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A Computational Model of Auditory Feature Extraction 
and Sound Classification. 

Martin Coath 

This thesis introduces a computer model that incorporates responses similar to 
those found in the cochlea, in sub-corticai auditory processing, and in auditory 
cortex. The principle aim of this work is to show that this can form the basis 
for a biologically plausible mechanism of auditory stimulus classification. We will 
show that this classification is robust to stimulus variation and time compression. 
In addition, the response of the system is shown to support multiple, concurrent, 
behaviourally relevant classifications of natural stimuli (speech). 

The model incorporates transient enhancement, an ensemble of spectro -
temporal filters, and a simple measure analogous to the idea of visual salience 
to produce a quasi-static description of the stimulus suitable either for classifica­
tion with an analogue artificial neural network or, using appropriate rate coding, 
a classifier based on artificial spiking neurons. We also show that the specto-
temporal ensemble can be derived from a limited class of 'formative' stimuli, con­
sistent with a developmental interpretation of ensemble formation. In addition, 
ensembles chosen on information theoretic grounds consist of filters with relatively 
simple geometries, which is consistent with reports of responses in mammalian 
thalamus and auditory cortex. 

A powerful feature of this approach is that the ensemble response, from 
which salient auditory events are identified, amounts to stimulus-ensemble driven 
method of segmentation which respects the envelope of the stimulus, and leads 
to a quasi-static representation of auditory events which is suitable for spike rate 
coding. 

We also present evidence that the encoded auditory events may form the 
basis of a representation-of-similarity, or second order isomorphism, which implies 
a representational space that respects similarity relationships between stimuli 
including novel stimuli. 
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Chapter 1 

Introduction and overview 

Objectives and motivation for the work. 

The motivation for the work contained in this thesis came from the desire to build 

an artificial but biologically plausible auditory perceptual system. This system 

would operate on a restricted but rich set of natural auditory stimuli and would 

distinguish stimulus classes in a background of noise or other overlapping stimuli. 

Given that the brain uses networks of spiking neurons it is clear that whatever 

method is adopted has to be suitable for implementation using a spike based en­

coding of the signal. Although it is not clear that spike rate encoding is the only, 

or even most efficient, method available to neural systems, neural responses are 

in the overwhelming majority of cases, reported as changes in the spike rate. This 

presents difficulties for the generic encoding of features of auditory stimuli in that 

they are not generally stationary in time. Automatic speech recognition systems 

(with no pretention to biological plausibility) avoid this problem by assuming 

that the signal can be represented as a sequence of static states in windows of 

typically 10 — 20ms and this approach has proved very successful. This approach 



is not, however, 'stimulus driven' in that it makes no attempt to identify salient 

'landmarks' or auditory 'events' which may form the basis for a quasi-static rep­

resentation of the stimulus that is suitable for rate coding. We propose to develop 

and implement a model of peripheral auditory processing based on a model of the 

cochlea but which emphasizes the sensitivity to energy change found in biological 

systems. We hope to use this stimulus representation as the basis for our model 

of sound classification. It is also hoped that by investigating the properties of this 

representation some light might be thrown on why transients, that is periods of 

short term energy change that might be called onsets and offsets^ are increasingly 

emphasized in the ascending auditory pathway towards cortex. 

As the sub-cortical auditory system emphasizes these transient responses at 

the expense of continuous, or tonic, firing in response to stimuli, then we hy­

pothesize that it should be possible to characterize the response of at least some 

cortical neurons to patterns of onsets and offsets. We hope to show that this 

is indeed possible by using, for the first time, the established method of reverse 

correlation to estimate the spectro-temporal preferences of cortical neurons in 

terms of the transient sensitive representation. 

Given that patterns of transients could form the basis of auditory feature 

extraction, we hope to investigate whether useful patterns could be derived from 

the stimuli themselves. Based on work using a measure of similarity between 

'fragments' of visual images and a library of images from different classes, we 

hope to adapt and extend this idea to measures of time dependent similarity 

using ensembles of fragments in the auditory domain. 

The next aim is to investigate if the response of these spectro-temporal fea­

ture extractors could form the basis for deriving a readout of discrete, salient 



auditory 'events' as the basis of the sound classification. The goal of this stim­

ulus driven, feature dependent segmentation is a representation which respects 

the time course of the stimulus (i.e. the prosody of speech stimuli), results in a 

quasi-static representation suitable for rate coding, and achieves a large reduction 

in computational overhead. We hope to test the resulting model by comparing 

its performance with human psychophysics and quantifying its performance in 

terms of the mutual information between the input and the output classes. 

The proposal is to design each of the stages outlined above to be consistent 

with considerations of biological and developmental plausibility. In this way it 

is hoped that the resulting representation will be, in common with biological 

systems, flexible enough to classify a wide range of stimuli, rich enough to support 

the classification of novel stimulus classes, and robust to moderate manipulations 

and distortions of the stimuli. 

A separate but related objective of the work is that the model should be 

suitable for integration within a larger model, being developed by a number of 

partner projects, of learning and attention (ALAVLSI, 2001). Other collaborative 

projects are developing neuromorphic analogue VLSI circuits consisting of artifi­

cial spiking neurons with the eventual aim that all or part of the model should be 

implemented in hardware. To this end we hope to show that our model of feature 

extraction provides responses that are suitable for rate coding as the input to 

such a system. 

Peripheral processing. 

The nature of stimulus processing in the peripheral auditory centres of the brain 

is still only partly understood. In this work emphasis is placed on only two 



well documented aspects. First, many results show that responses have well de­

fined characteristic frequencies and that this 'tonotopic' arrangement is preserved 

throughout the ascending pathway. This implies that much of the processing is 

done within a frequency channel. Second, there is well documented evidence for 

sensitivity to (and enhancement of) envelope transients, i.e. onsets and offsets 

(e.g. Heil, 2001). The principle requirements of the model of peripheral process­

ing adopted are therefore that it should not be inconsistent with these findings 

and that it should be relatively simple, with a view to its eventual hardware im­

plementation. At the same time it must also be consistent with the other goals of 

the project such as information preservation, and robustness to noise. In addition 

it would be desirable for it to exhibit some degree of level independence. 

In Chapter 2 the evidence for the importance of envelope transients is re­

viewed and a novel model of transient enhancement based on the distribution of 

energy within a time window is introduced. This new representation is shown to 

have many attractive features and to be consistent with neurophysiological and 

psychophysical results. In Chapter 3 it is further shown that this representation 

can be used to characterize response data recorded in auditory cortex. 

Spectro-temporal responses. 

The principle method used to characterize responses in higher auditory regions, 

such as thalamus and cortex, is to determine the spectro-temporal preferences 

of neurons. Described in this way each neuron can be thought of as a filter. 

An alternative view, however, is that each neuron has a ^preferred stimulus' in 

response to which it fires vigorously. This preferred pattern can be thought of as 

a 'feature' of the stimulus and the output of the neuron as signalling the presence 



or absence of this feature. Both of these ideas are summarized in the concept 

of a spectro-temporal response field (STRF) and this idea forms the basis for the 

low-dimensional representation implemented in the second stage of the model. 

Although the S T R F is a widely discussed concept it is not known how these 

response fields develop. However it is known that cortical organization is much 

disrupted by aberrant auditory stimuli during early post-natal development and 

so it is the assumption of this project that S T R F formation is, at least in part, 

driven by exposure to formative stimuli and their geometry is determined by 

the necessity of distinguishing between the various stimuli in the early auditory 

environment. 

Results detailed in Chapter 4 indicate that useful filters, or features, can be 

derived from a very limited set of formative stimuli. Their usefulness can be 

described in terms of the entropy of their responses to the formative stimulus set. 

These results show that there is a basis for preferring one feature over another. 

We also examine how ensembles of features may be formed by a selection process 

based on information theoretic principles. 

From stimulus representation to response representation. 

The mapping of stimulus to response requires more than just calculating the 

responses of an ensemble of roughly tuned spectro-temporal features. The outputs 

of each of these filters is merely a linear transformation of the output from the 

peripheral model. However, if the features in the ensemble are chosen on the 

basis of their informativeness with respect to a set of formative stimuli then their 

responses to new stimuli of a similar type might be expected to be maximal at 

times that coincide with salient features. 



In Chapter 4 we discuss how appropriate ensembles of features might be de­

rived from formative stimuli and in Chapter 5 we go on to show that the response 

of such an ensemble can be used as a basis for identifying salient events in a stim­

ulus driven manner that are suitable for rate coding. We also show that the 

pattern of ensemble response during these events preserves information about 

the stimulus class. 

Cheiracterizing the performance. 

To gauge the representational quality of the feature space, it was proposed to 

compute the mutual information between the input and outputs of the system. 

Mutual information is an information theoretic property related to the correla­

tion between distributions of probabilities and can only be calculated on data that 

have nominal classes. The input stimuli chosen for the experiments are labelled 

so the input class for each is known. The representations derived from the array 

of spectro-temporal features, however, must be assigned to a class before the mu­

tual information can be calculated. One approach to this is to build a classifier 

based on an artificial neural network which would allow the performance of the 

model to be quantified in information theoretic terms. Results are also compared 

with human psychophysics. Also in Chapter 5 it is shown there is a clear system­

atic difference between the performance of fragments of different temporal extent 

which suggests a relationship between the time constants for feature extraction 

and the intelligibility of speech measured in human psychophysics. 

The use of mutual information to judge the success of these feature spaces is 

discussed in Chapter 5. In line with the biologically plausible approach of the 

project it was a requirement that the representation of auditory stimuli should 



be suitable for spike rate coding with the intention of using a classifier based 

on a network of artificial spiking neurons. Results using simulated networks of 

artificial spiking neurons are contained in Chapter 6. 

Concurrent classifications. 

A key feature of biological perceptual systems is that the judgements they support 

are task dependent. Of the many classifications of a given sound that are possible 

(often called a Svhat' judgement) priority is given to the one that is most task 

relevant by mechanisms of attention. Evidence is emerging that different 'what' 

judgements are made concurrently in spatially distinct areas of the brain and 

any plausible model of sensory processing must support this type of multiple 

concurrent processing. 

Experimental results reported in Chapter 6 show that multiple concurrent 

classifications are supported by the model detailed in this work. 

Stimulus set. 

The stated aim of using a stimulus set that is 'restricted but rich' is somewhat 

constrained by the availability of example corpora so the decision was made to 

use widely available speech corpora of numerals and letter names. The choice of 

speech corpora invites comparisons with speech recognition systems because the 

'classes' into which these stimuli apparently fall are the familiar English word, 

or letter, names. However, it should be stated that the goal of the work is not 

speech recognition per se but a biologically informed acoustic processing model 

suitable for a flexible and robust perceptual system. The speech stimuli also have 

the advantage that they either meet, or can be manipulated to meet, another 



experimental requirement, i.e. each stimulus can fall in to more than one class 

simultaneously. For example, in the corpus of spoken digits half are spoken by 

male, and half by female subjects. As a result each stimulus can be labelled 

by its digit name (one, two, and so on) or by the sex of the speaker. Both 

are percepts associated with the stimulus and an important test of any model 

perceptual system, as detailed above, is that is should preserve features that 

allow distinctions between multiple classifications concurrently (see Chapter 6). 

Summary. 

The work herein represents a significant and novel departure from the recog­

nized models of sound, particularly speech, classification. In the first instance 

the model is developmental in that it is based on limited numbers of formative 

stimuli which are used as the basis for a selection of features which are informa­

tive with respect to these stimuli. Second, it is productive in the sense that 

the same features are subsequently used to to generalize to new stimulus classes, 

including novel speakers, intonations and so on. Third, the model of peripheral 

auditory processing abandons the traditional view of a stimulus with a character­

istic spectral and temporal envelope and substitutes pattern of energy change 

which is widely reported as being central to biological peripheral processing. This 

representation preserves many features of the temporal envelope but is to a large 

extent independent of the spectral envelope. Fourth, the salient parts of the stim­

ulus are identified in a way which is dependent on both the stimulus and the 

feature set. The stimulus dependence ensures that the response of the model 

respects the rhythm and presentation rate of the stimulus and the dependence 

on the feature set has implications for cortico-fugal interactions with sub-cortical 



processing. Last, the responses derived in this way are tested for their ability 

to support a range of classifications, not just a mapping from the stimulus to a 

single distinct response, each of which, in the organism, would represent a be-

haviourally relevant judgement. This must be a feature of any model of 

auditory perception rather than simply a system of word recognition or speech 

transcription. 



Chapter 2 

Auditory transients 

2.1 Overview. 

Principle aims. To develop a representation of sound stimuli based on a 

cochleagraphic representation but sensitive only to short term increases and de­

creases in energy within a cochlear channel. There are two important and novel 

features of this representation. First, the time scale over which these 'onsets' and 

'offsets' are detected is frequency dependent. Second, the calculated response 

reflects the asymmetry of the energy distribution within a time window for each 

frquency channel. To this end we use a statistical property of the energy distrib­

ution over this time - the skewness or third central moment. We hope to examine 

the properties of this representation using a range of stimuli, and mixtures of 

stimuli. 

Motivation. There is a great deal of evidence that the auditory pathway is 

arranged tonotopicaly and little evidence to support integration across frequency 

channels in sub-cortical areas. There is also a great deal of evidence that the 

10 



2.1 Overview. 

auditory system is sensitive to relatively short term changes in energy, i.e. onsets 

and (to a lesser extent) offsets. In addition physiological measurements suggest 

that information in diflferent parts of the tonotopicaly arranged auditory system 

is extracted on different, frequency dependent time scales. There is currently no 

consistent explanation as to why transient or phasic responses are increasingly 

emphasized over continuous or tonic responses as signals pass from the auditory 

periphery through the mid-brain to more central areas. It is possible that they 

confer some benefit related to the goal of efficiently coding natural stimuli. We 

hope to shed some light on this question. 

Achievements. We show, in the results of psychophysical experiments in Ap­

pendix A, that stimuli re-synthesized from onsets alone preserve a great deal of 

information necessary for comprehension of speech, provided that the stimuli are 

re-synthesized in a way that allows for the onset to be located tonotopically as 

well as in time. We also show that our model responds differently to stimuli 

with a range of spectro-temporal modulation statistics. In mixtures of synthetic 

noise and speech, it preserves the onset patterns of speech when mixed with some 

types of noise with statistics that differ from natural stimuli. Comparison with 

data from human auditory brainstem responses shows that the level, and tim­

ing, of maximal activity predicted using this model broadly match physiological 

data. Finally, we show that the representation produces a de-correlation in both 

the spectral and temporal domain which amounts to a redundancy reduction or 

Svhitening' in the stimulus representation. These results support our hypothesis 

that the onset sensitivity observed in the auditory system is related to the goal 

of efficient coding of ethological stimuli and may aid figure-ground separation. 

11 



2,2 Temporal envelopes in the auditory system. 

2.2 Temporal envelopes in the auditory system. 
2.2.1 Onsets. 

It is well documented that the auditory system is sensitive to the temporal struc­

ture of the amplitude envelope, particularly rising (onset) transients. This has 

been shown both in physiological and psychophysical measurements (eg Heil 

(1997b); Phillips et ai (2002)). This sensitivity increases as measurements are 

made at successively higher levels in the auditory pathway. Units that detect 

onsets are found throughout the auditory system; in V C N (FVisina et a/., 1985; 

Rhode & Greenberg, 1994), I C (Heil & Irvine, 1996; Langner & Schreiner, 1988) 

MGB (thalamus) (Rouiller & de Ribaupierre, 1982; Rouiller et aL, 1981), cortex 

(Eggermont, 2002). 

Psychophysics has shown that the manipulation of the time varying amplitude 

envelope within frequency channels (the temporal envelope) affects speech intelli­

gibility (Drullman, 1995; Drullman et a/., 1994a, b, 1996). In addition work has 

been carried out using speech re-synthesized by imposing the temporal envelope 

extracted from varying numbers of frequency bands on band limited noise (Fu 

et ai, 1998; Shannon et a/., 1995, 1998). This preserves the temporal structure of 

the within-channel information but, because of the limited number of noise bands 

used, severely disrupts or distorts the profile of energy relationships between fre­

quency bands (the spectral envelope). These experiments have shown that speech 

is intelligible with well defined temporal envelopes in the virtual absence of infor­

mation about the energy relationships between channels. This was found to be 

true for experiments carried out in Mandarin as well as English. A particularly 

interesting result from this work, however, was reported for experiments where 

12 



2.2 Temporal envelopes in the auditory system. 

the speech is re-synthesized by modulating band limited noise with the temporal 
envelope from a single, narrow, frequency band. Under these conditions, with no 
spectral information, Mandarin phonemes that exhibit a rising or falling pitch are 
more easily identified than tonally 'fiat' phonemes, and Mandarin was found to 
be more intelligible, at a sentence level, than English. This result strongly sug­
gests that it is the more tonally varied stimuli that produce patterns of rising and 
falling amplitude transients within a frequency channel which aid recognition. 

Original psychophysical experiments reported in Appendix A support the idea 

that, for speech stimuli at least, spectro-temporal patterns of energy change (par­

ticularly regions of rising energy or ^onsets') are important for perception. In this 

work we show that intelligibility is preserved in stimuli re-synthesized from onsets 

only, by placing a tone burst starting at the spectro-temporal point occupied by 

the beginning of the onset envelope. Intelligibility increases as the duration of 

the tone burst increases but the benefit of increasing duration diminishes quickly 

beyond ^ 4 — b times the period of the frequency. Note that this is close to 

the period over which the skewness is calculated in the proposed representation. 

This study is preliminary in nature and the results can be taken only as being 

indicative. 

Bregman et ai (1994) have reported that transients are important for the 

separation of objects within an auditory scene. In these experiments clusters of 

four tones were presented with asynchronous onset and offset ramps of different 

durations. It was found that the ability to judge the order in which the tones were 

presented depended on the acceleration of the onset ramp chosen and a similar 

effect was reported for offset rates. One problem for models of onsets, or more 

generally transient sensitivity (as well as other problems in auditory processing 

13 



2.2 Temporal envelopes in the auditory system. 

such as pitch sensitivity) is that they all rely implicitly on some form of auditory 
delay to provide the time constant, or time constants, over which the change in 
energy is extracted. Evidence for such a mechanism has at least been shown in 
bats (Hattori & Suga, 1997). The dearth of other evidence has led Shamma (2001) 
to propose mechanisms for a range of auditory percepts that concentrate on spec­
tral characteristics of the stimulus and template matching. The spectral profile 
of the stimulus is, of course, supported by the mechanical (cochlear) and neuro-
physiological (tonotopic) substrate, this approach has other advantages including 
close parallels with visual processing. However, as has been mentioned above, 
the weight of evidence suggests relative insensitivity to spectral profile; implying 
predominantly 'within channel' processing of sound in sub-cortical areas. 

The use of onsets and offsets, particularly as a means of sound segmenta­

tion has been well documented by Smith (1995) using a convolution between the 

bandpass filtered sound and an asymmetric kernel. Using a similar onset sensi­

tive convolution, Fishbach et ai (2001) have proposed a neural model for onset 

sensitivity. This uses the amplitude envelope of tone burst stimuli, a neural re­

sponse model based on inner hair cell potential, followed by a delay layer and 

convolution with kernel derived from a first order derivative of a Gaussian. This 

model accurately reproduces a broad range of physiological and psychophysical 

data including first spike timings in primarj' auditory cortex (PAC). 

2.2.2 Offsets. 

Responses to falling amplitude transients (offsets) are less often reported but 

well attested in the literature, e.g. He et al. (1997); Phillips et al. (2002); Van-

Campen et al, (1997). Results from recordings of auditory brainstem responses 
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2.2 Temporal envelopes in the auditory system. 

(ABR) (VanCampen et a/., 1997) show that offset responses are of comparable 
amplitude, and exhibit similar latencies to onset responses. This is somewhat at 
odds with the asymmetry of onsets and offsets measured in single unit record­
ings (Phillips et a/., 2002) and the origins of these responses at a cellular level 
are still obscure. However, onset responses have been shown to be locked to the 
maximum acceleration of pressure in electrophysiological recordings (Heil, 1997a) 
and this maximum acceleration is found at the very beginning of the stimulus for 
both sine-squared and linear onset ramps. Given this and the similar latencies 
measured for onsets and offsets in ABRs, it is plausible that the offset response 
is similarly tied to some aspect of the offset ramp. These results are somewhat 
complicated by the observation that offset latencies are sensitive to onset rise 
times, i.e. offset latencies are shorter when rise times are longer. Because the 
plateau duration was not manipulated in these experiments it was necessarily 
shorter for stimuli with long rise times and it has been suggested (VanCampen 
et ai, 1997) that refractory times for neurons recruited to fire at both onset and 
offset, reported for example in He (2002), may account for this. 

2.2.3 Duration tuning. 

An important related issue is the existence of duration tuned neurons in the 

inferior colliculus and cortex of a number of different species; frogs (Cooler & 

Feng, 1992), mice (Brand et a/., 2000), cats (He et o/., 1997), bats (Fuzessery &c 

Hall, 1999) and Cuinea pigs (He, 2002). Duration sensitive responses have also 

been recorded in visual cortex of cats (Duysens et a/., 1996). These responses are 

often characterized by spikes that occur shortly after the offset of the stimulus. 

Their presence across many classes of vertebrates and in both auditory and visual 
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2.3 A model of temporal envelope extraction. 

systems suggest that this is a general property and a valuable extra 'dimension' 

alongside frequency tuning. Although responses of this type have been found 

in bats in I C (Faure et a/., 2003) they are rarely reported in centres below the 

thalamus which has led to suggestions (Casseday et a/., 2000) that this type of 

response is generated in the auditory midbrain and above by the integration of 

onset, offset, and tonic patterns for earlier auditory centres. One model proposed 

by Ehrlich et al (1997) involves onset inhibition and offset excitation. 

It is in any case clear that peripheral auditory processing must preserve en­

velope timing information and this is clearly related to the preservation of onset 

and offset information, 

2.3 A model of temporal envelope extraction. 

2.3.1 Spectral decomposition 

The first stage of the model approximates processing in the cochlea. Sounds 

are processed using a bank of 24 Gammatone filters (Slaney, 1994), with centre 

frequencies, ranging from 100 to « 8OOO//2 arranged evenly on an E R B scale. 

The output in each frequency channel is low-pass filtered and half wave rectified. 

The result of this pre-processing is a representation of the output of each of a 

set of filters corresponding to the activity in a set of tonotopic channels or bands 

(Slaney, 1993). This representation is referred to as the Simple Cochlear Model, 

or S C M in subsequent sections, see Figure 2.3. The output of each cochlear 

channel was re-sampled at this stage to 8/C/iz (using the M A T L A B resample 

function) for efficiency of storage and to reduce computational expense in subse­

quent processing. It will on occasion be convenient to refer to this representation 
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2.3 A model of temporal envelope extraction. 

as a function of time (t) and channel (2:) an in these cases the value of the SCM 

at (i,x) is referred to as yscm{t,3:). 

2.3.2 Transient extraction. 

VV̂e introduce in this section a representation based on the cochlear model de­

scribed above, calculated from the skewness of the activity in each cochlear chan­

nel over successive overlapping time dependent windows. During the course of 

this work it has become the practice to refer to this representation as "SKewness 

in Variable time" and in the interests of brevity instances of it are referred to 

as the S K V representation in subsequent sections. The skewness is a statistical 

measure which reflects the asymmetry in the ^tails' of a distribution and can take 

positive and negative values depending on whether the asymmetry favours the 

right or left of the distribution; i.e. rising or falling energy within a channel. 

Positive values for the SKV represent areas of short term rise in the output from 

a cochlear channel, or 'onsets', and negative values represent 'offsets'. The value 

of the SKV at time t in cochlear channel x is referred to as i/aiku(x, t ) where x is 

the channel and t the time. 

T h e S K V calculation. The activity yscm{t,x) of each cochlear channel is di­

vided into overlapping temporal windows of duration twice the period of the 

centre frequency (CF) of the channel, but with a minimum window size of 2.5m5 

at high frequency. This in effect means that C F s of over 800Hz are treated as 

if they were SOOHz. These parameters have been reported by Wiegrebe in the 

context of a paper dealing with the minimum time necessary for neural pitch 

extraction (Wiegrebe, 2001). We have used this as an indication of the relative 
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2.3 A model of temporal envelope extraction. 

time scales for processing each channel using the values for the centre frequency 

of each channel in each case. 

In this description we will deal with only one cochlear channel as all channels 

are calculated independently - this simplifies the notation. The length of one 

window in the cochlear channel 5t^ will thus be; 

CF 

where C F is the centre frequency of the channel in question. The number of 

sample values in this window, s^, which will depend on the sample rate r, in each 

window is; 

hence the mean value of the cochlear response Wn within the nth window is; 

where Vscmij) is the j th value of the cochlear output inside the window. 

The degree of overlap between windows for all experiments was set to 10% of 

the window duration and thus the spacing 6t^ between leading edges of successive 

overlapping windows is; 

CF 

and the time of the leading edge of the nth window is n.St^ which we will designate 

tn. To calculate the value of the SKV at time t„ the means of the nth window 

and the three preceding windows are normalized so that they sum to unity, and 
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2.3 A model of temporal envelope extraction. 

then the formula for skewness applied; 

V s M = T 2^( - 5 ) (21) 
k=0 

where 4 is the number of windows, Wn-j is the normalized mean of the n — jth 

window, w is the mean of the four values of ly, and a the variance. This process 

is illustrated in outline in Figure 2.1. 

The skewness is a sensitive indicator of rising and falling energy and has a 

value near zero when the distribution is symmetrical about the centre. It is rel­

atively insensitive to individual values within the distribution, most importantly 

this applies to the initial and final values which would distort measures based 

on rate of change. An example of the SKV representation is illustrated in Sec­

tion 2.4.1. Note here that although it is likely that onsets and offsets are detected 

by separate and distinct pathways (He, 2001), it is often convenient to show both 

on the same diagram to give a synoptic view of the activity; onsets in red, off­

sets in blue (see Section 2.4.1). In order to simplify this plot, to store the SKV 

representations of sounds as matrices, and as a computational convenience for 

later work, the results from each channel were up-sampled to SkHz using the 

MATLAB resample command. 

2.3.3 Level independence, saturation, and adaptive re-

scaling. 

Because the SKV representation depends on the distribution of energy within a 

time window independent of its magnitude, it will display a degree of inherent 

level independence in its response. In addition it is possible to introduce a sim-
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2.3 A model of temporal envelope extraction. 

Duration 
2/CF 

— Output of cochlear filter. 

• Mean within window. 

• Skewness of four mean 
values. 

Time —* 

Figure 2.1: Illustration of skewness calculation. 
In the upper part of the figure the blue line shows the output of one channel of the 
cochlear filter bank. Four overlapping grey windows are superimposed each of which 
is of duration 2/CF. that is twice the period of the centre frequency of the filter. The 
mean amplitudes of these four successive windows are indicated by black dots inside 
red circles. The red dot indicates the skewnwess calculated from the normalized values 
of these four means. The red line joins successive values of the skewness calculated for 
each window from the mean within that window and the previous three means. 
The lower part of the figure shows the time covered by the four windows in the upper 
part as a grey box and the cochlear output (Blue) and the skewness (Red) over a longer 
time period. See Section 2.3.2 for the details of the calculation. 
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2.3 A model of temporal envelope extraction. 

pie model of adaptive re-scaling (Brenner et a/., 2000). Thi s form of adaptive 

response effectively normalizes the variance by 'stretching* (or compressing) the 

gain for low intensity signals to match the distribution of intensities of stimuli. An 

alternative way of looking at this is that the response adapts to match the large 

dynamic range of the input to the limited dynamic range of neuronal responses. 

This strategy maximizes the entropy of the distribution of the output, this is ex­

plained further in Chapter 4. At higher levels the gain is reduced corresponding 

to a maximum firing rate or saturation. 

Both of these ends, variable gain and saturation, are achieved by a sigmoid 

response function applied symmetrically to both onsets and offsets (Equation 2.2 

and Figure 2.2). 

= - ( l . e , p ' . . ( » ( . ) ) ) < " » 

In this equation the general symbols x{t) and y{t) represent the time varying input 

and output. The single parameter a{t) in Equation 2.2 represents adaptation in 

all the frequency channels of the representation. The value of the parameter a 

is a function of time and was derived from the output of the S C M . Equation 

Equation 2.3 indicates the derivation of a, it is inversely proportional to the 

maximum value in the S C M representation within a short time St prior to the 

current time t with the constant of proportionality K. The value of K was found 

heuristically to be 2. 

= max(SCMLJ ^''^ 

This function limits the range of values at the output of each frequency channel. 

We have chosen to limit these values to between - 0 . 5 and +0.5. See results in 

Section 2.4.2 for details. 
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2.3 A m o d e l of t e m p o r a l envelope ex trac t ion . 

2.3.4 Autocorrelation and whitening. 

In this, and subsequent chapters, we will include in our discussions the concept 

of a stimulus being 'white' or sometimes 'whitened'. What follows is not a defin­

ition of these terms, as this is outside the range of the current discussion, but a 

clarification of what is meant in the context of the current work. 

White noise is called wiiite' because it has equal power at all frequencies. For 

practical purposes it should be stated that this is only possible if 'all frequencies' 

is taken to mean all frequencies within a broad, but finite range. It is further 

necessary to be clear that this can only be true over a stimulus of infinite length 

as the instantaneous spectral profile is never flat. Can we described stinuili other 

than noise as white if they meet this simple requirement? This is clearly not 

enough, for example a tone that rises linearly from the minimum to the maxinmm 

frequency in the specified range is also white in this sense. This sort of stimulus 

a..:, 
y = 0 . 5 - ( 1 /(1 + 8 ^ ) 

Figure 2.2: Parametric curves used to implement a simple model of adaptive re-scaling 
and saturation in the SKV response. The curves illustrate Equation 2.2 Section 2.3.3 
for various values of a. 
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2.3 A model of temporal envelope extraction. 

fails to meet the requirements for whiteness in the wider sense that to be white its 

spectre-temporal structure must be uncorrelated. This implies that the amount 

of energy present at a particular frequency at a particular time is in no way 

predictable from knowledge of the value preceding it, or in adjacent channels. 

A u t o c o r r e l a t i o n . To expose the temporal correlations in a signal it is possible 

to calculate the similarity between that signal and the same signal advanced, or 

delayed by a range of discrete time steps. It is clear that the signal is most like 

itself at a time lag of zero. Peaks in similarity at non-zero time lags, indicate tem­

poral structure or regularities in the signal. For a spectro-temporal description 

of a signal it is possible to use a similar method to expose the spectral structure 

as well. This type of analysis is called autocorrelation. 

The autocorrelation of a matrix (or a stimulus representation such as the 

S C M or S K V in the form of a matrix) having two dimensions t and x is given by 

Equation 2.4. 
( r - i ) ( A ' - i ) 

C{iJ)= E E yir:X)-{y{r-^hX-^3)) (2.4) 

The value of the autocorrelation ( C ) at the point (z, j ) is the double sum of all 

the products of the value y at point (r, x) ( where r and x represent indices in the 

dimensions t and x) with the corresponding point distant from it by i in one di­

mension and j in the other. The power spectral density is, by the Wiener-Kinchin 

theorem (Hartmann, 1998) the Fourier transform of this autocorrelation. For ex­

amples of this type of analysis see Section 2.5.1. For an idealized *white' signal 

that has no temporal or spectral structure the autocorrelation is zero everywhere 

except at AX = AY = 0 (i.e. it is a delta function) and the power spectrum has 

the same value for all frequencies, in other words it is 'white'. 
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2.3 A model of temporal envelope extraction. 

The eigenvalues of the covarieince matrix. A n alternative, but related, 

way to look at whiteness in a spectro-temporal representation is to construct 

the covariance matrix. For this purpose we will treat each row, or column of a 

representation such as the S C M or S K V as a vector V where V j represents the 

i^^ row or column. Each element of the covariance matrix covij will then be; 

covij = ( V . V , ) - ( V . ) ( V , ) (2.5) 

If the representation contains no correlations then the covariance matrix is zero 

everywhere apart from the diagonal, that is where i = j and the eigenvalues of 

this matrix will all be equal, and where correlations are present there will be a 

range of eigenvalues. 

In order to quantify the variation we calculate the coefficient of variance C„ 

in the vector of eigenvalues E of the covariance matrix. T h i s is defined as the 

ratio of the standard deviation and the mean E of the elements of this vector 

as in Equation 2.6. 

C. = I (2.6) 

And since most of the variation is expressed in the lower order eigenvalues, we 

calculated the C„ from the first 30 eigenvalues for both the S C M and S K V repre­

sentations. The percentage difference between the corresponding S C M and S K V 

values of C„ for each stimulus was then calculated, 

AC„% = ^"(^^;^) - ^-(^^^-) X 100 (2.7) 

Put simply, if the S K V calculations act as a whitening filter then Cy will be higher 
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2.4 Results. 

for the S C M {^Cy% positive) and if the representation introduces correlations 

then it will be lower (ACu% negative). 

The concept of whitening is relevant because statistical independence of one 

frequency channel from another, or of each spectral contour from those before 

and after it, implies a lack of redundancy in the representation. 

2.4 Results. 

2.4.1 Examples of the S C M and S K V representation. 

Figure 2.3 shows two examples of each of the representations described above. 

In the S C M representation (left column) the activity in each channel is always 

positive and is colour coded orange/red. In the S K V representation (right col­

umn) orange/red areas indicate rising energy (onset) and cyan/blue areas falling 

energy (offsets). The upper row shows a male and female speaker saying the let­

ter name *w' and the lower row shows a short segment of zebra finch song. Two 

magenta boxes in corresponding positions in the illustrations show how the S K V 

representation has values near zero when the energy is near constant in the S C M 

representation. 

2.4.2 Level independence and adaptive non-linearities. 

Several short sound files were progressively attenuated to 0, —3, —6, —12, —18, —24 

and -ZMB and the S C M and S K V representations of each of these calculated. 

The root mean square (RMS) response of five randomly chosen 2 second seg­

ments of each representation was then calculated. The R M S value of each of the 
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(c) (d) 

Figure 2.3: Examples of the SCM and SKV representations as described in Section 2.3. 
Upper row; (a) SCM and (b) SKV representation of female and male speaker saying the 
letter name W ('double-you '). Lower row; (c) SCM and (d) SKV representation of a 
short section of zebra finch song. Boxes indicate regions of (approximately) continuous 
energy bounded by large onsets and offsets, see Section 2.4.1. 
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2.4 Results . 

segments of the representation used in the calculation is 

f «M5 - I ^ ^ - ^ y I (2.8) 

for a stimulus representation segment ('rep' is either S C M or S K V ) consisting of 

N discrete time values at spacing St and M frequency channels. The response 

is the mean value of yRMs over the five segments. The responses were then 

normalized such that the OdB result was made equal to unity in each case. This 

was repeated 10 times and the standard deviation indicated in the error bars. 

The results, illustrated in Figure 2.4 indicate that the response of the S K V shows 

compression of the dynamic range. For comparison the results are also shown for 

the S K V with the adaptive response. This shows only 6.6dB attenuation over the 

entire 30dB range indicating level independence. However it should be noted that 

there is no realistic limit placed this adaptation which would result in a reduced 

output at very high attenuation values. The response of the system is, therefore, 

unrealistically high in these conditions. 

2.4.3 Responses to one-over-f noise stimuli. 

It has been known since the 1970s that many aspects of natural signals have 

characteristic spectral and temporal 'signatures' (Voss Clarke, 1975); a specific 

example of this is that they show most of their temporal and spectral modu­

lations at low frequencies. In addition they exhibit a decrease in the power of 

modulation in both of these dimensions with increasing modulation frequency in 

a way that is characteristic (Singh &: Theunissen, 2003). Sounds which exhibit 

specific modulation power spectra can be created by modulating an ensemble of 
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2.4 Results. 

carrier frequencies to produce noise-like stimuli that exhibit characteristics, 

i.e. the power at each modulation frequency is proportional to the reciprocal of 

the modulation frequency raised to a power a . It has been reported, e.g. by Y u 

et al. (2005) that neurons in the visual cortex exhibit higher gain, and the spike 

responses exhibit higher coding efliiciency and information transmission rates, for 

stimuli that exhibit characteristics with a = 1 compared with a = 0 or a = 2, 

this is close to the characteristics of natural scenes. It has been suggested by 

the authors (and by many others including Barlow, 1961) that the statistics of 

natural signals 'may -play an important role in shaping and optimizing the ma-

chinerg of neurons in their adaptation to the natural environment' (Yu et a/., 

2005). In addition there is recent evidence that cells in auditory cortex of ferrets 

respond more strongly and more reliably to auditory stimuli that exhibit similar 

SKV with 

m 21 

12 15 18 21 
Signal ottenualion (dB) 

Figure 2.4: Signal attenuation plotted against the attenuation of the RMS activity in 
the SCM and SKV representations, with and without adaptation. This shows a degree 
of level independence, see Section 2.4.2 
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spectro-temporal statistics (Schnupp et a/., 2005). We thought it possible that 

stimuli with different power distributions in their spectro-temporal modulations 

would be represented quite differently when described in terms of short term en­

ergy change, i.e. by the S K V representation developed in this chapter. Given the 

evidence that auditory processing emphasizes chfuiges of this sort it is possible 

that the origin of the differential response to stimuli with different statistics lies 

partly in this sensitivity. 

To investigate whether the S K V representation responded differentially to 

sounds with different power spectra, a series of random tone complexes were syn­

thesized with frequency components ranging from 0.2 to 3.5 kHz. I n these stimuli 

the fundamental frequency and the temporal envelope were varied in accordance 

with independent variables with ^ distributions with values of a from zero to 

four. Three examples of short segments of such stimuli in S C M and S K V rep­

resentation are shown in Figure 2.5. The R M S activity in the S K V and S C M 

representations was then calculated for five randomly chosen 10 second sections 

for each of the values for a . This was repeated 10 times in order to calculate error 

bars. The results are shown in Figure 2.6. It can be seen that the response of the 

S K V representation peaks at alpha values less than unity. For comparison, data 

from cortical responses of ferrets (Schnupp et a/., 2005) using similar stimuli are 

included on this graph. 

Although the maximum in the S K V response shown in Figure 2.6 occurs for 

a < 1 and the data from cortical responses of ferrets peaks for a > 1 (which 

is closer to the statistics of natural sounds) it is clear that there is a differential 

response, and that the maximum of this response occurs for low values of a , see 

discussion and future work sections of this chapter. 

29 



2.4 Results. 

_ 1.93 
I 1.21 
J'0 .73 

.¥ 0 .20 

u_ 0.73 
:: 0.41 

1000 2000 
Time (ms) 

? 0 . 4 1 

1000 2000 
Time (ms) 

3000 

3000 

(a) a = 0 

_ 1.93 
X 1.21 
^ 0.73 

^ 0.20 

(b) a = 1 

i l 0.73 

^ 0.20 

1000 2000 
Time (ms) 

3000 

(c) a = 2 

1000 2000 
Time (ms) 

3000 

r T-r-

• • H ' •» »' 
' 

\ Hi- »*»'» I'l • 
\ , 
H / 
\ ,- • • . • 

> 

1' 
1000 2000 

Time (ms) 
3000 

1000 2000 
Time (ms) 

3000 

Figure 2.5: Examples of SCM (left column) and SKV (right column) representations 
ofl/F" stimuli. Top row: a = 0. Centre row; a = 1. Bottom row; o = 2. This 
illustrates the differential response quantified in Figure 2.6. 
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2.5 Responses to mixtures of sounds. 

2.5 Responses to mixtures of sounds. 

This differential response illustrated in the previous section is clearly visible in 

the S K V representation of mixtures of sounds with different statistics. Figure 2.7 

shows speech (top row) speech mixed with ^ noise (middle row) and speech 

mixed with noise (bottom row). The S K V representation picks out the essen­

tial pattern of changes in the speech signal even when the level of both signals is 

the same for the noise example. 

2.5.1 Whitening the representation. 

Results from autocorrelations. Figure 2.8 shows autocorrelation diagrams 

(see Section 2.3.4) for; (a), (b) white noise, and (c), (d) random chord stimuli 

« 0.8 

N 0.6 

o 0.4 

S C M 
S K V 

- - Data from Schnuppeta l . 

0.5 1.5 2 
a 

2.5 3.5 

Figure 2.6: RMS values of the activity in SCM and SKV response to ^ stimuli, see 
Section 2.4.3. For comparison data from cortical responses of ferrets are included. For 
each line the values have been normalized such that the highest value is unity. 
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Figure 2.7: SCM (left column) and SKV (right column) representations of mixtures 
of two sounds with different statistics. Speech (top row), speech mixed with 
noise (middle row), and speech mixed with 1 / F ^ noise (bottom row). The patterns 
of the onsets in the speech stimulus are clearly dominant in the a = 2 example when 
processed using SKV. 
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consisting of a continuous sequence of 8m5 tone complexes, each consisting of 8 

sine tones with their frequencies chosen randomly from a set of frequencies at 1/3 

octave intervals from 100 to SOOOHz. Results are shown for both the S C M (left 

column) and S K V (right column) representations in both cases. Figure 2.8(a) 
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Figure 2.8: Correlations in SCM (left) and SKV (right) representations of synthetic 
stimuli illustrated using two dimensional autocorrelation diagrams. Both stimuli ((a)-
(b) white noise, and (c)-(d) random chords) are 'white' in the sense that they contain 
no spectral or temporal correlations. The SCM (left column) and SKV (right column) 
representations of the stimuli however show different patterns of temporal and spectral 
correlations. Lines in sub-figures show cross sections at At = 0 and A E R B = 0. For 
details see Section 2.5.1. 

shows that despite the noise being 'white' there are correlations in the cochlear 
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2.5 Responses to mixtures of sounds. 

representation of the stimulus. This is unsurprising as S C M consists of a set of 

filters with bandpass characteristics where the bands are very wide and overlap 

to a considerable extent. In addition the model contains a low-pass filter on 

each channel that introduces temporal correlations to each output band even if 

there are none in the signal. Figure 2.8(b) shows that in the S K V representation 

these correlations are markedly reduced. Figures 2.8(c) and 2.8(d) show that 

the S C M and S K V representations of the random chords stimulus have similar 

autocorrelations. These two synthetic stimuli, both nominally Svhite', represent 

the extremes of behaviour with respect to the S K V representation. This can more 

easily be seen in the horizontal and vertical line plots which show a cross-section 

contour at A t = 0 and A E R B = 0 respectively. 

Results from covariance matrices. Results of the calculations of the coeffi­

cient of variance in the eigenvalues of the covariance matrix for a range of sounds 

are shown in Figure 2.9. This result for random-chord stimuli, and the result 

from the previous section, indicate that this type of stimulus, because of its syn­

thetic nature consisting of very closely packed onsets and offsets, might not have 

greatly different properties in each of the two representations. Results from ^ 

synthetic noises for o: > 1 are not included in these results as the S K V response 

is extremely sparse (see Figure 2.5) and correlations occur only on very long time 

scales. 

This measure shows a spectral and temporal de-correlation for all stimuli 

in the transient representation except the random-chords, with the effect being 

greatest for mixed speech and music, and greater for ^ noise than 
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Music 

Mixed Speech 

1/f alpha = 1 

1/f alpha = 0 

Random Chords 
Temporal 
Spectral 

A C % 

Figure 2.9: Change in the coefficient of variation of the eigenvalues of the auto-
covariance matrix from SCM to SKV. Results shown that both spectral and temporal 
correlations are reduced in the onset sensitive representation. The exception to this is 
the random-chords stimulus where temporal and spectral correlations increase on this 
metric. 
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2.5 Responses to mixtures of sounds. 

2.5.2 Auditory brainstem response data. 

VanCampen et ai have reported onset and offset latencies in human Auditory 

Brainstem Responses (ABRs) measured using tone bursts of different frequencies 

and a variety of rise and fall times. This was part of a study to exclude the 

possibility that offset responses were an artifact of acoustic ringing in the trans­

ducers used in the experiment. During these experiments they confirmed that 

the offset A B R was not due to ringing and that its amplitude and latency were 

principally a function of the offset ramp characteristics. Figure 2.10(a) shows a 

schematic diagram of the measurements made by VanCampen et ai (1997). The 

envelope of the stimulus is shown in hatched outline in the lower section, and 

the amplitude of the A B R in the upper section. This diagram illustrates the 

way the latencies were measured with respect to the start of the onset and offset 

ramp. To make our own measurements of onset and offset latency based on the 

S K V representation we first summed the activity in the representation over all 

filter channels (x) at each time step (t) to obtain a total activity representing the 

simulated population response of all onset and offset sensitive units which here 

we will call ABRsim] 

X 

This is shown in the red line in Figure 2.10(b) which illustrates the way the laten­

cies are measured with respect to the start of the onset and offset ramp. These 

measurements are made in the same way as the results reported by VanCampen 

et ai (1997) except that in the model representation offset responses are negative 

while in A B R wave V measurements both peaks have the same sign represent­

ing activity in both onset and offset sensitive units. As has been mentioned in 
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2.5 Responses to mixtures of sounds. 

Onset 
SI—Offset 

(a) 

Stimulus 

10 
Time (ms). 

(b) 
Figure 2.10: (a) Diagram from VanCampen et al. (1997) showing a schematic rep­
resentation of the stimulus envelope (hatched) and the amplitude of the onset and 
offset ABR peaks. Also illustrated are the methods of measuring the onset and offset 
latencies. Onset latencies are measured from the beginning of the onset ramp and 
offset latencies from the beginning of the offset ramp, (b) The stimulus (black) and 
simulated ABR onset and offset response derived from the SKV representation (red, 
see Equation 2.9). 
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2.5 Responses to mixtures of sounds. 

Section 2.3.2 there is some evidence He (2001) that there are two separate pop­

ulations so both onsets and offsets are both indicated by an increase in activity. 

Using negative values for offsets in the SKV diagrams is merely a representational 

convenience so that both can be clearly represented in the same diagram. The 

results of VanCampen et al. (1997) for experiments with no ringing are repro­

duced in Figure 2.11(a). In these results the rise and fall times were the same 

for each tone. Tone bursts of identical characteristics were synthesized and the 

SKV representation calculated. The latencies and amplitudes from the model 

are illustrated in Figure 2.11(b). For comparison the amplitudes of the model 

results have been linearly scaled so that the greatest has the same value as that 

in the experimental data. The model results show a correspondence with the 

experimental data in a number of respects: 

• The latency data for both onsets and offsets show a range of values from 

approximately 6ms to 127715. 

• The offset latencies are greater than the onset latencies, although the model 

predicts a greater difference between the two. 

• The latencies rise as the ramp times rise with the highest value being for 

bOOHz, bms offset ramp, and the lowest value being for the 20007/2, 0.57715 

onset ramp. 

• The onset latencies rise less over the range of ramp times, although in the 

case of the bOOHz results the model predicts li t t le or no rise whereas the 

physiological data records a rise of « 277is. 

• Onset and offset amplitudes fall over the range of ramp times, however these 

cover a greater range of values in the model results. 
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Figure 2.11: Comparison of (a) response latencies and amplitudes measured from the 
ABR wave V from VanCampen et al. (1997) with (b) those measured using the simu­
lated ABR results as derived from the summed SKV response over all fitter channels. 
The amplitude data derived from the simulations have been normalized such that the 
largest result has been given the same numerical value as the largest amplitude in the 
physiological data. 
A = Onset response; • = Offset response. 
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2.6 Discussion. 

The model does, however, predict a greater disparity between the onset and 

offset results in both latency and amplitude and fails to predict the slight overall 

reduction in latency from bOOHz to 2000Hz. Both sets of results show that the 

ABR onset/offset amplitude decreases with increasing rise/fall time although the 

trend in the physiological data is not clear and the error bars are large. 

2,6 Discussion. 

2.6.1 General. 

The SKV representation of auditory stimuli developed in this chapter is an at­

tempt at a phenomenological description of auditory sensitivity to energy change 

that is consistent with the biological data. The psychophysical evidence (Appen­

dix A) supports the idea that, at least, in speech, the time and spectral position of 

short term energy changes identified in this way, conveys a great deal of informa­

tion; enough to support speech perception. Although this is consistent with much 

of what is known of auditory processing i t has not previously been demonstrated 

experimentally. 

The SKV representation also predicts that the latency of peak activity in sub­

cortical processing (as measured using ABR) will rise with tone burst ramp time 

and the amplitude will fall for both onsets and offsets. Significantly i t can be 

seen in Figure 2.10(b) that although the offset response starts at the beginning 

of the offset ramp, the maximum activity is not reached until after the end of the 

ramp. Thus the model predicts an increase in offset latency with ramp time that 

is much greater than the increase in onset latency. This is also found in the ABR 

data. The correspondence between simulated and physiological A B R data is not 
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2.6 Discussion. 

close enough to be viewed as an explanation but i t does match some important 

features which have yet to be modelled in any other way. 

The response of the SKV to 1/F^ noise like stimuli (Figure 2.6) shows a peak 

at a < 1 and a sharp fall off for a > 1 that is not closely matched by the only 

physiological data available which is measured in cortex. However the fact that 

there is a differential response encourages us to pursue the idea that onset/offset 

sensitivity in sub-cortical regions may be a key feature in accounting for any 

sensitivity to natural stimulus statistics that is observed in cortex (Schnupp et o/., 

2005) or elsewhere. See future work below. 

2.6.2 Biological implications. 

A great deal of work over many years has led to the characterization of a very 

large number of response types in the early stages of auditory processing (Trussel, 

2002). This work has provided some idea, at a cellular level, of the answer to the 

important question: what do cells in the auditory periphery do? The answer to 

the more general question: what does auditory peripheral processing achieve? is 

however less clear. 

There is evidence that (a) the auditory system performs a spectral decompo­

sition in to a number of frequency bands, (b) that many cells of a large number of 

different types have well defined characteristic frequencies (He, 2001, 2002; Heil, 

2001; PhiUips et a/., 2002), and (c) there is enhancement of transients. Given this 

evidence i t is certainly plausible that there is a role for within-frequency-band, 

temporal-edge-sensitive processing in the auditory system. This is consistent 

with results from psychophysics (e.g. Fu et a/., 1998; Noordhoek & Drullman, 

1997) which examine the intelligibility of speech with limited numbers of bands 
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2.6 Discussion. 

and manipulated temporal envelopes. In addition another strand of evidence 

(Krumbholz et a/., 2003; Wiegrebe, 2001) suggests that parallel frequency chan­

nels may be processed on different, frequency dependent, time scales. This of 

course does not represent the whole picture, but i f i t is at least a partial answer 

to the what question then i t is germane to ask the why question. 

To investigate what the advantages of such processing might be, we have 

implemented in this chapter a simple model consisting of a cochlear filter bank 

followed by transient detection based on the skewness of energy distribution in 

overlapping frequency dependent time windows. The output of this model was 

found to be broadly consistent with latencies and amplitudes of auditory brain­

stem responses (VanCampen et a/., 1997) which are themselves consistent with 

experimental first spike timings (Heil, 1997a). Further analysis of the resulting 

representations of sound also showed that this pre-processing exhibited; 

L considerable rejection of stimuli with characteristics not found in natural 

stimuli, 

2. inherent level independence, 

3. de-correlation of energy in both the spectral and temporal domain. 

This last property can be described as a 'whitening' of the stimulus. This whiten­

ing effect was marked when processing natural sounds, or mixtures of natural 

sounds. The whitening of the signal implies statistical independence of the out­

puts from the frequency channels thereby reducing redundancy while preserv­

ing information in the representation. That the results show that there is de-

correlation (whitening) of the stimulus when represented in this way is significant 

in that i t is established that the auditory pathway is sensitive to transients at all 
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2.6 Discussion. 

stages, and also de-correlation is a widely discussed principle of sensory (mostly 

visual) processing in the periphery and elsewhere. As far as we are aware no one 

has previously made the connection between the two. 

Of particular interest is the result that whitening is found in 'white noise' 

stimuli that are already nominally white. This could indicate that onset sensitiv­

ity is effective at removing correlations that are introduced by the cochlea. Due to 

the mechanical nature of sound transduction from the tympanic membrane to the 

inner hair cells of the cochlea these correlations are inevitable, and i t would seem 

a plausible hypothesis that early stages of auditory processing may be specifically 

designed to remove them, although this has not yet been demonstrated (cf. Atick 

& Redlich, 1992, for a similar argument in the visual system). The results in this 

chapter are consistent with this hypothesis. 

These results are also entirely consistent with the information theoretic prin­

ciple, the currency of which is largely due to Barlow, that: 

At progressively higher levels in sensory pathways information .. .is 
carried by progressively fewer active neurons. .. .in most situations 
neighbouring points ... are more likely to be similar than distant points 
... The argument can be carried on to cover the redundancy-reducing 
value of movement, edge, or disparity detectors Barlow (1972). 

The ability of a system to transmit information about the signal is degraded 

i f i t is encoding information about the noise in the signal as well, therefore i t is 

useful to use a method that reduces the response to stimuli that fal l outside of 

the range found in the environment. A degree of level independence is desirable 

as i t enables the full use of the dynamic range of the system in the context of 

stimuli that vary in intensity with time. 

Our hypothesis based on these results is that within-channel, transient-sensitive 
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2.6 Discussion. 

processing on multiple frequency-related time scales is related to the goal of effi­

cient coding of naturalistic, behaviourally relevant stimuli. This type of process­

ing will be present in the auditory periphery and midbrain before outputs from 

disparate frequency channels are integrated in cortical areas (Metherate et a/., 

2005). I t is not clear either that onset sensitivity is 'hard wired' (present in the 

auditory system before exposure to sound) or that i t is a developmental strategy 

(informally, that we 'learn' to listen to onsets because i t is advantageous to do 

so). As onset sensitivity is widespread at various points in the auditory pathway 

there is certainly room for both hypotheses to be true but of different areas of 

the auditory pathway. 

Future work. The differential response of the model to stimuli with different 

statistics is interesting per se but does not closely match the only data available 

for cortical responses to similar stimuli (Schnupp et al., 2005). However onset 

sensitivity is found throughout the ascending auditory pathway and the time 

constants in the model are not chosen to explicitly duplicate cortical responses. 

Two strands of work suggest themselves for future investigation. First, by ma­

nipulating the parameters of the model to more closely match cortical responses 

some light may be thrown on the time constants to be found in cortex. Second, 

by introducing more of what is known of cortical responses in to the model i t 

is possible that the differential response of the model might more closely match 

cortical data. 
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Chapter 3 

Spectro-temporal response fields 

3.1 Overview. 

Principle aims. In this chapter we review a general method for estimating the 

spectro-temporal response field (STRF) of a neuron based on reverse correlation 

between a stimulus representation and an experimentally measured physiological 

response. Using both simulated responses and recordings made in vivo we in­

vestigate if the onset sensitive (SKV) representation of sound, introduced in the 

previous chapter, is suitable as the basis for estimation of neural responses. 

Motivation. In reverse correlation estimates of neural responses (or as an al­

ternative view, estimates of the preferred stimulus of a neuron) a choice has to 

be made as to how the stimulus is to be represented. I f the sub-cortical audi­

tory system emphasizes short term energy change within a frequency band then 

it should be possible to characterize at least some neurons as having 'prefer­

ences' for patterns of onsets and offsets. Neural responses as embodied in STRFs 

are more frequently derived from representations that reflect the instantaneous 
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3.2 Introduction. 

energy within a cochlear channel. We hope to show that estimates based on 

preferences for short term energy change are at least plausible as the basis for 

future experiments. This may show that this approach gives a more useful view 

of neural responses, or distinguishes between two types of neuron one of which 

responds to 'onsets'. 

Achievements. We show for the first time that STRFs derived from an short 

term energy change based representation are plausible in that they are consistent 

with energy based estimates from the same data. We also show that these esti­

mates in many cases have simpler geometries, often resembling Gaussian patches. 

These results are consistent with our hypothesis that some cortical responses 

could be described in terms of their sensitivity to patterns of energy change in 

one or more tonotopic sub-cortical regions. 

3.2 Introduction. 

Neurophysiologists are faced with a situation which is in some ways similar to 

that faced by code breakers. Given a coded message, the task of the code breaker 

is to discover the original message. This necessarily involves discovering the 

details of the encoding process. In contrast, experimentalists in neurophysiology 

have access to both the original and encoded message, i.e. the signal and the 

response of the system. The signal (stimulus) is under experimental control and 

the response can be measured using a variety of electrical and electro-magnetic 

techniques. This results in the apparently much simpler task of exposing the rule 

for the transformation of the signal in to the response, i.e. the code. I t is the 

code, not the message, that provides insight in to the way the brain works. 
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3.3 Est imating the neural response as an S T R F . 

Since Hubel & Wiesel (1962) showed that, for neurons in visual cortex, there 
were 'preferred stimuli' which evoked a more vigorous response than all other 
stimuU, i t has become commonplace to think of discrete neural units as having 
stimulus preferences and i t is the quantification of this idea that has led to the 
concept of the spatio-temporal response field or STRF. For auditory stimuli the 
principle is similar but the representational dimensions are time and frequency 
and hence the term spectro-temporal response field (also referred to as STRF) 
has been adopted. 

The STRF can also be viewed as a kernel describing the linear filter that best 

accounts for the transformation of the chosen representation of the stimulus in 

to the experimentally observed response. 

3.3 Estimating the neural response as an S T R F . 

3.3.1 Reverse correlation. 

The simplest case. I f we describe our stimulus as a function of time and 

we assume that the response is likewise a function of time, then the situation 

described above can be summarized in Figure 3.1. * The problem is to describe 

in some way the action of the 'black box' indicated with a question mark in 

Figure 3.1. We first make two assumptions. 

That the system is causa/: this implies that the response at time £ is a func­

tion only of the stimulus at times less than t. 

*For our purposes the stimuli discussed are sounds which are variations of air pressure, or 
tympanic displacement, in time but the argument generalizes to any function of one dimension. 
The *response' means the spikes, or membrane potential measured from a neuron. FVom a 
perceptual point of view the response is not, strictly, a function of time. This point is revisited 
in Chapter 6. 
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3.3 Est imating the neural response as an S T R F . 

s(t) r(t) 

Figure 3.1: The essence of the reverse correlation problem is how do we estimate 
what is in the box if we know the stimulus s{t) and the response r{t)? 

That the system is linear: this limits r(£) to being a weighted sum of the 

stimulus. 

The second assumption is justified only in that there is no general method for the 

non-linear case. Given these two assumptions the action of the black box can be 

written as an integral over the interval leading up to t thus: 

rL{t)= ro-\'Ch{T)s{t-r)dr (3.1) 

In this equation rj^{t) means the linear approximation to the response at time t 

given by / i ( r ) which represents the weighting factor that determines how strongly, 

and with what sign the stimulus affects the response at a time r before t, that is 

t — T, The constant TQ is the response of the system when there is no signal. 

Equation 3.1 actually represents the first two terms of the fu l l expansion of 

the functional description of our black box in Figure 3.1 of which the first four 

terms are: 

r{t)= ro + J,^ dTh{T)s{t - r) 

+ J^dTidT2h2iTi,T2)s{t - Ti)s{t - T 2 ) 

+ dTidT2dT3h3{Ti,T2, T3)s{t - Ti)s{t - T2)s{t - T3) (3.2) 
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3.3 Estimating the neural response as an S T R F . 

This is known as the Wiener expansion and with reference to this h is called the 
first Wiener kernel or sometimes just the linear kernel. 

Two dimensional kernels. Auditory stimuli are routinely described as func­

tions of time and frequency.* We will call this second frequency dimension x. 

The two dimensional equivalent of Equation 3.1 is Equation 3.3. 

rL{t)=ro-\- J J h(T,x)s(t-r,x)dTdx (3.3) 

This can be rewritten for the case when the dimensions are discrete and h is finite 

in extent: 

î-C^) = ^ XI ' ^ l ^ ' ^l^t* ~ ^1 

here the index i sums over time steps. The value of St is chosen to reflect 

the desired temporal resolution and the value of represents the 'memory' of 

the system NSt. The index k sums over M parameters spaced over the range of 

interest in the dimension x, in our case frequency. 

The linear kernel h now describes 'a mathematical construct that describes the 

integrating area of the neuron along time and along the sensory epithelium (i.e. 

the frequency axis)' (Escabi & Schreiner, 2002), This is known in the auditory 

literature as a spectro-temporal response field or STRF. 

Equation 3.4 can be conveniently re-written i f we express k and 5 (i.e. the 

two dimensional matrix representations of the linear kernel and the stimulus) in 

*This reflects the fact that the cochlea supports the analysis of the sound in to a number of 
overlapping frequency 'channels' the outputs of which are reflected in the auditory nerve, and 
that this 'tonotopic' arrangement is preserved through much of the ascending auditory pathway. 
As before the treatment is the same for stimuli that are functions of any two dimensions. 
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3.3 Estimating the neural response as an S T R F . 

vector form ^ as h and s; for the kernel we use: 

h = 

hi,M 

h2,i 

h2,M 

hN,i 

(3.5) 

and we similarly form a column vector s from the matrix representing the spectro-

temporal description of the stimulus. Then ri^{€) can be formulated as a simple 

matrix product: 

(3-6) 

where the vector representations of h and s are shown in bold with an overarrow 

and the upper-case superscript T indicates the transpose. 

Equation 3.6 indicates that the coeflficients of h are a function of time. I f the 

linear response of the neuron is time invariant then estimates of h at different 

times can be averaged to obtain an single estimate (Theunissen tt a/., 2001). This 

approach can be seen in Equation 3.7. To find values for the coefficients of h which 

describe the linear transform between the stimulus and the measured response 

*The approach presented here and in the rest of Section 3.3.1 is that of Theunissen e£ a\. 
(2001). 
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3.3 Estimating the neural response as an S T R F . 

r{t) we minimize the mean square difference (MSB) between the estimated and 
actual response. To do this we first re-state the MSD using Equation 3.6 in 
order to differentiate with respect to h. Note that the angle brackets indicate the 
mean over some arbitrary time period. This can be the entire time course of the 
stimulus or some part of i t . 

MSD = {{r, - r f ) 

<((h^ • s) - r)^) 

(h^ss^h - h^sr - rs^h + r^) 

= ( h ^ ^ h ) - (h^sr) - (r^h) + (7-2) 

= h ' " ( ^ ) h - h^{sr) - (rs^)h + (r2) (3.7) 

We can rewrite Equation 3.7 using Cxy for the correlation between two vectors x 

and y\ 

MSD = h^C , ,h - h ^ C „ - C „ h + (r^) (3.8) 

Caa is the {NM)-hy-[NM) auto-correlation matrix of the stimulus and Car is 

l-by-(NM) cross-correlation vector of the stimulus and response, both averaged 

over the time period as indicated in Equation 3.7. 

To minimize the MSD we take the derivative of the RHS of Equation 3.8 with 
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3,3 Est imating the neural response as an S T R F 

respect to h and set i t equal to zero: 

=2hCss-2C,r = 0 
an 

therefore: 

h = CT'Csr (3.9) 

Note that in this formulation h is no longer a function of i because i t is estimated 

over some time period during which i t is assumed to be invariant. The result, 

h, which contains the weights of the estimated linear kernel, can be re-formed in 

to the M-by-N matrix for convenience of plotting and this is the STRF. 

The general idea of the linear estimation of neural responses by reverse corre­

lation of the response with the stimulus goes back to de Boer &; Kuyper (1968). 

The method presented in this section (due to Theunissen et al. (2001)) represents 

a generalized technique for the estimation of the STRFs of sensory neurons using 

arbitrary stimuli, and the normalization of the resulting estimate with stimulus 

autocorrelation matrix (see Equation 3.9). The method places no restriction on 

the nature of s{t, x ) , i.e. the spectro-temporal description of the stimulus, and in 

Section 3.4 we use this method to investigate whether STRFs can be derived from 

the SKV representation using both simulated and physiological response data. 

*The function to be minimized; MSD = ((h -s) - r )^) is positive everwhere. The solution; 
k = C~g Car is in the form of a general method for finding the coefficients for the solution of a 
set of linear equations, and as such will have either no solution or only one solution. As there 
is only one solution to = 0 in the linear approximation and this function is everywhere 

. . . , positive I t cannot be a maximum. 
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3.4 Results. 

3.4 Results. 

In this section we illustrate two types of results. The first is the stimulus response 

cross correlation^ discussed in Section 3.3.1. We refer to this, as in Equation 3.8, 

as CsT- The second is the spectro-temporal response field or S T R P obtained by 

correcting the weights of the C^T to remove distortions caused by correlations in 

the stimulus as in Equation 3.9. The S T R F , as has been previously mentioned, 

represents a two-dimensional set of weights, or kernel, that embodies the linear 

approximation to the response of a neuron. 

The first part of this section (Section 3.4.1) illustrates results based on sim­

ulated neural responses derived from an arbitrary set of example weights. This 

serves as an illustration of the general method of Theunissen et al. (2001) dis­

cussed in Section 3.3.1 and to show that for white noise and random-chord stimuli 

the corrected (STRF) and uncorrected (Cjr) estimates are similar. The second 

part (Section 3.4.3) shows that estimates based on the S K V and SCM representa­

tions using physiological data have, as one would expect, different but consistent 

geometries. 

3.4.1 Results using model neurons. 

To investigate the methods described above we used an arbitrary set of weights 

representing the kernel describing the response of a hypothetical neuron as illus­

trated in in Figure 3.2. This simple kernel, which has a well defined characteris­

tic frequency and an excitatory region at times close to 10m5 is similar to many 

found in the physiological responses reported in this work (see Section 3.4.3). The 

*The stimulus response cross correlation Cer can be shown to be equi\'alent to 'the spike 
triggered average' (STA). (Theunissen et ai, 2001) 
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weights in the kernel are norniahzed such tliat the sum of their absohite vahies is 

3.4.2 The 'response' of a kernel. 

The kernel is a two dimensional set of weights, A:] and the response r(t) of a 

neuron that this kernel describes can he calculated by a convolution of this kernel 

with the signal representation s[<,A:]. 

N-l M-l 

r(t) = ^Y1 (3.10) 
»=0 k^O 

This is merely a restatement of Ecjuation 3.4. We interpret this response as a 

variation in the probability of spiking. The gain and offset of the values of r(t) 

resulting from the convolution were adjusted to ensure a mean probability of 0.05, 

corresponding to a mean firing rate of 20Hz in 1ms time bins, and a maxinuim 

probability of unity. Responses below zero were tn^ated as zero. 

I 
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Figure 3.2: The figure shows the pattern of weights used as an example kernel to 
illustrate the methods described in Section 3.3.1. Although these weights are arbitrary 
the spectro-temporal pattern is not unlike many STRFs estimated from physiological 
data in Section 3.4.3. 



3,4 Results. 

How the estimate is aflfected by the stimulus representation. Results 

in this section, shown in Figure 3.3, are not derived from sounds but from two di­

mensional matrices similar to the spec to-temp oral representation of sounds engi­

neered to illustrate the effect of correlations in the stimulus representation. Note, 

that this is not the same thing as correlations in the stimulus as the process 

of deriving representations may introduce or eliminate correlations. The result 

shown in 3.3(a) is what would be expected from an idealized 'white' stimulus 

representation. The stimulus response cross correlation (C^r shown in the left 

panel) is proportional to the estimated S T R F (shown in the right panel) because 

the stimulus has no time or frequency correlations. This can easily be seen in the 

centre panel as the stimulus autocorrelation (Cas) is a diagonal matrix, that is, 

it has non-zero values only at Ax — At = zero. With Css equal to the identity 

matrix then Equation 3.9 tells us that the coefficients of the stimulus response 

cross correlation (Car) and the weights linear S T R F are the same. 

Figure 3.3(b) (centre panel) shows the C^s of a stimulus that is highly corre­

lated between frequency bands, i.e. the stimulus has a similar temporal structure 

in one or more pairs of bands. The Cgr and the estimated S T R F are significantly 

different. It can be seen that although the diagonal of the Css has become frag­

mented, the overall matrix is composed of a 10-by-lO array of sub-matrices and 

that the diagonal arrangement of these sub-matrices is preserved. This is due to 

there being no temporal structure to the stimulus. 

In contrast Figure 3.3(c) (centre panel) shows the Css of a stimulus that 

contains temporal correlations, i.e. the stimulus has a similar frequency profile 

at a number of different, temporally related time steps. This produces large off-

diagonal terms in the sub-matrix structure. The Cgr and the estimated S T R F 
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Figure 3.3: Estimate of the example kernel using illustrative stimuli and the methods 
outlined in Section 3.3.1. Left: the stimulus/response cross-correlation. Centre: the 
stimulus autocorrelation. Right: the result of correcting the estimate using the corre­
lations in the stimulus. The stimuli are designed to be: Upper: ideal uncorrected or 
'white', Centre: with correlations between frequency bands. Lower: with correlations 
in time. See Section 3.4.2 for details. 
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are greatly different. 

In the cases where the stimulus contains correlations the Csg is not equal to 

the identity matrix and Equation 3.9 tells us that the coefficients of the stimu­

lus response cross correlation (Car) and the weights linear S T R F cannot be the 

same. The multiplication of Car by the inverse of C^a acts as a ^correction' that 

compensates for the correlations that occur in the stimulus which are responsible 

for distorting the estimate of the linear kernel. 

Estimates using white noise. Figure 3.4(a) shows the result of estimation 

of the S T R F with a 'real' white noise stimulus processed using the SCM and 

Figure 3.4(b) shows the result using the onset sensitive representation (SKV). It 

can be seen in Figure 3.4(a) that despite the stimulus being 'white', the stimulus-

stimulus autocorrelation matrix Css of the stimulus representation contains both 

spectral and temporal correlations. However, the Car and the S T R F are not 

greatly different despite the correlations and do not show the grosser distortions 

visible in Figure 3.3(b) and 3.3(c). 

Estimates using random chord stimuli. Results of estimates of the example 

kernel in this section were made using random chord stimuli synthesized in the 

same way as those in Section 2.5.1. Stimuli of this type have been widely used 

in S T R F estimates in vivo (e.g. deCharms et a/., 1998; Sahani & Linden, 2003). 

Results are shown in Figure 3.5. Again the lower sub-figure shows S T R F s derived 

from the onset sensitive representation. The correlations in the stimulus can again 

be seen in the C^a (centre panels). 
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Figure 3.4: Estimate of the example kernel using white noise stimulus. Top row: using 
the SCM representation. Bottom row: Using the SKV representation. The correlations 
in the stimulus representation are visible in the stimulus autocorrelation matrix (centre 
panel) but the uncorrected estimates (C,,r left panel) are similar to the STRFs (right 
panel). 
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Figure 3.5: Estimate of the example kernel using random chord stimulus. Top row: 
using the SCM representation. Bottom row: Using the SKV representation. 
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Estimates using natural stimuli. Estimate were then obtained using a mixed 

recording of animal vocalizations (jungle noises) and the results are shown in Fig­

ure 3.6. Each of the sub-figures represents an estimate using a different section of 

the recording and it is clear that the STRFs derived from the SKV representation 

have the same geometry despite the stimulus at each of these times having very 

different correlations in frequency and time. 
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(b) S K V 
Figure 3.6: Estimates of the example kernel using natural stimuli (a mixture of animal 
vocalizations or jungle noises'). The correlations in the stimulus representations (centre 
panel) are different and produce different distortions of the Csr (left panels) but the 
same STRF after correction (right panels). 

These results indicate that natural stinmli (such as mixed environmental 

noise) and artificial stinmli that have been designed to contain spectro-temporal 

correlations, give substantially different estimates of the linear kernel before and 

after correction using the stimulus autocorrelation. However estimates made with 
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white noise or with random chord stimuli, although they do show some change 

after correction, are of substantially the correct geometry before the correction 

is applied. Importantly we have shown this to be true for estimates made using 

both of our stimulus representations (SCM and SKV) . 

3.4.3 Results using neurophysiological data. 

Here, in Figure 3.7, we present estimates of the linear kernel from physiological 

data. The results were calculated using spike trains supplied by Jan Schnupp 

of the University Laboratory of Physiology, University of Oxford. They were 

obtained from anaesthetized ferrets using random chord stimuli consisting of a 

number of 7.5 second segments of tone complexes consisting of 2.5m5 tone bursts 

presented synchronously and chosen randomly from frequencies from 5QQHz to 

2A000Hz. The spike trains were recorded in a number of areas all in auditory 

cortex. 

The two estimates shown in Figure 3.7are typical of over 50 obtained in differ­

ent locations within the ferret auditory cortex. The estimates based on the S K V 

representation (left column) are consistent with those based on the SCM rep­

resentation (right column) and have simple geometries indicating a well defined 

spectral and temporal preference. These results demonstrate that estimating the 

linear kernel which approximates the response of units in cortex using a repre­

sentation which is sensitive only to energj' change within a frequency band yields 

results that are at least plausible. However, two interesting points emerge from 

comparisons between the two sets of results. First, evidence suggests that there is 

a significant delay associated with processing in the ascending auditory pathway 

which can be measured in human auditory brainstem response (e.g. VanCampen 
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Figure 3.7: Physiological estimates of the linear kernel approximating the response 
of two cortical units in ferret (the two different units are in the left column and the 
right column). Upper row, estimates based on the SCM representation. Lower row, 
estimated based on the SKV 
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et a/., 1997) and in cortex (e.g. Heil, 1997a). The minimum latency recorded 

for human A B R in the study cited was between five and six milliseconds, and in 

cortex Heil investigated the effect of rise time function on first spike timing and 

reported ' . . . the different Junctions appear to converge on a single minimum at 

12.3 7715'. The overwhelming majority of kernels estimated from the SCM rep-
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Time (ms) 

-20 

Figure 3.8: The temporal structure of a typical Csr pair. The two lines illustrate the 
temporal profile at best frequency of a pair of kernels estimated from the same spike 
train using the SCM and SKV representations. The SCM based estimate is still rising 
at time = 0. 

resentation have a maximum excitatory component in a narrow frequency band 

and at zero latency. Put another way, the presence of energy in the stimulus at 

the best frequency (BF) of the cell is most likely to evoke a spike with zero time 

delay in the cortex. This is in contrast to those derived from the onset sensitive 

representation which predict that a rising transient is most likely to evoke a spike 

at a time offset of between five and twenty milliseconds. 

An illustration of this can be seen in Figure 3.8 which shows the temporal 
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structure at best frequency of the pair of kernels shown in Figure 3.7(a). The 

maximum weight in the energy sensitive kernel occurs at —12ms for the stimulus, 

or alternatively H-127n5 spike latency which is comparable with that reported 

by Heil (1997a). 

3.5 Discussion. 

3.5.1 General. 

In this chapter we have shown for the first time that estimates of spectro-temporal 

preferences exhibited by cortical units can be understood in terms of patterns of 

short term energy change. These estimates are meaningful and broadly consistent 

with those obtained using more traditional, energy sensitive methods. Although 

not all units may be change sensitive this provides a novel framework for dis­

cussion of auditory feature extraction which is consistent with much of what is 

known about the nature of sub-cortical auditory processing. 

3.5.2 Biological implications. 

The process of reverse correlation is dependent on choosing a meaningful repre­

sentation of both the stimulus and the response. S T R F s in the auditory centres of 

the brain have been measured using spectrographic ( F F T ) , cochleographic, and 

parametric representations, all of which have led to results which give some insight 

in to the nature of auditory processing. However, there is evidence that much of 

the ascending auditory pathway is processed within each tonotopic channel, and 

hence without respect to spectral profile, and that much emphasis is placed in 

each channel on representing the change of energy rather than the energy level 
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itself. It could be therefore that S T R F s could be estimated in terms of a rep­

resentation such as that introduced in Chapter 2 and that this could lead to a 

more informative model of processing higher levels of the auditory system. The 

exact nature of the neural responses immediately antecedent to the unit from 

which recordings are being made is always going to be a matter of some uncer­

tainty. It is, however, likely to reflect the nature of neural responses measured 

in more peripheral regions and not necessarily bear a close relationship to the 

parameters used in the synthesis of the stimulus or the simple spectro-temporal 

picture provided by spectrographic analysis. Thus the picture that emerges from 

experiments of this sort is indicative of the whole chain of auditory processing 

and not the response of the unit under investigation. Reverse correlation with 

representations that respect sub-cortical responses may tell us more about corti­

cal function and may help to bridge the gap between the predicted and measured 

responses to novel stimuli. 

One of the stated aims of project, i.e., to show that cortical responses might 

couched in terms of sensitivity to energy change within a frequency channel, has 

been brought one stage closer to being justified biologically. We have used the sim­

ple expedient of characterizing a real neural response (in fact a range of responses 

measured in different cortical locations) in terms of the S K V representation that 

is developed in this work. In Section 3.4.3 we have calculated the stimulus re­

sponse cross-correlation Csr using spike trains measured in vivo correlated with 

the onset sensitive representation and also with the cochlear representation and 

the results show that both methods give meaningful results that are consistent 

with one another. Many estimates of cortical responses based on energy are ob­

tained by grouping spikes in time bins of up to 20ms. This is larger than HeiPs 
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reported limiting first spike delay and in this case the excitatory region would 

be located 'in the first 20 ms\ This is also true in the case of kernels estimated 

using the SKV representation. However, when the kernel is estimated with much 

smaller bin sizes (in this chapter bins of Ims) the delay introduced by the SKV 

representation which is a function of the size and number of the windows used in 

this calculation, is consistent with first spike latencies measured physiologically. 

In addition these latencies are frequency dependent, a feature which is reported 

in some cortical responses (e.g. Krumbholz et a/., 2003). 

An additional point of interest is that the estimates based on the SKV rep­

resentation have, in many cases, simpler geometries resembling simple two di­

mensional gaussian distributions. The precise implications of this can only be 

established by future work as outlined below. 

3.5.3 Future work. 

If some cortical responses are, as we hypothesize, dominated by sensitivity to the 

energy changes emphasized in sub-cortical processing this makes a prediction that 

is, in principle, easy to test. Physiological recordings from cortex could be made 

using stimuli with parametrically controlled onset and offset distributions. These 

could then be reverse correlated with a suitable stimulus representations and this 

should distinguish neurons that respond to transients from those that respond to 

the instantaneous energy within a frequency band based on tonic firing, rather 

than phasic firing, in sub-cortical regions. It is our intention in the near future 

to use our established links with physiologists to design such an experiment. 

66 



Chapter 4 

Pragments and ensembles 

4.1 Overview. 

Principle aims. It has been shown using small section of images (image frag­

ments) that similarity between these small patches of a picture and a large range 

of other pictures, carries information about whether the picture in question be­

longs to the same 'class' as the picture from which the fragment is drawn. 

In this, and in the next chapter, we hope to adapt and extend this idea 

to measures of time dependent similarity between ensembles of fragments and 

classes of stimuli in the auditory domain. These spectro-temporal patches, which 

are small areas excised from stimulus representations, can be seen as fragments, 

stimulus preferences, or STRFs, and the time varying similarity between each 

patch and the stimulus representation can be interpreted as the 'response' of each 

to that stimulus. Such patterns are the best way we currently have of describing 

the features which support auditory perception and predicting the response of a 

neuron to a novel stimulus. 
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We will examine a large range of fragments derived from a small set of stimuli, 

and we hope to show that the responses of some of these are more likely to 

convey class information than others. This distinction may form the basis of a 

developmental process through which neural responses are refined. 

Motivation. It is widely believed that auditory perception is based on the 

responses of cortical neurons that have spectro-temporal preferences, as described 

in the previous chapter. This has sometimes been called 'feature extraction' 

although it is not clear at this stage what these features might be or how they 

might come in to existence. There is evidence that cortical responses develop to 

reflect the nature of stimuli in the early post-natal period. We hope to show that 

the patterns found in a limited number of stimuli which reflect some putative 

early auditory environment, may bootstrap the formation of these responses. 

It has also been shown, in the work on fragments of visual images, that the size 

of the fragments afi'ects the amount of class information carried in the measure 

of similarity. If this is true of auditory fragments we hope to gain some insight in 

to the time period over which auditory features may be extracted in the brain. 

Achievements. In preliminary results gained by selecting groups of fragments 

at random we show that there is a difference in the entropy of the responses from 

ensembles of diff'erent maximum temporal extent. This we interpret as evidence 

that, at least for speech, S T R F s of diff'erent temporal extents may may be more 

or less suitable for auditory feature extraction. This is further pursued in the 

next chapter. In addition, using a more sophisticated (and previously reported) 

procedure designed to select ensembles of features whose responses are highly 

correlated with class information but not with each other, we show that ensembles 
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chosen using these criteria have temporal properties that are consistent with this 

time scale and with those of STRFs measured in vivo, 

4.2 Representation in response patterns. 

A powerful idea that first came to the fore with the theory of trichromatic colour 

vision (Young, 1802) was that a particular stimulus quality was characterized by 

an across-neuron response pattern (ANRP). The idea was that there are three 

types of receptors in the retina that respond differentially to different wavelengths 

of light and that a single wavelength of light, or combination of wavelengths, 

produces a characteristic ratio of responses across the three receptors. This idea 

was taken up by Helmholtz (1860) and later developed by Erickson (1974) as a 

comprehensive theory applicable to all areas of sensory coding. 

The basis for this idea is that although responses of single cells are typically 

broad, organisms are capable of making behavioural judgements based on very 

fine distinctions. There is no contradiction here because a population of broad, 

overlapping responses can encode a specific stimulus in the pattern of activity 

across the population; the ANRR These ideas form the framework for the pro­

posal introduced in Chapter 3, that auditory coding can be understood as the 

response of a set of broadly tuned spectro-temporal filters, and leads us to an 

important but diflicult set of questions about how useful the responses of one, or 

more, of these filters might be and from a developmental point of view, how they 

come to have the properties that they do. 
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4.2.1 Entropy and Mutual information. 

If the output of a filter, or feature extractor, is essentially flat (monotonic) over 

the time course of a stimulus, or over the entire range of stimuli with which it 

is presented, then the output of this filter is not 'interesting' (Dayan & Abbot, 

2001). * The response of a filter might be also be uninteresting because its output 

bears a simple relationship to that of another filter and so no additional benefit 

is gained from this response. A third way a filter might be deemed uninteresting 

is if its output is varied and unique but bears no relationship to the change of the 

input stimulus. These three characteristics of the output can all be quantified 

using measures from information theory. The first, the information capacity due 

to variability, is the entropy of the response; the second, the difference between 

the response and other responses, is the redundancy; and the last, the amount of 

information about the stimulus that is contained in the response (of a single filter 

or an ensemble of filters) is the mutual information. These three quantities 

are all interrelated. 

The context within which these issues are often discussed is that proposed 

by Shannon (1948), whose work forms the basis for the understanding of how 

information is preserved by systems of coding. For this approach to be applicable 

both the signal and the responses must consist of nominal classes, or symbols, 

within a corresponding time window. 

The probability with which the symbol r occurs in the signal is written P[r 

and the element of ^novelty' or Mnterestingness' associated with each symbol as 

-log2P[r], the log measure is chosen so that the value is additive for independent 

*The introductory treatment given here relies principally on that given in Dayan k Abbot 
(2001). 
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sources, and the negative sign ensures that the level of surprise goes down as 

the frequency of occurrence goes up. This quantity is then averaged over all 

symbols weighted by the probability of occurrence P[r] (Equation 4.1) to yield 

the entropy H. 

H = -'£P[r]\og,P[r] (4.1) 
r 

The effect of this calculation is that symbols that almost never occur, and symbols 

that occur frequently, both contribute little to the entropy. The highest contri­

bution will be from those symbols which occur not too often so as to reduce the 

surprise associated with them, and not so rarely that they carry a low weight, and 

the maximum entropy will be when all symbols occur with equal frequency. The 

logarithm in Equation 4.1 can be calculated to any base but conventionally base 

two is used and the entropy stated in bits, although it is in fact dimensionless. 

For a response to provide information about the stimulus its variability must 

be related in some way to the stimulus variability. To quantify this the entropy 

of the response when the stimulus does not change (known as the noise entropy) 

is subtracted from the total entropy. This is known as the mutual information 

(/) between the stimulus and response: 

/ = / / - Hnoise = ' J 2 ^[''l 1̂ 62 1̂̂ ] + ^l^l^l^l^l ^^^2 P[r\s] (4.2) 
r 3,r 

which can be rearranged to give: 

/ = ( ^ P ( s | r ) l o g 2 
P(s\r) 

[ Pis) 

where (.. .)r denotes the expected value over all response symbols. 

(4.3) 
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The maximum value of / is just log2{nc) where nc is the number of symbols 

or classes. In order to compare results from investigations involving a variety 

of values for nc, results in this work will often be quoted as normalized mutual 

information /„ which is simply: 

In = I/lo92{nc) (4.4) 

4,2,2 Visual fragments. 

UUman et al. (2002) have shown that visual features of intermediate extent and 

complexity are optimal for classifying images. In this work, a library of fragments 

were extracted from a large number of images each belonging to a restricted set 

of classes. Each fragment was then assigned a class informativeness based on 

the frequency of its occurrence in databases of images that either did, or did 

not, contain images of that class. The presence or absence of a fragment in 

an image was judged by a measure of similarity using a threshold level. This 

leads to a binary result representing the presence or absence of the fragment in 

an image. The resulting frequencies of occurrence of a fragment in a database 

of images of a particular class allow the calculation of the mutual information 

between the fragment and the class. It was shown that the fragments that were 

most informative about the class were of intermediate size and resolution. It 

was further shown that when classifying images using a combination of fragment 

results were improved if the fragments were drawn from the most informative set. 

The idea that a fragment that is not so large as to be too specific, and not so 

small as to be too general, might provide information about a stimulus based on 

its presence or absence in that stimulus is not conceptually complex. However, 
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the results reported by UUman et al. have shown not only that fragments of 

intermediate size and complexity are superior, but they have demonstrated that 

the selection of these features as the basis of neural representations might be 

driven by maximization of mutual information. This is a useful idea that might be 

applied to auditory stimulus classification and form the basis of a developmental 

argument. 

4.2.3 Fragments of auditory representations. 

The approach reviewed above recommends itself for investigation in auditory 

classification for a number of reasons. 

• As has been discussed in Chapter 3 the time dependent response of an 

S T R F to a stimulus can be approximated using a convolution. The con­

volution can also be interpreted as a measure of similarity; its output is 

at a maximum at times when the stimulus representation matches the 

S T R F . In this chapter we introduce the idea that spectro-temporal pat­

terns which are fragments of stimulus representations can be viewed an 

'candidate STRFs' that is, we examine whether an S T R F would be useful 

if it had the same spectro-temporal geometry as a particular fragment of 

the response representation. So we define a 'candidate STRF' as a two di­

mensional (i.e. spectro-temporal) pattern of weights derived by subdividing 

a spectro-temporal description of some stimulus in to fragments of limited 

spectral and temporal extent. 

• In contrast with visual representations, auditory representations do not nor­

mally suffer from the same variations of scale or orientation. In order to 

73 



4.2 Representation in response patterns. 

compare images with fragments it is necessary to compensate for the in­

herent variation of extent exhibited by visual stimuli on the physiological 

substrate (the retina). Also, for the comparisons to be valid the orien­

tation of both has to be assumed to be the same. Auditory stimuli are 

extremely complex and many problems surrounding their processing and 

representation are currently intractable. However, it is, at least as a useful 

approximation, true to say that the same auditory stimulus manifests itself 

at the same scale along the physiological substrate (the cochlea) at each 

presentation, and that the time dimension which is the principle degree of 

freedom for scaling and displacement has a consistent orientation. 

Ullman et al. (2002) also show that features derived from e.g. faces when used 

for classification generalized well to both novel faces and face-like-objects such 

as paintings of faces. They also show that these features form the basis for a 

perceptually convincing reconstruction of face stimuli. These results form the 

basis of an argument for a neural representation that is essentially a first order 

isomorphism or representation-by-similarity. It has been suggested (Edelman, 

2002; Shepard & Chipman, 1970) that a more plausible mechanism for biological 

systems would be a second-order isomorphism or representation-of-similarity, see 

Section 5.3. 

4.2.4 How interesting is a fragment? 

The representation used in this work as the basis for deriving fragments (the SKV) 

is considered to be a matrix of scalar values. A fragment of this representation 

is therefore is a rectangular sub-matrix drawn from contiguous values of the 

representation. How interesting is each of these fragments as a candidate S T R F ? 
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In some senses this is an analogous question to that asked by Ullman et al. 

about their visual fragments. They investigated how informative a fragment 

was in respect of the class from which it was drawn. A much more general 

question would be to ask 'how interesting is this fragment in its response to a 

range of different stimuli'. The answer to this question can be framed in terms 

of the entropy of the response of the fragment to a limited set of stimuli. Note 

that in this context 'response* means the convolution between the fragment and 

the stimulus representation, i.e. the time varying similarity. If this response is 

uniform across all classes then it tells us nothing about them. If on the other 

hand the fragment responds in a distinctly different way to each of the test classes 

then it is 'interesting' as described in the previous section, i.e. it is 'of relatively 

high entropy' and 'potentially information bearing with respect to stimulus class'. 

As ever the devil is in the detail, and the devil in this scheme lies firstly in the 

phrase distinctly different. For a real valued continuous measure of similarity it 

is necessary to decide how different a response has to be before it is regarded as 

distinct. The second problem is that there are any number of ways in which the 

response can be characterized. The approach adopted in this work is discussed 

in detail in Section 4.3 below. 

4.2.5 How interesting is an ensemble of fragments? 

In a similar way to that discussed above, it is possible to calculate the response en­

tropy of an ensemble of fragments. It is therefore possible in principle to compare 

all possible ensembles and pick the one which has the most interesting response, 

or at least pick one of the subset which have equal and maximal response en­

tropy. This is, however, not practical because it involves calculating the response 
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for nE^k-nEy. ^"sembles, where k is the number of fragments and UE the ensemble 

size, and subsequently comparing each pairwise. 

In Section 4.3.2 an algorithm is described which seeks to add fragments to an 

ensemble on the basis that each new fragment has a response that contains more 

information about a range of stimuli than it does about any of the responses of 

previously chosen fragments. This correlation based filter provides a fast way to 

identify relevant responses, and redundancy among responses, without pairwise 

comparisons (Yu & Liu, 2003b), 

4.2.6 Auditory salience. 

The issue of the symbols which are to be used to calculate the entropy and mutual 

information between the stimulus and response remains unaddressed. For the 

stimulus we are interested only in its class, which is a static label attached in the 

preparation of the experiments. The class of a stimulus represents some a priori 

knowledge the experimenter has about a stimulus. This allows it to be labelled in 

a way which is relevant to the experiment. For example, if the speech corpus has 

500 utterances that are labelled as being the letter 'A' 250 of which are recorded 

from male speakers and the remaining 250 are recorded from female speakers 

then these 500 stimuli belong either to the same class 'A \ or two different classes 

'Male* and 'Female' depending on the context of the experiment. 

The class of the response has to be handled differently. For each individual 

fragment the response is a convolution between the fragment, interpreted as a 

kernel, and a spectro-temporal description of the stimulus, See Section 3.4.2, 

Equation 3.10. These individual responses are continuous, real valued functions 

of time and are hence doubly unsuitable for the purpose of representing response 
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symbols. What is required is a quasi-static description, representing a view of 

the stimulus within a finite time window representing an event. This problem is 

addressed in Section 4.3.3. 

4.3 Methods. 

4.3.1 Fragment extraction. 

In order to explore the possibility that the formation of S T R F s may be boot­

strapped by fragments of activity patterns in response to acoustic stimuli, several 

libraries of fragments derived from small sets of sounds, the formative stimuli 

each representing one of a small number of classes, referred to as the formative 

classes, were created. The first set contained samples spoken stimuli, i.e. the 

numerals; 'one', *two' ...'nine', 'Oh', and 'Zero' making the number of classes 

nc = 11. The second set of formative stimuli consisted of stimuli belonging to 

eleven non-speech classes; wind noise, rain noise, bird calls, frog calls, whale calls, 

isolated engine noises, traffic, telephone bells, simple collisions (e.g. pool balls, 

plates etc), electronic sweeps and glides, and breaking bottles. All of the sounds 

were pre-processed using the SKV representation described in Section 2.3.2. 

From each of these sets of formative stimuli four separate libraries of fragments 

with a range of durations from 10 to 200 milliseconds, were created. Within 

each library fragments were 4, 8, 12, 16, 20, or 24 frequency bands wide. Each 

fragment, therefore, represents a two dimensional, rectangular patch excised from 

the SKV representation of one of the formative stimuli at intervals of one third of 

a fragment horizontally and two bands vertically, this is illustrated in Figure 4.1. 

An example of fragments drawn from the 100ms library of both the speech (upper 
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N 0.65 

100 200 300 400 500 600 
Time (ms) 

F igure 4 . 1 : Illustration of fragment extraction. The solid black box A represents 
a l()i)///.s fragment covering 4 frequency bands. The black dotted box B represents 
the next fragment in a vertical tiling shifted by two bands. The solid magenta box 
C represents a similar fragment and the magenta dotted box D represents the next 
fragment in a horizontal tiling shifted by one third of the fragment length. The entire 
representation is treated in this way 
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row) and non-speech (lower-row) libraries is shown in Figure 4.2. 
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Figure 4.2: Examples of fragments derived from speech (top row) and environmental 
noise samples (bottom row). 

4.3.2 Ensemble selection. 

Maximal entropy. In contrast to Ullman et al. (2002) it was not sought to 

optimize the fragment choices with respect to the set of all stimuli. From a devel­

opmental point of view, responses must be useful with respect to the formative 

stimuli only, as this is the basis on which the developing perceptual system might 

prefer them. If the formative stimuli are sufficiently rich, and are representative of 

the statistics of ethological sounds in general, it is to be hoped that the patterns 

derived from them will be useful for classics outside the developmental experience. 
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Results given in Section 4.4 show that this is indeed the case. 

As the basis for a decision as to which fragments ensembles were likely to 

perform better, large numbers of random ensembles of fragments (n^ = 2, 4, 8, 

and 16) were generated and the entropy (H) of each of their responses to the 

set of formative stimuli from which they were drawn was calculated. Ensembles 

from the highest and lowest entropy bins were saved for subsequent use in the 

classification experiments, see Chapter 5, Section 5.5. 

Ensemble selection using a correlation measure. A more sophisticated 

method of ensemble selection was adopted for the experiments in Chapter 6. 

Essentially the aim is to select a set of features which convey as much information 

with respect to stimulus class as possible, whilst at the same time ensuring that 

their mutual information is minimized, i.e. a feature is 'good' if its response is 

highly correlated to the class vector but not to the responses of other features 

in the ensemble. The problem of feature selection, therefore, can be reduced to 

finding a suitable measure of correlations between features, and between features 

and classes. 

A feature selection procedure based on the Fast Correlation Base Filter (FCBF) 

(Yu & Liu, 2003b) which uses an information-theoretic correlation measure has 

been adopted here. The F C B F method addresses the twin problems of a) 

removing both irrelevant and redundant features and b) reducing the computa­

tional overhead of the search in high dimensional space. According to Yu & 

Liu there are two types of feature selection algorithm, which they refer to as 

feature-weighting and subset-search. The first evaluates the usefulness of individ­

ual features. This approach is fast but does not remove redundant features, i.e. 
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it retains features that provide essentially the same information as others already 

chosen. The second type of search, based on evaluating the usefulness of subsets 

of features (which is equivalent to an 'ensemble') has a high computational cost. 

The F C B F algorithm is an attempt to produce a feature selection algorithm that 

takes in to account redundancy of features as well as the usefulness of individ­

ual features at moderate computational cost. The correlation between a feature 

response (r) and the class vector of stimuli (5), called symmetrical uncertainty 

(SU) by Yu & Liu, is defined in Equation 4.5. 

In this equation H is the entropy and IG is the information gain defined in terms 

of the entropy in Equation 4.6. 

IG{s\r) = H{s) - H{s\r) (4.6) 

As has previously been mentioned (Section 4.2.1) the entropy calculation (Equa­

tion 4.1) requires the response to be symbolic, or if the response is numeric, then 

it must be made discrete. The discrete numeric values can then be treated as 

symbols. 

The F C B F algorithm starts with a feature which is most correlated to the 

class vector and removes all 'redundant peers' from the set, that is it removes all 

features that are closely correlated to the chosen one. The chosen feature is des­

ignated a 'predominant feature'. This is then repeated with the next most highly 

correlated feature remaining and so on. With each new choice of predominant 

feature a great many redundant peers are eliminated and the algorithm halts 
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when there are no more features to be considered. 

The F C B F selection method is not highly parametric but is necessary to fix 

the threshold relevance value T,u, that is the value of correlation between the 

response and the class vector below which a feature might be regarded as irrele­

vant. Setting this value too high means that useful features are not considered 

for inclusion. Setting it too low means that a great many useless features are 

considered for inclusion which simply increases the time taken by the process 

to halt. For all subsequent experiments this was fixed at 0.59. This figure was 

arrived at after a number of trials to ensure that the algorithm chose ^ 300 frag­

ments as this was the target maximum ensemble size (n^) for experiments. The 

decision to use 300 fragments was based on two considerations. First, the limi­

tations on the computational power available for the experiments combined with 

size of the corpus of stimuli, required a compromise to ensure manageable run 

times; of the order of tens of hours not hundreds of hours. Second, we hoped to 

analyze various properties of the chosen fragments in order to characterize them 

and make a comparison with properties of S T R F s estimated from physiological 

measurements (see Section 4.4). To this end, it was important not to have too 

few fragments but to ensure that a broad range of useful fragments was included 

in the ensemble. 

The F C B F algorithm used in this way gives a repeatable ensemble selection 

method from a library of fragments given the value for Tsu, which in any case de­

termines only the size of the resulting ensemble and not the order of the fragments 

chosen. 
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4.3.3 Event detection and responses vectors. 

The basis of event detection in the model presented here is the presence of a 

coherent response across an ensemble of feature detectors. The response of a single 

fragment, or ensemble of fragments is calculated (see Section 3.4.2, Equation 3.10) 

and the summed response over all fragments normalized such that the maximum is 

unity for the range of stimuli in the experiment. In the experiments reported here 

the window corresponding to an event was defined as the period during which 

the summed response exceeded 0.2 i.e. 20% of the maximum response. The 

response vector that characterizes this event is formed from the maximum values 

of each individual response within the event window, this process is summarized 

in Figure 4.3. Note that the values of the elements in the vector are rounded up 

to two decimal places effectively placing each in to one of one hundred equally 

spaced bins. 

This method provides the basis for an asynchronous, stimulus-ensemble driven 

event detector which triggers a readout of the population response pattern within 

a time window, the length of which is determined by the duration of the coherent 

ensemble response. The result is a short time scale context for the extraction of a 

pattern of responses that characterizes a distinct auditory event. This idea has its 

roots in work by Erickson (1986) and the notion of neural mass^ which is in effect 

a measure of the vigour of the neural response. Erickson argued that this coded 

for the intensity of the stimulus, but in the current context this idea is equivalent 

to a saliency map in the temporal domain (Koch & Ullman, 1985), where the 

signal is analyzed locally with respect to a range of properties (the ensemble 

response) and the results integrated, in this simple model, by summation. 

83 



4.3 Methods. 
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Figure 4 .3 : This figure shows: (a) The SKV representation of a sample speech stimulus 
Once upon a t ime there was a girl called Cinderella', female speaker:(b) An ensemble 

of four spectro-temporal fragments (these are not shown on the same horizontal scale 
as the stimulus); (c) The response of each of these fragments to the stimulus: (d) 
The summed response of all fragments in the ensemble with the 20% salience level 
indicated: (e) The numerical values of the first vector corresponding to the ensemble 
response to the first detected event. 
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4A Results. 

Random ensembles. We first investigated the entropy of responses from a 

large number of randomly chosen fragments from the four speech fragment li­

braries (i.e. those of 10, 50, 100 and 200 milliseconds). The aim was to inves­

tigate whether this provided a basis on which to prefer one time scale for frag­

ments over another. Forty thousand ensembles from each library were selected, 

10,000 each of ensemble size = 2,4,8,andl6. The entropy of the response 

(H) of each was then calculated and assigned to one of seven bins: H < 0.5, 

0.5 < ^ < 1.0, l.O < H < 1.5, l.b < H < 2.0, 2.0 < H < 2.5 2.5 < i f < 3.0 

3.0 < H < Maximum (log2(ll) = 3.46) The probability of an ensemble, com­

posed of each number and extent of fragment, appearing in each of these seven 

bins was then calculated and the results are shown in Figure 4.4. 

This shows that fragments of 100ms extent are more likely to be present in 

the group of highest entropy for all ensemble sizes investigated, including = 2 

which is difficult to see in Figure 4.4 due to the scale. Further results which 

suggest that fragments of maximum extent lOOms might be preferred is provided 

in Section 5.4.3 based on their performance in a classification task. 

Ensembles chosen using a correlation based filter. The F C B F algorithm 

was allowed to run to completion using Tsu = 0.59 which yielded an ensemble of 

303 feature extractors which are shown in Figure 4.5. For the sake of compactness 

in the figure, only fragments 1-100 and 201-300 are shown. The properties of the 

chosen ensemble were then analyzed in order to compare them to the proper­

ties of the complete set of all lOOms fragments. The best temporal modulation 

(BTM) was calculated for all fragments and the distribution of BTMs plotted 
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Figure 4.4: Distribution of response entropy of different ensemble sizes from each of 
the four fragment libraries. The figures show the lower limit of the seven entropy bins 
(abscissa) and the probability of finding a random ensemble in each of the bins - for 
each temporal extent, colour coded (ordinate). For each ensemble size there are more 
ensembles of lOOm .s fragments in the highest entropy bin. 
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(a) 

(b) 

Figure 4.5: Example of ensemble chosen using FCBF. (a) Fragments 1-100. (b) Frag­
ments 201-300. The lower numbered, most highly informative fragments have mostly 
very simple spectro-temporal characteristics in common with most of the estimates of 
STRFs in ferrets (Section 3.4.3). The higher numbered, less useful fragments have 
more complex distributions in time and frequency. 
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for the entire fragment set and the ensemble chosen by the F C B F algorithm, see 

Figure 4.6. This shows that the ensemble has a greater proportion of fragments 

with BTMs in the range 10 to IbHz than the fragment set from which they were 

drawn. The predominance of fragments with BTMs ^ U)Hz in the complete 

fragment set is, of course, explained by the fact that the fragments all have a 

length of 1007716*. However the enrichment of the ensemble with fragments in 

the 10 — IbHz is further justification for choosing fragments of this length and 

('\ K I C I I C C f c a l i i i o o n t h i s s ca l e a i c u s e f u l . 

Best Temporal Modulation Best Temporal Modulation 

(a) (b) 

Figure 4.6: Characterization of (a) the complete library of lOOrn.s fragments, n 
2 2 , 0 0 0 and (b) an example fragment ensemble chosen using the FCBF algorithm HE = 
;{0: i in terms of the best temporal modulation. The distribution of best temporal 
modulations in the chosen ensemble has changed with respect to the distribution found 
in the library of fragments from which it was drawn. 

Comparison with BTMs of cortical STRFs m vivo is complicated by the lack 

of human results. However, results from cortical S T R F s in cats reported by Miller 

et al. (2002) show a peak in BTMs at ^ \2Hz. 

88 



4.5 Discussion. 

4.5 Discussion, 

4.5.1 General. 

Two methods of selecting fragments, or kernels, to form an ensemble were ex­

plored, both based on information theoretic principles. The first simply combines 

fragments at random in small ensembles. The results (Figure 4.4) show that even 

for these small ensembles the response of some proportion of them is interesting, 

in the sense of having high entropy. Also, that in the highest entropy group, frag­

ments of 100ms occur more frequently than those of 10ms, 50ms, or 200ms. This 

is a result that will be returned to in Chapter 5. In the case of larger ensembles 

chosen using the F C B F algorithm, Figure 4.5 shows that the most informative 

fragments consist of simple onset sensitive patches with moderately well defined 

best frequencies. These are not unlike those found in auditory cortex of ferrets 

in Section 3.4.3. Only one of the first 50 (number 24) has an obvious bi-modal 

spectral distribution. In contrast the higher numbered fragments have, on the 

whole, much broader spectral sensitivity and more complex geometries. 

4.5.2 Biological implications. 

It has long been assumed that one of the principle goals of neural coding must 

be to efficiently preserve information about environmental stimuli (e.g. Barlow, 

1960). It is also a widely held view that this information is conveyed in patterns 

in an ensemble of neural responses, and that the ontogeny of these responses is 

in some way influenced by formative experience. This is a complex issue (for a 

review see lUing, 2004) but it has been shown that the development of auditory 

cortex is dependent on exposure to a 'normal', and 'rich' set of environmental 
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sounds and that abnormal auditory environments produce long term atypical 

cortical organization (Zhang et a/., 2001, 2002). It has also been shown that the 

mechanisms of auditory perception remain sufficiently plastic to compensate for 

early organizational disarray (Wang, 2004) provided the subsequent stimuli are 

'rich'. This result strongly suggests not only that formative stimuli could be the 

source of the patterns found in spectro-temporal descriptions of neural responses, 

but that this process remain plastic for some proportion of an organisms life after 

the early post natal period. 

4.5.3 Future work 

The investigations in this chapter represent the first steps in addressing the fol­

lowing questions. Can useful response fields be derived from a limited number 

of sounds? What temporal and spectral extent of acoustic feature is best for 

extracting meaningful information from the rich variety of ethological stimuli? 

In Chapter 5 these questions are revisited and we investigate if the ensemble 

response preserves information with respect to stimulus class. 

A further question; 'what is the neural substrate which implements the spectro-

temporal weighting which leads to S T R F measurements?' may be answered by 

greater understanding of cortex, or thalamus, or more likely in thalamo-cortical 

interactions. Work on modelling such micro-circuitry is already in progress. 
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Chapter 5 

A model of word classification 

using fragments. 

5.1 Overview. 

Principle aims. The work in this chapter develops and extends that in the 

previous chapter on the responses of ensembles of spectro-temporal fragments. 

We aim to show that vectors derived from the response of an ensemble of spectro-

temporal fragments to a large number of stimuli contain information about the 

class to which each stimulus belongs. We can obtain a lower bound for the mutual 

information between the classes of the stimuli and responses using the method 

in the previous chapter only if we also assign the responses to a class; we do this 

with an artificial neural network (ANN). We aim to investigate how this measure 

changes if the fragments are derived from stimuli that are dissimilar from those 

used in the classification experiments. We also investigate how this changes as 

the stimuli are distorted by time compression without spectral modification. 
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Motivation. First, we wish to confirm that the responses of the chosen ensem­

ble are not just 'interesting' in the sense that they are chosen on the basis of their 

entropy, but that they convey useful information about the classes from which the 

stimuli were drawn. We also hope to show that this generalizes to large numbers 

of stimuli that are different examples of the same classes. The stimuli used in 

these experiments are speech sounds and so this shows that the classification is 

robust to the variability inherent in speech. Second we investigate ensembles of 

fragments with different temporal extents using time compressed stimuli. These 

will be compared with psychophysical tests using similarly compressed stimuli. 

It is hoped that this might throw further light on the desirability of different 

time scales for auditory feature extraction. Last, as part of the overall aims of 

the project we wish to show that the projection in to a space spanned by the 

ensemble response is suitable as an input to a classifier based on a network of 

artificial spiking neurons. We hope to confirm that this is feasible by first using 

a conventional analogue ANN. 

Achievements. Results show that the response vectors derived from a large 

corpus of speech stimuli contain information about the class of the stimuli when 

classified with an ANN. We also show that this information is reduced if the en­

sembles used have low entropy, or are chosen from fragments of formative stimuli 

that are dissimilar from speech. 

Graphs showing how the mutual information changes with time compres­

sion of the stimuli (up to five times the original speed) show that fragments of 

100ms show a falling off in performance similar to that reported in results from 

psychophysical experiments based on speech comprehension with similarly time 
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compressed stimuli. Shorter and longer fragments do not show this effect. This 
supports the hypothesis, introduced in the previous chapter, that the time scale 
of feature extraction for speech stimuli could be ^ 100ms 

5.2 Difficulties in models of auditory process­

ing. 

Models of auditory processing, particularly of speech, face many difl5culties. In­

cluded in these are variability among speakers, variability in speech rate, and 

robustness to moderate distortions such a time compression. In this chapter we 

construct a model based on ensembles of feature detectors derived from fragments 

of an onset sensitive sound representation. This method is based on the idea of 

'spectro-temporal response fields' (Chapter 3) and uses convolution to measure 

the degree of similarity through time between the feature detectors and the stim­

ulus. The output from the ensemble is used to derive segmentation cues and 

patterns of response which are used to train an artificial neural network (ANN) 

classifier. This allows us to estimate a lower bound for the mutual information 

between the classes of the inputs and the classes of the outputs. The results 

suggest that there is significant information in the output of the system, and 

that this is robust with respect to the exact choice of feature set, time compres­

sion in the stimulus, and speaker variation. In addition the robustness to time 

compression in the stimulus has features in common with human psychophysics. 

Similar experiments using feature detectors derived from fragments of non-speech 

sounds performed less well. This result is interesting in the light of results show­

ing aberrant cortical development in animals exposed to impoverished auditory 
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environments during the developmental phase (Zhang et a/., 2002) and reinforces 
the hypothesis that spectro-temporal characteristics of cortical responses reflect 
the patterns in ethological stimuli. A speech database was used containing a 
large number of examples of a small number of classes (words). Response fields 
were constructed from acoustic fragments of varying temporal and spectral ex­
tent extracted from the utterances of a single speaker. These response fields were 
then convolved with utterances from a large number of different speakers, and 
the mutual information between the ensemble response and actual stimulus class 
was characterized. In this way the robustness of the approach to the variability 
inherent in speech, and to the later inclusion of novel classes, was assessed. The 
sensitivity of the system to the choice of fragments within an ensemble, to ab­
normalities in early experience, and to temporal manipulations of the stimuli was 
also investigated. On the basis of the experiments described below it is concluded 
that useful response fields can be derived from a limited number of sounds. Al­
though it is important that individual members of an ensemble convey different 
information, provided that there are suflficient response fields, their precise form 
is not critical and a rather small number of response fields acting in parallel can 
convey class information. Finally, if the effects of temporal manipulations were 
taken into account, it was found that acoustic fragments of intermediate temporal 
extent conveyed class information most eflfectively, in line with the findings for 
visual object classification. 
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5.3 Second order isomorphisms. 

It is part of our every day experience that our interpretation of the world through 

sensory data is flawed; in vision, for example, we are all familiar with various 

optical illusions. If the correspondence between the physical world (the distal 

stimulus) and our internal perceptual order (the proximal representation) were 

exact then our internal representation could be described as veridical or truth­

ful (Edelman, 1998). In the absence of a veridical representation it is at least 

necessary to achieve a representation that is principled in that it manifests some 

standard of Tightness. 

It has been proposed that organisms achieve a principled representation not by 

the closeness of comparison between stimuli and a set of internal archetypes, i.e. 

representation-by-similarity (an idea that can be traced back to Aristotle) but by 

building a representational space where similar objects occur closely together, i.e. 

a representation-of-similarity (Shepard & Chipman, 1970). Edelman has argued 

that such a representation could be implemented by measurement of similarity of 

the stimulus to a set of references, plus dimensionality reduction to achieve a low 

dimensional representational space. Within this space each object would have, at 

the very least, a unique position, i.e. it would be distinct. However, a representa­

tion of distinctness is not enough. To achieve a principled representation, objects 

that closely resemble one another in the distal space (objects that are similar) 

must also be close to one another in the proximal representation. In the limiting 

case where the identity of the Arth nearest neighbour of each point in proximal 

space is preserved for all values of k (assuming a finite number of objects) the 

correspondences in the distal space can be recovered in their entirety by examin­

ing those in the proximal space and we have achieved similtude. In this chapter 
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we will look for evidence that such a second order isomorphism arises from the 

vector representation of stimuli derived from ensembles of spectro-temporal filters 

as described in previous chapters. 

5.4 Methods. 

Figure 5.1 summarizes the stages of the model from sound file to response vector 

and is a summary of the stages previously described. The first two stages are as 

described in detail in Chapter 2. 

Spectral decomposition. The first stage approximates processing in the cochlea, 

Figure 5.1(b). Sounds are processed using a bank of 30 gammatone filters using 

the SCM representation as described in Section 2.3.1. 

Transient extraction. The next stage of processing identifies envelope tran­

sients within each frequency channel using the SKV representation, Figure 5.1(c), 

for details see Section 2.3.2. 

Convolution using an ensemble of S T R F s . In the next stage we use an 

ensemble of spectro-temporal filters derived using the methods in Chapter 4. 

Each S T R F in the ensemble is specified in terms of a pattern of onsets and/or 

offsets extending over a specified spectral range and duration. Each member of 

the ensemble of STRFs is convolved with the pre-processed incoming signal, 

thereby generating a set of UE 'temporal signatures', which indicate the degree 

of similarity between the incoming pattern and the S T R F at each point in time. 

This is illustrated in Figure 5.1(d) for an ensemble of 16 S T R F s . This was the 
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Convolution with n fragments (/i = 16 shown). 

Saliency. 

Figure 5.1: Summary of processing stages in the model of sound classification, (a) 
Waveform, (b) SCM (Section 2.3.1. (c) SKV(Section 2.3.2). (d) Response of an en­
semble of STRFs (Section 4.2.6). (e) The summed response of the ensemble used for 
event detection (Section 4.2.6), and (f) The resulting response vectors (Section 4.2.6). 

maximum ensemble size for results in Section 5.4.2 and also the ensemble size for 

the results in Section 5.4.3. 

Event detection and mapping to response space. The same procedure is 

used here as is described in Section 4.3.3. In brief, the selected ensemble of frag­

ments (from Section 4.3.2) represent our candidate S T R F s and each is specified in 

terms of a pattern of onsets and offsets extending over a specified spectral range 

and temporal duration. The response of each to any stimulus, or set of stimuU can 

be calculated by convolving the candidate S T R F s with the S K V representation of 

the incoming sound, thereby generating a 'temporal signature', which indicates 
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the degree of similarity between the incoming pattern and the S T R F s at each 

point in time. The summed response of all S T R F s in the ensemble provides an 

indication of the presence of an acoustic event, the timing and duration of which 

is determined both by the stimulus and by the ensemble used. This process is 

illustrated in Figure 4.3. It is possible for a single stimulus to generate more than 

one such event, but in the experiments described below when this occurred only 

the first event was characterized. 

5.4.1 The analogue artificial neural network. 

Topology. The purpose of the analogue artificial neural network (analogue 

ANN) was to act as a classifier. The architecture of the ANN is shown in Fig­

ure 5.2 and consisted of three layers. The first layer has one input node for each 

element of the response vectors, this is number of S T R F s in the ensemble n^, 

see Section 5.4. In Figure 5.2 = 4 nodes are shown (the results reported in 

Section 5.5.2 use n = 16, and those in next chapter use = 303). The second 

layer consists of pools of five nodes, one pool for each class. Figure 5.2 shows 2 

such pools (there are 11 classes in the results reported in Section 5.5 so 55 nodes 

in 11 pools). These nodes are fully interconnected with the input layer, not all 

connections are shown in the diagram. These nodes have log-sigmoidal transfer 

functions. The third layer consists of one node for each class with connections to 

all of the nodes in the appropriate pool. These nodes are also log-sigmoidal. 

Training and testing. The response vectors derived from all stimuli were 

divided in to three subsets obtained by combining random choices from each of 

the classes. For the training phase two sets were used; the ^training set' (60% of 
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L3, Output 

L2 

L1, Input 

Figure 5.2: The analogue artificial neural network. The input layer at the bottom 
of the diagram consists of one node for each element of the response vector to be 
classified, 4 are shown. The central layer consists of pools of 5 log-sigmoidal nodes 
fully interconnected with the input layer. There is one pool for each class. The 
upper, output layer consists of one log-sigmoidal node per class connected only to the 
appropriate pool. 

stimuli), and the 'validation set' (15% of stimuli). 25% of stimuli were withheld 

for testing in each experiment (the 'test set'). To obtain error bars this process 

was repeated 10 times. Each of the 10 training and validation subsets were used 

to train the network 10 times from random starting weights, hence 100 results 

in total. In all cases the subset population was balanced with respect to the 11 

classes. Each pool of five units in the central layer was trained independently by 

setting the target values in layer 3 to unity or zero depending on whether stimulus 

was a member of the class represented by the pool. 

After training the network was presented with each of the vectors of the test 

set and the class recorded as the number of the output unit with the highest 

value in a 'winner takes all' fashion. These results were used together with the 

known classes of the stimuli to establish a lower bound on the mutual information 
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between the input and output (see Section 4.2.1). 

5.4.2 Generalization. 

First, the generalization capabilities of the proposed approach was investigated, 

and the ability of the model to cope with the natural variability in speech sounds 

considered. Ensembles of STRFs derived from fragments of speech (Section 4.3.1) 

and chosen using the F C B F algorithm(Section 4.3.2) were used to derive response 

vectors from stimuli consisting of spoken digits. The corpus represented over 300 

male and female speakers and used recordings with signal to noise ratios between 8 

and 2bdB. The mutual information between the classifier output and the stimulus 

class was calculated. The results are plotted in Figure 5.4. 

5.4.3 Robustness to time compression. 

It has been shown that for long stimuli thalamo-cortical responses adjust their re­

sponse frequencies to that of the stimulus (Ahissar et al., 2000) making it essential 

that stimuli fall within the effective operational range of these circuits. Evidence 

to support this view has come from the result that poor comprehension of speech 

that has been time compressed appears to correlate closely with the inability of re­

sponses in auditory cortex, as measured using magnetoencephalographic (MEG) 

responses, to 'lock' to the stimulus envelope amplitude and phase (Ahissar et a/., 

2001). We were interested to to see if this effect was visible in our model using 

single word stimuli and response fields of different temporal extents. We repeated 

the generalization results using the same speech stimuli after time compression 

(without distortion of the spectral or pitch content) and compared the results 

with those reported by Ahissar et al (2001) see Figure 5.5. 
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5.5 Results. 

5.5 Results. 

5.5.1 Generalization results. 

In this sequence of experiments fragment lengths were limited to a mfiximum of 

200m5 as this represents the approximate length of a syllable in normal speech, 

and the maximum ensemble size chosen was = 16. Results for large ensemble 

sizes up to HE = 128 were obtained for fragment lengths of lOQms and 200m5 

only and these are shown in Figure 5.3. These show a trend towards smaller 
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Figure 5.3: This figure shows the performance of larger ensembles up to TIE = 128. 
It is clear that the performance continues to improve with ensemble size although the 
performance gain is less for each new member of the ensemble. The decision was 
made to limit the ensemble size to 16 for initial experiments to reduce computational 
overhead, see Section 5.5.1. 

increases in mutual information with increasing UE and so for computational 

convenience UE was limited to 16. The results of preliminary investigations 

comparing fragments ensembles of different sizes, fragments of different temporal 

extents, and fragments from speech and non-speech sources are are shown in 
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Figure 5.4. 

It was found that there is significant mutual information between stimulus 

class and model classification, and that mutual information improves with frag­

ment duration up to 200ms, and with the number of fragments in the ensemble up 

to TLE = 16. This suggests that there is some form of clustering which is robust 

to the variability present in normal speech. Included in these results are data 

from the 'low-entropy' ensembles (see Section 4.3.2) showing that these perform 

less well on generalization. 

In order to discover whether the model was very sensitive to the precise nature 

of the formative stimuli from which the fragments were formed, results from 

ensembles of STRFs derived from the set of environmental noises (Section 4.3.1) 

were derived and once again we trained the system to classify the digit utterances. 

The results, also shown in Figure 5.4, are very interesting. Their performance, 

although lower than that of the speech fragments, is comparable. For example 

in the case of lOOms fragments, not less than 15% lower. This suggests that the 

classification of sounds on the basis of projections into a response space spanned 

by a set of STRFs, is perhaps surprisingly, not very sensitive to the precise 

nature of the receptive fields used. However, the fact that they perform less 

well is consistent with experimental findings (Chang & Merzenich, 2003; Zhang 

et ai, 2001) showing that in an extremely restricted early auditory environment 

the auditory cortex fails to develop properly. This result also establishes the 

^productivity' of the system in that the responses of fragments can be used to 

classify sounds very different from the ones from which they were derived. 
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Figure 5.4: Mutual information between classifier output and stimulus class for frag­
ment ensembles of size 4 (blue). 8 (red) and 16 (black), and varying temporal extent 
(abscissa). This is plotted for both (a) speech and (b) non-speech fragments. Dotted 
line on (a) shows results for 'low-entropy' ensembles of 16. Performance for speech 
fragment is between 15 and 20% better than non-speech fragments. 
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5.5.2 Results with time compressed stimuli. 

Figure 5.5 summarizes the results of the experiments using time compressed 

speech. The upper sub-figure shows that for longer fragments, which perform 

well with un-compressed speech, the performance penalty for compressed speech 

is great. For shorter fragments which perform less well overall their performance 

suffers less as the stimuli are compressed. To make this clear, the data are re-

plotted in the lower sub-figure with the degree of compression in the stimuli rather 

than the fragment length on the abscissa and the best performance normalized 

to unity; the error bars are omitted for clarity. These show that the lOOms and 

50m5 fragments, although they perform less well than the 200ms fragments on 

uncompressed speech, perform best in the 75% and 50% compressed experiments. 

In a recent experiment it was found that speech comprehension measure in human 

psychophysics is quite robust to compression up to about 50% and thereafter de­

grades quickly as time compression increases to 20% (Ahissar et a/., 2001). These 

results are plotted for comparison in Figure 5.5(b) (black line). 

The authors of this work found that whenever the comprehension of time 

compressed speech was degraded so was the phase locking of the speech envelope 

to the cortical response as measured by M E G . One possible explanation for the 

phase-locking could be the degree to which the S T R F s in auditory cortex are able 

to respond to incoming spectro-tempora! patterns, i.e. the observed phase-locking 

may simply be a by-product of the degree of similarity between the STRFs of 

cells in auditory cortex and the spectro-temporal pattern of the sounds. The 

performance of the model in this experiment is consistent with the suggestion 

from the previous chapter that fragments with temporal extent between 50 and 

100ms correlate best with human performance. This is also consistent with the 
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Figure 5.5: Mutual information between stimulus and response class using time com­
pressed speech, (a) Plotted against fragment length and (b) plotted against time 
compression. The 200?//.̂  fragments perform best with uncompressed stimuli but their 
performance drops quickly with successive compressions. The fragments ofUH)ni.^ have 
a performance curve that most closely matches the results of human psychophysics with 
compressed sentences from Ahissar et al. (2001) (solid black line). 
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suggestion that the phase-locking is best within the range of spontaneous and 

evoked cortical oscillations (w 14Hz) i.e. a period of 70ms (Ahissar et a/., 2001). 

5.6 Discussion, 

5.6.1 General. 

In this chapter we based our results on the idea, introduced in the previous 

chapter, of using a convolution as a measure of similarity between a stimulus rep­

resentation and an ensemble of roughly tuned, spectro-temporal detectors. Using 

this approach sounds were represented by the patterns of activity present within 

the ensemble during a time window. The response of the ensemble can be un­

derstood as a projection into a low dimensional space spanned by the outputs of 

the detectors. The ANN classifier serves to label the output as belonging to a 

single class, and hence acts as a mechanism for estimating the lower bound of the 

mutual information between the stimulus and response classes. The transforma­

tion in to low dimensional space may be understood as essentially a second order 

isomorphic mapping, which may be organized in a hierarchical fashion to extend 

to longer duration stimuli. 

Importantly, although performance is robust to the precise choice of filters we 

have proposed, in the previous chapter, a basis for preferring some fragments and 

some ensembles over others. This is based on the entropy of their responses to 

the formative sounds (Figure 4.4) and ensembles that had low entropy responses 

performed poorly (Figure 5.4(a)) in the generalization tests. 

We have also found evidence that, given that the formation of the candidate 

STRFs was stimulus driven, the mutual information between the input and out-
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put classes is greater if the formative stimuli were to some extent representative 

of the sounds to which the system is subsequently exposed. In these experiments 

STRFs were abstracted from a limited set of speech and non-speech sources, how­

ever, because the non-speech sources were quite *rich' (not just tone bursts for 

instance) they still produced significant information preserving representations. 

There is a parallel here with the formation of auditory cortex based on the early 

auditory environment. 

Crucial to the success of this model is the ability to segment the incoming 

stimulus, that is to identify the salient auditory events which provide the basis 

for classification. To achieve this we did not use properties of the signal, or 

properties of the onset sensitive representation of the signal, but properties of the 

response of an ensemble of detectors. This makes the segmentation dependent 

on the choice of detectors and provides a mechanism whereby segmentation can 

become an active part of of the perceptual process under adaptive control and 

has biological implications. 

5.6.2 Biological implications. 

We have, in an earlier chapter introduced the idea of using patterns of activity 

in our ensembles of candidate STRFs to provide a window representing a salient 

auditory event. In this chapter we also use the level of activity in the ensemble 

during this window to characterize this event. This results in features being inte­

grated over a 'context' period (Nelken et a/., 2003) provided by the event window 

and we have shown that this preserves information about the stimulus class. In 

speech some form of segmentation is necessary to match discrete percepts and 

to make speech perception robust to rate variation. In the absence of interfer-
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ence humans can also do this in the presence of cross channel asynchrony (Aral 

Greenberg, 1998) i.e. they are capable of integrating cues identifying speech 

sounds which do not occur simultaneously. This could be as a result of using the 

context period, or window length, provided by an event detection method based 

on the response of a range of auditory feature detectors. It is clear that patterns 

of outputs from STRFs in auditory cortex could be used for event detection, seg­

mentation, and classification by one or more of the many areas of the brain to 

which it is connected. 

It has been reported that the formation of response properties in auditory 

cortex is dependent on the richness of the early auditory environment, (e.g. Zhang 

et a/., 2001), and that the cortex fails to organize effectively if it is subject to 

an impoverished, or aberrant set of stimuli. This could be partly explained if 

the spectro-temporal patterns abstracted during the developmental period are 

based on the formative stimuli themselves. The model results presented here 

suggest that features that provide useful responses to one set of stimuli might not 

generalize so well to stimulus sets that have different statistics. In the extreme 

case of formative stimuli that consist of broadband noise (Chang & Merzenich, 

2003) few features useful in distinguishing a range of ethological stimuli can be 

abstracted. 

The results using time compressed speech stimuli reflect results from human 

psychophysics when features are extracted on time scales of ^ lOOms (Figure 

5.5). This experiment suggests that, as in vision (Ullman et a/., 2002), fragments 

of intermediate extent may be optimal. This temporal extent is intermediate 

in the sense that it falls into an range between phonemes of roughly 40m5 and 

syllables of typically 200m5. It is considerably longer than the acoustic models 
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typically used in automatic speech recognition systems. 

Although it may be true that features extracted on this time scale provide 

robustness to the variation in the stimulus rate, an alternative view is that the 

degree to which our perception is robust to time compression may be limited by 

the extent of STRFs. Rates of spontaneous and evoked cortical oscillations may 

help to explain the psychophysics (Ahissar et a/., 2001) and the temporal extent of 

cortical STRFs by establishing the perceptual time scale on which auditory events 

are identified. Although there is no electrophysiology from humans, STRFs of 

« lOOms are broadly consistent with results from animals such as mice (Linden 

et a/., 2003), rats (Machens et a/., 2004) and ferrets (Fritz et aZ., 2003). 

5.6.3 Future work. 

In pursuing experiments based on patterns of onsets and offsets based on the SKV 

representation we are making a judgement, based on extensive evidence, about 

the predominant nature of sub-cortical auditory processing. However, we have 

not established whether the performance of the system in terms of mutual infor­

mation, or percentage classification, would be better or worse if the same process 

were applied to patterns based on an assumption of tonic firing, i.e. fragments 

of cochleagraphic or short term fourier transform descriptions of the stimulus. It 

has certainly not been established that the energy within a tonotopic region is 

not available beyond the auditory periphery. In this light further effort should 

be made to repeat results using these alternative approaches and to establish if 

performance could improved if a mixture of representations were used in parallel. 

The parallels with results from Ahissar et ai (2001) provide some support­

ing evidence for the hypothesis, introduced in the previous chapter, that useful 
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features of speech may be extracted on time scales of ^ 100ms. However these 

results were gained on isolated utterances and it is clear that in order to support 

this argument fully these experiments should be repeated using continuous speech 

stimuli. 
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Chapter 6 

Multiple, concurrent 

classifications. 

6.1 Overview. 

Principle aims. In this chapter we seek to establish whether the response 

vectors, as derived in previous chapters, can be used with more than one classifier 

to derive multiple class information from a stimulus. We also aim to introduce 

here, as one of the stated aims of this work, results obtained from simulations of 

networks of artificial spiking neurons. 

Motivation. Any model, however simple, of auditory classification (or percep­

tion) must ultimately address the fact that organisms can derive more than one 

type of information from a single stimulus. For a human being listening to speech, 

for example, information is available not only about which words are being used, 

but also additional prosodic information (e.g. is it a question or a statement?) 

and additional information about the speaker (male or female? - large or small?). 
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6.2 *What' pathways in auditory cortex. 

The current hypothesis is that these judgements are handled by multiple 'what' 

pathways and there is evidence to support this. What is not clear is whether our 

representation is capable of supporting multiple classifications. 

Achievements. We show for the first time that the same responses derived 

from ensembles of spectro-temporal feature extractors are capable of supporting 

qualitatively different classifications including those based on pitch track distinc­

tions and spectral profile as well as the more complex spectro-temporal course of 

the stimuli. 

6-2 'What' pathways in auditory cortex. 

Complex sounds can be perceived in a number of qualitatively different ways. 

For example, voice communication conveys information that can be perceived 

independently of verbal content; this includes the speaker's identity, sex, emo­

tional state etc., as well as semantic information such as whether the utterance 

is a question or a statement. Judgements of this type are collectively known as 

Svhat' judgements, that is judgements of class to distinguish them from 'where' or 

localization judgements. These two types of judgement are, it seems, functionally 

segregated in specialized streams for auditory, visual and somatosensory stimuli 

(Alain et a/., 2001; Haxby et a/., 1991; Kaas Hackett, 1999; Pons et a/., 1992). 

There is also evidence to support the idea that different *what' judgements are 

made in spatially separated areas of the brain. It has been observed for example 

that lesions in the right temporo-parietal cortex impair speaker recognition, but 

not speech comprehension (e.g. Lancker et a/., 1989)). Also it has been found 

that although both superior temporal sulci (STS) are responsive to voice stimuli. 
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the right anterior STS is not involved in processing the verbal content of speech 

(Belin et o/., 2000, 2004; Kriegstein et a/., 2003). These results are also consis­

tent with the recent finding, using MEG, that there is differential task-dependent 

modulation of parallel processing maps within the auditory Svhat' pathway in 

phonological and speaker identity classification tasks (Obleser et a/., 2004). In 

this paper results which suggest that extraction of different abstract invariants, 

specifically phonological information and speaker identity, take place in spatially 

separated areas of the neural substrate. The relative activation of these areas 

changes as attention is moved from one task to the other. 

Since essentially all information about the acoustic world entering cortex 

passes through areas of primary auditor}' cortex (PAC), representations in PAC 

must be sufficiently rich to support a wide range of judgements, including iden­

tifying the source and nature of the stimulus. Higher centres in auditory cortex, 

with different functionality, could then subsequently abstract different properties 

for use in various aspects of object classification (Griffiths et a/., 2004). Neverthe­

less, the way in which sounds are represented and processed in primary auditory 

cortex remains controversial (Griffiths et a/., 2004). A significant problem, when 

it comes to understanding the processing of speech, is the lack of any data re­

garding the nature of receptive fields in human PAC. 

It has been shown in Chapter 5 that ensembles of spectro-temporal response 

fields (STRFs) derived from speech stimuli can preserve information about ut­

terance class. In this chapter further experiments on this putative model of 

processing in PAC establish whether the same representation can support multi­

ple, qualitatively different, classifications. It should be stressed that it is not at all 

clear a priori whether such an ensemble of STRFs should be capable of extracting 
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and conveying information useful for speaker identification, sex, or prosody classi­

fication. There is no clear understanding of how humans perform these tasks and 

they are all thought to involve pitch, a feature which is not explicitly represented 

in this model. 

In Section 6.5 we present results obtained using the methods described in 

Chapter 5 and also from a slightly modified approach where the analogue ANN 

classifier is replaced with an ANN that is spike driven. The purpose of this is 

to meet one of the stated aims of the project; to demonstrate that the response 

vectors derived from stimuli using an ensemble of STRFs are suitable for spike 

rate encoding. 

6.3 Methods. 

6.3.1 The spike-Driven Network. 

Response vectors derived from large numbers of stimuli (described in Section 6.4 

below) were divided in to training, validation, and test sub-sets (see Section 5.4.1) 

and supplied to Joe Brader at the Institute of Physiology, University of Bern, 

Switzerland who encoded them as spike trains (Section 6.3.1), trained the net­

work, and returned the output classes of the test set from which the mutual 

information and classification percentage results reported in this chapter were 

calculated. 

The spike-driven network architecture used, described in more detail in Brader 

et al. (2004) and DelGiudice et al. (2003), consists of a single feed forward layer 

in which the input neurons are fully connected to the output layer by plastic 

synapses. Neurons in the output layer have no lateral connections and are sub-
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divided into pools of equal size, each selective for a particular class of stimuli. 

In addition to the signal from the input layer the output neurons receive signals 

from inhibitory and teacher populations. The inhibitory population serves to 

balance the excitation coming from the input layer. The teacher population is 

active during training and reinforces the selectivity of the output pools by means 

of an additional excitatory or inhibitory signal. A schematic view of this network 

architecture is shown in Figure 6.1. 

Teach 

dr d ^ ^ ^ t) ̂  I Input 
Figure 6.1: A schematic view of the spike-driven network architecture. When consid­
ering two classes of stimuli the output units are grouped into two pools each selective 
to a given class. Additional signals are provided by external inhibitory and teacher 
populations. 

Learning within the network is spike driven, and takes place within the synapses 

using information local to each synapse. A novel bistable synaptic model (Fusi, 

2002), designed to ensure memory maintenance on long time scales, while re­

taining sensitivity on short time scales, is used. This model takes advantage of 

the finding that memory capacity can be maximized by making stochastic rather 

than deterministic synaptic transitions (Amit &: Fusi, 1992, 1994; Fusi, 2002). 

If the probability of these transitions is small then only a small fraction of the 
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stimulated synapses is changed upon each stimulus presentation. This extends 

the memory span of the system and prevents it from forgetting previously learned 

memories too quickly. Furthermore, by exploiting the inherent irregularity of the 

input spike trains (Fusi, 2003; Fusi et ai, 2000), stochastic transitions between 

the synaptic states are easily achieved, making the model particularly suitable 

for VLSI implementation (Chicca & Fusi, 2001; Fusi et a/., 2000; Indiveri., 2002). 

The particular synaptic dynamics we employ are designed to be Hebbian with 

an additional stop-learning mechanism which makes synaptic transitions increas­

ingly unlikely if the response of the relevant output neuron becomes either too 

low or too high Fusi (2003) see (see Brader et a/., 2004, for a detailed description 

of the dynamics). Extreme responses are an indication that the output neurons 

have already learned to classify the stimulus, and that it is unnecessary to modify 

the synapses to improve the performance (Senn & Fusi, 2004). This modification 

enables the model to learn highly correlated input patterns. 

Spike rate encoding of response vectors. 

Each stimulus is encoded as a 128 element feature vector within which each 

element is a continuous value, ^ between zero and unity, thus there are 128 

neurons in the input layer. When presented with a stimulus each input neuron 

emits a Poisson spike train at a rate 50^Hz. The output neurons are grouped 

into pools, one for each class, with 10 neurons per pool. Although the output 

neurons will all see the same input patterns, the stochasticity of learning will 

create different representations for each output neuron. A similar technique has 

been exploited in Amit & Mascaro (2001) where the authors use random receptive 

fields. 70% of the dataset was used for training and the remaining 30% for testing. 
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In order to assess the classification performance following training, a fixed 

frequency threshold was defined (the same for all output neurons); an output 

neuron was regarded as active or inactive depending upon whether it fired at a 

mean rate above or below this threshold when presented with a test stimulus. 

The class of the stimulus was then determined by counting the number of active 

neurons within each pool and finding the one which expresses the largest number 

of votes. This network architecture therefore allows for two possible types of error 

when presented with a test stimulus: (i) no output neurons express a vote and 

the stimulus is non-classified or (ii) the wrong output pool expresses the largest 

number of votes and the stimulus is misclassified. Non-classifications are prefer­

able to misclassifications because the network simply expresses no preference and 

leaves open the possibility that such cases could be sent to subsequent networks 

for further analysis or that the stimulus is simply ignored. 

6.4 Stimuli. 

6.4.1 The I S O L E T corpus. 

The data used to obtain the results in this chapter were from the I S O L E T corpus 

of spoken letter names from the Oregon Health and Science University (OGI, 

1999). This consists of ^ 8000 spoken letter names from 150 speakers, male 

and female. These data provided the basis for the digit classification results, 

the male/female classification results, and the question/statement classification 

results (all in Section 6.5). 
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6.4.2 The question/statement manipulation. 

In English the primary cue which distinguishes a question from a statement is the 

pitch trajectory; questions have pitches which rise towards the end of the word 

or phrase, and statements ones which are flat or falling. The I S O L E T corpus 

was pre-processed using PRAAT (Boersma, 2001; Boersma & Weenink, 2005) in 

order to manipulate the pitch tracks and to introduce a question or statement 

prosody. First, a time stretching algorithm was used to ensure that all stimuli 

had a standard duration of bOOms, Next, the pitch tracks were adjusted using; 

^oW =7o- l l +0-3sin(67ri+ a)] 

In this equation Fo{i) is the time-varying fundamental frequency or pitch tra­

jectory of the stimulus and /Q is the mean pitch of the original utterance; for a 

statement, a = 4 and for a question, a = 1. Each stimulus was processed with 

both question and statement pitch tracks, giving ^ 16000 stimuli. The precise 

form of the pitch manipulation was chosen so that we could compare the model 

performance with those of human subjects in a recent psychophysics study (Head 

& Denham, 2004). The results of these manipulations are illustrated in Figure 6.2. 

The standardization of the stimulus length to 500m5 was to ensure that the pitch 

track equation, which is time dependent, produced the same pitch track for all 

stimuli. 

6.4.3 The speaker recognition set. 

The stimuli for this experiment were not drawn from the I S O L E T corpus but from 

a subset of the Speaker Recognition v l . l corpus (OGI, 1996). This consisted of 
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0 0.5 0 0.5 0 

Time (s) 

Figure 6.2: Question/statement processing example, showing spectrograms with pitch 
tracks superimposed in blue. Left: Original utterance (letter 'a', female speaker, mean 
pitch 190 Hz). Centre: Question form. Right: Statement form. The principle difference 
between the spectrograms here is in the periodicity of the signal which is visible only 
in the spacing of the vertical stripes in the spectrogram. 

four speakers, two male and two female, answering questions such as 'What is 

your eye colour?', and 'Where do you live?' with most answers given more than 

once. There are approximately 100 answers for each speaker. Longer answers 

were truncated at two seconds to save pre-processing time. 

6.5 Results 

The results for each of the four experiments using the I S O L E T database classified 

with the analogue ANN and the network of simulated spiking neurons are shown 

in Figure 6.3 in terms of the normalized mutual information as described in 

Chapter 5, and for comparison in terms of correct classification percentage. For 

each result the number of classes ric is also indicated. 

The mean normalized mutual information for letter-names classification using 

the spike-driven network was 0.741. This represents a classification accuracy 
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(i) (ii) (Mi) (iv) 

(a) 

(C) 

60 

Figure 6.3: Results of the three I50LET experiments and speaker identification task, 
(i) ISOLET letter names, (ii) Question/Statement, (Hi) Male/Female, (iv) Speaker 
identity, (a)-(b) Results from the analogue ANN in terms of normalized mutual in­
formation (left) and percentage correct classification (right), (c)-(d) Results from the 
network of spiking neurons in terms of normalized mutual information (left) and per­
centage correct classification (right). Also shown for each result is TIC the number of 
classes. 
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of over 80% which compares favourably with that reported for other machine 

learning algorithms (Yu & Liu, 2003b). Plots of the misclassifications for the two 

classifiers are compared in Figure 6.4, note that because the majority of errors in 

the spiking network results were non-classifications the gray scale in Figure 6.4(b) 

covers a limited range of values to make the misclassifications visible. 

6.5.1 Letter name results. 

Misclassifications. Figure 6.5(a) shows the pattern of experimental misclas­

sifications. These experimental confusions account for less than 6% of the total 

stimulus presentations, but among the most frequent are f-^[lx], r ->i and 

s-¥x which all share an initial phoneme. Some interesting features emerge from 

a comparison of the pattern of experimental misclassifications with the pattern of 

misclassifications from human psychophysics shown in Figure 6.5(b) (Hull, 1973). 

To better compare Figure 6.5(a) and Figure 6.5(b), Figure 6.5(c) is plotted as a 

percentage change of the within-class error rate between Figure 6.5(a) and Fig­

ure 6.5(b). In Figure 6.5(c) white areas represent classes that are not confused by 

the model nor in human psychophysics. Green areas represent agreement between 

the model and the psychophysics as to how easy or difficult it is to distinguish 

the two letters. Red areas are those where the model has more success in dif­

ferentiating the classes, and blue areas are those where humans outperform the 

model. The vast majority of the map is either white or green. 

Red areas (those where the model results compare favourably) are found in the 

d->e, fc->a and v-^[dbep] misclassifications. These pairs are distinguished by 

their initial phonemes. The dark blue areas (those where model results compare 

unfavourably) include r - ^ i , and s->x. These pairs share an initial phoneme. 
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Figure 6.4: Results from letter name classification. NB the much reduced range of 
values covered by the grey scale in 6.4(b) to bring out the detail in the small number 
of misclassifications. 
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It is likely therefore that performance could be improved still further by incor­

porating events other than the first event in each stimulus presentation. Note 

that the I S O L E T database uses Z = 'zee' (US) whereas the experiments in Hull 

(1973) use Z = 'zed' (UK) so the results for this letter name are omitted in this 

comparison. 

P C A analysis of network weights. In order to investigate the contribution 

of each feature to the classification of each of the letters, we performed a principal 

component analysis (FCA) of the neural network weights obtained in each of the 

training sessions. A composite loading vector was obtained for each letter in 

the stimulus set by combining the eigenvectors corresponding to all eigenvalues 

greater than 0.7. The resulting matrix, illustrated in Figure 6.6, shows that 

there is a sparse representation of the data set; with each feature contributing 

significantly to only a few classes, and each class being primarily defined by a 

rather small set of features. This is encouraging as it shows that the F C B F 

fragment selection algorithm successfully chooses features that are de-correlated, 

and also means that the ensemble can in principal encode a very wide range of 

classes. If the weights were not sparse then there would be less room for new 

codings, for new classes, with different patterns of significant contributions. 

6.5.2 Question/statement classification. 

The average correct classification achieved by the model (88%) is comparable 

with the average performance of human subjects (80%) (Head &; Denham, 2004). 

This may seem rather surprising since the classes are defined by the pitch tra­

jectories and the feature ensembles are chosen from a spectro-temporal envelope 

123 



6.5 Results 

(a) Experimental misclassifications us- (b) Confusions from Hull (1973), 
ing the neural network model. 

1 ( X j 

a b c d e f g h i j k l m n o p q r s t 
Stimulus 

(c) Percentage change from Figure 6.5(b) to Figure 6.5(a) 

Figure 6.5: The plot in (c) shows differences between (a) and (b). White: agreement, 
i.e. low levels of misclassifications in the model or in psychophysics. Green: agreement, 
the model and the psychophysics agree as to the confusability of letter names. Red: the 
model finds these distinction easier than human subjects. Blue: The model misclassifies 
where human subjects rarely do. 
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FMkirtnumtMr 

Figure 6.6: Sparse coding of the stimulus set: the image shows the significant con­
tributions of features to each class derived from a PC A analysis of neural network 
weights. 
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representation; pitch is not explicitly extracted in the model. However, on closer 

examination it seems that in the onset/offset representation a rising or falling 

pitch track creates a characteristic pattern of onsets and offsets as the energy 

moves from one frequency channel to another (as illustrated in Figure 6.7) and 

this could allow stimuli from the two classes to be distinguished. To illustrate 

this enhanced diflference Figure 6.8 shows the pairwise summed cross-correlation 

between time slices of stimuli with manipulated and un-manipulated pitch tracks. 

From this diagram it can be seen that there is very little similarity between pairs 

of stimuli in the SKV representation. 

Another important aspect to note is that the mean pitches vary widely across 

the stimulus set, from low male pitches, typically 80Hz to high female pitches 

of » 350Hz, which implies that the representations derived from the projections 

into feature response space support the abstraction of pitch trajectory shape. The 

ability of this model to classify the shape of pitch trajectories in complex sounds 

perhaps sheds some light on the somewhat contradictory data for amusics. In 

a recent experiment it was found that amusics' ability to detect and classify 

continuous pitch changes in sounds was almost as good as that for normals, 

while their ability to detect differences in discontinuous pitch sequences was much 

worse (Foxton et a/., 2004). The result demonstrates that ensembles of STRFs 

similar to those measured in PAC of animals, are capable of classifying pitch 

trajectories which can be represented within a single event. However, recognizing 

a pattern of discrete pitches would require the system to learn the sequence of 

projections of separate events within the feature responses space: a different 

problem involving higher order processing, perhaps the locus of impairment in 

amusics? 
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(b) 

1.4 

(c) 

• 
tm 

(d) (e) (f) 
Figure 6.7: Top row: The letter B, normal, question, and statement. Bottom row: 
each processed using the onset/offset representation. Rising and falling pitch trajecto­
ries are clearly visible in the SKV representation. 
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R - Female speaker, cochleagram 
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R - Female speaker, onsetotfsel representation 
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(a) 

B - Male speaker, cochleagram. 
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B - Male speaker, onseloflset representatkjn 
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^ Q/S 
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Figure 6.8: Showing correlations between pairs of utterance types in different repre­
sentations, (a): 'R'-Female. (b): 'B'-Male. Upper: SCM representation. Lower: SKV 
representation. 
The high points on each line illustrate times when a pair of stimuli are similar. Red. 
the correlation between the origian and the question form (0/Q). Blue, between the 
original and the statement form (0/S). Green, between the question and statement 
form (0/S). Correlations are reduced in the SKV representations. 
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6.5.3 Male/female results. 

Classification success for the male/female discrimination task was ^ 95%, which 

is broadly consistent with data from human psychophysics (eg Whiteside, 1998) 

with a reported mean success of 98.9% in an experiment using short vowel seg­

ments. Since clear diflferences in vocal tract length and vocal tract morphology 

between males and females are known to exist (Fitch & Giedd, 1999), it is per­

haps not surprising that the model was able to perform this classification task. 

Nevertheless, the problem is not trivial as changes in vocal tract length result 

in quite small changes in the positions of formant peaks, and it is necessary to 

detect these in the presence of much larger changes in formant position charac­

terizing the different speech sounds. In a recent P C A analysis of the variability 

of spoken vowel sounds, it was found that 80% of the variability was accounted 

for by differences between vowels, and of the 20% of intra-vowel variability, 90% 

was explained by changes in vocal tract length; i.e. 18% of the total variabil­

ity (Turner & Walters, 2004). The model of vocal tract length ( V T L ) estimation 

presented in that study matched experimental data very well, but was restricted 

to the single vowel sound 'aa'. The current model on the other hand is able to 

learn to classify speaker sex for arbitrary utterances, and as far as we are aware 

may be the first biologically plausible model of voice gender classification. 

6.5.4 Speaker identification results. 

This was the only experiment that did not use the I S O L E T corpus (see 6.4.3). The 

model was able to identify correctly each of the four speakers with an accuracy of 

^ 89% using short segments of randomly chosen utterances. For comparison, in 

the recent study of Obleser et al. (2004) subjects were able to identify two speak-

129 



6.6 Discussion. 

ers with an accuracy of ^ 95%. As the number of speakers in the experiment 

was small the result is only suggestive, but it was achieved in a text independent 

experiment using the same feature extractors as the other experiments reported 

here. This estabHshes, at least in principle, that information about speaker iden­

tity can be preserved in the pattern of responses of such an ensemble, and that 

responses of the same ensemble can be used in parallel for a number of different 

perceptual classifications; as found in the human M E G study for phonological 

and speaker classifications in Obleser et ai (2004). 

6.6 Discussion. 

6.6.1 General. 

These results show that the response vectors support classifications of many dif­

ferent, qualitatively different types. The performance of the system in letter name 

correct classification 80%) may be comparable to other machine learning al­

gorithms (e.g. Yu & Liu, 2003b), and the success in male/female classification 

(Whiteside, 1998) and question/statement distinctions Head & Denham (2004) 

close to results from human psychophysics - but what is important is that these 

results are based on a single set of feature vectors. This is the first time this type 

of concurrent task has been simulated using diverse tasks in a comparable way. 

6.6.2 Biological implications. 

Given that it is widely reported that responses in PAG can, at least to a first 

approximation, be characterized by their spectro-temporal characteristics, it is 

not unreasonable to ask whether an ensemble of spectro-temporal feature extrac-
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tors might provide a representation sufficiently rich to be biologically useful. We 

have shown using biologically plausible pre-processing, a modestly sized ensem­

ble, and a spike-rate encoding, that salient features of the stimulus can be simply 

extracted and used as the basis for judgements that in a living organism would 

be behaviourally relevant. Moreover, the same ensemble can support many qual­

itatively diflferent judgements concurrently. This is consistent with evidence that 

Svhat' processing in auditory cortex can be viewed as a set of parallel processes 

in which concurrent phonological classifications are made in spatially separated 

areas (Obleser et ai, 2004) and implicit semantic processing continues when at­

tention is directed to non-verbal input analysis (Kriegstein et a/., 2003). 

The range of classifications supported by the model includes those distin­

guished primarily by spectral profile (male/female), solely by pitch trajectory 

(question/statement), as well as those characterized by more complex spectro-

temporal relationships (letter-names, speaker identity). The question/statement 

result in particular demonstrates that a representation of pitch change can be ab­

stracted from the output of the system in which there is no explicit representation 

of pitch per se. Furthermore the performance of the model in each of the tasks 

shows some similarities with human psychophysics. One of the strengths of the 

spiking neural network is its ability to provide non-classifications. This implies 

that the characterization of the stimulus by the model using a single event is un­

clear. Such stimuli account for ^ 14% of the test set in the current results; most 

frequently in classes [flams] i.e. classes that are not resolved by their initial 

phonemes. Work is already underway to use subsequent events, when they occur, 

to reinforce the classification judgement raising the probability above the thresh­

old for an unambiguous assignment of class. However, in the first instance the 
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confusions validate the approach inasmuch as they are similar to confusions mea­

sured in psychophysics. If there were no confusions then we may have achieved a 

representation of distinctness but 

a representation whose fidelity is limited to distinctness provides no 
basis for generalization because it does not contain information con­
cerning relations among stimuli (Edelman, 1998). 

In some ways the more confusions exist the better e.g. v->[dbepj provided the 

rank order of similarity is preserved. In the limiting case if all stimuli are similar 

and in rank order of similarity (for a finite number of points in the representational 

space) then the isomorphism is perfect, what Edelman calls a similtude. This 

argument is independent of classification success and mutual information. 

6.6.3 Future work. 

If measures such as classification and mutual information are not the measures of 

success that we want then further work must seek to establish whether the map­

ping of stimulus to response is principled. This is a profound point. The mutual 

information (or normalized mutual information) gives us confidence that our re­

sponse vectors do contain information about the nature of the stimulus. What is 

more important is that these vectors can form the basis of a representation of sim­

ilarity, or second order isomorphism (Shepard & Chipman, 1970) which allows 

generalization and misclassifications that respect the relations among stimuli. 

The pattern of misclassifications then assumes great importance as is implied by 

the quote from Edelmann above and we have, in a preliminary way, moved to­

wards such an analysis in Section 6.5.1. More work needs to be done on the letter 

name misclassifications and it would also be valuable, for exjmiple, to analyze the 
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stimuli, and response vectors to see if those data that resulted in Male/Female 

misclassifications had some features in common, and to conduct psychophysics on 

these stimuli to see if Male/Female misclassifications followed a similar pattern 

in human subjects. 
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Chapter 7 

Concluding discussion 

7.1 A model of auditory processing-

The auditory neural pathway is a complex, dynamic system that starts with the 

imperfectly understood mechanics of cochlear motion and the complexities of 

inner hair cell (IHC) transduction.* The resulting signals propagate through a 

network of recurrently connected neural way-stations culminating in a number 

of 'higher' centres involved in a wide range of behaviourally important judge­

ments about auditory stimuli such as whaty where, how big, how near, and so on. 

The same system, in humans, also serves as the precursor to the perception and 

comprehension of language even though speech appears to differ nnarkedly from 

unsophisticated stimuli such as raindrops on leaves and a twig snapping on the 

forest floor. 

Many years of careful research have shown that the responses typical of various 

^Of course we have to be careful what we mean when we use words like 'starts' in the 
context of system witli efferent connections aplenty at all levels. In this case it is justified by 
the IHCs being part of a mechanical chain of events that can be traced all the way back to the 
stimulus. 
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important parts of this system can be expressed in spectro-temporal terms. In 

this thesis we have endeavoured to take a broad view and to build a model of 

auditory processing and classification based on some of these results and as part 

of this endeavour we have been forced to address a number of important questions 

about auditory processing: 

• Why are peripheral and mid-brain characteristics dominated by transient 

responses? 

• Given that transients are enhanced in the periphery and mid-brain, is i t 

plausible to characterize cortical responses (STRFs) in these terms, i.e. as 

patterns of onsets and offsets? 

• Can we begin to understand, in developmental terms, how STRFs come in 

to being? 

• Are the resulting responses from STRFs rich enough to support a range of 

behaviourally relevant judgements? 

In addition there are some additional questions more closely linked to the model 

itself: 

• Can we reconcile the fast changing nature of auditory stimuli with the 

hypothesis that responses are spike-rate coded? 

• Can we identify 'salient' parts of stimuli which might form the basis of a 

quasi-stationary stimulus response? This might consist of a series of discrete 

events. 
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• Is the response derived from within the salient window information bearing, 

i.e. can i t be used as the basis for a classifier as a model of perceptual 

categorization? 

The 'success' of the current project is, therefore, to be judged not only in terms 

of the performance of the model but by the insights which may have been gained 

in to the answers to all of these questions. 

T h e success o f the model . In the process of addressing the questions outlined 

above we have developed a novel 'test-bed' system that functions as a universal 

auditory classifier. The formation of the representation is stimulus driven on the 

basis of patterns found in fragments of a limited number of 'formative' stimuli. 

Results suggest that these patterns can be rated for there usefulness on the basis 

of the entropy of their responses to these stimuli. We have used this rating, and a 

selection procedure based on information theoretic principles to derive an ensem­

ble of spectro-temporal patterns that is a model of the range of STRFs found in 

cortical electrophysiology. This process can be automated and involves very few 

free parameters, principally used to control the eventual size of the ensemble (n^) 

for the purposes of computational convenience. The selected ensemble was then 

used to support a stimulus driven asynchronous event detection method based 

on coherence of the response across the whole ensemble. The responses of each 

member of the ensemble was then used to derive a vector that characterized the 

stimulus when used as the input to a classifier. This simple method of producing 

a response vector as a quasi-static view of the salient part of a time varying stim­

ulus proved to be successful. We have used the responses to successfully classify 

a speech corpus in a number of diverse ways, including by the sex of the speaker 
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which we believe to be an entirely novel result. 

The system is a 'test-bed' as each part of i t , preprocessing, feature selection, 

response generation, salience detection, and classifier, can be freely exchanged 

with others to test alternative methods and compare hypotheses on the basis of 

results. 

The role of transient responses in the periphery and mid-brain. We 

have shown in Sections 2.4.2 and 2.5.1 that the SKV representation compresses 

the dynamic range within each frequency channel and whitens the spectro-temporal 

representation with respect to the cochlear response. Both of these results have 

parallels in studies of the responses of neurons in the visual system (Atick & 

Redlich, 1992) and de-correlation, or redundancy reduction, has been proposed 

as a strategy for cortical processing (e.g. Barlow &; Foldiak, 1989). I t is inter­

esting to note from the results in Chapter 2 that a white-noise stimulus has a 

highly correlated cochlear representation which is profoundly whitened by the 

SKV representation. I t could be, therefore, that in addition to other possible 

roles for transient sensitivity in the larger strategy, its utility may also lie in com­

pensating for the correlations inevitably introduced by mechanical transduction 

in the cochlea. 

Transient sensitivity also has an impact on the *sparseness' of the response. 

Taking speech stimuli as an illustrative example, they are highly modulated in 

both time and frequency, and consequently areas of high energy in the spectro-

temporal representation are relatively few. However, areas of fast energy change, 

as identified by the SKV representation, are considerably fewer and are separated 

by gaps (see Figure 2.3) representing the short periods of relatively unchanging 
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energy within a frequency channel. These oflfer 'glimpses' of any interfering stimuli 

which may aid auditory figure-ground separation (Cooke, 2003). 

Results in Section 2.4 also indicate a differential response for sounds having 

different distributions of spectro-temporal modulations, precisely because both 

types of modulation produce within-channel energy transients. This may be 

related to, and may even be a partial explanation of, results reported by Schnupp 

et ai (2005) which indicate preferences in cortical responses to different classes 

of noise. In addition the results also show that the patterns of transients 

exhibited by speech stimuli are not greatly disrupted when mixed with non-

preferred noise interference, even at low signal to noise ratio (SNR). This may 

shed some light on why SNR is, by itself, such a poor predictor of intelligibility 

of speech in noise, or speech mixed with other interfering signals (Brunghart &; 

Simpson, 2002; Cooke, 2003). 

The ability of the model to predict interference effects has already yielded 

preliminary results (Denham & Coath, 2005) and there is much scope here for 

further investigation. 

Spectro-temporal responses in terms of transients. As is discussed in 

Chapter 3 the characterization of cortical and mid-brain responses as linear ker­

nels derived from reverse correlation with spectrographic, or cochleagraphic rep­

resentations has yielded some interesting results. In many cases, however, these 

kernels fail to predict the response to novel stimuli, and the degree to which they 

fail depends strongly on the sounds used in the experiment (Machens et ai, 2004). 

This is precisely what we would expect i f peripheral processing of the sound pro­

foundly altered the spectral and temporal envelopes found in the sub-cortical 
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representation available to cortical units. 

We have established that STRFs obtained by reverse correlation with tran­

sient sensitive spectrograms, are plausible in that they are, as we would expect, 

consistent those derived from the cochleagraphic representation for a limited class 

of stimuli. The stimuli used in the collection of the data presented in this work 

(random chord stimuli) are not rich enough in the range of modulations they 

contain to expose differences. We predict that measurements wi th parametric 

stimuli designed to explore onset sensitivity may lead to kernels that better pre­

dict responses to novel stimuli and may help to explain the cortical preference for 

stimuli with different spectral and temporal envelope statistics (Schnupp et a/., 

2005). 

In addition, our results show that at least some energy derived STRF esti­

mates are inconsistent with first spike latencies in that they predict a maximum 

in response at St = 0, whereas the corresponding estimates based on the SKV 

representation are broadly consistent with the experimental latency data. This 

result demands further investigation. A great many STRF estimates in the pub­

lished literature are obtained by pooling spikes in bins of up to 20ms. I f these 

linear kernels predict that the maximum excitatory regions are in the first bin 

then the minimum latency is obscured and this could be hiding an important 

piece of evidence. 

T h e ontogeny of S T R F s . I t has been reported that the organization of au­

ditory cortex is affected by formative stimuli (e.g. Zhang et a/., 2001) and that 

reorganization of cortical responses can continue in to adult life to reflect the 

nature of the auditory environment (Wang, 2004). I t seems possible therefore 
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that when seeking the spectro-temporal patterns (equivalent to 'preferred stim­

uli ' Hubel & Wiesel, 1962) to which auditory neurons are sensitive, that these 

may be found in the stimuli themselves. Our experiments have shown that the 

response of a candidate STRF, or feature extractor, can be judged more or less 

'interesting' with respect to a limited number of formative stimuli based on the 

entropy of its response. We have also tried to optimize, in some sense, response 

of an ensemble by ensuring that responses of each element are uncorrelated, thus 

reducing the overall redundancy. These principles form a basis for preferring one 

STRF over another, and also for preferring one ensemble of STRFs over another, 

and as a consequence they form the basis for a developmental pressure. Impor­

tantly for this argument we have shown that the exact choice of STRF geometry 

is not critical, at least when dealing with a limited number of formative stimulus 

classes. This allows for gradual optimization from a sub-optimal, or random, set 

of responses. We have also shown that if the formative stimuli are sufficiently 

rich then the resulting ensemble responses are productive, i.e. they are suitable 

for a wide range of stimuli of disparate types, not just those that are similar to 

the formative stimulus set, see Section 5.5.1. 

On a different level, the argument about the ontogeny of STRFs has led us 

to develop and introduce a novel way in which an artificial system might select 

features of a set of stimuli that are useful in classification. These features can be 

formed on the basis of patterns found in the stimuli themselves. We have also 

shown that these features, even if selected from a limited set of formative stimuli, 

are productive in the sense that they can be useful in classifying a much wider 

range of sounds. This is true if the additional stimuli are statistically similar to 

the formative stimuli, but also, although to a lesser extent, i f they are not. 
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A u d i t o r y salience. Auditory stimuli change continuously. However there are 

discrete percepts associated with them. This is a difficulty for any model of 

auditory perception. Part of the answer may lie in results that suggest that 

perception and classification require integration over relatively short time scales 

around those parts of the signal that exhibit change (Furui, 1986). The SKV 

representation introduced here emphasizes change (Section 6.5.2) and our exper­

iments show that STRFs of 100ms duration or less have properties which make 

them desirable, at least for speech stimuli in that they have a higher response 

entropy than other fragment lengths (Figure 4.4), their performance reflects hu­

man psychophysics with compressed stimuli (Figure 5.5), and the information 

theoretic selection procedure shows a preference for features with best temporal 

modulations of « lOHz. This provides the temporal context. The response of 

an array of transient pattern detectors therefore can be viewed as an indication 

of auditory salience which allows the stimulus to be viewed as a series of quasi-

stationary salient states that can be represented as a response vector and can be 

spike rate coded. This novel approach was an important and necessary step for 

the hardware implementation project of which this work forms a part, but i t may 

also provide some insight in to neural auditory processing. 

The 'salience window' in the current model is based on the presence of a 

coherent response across the ensemble of feature detectors. This provides an 

asynchronous, stimulus-ensemble driven event detector which triggers a read-out 

of the population response pattern within a time window. The length of this 

window is determined by the duration of the coherent ensemble response and the 

result is a short time scale context for the extraction of a pattern of responses that 

characterizes a distinct auditory event. These events are likely to be represented 
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by population responses which, because of the time window and the asynchronous 

read-out, are not likely to bear a simple relationship to the temporal structure 

of the stimulus. I t has been suggested that this type of post-primary cortical 

processing might be found in the planum temporale (Griffiths & Warren, 2002) 

where responses that are not closely coupled to the time course of the stimulus 

do occur (Steinschneider et a/., 1999). We have used the summed response of our 

ensembles and a simple threshold to define the salience window and this approach 

has proved f ru i t fu l . However, in future work i t may be that some other property 

of the ensemble response, such as the entropy, may prove to be a more effective 

indicator of salience. We have shown that the response vectors derived from the 

salience window contain information about a wide range of classes in to which 

the stimulus might fall, and that i t is plausible that they could form the basis of 

perceptual categorizations (Section 6.5). 

Classif icat ion based on onset sensitive kernel responses. As stated in 

Section 6.2 there is no reason to assume in advance that the quasi-static, rate 

coded, response of a limited number of STRFs would contain sufficient informa­

tion about the stimulus to allow its classification in a number of disparate ways. 

We have shown response vectors derived in this way do contain enough infor­

mation for multiple, concurrent, behaviourally relevant classifications in speech 

stimuli despite the 'bottlenecks' imposed by the preceding processing stages of the 

model. Our hypothesis is that the vectors, when used as the input to a classifier, 

form the basis of a ^representation of similarities' (Edelman, 2002) mapping the 

distal stimulus space to a low dimensional proximal vector space that preserves 

the distance between adjacent representations is in some way related to their 
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similarity. We have shown that such mappings are possible for a variety of sim­

ilarities depending on the view taken of the stimuli. The range of classifications 

supported by the model (Section 6.5) includes those distinguished primarily by 

spectral profile (male/female), solely by pitch trajectory (question/statement), 

as well as those characterized by more complex spectro-temporal relationships 

(letter-names, speaker identity). The question/statement result in particular 

demonstrates that a representation of pitch change can be abstracted from the 

output of the system in which there is no explicit sense of pitch per se. Further­

more, the performance of the model in each of the tasks shows some similarities 

with human psychophysics. This is the first time, as far as we are aware, that a 

model of auditory classification has reported success in male/female classifications 

that is close to that reported in human psychophysics. 

I t has been reported that different perceptual categories are processed in dis­

tinct areas of auditory cortex anterior to PAC (consistent with the Svhat' path­

way) and also distinct from regions involved in decisions that are correlated with 

reaction times (Binder et ai, 2004). I t is possible that there is competition 

between these perceptual judgements which is subject to a task-dependent at-

tentional bias originating in other cortical areas. The aspect that is attended to 

is the one most likely to be task-relevant. This is consistent with evidence that 

'what' processing in auditory cortex can be viewed as a set of parallel processes 

in which concurrent phonological classifications are made in spatially separated 

areas (Obleser et ai, 2004) and implicit semantic processing continues when at­

tention is directed to non-verbal input analysis (Kriegstein et ai, 2003). 
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7.2 Epilogue. 

Around the year 400, the man later known as St. Augustine of Hippo wrote: 

Deus Creator omnium: this verse of eight syllables alternates between 
short and long syllables .. .1 affirm this and report it, and common 
sense perceives that this indeed is the case. ... But when one sounds 
after another, if the first be short and the latter long, how can I hold 
the short one and how can I apply it to the long one as a measure, so 
that I can discover that the long one is twice as long, when, in fact, 
the long one does not begin to sound until the short one leaves off 
sounding? That same long syllable I do not measure as present, since 
I cannot measure it until it is ended; but its ending is its passing away. 
What is it, then, that I can measure? ... / could not do this unless 
they both had passed and were ended. Therefore I do not measure 
them, for they do not exist any more. Bui I measure something in my 
memory which remains fixed (Augustine of Hippo, c.400). 

This is a profound point that has resonances throughout the field of auditory 

science. The question of how we come to have internal representations of any­

thing, objects, rhythm, meaning, class, etc. is still not at all well understood in 

any field. In auditory science there is the further complication that the stimuli 

are often fleeting. Augustine's answer is, surely, plausible at least. I t is not, he 

says, from a perceptual point of view, the stimulus that has t iming or rhythm 

..I do not measure them ...'). Rather i t is the rhythm of the stimulus that 

evokes a memory of previous similar rhythmic experiences , . something in my 

memory which remains fixed. 

This interpretation is very close to the idea of the 'representation of similari­

ties' drawn on in Chapter 5 of this work. A neural representation of similarities is 

a sort of memory, but not one that is evoked by a narrow class of closely related 

stimuli, which would be a representation of similarities. To be useful, all stimuli, 

even completely novel stimuli, have to map to some point in this representational 
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space. In this way Augustine would be able to spot the short-long-short-long 

(iambic) pattern in languages he could not understand, and in Irish dance music 

as well as the familiar patterns of devotional Latin verses. 

On this basis, i t could be argued that the primary role of sensory coding is 

to ensure that similar stimuli are perceived as similar^ independent of volume, 

interference, pitch changes, and so on. But the number of ways a sound can be 

interpreted is very large, i.e. i t can be mapped to more than one similarity space. 

Sensory coding must support these multiple mappings and features that do not 

contribute to the separation are likely to be de-emphasized 

But not all stimuli are equal. Those that are most important are those most 

likely to be encountered, particularly during the early developmental phases, 

and those that form the basis of behaviourly important judgements. I t is to 

be expected then that as a secondary role of sensory processing i t wil l have a 

preference for such stimuli, maximizing the information transmission in these 

cases. I t is possible that the results presented in this work may help to provide 

insights as to how both of these ends are achieved. 
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Appendix A 

Psychophysics using stimuli 

re-synthesized from onsets. 

A . l Abstract. 

Onsets extracted from the time varying output of a model of cochlear responses 

on a channel by channel basis can be used to reconstruct experimental stimuli 

that retain intelligibility (for speech samples) or features which allow sounds to 

be correctly classified in psychophysical experiments. 

These onsets are extracted by calculating the skewness of a distribution de­

rived from output of each channel of the cochlear filter bank. The output is 

divided in to windows, the lengths of which are varied with the period of the 

central frequency of each filter. 

The experimental stimuli are reconstructed from the onset data by replacing 

each onset with a shaped tone burst of uniform maximum amplitude at the central 

frequency of the filter. The length of the tone burst is in accordance with analysis 
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A.2 Cochlear model. 

of repeated period noise experiments and autocorrelation models of neural pitch 

extraction (Wiegrebe, 2001). The envelope of the tone burst ramps gently up­

wards from a non-zero floor and more gently downwards to the same minimum 

level. This minimizes onset and offset transient effects. In keyword recognition 

experiments subjects were able to identify up to 50% of the key words from stimuli 

derived from onset information alone. 

A.2 Cochlear model. 

The model adopted for this work is based on Michael Slaney's equivalent rectan­

gular bandwidth (ERB) filter bank in his M A T L A B auditory toolbox (Slaney, 

1994). This is a model of the response of the basilar membrane and is based on 

independent gammatone bandpass filters as suggested by Patterson et ai (1992). 

The design of these filter banks is based on psychoacoustic measurements of 'cri t i­

cal bands', indeed Slaney uses the terms ERB and 'critical band' interchangeably. 

Beyond an approximation of the critical bands the model also includes half 

wave rectification of the output of each bandpass filter. This approximates the 

response of the inner hair cells (IHC). More complex models of IHC response, 

such as the MeddisHairCell routine available in the auditory toolbox, include 

automatic gain control, adaptation, and onset sharpening. A l l of these factors 

are, in this work, dealt with by subsequent processing. 

A.3 Neural pitch extraction. 

The time constants used as parameters for feature extraction and re-synthesis 

are based on work by Wiegrebe (2001). This work examines the strength of the 
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perceived pitch in samples of repeated period noise. Comparing this perceived 

pitch strength with a running summary autocorrelogram of the same waveform 

Wiegrebe concludes that 

The current data strongly suggest that the temporal window of pitch 
extraction depends on the pitch itself, i.e. the minimal integration 
time is longer for lower pitches. Qualitatively useful results were ob­
tained with the time constant being fixed at 2.57ns for correlation lags 
smaller than or equal to 1.25ms and the time constant being twice the 
correlation lag for periods larger that 1.25ms (Wiegrebe, 2001). 

A.4 Skewness and onsets. 

For this work the outputs of the filters used in the cochlear model were treated 

as independent of each other. The output from each was divided in to time 

windows the length of which varied with the centre frequency of the filters. The 

minimum window size was 2.5ms for centre frequencies of 800Hz and above and 

for frequencies below 800//2 the size of the window was twice the period of the 

centre frequency. Each window was then normalized and the skewness of the 

distribution within the window calculated (Figure A . Id ) . Skewness is a measure 

of how symmetrical the 'tails' of are distribution are. I t is the third central 

moment of the distribution calculated from Equation A . l 

The skewness data was further processed to produce data that represented the 

rising and falling of each peak in each of the spectral bands. Areas of skewness 

that represented an increase in energy were assigned a value of + 1 , and those 
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A.5 Re-synthesis. 

that represented a decrease in energ>' were assigned a value of-1. Values less 

than 5% of the maximum skewness were assigned a value of zero. This process 

identifies regions of rising. faUing. and approximately constant output from the 

filter bands. The onset times were taken to be the positions of the first rise in 

energ>' of any group. 

Figure A . l : The various stages from original to re-synthesized waveform. Spectro­
grams of both are included for comparison. NB. the spectrograms are plotted on a 
vertical axis that is linear, whereas the outputs of the cochlear model are plotted on a 
non-linear vertical axis. 

A.5 Re-synthesis-

To produce experimental stimuli it was necessary to re-synthesize sounds from 

the extracted features. This re-synthesis is illustrated in Fig A . l . Figs A. 1(a) and 

(b) show the waveform and spectrogram of the original sound ('I would forget'), 

(c) shows the output of the cochlear filter bank, (d) the skewness extracted from 

each filter band, (e) shows areas of onset (red) and offset (blue), (f) shows onsets 

only, (g) shows how the first instance of each group of onsets has been replaced 
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with a shaped sine wave pulse, (h) and (i) show the waveform and spectrogram 

of the reconstructed sound. 

The durations of the pulses used to re-synthesize the experimental stimuli from 

the position of the onsets are controlled by a time constant which can be varied 

by the experimenter. The shortest pulse in these experiments, for frequencies 

over SOOHz is 2.5ms. Below SOQHz the length of the pulses is twice the period. 

A 2.5m5 burst of sound represents a very short pulse indeed which is perceived 

as a 'click' at most frequencies. The stimuli prepared for the experiments were a 

selection of 100 sentences with lengths varying from three to eleven words (average 

5.3 words) were chosen at random.* Examples showing obscure or archaic English 

usage were rejected. These stimuli were then re-synthesized using the method 

described above, using a number of different time constants. The resulting sound 

files were used as the basis of the psychophysical experiments (see below). 

A.6 Experiments. 

E X P E R I M E N T 1. Five subjects were chosen from native English speakers. After 

a short orientation session in which subjects were provided with on-screen text 

feedback, each was asked to listen to the fifty sentences presented in a variety 

of different orders and re-synthesized using the shortest time constant. Their 

responses were typed on a touch sensitive screen and compared with a list of words 

in the sentence to give a 'percentage of words correct' score for each response. 

Subjects were not limited in the number of times they could listen to the stimulus 

but were encouraged to move on quickly if they could not recognise any of the 

words. After a short rest the experiment was then repeated using the longer time 

Mostly from the Oxford Concise DictioiiEiry of Quotations. 
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constants. 

E X P E R I M E N T 2, The second set of experiments used a different subset of 

the prepared stimuli. Each subject was presented with sets of sixteen or twenty 

sentences. The sentences were presented only once in each set and results were 

collated from subjects that had listened to a minimum of three sets. The stimuli 

in each set were drawn equally from each time constant group and each sentence 

was presented only once. 

A.7 Results. 

Experiment 1. Figure A.3 shows the performance of the group in identifying 

key words in the example sentences. The results show that a significant number of 

keywords can be identified from the re-synthesis using the shortest time constant. 

The percentage of words identified correctly increases as the time constant for the 

Figure A.2: Onset re-synthesis, individual performance 1. 

re-syntheses increases with the greatest difference between the first and second 

group. Figure A.2 shows that the results of the individual subjects mirror those 

of the whole group. 
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Figure A.3: Onset re-synthesis, Group performance 1. 

Experiment 2. The results are shown in Figure A.4. These exhibit a similar 

pattern of results to those in Experiment 1. 

Figure A.4: Onset re-synt/ies/s, Group performance 2. 

A.7.1 Discussion 

The results indicate that at the shortest time constant which is in line with that 

suggested by Wiegrebe (2001) as a minimum for neural pitch extraction, it is 

difficult for subjects to extract information from the spoken stimuli, although 10% 

of the words in the sentence were still correctly identified. As the time constant 

increases, the ratios between successive performance figures closely follows the 
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ratio between successive time constants. This could indicate that the recognition 

of words from onsets only becomes easier as the onsets become more clearly tonal. 

There is a great deal of analysis yet to be done which may throw light on 

which features of the original sounds are being preserved, and which of these are 

most useful in identifying words. The re-synthesis method preserves much of the 

rhythm of the sentence but in addition, the longer time constant stimuli preserve 

pitches within the frequency bands. 

A.8 Percussive stimuli. 

Subjects were first asked to listen to a variety of percussive sounds generated 

with different materials and told by the experimenter to which categories they 

belonged. This was continued until the subjects were happy that they could hear 

the differences in the original recordings. 

Subjects were then presented with each re-synthesized stimulus once only 

and asked to assign each to one of three categories in a forced choice experiment. 

After a short rest the experiment was then repeated using the second, longer, time 

constant and so on for all five sets of re-syntheses. The results of the preliminary 

trial using stimuli re-synthesized from percussive stimuli are shown in Figure A.5. 

These results show the aggregate responses for all subjects. In this diagram the 

correct categories run horizontally and the responses run vertically; as a result the 

correct responses are on the lower-left to upper-right diagonal. The circles have 

an area which is proportional to the number of responses and the time constants 

are represented by colours in rainbow order (Red, Yellow, Green, Blue, Violet). 

Circles anywhere other than in the lower-left to upper-right diagonal represent 

153 



A.8 Percussive stimuli. 

Figure A.5: Aggregate performance, all subjects, for percussive stimuli. 

incorrect responses. 

A,8.1 Discussion. 

The largest circles are placed on the diagonal indicating correct classification but 

there are a large number of misclassifications. Of particular interest are: 

Ceramic misclassified as metallic. These increase with time constant. A 

possible explanation is that peoples expectation of ceramic percussive noises 

is less tonal than their expectation of metallic percussive noises. 

Ceramic misclassified as wooden. The significant group of ceramic samples 

misclassified as wooden at short time constants decreases rapidly at long 

time constants. This is perhaps consistent with people's expectation that 

wooden percussive sounds will be shorter and less tonal than ceramic per­

cussive sounds. 

Wooden misclassified as ceramic. There are a group of wooden samples mis­

classified as ceramic, which is of a similar size for all time constants. 
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Nomenclature 

Acronyms, abbreviations and symbols. 

Car The stimulus-response cross-correlation, see Section 3.3.1 Page 52, The Csr 

can be shown to be equivalent to *the spike triggered average' (STA) (The-

unissen et ai, 2001). 

Cas The stimulus autocorrelation, see Section 3.3.1 Page 52. 

Cxy The correlation between two vectors f and y, see Section S.S.lCxy is defined 

as {x • y^) i.e. the expected, or mean value of the outer product of x and 

the transpose of y over a series of values. Depending on the dimensions of 

X and y this can result in a matrix, vector, or scalar. 

nc The number of nominal classes in to which a group of stimuli fall. For 

example in experiments using letter names as the class label then nc = 26. 

Section 4.3.1, Page 77. 

HE The size of the ensemble of spectro-temporal filters used to derive the 

response to a stimulus. Section 4.2.5, Page 76. 

SU Symmetrical uncertainty, an information-theoretic measure of correlation (Yu 

& Liu, 2003b). Section 4.3.2, Page 81. 
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A.8 Percussive stimuli. 

Tsu In the F C B F selection algorithm this is the minimum value of the sym­

metrical uncertainty (SU) below which a fragment is not considered for 

inclusion in an ensemble. This parameter controls the number of fragments 

considered and indirectly the number of fragments chosen. Section 4.3.2, 

Page 82. 

ABR Auditory brainstem response. Section 2.2.2, Page 15. 

ANN Artificial Neural Network. Section 5.2, Page 94 

BTM Best temporal modulation. Section 4.4, Page 88 

E R B Equivalent rectangular bandwidth. Section 2.3.1, Page 17 

F C B F Fast correlation based filter (Yu & Liu, 2003b). Section 4.3.2, Page 80 

F F T Fast fourier transform. Section 3.5, Page 65 

I C Inferior colliculus. Section 2.2.1, Page 12. 

MGB Medial geniculate body of the thalamus. Section 2.2.1, Page 12. 

PAG Primary auditory cortex. Section 2.2.1, Page 14 

PCA Principle component analysis. Section6.5.1, Pagel23. 

PRAAT This is a large, sophisticated suite of software tools developed by Paul 

Boersma and David Weenink at the Institute of Phonetic Sciences, Uni­

versity of Amsterdam, for (among many other things) manipulating and 

synthesizing acoustic stimuli. Section 6.4.2, Page 118. 

RMS Root mean square value. Section 2.4.2, Page 27. 
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SCM Simple cochlear model. The model of cochlear response implemented in 

MATLAB taken from Slaney (1994). Section 2.3.1, Page 17 

SKV Skewness in variable time. Section 2.3.2, Page 19. 

SNR Signal to Noise Ratio. Section 7.1, Page 138. 

STA Spike triggered average, in reverse correlation experiments. This can be 

shown to be equivalent to the stimulus response cross correlation or Car (The-

unissen et a/., 2001). Section 3.4, Page 53. 

S T R F Spectro-temporal (or spatio-temporal) response field. Section 1, Page 5. 

VCN Ventral cochlear nucleus. Section 2.2.1, Page 12. 
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Abstract Models of auditory processing, particularly of 
speech, face many difficulties. Included in these are variabil­
ity among speakers, variability in speech rate, and robustness 
to moderate distortions such as time compression. We con­
structed a system based on ensembles of feature detectors 
derived from fragments of an onset-sensitive sound represen­
tation. This method is based on the idea of *spectro-temporal 
response fields' and uses convolution to measure the degree 
of similarity through time between the feature detectors and 
the stimulus. The output from the ensemble was used to de­
rive segmentation cues and patterns of response, which were 
used to train an artificial neural network (ANN) classifier. 
This allowed us to estimate a lower bound for the mutual 
information between the class of the input and the class of 
the output. Our results suggest that there is significant infor­
mation in the output of our system, and that this is robust 
with respect to the exact choice of feature set. time compres­
sion in the stimulus, and speaker variation. In addition, the 
robustness to time compression in the stimulus has features 
in common with human psychophysics. Similar experiments 
using feature detectors derived from fragments of non-speech 
sounds performed less well. This result is interesting in the 
light of results showing aberrant cortical development in ani­
mals exposed to impoverished auditory environments during 
the developmental phase. 

1 Introduction 

How sounds are represented in auditory cortex is still unclear. 
The prevailing view of visual object classification is that the 
visual system is organized hierarchically and it is within this 
hierarchy that features of increasing complexity and spatial 
extent are analyzed. In this context, it has been shown that 
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visual fragments of intermediate complexity and intermedi­
ate extent are optimal for the classification of visual objects 
(Ullman et al. 2002). An analogous hierarchical organization 
in auditory cortex has not yet been identified, and the rep­
resentations employed in auditory cortex are poorly under­
stood (Nelken et al. 2003). We were interested to discover 
whether acoustic fragments of intermediate spectral and tem­
poral extent might similarly be useful for the classification of 
auditory events, and whether such fragments could be derived 
from natural sounds. 

A popular method for characterizing the response fields of 
cortical cells is the speclro-temporal response field (STRF). 
e.g.(Kowalskietal. l996a,b;deCharmsctal. 1998; Depireux 
et al. 2001; Theunissen et al. 2001; Miller and et al. 2002; 
Elhilali et al. 2004). Some time ago it was shown how reverse 
correlation in response to white noise could be used to char­
acterize STRFs (Aert.sen and Johannesma 1981), and this 
approach has been extended allowing STRFs to be derived 
from natural stimuli (Theuni.s.sen et al. 2001; Miller and et 
al. 2002). In principle, given an assumption of linearity, the 
response of a cell to a novel stimulus can be predicted by 
convolving its STRF with a spectro-temporal representation 
of the stimulus. Although the linearity assumption has been 
called into question (Bar-Yosef et al. 2002), and seems to be 
stimulus-dependent (Machens et al. 20O4), STRFs can often 
predict neuronal responses very well (Elhilali et al. 2004) and 
this representation of a cell's response field can provide valu­
able in.sights into the factors influencing neuronal behaviour. 

There is a great deal of evidence to show that the auditory 
system is interested in change (Phillips et al. 2002), or spec­
tral and temporal edges' (deCharms et al. 1998). In addition, 
it has been shown that a model based upon derivatives of the 
stimulus envelope can successfully account for many aspects 
of neural and perceptual respon.ses to amplitude transients 
(Fishbach et al. 2001). Here, we use a representation which 
emphasizes changes in the stimulus envelope, such as onsets 
and offsets, and de-emphasizes unchanging activity. To do 
this, we extract the short-term third-order moment or skew-
ness' of the signal within each frequency channel. In this 
model, the term STRF refers to a spectrogram-like response 
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lield consisting ol the short-lemi skewness within a ningc 
of frequency channels; a form of higher-order spectrogram 
(Nikias andAthina 1993). 

In what sense can an ensemble of STRFs represent a 
sound? A useful way of thinking about this problem first pro­
posed by Shepard (Shepard and Chipman 1970), and later 
elaborated by Edelman (Edelman 1998). is in terms of a sec­
ond-order isomorphic mapping from the physical world to 
the response space. This is a different and far more powerful 
representation than the more commonly used first-order iso­
morphism in which a stimulus is represented in terms of its 
similarity to some prototype. In a second-order isomorphic 
mapping, all that is required is that the similarities between 
stimuli in the world are preserved in the similarities between 
their projections into the low-dimensional space spanned by 
the outputs of a small number of roughly tuned detectors. As 
Edelman stresses, this is a representation of similarity, not 
by similarity. The convolution of an STRF with an incoming 
sound can be interpreted as a measure of the similarity be­
tween that sound and the response field. So, in principal, any 
sound can be positioned in the response space spanned by an 
ensemble of STRFs. The question is whether the similarities 
in the physical world are pre.served in this projection, and to 
what extent the mapping is robust to the variability inherent 
in natural sounds. 

It has recently been shown that sounds experienced during 
an early critical period influence the organiiuition of primary 
auditory cortex and the response fields of cortical cells (Zhang 
et al. 2001. 2002). It has previously been suggested (Terhardt 
1974) that the perception specifically of pitch might be influ­
enced by development. However, the work of Mer/-enich and 
colleagues has suggested that a broad range of useful neu­
ronal response fields might develop through experience of 
a limited number of environmental sounds. In humans, an 
important source of early acoustic experience is speech, but 
the number of speakers and words heard in early life are 
likely to be rather limited. Therefore, an important aspect of 
the proposed representation is that it is 'productive', in the 
sense that it is possible to represent a novel class within the 
response space. All that is required to do this is that the projec­
tions from exemplars of the novel class cluster appropriately 
within the response space. As a putative model of cortical 
processing, this is important since it is obviously necessary 
to be able to leam to classify novel sounds after the critical, 
plastic period of development. 

In summary, our investigations were aimed at addressing 
the following questions. Can useful response fields be denved 
from fragments of a limited number of sounds? What size of 
acoustic fragment, in terms of spectral and temporal extent, 
is best for classification? Can the responses of an ensemble 
of fields be understood in terms of a second-order isomor­
phism between stimulus class and ensemble response? Can 
the ensemble response convey significant information with 
respect to stimulus class? In order to address these questions, 
we used speech data, partly because of the overwhelming 
importance of speech for human audition, (analogous to that 
of faces for vision) and partly because the classification of 

speech is far better understood than that of other sounds. We 
used a speech database containing a large number of exam­
ples of a small number of classes (words). Response fields 
were constructed from acoustic fragments of varying tem­
poral and spectral extent extracted from the utterances of a 
single speaker. These response fields were then convolved 
with utterances from a large number of different speakers, 
and the mutual information between the ensemble response 
and actual stimulus class was characterized. 

2 Method 

I he model, whose operation is illustrated in Fig. I . consists 
of six principal processing stages: spectral decomposition, 
extraction of envelope transients, convolution using a bank 
of STRFs. event detection, mapping to response space, and 
classification. 

2.1 Spectral decomposition 

The first stage approximates processing in the cochlea. Sounds 
are processed using a bank of 24 Gammatone filters (Slaney 
1994). with centre frequencies, ranging from 100 Hz to ~ 
4000 Hz arranged evenly on an ERB scale (Glasberg and 
Moore 1990). The output in each frequency channel is low-
pass filtered, half wave rectified, and compressed using a 
sigmoidal function (Eq. I ) ; 

> = ' - ( , + e x p - l ( l / 2 - . r ) ) -
where x is the input (the instantaneous energy in a filter chan­
nel ). V the compressed output, and a a constant which con­
trols the degree of compression. We used a = 1, which pro­
vides moderate compression (between 2:1 and 6:1) for mod­
erately high values of x. 

2.2 Transient extraction 

The next stage of processing enhances envelope transients 
within each frequency channel, as is found in the subcor­
tical auditory system (Phillips et al. 2002). In this simple 
model, we do not consider the extraction of any other acous­
tic features. The mean level of activity within each channel 
is calculated in overlapping temporal windows of duration 
twice the period of the centre frequency but with a minimum 
window size of 2.5 ms at high frequency (Wiegrebe 2001). 
The overlap for all experiments was set to 10% of the win­
dow duration. The skewness. of the distribution of energy 
across four successive windows is then calculated; 

(2) 

where N is the number of windows, Xj is the energy in the 
7th window, x is the mean, and a is variance. Short-term 
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Fig. I A summary of the key processing stages in the model. See Sects. 2.1 to 2.5 

Response vectors 

skewness is a sensitive indicator of rising and falling energy 
and has a value near zero when the energy is approximately 
unchanging, as illustrated in Fig. 2. One advantage of cal­
culating energy distributions within short time windows is 
that of a rapidly adapting threshold, and hence a roughly 
level independent representation (Phillips ei al. 2002). Fur­
thermore, the maximum skewness is locked to the onset of 
the transient and its timing depends upon the dynamics of 
the onset envelope, as found expenmentally (Heil 1997). 
In effect, this processing amounts to edge detection in the 
temporal domain and the result is a spectro-temporal map 
of envelope transients in response to the processed sound 
as illustrated in Fig. Ic. Furthermore, the growth of shon-
term skewness depends on the dynamics of the transients, 
and varies with the maximum rate of change and acceler­
ation in a way which is consistent with neural behaviour 
(Heil and Irvine 1997). Specifically, the latency at which 
the integrated short term skewness exceeds some threshold 
can be related to the maximum acceleration (for cos' ramps) 
or to maximum rate of change (for linear ramps) in a way 
which is very similar to the first spike latencies measured in 
auditory cortex (Heil and Irvine 1997; Heil and Neubauer 
2001). 

2.3 Convolution using a bank of STRFs 

Each STRF is specilied in terms ol a pattern ol onsets and/or 
i)llscis extending over a specilied spectral range and duration 
Each member of the en.semble is convolved with the transient 
incoming sound pattern, thereby generating a 'temporal sig­
nature', which indicates the degree of similarity between the 
incoming patiem and the STRF at each point in time; as 
illustrated in Fig. Id for an ensemble of 16 STRFs. 

2.4 Event detection and mapping to response space 

The response of all STRFs in the ensemble (Fig. le) provides 
an indication of the presence of an acoustic event, the timing 
and duration of which is determined both by the stimulus and 
by the ensemble used. These events are detected on the scale 
of tens of milliseconds and this is distinct from the short time 
scale event detection such as that used by Irino et al. (2005) 
to identify glottal pulses and hence aid the estimation of the 
fundamental frequency. The stimulus-ensemble-driven event 
detection results in a method of segmentation where audi­
tory events are marked by coherence in the response of the 
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ensemble and not wholly by properties of the stimulus. In 
these experiments, we summed the output of the ensemble 
and recorded the maximum response of each STRF within 
the pericxl during which the summed response exceeded a 
threshold value (20% of the maximum). The result is a vec­
tor dcfming a point in the N-dimensional space spanned by 
the responses of the N STRFs (Fig. 10- It is possible for a 
sound to generate more than one such event, but in the experi­
ments described below when this ( K c u r r e d only the first event 
was classified. 

2.5 Classification 

In order to assign a class to each response, we trained 11 
separate ANN cla.ssiliers each with N inputs (where N was 
the ensentble s i ^ ) . five hidden units, and t)ne output unit. 
Log-sigmoidal units were used for hidden and output nodes. 
For each training, the data were divided 70, 15, and 15% in to 
training, validation, and test sets, respectively. We employed 
early stopping based on the validation set lo avoid over-fitting. 
The output from each of the 11 classifiers formed the input to 
a winner-take-all stage, which assigned the stimulus to a class 
based on the classifier with the highest output. Although (he 
ANN formed no part of the model, it provided a convenient 
way to estimate the mutual information between the stimulus 
class and the response by assigning each response a class. In 
order to measure the effectiveness of the model, we quanti­
fied the mutual information l{S\ R) between the classes of 
the stimuli S and the classifications made by the ANN; these 
can be thought of as the 'responses' /?; 

10' 10' 10' 10° 10' 10' 10' 

Max slope of linear envelope 

Linear ramp. 

FiR. 2 a An example of tfie shon-term skewness in response to nsing 
and falling cos* ramp. b. c) The latency of mtcgrated shon-tcrm skew­
ness depends on envelope shape in a very similar way to that measured 
experimentally (Heil 1997) 

(3) 

where P(s\r) is the conditional probability of the stimulus 
class 5 given the response class r . P(s) is the probability 
of class s, and < • • • >r represents the average over the 
(unconditional) response distribution (Golomb et al. 1997). 
It is important to note that we are not characterizing the mu­
tual information between the stimulus and the response, but 
between the class of the stimulus and the class of the response. 

3 Fragment extraction 

In order to explore the possibility that the formation of STRFs 
may be bootstrapped by fragments of activity patterns in re­
sponse to acoustic stimuli, several libraries of fragments de-
nved from small sets of sounds were created. The first set 
contained samples of a single speaker saying each of the 
numerals; one', *two' . . . 'nine', *Oh', and 'Zero* making 
11 classes. The second set consisted of eleven non-speech 
sounds such as environmental noises (wind and rain, bird 
and frog calls) and some mechanically or electronically pro­
duced sounds (engine noise, dialling telephones, colliding 
pool balls). From each of these sets, four separate libraries 
of fragments, with durations 10, 50, 100, and 200 m, were 
created. Fragments within each library were either 4, 8, 12, 
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16, 20, or 24 frequency bands wide. See Fig. 3 for examples 
of speech and noise fragments. 

In contrast to Ullman et al. (2()02), we did not seek to opti­
mize the fragment choices with respect to the set of all stimuli. 
As the basis for a decision as to which fragment ensembles 
were likely to perform better, random ensembles of 2, 4, 8, 
and 16 fragments were generated (5(X)0 of each) and the 
entropy ( / / ) of each of their responses to the 11 stimuli from 
which they were drawn was calculated. The entropy gives 
some measure of how 'interesting' the response is (Dayan 
and Abbot 2001), and we want to keep only those ensem­
bles that are maximally 'interesting'. Entropy is calculated 
based on the log of the probability of a response, - log P(r), 
averaged over all responses (Eq. 4). 

H = -Y,P[r]\o%^P[r]. (4) 
r 

Distributions of the entropy of random ensembles con­
taining 2,4,8, and 16 fragments from each of the four speech 
fragment libraries of varying temporal extent are shown in 
Fig. 4. The entropy values are divided into seven bins, the 
rightmost bin representing ensembles with the most inter­
esting responses, i.e. those with entropies of ~ l og2 ( l l ) 
(3.46bits). Ensembles from the highest and lowest entropy 
bins were saved for subsequent comparison (see Sect. 4.1). It 
is interesting to note that there is a slight bias towards lOO-ms 
fragments in the higher-entropy bins. 

4 Experiments 

4.1 Generalization 

We first investigated the generaliz.ation capabilities of the 
proposed approach, and considered the ability of the mtxlel 

to cope with the natural variability in speech sounds. The re­
sponses of ensembles of speech-derived STRFs were tested 
using utterances from over 300 male and female speakers, 
using recordings with signal-to-noise ratios between 8 and 
25 dB. l l i e mutual information between the classifier output 
and the stimulus class was calculated. The results are plotted 
in Fig. 5. We found that there is significant mutual infor­
mation between the stimulus class and model classilication, 
and that mutual information improves with fragment dura­
tion, and with the number of fragments in the ensemble. This 
suggests that there is some form of clustering which is ro­
bust to the variability present in normal speech. Included in 
these results are data from the 'low-entropy' ensembles (see 
Sect. 3) showing that these perform less well on generaliza­
tion. 

In order to discover whether the model was very sensitive 
to the precise nature of early experience, we used ensembles 
of STRFs derived from the .set of environmental noises de­
scribed previously and once again trained the system to clas­
sify the digit utterances from a large number of speakers. The 
results, also shown in Fig. 5, are very interesting, for although 
these fragments convey less information, they nevertheless 
do rather well. This suggests that the classification of sounds 
on the basis of projections into a response space spanned by 
a set of STRFs is, perhaps surprisingly, not very sensitive to 
the precise nature of the receptive fields used. However, the 
fact that they perform less well is consistent with experimen­
tal findings (Zhang et al. 2001; Chang and Merzenich 2003) 
showing that in an extremely restricted early auditory envi­
ronment the auditory cortex fails to develop properly. This 
result also establishes the 'productivity' of the system in that 
the responses of fragments can be used to classify sounds 
very different from the ones from which they were derived 
(see Discussion, Sect. 5). 
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4.2 Robustness to time compression a 

Finally, we considered the robustness of the STRF response to 
time compressed speech. The results are plotted in Fig. 6. We 
were interested to discover whether the performance of the 
model would parallel that shown in human psychophysics. In 
a recent experiment, it was found that speech comprehension 
in people is quite robust to compression up to about 50* and 
thereafter degraded substantially (plotted in Fig. 6b) (Ahissar 
et al. 2001). This work was interesting in that it showed that 
speech comprehension could be predicted by the degree of 
phase locking between cortical activity measured by MEG 
and the temporal envelope of the speech. One explanation for 
the phase locking could be the degree to which the STRFs in 
auditory cortex are able to respond to incoming spectro-tem-
poral patterns, i.e. the observed pha-se locking may simply be 
a by-product of the degree of similarity between the STRFs 
of cells in auditory cortex and the spectro-temporal fxittem 
of the sounds. An interesting aspect of the model's perfor­
mance is that it suggests that fragments with temporal extent 
between 50 ms and 100 ms correlate best with human perfor­
mance. This is consistent with the suggestion that the phase 
locking is best within the range of spontaneous and evoked 
cortical oscillations ( ~ 14 Hz) (Ahissar et al. 2(K)1). 

5 Di.vcu.vsion 

We have built a simple representation of sounds based on an 
onset-, or change-sensitive measure. The change detection is 
level independent, as the skewness measure provides a rapid 
adaptive level adjustment. Change is also detected indepen­
dently within each frequency channel of the cochlear model. 
For this reason, it does not rely on synchrony across many, 
or all, channels to characterize an onset; this allows us to use 
different time scales in each channel, and to detect onsets that 
occur in a narrow spectral domain. The result is a response 
which is not only independent of signal level but is also inde­
pendent of the differences in energy between channels (the 
spectral profile), which is charactenstic of the cochlear stage 
of the model. The method is robust to noise of any type that is 
stationary within the time constant of the band within which 
it is present. 

Using convolution as a measure of similarity between this 
representation of the stimulus and an ensemble of roughly 
tuned, specu-o-temporal detectors, sounds were represented 
by means of patterns of activity within the ensemble. The 
response of the ensemble can be understood as a projection 
into a low-dimensional space spanned by the outputs of the 
detectors. Our ANN classifier serves to demonstrate that this 
isomorphism is not arbitrarily complex and, by labelling the 
output as belonging to a single class, to act as a mechanism for 
estimating the lower bound of the mutual information. The 
transformation into low-dimensional space may be under­
stood as essentially a second-order isomorphic mapping -
which may be organized in a hierarchical fashion to extend 
to longer duration stimuli. 
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Importantly, although performance is robust to the pre­
cise choice of fragments, there is a basis for preferring some 
ensembles over others i.e. the entropy of their responses to 
the formative sounds (Fig. 5). This provides a developmental 
pressure for the refinement of the ensemble choice that does 
not require experience of the complete set of all possible 
stimuli. Our ensembles were generated randomly but in sub­
sequent work (not reported here) using a larger set of forma­
tive classes, we have established that ensembles may perform 
better if composed of fragments whose individual responses 
to the formative classes is of intermediate (neither high nor 
low) entropy. We found that, given that the formation of the 
candidate STRFs was stimulus driven, the mutual informa­
tion between the input and output classes was greater if the 
formative stimuli were to some extent representative of the 
sounds to which the system is subsequently exposed. There 
is a parallel here with results which show that the forma­
tion of the auditory cortex is dependant on the richness of 
the early auditory environment, e.g. (Chang and Merzenich 
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2003; Zhang et al. 2001). In our experiments. STRFs were ab­
stracted from a limited set of speech and non-speech sources; 
however, because our non-speech sources were quite rich (not 
just tone bursts for instance), they still produced significant 
information preserving representations. 

Crucial to the success of this model is the ability to seg­
ment the incoming stimulus, that is to characterize the audi­
tory events which provide the basis for classification. To 
achieve this we used properties, not of the signal, or the on­
set sensitive representation of the signal, but properties of the 
response of an ensemble of detectors. This makes the segmen­
tation dependant on the choice of detectors and provides a 
mechanism whereby segmentation can become an active part 
of audition under conscious or attentive control. In speech, 
some form of segmentation is necessary to distinguish dis­
crete percepts and to make speech perception robust to rate 
variation. In the absence of interference, humans can do this 
in the presence of significant 'cross channel asynchrony' 
(Arai and Greenberg 1998) and are al.so capable of integrating 
cues identifying speech sounds which do not occur simulta­
neously (Buss et al. 2003). This implies that there is a window 
during which almost-synchronous events are grouped. Using 
pattems of activity in our candidate STRFs to provide this 
window results in features being integrated over a 'context' 
period (Nelken et al. 2003) of typically 200-350 ms. Pattems 
of outputs from STRFs in Al could be used for event detec­
tion, segmentation, and object identification by one or more 
of the many areas of the brain to which it is connected. 

Our results using time-compressed speech stimuli closely 
parallel human psychophysics when features are extracted on 
time scales of ~ 100 ms (Fig. 6). This experiment suggests 
that, as in vision (Ullman et al. 2002), fragments of inter­
mediate extent may be optimal. In auditory processing, this 
may be because they provide robustness to the variation in 
the stimulus rate; alternatively the degree to which our per­
ception is robust to time compression may be limited by the 
extent of STRFs. One hundred milliseconds is considerably 
longer than the acoustic models typically used in automatic 
speech recognition systems, and falls into an intermediate 
position between phonemes of roughly 40 ms and syllables 
of typically 200 ms. Rates of spontaneous and evoked cortical 
oscillations may help to explain the psychophysics (Ahissaret 
al. 2001) and the temporal extent of cortical STRFs by estab­
lishing the perceptual time scale on which auditory events 
are identifi^. Although there is no electrophysiology from 
humans, STRFs of - 100 ms are broadly consistent with 
results from animals such as mice (Linden et al. 2003). rats 
(Machens et al. 2004), and ferrets (Fritz et al. 2003). 
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Multiple views of the response of an ensemble of 
spectro-temporal features support concurrent 
classification of utterance, prosody, sex and speaker 
identity 
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Abstract 
Models of auditory processing, particularly of speech, face many difficulties. These difficulties include 
variability among speakers, variability in speech rate and robustness to moderate distortions such as 
time compression. In contrast to the 'invariance of percept' (across different speakers, of different sexes, 
using different intonation, and so on) is the observation that we are sensitive to the identity, sex and 
intonation of the speaker. 

In previous work we have reported that a model based on ensembles of spectro-temporal feature 
detectors, derived from onset sensitive pre-processing of a limited class of stimuli, preserves significant 
information about the stimulus class. We have also shown that this is robust with respect to the exact 
choice of feature set. moderate time compression in the stimulus and speaker variation. Here we extend 
these results to show a) that by using a classifier based on a network of spiking neurons with spike-driven 
plasticity, the output of the ensemble constitutes an effective rate coding representation of complex 
sounds: and b) that the same set of spectre-temporal features concurrently preserve information about 
a range of qualitatively different classes into which the stimulus might fall. We show that it is possible for 
multiple views of the same pattern of responses to generate different percepts. This is consistent with 
suggestions that multiple parallel processes exist within the auditory 'what' pathway with attentional 
modulation enhancing the task-relevant classification type. 

We also show that the responses of the ensemble are sparse in the sense that a small number of 
features respond for each stimulus type. Tliis has implications for the ensembles' ability to generalise, 
and to respond differentially to a wide variety of stimulus classes. 

Keywords: Auditory transients, spectro-temporal responses, auditory cortex, models, multiple 'what' 
pathways 

Introduction 

Complex sounds can be perceived in a number of qualitatively different ways. For example, 
voice communication conveys information that can be perceived independently of verbal 
content: this includes the speaker's identity, sex. emotional state etc., as well as semantic in­
formation such as whether the utterance is a question or a statement. Since most information 
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about the acoustic world entering cortex passes through primary auditory cortex (PAC). rep­
resentations in PAC must be sufficiently rich to support a wide range of judgments, including 
identifying the source and nature of the stimulus. Higher centres in auditory cortex, with 
different functionality, could then subsequently abstract different properties for use in var­
ious aspects of object classification (Griffiths & Warren 2004). This idea is consistent with 
results showing that verbal and non-verbal analysis of stimuli are handled in parallel by dif­
ferent areas of cortex (Kriegstein el al. 2003). It is also consistent with the recent finding, 
using M E G , that there is differential task-dependent modulation of parallel processing maps 
within the auditory 'what' pathway in phonological and speaker identity classification tasks 
(Obleser et al. 2004). 

Nevertheless, the way in which sounds are represented and processed in primary audi­
tory cortex remains controversial (Griffiths & Warren 2004). A significant problem, when 
it comes to understanding the processing of speech, is the lack of any data regarding 
the nature of receptive fields in human PAC. However, data describing spectro-temporal 
response fields (STRFs) in cortex and midbrain of animals (Escabi & Schreiner 2002; 
Linden et al. 2003) is available and it would seem plausible that there are similarities 
across species. In previous work (Coath & Denham 2005). we have shown that ensem­
bles of S T R F s derived from speech stimuli can preserve significant information about 
utterance class. The S T R F s were derived from fragments of an onset/offset enhanced 
representation of a very limited set of utterances. We then investigated the information 
transmitted by this representation using a speech corpus containing utterances from a wide 
variety of speakers. The results showed that the preservation of class information was ro­
bust with respect to the exact choice of feature set. moderate time compression in the 
stimulus and speaker variation. We found, as for vision (Ullman et al. 2002), that en­
sembles of fragments of intermediate spectral and temporal extent conveyed most class 
information. 

Here, we extend our investigations of this putative model of processing in PAC, by con­
sidering firstly, whether the same representation can support multiple qualitatively different 
types of classification, and secondly, whether the representation provides a suitable basis 
for spike train encoding so that a network of biologically plausible spiking neurons with 
synaptic plasticity (Del Giudice et al. 2003) could learn to recognise and classify acoustic 
stimuli. It should be stressed that it Is not at all clear a priori whether such an ensemble 
of S T R F s should be capable of extracting and conveying information useful for speaker 
identification, sex or prosody classification. There is no clear understanding of how humans 
perform these tasks and they are all thought to involve pitch, a feature which is not ex­
plicitly represented in this model. Here we adopt a similar approach to our previous work 
(Coath & Denham 2005) but extend the classifications of the stimuli to encompass utter­
ance class, sex. speaker identity and prosody: all classified on the basis of exactly the same 
representation. 

Methods 

The mode! 

The model, whose operation is illustrated in Figure 1, consists of three principal processing 
stages: spectral decomposition, extraction of envelope transients and convolution using a 
bank of S T R F s . This is followed by event detection which leads to a mapping of each event 
to a response space, and subsequent classification. The stages are described in detail in 
(Coath & Denham 2005). 



Multiple views of STRF ensemble response 287 

(c) 

\\\ 

E l I 2 0 . I 24 

Convolution with n fragments (/» = 16 shown). 
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Event detection r Response vectors 

Figure 1. Stages of the process: The waveform (a) is processed by a cochlear model (b) and the within-channel 
envelope transients extracted (c). For each element in the ensemble of STRFs (ensemble size 16 illustrated) a 
time-varying response (d) is derived using a convolution of each S T R F with (c). The output of the ensemble is 
segmented using the derived temporal saliency map (e). This results in a series of response vectors (0-

Spectral decomposition. The first stage approximates processing in the cochlea. Sounds are 
processed using a bank of 30 Gammatone filters (Slaney 1994). with centre frequencies, 
ranging from 100 to ~8000 Hz arranged evenly on an E R B scale (Glasberg & Moore 1990). 
see Figure lb. 

Transient extraction. The next stage of processing enhances envelope transients within each 
frequency channel. Responses of this type have been reported in the subcortical auditory sys­
tem (Phillips et al. 2002) including the cochlear nucleus. The mean level of activity within 
each channel is calculated in overlapping temporal windows of duration twice the period 
of the centre frequency but with a minimum window size of 2.5 ms at high frequencies 
(Wiegrebe 2001). The overlap for all experiments was set to 10% of the window duration. 
The third central moment, or skewness of the distribution of energy across four successive 
windows is then calculated. In effect this processing amounts to edge detection in the tem­
poral domain and the result is a spectro-temporal map of envelope transients in response to 
the processed sound as illustrated in Figure Ic . This approach is in some ways similar to 
onset/offset detection by means of a convolution with an asymmetric kernel (Smith 1996: 
Fishbach et al. 2001). 

Convolution using an ensemble of STRFs. Each S T R F in the ensemble is specified in terms of a 
pattern of onsets and/or offsets extending over a specified spectral range and duration. Each 
member of the ensemble of n S T R F s is convolved with the pre-processed incoming signal. 
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thereby generating a set of n temporal signatures', which indicate the degree of similarity 
between the incoming pattern and the S T R F at each point in time. This is illustrated in 
Figure Id for an ensemble of 16 S T R F s . In the experimental results that follow, 128 S T R F s 
were used. 

Event detection and mapping to response space. The summed response of all S T R F s in the en­
semble (Figure Id) provides an indication of the presence of an acoustic event, the timing and 
duration of which is determined both by the stimulus and by the ensemble used. Analysing 
the ensemble response in this way and looking for a coherent response across the whole 
ensemble, amounts to a boitom-up temporal saliency map providing 'interesting locations 
in complex scenes' (Einhusel & King 2003). This results in a method of segmentation which 
is not only stimulus driven but also detector driven', i.e., salient auditory events are marked 
by coherence in the response of the ensemble and not wholly by properties of the stimulus. 
In these experiments, we summed the output of the ensemble and recorded the maximum 
response of each S T T ^ within the period during which the summed response (Figure le) 
exceeded a threshold value (20% of the maximum). The result is a vector defining a point In 
the n-dimensional space spanned by the responses of the /? S T R F s (Figure 10 - It is possible 
for a sound to generate more than one such event, but. in the experiments described below, 
when this occurred only the first event was classified. 

Classifiers 

Analogue classifier. In order to assign a class to each response, we trained an artificial neural 
network (ANN) classifier each with n inputs (where n was the ensemble size). 7 hidden units 
and one output unit for each class. Log-sigmoidal units were used for hidden and output 
nodes. For each training, the data were divided 70%, 15% and 15% into training, validation 
and test sets, respectively. We employed early stopping based on the validation set to avoid 
over-fitting. The output vector from the network formed the input to a winner-take-all stage 
which assigned the stimulus to an output class based on the classifier with the highest output. 

Spike-driven network. The spike-driven network architecture we consider, described in more 
detail in Del Giudice et al. (2003) and Brader et al. (2005). consists of a single feed forward 
layer in which the input neurons are fully connected to the output layer by plastic synapses. 
Neurons in the output layer have no lateral connections and are subdivided into pools of 
equal size, each selective for a particular class of stimuli. In addition to the signal from 
the input layer, the output neurons receive signals from inhibitory and teacher populations. 
The inhibitory population serves to balance the excitation coming from the input layer. The 
teacher population is active during training and entrains the selectivity of the output pools 
by means of an additional excitatory or inhibitory signal. A schematic view of this network 
architecture is shown in Figure 2. 

Learning within the network is spike driven, and takes place within the synapses using 
information local to each synapse. A novel bistable synaptic model (Fusi 2002), designed to 
ensure memory maintenance on long time scales, while retaining sensitivity on short time 
scales, is used. This model takes advantage of the finding that memory capacity can be maxi­
mized by making stochastic rather than deterministic synaptic transitions (Amit & Fusi 1992, 
1994: Fusi 2002). If the probability of these transitions is small then only a small Traction 
of the stimulated synapses is changed upon each stimulus presentation. This extends the 
memory span of the system and prevents it from forgetting previously learned memories too 
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Teach 

Figure 2. A schematic of the spike-driven network architecture. When considering two classes of stimuli the output 
units are grouped Into two pools each selective to a given class. Additional signals are provided by external Inhibitory 
and teacher populations. 

quickly. Furthermore, by exploiting the Inherent irregularity of the input spike trains (Fusi 
et al. 2000; Fusi 2003). stochastic transitions between the synaptic states are easily achieved, 
making the model particularly suitable for V L S I implementation (Fusi et al. 2000; Chicca 
& Fusi 2001; Indiveri 2002). The particular synaptic dynamics we employ are designed to 
be Hebbian with an additional stop-learning mechanism which makes synaptic transitions 
increasingly unlikely if the response of the relevant output neuron becomes either too low or 
too high (Fusi 2003.) (see Brader et al. 2005) for a detailed description of the dynamics). Ex­
treme responses are an indication that the output neurons have already learned to classify the 
stimulus, and that it is unnecessary to modify the synapses to improve the performance (Senn 
& Fusi 2004). This modification enables the model to learn highly correlated input patterns. 

The spike-driven classifier is implemented as follows. Each stimulus is pre-processed using 
128 S T R F responses, and encoded as a 128 element feature vector within which each element 
is a continuous value, ^ between zero and unity, thus there are 128 neurons in the input 
layer. When presented with a stimulus each input neuron emits a Poisson spike train at a rale 
50 ^Hz. The output neurons are grouped into pools, one for each class, with 10 neurons per 
pool. Although the output neurons will all see the same input patterns, the stochasticity of 
learning will create different representations for each output neuron. A similar technique has 
been exploited in Amit and Mascaro (2001) where the authors use random receptive fields. 
70% of the dataset was used for training and the remaining 30% for testing. 

In order to assess the classification performance following training, a fixed frequency 
threshold is defined (the same for all output neurons): an output neuron is regarded as ac­
tive or inactive depending upon whether it fires at a mean rate above or below this threshold 
when presented with a test stimulus. The class of the stimulus is then determined by counting 
the number of active neurons within each pool and finding that which expresses the largest 
number of votes. This network architecture therefore allows for two possible types of error 
when presented with a test stimulus: (i) no output neurons express a vote and the stimulus 
is non-classified or (ii) the wrong output pool expresses the largest number of votes and the 
stimulus is misclassified. Non-classifications are preferable to misclassifications because the 
network simply expresses no preference and leaves open the possibility that such cases could 
be sent to subsequent networks for further analysis or that the stimulus is simply ignored. 

Measuring performance 

In order to measure the effectiveness of the model, we quantified the mutual infor­
mation /(S; between the classes of the stimuli 5 and the outputs of the classifiers. 
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these can be thought of as the 'responses' R. The mutual information is calculated from 
Equation 1: 

/ ( S : ^ = ( X : ^ W r ) l o g 2 [ : ^ ] ) ^ (1) 

where P(s\r) is the conditional probability of the stimulus class s given the response class r, 
P{s) is the probability of class s, and ( - )r represents the average over the (unconditional) 
response distribution (Golomb et al. 1997). It is important to note that we are not character­
ising the mutual information between the stimulus and the response, but between the class of 
the stimulus ^nd the class of the response. As the maximum mutual information, /max depends 
on the number of classes M, 

Imzx = log2(A4 (2) 

in order to compare results from experiments with differing numbers of classes the results 
are given as a percentage of the maximum mutual information, the normalised mutual in­
formation Nf. 

(3) 

Ensemble selection 

Using the method described earlier, we can derive the response' of any candidate feature 
extractor to a small set of formative classes. In order to combine these features into an 
ensemble of manageable size we need a measure of'goodness' which selects the 'best' feature 
and allows us to add further features to the ensemble in such a way that their responses are not 
redundant. Essentially the aim is to select a set of features which convey as much information 
with respect to stimulus class as possible, whilst at the same time ensuring that their mutual 
information is minimised, i.e.. a feature is 'good' if its response is highly correlated to the 
class vector but not to the responses of other features in the ensemble. The problem of feature 
selection, therefore, can be reduced to finding a suitable measure of correlations between 
features, and between features and classes. 

We have adopted a feature selection procedure based on the Fast Correlation Based Fil­
ter ( F C B F ) (Yu & Liu 2003) which uses an information-theoretic correlation measure. 
The method starts with a feature which is highly correlated to the class vector (normally 
the most correlated feature) and removes all 'redundant peers' of this feature. T h e cho­
sen feature is designated a 'predominant feature'. This is then repeated with the most 
highly correlated feature remaining and so on. For our experiments, we take the first n 
features selected rather than let the process come to a conclusion. This selects one pre­
dominant feature, and the n-1 features that are successively less informative of the classes, 
but maximally de-correlated from the previous choices. The F C B F selection was per­
formed 10 times starting from different random positions within the top 50 rated frag­
ments. In Experiment 1 (letter classification) (see Results) we used all ten ensembles, 
but in the subsequent experiments we used only the best performing ensemble from this 
set. 

The properties of the features comprising the best performing ensemble were analyzed 
in order to compare them to S T R F s measured experimentally. We used the same analysis 
procedures as described in Miller et al. (2002) in order to calculate the best frequency 
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Figure 3. Distributions of the chiaracteristics indicated across the ensemble of selected fragments. 

( C F ) . bandwidth (BW). sharpness of tuning (Q). best spectral modulation (BSM) and best 
temporal modulation (BTM). We also calculated the spectrotemp)oral asymmetry or non-
separability {QSVD) index (Depireux et al. 2001). The results, illustrated in Figure 3, are 
broadly consistent with experimental findings in animals (Depireux et al. 2001; Miller et al. 
2002). Of particular interest is the measure of separability, since, given the prominence 
of formant transitions in human speech, it may have been expected that S T R F s with much 
higher cisvD scores would have been selected. Clearly this is not the case, and the distribution 
across the ensemble is not very dissimilar from that in ferrets (Depireux et al. 2001); see 
Figure 4. 
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Figure 4. Distribution of asvD ^''^ examples of separable and inseparable fragments: see Figure 13 of Depireux 
et al (2001) for comparison. 
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Stimuli 

The ISOLET and male/female sets 

The stimuli consist of =^8000 spoken digits (150 speakers, male and female) contained in the 
I S O L E T database (OGI 2002a). The same data were used in the male/female classification 
experiment. 

The question/statement set 

In British English, the primary cue which distinguishes a question from a statement is the 
pitch trajectory; questions have pitches which rise towards the end of the word or phrase, 
and statements ones which are flat or falling. The I S O L E T corpus was pre-processed using 
P R A A T (Boersma & Weenink 1996) in order to manipulate the pitch tracks and to introduce 
a question or statement prosody. Firstly, a time stretching algorithm was used to ensure 
that all stimuli had a standard duration of 500 ms. Next, the pitch tracks were adjusted 
using; 

fiiU) = / o i l +0.3sin(6;rr-Ha)I (4) 

In Equation 4, F Q U ) is the time-varying fundamental frequency or pitch trajectory of the 
stimulus and fo is the mean pitch of the original utterance; for a statement, a = 4 and for 
a question, a = 1. Each stimulus was processed with both question and statement pitch 
tracks, giving 16000 stimuli. The precise form of the pitch manipulation was chosen so 
that we could compare the model performance with those of human subjects in a recent psy-
chophysics study (Denham & de Thornley Head 2005). The results of these manipulations 
are illustrated in Figure 5. 

The speaker recognition set 

The stimuli for this experiment were not drawn from the I S O L E T corpus but from a subset 
of the Speaker Recognition v 1.1 corpus (OGI 2002b). This consisted of four speakers, two 
male and two female, answering questions such as What is your eye colour?', and Where 
do you live?' with most answers given more than once. There are approximately 100 an­
swers for each speaker. Longer answers were truncated at 2 seconds to save pre-processing 
time. 

Figure 5. Question/statement processing example, showing spectrograms with pitch tracks superimposed In blue. 
Left: Original utterance (letter a", female speaker, mean pitch 190 Hz). Centre: QuesUon form. Right: Statement 
form. 
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Figure 6. Results of the three ISOLET tasks, (i) ISOLET letter names. (11) QuesUon/staiement. (lil) Male/female, 
(iv) Speaker Identity. Error bars represent ± one S.D. (a) Results in terms of normalized mutual information, (b) 
Results In terms of percentage correct classification, (c) Results in terms of percentage correct classification using 
the spiking network. 

Results 
The results for each of the four experiments using the I S O L E T database classified with 
the analogue A N N and spiking networks are shown in Figure 6. Results for the analogue 
A N N are shown in terms of classification percentage and the normalised mutual information 
as described in the 'Measuring Performance' Section. Because of the simple nature of the 
analogue classifier used to obtain these results, the mutual information should be seen as a 
lower bound: the results for the classifier built of spiking neurons show that more Informa­
tion is present in the output of the model. For the spike-driven network, only classification 
percentages were available at the time of submission. The mean classification accuracy for 
letter-names using the spike-driven network was over 80% which compares favourably with 
that reported for other machine learning algorithms (Yu & Liu 2003). Plots of the misclas­
sifications for the two classifiers are compared in Figure 7; note that because the majority of 
errors in the spiking network results were non-classifications the gray scale is greatly com­
pressed to show the misclassifications. 
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(a) (b) 

Figure 7. Results from letter name classification. NB grey scale greaUy compressed in 7(b). (a) Analogue ANN. 
(b) Spike-driven network. 

Letter name classification 

Figure 8a shows the pattern of experimental misclassifications. These experimental con­
fusions account for less than 6% of the total stimulus presentations, but among the most 
frequent are f \lx\, r / and s ~* x which all share an initial phoneme. Some interest­
ing features emerge from a comparison of the pattern of experimental misclassifications with 
the pattern of misclassifications from human psychophysics shown in Figure 8b (Hull 1973). 
To better compare Figure 8a and Figure 8b, Figure 8c is plotted as a percentage change of 
the within-class error rate between Figure 8a and Figure 8b. In Figure 8c white areas rep­
resent classes that are not confused by the model nor in human psychophysics. Green areas 
represent agreement between the model and the psychophysics as to how easy or difficult it 
is to distinguish the two letters. Red areas are those where the model has more success in 
differentiating the classes, and blue areas are those where humans outperform the model. 
The vast majority of the map is either white or green. 

Red areas (those where the model results compare favourably) are found in the —>• e. A —• 
a and v [dbep\ misclassifications. These pairs are distinguished by their initial phonemes. 
The dark blue areas (those where model results compare unfavourably) include r I. and 
s ^ X. These pairs share an initial phoneme. It is likely therefore that performance could be 
improved still further by incorporating events other than the first event in each presentation; 
a subject of our current investigations. Note that the I S O L E T database uses Z = zee (US) 
whereas the experiments in Hull (1973) use Z = zed ( U K ) so the results for this letter name 
are omitted in this comparison. 

PCA analysis of network weights 

In order to investigate the contribution of each feature to the classification of each of the 
letters, we performed a principal components analysis of the neural network weights obtained 
in each of the training sessions. A composite loading vector was obtained for each letter in 
the stimulus set by combining the eigenvectors corresponding to all eigenvalues greater than 
0.7. The resulting matrix, illustrated in Figure 9. shows that there is a sparse representation 
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Figure 8 The plot in (c) shows differences t>etween (a) and (b). White: agreement. I.e.. no significant misclas 
sificatlons in the model or In psychophyslcs. Green: agreement, the model and the psychophysics agree as to the 
confusablllty of letter names. Red: the model finds these distinction easier than human subjects. Blue: the model 
misclasslfies where human subjects rarely do. (a) Experimental mlsclasslficatlons using the splke-drlven network 
model, (b) Confusions (from Hull (1973)). (c) Percentage change from Figure 8(b) to Figure 8(a). 

of the data set; with each feature contributing significantly to only a few classes, and each 
class being primarily defined by a rather small set of features. This is encouraging as it shows 
that the fragment selection algorithm successfully chooses features that are de-correlated, 
and also means that the ensemble can in principal encode a very wide range of classes. 
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Figure 9. Sparse coding of the sUmulus set; the image shows the significant contributions of features to each class 
derived from a PCA analysis of neural network weights 
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Figure 10. Top row: the letter B. normal, question, and statement. Bottom row: each processed using the on 
set/offset representation. 
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Question/statement classification 

The average correct classification achieved by the model (88%) is comparable with the aver­
age performance of human subjects (80%) (Denham & de Thornley Head 2005). This may 
seem rather surprising since the classes are defined by the pitch trajectories and the feature 
ensembles are chosen from a spectro-temporal envelope representation: pitch is not explicitly 
extracted in the model. However, on closer examination it seems that in the onset/offset rep­
resentation, a rising or falling pitch track creates a characteristic pattern of onsets and offsets 
as the energy moves from one frequency channel to another (as illustrated in Figure 10) 
and this could allow stimuli from the two classes to be distinguished. Another important 
aspect to note is that the mean pilches vary widely across the stimulus set. from low male 
pitches, typically ~80 Hz. to high female pitches of ~350 Hz. which implies that the repre­
sentations derived from the projections into feature response space support the abstraction 
of pilch trajectory shape. The ability of this model to classify the shaf)e of pitch trajectories in 
complex sounds perhaps sheds some light on the somewhat contradictory data for amusics. 
In a recent exp>eriment. it was found that amusics' ability to detect and classify continuous 
pitch changes in sounds was almost as good as that for normals, while their ability to detect 
differences in discontinuous pitch sequences was much worse (Foxton et al. 2004). Our 
model demonstrates that ensembles of S T R F s similar to those measured in P A C of animals, 
are capable of classifying pitch trajectories which can be represented within a single event. 
However, recognising a pattern of discrete pitches would require the system to learn the 
sequence of projections of separate events within the feature responses space: a different 
problem involving higher order processing, perhaps the locus of impairment in amusics? 

Male/female results 

Classification success for the male/female discrimination task was = 9̂5% which is broadly 
consistent with data from human psychophysics (e.g.. Whiteside (1998)) with a reported 
mean success of 98.9% in an experiment using short vowel segments. Since clear differences 
in vocal tract length and vocal tract morphology between males and females are known to 
exist (Fitch & Giedd 1999). it is perhaps not surprising that the model was able to perform 
this classification task. Nevertheless, the problem is not trivial as changes in vocal tract length 
result in quite small changes in the positions of formant p)eaks. and it is necessary to detect 
these in the presence of much larger changes in formant p)osition characterising the different 
speech sounds. In a recent P C A analysis of the variability of spoken vowel sounds, it was 
found that 80% of the variability was accounted for by differences between vowels, and of the 
20% of intra-vowel variability. 90% was explained by changes in vocal tract length: i.e.. 18% 
of the total variability (Turner & Walters 2004). The model of V T L estimation presented 
in that study matched experimental data very well, but was restricted to the single vowel 
sound aa'. Our model on the other hand is able to learn to classify speaker sex for arbitrary 
utterances, and as far as we are aware may be the first biologically plausible model of voice 
gender classification. 

Speaker identification results 

This was the only experiment that did not use the I S O L E T corpus. The model was able to 
correctly identify each of the four speakers with an accuracy of ^89% using short segments 
of randomly chosen utterances. For comparison, in a recent study (Obleser et al. 2004) 
subjects were able to identify two speakers with an accuracy of ^^95%. As the number of 
speakers in our experiment was small, our result is only suggestive, but it was achieved in 
a text independent experiment using the same feature extractors as the other experiments 
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reported here. This establishes, at least in principle, that information about speaker identity 
can be preserved in the pattern of responses of such an ensemble, and that responses of the 
same ensemble can be used in parallel for a number of different perceptual classifications; 
as found in the human M E G study for phonological and speaker classifications in (Obleser 
et al. 2004). 

Discussion 

Given that it is widely reported that responses in PAC can. at least to a first approximation, be 
characterized by their spectro-temporal characteristics, it is not unreasonable to ask whether 
an ensemble of spectro-temporal feature extractors might provide a representation sufficiently 
rich to be biologically useful. Our model attempts to incorporate some of the physiological 
evidence for processing in the ascending auditory p)athway and feature extractors in PAC. 
The approach adopted is complimentary to work that seeks to model the integrated activity 
of neural populations. One recent study by Husain et al. (2004) for example has shown that 
large scale, neurobiologically plausible modelling of auditory processing provides results 
consistent with studies of cerebral activity measured using optical and M R I techniques, 
during tasks involving simple, synthetic stimuli. 

In contrast, we have shown using biologically plausible pre-processing, a modestly sized 
ensemble, and a spike-rate encoding, that salient features of ethological stimuli can be simply 
extracted and used as the basis for behaviourally important judgements. Moreover the same 
ensemble response can support many qualitatively different judgements concurrently. We 
assume that there is competition between these perceptual judgements which is subject to a 
top-down task-dependent attentional bias. The aspect that is attended to is the one most likely 
to be task-relevant. This is consistent with evidence that what' processing in auditory cortex 
can be viewed as a set of parallel processes in which concurrent phonological classifications 
are made in spatially separated areas (Obleser et al. 2004) and implicit semantic processing 
continues when attention is directed to non-verbal input analysis (Kriegstein et al. 2003). 

The basis of feature extraction in the current model is the presence of a coherent response 
across the ensemble of feature detectors such as those found in PAC. This is equivalent to a 
saliency map in the temporal domain (Koch & UUman 1985). where the signal is analysed 
locally with respect to a range of properties (the ensemble response) and the results integrated 
(summed). This provides the basis for an asynchronous, stimulus-ensemble driven event 
detector. This triggers a readout of the population response pattern within a time window, 
the length of which is determined by the duration of the coherent ensemble response. The 
result is a short time scale context for the extraction of a pattern of responses that characterizes 
a distinct auditory event. These events are likely to be represented by population responses 
which, because of the time window and the asynchronous read out, are not likely to bear a 
simple relationship to the temporal structure of the stimulus. It has been suggested that this 
type of post-primary cortical processing might be found in the planum temporale (Griffiths & 
Warren 2002) where responses that are not closely coupled to the time course of the stimulus 
do occur (Steinschneider et al. 1999). 

The range of classifications supported by the model includes those distinguished primarily 
by spectral profile (male/female), solely by pitch trajectory (question/statement), as well as 
those characterised by more complex spectro-temporal relationships (letter-names, speaker 
identity). The question/statement result in particular demonstrates that a representation of 
pitch change can be abstracted from the output of the system in which there is no explicit sense 
of pitch per se. Furthermore the performance of the model in each of the tasks shows some 
similarities with human psychophysics. It has been reported that perceptual categories such 
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as these are processed in distinct areas of auditory cortex anterior to PAC (consistent with 
the what' pathway) and also distinct from regions involved in decisions that are correlated 
with reaction times (Binder et al. 2004). 

One of the strengths of the spiking neural network is its ability to provide non-
classifications. This implies that the characterisation of the stimulus by the model using 
a single event is unclear. Such stimuli account for ̂ 14% of the test set in the current results; 
most frequently in classes |flmns| i.e., classes that are not resolved by their initial phonemes. 
Work is already underway to use subsequent events, when they occur, to reinforce the classifi­
cation judgement raising the probability above the threshold for an unambiguous assignment 
of class. 

We have chosen to use spoken letter names for three of the current experiments and a 
wider range of spoken stimuli for the fourth. This was due to the ready availability of large 
and well characterised corpora. But it must be emphasized that the principle goal of our 
research is not speech recognition or speaker identification, although both may be informed 
by this approach, rather we aim to understand the representation and processing of complex 
sounds in general within the auditory system. 
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