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Abstract 

The possibility that the periodic features observed in the nearshore region are the result of self-
organisational processes is investigated in this work. The behaviour of two numerical models, 
based on different techniques, has been analysed in order to describe the formation of periodic 
features in the surf and swash zone respectively. The appearance of periodic patterns in the 
nearshore region has been traditionally linked to the presence of standing edge waves with the 
topographic changes passively driven by the flow patterns. A more recent approach indicates the 
possibility that periodic patterns appear because of feedback processes between beach morphology 
and flow. In the first model, the coupling between topographic irregularities and wave driven mean 
water motion in the surf zone is examined. This coupling occurs due to the fact that the topographic 
perturbations produce excess gradients in the wave radiation stress that cause a steady circulation. 
To investigate this mechanism, the linearised stability problem in the case o f an originally plane 
sloping beach and normal wave incidence is solved. It is shown that the basic topography can be 
unstable with respect to two different modes: a giant cusp pattern with shore attached transverse 
bars that extend across the whole surf zone and a crescentic pattern with alternate shoals and pools 
at both sides of the breaking line showing a mirroring effect. For the swash zone, the formation of 
beach cusps has been investigated. The several theories proposed in the past have been analysed 
and all the field and laboratory measurements available in the literature collected in order to test 
such theories. It is suggested that, with the available measurements it is not possible to distinguish 
between the standing edge wave model and the self-organisation approach. A numerical model 
based on self-organisation has been here developed and tested in order to understand the processes 
occurring during beach cusp formation and development, to evaluate the sensitivity towards the 
parameters used and to look at how the model might relate to field observations. Results obtained 
confirm the validity of the self-organisation approach and its capacity to predict beach cusp spacing 
with values in fair agreement with the available field measurements and with most of the input 
parameters primarily affecting the rate of the process rather than the final spacing. However, 
changes in the random seed and runs for large numbers of swash cycles reveal a dynamical system 
with significant unpredictable behaviour. A qualitative comparison between the model results and 
field measurements collected by Masselink et al. (1997) during beach cusp formation and 
development has also been performed on the basis of a non-linear fractal technique. Results 
indicate beach locations and time-scales where non-linearities are more important and self-
organisation can play a fundamental role. 
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Chapter 1: Introduction 

Although in the last decades our understanding o f the physical processes governing the 

nearshore region has consistently improved, finding an answer to the question "why are 

beaches different?" is still a d i f f icu l t task. Furthermore, i f the question is changed to " w i l l 

beaches be different in . . . years?", an even less confident answer can be given. Our 

knowledge o f hydrodynamics and sediment transport is still not conclusive. Improvements 

in the quality o f the f ie ld and laboratory measurements made in the last 20 years are 

considerable but usually require "further" developments. The number o f physical processes 

that should be included in a "perfect" numerical simulation o f beach evolution are far 

beyond any computer capacity and, probably, some physical processes are still unknown. 

In this scenario, studying the formation and development o f simple, regular features 

appearing in the nearshore region is undoubtedly a very useful tool . It is in fact possible to 

argue that, understanding how periodicity is possible in systems that exhibit a variety o f 

longshore and offshore shapes at different length scales, would improve our knowledge o f 

nearshore processes. 

Interest has always been shown in the formation and development o f the variety o f three-

dimensional morphological features appearing on the inner part o f the nearshore region 

(beach cusps), stretching f rom the shoreline offshore across the surf zone (giant cusps, 

transverse and welded bars) or entirely confined around the breaking area (crescentic bars). 

A broad number o f theories have been formulated in order to explain the reason(s) for 

morphological changes resulting in features characterised by a distinct longshore 

periodicity. Unt i l recendy some o f these theories were widely accepted (Bowen and Inman, 

1971; Guza and Inman, 1975; Holman and Bowen, 1982) and it was generally agreed that 

longshore patterns in the incident wave field generated these morphologic features. 

Sediment response, and so the changes in the morphology, were considered to be only a 

reflection o f the hydrodynamic forcing conditions. Such approach w i l l be here indicated 

using the term forced behaviour. However, in open contradiction v^ th the forced behaviour 

approach, it has been recently suggested that periodic features can be the result o f the 

coupled interaction between sediment and flow. As result o f such interaction, a preferred 

wavelength may emerge and characterise the shape o f the shoreline or, more generally, o f 

the nearshore region. This new approach, w i l l be here indicated as free behaviour or self-

organisation. 



The possibility that nearshore patterns appear because of the interaction between sediment 

and flow has already successfully been investigated by different authors through different 

modelling techniques, such as stability analysis and cellular automata. The use of stability 

analysis has initially been applied to river morphodynamics (see for example Fredsoe, 

1974; Parker, 1976; Richards, 1980) and has already achieved significant results for 

explaining the formation of bedforms appearing at various time and length scales 

(Blondeaux, 1990; Hulscher, 1993; Falqu^s et al., 1996). Numerical algorithms based on 

cellular automata have been successfully implemented in more recent years (see for 

example Werner and Fink, 1993; Murray and Paola, 1994; Landry and Werner, 1994) and 

provide a strong indication of the importance of self-organisation in morphodynamics. 

The object of this thesis is to investigate the role of self-organisation in coastal 

morphodynamics. Two different approaches, stability analysis and cellular automata, will 

be applied in order to model the formation of periodic patterns in the nearshore region and 

to give evidence of the fundamental importance of the flow-sediment interaction for the 

appearance of such features. Emphasis will be given to the parameterisation of the two 

approaches, to the agreement with field observations and, for the self-organisation model 

developed throughout this study, to the complex behaviour observed in the simulations. 

The implication of considering coastal morphodynamics as complex systems will be 

further extended to the use of non-linear techniques for the analysis and comparison of 

field measurements and model results. 

The structure of the thesis is organised as follows: in Chapter 2 two different approaches 

for analysing the formation of rhythmic features will be described and a review of the 

existing applications in morphodynamics will be made. This chapter will identify the 

potential benefit resulting from the application of such approaches in developing our 

knowledge in morphodynamics. Chapter 3 describe the application of a linear stability 

analysis to the surf zone in order to describe the formation of patterns such as crescentic 

bars emd giant cusps. The influence that sediment transport parameterisation might play in 

the formation of such features will also be examined. Chapter 4 contains an introduction to 

the "mystery" of beach cusp formation. The existing theories and data will be compared in 

order to prove whether such features are the result of standing edge wave "forcing" or i f 

they appear because of "fi-ee" self-organisation processes. The last approach will be then 

investigated in detail by developing a numerical code whose sensitivity and behaviour will 

be documented in Chapter 5, Chapter 6 will then investigate the possibility of comparing 

model results and field measurements through a non-linear technique for the analysis of 



time series. Conclusions will be presented in Chapter 7 together with some suggestions for 

improving the numerical models herein presented and the field measurements necessary 

for a better understanding of nearshore processes. 



Chapter 2: Morphodynamic modelling 

2.1 Introduction 

The nearshore zone often shows regular morphological patterns at length scales well above 

the length scale of incident wind or swell waves. Beach cusps (Russell and Mclntire, 

1966), giant cusps (Komar, 1971), shore-attached oblique/transverse bar systems 

(Niederoda and Tanner, 1970; Hunter et al., 1979; Lippmann and Holman, 1990), 

crescenlic bars (Bowen and Inman, 1971) and ridge and runnel systems (Mulrennan, 1992) 

are well known examples of such features. These patterns are certainly intriguing and are 

of scientific interest in themselves. But more importantly, their regularity gives an 

indication that the large scale complex dynamics of the nearshore zone as a whole may be 

understood in terms of simple physical mechanisms. At present, the understanding of 

coastal morphodynamics is a difficult task and idealised situations have to be hypothesised 

in order to predict the effects of wave motion on shore evolution. Equilibrium solutions are 

found for the governing equations but they are not able to explain certain phenomena, 

indicated in the literature as "free behaviour", such as longshore regular patterns in 

shoreline morphology. More generally the term "free behaviour" indicates the possibility 

of periodic features appeeuing without a similar pattern being present in the external 

forcing of the system. Conversely, the term "forced behaviour" describes those cases in 

which variations in the system reflect the driving external forcing. An example of free and 

forced behaviour can be given by considering a river "free" to meander (meanders are not 

the result of an external forcing or of a structure inside the flow) with the opposite case 

being a river "forced" by human, external, intervention to flow inside river banks. As an 

extension, the term "forced" will be here used for situations in nearshore morphodynamics 

where the flow field governs shoreline processes with the sediment simply responding to it, 

but not interacting with it. 

Through stability analysis, free behaviour in hydrodynamic wave motion has been initially 

considered (Bowen, 1969; Guza and Davis, 1974; Guza and Bowen, 1975) whilst, 

probably because of the uncertainties in the sediment transport parameterisation, only more 

recent studies have been focused on topographic changes. In fact, the problem of 

alongshore rhythmic patterns in coastal morphology may be explained by temporal or 

spatial modulations in the external forcing, but rhythmic patterns are observed also in the 

absence of such variations. Thus, mechanisms related to free instabilities of the basic 

steady equilibrium in the coupled system sediment-flow have also been considered. 



Generally, free behaviour may be purely hydrodynamic, but it may also involve a 

combination, or better an interaction, between, flow and bottom perturbations (usually 

indicated as morphodynamics). It is also conceivable that the generation of a rhythmic 

topography is a phenomenon due to coupled morphodynamic and hydrodynamic 

instabilities (Vittori et ai., 1999). 

In order to investigate the possibility of free behaviour in nature, and for the present study 

in coastal morphodynamics, two different approaches have been considered. The first 

refers to the stability analysis theory, the second to the implementation of cellar automata 

algorithms capable of simulating chaotic behaviour and the possibility of patterns' 

appearance (such technique will be herein indicated also with the more general term "self-

organisation"). 

This chapter will introduce the concepts of coastal evolution and complex dynamics. The 

stability (instability) approach and the conditions that may give rise to equilibrium 

solutions that are periodic in time and/or space will be then described, A concise review of 

results obtained through the stability theory in order to describe the appearance of patterns 

in coastal morphology will also be included. Modelling through cellar automata will also 

be described as well as its already existing applications in morphodynamics. A comparison 

between the two techniques will be finally considered. 

2.2 Complex dynamics 

In recent years a growing interest has been shown towards the hypothesis of coastal 

evolution as a strongly non-linear system so that concepts and techniques deriving from 

complex dynamics have been applied to coastal modelling. The word "complex" here 

indicates a system characterised by multiple non-linear interactions between multiple 

components. The evolution of a complex system w\\ obviously be dependent on the 

nimiber of interactions and components but also on the initieil state and on the eventual 

perturbations occurring during the evolution. It is then obvious that feedback processes 

will play a major role in the evolution of such non-linear dynamical systems. As a result, 

the system can evolve through different paths and not necessarily reach a steady 

equilibrium (Cowell and Thom, 1995). If the word equilibrium is used to indicate a stable 

state, the possibility of periodic, in both time and/or space domain, and even chaotic forms 

of equilibrium have to be considered. The presence of non-linearities also implies that 

under certain steady forcing conditions the response cannot be related to the single inputs 



individually. Phillips (1992) points out the interesting difference between stochastic and 

deterministic complexity and the possibility of applying such concepts to geomorphology. 

The term stochastic indicates the possibility that complexity arises from the cumulative 

effect of individual process-response mechanisms. Such mechanisms could be too 

numerous to be accounted for individually and could operate over a range of time and 

space scales such that they still affect each other. On the other hand, there is also the 

possibility that complexity arises from the non-linear dynamics of relatively simple 

systems of equations. This last concept, deterministic complexity, will be the underiying 

hypothesis when, in later chapters, a model for simulating the swash dynamics and the 

appearance of patterns will be presented. 

2.3 Complexity in coastal processes 

More than twenty years ago Wright and Thorn (1977), while reviewing different 

approaches for morphological studies, indicated the changes from a "descriptive" approach 

into an "empirical" one characterised by the use of statistical analysis for explaining 

morphologic variations. The authors also pointed out the contributions due to 

sedimentological studies and the developments in hydrodynamics which allowed a better 

understanding of the coastal processes. The authors finally stated that the new frontier was 

"morphodynamics". This approach differs from the previous ones because coastal 

processes are considered in relation to the interaction flow-topography and because of the 

importance of non-linearities in landforms' formation. In the last twenty years the role of 

feedback mechanisms has been firmly established and the importance of studying coastal 

evolution as a non-linear dynamical system is widely accepted (Werner, 1999). That 

coastal morphodynamics display features that are typical of a non-linear dissipative system 

has already been shown by different authors (Wright and Thom, 1977; De Vriend, 1991; 

Cowell and Thom, 1994; Southgate and Beltran, 1996) and such features will be here only 

briefly recalled. The presence and significance of non-linearities needs to be investigated 

under two different approaches. The first relates to the non-linear relationship between 

hydrodynamics and sediment response usually resulting in the parameterisation of 

sediment transport fluxes with some power of the flow velocity (Fredsoe and Deigaard, 

1992; Van Rijn, 1993). The second relates to the fact that even subsystems can have a non­

linear nature. For example, hydrodynamics of shallow waters have a non-linear nature, can 

also interact at different frequencies, and lead to the growth of resonant motions (Guza and 

Davies, 1974; Bowen and Guza, 1978; Bowen and Holman, 1989). It is obvious that the 

effect of both kinds of non-linear processes can have a subsequent relevant effect on 



sediment transport and coastal evolution. Besides, the dissipative nature of coastal 

morphodynamics is probably the most obvious of the features and can be easily detected 

by considering the continuous input of energy in the system (waves, tides) and the 

following dissipation (bed friction, wave breaking, work done on sediment transport). The 

final point leading to the conclusion that coastal morphodynamics can be studied as a 

complex system is related to feedback effects. Such an effect can be relevant at all the 

time-scales involved in the process. For example, a flow over a mobile bottom will cause 

fluxes of sediment and changes in the bed level that v^U then affect the flow. The same 

process can happen at different time-scales and for example, a swash or a tidal cycle will 

cause changes in the topography and such changes will affect the successive swash or tidal 

cycle. Summarising, the feedback loop, characteristic of coastal evolution, involves a 

continuous (in time) interaction between hydro and morphodynamics in such a way that 

the fluid dynamics is constantly affected and altered by topographic changes and vice-

versa. The factor coupling the two systems is obviously the sediment transport which, as a 

confirmation of the non-linearity of the process, is modelled and usually measured to be 

proportional to a high-power of the fluid velocity. It is also possible to distinguish between 

positive and negative feedback. The first mechanism is the one responsible for enhancing 

and amplifying the eventually present instability and it starts and confers the properties of 

the self-organisation process. Negative feedback is instead the mechanism that prevents the 

system from moving away from an equilibrium state by damping the growth of what could 

be considered as "minor" perturbations (Cowell and Thom, 1995; Werner and Fink, 1993). 

2.4 Stability theory 

2,4.1 Linear stability analysis 

The first experiments as well as the formulation of the stability problem were proposed in 

the nineteenth century and were dealing v^th the hydrodynamic stability of a flow in a 

container (Rayleigh, 1892; Reynolds, 1883). Hydrodynamic stability has been recognised 

as one of the central problems of fluid mechanics and already in 1959, Landau and Lifshitz 

argued that: 

"The flows that occur in Nature must not only obey the equations of fluid dynamics, but 

also be stable " 

In order to give a brief account of the fundamental concepts of stability a very simple 

idealised case conceming only hydrodynamics will be now considered. The analysis will 
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be then extended to morphodynamics by considering the typical momentimi and continuity 

depth averaged equations and by including sediment transport (Chapter 3). 

In order to analyse the stability of a laminar flow, it is important to specify the flow at each 

point X (x indicates a generic 3D vector) and time t. This basically means defining the 

velocity U(x, t), pressure P(x, t) and temperature T(x, t). These fields define the so-called 

basic flow or basic state. The fields may be steady or unsteady, and should satisfy the 

appropriate equations of motion and boundary conditions. We obviously suppose that both 

the equations and the solutions are completely known. 

If the basic flow is disturbed slightly, the disturbance may either die away, persist as a 

disturbance of similar magnitude or grow so much that the basic flow becomes a different 

laminar or a turbulent flow. Such disturbances can be called respectively stable, neutrally 

stable and unstable. These definitions can be formalised mathematically so that a basic 

flow is stable if, for any e>0, there is some positive number 5 (depending upon e) such that 

if the norm: 

u(x,0)- U(x,0|,||p(x,0)-P(x,0|etc. < 5 

then 

| |u(x,t)-U(x,t| , | |p(x,t)-P(x,t | ,etc.<e f o r a l l t > 0 

where u is the velocity field and p is the pressure field which satisfy the equations of 

motion and the boundary conditions. This definition means that the flow is stable i f the 

perturbation is small for all time provided it is small initially. It also possible to define an 

asymptotically stable basic flow i f moreover: 

|u(x, t ) - U(x, t | , ||p(x, t ) - P(x, t | , etc. ^ 0 as t -> + oo 

It is now assumed that the basic flow is steady and that the equations of motion and the 

boundary conditions may be linearised for sufficiently small perturbations. Thereby a 

linear homogeneous system of partial differential equations and boundary conditions is 

obtained. These have coefficients that may vary in space but not time because the basic 

flow is steady. The solution of such system can be expressed as the real parts of integrals 

of components, each component varying with time like e*̂  for some complex number a = 

O R + i oi. The linear system will determine the values of a and the spatial variation of 

corresponding components as eigenvalues and eigenfunctions. Such eigenvalue problem 

can be solved by using the classical approach given by the method of the normal modes. 

Through a Fourier analysis, the small perturbations are represented as superimposition of 

linear modes that can be treated separately because each satisfies the linear system. This 



allows for the transformation of the eigenvalue problem into a system of ordinary 

differential equations and boundary conditions. Such a system can then be solved 

analytically or numerically. The success of the technique depends on finding a complete 

set of normal modes to represent the development of an arbitrary initial disturbance. 

If CTR > 0 for a mode, then the corresponding disturbance will be amplified, growing 

exponentially with time until it is so large that non-linearity becomes significant, ff Q R = 0 

the mode is neutrally stable, and linearly stable i f G R < 0. Another definition, marginal 

stability, is also given for modes which are characterised by CTR = 0 for critical values of the 

parameters on which GR depends but G R > 0 for some neighbouring values of the 

parameters. The values of the parameters resulting in marginal stability are usually 

considered as a criterion of stability (although marginal and neutral stabilities are different) 

and provide the curve of stability or curve of growth rate. The presence of a maximum in 

such a curve will be an indication of the fast growing mode and the associated wavelength 

is usually comparable with the observations. More generally, the linear analysis provides 

information related to the possibility of an instability of the basic equilibrium and to the 

physical mechanism responsible for its growth. Spacing, shape, orientation and time 

growth of the features refer only to the initial growth of the single mode analysed and so 

provide just an indication of the possible behaviour. 

2.4.2 Non-linear stability and bifurcation theory 

Conclusions obtained through linear theory are obviously restricted to the case of 

infmitesimal (zero amplitude) perturbations. A question arises in terms of how an 

infinitesimal perturbation, linearly unstable, evolves in a non-linear regime. For this reason 

results obtained through the linear stability theory need to be extended to the non-linear 

case usually resulting in the formulation of a finite amplitude equation that allows for more 

realistic comparisons with field measurements. Such an approach needs particular attention 

from a mathematical point of view and the analysis is ftirther complicated by processes like 

the non-linear self-interaction of the dominant mode as well as the exchange of energy 

between different modes. On the other hand, results are of great interest and could be of 

great help in order to identify final stable configurations and eventual de-tuning of the 

instability (Guza and Bowen, 1976; Vittori and Blondeaux, 1990; Calvete, 1999). 

Closely related to the problem of non-linear stability is bifurcation theory. Such theory 

studies the qualitative changes of the equilibrium solutions of non-linear systems as a 



parameter varies. In practice this means that solutions are sought in the neighbourhood of 

critical conditions of linear theory. In fact, non-linear dynamical systems often exhibit 

discontinuities in their evolution and such discontinuities may represent the transition from 

one equilibrium to another or even from equilibrium to chaos. A non-linear analysis is 

usually performed in order to understand whether the discontinuity tends towards 

equilibrium or not. 

In order to summarise the differences with the linear analysis, it has to be underiined that 

the non-linear approach is capable of providing information on the amplitude of the 

features arising from the instability, their shape and spacing and, in the case of bedforms, 

the flow pattern over the features. All these results can be compared with field 

measurements. Indications on the long-term evolution and the possibility of bifurcations 

are also explored. 

2.4.3 On stability techniques in morphodynamics 

By analogy with the historical experiments of flow in a container, in the morphodynamic 

case the perturbations we are interested in will be those related to the "container" (the 

beach slope) rather than the flow. The time scale at which the flow perturbations evolve is 

usually much smaller than the "container" perturbations, which are associated with 

erosion-deposition processes, so that the two systems can be decoupled. Flow perturbations 

will affect the mean flow field and are essentially secondary flows associated with the 

perturbations of the "container" shape. It is also important to underline that a complete 

description of the dynamics of sediment transport is still unknown to the point of limiting 

our understanding of the morphodynamic processes. A schematic summary of the concept 

of stability as applied to morphodynamics is given in Figure 2.1 where a small random 

perturbation is superimposed over a flat bed. Such a perturbation can be considered as the 

superimposition of a series of normal modes and, through linear analysis, each mode can 

be analysed. As a result, secondary flows will be generated and sediment moved in such a 

way that the mode considered could be damped (stability) or grow (instability). The 

patterns with the largest growth rate are then compared with field observations. 
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2.4.4 Application of stability theory to coastal morphodynamics: a review 

The understanding of rhythmic features' presence in the nearshore region is obviously 

related to the debate on free and forced behaviour. In fact their presence has been 

sometimes related to the presence of low frequency waves, in particular infragravity edge 

waves. This is an example of a forced response. However, another possibility is that these 

patterns can be the result of morphodynamic instabilities of the alongshore uniform 

equilibrium, an example of free or self-organised behaviour of the nearshore dynamical 

system (Southgate and Beltran, 1998). Of course, it is plausible that in many circumstances 

both kinds of behaviour will interact on natural beaches. 

Since the earlier suggestions by Sonu (1969) and the work of Barcilon and Lau (1973) and 

Hino (1975) little attention has been paid to nearshore morphodynamic instabilities. In the 

nineties, an increasing interest in this approach has developed, and those early 

investigations have been now revisited and extended by Christensen et £il. (1995), Deigaard 

et al. (1999), Falqu^s (1991), Falques et al. (1996) and (1997). 

This section will deal with a review of applications of the instability theory to coastal 

morphodynamics with a focus on those features appearing in the nearshore region. As the 

main interest is directed towards the nearshore region, features like sand ridges, tidal sand 

banks and sand waves, typical of a further off-shore region, will not be here discussed 

although many authors (Trowbridge, 1995; Calvete, 1999; Huthnance, 1982a; Huthnance, 

1982b; Hulscher, et al., 1993; Hulscher, 1996) have successfully proposed an instability 

approach for their formation. 

2.4.4.1 Ripples 

These features are probably the most commonly observed in nature (Plate 2.1). Because of 

their implication and influence on bed roughness and sediment transport (see for example 

Sleath, 1984; Fredsoe and Deigaard, 1992) they have been the object of several detailed 

studies. Different cases have to be considered depending on whether this kind of "bed 

waves" are current-generated or whether they are the result of an oscillatory flow (wave-

generated). In the first case, the formation mechanism was initially proposed by Richards 

(1980) through a two-dimensional stability analysis for a unidirectional flow of low Froude 

number over an erodible bed. Richards' (1980) results suggest that ripples are formed by 

an unstable mode of the bed responding to some disturbance of the initially planar slope. 
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Plate 2.1 Ripple field at Teignmouth, U.K. (courtesy of Dr. Andy Saulter, University of 

Plymouth. U.K.) 

I he suggestion that the mechanism triggering the instability could be given by "bursts" of 

high shear stress is also made. Results depend on bed roughness (which basically means 

sediment size) and on the effect of the local bed slope on sediment transport. It is worth 

noticing that the sediment transport formulation proposed by Richard (1980) neglects 

suspended load and still results in features in close agreement with the observations. In 

agreement with field observations is also the resuh that, if the flow velocity exceeds some 

limit value, ripples are "washed out". 

The case of wave-generated ripples has been fully investigated by Blondeaux (1990) for 

the linear case and by Vittori and Blondeaux (1990) for the non-linear, finite amplitude, 

development. The theory developed by Blondeaux (1990) requires a knowledge of the 

difference between rolling-grain ripples and vortex ripples. The former, the first to appear 

on an initially plane bed, are characterised by the absence of flow separation behind the 

crests while vortex ripples develop as a consequence of an increase in the amplitude of 

velocity oscillations and of the subsequent flow separation. Resuhs indicate the instability 

process as the cause of ripple formation and, in agreement with field observations, suggest 

again that larger grain sizes produce ripples with a wider spacing. An understanding of the 

physical mechanism is also provided by the destabilising effect given by secondary flows 

carrying sediment from the incipient troughs to the crests. The effect of gravity on the 

sediment particles provides the stabilising effect. The ftirther development of the bedforms 
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and the transition from rolling-grain ripples to vortex ripples is given by the non-linear 

analysis. Vittori and Blondeaux (1990) consider the results obtained by Blondeaux (1990) 

and investigate the development of the most unstable bottom perturbation for parameters 

close to the critical ones. As a result, the geometrical shape of finite amplitude ripples can 

be determined although results are confined to the rolling-grain ripples as in the vortex 

case non-linearities are too strong. The evolution from the rolling-grain into the vortex type 

of ripple or the decay of the perturbation is again considered to be dependent on the value 

of the Froude number. 

2.4.4.2 Cuspate features 

As indicated by Inman and Guza (1982), according to the processes, it is possible to 

distinguish between two types of cusps: swash cusps and surf cusps. Swash cusps, usually 

known as beach cusps, are the ones formed by direct action of runup and rundown on the 

beach face (Plate 2.2). For this kind of feature, at the moment, the only stability approach 

capable of explaining their formation is purely hydrodynamic and refers to standing edge 

wave forcing (Guza and Davies, 1974; Guza and Inman, 1975). A detailed analysis of 

beach cusps (including existing theories and available measurements) will be presented in 

chapter 4 and 5. For the so-called surf cusps or giant cusps (Plate 2.3), the mechanism 

involved v^th their formation is related to the development of circulation cells inside the 

surf zone and usually associated with the presence of rip currents. As a result, these 

features would extend well inside the surf zone and be characterised by a wavelength of 

the order of several times the width of the surf zone (Komar, 1971). 

The first attempt to simulate the formation of giant cusps and the related rip currents has 

been provided by Hino (1975). His work considers the shallow water equations, combined 

with a simplistic sediment transport formula (linearly proportional to the velocity) and 

predicts the formation of patterns periodic in the longshore direction (defined by the author 

as a "cuspidal coast"). The approach is linear and the hydrodynamic instability is caused 

by perturbations in the radiation stress that modify the circulation pattern. Simulations, run 

for both normal incident waves and in the presence of a longshore current, show that the 

fastest growing mode is characterised by a wavelength around 4 times the width of the surf 

zone. Such a value, indicating a spacing increasing with the incident wave energy, 

compares well vn\h field observations of rip currents under moderately dissipative 

conditions (McKenzie, 1958; Sasaki et al. 1976). 
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Plate 2.2 Beach cusps (courtesy of Tony Bowen, Dalhousie University, Canada) 

Plate 2.3 Giant cusps at Cape Hatteras, North Carolina, U.S.A. (taken from Dolan, 1971) 



An instability mechanism resulting in the formation of giant cusps will be presented in 

detail in chapter 3. 

2.4.4.3 Transverse and welded bars 

The presence of nearshore features that run obliquely to the shoreline is quite common 

especially on sandy beaches in low-to-moderate wave energy conditions. Transverse bars 

(Plate 2.4) are usually associated with the presence of a longshore current, tend to be 

parallel one to the other, can be stable or migrate and their inclination can be either 

dowcurrent or upcurrent. Similar properties characterise welded bars (Plate 2.5) although 

these features have a slightly different shape wath a nearly normal attachment to the 

shoreline. 

Plate 2.4 Transverse bars on Trabucador Beach on the Ebro Delta, Spain (courtesy of the 

'Laboratorio de Investigacion Maritima*, Barcelona, Spain) 

Several authors have investigated the formation of transverse/welded bars using an 

instability approach. The first suggestion that they could be the result of a perturbation in 

the longshore current was made by Sonu (1969). Hino's resuhs (1975) in the case of a 

longshore current were considerably improved by Christensen et al. (1995) by considering 

a sediment transport formulation which included suspended sediment transport as well as 

the presence of irregular waves. As a result the wavelength of the features is predicted to 

be around 6 times the width of the surf zone writh the bar orientation being upcurrent wdth 
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Plate 2.5 Welded bars on Cape Cod, Massachusettes, U.S.A. (taken from Komar, 1998) 

respect to the longshore current profile. Results showed a strong sensitivity to sediment 

transport parameterisation and for example instability arises only i f the sediment transport 

rale is proportional to the depth averaged velocity with a power higher than I . 

A model for the formation of transverse bars based on a stability analysis has also been 

proposed by Barcilon and Lau (1973) for the case of low energy beaches although Falques 

(1991) found that parameters used in the simulation of the basic flow were unrealistic. 

The above mentioned research was extended by Falques et al. (1996) by introducing a 

longshore current with a cross-shore gradient, bottom friction and a parameterisation of the 

sediment transport which also included a threshold value. The model considers a dominant 

influence of the longshore current. In fact it deals only with an instability of the longshore 
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current and does not include the effect that a perturbation of the bottom might have on the 

wave field through the radiation stress. The parameter controlling the growth of the 

perturbation seems to be the bed friction and several modes, sometimes resulting in very 

complicated patterns, are found. The predicted wavelength o f the bedforms is in agreement 

with the observations although the downcurrent orientation obtained for realistic values of 

the parameters is not able to explain all the variation observed in the field. It is important to 

underline that al\ the previously described models are linear and so capable of describing 

only the very initial stage of the features' formation. On the other hand, field observations 

mainly report final equilibrium situations where a flow pattern providing positive 

feedback, and so increasing the instability, is counteracted by an opposite mechanism 

(negative feedback) which prevents a flirther growth of the feature and ensures 

equilibrium. Further developments of the model, especially concerning the 

parameterisation of sediment transport, have been considered and resulted in favourable 

comparisons with field observations (Falques et al., 1999). 

Just before concluding this section, it is important to notice that a distinctly different 

explanation has been provided for the formation of transverse bars (Holman and Bowen, 

1982). The mechanism suggested by Holman and Bowen (1982) refers to a purely 

hydrodynamic forcing due to the interaction between two edge waves of different mode 

and to the resulting drift velocity pattem. Such resulting steady flow, coupled with a 

sediment transport model can modify the topography. Equilibrium configurations between 

steady flow and sediment transport have been evaluated and result in patterns very similar 

the welded bars one. The study is then extended to the interaction between three edge 

waves and a much more irregular pattem is obtained. It is evident that only additional field 

observations can provide an understanding on which of the two approaches here presented 

is responsible for transverse bar formation. 

2.4.4.4 Crescentic bars 

Moving further ofF-shore it is fi-equently possible to encoimter other features positioned 

around the breaking area and characterised by a periodic spacing in the alongshore 

direction and a shoreward concavity (see Plate 2.6). This submerged feature is very 

common and sometimes even multiple crescentic bar systems have been observed (see 

Plate 2.7). The origin of these features was first investigated by Bowen and Inman (1971) 

and, until recent years, their explanation was widely accepted. Their approach falls into the 

category of hydrodynamic "forced" behaviour and the features are the result of the velocity 
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Plate 2.6 Crescentic bars system at Duck, North Carolina, U.S.A. (taken from Lippmann 

and Holman, 1990) 

Plate 2.7 Multiple crescentic bar system (courtesy o f Tony Bowen, Dalhousie University, 

Canada) 
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field associated with standing edge waves. Improvements of such a model (Holman and 

Bowen, 1982), laboratory experiments (Bowen and Inman, 1971) and comparisons with 

field observations (Huntley, 1980) provide support for this approach. On the other hand, 

the formation of crescentic bars on open beaches where the presence of standing edge 

waves is unlikely to happen, the strong dependence of standing edge waves on incident 

wave fi-equency, wave angle of approach and pre-existing topography (edge waves could 

also simply be the response to the developed topography, see Huntley, 1980) are all 

arguments against the proposed mechanism. 

More recently, approaches based on stability theory have been proposed. Deigaard et al. 

(1999) suggested that crescenlic features could be the development of instabilities of a long 

straight barred coast. Their instability analysis deals with a perturbation superimposed on 

the bar crest and is carried out for both normally and obliquely incident wave field 

although most of the simulations deal with an oblique approach and the resulting longshore 

current. The linear stability problem is solved through a numerical model that allows for 

wave refraction and irregular wave heights (following a Rayleigh distribution). The 

mechanism for the growth of the instability is related to the wave-driven circulation current 

with an onshore (offshore) flow where the perturbation is positive (negative). Sediment 

transport in the surf zone is simulated in such a way that deposition (erosion) occurs for 

onshore (offshore) flow leading to the amplification of the initial pertuj*bation. The effect 

of the longshore current is to change the current circulation and to propagate the instability 

in the alongshore direction providing an additional effect to the growth/decay previously 

described. 

Another stability analysis has been recently proposed (Vittori et al., 1999) and is again 

related to the formation of crescentic patterns in the nearshore zone. This approach is 

rather different from all the previous ones as it deals with the formation of rhythmic 

patterns outside the surf zone so that the effect of breaking is neglected throughout the 

analysis. The instability process involves the excitation of synchronous edge waves and 

their interaction with the incoming waves causes steady currents and results in the growth 

of the bottom perturbation. The reference beach cross-shore profile is also different fi-om 

the previous cases analysed with an offshore region of constant slope and a very rapid 

increase of the slope in the proximity of the shoreline. Results indicate the possibility, and 

coexistence, of two maxima in the growth rate curve. The two maxima are characterised by 

different longshore wavelengths (one of the order of tens meters, the other of hundreds of 
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meters) with shape and spacing of the patterns well comparing with field observations 

(Allen, 1984) reporting crescentic bar systems similar to those shown in Plate 2.7. 

In chapter 3, a stability analysis resulting in the formation of patterns resembling crescentic 

forms wil l be described. 

2.5 Self-organisation and cellular automata models 

The term "self-organisation" is used in order to indicate the mechanism driving systems 

where non-linear dynamics and feedback processes are dominant. The basic idea of self-

organisation relates to the possibility that a perturbation of the equilibrium in the system 

can be amplified (positive feedback) and that the system could evolve towards a new form 

of equilibrium (controlled by negative feedback processes). Such an equilibrium, as 

previously stated, does not need to be necessarily steady but could also be periodic or 

chaotic. Cowell and Thom (1995) show how self-organisation can occur at different time 

scales (instantaneous, event and geological) but always be the product of feedback 

processes. Forbes et al. (1995) consider the self-organisation approach in order to describe 

large-scale (in time and space) morphological evolution of a system where similar and 

close (and so subject to the same forcing conditions) subsystems experience different 

behaviours. Catastrophic events are detected in the single subsystems and usually follow 

periods of slow evolution. Such events seem to depend more on the previous subsystem 

states rather than on the forcing conditions. The importance of thresholds, as related to 

various natural processes and their implications for the analysis of field data, wi l l be 

discussed in later chapters wathin the wider fi^mework of self-organised criticality. 

As previously underlined, the term "self-organisation" is also considered, in a wider sense, 

as synonymous with free behaviour and it does not indicate a mechanism theoretically 

different from the one described through the stability analysis (differences wil l be outlined 

in the next paragraph). On the other hand, the term self-organisation has been widely 

associated with a particular technique, cellular automata, commonly used for describing 

complex systems and also with such meaning it v^ll be here considered. 

2.5.1 Basic theory of cellular automata 

In order to simulate complexity, numerous models based on the cellular automata 

technique have been developed. Cellular automata are simple mathematical systems 
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constructed from identical components and capable of resulting in complex behaviour. 

Usually, cellular automata are discrete systems but, potentially, they can also be used for 

the simulation of continuum systems. Recent works (Wolfram, 1986; Frisch et al., 1986) 

have in fact showed that through this approach even the Navier-Stokes equations could be 

simulated successfully. 

The more general rule for building a cellular automata model sees a variable at a specified 

location, say z\, being updated at discrete time steps according to a deterministic rule which 

also involves the value of z at neighbour sites. In one dimension this would mean: 

,('+0 _ f ̂ ,(0 ^(0 ^(O 7(0 -,(') \ 

with r indicating the neighbour location. In the case of small r, the system could result in 

complex behaviour and exhibit self-similar patterns. Although the evolution of such 

systems is highly dependent on the initial state, i f the set of rules is unchanged, results 

should be similar in the overall statistical properties and pattern shape. I f the basic rules are 

changed, the system can produce very different patterns. 

One of the most typical features of cellular automata is that, although starting from 

different configurations, the overall evolution of the system can result in a special 

"organised" configuration. As a final summary of cellular automata models, it is possible 

to indicate the following basic characteristics: 

a) discrete in space: the model domain consists of a discrete grid of cells or sites 

b) discrete in time: time is updated as a sequence of discrete values 

c) synchronous: all the sites are simultaneously updated 

d) deterministic: each site behaviour is governed by the same set of rules (which depends 

on the values of the neighbour sites at the previous time step) 

2.5.2 Self-organisation models applied to morphodynamics: a review 

The self-organisation approach has already been applied to analyse numerous patterns in 

chemistry, physics, environmental and social sciences in general (for a review see for 

example Hastings and Sugihara, 1993; Bak, 1997; Science, 1999) but only recently started 

to appear a usefiil tool to explain the appearance of morphological features (for an early 

review see, for example, Hallet, 1990). The most successful applications of self-

organisation in geomorphology are given by models capable of describing, through simple 

and well-accepted physics, phenomena like braided or meandering rivers (Murray and 

Paola, 1994; Stelum, 1996), eolian ripples (Anderson, 1990; Nishimori and Ouchi, 1993; 
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Landry and Werner, 1994), eolian dunes (Werner, 1995), beach cusps (Werner and Fink, 

1993), stone stripes (Wemer and Hallet, 1995). A l l of these models are basically trying to 

reduce the many processes operating over the system to those essential dynamics able to 

explain the pattern formation. In most of the cases the algorithm, instead of integrating the 

Eulerian equations of motion and continuity, approximates the system and considers the 

behaviour of single grains or single water particles. The motion o f such particles is 

generally described through very simple physics. The modelling of such small scale 

system(s) results in a larger system exhibiting a self-organised pattern on a much bigger 

scale. Because of the simplifications, such models are not capable of reproducing detailed 

field observations but they are able to indicate which kind of pattern can emerge and its 

variability. 

The use o f this technique for the simulation o f coastal morphodynamics is at its very 

beginning and, at the moment, the only model available concerns beach cusp formation 

(Wemer and Fink, 1993). Such a model wil l be described in detail in later chapters when 

dealing with the formation of beach cusps and when a similar model wi l l be presented. In 

the next sections the potential of this technique wi l l be considered by briefly reviewing two 

interesting different systems showing natural patterns and complex behaviour. 

2.5.2.1 River dynamics 

The two most typical features possibly characterising the path of a river are undoubtedly 

the continuous sequence of smooth curves defined as meandering (Plate 2.8) or the 

breaking of the flow into a series of interconnected channels, usually defined as "braiding" 

(Plate 2.9). Both features have been investigated through the use o f cellular automata 

models. Stolum (1996) studied the possibility that river meandering can be described in 

terms of chaotic behaviour and self-organisation criticality. Feedback seems in fact to be 

the controlling factor with lateral migration increasing the sinuosity (positive feedback) 

and cutoffs stabilising the system (negative feedback). The interesting feature of the 

system is that the effect of cutoffs is "context-dependent". This means that in a highly 

"disorganised" state, cutoffs help to stabilise the system but, i f the system is in a "quasi-

ordered" state, cutoffs cause a perturbation in the system bigger than the stabilising effect. 

As a result, the system tends towards a dynamical state of self-organised criticality (Bak, 

1997). Fluctuations from such state are possible and likely to happen in the form of events 

clustered in time and space (in the literature defined as "avalanches"). 
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Plate 2.8 Meandering river 

Plate 2.9 Braided river in Alaska (courtesy of Jim Apriletti, University of California, 

U.S.A.) 
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Murray and Paola (1994) studied the development of braided rivers through a very 

simplistic abstraction of the physics governing the system. Flow is characterised by a 

carrying capacity proportional to a power of the water discharge and affects the shape of 

the bed. The presence of random perturbations in the bed and the use o f a non-linear 

relationship between flow velocity and sediment flux allow the development o f braided 

patterns resembling natural features. This model, although applied to simulate completely 

different features, is in many aspects very similar to the one herein developed for the 

formation o f patterns in the swash zone (see chapter 5). 

2.5.2.2 Eolian ripples 

These kind of features, caused by wind motion and easily observed in different 

environments, look very similar (Plate 2.10) to the ones previously described through the 

stability theory and due to their regularity they have intrigued many authors. 

Plate 2.10 Eolian ripple field 
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Also in this case, the emergent pattem is characterised by a length scale that cannot be 

directly associated with a forcing template. In other words, the transition from a non-

patterned into a patterned state happens under no direct external influence. The usually 

observed patterns indicate wavelengths around 10 cm and the sorting of sediment (coarsest 

grains accumulate in the crests, the finest in the troughs). The 2D model by Anderson 

(1990) was based on the cellular automata approach and considered a grain randomly 

entering the domain, impacting the surface and rebounding at a slower velocity. Besides 

the numerous simplifications (one-size sediment, steady wind, simplification in the grain 

trajectory), this model was already able to show the emergence of a favourite ripple 

wavelength. 

Improvements to the simple model by Anderson (1990) have been proposed by different 

authors (Nishimori and Ouchi, 1994; Landry and Werner, 1994) that considered 3D 

simulations which, together with the addition of other features (different interactions when 

grains collide, the presence of an angle of repose), lead to interesting results comparing 

positively with the observations (ripple geometry related to the grain size). The simulations 

by Laundry and Wemer (1994) also showed ripples' merging during the formation process 

and gave evidence for the initiation of bedforms (positive feedback) and their stabilisation 

(negative feedback) as a result of the relationship between sediment transport and ripple 

geometry. The model by Nishimori and Ouchi (1993) was also able to simulate the 

formation of features of much larger scale like dunes through only minor changes in the 

grain trajectory simulation. This resuh confirms the suggestion that cellular automata are, 

in certain cases, very sensitive to the set of deterministic rules set at the beginning of the 

simulations (the model by Laundry and Wemer (1994) seems to be much more stable). 

Other developments have also been proposed so that sediment sorting (Anderson and 

Brunas, 1993) and the formation of a vertical stratigraphy (Forrest and Haff, 1992) could 

be simulated during ripple formation. 

2.6 Comparison between stability theory and self-organisation models 

As previously stated, the two approaches are both useful techniques to study and have a 

better understanding of fi-ee behaviour and complex systems in general. The main 

advantage of the stability theory is that, by following a more traditional approach, it allows 

for an easier understanding of the physical process(es) triggering the instability and driving 

the development of the bedforms. On the contrary, the so-called self-organisation, with its 

simplified rules, sometimes acts as a "black box" and the internal physics resulting in the 
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growth of a favoured wavelength are not always clear. It should also be considered that the 

use of simplified rules could be successful in identifying the minimum physics required to 

produce and develop the instability. The stability theory, in its linear application, can also 

lead to misleading interpretation of the results because of the lack of interaction between 

different modes. The patterns obtained are also not related to equilibrium states but only to 

the initial development of the bedform growth. Finally, bedform growth rates obtained for 

the linear case, are always the result o f a "deterministic" analysis involving the 

superimposition of a given perturbation over the basic slate and the evaluation of its 

growth. These disadvantages are obviously overcome by implementing a non-linear 

analysis which is unfortunately much more complicated. Self-organisation/cellular 

automata models allow for completely stochastic inputs (so that growth rates are not 

uniquely determined), they are implicitly non-linear and allow for the g r o v ^ of the 

instability to equilibrium. On the other hand, the major drawback o f self-organisation 

models is related to the strong assumptions on which they rely (for example, continuous 

systems are approximated by "discrete" arrays of particles) so that the validity of a model 

can only be assessed by comparison with field observations. 

It is clear that the techniques herein presented constitute a very powerfiil tool in order to 

model morphodynamics and it is possible to predict that further developments wi l l allow 

for an even better insight of the processes governing the nearshore region. For this reason 

in the next chapter a linear stability model for the formation of periodic patterns in the surf 

zone wil l be presented in an attempt to clarify whether the presence of such features is the 

result of a hydrodynamic forcing or the result of the interaction between flow and 

sediment. In the same way, a self-organisation model wi l l be developed in chapter 5 for the 

formation of beach cusps in the swash zone. These features, whose origin cannot be clearly 
4 

deduced from the existing field and laboratory measurements, are at the centre of a strong 

debate concerning their origin. In fact, a previously accepted model based on the 

hydrodynamic forcing due to the presence of standing edge waves has been recently called 

into question by a recently developed self-organisation model (Werner and Fink, 1993). A 

similar self-organisation model v ^ l l be presented here and its behaviour discussed in order 

to establish the origin of such features. 
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Chapter 3: A stability model for the formation of rhythmic patterns in the surf zone 

This chapter is based on "A mechanism for the generation of wave driven patterns in the 

surf zone" by Falques, A., Coco, G., and Huntley, D.A. submitted for publication by the 

Journal of Geophysical Research Throughout this work a model (MORFOiS) developed 

by Prof Falques has been used. Section 3.3 has been developed by Prof Falques and is 

here included for the sake of the argument. The personal contribution to this work is the 

development of a different sediment transport parameterisation in the model, the 

introduction of a sediment stirring function varying in the cross-shore direction, as well as 

the numerical simulations shown herein and the interpretation of the modelled features in 

terms of observed features. 

3.1 Introduction 

Morphodynamic instabilities arise from the coupling that sediment transport induces 

between the smzdl perturbations on a reference uniform bottom topography and the 

disturbances thereby produced on water motions. In the case o f normal wave incidence, 

where there is no longshore current, this coupling can occur through the perturbation that 

the bedform causes on the incident wave field. Basically, the shoals and the troughs cause 

wave energy redistribution, variations in the breaking point, wave refraction, reflection and 

diffraction that produce in turn a radiation stress distribution which is no longer in 

equilibrium with the setup/setdown and a steady circulation is created. This interaction wi l l 

be indicated as bed-surf interaction. 

When there is a significant longshore current the deflection that the bedforms produce on 

the current is another source of morphodynamic interaction. This mechanism is responsible 

for the formation of free bars in rivers and can also be important in the nearshore 

environment in case of currents generated by tides, by wind stress or by river discharge. 

This interaction wi l l be indicated as bed-flow interaction. From a conceptual point of view, 

bed-flow interaction is worth investigating in isolation (Falqu^s et al., 1996) and it is 

suggested (Falques et al., 1997) that it c£in eventually lead to the formation of 

morphological patterns in the nearshore region like, for example, transverse or oblique 

bars. 

Thus, normal wave incidence is assumed in the present work to avoid a mean longshore 

current. This occurs relatively often on natural beaches. But in addition, it seems that a 
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satisfactory understanding of each of the individual processes -bed-flow and bed-surf - in 

isolation is very convenient before dealing properly with the general situation of oblique 

wave incidence. As far as it has been found in the literature, instability in case o f normal 

wave incidence is essentially unexplored. For example, the model of Christensen et al. 

(1995) could not deal with the case of 9b = 0. Apparently, Hino (1975) did some numerical 

experiments with normal incidence. However, even though his results were promising, 

there appears to be a lack of a systematic investigation by both numerical and analytical 

tools. 

The purpose of the present chapter is to present a first detailed investigation of bed-surf 

interaction as a source of morphodynamic instability. Interest wil l be here concentrated on 

a single bed-surf effect: wave energy redistribution in the surf zone that is believed to be 

the major source of bed-surf interaction at an initial stage. This analysis shows that even 

with this rather simplified modelling morphodynamic, instability indeed develops and 

produces bedforms that compare well with features that can occur on natural beaches. 

Furthermore, this study suggests some interesting links between morphological patterns 

and sediment transport modes. The present study is restricted to the case of non-barred 

beaches and other effects like the variation of the breaking point due to the bedforms or 

wave refraction are left for further research. 

In section 3.2 the theoretical setting of morphodynamic stability wil l be presented. Some 

general properties of the instability are given in section 3.3 and the physical mechanisms 

are investigated. This is done by means of analytical tools and by considering an idealised 

situation. Numerical experiments in case of more realistic conditions are presented in 

section 3.4. A brief summary, some discussion and a comparison with natural 

morphological pattems are given in section 3.5. 

3. 2 Governing equations and stability analysis 

3.2.1 Governing equations 

A planar beach will be considered with a shoreline given by the y axis and with a 

topography given by z=2b(x,y,t) where x is the cross-shore coordinate and z the vertical 

one (positive upwards, see Figure 3.1). The 2DH nearshore hydrodynamics on time scales 

larger than the incident waves proceed firom depth averaged momentum and mass 

conservation and read: 
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^ + v .v , . = -gz , , - M . , +S,.,)+1[VD(V,. + v . J ] . i= l , 2 (3.1) 
pD 

(3.2) 

Here, v = ( v j , v 2 ) is the depth-averaged horizontal velocity, the derivative with respect to 

Xj has been indicated by the subindex " , i " with X i = x , X2=y and repeated indexes assumed to 

be summed. The total depth is D=Zs-Zb, where Zs(x,y,t) stands for the fi-ee surface elevation. 

The bottom shear stress is T , and the water density is p. The lateral mixing fi-om wave 

breaking turbulence is parameterised by means of the eddy viscosity coefficient, v(x). The 

forcing fi-om incident waves is given by the radiation stresses that read: 

k' 2 " 
i , j = l,2 (3.3) 

where k and E are the wave number and the energy o f incident waves (Horikawa 1988). 

Since shallow water waves are considered, it is assumed that the phase and the group 

celerities approximately coincide so that Cp=Cg=c. 

The morphological evolution is given by the sediment conservation equation: 

at 
+ V q = 0 (3.4) 

where q ( v , Z b ) is the horizontal sediment flux vector. 

Figure 3.1 Sketch of the geometry and coordinate system 
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3.2.2 Basic state 

By considering a regular incident wind or swell waves approaching the beach normally 

with energy distribution E=Eo(x), it is possible to look for a basic undisturbed state which 

is a steady and motionless solution of (3.1), (3.2), (3.4), that is: 

v,=V2=0, Zs=C,o{x), Zb=-do(x) (3.5) 

The radiation stress wi l l take the form: 

S „ = | E O ( X ) , S^=iE„(x) , S ^ = 0 ( 3 . 6 ) 

Furthermore, it will be assumed that both the bottom shear stress and the sediment flux are 

proportional to some power of the mean flow velocity. Therefore, since v = 0, the bottom 

friction and the sediment flux wil l vanish, T = 0, q = 0. As a result, the cross-shore 

component of (3.1) reads: 

^ dx 2pdo+^o dx 

while the rest of the governing equations are automatically verified. Thus, the basic 

undisturbed state is defined as a steady setup/setdown of the mean water level given by 

Zs=^o(x), over a fixed topography without mean motion. 

3.2.3 Linear stability equation 

Any departure fi-om the basic planar topography v ^ l l produce a modification of the 

incident wave field. The wave energy distribution wi l l change and waves wi l l be refracted. 

As a result, the setup and setdown of the basic state, Co(x), wil l not be in equilibrium any 

longer and a mean flow wil l thus be generated. This flow wi l l carry sediments so that the 

initial topographic disturbance wil l evolve. A morphodynamic loop wi l l thus be formed 

and i f a positive feedback occurs, a new topography coupled to an horizontal circulation 

will develop in time. To look at this possibility, a small perturbation wi l l be assumed on 

the topography and on the mean free surface: 

Zb(x,y,t)=-do(x)+x(x,y,t), Zs(x,y,t)=(;o(x)+Ti(x,y,t) (3.8) 

and a small horizontal mean flow: 

v=(u(x,y,t),v(x,y,t)) (3.9) 

wil l be assumed as well. The dynamics of these small perturbations wi l l be considered by 

linearising the governing equations (3.1), (3.2) and (3.4). 
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A difficult and crucial point is how the disturbance wil l affect the incident wave field. In a 

saturated surf zone, this wi l l basically happen through three effects: wave energy 

redistributions, wave refraction by depth variations and currents and the modification of 

the breaking point by growing shoals and pools at the breaking line. Wave refraction and 

the modification of the breaking point are both first order effects (with respect to the 

perturbations). However, they wi l l be assumed to be comparatively small with respect to 

wave energy redistribution and wil l be neglected throughout this study. As a result, waves 

approaching normally to the shore wil l be considered with their energy suffering small 

modifications due to depth variations. For this purpose, it wi l l be assumed that wave 

energy in the nearshore is a known function of the total depth: 

E=E(D) (3.10) 

This allows to describe one source of coupling between morphology and waves in a simple 

manner. How wave refraction and the variation of the breaking point affect this mechanism 

is lef^ for future research. Note that equation (3.10) is not valid in case of barred beaches. 

As previously indicated, a monotonic beach profile wil l be here considered. 

Equation (3.10) can easily be determined for a saturated surf zone, where: 

E=^pgY^D^ (3.11) 

is usually assumed with yb«l being a breaker index. The Green law for wave amplitude in 

the shoaling zone is also in accordance with the form of (3.10) (Mei, 1989). 

Sediment transport parameterisation is another important point. The sediment flux is 

usually parameterised as being proportional to some power, m, of the mean flow. Since 

there is no flow in the basic state, the sediment transport in the perturbed state wi l l be 

proportional to the power m of v which is first order. Then i f m > l , there would be no 

sediment transport in the linearised problem. Therefore, it wi l l be assumed m=l in the 

linear analysis and the non-linear problem wil l be left for future research, checking the 

robustness of the instability mechanism to the choice of m. Thus, it wil l be assumed 

q=a (x )v -Y(x )Vx (3.12) 

This linear parameterisation of sediment transport can be interpreted as the sediment being 

stirred by wave motion and then advected by the mean current. Thus, a(x) is a wave 

stirring coefficient which is expected to have a cross-shore gradient (see section 3.2.4). 

Furthermore, due to both wave oscillations and to wave-breaking turbulence, any bump 

superimposed on the nearshore sea bottom wil l be potentially smoothed out i f no positive 
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feedback occurs into the water motion. This is parameterised through a morphodynamic 

diffrision coefficient Y(X) in (3.12). 

Bottom shear stress wi l l also be parameterised as being proportional to the mean flow 

through a coefficient that depends on the wave orbital velocity, Uo, 

^ = il.u. ^ = A,v (3 .3 ) 

where (ix=2|iy=4cfUo/(7rDo) and where, in the surf zone, IJQ =(yt, /2)^gDo (Horikawa 

1988). Here, Cf is the drag coefficient that relates the instantaneous bottom shear stress to 

the squared instantaneous velocity, T=pCfV^. 

The momentum diffusion wi l l be parameterised as: 

v(x) = Nx7gD (3.14) 

in the surf zone (N is a constant), and as an exponential decay beyond the breaking line. 

It is now possible to introduce a scaling. The width of the surf zone, Xb, is chosen as 

horizontal length scale and a vertical length scale pXb wi l l be introduced where P is some 

mean slope of the basic topography, O(ddo/dx)= p. An arbitrary velocity scale, U , is also 

considered. The natural time scale for hydrodynamics is then X\/\J. However, 

morphological evolution is much slower, with a time scale T that wi l l be defined later 

(e=(XbAJ)/T«l) . Then, the non-dimensional variables wi l l be defined as: 

(x, y) = X,{x\y% X = PX^X'. Do = PX^Do 

(u,v)=:U(u',v'), Ti = — T i ' , t = T f 

g 

Hereinafter, primes wil l be dropped for simplicity. Then, the linearised non-dimensional 

form of the governing equations (3.1), (3.2) in the surf zone wi l l read: 

where a Froude number F = U/7gPx7 has been introduced and | i ^ = | i ^ X b / U , 

(iy = ^yXj , / U have been defined. The non-dimensional coefficients, |ix, Hy depend on the 
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drag coefficient, Cf, through r=Cf/p, that will be adopted as frictional parameter for our 

simulations (see also Falques at al., 1996). Notice that the same equations will be valid out 

of the surf zone, but, since there are no perturbations on the radiation stress, yb must be 

substituted by 0. The momentum diffusion terms read: 

du^ d f d i x dv^ V = A A 
Do ax , 

1 d 

v.. = 

VDQ — + V — — + 
d K j d y [ d y d \ 

Do ax 
vDe + 2 v — -

To scale the sediment conservation equation (4), a non-dimensional wave-stirring 

coefficient will be first defined: 

d(x)= a a(x) 

where a(x) is order one. By carrying out the scaling equation (3.4), the coefficient 

UTa/pX^ appears in fi-ont of a(x) in the divergence of the sediment flux. Therefore, i f 

significant morphological changes are required during one time unit a morphological time 

scale must be chosen: 

T = p ^ (3.18) 
Ua 

Then, from (3.4) the bottom evolution becomes: 

d r 
ax Y — < 5x, d y [ ay. 

(3.19) 

where y =yT/Xb. 

Now the linear stability analysis proceeds in its standard way by assuming alongshore 

periodic perturbations of the form: 

[u(x,y,t),v(x,y,t),Ti(x,y,t),x(x,y,t)]=9?e{e°^*^[u(x),v^^^ (3.20) 

where 2n/k is the alongshore wavelength and a the growth rate. By inserting this form of 

the solution into the system of the governing equations (3.15)-(3.16)-(3.17)-(3.19) an 

eigenproblem is obtained, where a is the eigenvalue and [u(x), v(x),r|(x),x(x)] is the 

eigenfunction. Its structure is the same as that (3.15)-(3.16)-(3.17)-(3.19) but with 

substitution of d/di by a and d/dy by ik. 

A spectral numerical technique based on the use of rational Chebyshev functions has been 

applied in order to solve the eigenvalue problem. This method has already been 

successfully applied to other morphodynamic models (see, for instance, Falques et al., 

1996 and 1997, where a description of the technique can also be found) and allows for the 

determination, for a given wavenumber, of as many eigenvalues as the number of 
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discretization points. The numerical model that solves the present eigenproblem is called 

M0RF013. The relevant morphodynamic instability modes have real CT in this case. This 

means a growth (if a > 0) in place without migration. The model is also able, however, to 

describe purely hydrodynamic models like edge waves. In this case the imaginary part of CT 

is the frequency and it gives the alongshore phase speed. 

3.2.4 Sediment transport parameterisation 

In this section the link between the sediment transport parameterisation described through 

equation (3.12) and other already accepted models will be shown on the basis of an 

energetics approach. Bowen (1980) applied the Bagnold (1963) energetics equation to the 

case of a sinusoidal wave velocity and a much smaller mean flow, and showed that the net 

sediment transport rate for both suspended and bedload transport rate takes the form: 

16e„CfP 

5w 
(3.21) 

37rw 

where: Sss = suspended sediment transport efficiency, Cf = drag coefficient, p = water 

density, w = settling velocity, Uo = maximum wave orbital velocity, Ui = steady current. A 

comparison between such a formulation and the one given in equation (3.12) implies that: 

a (x )=C.U^ y ( x ) = - C , H l (3.22) 
5w 

where Ci = 168ssCfp/37iw. 

A simple model of wave velocities under normally incident shallow water waves provides 

a form for the cross-shore dependence of these ftmctions a(x) and Y(X). By assuming 

shoaling waves out of the surf zone and depth limited waves inside the surf zone v̂ dth 

H=YbD, one obtains: 

= CjX"' ' ' for D>Db and = C^x for D<Db 

where: x = D/Db and = grl^b 

Thus it is possible to obtain the expression for the variation of the maximum orbital 

velocity (Uo), and so of a(x) and Y(X) with the offshore distance. In fact, outside the surf 

zone: 

a(x) = C,C^/^x-''^, Y ( X ) = --^C^'^x-'^"* 
5w 

while inside the surf zone: 

5w ' 

(3.23) 

(3.24) 
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These are the functions of x that have been modelled in this chapter. 

The case of a(x) and Y(X) increasing towards the shoreline is related to a wave field 

dominated by the presence of edge wave motions. The edge wave theory is akeady well-

established (Eckart, 1951; Ursell, 1952) and for the resent purposes it is only important to 

note that a standing edge wave in shallow water has a velocity potential given by: 

<t> = ̂ L„{2Kxy^' cosXycosG^t (3.25) 

where: an is the amplitude of order n, a* is the frequency, Ln(2Xx) is the Laguerre 

polynomial of order n, x and y are the horizontal coordinates in the offshore and 

alongshore direction, t is time and X is the longshore wavenumber of the edge wave. 

The cross-shore orbital velocity field is given by the gradient of the velocity potential and 

it results in a cross-shore profile of the form: 

u . ( x ) = - ^ [ L „ ( 2 ^ x ) e - ^ ] (3.26) 

In nature one would expect to find the co-existence of edge waves characterised by 

different modes and wavelengths. For example Figure 3.2 shows the effect of 

superimposing the velocity squared of the first seven modes of an edge wave of arbitrary 

wavelength and under the hypothesis of non-correlation between the different modes. The 

rapid increase towards the shoreline is at least qualitatively modelled by the exponential 

forms used in the simulations in this chapter. 

3.3 Analysis of the instability mechanism 

In section 3.4, by using the numerical model M0RF013, it will be shown that 

morphodynamic instability indeed develops, and the properties of such a process will be 

explored for realistic conditions. However, the use of analyticzd tools, when possible and 

perhaps in very idealised situations, gives a better understanding of the outputs of the 

numerical models and a higher confidence in them. This section is devoted to some 

analytical developments on the bed-surf interaction. 
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Figure 3.2 The sum of the squares of the cross-shore velocities for the first seven edge 

wave modes on a Unear slope (arbitrary units) 

3.3.1 Bottom evolution equation 

A very useful tool for analysing the morphodynamic instabilities is a bottom evolution 

equation where only the cross-shore flow component is involved (Falques et al., 1996). 

This form of equation can easily be obtained by substituting dv/dy from the mass 

conservation equation (3.17) into the sediment conservation equation (3.19). Since the 

morphologic evolution is much slower than the fluid motions, it is safe to consider e=0 in 

this section. Then, the bottom evolution equation will read: 

d y [ d y ) 
= -ua — In 

dx 
(3.27) 

The conditions leading to the instability are immediately found from this equation. The 

growth of any bedform requires dx,/dt>0 where x>0 and d)i/dt<0 where x<0. In the linear 

theory each of these conditions implies the other. So it is possible to examine when the 

first condition occurs. Tht second and the third terms on the left side are diffusive so that 

they play just a damping role and any instability will be related to the right hand term. 

Thus, since a>0, instability requires that 

d , 
u — In 

dx 
<0 (3.28) 

where x>0, that is over the shoals. Then, if a(x)/Do(x) is a growing (decreasing) function, 

instability requires u<0 (u>0) where x>0. In other words, i f the stirring coefficient 
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increases seaward faster (slower) than the water depth, the grov^ of bedforms needs a 

shoreward (seaward) flow over the shoals. 

This can be understood as follows. Assume first a constant a. A seaward flow over a 

sloping beach has to converge in order to preserve mass, as the depth is increasing 

following the water motion. Since a is constant, this implies a convergence of sediments, 

and therefore sedimentation. Assume now a constant depth but an increasing wave stirring, 

a, and assume again a seaward flow. Its divergence wall now vanish. However, given a 

control volume, the sediment concentration will be smaller at its shoreward side than at its 

seaward side. Therefore, more sediment will go out than the sediment entering the control 

volume so that erosion will occur. Thus, one gets two counteracting effects, one related to 

the gradients in depth, Do(x), the other related to the gradients in the stirring function, a(x). 

To conclude this stability analysis it is now needed to know, for any given topographic 

pattern, whether the cross-shore flow wall be seaward or shoreward over the shoals. This 

requires solving the flow equations (3.15)-(3.16)-(3.I7) for a given bottom perturbation 

that is, the "flow over topography problem" that will be hereafter referred to as the FOT 

problem. 

3.3.2 Flow over topography (FOT) problem 

It will be now assumed that the bottom perturbation and the flow related to it are periodic 

in the alongshore direction, that is the form given by equation (3.20). Lateral momentum 

mixing will be here neglected since it is not essential for the instability mechanism. Its 

effect will be investigated numerically in section 3.4. Also, the quasi-steady 

approximation, e=0, will be adopted as in the previous section. For simplicity the hats on u, 

V, T i , X are dropped. With all these assumptions, and defining the parameters: 

the flow equations (3.15)-(3.16)-(3.17) can be written as: 

^ ,u + (l + 3m)5 = 3 s ^ (3.29) 
dx OK 

V + ik(l + m)n = iksx (3.30) 

|-(Dou)+ikDoV = 0 (3.31) 
ox 

Substitution of v and r\ from (3.30) and (3.31) into (3.29) leads to a single equation in u: 
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BK Do dK l + 3m ' (l + 3m)ax 
(3.32) 

As for the flow equations (3.15)-(3.16)-(3.17), this equation is only valid within the surf 

zone. However, the same equation works outside the surf zone i f one substitutes yb with 0, 

i.e., i f s=m=0 is considered. Appropriate boundary conditions are a vanishing mean cross-

shore flow at the shoreline and far offshore, u(0)=u(oo)=0. 

An interesting property of the solutions of the FOT equation (3.32) is that they satisfy the 

inequality: 

r^DoU^dx >0 (3.33) 

where xi , X2 are any cross-shore positions within the surf zone with u(xi)=0 and either 

u(x2)=0 or X2=l. This can be obtained by multiplying equation (3.32) by DQU and choosing 

two arbitrary cross-shore locations in the surf zone 0 < xi < X2 <1 where the cross-shore 

velocity vanishes: 

u(x,)=u(x,) = 0 (3.34) 

Then, integrating by parts leads to: 

ax 
(Dou) dx ̂  llHL fV.D.uMx = r D . u ^ d x (3.35) 

l-f-3m J'̂ ' ° (l + 3m)J'^' " a x 

If both cross-shore positions were outside the surf zone, 1 < xi < X2, one would then obtain: 

^ — ( D o u ) dx + k^ M,DouMx = 0 (3.36) 

Since jix, Hy, Do > 0, it then follows u(x) = 0 for xi < x < X2. By taking u(oo) = 0 and by 

chosing X2 - > oo, one then has u(x) = 0 for x > X2. Finally, by continuity, xi can be lowered 

up to the breaker line, x = 1. Therefore, either u(x) = 0 for all x > 1 or u(x) 0 for all x > 1. 

Another possibility would be 0 < X i < 1 < X2 ^ oo. In this case one obtains: 

(3.37) 

Therefore, it is possible to conclude that equation 3.33 is satisfied whenever u(xi) = 0 and 

either u(x2) = 0 or X2 = 1. 

Essentially, this inequality means that a decrease of the bottom slope with respect to the 

equilibrium {dy^/dx>Q makes -dz\Jdx smaller) produces an offshore flow, u>0 (on average). 

This can be understood because a smaller bottom slope induces smaller cross-shore 
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gradient in radiation stress so that the equilibrium setup becomes too large and induces a 

seaward current. A priori, however, this is not so straightforward since there is also a 

contribution from free surface variations which are implicitly taken into account. 

3.3.3 The instability mechanism in a simple case 

A simple idealised situation will be now considered. In such a case, morphodynamic 

instability can be predicted by the analytical tools developed in the last two sections. The 

basic assumption is that a/Do is a monotonically increasing function. This may be realistic 

in the surf zone but not beyond the breaking line. However, this case provides an example 

of how bed-surf interaction can lead to morphodynamic instability. More realistic 

situations will be dealt with in the next section by means of numerical experiments. The 

example described here provides some confidence in the numerical model set up to solve 

the instability equations in realistic conditions. 

Assume a shoal with a monotonically decreasing amplitude seaward dyjd\<0. Then, 

according to inequality (3.33), the cross-shore velocity is shoreward (u<0) everywhere on 

the shoal. Indeed, assume that there was a cross-shore location, x=X3, where u(x3)>0. Then, 

by continuity, there would exist x",, Xj such that 0 < x", < Xj < x'j < oo such that 

u ( x j = u(x2)= 0 and u(x)>0 for all x, <x<X2.Inthis case, inequality (3.33) would not 

be satisfied. 

Therefore, such a shoal would produce a shoreward current on it (and of course, due to the 

alongshore periodicity, a seaward current in the troughs between shoals). But then, 

according to the bottom evolution equation (3.27), since O/DQ is an increasing fiinction, an 

inshore flow over the shoals will produce a growth of such shoals (see Figure 3.3). Thus, 

the motionless equilibrium on a plane sloping beach would be unstable with respect to this 

kind of topographic perturbations. Of course, this depends on the basic assumption of an 

ever increasing ct/Do fimction, which is not realistic. By numerical simulation, it v^ll be 

shown that the topographic and flow patterns emerging from the instability are very 

sensitive to this function. 
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Figure 3.3 Sketch of the bed-surf instability mechanism in the idealised case on a 

monotonically increasing ct/Do function 
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3.4 Numerical simulation 

The previously described eigenvalue problem has been here solved numerically in order to 

assess the sensitivity of the morphodynamic instabilities and their along-shore spacing to 

parameters such as the bottom friction, the eddy viscosity and the morphodynamic 

diffusion. The numerical model has also been used to evaluate the sensitivity of the results 

to the quasi-steady hypothesis and the convergence of the numerical solution for different 

number of discretization points. Finally, the dependence of the results on the way the 

stirring function is parameterised in the sediment transport formulation has been carefully 

analysed. A plane sloping beach has been assumed through all the numerical simulations. 

Physically realistic ranges of parameter values have been used. The parameter related to 

the bottom friction, r, has been varied between 0.1 and 1 and that representing the eddy 

viscosity, N, between 0.001 and 0.02. For the morphodynamic diffusion parameter, y (eq. 

3.12), a profile changing with the cross-shore velocity gradients has been considered with a 

maximum value, ranging between 0.01 and 0.1, chosen at the beginning of the simulation. 

Some of these parameters have sometimes been used out of the defined range in order to 

understand their effect and importance for the growth of the instability. The simulations 

show robustness towards all the parameters concerning hydro- and morpho-dynamic 

behaviour but a very strong dependence on the form of the stirring function a (eq. 3.12) 

used in the sediment transport formulation. For this reason, results will be analysed 

separately for a series of qualitatively distinct forms of the stirring function a(x). 

For simplicity the first case analysed is a stirring function a(x) quadratically increasing 

from a small shoreline value to the breaking line. Seaward of the surf zone, the stirring 

function is kept constant and equal to the value at the breaking line (simulations have also 

been run with an exponential decrease beyond the breaking line but results are not 

significantly affected by such change). Figure 3.4 shows the influence of the bed friction 

parameter on the growth rate. It shows a consistent decrease of the growth rate with 

increasing the bed friction parameter but also the consistent presence of a definite 

maximum, always around the same wavelength. Figures 3.5 and 3.6 show the sensitivity of 

the instability towards the morphodyneunic diffusion and the eddy viscosity parameters 

respectively, and show a similar decrease of the growth rate with increasing parameter 

value, though in this case there is also a rapid decrease in the peak wavenumber. In 

general, results indicate an along-shore spacing of the resulting features around three times 

the width of the surf zone. Significantly different values are obtained only when the input 

parameters are extended towards non-realistic values. A feature that all these simulations 
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Figure 3.4 Instability curves for different values of r, N=0.01, y=0.02, a(0)=0.1 
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Figure 3.5 Instability curves for different values of y, r=0.5, N=0.01, a(0)=O.I 
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Figure 3.6 Instability curves for different values of N, r=0.5, y=0.02, a(0)=0.1 
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have in common, as well as most of the ones that will be shown in the following sections, 

is the lack of other modes displaying unstable wavenumbers (a>0). Other modes are 

obviously present but they are all characterised by negative growth rates unless 

unrealistically low values for the parameters related to the damping of the topography (bed 

friction and diffiisivity) are chosen. 

The typical perturbation contour pattern obtained is shown in Figure 3.7 while Figure 3.8 is 

a contour plot of the basic slope and the topographic disturbance and also shows the flow 

pattern. It has to be underlined that, because of the linear analysis, the amplitude of the 

topographic disturbance is arbitrary. A 3d view is also given in Figure 3.9, and clearly 

shows the presence of periodic features around the breaking line, resembling what in the 

literature have been defined £is crescentic bars (Bowen and Inman, 1971; Lipppmarm and 

Holman, 1990). A form of'mirroring effect' offshore of the breaking line is also present 

such that opposite to deposition an area of erosion is present and vice-versa. In agreement 

with the theoretical anzdysis of section 3.3, the flow pattern is such that inshore flow is 

present over the shoals and offshore flow over the troughs within the surf zone, where ot/D 

increases. Beyond the breaking line, the opposite occurs, since ct/D decreases. 

For the cases just analysed a shoreline value of the stirring function equal to 0.1 has been 

used but an interesting result is obtained when such value is set to zero. In this case the 

instability curve (Figure 3.10) shows the presence of a second mode, though its growth rate 

is much smaller than that related to the dominant mode, and it is positive only for a 

restricted number of wavelengths. However it presents an interesting pattern which is very 

similar to the one observed in nature when beach cusps are present (Figure 3.11). These 

bedforms, characterised by a very large spacing (around 6 times the width of the surf 

zone), are characterised by a horn divergent flow pattern (Figure 3.12) and are much closer 

to the shoreline than to the breaking line (see Figure 3.13). In reality, rhythmic features like 

beach cusps are usually associated v^th reflective conditions and so with a situation where 

sediment close to the shoreline is likely to be moved. This condition is then contrary to the 

hypothesis of a stirring coefficient equal to zero at the shoreline. A non-linear analysis is 

required in order to understand whether the importance of this second mode is negligible or 

not and if such forms could grow and be compared to features commonly observed in 

nature. 

Another interesting result which has revealed its consistency throughout all the simulations 

concerns the quasi-steady hypothesis. The model, in fact, allows one to verify the influence 
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Figure 3.7 Contour lines of the topographic perturbation for k=3.0, r=0.5, N=0.01, y=0.02, 

a(0)=0.1. For these plots the alongshore direction is on the horizontal axis while the 

vertical axis indicates the cross-shore direction; darker areas correspond to greater depths 
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Figure 3,8 Topographic perturbation and relative flow pattern for k=3.0, r=0.5, N=0.01, 

7=0.02, a(0)=0.1 

Figure 3.9 3d-view of the topographic perturbation (basic slope and perturbation 

amplitude have been chosen arbitrarily) for k=3.0, r=0.5, N=0.01, y=0.02, a(0)=0.1 
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Figure 3.10 Instability curves for different values of N=0.01, r=0.5, Y=0.02, a(0)=0.0 
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Figure 3.11 Contour lines of the topographic perturbation for mode n=2 and k=l (r=0.5. 

N=0.01,Y=0.02, a(0)=0.0) 

1.0 

0.0 
12.0 10.0 8.0 6.0 4.0 2.0 0.0 

Figure 3.12 Topographic perturbation and relative flow pattern for mode n=2 and k=l 

(r=0.5, N=0.01, y=0.02, a(0)=0.0) 

Figure 3.13 3d-view of the topographic perturbation (basic slope and perturbation 

amplitude chosen arbitrarily) for mode n=2 and k=l (r=0.5, N=0.01, y=0.02, a(0)=0.0) 
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of this hypothesis by changing the value of the previously defined coefficient e. Figure 

3.14 shows that the adoption of relatively small values (e =0.01) results in an instability 

curve which does not differ much (less than 2%) from considering e =0. This is probably 

because the instability is on a morphological scale much larger than the hydrodynamical 

one so that the fluid adjusts instantaneously to the topographic changes. However 

differences appear, though primarily more in the magnitude of the growth rate rather than 

in the wavelength, when comparable values are used for the time and hydrodynamical 

scale (i.e. z =0.1). 

6=0.0 
e=0.01 
E=0.1 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 
k 

Figure 3.14 Instability curves for different values of e, r=0.5, N=0.01, y=0.02, a(0)=0.1 

Simulations have also been performed in such a way that the sediment transport 

parameterisation is very similar to the approach given by Bowen (1980) and Bziilard 

(1981). As shown in section 3.2.4, this approach results in a stirring coefficient and in a 

morphodynamic diffusion increasing inside the surf zone as off-shore distance to a power 

of 3/2 and 5/2 respectively; and decreasing out of the surf zone to a power of -9/4 and -

15/4 respectively. The pattern obtained through this simulation is qualitatively similar to 

that for the quadratic function of offshore distance. The only difference is that the 

perturbation is smaller than that showed in Figures 3.7 and 3.8. The use of such exponents 

should not be considered as an attempt to obtain more realistic results (in the next sections 

it will be shown that field conditions exhibits much more complex behaviours) but to 

indicate the robustness of the results and the possible link with already accepted 

approaches. 
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So far only a sediment transport stirring function, a(x), which increases through the surf 

zone has been considered. The use of a constant value of a throughout the whole cross-

shore section does not affect the process generating the instability and all the results of the 

sensitivity analysis previously shown are confirmed, although growth rates are much larger 

(Figure 3.15, 3.16, 3.17). It is again possible to see that the influence of the friction 

coefficient r is primarily on the strength of the growth rate and only in a negligible way the 

wavenumber. An increase in the maximum value of the morphodynamic diffusion profile y 

and of the eddy viscosity coefficient N again results in a decrease in the growth rate but 

also in a decrease in the peak wavenumber. For the other cases a decrease of the 

wavenumber is observed with increasing the parameter. Compared to the previously 

analysed cases, results seem to indicate a higher variability of the wavelength such that the 

spacing of the bedforms may vary between 2 and 6 times the width of the surf zone. 

The difference between an increasing a(x) and a constant a(x) is much more evident when 

the bottom perturbation and the flow pattern are analysed. For constant a the shape of the 

bottom perturbation (Figure 3.18) now extends to the shoreline and is not restricted to 

around the breaking line. The flow (Figure 3.19) is off-shore over the shoals so that the 

final pattern, for both flow and topography, is very similar to that related to rip currents 

and giant cusps as reported by different authors (Shepard, 1963; Komar, 1971). The 

mirroring effect is not present anymore, as can be clearly seen from the 3d view given in 

Figure 3.20. The flow pattern obtained is again in accordance with the theoretical analysis 

in section 3.3 since cc/D is now decreasing through the surf zone. The case of constant a 

does not present any other mode with a positive growth. 

- - r=0 .3 o 3.0 

r= 1.0 
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k 

Figure 3.15 Instability curves for different values of r, N=0.01, y=0.02, a(x)=constant 
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Figure 3.16 Instability curves for different values of y, r=0.5, N=0.01, a(x)=constant 
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Figure 3.17 Instability curves for different values of N, r=0.5, Y=0.02, a(x)=constant 

Because of the different patterns obtained only by changing the stirring function from a 

quadratic law to a constant value, the conditions responsible for the change from one 

behaviour to the other have been investigated. As previously indicated, the quadratic law 

considered depends on an initial value, arbitrarily assigned, at the shoreline. By increasing 

this value it is possible to analyse the transition from one behaviour to the other. Note that, 

because of the non-dimensional variables used throughout this study, a value of 1 at the 

shoreline would mean a constant stirring coefficient in the surf zone. For example, a value 

of the stirring function at the shoreline equal to 0.3 results in the perturbation pattern 

shown in Figure 3.21. Here the perturbation is already different from that observed in 

Figure 3.7, with the patterns only present outside the surf zone, although still resembling 
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Figure 3.18 Contour lines of the topographic perturbation for k=4.0 (r=0.5, N=0.01 
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Figure 3.19 Topographic perturbation and relative flow pattern for mode for k=4.0 (r=0.5, 

N=0.01, y=0.02, a(x)=constant) 

crescentic forms. Further increase of the stirring coefficient at the shoreline results in the 

patterns shown in Figure 3.22 and Figure 3.23 respectively for a(0)=0.5 and a(0)=0.7. It is 

evident that the perturbation is extending its effect towards the shoreline and that, rather 

than crescentic forms, patterns more similar to those shown in Figure 3.18 are present. 
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Figure 3.20 3d-view of the topographic perturbation (basic slope and perturbation 

amplitude have been chosen arbitrarily) for k=4.0 (i=0.5, N=0.01, Y=0.02, a(x)=constant) 
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Figure 3.21 Contour lines of the topographic perturbation for k=4.0 (r=0.5, N=0.01, 

y=0.02, a(0)=0.3) 
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Figure 3.22 Contour lines of the topographic perturbation for k=4.0 (r=0.5, N=0.01 

y=0.02, a(0)=0.5) 
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Figure 3.23 Contour lines of the topographic perturbation for k=4.0 (r=0.5, N=0.01, 

y=0.02, a(0)=0.7) 

As an example of a stirring coefficient a(x) which is decreasing from the shoreline, an 

exponentially decaying form has also been studied. As discussed in section 3.2.4, such runs 

might simulate conditions where reflection at the shoreline or infragravity motions are 

predominant. The morphology resulting from such simulations is always that previously 

associated with the "giant cusps" patterns, and the only effect of increasing the power of 

the exponential decay is a shift of the maximum of the perturbation towards the shoreline. 

3.5 Discussion 

it has been shown that the perturbations of the incident wave radiation stress induced by 

the topographic irregularities in a saturated surf zone can drive a cellular flow with a 

sediment transport pattern which is able to reinforce the bottom perturbations. In this way a 

positive feedback that leads to the coupled growth of nearshore large scale bedforms and 

horizontal circulation with rip currents may occur. Basically, two instability modes may 

appear depending upon the form of the sediment stirring ftmction, a(x). 

For an a frinction with an increase seaward across the surf zone a "crescentic pattern" is 

generated. This consists of alternating shoals and pools on both sides of the breaking line, 

showing a "mirroring effect". The associated flow pattern extends through the whole surf 

zone but has its maximum strength around the breaking line. The alongshore wavelength of 

such features ranges between 2 and 4 times the surf zone width, Xb, and depends on the 

bottom friction, lateral momentum diffusion and morphological diffusion. 
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Alternatively, for an a function more or less constant or even decreasing seawzird across 

the surf zone, a "giant cusp pattern" occurs. This consists of transverse bars attached to the 

shoreline and extending across the whole surf zone. The associated flow has rips over the 

crests and a return flow in between. For simplicity, the present linearised model keeps the 

shoreline fixed. However, it seems conceivable that a model capable of describing 

shoreline changes would generate cusps at the shoreline attachments of these bars. The 

alongshore spacing between the bars is between 2 and 6 times Xb, typically somewhat 

longer than the wavelength of the crescentic pattern. Bottom friction, lateral momentum 

diffusion and morphological diffusion are the damping factors on both instability modes. 

However, for values of the damping parameters in accordance with the literature (see, for 

example, Horikawa 1988), growth rales are usually positive. 

An indication of the order of magnitude of the growth time of these features can be 

obtained from the morphological time scaling defined in eq. 3.18. According to the data 

reported in Antsyferov and Kos'yan (1990) or by Russell (1993), 5 Kg/m"* seems to be an 

appropriate order of magnitude of the suspended sediment concentration. Assuming a 

reference depth of 0.5 m one obtains awlO'"* mVm^. The velocity scale can be calculated 

from the Froude number used in the computations, F=0.12, so that U = 0.12.^gpXb . Thus, 

one can estimate: 

V « 2 . 6 1 0 ' P " X ' V ' 

By assuming a growth rate of a a? 1, a beach slope P w 0.05 and a surf zone width of Xb» 

10m, the features, whose wavelength would be about 30m, would grow significantly 

within some 5 hours. According to this, bedforms for Xb « 5m, would grow within 1.8 

hours, while very large bedforms for Xb^ 20m would not grow significantly until some 14 

hours. These figures seem very sensible and suggest that the larger scale bedforms are not 

observed very often perhaps due to the fact that their growth time is longer than the typical 

time scale of wave conditions' variability. 

For suspended sediment transport, the function a in equation (3.12) models the cross-shore 

profile of the depth-integrated mean suspended sediment concentration. The relatively 

small number of published observations of mean concentration in the nearshore zone 

confirm that this cross-shore profile can take any of the qualitatively different forms which 

have been used here. Antsyferov and Kos'yan (1990) show measurements from a natural 

beach under 'relatively constant small swell' (estimated breaker height ca. Im), where 

mean concentrations increase seawards from near-zero at the shoreline, reach a maximum 
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at the breakpoint and then decay further seawards. This profile shape is qualitatively 

similar to the form resulting in the crescentic topography (Figures 3.7 and 3.8). On the 

other hand, observations described by Hwang et al. (1997) from a beach of mild slope and 

offshore wave heights of between 1.6 and 2.2m, show almost constant concentration 

through the surf zone, a form found to create giant cusp topography (Figures 3.18 and 

3.19). The observations of Russell (1993), for a breaker height in excess of 3m, suggest 

that during storm conditions the concentration can even increase towards the shoreline, a 

form of a which also creates giant cusp topography. 

Breaking incident waves alone would be expected to result in concentrations which 

decrease towards the shore; the simple model of the stirring effect of breaking wave 

currents described in section 3.2.4 is in fair agreement with the observations of Antsyferov 

and Kos'yan (1990). However, waves reflected at the beach would have significant 

amplitude at the shoreline (see also section 3.2.4). There is strong evidence that long-

period reflected wave height and velocity increase approximately linearly with breakpoint 

wave height (Guza, 1982; Huntley et al., 1993). Thus the cross-shore concentration profiles 

observed by Hwang et al.(1997) and Russell(1993) for larger incident waves heights may 

be the result of the addition of significant long wave stirring, with a profile which would 

generally increase towards the shoreline. In fact Russell (1993) shows that long wave 

motion was dominant for his observations from the inner surf zone. 

These considerations suggest that crescentic patterns are likely to occur under relatively 

low wave conditions, but that giant cusp patterns are more likely under high wave 

conditions, when reflected long-period motion becomes significant. There is also the 

intriguing possibility that very low amplitude incident waves, with a high reflection 

coefficient, will also result in giant cusp patterns. These patterns may be related to beach 

cusps which are often observed under these conditions. 

These speculations clearly need further investigation. In particular the assumption that long 

period motion is simply a stirring mechanism, affecting the results only through a, neglects 

its direct contribution to the hydrodynamics. Direct influence through the bottom shear 

stress (equation 3.13) is not expected to be qualitatively significant (see figure 3.4). Other 

limitations of the present study are that only regular incident waves have been considered 

and that the effect of incident wave reflection by the growing bedforms and the currents on 

the instability mechanism has been neglected. Also, the variation of the breaking point as 

soon as the instability reaches a significant amplitude can be very important, in particular 
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for the crescentic pattern, and deserves future research. The robustness of the instability 

mechanism with respect to using non-linear (in the mean flow) sediment transport is worth 

investigating too. 

Having investigated the possibility of "free behaviour" in the surf zone, attention in the 

next chapters will be turned towards the swash zone and the formation of beach cusps. 

Such features have been investigated for more than 50 years, several formation theories 

have been proposed and a considerable number of field and laboratory measurements 

exists. Still, it is not clear whether beach cusps are the result of an hydrodynamic "forcing" 

characterised by an alongshore structure ("forced behaviour") or the result of self-

organisation processes ("free behaviour"). 
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Chapter 4: Beach cusps: a coroparison of data and theories for their formation 

A shortened version of this chapter has been published in the Journal of Coastal Research 

(vol. 15, no. 3, pp. 741-749) by Coco, G., O'Hare. T.J., and Huntley, D A. with the title: 

"Beach cusps: a comparison of data and theories for their formation ". 

4.1 Introduction 

Shorelines are rarely straight for long distances. More often, they look like an extremely 

irregular series of forms in which no system can be detected. At times the pattern is regular, 

there being a series of cuspate forms uniformly spaced in the alongshore distance. These 

ridges of sediment, built by wave action, trending at right angles to the shoreline, and 

separated by bays are commonly known as "beach cusps" (Figure 4.1, Plate 4.1, Plate 4.2). 

These kinds of rhythmical longshore patterns are concave seaward and have been observed 

both in field and laboratory studies. Because of their regularity, as well as their common 

occurrence, beach cusps have attracted many observers and much speculation has been 

made concerning their origin. A full comprehension of the mechanism for beach cusp 

formation and development would substantially contribute to the understanding of swash 

processes in terms of both hydrodynamics and onshore-offshore sediment transport. 

A classification of cuspate forms according to their longshore spacing (horn to horn), but 

not related to the physical processes, has been proposed (Dolan and Ferm, 1967) and is 

widely accepted as a method for better identification of this natural phenomenon. The 

smallest of these forms are called "beach cusplets" (=1.5 m), but more typical are the larger 

"beach cusps" which range from about 8 to 25 m and whose life could last even days. Still 

larger crescentic forms include "storm cusps" (70 - 120 m) and "giant cusps" (700 ^ 1500 

m). Such features are characteristic of periods of relatively heavy seas and might be even 

associated with the presence of strong littoral currents. 

More useful, in relation to the physical processes, is the classification proposed by Inman 

and Guza (1982) indicating only two types of beach cusps: surf-zone cusps and swash 

cusps. The first, herein modelled in chapter 3, are formed by the currents of the nearshore 

circulation cell and shape the beach on a scale that is of the order of the surf zone width. 

The second term refers to cusps formed by the swash and backwash acting directly on the 

beach face and berm. 

56 



Profile Cusp height H, 

Cusp length A, 

Beach 
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Figure 4.1 Planar and profile view of a cuspate system 

In this chapter all the available observations and measurements concerning field and 

laboratory investigations will be reviewed underlining beach and wave conditions 

corresponding to beach cusp formation and development. The principal features of theories 

concerning beach cusp formation and development will then be reviewed. The available 

measurements will be finally used to test the possible correlation with specific parameters 

and with the existing theories. 

4.2 Field and laboratory observations 

A large amount of observations and measurements of beach cups are reported in the 

scientific literature. All these data have been collected in order to summarise the distinctive 

beach cusp features observed by different authors in field (Table I) and laboratory (Table 

11) investigations. Sources of error are present as, for example, some authors do not specify 

if the wave height they provide refers to the offshore or to the breaking value. On the other 

hand, the evaluation of the beach slope for a cuspate beach is a difficult task and another 

possible source of error. Nevertheless, this data set will be used throughout this chapter in 

order to test the existing theories for cusp formation and development and will be denoted 

as the "Cusp Data Set". 
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Plate 4.1 Beach cusps (courtesy of Tony Bowen, Dalhousie University, Canada) 

Plate 4.2 Beach cusps (courtesy of Tony Bowen, Dalhousie University, Canada) 
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Table I Summary of parameters for field data (for notes see bottom of Table) 
Author tan P d K H T s He tan P 

(mm) (m) (m) (sec) (m) (m) 

Krumbcin(1947)^'> 0.179*"' 0.83*''' 66.6 1.84 9.3 Krumbcin(1947)^'> 
0.I88**'> 0.60*̂ * 54.6 1.85 9.8 
0.099^> 0.51**"' 52.5 1.71 8.8 
0.124<̂ > 0.34**'> 52.2 1.58 9.9 
0.179* '̂ 0.23* '̂ 52.5 1.37 8.7 
0198**** 0.90***' 44.7 1.88 12.5 
0.146*» 0.5lt̂ > 44.1 1.88 10.7 
0.204^* 0.27t"> 45.9 1.40 11.1 

Longuet-Higgins & 
4.9 3.7 Parkin (1962) 12-4-56 0.134 2.54 4.9 3.7 

23-4-56 0.157 2.8 2.85 
24-4-56 0.114 2.8 3.55 
9-6-56 0.2 0.254 -2.54 4.3 0.46 6.2 1.82 
16-6-56 0.16 5.5 0.76 6.1 5.79 

21^56 0.14 4.3 0.30 5.4 3.66 
22-6-56 0.14 3.7 0.23 6.2 1.98 

23-6-56 0.14 4.0 0.08 6.85 1.37 

6-7-56 0.1 10.0 1.07 5.0 13.72 

8-7-56 0.09 6.4 0.46 6.3 6.10 

9-7-56 0.09 6.4 0.38 6.3 5.18 

10-6-56 0.1 8.8 0.76 6.2 10.67 

King (1965) 0.045 Horn Bay 14.8 9.5 0.198 King (1965) 
0.346 0.277 

Williams (1973) 2-10-69 0.105 0.1-2 5.6 0.15 3.5 3.5 0.089 

13-1-70 0.094 4.4 0.15 5 4.5 0.096 
19-1-70 0.096 7.0 0.10 6 4 0.075 

21-1-70 0.096 7.3 0.15 6 4 0.098 

22-1-70 0.144 6.0 0.15 4 5 0.095 

2-2-70 0.135 14.2 0.20 5 6 0.121 

3-2-70 0.156 10.0 0.10 5.5 4 0.103 
14-4-70 0.1 11.8 0.10 3.5 5.5 0.082 

25-6-70 0.137 3.8 0.25 4 2 0.145 
25-7-70 0.144 4.5 0.15 6 2 0.129 

7-9-70 0.094 6.0 0.15 9 4 0.09 

2-12-70 0.149 5.6 0.15 7.5 4 0.129 

19-1-71 0.138 6.4 0.10 10 5.5 0.009 

1-6-71 0.124 4.8 0.25 4 2 0.118 

K.omar(1973) Horn Bay Horn Bay 0.304 1.0 
May-1971 0.087 2.19 
21-6-71 0.123 0.07 0.322 1.0 0.13 
22-6-71 0.154 0.07 1.15 0.76 0.591 1.4 0.20 
29-6-71 0.07 2.30 0.52 0.292 2.0 
8-7-71 0.092 0.087 0.229 1.0 0.18 
15-6-72 0.128 0.07 0.49 0.23 0.11 1.3 0.21 
17-6-72 0.056 0.056 1.60 1.21 0.21 0.9 0.22 
15-5-73 0.105 0.105 1.41 0.91 0.275 1.0 0.15 
17-5-73 0.114 0.114 1.20 0.87 0.207 0.77 0.15 

Darbyshire(1977)*" 
0.062*̂ * 18-7-75 0.062*̂ * 20.0 1.3 8.5 

20-8-75 0.088^* 22.85 1.5 12.5 
11.42 0.5 8.3 

6-2-76 0.053*"» 29.0 1.5 19-5 
5-9-75 0.034*̂ * 6.0 0.4 11.75 
26-2-76-3-3-76 0.049^* 12.0 1.5 13.33 
21-5-76 0.059^* 13.7 5 8.0 

Dubois (1978) 10-8-76 Horn Bay 
0.6 10 0.146 O.t 0.31 35.0 0.6 10 

Dubois (1981) 5-28-6-79 0.096 0.078 0.33 32.5 1.3 7-11 0.34 

Huntley &Bowen (1978) 0.081 sand 12.7 0.12 6.9 7.8 

Sallengcr(l979) 0.07 12.3 0.17 6.5 
0.07 10.9 same 6.5 
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Table I Summary of parameters for field data (continued) 
Author tan p d H T s He 

(mm) (m) (m) (sec) (m) (m) 
Sallenger(1979) 0.06 8.6 same 6.5 

0.111 5.4 0.07 3.9 
0.091 5.4 0.07 3.9 
0.099 3.6 0.07 3.9 
0.16 0.7 few cms 2.3 
0.099 0.7 few cms 2.3 

Dean & Maurmeycr (1980) 0.04 0.2 23.2 0.335 15.4 12.5 
Guza& Bowen{I98l) 0.075 12.6 7.14 

0.07 8 0.045 
0.07 20 0.035 
0.17 67.5 1.0 
0.10 21.4 0.1 
0.10 43 0.41 

0.086 66 0.49 
0.097 76 0.61 
0.104 71 0.61 
0.085 51 0.27 
0.130 61 0.86 
0.08 7.3 0.09 
0.08 11.5 0.13 
0.07 13.5 0.17 

Inman&Guza(1982) 0.083 46 0.77 
0.2 38 1.3 
0.2 44 1.8 

0.335 18.3 1.0 
Takeda & Sunamura 0.120*"' 0.34 35 1.30 8.0 15 
(1983)*'* 0.097<̂ > 0.34 20 0.66 6.3 14 (1983)*'* 

0.083*^» 0.30 28 0.98 9.2 12.5 
0.106^> 0.30 22 0.74 6.5 8.5 
0.097**'> 0.30 16 0.66 6.3 8 
0.053^* 0.28 21 0.98 9.2 11 
0.109^* 0.28 15 0.76 8.4 15 
0.126^* 0.28 25 0.86 7.8 15 
0.060^* 0.28 22 1.48 9.8 18 
0.091**'* 0.28 17 0.74 6.5 12 
0.162**'' 0.28 15 0.66 6.3 11 
0.092**" 0.28 19 0.48 5.6 12.5 

Orford& Carter (1984) 0.1-0.13 0.176-1.0 42.5 <10 9-11.5 0.9 
61.3 0.9 

Seymour & Aubrey (1985) 0.05 0.23 40 0.60 16 0.75 
Miller et al. (1989) 0.07-0.105 Sand 36.0 5 (max) 10-12 0.5 
Rasch el al. (1993) 0.14 7.4 2.6 
Sherman el al. (1993) 0.169 0.15-0.25 20-25 0.41 6.5 

20-250 
Allen etal.(1996) 0.119 0.47 27.5 0.48 16.7 17 
Holland &Holman (1996) 
15-10-94 0.083 0.35 36 3.1 10.9 
16-10-94 29 3.5 11.2 
17-10-94 32 2.1 10.6 
18-10-94 36 1.5 11.5 
19-10-94 40 1.3 14.2 
20-10-94 37 1.2 13.5 
21-10-94 20 0.9 11.3 
Masselink & Panlarui. (1998) 
7-3-95 0.11 0.4 30 0.3 13 15 
10-2-96 0.14 0.5 40 0.55 17 18 
14-2-96 0.18 0.5 20 0.4 n 10 
Nolan ei al.(l999) 25-2-93 0.087 29.77 0.30 
21-5-93 0.087 30.55 0.60 
2-3-93 0.052 26.60 0.20 
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Table 1 Summary of parameters for field data (continued) 
Author tan p d H T s He 

(mm) (m) (m) (sec) (m) (m) 
Nolan et al. (1999) 18-4-93 0.061 Hom Bay 26.46 0.40 
18-2-93 0.105 25.50 0.30 
4-5-93 0.445 51.27 30.06 15.90 0.30 
17-2-93 0.101 0.16 0.14 11.40 0.20 
12-1-93 0.141 12.20 0.35 
26-3-93 0.087 18.18 0.70 
2-4-93 0.123 26.36 0.80 
31-5-93 0.087 28.84 1.80 20.45 0.70 
16-12-92 0.087 3.68 0.47 18.49 0.40 
12-1-93 0.096 14.95 0.45 
3-2-93 0.105 23.32 0.75 
26-3-93 0.087 9.44 0.30 
18-2-93 0.123 9.85 1.45 4.58 0.30 
16-4-93 0.268 13.10 0.50 
5-7-92 0.123 46.36 0.30 
8-5-93 0.141 25.74 0.85 
25-9-92 0.079 32.54 0.20 
30-5-95 0.052 7.83 1.15 2.95 0.05 
15-5-93 0.052 0.13 0.16 33.71 0.10 

Notes: 

edge wave wavelength taken from graph or table; 
values estimated with formulae; 

tanP = beach slope; 
d = mean diameter; 
X^- cusp spacing; 
H = wave height; 
He = cusp height; 
T = wave period; 
S = swash excursion. 
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Table II Summary of parameters for laboratory data (for notes see bottom of Table I) 
Author tan p d 

(mm) (m) 
H 

(cm) 
T 

(sec) 
S 

(m) 
He 
(m) 

Longuet-Higgins & 
Parkin (1962) 

0.185 fine sand 0.533 1.7 1.5 0.254 

Guza& Inman (1975) 0.105 
0.105 

fine sand 
fine sand 

1.8 
1.0 

0.025 

2.4 
2.7 

Dalrymple & 0.163 sand 1.14 1.25 1.04 
Lanan(1976) 0.146 sand 1.32 1.25 0.96 

1.05 0.92 
1.05 0.90 

Sunamura el a). (1977) 0.102^> 0.20 0.13 1.3 0.56 
0.102̂ *"* 0.20 0.12 1.5 0.56 

0.20 0.16 2.0 0.56 
0.102*̂ * 0.20 0.15 2.2 0.56 
0.102***> 0.20 0.16 2.8 0.56 

Ann (1979)*"* 0.1 oe*"** 0.2 0.20 3.0 0.85 
0.100^» 0.2 0.17 2.8 0.78 
0.106*̂ * 0.2 0.24 4.1 0.86 
0.100^* 0.2 0.24 4.1 0.78 

Tamai(1980) 0.106^"' 0.28 2.21 7.5 2.20 
0.106^* 0.28 1.73 12.6 2.19 
0.IOl^> 0.28 1.28 11.3 1.78 
0.109**"* 0.28 1.40 12.8 1.80 

Guza& Bowen (1981) 0.105 sand 1.3 2.7 0.014 
Takeda & Sunamura 0.1 0.69 0.34 4.2 1.0 0.20 
(1983) O.l 0.69 0.20 2.0 1.0 0.10 
Kaneko(198S) 0.081 0.0028 1.5 3.4 2.38 

0.081 glass beads 0.75 3.1 1.72 
0.081 ofp=2.43 0.50 2.7 1.71 
0.081 0.75 3.3 1.58 
0.081 0.50 4.0 1.27 
0.081 0.38 3.5 1.15 
0.081 0.30 3.5 0.85 
0.107 0.30 3.5 1.11 
0.107 0.38 3.2 1.06 
0.107 0.25 3.3 1.01 
0.107 0.30 3.4 0.98 
0.107 0.30 3.0 0.94 
0.107 0.25 3.0 0.88 
0.107 0.21 3.5 0.76 
0.118 0.75 3.6 1.38 
0.141 0.75 2.6 1.38 
0.141 0.38 4.2 0.98 

Takeda etal. (1986) 0.30 0.69 0.10 0.6 0.8 0.076 
0.30 0.69 0.13 0.7 0.9 0.092 
0.32 0.69 0.125 I.O 0.9 0.126 
0.32 0.69 0.129 1.0 0.9 0.129 
0.30 0.69 0.13 1.1 0.9 0.125 
0.31 0.69 0.16 1.3 1.0 0.133 
0.25 0.69 0.17 1.4 1.0 0.130 
0.23 0.69 0.23 0.8 1.2 0.149 
0.23 0.69 0.20 0.9 1.2 0.167 
0.24 0.69 0.23 1.8 1.2 0.190 
0.36 1.30 0.10 1.3 0.8 0.085 
0.36 1.30 0.125 1.8 0.9 0.08 
0.33 1.30 0.125 1.0 0.9 0.108 
0.30 1.30 0.125 1.3 0.9 0.136 
0.26 1.30 0.20 1.4 1.2 0.201 
0.24 1.30 0.20 1.5 1.2 0.20 
0.24 1.30 0.20 1.8 1.2 0.239 
0.26 1.30 0.20 2.1 1.2 0.240 
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Particular attention has been also been paid to the nature of cusp occurrence, 

sedimentology and current patterns. It will be subsequently shown that different 

observations disagree so strongly that a unifying explanation for their formation can not be 

given and that a better assumption is given by considering cusps as a final equilibrium 

configuration for different mechanisms. 

4.2.1 Beach cusp occurrence and nature 

A very interesting set of observations from sites spread throughout the world (Russell and 

Mclntire, 1965) reveals that cusps develop in a wide variety of beach deposits ranging firom 

boulders to fine sand and suggests that cusp spacing might increase with wave height. Later 

studies have confirmed that beach cusps occur more frequently on coarse-sand and gravel 

beaches or where the beach material contains a mixture of sand and shingle. The 

importance of wave conditions will be investigated in detail later in this chapter. 

As beach cusps have been observed also in lakes (Komar, 1973), or during all the stages of 

the tide, the role of tides in cusp formation is not of fundamental importance. Nevertheless, 

it seems evident that the presence of tides can largely influence beach morphology, which 

in turn affects the process of formation and development of beach cusps (Longuet-Higgins 

and Parkin, 1962; Dubois, 1978). It is also clear that the importance of tides on beach cusp 

formation depends on the tidal range through its effect on providing a "fixed" shoreline for 

a time long enough to allow cusp development. This could probably be the reason why, on 

J gentle slopes, cusps are more likely to appear if the site is characterised by diurnal tides 

rather than semi-diurnal or, more generally, by a small tidal range. As a result of tidal 

variation, it is also possible to observe, on the same beach, more than one set of cusps 

(Russell and Mclntire 1965, Williams, 1973; Komar, 1998; Nolan et ai. 1999). In all these 

cases, the largest cusp spacings occur at the top of the beach. Nolan et al. (1999) measured 

cusp dimensions over a variety of sites (around 15 different locations) and concluded that 

the geometrical shape of these features remains the same, with the different dimensions 

(cusp spacing, depth, elevation, amplitude) proportionally changing with the site and with 

the forming conditions. 

It is generally reported (Longuet-Higgins and Parkin, 1962; Russel and Mclntire, 1965, 

Sallenger, 1979) that cusps form more frequently when the wave field is regular and the 

wave crests are parallel to the shoreline. It should also be underlined that other 
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investigations indicate that cusps could form under an oblique wave approach or even 

under intersecting wave trains (Dean and Maurmeyer, 1980). A very interesting study, 

based on nine years of images fi-om Duck (U.S.A.), was recently undertaken by Holland 

(1998). He studied the preferential conditions for beach cusp formation and development 

and found that in 98% of cases, cusps appeared with waves approaching the shoreline with 

an angle of approach smaller than 12°. 

Cusp formation has also been associated with the escape of ponded water from a ridge or 

other barriers on the berm (Dubois, 1978; Sallenger, 1979, Dubois, 1981). But, since beach 

cusps have also been observed in their absence, it is possible that, rather than a mechanism 

of formation, the presence of ridges or berms can only enhance or diminish cusp 

development. 

Significant attention has also been given to the dissipative-reflective nature of the system, 

with cusps found to preferentially form on steep reflective beaches; Holland (1998) 

concluded that reflective conditions are required for cusp formation. Many authors have 

also emphasised the importance of the wave condition at the breaking point. It has 

generally been observed that cusps form with plunging breakers, though on this matter an 

interesting debate is still going on. For example, Kaneko (1985) performed a series of 

laboratory experiments concluding that cusp formation has only a weak correlation with the 

breaker type. 

Another matter of controversy is the accretional or erosional nature of beach cusps. Smith 

and Dolan (1960) for example stated that ''truncation of primary structures by cusp 

surfaces constitutes the fundamental evidence for erosive origin^' while numerous other 

authors suggest an opposite behaviour (Kuenen, 1948; Russell and Mclntire, 1965; Komar, 

1973; Huntley and Bowen, 1978; Dean and Maurmeyer, 1980; Sato et al. 1981; Takeda and 

Sunamura, 1983; Holland and Holman, 1996; Masselink et al. 1997). In other cases, it has 

been shown that both mechanisms can coexist, producing and finally maintaining the 

typical sinusoidal shoreline form. Miller et al. (1989) show that, though a significant 

erosional and depositional sequence was measured, net aggradationeil or degradational 

changes on the beach were minor. Their sedimentologic and stratigraphic analysis provides 

significant indications of cusp formation processes as horns were characterised by parallel 

planar beds representing accretion deposit while scour seemed to be mostly concentrated in 

the bays. Such results where obtained during and subsequent to a storm, and this may be 
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the reason for the differences encountered with other authors. For example, Sallenger 

(1979) reports the development of cuspate forms as being the product of both erosion and 

accretion but this time resulting in net accretion of the foreshore. Also of interest are results 

obtained by Antia (1989) on the Atlantic coast of Nigeria stressing the possible role of the 

presence of cusps as indicators of beach volumetric accretion and erosion. 

Less controversy seems to exist concerning beach cusp destruction or inhibition due to 

strong longshore currents or storm waves, although even in this case literature reports one 

storm as having generated cusps (Orford and Carter, 1984). The most interesting link 

between cusps and storms has been pointed out by Holland (1998). His findings indicate 

that cusps usually appear 2-4 days after a storm. Storms would then be "usefiil" for cusp 

formation as they would flatten the topography and allow for cusps to develop. 

Furthermore, the site where Holland's (1998) study was performed (Duck, U.S.A.), 

typically shows a narrowing of the forcing frequency after a storm. Other authors (Inman 

and Guza, 1975) consider such narrow-bandedness conditions to be an essential 

requirement for beach cusp formation. Similar to a minor storm is also sea breeze that, as 

shown by Masselink and Pattiratchi (1998a), can reduce the prominence of a cuspate 

shoreline. 

4.2.2 The sediment properties of beach cusps 

As previously stated, beach cusps usually develop on beach deposits ranging from boulders 

to fine sand and, as shovm in Figure 4.2 where the Cusp Data Set has been used, no evident 

relationship between cusp spacing £md mean diameter can be easily found. From a 

sedimentological point of view, the most important and typical feature observed on beach 

cusps is certainly the sorting of the sediments with the coarsest material in the horns and 

the finest in the bays (Plate 4.3), Although there seems to be a general acceptance of this 

phenomenon (Bagnold, 1940; Longuet-Higgins and Parkin, 1962; Russell and Mclntire, 

1965; Worrall, 1969; Komar, 1973; Williams, 1973; Sallenger, 1979; Chafetz and 

Kocurek, 1981; Dubois, 1981; Sherman et al., 1993) in a few cases it has been shown that 

such a sorting is not present (Williams, 1973; Dean and Maurmeyer, 1980). This could be 

probably due to the beach material (size and stratification) although Russell and Mclntire 

(1965) observed that well-developed and stable cusps tend to reduce the difference in grain 

size between horns and bays. Closely related to the sorting is the observed and measured 

(Longuet-Higgins and Parkin. 1962; Antia, 1987) difference in permeability between horns 
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Figure 4.2 Variation of measured cusp spacing and mean diameter 

Plate 4.3 Sediment sorting on a cuspate beach (taken form Darbyshire, 1977), 

and embayments. which could also have an influence on the motion o f incoming waves 

encountering cusps and the following circulation. 
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Several times, it has also been reported that horns are steeper than bays and this kind of 

feature is an obvious complication when, in order to test one of the existing theories for 

cusp formation, the evaluation of an overall beach slope is required. 

4.2.3 Current patterns 

The nature of water movements in the cusp region is another matter of controversy. 

However, the results found by Bagnold (1940), supported by numerous authors' 

observations (Longuet-Higgins and Parker, 1962; Komar, 1973; Dean and Maurmeyer, 

1980) using small particles of dye or equivalent, tends to be mainly accepted. In this case a 

wave appears to advance up the beach until it meets the seawards extremities of the cusps 

(Figure 4.3). 

Profile 

Plan 

Cusp height 

Cusp length A, 

Breaker line 

Beach 

Figure 4.3 Swash circulation pattem over a cuspate beach 

Then the wave divides and water is added to the volume within the bay. The backwash in 

the bay is thus greatly enhanced reinforcing the erosion of the bay and resulting in a strong 

return flow. The effect of this flow out of the bay is to stop abruptly the water it meets from 

the next wave. Conversely, the water opposite the horn is unimpeded and, as before, it 

rushes up. The role that refraction might play leading water towards cusp horns and then 

causing the subdivision has also been suggested (Zenkovitch, 1967). 
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Opposite to this circulation pattern is the one observed by Kuenen (1948), and confirmed 

by DaJrymple and Lanan (1976) and Komar (1971) suggesting that wave motion initially 

invades bays, where refraction causes sediment to be transported from the bays towards the 

cusp horns. Water then moves outward in the form of rip currents at the cusp horns. The 

edge wave theory, which v^ l l be shown later, is associated v^th a circulation pattern which 

is very similar to the Kuenen (1948) one as the maximum runup occurs at the antinodes of 

the edge wave, corresponding to the bays of the beach cusps, and then flows towards the 

horns. 

A conceptual model for beach cusp flow circulation patterns and their relationship to beach 

cusp formation or disappearance has been recently proposed by Masselink and Pattiaratchi 

(1998). It is suggested that a horn divergent flow is associated with the maintenance of the 

cusp shape. On the other hand, an oscillatory flow (a two dimensional flow unaffected by 

the cuspate morphology and so with weak horn divergence and embayment convergence) 

would cause filling of the embayment and cusp disappearance. A horn convergent flow, 

especially i f associated with some overtopping of the horn, would result in horn erosion 

and, again, in cusp disappeeirance. 

4.3. Beach cusp formation theories 

4.3.1 Instabilities in the breaking waves or in the swash 

Different theories propose a mechanism by which a rhythmic spacing is already present in 

the incoming waves or in the swash. This would "force" an initial rhythmic cusp spacing 

which could subsequently develop because of the previously described current pattern 

(Bagnold, 1940). 

Cloud (1966) suggests that waves, breaking directly against a beach whose profile o f 

equilibrium has been steepened by storm waves or rising tide, could be approximated to a 

cylindrical form. Plateau's (1864) found that a 4mm diameter cylinder o f oil in a mixture of 

alcohol and water can become unstable and separate with a ratio length/diameter between 

15.5 and 16.7. Applying Plateau's rule to a real breaking wave implies that the cusp 

spacing should be proportional to the height of the breakers. This theory, requiring the 

absence of longshore drift, suggests that cusps, once formed, can then persist imtil a change 

of regime happens. 
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Gorycki (1973) suggests that salients, zones of fast velocities due to breaking waves and 

swash, can move grains of sediment forward and/or laterally, which then tend to be 

deposited with the diminishing of velocity. The laterally transported grains are swept into 

turbulent zones of retarded flow where they drop from suspension and accumulate to form 

elongated, equally spaced, ridges which run parallel to the direction of water motion. The 

suggestion that salients' spacing might increase with distance travelled was made but not 

fully developed. Furthermore, there is no evidence that the "salient pattern", studied only in 

the case of very small spacings, would result in a regular cusp spacing also when applied 

into a larger scale. Also there is no evidence that a wave front ruiming up a beach would 

equally divide in the longshore direction. 

As the previously discussed approaches both imply a relationship between cusp spacing 

and the incoming wave height, the Cusp Data Set has been used in order to investigate such 

possibility. Figure 4.4 clearly shows poor agreement between cusp spacing and wave height 

(R^=0.4). Because of the lack of correspondence with field observations, both theories are 

nowadays completely discarded. 
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Figure 4.4 Variation of measured cusp spacing and wave height 

4.3.2 Instability of the littoral drift 

Schwartz (1972) hypothesises that the action of littoral shore drift and swash motion act in 

such a way that longshore spaced sand ripples or waves are initially formed and 

subsequently "crests become the horns and the troughs the bays". No field evidence of this 

theory has been found during this literary research while, as previously stated, there is 

evidence that a longshore drift wipes cusps away. 
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4.3.3 Rip currents 

The theory concerning the formation of rip currents has been proposed by Bowen (1969) 

and then experimentally verified by Bowen and Inman (1969) through a series of laboratory 

and field investigations. The mechanism proposed for rip current formation is that of a 

longshore variation in the radiation stress in the surf zone. This results in a system of 

longshore currents increasing in magnitude from zero midway between the rip currents to a 

maximum where the water flow turns seaweird to enter the rip currents. Water removed 

from the surf zone is then replenished by a slow drift of water shoreward through the 

breaker zone. Such a current system consisting of two rip currents, associated longshore 

currents, and a drift through the breaker zone, defines a nearshore circulation cell. The 

longshore currents wil l cause a general drift of sediment along the shore towards the rip 

currents, and because the transport rate is mainly governed by the magnitude of the 

longshore current, the transport wi l l initially be greatest near the rip currents and decrease 

to zero at the centre of the cell. Assuming that all this transported sediment is carried out 

by the rip currents to deep water, it might be expected that a cusp would develop at the 

centre of the cells where the transport rate is zero. This mechanism, proposed by Komar 

(1971), does not agree with laboratory (Komar, 1971) and field (Shepard, 1962) 

investigations where such features, at least during the initial formation stages, appear 

instead in the direction of the rip current. However, no doubts exist concerning the 

importance of rip currents in the formation of "giant" cusps. 

4.3.4 Intersecting wave trains 

Dalrymple and Lanan (1976) suggested that cusp formation could be related to more than 

one single mechanism. They indicated intersecting wave trains of the same period as a 

possible mechanism for the generation of rip currents and so of beach cusps, hi fact, the 

water surface elevation obtained combining two intersecting waves has the form: 

r\ = acos[k(sin0)y + k(cos0)x + a t ] + bcos[k(sin^)y + k(cos^)x + at] (4.1) 

where: 

T] = water surface elevation; 

a, b = wave amplitude; 

6, ^ = angle of wave approach; 

k = 2n/L = wave number; 
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L = wavelength; 

a = lidT = wave frequency; 

T = wave period. 

Rearranging eq. 4.1, one obtains: 

r| = 2a cos —(sin0 + sin^)y + —(cos0 + cos4)x + at cos — (sin0-sin^)y 
2 2 _ _ 2 

+ (cos 9 - cos 

+ 
(4.2) 

+ (b - a)cos[k(sin^)y + k(cos ̂ )x + at] 

which has a longshore periodicity varying with cos[k/2(sin9-sin^)] so that the length of 

the periodicity is equal to: 

X = (4.3) 
sin 9 - s i n £, 

By using Snell's law for refraction of shoaling waves it is also possible to rewrite eq. 4.3 in 

terms of the deep water values. Such longshore periodicity causes a variation in the setup 

and originates rip currents. This theory is in good agreement with Dalrymple and Lanan's 

(1976) laboratory tests but obviously contradicts most of the field observations describing 

cusps formation under a regular nonnally incident wave field. 

4.3.5 Edge wave theory 

Edge waves are defined as free modes of nearshore water motion trapped against the 

shoreline by refraction, whose amplitudes decay exponentially offshore and vary 

sinusoidally alongshore. Edge waves appear as a set of waves with their crests normal to 

the shoreline and perpendicular to the incoming waves. Eckart (1951) and Ursell (1952) 

investigated edge waves theoretically and provided equations to describe their motion, 

while Huntley and Bowen (1973) first gave evidence of their presence in the field. Edge 

wave theory indicates that there are several possible modes characterised by the same 

period and by a different number of zero-crossings in the cross-shore profiles (the mode 

number n). Figure 4.5 shows the cross-shore variations in the amplitude of a series of edge 

waves characterised by modes n=0-3. Figure 4.6 presents a 3D plot o f an edge wave of 

mode n=2 at a fixed time so that it is possible to show the sinusoidal longshore variation 

and the cross-shore decay. The wavelength of the edge wave is the given as: 

where 

= ^ T , ^ s i n [ ( 2 n + l)p] (4.4) 
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Cross-shore direction 

Figure 4.5 Cross-shore variations in the amplitude of edge waves (n=0-3) 
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Figure 4.6 3D view of an edge wave of mode n=2 
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p = beach slope angle; 

Te = period of the edge wave. 

Bowen (1972) suggested that the existence of regular featwes indicates that a particular 

edge wave mode is often dominant, the characteristics o f the dominant mode depending on 

the geometry of the nearshore area and the width of the surf zone. It has also been shown 

that the most easily excited mode is n=0 which would therefore be predicted to correspond 

to the largest amplitude. The edge wave period may be equal to that of the incoming wave 

(Te = Tj, "synchronous edge wave"), or not, this latter case being particularly interesting i f 

Te = 2Ti ("subharmonic edge waves"). It is very important to study the superimposition of 

incident and standing edge waves as it results in regular longshore variations of maximum 

wave runup on the beach, which can then be related to the cusp spacing. As subharmonic 

standing edge waves and incident waves are alternatively in phase and antiphase (they 

differ by Tj), the cusp wavelength is equal to one-half the wavelength of a subharmonic 

standing edge wave (Xc=Le/2) (see Figure 4.7). 

h • < 

Le 

X,c 

T=0,2Ti,4Ti,... 

=Ti,3Ti,5Ti,. 

Figure 4.7 Maximum runup and cusp spacing for subharmonic standing edge waves 

On the other hand, synchronous standing edge waves and incident waves are in phase for 

every runup and so the cusp wavelength is equal to the wavelength of a synchronous 

standing edge wave (^c=U) (see Figure 4.8). It follows that for n=0 cusp wavelength 

results in: 

2 71 

or, unifying the two equations: 

= m ^ T j ' sinp 
71 

subharmonic 

synchronous 

(4.5) 

(4.6) 

(4.7) 
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with m=l and m=0.5 for subharmonic and synchronous standing edge waves respectively. 

T=0,Ti,2Ti,... 

Figure 4.8 Maximum runup and cusp spacing for synchronous standing edge waves 

For both the subharmonic and the synchronous case, sediment would passively be driven 

by the flow pattern so that cusp formation would be the reflection of a spatially (in the 

longshore direction) "organised" hydrodynamic forcing ("forced behaviour"). 

For the standing edge wave theory to be valid, a graph of measured cusp spacing (Xc) 

against the parameter given by (4.7) should be a straight line with zero intercept and 

gradient of 1 or 0.5 depending upon whether subharmonic or synchronous mode zero 

standing edge waves are associated with the cusps. This graph is shown in Figure 4.9, 

along with lines which show the expected relationship for cusps due to both subharmonic 

(solid) and synchronous (dashed) standing edge waves. The graph is plotted on log-log 

scales to allow easy visualisation of the more than 150 data points over three orders of 

magnitude and, although the use of log-log scales visually compresses much of the data 

variability, it reveals a relationship between cusp spacing and the edge wave parameter 

given by eq. 4.7 (a least square fit to quantify the behaviour of the edge wave parameter 

results in a regression coefficient equal to 0.72). There is a cluster of data points for which 

both edge wave relationships over-predict the cusp spacings, but the vast majority of the 

data lie close to one or other of the lines, and within a margin of error which is reasonable 

considering the inaccuracies inherent in estimating the various parameters (particularly 

beach gradient). It is less clear whether the data is better represented by the subharmonic or 

synchronous relationship, although the least square fit of Figure 4.9, characterised by a 

slope equal to 0.8, indicates that the subharmonic standing edge wave prediction provides 

the best description for the majority of the data. 
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Figure 4.9 Comparison of measured cusp spacing with subharmonic and synchronous 

mode zero edge wavelength. 

It is important to underline that, besides the previously mentioned possible error in the 

measurement of the beach slope for such 3D features, one of the factors that can mainly 

influence cusp spacing prediction is the value of the incident wave period whose exact 

evaluation is rather difficult and that is present in the formulas (eq. 4.5 and 4.6) with an 

exponent equal to two. 

Taken on its own Figure 4.9 provides support for the standing edge wave theory. However, 

it should be noted here that standing edge waves characterised by a time period and mode 

number that, according to the theory, could have caused the measured cusp spacing, were 

not explicitly observed in any of the studies from which the data are taken. Indeed, in at 

least two cases (Holland and Holman, 1996; Masselink and Pattiaratchi, 1998b), the 

presence of synchronous or subharmonic mode zero standing edge waves was convincingly 

ruled out. In the absence o f direct evidence for edge wave motion, it is possible to assess 

the likelihood of subharmonic edge wave excitation by using the following parameter 

(Guza and Inman, 1975): 

47i 'a , 
e = 

with ab equal to the breaking wave amplitude. 

(4.8) 

As a result of a series of laboratory experiments Guza and Inman (1975) suggested that i f 

this parameter is bigger than 2, subharmonic edge wave excitation is weak or non-existent. 

This parameter has been plotted on Figure 4.10 and, although it must be considered as only 

a semi-quantitative criterion, it is evident that for a large number of the observed cusps, 
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edge waves are not, on this basis, expected to exist. In fact e would have to be as large as 

18 in order to encompass all of the observations. 
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Figure 4.10 Cusp existence and breaker type 

The appearance of edge waves is also usually related to surging breaking waves. It is 

possible to use the Cusp Data Set in order to classify and distinguish between different 

breaker types observed during cusps' presence. The following inshore parameter defined by 

Galvin (1968) has been used: 

(4-9) 
gTj^sinp 

with the values of 0.003 indicating the transition from surging to plunging breaker and 

0.068 the transition from plunging to spilling. The following analysis has been performed 

by considering the wave height measurements given by the different authors to be equal to 

breaking height. An estimation of the likely error has been made by considering exactly the 

opposite case, namely treating the measures given by the authors as referring to deep-water 

wave heights, and evaluating the breaker wave height through an expression given by 

Takeda and Sunamura (1983). Results indicate a potential error that, at worst, is around 

75% (on average the error ranges between 40-60%) of the deep-water wave height. Such a 

variation does not substantially affect the results. Results shown in Figure 4.10 clearly 

identify plunging breakers as the predominant type associated with cusp presence. The 

values appearing well into the surging region all refer to Williams (1973). 
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The recent work by Masselink (1999) also investigates the importance of edge waves on 

beach cusp formation. The site where Masselink's measurements (1999) have been taken is 

characterised by an alongshore variation in the cusp spacing. Local slopes were also 

measured and, from the results, cusp spacing was found to diminish where slope increases. 

This is obviously against the prediction provided by the theory (equations (4.5) and (4.6) 

suggest a linear relationship between cusp spacing and beach slope). However, the lack of 

detailed hydrodynamic measurements and the fact that measurements were taken by 

Masselink (1999) when cusps were well-formed does not allow for complete evidence. 

Laboratory investigations by Guza and Inman (1975) report in a very detailed way the 

interaction between morphology and standing edge waves and the negative feedback 

associated with cusp growth. More recently, it has been then suggested (Seymour and 

Aubrey, 1985) that standing edge waves could only cause an "initial" perturbation on the 

beach shoreline and that then they are not subsequently strictly required to ensure cusp 

existence and evolution. The development of a cuspate beach has been studied in detail by 

Guza and Bowen (1981) and by Inman and Guza (1982) so that limiting amplitude values 

for beach cusp growth are proposed. Such limiting values are a function of beach slope and 

cusp spacing and are given in the following form: 

Hc/(Xtanp)<0.13 and Hc,max/(^tan(3)<0.24 (4.10) 

The first of the two equations indicates a sort of minimum value for cusp amplitude. It 

should be considered a minimum value because the value 0.13 results from hypothesising 

the presence of cusps with negligible changes in the beach slope and the persistence of 

standing edge waves. On the other hand, the value 0.24 is obtained assuming that standing 

edge waves are providing only the initial longshore perturbation and that the finite 

development of beach cusps does not require further edge waves. Moreover, the 

development of beach cusps would have a detuning effect on the subharmonic motion 

initially associated v^th cusp formation. Field measurements of cusp amplitude are 

available (Table I and II) and seem to be in fair agreement with the theory (Figure 4.11). 

That some of the measurements do not fit the upper and lower boundaries provided by 

(4.10) could be related to measurements taken on non-equilibrium situations (non-

completely developed cusps or cusps being destroyed by wave activity). 
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Figure 4.11 Observed cusp amplitude (He) versus cusp steepness (X tanP) 

4.3.6 Theories related to swash dynamics 

Longuet-Higgins and Parkin (1962) first suggested a relationship between swash excursion 

and cusp spacing. Their empirical relationship (A.=2.8+0.54Lniax-sw-ash) contained the 

obvious problem of predicting cusps even in the case of swash excursion being equal to 

zero. Probably for this reason, this approach was initially discounted. 

The first attempt to model the swash circulation over a cuspate beach was developed by 

Dean and Maurmeyer (1980). hi their model, beach cusp topography was considered and, 

by analysing the water particle motion on such topography, the authors expressed cusp 

spacing (X) in terms of the maximum swash (Lmax-swash) and of a site-dependent parameter 

(X): 

X = 3.9^L^_^^ (4.12) 

Using a mean value for x, derived from sites where their field experiments were taken, the 

authors obtain a linear coefficient equal to 1.5 for cusp spacing prediction. 

More recently, Werner and Fink (1993) proposed a "self-organisation" model coupling 

flow, sediment transport and morphology change to simulate cusp formation and 

development. Flow is described through cubical water particles moving in accordance to 

gravitational forces and pressure gradients. The new important step is that the initial 

morphology is completely arbitrary and that the model is able to predict conditions under 

which cusps do not form. The beach is composed of slabs o f sediment deposited or eroded 

by water particle motion in accordance with the slope of the beach so that "simulated beach 

78 



cusps develop through a combination of positive feedback between morphology and f low 

that creates incipient relief and negative feedback that inhibits net deposition or erosion on 

well-formed cusps". Different initial water particle trajectories, or the random order in 

which the algorithm moves water particles, cause the initial random alongshore variation 

from a plane beach. Deposition then occurs preferentially on the runup over topographic 

highs while erosion occurs on lows during the runout so that lows can evolve into bays and 

highs into horns. The final circulation pattern is similar to the Bagnold (1940) one although 

no interaction between the runout of a cycle and the runup of the next is considered. 

Equilibrium of cusp spacing is then proportional to swash excursion through a non-free 

parameter of the model varying from 1 to 3. 

Using the Cusp Data Set, a comparison between observed swash excursion and cusp 

spacing is made (Figure 4.12) which results in a clear linear relationship between the two 

variables. 
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Figure 4.12 Variation of measured cusp spacing with swash excursion 

4.4 Compatibility between the edge wave and the self-organisation approach 

As the edge wave and the self-organisation model are both reasonably able to predict cusp 

spacing, a question arises in terms of their co-existence or of the possibility of 

distinguishing between the two mechanisms. Werner and Fink (1993) argue that the two 

models are incompatible. However the parameters involved in the cusp spacing prediction 

may actually be related in such a way that the ratio between the two predictions is a 

constant close to 1. The conclusion drav«i by Werner and Fink (1993) is that measurements 
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of cusp spacing cannot discern between the models. In the next two sections it wil l be 

shovra, through an analytical analysis validated by field data and through simulations with 

the self-organisation model respectively, that the two models could coexist. In fact, it 

appears that, i f subharmonic motions are present, they would result in a swash excursion 

related to the cusp spacing the same way as predicted by the self-organisation approach. 

A study conducted by Miche (1951) suggests that swash excursion saturates at a critical 

value of the following non-dimensional parameter (Irribarren and Nogales, 1949): 

B s = - ? V (413) 

where "as" indicates the vertical swash excursion at the shoreline. Several authors 

investigated the possibility of a critical value of Eg. 

A widely accepted empirical formula for the evaluation of the runup height over a smooth 

slope has been proposed by Hunt (1959) and, for 0.1 <4 < 2.3, has the form: 

R.p=2a4 (4.14) 

where a is the incident wave amplitude, and 

V2a/Lo 

is a similarity parameter (Irribarren and Nogales, 1949) with P being the beach slope and 

Lo the deep-water wavelength of wave period T: 

Lo=gT72n (4.16) 

Laboratory experiments by Battjes (1975) indicate that, under certain conditions (involving 

the beach slope, the wave steepness and 0.3<4<1.9) the rundown height can be 

approximated by: 

R a o w n = 0 - O . 4 O R ^ (4.17) 

The amplitude at the shoreline, combining eq. 4.17 with 4.14 and 4.15, would then be 

given by: 

a s = | ( R „ p - R < u « J = ^ ( R . p - R u p + 0 . 4 ^ R ^ ) = | ( 0 . 4 P ^ L „ ) (4.18) 

Further substitution of eq. 4.18 and 4.16 into eq. 4.13 results in Eg « 1.26. Moreover, the 

field experiments by Guza and Bowen (1976) suggested e g » 3 ± 1, while Van Dom's 

(1978) laboratory measurements indicated a slightly smaller value (es « 2 ± 0.3). Field 

measurements of swash runup spectra (Huntley et al., 1977) also indicated the possibility 
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of a constant ES around 2-3. In agreement with such observations (only the results by 

Battjes (1975) follow a slightly different trend), Baldock and Holmes (1999) derive, for a 

saturated swash motion, a theoretical value of 8s. They hypothesise the shoreline motion 

moving under only the effect of gravity. The swash excursion, in the plane of the beach, S, 

can then be either described in terms of the vertical swash excursion or in terms of the 

natural swash period: 

2a. 1 „T.^ 

which can be rearranged to give: 

a.=:|^gP^T^ (4.20) 

By assuming that the swash period is equal to the incident wave period, it is possible to 

rearrange equations (4.13) and (4.20) and obtain: 

= ^ « 2 . 5 (4.21) 

which, as previously shovm, is very close to the values measured in the laboratory and field 

experiments. 

On the other hand, it is possible to combine ES (eq. 4.13) with the cusp spacing prediction 

in case of subharmonic or synchronous standing edge waves (equation 4.7). As a result, a 

linear relationship is obtained between swash excursion and cusp spacing of the form: 

X, = m — S (4.22) 

Equation (4.22), i f coupled with the previous results concerning the possibility of a 

constant ES in a saturated swash, leads to a proportionality coefficient between swash 

excursion and cusp spacing, of around 2.5 or 1.26 for subharmonic and synchronous edge 

waves respectively. Thus, i f we hypothesise that cusps are predominantly formed under 

conditions of saturated swash excursion, equation (4.22) indicates that standing edge 

waves, either subharmonic or synchronous, would produce a pattern consistent with the 

one obtained through the self-organisation mechanism. 

It is now clear why "simple" measurements of cusp spacing wi l l not allow for an 

understanding of which of the two mechanisms is responsible for the formation of beach 

cusps. In order to discern between the two mechanisms there is the need of very detailed 

hydrodynamic measurements capable of assessing the eventual presence of standing edge 

waves during cusp formation. The suggestion that the two mechanisms, although 
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conceptually different, can co-exist also needs to be considered, as well as the possibility 

that beach cusps are the result of an instabiUty mechanism that can be either simply due to 

the hydrodynamics, or the resuh of the interaction flow-sediment. 

4.5 Discussion 

Several theories have been discussed in order to describe the formation and development of 

beach cusps. Many of the proposed theories are not able to explain the variability of the 

observed cases, or to predict the cusp spacing in agreement v^th the field and laboratory 

measurements undertaken in the last 50 years (Cusp Data Set). The debate has therefore 

been restricted to only two mechanisms with the first referring to the presence of standing 

edge waves ("forced behaviour") and the second to feedback processes between flow and 

sediment ("free behaviour"). These two theories, although usually considered to be 

incompatible, suggest a very similar spacing, such that the Cusp Data Set cannot establish 

which of the two is closer to the observations. It has also been shown that, under certain 

hypotheses, the two mechanisms could even co-exist. While the standing edge wave 

approach is well established, there is the need of a closer investigation o f the more recent 

self-organisation approach. For this reason, a model based on self-organisation wil l be 

presented in the chapter 5, and its behaviour wil l be analysed in detail as well as the 

possibility of coexistence under the presence of standing edge waves. The problem of 

comparing results obtained through the self-organisation model and field measurements 

will be then investigated in chapter 6, through the use of a non-linear technique for the 

analysis of beach elevation time series. 
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Chapter 5: A self-organisation model for the swash zone 

A shortened version of this chapter has been published in the Proceedings of Coastal 

Sediments '99, New York (ASCE, pp. 2190-2205) with the title: "Beach cusp formation: 

analysis of a self-organisation model" by Coco, G., Huntley, D.A., and O'Hare, TJ. 

5.1 Introduction 

The need for a better understanding of the processes involved with swash motion and the 

topographic response has recently led to numerous theoretical and field investigations. 

Particular attention has been dedicated to the study of beach cusps. As described in the 

previous chapter, the nature and origin of these rhythmic shoreline features is still not clear 

and even observations reported in the literature are sometimes in such disagreement that 

the definition of a single theory capable of explaining beach cusp formation under every 

observed circumstance is probably an impossible task. The previous chapter showed in fact 

that cusps have been observed in both reflective and dissipative environments, under net 

accretionary or erosional conditions. Their presence has also been associated with 

sediments ranging fi-om fine sand to boulders and often related to very specific topographic 

or wave field conditions. In general, however, it appears that the formation and 

development of a beach cusp morphology is associated with reflective conditions, waves 

normally approaching the shoreline and well sorted coarse sandy sediments. 

The previous chapter also suggested several mechanisms for beach cusp formation but the 

agreement with field and laboratory data has mainly restricted the debate to two theories 

that Werner and Fink (1993) consider incompatible. The first theory refers to beach cusps 

as a result of an instability in the hydrodynamics resulting in the superimposition of 

standing edge wave motions on the incoming wave field, leading to an alongshore periodic 

variation of the run-up whose wavelength is related to the cusp spacing (Guza and Inman, 

1975). The second theory, the self-organisation mechanism, is described by Werner and 

Fink (1993) and more generally relates to an approach which depends on a coupling of 

hydrodynamics and sediment which "self-organises" into regular patterns without any 

extemed spatially distributed forcing. It is suggested that complex systems characterised by 

strongly non-linear and dissipative behaviour (which is the case of the interaction between 

hydrodynamics and sediment movement) may evolve into patterns through feedback 

processes. 
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This chapter deals with an investigation of the self-organisation hypothesis for the swash 

zone and in particular for beach cusp formation and development, and the possibility of 

predicting beach cusp spacing by knowing only the value of the swash excursion. The 

processes involved and relating to the self-organisation hypothesis w i l l be considered 

through a sensitivity analysis of the parameters in the model. The problem of reaching an 

equilibrium state, the rate at which it might happen, and the suggestion that the random 

inputs present in the model may affect cusp formation are discussed. Results obtained by 

running the model over an initially non-planar topography, characterised by a cuspate 

shoreline or by the presence of non-rhythmic features, are presented. The compatibility 

between the standing edge wave approach and the self-organisation model wi l l be 

discussed by means of a series of numerical simulations under a simplified form of 

standing edge wave forcing. Implications of these model results for the understanding of 

cusp formation and for future field observations are discussed. 

5.2 Model description 

A model for beach cusp formation and development has been implemented using Fortran 

77 code. The aim of the present work was not to build a self-organisation model competing 

with the one already proposed by Werner and Fink (1993), but to analyse the processes 

involved with the formation of cusps, their development, the final spacing and the 

dependency of these processes on the parameters and the details of the algorithm. The 

approach used for the simulation of beach cusp evolution refers to a discrete number of 

particles representing the fluid and causing sediment motion, rather than to the classical 

differential equations involving the use of continuous variables. Feedback between flow 

and morphology is modelled in such a way that every time a particle moves, the 

topography changes and can immediately affect the particle motion. Feedback is then the 

cause for the formation of these rhythmic patterns as it allows (positive feedback) the 

evolution of an initial perturbation, generated because of the presence o f different random 

features in the model. 

5.2.1 Hydrodynamics 

Swash hydrodynamics are described through a defined number of water particles moving 

under the influence of gravity over an established grid representing the beach slope. Flow 

motion is described according to the following equations: 

dt dx 
84 



where x and y are used to distinguish between the cross-shore and alongshore direction, 

with u and v indicating the respective velocity components, t is time, g is gravity and h is 

the beach elevation. Friction and percolation are neglected. By integrating Eqs. (5.1) and 

(5.2) and by adopting a finite-difference approximation one obtains the equations 

describing the particle position: 

Xt = x , _ A . +u,_^,At-0.5gsinP, , .^At ' (5.3) 

y , = y . _ A , +v,_^At-0.5gsinpy,_^At ' (5.4) 

where sinp indicates the beach gradient in the x or y direction. Using a centred difference 

method and considering, as an example, the cross-shore direction and a point characterised 

by the ( i , j ) co-ordinates, the beach gradient is equal to: 

sinp. = - ^ = ^ , (5.5) 

with Ax indicating the cross-shore grid-size. 

Seaward of the swash zone, in a region that should resemble the surf zone, water particles 

are treated in a more simplistic way such that velocities are considered to be constant and 

the trajectory randomly assigned at the beginning of the swash cycle, or resulting from the 

motion inside the swash zone, is maintained. At the beginning of each swash cycle, water 

particles are assigned an alongshore and cross-shore velocity component and a location in 

the model domain from which they start their motion. 

5.2.2 Sediment dynamics 

For sediment transport, a parameterisation similar to the one proposed by Werner and Fink 

(1993) has been used so that the sediment flux gradient between two adjacent grid points 

" i " and " i + l " is evaluated through the relationship: 

Aqs=<x(v°:,-vr) (5.6) 

where a is a dimensional coefficient, V j indicates the velocity at the grid point " i " and "m" 

is a coefficient providing the power of the proportionality between sediment flux and flow 

velocity. In agreement with the majority of the bedload transport theories (Bagnold, 1963; 

Bailard and Inman, 1981), a value of "m" equal to 3 has been adopted in the simulations 

while the value of "a" has been chosen depending on the grid size and bed slope in order 
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to ensure smooth variations of the bed elevation. A sensitivity analysis towards these 

parameters has been performed and results wi l l be shown in the next section. 

The amount of net erosion or deposition effectively changing the bed elevation results 

from the difference of the carrying capacity between two consecutive grid points. By 

considering the kinetic properties of a water particle whose motion is governed only by 

gravity, carrying capacity is equal to the difference between the elevation of the grid point 

when the particle was at time "t" and the elevation of the grid point when the particle 

moved to at time "t + At". In fact, considering the difference between velocities at two 

consecutive grid points, one obtains: 

vf = [ v f . , - 2 * g * ( h ; - K . , ) ] (5.7) 

v ^ , = [ v f - 2 * g * ( h , , , - h j j (5.8) 

AC, =c,(v, ' -v , l , )=c, lvf -v,^ +2g(h,,, -h..)J=2c,g(h,,, - h , . ) (5.9) 

where: 

hi = elevation of the grid point i ; 

ACs = amount of net erosion/deposition; 

Cs = coefficient for the definition of the carrying capacity. 

Because of this parameterisation, inside the swash zone, the run-up is mainly characterised 

by deposition (water particles are decelerating) while run-down is characterised by erosion 

(water particles are accelerating). The region seaward of the swash zone is characterised by 

a carrying capacity that has been arbitreirily considered to be linearly proportional to the 

elevation, so that it has its maximum value at the bottom of the swash zone. Out of the 

swash zone, the run-up is characterised by erosion while the run-down by deposition. 

The chemge in the bed elevation, is related to the single locations where a water particle is 

present. There is obviously the need of "spreading" such change over a wider area. For this 

reason and also in order to model topographic changes in a more realistic way, two 

subroutines have been created and will be presented in the next two subsections. 

5.2.2.1 Morphological smoothing 

At each time step, once the net amount of erosion/deposition has been evaluated, the 

change in the topography is obtained through the use of a smoothing function, which 

basically works as a diffusive term. As a result sediment is eroded/deposited around a 

defined area (usually a five by five matrix surrounding the location o f interest), whose 

scale is much smaller than the final cusp spacing. The smoothing used here accounts for 
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the pre-existing topography in such a way that differences in the local slopes are limited. In 

fact, for a defined location, the smoothing operates by eveiluating the plane that best fits the 

elevations of a certain number of surrounding locations and then distributes the sediment in 

order to minimise differences from that plane. 

5.2.2.2 Angle of repose 

Because of the erosion and deposition caused by successive waves, it is possible that 

topography wil l change in a non-realistic way, an example being the case of two adjacent 

grid points with a beach gradient superior to the angle of repose of sediment. By 

considering an angle of repose, for example of 30 degrees, it is possible to establish a limit 

for the local beach gradient and, i f such limit is exceeded, operate another smoothing and 

change the topography. The way this second kind of smoothing is performed needs to be 

very efficient in order to overcome possible loops caused by moving the sediment into grid 

points whose changed elevations wil l again exceed the limit value. For this reason, before 

spreading the amount of sediment that is actually exceeding the angle of repose limit, 

every surrounding point whose elevation would be changed needs to be checked. The 

criteria adopted consists of measuring the hypothetical new height that each of the 

surrounding grid points would reach after smoothing, and only i f this new elevation is 

smaller than the one of the point exceeding the angle of repose wi l l smoothing be 

performed. 

5.2.3 Boundary conditions 

At the alongshore boundaries of the modelling domain, periodic boundary conditions have 

been used so that water particles moving over one boundary reappear on the other side of 

the grid and sediment is rearranged on both sides of the grid allowing for sediment 

continuity. The use of such boundary conditions necessarily implies the presence of two 

regions, each of them extending out of the field limits, where the topography needs to be 

exactly equal to the one present on the other side of the grid field but inside the field limit. 

For example, i f one considers Figure 5,1, a beach is represented through a grid field 

extending, in the longshore direction, from A to B. It is possible to distinguish three 

different areas: 

1) A-B: grid field area (the one where water particles move and interact); 

2) A ' -A (or B-B'): region extending outwards of the grid field area; 
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3) A - A " (or B"-B) : region inside the grid field area whose changes are reflected on the 

region B-B' (or A ' -A) respectively. 

A ' A A'^ B " B B' 

Figure 5.1 Different regions of the grid field as related to the boundary conditions 

The presence of these overlapping areas ensures that every time a particle is going out of 

the grid field, and so it is entering ft-om the other side, the beach gradient present is 

consistent with the previous topography. The width of the overlapping region is obviously 

a ftmction of the area affected by the smoothing as, depending on the width of the 

smoothing, the topography of A - A " (or B" -B) may change even i f the particle is not 

inside that region. A last consideration regards the importance of the width of the grid field 

where particles move (region A-B) as it has to be big enough to avoid the "forcing" of any 

periodicity caused by the use of the boundaries which could eventually result in longshore 

rhythmic patterns. The size of the region A-B needs to be larger than the longshore 

excursion of water particles and obviously larger than the predicted cusp spacing. Several 

simulations, conducted by varying the grid spacing and the length of the alongshore 

domain, have been run in order to verify that any "numerical" forcing was avoided. As a 

result, it is possible to conclude that the formation of beach cusps is not influenced by the 

size of the grid or caused by the spreading of a perturbation from the edges of the grid field 

towards the centre but it arises fi-om random positions and cusps are all forming 

simultaneously. 

Another assumption related to the boundary limits of the model has been made and 

concerns the lack of interaction between one wave cycle and the following one. Every 

generated uprush wil l be basically unaffected by the outgoing backwash. No boundary is 

required at the top of the swash zone as particles wi l l automatically invert their velocity 

and start the backwash. 
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5.2.4 Random features of the model 

At the beginning of each swash cycle, water particles are assigned an alongshore and 

cross-shore velocity component by random choice from within a fixed range. Water 

particles are also given a location in the model domain that they occupy at the beginning of 

the cycle. This starting position on the grid is also randomly assigned for each cycle 

although a fixed, constant spacing between water particles can be assigned too. In order to 

understand the influence of these random inputs on cusp formation and development, 

different random sequences have been considered, and simulations run, by only changing 

the starting point (seed) of the pseudo-random number generator (results wi l l be presented 

in the next section). The importance of this analysis lies in the fact that the nature of a self-

organisation model is such that morphological evolution is the result of a feedback process 

rather than of an external forcing. Small variations in the input parameters might therefore 

significantly influence the rate of growth, or even the final spacing, of the resulting cusps. 

5.2.5 Model simulation 

An example of the results obtained through the model is given in Figure 5.2 where the 

changes on a shoreline leading to cusp formation and development are shown. Figure 5.2.a 

shows the domain being investigated and the division between the swash and the surf zone. 

The simulation herein presented is characterised by a beach slope equal to 10^ (grid sizes 

in the longshore and cross-shore direction are equal to 10cm) while the water particles are 

nearly normally (the maximum angle of approach randomly assigned is of the order of ± 

2°) approaching the shoreline. The cross-shore velocity at the seaward boundary of the 

swash zone is of 2.5 m/s (with random variations of the order of 2%) which results in a 

swash excursion approximately equal to 1.8 m. Figure 5.2.b is a contour plot showing the 

topographic changes after only 10 cycles. It is already possible to see the presence, around 

the change between swash and surf zone, of some alongshore distributed rhythmic features 

which continue to develop, and after 30 swash cycles (Figure 5.2.c) start to develop the 

characteristic shape of beach cusps with the alternation of horns and embayments. After 50 

cycles (Figure 5.2.d) the topography is well pronounced although still not completely 

stable. In fact (Figure 5.2.e) after 100 cycles two of the horns (respectively the third and 

the fourth starting fi*om the right) merge into a single one. Still the topography is not stable 

and, after 150 cycles (Figure 5.2.f), the prominence of the second horn from the left is 

consistently diminished and completely disappears when a more stable configuration is 
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Figure 5.2 Formation and evolution of a cuspate beach (see text) 
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reached after 200 cycles (Figure 5.2.g), Out of the swash zone, as a result of the way the 

surf zone has been modelled, areas of deposition and erosion can be observed in fi-ont of 

embayments and horns respectively. This morphological feature is also evident on natural 

beaches where a mirror reflection of the cuspate shoreline has often been reported 

(Kuenen. 1948; Masselink and Pattiaratchi, 1998b). By the configuration shown in Figure 

5.2.g, the topography is much more stable and other changes, again a merging or dividing 

of horns and embayments, appear only after a very large number of cycles; the random 

element of the model means that a situation of no net erosion/deposition inside a single 

system hom-embayments is never reached and sometimes water particles manage to 

overtop from one side of the horn to the other transferring sediment. Considering the 

morphology developed after 200 cycles (Figure 5.2.g), the cusp spacing is around 3.6 m 

which corresponds to a swash excursion with a coefficient o f about 2.0. Such a value is 

very close to the values commonly observed, especially when one considers the variability 

and the difficulty in measuring the swash excursion in the field. In fact the linear 

regression obtained through the use of most of the available field and laboratory data, as 

presented in the previous chapter and in Coco et al. (1999), suggests a proportionality 

coefficient between swash excursion and cusp spacing of around 1.6. 

The result obtained for the simulation previously described has been confirmed by several 

other simulations run over beaches characterised by different slopes or by flows 

characterised by a different swash excursion. Figure 5.3 shows the result of such 

simulations and the following correlation between cusp spacing and swash excursion, 

which, as previously indicated, favourably agrees with field and laboratory measurements. 

y = 2.2x 

= 0.99 

0 2 4 6 8 

Swash excursion (m) 

Figure 5.3 Relationship between cusp spacing and swash excursion for numerical 

simulations 
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Each point on the plot corresponds to simulations run considering swash excursions 

obtained by changing both the beach slope and the initial velocity of the incoming swash 

fi-ont with all the other model parameters kept constant. 

5.2.6 Physical mechanism 

The formation and development of beach cusps is the result of feedback processes. In fact, 

the presence of non-linearities in the sediment transport parameterisation, combined with 

the randomness in the trajectory of the water particles, leads to the basic instability. The 

perturbation starts to develop because of the randomness causing the formation of isolated 

low or high areas. Such areas affect the flow attracting or diverging water particles more 

than the surrounding flat areas. The non-linear relationship between flow and sediment 

flux causes a deepening of the lower areas and the accretion of the higher ones (positive 

feedback). In fact, a lower area wi l l cause water particles to accelerate and so erosion, with 

the opposite happening in the higher areas. The morphological smoothing, as often 

happens in cellular automata models, wil l spread the perturbation and connect it with those 

evolving in other areas so that the process of reaching a more regular configuration is 

facilitated. Once a cuspate shoreline is present, water particles w i l l , on average, be driven 

by the existing topography causing minor changes inside a cusp-embayment-cusp system. 

Changes wil l still be possible as a result of the randomness present in the every swash 

fi-ont. 

5.3 Sensitivity to model parameterisation 

The choice of modelling the swash front through a finite number of water particles has 

been tested by varying the number of particles and their spacing at the beginning of each 

swash cycle. Results show that the spacing between water particles, and hence the number 

of particles present in the domain during each swash cycle, does not affect the final result 

but only the speed at which the process develops. In fact, i f a smaller particle spacing is 

considered, a higher number of water particles is present in the domain and, with all the 

other parameters kept the same, this results in a faster development of cusps. An example 

is given in Figure 5.4 where a beach slope of 10° and water particles with a swash 

excursion of 1.8 m are considered (the same conditions have been used for all the 

simulations presented in this section). Each point represents the number of cycles 

necessary to reach what could be defined as a quasi-equilibrium (it wil l be shown later that. 
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Figure 5.4 Relationship between the number of water particles representing the swash 

front and the number of cycles required to reach a quasi-equilibrium spacing 

even on well-developed cusps, there is always a small amount of net erosion or deposition 

and a slow evolution of the cusp patterns). 

Our simulations show that the exponent "m" in the velocity describing the sediment flux 

(equation 5.6), is an important parameter of the algorithm, different values resulting in 

different spacing during the simulations of beach cusp formation (Figure 5.5). Because of 

the lack of knowledge of the way sediment transport is modelled this result cannot be 

considered unexpected and in fact other authors have found a similar sensitivity when 

investigating morphodynamic instabilities (Christensen et al., 1995; Falques et al., 1996). 

This parameter results in the biggest source of variation in the quasi-equilibrium cusp 

spacing, but the variation is still small when compared to the scatter present in field 

measurements (see previous chapter or Coco et al., 1999). Another important result is 

given by the lack of cusp appearance for the case of m = 1 which basically corresponds to a 

linear relationship between sediment flux and velocity. This result also confirms the 

importance of non-linearities for the development of instabilities and is also in agreement 

with similar cellular automata model previously described (Murray and Paola, 1994). 

On the other hand, the magnitude of the coefficient "a" in the sediment transport 

parameterisation (equation 5.6) has an effect only on the rate at which beach cusps 

develop, not on the final spacing. An example of this phenomenon is given in Figure 5.6 

where a sediment flux proportional to the cube of the velocity (m = 3) has been used. In the 

limit of an extremely small value of a, no cusp formation occurs as changes in the 

morphology are so small that the degree of randomness present in the model prevents 

feedback to the hydrodynamics. The line fitting the data shows the asymptotic increase of 
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Figure 5.5 Variation of the cusp spacing with the sediment flux exponent 
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Figure 5.6 Relationship between the "a" coefficient (see equation 5.6) and the number of 

cycles required to reach a quasi-equilibrium spacing 

number of cycles necessary to reach quasi-equilibrium as a is reduced. At the upper limit, 

values of the a coefficient higher than 0.02 result in unrealistic morphological changes of 

same order of magnitude as the beach slope gradient in a single time step. 

The size of the sediment smoothing domain does not influence the cusp spacing, provided 

of course that it is much smaller than cusp wavelength; for all the runs shown in this 

chapter the size of the smoothing domain is no more than about 15 % of the final 

wavelength. However, the nature of the smoothing has an important effect on the process 

of beach cusp formation. The use of smoothing functions that do not account for the pre­

existing topography, for example a constant or pyramidal re-distribution of the evaluated 

amount of local erosion/deposition, does not result in beach cusp formation. Such a result 

should not be considered surprising as the nature of the model implies a continuous local 

interaction and feedback between fluid and sediment and the sediment itself. Spreading the 
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sediment without accounting for the local pre-existing topography would obviously inhibit 

such processes. 

The choice of different values for the angle of repose, i f realistic, does not affect the final 

cusp spacing but, as expected, only the shape and the rate at which cusps are formed; in 

effect, smoothing following the exceeding of the angle of repose acts in opposition to the 

formation of steep slopes and so slows down the feedback process (see Figure 5.7). 
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Figure 5.7 Relationship between the angle of repose and the number o f cycles required to 

reach a quasi-equilibrium spacing 

The sensitivity of the model results to the addition of a simulated hydrodynamic pressure 

gradient has also been investigated. Pressure gradients have been modelled in a very 

simplistic way so that, for each time step, the alongshore component of the velocity of each 

water particle is affected by other water particles that may be present in a fixed 

surrounding area. As a result, the water particle can be "driven" by the others. When its 

alongshore velocity brings it into close proximity with another particle, its alongshore 

velocity changes sign, with the water particle moving in the opposite direction to the 

previous time step. Simulations including this effect tend to result in slightly larger final 

spacing but the magnitude of the change (around 10%) suggests a small importance of 

pressure gradients in the process o f beach cusp formation. 

The conclusion of this sensitivity analysis is that cusp spacing is relatively insensitive to 

realistic changes in input and model parameters, any changes being well within the scatter 

in observed spacings. In contrast, as expected, these parameters have a strong influence on 

the rate of cusp development. 
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5.4 Tests of model behaviour 

The present model has been used to investigate the mean circulation patterns over a 

cuspate topography. As shown in the previous chapter, field investigations have considered 

the possibility of cusps formation with a horn convergent (Kuenen, 1948; Williams, 1973) 

or divergent (Bagnold, 1940; Dean and Maurmeyer, 1980) circulation pattern. Results 

obtained through the simulations indicate a horn divergent pattern such that the 

hydrodynamics, as soon as the topography begins to evolve, are driven by the local slope. 

This result is shown in Figure 5.8 where the flows averaged over a swash clearly diverge 

from the horns towards the embayments. 

Figure 5.8 Flow pattem over a cuspate beach 

Some authors have also stressed the relation between the circulation over a developing 

cuspate shoreline and the process, erosive or accretionary, leading to the formation and 

development of these features. As a result, there is the strong indication (Russell and 

Mclntire, 1965; Masselink et al., 1997) that a horn divergent circulation is related to 

accretionary conditions. The present numerical model confirms this hypothesis. Figure 5.9 

shows the initial and the 100 cycle average (over the whole alongshore domain used in the 

simulation) cross-shore profiles. 

S 0.6 
Initial profile 
100 cycles 

0 1 2 3 4 5 6 

Cross-shore distance (m) 

Figure 5.9 Average cross-shore profile at the beginning of the simulation (planar slope) 

and after 100 cycles (developed cuspate morphology) 
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A similar result is obtained for larger number of cycles and it is clearly comparable to field 

observations (Guza and Bowen, 1981). It is clearly shown that the cuspate morphology 

developing in the swash zone (region between 3 and 6 m in the cross-shore direction) has 

an accretionary nature while, as a reflection of sediment continuity, erosion is present 

seaward of the swash zone. 

In order to quantify the development of cusps during formation, evolution and even 

destruction, the bed elevation on an alongshore grid-line approximately at the centre of the 

swash zone has been analysed by means of a spectral analysis, with the following 

parameter indicating the sharpness of the peak of the spectrum (Darras, 1987): 

Q p = ^ r k . S ( k ) ^ d k (5.10) 
mQ 

where: 

Qp = peakedness factor; 

nio= spectral density moment of zero order; 

k = alongshore wavenumber; 

S(k) = spectral density. 

This parameter has been used to investigate the influence of a steady longshore current on 

cusp development. Several observations (Russell and Mclntire, 1965; Miller at al., 1989) 

report that cusp destruction occurs i f a change in the wave field causes the presence of a 

longshore current. In order to investigate such situations a longshore current has been 

superimposed on the wave motion over a cuspate topography and, as expected, cusps are 

rapidly wiped out. Figure 5.10 shows in fact the evolution of the sharpness of the spectral 

peak, initially running the model with an approximately normal incident wave field (a 

random alongshore component of flow around ± 2** and a cross-shore velocity around 2.5 

m/s is considered). After one hundred cycles, beach cusps are already developed and stable 

(solid line) but i f the initial component of the water particle longshore velocity is changed, 

so as to approximate an oblique wave approach and a resulting longshore current, the 

sharpness of the peak in the spectrum rapidly decreases (dotted lines). The figure also 

shows that the destruction of beach cusps is faster for larger angles of approach and results 

in peakedness values eventually comparable with the ones at the beginning of the process, 

where a flat beach was present, and no cusp can be identified. The case of a smaller angle 

of wave approach (around 6°) does not result in the complete destruction of the existing 

morphology but in very strong changes in the position and spacing of the beach cusps. 
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Figure 5.10 Variation of the peakedness (Qp) for different values of the angle of approach. 

The first 100 cycles were run with 9 = ± 2° 

The presence of an obliquely approaching wave field over an initially planar slope has also 

been simulated in order to understand its implications on cusp formation. Cusp spacing is 

not affected by small increases in the alongshore component of the water particles' 

velocity. On the other hand, and in agreement with field observations (see for example 

Holland, 1998), i f water particles are characterised by an angle of approach bigger than a 

value around 10** cusps are not formed. 

As shown in the previous chapter, many authors (Inman and Guza, 1975; Holland, 1998) 

consider narrow banded conditions, the so-called "clean conditions", as an important 

requirement for beach cusp formation. The model herein developed allows for testing such 

a requirement by increasing, for example, the randomness in the cross-shore component of 

the input velocities. By considering increasing values of randomness, feedback processes 

are prevented and cusps do not develop. Figure 5,11 shows the results of simulations of 

such processes and, as a measure of cusp formation, the spectrum peakedness after 200 

cycles has been used (results show exactly the same trend i f the maximum value of Qp over 

the whole simulation is considered). This result again confums the consistency between 

self-organisation modelling and field observations. 
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Figure 5.11 Cusp existence and randomness in swash excursion 

One of the criticisms of the self-organisation approach concerns the time necessary for 

beach cusp formation. It is argued (Komar, 1998) that natural irregular waves would 

require a much longer time to develop cusps than that suggested by the Werner and Fink 

(1993) model, which is between 6 min and 3 hrs (for 10 sec waves) depending on the 

parameters chosen. 

An analysis of the present model suggests that such a time cannot be uniquely established. 

Figure 5.12 shows results obtained when running the model with the same parameters but 

changing the random seed for the determination of the water particle position over the 

starting grid line and the respective initial velocity components (cross-shore and 

alongshore). The value of the cusp spacing for each of the two runs, respectively indicated 

by the letters a and b, is shown through contour plots of the spectrum of an alongshore 

grid-line approximately at the centre of the swash zone. It is possible to see that, in the first 

case, a final spacing of 4 m is reached after about 400 cycles while the second case reaches 

the same condition only after running the model for more than 800 cycles. Figure 5.13 

shows results obtained analysing the same runs in terms of the peakedness factor (Qp). Run 

5.13.a presents a very sharp increase of the peakedness quickly reaching a value around 

0.2 (such value could be considered as indicative of a well-developed cuspate shoreline). 

Run 5.13.b develops a cuspate shoreline at a much slower rate and reaches such values o f 

peakedness only after 400 cycles. Furthermore, the peak reached by run 5.14.a after 200 

cycles rapidly decreases because of the re-organisation of the shoreline into a slightly 

wider spacing while run 5.14.b experiences the same changes, in the cusp spacing and, as a 

reflection, in the peakedness, only after 700 cycles. It is thus clear that, with this kind of 

self-organisation models, the time necessary for beach cusp formation is not unique. That 

the process of beach cusp formation and development is sensitive to the random input 
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Figure 5.12 Comparison between spectra of an alongshore gridline inside the swash region 

during cusp formation and development (swash excursion is around 1.8 m). The two 

samples differ only in the random seed used 
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should not be considered as a shortcoming of the model. Other studies underline the 

importance and the effect of wave chronology upon a beach morphology which non-

linearly responds to an input characterised by a combination of systematic and stochastic 

hydrodynamic driving forces (Southgate, 1995). Although this model works on a much 

smaller time-scale than the one suggested by Southgate (1995), the idea that different sets 

of random inputs, characterised by the same statistical properties, unpredictably 

characterise the development of a shoreline agrees with those earlier findings. 

The conclusion that such differing growth rates for cusp formation can occur simply due to 

different random conditions may explain why beach cusps are often observed in isolated 

patches or with a non uniform spacing (see Plate 5.1) on a beach exposed to apparently 

uniform incident waves. Although our sensitivity analysis suggests we must be cautious in 

interpreting absolute growth rates from the model, nevertheless the longer timescales 

indicated by these simulations are of the order of hours. This imply that, on a tidal beach or 

under changing wave conditions, these timescales may be too long to form beach cusps. 

5.5 Long-term model behaviour 

Some interesting conclusions on the model behaviour can be drawn when simulations are 

run for very large number of cycles. As an example, we consider a domain characterised 

(Figure 5.14.a) by a longshore distance equal to about 30 m and a cross-shore distance 

approximately equal to 6 m. The beach is subject to a wave front represented by water 

particles positioned at every third grid point on the starting grid-line (a grid size of 0.1 m in 

both the alongshore and the cross-shore direction has been used also in this simulation). 

The particles are characterised by a cross-shore initial velocity component ranging 

randomly between 2.50 and 2.48 m/s while the alongshore component of the velocity 

ranges randomly between plus and minus 0.1 m/s. The beach is initially characterised by 

an uniform slope equal to 10° and the resulting swash excursion is around 1.8 m. After a 

short number of cycles (around 50) cusps are abeady present (Figure 5.14.b). At this stage, 

although the spacing is not exactly regular and cusps are still very small, the circulation 

pattern (hom divergent) is strongly influenced by the topography and so reinforces the 

development of cusps. After 200 cycles (Figure 5.14.c) a regular cuspate beach is present 

with an equally spaced sequence of horns and embayments. This configuration of the 

shoreline, whose only difference with Figure 5.2.g is in the random seed, seems to be 

stable and the circulation pattern is driven by the existing topography. By running the 

model further on it is then possible to see that after 400 cycles (Figure 5.14.d) some 
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Plate 5.1 Cusp formation with a non-uniform spacing (smaller spacings are around 4m, 

courtesy o f Gerd Masselink, Loughborough University. U.K.) 
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Figure 5.14 Formation and long term evolution of a cuspate beach (see text) 
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significant modifications begin to occur. Cusp spacing is not so regular anymore; some of 

the horns are getting bigger while others are slowly disappearing. The shoreline is moving 

towards a different configuration and in fact, after 800 cycles (Figure 5.14.e) a new beach 

cusp spacing has been achieved. The beach has reorganised into a different configuration 

characterised by a larger spacing (from 3.5 m to approximately 4 m). This configuration 

seems to very dynamical and in fact after 1400 cycles (Figure 5.14.f) it is possible to notice 

a displacement in the horns' locations (compare the position of the horns in this contour 

plot with the one of Figure 5.14.e) due to merging and separation of the features. Further 

running of the model results again in a merging and separation of the horns (the beginning 

of this process is shown in Figure 5.14.g which represents the morphology after 2000 

cycles) and the topography becomes less clear, although the presence of cusps is still easily 

identified. 

As shown in the previous sections, the circulation pattern observed during our simulations 

is the horn divergent one on both developing and well-developed cusps although, probably 

because of the random input, an equilibrium situation with no net sediment movement is 

never reached. There is the suggestion that the horn divergent circulation pattern could 

initially enhance cusp development but only until a certain point after which the horns are 

so steep that the same circulation pattern begins to be disruptive and cause movement of 

sediment from the horns to the bays. Our simulations show sediment flux gradients within 

a single cusp which vary on long timescales, with periods of relatively low and constant 

gradient broken by periods where the flux gradient doubles and changes in cusp location 

and shape occur. Clearly, even for well-developed cusps, the feedback between flow and 

topography can be disrupted by randomness in the wave field. The highly dynamic nature 

of cusps shown by these observations needs to be verified through field investigations. 

5.6. Results over a non-planar topography 

One of the shortcomings of the edge wave model has always been considered to be the fact 

that the dispersion relationship used for the prediction o f the beach cusp spacing has been 

derived assuming the presence of a planar beach. Edge wave motions can obviously be 

found over non-planar cross-shore topographies, each characterised by a different 

dispersion relationship. Analytical solutions have been found for a beach topography 

characterised by an exponential slope (Ball, 1967) while for more complex cross-shore 

beach profiles, numerical schemes have been proposed (Darbyshire, 1978; Holman and 

Bowen, 1979; Oltman-Shay and Howd, 1993). As a result, there is the strong suggestion 
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that a linear slope approximation could lead to significant errors in the wavelength 

estimation (Holman and Bowen, 1979; Oltman-Shay and Howd, 1993) and so in the cusp 

spacing prediction. Moreover, the lack of a model describing the changes occurring to edge 

waves because of the topographic modifications does not allow for a complete and 

satisfactory description of the process(es) involved with beach cusp formation. Only the 

model proposed by Guza and Bowen (1981) studies the interaction between edge waves 

and already developed beach cusps and, as a result, a de-tuning of the edge waves is 

suggested. Their model could explain why standing edge waves, whose alongshore 

variations would suggest a cusp spacing similar to the measured one, are not found on 

well-developed cuspate shorelines even though they could be responsible for the initial 

interaction leading to beach cusp formation. In contrast, the self-organisation approach 

does not require any specific initial condition. It is therefore of some interest to investigate 

how the self-organisation might interact with some pre-existing cusp spacing resulting, for 

example, from standing edge wave motion. 

Initial simulations have been run by considering the effect of isolated features for example 

the presence of a bar (Figure 5.15) or of a non-rhythmic feature (like the bump shown in 

Figure 5.16). These features are found not to affect the process of beach cusp formation 

and after a number of cycles (depending on the size and shape of the feature) they are 

destroyed and a regular cuspate shoreline appears. In these cases, the spacing at which 

beach cusp "organise" is the same as would have been obtained by running the model on a 

linear slope, and so is related to the swash excursion. This result shows the strength of the 

self-organisation mechanism and underlines, as already indicated by the work of different 

authors (Dean and Maurmeyer, 1980; Werner and Fink, 1993), the strong relationship 

between cusp spacing and swash excursion. 

The model has also been run with initial conditions representative of pre-existing 

developed cuspate topography with a spacing different to that obtained when the 

simulation starts with a planar topography. In this way, it is possible to test the strength of 

the self-organisation mechanism under topographic conditions which could potentially 

induce a circulation pattern similar to the one(s) observed in the field, but without the 

predicted relationship between cusp spacing and swash excursion. The cuspate shoreline 

has been idealised through the use of the expression already suggested by different authors 

(Dean and Maurmeyer, 1980; Masselink and Pattiaratchi, 1998b): 

h(x,y) = xtanp 1 + e s i n ^ l (5.11) 
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Figure 5.15 Cross-shore profile of an initially barred topography (a) zind beach cusp 

formation after 200 cycles (b) 

Figure 5.16 Formation of beach cusps on a topography initially characterised by the 

presence of a bump (a). Figure (b) shows the topography developed after 200 cycles 

where X represents the cusp spacing and e is a parameter providing a measure of the 

difference in the horn and bay steepness and so of the cusp prominence: 

tanPhom +tanPbay 

Different authors have reported measures of e and it generally ranges between values very 

close to 0 and reaching 0.3 (Komar, 1973; Dubois, 1978; Dean and Maurmeyer, 1980; 

Dubois, 1981; Masselink and Pattiaratchi, 1998b). It might be expected that the response of 
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pre-existing cusps to the self-organisation model wil l depend on their prominence, e, and 

also on the degree to which their wavelength differs from the expected self-organisation 

wavelength, related to the swash excursion. The latter can be parameterised as: 

^initial A = (5.13) 
s.-o. 

where the symbols X-initiai and A,s.o. refer respectively to the superimposed initial spacing 

and to the spacing obtained when running the self-organisation model over a planar slope. 

Results are shown in Figure 5.17. 
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Figure 5,17 Self-organisation process over an initially cuspate shoreline 

It is clear that increasing the parameter e for the initial topography, cusps are more stable 

and able to "drive" the water particle motion in such a way that the self-organisation 

mechanism is prevented. The smallest value used for e has been equal to 0.005 but even in 

that case the pre-existing topography has a relevant influence on the processes and two 

different spacings can coexist with the hydrodynamics considered. Results indicate that 

even large amplitude cusps are destroyed i f their spacing is more than a factor of two 

different fi-om the spacing obtained when the self-organisation model is run on a planar 

slope. On the other hand, for spacing differing less than a factor o f two, i f the topography 

is so well developed that feedback processes are prevented or limited to negligible values, 

no change can occur and the initial topography remains stable (to a certain extent the 

opposite situation to the one already described regarding the use of small values of the 

coefficient a in the sediment transport parameterisation). 
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5.7 Numerical simulations of compatibility between edge wave and self-organisation 

In order to try to better understand the possibility of coexistence between the two 

mechanisms, several simulations have been run by using the self-organisation model under 

a simplified form of standing edge wave input. The presence of standing edge waves has 

been simulated in the model by considering an alongshore sinusoidal variation in the cross-

shore velocity of the water particles representing the incoming swash front. The alongshore 

component of the water particles has been considered equal to zero so as to simulate waves 

normally approaching the shoreline. The presence of both synchronous and subhzuTnonic 

standing edge waves has been considered with the latter being simulated through a change 

of sign in the sinusoidal component of the velocities between successive swash cycles so 

that nodes and antinodes could be generated. A l l the results herein presented concern 

simulations run over a 10° slope with cross-shore velocities ranging between 2.2 and 2.8 

m/s (average swash excursion around 1.8 m). The only randomness present in these 

simulations concerns the possibility that water particles, although equally spaced, may start 

from different grid points than the ones of the previous swash cycle. For the modelling of 

the hydrodynamics and sediment transport in the swash and surf zone, the same 

parameterisation as the simulations discussed in the previous sections has been applied. 

With such a parameterisation, the maximum swash period is around 3.2 sec and the e 

parameter (equation 4.13) is equal to 2.45 which is very close to the values measured or 

theoretically derived (see Chapter 4). 

As the model herein presented does not include any kind of interaction between incoming 

and outgoing waves there is no explicit period of the incoming wave. By assuming that the 

incident wave period is equal to the swash period, it is possible to evaluate, through the use 

of equation (4.5) and (4.6), the cusp spacing associated with eventually present 

subharmonic or synchronous standing edge waves respectively. By using such spacing, the 

sinusoidal variation of the input velocities in the alongshore direction has been evEduated 

and the standing edge wave effect on the swash run-up simulated. 

Figure 5.18 shows the resulting topography when a subharmonic edge wave forcing is 

considered, with the resulting run-up maxima indicated in the plot, not to scale, through the 

use of a continuous line. This plot clearly indicates the correspondence of horns and 

embayments to antinodes (defined as locations where the run-up alternates maxima and 

minima for successive swash cycles) and nodes (defined as locations where the run-up 

maximum does not change between successive swash cycles) respectively. Such a pattern 
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shows an opposite behaviour to the one obtained by Guza and Inman (1975) through a 

series of laboratory experiments where sand was spread in the swash zone after the 

excitation of subharmonic standing edge waves. According to the experiment by Guza and 

Inman (1975), conducted in prevalent erosive conditions, horns correspond to standing 

edge wave nodes and embayments to antinodes. The possibility that accretionary 

conditions may lead to an opposite behaviour, and so in agreement with the one observed 

through the present model, has already been reported (Russell and Mclntire 1965). The 

process of cusp development here is that decelerating water particles, usually during the 

swash run-up, cause deposition. As a consequence, and because of the continuous feedback 

between morphology and hydrodynamics, during the backwash the flow wil l be diverted 

from areas of deposition. Backwash flow is also accelerating under the effect of gravity 

and so wil l cause erosion. 

Figure 5.18 Formation and evolution of a cuspate beach under subharmonic standing edge 

wave forcing 

Different results are obtained when synchronous standing edge wave motions are 

simulated and, in order to obtain a stable cusp configuration, the sinusoidal variation of the 

velocities needs a wavelength close to the self-organisation (or subharmonic) expected 

spacing (Figure 5.19) rather than the one resulting from equation (4.6). Even in this case 

the horns appear in correspondence with the run-up maxima while the embayments 

correspond to the run-up minima and, because the backwash is concentrated in such area, 

deposition occurs immediately out of the swash zone. 

Figure 5.19 Formation and evolution of a cuspate beach under synchronous standing edge 

wave forcing 

109 



Significantly different results are obtained when the condition that swash period equals 

incident wave period is relaxed. For example, simulated incoming standing edge waves can 

be characterised by an alongshore wavelength much smaller than the ones shown in the 

previous cases. Figure 5.20 shows results obtained with a subharmonic standing edge 

wavelength less than half the self-organisation predicted one. Such sinusoidal input would 

be related to a very small incident wave period (around 2 sec) but this simulation is 

presented only to clearly show the effect of the interaction between an external forcing and 

the self-organisation mechanism. In fact, the pattern resulting from such a simulation still 

displays some cuspate features but it is definitely less regular than previous simulations 

and clearly not related to node-antinode sequence. 

Figure 5.20 Formation and evolution of a cuspate beach under sub-harmonic standing 

edge wave forcing 

Some other interesting results are shown in Figure 5.21 where synchronous standing edge 

wave motions, with a wavelength equal to the one resulting from considering equation 

(4.6), are simulated. As a result, after 50 cycles (Figure 5.21.a), a cuspate shoreline 

develops with a correspondence between run-up maxima and horns. I f the simulation is run 

further (Figure 5.21.b) it is easy to identify a halving of the spacing in the cuspate shoreline 

with the disappearance of every other feature and the readjusting of the topography into a 

spacing closer to the self-organisation one (which means only related to the swash 

excursion). A similar behaviour, a halving of the beach cusp spacing in only few hours, has 

been reported by the accurate topographic measurements of Masselink and Pattiaratchi 

(1998b). Unfortunately no detailed measurement of the hydrodynamics (wavelength of 

eventually present standing motions) was taken by Masselink and Pattiaratchi (1998b) so 

that no definitive comparison or conclusion on this phenomenon can be drawn. 

The intriguing morphological changes shown in Figure 5.21, have also been studied with a 

different approach. A series of simulations has been run by considering an initially non-

planar topography and a randomly generated swash excursion (like the one used for the 

simulation showed in Figure 5.2). This approach could be considered as a simulation of the 

theoretical work proposed by Guza and Bowen (1981) where it is shown that well-
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developed cusps are capable of detuning and suppressing edge wave motions. Figure 5.22 

shows the topography resulting after running the model over a cuspate topography 

produced with a synchronous standing edge wave forcing (the one showed in Figure 

5.21.a). By comparing the two plots it can be seen that, once sinusoidal motion is not 

forcing the morphology, the shoreline re-organises into a different spacing with horns and 

embayments in different positions than at the beginning of the simulation. The final 

spacing is exactly the same as the one obtained in Figure 5.2 (same parameters have been 

applied to the two simulations) which testifies to the robustness of the self-organisation 

mechanism against pre-existing topography (a feature the standing edge wave approach 

does not possess). As discussed in the previous sections, different results are obtained 

when running the model over a more prominent cuspate topography (like the one showed 

in Figure 5.21.b). As a confirmation. Figure 5.23 shows that the initial topography is so 

prominent and well-developed that no change in the spacing is allowed but only an 

enlargement of the already present features. These observations confirm to the possibility 

of a "topographic threshold" such that a less prominent morphology would allow for the 

beginning of feedback processes, and so of the self-organisation mechanism, while more 

prominent features would control and affect the hydrodynamics so strongly that no relevant 

change is allowed. 

Figure 5.21 Formation and evolution of a cuspate beach under synchronous standing edge 

wave forcing (see text) 

Figure 5.22 Development of a cuspate beach over a pre-existing topography 
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Figure 5.23 Development of a cuspate beach over a pre-existing topography 

A final comment needs to be made in order to describe the difference between the 

simulations with a standing edge wave forcing and those characterised by a random input. 

In fact, it has been suggested by different authors (see for example Seymour and Aubrey, 

1985; Inman and Guza, 1982) that standing edge waves can be important only during the 

initial stages of cusp formation providing the initial alongshore instability that, reinforced 

by flow patterns, would then grow into finite amplitude cusps without any need of a 

standing edge wave forcing. This being the case, cusps forming under a standing edge 

wave forcing should grow faster than cusps resulting fi"om a self-organisation process. 

Simulations for the two cases have been run and results compared through the use of the 

peakedness parameter (equation 5.10). Results, shown in Figure 5.24, clearly indicate that, 

from the very first cycles, the presence of a hydrodynamic forcing with a structure in the 

longshore direction would cause a faster growth of beach cusps. Simulations have also 

been nm by considering a standing edge wave input only for a limited initial number of 

cycles and then a normal approaching wave field. Because of the parameterisation 

considered, even only 10 cycles of standing edge wave forcing are sufficient to define the 

final structure of the pattern that exactly corresponds (spacing and hom-embayment 

locations) to the simulation performed imder a continuous standing edge wave forcing. The 

small differences in Qp foimd after 100 cycles indicate the minor role of the randomness 

not allowing for a clear shape of the cusps as compared to the case of continuous standing 

edge wave forcing. Such a result is not unexpected because a careful analysis of Figure 

5.24 reveals that after 10 cycles the value of Qp is already well above 0.1 which indicates 

the presence of a clear alongshore structure in the morphology. Much more mtriguing is 

the simulation with a standing edge wave forcing present only for the first 2 swash cycles. 

In such a case, the value of Qp indicates a very small structure in the topography and the 

whole process o f beach cusp formation is much slower. Nevertheless, cusps form at the 

same spacing and with horns and embayments exactly at the same locations as the run 

under a continuous standing edge wave forcing. The simulation run with no longshore 

structure in the hydrodynamic forcing follows a completely different path and, although 

the growth appears to be faster than the case of initial standing edge wave input, the final 

pattern shows a slightly different spacing and a completely different positioning of horns 

and embayments, 
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It is clear that the previous results have important implications in terms o f the possibility of 

detecting which mechanism is responsible for beach cusp formation. Very accurate, nearly 

swash cycle by swash cycle, field measurements would in fact be needed in order to verify 

whether an alongshore structure is present in the runup or not. The problem o f accurate 

field measurements is also complicated by the possibility that, as soon as an alongshore 

structure in the topography develops, edge waves could be affected by resonant scattering 

and so leading to the growth o f edge waves characterised by the same or different 

longshore wavenumber (Chen and Guza, 1998; Chen and Guza 1999). 
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e.w. for 10 cycles 
e.w. for 2 cycles 
random forcing 

Figure 5.24 Variation in the peakedness under different hydrodynamic inputs 

5.8 Discussion 

A model for beach cusp formation and development has been implemented on the basis of 

the work proposed by Werner and Fink (1993) where beach cusps are the result of the 

feedback interaction between flow and morphology. Interaction between incoming and 

outgoing waves, infiltration and refraction have all been neglected but cusp formation is 

still evident and the shoreline adjusts to a spacing in agreement with field measurements. A 

sensitivity analysis of the parameters involved in the simulations indicates that most of the 

input and model parameters (like sediment transport, angle of repose, randomness) 

primarily affect the rate of beach cusp formation and have only a small influence on the 

fmal spacing. Cusp spacing linearly scales with the swash excursion, the proportionality 

coefficient being in agreement with field and laboratory data (see Chapter 4). 

In addition to the prediction of cusp spacing, several other features of the simulations are in 

good agreement with field observations. As generally observed, the process of beach cusp 
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formation is found to be of a depositional nature within the swash zone, and is associated 

with a flow pattern over the cuspate shoreline which is clearly horn divergent. Also as 

observed, the presence of an alongshore current is found to destroy cusps; the quantitative 

prediction that cusps are destroyed i f the swash runs up the beach at an angle greater than 

about 6° seems to be confirmed by field testing. 

The relevance of other features of model behaviour can only be assessed through more 

detailed field observations. Changes in the initial random seed and runs for large numbers 

of swash cycles reveal a highly dynamic system with significant unpredictable behaviour. 

Cusp spacing tends to change with time and cusp regularity shows large long-term 

variations. Even after a quasi-equilibrium pattern has developed, cusps can be destroyed 

and reformed in different locations. The rate of initial formation of cusps is also found to 

be highly variable and dependent on initial random input; it is suggested that this might 

account for the patchy occurrence of cusps on relatively uniform beaches. 

In addition, the possibility of beach cusp formation on a non-planar beach has been 

investigated. Results confirm the strength of the self-organisation process and imply a 

mechanism which is not simply the result of feedback fi^om a topographically driven 

steady-flow. Unless of very high prominence, pre-existing topography is usually destroyed 

and beach cusps reform with a spacing in accord to the self-organisation prediction. 

However, very prominent pre-existing cusps do persist i f their spacing is no more than a 

factor of two different from that expected by self-organisation. 

The possibility of coexistence between the standing edge wave model and the self-

organisation one has been investigated through a series of simulations under a simplified 

standing edge wave input. Results seem to indicate the possibility of cusps of co-existence 

between the two models at least under a subharmonic standing edge wave forcing whose 

spacing prediction, as shown in section 4.4 (eq. 4.22), is very similar to the one obtained 

with the present self-organisation model. It is then possible to argue that beach cusp might 

well be the result of either a hydrodynamical instability (but only under conditions that are 

able to ensure topographic equilibrium) or a coupled flow-sediment instability driven by 

feedback processes. 
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Chapter 6: Comparison between model results and Held data using a non-linear 

technique 

6.1 Introduction 

The usual assumption, when dealing with coastal evolution, is that shoreline changes are 

the direct consequence of a change in the hydrodynamic forcing which tends to move the 

system away from the previous equilibrium and brings it towards a new equilibrium state. 

In the first place, it is important to underline that the forcing is not unique but is the result 

of different components acting at different time-scales (waves, tides), subject to random 

variations, that can become dominant for certain conditions (storms) or locations (under 

the wave breaking) or simply because of human action (breakwaters, beach nourishment, 

etc.). As a result, the response of the system can simply "mirror" the forcing conditions or 

interact and, usually for weak forcing conditions, even affect it to the point where the 

whole system is governed by feedback processes and by the non-linear relationship(s) 

between forcing and response. As a consequence, the suggestion that a non-linear system, 

like the coastal one, can freely respond to the forcing needs to be analysed as well as the 

possibility of a chaotic response resulting in self-organised patterns. This approach has 

edready been applied to natural sciences (Hastings and Sugihara, 1993; Bak, 1997), 

including long-term coastal morphodynamics (Southgate and Beltrein, 1995; Southgate and 

Beltran, 1996), providing evidence for the primary role of self-organisation in the 

evolution of complex systems. Applying this concept to short-term morphological changes 

is a difficult task because of the intrinsic interaction between forced and free responses 

although, as outlined in chapter 2, coastal morphodynamics are characterised by many of 

the features associated with non-linear dissipative dynamical systems. 

Several techniques have been developed in recent years in order to analyse data obtained 

from complex systems and only recently their application into environmental sciences has 

been considered. Most of these techniques, which have proved to be useftil in describing 

the system's behaviour and in some cases even in forecasting the system evolution, require 

very long data series so that the application to coastal morphodynamics is possible only in 

very few data sets and only for some of such techniques (Southgate et al., 1999). The 

application of non-linear techniques is a very usefial tool also when comparisons between 

field data and model results are made. In fact, most of the non-linear techniques provide a 

qualitative description of the processes through a parameter (for example the fractal 

dimension or the Lyapunov exponent). The characterisation of a system's behaviour 
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through a parameter can then allow, i f the same parameter can be extracted, comparisons 

with numerical models. 

This chapter deals with the use of nonlinear techniques in order to compare results of a 

non-linear model with field measurements performed during beach cusp formation. The 

possibility that nearshore processes are the result of a self-organisation process and that 

morphological changes in the topography follow a fi^ctal distribution wil l also be 

analysed. In order to give evidence of fi*actal behaviour different techniques will be applied 

to beach elevations deriving from field measurements and fi-om the results of the 

previously described self-organisation numerical model for beach cusp formation. Separate 

time series of beach elevations wi l l be considered in order to prove that the same physical 

process is occurring over the different locations surveyed or in the numerical model. 

6.2 Analysis of time series through non-linear techniques 

Several techniques have been proposed in the last years in order to improve the 

understanding of the role of non-linearities in complex systems like coastal 

morphodynamics. Before briefly reviewing some of them, it is important to underline that 

most of these techniques do not necessarily perform better than the linear ones especially 

when applied to forecasting or to reducing the number of variables in a data set. For 

example, transforming the data using a linear technique like Empirical Orthogonal 

Eigenfimction analysis has already proved to be very successful in its coastal environment 

applications (see for example Winant et al., 1975; Hsu et al., 1994; Wijnberg and 

Terwindt, 1995) as well as spectral analysis which is still one of the most effective tools 

used to detect periodicity and trends. The main purpose for using non-linear techniques is 

the characterisation of the system (Southgate et al., 1999). This means understanding 

whether the system is "attracted" towards an equilibrium state (which can also be periodic 

or chaotic), the time scale at which different behaviours may occur and the influence of the 

forcing conditions on the system's response. 

The most common non-linear analysis techniques are those related to the concept of ' ' t ime-

delay embedding" where the overall dynamics of a system (for example the fi"actal 

dimension or the Lyapunov exponent) are reflected into the response o f a single variable. 

Such technique is used to find the number of independent variables describing the system 

and has been successfully applied into oceanographic studies (Jaffe and Rubin, 1996; 

Prison et al., 1999; Holland et al., 1999). It does not seem to be applicable to 
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measurements of bed levels because of the large amount of data required for the analysis, a 

condition hardly satisfied by any of the existing data sets (Southgate, 1997). A similar 

procedure (Forecasting Signature Method), although based on the comparison between 

results obtained from "trial models", has also been proposed and proved to be successful 

for the analysis of a two-dimensional pattern (Rubin, 1992). It still requires very long time 

series (several hundreds) but offers a very interesting prospective as it can be used to 

analyse images like those obtained through remote sensing systems. 

An innovative approach to the analysis of time series is given by the use of artificial neural 

networks. This technique involves the use of a "training" set of data and consists of a series 

of layers of nodes connecting inputs and outputs. Each node, in each layer, has got a 

different weight, previously determined through the "training" set, and output values are 

obtained through a combination of linear and non-linear transformation of values at each 

node. Although this technique is a typical example of "black box" modelling and so does 

not allow for an understanding of the underlying physical processes, recent applications in 

the oceanographic field (Kingston and Davidson, 1999; Tsai and Lee, 1999) indicate the 

strength and validity of this approach. 

Another technique that begins to find applications also in the oceanographic field (Babovic 

and Abbott, 1997b; Davidson et al., 1999) is related to the evolutionary concept as 

established by Darwin in the 19* century. Selection, mutation and reproduction on a 

population undergoing an evolutionary process are the basis of a mechanism that allows 

the "most fitting" variable to reproduce more of^en and the evolutionary process to proceed 

(Babovic and Abbott, 1997a). Several techniques follow this basic concept (Genetic 

Algorithms, Genetic programming, Evolution Strategies, Evolutionary Programming), are 

capable of producing very accurate results and allow for an understanding of the 

fundamental variables and so of the mechanisms involved in the processes analysed. 

The fractal technique is basically a statistical approach and is considered to be particularly 

suitable when high dimensional systems (like coastal morphodynamics) are studied and the 

length of the time series available is limited. This technique wi l l be described in much 

more detail in the next section as it wi l l be applied to field measurements and model 

results. The same approach has been considered in different fields of environmental 

sciences by Hastings and Sugihara (1993) and has already been applied to coastal 

morphodynamics by Southgate and Beltran (1995, 1996) and Southgate and Moller (1999). 
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6.3 The fractal approach 

Fractals can be defined as scale-invariant (or self-similar) geometric objects. Following 

such a definition, fractal (or self-similar) processes can be described through the use of the 

fractal dimension D which is the variable controlling the regularity o f the phenomenon. 

The hypothesis related to considering a fractal distribution is that a process can be repeated 

on different scales in the same way. This idea has usually been applied to describe spatial 

patterns but can also be applied to fractal (or self-similar) processes in time. 

The characterisation of a fractal process can be obtained by generalising the axioms 

defining a so-called Brownian motion or random walk (Mandelbrot, 1982). As a result, a 

continuous process y(t) can be defined as a continuous (in time) fractal process if, for any 

time step dt, the increments dy(t) = y(t+ dt)-y(t) have a variance proportional to a power of 

dt. Such power is then related to the Hurst exponent (H) and can be evaluated, as shown 

later, through different techniques. The importance of the Hurst exponent also lies in its 

relationship to the previously defined fractal dimension, so that, for most of the processes: 

D = 2 - H. The value of H is of primary importance as a pure fractal process is 

characterised by a constant value, with time, of H. Such occurrence, although possible, is 

not the most common while much more often it is possible to divide the time domain into 

regions of constant H and so discern between different processes happening at different 

time scales. The application of valid limits to the fractal distribution could be a great help 

in the understanding of the system's behaviour (Southgate and Moller, 1999). Moreover, 

the value of H can vary between 0 and 1 with the value H=0.5 indicating a random walk. 

Values of the Hurst exponent higher than 0.5 suggest persistence in the behaviour of the 

time series such that each increment dy is positively correlated to the previous one. On the 

other hand, a value of the Hurst exponent lower than 0.5 indicates anti-persistence. A very 

simple and idealised example can be made in order to explain the meaning of persistence 

and anti-persistence and to show the possible applicability of such concepts. It is in fact 

possible to hypothesise the existence of a time series of beach elevation for a location 

where a beach nourishment intervention is needed. Suppose the application of the fractal 

analysis for such time series and the evaluation of the global Hurst exponent results in a 

short term behaviour (around 6 months) indicating persistence (a period of 

erosion/accretion would be followed by an equally long period of erosion/accretion) and in 

an anti-persistent long term behaviour (a period of erosion/accretion would be followed by 

an equally long period of accretion /erosion). Then, the frequency o f beach nourishment 

interventions could be evaluated using such information so that the maximum efficiency 
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would be obtained i f the quantity of material laid on the beach exceeds the amount of 

erosion expected over 6 months. Laying less material would result in the possibility of 

immediate loss of the material (persistent periods of erosion of 6 months) while exceeding 

the 6 months amount would avoid any short-term risk and allow for the possibility that a 

sort of cycle accretion/erosion is established. 

In order to evaluate the Hurst exponent three different established techniques have been 

considered (Hastings and Sugihara, 1993): the growth of variance, the growth of range 

(global Hurst exponent) and a correlation technique (local Hurst exponent). The choice of 

such techniques relies on the methods giving independent results and so allowing for 

comparisons. 

The growth of variance technique is applied by selecting a time interval dt, evaluating all 

the increments Ay and then the corresponding variance. This operation can be repeated for 

subsequent time intervals and, i f the process is fi-actal, a logarithm plot of the variance 

against time step wil l result in a straight line characterised by a 2H value of the slope. As 

for fi-actal processes the Hurst exponent is independent of the time interval, i f long time 

series are available, it is also possible to apply this procedure by considering general time 

intervals or windows of data. 

The growth of range technique suggests a similar procedure and the sum of the ranges 

(difference between maximum and minimum values of the increments) related to a chosen 

time step is associated to the time step itself I f the process is fi-actal, a logarithm plot of 

ranges and time intervals should result again in a straight line with slope equal to H. This 

second approach requires particular attention when applied to small time intervals as the 

value of H can be overestimated so much that a random walk would be characterised by 

H=0.63 rather than 0.5. North and Halliwell (1994) analyse the generation of synthetic data 

and show the existence of an initial biased zone that could affect the final evaluation of the 

Hurst exponent. Unfortunately for natural time series the end of such a transient zone is not 

unequivocally determined and North and Halliwell (1994) suggest that such value could 

change depending on the nature o f the time series. 

The two techniques previously described provide a measure of the fractal character of the 

time series over the whole range of time increments dt and so are usually indicated as 

global Hurst exponent (the value of the Hurst exponent is obtained through a regression of 

the variance/range over all the time intervals dt considered). It is also possible to evaluate 
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the Hurst exponent for each single time interval (local Hurst exponent Hioc) so that 

information can be deduced on the time range over which fractal behaviour is observed. 

This technique is based on the evaluation of the correlation coefficient between successive 

increments which has the form: 

[y(t + 2d t ) - y(t + dt)]* [y(t + d t ) - y(t)] 

^" ty(t + 2d t ) -y( t . -d t ) r*[y( t + d t ) -y( t ) r} ' " 

The local Hurst exponent is then given by the formula: 

H ,^= log(2 + 2pH ) / log4 (6.2) 

The initial stage of the procedure adopted is the same as the one suggested by Southgale 

and Beltran (1995, 1996) and data are treated according to the following sequence: 

a) evaluate goodness of fi t of the beach elevations to a Gaussian distribution 

b) create the cumulative time series (with the beach levels expressed in terms of the time-

mean value) 

c) evaluate the global and local Hurst exponent 

The need to use a cumulative series of the increments rather than the actual beach 

elevations is due to the nature of the physical process studied (every beach level is bound 

to the one measured at the previous time step) and to the nature of the hypothesis being 

tested (whether beach levels represent the increments of a fractal process or not). North 

and Halliwell (1994) and Southgate and Moller (1999) also indicate other factors that have 

to be considered before starting the analysis and that could sensibly affect the accuracy in 

the evaluation of the global Hurst exponent (H). It has already been stressed that the 

growth of range technique is very sensitive to the length of the time series but also other 

problems, common to all the different techniques, have to be considered. In fact, there is 

the suggestion that also the use o f large dt can bias the estimation of H. For such reason, 

and in accordance with Hastings and Sugihara (1993), the maximum time interval 

considered in any analysis is always equal to 1/3 of the total number of measurements 

constituting the time series. On the other hand, a periodic component in the time series can 

potentially reduce the value of H while a non-stationarity of the means (revealed by 

comparing mean values for different "windows" of the time series) can sensibly increase 

the value of H to the point of even exceeding 1. Another source o f bias could derive from 

the need of data interpolation (in time or space) as such an operation can alter the statistical 

properties of the whole time series. 
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Attention must also be paid to the data distribution as disagreement exists in the literature 

on the importance that data fit a Gaussian distribution. Hastings and Sugihara (1993) 

clearly indicate that fractal behaviour requires Gaussian distribution o f the data. On the 

other hand, Southgate and Moller suggest that i f the data fits a Gaussian distribution and i f 

the time series are fractal, H should be equal (or at least close) to 0.5. A non-Gaussian 

distribution of the data should result in a significantly persistent (H > 0.5) or anti-persistent 

process (H < 0.5). 

6.4 Data available 

A field survey was conducted by Masselink et al. (1997) from 3̂** to 9^ March on City 

Beach, Perth, Western Australia. Such coastline, characterised by a mean slope around 6°, 

experiences low wave energy and a microtidal regime with spring tide ranges less than Im. 

Prior to the field survey City Beach was characterised by the presence of a pronounced 

cuspate morphology that was considered during selection of the survey transects. Seven 

shore-normal transects were established across the beach face, with an alongshore spacing 

of 7.5m, the resulting measurements spanning two cusp horns and adjacent embayments. 

Each of the seven transects consisted of 19 steel pegs which were inserted at Im cross-

shore intervals. Transects extended from landward of the berm crest to the base of the 

beach face. The height of the exposed pegs was manually measured every hour for the 

duration of the field study with accuracy around ± 0.03m. Examples o f three-dimensional 

changes in the morphology are shown in Figure 6.1 where "T" indicates the hour at which 

measurements have been taken (T=l corresponds to the initial morphology while T=145 is 

the result of the last survey). Because of the spatial (beach levels were measured always at 

the same locations) and temporal (beach levels were measured every hour) resolution, no 

interpolation of the data is needed. 

The 133 beach level series obtained through the field measurements have been transformed 

into cumulative time series by first deducting the time-mean value and then adding the 

successive increments. Figures 6.2, 6.3, 6.4 show examples of the measured beach levels, 

referred to the time mean, and of the cumulative series. Time series have been numerated 

according to their position with the first number indicating one of the nineteen cross-shore 

locations (from top to bottom of the swash) and the second one the seven alongshore 

transects (from left to right). 
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Figure 6.1 Cusp evolution during the field experiment (T=l indicates the initial 

topography while T=145 corresponds to the last survey) 
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Figure 6.2 Actual and cumulative beach levels at the top of the swash zone (location 4-7) 
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Figure 6.3 Actual and cumulative beach levels at the centre of the swash zone (location 

10-3) 
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Figure 6.4 Actual and cumulative beach levels at the bottom of the swash zone (location 

14-5) 

The hydrodynamic conditions, constituting the external forcing acting on the topography, 

wave heights varied considerably during the field experiment and three different phases 

have been observed: 

a) an initial period (approximately the first 24 surveys) of rising wave heights associated 

with a storm system resulting in the presence of strong longshore currents and so in 

beach cusp destruction 

b) falling wave energies following the passage of the storm (roughly corresponding to the 

following 65 surveys) 

c) a period of three distinct sea breeze cycles (corresponding to the last 56 surveys) which 

were associated with an increase in wave height, decrease in period and obliquely 

approaching wind waves 

Data deriving from numerical simulations of the self-organisation model presented in 

chapter 5 have been used in order to test the hypothesis of fractal distribution and to 

compare the values of the Hurst exponent with the field measurements. Results from such 

a numerical model wil l be here analysed by applying the previously described fractal 

analysis techniques to bed elevations inside the swash zone. Also in this case, no time or 

space interpolation of the data is needed. The use of a numerical model also allows for 
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longer time series and simulations of different length or different forcing conditions have 

been run. Figures 6.5 and 6.6 show examples of the time-mean beach levels and of the 

cumulative series for a simulation 600 cycles long. In such simulation, after cusp 

appearance (around 100 cycles), a strong oblique wave approach has been "forced" and, 

once cusps had been wiped out (around cycle 200), a normal approach has been considered 

again until the end of the simulation. 

6.5 Results 

The 133 points surveyed during the field experiments (7 transects of 19 points each) have 

been analysed by firstly checking the goodness of fit to a Gaussian distribution. Results 

from chi-square tests indicate poor fit with less than 10% of the beach level time series 

following a Gaussian distribution. Table I I I and IV show the value o f the Hurst exponent 

for each of the locations (the seven columns of the table refer to the seven field transects) 

evaluated through the growth of variance and range technique respectively. In both cases 

the maximum time interval adopted is equal to 50 hours. The average value of the Hurst 

exponent for the growth of variance case is equal to 0.76 with a standard deviation equal to 

0.1 while for the growth of range case the mean value is 0.78 with a standard deviation of 

0.1. The maximum difference between values of the Hurst exponent for a single location, 

evaluated with the two different techniques, is equal to 0.15 while the average difference 

(absolute values have been considered) between single locations is less than 0.05. 

Examples of the results obtained are given for 3 arbitrarily chosen locations at the top, 

centre and bottom of the swash zone respectively (Figure 6.7, 6.8, 6.9 for the growth of 

variance and Figure 6.10, 6.11, 6.12 for the growth of range). Such plots seem to give 

evidence of a fractal distribution for the field measurements analysed with a straight line 

reasonably well fitting the points for both the growth of variance and growth o f range 

technique. The values of the Hurst exponent, consistently above 0.5, clearly indicate the 

persistency of the process. A better indication of the possibility o f fractal behaviour, 

including the time scale at which the process is present, is given by the local Hurst 

exponent (Figure 6.13, 6.14, 6.15). Such coefficient appears to be less stable than the 

global measures of H and is never constant over all the time intervals analysed. Only in 

some of the cases Hioc seems to indicate the possibility of fractal behaviour but even then 

the time scale suggested is not clearly related to any physical process. Instead, it is possible 

to analyse the behaviour of the single cross-shore locations. In fact, at the top o f swash 

zone very few changes happen (see Figure 6.1 and 6.2) and they are obviously related to 

the movement of the shoreline induced by the tide. 
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Figure 6.5 Actual and cumulative bed elevations for a model simulation (bottom of the 

swash zone) 
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Figure 6.6 Actual and cumulative bed elevations for a model simulation (inside the swash 

zone) 
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Table I I I Value of the Hurst exponent for field data using the growth of variance method 

(offshore direction goes from top to bottom of the table) 

0.77 0.82 048 0-53 0.78 0.67 0.87 
0.66 0.69 0.70 0.59 078 0.75 0.81 
0.69 0.66 0.69 0.68 0.76 0.80 081 
0.90 0.67 0.73 0.70 071 0.74 0.76 
0.96 0.69 072 0.75 0.90 0.56 0.72 
095 0.69 0.73 0.88 O90 0.80 0.74 
0.95 0.69 0.80 0.91 0.95 0.86 0.74 
0.93 0.71 081 0.89 0.95 0.87 0.74 
0.91 0.69 0.79 0.88 0.95 0.92 0.76 
088 0.68 0.74 084 0.93 0.92 0.75 
085 0.65 0.68 0.81 0.92 0.91 0.75 
0.81 0.64 0.68 0.77 0.91 0.89 0.74 
078 0.67 0.68 0.71 0.89 0.87 072 
0.70 0.63 0.68 0.73 0.87 0.86 0.72 
071 0.63 0.72 0.66 0.83 0.86 0.75 
063 0.65 0.73 0.54 079 0.83 0.76 
0.63 0.62 0.76 0.63 0.80 0.84 0.78 
071 0.65 077 0.66 0.69 0.83 0.82 
0.73 0.70 0.80 0.76 0.74 0.87 0.87 

Table IV Value of the Hurst exponent for field data using the growth of range method 

0.73 0.97 055 0.54 0.77 0.61 0.99 
0.71 0.82 0.64 0.69 085 0.71 0.75 
0.73 052 0.72 0.72 0.66 0.80 0.73 
088 0.63 0.70 0.73 0.74 0.86 0.63 
0.97 0.61 O70 0.72 0.88 0.68 0.71 
0.98 0.66 0.75 0.91 O90 0.75 0.68 
0.97 0.76 081 0.97 0.97 0.82 0.63 
0.95 0.72 0.83 0.99 0.98 0.82 0.60 
0.93 0.69 0.80 1.00 0.97 0.91 0.64 
091 0.67 0.76 095 0.95 0.94 0.68 
0.89 0.64 0.69 0.92 0.93 0.94 0.75 
0.85 0.60 0.71 0.87 0.92 0.91 0.75 
0.81 065 071 0.80 0.91 0.90 0.70 
0.69 0.61 071 0.80 0.89 0.90 0.73 
0.71 0.60 075 0.75 0.87 0.93 0.78 
0.62 0.65 075 063 0.83 0.90 0.78 
0.63 0.64 0.80 0.71 083 0.92 0.83 
0.69 0.68 0.81 0.77 0.71 0.92 0.87 
0.69 0.79 0.85 0.85 0.80 0.99 0.92 

The global Hurst exponent (Figure 6.7 and 6.10) simply indicates persistent fractal 

behaviour while Hioc (Figure 6.13) indicates that persistent fractal behaviour is possible 

only at time intervals around 15-30 hours which basically means only when the tide allows 

the runup to reach such an area. At the centre of the swash the situation, although the 

global H still indicates persistence (Figure 6.8 and 6.11), is "less fi^ctal" as changes in the 

topography are mainly a reflection of the hydrodynamic forcing. Figure 6.3 clearly shows 

the erosive effect of the storm (after 10 hours), subsequent accretion and the erosive effect 

due to the sea breeze. As a result, Hioc (Figure 6.14) is never close to a constant and for 

127 



large time intervals even assumes negative values. At the bottom o f the region analysed 

(Figure 6.4) changes in the morphology due to the external forcing, apart fi-om the effect of 

the initial storm, are less evident and the results provided by the global H (Figure 6.9 and 

6.12) are in some way confirmed by Hioc (Figure 6.15) that is nearly constant over a range 

of time intervals going firom 10 to 25 hours. The behaviour suggested by the time series 

here showed is confirmed by the analysis o f the other time series available. 

y = I.5121X-6.6782 
H=0.76 

Figure 6.7 Growth of variance at the top of the swash zone (Location 4-7) 

« 0.5 

y = 1.4828x-3.3767 
H=0.74 

Figure 6.8 Growth of variance at the centre of the swash zone (Location 10-3) 

y = I.733X-4.666 
H=0.87 

Figure 6.9 Growth of variance at the bottom of the swash zone (Location 14-5) 
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Figure 6.10 Growth of range at the top of the swash zone (Location 4-7) 
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Figure 6.11 Growth of range at the centre of the swash zone (Location 10-3) 
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Figure 6.12 Growth of range at the bottom of the swash zone (Location 14-5) 
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Figure 6.13 Local Hurst exponent at the top of the swash zone (Location 4-7) 
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Figure 6.14 Local Hurst exponent at the centre of the swash zone (Location 10-3) 
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Figure 6.15 Local Hurst exponent at the bottom of the swash zone (Location 14-5) 

Bed elevation time series deriving from the numerical simulations show again a very poor 

fit to a Gaussian distribution. Simulations of different length and with different forcing 

conditions have been run. Results do not seem to be sensitive to the input (forcing) 

conditions. On the other hand, for long time series and for certain locations not subject to 

relevant changes (for example a hom remaining in a fixed position for the whole 

simulation), the problem of non-stationarity of the means occurs and no fractal behaviour 

can be detected (global Hurst exponent higher than 1). Results obtained for the simulation 
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described in section 6.5, when applying the growth of variance and growth of range 

technique for the evaluation of the global Hurst exponent, indicate mean values of 0.85 and 

0.81 for the growth of variance and growth of range respectively (450 time series have 

been considered). Standard deviations are in both cases below 0.1 and the maximum 

difference (absolute value) between Hurst values calculated with the two techniques over a 

single time series is around 0.15. Such results (shown in Figures 6.16, 6.17, 6.18, 6.19), 

confirmed by the analysis of time series at other locations and for other simulations, 

indicate again the possibility of fractal behaviour and indicate persistency of the process. 

Examples of the results obtained through the local Hurst exponent technique are shovm in 

6.20, 6.21. As for the field time series, Hioc provides a better understanding for the physical 

processes occurring and the time-scaling region at which they happen. In fact, Figure 6.20 

clearly shows that, at the bottom of the swash zone, in an area where the random element 

in the forcing is still very strong (the topography has not the possibility to influence the 

particle motion), fractal behaviour can be detected at different time scales (l<dt<20, 

90<dt<125, 180<dt<200). On the other hand, well inside the swash zone (Figure 6.21) the 

effect of the developing topography is much more important in controlling the behaviour 

and the possibility of a fractal process is detected only at very small time intervals (dt<30). 

y = 1.4761X-9.4654 

H=0.74 

Figure 6.16 Growth of variance for a model simulation (bottom of the swash zone) 

y = 1.8995X-8.2548 

H=0.95 

Figure 6.17 Growth of variance for a model simulation (inside the swash zone) 
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Figure 6.18 Growth of range for a model simulation (bottom of the swash zone) 

3.5 

y =0.9434x-4.1l5 
H=0.94 

4 4.5 

In(dt) 

5.5 

Figure 6.19 Growth of range for a model simulation (inside the swash zone) 

o 0.7 

50 100 150 

dl (no. swash cycles) 

Figure 6.20 Local Hurst exponent for a model simulation (bottom of the swash zone) 
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Figure 6.21 Local Hurst exponent for a model simulation (inside the swash zone) 

6.6 Discussion 

Before a comparison between the field measurements and the model data can be made, it is 

necessary to raise some relevant points concerning the fractal approach including its 

sensitivity, strength and shortcomings. First of all, it is important to underline that this 

technique is probably the only one available for the analysis of "short" time series (of the 

order of 100 measurements). Still, even longer time series can be not entirely 

representative of the physical process and the indication of fractal distribution may be 

derived from one of the various sources of error previously described rather than being a 

property of the system. For example, the indication given by the global Hurst exponent can 

be biased by the use o f a logarithm plot and, in the case o f the growth o f range, by the 

evaluation of a parameter (H) whose formulation is characterised by an intrinsic monotonic 

increase with the time interval. For this reason it is important to couple the indication given 

by the global Hurst exponent with the more efficient local Hurst coefficient that also 

provides a measure of the time scaling region. The use of separate time series also allows 

for a statistically more reliable parameter although choosing locations which are too close 

may result in similar value of H only because time series are measuring exactly the same 

process. 

The biggest uncertainty of this analysis is still given by the necessity of satisfying the 

hypothesis of Gaussian distribution for the data of each time series. As previously stated, 

there is no agreement on such a hypothesis that in this study has not been satisfied by both 

the field measurements and the numerical model results. For this reason, it is probably 

better to consider the results of this analysis as an indication of the system's response to the 

(hydrodynamic) forcing and of the importance of non-linearities without implications for 

fi^ctal or chaotic behaviour. Such indication, and its time scale, is obviously measured 

with much more accuracy by the local Hurst exponent rather than by the global Hurst 
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exponent. The hypothesis of chaotic or fractal behaviour in the swash region is probably a 

conclusion that cannot be fully demonstrated (at least with the data aveiilable) but the fact 

that self-organising processes are relevemt, at certain time scales, is still strongly indicated. 

The use of non-linear euialysis, like the fractal approach, for comparing field measurements 

and model data provides useful results. Such comparison can be made only on a qualitative 

basis as recreating the forcing conditions observed in the field is nearly an impossible task. 

But this analysis provides more information than a mere correspondence between cusp 

spacing for a defined swash excursion. In fact, by comparing the results given by the 

measure of the local Hurst exponent inside the swash zone (Figiu*e 6.14 and 6.21) it is clear 

that, i f the forcing is dominant (be it due to the topography controlling the f low circulation 

or to the hydrodynamic conditions) the role of self-organisation is negligible. Self-

organisation is instead important at locations where the forcing conditions are less effective 

(Figure 6.15 and Figure 6.20). 
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Chapter 7: Conclusions and future directions 

The possibility that commonly observed morphological patterns in the nearshore region are 

the result of free behaviour rather than being related to a template in the hydrodynamic 

forcing conditions has been investigated. Current research follows two main approaches in 

order to model non-linear dynamical systems (like the coastal one): stability analysis and 

cellular automata. Such approaches have already been proven to successfijlly describe the 

appearance and, in some cases, the evolution of morphological patterns at different scales 

(from ripples to sand ridges). In this work the two different techniques have been 

considered in order to simulate pattern formation in the surf and swash zone respectively. 

The concept of linear stability analysis has been considered for the simulation of pattem 

formation in the surf zone. The model (M0RF013) used for the solution of the governing 

equations and of the eigenproblem resulting from assuming a perturbation of the basic state 

has been developed by Prof Albert Falques and in this study ftirther developments have 

been introduced for sediment transport parameterisation. Nearshore patterns arise because, 

in a saturated surf zone, topographic disturbances can cause a perturbation in the radiation 

stress of the incoming waves. Such perturbations drive cellular flows that result in the 

growth of bedforms. The use of different cross-shore stirring functions for the suspended 

sediment transport parameterisation seems to play a key role in the formation of large-scale 

bedforms. The use of a stirring function increasing with water depth until the breaking line 

results in the formation of a crescentic bar pattem. On the other hand, i f the stirring 

fiinction decreases towards the breaking point or is constant throughout the surf zone, then 

a giant cusp pattem is observed. The two different distributions of suspended sediment, 

and so of the stirring function, have already been observed in the field. The off-shore 

decreasing distribution refers to low wave conditions while constant or off-shore 

increasing distributions are more likely to happen under high wave conditions, when long-

period motions become significant. 

Such results, obtained by linearising the governing equations, wi l l need to be tested, in 

particular for the sediment transport parameterisation, with field measurements. Other 

features of the model might be improved so that some of the restrictive hypotheses in the 

hydrodynamics can be removed. For example the use of a regular incoming wave field and 

of a fixed breaking point could have a significant effect and alter the growth rates of the 

patterns. Introducing wave refraction and a non-linear relationship between flow and 
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sediment transport are necessary steps in order to study the finite amplitude development 

of such features. 

The modelling of the swash zone and the formation of beach cusps has been considered by 

developing an original cellular automata model based on the work by Werner and Fink 

(1993). Here it was chosen to model beach cusp formation and development because for 

such features a purely hydrodynamic instability approach capable of explaining their 

formation already exists. The hydrodynamic approach refers to standing edge waves as an 

external forcing with beach cusps being a reflection of the sediment moved by such 

forcing. The hypothesis tested through the numerical model herein developed is that beach 

cusps form because of the interaction between sediment and flow. Model simulations show 

that beach cusps effectively develop because of feedback processes between flow and 

topography. The physical process allowing for the formation and development of the 

features is a combination of positive and negative feedback. Positive feedback is induced 

through the non-linear relationship between sediment transport and f low that enhances the 

growth of high areas and deepens the low ones. The topography then develops a favourite 

wavelength that is proportional to the swash excursion. A sensitivity analysis of the model 

behaviour indicated that only the sediment transport parameterisation can affect the final 

cusp spacing while the other parameters only influence the rate at which cusps develop. In 

agreement with field observations, the model suggests that cusps can form only under a 

narrow banded normal incident wave field, and can be destroyed by the presence of waves 

obliquely approaching the shore (angles bigger than 10°). Simulations performed by 

changing the random seed in the initial input, indicate high variability in the growth rates 

and, in general, a very dynamical system evolving even at long time scales. The influence 

of a non-planar topography has also been investigated. The importance and strength of the 

self-organisation mechanism is again shown and the pre-existing features, unless so 

prominent as to completely drive the flow circulation, are wiped out allowing for cusp 

formation. Specific fieldwork, combining flow and sediment transport measurements in the 

swash zone during cusp formation, is needed in order to ratify some o f these results. On the 

other hand, it is evident that the model herein developed can be still improved by 

introducing other features (infiltration, exfiltration, friction, refiraction) that would allow 

for more realistic simulations and possibly for a link with more traditional approaches. 

The use of the existing field and laboratory data proved that, apart from the standing edge 

wave theory and the self-organisation approach, none of the other mechanisms proposed in 

the literature are capable of explaining the mechanism responsible for beach cusp 
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formation. Furthermore, i f the possibility that swash saturates is accepted (evidence is 

given analytically and through the use of field and laboratory experiments), cusp spacing 

prediction through the subharmonic standing edge wave model and the self-organisation 

approach are indistinguishable. The possibility of coexistence of the two models has been 

investigated by running a series of simulations of the self-organisation model with a 

standing edge wave (subharmonic or synchronous) forcing. Results indicate the possibility 

of coexistence of the two models in the case of incoming standing edge waves 

characterised by a wavelength similar to that suggested by the self-organisation approach. 

As a result, the only conclusion that can be drawn is that the formation of beach cusps is 

the result of an instability process and that such instability can be purely hydrodynamic or 

the result of a sediment-flow interaction. In order to discern between the two hypotheses 

more field tests are required. Interesting results could be given by an experiment on the 

same lines as the one conducted by Sato et al. (1992) where a cuspate beach has been 

flattened and the subsequent cusp reformation observed. Although the flattening of the 

beach is a difficult task, in this way it would be possible to adequately place an alongshore 

array of instruments (in correspondence to previous horns and embayments which should 

reflect nodes and antinodes) and carefully monitor the presence and wavelength of 

standing edge wave motions. 

The formation of features in the nearshore region as the result of "free" behaviour has been 

investigated by using two models that are conceptually different, so that a brief comparison 

can be made. The stability approach offers the advantage of a more traditional modelling 

technique in that the relevance of each single term (fiiction, viscosity, etc.) in the growth of 

the bedfonms can be evaluated. On the other hand, such an approach is computationally 

heavy especially i f a non-linear analysis is required. The self-organisation approach is 

much simpler to implement and allows for the analysis of the non-linear evolution of the 

features. Another important aspect that differentiates the two approaches is that the linear 

stability analysis results in the determination of a single growth rate of the preferred 

wavelength while the self-organisation model questions the possibility of a unique growth 

rate and indicates its dependency on the initial input randomness. 

Detailed comparisons between available field measurements of beach cusp formation and 

development (Masselink et al., 1997) and the self-organisation model are possible only on 

a qualitative basis and the use of non-linear techniques for data analysis is suggested here. 

Most of the techniques have been developed only in recent years and their application 

usually requires very long time series. For this reason, other than a simple comparison 
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between measured and modelled cusp spacing under certain swash conditions, a fractal 

analysis o f time series of bed elevations obtained through field measurements and model 

results has been performed. Different techniques have been used in order to evaluate the 

Hurst exponent, which is a statistical measure of the data distribution that can be related to 

the fractal dimension. Some of these techniques, the ones related to the evaluation of the 

global Hurst exponent, do not seem to provide useful information as they describe with a 

single parameter the data behaviour over the whole time-scale considered. On the other 

hand, the local Hurst exponent provides more interesting results as it relates a measure of 

the possibility of fractal behaviour, and of the importance of non-linearities, to the "local" 

time-scale considered. Time series obtained from model simulations or field measurements 

are in qualitative agreement as they both indicate the possibility of self-organising 

behaviour at locations and time-scales where the forcing conditions are clearly less 

dominant. A shortcoming of this analysis is that it has been performed over series of data 

that do not follow a Gaussian distribution, but other authors (Southgate and Beltran, 1996; 

Southgate and Moller, 1999) have considered this hypothesis of secondary importance. 

More field testing is required in order to provide longer time series. This would allow for 

the possibility of studying non-linear processes, like beach cusp formation and 

development, through these innovative data analysis techniques, and would allow for 

comparisons with numerical models. 

A further evolution of the nearshore modelling presented herein could be given by the 

development of a self-organisation model for the hydrodynamics in the swash zone. The 

possibility that subharmonic motions can develop inside the swash zone without being the 

reflection of incident wave patterns or the result of bathymetric variations in the 

alongshore direction needs to be explored. A similar study has been recently proposed for 

the surf zone and indicates in the non-linear interaction between incoming waves and 

longshore current the initial mechanism for the formation of rip channels (Murray and 

Reydellet, 1999). The intriguing possibility that the interaction between incoming and 

outgoing swash can result in an "organised" longshore flow structure needs to be 

investigated, as well as its implications for the formation of periodic features in the swash 

region. 
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