
subject to random fluctuations of the mean over multiple time scales to simulate

irregular climate changes (Koutsoyiannis 2002).

A further feature of hydrologic time series exhibiting 1//° noise is that the same power
law relationship is often observed over a wide range of time scales i.e. the exponent B is
scale invariant indicating that the series is isotropically scaling (or fractal). Studies of
the precipitation input to streamflow generation, however, have shown that rain fields
display intermittent bursts and are better represented by multifractals - a generalisation
of fractals requiring a spectrum of an infinite number of dimensions to represent the
anisotropic scaling behaviour (Schertzer and Lovejoy 1987). Similarly multiscaling has
also been observed for river channel networks and topography, as reviewed by
Rodriguez-lmurbe and Rinaldo (1997). Such multifractals may be represented by
multiplicative cascade processes involving a reduced number of parameters. In a
similar manner to the generation of fractional Brownian motion, the multifractal process
can be simulated by means of fractional integration, this time of a cascade process (the
fractionally integrated flux, FIF). A review of the development and application of this
technique for multifractal modelling in geophysical data has been made by Lovejoy and
Schertzer (2006). Tessier et al. (1996) and Pandey ef al. (1998) extended this approach
to the time series modelling of daily streamflow. They showed that the low frequency
(greater than 1 week) region of the series could be simulated by a fractional integration
of the FIF with parameters derived from the observed daily rainfall series, The
fractional integration arises from a causal power law convolution process (i.e. a linear
transfer function for the time series transformation of rainfall to streamflow).

Furthermore detrended fluctuation analysis of hourly rainfall and streamflow series
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indicated that short-term fluctuations in streamflow were smoother than the
corresponding rainfall because of damping by the land surface and soil storage
(Matsoukas e al. 2000). This damping behaviour is increasingly evident at the storm
event timescale. Field measurements of the travel times of conservative tracers that
occur naturally in rain (e.g. chlorides) show a long-memory effect indicating that “old”
(pre-storm event) water released from prior storage in the catchment dominates the
streamflow response to a rain storm (Kirchner et al. 2000), i.e. paradoxically water
appearé to be stored over a long time period but is discharged in a relatively short period

(Kirchner 2003).

3.2.2 Cavallini’s Proposed Fractional Instantaneous Unit Hydrograph

Cavallini (2002), following successful applications of fractional calculus to convolution
equations in solid earth geophysics, has suggested as an ansatz (i.e. without proof) that a
possible form of synthetic instantaneous unit hydrograph (1UH), A(¢), could be obtained
.from a fractional differential equation. Using the classical [UH for a cascade of 2

unequal linear reservoirs from Singh (1988) where

h(t)= %(ek" —et) 3.1

Cavallini suggests (without derivation) that a “fractional [UH” should have a similar

form, namely

O kklfzk [c:i(pv;,,z (t)—expw*I (t)] 3.2)
2 1

where 4; and k, are the storage delay times of the 2 reservoirs, .respectively; t is time,

and exp,, «(¢) is the Miller-Ross function (Miller and Ross 1993) defined as
exp,, (1)=1""E,, (k") (3.3)
and E,gx) is the 2-parameter Mittag-Leffler function (refer to section 4.2.5 for the

definition).
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However, Cavallini (2006) remarks that that expressing the [UH as the difference of two -
solutions of first-order fractional differential equations may not always produce a

positive definite result, and has not developed the IUH further.

3.2.3 Anomalous Diffusion Modelling in Subsurface Hydrology
Anomalous diffusion (fractional Brownian motion) is observed for certain natural

diffusion processes that do not appear to obey the classical Fick’s law where the rate of

spatial spreading of the diffusing particles is not proportional to % where 7 is timé (i.e.
the spread is asymmetric). The mathematical modelling of anomalous diffusion using
fractional differential equations together with comparisons with observed pollution
transport processes has been undertaken by several researchers for pollution transport in
groundwater flow (Baumann et al. 2000; Caputo 2000; Benson er al. 2001; Baeumer et
al. 2005; Chang et al. 2005; Zhang et al. 2005). The fractional advection diffusion
equation (FADE) has been applied to urban storm water pollution modelling (Deng et
al. 2005) and for pollution modeiling in rivers (Kim and Kavvas 2006). Furthermore
the FADE has been used to model solute transport in soils by Pachepsky et al (2000)
who have gone on to propose a fractional form of Richards equation for the modelling
of unsaturated flow in soil (Pachepsky ef al. 2003). A FADE approach has been taken
by Scher et al (2002) to model the travel times for tracer movement from rainfall on a
catchment hill slope into a river, as a development of the work of Kirchner et al (2001)
who applied a simple conceptual model of classical advection-diffusion to produce an
approximate gamma-type distribution of travel times to match those observed in the

Plynlimon experimental catchment data set.
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3.3 Summary

The fractional calculus has not been applied to rainfall-streamflow modelling at the
storm event timescale. There is evidence that long memory processes exist in
hydrologic systems and, given that the fractional order systems approach has been
applied to the related field of hydrogeological pollution transport modelling, then there
is the potential for a fractional order theory to be developed for rainfall-streamflow

modelling, including the problem of identification of the resulting system equations,
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Chapter 4 A Fractional Order Hydrologic Systems
Theory
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4.1 Methodology

A new theory that generalises that for the classical unit hydrograph technique for the
rainfall-runoff transformation is developed in the following. The theory is based upon a
fractional order linear deterministic systems approach and is taken to apply to the

rainfall-streamflow transformation (i.e. including baseflow).

A comprehensive treatment of the fractional calculus can be found in the standard
reference works, for example Miller and Ross (1993), Samko et al (1993), Carpinteri
and Mainardi (1997), Podlubny (1999), and Kilbas et a/ (2006). The fundamental
principles and key results necessary for the derivation of the theoretical equations in this
thesis are presented in section 4.2. It should be noted that there are several forms of
fractional integrals and derivatives detailed in the foregoing references; however, those
adopted in this work have been selected on the basis of physically based initial

conditions and applications made in other branches of engineering science.

The solution of ordinary linear differential equations (of arbitrary order) using Laplace
transforms is adopted following common practice (Podlubny 1999). Full details of the

theory of Laplace transforms may be found in Doetsch (1974).

Dooge and O'Kane (2003) and Singh (1988) provide introductions to the application of
classical integer-order linear systems theory to rainfall-runoff modelling. The essential
results for the general unit hydrograph and general storage equations are presented in
section 4.3. This sets the context for the development of the fractional order hydrologic

theory which is proposed in section 4.4.
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4.2 Essential Concepts from the Fractional Calculus

4.2.1 The Riemann-Liouville Fractional Integral

Fractional calculus is concerned with derivatives and integrals of arbitrary order (i.c.
including non-integer order). In this way it generalises the integer (n) order n-fold
integrals and n-fold derivatives. For example equation (4.1) is the familiar formula
(Samko et al. 1993) for the n-fold integral (usually attributed to Cauchy) of a function,

/, of a variable .
J:dt J' dr... j' f(t)dt = ])| _r(z ) f(r)dz' @.1)

7 is the dummy variable of integration. Since the gamma function [{n)=(n—1)

(Spanier and Oldham 1987) then this equation can be generalised for non-integer values

of n to define _D;* the fractional integral of order @ where @ > 0. This can be

expressed as a left-sided integral for ¢ > a:

D71 (0)= F(a)f ? L (T)H, (42)

and as a right-sided integral for ¢ < b:

i e

Equations (4.2) and (4.3) are the Riemann-Liouville fractional integrals. Where ¢ is

time only the left-sided derivative is of relevance to this work since this represents a
causal system, typical of hydrologic processes. It should be noted that the symbol 7 or J
is sometimes used for fractional integrals as distinct from D for derivative. The
operator D-notation is used in this work, following Podlubny (1999), to indicate a

“differintegral” where ,D7* denotes the fractional integral of order a for 1 > a, and

. D denotes the fractional derivative of order a for ¢ > a.

37



4.2.2 The Riemann-Liouville Fractional Derivative
The Riemann-Liouville fractional derivative can be obtained by finding the inverse of

the fractional integral. Denoting the derivative of any integer order as

d

o f(6)=s"Nt) then the left inverse of the integral holds according to the

D f(t)=

following composition rule
Dl"a Dl_nf(t) = f(t) (44)
However, using equation (4.2) with a = n the right inverse does not hold (Gorenflo and

Mainardi 2000) since

L e e

D7 D0 16)= £6)- me( el @3)

Conseqﬁently, the Riemann-Liouville fractional derivative of order « is defined as the
left inverse of the a-order fractional integral by incorporating a positive integer m such
that m—1<a <m as follows:

D7 f()=,07 . D) (4.6)

and hence

Drf(r)= {r(,,, 2) f (- r)a-'"*‘ J (4.7)

The integral of the product of the 2 functions in equation (4.7) where one function is
shifted by ¢ - 7 and the lower limit, a = 0, is a Laplace convolution integral (Doetsch

1974). For example, for m = 1, it can be written

oD f(1):= %[f(r)*r(:;_aa)] (4.8)
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where + > 0 (i.e. causal). The presence of the convolution integral highlights the non-v
local property of the fractional derivative ‘operator which, unlike an integer order
derivative, depends on the “history” of the function between the lower limit, a, and .
Hilfer (2008) shows that for causal physical systems non-locality in time represents the
non-equilibrium (or non-conservative) phenomena of hysteresis, which is observable,

but non-locality in space is difficult to prove as it implies action at a distance.

4.2.3 The Caputo Fractional Derivative

Using the Riemaﬁn-Li(_)uville fractional derivative enables fractional differential
equations to be defined, for example the simple a-order initial value problem of
equation (4.9) where y is a function of ¢, with m—1<a <m and m a positive integer.

o D7 ()= 1o, ¥(0)] (4.9)
The unilateral (one-sided) Laplace transform is commonly used in the solution of such |
fraqtional order initial value problems, and which is defined (Doetsch 1974) for 20 as

the image function, Y(s) in terms of a complex variable, s, of the original function, y(r),

by
L)} = v(s)= L;(z)e-“d, (4.10)

For convergence | y(t) < Me“ for Re(s) > ¢ (for M and c constants). Unless otherwise

stated the term Laplace transform in this work will be taken to mean the unilateral form.

The Laplace transform for the Riemann-Liouville derivative in equation (4.9) takes the

following form (Podlubny 1999).

m=1

Ly Dy} =¥ (5)- D s* D2 y(0°) @.11)

k=0
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From the right hand side of equation (4.11), for a unique solution of the differential

equation, m initial conditions are required of the form:

a-k-1
d) =by, k=0, 1, ..., m-1 (4.12)

However, it is difficult to identify physically meaningful fractional order derivatives
necessary for the initial conditions of (4.12). Consequently, Caputo (1967) derived the

following fractional derivative.

m-1

£07510=,07 - 32900 - 10 @

k=0 "

where “D” denotes the Caputo fractional derivative of order « to distinguish it from
D? the Riemann-Liouville derivative. It should be noted that the symbol DZ is

sometimes used for the Caputo fractional derivative; however the “D® form is used in

this work to facilitate the inclusion of the terminals (limits). Taking the Laplace

transform of the Caputo derivative (Podlubny 1999) produces:
L{gD,"y(t)}= s“Y(s)—mZ.ls"""y(")(O+) 4.14)
k=0
which shows that the Caputo derivative requires m initial conditions in terms of the
usual integer order derivatives which are more meaningful in physical problems. From
equation (4.13), the Caputo derivative can be expressed as follows,
D7 fe)=,07", D f(e) (4.15)
The Caputo has a further property that is shared with the integer order derivative, in that
the derivative of a constant, C is zero, i.e.
cDIC=0 (4.16)
This i1s unlike the Riemann-Liouville derivative, where it can be shown (Podlubny

1999) that for a finite value of the lower limit, a:
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DFC= (4.17)

Further properties of the Caputo derivative may be found, for example, in Li and Deng

(2007).

4.2.4 Sequential Fractional Derivatives
Since integer (n) order differentiation comprises a sequence of first order
differentiations then a sequential fractional derivative can be defined (Miller and Ross

1993) as:

D°f(t)=D"D"...D* 1(t) (4.18)

where o = na. Alternatively the overall order of the derivative o can be composed of

sequences of unequal order derivatives of the form:
D f(t)=D"D™...D* f(t) (4.19)
where o=aq,+a,+...+a,. The operator D° can represent the Riemann-Liouville,

Caputo or other definition of fractional derivative.

4.2.5 Ordinary Linear Fractional Differential Equations

In many applications of fractional differential equations to physical problems the
unilateral Laplace transform technique has used been to obtain solutions to initial value
problems. As a consequence the Laplace transforms have been found and tabulated for
a number of the forms of ordinary linear fractional differential equations that arise in
practice (Kilbas et al. 2006). In order to investigate the influence of the order of the
derivative on the behaviour of such differential equations the simple case of the
following homogeneous ordinary linear fractional differential equation expressed in
terms of the Caputo derivative is considered (Gorenflo and Mainardi 1996).

$D7y(r)+ (r)=0 (4.20)
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with 4> 0 and initial conditions y*®(0)=5,, k=0, 1, .., m-1 for m~l<a<m where m

is a positive integer.

Taking Laplace transforms and using the result from equation (4.14) gives

s7Y(s)- mz_ls"'k"y(*)( * )+ AY{(s)=0

k=0

SO

m-1

Z gak y(k)(0+)

— k=0
V)= —— (4.21)

The inverse Laplace transform of equation (4.21) requires the standard result (Podlubny

1999):
L E, (- )= s (4.22)
i s“+4 '
where E, ,(x) is the 2-parameter Mittag-Leffler function defined as (Wiman 1905;
Argawal 1953):
@ xr
E,p\x)= ) —7——,a>0,5>0 423
o= 2 gy 0P (4:23)

It should be noted that this reduces to the original 1-parameter Mittag-Leffler function

(Mittag-Leffler 1903) when #= 1, giving

E(x)=) (" j (4.24)

which further simplifies to the classical exponential function when a= 1.

Taking the inverse Laplace transform of equation (4.21) gives the solution to equation

(4.20) as
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J’(’)_—' ibktkEa.hl(_ 2’10) (425)

Taking A = 1 and b; = 1 the solutions for different orders of derivative are plotted in

Figure 4.1 and Figure 4.2.

For 0 < @ < | (Figure 4.1) the solution y(r)=4,E, (— /11“) decays more rapidly than the

classical exponential solution (for & = 1) as £ = 0" but more slowly as t > . This
power-law asymptotic behaviour of the fractional system exhibits long term memory
loss (i.e. the system is dominated by more recent states as  increases). This is termed a

fractional relaxation equation.
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Figure 4.1 Solutions to the homogeneous fractional relaxation equation
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Figure 4.2 Solutions to the homogeneous fractional oscillation equation



For 1 < @ < 2 (Figure 4.2) the solution takes the form y(t)=b5,E, (- 4" )+ b4E, ,(- 2¢°)

which oscillates whilst decaying (unlike the periodic solution for the classical @ = 2

case), and this is termed a fractional oscillation equation.

4.2.6 The Generalised 3-Parameter Mittag-Leffler Function
In the solution of ordinary linear fractional differential equations use can be made of the
generalised 3-parameter Mittag-Leffler function introduced by Prabhakar (1971) which

takes the form for an argument, x:

y _ = r(r+ }/)X’ .y ¥
E7,(x)= Zﬂ: e gy s> 0 (4.26)

When y= | this reduces to equation (4.23), the 2-parameter Mittag-Leffler function.

Furthermore, Kilbas et al (2004) provide a Laplace transform of the 3-parameter
Mittag-Leffler function for use with functions of a variable ¢ in the following form

Sa?'

-p
LY EL (e )= m (4.27)

where A is a constant.

4.2.7 Initial Conditions

A significant feature of the fractional calculus is the dependence on the definition of the
integral for the selection of the initial conditions. For example comparing the Laplace
transforms in equations (4.11) and (4.14) show the different initial conditions required
for fractional differential equations expressed in terms of the Riemann-Liouville and
Caputo derivatives, respectively. In addition, these definitions of the derivative show
the effect of different sequencing of the differintegral operators. As section 4.2.4 shows

there are many combinations of differintegrals that can be used to compose a definition
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of a fractional derivative, each of which will have associated initial conditions.
Furthermore Lorenzo and Hartley (1998) have investigated the initial conditions
required for fractional differential equations using the Riemann-Liouville derivative and
show that a time-varying initialisation function is required in place of initial conditions
as single point values. Similarly, solutions to differential equations expressed in terms
of the Caputo derivative with the associated initial conditions based on integer-order
derivatives have been shown to be a restricted class of functions because of the
assumption of constant initialisation (Ortigueira 2003; Orjuela er al. 2006; Achar et al.

2007).

For example Orjuela et al (2006) consider the solution of the non-homogeneous form of
the ordinary linear fractional differential equation (4.20) expressed in terms of the

Caputo derivative subject to a unit step input function, U(r), as follows.

§D7 )+ () =U(r) (4.28)

Taking Laplace transforms, using equation (4.14), for the case of 0 < <1 gives

sY(s)- s""y(0+)+ AY(s)= %

SO

Y(S)= S-I . Sa-ly( +)
s+ s"+A

The inverse transform for each term is obtained from equation (4.22) resulting in the

following solution.
A= 1, gl 27 )+ (07 )E, (- 267) (4.29)
The two terms in equation (4.29) represent the forced response plus the free response of

the system, respectively. The forced response is the solution of the non-homogeneous

part of equation (4.28) for zero initial conditions; and the free response is the solution of
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the homogeneous part of equation (4.28) with the initial conditions included. In this
way, only the free response of the system is affected by the definition of the fractional

derivative used and the associated initial conditions.

For illustrative purposes, taking A = and subject to an initial condition y(0") = 0.5 then

wt)=1rE, .. (~17)+0.5E,(~+°) (4.30)

In order to illustrate the influence of the history of the free response function (i.e. time-
varying initialisation function) over the use of a point initial condition value (i.e.
constant initialisation function) Orjuela et al use a reference response (2006). The
reference response is the forced response solution for the case of a unit step input
applied to an initially relaxed system at an earlier time, ¢ = -0.51, such that the reference
response when ¢ =0 is y = 0.5, i.e. equal to the initial condition y(0") = 0.5 for equation
(4.30). If the initialisation is correct then the complete response predicted by equation
(4.30) should correspond to the reference function for ¢ > 0. Orjuela et a/ (2006) found

that this only held for the integer order case when a = 1. However, Figure 4.3 shows

the discrepancy between the solutions for the fractional order case, e.g. when a= 0.5.
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Figure 4.3 Solution of the inhomogeneous fractional relaxation equation

(after Orjuela er al (2006))

Similar results are found if the Riemann-Liouville derivative is used. Consequently, for
the fractional order system constant initial conditions may not necessarily represent the

true past history of the system response.

4.2.8 Initialisation Function

Lorenzo and Hartley (2008) provide a technique for the definition of the initialisation
function for fractional differential equations expressed in terms of the Riemann-
Liouville denivative. Figure 4.4 shows an arbitrary function f{¢) that originates at a time
t = -a which is subject to a differintegration operation at a later tihe of interest, r = ¢

(often taken as 7 = 0 for modelling the response of time varying systems).
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Figure 4.4 Conceptualisation of the initialisation function

The initialisation required of the function f{rf) can be defined by considering two
uninitialized g-order fractional integrals of f{¢) starting at ¢t = -a and ¢ = c, respectively,

as follows.

L f(1)= ﬁ I: —of "' fleMdr  t2-a 4.31)

7 f(z)_= ﬁ _[C('z —of" fleddr  t2c (4.32)

The d™ denotes an uninitialized integral. From Figure 4.1 f{) = 0 for ¢ < -a so equation
(4.31) does not require nitialisation. However, the integral in equation (4.32) will only
correspond with the integral in equation (4.31) for ¢ = ¢ if an initialisation function, y,
is added to it, i.e.

A () rw=d () t>c

SO

W=_ad,_qf(f)‘cd,_qf(f)= #q) J-Q_ T)q_|f(z')d1' t>¢ (4.33)
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It follows that, in general,  is a function of time. This approach to initialisation by
applying the function defined prior to 1 = ¢ is referred to as “terminal charging” by
Lorenzo and Hartley (2008) as compared with applying an arbitrary initialisation
function at ¢ = 0 (“side charging™). The initialised form of the fractional integrél can be
stated now as
D f)=d )y t>c (4.34)

Substituting equation (4.34) into the definition of the Riemann-Liouville derivative in
equation (4.6) expresses the initialised derivative as

Dr =05 a7 (e Dy t>c (4.35)

for m—1<a <m . Using equation (4.32) the initialised derivative becomes

=dt—m

Drf(n) d” [r(Tl-a_) _[G -z f(r)dr] + —;—:y/ 1>c (4.36)

where y1s given by equation (4.33).

Lorenzo and Hartley (2008) have derived Laplace transforms for the initialised
fractional derivative for ¢ = 0 and, consequently, —a<t<0 so that physical systems
represented as fractional order initial value problems can be formulated with time-
varying initialisation. Referring to Figure 4.4 the function f(r) on the interval from

¢t = -a to ¢, upon which the initialisation of the function f{f) being differintegrated from

t = ¢ onwards depends, does not have to be identical to f{#). Evidently the form of the
initialisation function must depend on the physical nature of the problem, i.e. the history
of the system behaviour. However, as Malti er a/ (2006) point out, the identification of
the initialisation function from data is an open problem for many systems. Furthermore,
Lorenzo and Hartley’s approach often involves finding the inverse Laplace transform of
terms involving functions of the complementary incomplete gamma function which are

not always available in closed form in standard tables (Hartley and Lorenzo 2008).
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However, the concept of initialisation function does not preclude the use of the Caputo
fractional derivative which incorporates constant initial conditions, but emphasises the
restricted class of problems that it describes (recall section 4.2.7). Achar et al (2007)
show that the inferred initialisation history (for —o<f<0) for an a-order Caputo

derivative is a polynomial of the form

) 0t
Z i) 4.37)

._0
where m-1 < @ < m. For example for 0 <a <1 this reduces to fi(rf) = f0") which is

consistent with the definition of the Caputo derivative in equation (4.13).

It should be noted that an alternative approach has been proposed by Ortigueira and
Coito (2008) by treating the problem as a delay differential equation system and using

the bilateral Laplace transform.

4.3 Classical Integer-Order Linear Hydrologic Systems
4.3.1 Integral Equation Approach - Instantaneous Unit Hydrographs
A lumped system can be conceptualised as shown in Figure 4.5 where a single input, i(¢)

produces a single output, g(¢) as functions of time, ¢, only (i.e. spatially averaged).

input, i(7) system, output, ¢(7)
—_— —
h

Figure 4.5 Lumped system
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In classical integer-order rainfall-runoff modelling, such as the unit hydrograph (Dooge
1973; Singh 1988) i(#) is a continuous time history of effective rainfall that produces a
continuous time-varying outflow, g(f). The system is represented by a system function,

h, such that

q(t)= hi(t) (4.38)

In the classical integer-order unit hydrograph system the outflow is stormflow (runoff).
In practice, rainfall measurements are usually made as total collected in a time interval
(typically per hour). Consequently, the continuous input, i(f), is approximated by n

discrete rainfall pulses of duration At as shown in Figure 4.6.

i(f) ‘f

B

in-Z

i

Y EES——

ip

in-l

In

0 At 2Ar 3Ar (n-2)At  (n-1)At nAt t

Figure 4.6 Pulse representation of rainfall data (hyetograph)

Wang and Wu (1983) represent this pulse hyetograph as a series of unit step functions,

U(t), whereby
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i(t)= Z":wju(r — jAt) (4.39)

j=0
and

wo=i —i, forj=1,2,..,n

Following Singh (1988), as At — 0 the unit pulse, U(¢ - jAr) can be replaced by the
Dirac delta impulse, &¢); and, as n — oo so that nAr = T, then jAf can take all the values

on the interval [0, T]. Hence the continuous rainfall function can be represented as

i{t)= J.ct;r(r)d(! —7)dr (4.40)

which can be extended over the whole time line —o <t <ow. Combining equations

(4.38) and (4.40) gives

—h Ef)(s(z —o)dr (4.41)

Assuming an initially relaxed, linear system then the principles of superposition and

proportionality apply so that

g(r)= I(r Yas(t —7)dr (4.42)

For a &¢) input to such a system the output is defined as the impulse response, A(¢, 7), so

that Az, 1) = h&1 - 1), and

q(t J(r t‘r)dr (4.43)

Assuming the system is time-invariant, then A(f, 7) = A&t - 7) = h(t - 7). Also assuming

a causal system, A(t, 7) =0 for 7>t and <0, so that

q(t) = -E(r)h(t - r)dr (4.44)

Equation (4.44) is a Laplace convolution integral which represents the response of an

initially relaxed, lumped, linear, causal, time-invariant system. These conditions are the
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fundamental assumptions underpinning the unit hydrograph approach to rainfall-runoff

modelling (Dooge 1973).

The impulse response function, A(r), is also referred to as the Green’s function or
transfer function. In hydrological modelling it is called the instantaneous unit
hydrograph (IUH). It can be found from equation (4.44) by taking the Laplace
transform of the convolution integral (Doetsch 1974):

Qls)=1(s)H(s) (4.45)
h(?) is obtained from the inverse Laplace transform of equation (4.45) by considering
the case of a Dirac delta impulse as input, since L{&f)} = 1. Equation (4.44) can then

be used to obtain the output, g(¢), for any input, i().

4.3.2 Linear Differential Equation Approach
A lumped, linear, time-invariant system can be represented by an »™ order ordinary

linear differential equation with constant coefficients, a;, as
la,0" +a, D+ +a,Dl(1)=i() 120 (4.46)

with initial conditions yU)(O*)= b,,j=0,1, .., n-1, and the solution takes the following

form (Doetsch 1974; Miller and Ross 1993):
9(1)= Gorea ()+ 9 (1) (4.47)
The forced response, grorced(?), is the solution of the non-homogeneous part of equation

(4.46) for zero initial conditions

dores )= [i(e e~ 2)ate (4.48)

This represents the convolution of the input function, i(¢} with the impulse response

function, A(7).
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The free response, gree(f), is the solution of the homogeneous part of equation (4.46)

with the initial conditions included

e ()= Z":cjh(”(z) (4.49)

J=t

¢y are arbitrary constants, and A(¢) is the impulse response function.

Consequently, equation (4.44) is equivalent to equation (4.48), the solution of an
initially relaxed non-homogeneous n'™ order ordinary linear differential equation with
constant coefficients (grorcea(£)). This result is consistent with Nash’s (1957; 1960) work
on the conceptual representation of the impulse response function as a cascade of equal

linear reservoirs.

4.3.3 Reservoir Cascade Models
Recalling equation (2.4), the continuity equation for a lumped catchment system

modelled by a single conceptual reservoir is given by

it)-q(r)= % (4.50)

where V is the storage volume in the reservoir system. Zoch's (1934) linear reservoir
(equation (2.6)) assumes that

V =Kq (4.51)
where K is the storage delay (i.e. relaxation) time of the reservoir (K > 0).
Differentiating gives

v _ x99 (4.52)
dt dt

Substituting equation (4.52) into equation (4.50) and rearranging gives

dq 1 y_ 1.
" +Kq(t) Kz(t) (4.53)
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Nash (1957) assumed that the system that generates outflow from a rainfall input has
zero initial conditions (i.e. starts from rest), so equation (4.53) is an initially relaxed
homogeneous first order ordinary linear differential equation with constant coefficients
(le. it is a first order relaxation system model). The solution is given by equation
(4.48): the convolution of the impulse response function, A(f), and the input function,
i(f). As before, the impulse response function is obtained as the output of equation

(4.53) for the case of a delta input, &7), by taking Laplace transforms, so

sH(s)+%H(s)=%
H(s)= ﬁ
or
H(s)= 1+]Kg (4.54)
hence

h(t)= L g (4.55)

Substituting into the convolution equation (4.48) gives the outflow of a single reservoir

for an arbitrary input as

q(t) = % ji'(r)e’('_’)a'r (4.56)

This approach can be extended to a cascade of initially relaxed, unequal (different K
value) linear reservoirs in series by determining the impulse response function where

the output from the first reservoir given by equation (4.55) to the delta input becomes
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the input to the second reservoir. From equation (4.54) the impulse response function

for the second reservoir is

I 1
Hals)= (+Kys) (1+Ks)

Continuing for n reservoirs gives

H, (s)= ——— (4.57)

Taking the inverse Laplace transform (Dooge 1959) gives the impulse response function
as
Kn-Z
h(e)= Z rej, K, 2K, (4.58)

H(K, X,)

r=]

However, Chow and Kulandaiswamy (1971) found that 3 unequal reservoirs were
usually adequate for rainfall-runoff modelling applications. Cascades with higher
numbers of unequal reservoirs lead to less parsimonious models, requiring many more

parameters to be fitted. For n equal-K reservoirs equation (4.57) becomes

H (s)= m (4.59)

The inverse Laplace transform yields equation (2.7), the impulse response function for

the Nash cascade:;

_ 1 L n-1 Ik
h(t)——K(n_])![K] e (4.60)

To obtain the outflow of the Nash cascade for an arbitrary input, the impulse response
function is substituted into the convolution equation (4.48). This is equivalent to

substituting equation (4.59) into equation (4.45) in the Laplace frequency domain as

Q(s)=1(s)m @.61)

57



Following Singh (1988) and recalling that the Laplace transform s variable appears

o d . : : .
because of the derivative, a in equation (4.53), then, using the operator D notation,

equation (4.61) can be expressed as
. 1
q(0)=ilt)r——
1+

or

(i+ KDY ¢(r)=i(t)

Expanding as a binomial series for integer n (Spanier and Oldham 1987) gives

{i(j}(my]qmﬂ(z)

Jj=0

{iajD":'q(t)= i(r)

Jj=0

which is the same as equation (4.46) for zero initial conditions

la,0" +a_D™ +--+a,D° k@)=i) =0

(4.62)

(4.63)

(4.64)

(4.65)

i.e. the Nash cascade is modelled by an initially relaxed, n® order ordinary linear

differential equation with constant coefficients, a;. This can also be derived from Chow

and Kulandaiswamy’s (1971) general storage equation for b, = 0:

iaijq(t) = ib,D’i(t)

j=0

where j, r, m and n are integers, and a; and b, are constant coefficients.
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4.3.4 Lag and Route Models

Dooge (1959) introduced the linear channel routing concept in the derivation of a
general theory for the unit hydrograph to model lag effects in catchment response to
rainfall. The linear channel represents a pure translation where the output is the input
lagged by a time T:

ql))=i(t~T) (4.67)

Dooge’s theory assumes that the instantaneous unit hydrograph (impulse response
function) for the rainfall-runoff transformation can be obtained by routing a delta
impulse through a series of initially-relaxéd linear channels and equal-K linear
reservoirs. In this way it combines the linear channel with the Nash cascade (i.e. lag
and route). For the case of a single lag and route model the input to equation (4.53) is

that from equation (4.67) giving

dq 1 =L -
dt+Kq(t) Kz(t T) (4.68)

The impulse response function for the lag and route mode! is obtained for the case of a
delta input, &), to the linear channel element which, by equation (4.67) produces a

&t - T) input to equation (4.68). Taking Laplace transforms gives
sH(s)+ LH(S)= L
K K

—Ts

His)= 4.69
=) @6
Using the 2" shift theorem for the Laplace transform (delay rule) (Doetsch 1974)
-(-TYK
h(t)=U(-T)< (4.70)

where U(¢) is the unit step function.
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The extension to a cascade of » initially relaxed, equal (K, T) lag and route elements is
made in a similar manner to that in section 4.3.3, by determining the impulse response
function where the output from the first element given by equation (4.70) to the delta
input becomes the input to the second element. This is repeated for the remaining

elements. Combining equations (4.59) and (4.69) gives

-nTs

e

H(s): m (4.7])
Using the 2™ shift theorem for the Laplace transform
t— T - t~n
Hi)=U(t - nT)% e l-nTIK 4.72)

This forms the basis for Dooge’s general equation for the instantaneous unit hydrograph
(Dooge 1959). As before, the solution for the lag and route models for an arbitrary
input, i(#), is found by convelution of i(f) with the impulse response function, A(f)

(equation (4.48)).

4.4 Fractional Hydrologic Model

4.4.1 Assumptions
A general theory for the systems-based modelling of the transformation of observed
(total) rainfall to observed streamflow (i.e. stormflow and baseflow together) is

presented based on the following assumptions:

1. The output of the system, g(s), is total streamflow to be modelled at the storm-
streamflow event scale (typically hourly intervals) so that floods can be predicted.

2. The behaviour of the catchment system is spatially averaged (lumped) so that it is
represented by an ordinary differential equations.

3. The system is linear so that the principles of superposition and proportionality can

be used in the solution of the differential equations.
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4. The catchment characteristics are constant over the total duration of the streamflow
event (i.e. time-invariant) so that the coefficients of the differential equations are
constants. |

5. The system is casual so that Laplace convolution integrals can be utilised.

6. The effective (net) rainfall input, i(), to the system must be derived from the total
observed rainfall, i), by a loss model to account for infiltration and
evapotranspiration.

7. The differential equation is of arbitrary (@) order to represent the time-history of
water storage/flow states in the surface/subsurface catchment system. This is

expressed by a fractional order derivative form of the linear reservoir.

8. The streamflow system is not initially relaxed but is subject to an initial condition
(l.e. a constant initialisation function using the Caputo fractional derivative) to
represent the mixing effect of “old” (stored) water and “new” water observed in
streamflow chemistry.

9. 0<a<l torepresent the heavily damped behaviour of the system over the duration

of the flow event (i.e. non-oscillatory).

Assumptions 1 - 5 are consistent with those for Dooge’s (1959) general unit hydrograph
theory for rainfall-runoff systems. Assumption 6 is necessary in unit hydrograph
models because only total rainfall is measured in practice, but water is “lost” through
inﬁltration and evapotranspiration that does not contribute to the ensuing streamflow
event. The further assumptions (7 — 9) generalise the theory to predict the total
streamflow (i.e. stormflow and baseflow together) as a fractional relaxation model for
which the classical unit hydrograph is a special case. The non-local property of the
fractional order derivative is assumed to represent the memory loss in the catchment

system where pre-storm event water released from storage in the catchment dominates
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the streamflow response to a rain storm. Consequently, the system is not initially at rest
(unlike the classical UH approaches for stormflow modelling) but is responding to
previous event rainfall draining through the catchment. This gives rise to the need for
an initial condition assumption.

4.4.2 Single Fractional Order Linear Reservoir

The simplest model element proposed is the fractional order linear reservoir. Recalling
equation (4.52) for the integer-order linear reservoir

av _ 94
dt dt

From assumption 7 it is proposed that the rate of change of volume, ¥, with time, ¢, can

be expressed by an a-order fractional time derivative of the outflow rate, g, so that

dV _ acpa
EzK “Dqlr) (4.73)

K is the storage delay (i.e. relaxation) time of the reservoir (K > 0), and is raised to the
power @, to preserve dimensionality. At this stage the Caputo fractional derivative has
been used because it incorporates a physically observable initial condition (equation
(4.13)). Substituting into equation (4.50), the continuity equation for a lumped

catchment, and rearranging gives a fractional relaxation equation:

] 1
OCD,"q(t)+Fq(t)= e i(t) (4.74)

Taking Laplace transforms, using equation (4.14), for the case of 0 < <1 (assumption

9) gives
5°Qfs)- s~ (0+)+%Q(s)=];a 1(s) (4.75)
___ 1), s0lo)
A7) ) 479
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Recalling equation (4.47), the twb terms in equation (4.76) represent the forced
response plus the free response of the system, respectively. The forced response is the
solution of the non-homogeneous part of equation (4.74) for zero initial conditions and
takes the form of the convolution of the input function, i(f) with the impulse response
function, h(r). As before, the impulse response function is obtained as the output of
equation (4.74) for a delta impulse input, &), and zero initial conditions. Substituting
L{&X"} =1, then the first term of equation (4.76) becomes

1

H(S)=—(m L 4.77)

Using equation (4.22), the inverse Laplace transform yields the impulse response

function which involves the 2-parameter Mittag-Leffler function, E, ;(x) (refer to

equation (4.23)):

W)= —=1'E, [ (4] (4.78)

h(1) reduces to the Nash’s single integer-order reservoir (equation (4.55)) when a= 1.

Hence the forced response for equation (4.74) is

Qo )= 2z [(t=2F B, [ Y i @79)

The free response is the solution of the homogeneous part of equation (4.74) with the
initial conditions included, given by the inverse Laplace transform of the second term of
equation (4.76) (again using equation (4.22)):

o (=B [ (£)] (4.80)
where gy is the initial streamflow and E, (x) is the 1-parameter Mittag-Leffler function

(refer to equation (4.24)). Since the free response is the relaxation solution for zero

input, it can be used as a general model for baseflow recession. When a = 1, it reduces
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to Maillet’s (1905) exponential decay equation traditionally used for baseflow recession

modelling (Tallaksen 1995).

The total solution to equation (4.74) is

q(t)= I!—r)a" [ ")a] r)dr+qu[ ] (4.81)

When a =1 and for zero initial conditions, this reduces to Nash’s single linear reservoir

equation (4.56).

4.4.3 Single Fractional Order Lag and Route Model
Using the outflow of a linear channel (equation (4.67)) as input to the fractional order

linear reservoir gives the single fractional order lag and route model:

K',, g0)=—i(t-T) (4.82)

5D glt)+
where T is the lag time.
The impulse response function, i(f), is obtained for the case of a delta input, &), to the
tnitially-relaxed linear channel element which produces a & - T) input to equation

(4.82). Taking Laplace transforms, using equation (4.14), for the case of O0<a <1

gives

“H(s +%H(s)= ! e

e—T.r
H(s)= rerym (4.83)

Using the 2™ shift theorem for a Laplace transform (Doetsch 1974)
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h{e)= U(’—TX’_TL:Ea.a[‘(y—TTI)a]

(4.84)

which reduces to Dooge’s single integer-order lag and route model (equation (4.70))
when a= 1.

Hence the forced response for equation (4.82) is given by the convolution of the input
function, i(f) with the impulse response function, A(f). The free response is unchanged
from that for the single fractional order reservoir (equation (4.80)), so the total solution

for the single a-order lag and route model is

J-U(t T-t)t-T-7)f _'Enl— L"—'ﬂ)"] r)dr+qu[ f"] (4.85)

4.4.4 Cascade of Unequal Fractional Order Linear Reservoirs

The model of the cascade of fractional order linear reservoirs is derived in a similar
manner to that for the integer-order cascade (section 4.3.3). In the first instance an
initially relaxed cascade of unequal-K reservoirs in series by determining the impulse
response function where the output from the first reservoir given by equation (4.78) to
the delta impulse input becomes the input to the second reservoir. From equation (4.77)
the impulse response function for the second reservoir is

L

Hy(s)=—1— e (4.86)
UK+ ) KT+ W)
assuming the reservoirs have the same order, a.
Continuing for n reservoirs gives
Hy(s)= — - 4.87)

H(l +K;.’s“)

j=l
For a = 1, this reduces to equation (4.57). Again, the issue of model parsimony limits

the practical calibration of models with several unequal reservoirs. The case for n =2 is
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developed as an example (where K; # K> and K, > 0, K; > 0). Equation (4.86) can be
rewritten as

1 __ A4 . B
(1+&es" N1+ k2s®) (1+k7s7) (1+k757)

H(s)=
Cross multiplying
1= A1+ k257 )+ B+ K25°)
1=A+ AK;s® + B+ BK's”
1=(4+ B)+(4KZ + BK? )s*

Equating coefficients of like terms in s

1=A4A+B
and
0= AK] + BK
Substituting 4 = 1 - B gives
B=-_Ki
Kf-K;
and
A=—K'a
K[ -K;
So
1 Ke K?
H(S): a a la a - za a (488)
K" -K;\1+K[s® 1+KJs

Taking the inverse Laplace transform (using equation (4.22)):

h(r)=K—l,,’?K—;.{Ea_., Fer -] (4.89)

The foregoing provides a proof for Cavallini’s (2002) proposed ansatz for a fractional

instantaneous unit hydrograph model (equation (3.2) with &, =-¥ , k, = - and
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v= a). It should be noted that Cavallini’s proposed equation is missing the powers on
the & values required for dimensional consistency. When a = 1, equation (4.89) reduces
to the classical integer order IUH for a cascade of 2 unequal linear reservoirs (equation

(3.1) and using Cavallini’s & notation).

As before, the forced response for an arbitrary rainfall input is given by the convolution

of the input function, i(r) with the impulse response function, A(7).

For the case where the cascade 1s not initially at rest the total solution also requires a
free response (in accordance with equation (4.47)), and, hence an initial condition for
each reservoir. In the absence of further information, it is assumed that the first
reservoir of the cascade has an initial condition equal to the initial observed (total)
streamflow, g, and the remaining reservoirs are all initially relaxed (although, strictly,
this assumption is not proven for surface/subsurface catchment flow processes).
Consequently, the free response is unchanged from that for the single fractional order

reservoir (equation (4.80)).

4.4.5 Cascade of Equal Fractional Order Linear Reservoirs
The impulse response function for the fractional-order equivalent of the Nash cascade of
initially relaxed equal-K reservoirs is derived from equation (4.87) as

1

HH(S)=W

(4.90)

which can be rewritten as
_ 1
K™ (Sa + )/x“)'

Using equation (4.27) the inverse Laplace transform is

(4.91)

H,(s)
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tna-l

Kna

W)= Bz, [ (4)] (4.92)

where E‘f_,,(x) 15 the 3-parameter Mittag-Leffler function (refer to equation (4.26)).

Again, when a = 1, this reduces to the Nash cascade (equation (4.60)).

The forced response for an arbitrary rainfall input is given by the convolution of the
input function, i(f) with the impulse response function, h(f). For the case where the
cascade is not initially at rest the same argument as for the unequal cascade in section
4.4.4 is used to obtain the free response (from equation (4.80)) and, hence the total

solution.

4.4.6 Cascade of Time-Lagged Equal Fractional Reservoirs

The impulse response function for the fractional-order equivalent of the cascade of n
initially relaxed, equal (K, 7) lag and route elements to that used in the formulation of
Dooge’s (1959) general instantaneous unit hydrograph is derived in a similar manner to
that in section 4.3.4. The output from the first element given by equation (4.84) to the
delta input becomes the input to the second element. This is repeated for the remaining

elements. Combining equations (4.83) and (4.91) gives

-nTs

e

H,(s)= (4.93)
Kna(sa +}éay
Using the 2™ shift theorem for the Laplace transform
Ult —nT \t —nT 'HE;'M[— =nT) ]
h(r)= (onmemnt) ™ g, () (4.94)

Kﬂ‘a
Again, when a = 1, this reduces to the equivalent form of Dooge’s general

instantaneous unit hydrograph (equation (4.72)). The solution for the lag and route

cascade for an arbitrary input, i(¢), is found by convolution of i(f) with the impulse
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response function, A(f). For the case where the cascade is not initially at rest the same
tentative argument as for the fractional Nash cascade in section 4.4.5 is used to obtain

the free response (from equation (4.80)) and, hence the total solution, i.e.

g(t)= Kl"" .L 'U(: ~nT-t)t-nT-7)""E7 . [- (!""KL”)“];(r)dr +q,E, [— (%)"] (4.95)

Equation (4.95) encompasses fractional order reservoir storage-outflow behaviour and
takes account of initial conditions so that the rainfall-streamflow transformation can be
modelled by unit hydrograph principles. Effectively, this further generalises Dooge’s

(1959) theory beyond the rainfall-runoff transformation.

4.4.7 A Fractional Order General Storage Equation — Initial Form

The relationship between the fractional order cascade models and a general storage
equation akin to Chow and Kulandaiswamy’s (1971) equation can be undertaken ig. a
similar manner to that used in section 4.3.3. In order to investigate the form of such a
fractional order general storage equation, and because of the implications for the
interpretation of the Nash model, the case for a cascade of fractional order equal-K

linear reservoirs is considered.

From section 4.3.2 the form of the differential equation depends on the forced response,
Grorced(), namely the solution of the non-homogeneous equation for zero initial
conditions expressed as the convolution of the input function, i(f) with the impulse

response function, A(f) (equation (4.48)):

o ()= [iIHe - 2)ix

The Laplace transform of this convolution integral is equation (4.45):
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O(s)=1(s)H(s)
Substituting for H(s) from equation (4.90) for the fractional order cascade of equal-K

reservoirs:

1

W (4.96)

Ofs)=1(s)

As before, recalling that the Laplace transform s variable represents the fractional

derivative (taken in the Caputo sense), $D=, then

a(t)= i) ——

(1+Kk=Spef
or
(1+ &S0 Y () = ilt) (4.97)

Expanding as a binomial series for integer n (Spanier and Oldham 1987) gives

[Z UJ(K “or) }q(f) = i{r) (4.98)

=0

n jar
a; =( _JK 4
Letting J then

[Zn:a LoD/® :Iq(t)z i(?) | (4.99)

J=0
which can be written as the following initially-relaxed ordinary na order linear

differential equation with constant coefficients, a;.
la,SDr" + @y SO 4ok a Jy() = ie) 120 (4.100)

When a = 1 this reduces to Nash’s (1960) differential equation for the integer-order
cascade (equation (4.65)) and to Chow and Kulandaiswamy’s (1971) general storage

equation (equation (4.66) for b, = 0).
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Replacing (# — 1)! by the gamma function ['(») in the impulse response function for the
cascade of equal-K reservoirs, Nash (1957; 1960) allowed n to take on non-integer
values, taken to mean a “fractional” number of reservoirs. This practice has continued
since (Dooge and O'Kane 2003). However, when # is non-integer, say replaced by fn

where 0< # <1, then equation (4.97) becomes

(1+ k2D Y g(0)=i(r) _ (4.101)
For a positive integer, m, a binomial function (1+x)" is equivalent to a finite m-term
classical Taylor series expansion of the function about x = 0, where the Taylor series is
comprised of integer-order differential terms, but for non-integer m the series is infinite
(Spanier and Oldham 1987). Consequently, in the case of a non-integer value for Gn the
binomial expansion has an infinite number of terms and equation (4.99) becomes:.

li a; SD;"’]q(z)=i(t) (4.102)

=0

which has an infinite number of fractional ja—order differential terms. Furthermore,
this implies that the free response part of the total solution requires an infinite number
of initial conditions. Similarly, for the Nash cascade, where a = 1, then the equation

reduces to an infinite number of integer j-order differential terms. A further

mathematical argument against this fractional » interpretation is that (

1S not
1+K"s"y'

rational for non-integer values of » and cannot be expressed as partial fractions.
Therefore the notion of a “fractional number” of reservoirs needs revising from a

mathematical viewpoint.

71



4.4.8 A Fractional Order General Storage Equation — Final Form
In order to correctly interpret the Nash cascade model for non-integer fn value, it is
proposed that a finite series expansion of the binomial function is necessary. Such an

expansion is proved in the following.

Wheatcraft and Meerschaert (2008) have applied the generalised Taylor’s formula of
Odibat and Shawagfeh (2007) to give a finite representation of non-linear flux in a
fractional conservation of mass equation for flow in porous media instead of the infinite
series produced by the classical Taylor series. Consequently, the generalised Taylor’s
formula can be used to derive the finite series expansion of the binomial function of
fractional order. Odibat and Shawagfeh’s generalised Taylor’s formula for a function

Jx) expanded about x =g >0 is:

Sx)= Z I(“)E_/ﬂa)l D f(a)+R, (4.103)

where 0< <1, n is a positive integer, and S$D/# f(x) is the sequential Caputo

fractional derivative defined forj =0, 1, ..., nas D f(t)= gD;B gD,ﬁ...ngif(t). R,is

~
F-times

the remainder term.

In the case of a binomial function f(x)=(1+x)"”, the expansion about x = 0" is

developed as follows.
For the first term (j = 0"):
707)=1

For the second term (j = 1): ( )
CnA r nﬂ+l B~
oD f(x) I_( nB— B+ )( +x

SO
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o _F(np+1)
0 10)= T(np-p+1)
For the third term (j = 2):

€PPEDP f(x)= cDﬁ[ (r(;ﬂ;?l)(] XY ﬁ]

(nﬂ+1) F(nﬂ ﬂ+l) ( )nﬁ—Z,B
(- B+1) T(nf-p+1-p)

___T(nB+1) p-25
“Tup-2p+0)0

SO

c + r 1
oD:ﬂ gD'ﬂf(O )= l—-(nénf;-ﬁ_)'_]) -l

For the fourth term (j = 3):

CHACHECHEA cna| TnB+1) Y
ODt ODI ODr f(x)=0Dr [F(nﬂ—2ﬁ+l)(l+ ) j]

_ r(nﬂ+l) _ r(nﬂ 2ﬂ+]) (1 ),.ﬂ-sp
T(nB-28+1) T(nB-28+1-5)

(np +1) B-39
“tep—ap

SO

$D 5008 0)- )

For the (n+1)™ term, j = n, so SDM f(x) is a constant. Consequently higher order

sequential Caputo fractional derivatives are zero, so the series terminates for j > n.

Therefore, the expansion of the fractional order binomial function is

P C(ng+1)
D e et (104
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It should be noted that when g = 1, equation (4.104) reduces to the classical binomial

expansion for integer n.

Equation (4.104) is used to expand the binomial in equation (4.101) for the fractional

order cascade

aCpa Yl _ . r("ﬂ"'l) 2C pya V8
ek ) = 2 e g G o)

o= T(nB+1) iba
Lctﬁng ! r[(" - .])ﬁ + l]r(fﬂ + l) then

[ia}. gD,jﬂa:lq(t)= i(!) (4.105)

=0
which can be written as the following initially-relaxed ordinary SBna-order linear
differential equation with constant coefficients, a;.

[a,. SO+, oD gy "o]‘i(’ )=i(r) 120 (4.106)

where §D/#%4(¢) is the sequential Caputo fractional derivative defined as

5D/7q(t)=5DFSD!.. 5D §Dq(r) (4.107)

J-times

Equation (4.106) is a more generalised form of Chow and Kulandaiswamy’s (1971)
general storage equation (compare with equation (4.66) for b, = 0). This is an ordinary
fractional differential equation, with a finite number of terms representing a finite
number, n, of virtual reservoirs of sequential order af, where 0<a <1 and 0< S<1.
When a = 1 equation (4.106) reduces to an ordinary fractional differential equation
form of Nash’s (1960) model for a cascade of fn equal integer-order reservoirs. This

corrects the interpretation for a “fractional number of reservoirs”. When o= 1 and
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J=1, Nash’s equation (4.65) is recovered for integer n. Furthermore, the free response
part of the total solution to equation (4.106) requires a finite number of initial

conditions.

It follows that the new generalised cascade model is still achieved by using a single
composite fractional order a in place of aff in equation (4.106). In this way
conceptualisation of the model using an integer number of reservoirs (i.e. with f=1) is

adequate.

In order to investigate the form of the free response solution for the generalised

fractional cascade model it is necessary to derive the Laplace transform of the Caputo

sequential derivative, gD,"pf(t)z;Df'ng...gD,ﬁlf(t). Since 0< <1 then, from

Jj-times

equation (4.14), for a single Caputo derivative

LD 4()}= 52 Q(s)- s*"4(0") (4.108)
Let g,(1)=5D?q(¢) with an initial condition g,(0*)=5D?4(0*) then for the sequential
derivative let g,(¢)=CD”q,(r) with an initial condition g,(0* }=SD74,(0")

Continuing in this manner, then ¢ (¢)=5D”g, (r) with an initial condition

q. (0+ )=ng‘]"-1 (0+ )

Using equation (4.108) the corresponding Laplace transforms are:

L{EnPq (1)} =520/(s)-s""4,(07)

L{gDrﬂ‘h(’)}: SﬁQz(S)_Sﬁ_lqz(m)
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L{gDrﬂqn—l(!)}=SﬁQn—l( ) 7 l‘]n-l( +)

Substituting the sequential derivatives into these transforms gives:
L{snla ()= LD ED2a()}= 5" (200s)-714(07)) - 774,(0")
-0} 5 alr) 514 0

L{ngﬂ‘h (’)}= L{gD:ﬁ gD:ﬂql (’)}': Sﬂ(SmQ(S) - szﬁ_tq(0+)_ Sﬂ_l?l (0+ ))_ Sﬁ_l?z (0+)
=5%0ls)~5"4{0")- 54,0 )54, (0")

Continuing gives the general form for any integer number, n, of sequential derivatives

of equal order S as

n—|
LD 4(0))= s 0s)- D stmieiglin(or) (4.109)

It is worth noting that equation (4.109) is the equivalent to that for the Riemann-

Liouville sequential derivative (Ortigueira 2003).

The consequence of equation (4.109) is that the free response part of the total solution
to equation (4.106) requires a substantial number of initial conditions expressed as
functions of the Caputo derivatives evaluated at ¢ = 0". This raises the issue of the
complexity of the generalised cascade model with multiple reservoirs for practical
application where the system is not initially at rest (unlike the rainfall-runoff
transformation system assumption). Furthermore, if Lorenzo and Hartley’s (2008)
approach is taken to overcome the restriction of using constant initialisation with the
Caputo derivative and time varying initialisation functions are introduced then each

derivative term requires an associated initialisation function. This would add
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substantially to the model complexity. The implications for the development of
parsimonious fractional order cascade models are significant. Consequently, it is
proposed that a single fractional order time-lagged linear reservoir subject to a single
initial condition will be adequate for modelling the rainfall-streamflow transformation.

This proposal will be tested using observed flood event data (re. section 5.4).

4.4.9 Initialisation Function Considerations

In the derivation of the fractional order models considered the Caputo fractional
derivative has been used which, in accordance with equation (4.37), infers that the
0 < a €1 system is subject to a constant imtialisation function in the sense of Lorenzo
and Hartley (2008) to represent the mixing effect of “old” (stored) water and “new”
water observed in streamflow chemistry. This initialisation function is taken as the
initial streamflow at ihe start of the event. Given that the initialisation function
representing the surface-subsurface storage-flux history is not easily defined (for
example see Kirchner (2003)) then the identification of the true function is likely to
require further field studies of the interaction between the “old” and “new” water in the
generation of total streamflow. For the purposes of this work the constant initialisation

has been used (recall assumption 8 in section 4.4.1).

A recommendation for potential future development is to assume that the baseflow
recession characterises the surface-subsurface storage-flux histofy of a river and that it
can be represented by the new theoretical general equation (4.80). It should be noted
that the derivation of the required Lorenzo and Hartley (2008) initialisation function, y,
involves determining Laplace transforms of terms which are not always available in

closed form (Hartley and Lorenzo 2008).
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4.5 Summary

Assuming that the time-history of water storage/flow states in the surface/subsurface
catchment system can be represented by a fractional-order derivative form of an initially
un-relaxed, lumped cascade of time-lagged, linear reservoirs a new theoretical model
for the transformation of effective rainfall to total streamflow has been derived. The
classical unit hydrograph for rainfall-runoff modelling appears as a special case (for
initially relaxed, integer-order systems). The properties of cascades with equal and
unequal storage characteristics and varying numbers of reservoirs have been
investigated and, in particular, the implications of the initial conditions required.
Consequently, the classical Nash cascade of n reservoirs has been reinterpreted for
fractional n and Cavallini’s (2002) proposed ansatz for one form of a fractional
instantaneous unit hydrograph model has been proved (in a corrected form).
Furthermore, two new mathematical results for the fractional calculus have been
derived, namely a finite series expansion of the binomial function for a fractional power

and the Laplace transform of the Caputo sequential derivative,

78



Chapter 5 Rainfall-Streamflow Model Testing
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5.1 Methodology

The fractional order theory was tested using a selection of observed rainfall-streamflow
events for a range of catchment scales provided from the UK Flood Event Archive
(courtesy of the Centre for Ecology and Hydrology). The application of the fractional
order theory to the special case of effective rainfall to stormflow (runoff) modelling was
tested on the pre-processed data set published by Bree (i978). The mathematical
limitations of the numerical evaluation of the fractional order impulse response function
are identified and a novel series solution developed from the work of Wang and Wu

(1983) is presented in section 5.2.

The calibration of the model equations was undertaken using the genetic algorithm
(GA) technique to utilise its superior parameter-fitting capability over the classical
method of moments reported by Dong (2008), and Rigden and Borthwick (2008). The

GA control parameters and fitness functions used are presented in section 5.3.

In the light of the theoretical study of the influence of initial conditions on the
development of parsimonious fractional order cascade models (re. section 4.4.8),
particularly where sequential fractional order reservoirs are used, a single fractional-
order, time-lagged, linear reservoir subject to a single initial condition was used to test
the viability of the new theory for modelling the rainfall-streamflow transformation.
For the simpler case of the effective (net) rainfall to stormflow (runoff) transformation
uninitialized cascade models were tested against the classical Nash cascade. The details

of the test catchments and flood events are given in section 5.4.
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5.2 Numerical Methods

5.2.1 Limitations of the Convolution Formulation

Koutsoyiannis and Xanthopoulos (1989) exemplify the method commonly used for the
identification of the‘ parameters of a synthetic instantaneous unit hydrograph (i.e. the
impulse response function) model, namely that parameter optimisation is done by

minimisation of a fitness (objective) function. They present the following four steps:

1. calculation of the instantaneous unit hydrograph (IUH) ordinates using a chosen set
of parameter values in the theoretical moael equation,

2. scaling the IUH to calculate the synthetic unit hydrograph corresponding to the
rainfall duration,

3. calculation of the predicted runoff hydrograph by convolution of the synthetic unit
hydrograph with the effective rainfall hyetograph, and

4. calculation of the fitness function (i.e. the measure of the error between the observec:i

and predicted hydrographs).

Step 3 is the classical unit hydrograph convolution integral (equation (4.44)) evaluated
from the initial time, r = 0", to the time of interest ¢. This approach is almost universally
used in unit hydrograph modelling (Dooge and O'Kane 2003). However, this presents a
problem for the numerical evaluation of the fractional order impulse response function
models of single (unique K value) reservoirs developed in section 4.4 at time zero,
because of the /*! multiplier with 0 < a <1. Recalling equation (4.77) for the Laplace

transform of the impulse response function for a single fractional order reservoir:

81



1

H(s)=m (5.1)

and applying the initial value theorem of the Laplace transform (Doetsch 1974) of a

function f{r)

10t)= lim /(¢)=limsF(s) (5.2)

S—0
gives

A s B
Ho )_EUK_"(m)_OO (5.3)

This demonstrates the unbounded behaviour of the impulse response function at ¢ = 0,
which is a common feature of fractional relaxation equation modelling (Podlubny
1999). It also explains Cavallini’s (2006) remarks that expressing the IUH as the
difference of two solutions of first-order fractional differential equations may not

always produce a positive definite result.

5.2.2 Unit Step Response Formulation
In order to overcome the initial value problem of the impulse response function it is
necessary to note that if the expression in equation (5.3) is multiplied by /s it tends to

zero as s —> . From the integral theorem of the Laplace transform (Doetsch 1974)

L{ J:f(r)dr} = %F(s) (5.4)

then this requires recasting the original model so as to obtain the integral form of the
impulse response function (i.e. the step response function). Fortunately, this is possible
given fact that the rainfall input function, i(f), can be approximated by m discrete
rainfall pulses of duration Ar as this is typically how it is measured in practice (re.
section 4.3.1). Recal.ling equation (4.39), Wang and Wu (1983) represented this pulse

hyetograph as a series of unit step functions, U(r), whereby
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i(r)= Z wU (- jar)
7=0
with

w,=i,—i,, forj=1,2,.,n

and expressed the Laplace transform as

f(s)=iw"e_. :
i=0 o

Wang and Wu went on to incorporate this result in the Laplace transforms of the

(5.5)

integer-order differential equations for the cascades of linear reservoirs and lag and
route models (c.f. section 4.3.3 and 4.3.4) and produce solutions in terms of the step
response functions that did not require the convolution integral for evaluation. This

technique is developed here in order to utilise the common 1/s factor of equation (5.5). -

Recalling equation (4.76), the Laplace transform of the differential equation of the

fractional order reservoir model

N ,(s)' +sa-.Q( )
ols) Ks®+ o) (s*+ Y) (5:6)

Only the first term (the forced response) need be considered since the free response
(second term) is independent of /(s). Replacing /(s) with equation (5.5) then the forced

response is

ije'j‘”’
Do (S)zﬁ(m (5.7

Comparing with equation (5.1) this can be written
H(s) < - jats
OQpreea (S)= '_‘;(_)ije a
Jj=0

or
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o ()= G()D " e (5.8)

where

G(S)= m (5.9)

It should be noted that equation (5.8) can be used generally for other forms of G(s)

representing other models.

Using equation (4.22) the inverse Laplace transform of G(s) is the unit step response

function, g(¢)
l
gl)= = E, [— (£r ] (5.10)
Now applying the initial value theorem to equation (5.9)

G| +)=mSG(S)=K_"(FIT,v_,,)=O .11

which is now bounded.

Using the 2™ shift theorem then the inverse Laplace transform of equation (5.8) for the

forced response of the single fractional order linear reservoir can now be found as
AN : e
Qo ()= szju(f ~ je )t - jar) E,,,Ml[—(—xﬂ)a] (5.12)
j=0

As noted above, the free response is unchanged from the original derivation (equation

(4.80)), and can be added to the forced response to give the total solution.

5.2.3 General Unit Step Response Model
Consequently, from equation (4.93) the step response function for the cascade of n

initially relaxed, equal (K, T) fractional-order lag and route elements can be obtained
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e—nT.r

G.s)= 5.13
) sK™ (5% + y.) G193
Using equation (4.22) and the 2" shift theorem the inverse Laplace transform gives
Ul Ty B ()
glr)= o (5.14)

Again using the 2™ shift theorem then the inverse Laplace transform of the general

equation (5.8) is obtained as

Gorne (1) = # Z wU(t —nT - jAt)t—nT - jaty ED [— ((carsaa) e ] (5.15)

J=0
As before, the free response can be added to the forced response to give the total

solution.

Equation (5.15) is the most general form of the models. The other models can be

obtained as particular cases as follows:

e n = gives the single reservoir models
e o= gives the classical integer order reservoir models

e T=0 gives the unlagged models

It should be noted that the case for the single integer-order lag and route model (n = 1,

a = 1) derived from equation (5.15) corrects that presented in Wang and Wu (1983).

The numerical solution of equation (5.15) was undertaken using a bespoke computer
program written for this study. The 3-parameter Mittag-Leffler function (equation
(4.26)) could only be approximated in a computer by truncating the infinite series for
terms with vanishingly small values. For calibration of the models with the observed

events the streamflow units (in m*/s) were converted into mm/hour (over the area of the
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catchment concerned) to be consistent with the rainfall units. For presentation and

comparison purposes, the predicted streamflow units were converted back into m*/s.

5.2.4 Rainfall Loss Model

If it is assumed that there is a “loss” of water from the measured rainfall due to
infiltration and evapotranspiration, which does not contribute to the measured
streamflow event, then a rainfall loss model has to be applied. However, it should be
noted that infiltrated water has a contributory effect on subsequent streamflow events
because of baseflow recharge to the stream. In order to test the influence of the loss
model on the performance of the fractional order streamflow models studied, observed
storm events were run for the case of the observed (total) rainfall, i,(¢) (1.e. without a

loss model), and of effective (net) rainfall, i(¢) (i.e. having applied a loss model).

As reviewed in section 2.2.1, there are a number of approaches that have been proposed

for loss modelling, including:

e an exponential decay function to simulate infiltration (Horton 1940);

e aconstant loss rate, ¢-index, such that the effective rainfall volume equals the runoff
volume (Cook 1946);

* a proportional loss rate, percentage runoff (PR), to represent contributing areas to
stormflow such that the effective rainfall volume equals the runoff volume (Natural
Environment Research Council 1975a);

* a low pass filter applied to rainfall based on a catchment wetness index (CWI) to
represent soil moisture content (Whitehead er al. 1979; Jakeman er al. 1990);

e anon-linear filter based on streamflow to replace the CW/ (Young and Beven 1991;

1994); and
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e a Probability Distributed Model (PDM) of catchment moisture storage (Moore and

Clarke 1981; Moore 1985).

The fitting of an infiltration-type model is dependent on the initial infiltration rate and
by vanation across the catchment area (Beven 2000). However, no infiltration capacity
data was available for the Flood Event Archive catchments. The PDM model used in
the revitalised FSR/FEH rainfall-runoff (ReFH) method (Kjeldsen et al. 2005) needs an
initial soil moisture content which, for the ReFH model, is estimated from a daily soil
moisture accounting model applied to a year’s record of daily catchment average
rainfall and evaporation. Again this antecedent time series data was unavailable for the
Flood Event Archive events. Young and Beven’s (1991; 1994) simplified rainfall filter
requires less data and fewer parameters than the CH#T approach to simulate soil moisture
storage change, so that the effective rainfall can be calculated as a function of the
product of observed rainfall and time-lagged streamflow. Consequently the ¢-index,
PR, and non-linear filter based on Young and Beven (1994) were selected for loss

model testing.

The effective rainfall, i(f), for the g-index model is given by
i(t) = iy, ()& (5.16)

where ¢ is the constant loss rate,

The effective rainfall, i(r), for the PR model is given by
i(f)=PR-i, () (5.17)

where PR is the percentage runoff.

87



It should be noted that separation of th;a observed streamflow hydrographs into
stormflow and baseflow (as undertaken in traditional UH analysis) is not required since
the objective is to apply the fractional order systems models to predict the streamflow
directly. Given that the actual catchment system is open (non-conservative) then the
concept of matching the effective rainfall and stormflow volumes so as to specify the ¢
index or PR is not applicable, unlike the integer order system. This, however, raises the
question of the validity of these loss models in the context of the fractional order system

approach.

The effective rainfall for the non-linear filter was assumed to be a product of the
observed rainfall, io5(¢), and a power function of the calculated (total) streamflow g(r)

and the previous model timestep, At, after Young and Beven (1994) whereby
i(t)=Ci, (g (- ) (5.18)

and C and P are the parameters, such that 0<C <l and 0 < P <1,

The parameters of the loss models were fitted using observed total rainfall and
streamflow event data as explained in section 5.3. Each model was tested on a set of
storm events for a sample catchment in order to select a single loss model for use with a

broader range of catchments (re. section 5.4.2).

5.3 Calibration

5.3.1 Genetic Algorithm

The principles of the genetic algorithm (GA) and its suitability for the calibration of
rainfall-streamflow models have been summarised in section 2.6.1. In the GA an initial
population of randomly selected sets of parameter values is allowed to “evolve” by

applying reproduction, crossover and mutation operations on selected “individuals” of
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the parent population (Goldberg 1989). Each individual is a single set of parameter
values representing a unique model solution. The set of model parameters is encoded as
a string of numerical values. Each model parameter can take values within a user-
defined range so that the search space is constrained (e.g. to avoid unrealistic values
being generated). The GA is repeated for a number of generations or until an
adequately fit individual is found. The fitness of each individual is a numerical measure
comparing model prediction with observations. The reproduction operator ensures that
the best individuals of each population are retained. The key user-defined components

of the GA are:

the number of individuals in the population;

e the number of generations performed by the GA;

¢ the method of selecting individuals for reproduction, crossov.er and mutation;
e the probability of undertaking crossover between selected individuals;

e the probability of undertaking mutation on a selected individual; and

¢ the fitness function.

The population size and number of generations influence the extent of the search space
during the GA run and are problem-specific. The selection techniques are based upon a
probabilistic rule where the chance of a particular individual being selected is dependent
on its fitness (e.g. proportional to the fitness as in a weight_ed “roulette wheel”
simulation). A pseudorandom number generator is used in the implementation of the
GA to pick values between 0 and 1. In practice, tournament selection is often used
where a group of individuals is sampled at random from the population and the best in
the group is selected based on fitness (Goldberg 1989). This avoids the potential with

the roulette wheel approach for repeated selection of the same individuals which can
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lead to convergence to a local optimum. The probabilities of crossover and mutation
determine whether selected individuals are crossed or mutated. The crossover involves
randomly selecting portions of the strings representing 2 parent individuals and crossing
them between the 2 parents. Typically 2 points of crossover performs better than a
single point (Goldberg 1989). Mutation involves randomly selecting a portion of the
string representing an individual and replacing the model parameter values with new
values drawn uniformly from the range for each parameter. The crossover and mutation
operators simulate the evolution of fitter individuals whilst attempting to avoid
convergence to a local opimum. Determining suitable values for these GA control
parameters (population size, number of generations, tournament size, crossover
probability and mutation probability) is problem specific and requires initial trials on

sample data for the problem.

5.3.2 Fitness Function

In order to measure the error between the observed and model predicted streamflow
necessary for the GA calibration a fitness function was evaluated based on two
objective functions. The first objective was the commonly-used root mean square error,

RMSE given by

N

RMSE = \/%Z(qom ~q,(0)f (5.19)

=1
where gops, 15 the observed streamflow at time ¢, g{8) is the streamflow predicted by the
model at time ¢, & is the set of model parameters, and N is the number of streamflow

values used in the calibration.

To account for the limitations of the RMSE (re. section 2.6.3), a second objective

function was proposed that would fit the observed hydrograph shape across the range of
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flows. A novel approach was to compare the slopes (de Vos and Rientjes 2007,
Borthwick et al. 2008) of the observed and predicted hydrographs, expressed as the root

mean square error of slope, RMSslope, given by

N
RMSslope = J 1 Z (sl’opeo,,_T , — Slope, (9))2
N'a (5.20)
where
slope = L (5.21)

20t
for 1 <t < N using a central difference approximation; and at the end points of the time

series the slopes were estimated using forward and backward differences as follows:

4, —4,
slope = =—= 5.22
yor (5.22)
9y — 9N,
slo == 25 5.23
Py : (5.23)

where At is the timestep (hourly) and g, is the streamflow at a particular time, ¢.

In a previous study Borthwick et al. (2008) have tested the effect of the fitness function
based on RMSE and RMSslope using the conceptual daily rainfall-streamflow model,
SIXPAR (Gupta 1982) which is a reduced parameter version of the Sacramento soil
moisture accounting model, SAC-SMA (Bumash e al. 1973). For comparison with
Duan et al’s (1992) study the same 200 day synthetic daily series of precipitation and
streamflow for a known set of parameter values was used. When used singly in a GA
search, the RMSE and RMSslope objective functions identified different optima but
failed to find the global solution. However, when combined as a weighted sum, the

region of the global solution was detected.

To combine the influence of the two objective functions, therefore, a weighted average

fitness measure was used given by:
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Fitness = w,RMSE + w,RMS (5.24)

slope

where w| and w;, are weightings such that w) + w, =I.

In order to establish appropriate values of the GA control parameters and the fitness
function weightings wy and w, initial calibration tests, where the key parameters were
varied in turn, were undertaken to fit an initialised, single, fractional-order, time-lagged,

linear reservoir with a non-linear rainfall filter to a sample observed catchment event.

5.3.3 Model Parameter Space

The problems of parameter interaction and sensitivity in the calibration of rainfall-
streamflow models have been reviewed in section 2.6. The parameter space is defined
by the values of parameters giving rise to model solutions of acceptable fitness. The
space was investigated for a sample catchment by using a set of parameters calibrated
for an observed event to run the fractional-order linear reservoir model and predict the
streamflow for other observed events (i.e. validation). In this way the performance of
calibration sets based on different events can be compared with each other for a given
catchment. This 1s important for the assessment of how well the proposed model fits

the catchment.

In addition, visualization of the parameter and fitness function spaces is valuable for
identification of the robustness of the calibration process. In a previous study
Borthwick er al. (2008) have tested the use of clustering and visualization for the
calibration of the conceptual daily rainfall-streamflow model, SIXPAR (Gupta 1982)
using the interactive calibration-support system developed by Packham et al (2005).

The system uses the GA and clustering techniques to visualize the optimization of
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multidimensional models and to evaluate robust regions of the parameter spaces. The

system includes the following features:

¢ Rapid sampling of the feasible parameter and objective spaces by using short GA
runs. The low number of generations avoids convergence onto a single optimum
region, and the use of moderately high crossover and mutation rates, particularly if
duplicate solutions are generated, maintains diversity.

e High dimensional visualization of the parameter and objective function spaces,
including 2-D and 3-D views, and parallel coordinates to aid in identification of
parameter interaction and model sensitivity to particular parameters.

e A kernel density estjmation algorithm (Silverman 1986) to identify clusters of
solutions in either the parameter or objective function space, and display using
colour intensity in proportion to fitness. A univanate kemnel density estimate of
each variable is made and the minima from each estimate are computed. Tht;
bounds of each cluster are thus identified in each vanable. The first cluster
displayed to the user is that containing the highest fitness from the GA.

e Interactive features so that the user can quickly zoom into subspaces and select
regions for additional GA searches to generate further solutions or for the
identiftcation of clusters — either automatically or manually. All the solutions (i.e.
high and low fitness) generated by the GA search are retained by the system. In this
way the user has control over both how and where the investigation of the search

space takes place, including regions outside of clusters of good solutions found by

the GA.

The parameter space for the initialised, single, fractional-order, time-lagged, linear

reservoir model with a non-linear rainfall filter was visualised for a sample observed
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flow event using the interactive calibration-support system developed by Packham et a/
(2005). Furthermore, the visualisation was undertaken for events exhibiting anomalous

calibration behaviour.

3.3.4 Nash-Sutcliffe Efficiency
For presentation purposes and as a means of comparing the model performance against
other published research the commonly used Nash-Sutcliffe efficiency, NSE (Nash and

Sutcliffe 1970), was also evaluated using

N

Z (qob.r,l - 4q, (6))2

NSE =1-| 2= (5.25)

N

Z (qobu - an)z

=1

where g, is the average observed streamflow.

5.4 Test Catchments

5.4.1 Rainfalli-Runoff Model Testing

In order to assess the applicability of fractional order cascades to the traditional
effective (net) rainfall to runoff (stormflow) modelling problem an initially relaxed (i.e.
zero Initial condition) cascade of fractional reservoirs was tested for the following 3

conditions:

1. the cascade of n equal-K fractional linear reservoirs subject to a time lag, 7T,
2. the cascade of 2 unequal-K fractional linear reservoirs (Cavallini’s ansatz); and

3. the cascade of n equal-K st order linear reservoirs (the classical Nash cascade).

A sample dataset of 22 rainfall-streamflow events recorded for the River Nenagh
catchment, Ireland has been processed into effective rainfall and runoff by Bree (1978),
and Mohan and Vijayalakshmi (2008) have successfully applied the GA to the

94



calibration of the classical Nash cascade for this dataset. This effective rainfall-runoff
dataset was used to test the application of the initially-relaxed cascade of fractional
order reservoirs. Bree's (1978) processing of the observed total rainfall and streamflow

data is summarised below.

The Nenagh catchment has an area of 295km’. Bree (1978) used the 3 hourly rainfall
depth recorded by the single autographic rain gauge on the catchment for the mean areal
rainfall. The 3 hourly streamflow discharges were obtained from the velocity-area
gauging station at Clarianna. The 22 isolated flood flows comprised 19 winter and 3
autumn events. The percentage runoff loss model of the UK Flood Studies Report
(Natural Environment Research Council 1975a) was used to denive the effective rainfall
from the observed values for each event, so that the volume of effective rainfall
equalled the volume of runoff. The runoff was obtained from the observed streamﬂo;w
hydrograph by subtracting an assumed constant baseflow. For a given flow event, the
baseflow value was taken as equal to the final observed streamflow from the recession
hydrograph of the previous event (i.e. the strecamflow at the start of the rising

hydrograph for the current flood event).

For the model simulations the start time (¢ = 0) for each event was taken as that for the

beginning of the effective rainfall hyetograph.

5.4.2 Rainfall-Streamflow Model Testing

For the testing of the initialised, single, fractional-order, time-lagged, linear reservoir
for modelling the observed (total) rainfall-streamflow transformation a selection of
flood events from 11 representative UK catchments was used. Catchments were chosen

that covered a range of sizes (from 22km? to 510km?). In addition, the events used were
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those drawn from the Flood Event Archive (provided with the permission of the Centre
for Ecology and Hydrology, UK) that were deemed reliable -for use in previous
published work (Institute of Hydrology 1999; Kjeldsen ef al. 2005). A summary of

each catchment is given in Table 5.1.

Gauge No. River and Catchment Area AAR % Area
(km?) (mm) | Urbanised

46005 East Dart at Bellever 22.22 2096 0.00
30004 Lymn at Partney Mill 60.11 685 1.00
74001 buddon at Duddon Hall 86.02 2265 0.00
25005 Leven at Leven Bridge 194.54 726 1.00
54004 Sowe at Stoneleigh 263.23 667 13.00
37001 Roding at Redbridge 301.12 607 4.00
66011 Conwy at Cwm Llanerch | 339.62 | 2041 0.10
28026 Anker at Polesworth 370.50 653 6.00
7001 Findhorn at Shenachie 415.87 1217 0.02
57005 Taff at Pontypridd 451.88 1832 4.00
72006 Lune at Kirkby Lonsdale | 509.98 1652 0.10

Table 5.1 Summary catchment properties

AAR is Average annual rainfall.
Full details of each catchment and river gauging station is available from HiFlows

(Environment Agency 2009).

The UK Flood Event Archive comprises catchment average rainfall profiles (CARPs)
and associated hourly streamflow data for isolated flood events used in the production
of the Flood Studies Report (Natural Environment Research Council 1975a) and Flood
Estimation Handl?ook (Institute of Hydrology 1999). The CARPs were denved from
observed hourly point rainfall from autographic gauges on each catchment. The CARPs

for events up to the end of 1975 were calculated using a weighted average of the
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individual gauge observations based on the reciprocal of the distance from the centroid
of the catchment (Natural Environment Research Council 1975b). For events from
1976, the CARPs were calculated using an area-weighted average based on a
development of the Thiessen polygon approach (Diskin 1970) where a rectangular mesh
was used to subdivide the catchment. The mesh space closest to a given gauge was
used to estimate the proportion of the total catchment area associated with the gauge
(Jones 1983; Institute of Hydrology 1999). In both techniques used in creating the
CARPs for the Flood Event Archive where more than one autographic gauge was
available the averaging involved adjusting the time origin of the observed point
hyetographs so that the centroids were matched. This required selecting events where
the timing of the centroids was close to avoid averaging very different profiles. This
implies that each storm event included in the archive was reasonably stationary over the

duration of the event.

The streamflow hydrographs in the Flood Event Archive were derived from the
observed hourly stages from river gauges using the associated rating curve for the
gauge. The flood events were selected on the basis of having a significant peak flow
and so that the streamflow hydrographs were separated by a reasonably well defined

recession (before and after the event).

For the model simulations the start time (¢ = 0) for each event was taken as that for the
beginning of the rainfall hyetograph (CARP). The initial condition, gq, required for the
evaluation of the free response term, equation (4.80), of the fractional order reservoir
model was taken as the observed streamflow at ¢+ = 0. This initial condition is the

constant initialisation function implicit in the Caputo fractional derivative which 1is
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assumed to represent the mixing effect of “old” (stored) water and “new” water

observed in streamflow chemistry (re. section 4.4.1).

The influence of the selection of the rainfall foss model on the performance of the
fractional order reservoir system was investigated by applying the ¢-index, PR and non-
linear filter approaches in tumn on the observed rain storm events for the East Dart
catchment at Bellever (river gauge no. 46005) and assessing the fit of the predicted and

observed streamflow.
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Chapter 6 Results
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6.1 Rainfall-Runoff Model Results for River Nenagh

The summary results for the GA fitting of the parameters of an initially relaxed (i.e.

zero initial condition) cascade of n equal-X fractional linear reservoirs subject to a time

lag, T to Bree’s (1978) pre-processed effective rainfall-runoff dataset for the River

Nenagh (re. section 5.4.1) are shown in Table 6.1. K and T are presented in hours.

Event K n a T nK* Fitness NSE
1 7.898 1.123 0.990 0.569 8.688 0.027 0.953
2 4.309 1.466 0.999 0.836 6.308 0.015 0.988
3 3.387 1.289 0.820 0.969 3.505 0.035 0.923
4 4.083 1.572 0.908 0.917 5.639 0.081 0.839
5 3.071 1.106 0.701 1.603 2.429 0.030 0.876
6 4219 1.205 0.818 1.668 3912 0.031 0.953
7 7.538 1.108 0.993 1.817 8.235 0.028 0.943
8 S5.155 1.327 0.991 0.317 6.740 0.015 0.990
9 3.986 1.041 0.878 1.379 3.505 0.014 0.991
10 1.954 2.232 0.846 0.305 3.934 0.014 0.988
11 2215 1.357 0.700 1.078 2.368 0.031 0.937
12 2.631 1.531 0918 0.537 3.721 0.067 0.970
13 2.900 1.578 0.842 1.013 3.868 0.034 0.976
14 2.715 1.594 0.834 0.950 3.667 0.020 0.988
15 3.468 1.746 0.827 0.815 4.883 0.024 0.943
16 4.130 1.409 0.910 0915 5.122 0.018 0.956
17 2.044 1.532 0.701 0.744 2.529 0.034 0.921
18 1.372 1.711 0.837 1.556 2.230 0.069 0.924
19 2.879 1.434 0.833 1.762 3.460 0.033 0.979
20 1.616 3.321 0.950 0.445 5.239 0.049 0.973
21 4.755 1.075 0.964 1.617 4.833 0.049 0.991
22 5.611 1.051 0.968 0.738 5.581 0.019 0.990

Table 6.1 R. Nenagh results for cascade of time-lagged equal fractional reservoirs
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The following Figures 6.1 and 6.2 show the predicted and observed runoff hydrographs
together with the effective event rainfall hyetograph for the best and worst cases for the

River Nenagh associated with Table 6.1. A full set of results plots is available in

Appendix A.
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Figure 6.2 Predicted and observed results for event 04

The summary results for the GA fitting of the initially relaxed cascade of two unequal-K

fractional linear reservoirs to the effective rainfall-runoff events on the River Nenagh

are shown in Table 6.2.
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Event K K a K + K35 | Fitness NSE

1 1.012 8.278 0.997 9.238 0.028 0.950
2 4.044 3.107 1.000 7.151 0.021 0.973
3 4.467 1.201 0.939 5.265 0.038 0.904
4 2.586 5109 ° 0.972 7.399 0.082 0.833
5 1.486 4.063 0.891 4910 0.048 0.755
6 3.722 2.929 1.000 6.651 0.073 0.792
7 5.911 3.532 0.997 9.398 0.036 0.907
8 2.126 4.747 0.944 6.389 0.015 0.990
9 1.305 3.589 0.999 4.889 0.029 0.953
10 4.268 1.573 0.999 5.834 0.020 0.974-
1l 4.166 1.002 0.957 4.920 0.055 0.859
12 1.595 3315 0.986 4.844 0.079 0.955
13 3.808 2.262 1.000 6.070 0.063 0.915
14 2.084 3.884 0.992 5914 0.044 - 0.943
15 5.589 2.249 0.989 7.713 0.032 0.932
16 4.981 2.122 0.995 7.055 0.022 0.931
17 2618 1.563 0.875 3.799 0.051 0.852
18 2.832 2974 1.000 5.806 0.147 0.735
19 3.26! 3.698. 0.998 6.942 0.091 0.856
20 4.078 4.169 0.999 8.235 0.153 0.746
21 2917 3.208 1.000 6.125 0.124 0.937
22 1.483 4.498 0.927 5.471 0.024 0.984

Table 6.2 R. Nenagh results for cascade of 2 unequal fractional reservoirs

The following Figures 6.3 and 6.4 show the predicted and observed runoff hydrographs
together with the effective event rainfall hyetograph for the best and worst cases for the
River Nenagh associated with Table 6.2. A full set of results plots is available in

Appendix B.
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For comparison with Table 6.1 and Table 6.2, the summary results for the GA fitting of
the classical Nash cascade of # initially relaxed, equal-K 1* order linear reservoirs to the

effective rainfall-runoff events on the River Nenagh are shown in Table 6.3. The nK

values can be compared with the nK* values in Table 6.1 and the K + K values in

Table 6.2.

Event K n nK Fitness NSE
] 6.087 1.445 8.797 0.034 0.931
2 2.810 2427 6.820 0.014 0.987
3 4.115 1.419 5.839 0.040 0.888
4 3.997 1.901 7.597 0.083 | = 0.821
5 4.281 1.427 6.109 0.053 0.696
6 2.445 2.487 6.079 0.070 0.792
7 4.612 2.018 9.308 0.036 0.905
8 4.629 1.534 7.103 0.016 0.988
9 2.255 2.026 4.569 0.031 0.939
10 2.838 1.950 5.534 0.022 0.963
11 3.103 1.620 5.026 0.062 0.809
12 2.517 1.894 4.768 0.081 0.950
13 2.449 2.322 5.687 0.060 0.908
14 2.367 2.299 5.442 0.042 0.934
15 4.042 1.907 7.706 0.033 0.927
16 3.571 1.924 6.870 0.023 0.923
17 2.881 1.546 4.455 0.059 0.774
18| 1.657 3.133 5.190 0.124 0.806
19 1.855 3.281 6.085 0.070 0.908
20 1.366 4.875 6.657 0.071 0.937
21 2.221 2.572 5713 0.107 0.944
22 4.303 1.432 6.161 0.026 0.982

Table 6.3 R. Nenagh results for Nash cascade of # equal 1* order reservoirs
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6.2 Initialised Fractional Order Linear Reservoir Results

6.2.1 Loss Model Testing

The results for the GA fitting of the parameters of an initialised, single, fractional-order,
time-lagged, linear reservoir to the Flood Event Archive events subject to the use of the
¢-index, percentage runoff (PR) and non-linear rainfall filter (RF) approaches in tumn on
the observed rain storm events for a sample catchment, the East lDart at Bellever (river
gauge no. 46005) are shown in Tables 6.4 — 6.6. The K® values for each event are
calculated for dimensional consistency. The observed total event rainfall (R7) in mm,
observed peak streamflow (Qp) in m’/s and initial soil moisture deficit (SMD, supplied
to the Flood Event Archive by the UK Meteorological Office from the nearest climate
station records) in mm, for each event are also presented. K and T are stated in hours, ¢

s in mm.
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Event Date Ry Op SMD K a T ¢ K NSE
1287 | 13-Nov-64 38.1 24.81 0 4.609 0.795 0.875 0.288 3.371 0.839
1289 | 28-Nov-65 399 38.15 0 2.920 0.753 1.997 0.913 2.242 0.969
1292 | 28-Dec-66 48.3 31.69 0 3.500 0.700 3.625 0.163 2.405 0.724
1297 | 21-Dec-68 344 30.38 0 2.250 0.893 3.317 1.406 2.063 0915
1298 | 13-Dec-69 49.2 31.43 0 1.563 0.968 2.665 1.575 1.540 0.879
1299 | 08-Sep-70 32,6 38.34 0 1.500 0.820 0.906 0.415 1.394 0.936
1300 | 12-Nov-72 44.6 8.66 0 4.828 1.000 0.564 3.594 4.828 0.990
1301 | 04-Aug-73 109.9 50.79 50.8 1.875 0.706 2.910 0.226 1.559 0.878
1302 | 13-Sep-75 49.2 25.69 28.2 4250 0.583| 2.833 1.078 [ 2325 0.905
1303 | 10-Nov-74 48.5 43,92 0 2281 0.885| 2.250 0.563 | 2.075| 0.966
1304 | 03-Aug-74 43.6 13.28 28.7| 38500 0362 3.941 1.000| 3.743( 0917
4351 | 12-Feb-76 514 23.35 0 2,582 0.725| 2390 0.088| 1.989| 0.899
43521 05-Oct-76 56.6 17.38 0.2 7.375 0.983 1.476 1.000 7.129 0.859
4353 14-Oct-76 104.1 17.73 0 7.688 1.000 0.771 1.566 7.683 0.903

Table 6.4 Catchment 46005 results for single fractional time-lagged reservoir using a g-index loss model
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Event Date Ry Or SMD K a T PR K® NSE
1287 | 13-Nov-64 38.1 | 2481 01 4328 0688 1338| 91.968| 2.738| 0822
1289 | 28-Nov-65 399 3815 01 2000| 0895| 2000| 68571] 1.859| 0932
1292 | 28-Dec-66 4831 31.69 01 60250| 0.163| 4.964| 100.000| 1946| 0.524
1297 [ 21-Dec-68 3441 3038 Ol 1.750] 0897 3.500| 76812| 1.652] 0922
1298 [ 13-Dec-69 4921 3143 0| 1941 0538| 3500| 82.813] 1428 o0.782
1299 | 08-Sep-70 326 | 3834 Ol 1719 0.763| 0891| 100000| 1.512| 0924
1300 | 12-Nov-72 44.6 8.66 Ol 2500| 1.000| 1.146| 23462| 2.500| 0947
1301 | 04-Aug-73 | 109.9 50.79 508 2000| 0625 3.000| 98.112] 1.542| 0867
1302 | 13-Sep-75 49.2 | 25.69 2821 8250 0271 3819| 93.750| 1.771] 0.889
1303 | 10-Nov-74 485| 4392 Ol 2000| 0799 2363 96.875| 1.740| 0.959
1304 | 03-Aug-74 436 | 13.28 28.71 28500| 0.390| 3938| 71.875| 3.696| 0.894
4351 | 12-Feb-76 514 2335 O| 46.5500| o0.163| 2944 100.000| 1.866| 0.608
4352 | 05-Oct-76 56.6| 17.38 02] 58000| 0350| 1986 100.000| 4.142| 0.654
4353 | 14-Oct-76 | 104.1 17.73 O 6817 0839 1500 63281 5005| 0.887

Table 6.5 Catchment 46005 results for single fractional time-lagged reservoir using a PR loss model
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Event Date Rr Or SMD K a T C P K® NSE
1287 | 13-Nov-64 3811 2438l 01 10390 0597 0429 0.873 0.485| 4.049| 0.964
1289 | 28-Nov-65 3991 3815 01 23381 0453| 1.669 0.965 0519 4.173| 0977
1292 | 28-Dec-66 4831 31.69 0 31577 o0.109| 3.778 0.692 0.890 | 1456 0.832
1297 | 21-Dec-68 3441 3038 O s911| 0646 2.607 0.852 0.405 | 3.154| 0971
1298 | 13-Dec-69 49.2| 3143 01 25790 0519 1.249 0.929 0611 5402| 0.954
1299 | 08-Sep-70 326| 3834 0 2903 0343 1306 0.960 0.179 | 1441 0.895
1300 | 12-Nov-72 44.6 8.66 0| 36627 0341 1.528 0.569 0364 | 3.408| 0974
1301 | 04-Aug-73 [ 1099, 50.79 508 | 42464 | 0261 2637 0.961 0529 | 2660 0.878
1302 | 13-Sep-75 49.2| 25.69 282 49.098| 0254| 2775 0.911 0436 | 2.693| 0.960
1303 | 10-Nov-74 485 4392 01 5270| 0548 1972 0.866 0333 | 2487 0.991
1304 | 03-Aug-74 436 | 1328 28.7| 40966| 0488 2.365 0.817 0.432| 6.126| 0.948
4351 | 12-Feb-76 5141 2335 0| 4727 0699 0.783 0.627 0.588| 2962| 0.949
4352 | 05-Oct-76 36.6 | 17.38 021 22495 0586] 1.223 0.890 0.558| 6.202| 0919
4353 | 14-Oct-76 |  104.1 17.73 01 49574 0452] 1710 0.892 0.395| 5.827| 0.936

Table 6.6 Catchment 46005 results for single fractional time-lagged reservoir using a RF loss model




The following Figures 6.5 — 6.18 show the best fitting predicted streamflow
hydrographs using the different loss models together with the observed total rainfall

hyetograph and observed hydrograph for each event associated with Tables 6.4 — 6.6.

The following abbreviations are used on the Figures:
Phi-index - ¢-index, equation (5.16)
PR — percentage runoff, equation (5.17)

RF — non-linear rainfall filter, equation (5.18)
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From Tables 6.4 — 6.6 and Figures 6.5 — 6.18 the non-linear rainfall filter (RF) model
(equation (5.18)) was found to outperform the ¢-index and PR. Consequently the RF
loss model was selected for use in the subsequent event simulations for the Flood Event

Archive catchments (re. section 6.2.3).

6.2.2 GA Parameter Selection

The results for different GA control parameters used for fitting an initialised, single,
fractional-order, time-lagged, linear reservoir with a non-linear rainfall filter to a sample
observed rain storm event (no. 1303, 10-Nov-74) for the East Dart at Bellever (river
gauge no. 46005) are shown in Table 6.7 (and recall Figure 6.14 for a plot of the
observed streamflow hydrograph and total rainfall hyetograph). K and T are stated in

hours.

The abbreviations for the GA control parameters used in Table 6.7 are:
Pop. - population size

Gen. — number of generations

Tourn. — size of sample group in tournament selection

Cross. — probability of selection for crossover operator

Mut. - probability of selection for mutation operator

The weightings for the fitness function, equation (5.24) are:
wy — weighting applied to RMSE
ws - weighting applied to RMS;0,,

such that W+ vy =].
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GA Control Parameters Fitness Weighting Rainfall-Streamflow Model Parameters Fitted by GA
Pop. | Gen. | Tourn. | Cross. Mut. wy Wy K a T C P K NSE
25 50 4 0.6 0.2 0.6 0.4 1.270 0.579 2.779 0.980 0.020 1.149 0.960
75 50 4 0.6 0.2 0.6 04| 6246l 0.129 2.991 0.985 0.395 1.707 0.919
100 50 4 0.6 0.2 0.6 0.4 4.446 0.581 1.911 0.784 0.375 2.381 0.992
50 25 4 0.6 0.2 0.6 04131415 0.185 1.844 0.820 0.840 2.465 0.930
50 75 4 0.6 0.2 0.6 0.4 5.561 0.387 2.713 0.991 0.272 1.942 0.981
50 100 4 0.6 0.2 0.6 0.4 4.169 0.464 2.527 0.919 0.260 1.940 0.982
50 50 2 0.6 0.2 0.6 04| 28.538 0.364 1.833 0.935 0.595 3.392 0.982
50 50 3 0.6 0.2 0.6 0.4 7.096 0.477 2.278 0.989 0.289 2.545 0.982
50 50 5 0.6 0.2 0.6 0.4]157.432 0.179 1.714 0.824 0.854 2.472 0.926
50 50 6 0.6 0.2 0.6 0.4 9.702 0.397 2.456 0.993 0.346 2.464 0.980
50 50 4 0.4 0.2 0.6 0.4 5.880 0.538 1.863 0.812 0.414 2.596 0.992
50 50 4 0.5 0.2 0.6 0.4 8.884 0.403 2.534 0.984 0.344 2.409 0.979
50 50 4 0.7 0.2 0.6 04| 22413 0.271 2,720 0.987 0.426 2.324 0.960
50 50 4 0.6 0.05 0.6 0.4 3.649 0.656 1.941 0.850 0.254 2.337 0.987
50 50 4 0.6 0.10 0.6 04| 19.084 0.338 2.102 0.903 0.497 2.706 0.954
50 50 4 0.6 0.25 0.6 04| 32.933 0.333 1.918 0.946 0.588 3.197 0.982
50 50 4 0.6 0.30 0.6 0.4 7.094 0.467 2.275 0.947 0.315 2.495 0.981
50 50 4 0.6 0.2 1 0 9.232 0.392 2472 0.992 0.333 2.389 0.980
50 50 4 0.6 0.2 0.5 0.5] 10.937 0.447 1.940 0.917 0.442 2911 0.994
50 50 4 0.6 0.2 0.4 0.6 9.076 0.241 1.797 0.657 0.760 1.701 0.931
50 50 4 0.6 0.2 0 1] 73.411 0.188 2.290 0.803 0.579 2.245 0.827
50 50 4 0.6 0.2 0.6 0.4 5.270 0.548 1.972 0.866 0.333 2.487 0.991

Table 6.7 Influence of GA control parameters on fit for sample event 1303




From the results of the tests shown in Table 6.7, the following GA control parameters
(Table 6.8) were selected as appropriate for producing effective parameter fitting for
hourly flood event data together with computational efficiency (i.e. fewer function

evaluations for a population of 50 rather than 100 individuals).

GA control parameter

Value used in Model Calibration

Population size

50

Number of generations 50
Selection method Tournament size 4
Crossover probability 0.6
Mutation probability 0.2
Fitness weight w, 0.6
Fitness weight w; 0.2

Table 6.8 GA control parameters used for model calibration

6.2.3 Rainfall-Streamflow Meodel Results for the Flood Event Archive Data

The summary results for the GA fitting of the parameters of an initialised, single,
fractional-order, time-lagged, linear reservoir to a range of the Flood Event Archive
catchments, including the non-linear raiﬁfa]l filter model (equation (5.18)) parameters
(re. section 5.4.2 and 6.2.1), are shown in tables 6.9 — 6.19 (one for each catchment).
The results with and without the rainfall loss model are listed for comparison. The K
values for each event are calculated for dimensional consistency. The observed total
event rainfall (Ry) in mm, observed peak streamflow (Qp) in m*/s and initial soil
moisture deficit (SMD, supplied to the Flood Event Archive by the UK Meteorological
Office from the nearest climate station records) in mm, for each event are also

presented. K and T are stated in hours.
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Following each table are 4 figures showing the predicted and observed streamflow
hydrographs together with the total event rainfall hyetograph for the best and worst

cases for each catchment for the two models. Full sets of results plots are available in
Appendices C and D. A summary of the composite K* values for each catchment is

given in Table 6.20.
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44

No loss model

With non-linear filter loss model

Event | pate R; Q | SMD K a | T ] k& [NSE| &k a | T | ¢ ] P | K |NsE
1287 | |3-Nov-64 | 38.1| 2481 0| 6.086| 0.724 | 0.899 | 3.697 | 0.811| 10.390 [ 0.597 | 0.429 | 0.873 | 0.485 | 4.045 | 0.964
1289 | 28 Nov-65 | 399 38.15 0 443200592 2137 | 2.414 | 0.938] 23.381 | 0.453 | 1.669 | 0.965 | 0519 | 4.170 | 0.977
1292 | 28.Dec66| 483 | 31.69 0 2781 | 0.569 | 3.856 | 1.790 | 0.734 | 31.577] 0.109 | 3.778 | 0.692 | 0.890 | 1.457 | 0.832
1297 | 21-Dec-68 | 344| 3038 0 2432 0495[ 3.906 | 1.553| 0.913| 5911 0.646 | 2.607 | 0.852 | 0.405 | 3.151 | 0.971
1298 | 13.Dec69 | 492| 3143 0] 4227 0451 2.974| 1.916 | 0.787|[ 25.790 | 0.519 | 1.249 | 0.929 | 0.611 | 5.402 | 0.954
1299 | gg-5ep-70| 326| 3834 0 1897 0.795| 0.872 | 1.664 | 0.926] 2.903 | 0.343 [ 1.306 | 0.960 | 0.179 | 1441 | 0.895
1300 | 12Nov.72| 446| 866 0 681821 0.321 | 1.670 | 8.121 | 0.863 || 36.627 | 0.341 | 1.528 | 0.569 | 0.364 | 3.414 | 0.974
1301 | 04.Aug-73 | 1099| 5079 50.8| 3719 0542 3.284 | 2038 | 0.832| 42.464 | 0.261 | 2.637 | 0.961 | 0.529 | 2.660 | 0.878
1302 y3.gcp7s | 492| 2569 282 12021| 0223 | 3948 1.741 | 0.895|] 49.098 [ 0.254 | 2.775 | 0.911 | 0.436 | 2.689 | 0.960
1303 | 10.Nov-74 | 85| 43.92 0| 1.590( 0.677 | 2.622| 1.369 | 0.960| 5270 | 0.548 | 1.972 | 0.866 | 0.333 | 2.486 | 0.99]
1304 | 03.Aug-74 | 436| 1328] 287 176706 | 0.319 | 3.930 | 5.210 | 0.889 || 40.966 | 0.488 | 2.365 | 0.817 | 0.432 | 6.122 | 0.948
4351 | 12Feb76| S14| 2335 0] 3541[ 0758 | 2326 | 2.608 | 0.908| 4.727 | 0.699 [ 0.783 | 0.627 | 0.588 | 2.962 | 0.949
4352 05.0ct.76 | 66| 1738 02| 20074 0587 1.882 | 5.816 [ 0.749 || 22.495 [ 0.586 | 1.223 | 0.890 | 0.558 | 6.199 | 0.919
4353 | 14.0c0.76| 1041 17.73 0| 28792 0473 | 1.856 | 4.900 | 0.858 || 49.574 | 0.452 | 1.710 | 0.892 | 0.395 | 5.838 | 0.936

Table 6.9 Catchment 46005 results for single fractional time-lagged reservoir
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YA

. No loss model With non-linear filter loss model

Event Date Ry 0 SMD K a T K" NSE K a T C P ' NSE
492 | 05-Nov-67| 152 3.72 9.9 | 682461 0464 8.808| 0654 | O089If 95986 | 0.568 | 8.628| 0.679[ 0064 | 3343 | 0.945
495 | 15-Sep-68 | 30.1| 6.58 28 [ 634500 | 0424| 6.855| j5425| 0923 32289 0.860| 3.199| 0.802| 0419] 985 ] 0956
496 | 01-Nov-68 | 487 10.17 0 4955521 0429 7.855( (4328 | 0949 62.036| 0610 6.699| 0699 0.224] ;5403 [ 0978
3874 | 06-Mar-82 | 214 473] 189 499.049( 0514 6779 24369 0965) 126551 0.651 | 5.626| 0989 0.223| 53365 [ 0.983
3877 | 25-Jun-82| 232] 586| 468| 286622 0644 | 3.782| 359239 0.930) 145446 0.698 | 3.531[ 0975 0.177] 35307 | 0.934
3878 { I13-Nov-82 | 267 4.32 53| 485591 0536 5791 27s532| 0929 96857 0.615| 4677 0726 0.121] |¢652 | 0.879
3880 | O1-May-83 [ 212 5.02 4.1 634246 | 0466 | 5755 90223 | 0.849 | 52.188 [ 0.726 | 4.592| 0.644 | 0.119| ;7659 | 0.936
3881 | 31-Jul-83 36 174 1019 699.981 | 0.999| 2.723| 695410 | -1.807 " 172950 | 0.681 | 3.986 | 0.615| 0.519| 33421 | 0.936
3882 | 26-Nov-83 | 29.7| 3.09( 85.5( 2998.022| 0490 5.708| 50542 | 0.943 || 49333 [ 0.666 | 5312 0230 0.002]| 13416 0.991
3884 | 02-Aug-84 53 519 1013 | 699.715| 0930 1.984 | 44736) | 0.087 " 145283 | 0.583 | 2376 0.689| 0.690[ 15221 | 0.980
3890 | 29-Dec-86| 29.5[ 7.6l 49| 351564 0.455| 9.883 | 14402 0.899" 26351 | 0910 5512 0.792| 0448| 94301 0.971
3893 [ 14-Oct-87 | 303 [ 7.25 52| 274.425| 0486 | 5797 5313 0.845 " 20.237 | 0.860 | 4374 0551 0.148 3,83 | 0912
4166 | 13-Dec-79| 276 841 95| 255538 0.511| 4766 | 16.99] 0.890" 41462 | 0.684| 4418 0.733] 0156 12778 | 0.931

Table 6.10 Catchment 30004 results for single fractional time-lagged reservoir
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Figure 6.26 Results for event 3893 — with non-linear filter loss model
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8CI

No loss model

With non-linear filter loss model

Event |  pate Rr Qr | SMD K a T K* | NSE " K a T C P K* | NSE
2360 | O0l-Jul-68 | 87.5] 90.74 | 158| 32.866| 0.631| 1.732| 9.059 0430 28719] 0.655[ 0.026 | 0.956 | 0.625 | 9.018 | 0.603
2361 | 19-Sep-68 | 774 | 4768] 63| 30.507| 0.871| 1.539] 19.630 | 0.827| 22.288 | 0.965 | 1.263 | 0.821 | 0.065| 19.993 | 0.847
2362 [ 09-Oct-68 | 346 47.72 1.8 49.757[ 0.527] 2056 7.839| 0.984] 20.027 | 0.599 [ 1.879 | 0.755 | 0.077 | 6.021| 0.993
2363 [ 23-Nov-68| 30.6| 48.79 0| 18873 0535 3.947| 4815] 0972 10.875 [ 0.661 | 3.554 | 0.825 | 0.154 | 4.843 | 0.967
2364 | 19-Dec-68 | 45.1| 59.77 0 9905 0.732| 1647[ 5358 0862 23.075| 0.636 | 0.516 | 0.993 | 0.539 | 7.361 | 0.962
2365 | 20-Jan-69 | 856 | 119.12] 02 5179| 0731 2561 3327 0.896] 12.667 | 0.682] 1.654 | 0.753 | 0.517 | 5.650 | 0.887
2366 | 13-Dec-69 | 60.1] 10278 02 4663 0823] 1519 3.551| 0946] 10.782| 0.559 | 1.410| 0.985 | 0.327| 3.778 | 0.980
2367| 18Jan-72| 557 154.82 0] 2423] 0.592] 3754| 1689 | 0849 23.114[ 0334 | 2820 0.913 | 0505 2855 | 0.926

Table 6.11 Catchment 74001 results for single fractional time-lagged reservoir
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Figure 6.27 Results for event 2360 — without loss model
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129

25

Ramtnll fron‘h)

Rainfall (irunhy)



Strenind low (indfs)

Streamf Low (m%v)

120 5

60

a0 1

20 1

= Observ ed Stremnflow
= === Fredicted Strexmilow
Rainfall

70 -

50 1

3
=]

w
o

20 A

Thoae (h)

Figure 6.29 Results for event 2360 — with non-linear filter loss model
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1€1

No loss model

With non-linear filter loss model

Event Date R; Q- | sMp K a T K |[NSE| «k a T [ c[Pp K* | NSE
3989 [ 05-Aug-78 | 499 3624| 603 | 98654 0.645| 6972 19.329 | 0.854|| 38.188 | 0.801 | 9.961 | 0.776 | 0.086 | 18.498 | 0011
39901  07-Dec-78 | 19| 17.16| 559 86.037] 0.663 | 7.630| 19.173 | 0.894| 54.145| 0.731 | 7.643 | 0.918 | 0.081 | 18.503 | 0.916
3994 [ 19-May-79 | 353 | 43.83| 222 79.090| 0.563 | 5.650| 11.712 | 0.890| 18.060| 0.940 | 3.577 | 0.668 | 0.202 | 15.189 | 0.956
3995 | 29-May-79 | 283| 57.52 3| 38976] 0.755| 2.693| 15887 0.844| 24.768 | 0.999 | 0.289 | 0.996 | 0.437 | 24.689 | 0.939
3996 | 14-Nov-79 | 419 3201 | 422 216602 | 0.473 | 10.868 | 12.728 | 0.938| 30.832 | 0.812 | 7.698 | 0.651 | 0.193 | 16.183 | 0.982
3997 | 11-Mar-80 | 133| 17.49 0] 75.121[ 0599 8787 13.292] 0.958| 39.129 | 0.707 | 8.613 | 0.995 | 0.128 | 13.363 | 0.975
3998 | 17-Mar80 | 168 1973 | 07| 37.126| 0.773 | 7.711| 16.344 | 0.976| 22.432| 0.977 | 6.338 | 0.961 | 0.162 | 20.883 | 0.989
3999 | 29-Nov-81| 147 2172 495| 64.094| 0.628| 9.604 | 13.636 | 0.962| 36.138 | 0.709 | 9.501 | 0.884 | 0.064 | 12.723 | 0.979
4002 | 26-Apr-83 | 42.6| 5212| 32| 27888 0.608| 10.684 | 7.565| 0.971| 20.697 | 0.807 | 8.369 | 0.847 | 0.026 | 11.533 | 0978
4004 | 08-Dec-83 | 414 4332 49.1| 138155| 0.473 | 10.811 | 10.289 | 0.921| 36.775 | 0.933 | 4.689 | 0.983 | 0.483 | 28.884 | 0.980
4018 |  05-Jan-88 13 183 0 70684 | 0698 | 6.630| 19.536| 0.823|| 44.471| 0.770 | 6611 | 0.996 | 0.127 | 18579 | 0.862
4393 [ 03-Dec81 | 107 15.16| 42.1| 69.360| 0.688 | 8.713 | 18479 | 0.969 48.146 | 0.751 | 8.660 | 0.996 | 0.075 | 18.349 | 0977
4395 | 20-Apr-83 | 16.6| 3277| 85| 74322| 0598 7.611| 13.150 0.901" 38.540 | 0.738 | 6.662 | 0.997 | 0.205 | 14.805 | 0.946
4399 [ 01-Jun-83 | 152 2051 71| 68.576 | 0.731| 6.530 | 21.991 | 0911 || 29.351 | 0.905 | 5.623 | 0.994 | 0.279 | 21302 | 0.975
4401 | 03-Feb-88 | 165| 21.36| 02| 51.520| 0.875| 6.555| 31.476 0.900" 25220 | 0.990 | 6.460 | 0.858 | 0.183 | 24.419 | 0.940

Table 6.12 Catchment 25005 results for single fractional time-lagged reservoir
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Figure 6.32 Results for event 3998 — without loss model
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bel

No loss model

With non-linear filter loss model

Event Date Ry 0Or SMD K a T K NSE K a T C P K° NSE
1559 24-Jan-60 38.4 45.78 0 85907 | 0.793 | 6.545| 34.173 0.891 |>55. 171 | 0.922 | 4.523 | 0.984 | 0.249 40.35-1 0.931
1560 27-Jan-60 32.1 38.09 0 62.750 | 0.922 | 2.365| 45.436 0.868 41.305] 0999 | 1.431 | 0975 ] 0.246 | 41.152 | 0.923
1561 [ 17-Nov-60 17.8 22.4 0 64.218 | 1.000 | 3436 | 64.218 0.877( 60.787 | 0.997 | 3.491 | 0.995 | 0.008 | 60.043 | 0.864
1562 | 03-Dec-60 34.7 45.36 0 58237 | 0.774 | 8.616 | 23.241 0915 29.858 | 0.997 | 6.580 | 0.786 | 0.126 | 29.555 | 0.948
1563 { 09-Dec-65 23.8 29.83 0 66.613 ) 0.842 | 5471 | 34311 0.9m| 45.722 | 0.990 | 3.629| 1.000| 0.157 | 44.007 [ 0.947
1564 | 22-Dec-65 20.1 23.65 0 64.141 | 0.956 | 4.128 | 53.410 0.971 49.081 | 0.994 | 3.701 | 0.980 | 0.088 | 47.948 [ 0.973
1567 { 09-Dec-66 15.7 24.36 0 67.191 | 0.980 | 2.363 | 61.768 0.908 56.032 | 0.998 | 2.307 | 0.952 | 0.046 | 55.583 | 0.921
1568 | 08-Mar-67 2318 22.88 0 94.546 | 0.854 | 2.330 | 48.663 0.913 34.874 | 0.981 | 1.348 | 0.966 | 0.184 | 50.853 | 0.958
1570 | 12-Mar-69 29.2 35.85 5 58.489 | 0.795| 6.616 | 25.399 0.944 27.049 | 0.998 | 5.574 | 0.693 | 0.018 | 26.871 | 0.974
1571 | 05-May-69 36.2 34.19 204 | 109201 | 0.810 | 4.609 [ 44.768 0.807 64.141 | 0942 | 2.558 | 0.861 | 0.146 | 50.387 | 0.841
1572 | 03-Aug-69 31.1 20.35 74.2 | 478.255| 0.686 | 1.491 | 68.904 0.855 68.056 | 0.883 | 0.262 | 0.662 | 0.327 | 41.536 | 0.906

Table 6.13 Catchment 54004 results for single fractional time-lagged reservoir
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Figure 6.36 Results for event 1570 — without loss model
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Figure 6.37 Results for event 1571 — with non-linear filter loss model
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Figure 6.38 Results for event 1570 — with non-linear filter loss model
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LEl

No loss model With non-linear filter loss model
Event Date Ry Or SMD K a T K NSE K a T C P K* NSE
650 | 03-Dec-60 | 22.9| 37.25 0 63.655 | 0.823 19.668 | 30.518 0.700) 61.145 | 0.995| 9.860 | 0.964 | 0.020 | 59.900 | 0.592
651 | 27-Feb-61 | 21.1| 20.12 0] 100.021 [ 0.985 4385 93.345 0.744 ) 75.626 | 0.999 | 4.499 | 0.959 | 0.081 | 75.300 | 0.769
6531 08-Mar-63 | 11.6| 13.46 7.5 82.585| 1.000 | 13.525| 82.585 0.889 |} 77.089 | 0.994 | 9.896 | 0.975 | 0.038 | 75.105| 0.753
656 | 02-Sep-65 | 37.8 8.21 844 | 637367 0.952 0.757 | 467.497 0.813] 145634 | 0.995 ] 0.173 | 0.391 | 0.115 | 142.052 | 0.785
657 | 08-Dec-65 | 21.9| 24.49 02 .89.594| 0.999 4542 | 89.192 0.703 ]| 88991 | 0.994| 4.519| 0.994 | 0.007 | 86.626 | 0.695
658 | 18-Apr-66 | 27.8| 23.12 31| 101791 | 0.927 5.580 § 72.635 0.748 (| 61.865| 0.999 | 5.485| 0.944 | 0.131| 61.610]| 0.791
659 | 27-Feb-67 | 15.6| 20.33 0 69.024 | 0.999 4676 | 68.732 0.662 66.125 | 0.997 | 4.688 | 0.983 | 0.004 | 65.299 | 0.657

Table 6.14 Catchment 37001 results for single fractional time-lagged reservoir
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Figure 6.40 Results for event 650 — without loss model
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Figure 6.41 Results for event 656 — with non-linear filter loss model
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Figure 6.42 Results for event 650 — with non-linear filter loss model
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orl

No loss model

With non-linear filter loss model

NSE l’*x

Event Date Ry 0r SMD K a T K° a T C P K® | NSE
2072 06-Jul-64 71.6 236.74 44.4 | 289.574 | 0.321 | 4.859 | 6.169 | 0.907 || 121.104 | 0.401 | 3.746 | 0.780 | 0.456 | 6.845 | 0.962
2073 | 12-Nov-64 41.2 24145 0 15891 | 0.524 | 4.660 | 4.260 | 0.960 16.567 | 0.648 | 3.592 | 0.870{ 03131 6.167 | 0.984
2074 | 11-Dec-64 191.5 535.23 0 7.160 [ 0.753 | 1.850 | 4.403 | 0.937 6308 | 0947 | 1.594 | 0.749 | 0.109 | 5.721 | 0.950
2075 | 08-May-65 42.6 333.01 2 10.003 | 0.578 | 3.748 | 3.785 | 0.873 93.268 | 0.398 | 2.770 | 0.993 | 0.718 ] 6.081 | 0.920
2076 14-Sep-66 | . 40.6 301.86 0 10378 | 0.585 | 2.639 | 3.930 | 0.973 8.903 | 0.766 | 1.730 | 0.855| 0.160 | 5.338 | 0.988
2077 | 30-Nov-66 76.4 335.68 0 6.090 | 0.616 | 2.606 | 3.043 | 0.880 6.455| 0.895] 0.852 | 0.714 | 0.421 | 5.307 | 0.950
2078 | 22-Feb-67 61.8 399.48 0 2973 0.363 | 3.541 | 1.485| 0.922 " 18.854 | 0.234 | 3.564 | 0.976 | 0.272 | 1.988 | 0.939
2079 | 27-Feb-67 71.8 520.77 0 3.625 ] 0.776 | 0.553 | 2.717 0.89?" 5.082  0.607 | 0.559| 0.875| 0.224 | 2.683 | 0.896
2080 01-Oct-67 56.8 442 .82 03 4.580 | 0.569 | 2.485 | 2.377 | 0.968 24.839  0.498 | 1.807 | 0.996 | 0.365 | 4.952 | 0.938
2081 16-Oct-67 714 396.79 0.2 6.510 | 0.968 | 1.348 | 6.131] 0.974 19.383 | 0.659 | 0.875 | 0.960 | 0.436 | 7.054 | 0.986
2082 | 22-Dec-67 579 376.91 0 6.220 | 0.873 | 1.513 | 4.931 | 0.966 6.940 { 0.828 | 1.589 | 0.968 | 0.056 | 4.973 | 0.962
2083 13-Jan-68 97.1 412,15 0.2 4418 0995| 3.490 | 4.385| (.884 6.170 | 0.953 | 2.317 | 0.856 | 0.288 | 5.664 | 0.940
2084 | 22-Mar-68 1229 | 449.58 0 7.546 | 0.997 | 0.111 | 7.500 | 0.944 10376 | 0.659 | 0.626 | 0.996 | 0.172 | 4.673 | 0.929

1

Table 6.15 Catchment 66011 results for single fractional time-lagged reservoir
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Figure 6.43 Results for event 2075 — without loss model
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Figure 6.44 Results for event 2081 — without loss model
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Figure 6.45 Results for event 2075 — with non-linear filter loss model
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Figure 6.46 Results for event 2081 — with non-linear filter loss model
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No loss model

With non-linear filter loss modecl

Event

Date R, | @ | smp K a T K NSE K a T C P K* | NSE
409 | 04-Nov-67 | 24.2| 40.02 0| 61.251] 0.863| 13.591| 34.856| 0.895| 48.901| 0.994| 9.993 | 0.996 | 0.105| 47.773 | 0.893
410 | 10-Jul68 | 51.2| 56.87] 19.5| 134.559| 0.783 | 19.525| 46445 0.735| 79.084 | 0.997 | 9.782 | 0.884 | 0.148 | 78.054 | 0.704
411 | OI-Nov-68 | 26.1| 43.99 0| 88.606| 0.783| 17.590| 33.486| 0.676] 56.744 0.999 | 9.942[ 0.998 | 0.172| 56.515 | 0.696
412 12-Mar69 | 27.9 36| 4.1| 101506 0.712| 14.716 | 26.830| 0.881| 48.185| 0.990| 9.461 | 0.991 | 0.245 | 46.354 | 0.514
413 | 05-May-69 | 363 | 56.63| 12.9| 108.992| 0.720 | 12.680 | 29.304 0.782|‘ 42841 0999 [ 9.513 [ 0.979 | 0.409 | 42.680 | 0.884

Table 6.16 Catchment 28026 results for single fractional time-lagged reservoir
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Figure 6.49 Results for event 411 — with non-linear filter loss model
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Figure 6.50 Results for event 412 — with non-linear filter loss model
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91

No loss model

With non-linear filter loss model

Event Date R; Q- |SMD| K a T K° | NSE " K a T c P K | NSE
3671 | 02-Jul-78 | 704 | 15559 [ 77| 219.109| 0.483 | 5.662 | 13.506 0.829">104.886 0422| 5.607 | 0881 0265 7.124| 0920
3673 | 03-Oct-79| 328 926 362 233.629 [ 0451 | 5.847 | 11.701 | 0.714][ 49823 [ 0.554 | 5.825 | 0.845| 0219 | 8.717| 0.773
3675 | 24-Jul-80| 77927597 725 65252( 0473 | 3.779| 7216 0.665| 13.821 | 0.608 | 3.657 | 0.669 | 0.089 | 4.937 | 0.706
3677 26-0ct-80 | 33.6] 199.59 0| 27839[0552] 5.637| 6273( 0.640| 23.697 | 0.725 | 3.944 | 0.772 | 0.048 | 9.923| 0.619
3678 | 23-Aug85| 41719228 108| 29329 0.653| 3.328 | 9.081 | 0.481] 9491 [ 0.841 | 1.605 | 0.776 | 0.003 | 6.636| 0.631
3680 | 09-Jan-86 | 129.8 | 130.19 0| 156916 0.717 [ 1.506 | 37.523] 0.070][ 71.258 0.561 | 3.186 | 0.733| 0.019 10951 | 0.080
3682 | 19-Jan86| 27.1| 87.19 0] 49.716| 0.600 | 1.591| 10.421 | 0.661 21.862 [ 0.829 [ 0.151 | 0.939 | 0.262 [ 12.900 | 0.703
3686 | 17-Jun-86 | 29.5[ 10232 20| 175332 0571 5.759| 19.109 | 0.614| 29.289 [ 0.909 | 3.481 | 0.957 | 0.477 | 21.539 | 0.796
3687 | 30-Jul-86 | 34516376 69| 61.843[ 0539 3.575| 9.236| 0.698| 21.561 | 0.670 | 2.269 | 0.952 | 0.571 | 7.826| 0.920
3688 | 28-Oct-86 [ 50.8 | 223.64| 232 135561 [ 0301 | 4.009| 4383( 0.694| 8238 | 0.505 | 3.446 | 0.885 | 0.467 | 2.901 | 0851
3691 | 02-Dec-86 | 253 | 13402 33| 11213 0.737| 3842| 5938| 0.805| 20237 0316 5.729 | 0943 | 0013 | 2386 | 0,679
3697 09Jul87| 23.7110679| 6.1] 299070 [ 0457 5.366[ 13.534[ 0925] 39.829 | 0.606 | 4.685 | 0.722 [ 0219 | 9.327| 096l
3698 | 14-Mar-88 | 309 50.18 0| 398613 0565 4.832 29.465 0.748|L46.445 0.698 | 3.582 | 0917 [ 0.508 | 14.572| 0.897
3704 | 22-Sep-84 | 943 321.8[ 129 27.319] 0289 | 4.874| 2601 0.933 || 62.808 | 0.364 | 3.833 [ 0.967] 0327 4.513| 0.938
3705 | 07-Scp-83 | 101.9] 26829 | 499 | 52875] 0495 | 5413[ 7.129[ 0830( 46961 | 0.650 | 2.486 | 0.948 | 0.584 | 12.208 | 0.922

Table 6.17 Catchment 7001 results for single fractional time-lagged reservoir




Styeamflow (i)

Streatnflow (mbs)

160 - -0
M2
140 1
" e Observed Strezmflow
= = ==Fredicted Streamflow N
120 1 ——Ramfal}
F 6
100
- 8
g0 10
12
m B
14
a0 1
16
18
L] T T T T T T T 20
] 20 40 60 80 100 120 140 160
Thoe (h)
Figure 6.51 Results for event 3680 — without loss model
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Figure 6.52 Results for event 3697 — without loss model
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Figure 6.53 Results for event 3680 — with non-linear filter loss model
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Figure 6.54 Results for event 3697 — with non-linear filter loss model
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6v1

No loss model

With non-linear filter loss model

Event |  pate Rr | 0 [SMD| K a T K* | NSE " K a T C P K* | NSE
1836 | 22-Mar-68 | 97.9[21887[ 0] 40934] 0753 [ 3381 16364 [ 0.975](37.726 [ 0.804 | 2245 | 0.894 | 0250 | 18519 | 0.985
1837 | 12-May-68 | 33.1| 1208 24 95945| 0.533 | 4.787 | 11.387 | 0.981 51.899 | 0.583 | 4.738 | 0.864 | 0.092 | 9.999 | 0.987
1838 | 26-Jun-68 | 39.1 | 14259 14| 47341 0677 | 2.636 | 13.619 | 0.931/24.005| 0.891 | 0.907 | 0.828 | 0.391 | 16977 | 0.983
1840 | 10-Oct-68 | 49.1 | 159.05 0 43909 0.635] 3.691 | 11.041 | 0.972][24.665 [ 0.733 | 3.440 [ 0.828 | 0.063 | 10.481 | 0.974
1841 | 26-Oct-68 | 83.8| 19989 | 1.6| 46.834| 0.755 | 2.587 | 18.250 | 0.910[[29.383 | 0.785 | 1.467 | 0.811 | 0.376 | 14.205 | 0.905
1842 17-Jan-69 | 427 1556 O 23.055| 0.743 | 4618 10293 | 0.916([21.456 | 0.932 | 2.422 | 0.962 | 0.337 [ 17.418 | 0.957
1843 [ 11-Nov-69 | 40.7 | 154.03 0| 104293 | 0525 | 2.702 | 11471 | 0.973 || 18.851 | 0.807 | 1.496 | 0.598 | 0.144 | 10.695 | 0.986
1844 [ 15-Jan-70 | 53.2 | 217.51 0] 26535] 0.706 | 4.806 [ 10.121 | 0.944][ 19.068 | 0.904 | 3.209 | 0.823 | 0.245 | 14368 | 0.969
1845 | 01-Nov-70 | 51.1 | 224.03 0| 30.674[ 0.649 [ 3.605 | 9.224 | 0.985]26.342 | 0.748 | 2.648 | 0.891 | 0.212] 11,552 0.986
1846 | 18-Oct-71 | 64.7 | 236.23 0 46903 [ 0.561[ 3.772| 8.661 | 0.924][49.469 | 0.678 | 2.406 | 0.968 | 0.398 | 14.085 | 0.978
i847 | 05-Dec-72 | 62328129 0| 27407 0.721 | 2.520 | 10.882 | 0.981|/29.090 | 0.780 | 1.787 | 0.892 | 0.261 | 13.859 | 0.987

Table 6.18 Catchment 57005 results for single fractional time-lagged reservoir
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Figure 6.55 Results for event 1841 — without loss model
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Figure 6.56 Results for event 1847 — without loss model
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Figure 6.57 Results for event 1841 — with non-linear filter loss model
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Figure 6.58 Results for event 1847 — with non-linear filter loss model
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[4]!

No loss model

s

With non-linear filter loss model

Event Date Rr | 0 |[SMD| Kk a T K° | NSE || K a T C P K* | NSE
2282 | 16-Sep-70 | 37.8| 280.68 | 204 | 24.419| 0356 | 5.835 | 3.119 0.976"13.792 0492 4914 0.854] 0.176 | 3.637 | 0.986
2283 31-0ct-70 | 15| 2589 0 7480] 0856 5.735| 5.598 0.938" 7.683 | 0.817 [ 5.771 | 0.988 [ 0.020 | 5.290 | 0.926
2284 | 11-Feb-71 | 51.6[ 28525| 0.8 17.284 | 0.538 | 5911 | 4.633 0.885" 20.880 [ 0.708 | 3.133 [ 0.930 | 0.480 | 8.597 | 0.969
2285| 20-Nov-71 | 255| 18198 | 03| 26310 0.722 3.864 [ 10.601 | 0.718][ 15.183 | 0.943 | 2.262 | 0.998 | 0.511 | 13.002 | 0.832
2286 | 18-Jan-72] 26.7 | 274.96 0| 14428 0830 2474 | 9.165] 0.718][11.502| 0.826 | 1.995 | 0.993 | 0.496 | 7.520 | 0.802
2287 | 03-Jul-72 | 542(207.83| 8.6 22.611] 0.573 | 3.660 [ 5971 0.909)25.135| 0.768 | 0.828 | 0.994 | 0.386 | 11.896 | 0.962
2288 | 11-Feb-73 [ 17.8 | 152.69 0] 10305] 0936 5343 | 8876 0.818[[10.317] 0.975 | 4.832 | 0.995 | 0.005 | 9.732 | 0.807
2289 [ 15-Dec-73 | 24.7| 182.58 0| 7.934]0530]9.170| 2997 0846[ 7.935| 0.677| 6.837 | 0.954 | 0.050 | 4.064 | 0.828
2290 [ 30-Apr-75 | 199 16283 09 14.615] 0.762 | 5910| 7.719 0.930(/13.837] 0857 5448 0.993 | 0.031| 9.503] 0.918
2291 24-Sep-75| 64.6 | 49298 07| 6782 0.772| 4421 | 4.383 0.902"10.823 0.739 [ 3.586 | 0.985 | 0.214| 5813 | 0.914

Table 6.19 Catchment 72006 results for single fractional time-lagged reservoir
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Figure 6.59 Results for event 2286 — without loss model
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Figure 6.60 Results for event 2282 — without loss model
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Figure 6.61 Results for event 2286 — with non-linear filter loss model
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Figure 6.62 Results for event 2282 — with non-linear filter loss model
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6S1

Catchment No: 46005 | 30004 | 74001 25005 | 54004 | 37001 66011 28026 7001 57005. 72006

Min. 1.369 | 14.328 1.689 7.565 | 13.000| 30518 1.485| 26.830 2.601 8.661 2.997

No loss Max. 8.121 | 695.410 | 19.630 | 31.476 | 478.255 | 467.497 7.500| 46.445| 37523 18.250( 10.601
model Range 6.752 | 681.082 | 17.941 | 23911 | 465.255| 436.979 6.015( 19.615( 34.922 9.589 7.604
Average 3.203 | 107.368 6.909 | 16.306 | 140.641 | 129.215 4240 34.184 | 12474 ] 11938 6.306

Min. 1.441 | 12.403 2855 | 11.533| 26871 59.900 1.988 | 42.680 2.586 9.999 3.637

With RF loss | Max. 6.199 | 33421 | 19993 28884 60.043 | 142.052 7.054 | 78.054| 21.539| 18.519( 13.002
model Range 4758 21.018| 17.138] 17351 | 33.172| B82.152 5.066 | 35374 | 18.953 8.520 9.365
Average 3.717 | 18951 7.440 | 18.527 | 44.390| 80.842 5.188 | 54.275 9.111 | 13.833 7.905

Table 6.20 Summary of K results for each catchment




6.2.4 Model Parameter Space Investigation

The NSE results of tests of alternative parameter sets (calibrated for different events) on
the model performance for the events on a sample catchment are shown in Table 6.20.
In this case the initialised, single, fractional-order, time-lagged, linear reservoir with a
non-linear rainfall filter has been used for the observed storm events for the East Dart at
Bellever (river gauge no. 46005). The calibrated parameter sets are those taken from
Table 6.9 and are numbered in Table 6.21 as follows.

1 calibrated using GA on event 1287

2 calibrated using GA on event 1289

3 calibrated using GA on event 1292

4 calibrated using GA on event 1297

5 calibrated using GA on event 1298

6 calibrated using GA on event 1299

7 éalibrated using GA on event 1300

8 calibrated using GA on event 1301

9 calibrated using GA on event 1302

10 calibrated using GA on event 1303

11 calibrated using GA on event 1304

12 calibrated using GA on event 4351

13 calibrated using GA on event 4352

14 calibrated using GA on event 4353
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LS1

. Calibration Set Used

Event — 2 3 3 5 6 7 8 9 10 T 12 13 14
1287 | 09641 0794| 0227| 0336] 0690] 0.763| 0.106]| 0602| 0595| 0748| 0208| 0885 0633| 0408
1289 | 0586 | 0977 0447 04a1| 0973| 0222] 0276]| 0752| 0866| 0855| 0492] 0828| 0904| 0612
1292 | 05201 05771 0832 0683 0607] -0.145| -0.066] 0.542| 0469| 0494| 0329| 0626]| 0597| 0324
1207 | 0013| 05501 0225| 0971| 0487 -0.858| 0243 0.673| 0586| 0668| 0243| 0409| 0449| 0.164
1298 | 0.6311 0923] 0.190| 0637 0954] 0387| 0241| 0909| 0843 0789| 0546| 0.721]| 0920| 0594
1299 | 08881 05731 0517| 0046] 0512| 0896| 0.105| 0288| 0310| 0505| 0038| 0.730| 0426] 0265
1300 | 9797 | -5.528 | -1.108 | -16.425 | -4.243 | -10.066 | 0974 | -6.031| 2417 | -11.539| 0.155 | -11.545| -2.835| 0.337
1301 | 0683 0913] 0262| 0763 0848] -0268| 0089| 0878| 0.754| 0895| 0506| 0.728| 0905] 0.543
1302 | 03381 0790 0527 | -0.102] 0775] 0.138| 0463] 0.741| 00960| 0453| 0.710| 0.079]| 0884| 0.796
1303 | 0854] 0964| 0226 0.793| 0935] 0573| 0240] 0938| 0840| 0991| 0470 0943| 0853| 0.546
1304 | 2.815] -0759] 0260 3.757| -0.131] 3.634| 0.579| -0987| 0.150] -2.792| 0.948| -2.825| 0326| 0.834
4351 | 0918 0910] 0370 0877 0877| 0689| 0.092] 0810] 0679| 0935| 0382] 0949]| 0810| 0.469
4352 | 0498] 0846] 0055| 0.117| 0911| -0360] 0.229| 0693| 0686 0341| 0618| 0.750] 0919] 0.704
4353 | 3.673 | -1.683 | 32981 | 3.554 | -4.440| 0611 0410| -0.565| 0659 -1.283| 0.857| -5.457| -1.847| 0.936

Table 6.21 NSE results for alternative calibrated parameter sets for events on catchment 46005




From Table 6.21 the most consistent best performing calibration set for all the events is
set 14. Plots of the predicted and observed hydrographs using calibration set 14 are

available in Appendix E.

The inter-relationship between the parameters is visualised using the interactive
calibration-support system developed by Packham et a/ (2005) in Figure 6.63. This
shows a parallel coordinates plot of the best fitting parameter sets from the GA
calibration for a typical single-peak flow event on the same catchment (no. 1303, 10-

Nov-74). Recall Table 6.9 for the best set of parameter values found using the GA.

N.B. On the visualisation plots a represents a, and Ka represents K°.
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Figure 6.63 Parallel coordinates plot of parameters of best cluster for event 1303

The parallel coordinates plot shows all the sets of parameter values for the best fitting

models in a single picture. The parameters are arranged in parallel with lines joining the
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values (i.e coordinates) of an individual model solution. The better solutions are shown
in the darker hue. Figure 6.64 shows a scatter plot of the composite K* and T
parameters with NSE indicating that there is a cluster of good solutions for a relatively
narrow band of 7 and K“ values in spite of the wide range of individual X and a values

evident in Figure 6.64.

094
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06
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Figure 6.64 Scatter plot of lagged reservoir parameters of best cluster for event
1303

For the associated loss model Figure 6.65 shows that the range of C and P values is

relatively small for the better (darker hue) solutions, suggesting convergence.
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Figure 6.66 Scatter plot of parameters of best cluster for event 3884

The plot indicates a wide range of K* and T values leading to solutions of similar
(although not very good) fitness. However, the plot should be compared with Figure
6.25 where the inclusion of the non-linear rainfall filter loss model has resulted in a

good fit to the observed streamflow hydrograph.

For the flow event on the catchment 656 (02-Sep-65) for the River Roding at Redbridge
(river gauge no. 37001) Figures 6.67 and 6.68 show scatter plots of the best fitting
parameter sets from the GA calibration. Recall Figure 6.39 showing the anomalous
model fit. The initialised, single, fractional-order, time-lagged, linear reservoir with and
without the non-linear rainfall filter loss model has been used for this observed storm

event.
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Figure 6.67 Scatter plot of parameters of best cluster for event 656 — without loss
model

Figure 6.68 Scatter plot of parameters of best cluster for event 656 — with rainfall
loss model
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In a similar manner to the results for event 3884, Figures 6.67 and 6.68 demonstrate that
the inclusion of the loss model has a constraining effect on the feasible K* and 7T spaces,
but the K” range is still wide in Figure 6.68 indicating the poor convergence. However,

the rainfall hyetograph in Figure 6.39 covers the period 0 — 26 hours, peaking at 12
hours and leading to a peak streamflow at 18 hours. The later streamflow peak at 48

hours is likely to be because of a lack of available rainfall data leading to this second

event.
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Chapter 7 Discussion
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7.1 Theoretical Development

In the light of field evidence (Kirchner 2003) that the travel times of conservative
tracers in rainfall show a long-memory effect indicating that “old” (pre-storm event)
water released from prior storage in the catchment dominates the streamflow response
to a rain storm (i.e. water appears to be stored over a long time period but is discharged
in a relatively short period) then the premise of runoff (rapid response) as distinct from
baseflow (slow response) in natural (rural) catchments has been brought into question.
The separation of runoff from baseflow in computational streamflow modelling,
particularly for flood prediction, is the basis of the classical unit hydrograph approach.
However, if the mixing of water within the surface/subsurface storage component of the
catchment is to be represented, then a different model is necessary. A candidate
approach has been identified in this study on the basis of the power-law asymptotic
behaviour of fractional-order systems. The fractional calculus provides relaxation
equations in the form of ordinary linear differential equations of non-integer order. The
convolution kemel of the fractional-order integral exhibits long term memory loss (i.e.
the system is dominated by more recent states as the independent variable, e.g. time,
increases). This integral is part of the differ-integral composition (sequence) that
defines the fractional derivative. Consequently, the assumption has been made that the
rate of change of volume with time of a conceptual (virtual) reservoir representing the
catchment behaviour can be expressed by a fractional-order time derivative of the
outflow rate. This assumption has only been tested in so far as the resulting models
have been successfully fitted to observed events. It is recommended that this
assumption be tested by field observation (e.g. through the use of tracers on
experimental catchments). In the light of such field evidence Zoch’s (1934) assumption
of a linear reservoir may prove to be restrictive and the use of the non-linear form given

by equation (2.6) may be required in order to represent the catchment drainage
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behaviour more closely. However, a non-linear model would involve an additional

parameter and require an iterative solution scheme.

A further advantage of the fractional-order differential equations derived in this theory
is their linearity so that the principles of superposition and proportionality can be
utilised in their solution. Applying the constraint that the order of the fractional
derivative, @, is 0 <a <1 has been shown to represent the heavily damped response of
a system over the duration of the input event (i.e. it is non-oscillatory). This is typical

of flood events in rivers.

The merit of the use of the fractional derivative in the Caputo sense is that the initial
conditions are incorporated as the traditional integer-order values. It is accepted that the
Caputo definition is restrictive in that this infers a constant initialisation function.
However, given the earlier discussion regarding the difficulty in defining the surface-
subsurface storage-flux history then the same is true of the actual initialisation function,
again requiring further field studies of the interaction between the “old” and “new”
water in the generation of total streamflow. In the meantime the Caputo derivative

formulation has enabled useful model equations to be derived and tested in this study.

The theory treats the catchment system as having spatially averaged (lumped) behaviour
so that it is represented by an ordinary fractional order differential equation. This limits
the applicability of the equation to flood forecasting applications, rather than the
modelling scenarios of land use change, etc. The model could be extended to
incorporate spatial variation (e.g. in land cover) by dividing into subcatchments or by
incorporating a spatial derivative term. In addition this distributed form of model would

permit the input of rainfall from multiple gauges (or radar data) to capture the effect of
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moving storms across the catchment. Alternatively lateral inflows from subcatchments

could be used as inputs rather than a single upstream input rainfall.

The catchment characteristics were assumed constant over the total duration of the
streamflow event (i.e. time-invariant) so that the coefficients of the differential
equations are constants. There is no field evidence to suggest that this is not true, but it
has yet to be verified. Future work could include time-varying parameters, although
this would increase the model complexity and make parameter identification much more

difficult.

The general theory developed in this study was based on the foregoing assumptions
resulting in the following ordinary Sna-order linear differential equation with constant

coefficients, a;.

la, S0 +a, DI ok g () =ir) 120 (7.1

t

where §D/#g(r) is the sequential Caputo fractional derivative defined as

SDPeq(1)=SDPCDP.. SDPSD ) (7.2)
J-times

It was shown that the generalised cascade model was still achieved by using a single
composite fractional order a in place of @f in equation (7.1). In this way the
conceptualisation of the catchment using a physically-intuitive integer number of
reservoirs (i.e. with = 1) is adequate. This formulation was shown to be a fractional
order form of Chow and Kulandaiswamy’s (1971) general storage equation. The
properties of cascades with equal and unequal storage characteristics and varying
numbers of reservoirs have been investigated and, in particular, the implications of the
initial conditions required. Consequently, the classical Nash (1957; 1960) cascade of n
reservoirs has been corrected and reinterpreted for fractional n.
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The convolution formulation traditionally used in the solution for the forced response
component of the solution of equation (7.1) was found to be unbounded at time zero. It
was found that the solution could only be found by utilising the Laplace transform of
the pulse rainfall hyetograph (Wang and Wu 1983) and recasting as equation (7.3). This
solution technique overcomes Cavallini’s (2006) problem for the cascade of 2 unequal

reservoirs.

q(t)= Klm Zm:wju(r —nT = jAf)t —nT - jAtY® E;'_m+.[-(L"1’—M)a ]+ wE Y] (13)

The other cascade models can be obtained as particular cases as follows:

e =1 gives the single reservoir models
e a=1 gives the classical integer order reservoir models

e T=0 gives the unlagged models

For example when @ = 1 and the system is initially relaxed (i.e. the second term of
equation (7.3) is zero) then the basis of Dooge’s (1959) general instantaneous unit

hydrograph theory is obtained.

The absence of the need for a cascade of reservoirs is a significant result (particularly
for model parsimony) and this opens the way for potential future development of a
lumped catchment model theory. A recommendation for future work is to investigate
potential relationships between the parameters and physically measurable catchment
descriptors (e.g. through the use of multiple regression analysis for a larger dataset than
used in this study). This could prove valuable in the search for reliable models for

ungauged catchments. In addition, in this lumped form, the fractional order
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instantaneous unit hydrograph concept could be applied to the geomorphological [UH to

investigate modelling drainage channel network evolution.

7.2 Rainfall-Runoff Modelling

For the particular case of the effective (net) rainfall to stormflow (runoff) transformation
uninitialized (i.e. initially relaxed) cascade models were tested against the classical
Nash cascade using the River Nenagh events. The model parameters were successfully
fitted using the genetic algorithm. The results (Tables 6.1 — 6.3 and the associated plots

in Appendices A and B) show good agreement with the observed runoff hydrographs.

For the cascade of equal-X, fractional-order reservoirs, Table 6.1 shows that the storage
delay times, K, lie in the range 1.37 — 7.90 hours (with an average of 3.72 hours). This
range is similar to that for the cascade of 2 unequal-K, fractional-order reservoir (Table
6.2 has a range of 1.00 — 8.28 hours for K, and K>, with an average of 3.26 hours) and to
that for the Nash cascade (Table 6.3 has a range of 1.37 — 6.09 hours for K, with an
average of 3.20 hours). However, in general, the cascade of equal-X, fractional-order
reservoirs produced better fits than the unequal-K reservoirs and the Nash cascade to the
observed runoff hydrographs for the events tested (shown by the NSE values in the
Tables 6.1 - 6.3 and the plots in Appendices A and B). This suggests that the use of the
a-order denvative and the lag parameter, T, improve the rainfall-runoff model over that
for the classical Nash cascade. The values of T range between 0.31 and 1.82 hours

(with an average of 1.03 hours) indicating that the lag parameter has significance.

The range of n for the a-order cascade (1.04 — 3.32, with an average of 1.49) supports
the use of a low number of reservoirs in the fractional-order cascade for adequate

fitting, whereas the Nash cascade covers a larger range up to 4.88. The alternative form
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of fractional order model using unequal-K reservoirs confirmed this in that the
minimum size series of 2 reservoirs produced similar results to the equal-X cascade.
This also fits with the findings of Chow and Kulandaiswamy (1971) for cascades of
unequal integer-order reservoirs. Furthermore, the parameter fitting for the cascade of 2
unequal-K fractional order reservoirs ap;iears to converge to the integer order form ('the
a values are between 0.88 and 1.00, with an average of 0.98) which would appear to
indicate that the unequal reservoir cascade does not improve the classical integer-order

model for runoff prediction.

The a values for the cascade of equ»al-K reservoirs are close to | (i.e. the integer order -
Nash - cascade) but cover a small but significant range 0.7 — 1.0 (with an average of
0.87). However, this variation may be a consequence of the modelling of net (effective)
rainfall to runoff which is somewhat artificial sincé it requires pre-processing of the
observed streamflow to separate the baseflow and subsequent subtraction of the losses
from the observed rainfall. The techniques for doing so are subjective (refer to the
review in section 2.2.1). Bree’s (1978) presentation ot; the River Nenagh data set uses
only a single autographic rain gauge record to represent the areal rainfall for the
catchment which does not take account of storm movement across the catchment. The
quality of the rating curve used to convert the observed river stage measurements to
streamflow was not assessed. The subsequent processing of the streamflow data at 3
hourly intervals assuming a constant baseflow to separate the runoff so that the
percentage runoff could be derived from the rainfall data has, therefore, introduced

some uncertainty.

Overall the composite model parameter nK” values for the equal-K fractional order

cascade (2.23 — 8.69, with an average of 4.56) are close to the nK values for the Nash
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cascade (4.46 — 9.31, with an average of 6.25). For the unequal-K fractional order
cascade the composite model parameter takes a slightly different form, K’ +K7,

although the range 3.8 — 9.4, with an average of 6.36, is similar. It would appear that
for the closed case of effective (net) rainfall to stormflow (runoff) the application of the
fmc;tional order system converges to the classiéal integer order unit hydrograph, which
is to be expected for a system that conserves mass. This mass conservation is forced by
the loss model in the pre-processing such that the volume of effective rainfall equals the

volume of runoff.

7.3  Rainfall-Streamflow Modelling

7.3.1 Cascades of Reservoirs

The sequential Caputo derivative used in the derivation of (7.1) requires a substantial
number of initial conditions expressed as functions of the Caputo derivatives evaluated
at r=0". This raises the issue of the complexity of the generalised cascade model with
multiple reservoirs for practical application where the system is not initially at rest
(unlike the rainfall-runoff transformation system assumption). Furthermore, if Lorenzo -
and Hartley’s (2008) approach is taken to overcome the restriction of using constant
initialisation with the Caputo derivative and time varying initialisation functions are
introduced then each derivative term requires an associated initialisation function. This
would add substantially to the model complexity. The implications for the development
of parsimonious fractional order cascade models are significant. Consequently, a single
fractional-order, tirrie-lagged, linear reservoir subject to a single initial condition was
used to test the viability of the new theory for modelling the rainfall-streamflow

transformation.
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7.3.2 Rainfall Loss Models

A further assumption was made in order to consider the influence of infiltration and
evapotranspiration losses from the observed rainfall, and so derive the effective rainfall
as the input to the fractional-order reservoir system. Of the rainfall loss models
reviewed (re. section 2.2.1) the ¢-index, PR, and non-linear rainfall filter (RF) based on
Young and Beven (1994) were tested. It was not possible to test an infiltration equation
approach because no infiltration capacity data was available for the Flood Event
Archive catchments, although this could be tested in a future study for catchments with
such data. Similarly, the lack of available antecedent daily rainfall time series data for
the Flood Event Archive events prevented testing of the PDM model used in the
revitalised FSR/FEH rainfall-runoff method. Again, future work could include testing
the PDM model where vthe data is available.

The results for a sample catchment in Tables 6.4 — 6.6 and Figures 6.5 — 6.18 show the
consistently superior performance of the non-linear rainfall filter (RF) model over the ¢-
index and PR. Consequently the RF loss model was selected for use in the simulations
for the Flood Event Archive catchments. .However, the loss model has not been
validated in the field, and it remains an open problem. Conceptually, in many cases,
loss models have been proposed on the basis of equating the volume of stormflow to
that of the effective rainfall. In the open system of streamflow generation such volume
conservation does not necessarily hold because of mixing of event and pre-event water.
The concept of baseflow as distinct from stormflow and its separation, therefore, is
unclear. Because the “memory” effect is represented in the fractional order approach
this renders the modelled system non-conservative where pre-event infiltrated water has
a contributory effect on the subseq-uent streamflow output. Consequently, this may

have a compensatory effect which requires a revised form of loss model to that used.
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Conceptually, the observed rain storm is a source of energy to a system containing
stored energy (see also (Tessier ef al. 1996))‘. This highlights the need to encapsulate
the initialisation history correctly, and is an area for future investigation. In order to
compare the influence of the loss model, the fractional-order reservoir system was run
also without a loss function. Significantly, in many cases, the results of the calibrations
with and without the loss model shown in Tables 6.9 — 6.19 (and in the plots in
Appendices C and D) showed that the inclusion of a rainfall loss model only made
modest improvements to the accuracy of the predictions. These results are considered

further in section 7.3.3.

7.3.3 Flood Event Archive Modelling

For the general case of the effective (net) rainfall to streamflow transformation the
initialised, single fractional order lagged reservoir model was tested for storms observed
across a range of UK catchment scales (22km? to 510km?) using the UK Flood Event
Archive events. The model parameters (including those of the RF loss function used to
derive the effective rainfall input) were fitted using the genetic algorithm. Generally,
the results (Tables 6.9 — 6.19 and the associated plots in Appendices C and D) show a
acceptable agreement with the observed runoff hydrographs for most catchments, but

with some notable exceptions.

Comparing the sample plots in Figures 6.19 — 6.62 the fitted hydrographs are closer to
the observed streamflow when the RF loss function is included (and with smoother
hydrograph shapes) although ihe results with no loss function were often acceptable.
However, the 2 types of model (with and without loss model) are fitted with distinctly
different parameter values. The most striking difference is in the very wide range of

storage delay times, K, (1.6 — 2998 hours) when no loss model is used compared with

174



the closer range (2.9 — 173 hours) when the loss model is included. There is a question
of whether very high storage delay times for a catchment have a physical meaning for
. the model without a loss function. In contrast Table 6.20 shows that the ranges of the
composite K¢ values are closer for the 2 types of model (1.4 — 695.4 without the loss
function and 1.4 — 142.1 with the loss function). The results on an event by event basis
in Tables 6.9 — 6.19 show greater agreement in the fitted K” values for particular events,
This suggests that the K parameter is more characteristic of the catchment and event.
A notable example of the improved effect of the RF loss function on the performance of
the fractional order model is illustrated in the results for event 3884 on catchment
number 30004 (the River Lymn at Partney Mill) where Figure 6.25 shows the improved
fit over that in Figure 6.23 (without the loss function). Consequently the following
discussion is focussed on the res_ults for the fractional order model with the RF loss
function included. An area for future investigation of the nature of the K® parameter ofi
an event by event basis would be to compare the observed (total) rainfall volume with
the observed streamflow volume to see whether K is correlated with volumé

difference.

Generally the sample plots in Figures 6.19 — 6.62 (see Appendix C for the full set of
results) show a good fit of the model predicted hydrograph to the shape of the observed
streamflow, especially the recession. Furthermore the better fits are for single peaked
events. The model tends to be responsive to low rainfall or rainless periods in the event
hyetograph resulting in relatively steep recessions between peaks (i.e. less damping)
which does not always match the observed streamflow well. In addition the model
appears to be applicable over a range of scales in terms of area (22 - 510 km?) and
average annual rainfall (607 — 2265 mm), as well as for catchments including some

urbanisation (up to 13% of area). No discernable pattern in parameter values with
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catchment size was detected. Similarly, the model fit was not influenced by initial
SMD, except that larger K values were required. This would appear to support the

importance of the initialisation on the performance of the fractional order model.

However, there are catchment specific features and data quality issues which may
introduce some uncertainty into the model performance. For example Table 6.14 (and
the associated plots in Appendix C) for catchment number 37001 (the River Roding at
Redbridge) show poor fits to the observed streamflow. The peak flows are
underestimated, too early and with poorly fitting recessions. However this may be due
to the storage effect of artificial reservoirs on this catchment (Environment Agency
2009). In particular, for event 656 (Figure 6.39) which has a very poor fit, there may be
missing rainfall data after the initial streamflow peak (recall the observations in section
6.2.4). Furthermore the derivation of the Catchment Average Rainfall Profile used in
compiling the Flood Event Archive data set used few (often just one) autographic rain
gauges adjusted so that the centroids of the observed hyetographs were matched (re.
section 5.4.2). This introduces uncertainty as to whether the archived rainfall represents
the areal rainfall correctly. Similarly the quality of the rating curves used to convert the
observed river stage measurements to streamflows for each catchment is subject to
uncertainty (e.g. in the number and range of field calibration measurements, stage
recorder errors, and incidences of channel by-passing and channel instability at high
flows). It is recommended, therefore, that the fractional-order model be tested on a

broader set of catchments with a greater density of gauges.

Overall the results across the range of UK catchment scales tested (22km? to 510km?)

showed that, generally, the single fractional order lagged reservoir model was
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successful in predicting the total streamflow, with reasonably consistent K values for

‘the majority of events for a given catchment.

7.3.4 Model Parameter Characteristics

Whilst the use of the GA in fitting the parameters to the model has produced acceptable
streamflow hydrographs in many cases, the intercomparison tests for the East Dart
River at Bellever (river gauge no. 46005) in Table 6.21 illustrate the uncertainty in
defining a set of parameters for a particular catchment. The GA fitted parameters for
calibration on an event by event basis in Table 6.9 show considerable variation. The
results of the tests using calibration set 14 from Table 6.21 (and see the plots in
Appendix E) confirm the issue of lack of unique identifiability. Furthermore, whilst
outline testing of the key control parameters of the GA has been undertaken to
determine working values for the purposes of calibrating the fractional order model, it
cannot be taken for granted that the GA has converged on a global optimum (or, even
that one exists). This is compounded by the uncertainties in the initialisation function,
the loss model formulation as well as the quality of the data used. However, the
visualisation of the clustering of good (high fitness) parameter sets identified by the GA
for the sample event 1303 (Figures 6.63 — 6.65) indicates a relatively narrow band of T
and K“ values in spite of the wide range of individual K and « values evident in Table
6.9. This suggests that convergence to an acceptable fit is possible with the fractional
order model using the GA but the parameters are event-specific. A further constraint is
necessary in order to improve the identifiability of the model at a catchment level.
Again Ithis raises the issue of the adequacy of the initialisation used and this is discussed

further in section 7.3.5.
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The characteristic behaviour of the fractional order model (including loss function) for
different K and « values can be seen in the sample plots in Figures 6.19 — 6.62 (and see
Appendix C for the full set of results). | Typically the low a-order models generate
steeper peaks with a long tail recession. Conversely, higher a-order models result in a
broader peak shape and a shorter recession. The a ranges fitted by the GA across the
different events was 0.11 — 1.0, but varied between 0.45 and 1.0 using the averages for
each catchment. Typically the low K reservoirs produce higher, narrower peaks,
whereas the high K reservoirs generate lower, broader peaks. The K and K™ ranges are
discussed in section 7.3.3. Similar to the rainfall-runoff model results the inclusion of a
time lag is important with the values of T ranging between 0.03 and 10 hours on an
event by event basis (but ranging betwef:n 1.8 — 6.7 hours using the averages for each
catchment). Figures 6.19 — 6.62 also show another feature of the fractional-order model
response. For events with relatively low or zero rainfall at the start of the event the
predicted hydrographs show a decay in streamflow from the initial flow condition until
the rainfall commences, often below that of the observed hydrograph. This suggests
that the assumed catchment history (the single constant initial condition, g, when using
the Caputo fractional derivative) is too simplistic. This is coupled with the uncertainty

over the choice of go having been specified at 1 = 0 of the hyetograph.

For the RF loss function the 2 parameters take values across most of the available range
for each event, but, typically, using the averages for each catchment C > 0.7 and P < 0.5

The implications of the loss model on the results are discussed in section 7.3.2.

7.3.5 Initialisation History
As discussed in sections 7.3.3 and 7.3.4, some of the cases of poor fit of the fractional

order reservoir model to the observed data and the substantial variation in parameter
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values for a given catchment may well be a consequence of the restricted initialisation
used for the Caputo derivative. In particular it is evident that there can be a number of
different catchment storage/flux histories that pass through a common single initial
condition at r = 0 and result in different subsequent streamflow events. However, only
one such history will give rise to the observed streamflow event for t > 0. This implies
that each event is likely to have a different (but unique to that event) set of o, K, T
values which are defined by the initialisation history, which explains the variation in the
K? values fitted to the different events for the same catchments. This approach to
initialisation may supersede the use of single-valued antecedent conditions such as
initial soil moisture deficit or antecedent precipitation index commonly used in
streamflow modelling. Herver, the true initialisation representing the surface-
subsurface water mixing history for an event is not easily defined. The antecedent
catchment state (given by the degree of soil water saturation and the recent passage of
water through the catchment) may need to be captured as a time-history which will vary
on an event-by-event basis. The form of such an initialisation function and over what
pre-event timescale it should be evaluated is a subject of future research. A potential
approach is to assume that the baseflow recession of the antecedent streamflow event
characterises the surface-subsurface storage-flux history of a river. This may be
modelled by ti'me free response solution to the fractional order differential equation
describing the single fractional order lagged reservoir. The identification of the K and
parameters can be undertaken by fitting this term to the observed antecedent streamflow
recession data. This could be undertaken for several sets of data to obtain catchment
averaged values. However, the consequent adoption of a time-varying initialisation
function requires the reformulation of the fractional differential equation since the
Caputo derivative implies a constant initial condition. Lorenzo and Hartley (2008) have

proposed a mathematical framework for this but the required Laplace transforms are not
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always available in closed form. Furthermore, this approach is likely to be subject to
the difficulties of an objective baseflow separation. This, therefore, also supports the

need for future field investigation to identify a correct initialisation function.

180



Chapter 8 Conclusions and Recommendations
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8.1 Conclusions

The following have been developed in this study:

I. A new general theory for the lumped rainfall-streamflow transformation using a
fractional order linear deterministic systems approach subject to an initial condition.

2. A general equation for the cascade of initialised time-lagged linear reservoirs of
fractional order that further generalises Dooge’s (1959) general theory of the
instantaneous unit hydrograph and generalises the general storage equation of Chow
and Kulandaiswamy (1971).

3. The necessary conditions for the initialisation of cascade models resulting in a
corrected differential equation form of the classical Nash (1957; 1960) cascade.

4. A bounded solution technique using the unit step response function fitted using the
genetic algorithm.

5. A finite series expansion of the binomial function for fractional powers.

6. The Laplace transform of the Caputo sequential derivative.

The new model has been successfully applied to the classical closed system of effective
rainfall to stormflow (runoff) modelling using a set of 22 pre-processed events for the
River Nenagh. The cascade of 2 unequal fractional-order reservoirs was shown to
converge to that of the integer order case, as did the cascade of equal reservoirs (but
with some small differences), wh.ich 1s to be expected for a system that conserves mass.
The single fractional order, lagged reservoir model with a constant initialisation
function was successfully applied to the general open system of total rainfall to
streamflow transformation for a selection of events from a range of UK catchment
scales in terms of area (22km’ to 510km?), and average annual rainfall (607 — 2265

mm}, as well as for catchments including some urbanisation (up to 13% of area).
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The assumption that the time-history of water storage/flow states in the
surface/subsurface catchment system can be represented by a fractional-order time
derivative of the outflow rate of a linear reservoir has been shown to be feasible.
Howgver, this assumption has only been tested in so far as the resulting models have

been fitted to observed events.

The second assumption made in the models presented, that the mixing effect observed
between “old” and “new” water in the generation of total streamflow is represented by a
constant initial condition (a consequence of the Caputo definition of a fractional
derivative) appears to be restrictive. The results showed that the model was successful
in predicting the total streamflow with reasonably consistent K* values for the majority
of events, but the individual X and ¢ values showed a wide variation. [n addition,
events with an initial SMD reduired larger K values. The parameter fitting using the GA
for different storm events on the same catchment demonstrated that convergence to an
acceptable fit is possible but that the parameters are event-specific. However, the true
initialisation representing the surface-subsurface water mixing history is unlikely to be a
constant. The antecedent catchment state (given by the degree of soil water saturation
and the recent passage of water through the catchment) may need to be captured as a_
time-history which will vary on an event-by-evént basis and should, therefore, improve

the identifiability of the model at a catchment level.

The non-linear rainfall filter (RF) loss function to represent the infiltration and
evapotranspiration losses from the observed rainfall was found to improve the model fit
over the ¢-index and PR approaches. However, for several events, the inclusion of a
rainfall loss function only made modest improvements to the accuracy of the model

output. Because pre-event infiltrated water has a contributory effect on the subsequent
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streamflow output and this “memory” effect is represented in the fractional order
approach then this may have a compensatory effect which requires a revised form of

loss model to be developed (i.e. the system is non-conservative).

The results show that the new approach is viable for modelling the rainfall-streamflow
transformation at the lumped catchment scale without the need for cascades of

reservoirs, which reduces the number of model parameters required.

8.2 Recommendations

The non-constant K parameter values for each catchment appear to indicate that the
correct representation of the catchment storage/flux history is necessary on an event-by-
event basis. A potential approach would be to test the assumption that the recession
curve of the antecedent streamflow event characterises the recent surface-subsurface
storage-flux history of a river. This may be modelled by the free response solution to
the fractional order differential equation reformulated in accordance with Lorenzo and
Harley’s (2008) approach. The identification of the K and « parameters can be
undertaken by fitting this term to the observed antecedent streamflow recession data.
Similarly, further insight into the K“ parameter may be obtained by comparing the
observed (total) rainfall volume with the observed streamflow volume to see whether K*
is correlated with volume difference on an event by event basis. Further work is also
recommended on determining the nature of the initialisation function through the use of

field tracer studies.

The assumption of a linear relationship between outflow and storage for the fractional-
order reservoir has been shown to be viable for the range of events tested in this study.

However, the use of a non-linear form may improve the representation of catchment
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drainage behaviour more closely. However, a non-linear model would involve an
additional parameter and require an iterative solution scheme, thus increasing the
computational overhead. Similarly the validity of the assumed constant catchment
parameters could be tested by allowing them to vary with time, although this would

increase the model complexity and make parameter identification much more difficult.

In order to incorporate spatial variation (e.g. in land cover) and the effect of moving
storms across the catchment a distributed model can be derived by dividing into
subcatchments or by incorporating a spatial derivative term. Altematively lateral
inflows from subcatchments could be used as inputs to a river routing model. In
addition, the fractional order instantaneous unit hydrograph concept could be extended
to the geomorphological IUH to investigate modelling drainage channel network

evolution.

The potential application of the fractional-order reservoir model to predicting
streamflow in ungauged catchments using only observed rainfall requires the
identification of relationships between the parameters and physically measurable
catchment descriptors. One approach proposed is to use multiple regression analysis of
the model parameters and catchment descriptors for a larger dataset than that used in
this study. It is important, ho;vever, that high quality observations of event rainfall and
streamflow are selected with a view to reducing the uncertainty inherent in measured

and derived input data.
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Appendix A: R. Nenagh Results — Equal Casacade

The following Figures show the predicted and observed runoff hydrographs together
with the net (effective) event rainfall hyetograph for the River Nenagh. The predictions
were made with the cascade of n equal-K fractional linear reservoirs subject to a time

lag, T.
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Appendix B: R. Nenagh Results — Unequal Casacade
The following Figures show the predicted and observed runoff hydrographs together

with the net (effective) event rainfall hyetograph for the River Nenagh. The predictions

were made with the cascade of two unequal-K fractional linear reservoirs.
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Appendix C: Single Fractional Reservoir Results With Non-
Linear Loss Model

The following Figures. show the predicted and observed streamflow hydrographs
together with the observed event rainfall hyetograph for the selected catchments from
the UK Flood Event Archive. The predictions were made with the initialised, single,
fractional-order, time-lagged, linear reservoir, subject to a non-linear rainfall filter loss

model - equation (5.18).

211



C1: Catchment 46005 — East Dart River at Bellever
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214

Rapall ¢rench)y

Ratnfall imn'h)



St emnflony (ins)

14 -
T
S
| Z
12 g
2
-5
o
10 4
o~ — Observed Streamflow s
X ===~ Fredicted Strexnfiow
8 ——Raintall
- 20
6
L 25
4
30
2 B
- 35
0 . . 40
° 5 10 15 20 25 30
Tine (1)
Figure C1.7 Predicted and observed results for event 1300
-0
T
60 1 g
=
L, =
3
s
o
50
10
40 1 . = Observ ed Stremmfiow 13
K '.'\\ - = - = Predicted Strezmflow
~E* 4 ——Ramfall
H L
g ' 20
E 304 4
2 i
& 1
H - 25
(]
1
20 1 f
(]
H L 30
]
1
r
!
10 1 !
i 35
’
[}
[
0 kbt T . 40
50 60 70

Tiune )

Figure C1.8 Predicted and observed results for event 1301

215




Strenmflow (im¢)

Stienmflow (i)

35 1 ro
30 K
—Qbserved Streamflow 10
25 1 ====Fredicted Streamflow
—— Rainfal}
15
20 1
L 20
13 1
L 25
10 A
30
5
F 35
Q T 40
35 40
Figure C1.9 Predicted and observed results for event 1302
60 1 r O
3
30 1
o = Observed Strezmflow 10
=== =Predicted Streamflow
40 — Ramfall
15
30 M 20
- 25
20
F 30
10 1
[ 35
0 +——— — T : : T r 40
Q 5 10 15 20 25 30 35 40
Tone (b

Figure C1.10 Predicted and observed results for event 1303

216

Ramfnll (mmh)

Robdall Girvueeh)



Strenmflow (mYs)

Streamflow (ms)

30 1

25 1

r 0
5
— Observed Streamflow
====Predicted Streamflow F 10
= Rainfall
- 15
20
F 25
I 30
35
40
60
Tane (h)
Figure C1.11 Predicted and observed results for event 1304
r O
S
= Observed Streamflow 10
= === Predicted Streamilow
e Rainfnll
15
I 20
F 25
- 30
F 35
bahed L L L LY TV PPy ETTY LT T - 40
40 45 50

Tune ()

Figure C1.12 Predicted and observed results for event 4351

217

Rabdall crun'h)

Ramfall (vrunvh)



Strenmf low (In¥/s)

St1entnflonwv (n?/e)

0
20 1
3
e Qb served Streamflow 0
====Predi¢cted Streamflow
15 = Rainfall
F 15
- 20
10
23
3o
5 ]
- 35
1) T T T T T T r T T 40
o 5 10 15 20 25 30 35 40 43 50
Thoe ()
Figure C1.13 Predicted and observed results for event 4352
30 ~ r O
o
23 1
= Observed Streamflow [ 10
= === Predicted Streamflo=
20 1 ~ ——Rainfali
15
[ 20
F 25
I 30
I35
0 T T T v T 40
[+] 10 20 10 40 50 60
Tane ()

Figure C1.14 Predicted and observed resulits for event 4353

218

Rainfail (iranrh)

Rabdall (trun'h)



C2: Catchment 30004 — River Lymn at Partney Mill
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C3: Catchment 74001 — River Duddon at Duddon Hall
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C4: Catchment 25005 — River Leven at Leven Bridge
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CS: Catchment 54004 — River Sowe at Stoneleigh
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C6: Catchment 37001 — River Roding at Redbridge
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C7: Catchment 66011 — River Conwy at Cwm Llanerch
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C8: Catchment 28026 — River Anker at Polesworth
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Figure C8.2 Predicted and observed results for event 410
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Figure C8.4 Predicted and observed results for event 412
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C9: Catchment 7001 - River Findhorn at Shenachie
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Figure C9.2 Predicted and observed results for event 3673
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C10: Catchment 57005 - River Taff at Pontypridd

Strenntlow (int.©)

Stenmflow (ms)

300 1

250 1

200

150 A

100 -

30 1

~——— Observed Streamflow
====Fredicted Strezmflow
= Rainfall

20

- 25

- 30

r 35

140 1

120 1

10 20 30
Tune (h}

Figure C10.1 Predicted and observed

40

50

results for event 1836

e Qb served Streamflow
—===Fredicted Streamflow
Rainfall

40
60

20

[ 25

Tone (h)

25

30

35 40

Figure C10.2 Predicted and observed results for event 1837

266

30
45

Ratnfall (tmn by

Ramfall (mn'hy)



Stieamflow (mtis)

Strenmflow (mP/s)

180 1 Q9
160 L 5
140 - = Observed Streamflow
====Predictad Streamflow L 10
—Rainfall
120
15
100
[ 20
80 1
25
60 4
- 30
40
'-n—'L:"
20 | k35
D] T T - T T ¥ T 40
[ 5 10 15 20 25 30 35 40
Thane ()
Figure C10.3 Predicted and observed results for event 1838
200 4 - 0
180 4
F 5
0
160 | &) = Observed Streamflow
\ == ==Predicted Streamflow
Y 10
L —— Rainfall
140 4
15
120 A
100 - 20
80 4
23
60
F 30
40
. - 35
20 et e
o T v T . T 40
] 10 20 30 40 50 60

Tune (h)

Figure C10.4 Predicted and observed results for event 1840
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Figure C10.8 Predicted and observed results for event 1844
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C11: Catchment 72006 — River Lune at Kirkby Lonsdale
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Figure C11.2 Predicted and observed results for event 2283
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Figure C11.4 Predicted and observed results for event 2285

273

Ratfallymm:h)

Rainfoll irunrh)



St1 eamflaw (In*/s)

St eninflow jmdia)

350

360

250

200

150 1

230 4

200 1

150 1

r 0
M2
— Observed Streamflow
- === Predicted Streamflow Lo
— Rainfall
15
r 2o
| 25
- 30
33
- u a0
10 20 30 40 50 60 10 a0
Tune (h)
Figure C11.5 Predicted and observed results for event 2286
r o
F 5
——Qbserved Streamilow
===« Predicted Stream{low
—— Ronfall
10
15
- 20
I 25
T T —r T T — 30
30 40 50 60 70 80 S0
Timr (h)
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Appendix D: Single Fractional Reservoir Results Without
Loss Model

The following Figures show the predicted and observed streamflow hydrographs
together with the observed event rainfall hyetograph for the selected catchments from
the UK Flood Event Archive. The predictions were made with the initialised, single,

fractional-order, time-lagged, linear reservoir, without using a rainfall loss model.
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D1: Catchment 46005 — East Dart River at Bellever
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Figure D1.8 Predicted and observed results for event 1301

281

Ramfall {munh)

Ramfafl {rmm:i)



Strenmflow (mVs)

Stremnd tow (inbis)

35

== Qbserved Streamflow
30 =~ ==Predicted Streamflow
——— Rawfai}
25
20
15 4
10
5
0 SR —— r
0 25 30 33 40
Time (h)
Figure D1.9 Predicted and observed results for event 1302
“ -+
— Qbserved Strezmflow
====Predicted Streamflow
30 1 —— Rainfail
ap 4
30 1
20
10
o {—=== Ca — .
] S 10 15 20 25 30 35 40

Tmme (h)

Figure D1.10 Predicted and observed results for event 1303

282

- 25

30

[ 20

[ 25

- 30

- 35

40

Rotfall (mun h)

Ramfall qranh)




Sueamftow (n'ss)

Streamflos (m¥/1)

18 7 [+]
16 1 = Observed Streemflow
== == Predicted Streamflow L 5
—=—— Ruinfall
14 1
12 1 - 10
10
15
B -
§ - 20
a8 4
I 25
2
0 == . T T 0
0 10 20 kL] 40 50 60
Time (h}
Figure D1.11 Predicted and observed results for event 1304
30 - r 0
—— Observed Strezmflow
25 1 = === Predicted Stream{lowr L 5
Raafall
10
13
F 20
F 25
30
50

Tine ()

Figure D1.12 Predicted and observed results for event 4351

283

Ramirol (runh)

Rapdall (iun:h)y



Streminflow (mbis)

Stuenmflow (ind/s)

30 - r o
25 — Observed Streamflow 5
====~Fredicted Streamflow
—Rainfall

20 4 10
15 1 Fis
[ 20

- 23

T - v T T 30

0 3 10 15 20 25 30 35 <40 43 50
Tane (b)
Figure D1.13 Predicted and observed results for event 4352
25 5 ro
— Observ ed Strezmflow
====Predicted Strerm{low =
20 1 —— Rainfall

- 10

15
r 20

res
0 T T T T T 30
0 10 20 30 40 30 60

Time (I

Figure D1.14 Predicted and observed results for event 4353

284

Ramfall grent)

Rabifall (tun'h)



D2: Catchment 30004 - River Lymn at Partney Mill
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Figure D2.2 Predicted and observed results for event 495
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D3: Catchment 74001 — River Duddon at Duddon Hall
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D4: Catchment 25005 — River Leven at Leven Bridge
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D5: Catchment 54004 — River Sowe at Stoneleigh
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Dé6: Catchment 37001 — River Roding at Redbridge
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D7: Catchment 66011 — River Conwy at Cwm Llanerch
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D8: Catchment 28026 — River Anker at Polesworth
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D9: Catchment 7001 — River Findhorn at Shenachie

200 1 r 0
£
180 £
2
L 3
———Observed Streamflow > g
====Fredicted Stream{low
Rainfall
10
H
E 15
<
z
20
25
0 T T T - T T 30
0 20 40 50 &0 100 120 140
Tane ()
Figure D9.1 Predicted and observed results for event 3671
120 « 0
2 =
E
100 1 8
——— Observed Streamflow ra %
====PFredicted Strezmflow
— Rainfall »
BO 1
- L8
E
£
= 60 10
E
g
@ 12
40
14
16
20 1
18
0 — T 20
0 10 20 k14] 49 50 60 70 80 S0 100

Taone (h)

Figure D9.2 Predicted and observed results for event 3673
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Figure D9.4 Predicted and observed results for event 3677
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Figure D9.6 Predicted and observed results for event 3680
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Figure D9.8 Predicted and observed results for event 3686
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Figure D10.2 Predicted and observed results for event 1837
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D11: Catchment 72006 — River Lune at Kirkby Lonsdale
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Appendix E: Single Fractional Reservoir Results Using
Calibration Set 14

The following Figures show the predicted and observed streamflow hydrographs
together with the observed event rainfall hyetograph for the initialised, single,
fractional-order, time-lagged, linear reservoir with a non-linear rainfall filter using

calibration set 14 (re. section 6.2.4) for the East Dart at Bellever (river gauge no.

46005).
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Introduction

Computational modeling of the transformation of rainfall to streamflow is important for
a number of civil engineering applications, for example flood and drought forecasting,
flood defense design, and predicting the effects of climate and land use change on the
hydrological response of watersheds. An essential aspect of computational rainfall-
streamflow modeling is calibration of the parameters for the numerical model to fit a set
of field observed data, particularly given the number of conceptual models in use that
have parameters that cannot be measured independently. However, the multi-
dimensional nature of such models, parameter interaction and sensitivity often results in
non-smooth, multimodal response surfaces leading to problems .in the attempt to
identify the model uniquely (Gupta et al. 2003b). Manual calibration, whereby the user
chooses or makes a best-estimate of the set of parameter values, tests the model against
an observed calibration data set, evaluates some measure of fitness (e.g. a numerical
objective function) and then revises the parameter estimates, is time-consuming and
requires experience. Although evolutionary computing-based techniques have been
developed for automatic global calibration of models, notably the shuffled complex
evolution, SCE-UA (Duan et al. 1992), there is evidence when used with single
objective function measures of model fitness to suggest that there are different sets of
parameter values with similar fitness, which Beven (1993) describes as “equifinality”
(see also Beven 2006). In addition to errors in the observed data, the structure of the
model and over-parameterization may render it impossible to identify a unique set of
parameters for calibration. For example Duan et al (1992), Gan and Biftu (1996) and
Wang (1997) found that calibration of multi-parameter conceptual rainfall-runoff
models using a single objective function even with synthetic data (for a hypothetical set
of global optimal parameter values) produced multiple local optima of similar fimess;
and Uhlenbrook et al (1999) showed that even conceptually unrealistic sets of parameter
values could produce good predictions.

A number of computer-based tools for helping the user to quantify the calibration
uncertainty have been proposed by Kuczera (1983), Kuczera and Parent (1998), Beven
and Binley (1992), Beven and Freer (2001), Kavetski et al (2002), and Wagener et al
(2003), among others. The techniques generally rely upon Monte Carlo sampling of the
parameter space and require substantial numbers of objective function evaluations
which can be computationally expensive for complex models. Montesinos and Beven
(1999) used a genetic algorithm, GA (Goldberg 1989; Holland 1975), to reduce the
number of function evaluations when assessing the model uncertainty using the
Generalised Likelihood Uncertainty Estimation (GLUE) technique (Beven and Binley
1992) and found that over several generations, the GA solutions tended to converge on a
region of attraction around an optimum. Wemer and Khu (2001) extended this
approach by incorporating niching (Goldberg 1989) to avoid convergence on a local
optimum before applying the GLUE technique and tested the method on a river routing
model. Khu and Werner (2003) have gone on to use artificial neural networks to
represent the behavior of a rainfall-streamflow model during the sampling stage of the
GLUE technique (where sets of parameter values that produce above a threshold fitness
are retained). The actual rainfall-streamflow model is then used with the selected
parameter sets to evaluate the corrected fitness.

An alternative approach has been to use multiple objective functions to extract more
information from the observed data and thereby constrain the calibration. Yapo et al
(1998) developed a multi-objective complex evolution technique (MOCOM-UA)
derived from the SCE-UA method (Duan et al. 1992) which uses Pareto ranking
(Goldberg 1989) and has been tested using 2 objective functions on the Sacramento soil
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moisture accounting model, SAC-SMA (Burmash et al. 1973) with observed data; and
extended to 3 objectives (Gupta et al. 1998). Madsen (2000) used 4 objectives to
represent the runoff volume, hydrograph shape, peak flows and low flows and then
computed an overall fitness measure using the Euclidean distance incorporating user-
defined transformation constants for each component objective function. This was then
optimized using the SCE-UA. Gupta et al (2003a) followed Boyle et al (2000) and
partitioned the streamflow hydrograph into driven and non-driven components and used
the root mean square error for each component as the objectives in the MOCOM-UA
technique, but found that the endpoints of the Pareto optimal parameter sets identified
were not well defined. Consequently, Vrugt et al (2003) developed the multi-objective
shuffled complex evolution Metropolis (MOSCEM-UA) algorithm based on the SCE-
UA but using the Metropolis Hastings sampling strategy in place of the downbhill
simplex to avoid convergence on a single optimum. This permits the estimation of the
most likely parameter set based on Pareto dominance and the underlying posterior
probability distribution to attempt to quantify uncertainty. The use of multi-objective
calibration involves large numbers of model runs with the associated computational
overhead. There has been research into reducing the calibration time of multi-objective
techniques. For example Liu et al (2004) have applied a k-nearest neighbor classifier
system to predict the subsets of good solutions from an initial multi-objective genetic
algorithm (MOGA) run and used them to update the population of parameter sets before
running the next generation of the MOGA with the rainfall-streamflow model. They
found a substantial reduction of function evaluations required to produce the Pareto
front (albeit smaller than that obtained by just running the MOGA).

Alongside the development of automatic calibration tools has been work on
incorporating the expertise of the hydrological modeler through user interaction. A
number of comparative studies have demonstrated the value of semi-automatic multi-
objective calibration tools when used in combination with the user’s qualitative
knowledge of the reliability of the data and the model being used to make the
calibration suit the application (Bender and Simonovic 1994; Rafiq et al. 2003; Gupta et
al. 1999; Harlin 1991; Houghton-Carr 1999; Madsen et al. 2002; Zhang and Lindstrém
1997; Hogue at al 2000). Visualization helps the modeler to observe the complexity of
the parameter and objective function spaces and assists in the process of selecting a set
of parameter values for the particular watershed application. The GLOBE system
developed by Solomatine (1995, 1999) includes a computer-generated visualization of
single objective function clusters in 2D parameter sub spaces, although without a
facility for the user to examine other regions or interact with the calibration algorithms
unless the system is restarted. The Real-time Interactive Basin Simulator of Garrote
and Becchi (1997) incorporates both a distributed real-time flood forecasting model and
user-interactive tools for the visualization of flow parameters at user-defined locations
within a river basin as the storm simulation progresses. Wagener et al (2001) have
developed a toolkit for identifying both the model structure and calibration of the
parameters which uses Monte Carlo sampling of the parameter space and provides the
user with a selection of visualization techniques for the parameter and objective
function spaces.

This paper presents the application of an efficient user-driven calibration-support
system that relies upon rapid visualization of the model parameter sub-spaces and
objective function spaces obtained from a GA-based search. A key feature of the
system is the facility for the user to interactively select regions of interest for refined
search or for testing the robustness of potentially good solutions based on either their
experience and/or the knowledge revealed by a clustering technique. The system allows
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different objective functions to be tested. It is accepted that there may not be a single
parameter set but a number of sets from which the user must select for the model. A
particularly novel aspect of this application is the introduction of an objective function
based on the changing slope of the streamflow hydrograph.

Objective Functions '

A number of reviews have been undertaken of the use of common single objective
functions in rainfall-streamflow model calibration (Cooper et al. 1997; Diskin and
Simon 1977; Legates and McCabe 1999). In many cases the simple least squares (or
root mean square error, RMSE) or the Nash-Sutcliffe efficiency, NSE (a normalized
version of the RMSE) has been used, but these tend to emphasize the fitting of peak
flows.  Sorooshian and Dracup (1980) introduced the heteroscedastic maximum
likelihood estimator (HMLE) to account for non-constant variance error in the observed
streamflow data. With the exception of selecting at least one objective function which
takes account of the error in the measurement data, there does not appear to be a
consensus on which group of objective functions should be used in multi-criteria
calibration (see the review in the introduction of this paper). For the purposes of
demonstrating the calibration system presented in this paper 2 objective functions were
used. The first objective was the commonly-used RMSE (given that error-free synthetic
streamflow data was used):

RMSE = %i(qab.r,r —-q, (9))2 (1)
1=l

where g, is the observed streamflow at time 1, g{ 6) is the streamflow predicted by the
model at time ¢, and » is the number of daily streamflow values used in the calibration.
To account for the limitations of the RMSE, a second objective function was required
that would fit the observed hydrograph shape across the range of flows. A novel
approach was to compare the slopes (after Rafiq et al (2006b)) of the observed and
predicted hydrographs, expressed as the root mean square error of slope, RMSslope,
given by in equation 2.

RMSslope = \/ 1 i (slopeaw_ , — Slope, (0))2 (2)
=1
where slope = Q% (3)

for | <1< n using a central difference approximation; and at the end points of the time
series the slopes were estimated using forward and backward differences as follows:

q, — 4,

slope = e “4)
slope = % (5)

At is the timestep (1 day for the daily time series used) and g, is the streamflow at a
particular time, 7.
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Optimization Algorithm

Duan et al (1992) identified the existence of a number of regions of attraction in the
parameter space for a typical conceptual model where the calibration algorithm can
converge to a solution. These regions were found to contain numerous minor local
optima. The response surfaces tended to be discontinuous and non-convex with areas of
parameter interaction. These types of spaces make the search for an optimum set of
parameter values by traditional gradient-based methods difficult or impossible.
Consequently, emphasis has been placed on the use of evolutionary search techniques,
such as genetic algorithms. GA search operates in a similar manner to Darwinian
natural selection (Goldberg 1989; Holland 1975). In the algorithm an initial population
of randomly selected sets of parameter values is tested for fitness (by comparing model
predictions using each set of parameters with observed streamflow) and a new
population of parameter sets is evolved by applying reproduction, crossover and
mutation operations on selected members of the parent population. The selection 1s
made using a probabilistic rule weighted according to fitness. The process is repeated
with a view to evolving fitter populations. Goldberg and Kuo (1987) were the first to
apply the GA to a flow preblem in civil engineering, by optimization of a pipeline. The
apphcatlon has been extended to pipe networks and multi-reservoir systems for the
optimization of water resource systems (for example Jeong and Abraham 2006; Sharif
and Wardlaw 2000; Wu and Simpson 2001). Wang (1991) first used a genetic
algorithm-based automatic calibration of multi-parameter conceptual rainfall-runoff
models. This application has been further tested by a number of researchers (Franchini
1996; Liong et al. 1995; Ndiritu and Daniell 1999; Wang 1997; Yang and Douglas
1998, among others). One of the outcomes of this work is that the GA may not always
converge to the global optimum solution (where one has been identified by the.use of
data synthesized for a model run with a predefined set of parameter values) and-that it
may require a gradient-based optimization technique to refine the search once the GA
has converged. In order to avoid convergence onto a single optimum region a low
generational GA with moderately high mutation rates was adopted in the calibration
system described in this paper. This also enabled the system to rapidly generate diverse
parameter solutions of varying fitness, for subsequent visualization and analysis by the
user. In this way the user can continually refine and test their chosen parameter region
for calibration, without the need for large numbers of function evaluations (unlike
Monte Carlo sampling systems).

User-Driven Calibration-Support System

The interactive calibration-support system was developed by Packham (2003) for the

visualization of multivariate data and for decision support in engineering design tasks

through user interaction. The system uses evolutionary computing and clustering

techniques to visualize the optimization of multidimensional models and to evaluate

robust regions of the parameter spaces. The system, together with a review of the

development of interactive visualization techniques for engineering design, using

evolutionary computing, is presented in Packham et al (2005).

In outline the system has been designed with the following features:

e Rapid sampling of the feasible parameter and objective spaces by using short

GA runs of 20 generations with, typically, 100 members in the population (i.e.
2100 model simulations, including evaluating the initial population of solutions).
The low number of generations avoids convergence onto a single optimum
region, and the use of moderately high crossover and mutation rates, particularly
if duplicate solutions are generated, maintains diversity. This allows the user to
subsequently select regions for further search, whilst limiting the computational
overhead.
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» Easy to use graphical user interface. This has been designed in accordance with
Shneiderman’s (1998) principles of presenting the user with an overview, zoom
facility, and details on demand. :

¢ High dimensional visualization of the parameter and objective function spaces,
including 2-D and 3-D views, scatterplot matrix (Chambers et al. 1983), parallel
coordinates (Inselberg and Dimsdale 1994), and plots in transformed coordinate
systems if required. In this way the user can investigate parameter interaction
and model sensitivity to particular parameters.

* Automatic clustering option. A kernel density estimation algorithm (Silverman
1986) is applied to identify clusters of solutions in either the parameter or
objective function space. The technique is described in the following section.

* To aid visualization color is applied: where more intense, pure color (i.e. darker)
is used within a particular cluster to emphasize higher fitness solutions; and
different color hues are used to distinguish between clusters.

* Interactive features. The user can quickly zoom into subspaces and select
regions for additional GA searches to generate further solutions or for the
identification of clusters — either automatically or manually. All the solutions
(i.e. high and low fitness) generated by the GA search are retained by the
system. In this way the user has control over both how and where the
investigation of the search space takes place, including regions outside of

. clusters of good solutions found by the GA. The user can also visualize the
model output for any of the parameter sets generated by the system, by simply
selecting a solution with the mouse. A plot of the predicted and observed
streamflow hydrographs is displayed, enhancing the user’s perception of the
goodness of fit of the chosen solution.

* Robustness evaluation of selected solutions. The user can select a region
containing potentially good solutions and carry out a “negative GA™ search.
This essentially allows the user to search for the worst solution in the selected
region instead of the best (thus, for a maximization problem, the user chooses to
minimize the objective instead). This method allows the user to evaluate the
robustness of solutions in the selected region as the likely worst solutions can be
generated (and again highlighted using the clustering technique). The user needs
to keep in mind that the same limitations such as being trapped in local optima
apply to the negative GA search as to the positive. However, because of the low
number of solutions generated in each run, the user can quickly build up a
picture of the robustness and nature of the landscape using all the interactive
tools described above.

The system has been applied to the multiobjective optimization of the design of biaxial
columns (Rafiq et al. 2006a), and to investigate the single objective function calibration
of a simple time-series model of rainfall-runoff (Packham et at. 2004; 2005).

In this paper the GA search was carried out using the single objective functions
(equations 1 and 2) in turn as fitness measures and also using a weighted average fitness
measure given by:

Fitness = wiRMSE + w;RMSiope (6)
where w| and w; are weightings. Weights between 0 and 1 such that w; + wy =1 were
used in this study. It should be emphasized that this weighted fitness measure is only
used in the system to facilitate the selection operators in the GA. As an entirely
separate operation to the GA fitness calculation, the system can evaluate and visualize
the associated spaces for any number of objective functions. Depending upon the
number of objectives, these can be included in the weighted fitness measure used for the
selection mechanism in the GA in equation 6, such that the total of the weights equals 1.
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However, for a large number of objectives it may be preferable to use a subset in the
weighted fitness for the GA search and calculate the remaining functions for
visualization purposes only.

Clustering Technique

There are many clustering techniques that have been developed for various applications
and they can be sensitive to certain parameters (Jain et al. 1999). The aim of clustering
in this case is to identify high performance regions of a search space as generated by the
GA with minimal computation time and parameter setting. Such data tends to contain
dense regions where the GA has converged, but may be incomplete due to the
characteristics of the search. Future runs could fill in the missing data; therefore it is
not necessary to find the ‘true’ clusters using Euclidean distance. Instead, a simple
clustering technique was developed that combines the density information from the
either the parameter or objective space with the fitness of the solutions.

A full explanation and description of the clustering technique used is given in Packham
and Denham (2003). In summary, a univariate kernel density estimate (Silverman
1986) of each vanable is made and the minima from each estimate are computed. The
bounds of each cluster are thus identified in each variable. The first cluster chosen (to
be displayed to the user) is that containing the highest fitness from the GA, this data is
removed and the second cluster identified is that with the fittest individual of the
remaining data, and so on.

Clustering can be performed in either parameter or objective space using the univariate
kernel density estimation procedure described. The clustering itself is an aid to
visualization of the high performance regions of the search space, not part of the search
itself (although could be used in this way if it was deemed useful). The user can
manually create and modify the clusters generated, hence the interaction of the user is as
important (if not more so) than the definition of the clusters in this system.

After some investigation of the parameters used in kernel density estimation (such as
the type of kernel used, number of points along each variable and smoothing
parameter), those that produced the widest and most generic clusters were chosen for
this visualization system (Packham et al. 2005). These were found to sufficiently
highlight the important regions for most continuous problems (theoretical and practical).

The Rainfall-Streamflow Model and Calibration Data

The conceptual rainfall-streamflow model used in this study was the SIXPAR model
{Gupta 1982) which is a reduced parameter version of the Sacramento soil moisture
accounting model, SAC-SMA (Bumash et al. 1973), and is described in full in Gupta
and Sorooshian (1983). The simplified model shown in Figure 1 permits testing of the
calibration system and comparison with the results of Duan et al’s (1992) study of the
global optimization of conceptual rainfall-runoff models.

Fig 1 about here

[n outline the model consists of an upper soil water storage layer (of maximum capacity
UM), which is supplied by the daily rainfall. The outflow from this store occurs as
interflow (controlled by a recession constant, UK) or percolation into a lower soil water
store (controlled by a partitioning parameter, A, which determines the separation of
percolation into actual and potential rates; and a parameter X which controls the degree
of nonlinearity of the percolation process). Excess precipitation (once the upper zone is
full) becomes runoff. The lower store has a maximum capacity BM and the baseflow
rate is controlled by a recession constant, BK. Evapotranspiration and channel flow
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routing are not stmulated for simplicity. For comparison with Duan et al’s (1992) study
the same 200 day synthetic daily series of precipitation and streamflow for a known set
of parameter values was used. Similarly the same constraints were applied to the
permitted ranges for each parameter value, as shown in Table 1.
Table 1

Guidance on the selection of the length and characteristics of calibration and
verification data for operational rainfall-streamflow models may be found in Yapo et al
(1996).

Demonstration of the Interactive Calibration System

Note that the interactive visualization system was designed for maximization problems
so negative values of RMSE, RMSslope and hence Fitness were used in the rainfall-
streamflow calibration. As a means of comparing the best solutions obtained using
different objective functions the commonly used Nash-Sutcliffe efficiency, NSE (Nash
and Sutcliffe 1970), has been evaluated for presentation in this paper by:

S (Gt -4, (0)f

NSE =1-| 1L 7

Z(qob:.l - ‘Tobs)z

1=l

where g, is the average observed streamflow.

Figure 2 shows 2-D scatter plots of the parameter subspaces from a 20 generation run of
the visualization system with the RMSE used as the GA fitness function in (a), and the
RMSslope used as fitness in (b). The user can choose the order of the axes to view
different subspaces in the main plot, as necessary.

Fig 2
The scatter plots show all the solutions obtained by the GA. The automatic clustering
algorithm generates 2 clusters of the fittest solutions over the entire parameter range
(the number of clusters is set by the user). These clusters are shown as highlighted
points (in different colors: the main (first) cluster is shown in green (the light points in
Figure 2); the second cluster is shown in blue (the darker points); and the remaining
solutions are shown in grey. For the RMSE fitness function (Figure 2(a)), the system
identified 70 solutions in the first (fittest) cluster, 14 of which had an equivalent NSE of
at least 0.999. The best solution found had UM = 16.815, UK = 0.325, BM = 12.065,
BK = 0.227, A = 0.665, and X = 0.537, which is somewhat remote from the global
solution (re. Table 1). The second cluster had 24 solutions, 10 of which had an
equivalent NSE between 0.996 and 0.998, the best of which was relatively far from that
in the first cluster with UM = 30.046, UK = 0.231, BM = 3.486, BK = 0.055, A = 0.627,
and X = 1.635.
For the RMSslope fitness function (Figure 2(b)), the system identified different clusters
to those for the RMSE fitness, but, again, the best solutions from each cluster were far
apart from each other. The equivalent NSE values of the best solutions were in the
range 0.998 to 0.999. It is clear that there is considerable spread in the good solutions
over the parameter subspaces, consistent with the existence of different regions of
attraction (convergence) with multiple local optima found by the computationally-
intensive visualizations undertaken by Duan et al (1992). Furthermore the different
clusters for the 2 objective functions illustrate the effect that the choice of single
objective functions has on automatic calibration.

One of the sets of multi-objective results is shown in Figure 3 for a 20 generation run

using equation 6 with wy = 0.4 and w> = 0.6 to calculate the fitness for the GA search.
Figure 3(a) shows all the solutions obtained in the 2-D parameter subspaces and Figure
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3(b) shows 3-D function spaces of 2 clusters of good solutions found by running the
automatic clustering algorithm.
Fig 3 o
With the combined objective functions, the clustered solutions also included the region
of attraction around the global parameter set. The model output for the best solution
obtained can be rapidly displayed by the user (by right clicking with the mouse on the
highlighted point) as displayed in Figure 4. At the display scale of Figure 4 the
observed and predicted flows appear almost coincident. The zoom facility of the system
allows the user to investigate the quality of the fit more closely. It should be noted that
the daily rainfall and streamflow rates are expressed in terms of equivalent water depth
over the contributing watershed area, commonly used in streamflow modeling, and are
given in inches/day (where | inch/day = 25.4mm/day) to be consistent with the units
used in Duan et al’s (1992) SIXPAR model and original data.
' Fig 4

In order to investigate the relationships between the parameters, the clustered solutions
from the multi-objective search can be visualized in a parallel coordinates plot, as
shown in Figure 5.
Fig §

This indicates the range of values for each parameter associated with the region of good
solutions. The results for the 2 clusters show the significant differences between the
parameter sets for similar fitness measures, which can be an indicator of model
structural error. However these plots have the limitation of being difficult to interpret
when a large number of solutions are displayed. -

The best solutions identified for a 20 generation run of the multiobjective system with a
range of weighting factors between 0 and 1 used in equation 6 are summarized in Table
2.

Table 2
The results show that where the RMSE objective dominates the Fitness (i.e. for w; > 0.5
and w; < 0.5) the 20 generation GA search does not identify the region of attraction
around the global optimum parameter set. This illustrates the positive influence of the
new RMSslope objective function on the effectiveness of the calibration-support
system.

The results shown in Table 2 indicate the need for the user to test the effect of different
weightings on the identification of clusters. For the model and data used in this study,
the results highlight the existence of multiple parameter sets of similar fitness because
many conceptual models are subject to over parameterization, parameter interaction and
poor sensitivity. From a practical viewpoint the decision of which of the similar-fimess
parameter sets constitutes an acceptable calibration will depend upon validation of the
selected model with further observed data. This is important given that the user will not
know whether the system has identified the true global optimum parameter set (if such a
single set exists for a given model and data). The benefit of the interactive system
based on visualization is that the user can rapidly test the influence of the fitness
weightings and explore the regions of attraction identified by the clustering. In this way
the system allows the user to discover the nature of the search space. This knowledge
can assist the user in evaluating whether the selected conceptual model is appropriate
for the application or if a different model should be tested.

The user-directed interactive search capability of the system is demonstrated in Figure
6(a) where the user has selected a region around the best solution identified from the
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initial clustering (for the case with w) = 0.4 and w, = 0.6). A further 20 generation GA
search was carried out within this region where the parameter ranges were constrained
by the boundaries of the selection box drawn by the user by simply using the mouse.
The automatic clustering algorithm has been run to generate a cluster of the fittest
solutions over this zoomed region, which is shown in Figure 6 (b).
Fig 6
From the fittest solution identified in this zoomed region, the best parameter set is
converging towards the global, with UM = 9.546, UK = 0.499, BM = 20.226, BK =
0.208, A = 0.319, and X = 2.702, and an equivalent NSE of 0.9999. Given that a total
of 40 generations of a 100 member population was run using the GA (i.e. 4100 model
simulations, including evaluating the initial population of solutions) the system has been
effective in locating the region of the global solution without the computational expense
of a large number of model runs. In order to investigate the robustness of this region
around the best parameter set found so far, the user can run a “negative GA” search (i.e.
minimization rather than maximization). A filter was applied to the system to identify
the top 10% of solutions within the best cluster (i.e. closest to the global parameter set
found so far). A 20 generation “negative GA™ was then run within this refined cluster.
Figure 7 shows clusters of least fit solutions following a negative GA search together
with the top 10% of solutions. The plot provides an approximate evaluation of the
robustness of the best parameter set found so far by using the visual representation of
the distance between the clusters of good and poor solutions. This information is
valuable as it aids the user in deciding whether to continue with a refined search in this
region for the best parameter set, or to continue to interact with the system and search in
a different part of the space. Once the user has decided upon a promising convergence
region then a more detailed search can be undertaken (possibly using a gradient based
technique) without wasting computational time. Additionally, the negative GA search
tool helps identify ranges for each parameter value which tend to produce sub-optimal
calibration within the region around the best-so-far solution. By retaining these poor
solutions (as different colored clusters) the user can avoid selecting sub-optimal regions
when interactively exploring the parameter space within the visualization system.
Fig 7

Conclusions and Further Work

The application of a user-driven calibration-support system to the SIXPAR conceptual
rainfall-streamflow model using synthetic data has been shown to be effective. The
system was able to locate the region containing the global parameter set with a
relatively modest number of model runs. This is important to hydrological modelers
when calibrating high dimensional operational models with long data records (e.g 8
years) because of the large number of function evaluations required. Rapid sampling
and clustering procedures, coupled with a range of high dimensional visualization
techniques, promote the user’s understanding of the complex nature of the parameter
space, without excessive computational overheads. The system was able to display the
existence of major convergence regions, local optima, and parameter interaction. The
interactive features of the system allowed the user to select regions of the parameter
space that the initial GA run had identified as potentially good calibration sets.
However, the user 1s still free to select other regions on the basis of their experience of
the calibration of a given model and knowledge of a particular watershed. The
efficiency of the system was also shown by the facility to make an initial assessment of
the robustness of the region around a potential parameter using a “negative GA” search.
This allowed rapid sampling of the low fitness parameter sets without the need for
computationally expensive model evaluation along a fine grid of values of each
parameter. Consequently the user can quickly decide whether to continue refining the
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search of a particular region of the parameter space or to return to one of the other
clusters of good solutions.

The effect of the choice of objective functions on the calibration performance was
demonstrated. A novel objective function, the RMSslope that represents the changing
slope of the streamflow hydrograph was proposed. When used singly with an initial 20
generation GA search, the RMSE and RMSslope objective functions identified different
optima but failed to find the global solution. However, when combined as a weighted
sum, the region of the global solution was detected, particularly where the RMSslope
dominated the fitness function. The interactive nature of the system allowed the user to
exploit the knowledge revealed by the automatic clustering technique and select a
promising region for further exploration, leading to convergence towards the global
solution. The combination of search efficiency, visualization and interaction is valuable
both for the novice and the experienced hydrological modeler. Thus the system could
be used as a decision support tool for the calibration of conceptual rainfall-streamflow
models by practicing engineering hydrologists or as a teaching aid for hydrology
students.

The standard GA has been used in this visualization system and in the results presented.
These GA runs could also be performed in alternative coordinate systems (such as the
principal components of previously generated data (Packham and Denham (2003)). It
would be also be possible to replace the standard GA with one known to perform well
on calibration problems, such as SCE-UA (Duan et al. 1992). If such a technique was
implemented in the system and complemented by an appropriate clustering mechanism,
it could be very effective in revealing the contours of the search space to the user..,

The use of the system with an operational rainfall-streamflow model on a physical
watershed with altermative objective functions to the RMSE, such as the HMLE
(Sorooshian and Dracup 1980) to account for nonstationary variance in observed
streamflow data, 1s the subject of ongoing research.
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Notation
The following symbols are used in this paper:

n = the number of daily streamflow values used in the calibration;
Gobs.1 = the observed streamflow at time ;

Gops = the average observed streamflow;

g = the streamflow at a particular time, ;
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q{ &) = the streamflow predicted by the model at time ;

At = the timestep (1 day for the daily time series used);
Wy, Wy = weightings. '
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Table 1. True parameter values used to synthesize streamflow data and ranges

permitted for GA search

Parameter True Value Lower Bound Upper Bound
UM 10 0 50
UK 0.5 0 1
BM 20 0 50
BK 0.2 0 1
A 0.31 0 1
X 3 0 10

Table 2. Best solutions identified from first cluster for different weighting factors used

in evaluation of multiobjective Fitness (equation 6)

Wy W2 UM UK BM BK A X NSE
0.1 0.9 9937 0454 19.951 0.206 0300 4.850 0.9997
0.2 0.8 9.866 0.542  19.621 0.209 0.287 5.936 0.9997
03 0.7 10.535 0432 16.105 0.237 0.362 1.470 0.9989
0.4 0.6 12.899 0439 16916 0.208 0242 1260 0.9995
0.5 0.5 10.929 0487 19.761 0.182 0312 3.631 0.9995
0.6 0.4 25.305 0.250 .2.524 0.392 0.237 7.192 0.9988
0.7 0.3 28.393 0.249 2.214 0.149 0358 5.788 0.9991
0.8 0.2 30.136 0.236 4.664 0.013 0.733  7.814 0.9988
0.9 0.1 10.076 0.480 17.257 0.241 0.653 1.503 0.9991

True solution: 10.000 0.500  20.000 0.200 0.310 3.000 1.0000
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Figure 1: Schematic structure of SIXPAR model
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