
A KNOWLEDGE BASED SUPPORT TOOL FOR THE EARLY STAGES OF

ELECTRONIC ENGINEERING DESIGN

DEAN GRANT CURTIS SCOTHERN j

i

A thesis submitted in partial fulfilment of the

requirements for the Council for National Academic Awards

for the degree of Doctor of Philosophy

September 1991

Polytechnic South West

IN COLLABORATION WITH
THE UNIVERSITY OF READING.
and
PLESSEY SEMI-CONDUCTORS,
ROBOROUGH,
PLYMOUTH.

so 010 3899 8 TELEPEN

REFEREtiCEOJILY

UNIVERSITY OF Pi, vi/OUTH
LIBRARY v-i'i'

Item
No.
Class
No.
ContI
No.

qOO l03899-'& Item
No.
Class
No.
ContI
No.

f ' oofo. 5co

Item
No.
Class
No.
ContI
No.

I

Acknowledgements

I would like to thank both my supervisors Professor Keith Baker and Phil

Culverhouse for their sterling support and encouragement during the period of research

and patience throughout the long write up.

Thanks also to all the members of the PEDA project team including Professor

J.St.B.T Evans, Ian Dennis, Pat Pearce, Peter Jagodzinski, Linden Ball and the late Gill

Venner. The continued advice and stimulation of these colleagues proved invaluable in

creating a rich and friendly research environment.

I would also like to acknowledge the financial support given by the National

Advisory Body, without whom the present programme of research would not have been

possible.

Finally I would like to thank the staff of the Computing Dept of R.N.E.C

Manadon for the use of a computer during this write up, and my friends the Robs, Rich

and Ian, for the long suffering I have subjected them to.

Declarations

1) Whilst registered for this degree, I have not been a registered candidate for another

award of the CNAA or other University.

2) The present research project was funded by a National Advisory grant originally

awarded to Professor K.D.Baker and Dr G. Sullivan in 1986. On their departure to

Reading University at the end of that year, the grant was taken over by

Mr P.F. Culverhouse. Professor J.St.B.T. Evans, and Dr P.D. Pearce. The funding

awarded to the present researcher extended over the period from 1st September 1986

to 30th December 1989.

3) The research project was one of three associated projects funded under the N.A.B

grant. Whilst the three projects were motivated by the common desire to develop a

software system to aid engineers in the early stages of design, each researcher's work

was undertaken as a distinct and separable programme of work. The author of this

thesis was concerned with the underiying functionality of the design aid. The other two

were: (a) concerned with the nature of the cognitive processes in engineering design

with the aim of directing the development of the design aid; and (b) the interface to the

system.

4) A course of advanced study has been completed in partial fulfilment of the

requirements for the degree consisting of: (a) anendance at selected lecture and seminar

series run under the M.Sc. Intelligent Systems course at Polytechnic South West; and

(b) attendance at a number of relevant professional conferences and workshops.

Title: A Knowledge Based Support Too! for the

Early Stages

of Electronic Engineering Design.

Author: Dean Grant Cunis Scothem

Abstract:

A desire to produce a design support system for the early stages of electronic
engineering design, has led to the conception of the Plymouth Engineer's Design
Assistant (PEDA), pulling together experience from the three fields of computing,
psychology and electronic engineering. The basic emphasis of this tool has been to use
psychological techniques to analyze the cognitive aspects of designers in action and then
make recommendations for design tool improvement.

The results of the complementary psychological research, and other relevant
literature are examined and potential avenues to realizing an improving design explored.
A new idealized abstract representation of early electronic engineering is proposed,
which is more in line witli the cognitive needs of designers, thus enabling the
production of more capable design tools. The main points of the representation are
discussed, and comparisons with other approaches and tools drawn. The abstract
representation is then taken and used to form a specific implementation as the core to
the PEDA tool. An overview of the PEDA tool is given, followed by a discussion
regarding the important aspects of the implementation. Important issues and problems
raised during the course of the research are discussed, together with suggestions for
future work.

Table of Contents

1. Introduction 8

1.1. Overall Structure of this Chapter 8

1.2. Underlying Concerns, Aims and Goals 8

1.3. General Introduction 9

1.3.1. The Field of Electronic Engineering 9

1.3.2. Design Activity 9

1.3.3. The Need fo r Design Support Environments in

Electronic Engineering 10

1.3.4. Design Support Environments 11

1.4. Aims of the Research 13

1.5. Thesis Outline 13

2. Requirements for Early Electronic Engineering Design: The

Psychological Basis of the P E D A project 18

2.1. Overall Structure of this Chapter 18

2.2. Justification for Psychological Basis of the PEDA project 18

2.3. Results of the Related Psychological research 19

2.4. Requirements for a Design Support System 28

2.5. Other Relevant Work 29

2.6. Relevance To Design Support Systems in Electronic Engineering

31

3. An Idealised Representation for the Early Stages of

Electronic Engineering Design 38

3.1. Overall Structure of this Chapter 38

3.2. Rationale for a New Representation 38

3.2.1. An Examination of Requirements 39

3.2.1.1. The First Requirement: 39

3.2.1.2. The Second Requirement: 41

3.2.1.3. The Thi rd Requirement: 45

3.2.1.4, The Fourth Requirement: 48

3.2.1.5, The Fi f th Requirement: 49

3.2.2. Representational Issues Common to all the

Requirements 50

3.2.2.1. Explicit and Implicit Models of the User 50

3.2.2.2. Providing Functionality 51

3.2.2.3. The Level of Representation 51

3.2.2.4. Efficiency and Implementation Concerns 52

3.2.3. The Case for a New Representation 52

3.3. An Idealised Representation for the Early Stages of Engineering

Design 54

3.3.1. Block Diagram and Al t e rna t ive Design

Representation 55

3.3.2. Block Diagram and Alternative Management 58

3.3.3. Constraint Comparison System 59

3.3.4. The Equation Based Simulator 60

3.3.5. Decision Point System 63

3.3.6. Error Detection 63

3.4. Comparison with Existing Systems or Methods 65

3.4.1. Representing Each Design and Design Alternatives . . . 65

3.4.2. Constraints and Constraint Comparison 68

3.4.3. Simulation 69

3.4.4. History and Decision Record 70

3.4.5. Errors and Inconsistencies 71

3.4.6. Comparison with Combined Approaches 71

3.4.6.1. "A Conceptual Framework for ASIC Design

(Leung, Usher and Shanblatt. 1988) 71

3.4.6.2. "An object based representation for the

evolution of VLSI designs" (Gabbe and

Subrahmanyam, 1987) 73

3.4.6.3. Walker and Thomas: the System Architect's

Workbench 74

3.4.6.4. Knapp and Parker Advanced Design

AutoMation project (ADAM) 75

3.5. Summary 75

4. The PEDA Representation for Early Electronic Engineering

Design 86

4.1. Overall Structure of this Chapter 86

4.2. The Plymouth Engineering Design Assistant : An Overview . . . 86

4.2.1. The PEDA User Interface: Overview 87

4.2.2, PEDA Internal Design Representation: Overview 88

4.3. The Representation of Designs Within the PEDA System

4.3.1. The Representation of Individual Designs Wi th in the

PEDA System 89

4.3.1.1. Functional Blocks 91

4.3.1.2. PEDA Block Representation 93

4.3.1.3. Block Templates 96

4.3.1.4. Links to the User Interface 97

4.3.2. Alternative Designs Within PEDA 98

4.3.2.1. Alternative Designs 98

4.3.3. The PEDA Representation of Alternatives 98

4.4. The Management of Alternatives, and History Tracing 102

4.4.1. The Management of Alternatives in PEDA 102

4.4.2. History Tracing 103

4.5. Links to User Interface 105

4.6. The PEDA Constraint System 105

4.6.1. Introduction 105

4.6.2. Constraint System Implementation 107

4.6.2.1. What Constraints are in PEDA 107

4.6.2.2. How Constraints are used in PEDA 108

4.6.3. Links to the User Interface 114

4.7. Simulation of Designs 114

4.7.1. The PEDA Simulator 116

4.7.2. PEDA Simulator Operation 116

4.7.3. PEDA Simulator Implementation 117

3

4.7.3.1. Packets 118

4.7.3.2. Packet Movement 118

4.7.3.3. Packet Maintenance 119

4.7.3.4. Data Driven Operation of Blocks 119

4.7.3.5. Data Evaluation 120

4.7.4. Links to User Interface 121

4.7.5. PEDA Simulation Example 121

4.7.6. Feedback and the AJternative(Alt) Block 124

4.8. Integration in the PEDA Representation: A n Example 125

4.9. Summary 127

5. Contributions, Final Discussion And Further Work 133

5.1. Overall Structure of This Chapter 133

5.2. Contributions 133

5.3. Final Discussion 134

5.3.1. The Overall Approach to Applying Knowledge Based

Techniques to Design Tools 134

5.3.2. The Target Domain of Knowledge Based Systems 136

5.3.3. The Complexity Inherent in Design Systems 136

5.3.4. The Target Level of Representations 137

5.3.5. How Target Languages Shape Representations 138

5.3.6. The Use of the Separation of Concerns in

Representations 138

5.3.7. The Similarity Between the Representation of Software

and Engineering Designs 139

5.4. Problems Encountered 139

5.4.1. The Ambiguity of Terminology (Design Process) 139

5.4.2. Limitations of Target Languages 140

5.5. Further Work 140

5.5.1. Representation of Designs and Design Alternatives 141

5.5.2. Management of Designs and Design Alternatives 141

5.5.3. The Constraint Comparison System 142

5.5.4. The Simulator 142

5.5.5. The Decision Point System 142

5.5.6. The Detection and Correction of Errors 143

5.5.7. Implementations in Other Languages or

Environments 143

5.6. Concluding Remarks 144

A. PEDA in Use A - l

B. The A R T Expert System Development Tool B - l

C . PEDA Core Implementation Program Code

C-l

Chapter 1: Introduction

1. Introduction 8

1.1. Overall Structure of this Chapter 8

1.2. Underlying Concerns, Aims and Goals 8

1.3. General Introduction 9

1.3.1. The Field of Electronic Engineering 9

1.3.2. Design Activity 9

1.3.3. The Need for Design Support Environments in

Electronic Engineering 10

1.3.4. Design Support Environments 11

1.4. Aims of the Research 13

1.5. Thesis Outline 13

1. Introduction

1.1. Overall Structure of this Chapter

This introduction provides an overview of the research discussed in the rest of

this dissertation. The research has been concerned with the means of producing a design

tool for the early stages of electronic engineering design, which would offer improved

support for the designer by addressing those parts of that activity which were shown to

be important as a result of related psychological work. This process has been split into

two parts. The first involves the generation of an abstract representation that captures

these important aspects. The second is an implementation of this representation as a

software based design support environment known as the Plymouth Engineering Design

Assistant (PEDA).

The chapter begins with an outline of the main themes behind the research. This

is followed by a general introduction, providing background information to the subject

of electronic engineering and its support, h ends with the aims of the research, and a

brief outline of the fonn and content of the remaining chapters.

1.2. Underlying Concerns, Aims and Goals

There are a number of concerns, aims and goals that have had a crucial effect

on the work discussed in this dissertation. They are briefly mentioned now to give an

insight to the intended overall context of the work.

The first concern was that a design support system should help the designer

through a cooperative approach, and that the representation used at the core of such a

tool should be explicitly designed with this in mind. The second, intended that

cooperative support would be improved through a clearer knowledge of the needs of

designers. And thirdly, these needs would in part be cognitive in nature and therefore

would be best addressed through psychological analysis of designers in action. These

concerns in turn promoted the view that satisfying these concerns would produce tools

which were more useful and less complex than the results of many other approaches,

by providing functionality which was tailored to the actual psychological needs of

designers. The logical result of these considerations was the initialization of work on

8

the PEDA project overall, and in this case on deriving the abstract representation and

its implementation (discussed in chapters 3 and 4), based on requirements derived in

part from psychological studies (Ball, 1990).

1.3. General Introduction

This section provides a short summary of design in electronic engineering and

its progression from a purely manual, towards an increasingly automated task. This

development is shown to be the result of escalating design complexity over the years,

and has resulted in a large number of support tools which are simply classified into two

divisions. Overall trends in this area are discussed and are followed by a lead into the

basis of the PEDA project.

A more detailed discussion of the various aspects of these tools is not reviewed

here. This information regarding the specific background details of requirements,

representations, models and implementation particulars, has been moved to the

applicable sections of chapters 2, 3 and 4 which concentrate on these aspects

individually,

1.3.1. The Field of Electronic Engineering

The field of electronic engineering is a wide and diverse domain, covering many

areas, from the large to the small, and affecting much of our modem lives. In an

engineering sense it has traditionally been divided into two large subdomains, known

as digital and analogue electronics. These have been exemplified to the public by

personal computers on the digital side, and television & audio products in the analogue

field. In addition this separation has been made more marked by correspondingly

specialised analogue and digital design engineers.

1.3.2. Design Activity

The process of design is a highly complex activity, that has largely resisted

attempts to categorise it effectively. This is shown somewhat by the plethora of

different approaches in existence in many domains (There are for example, quite a few

software design methodologies). It can be described however reasonably well in abstract

terms as: "largely a process of integrating constraints imposed by the problem, the

medium, and the designer" (Mostow, 1985).

For description purposes this design activity is commonly divided into a number

of stages. Unfortunately the exact description and positioning of those stages is

somewhat open to debate and is often a source of confusion. However a simplistic view

adequate for this text, and avoiding any exact definition of any particular design activity

or process, would state that a design proceeds from specification to artifact with various

hierarchical levels in between, going from abstract to reality in a logical manner.

Obviously the real activity is much more complicated than this, but the above

description does give the references to the early stages of design mentioned later

somewhat more meaning in the overall context.

1.3.3. The Need for Design Support Environments in Electronic Engineering

Design support systems have over the years been introduced to make the task

of producing electronic designs easier, quicker and less error prone. In the 1980s tools

were used which provided such facilities as schematic capture and logic simulation,

offering assistance to design entry and validation stages of design. As designs have

become more and more complex there has been a natural tendency for design tools to

further aid the designer by incorporating more and more of the design process. This

has been shown to be most apparent in the VLSI arena, where the improvements in

lithographic techniques have made possible very complex designs involving millions of

transistors. Purely manual design of such complex designs, would be very difficult and

as a result design tools have been very successful in this area. Further, in the computer

design industry the process seems to be accelerating, with the technology directly

providing the more powerful computing platforms, which the increasingly more

sophisticated design software needs to run on, and in turn the designers using the latest

software to achieve reasonable design times of the next generation hardware. The net

result is that there has been a rapid growth in electronic design support systems, with

the newer systems covering increasingly more aspects of the design cycle, and a gradual

movement towards the higher and more abstracted levels of design. The rationale

behind this tactic has been the placing of design resources where their impact on design

10

is greatest (Bunza, Hoffman & Thompson, 1990). promoting creativity, and finding

design errors early on, where the cost of correcting them is relatively low. As a result

new and improved design tools have been introduced to aid the designer, as the

complexity of their designs has increased. This increase in complexity and a desire to

minimize the product design time has created the need for more and more sophisticated

design aids.

1,3.4. Design Support Environments

A very simple but useful classification of computer based design support

environments splits them into two main types (Culverhouse 1988).

The first broad category comprises the conventional toolkit, which is often the

combination of low level circuit design systems including schematic capture, together

with a number of functional subsystems, for example logic simulation. A large number

of these tools exist covering a multitude of areas, for example logical, behavioural and

mathematical simulation for both the analogue and digital domains of electronic circuit

design. At other levels, support may be provided for the layout of VLSI designs as well

as printed circuit board manufacture. An example of this type of tool would be the early

Mentor Graphics IDEA 1000 system, commercially available in the middle 1980s.

The second class of tool makes use of Artificial Intelligence based techniques

(Winston, 1984, & Harmon and King, 1985) and often incorporates embedded specific

expert knowledge to assist the designer in a selected area. These systems take an active

role in certain parts of design activity and in those areas can greatly improve an

engineer's productivity. In recent times a great deal of effort has been centred on such

tools especially in the design automation arena and prototype systems such as the

"Design Automation Assistant" (Kowalski and Thomas, 1985) and "VEXED" (Mitchell

et. al., 1985) have been described. Good progress has been made, and is likely that

these tools wil l eventually automate a great deal of design activity, perhaps even from

the eariiest specification stage downwards.

An examination of the literature has indicated that although current examples of

both types of system offer much to the engineer they seemed lacking in a number of

areas:

Firstly, many of the conventional toolkits tend to be passive user directed

11

systems, containing little embedded knowledge about the design or the designer. As a

result they can do little to automate the repetitive aspects of design, or help the designer

be more creative.

Secondly the expert knowledge embedded within the second class of systems

tends to be very specific in its content and has dealt with particular design problems in

comparatively narrow domains, and not with the more general issues applicable to a

wider range of problems. Though this may be due to the difficultly of eliciting this type

of abstract knowledge from designers (Evans, 1986).

Another aspect seen often in design tools, has been the tendency to focus on the

later stages of design concerning with the validation of a design through simulation or

timing analysis, as opposed to the earlier and higher levels of the design process (the

"what if" stages). This trend has begun to change with the development of more

sophisticated tools, though developments in this area have been tentative. In this respect

the knowledge based workbenches tend to cover the widest range of the design process,

in an albeit narrow domain, going from behavioural, functional and physical

specifications for a VLSI design, to a completed chip floor plan.

In a similar vein, there has been a drift towards completely automating whole

portions of the design activity, basically adopting a replacement strategy and stepping

away from a cooperative approach to design in which the best aspects of both machine

and operator are effectively utilized.

However the most important consideration from the point of view of this work

is that the basis of these tools appears to be formed from the desired end problem, for

example a CAD based verification tool would be based on the requirements of design

verification. In a similar way an automated design tool covering behavioural

specification to integrated circuit floor plan, would be based on the engineering

requirements of these areas. A more interesting and potentially more rewarding

approach towards producing a more effective design tool, would be to derive engineers

needs, from a rigorous analysis of designers at work. Such a tool should be more

centred towards their needs, than those whose target is a design goal. This analysis has

been perfonmed by (Ball, 1990) a co researcher on the PEDA project, and has been used

to help derive a useful representation for early design and a pilot implementation in the

PEDA system.

12

1.4, Aims of the Research

As mentioned before, the main aim of the PEDA project was to produce a tool,

based upon sound psychological principles and research, that offered support to the

designer in the early stages of design, by attending to their cognitive as well as

engineering needs. This would be done in part by paying close attention to the results

of psychological work due to Ball, (1990) a co-researcher on the PEDA project, and

discussed in chapter 2. High level requirements for a cooperative system, from that

work would be used as the basis for the internal representation of early design within

the PEDA environment. The primary goal of this research was therefore to formulate

a representation that was a consistent and logical framework for representing important

aspects of early engineering design within PEDA, directed by iliese requirements.

1.5. Thesis Outline

This chapter has given an outline of the basic motivation and aims of the

research, and a short introductory overview of electronic engineering design. The

contents of the remaining chapters are now described briefly.

Chapter 2: This chapter discusses the psychological basis of the PEDA project,

and shows how the requirements for the abstract representation in chapter 3

were obtained and justified.

Chapter 3: This chapter discusses the theoretical aspects of representing the

important aspects of the above design process within a tool. It is divided into

a series of sections each concerned with a particular aspect of design activity,

forming a link between the requirements and how they might be achieved.

Chapter 4: This chapter examines the PEDA tool and the implementation of the

abstract representation discussed in chapter 3 at its core.

Chapter 5: This chapter pools together the work described in the previous

chapters and provides a summary and conclusions regarding the work. A section

13

is devoted to possible further work on PEDA.

The appendices contain an example of the PEDA tool in use, an overview of the

various tools and programming languages used in the realization of the PEDA

system, and the program code relevant to the main text.

14

References for Chapter I

Ball, L., "Cognitive Processes in Engineering Design," PhD Thesis, Department of

Psychology, Polytechnic South West, Devon. UK, 1990.

Bunza, G., Hofman, G.and Thompson, E., "Design automation goes concurrent in the

1990s," Electronic Product Design, April 1990.

Culverhouse, P., "Design Tools for Engineers," Polytechnic South West N A B group

internal report, 1986.

Evans, J. St. B. T., "Knowledge Elicitation in the Training and Assessment of High

Level Cognitive Skills," Report Prepared for the Army Personnel Research

Establishment, 1986.

Harmon, P. and King, D., "Expert Systems," John Wiley & Sons, 1985.

Kowalski, T J. and Thomas D. J., "The VLSI Design Automation Assistant: What's in

a Knowledge Base," Proceedings of the 22nd ACM/IEEE Design Automation

Conference. 1985.

Mitchell, T., Steinberg, Louis, L, and Shulman, J. S., "A Knowledge-Based Approach

to Design," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 7, no.

5, 1985.

Mostow, J., "Towards Better Models of the Design Process," The AI magazine, pp.44-

57, 1985.

Winston, P. H., "Artificial Intelligence 2nd Ed," Addison-Wesley, 1984.

15

Chapter 2: Requirements for Early Electronic
Engineering Design: The Psychological Basis of the
PEDA Project

16

2. Requirements for Early Electronic Engineering Design: The

Psychological Basis of the PEDA project 18
2.1. Overall Structure of this Chapter 18

2.2. Justification for Psychological Basis of the PEDA project 18

2.3. Results of the Related Psychological research 19

2.4. Requirements for a Design Support System 28

2.5. Other Relevant Work 29

2.6. Relevance To Design Support Systems in Electronic Engineering

31

17

2. Requirements for Early Electronic Engineering Design: The

Psychological Basis of the PEDA project.

2.1. Overall Structure of this Chapter

The aim of this chapter is to show how the set of requirements for the

representation discussed in chapter 3 were obtained. The main emphasis of the

discussion is on the justification for the psychological basis of the PEDA project, and

some of the results of the work conducted by Ball (1990), the psychological researcher

on that project, which are directly relevant to the work on the representation of early

electronic engineering design discussed in chapter 3. The psychological work involving

studies on the cognitive processes involved in engineering design, is outlined and then

a link is formed to the work on realizing design support and the early design abstract

representation discussed here in later chapters. Only those areas that are thought to be

directly relevant to this dissertation are examined, as a complete account is given in

Ball's thesis (Ball 1990). These areas cover a discussion on the cognitive needs of

engineers and a set of requirements for a cooperative system that would begin to

address them.

The chapter ends with a discussion of other work in the literature which has

been found to be applicable, and the overall relevance of the final requirements towards

systems which purport to assist the early stages of electronic engineering design.

2.2. Justification for Psychological Basis of the PEDA project.

The PEDA system was initially conceived as a cooperative engineering design

support tool that would offer assistance to the engineer designer during the early stages

of design. A brief survey by Culverhouse, (1986) had indicated that contemporary

design tools offered little assistance to these earlier stages, involving the testing of

ideas, comparison and selection of alternatives. Very little was known by the research

group on the PEDA project on exactly how such assistance should be afforded.

Unfortunately it appeared that the design of computer aided support systems was

traditionally an introspective and intuitive method done by the tool creators, who were

often the domain experts, ie a "designed by engineers for engineers" philosophy. This

18

was not viewed satisfactory, as a sound and solid basis was required on which to base

the development of the tool. Without this basis the tool might hinder the designer by

not taking into account some important and unthought of aspect of design activity. It

was logical to reason that this would be best achieved by first understanding the way

in which engineers design, a task which lends itself to psychological study. In the

literature there appeared to be very little prior work on the underlying processes of

design in the field of electronic engineering, but there has been some research on

software design processes (eg. Jeffries et al, 1981), though the majority of human

factors research has been concerned with the Human Machine Interaction aspects of

computers (eg Myers, 1986 or Hutchins, 1985). As a consequence the research by Ball

into the cognitive processes involved in engineering design was instigated. One

especially exciting aspect of this work, was that a study of engineers solving real world

problems, might provide valuable information regarding the engineering design process,

and indicate the particular strengths and weaknesses in their designing. This information

could then be used in the formation of a design tool, which would be targetted at these

cognitive needs, providing the correct type of support that engineers need. This type of

support would have the added benefit of being comparatively general in scope, covering

a wider range of end problems, than systems whose intelligence was aimed at one or

two narrow domains.

2.3. Results of the Related Psychological research

The related research produced a number of findings about the way in which

engineers design which have important implications for design tools that address the

early stages of design.

The first finding deals with the way in which the engineers initially addressed

their designs. Ball found that the engineers tended to adopt a problem reduction strategy

in the development of their work. Initially this would involve splitting the main problem

into a set of smaller, more manageable subproblems that could be dealt with separately

and with the minimum of cross interaction. Each subproblem would then be focused

upon in turn, and in the case of the less experienced designers, developed in an

essentially depth first manner, completing each subproblem before moving on to the

next. The more experienced engineers would tend to adopt a more breadth first

19

approach to solving the design problems, and would only complete a subproblem to a

particular level, before moving on to the next one. Only when all subprobiems had been

addressed in this way, did tJiese engineers move down to the next level, splitting up the

design as mentioned above.

In this aspect the results of the psychological research are in agreement with, the

majority of computer based engineering tool approaches. There are a multitude of

commercial CAD based tools available, that cater for the hierarchical decomposition of

designs into functional modules, aligning very well with the problem reducing strategies

adopted. However there is little evidence for the use of a sound psychological basis in

the development of such tools, except in software engineering (Jeffries et al 1981), and

the similarity between results appears to be due to a fortuitous agreement between

intuitive techniques and the psychological work.

The apparent differences between experienced and novice designers, has in the

instance of software development tools, been responsible for the appearance of tools

which enforce a particular stratagem on the user, one that would hopefully improve the

performance of novices, by adopting an idealized approach, for instance the use of

breadth first, top down strategies (Jeffries et al 1981]. A problem with this type of tactic

is that such techniques may hinder rather than aid the designer, in that there may be

additional aspects of the design activity, hidden to casual analysis, that are not faced by

the particular approach chosen. The psychological findings suggest that a design

assistant should encourage, but not enforce a particular design strategy. This tactic is

supported by the tentative observation that even expert designers do not always adopt

a rigid regime and may for example expand parts of a design in at least partially depth

first manner. In fact this overall theme appears throughout the findings, indicating that

the design process is governed by trends. It therefore seems unlikely that user centred

design support wil l be effectively achieved through the use of rigid methodologies,

when the underlying activities are at present seen to be so changeable.

The second important finding was primarily concerned with the way in which

designers pursue alternatives. Ball found that the electronic engineers studied spent very

little of their design time in a search for different solutions to the problems, but instead

concentrated on one high level solution. This was found to be true over widely differing

levels of expertise, from expert to novice and so appeared to indicate a general aspect

of the subjects studied. He attributed the result to the use of a "satisficing" principle by

20

the designers, in which possible solutions are accepted on the grounds that they are

good enough or "satisfactory", instead of using a more rigorous or exhaustive search for

the "best" design.

This trend is in stark contrast to our preconceived views as engineers of the way

in which we design. Good design practice dictates, that designers initially examine a

number of alternative ideas, before selecting a few to pursue further. Ball does admit

that the engineers studied may have been performing some form of rapid and hidden

comparison, or that the time constraints imposed on the designers during his studies

may have influenced their design activities, away from the common engineering

conception of an idealized route. This is countered by the observation that if extensive

comparisons were being made, then it would be expected that this would be expressed

in their verbal or "think aloud" protocols and little evidence was found for this in the

eariy and more abstract stages of design. In the later stages of their design activity

however, he did observe a trend by the more expert engineers to produce slightly

improved versions upon the main design theme, though this activity was comparatively

minor to that expected. (Note: Verbal protocols are a successful psychological tool used

to gain access to the thoughts of subjects, by making them verbalize their thoughts

whilst solving the problem.)

Ball suggests that designers may suffer from a fonn of cognitive overioad

affecting their searching strategies at the higher levels of design where changes have

far reaching consequences, but cope quite well at the lower levels, with small changes

or "tweaking", where the effects of change are generally far more manageable to the

unaided designer. For example: a decision to use an analogue, digital or mixed

technologies approach in the initial stages of design wil l affect ail aspects of the design

from then on, whilst a small change involving a gain control resistor in the final design

will have comparatively little effect on the rest of the design.

The effects of time and other environmental constraints are harder to account

for, although a number of different studies made by Ball (1990) with quite different

environments produced similar results. The first study involved the use of undergraduate

electronic engineering students making a current design log of their final year project,

together with video and sound recordings of their activity reports. A second set of

studies involved video and sound protocol studies of electronic engineers solving a

particular set design problem, and employed a time pressing environment, as this was

21

the only way of reasonably collecting the verbal protocols during design. Unfortunately

if the study had taken place over the normal time scales of a product, then the resulting

data would have taken many man years to collate and analyze. Ball suggests that the

results are still applicable though, as a time pressured environment is probably more

indicative of real life design problems on projects that are working to deadlines, and

incidentally where a design support tool would be used to most effect.

He follows on and states that the issue of the pursuing of alternatives is further

clouded, by the problems involved in determining the relative optimality of a design,

and it is quite possible, that some of the engineers could have produced the "best"

design, from their "satisficing" approaches. Unfortunately whilst designs can be judged

on "satisficing" grounds in that they do or do not meet the design criteria, the

determination of the "best" design is somewhat subjective and based to some degree on

the expert designers opinions, with the anendant biases which that might entail.

Fortunately these problems were somewhat avoided, by the observation in this case, that

the majority of solutions provided in the second study were quite different, and so

although one design could be the most optimal, it is unlikely that all the others were

as well. This suggests that the methods employed by the engineers were not geared to

producing the "best" design, but rather a satisfactory one.

From a design standpoint, the lack of explicit alternative solution generation may

be very important, considering the very high demands set on designers today, although

it must be added that the "satisficing" approach may be the reason why designers can

produce effective and reliable designs within a reasonable time scale, considering the

complexity of even small problems. Ball indicates that some of probable causes of the

"satisficing" tactic might be the cognitive limitations associated with the finite size of

human working memory, in that we tend to have problems keeping track of a great deal

of information at once, and it seems reasonable that the "satisficing" route might reduce

the number of variables that the designer had to consider at any one time to a

manageable level. This can be taken as a very good case for some form of

computerized assistance regarding the management of alternatives, as a means of

overcoming these working memory limitations. In addition the fact that engineers

already possess some form of rudimentary selection system, indicates that a system that

superintends this activity, by perhaps making it more explicit and accessible, may

improve the performance in this important area. It can also be seen that some form of

22

automated comparison scheme is desirable to help compare different solutions in an

unbiased and consistent manner.

TTie selection of alternatives is an area that contemporary design support tools

do not seem to address, and whilst there are many schemes for the representing of

alternative solutions or versions (Chou & Kim, 1986). (Gabbe & Subrahmanyam, 1987)

and (Katz, Anwarrudin & Chang, 1986), there appears to be little effort centred on the

selection of alternatives within the framework of electronic engineering based design

tools. Constraint based systems exist (Chan & Paulson, 1987), but the emphasis tends

to be towards design and not comparison processes. This may again be due to the way

in which tool requirements have been traditionally gathered, by the use of such

techniques as retrospective and intuitive analysis of the problem domain or questioning

of target users. Ball draws attention to research that indicates that such methods may

give unreliable results and suggests that systematic psychological techniques (eg.

protocol analysis) are more scientific (Nisben & Wilson, 1977 and Evans 1986).

Another outcome of the studies is the suggestion by Ball that there is some

evidence to support the view that the subject engineers were creating and then using

mental models (Johnson-Laird, 1983), to simulate the behaviour of different aspects of

the designs as they evolved. For example, what would happen at the outputs if a certain

set of inputs were applied to a design? Interestingly, the same type of modelling could

be potentially used to evaluate the usefulness of alternative designs for a particular

problem. Ball suggests a tentative theoretical model for the processes in engineering

design that involves the use of a generalized high level "design schema", an entity

which contains knowledge which is applicable to a wide range of similar problems. The

"design schema" controls the partitioning and decomposition of the problem into

subproblems, together with the use and evaluation of possible solutions at each level,

and is in effect the coordinator of the designing activity. He then proposes that the basis

of the "design schema" is in fact the problem reduction strategy mentioned earlier. If

this is superintended with the means of efficiently providing domain specific technical

knowledge, then the core of a fairly sophisticated entity, that can be used to provide

reasonably expert solutions to a wide range of design problems, is produced.

This model may have some important ramifications for the generation of design

aids. Firstly, if it were possible to implement the model within an aid, it could then be

used to provide the basis of the assistance. It*s internal state would be indicative of the

23

user's state and therefore could be used to provide contextually based assistance

relevant to the user's need at the time. This model could also be used as part of a

training system that "taught" novice engineers how to design more effectively, by

comparing their design activity to its internal representation, and offering advice on

what they should be doing next or possibly intervening in some subtle, but calculated

manner, with the aim of altering their "design schema".

Secondly, if the user were substituted for the problem reduction strategy aspect

of the model, then reasonably expert solutions could be produced, by correctly linking

the required domain specific knowledge to the user, in effect producing a cooperative

system where the best aspects of both machine and operator are effectively utilized.

This is a desirable approach as most designers are quite capable of applying such a

strategy, whereas it would be difficult and unnecessary to encode efficiently in an

automated form at present. As a result engineers might be able to produce more optimal

designs in an area away from their specialities. In addition the availability of a general

purpose model appHcable to other design situations, involving different problem

domains should theoretically speed the development of design assistants in those areas,

or more ideally, allow the creation of a general purpose design assistant.

A fourth major outcome of the psychological research relevant to the generation

of a computer based model of design, is related to the inconsistencies, omissions and

errors made by the engineers in their design activities. Errors can occur when the

designer is trying to form some understanding of the problem.

An example of this may be seen where some of the engineers studied

inadvertently created new incorrect relationships between mathematical parameters.

Normally trigonometric functions like sine are associated with angles, but in this

problem this was not the case. Unfortunately the designer was given other cues that

tended to reinforce the angle association, and one of these involved the use of the

irrational number pi in the equation definition for the variable that would be used in the

sine function. The error that occurred, happened when the designer was deriving some

other equations that involved the use of other trigonometric functions which did involve

angles. An erroneous substitution was then made using one these angles in the given

equation.

24

For example:

Now initially:
a = sin(x)
X = w.k/pi

where: w is a length, and k is a constant

now:
theta = arcs ine (I/a) :- a user derivation

later:
w.k/pi = theta :- an erroneous substitution

A possible explanation for this was that the engineer had failed to build up a

complete representation of the equations. This was supported by the fact the engineers

involved who displayed this tendency, spent the least time in initially understanding the

requirements of the design problem, and also spent the least time referring back to the

specifications as the design progressed.

Errors also occurred subsequent to this representational or encoding phase, when

applying design knowledge to generate, combine or even evaluate possible solutions.

One example involved a designer who was perfonning an expansion of a partial

solution, and failed to include parts of the original partial solution in the expanded

version. Additionally inconsistency problems arose, with mathematical notation in a

number of design solutions, where the same variable name was used in two equations

at different points in the design work. This caused problems later when the wrong

equation was substituted in another equation.

25

For example:

Now initially:

theta = arcsine(l/a)
a angle usually called theta
is the inverse sine of the
Opposite divided by the hypotenuse and later:

theta = arccosine(j/l)
another angle,
which wil l be called theta as well

And finally:
a = tan (theta)

Now substitute for the wrong theta.

therefore:
instead of:

a = tan (arccosine (j/1)),
a = tan (arcsine (I/a))

Ball attributes these types of errors to a number of causes: working memory

limitations are blamed, when the designer is concentrating on several items of

information, and errors occur, for example the equations; and a lack of vividness of the

problem information may have caused the problems regarding incomplete formation of

an internal representation of the specification.

This is an aspect of design which apparently has yet to be tackled to any great

extent by design support environments. This may be due to the fact that most design

tools tend to address the later stages of design, where any equations have already been

formulated and checked for correctness. Simple mistakes, dependent on where they

happen in the design, may cause problems when discovered, causing delays due to

redesigns and may even invalidate the whole design solution, a result which would not

be acceptable in the fiercely competitive design market of today. Additionally there are

problems to do with the safety of critical systems, that occur when an ok, but

mathematically incorrect design, is a key element in a complex system, for example an

aircraft control system, where the reliability of such systems is an very important issue.

26

It seems, therefore, that there is a great need for some fonn of assistance to address this

type of cognitive problem, especially in the eariier stages of design, where mathematical

manipulation and equation generation is generally carried out. The benefits would

hopefully involve reduced design time and greater throughput, due to the elimination

of simple mistakes early on in the design history.

In conclusion, the psychological research, although tentative, has produced a set

of findings regarding the design strategies and cognitive limitations of designers which

were generalisable over very different tasks, time scales and skill of the designers. This

work is in general agreement with recent research in mechanical engineering by Ullman,

Dietterich and Stauffer, (1988), who have produced a similar set of findings regarding

the activities of mechanical engineering designers. These encouraging results have

enabled Ball to produce a set of very general requirements for a design support system

that would be targetted at the cognitive needs of designers. The requirements, shown

overieaf, are quite general, but provide valuable pointers to the creation of such a

system.

27

2.4. Requirements for a Design Support System

The five general requirements are itemized below, together with an individual
description relating their relevance to design support.
A design support system should:

(1) "Encourage the designer to consider an increased number of initial high-

level solution concepts and enable the efficient formulation of alternative

versions of each solution concept through levels of increasing design detail."

(2) "Assist with the choice of competing design solutions, for example,

enabling evaluations of solutions to be made on the basis of comparative

functional simulations."

(3) "Superintend the designer's exploratory activity, for example, helping

the designer to backtrack if a path proves unpromising (i.e. by providing a

record of paths taken togetlier with the current point of exploration) or

suggesting worthwhile paths of investigation (i.e. by suggesting design

alternatives)."

(4) "Ensure tlie designer*s awareness of design conflicts (e.g. i f crucially

important constraint requirements have been overlooked when the designer

is focusing on a narrow aspect of the overall design solution)."

(5) "Ensure the designer's awareness of inconsistencies in the notation that

is being used (e.g. i f nvo different design parameters have been given the

same symbolic label)."

The requirement (1) arose from the observation mentioned in the previous

section, that designers tend to use a "satisficing" principle in which they focussed their

28

efforts on a single satisfactory high level solution path. It was therefore thought that

encouraging a more explicit approach, in which options are more thoroughly

investigated, could lead to improved design performance.

Requirement (2) arose from the same observations as (1), but the emphasis is

on making the selection between altematives easier, by allowing the user to apply a set

of selection criteria to a whole set of altematives. This activity would be a difficult and

error prone process if done by the user unaided, and whilst it would be wrong to say

that, making such a scheme available, wil l make the user pursue altematives to a greater

extent, it can however, make the proposition more attractive by reducing the cognitive

burden in this area. In addition the problem of implicit biases affecting the choice of

altematives is somewhat alleviated with the introduction of an explicit checking scheme.

The designer can now be made aware of which constraints are being applied. Similarly

less time should be wasted on pursuing "dead end" designs, by making sure that all the

relevant constraints are applied in a consistent manner to the selected altematives, at an

early stage of the design activity.

Requirement (3) is also designed to help with the pursuing of altematives, by

reducing the amount of information that the designer has to keep in working memory.

The information held would hopefully allow the designer to retrace his or her steps, up

from an unsatisfactory solution, regaining the information that was valid previously,

before the unsatisfactory altemative was examined.

Both requirements (4) and (5) are associated with the mistakes that designers can

make during their designs. A designer can loose consistency with various parts of a

design, when concentrating upon a particular aspect, and so needs to be alerted to the

fact. The designer also needs to be alerted to inconsistencies in the notation of the

solution, be it mathematical or otherwise,

2.5. Other Relevant Work

The aim of this section is to outline other work which has significantly

influenced the selection of the requirements stated earlier, as being suitable for the

formation of the abstract representation and implementation discussed in chapters 3

and 4.

Most design systems are built to satisfy a set of explicitly or implicitly specified

29

requirements and so the number of potentially influential sources is quite high. However

there are comparatively few which are applicable to cooperative early engineering

design.

In the area of Co-operative interface management M . Smyth, (1988) outlines a

set of requirements for a cooperative system, which are quite similar to Ball's in

electronic engineering:

(1) Increase the number of initial design solutions.

(2) Reduce the time and cost of the design process.

(3) Increase the number of design iterations where necessary.

(4) Increase the designers awareness of potential design conflicts in the

proposed solution.

(5) Move the solution range closer to the theoretical optimal solution.

A similar view is taken in the Mechanical domain by Ullman et. al. (1988) who

makes a number of recommendations to improve CAD systems:

The first is that we should raise the abstraction level at which computer

based tools can provide external memory aids for the designer.

Secondly, tools might also be extended by providing some means of

constraint management assistance.

Thirdly, there is a general need for CAD to support the human designer's

cognitive limitations.

A very useful and often cited paper by Mostow (1985) suggests the areas that

a comprehensive model of design should address.

30

In short these are:

1) The State of the design.

2) The goal staicture of the design process.

3) Design Decisions.

4) Rationales for design decisions.

5) Control of the design process.

6) The role of learning in design.

It can be seen that there is a degree of commonality between the sets of

requirements. Both Ball and Smyth are in broad agreement, and Ullman makes overall

suggestions that the other two detail. The last set of suggestions due to Mostow, appear

to differ, but in fact are pitched at a different level, being concerned more with the

structure of the internal model than the tool. The overall concern of all these approaches

has been to produce better systems by taking into account more of the human design

process than just the state of design.

2.6. Relevance To Design Support Systems in Electronic Engineering

Very little psychological work has previously been carried out on design in

electronic engineering, and it appears that introspective and intuitive techniques have

been used to formulate the specifications for many design tools in this area.

Unfortunately, psychological evidence has indicated that these techniques can be

ineffective (Nisbett & Wilson, 1977 and Evans 1986), and so there has arisen a real

need to determine accurately the needs of designers. The research done by Ball has

been successful so far in that it has produced a set of requirements, that should address

some of these needs. Some aspects of design activity have also been addressed by

contemporary tools. These aspects wil l be covered in the next chapter where the

requirements are linked to the derivation of an abstract representation for the early

stages of electronic engineering design, but in brief they can be roughly divided into

two areas. Firstly, non intelligent tools which tend to be reasonably general, but

normally support the later stages of design, for example from circuit design solution to

31

printed circuit board manufacture. Secondly, intelligent tools based on expert system

approaches, which cover more of the design activity, but tend towards tackling a

specific design problem domain, such as a digital filter, VLSI chip or mechanical

linkage design, for example The VLSI Design Automation Assistant by Kowalski et al

,1985, in which the intelligence is aimed at the automatic decomposition of functional

and behavioural specifications in VLSI designs. One result of this directed effort, is that

the intelligence has been aimed at the target problem, instead of the cognitive problems

of the designer. It was with this in mind that the PEDA system was conceived, and by

basing its design on sound psychological research on the cognitive processes in design,

it was hoped that it would be more able to address the general needs of designers,

rather than specific problem domains.

32

References for Chapter 2

Ball, L., "Cognitive Processes in Engineering Design," PhD Thesis, Department of
Psychology, Polytechnic South West, Devon, UK, 1990.

Chan, W. T. And Paulson Jr, B. C , "Exploratory Design Using Constraints." A I

EDAM, pp 59-71, 1987.

Chou, H. and Kim, W., "A Unifying Framework for Version Control in a CAD

Environment," Proceedings of the Twelfth International Conference on Very large

Databases, pp. 336-344, 1986.

Culverhouse, P., "Design Tools for Engineers," Polytechnic South West NAB group

internal report, 1986.

Evans, J. St. B. T , "Knowledge Elicitation in the Training and Assessment of High

Level Cognitive Skills," Repon Prepared for the Army Personnel Research

Establishment. 1986.

Gabbe, J. D. and Subrahmanyam, P. A., "An Object-Based Representation for the

Evolution of VLSI Designs," Artificial Intelligence in Engineering, vol. 2, no. 4, 1987.

Hutchings , E. L., Hollan, J. D. & Norman, D. A.,"Direct Manipulation Interfaces,"

Human Computer Interaction. Vol. 1, pp. 311-338, 1985

Johnson-Laird, P. N. , "Mental Models," Cambridge: Cambridge University Press, 1983.

Jeffries, R., Turner, A. A, Poison P. G., and Atwood, M . G., "The Processes Involved

in Designing Software," in Cognitive Skills and their acquisition, ed J. R. Anderson,

Hillsdale, NJ.: Lawrence Erlbaum associates.

Katz, R. H., Anwanrudin, M. , Chang, E., "A Version server for Computer-Aided Design

33

Data," Proceedings of the 23nj ACM/IEEE Design Automation Conference. 1986.

Mostow, J., "Towards Better Models of the Design Process," The A l magazine, pp.44-

57, 1985.

Myers, B. A., "Visual Programming, Programming by Example, and Program

Visualisation: A Taxonomy," Proceedings of ACM/SIGCHI, pp.59-66, 1986.

Nisbett, R. E., & Wilson,T. D. "Telling more than we can know: Verbal reports on

mental processes," Psychological Review. Vol. 84, pp. 231-295, 1977.

Smyth, M. , "Articulating the Designer's Mental Codes," LUTCHI Research Centre

internal paper (draft) ref: HCC/L/24, l l i h May 1988.

Ullman, D. G., Dietterich, T. G., and Stauffer, L. A., "A Model of the Mechanical

design process Based on Empirical Data," A l EDAM, vol. 2, no. 1, pp. 33-52, 1988.

34

Chapter 3: An Idealised Representation for the Early
Stages of Electronic Engineering

35

3. An Idealised Representation for the Early Stages of

Electronic Engineering Design 38
3.1. Overall Structure of this Chapter 38

3.2. Rationale for a New Representation 38

3.2.1. An Examination of Requirements 39

3.2.1.1. The First Requirement: 39

3.2.1.2. The Second Requirement: 41

3.2.1.3. The Thi rd Requirement: 45

3.2.1.4. The Fourth Requirement: 48

3.2.1.5. The Fif th Requirement: 49

3.2.2. Representational Issues Common to all the

Requirements 50

3.2.2.1. Explicit and Implicit Models of the User 50

3.2.2.2. Providing Functionality 51

3.2.2.3. The Level of Representation 51

3.2.2.4. Efficiency and Implementation Concerns 52

3.2.3. The Case for a New Representation 52

3.3. An Idealised Representation for the Early Stages of Engineering

Design 54

3.3.1. Block Diagram and Al t e rna t ive Design

Representation 55

3.3.2. Block Diagram and Alternative Management 58

3.3.3. Constraint Comparison System 59

3.3.4. The Equation Based Simulator 60

3.3.5. Decision Point System 63

3.3.6. Error Detection 63

3.4. Comparison with Existing Systems or Methods 65

3.4.1. Representing Each Design and Design Alternatives . . . 65

3.4.2. Constraints and Constraint Comparison 68

3.4.3. Simulation 69

3.4.4. History and Decision Record 70

3.4.5. Errors and Inconsistencies 71

3.4.6. Comparison with Combined Approaches 71

36

3.4.6.1. "A Conceptual Framework for ASIC Design

(Leung, Lisher and Shanblatt, 1988) 71

3.4.6.2. "An object ba^ed representation for the

evolution of VLSI designs" (Gabbe and

Subrahmanyam, 1987) 73

3.4.6.3. Walker and Thomas: the System Architect's

Workbench 74

3.4.6.4. Knapp and Parker Advanced Design

AutoMation project (ADAM) 75

3.5. Summary 75

37

3. An Idealised Representation for the Early Stages of Electronic

Engineering Design

3.1. Overall Structure of this Chapter

The aim of this chapter is to present an idealised abstracted representation for

the early stages of electronic engineering design, that has been devised during the

development of the Plymouth Engineer's Design Assistant (PEDA), a tool designed to

aid and complement the designer in the early formative stages of design activity. The

chapter begins with the rationale and arguments for the creation of the representation,

and then leads on to a ful l description. The various parts of the representation are

outlined and developed into a characteristically simple structure of altemative designs

and constraining information. A critique then follows, comparing the high level

idealised representation with other methods, models, approaches and environments in

electronic engineering and related domains. The chapter concludes with an outline of

the salient aspects of the representation in preparation for the next chapter, which

describes a partial implementation as the core within the PEDA environment.

3.2. Rationale for a New Representation

The objective of this section is to provide the rationale and arguments for the

creation of a new representation for the eariy stages of electronic engineering design,

discussed in section 3.3.

This is done primarily through an examination of the psychologically derived

requirements in chapter 2. These requirements are individually scrutinised generating

a number of issues that need to be addressed i f the requirements are to be dealt with

adequately. Methods of achieving these aims are discussed, and where they exist

examples from the electronic engineering design domain are taken and are shown to be

generally unsuitable. Overall representational issues that affect the choice of a

representation in this area of the domain are also outlined. A l l these points are then

combined with the arguments behind the PEDA project, to state the claim for a new

representation in section 3.2.3.

38

3.2.1. An Examination of Requirements

Each requirement from chapter 2 can now be examined in turn, to see how they
can be met, and to indicate the unsuitability of some common solutions in the literature.

3.2.1.1. The First Requirement:

The first general requirement for a design tool, taken from chapter 2, is as follows:

"Encourage the designer to consider an increased number of initial high-level

solution concepts and enable the efficient formulation of alternative versions of each

solution concept through levels of increasing design detail."

There are a number of issues that need to be addressed here before the above

requirement can be realized. The first and most basic one is that a representation for a

design needs to be found. Initially this may seem a comparatively easy operation as it

is not specified within the requirements and as a result there is considerable freedom

on how it may be realised. The literature abounds with design representations and so

there should be little difficulty in selecting a suitable candidate. Unfortunately it is in

this area that a number of problems arise, which stem from the basic conceptual

emphasis of trying to meet these requirements in a simple but elegant manner. Ideally

a representation of design is needed which is uniform in its structure. This is not only

desirable from a aesthetic point of view, but more importantly is in line with the results

of the psychological studies (Ball, 1990) in which designers tended not to separate the

domains of description (unlike the proposals by Stefic et al, 1981), but merged them in

the early stages of electronic engineering design. Sadly this reduces significantly the

number of candidate representations from the design automation arena. Another

meaningful problem was that representations are generally discussed in either low level

terms, using a language such as LISP (for example Davis & Shrobe, 1983), or in very

abstract terms (for example Sinclair el al, 1989), and cause problems regarding the level

of design detail. This is an important issue covering the whole of the representation and

is discussed briefly in section 3.2.4 and in section 3.4 when comparing the

representation with other approaches.

39

In essence, what is actually required, is a simple representation for the design

that captures the important aspects of the design in the eariy stages. A hierarchical

structure is desirable as this neatly captures the normal design representation by

designers in their work (Ball, 1990). One credible solution would involve the structure

being made up from a collection of blocks that would together form a block diagram,

very similar to the visual representation on paper. These blocks would be connected in

the horizontal plane by connections allowing the desired mathematical functionality to

be built up and along which information or data would be seen pass by the user during

simulation. The blocks themselves would contain all the information, necessary to

describe what they are, and their relationships to other blocks including information

would be relevant to the requirements of the design.

The second important issue raised by the first requirement deals with the

representation of design alternatives. Again this appears to be a greatly addressed area,

but unfortunately the effort tends to concentrate on aspects such as "version serving".

As a result the facilities offered by these approaches are not particularly relevant to the

needs of the designer regarding alternatives in the early stages of design. For example

approaches may offer means of keeping track of the most up to date parts of design in

different representations between the members of a design group (Katz et al, 1986 and

Gabbe & Subrahmanyam, 1987), but do not aid the designer in exploring new designs.

In addition the overall trend with these approaches is to rigidly support the separation

of domains theme and so it would be difficult to reconcile them with the representation

of designs mentioned eariier.

Actually alternatives can be addressed in a very simple manner by treating

different alternatives as separate block diagrams. Additional information can then be

added to describe the relationship between diagrams in the same way as between

different blocks. This method of treating blocks, block diagrams and alternatives in a

homogeneous manner is very attractive as it allows mechanisms developed for one

aspect of the representation to be used on the others. This wil l be seen to be extremely

useful when constraints are discussed later. Also having only one scheme greatly

simplifies the representation, because then there is no need for transformations between

the various design domains. These transformations are generally needed (Walker, 1988),

because of the differences (non isomorphism) between the domains in the later stages

40

of design. This non isomorphism makes the different domain views of the same design

topologically different, and thus to maintain interdomain consistency, the

transformations are required.

The two aspects, designs and design ahematives mentioned above, go some way

towards addressing the second statement of the first requirement, leaving the first. In

examining this it is reasonable to assume that actively encouraging designers to pursue

design alternatives is primarily a user interface function, however the representation has

an important task also, by providing a simple and clear means of portraying alternative

designs. In which case, any system that makes the representation of alternatives easy

and, or automatic could be viewed as encouraging the user lo use them when compared

with systems which do not provide any high level support of alternatives. This line of

reasoning could be extended to consider an alternative management system which

analyses the user machine interaction to determine if the designer is working on a

different approach to a problem, and then handles the creation of new alternatives

accordingly. Such an approach would go some way towards encouraging the user to

explore new design concepts, whereas a "version server" which maintains historic

consistency between the different parts of a design would not.

3.2.1.2. The Second Requirement:

The second requirement taken from chapter 2 states:

"Assist with the choice of competing design solutions, for example, enabling

evaluations of solutions to be made on the basis of comparative functional simulations."

Two important questions that need to be answered before this requirement can

be successively tackled are: What means can be used to distinguish between different

designs; and what methods can be used to compare them?

There are many ways of differentiating between designs, limited only by the

types of information used. This may be in the functionality of the designs themselves,

in thai an adder is different from a multiplier, or in other ways, for example this design

was produced in 6 weeks and that one in 6 months. The only real limits to this general

statement are the relevance of the information to the task and the difficulty in

generating that information. In this way any design or designs could be conceivably be

41

compared on the basis of any information which was instrumental to their existence.

This is a difficult requirement for any system, and can only be reasonably achieved

through reducing the information required to a manageable level.

Each piece of infoniiation can be viewed as a constraint, though not totally in

the sense of constraint satisfaction, for example where unknown elements in an equation

are derived from known values (Tong, 1987), or where designs are synthesised that

meet constraints (Chan et al, 1987), but in a more general vein. With this approach any

information contained in a design is regarded as a constraint in that it tends to make the

design more specific, and therefore constrains it in some way. For instance i f there are

no requirements other than: "Make something" then the design can be any object,

whereas if the design is already an adder then it is not going to factorise easily.

Constraints can be classified into many different areas, the following paragraphs outline

a few of them relevant to the requirements.

Constraints may be split into explicit constraints, which are specified within a

representation, and implicit constraints, which are internalised within the designer. There

has been a case to make this second form of information explicit (Mostow, 1985 and

Ball, 1990) with regard to aiding the designer. From a practical standpoint this would

make the information accessible to all, allowing others (including a design tool) to

inspect them for consistency, correctness, or relevancy, and would help prevent them

from being forgotten, by reducing the amount of information held in the mind of the

designer at any one time (Ball, 1990).

The constraints may be stated requirements, or actual attributes of some stated

objects, for example the functionality of a block. This distinction affects the way in

which they would constrain a design. Attributes always constrain a design because they

describe it some way, and requirements are potentially constraining because they

describe some desired aspect, that the attributes should meet. In many cases with

partially completed or incorrect designs, this wi l l not be so, and here is where the above

usage of constraints differs from many others. For example where constraints are used

as blueprints to automatically synthesize possible designs. (Gupta, 1988, and Director

et al, 1982).

42

Another important distinction is that made between domain and non domain

constraints. Domain constraints can include such aspects as the design functionality

(and behaviour), which can be viewed as some sort of ultimate constraint, and aspects

such as device or packaging physics, or power consumption, chip area and speed. Non

domain constraints can be anything else which may effect the designs, and can range

from when the final design solution is required, to the stability of the design

requirements.

Two other forms of constraints can be defined as "musts" and "desirables" and

indicate the relative importance of requirements, (mandatory and advisory constraints:

Popplestone et al, 1986) An example of a "must" is the mathematical behaviour of a

design, perhaps found through analysis or simulation, and cannot vary. On the other

hand a "desirable" is just tliat, an aspect of a design which is desirable, but not

absolutely necessary, perhaps being indicative of a better design. An example of both

type of constraints would be: The power consumption of the circuit must be less than

5W, but a value less than 2W is desirable.

Two main aspects of all these constraints are apparent. The first is that they

reside in the part of the design which they address. In this way, if a constraint affects

the top level of a design hierarchy then it is stated at that top level. Secondly the use

of constraints is hierarchical in nature, hence many constraints at one level are

applicable to lower levels. For example if a design has to be ready by next week, then

all parts have to be ready then too. Certain constraints wil l propagate up the hierarchy

(Ball, 1990), consequently a change at a lower level may affect the ones above it in the

hierarchy. This type of constraint does however tend to be abstract in nature (Ball,

1990), for example the choice to use a particular technology because it wil l produce the

results wanted (fast enough). In a way this aspect of constraints is a form of constraint

propagation, where changes in one place cause a corresponding change elsewhere (Chan

& Paulson, 1987). As constraints are changed, heuristics can be used to f i l l in

incomplete information at the various levels in the constraint hierarchy, for example a

specified requirement for a design states a maximum delay in a particular design block.

The design of that block has been adjusted and its overall delay is not known. A system

heuristic is invoked, it derives the critical path delay and hence the overall delay for this

block.

43

The final type of constraint mentioned here is the infomiation produced through

simulation. This information is of great importance to designers as it is often the only

source of constraint information available, indicating that a design meets or does not

meet the stated functional requirements.

There are many different approaches to simulation in the electronic design

literature and so it should be relatively easy to find one which satisfies the criteria for

this representation. A desirable quality of a simulator at this stage of design is that it

is as general purpose as possible, so that the designer may examine a large set of

problems, and not be limited to a particular approach, for example logical simulation.

The use of mathematical equations to express a design's functionality affords a

sufficiently abstract solution to this problem. There are no limitations on how the

simulator works, and so the data flow architectures are attractive, due to their simplicity

and their non reliance on timing constraints (important in the light that accurate timing

is not important in the early stages of design (Ball, 1990)). The use of mathematical

equations for the functionality, does allow the same scheme to be used at many levels,

from calculus at one, to bit arithmetic at another. For example a designer may use

integration at one level in their design, but be concerned with rounding errors due to

different floating point representation. This method is conceptually attractive as it avoids

the use of multiple representation schemes at different levels, a common tactic due to

performance considerations. In any event speed of execution is not an issue in the early

stages of design, where designs consist of small numbers of relatively complicated

functionality.

It can be seen that very little needs to be done to the basic design and alternative

representation to realize the representation of constraints in the eariy stages of design

as most often they are just statements about various aspects of design, and therefore can

be treated like any other design information within the representation. Only where

constraint propagation occurs, is a means of achieving it required. This use of constraint

propagation in design is well represented in the literature (Chan & Paulson, 1987,

Mostow, 1989, and Hooton et al, 1988), and can be achieved through the use of

specialized heuristics. Simulation is seen as a special case of generating constraint

information, its general puipose nature allowing it to test many forms of functionality.

The second issue concerned with meeting the 2nd requirement, involves finding

44

a method of comparing and contrasting designs in a manner which is fast, simple,

consistent, rigorous and clear. There are a number of approaches to solving this type

of problem. Expert knowledge can be embedded in the form of heuristics, to provide

advice on the right choices as a fonn of consultant. Another approach uses multi-

attribute theories which contain no expert knowledge but require the user to ascribe

importance to stated comparison attributes. Calculations involving weighted averages

can then indicate the more desirable designs (Humphreys & McFadden, 1980). In the

first example the system would reason about the problem itself, whilst the second

structiu^es the problem so that the designers can use their own knowledge to solve it.

Evans (1988) discusses interactive decision aids and suggests a combined approach

which falls between these two extremes, which may de-bias decisions somewhat.

Conceptually this type of system might use these theories as the core of a decision

system, but help build up the attributes through the use of heuristics which would

convert constraints into a fonn suitable for the decision support system. Also additional

functionality would be required in the user interface to correctly structure the problems

and present them carefully to the designer.

A combined system of this type would be desirable as the basis for a constraint

comparison system as it offers a simple means of addressing the 2nd requirement, and

is in close agreement with the overall goal of providing a system which aided the

designer in a cooperative manner (Ball, 1990 and Smyth, 1988). The often used

consultant based approach would require a very large amount of expert knowledge if

it were to address a wide domain, and would exclude the designer from the decision

process. In a similar vein a solution using a program such as M A U D (Multi-Attribute

Utility Decomposition)(Humphreys & McFadden, 1980), whilst a decision aid, contains

no intelligence or domain knowledge and would be of limited value (Evans, 1988). The

joint approach would if correctly engineered, combine the best of both methods,

extending the decision aid with the ability to derive attributes from design constraints,

3.2.1.3. The Third Requirement:

The third requirement discussed in chapter 2 suggests that a design tool should:

"Superintend the designer's exploratory activity, for example, helping the

designer to backtrack if a path proves unpromising (i.e. by providing a record of paths

45

taken together with the current point of exploration) or suggesting worthwhile paths of

investigation (i.e. by suggesting design alternatives)."

It can be seen that this requirement is very wide in overall scope, but the

examples given do give an indication of what could be done. It is reasonable to suggest

that to achieve this type of assistance a representation or model needs access to a

representation of the designer's exploratory activity (Mostow, 1985, and Takala, 1989),

The most common way of achieving this is through a history mechanism which logs

the commands issued by the designer. Obviously such a recording system can operate

at many levels, the lowest may be mouse button clicks, higher ones such as design

plans, record refinement heuristics used in automating design (Mostow, 1989). At a

higher level still we have abstract design decisions, which outline the reasons why a

particular decision was made.

The lowest level history trace can simply be regarded as a record of all design

activity including both user-tool interaction and internal tool activity, for instance

simulation events. With this type of recording the volume of data created in a typical

session can be quite large dependent upon the size and complexity of the tool used. In

the lifetime of a project the information recorded would be very large indeed. However

the vast majority of this information is superfluous to the needs of the engineer in that

the information is too low level in content and would rapidly overwhelm the engineer's

working memory: the type of thing that needs to be avoided. Information needs to be

presented in a form, which can be assimilated and at a level which would be useful.

This is where the concept of design decisions arises. These are high level abstractions

of design activity, that in this context portray to the engineering user, the important

decisions that led to a particular meaningful event, for example: the creation of a design

alternative, or its rejection when compared to others. In keeping with the overall

concept of the environment, these design decisions relate different designs to the set of

criteria that created them, therefore a design decision to use a particular technology in

a design may be because of that technology's superior characteristics, or that the design

team was more familiar with it. These are at a different level to those described by

Mostow, 1989, in BOGART a tool in which design decisions are menu generated

transformation heuristics (design plans) that form a design strategy, and can be

"replayed" to partially complete similar designs.

The use of design decisions leads on logically to the development of methods

46

which can extract these high level decisions from the low level history trace. This type

of information could be extracted through a variety of knowledge elicitation techniques

including: experimental manipulations and inferred cognitive processes; interviewing

and self-report methods; repertory grids; rule induction; and observational methods and

protocol analysis (see Evans, 1986 for overview). The exact method used in deriving

the heuristics is really not important from the point of view of a representation, however

in the light of the psychological work done on the PEDA project by Ball (1990) and

biases (Evans, 1988), observational methods are favoured. Work towards automating

protocol studies on engineers designing (Burton et. al.) may overcome the inherent

slowness of these methods and make them a practical technique for knowledge

elicitation.

The number of heuristics in this part of the representation may not be great as

a totally automated system, because the aim is to merely superintend the designers

exploratory activity, and not replace it. These heuristics could be divided into two broad

types: the first are purely automatic, producing decisions directly, for example a design

was created because it meets the set of criteria that derived its parents; the second

prompts the user for the decision at a particular point. Important issues here are

concerned with where do the important design decisions occur, and i f the information

about the decision cannot be automatically extracted, whether to ask the designer about

it then, or later. These are important because the representation should not hinder the

designer, which it might if it asked the user the reason for every activity. This type of

information would be best obtained through knowledge elicitation techniques, preferably

psychological analysis (Evans, 1986).

The remaining issue with regard to this requirement that wi l l be discussed here,

deals with the placement of the design decisions within a representation. In many

systems the history mechanism is treated separately to the other parts of the

representation, but here the overall philosophy is to avoid separating the various aspects,

where unnecessary. As a result it is conceptually attractive to place the design decisions

in the place in which they are most relevant, for example an alternative which was

created for a reason, will contain that reason. The advantages of such a system include:

simplicity, in that no complicated schemes are required to relate the history to the rest

of the representation and secondly; the placement of the history in the representation

allows design decisions to be used as constraints in the constraint comparison system

47

and in turn the rest of a representation can be advantageously examined by the

heuristics when trying to extract decisions.

3.2.1.4. The Fourth Requirement:

The fourth requirement from chapter 2 states:

"Ensure the designer's awareness of design conflicts (e.g. if crucially important

constraint requirements have been overlooked when the designer is focusing on a

narrow aspect of the overall design solution)."

This requirement like the others is so general, that it can be tackled in many

ways. Unfortunately the electronic design literature is less helpful than initial thoughts

would suggest due to the automation bias prevalent in the field. Typically conflicts in

a design would be resolved through a constraint propagation, or truth maintenance

system, preventing "illegal" designs from existing in the first place. It is relatively easy

however to adapt these schemes to a constraint checking and reporting role. In addition

the asynchronous nature of the problem makes the traditional use of rule based systems

in this area quite sensible. A simple modification to such a solution making it

compatible with the other requirements involves viewing design conflicts as specific

examples of the generalised constraints mentioned eariier. These are attributes which

constrain a design in some way. In this approach design conflicts may occur when

requirement constraints (requirements) that have been inherited from previous designs

(in the alternative hierarchy) cannot be met by a particular design (alternative). This

may occur for example when overall speed requirements have not been met. By

regarding design conflicts as constraints, any part of the constraint system (including

simulations, human and domain constraints) may be used in the generation of design

conflicts. As a result, design conflicts can conceptually embrace anything that the

constraint system can.

With this knowledge two questions become significant: 1) what constraints are

important, and 2) How do we determine that they are being overlooked?

The second question is the easiest to answer in that it requires the existence of

some means of checking consistency bet\veen constraints. This can almost be met

through the use of a classic truth maintenance system but where the conventional

approach would propagate the effects of a particular constraint, this use would require

48

a comparison between them: the first would be the result of the propagated constraint;

and the second would be the resident constraint. Again heuristics can be used to

perform the propagation and comparison function. This could then be used for two

purposes: The first would be to signal the user interface to issue a warning to the

designer; The second involves the heuristics producing a constraint as a result, which

could also be used by the decision support function as a means of differentiating

between designs.

To determine which constraints are important is a little harder, as a method of

prioritising conflicts is required. This may be achieved with a similar approach to that

for requirement 2, which combines a decision support tool such as M A U D (3.6.6). and

user input regarding the priority of certain conflicts. By thresholding the output of the

tool, only those constraint violations which are deemed important enough would be

signalled to the user, and low priority conflicts would be ignored. This approach could

be improved, with the addition of heuristics which would automatically generate the

priority of design conflicts. This simple method has the added advantage that it uses the

same functionality that is used to satisfy the second requirement.

3.2.1.5. The Fifth Requirement:

The f i f th requirement from chapter 2 states:

"Ensure the designer's awareness of inconsistencies in the notation that is being

used (e,g. if two different design parameters have been given the same symbolic label). "

This is a very similar request to that in the previous section. And again the lure

of viewing mathematical errors and inconsistencies as constraints is attractive, but for

slightly different reasons.

From a conceptual point of view, it is very appealing to do this as practically

everything is now an aspect of the constraint setup, producing a clean and practical

system with the attendant real advantages that the resultant homogeneity entails.

The same system as for the fourth requirement could be ideally used to prioritise

these new constraint violations and set the level of warnings produced. In this case

however heuristics are certainly required which can detect the various mathematical and

logical errors produced. Unfortunately the number required to detect all potential

mathematical violations would be quite high. Luckily the fourth requirement only

49

requires a comparatively simple consistency check and so the realization of such a

feature as part of the constraint system would be a straight forward exercise. However

in chapter 2, mention was made of much wider ranging mathematical problems and

therefore it seems that the wider ranging problem needs to be addressed eventually.

Considerable research has been conducted in the literature on symbolic algebra

manipulation tools, which would likely reduce the incidence of certain mathematical

errors by automating many common manipulations, such as factorization or solving

equations. However the internal constraints of such a system if included in a

representation would be less visible, and therefore the advantages of a homogeneous

system could not be afforded to that part of the representation.

3.2.2. Representational Issues Common to all the Requirements

The aim of this subsection is to outline overall issues which affect the choice

of the representation at all levels. These are concerned with: 1) How a representation

forms a model of the user; 2) What aspects of design should the representation address;

3) What is the target level of the representation; and 4) Should the representation take

into account efficiency and other similar issues.

3,2.2.1. Explicit and Implicit Models of the User.

A representation can express a model of the user in two main ways. In an

explicit model, the various stages of activity are distinctly staled and there is a

correspondence between important user activity and state changes within the model, for

example the user is in a particular state. The second and much less powerful implicit

model relies on an indirect method. User activity is still recorded, but there is no

categorisation into states. The representation described later in this chapter can be

regarded as an explicit model of certain aspects of the early stages of electronic

engineering design, but an implicit model of the corresponding user design activity. It

is based upon a set of requirements, which were in turn derived from an explicit

psychological model (Ball, 1990). but it does not contain that user model in any explicit

form. There is an explicit representation for designs, but not the state of the user. Whilst

an explicit model of the user is desirable (Ball 1990, Mostow 1985, Ullman, 1988 and

50

Smyth, 1988) in terms of the knowledge gained about the user design process, it is not

essential. Many different models of the user have been suggested (see Williges, 1987

for examples in the human computer interface field), but unfortunately their inner

structure depends on the desired end goal. Research on psychologically derived explicit

models of users is continuing (Ball. 1990), but until this issue is resolved, or a

sufficiently general purpose solution found, it is reasonable to concentrate only on

implicit solutions.

3.2.2.2. Providing Functionality

A vitally important consideration when creating a design representation is

detennining what aspects of design it should address. Obviously there is little point in

providing support for something that is not used, for instance in studies involving the

early stages of electronic engineering it was found that designers did not use time in

any absolute sense except as an overriding constraint (Ball, 1990). The net result would

be that there is no point in providing a simulation tool for this stage of design that used

time delays (for example conventional logic simulation). However in the same studies

designers used constraint criteria to choose between approaches: would the design be

fast enough, or would it f i t on the integrated circuit die? A system that helped them in

this area would be used and therefore the added functionality would not be wasted. The

requirements and background stated in chapter 2 create a unique set of goals that the

desired representation should address. They cause problems for many common design

representations, due to their psychological derivation. A representation may address one

area adequately, be totally lacking in another, and offer superfluous functionality in

other areas. This is neither ideal or desirable. It is proposed that the representation

described later in this chapter is a better solution.

3.2.2.3. The Level of Representation

Another important overall concern is the level at which the representation is

targetted. To be useful it needs to aimed at the right level. If the approach is too

abstract then it is of little practical use, and if it is too detailed then the solution

becomes overly complex. The desired goal therefore is to strike a balance, by describing

51

the functionality at a level sufficiently low to allow an accurate implementation, but

abstract enough to avoid complexity or implementation issues.

3.2.2.4. Efficiency and Implementation Concerns

In a similar vein to the previous comment, it is important that the representation

should make no concessions to implementation or efficiency constraints. In this way,

the organization of the representation should not mirror a fast simulation model

(Barzilai, 1986) or a tripartite behaviour, structtire and physical model (Walker, 1988).

The view is that these aspects are purely in the implementation domain and should be

dealt with there. As a result this allows a basic representation scheme to be abstracted

away from factors which are detennined by the target language or environment.

3.2.3, The Case for a New Representation

A look at the literature on electronic engineering design wil l discover a large and

active research domain. Over the years there has been a great deal of interest in this

field. Simulation has remained the primary area, but expansion has occiured to cover

earlier and later parts of the design process. The result is that there is now a plethora

of approaches concerned with many aspects of design, including for example, design

plans (Mostow, 1989), automated configuration of hardware (Bowen, 1985). and switch-

level simulation of integrated circuits (Ashok et. al., 1985).

As research has started moving towards design environments, with the overall

goal of incorporating all aspects of the design activity, the ability of tools to aid the

designer in other ways has become important. Mostow (1985), Smyth (1988). Ullman

'et. al. (1988) and more recently Ball (1990) have suggested that a better understanding

of the user design process (activity) might be advantageous, in pointing out what is

required, h was in this vein that the PEDA project was conceived and the basic

groundwork for the representation and corresponding implementation laid. The flavour

of the PEDA project placed particular constraints on the design of the PEDA tool.

Firstly, a cooperative tool was envisaged, and secondly its form and function would be

based on requirements derived through psychological studies. It has been suggested in

52

the preceding pages that it would be difficult to meet those requirements through any

conventional representation in the electronic engineering domain, and multiple

representational approaches tend to be clumsy and complicated. A new representation

can be devised that has none of these deficiencies and has many advantages, in that it

can address many perceived issues in a satisfactory manner. Taken together these points

made a strong case for deriving a new representation. They can be summarized

in overall terms as follows:

1) The Psychological Requirements and basic PEDA approach place important

constraints on the representation that make it difficult or clumsy to realize using

most electronic engineering design representations, as they often do not tackle

the areas which the requirements dictate.

2) Other issues such as the level of detail, functionality, target level of

representation, efficiency and implementation concerns of example approaches

further improve the case for a new representation.

3) Substantial advantages can be realized with a new representation, including:

simplicity, non redundancy, and homogeneity, especially with regard to a

constraint comparison system.

53

3.3. An Idealised Representation for the Early Stages of Engineering Design

An examination of the requirements and the available literature regarding
electronic design representations in the preceding section, has shown that there is a
strong case for deriving a new representation to satisfy the particular needs of the early
stages of electronic engineering design. Methods for realizing the various parts of the
representation have also been discussed. In this section those suggestions have been
taken and used as the basis of an abstracted and idealised representation, that attempts
to address all the points put forward, in this and previous chapters, in a simple and
elegant manner. A pictorial view of the representation's main components is given in
Figure 1.

Diagrom &
Attemoflvo
Manoaemenr

Constrainl I
System f

Figure I , a representation for the early stages of design: components

54

For description purposes, the representation can be easily divided into six basic parts,

these are:

1) A merged representation for designs and alternative design

hierarchies, based on block diagrams and constraining information.

2) A system for the management of block diagrams and design

alternatives.

3) A constraint comparison system for the analysis and selection of

alternatives.

4) A block diagram based mathematical equation simulator.

5) A system to extract and record decisions made during design.

6) A system to check for errors and inconsistencies made during design.

These parts are now separately described. It should be noted that the descriptions are

in relatively abstract terms. This was done mainly to satisfy the issues mentioned

eariier. As a result the representation itself has been kept simple, concise and

homogeneous where possible. The complexity inherent in many other approaches is not

apparent as it has been moved to the implementation domain.

3.3,1. Block Diagram and Alternative Design Representation

In the abstract representation, designs are held as collections of relevant design

information called block diagrams. These diagrams conceptually similar to the familiar

electronic engineering block diagram, contain entities called blocks which are arbitrary

specified organizations of design data. This organization is achieved along common

55

hierarchical lines with the most abstract or general information at the top level, and the

most decomposed or specific at the bottom. Figure I I shows a conceptual view of this

aspect of the representation. Note that this is very similar conceptually to many other

design representations. The differences arise in the type of information stored and the

way it is treated.

Figure I I , block diagrams

Blocks are initially specified by mathematical functionality allowing them to

collectively address the functional requirements of the design. However any type of

information may reside in a block, not just common design information like physical,

functional or behavioural aspects. Anything relevant to the design can be added, for

example design time constraints, or designer expertise. This is a basic underlying

concept in the representation. The most important point however, is that all information

within the representation is regarded as constraint information. This aspect wi l l pay

dividends, with regard to constraint comparison, as it wil l allow the use of all

information by the constraint comparison system.

56

Following on, no major distinctions have been made between the different types

of information that can be stored in a block and in the way in which they are

represented, and as a result this aspect of the representation can be viewed as being

essentially homogeneous. This is an important and essential difference between the

representation and many other approaches in the electronic design domain. These tend

to be collections of separate representations, where for example the behaviour of a

design may be described by a compiled program, whilst its structure is categorized by

facts in a database.

Finally, it should be noted that the pictorial conceptual views, show designs in

the same style as the PEDA implementation in chapter 4. This is in no way necessary,

but was done primarily to help link together the various parts of the representation and

that particular implementation .

The representation of alternative designs is addressed, through a simple

extension to single designs. This important result is achieved by simply viewing an

alternative design hierarchy as a collection of interconnected block diagrams. Each

diagram contains additional (constraining) information which not only indicates the

evolution of design alternatives, but also the reasons why a particular alternative (or in

a loose sense version) was created, for example: "new version of diagram 1 due to

diagram changes after simulation." A simple alternative hierarchy is shown in Figure

I I I . In this simple example design-4 is derived from design-2 and both design-2 and

design-3 are derived from design-1. When alternative designs are created they may

inherit any amount of information from their predecessors, in a similar manner to object

oriented inheritance. Thus design-4 may be almost the same as design-2 in the previous

example, but may contain some slight differences. The representation of alternatives is

kept simple by making no explicit distinction between the various types of related

designs, such as alternatives, derivatives or versions. Otherwise conceptual naming

problems could occur when a derivative design evolves so much that it becomes to all

intents and purposes an alternative design.

It can be seen that the above approach satisfies the requirement for alternative

representation in a simple and straightforward manner. Furthermore it satisfies the

additional goal of homogeneity with regard to constraints, and by promoting links

57

Alternative Designs

Design-1

Design-4

Design-3

Figure I I I , alternative designs

between alternatives as constraints, it allows the use of that information in the constraint

comparison process.

3.3.2. Block Diagram and Alternative Management

This aspect of the representation is very difficult to describe in the abstract form

used in the rest of this section. Many facets of this aspect are firmly in the

implementation domain, due to the intimate relationship between them and the aspects

which they are managing. However the overall functionality of these components can

be discussed. These components are concerned with the management of designs. They

control the internal aspects of block diagrams together with the necessary generation,

pruning and merging of alternative designs. This is done either automatically via

58

heuristics as a result of certain design decisions (see 3.3,5). or manually under the

control of the user. The automatic management component is the most important

concept here as it is an attempt to reduce the cognitive burden on the user. It is

necessary due to the potentially very large number of alternatives that can be created

during the course of a design.

3.3.3. Constraint ComparLson System

The constraint comparison system provides the user with a means of rapidly

choosing between a set of alternative designs, and selects those with the most desirable

characteristics. Each design is automatically checked against a set of user defined

constraints. This is achieved through a mapping operation, in that all required

constraints are applied to each alternative design to produce a set of comparison results.

A Multi-attribute utility theory approach has been chosen, for this aspect, combined

with heuristics to produce the utility values for the various constraints. This approach

is ideally suited, as it combines a simple method which can cope with the many

constraints, with expandability and an easily understood method. The method can be

easily shown through the example of M A U D (Multi-Attribute Utility Decomposition)

an automated decision analysis program (Humphreys & McFadden, 1980). In this

program a matrix of alternative actions (in this case different designs) is draw up

against important attributes (design criteria). Each action can then be evaluated on the

basis of all the attributes according to multi-attribute utility theory, where each point

in the matrix is given a utility (importance value), and the set of utilities for each action

are combined to give an overall utility for each action (design alternative). This final

utility is indicative of the overall desirability of a design, and allows the selection

between designs on a consistent, systematic and rapid basis.

It has been noted before that one the most important parts of the representation

is the fact that almost all information can be used as a constraint. Some constraints are

anributes (design criteria), whereas others can be used to produce utilities. There are

two main ways by which utilities can be made, the first relies on the user providing

them, a method which unfortunately introduces biases due to its subjective basis (Evans,

1988), and the second uses heuristics based upon domain knowledge to provide the

values. Both methods are included in the representation, forming a balance between

59

using the expertise of the user and that of an expert. This approach also allows easy

expansion and change, in that heuristics can be added at any time. Figure IV shows a

conceptual view of role of the constraint comparison system in the representation.

Atternative Designs

Desigrvl

DosQi>3

Attributes & Utilities

Resuttant Utiirties

Constraint
Comparison
System

And
Constraint
Conversion
Heuristics

Figure IV, conceptual view of constraint comparison system.

3.3.4, The Equation Based Simulator

In a similar vein to the explanation regarding the management of designs, this

section does not describe the basic operation of the simulator as this is an

implementation aspect. What is done however is to highlight the imp>ortant aspects of

this part of the representation.

The simulator aspect of the representation is used for two main purposes, the

first is its conventional role in providing simulation data to the designer, the second is

as part of the constraint system. It is primarily this second role which distinguishes the

simulator from others, in that it allows the use of design behaviour as a constraint in

60

the design comparison process. The simulator is general purpose to suit its requirements

at the early stages of design. It can provide both numeric and symbolic equation based

simulation of the mathematical behaviour of block diagrams. The use of mathematical

equations is important as it allows the simulation of many different types of problems

at a high level of abstraction. The simulator is easily extensible because it is limited

only by the expressive power of the equations in the blocks.

The representation uses a novel direct data flow approach for simulation in

which data flows physically around a block diagram. This important step has been made

to avoid the complications of a separate behavioural representation for simulation.

Further simplifications are achieved by using Dataflow techniques, avoiding the use of

an timing agenda. This can be done because timing information is not important of in

the early stages of eariy electronic design, except as an overall design constraint (Ball,

1990). A conceptual view of the simulation process is shown in Figure V, with numeric

data travelling from right to left through a series of blocks and being evaluated as it

passes through them according to the equation stored within.

RLE A

RL£ B

0 Q

RLE C

0 -1

Adder

O = A + B

a 0

MulTipIier

I RLE Z

Q = A • A— 7]

Figure V, conceptual view of simulation process

The usefulness of the simulator in the early stages of die design process is

greatly improved by allowing each block in a block diagram to be simulated at a

different level from its neighbours, and as a result a design can always be simulated if

61

it is specified at the top level. This can aid rapid prototyping in that a design need not

be fully decomposed to determine its suitability for use. In addition any part of the

design can be concentrated upon, and the effects of that change noted without resorting

to expanding other parts of the design, again speeding prototyping. This can promote

a top down design strategy with designs being verified at each level using simulation.

Further improvements, can also be achieved by dividing the prototyping work amongst

several designers. They can work in relative isolation, concentrating on their part, whilst

specifying the rest of the design at a higher complete level. The isolation is not total

however due to the fact that constraints can be applicable between different parts of the

same design.

The use of symbolic simulation is an important aspect of the design validation

process as it allows designs to be proved equivalent at different levels, through the

process of symbolically simulating a design at each level. The results of each simulation

can then be algebraically manipulated using a tool such as REDUCE to prove the

equations equivalent. A simple example of this process is shown in Figure V I , involving

the equation y = Sin(a)*Cos(b).

RLE A

RLE B

Input Rrst Stage Result

SINE
Q = Sin(A)

COSINE

A Q = Cos(A) Q

Second Stage Resutl

CSnCA) ' CosCBD

Multiplier

Q = A • B
RLE Z

Figure VI , symbolic simulation

62

3.3.5. Decision Point System

Exploratory behaviour is further aided in the representation by the provision of
a record of the decision points at various parts of the design cycle. These points are an
abstraction of the user activity and encapsulate a particular decision and the reasons
why it was made. Decision point information is an extension to the normal history
mechanism and is generated, either automatically in the case where heuristics can
determine what is happening, or manually by the user. Decision points are an important
part of the representation and can be used in a variety of ways. The primary use of
decision points in this representation is to aid designers in backtracking through their
designs when a particular path proves unpromising (requirement 4), by providing a
record of the important steps taken. They can also be used to help a designer new to
a project continue with the design when the original designer is not available for
questioning. Also if the decisions encapsulate specific design knowledge then they can
be used to complete designs through the process of replaying (Mostow & Fisher. 1987).

Decision points have other uses in other parts of the representation. Most

importantly they are constraints so they can become part of the constraint comparison

process. Additionally in the design and alternative management system they can be used

to trigger automatic creation or merging of alternatives. Alternatives can be created

when designs are altered after simulation, when the designer is trying out a different

approach, or merged when the designer lumps together a whole series of derived but

very similar designs into one.

3.3.6. Error Detection

An important aspect of the representation is concerned with the detection of

errors during the course of design activity. It exists in a representation for early

electronic engineering design, because the cost of rectifying mistakes in a design rises

sharply, as a design progresses from stage to stage. Obviously the eariier errors are

found out and corrected, the bener. A number of errors are highlighted in the

requirements. The first involves inconsistencies in the representation, for example

conflicting specifications at different levels in the alternative design hierarchy. The

second type involves logical errors either in mathematics or notation. It is relatively

63

straightforward operation to view both types of errors as cases of constraint

mismatching and so integrate them into the overall constraint comparison mechanism.

However a mechanism to detect and then alert the user to these errors is still required,

and in this representation heuristics are used.

The inconsistencies in requirements are comparatively easy to detect, but the

logical errors require some knowledge of the domain, and mathematical errors require

a much deeper knowledge concerning the rules of mathematics. However the use of

heuristics does allow these features to be addressed incrementally when necessary. A

symbolic manipulation tool such as REDUCE or Macsyma could be incorporated, as

a replacement to many of the required heuristics. This would break with the overall

homogeneity desired of the representation, but would greatly reducing the work required

to reduce the incidence of mathematical errors.

64

3.4. Comparison with Existing Systems or Methods

The aim of this section is to compare and contrast the abstract representation,
with other approaches. This is done in two ways: The first compares the representation
almost item by item with examples from the literature in the electronic engineering
domain, as this allows a straight forward review of the relevant material; In the second
combined approaches are examined, and comparisons made.
For the first part the areas of interest are as follows:

(i) Representation of individual designs and design alternatives.

(ii) Constraints and constraint comparison.

(iii) Simulation.

(iv) History and decision record-

(v) Errors and inconsistencies.

3.4.1. Representing Each Design and Design Alternatives

At the centre of all traditional electronic design support systems lies the

representation of the design itself. This stems from the early requirements of such

systems to represent the design at the circuit diagram stage through schematic capture,

and then model the behaviour of the design through simulation. Basically such systems

addressed these needs by representing designs as a combination of two aspects: the first

structure, in the form of a description or "net list"; and secondly behaviour in the form

of preprogrammed functionality.

Over the years these requirements have expanded to cover more aspects of

electronic design. The basic separation of structure and behaviour has expanded to cover

more areas dependent upon the particular emphasis of the tool, for example structure,

behaviour and physical information (Walker, 1988). The rationale behind this particular

tactic is to partition the concerns that the designer should consider at any particular

65

stage of design (Stefic ei al, 1982). for example designers should not concern

themselves with physical aspects of a VLSI design, whilst examining the behaviour. The

representation described earlier in this chapter does not adopt a partitioning scheme

(except design hierarchy) for the representation of the different aspects of design. This

is due mainly to the target areas of the representation being the cognitive needs of

designer, and the early stages of electronic engineering design. In the early stages of

design, it has been noted (Ball, 1990) that designers tend to combine certain aspects of

a design, with constraints in abstract form breaking the separation of concerns approach

(Stefic et. al. , 1981), allowing for example physical factors to influence initial choices

of functionality. Secondly a large proportion of the literature produced in this field

regarding the representation of designs is concerned with automated design (ie

synthesis) and many of the approaches discussed are targetted at that area. (Gupta,

1988, Walker. 1988, Leung et al, 1988, Knapp and Parker. 1985). It can therefore be

seen that there is little need to segregate information regrading the various aspects of

design into separate domains in a representation which is not targetted at synthesis, and

at an area of design where designers tend to merge the various domains anyway.

Hierarchical abstraction, a powerful technique for managing the complexity of

design and used by designers in many stages of design including early design (Ball.

1990), is used to great effect in the representations of designs. Unfortunately the tactic

of partitioning the design into several areas each with its own hierarchical structure

greatly increases the complexity of the overall design representation, when compared

to the simple hierarchical structure of designs discussed in this chapter. The

representation of designs in this representation is simple and uniform, where a block

contains a series of attributes which constrain it, and wi l l itself be embedded in the

block diagram structure. The behaviour of blocks is treated like any other attribute, and

is specified using a mathematical equation. This is in marked contrast to more common

representations or models, in which the behaviour may be deeply embedded within the

simulator in the case of any early design tools, or in behavioural descriptions stored

separately as behavioural rules, or some behaviour description language. The same

representational scheme is used at all levels in the hierarchy, again in contrast to other

representations or models where, the design functionality wi l l be specified in different

terms, for example at the behavioural, function, logic, gate, circuit and switch levels

(Mokkarala et al, 1985). This generality can be achieved, because the use of

66

mathematical equations allows the modelling of almost any behaviour, and the slowness

of a purely equation based approach is not viewed as a problem in the early stages of

design, where the number of blocks being modelled is small.

The representation of alternatives or versions within a design support system is

one of the key areas mentioned within the psychologically derived requirements (Ball,

1990). Alternatives have been addressed in the literature in a number of ways. Firstly

traditional CAD systems have relied on very simple version control systems. In general

the user would manually organise the hierarchical structure of alternatives, saving each

design and maintaining such information regarding old and new versions of a particular

design stage. More recently there has been considerable effort in supporting this type

of activity automatically, with examples in this area from Katz and Chang (1986), Chou

and Kim (1986), and Gabbe and Subrahmanyam (1986). These approaches tend to

address the traditional problems of version control, and include such items as

maintaining the most up to date elements of a design in a team environment,

maintaining consistency of the various parts of a design in a team environment, and

keeping track of the various pans of a particular design going from original, through

each refinement.

The use of ahematives in the representation is different however to the classical

needs of version control, and can be met with a much simpler system. The requirements

indicate that alternatives are used to encapsulate different approaches to a problem, and

not maintain consistency between the output of a group of designers. The simple

method of individual designs (block diagrams), forming an alternative hierarchy meets

these goals. Additional information linking these designs with the reasons why they

were made allows the representation to aid backtracking when a design becomes

unpromising. The method tightly integrates alternatives into the representation of

designs, in contrast to that by Chou and Kim (1986), which is a external system, but

similar to Gabbe and Subrahmanyam (1987). Their method however offers a complex

system involving original designs followed by decompositions and is more in keeping

with more general version control needs. The simple method of representing alternatives

in the proposed representation is more in line with the requirements stated in chapter 2.

67

3.4.2. Constraints and Constraint Comparison

The use of constraints in the representation differs significantly with many other

approaches in the electronic engineering design support domain, where it appears that

the main use of constraints and constraint based systems has been the automation of

certain aspects of the design activity, typically in the synthesis of designs.

In this area constraints are viewed as relations between sets of design parameters

(Chan and Paulson, 1987), and as such may be used to critique a design, for example:

CRITTER (Kelly, 1984) which performs constraint calculation, propagation and

checking of functional and timing behaviour for the tools VEXED (Michell et al, 1985)

and REDESIGN (Steinberg and Mitchell, 1984), knowledge based systems that partially

automate the decomposition of designs, and changing designs respectively.

These types of constraint (relationships) are commonly handled through

knowledge based techniques, involving expert domain knowledge in the form of

heuristics, for example OASYS (Haijani et al, 1989) which is a framework for analogue

circuit synthesis, or algorithmic approaches, for example OPTIMIZE (Rankin,

Siemensma, 1989) a system which uses numerical methods to minimize various cost

functions (constraints) in an almost completed design.

The overall impression of these systems is the use of constraints to support the

automated machine design process, whereas their use in the representation is to aid the

decision making process of the designer, for example Brewer and Gajski, (1986) use

constraints and associated heuristics to evaluate designs automatically as part of the

design synthesis process.

This approach has a number of disadvantages, the first being that the intelligence

of the designer using the tool is being wasted, the second is that the knowledge base

would be very large unless the domain of interest was severely constrained. This

approach would have severe difficulties in addressing the representation proposed in this

chapter due to the fact that all information can be regarded as a constraint, and this is

why the combined multi-attribute utility theory and knowledge based approach has been

adopted.

68

3.4.3, Simulation

The modelling of designs through simulation is a very powerful means of

verification, and whilst formal proving methods are still in their infancy, it wil l be used

where its cost and time advantages compared to ful l prototyping are apparent. This has

occurred in the electronic engineering domain where many different simulation methods

have been proposed, primarily dependent on which area of the design they aim to

address, for example Director et al, (1985) outlines switch, circuit and process level

simulators in the digital VLSI design domain. In these areas many different constraining

factors have influenced these approaches. At the low end or near the device level, where

a large number of relatively simple components are being modeled, the emphasis has

been towards fast execution speeds, using for example improved sequential (Barzilai et

al, 1986) or parallel (Smith, 1986) approaches. This trend towards specialization has

been done to achieve realistic simulation times of the more complex designs.

In other areas there has also been a trend towards generalization with the

appearance of mixed or multi-level (Tham et al, 1984, and Takasaki et al. 1986)

simulators, which combine a number of levels, for example unit delay, multiple delay

and timing simulation (Chen et al, 1984). This has been extended at the high end or

behaviour level, with the introduction of comparatively general tools based on object

oriented (Lathrop and Kirk 1985) and rule based (Singh, 1983) principles. In this case

the greater generality of these more flexible methods allows an efficient verification of

the more complex designs. Where reasoning about the simulation process itself is

important, for example reasoning about temporal aspects, Petri net methods can be

useful (see Tadao Murata, 1989 for detailed discussion of applications).

The simulator within the representation can be viewed as having many

similarities to simulators in existence in the electronic engineering domain, however it

differs in a number of significant areas. The use of mathematical equations to specify

behaviour, allows the simulator to work at many levels in design, from a higher level

of abstraction than the behavioural simulators to the lowest. Tliis ability allows

simulation to be performed al any reasonable level of abstraction in different parts of

the design, a fact which makes the simulator a powerful exploration tool as well as an

verification tool. This is in contrast to many other simulators in this area which are

primarily verification tools.

69

The simulator is based upon data flow principles, in keeping with the

psychological considerations mentioned earlier (Ball, 1990), whereas many simulators

in the digital electronic engineering domain use complex event driven schemes, to take

into account unneeded timing considerations. The simulator is also tightly integrated

with the representation, and in it simulation takes place on the structure, in direct

contrast to most other simulation systems, which maintain separate data structures for

simulation. This is a moderately important issue as it avoids the conceptual separation

of behaviour from structure and allows simulation data to be used in situ as constraint

information, further integrating the representation,

3.4,4. History and Decision Record

Electronic design support systems have traditionally supported a means of

recording design activity known as the history trace, in which the system logs the

selections made by the designer in the order in which they occurred. This simple system

can be realized easily and as it is a record of past activity can be used as an aid to

exploratory activity. There have been a number of suggestions on improving the

usefubiess of histories, with for example Mostow, (1985) and Takala, (1989) indicating

that the history mechanism may be used as a model of design. Takala suggests that a

history mechanism can be improved through expansion into two dimensions, forming

a history network for the various design objects. By raising the level of abstraction of

histories into design plans Mostow et al, (1989) allow the replaying of these design

decision histories on slightly different initial designs, automating the redesign process.

These methods are however not applicable to this area of design in that the design

decisions required are those which link design alternatives, for example the reasons why

a particular choice was made and not the choice itself. I f the later definition is used

then the extraction of design decisions becomes much easier, for example in BOGART

(Mostow et al, 1989) it involves item selections made from menus or graphical displays.

To obtain the wider context decisions, a means is required to extract the necessary

information. The issue is left comparatively open but heuristics derived from studies of

designers may produce the desired level of generality desired.

70

3.4.5. Errors and Inconsistencies

The detection of user generated errors and inconsistencies is an area that appears

to be comparatively unaddressed in electronic engineering, though there are tools such

as REDUCE (Heam, 1984) and Macsyma (Bogen, 1983) which can help the user with

algebraic manipulation tasks. (Equation reasoning systems do exist in other domains)

Inconsistencies in designs are generally handled by constraint propagation, or

some form of truth maintenance scheme. Though to detect the mathematical errors

mentioned in chapter 2 a certain amount of mathematical knowledge is required. This

has been done in some areas, for example in mechanical engineering the "design to

product" project (Popplestone et al, 1986) which incorporates mathematical knowledge

into a large computer aided manufacture system. And although the initial application

for this information is in a similar manner to the use of REDUCE and the other tools,

it could be used as a basis to detect user generated errors. The most common

approaches to knowledge based design in the electronic engineering arena have tended

to concentrate on replacing the designer in certain aspects of the design cycle, and

whilst this tactic may effectively remove one area where user generated errors can

occur, the other areas remain.

3.4.6. Comparison >vith Combined Approaches

This section discusses the salient parts of a few example approaches to

representing electronic engineering designs. The examples have been taken mainly from

the electronic design automation arena, due to preponderance of literature on design

representation in this area. The comparisons are a little imfair as these approaches to

A l design, replicate some aspect of design behaviour, whereas this representation

attempts to provide important support for people doing design.

3.4.6.1. "A Conceptual Framework for ASIC Design (Leung, Lisher and

Shanblatt, 1988)

This approach covers the making of a conceptual framework for the design of

application specific integrated circuits in the digital VLSI arena. I t is particularly

71

interesting in that it incorporates many aspects of that design activity, and possesses

many similarities to the representation proposed in this chapter.

The overall emphasis of the representation is centred towards the synthesis of

designs, from a decision making perspective, as opposed to the more common

transformational model. The framework itself is divided into three areas: the design

process; the design hyperspace; and the design repertoire.

The first area or design process comprises the DOEMA (Design Object, Design

Engine, System Manager and Expert Assistant) model of the ASIC design activity, and

incorporates an implementation of ASIC design methodologies at various levels of

abstraction. Design objects are used to describe the target design at a particular level

of abstraction, and define the place where the dynamic (process) and static (design

information) aspects of ASIC design intersect. This dynamic knowledge is separated and

used to form the Design engine which is an embodiment of the mundane and

mechanistic aspects of ASIC VLSI design, which involves tasks such as transformation,

verification, simulation and test consideration (design for test). The expert assistant is

used to make the designer aware of design alternatives, by deciding what the

alternatives are at a particular stage and which ones should be considered. This provides

a methodology which limits the search space and therefore the number of alternatives

examined. The system manager is the final part of the DOEMA model and provides the

overall glue to integrate the other aspects.

The second area or design hyperspace consists of those parts of the design which

tend to be stable over time, and is divided into a series of frames which are mutually

independent (orthogonal), for example the structural, behavioural, and physical domains

of the System Architect's Workbench (Walker, 1988). The suggestion is that the

particular framing is not unique and depends on the designer's perspective. Two spaces

are given as examples: the architectural space; and the algorithm space, which are

further subdivided into: functional units, communication and control; and operation, data

structure and data dependency respectively. The stated aim of this separation is twofold,

the first is to try and make it easier for the designer to recognize design alternatives,

the second that the subdivision into frames is possible on real designs.

The final area or design repertoire is a collection of design and analysis

techniques used for evaluating design alternatives, these techniques including resource

configuration, which finds suitable architectures for a given algorithm ,and algorithm

72

restructuring which rearranges a given algorithm to better fit a given architecture.

In brief it can be seen that iliis approach and representation discussed earlier in

the chapter, have similar aims, in that they are primarily geared to help the designer

pursue alternative approaches in their designs. They differ however in the emphasis of

their approach, in that the knowledge embedded in the framework is targetted at the

domain and not. as in the case of the representation, at the cognitive needs of the user.

In addition the embedded knowledge is used in a closed fashion, in that it helps the user

to find alternatives, but uses its own knowledge to find them, whereas the representation

helps the designer use his own knowledge. This is an acceptable approach to a narrow

domain, where sufficient knowledge can be elicited, but is less useful in wider domains,

and where a more cooperative approach is required.

The separation of design information into many frames is another area where the

two approaches differ. As said before, this type of approach is less desirable in the early

stages of design where the representation is aimed at.

3.4.6.2, "An object based representation for the evolution of VLSI designs"

(Gabbe and Subrahmanvam. 1987)

The major aspect of this scheme is the encapsulation of design information from

specification to implementation into a framework which represents explicitly the

evolving design. It is based upon a transformational model of design which converts

specifications to realizations through a set of refinement steps. These designs or

versions are organized into a hierarchy of three levels: the architectural level, which

determines the way in which the functionality is decomposed into subfunctions: the

environmental level, which adds additional constraints such as technological issues; and

the realization level, which contains various implementations and the constraints which

they satisfy. As a result the architectural level will be composed of hierarchies of

decompositions, the environment wil l contain contexts and realizations wil l embody

refinements.

Design information is also split into three areas: the first deals with the

description of designs, from function specification to physical masks; the second

contains the mechanisms and the domain knowledge to convert between the various

parts in the first area; and the third contains the mechanisms and control knowledge

73

which decide what to do.

The aim of this model to provide a means for representing iterative design

activity. This is done through the use of design modules in the following way: A

module realizes some degree of functionality and consists initially of specifications and

results; and these results consist of decompositions and a series of refinements in a

particular context. For example, a set of specifications may give rise to a number of

alternative decompositions. Each decomposition proceeds through a series of

refinements to produce a valid design. And each valid design is applicable to a

particular context. This representation also includes a history mechanism based on

transactions, and a constraint propagation system for truth maintenance.

This approach yields a flexible but complex representation based upon the object

oriented paradigm. In a similar manner to the previous approach, it seems that a great

deal of effort has been spent on producing many orthogonal spaces. This interesting and

common approach whilst perhaps much more important in the later stages of design is

less applicable to the early stages. This model like many others appears to be targetted

at the problem domain and not at cognitive needs of the designer, and as a result more

adequately fits the needs of design synthesis systems. The extensive partitioning scheme

also suggests that the model is aimed more towards the implementation of systems,

where efficiency and size constraints are more important than the model discussed at

the start of this chapter.

3.4.6.3. Walker and Thomas: the System Architect's Workbench.

This is a transformational model used for the synthesis of VLSI designs. It is

based on various levels of abstraction and divided into three areas of description

comprising behaviour, structure and physical domains. The levels of abstraction are

defined as: architecture; algorithmic; functional block; logic; and circuit. For example

the behaviour hierarchy covers performance specifications at the top level, going

through algorithms, register transfer and boolean equations to electrical characteristics

at the bottom.

Transformational heuristics are used to convert from one domain hierarchy to

another, and to maintain overall consistency. At each level in each domain a different

representation can be used, thus the representation forms the glue to a number a

74

separate systems. Another reason for the separation of domains is the non isomorphism

of designs at this stage of the design activity. For example a behavioural description

may not have a one to one correspondence with its equivalent structure.

This approach is basically very different from the representation, as it is geared

towards synthesis where the requirements are quite different. As a result alternatives or

versions, decision points and a decision support system are not usually explicit parts of

synthesis models. In a similar vein the various domains can be merged, if the aim is to

address the cognitive needs of designers in the early stages of design.

3.4.6.4. Knapp and Parker Advanced Desisn AutoMation project (ADAM)

This is a similar synthesis representation to the one previously. In it designs are

split into four separate non isomorphic subspaces: dataflow behaviour; structural;

physical; and timing and control. Again these spaces are organized in hierarchical

manner. In a similar way the other parts of the model are not explicit parts of this

representation, but do exist as parts of the larger system, for example the design planner

in the A D A M system (Knapp and Parker, 1986). In interesting point here is that time

issues in simulation have been separated away from behaviour.

3.5. Summary

The chapter has presented a abstract representation for the eariy stages of

electronic engineering design, which in spite of being simple, tackles the important

aspects of that design activity by taking into account the cognitive needs of designers

in their work. The representation itself contains an explicit block diagram representation

of design alternatives, together with a means to compare and contrast those designs, a

dataflow simulator and means to extract and record design decisions, detect errors and

inconsistencies made by the designer. The representation is then compared on a piece

by piece basis with other approaches, and then in whole against a few representative

representation models of electronic design, to show that these systems do not adequately

address the cognitive needs of designers in early design, and that it is a valid and useful

attempt to do so.

75

One important aim of the representation was to target i t at a level suff icient ly

concrete that it is a real aid in producing an implementation, but abstract enough to not

include many implementation issues. Chapter 4 shows the next step and discusses how

an example implementation: PEDA was realized.

76

References f o r Chapter 3

Ashok, v . , Costello, D. , and Sadayappan, P., " Model l ing Switch-level Simulation
Using Data Flow/* Proceedings of the 22nd A C M / I E E E Design Automation Conference.
1985.

Bal l . L . , "Cognitive Processes in Engineering Design," PhD Thesis. Department of

Psychology, Polytechnic Soudi West, Devon, U K , 1990.

Barzilai, Z. & Beece, D . K. , "SLS- A fast Switch Level Simulator fo r Verification and

Fault coverage Analysis, Proceedings of the 23rd ACM/TEEE Design Automation

Conference. 1986

Bogen, R., Golden, J., Genesereth, M . , Pavelle, R., Webster, M . , Fateman, R., and

Doohovskoy. A. , Macsyma Reference Manual, The Mathlab Group. Laboratory for

Computer Science, Massachusetts Institute of Technology, 1983.

Bowen, J. A. , " Automated Configuration Using a Functional Reasoning Approach,"

Proceedings A I S B . 1985.

Brewer, F. D . & Gajski. D. D., " A n Expert-System Paradigm for Design, Proceedings

of the 23rd A C M / I E E E Design Automation Conference. 1986

Chan, W. T. And Paulson Jr, B . C , "Exploratory Design Using Constraints." A I

E D A M , pp 59-71, 1987.

Chen, C. F., Lo, C-Y., Nham, H. N . . and Subramaniam, R , " The 2nd Generation Motis

Mixed-Mode Simulator." Proceedings of the 21st A C M / I E E E Design Automation

Conference. 1984.

Chou. H . and K i m , W., "A Uni fy ing Framework f o r Version Control in a C A D

Environment," Proceedings of the Twelf th International Conference on Very large

Databases, pp. 336-344, 1986.

77

Culverhouse, P.F., Ball , L . & Burton, CJ . , "A Tool for Tracking Engineering Design

in Action," To appear in "Design Studies".

Davis. R. & Shrobe, H ., "Representing Structure and Behaviour of Digi ta l Hardware."

Computer. 1983.

Director. S. W.. Shen, J. P., Siewiorek. D. P.. and Thomas. D. E.. "The C M U D A / C A D

Project." Research Report No. CMUCAD-81-2 . 1982.

Evans. J. St. B . T., "Knowledge Elicitation in the Training and Assessment o f High

Level Cognitive Skills," Report Prepared for the A r m y Personnel Research

Establishment. 1986.

Evans, J. St. B. T., "Bias in Human Reasoning: Causes and Consequences," Brighton:

Erlbaum, 1988.

Gabbe, J. D. and Subrahmanyam, P. A. , "An Object-Based Representation fo r the

Evolution of V L S I Designs," Ar t i f ic ia l Intelligence in Engineering, v o l . 2, no. 4. 1987.

Green, m. . "A Methodology for the Specification of Graphical User Interface," A C M

Computer Graphics. 1981.

Gupta, Anurag P., "A hierarchical Problem Solving Architecture fo r Design Synthesis

of Single Board Computers," MPhi l Thesis Carnegie Mel lon University, 22nd February

1988.

Haijani , R.. Rutenbar, R. A. , and Carley, L . R., "OASYS: A Framework for Analog

Circuit Synthesis," IEEE Transaction on Computer Aided Design, vo l . 8, no. 12.

December 1989.

Heam, A. C. (ed), REDUCE Users Manual Version 3.2. the Rand Corporation. Santa

Monica. 1984.

78

Hooton, A . R., Aguero, U . and Dasdupta, S, " A n Exercise in Plausibil i ty-Driven

Design," Computer. 1988.

Humphreys, P. C , & McFadden, W., Experiences wi th M A U D : Aid ing decision

structuring versus bootstrapping the decision-maker," Acta Psychologica, vo l . 45, pp.

51-69.

1980.

Katz, R. H . , Anwarrudin, M . , Chang, E., " A Version server for Computer-Aided Design

Data," Proceedings of the 23rd A C M / I E E E Design Automation Conference. 1986.

Kel ly , Van. E., "The CRITTER System," Proceedings of the 21st A C M A E E E Design

Automation Conference, 1984.

Knapp, D. W., and Parker, A. C , "A Design Ut i l i ty Manager: The A D A M Planning

engine," Proceedings of the 23rd ACM/TEEE Design Automation Conference. 1986.

Lathrop, R. H . and Kirk , R. S., " A N Extensible Object-Oriented Mixed-Mode

Functional Simulation System," Proceedings of the 22nd ACM/FEEE Design

Automation Conference, pp. 630-636, 1985.

Leung, S. S., Fisher, P. D., and Shanblatt, M . A . , " A Conceptual Framework fo r ASIC

Design," Proceedings of the IEEE, vol . 76, no. 7, pp. 741-755, 1988.

Mentor Graphics, "Vision," Mentor Graphics Newsletter, A p r i l 1990.

Mitchel l , T., Steinberg, Louis, I . , and Shulman, J. S., "A Knowledge-Based Approach

to Design," IEEE Transactions on Pattern Analysis and Machine Intelligence, vo l . 7, no.

5, 1985.

Mokkarala, V . R., Fan, A. , and Apte, R., " A Unif ied Approach to Simulation and

Timing Verification at the Functional Level," Proceedings of the 22nd A C M / I E E E

79

Design Automation Conference. 1985.

Mostow, J., "Towards Better Models of the Design Process," The A I magazine, pp.44-

57. 1985.

Mostow, J., "Design by Derivational Analogy: Issues in the Automated Replay of

design Plans," Rutgers University, Department of Computer Science, AI/Design Project

Working Paper No. 80, 1987 .

Mostow, J., Barley, B . and Weinrich, T., "Automated reuse of Design Plans," Rutgers

University, Department of Computer Science, AI/Design Project Work ing Paper No.

146, 1989.

Newell , A & Simon. H . A. , "Human Problem Solving," Prentice-Hall, Englewood

Cl i f f s , NJ, 1972.

Popplestone, R., Smithers. T , Comey, J., Koutsou, A. , Mi l l ing ton . K . , and Sahar, G.,

"Engineering Design Support Systems," Proceedines of The 1st International Conference

on Applications of Art i f ic ia l Intelligence to Engineering problems. A p r i l 1986.

Rankin, P. J. and SiemensmaJ. M . , "Analogue Circuit Optimization in a Graphical

Environment." presented at lCCAD-89.

Sinclair, M . A. , Siemieniuch, C. E., and John, P. A . , " A User-Centred Approach to

Define High-Level Requirements for Next-Generation C A D Systems fo r Mechanical

Engineering," IEEE Transactions on Engineering Management. V o l . 36, No. 4,

November 1989.

Singh, N , "MARS: A Multiple Abstraction Rule_Based Simulator," F L A I R Technical

report No. 17, Fairchild Laboratory for Ar t i f i c ia l Intelligence Research, 40001 Miranda

Ave. Palo, Al to , CA 94304, 1983.

80

Smith, R. J., "Fundamentals of Parallel Logic Simulation," Proceedings of the 23rd

A C M / I E E E Design Automation Conference. 1986.

Smyth, M . . "Articulating the Designer's Mental Codes," L U T C H I Research Centre

internal paper (draft) ref: HCC/L/24, 11th May 1988.

Stefic. M . , Bobrow, D. G., Bell , A. , Brown. H . Conway, L . . Tong, C . "The Partitioning

of Concerns in Digital System Design." Xerox pare internal paper VLSI-81-3. Dec

1981.

Steinberg, L . , and Mitchel l . T.. "A Knowledge Based Approach to V L S I C A D the

Redesign System," Proceedings o f the 21st A C M / I E E E Design Automation Conference.

1984.

Tadao Murata. "Petri Nets: Properties. Analysis and Applications," Proceedinds o f the

IEEE. Vo l . 77, No. 4. Apr i l 1989.

Takala. T., and Silen, P., "Application of History Mechanism in Architectural Design,"

Preliminary Proceedings of The Third Eurographics Workshop on Intelligent C A D

Systems, Apr i l 1989.

Takasaki. S., Sasaki. T.. Nomizu. N . , Ishikra.H., and Koike. N . . "Hall I I : A Mixed

Hardware Logic Simulation System," Proceedings of the 23rd A C M / I E E E Design

Automation Conference. 1986.

Tham, K. , Willoner, R. and Wimp. D., "Functional Design Verif icat ion by Mul t i -Level

Simulation." Proceedings of the 21st A C M / I E E E Design Automation Conference. 1984.

Tong. C . "Toward an engineering science of knowledge based design," Ar t i f i c i a l

Intelligence in Engineering, vol . 2, no. 3, 1987.

Ullman. D . G., Dietterich, T. G.. and Stauffer, L . A . . "A Model of the Mechanical

design process Based on Empirical Data," A I E D A M , vol . 2. no. 1. pp. 33-52, 1988.

81

Walker, R. A. , "Design Representation and Behavioural Transformation for Algori thmic

Level Integrated Circuit design," PhD Thesis: Research Report No. CMUCAD-88-20 ,

SRC-CMU Research centre for Computer-Aided Design, Carnegie Mel lon University,

A p r i l , 1988. (6)

Williges, R. C , "The Use o f Models in Human-Computer Interface Design,"

Ergonomics. volO. 30, no. 3, pp. 491-502, 1987.

82

Chapter 4: The PEDA Representation for Early
Electronic Engineering Design

83

4. The PEDA Representation for Early Electronic Engineering

Design 86
4 . L Overal l Structure o f this Chapter 86

4.2. The Plymouth Engineering Design Assistant : A n Overv iew . . . 86

4.2.1. T h e P E D A User Interface: Overv iew 87

4.2.2. PEDA In terna l Design Representation: Overv iew 88

4.3. The Representation of Designs W i t h i n the F E D A System

4.3.1. The Representation o f Ind iv idua l Designs W i t h i n the

P E D A System 89

4.3.1.1. Funct ional Blocks 91

4.3.1.2. P E D A Block Representation 93

4.3.1.3. Block Templates 96

4.3.1.4. L i n k s to the User Interface 97

4.3.2. Al ternat ive Designs W i t h i n F E D A 98

4.3.2.1. Al te rna t ive Designs 98

4.3.3. The PEDA Representation o f Alternat ives 98

4.4. The Management o f Alternat ives, and His tory T r a c i n g 102

4.4.1. The Management o f Alternat ives in F E D A 102

4.4.2. His tory T r a c i n g 103

4.5. L i n k s to User Interface 105

4.6. The F E D A Constraint System 105

4.6.1. In t roduc t ion 105

4.6.2. Constraint System Implementa t ion 107

4.6.2.1. W h a t Constraints are in F E D A 107

4.6.2.2. H o w Constraints are used in F E D A 108

4.6.3. L inks to the User Interface 114

4.7. Simulat ion o f Designs 114

4.7.1. The F E D A S imula to r 116

4.7.2. F E D A Simula tor Opera t ion 116

4.7.3. F E D A Simula tor Implementa t ion 117

4.7.3.1. Packets 118

4.7.3.2. Packet Movement 118

4.7.3.3. Packet Maintenance 119

84

4.7.3.4. Data Dr iven Opera t ion o f Blocks 119

4.7.3.5. Data Evaluat ion 120

4.7.4. L inks to User Interface 121

4.7.5. P E D A Simulat ion Example 121

4.7.6. Feedback and the Alternat ive(AJt) Block 124

4.8. Integrat ion i n the P E D A Representation: A n Example 125

4.9. Summary 127

85

4. The PEDA Representation for Early Electronic Engineering

Design

4 .1 . Overa l l St ructure o f this Chapter

This chapter discusses a partial implementation of the abstract representation fo r

the early stages of electronic engineering design, discussed in the previous chapter. This

implementation has been used as the core of the Plymouth Engineer's Design Assistant

(PEDA), a designer support tool for the early stages of electronic engineering design.

I t was envisaged to promote the rapid generation and selection of alternative designs,

according to a set of desired criteria, in a consistent and uniform manner. A brief

outline of the various parts of the PEDA system is given first which then leads on to

a discussion on the relevant parts of the implementation. Wi th each section there is a

brief statement outlining the areas where the implementation interacts with the user

interface. The chapter ends wi th an example showing how the parts are integrated,

fol lowed by a summary.

4.2. The P lymouth Engineering Design Assistant : A n Overv iew

The PEDA Environment discussed in Baker et. al. (1989) is a tool designed to

address some important needs of engineer designers in the early stages of electronic

engineering design. I t was developed as part of a jo in t project in developing a

psychologically based engineering design assistant, and was conceived out of a desire

to produce a design support environment that bener addressed the needs of engineers

during the process of designing. This prototype system came to be known as the

Plymouth Engineering Design Assistant or PEDA and was originally envisaged as a

system that would promote engineer creativity in a natural manner, whilst of fer ing

assistance in those areas where human performance is poor. I t was intended that P E D A

would aid design by offering advice, pointing out inconsistencies and errors in a

constructive and helpful manner. This advice would be applicable to a broader range

of problems than many expert system approaches, which have tended to concentrate on

relatively narrow domains. A psychological study of the way engineers design, would

furnish information about the engineering design process, including the strengths and

86

weaknesses of designers. This knowledge would then be used to build a set of

requirements that the PEDA would need to address i f i t were to be successful in its

primary aims.

The system itself is presented to the user as a screen based drawing board that

allows manipulation of block diagrams using a mouse. Mathematical blocks are selected

f rom a palette and can be incorporated wi th in a diagram to provide any level of

functionality required, f r o m user specified mathematical functions to components such

as memory devices. Hierarchical design is supported, and a fac i l i ty to zoom in a

particular level is provided. More optimal design is encouraged by the ability to

explore, develop, and compare many alternative designs, using a set of constraint

criteria. The generation and deletion of alternatives is monitored and in some cases

handled automatically according to a small set of heuristics governing the stage of

design. Backtracking of design activity is also supported through a record of design

activity.

The PEDA environment has been implemented using the knowledge based

system building tool ART, and the C O M M O N LISP language on a SUN 3/60

workstation. The project was undertaken by three research assistants and their associated

supervisors. L . Ball the psychology researcher would investigate the way in which

electronic engineers design. The results of his work would be directly useful to G. M .

Venner whose investigations would cover the Human Computer Interaction aspects of

the project, and to D.G.C. Scothem whose work is the subject of this dissertation.

The PEDA tool can be conceptually divided into two parts, the first is the user

interface partially completed by G.M.Venner who tragically died part way through her

research, and the second is the implementation of the early design model discussed in

chapter 3.

4.2.1. The PEDA User Interface: Overview

The user interface for PEDA has a direct manipulation interface intended to

reduce the gulf between user and system during execution and evaluation, and to give

the user a feeling of direct engagement (Hutchins et. al. , 1985). The system is based

upon a drawing board, rather than the more familiar desktop, metaphor. In this case

designers create their diagrams using the mouse to select objects f r om a palette.

87

Thereafter a pop-up menu associated wi th a particular created component or object

presents the user wi th the choice of relevant, valid functions that can be performed on

i t . Other important aspects of the interface are concerned wi th the communication of

various aspects of design knowledge and in the portrayal of the evolution of the design

process to the user. A typical view of the user interface to PEDA is shown in

Figure V I I .

NTLU
• l a u U t *
^a^t

w o » L » otoicL-aicii Ltrr i u i I A O C U - W O K T - C I I B c s v i r m M
W K L * [N o n c - a i c K U F T i m [F i L C < i i - t - P M i - q]] a c i m s *
VCRL» c w t S E ' O . t c i L C n I sn i i t tHULrirLi[<t-4-PCST-QT] K a v »
KtRLk [KfiUSE-CLICK • Z U I L M 7 131 [F U C - I I - l U I C k v l B g f B
VOHLA CMQUSI-CLICK U C V I > 144 U S [P Z L C - I K - Z]] • savMf l id

. K B O I

j m i l

rim

" I

EIi3 EEB
EE3 EE3

EE]

Figure V H , Users view of the PEDA system.

4.2.2. PEDA Internal Design Representation: Overview

The implementation of the early design representation wi th in PEDA provides a

framework fo r representing many important aspects of design activity within the tool.

88

The core representation consists of:

1) A Base representation for mathematical block diagram hierarchies, wi th a

selection of commonly used blocks in a library.

2) A logical extension to the block diagrams to realize the formation of

alternative designs, containing any amount of specifiable information.

3) A small set of heuristics to validate the automatic generation of new

alternative and decision information dependent upon user input.

4) A small set of constraints including domain and non domain types, and

heuristics to convert them into weightings and provide consistency checks.

5) A Mathematical data f low simulator capable of either numeric or symbolic

operation, stateless, interruptible, and not dependent upon the use o f an explicit

representation of time for its operation.

Figure V I I I , PEDA core representation

In the fo l lowing sections these aspects are explained together w i th the associated

background required. Li the text comparisons are made wi th other schemes. This

overlaps slightly with chapter 3, but was thought necessary due to the greater emphasis

on implementation issues made here, and in the literature.

4.3, The Representation o f Designs W i t h i n the P E D A System

4.3.1. The Representation o f Ind iv idua l Designs W i t h i n the P E D A System

The representation of a design is one of the most used concepts within the

design arena, and many different schemes have been proposed. Wi th in the f ie ld of

electronic design, hierarchical descriptions involving primarily structure, behaviour and

other data are the most common. The abstract representational fo r early design in

89

chapter 3 makes very few demands on the exact structure of design representation and

as a result a similar scheme has been adopted fo r the PEDA system. However there are

a few notable differences due to the removal of constraining factors such as the

separation of concerns (Stefic et al, 1982). The basic elements o f an electronic

engineer's design are stored as an adaptation of the circuit diagram often used to

represent designs on paper or on the screens of Engineering C A D systems. A

representation that closely corresponds to a paper design has been adopted, as this leads

to a simple, compact fo rm, with little or no conversion required between the visualized

and internal artifact.

Unfortunately a more abstract representation than a straight forward logic circuit

diagram is really needed and so to produce this more general f o r m , the circuit diagram

was redefined as a block diagram and the circuit elements such as gates, transistors and

so on, to entities known as functional blocks. At this level the behaviour of the

functional blocks can be portrayed by general mathematical functions, and provides

considerable freedom in describing function (behaviour). This is in contrast wi th many

commercial electronic engineering C A D systems, which deal w i th block diagrams at a

later stage of design, for instance at the logic diagram level and below, and offer

facilities such as fast gate level simulation.

In common wi th most design representations and the recommendations of the

psychological work discussed earlier, the block diagrams are hierarchically organized,

allowing the greater complexity of designs at lower levels to be hidden f rom the

engineer unless required. Connectivity between blocks is s imply achieved via

connections to ports residing within each block. Figure I X shows these basic structural

concepts.

The structure was designed so that an Engineer's block diagram could be easily

represented. ELach block diagram or 'wor ld ' consists of a series o f interconnected

functional blocks (The terms 'block* and 'functional block' are used interchangeably

in this dissertation). These blocks can potentially perform almost any mathematical

functions, although within PEDA only a representative selection have been defined at

present. They are again hierarchical in nature, so that complicated functions can be

defined initially at a high level, then later decomposed into a equivalent block diagram,

if or when required.

90

H£ A

MuttpEer

Adder

FILE C

Figure I X , block diagram basic pictorial structure.

4,3.1.1. Functional Blocks

The functional block is as mentioned previously the standard structural unit fo r

representing block diagrams in PEDA. From an implementation perspective, the

hierarchical nature of these diagrams can be seen to be important in a number of ways.

By allowing blocks to be represented in tenns of others, the representation can be made

compact and maintainable. In addition it melds well wi th Object Oriented Techniques

(Stefic & Bobrow, 1985), which can greatly reduce the amount of programming effort

required. The initial very simple PEDA block hierarchy is shown in Figure X .

Each block can generally perform some fo rm of mathematical function. The

places for all-block, alt-block and memory in the hierarchy are associated with the way

in which the various blocks behave, and w i l l be discussed in the section devoted to the

simulation aspects of PEDA, though in brief: all-blocks require all their inputs valid;

alt-blocks need only one; and memories are a special case requiring varying input

conditions. The all-blocks provide a small set of useful elements including common

mathematical functions. There are three special cases within the all-block category,

these are demux, round and the maths function. The demux block produces ' n ' outputs

91

IS-A

Block

IS-A IS-A

All-Block Alt-Block Memory

IS-A IS-A IS-A

Adder
Multiplier
Sin
Cos
Tor̂
Asin
Acos
Aton
And
Or
Xor
Not
Invert
Dem.ux
Round
Maths Function

ALT
ROM
RAM

Figure X, PEDA block functionality.

from one input and therefore allows one block output to be connected to the input of

many others. The round block performs a variable rounding or truncation operation on

an input, allowing experimentation with various data bit widths. The maths function

block lets the designer specify an equation, through links to the underiying LISP

language, or to symbolic manipulation, and equation solving tools such as REDUCE or

Macsyma when operators such as integration are required.

92

4,3.1.2. PEDA Block Representation

A frame based approach has been adopted in representing functional block
diagrams. A simplified view of frames is used in which a frame is viewed as a structure
which characterizes an object. This structure contains a number of 'slots*, which when
filled describe some important aspect of the object. A more complete outline on the use
of frames and slots given by Winston (1984). The use of frames for representing a
block diagram is convenient and flexible, as it allows any information appropriate to
the design to be added as a new *slot\

In PEDA each functional block contains a number of slots, which in turn hold

various attributes, for example its functional behaviour, structure and other information

relating it to other blocks. This is in marked contrast to most models which split the

design representation into a number of different domains. In these approaches the

Physical, Structural and Behavioural aspects are separated, in accordance with the

common consensus on electronic design representation. However as mentioned in

chapter 2, it is difficult to separate these aspects in the early stages of electronic

engineering design, and so this has not been done in the PEDA environment.

93

The structure is represented in PEDA as ART Schemata, these are frame like

constructs similar in appearance to LISP lists and are discussed in the appendices. An

example block shown in Figure X I , will demonstrate the internal structure of blocks.

(defschema adder-12
(instance-of adder)
(instance-of block)
(instance-of all-block)
(function (if (Nan-Check A B)

(set-Nan 'Q)
(setq Q (-1- A B)

)
(contains

adder-12-port-A
adder-12-port-B
adder-12-port-Q

adder-12 is an instance-of adder
inherited from adder
inherited from adder
Tlie Addition Function

it contains three ports called:

+ other slots used by PEDA and ART

Figure X I , block schema - structure

In this figure the block adder-12 has a slot called instance-of which indicates

that adder-12 is an instance of the blocks adder, all-block and block. The instance-of

slot is part of the inheritance mechanism and the net result is that adder-12 will inherit

set slots and their contents from those other schemata. This is in essence a copying

operation, with special rules regarding the how, why and when slots and their values

are copied. The mechanism for this will be discussed later. In the example many of

these slots have been removed to aid readability. The inheritance mechanism greatly

improves productivity and can be seen to be an ideal way in which to generate this type

of structure, an instance where there is a good mapping between the language and

94

problem. The slot 'contains' describes the ports in the block. In this case there are three.

Figure X I I shows the corresponding structure of these ports.

(defschema adder-12-port-A ; Input port A
(instance-of input-port)
(conn-from Or-12-port-Q) ; Input from another block
; + other slots used by PEDA and ART

)

(defschema adder-12-port-B ; Input port B
(instance-of input-port)
(conn-from And-lO-porl-Q) ; Input from another block
; H- other slots used by PEDA

)

(defschema adder-12-port-Q ; Output pon Q of adder-12
(instance-of output-port)
(conn-to muItiplier-5-port-A) ; Output to another block
; +other slots used by PEDA

)

Figure XTT, port to port connection - structure

Each port is either an instance-of an input or output port and is connected to its

opposite in another block. This is done via the slots corin-from and conn-to. In this

example Port A in the adder is connected to Port Q in an Or Block,

The hierarchical nature of block diagram designs can be quite easily

accommodated through the creation of further blocks, and linking them to the base

block via the slot 'contains*. This is shown in Figure X I I I . The block diagram worId-1,

contains an all-block function-1. which is decomposed into an adder and two

multipliers. Data superfluous to this description has again been removed from the block

descriptions to aid readability. This data would encompasses the port descriptions and

normal inherited information.

95

(defschema world-1
(instance-of world)
(contains function-1)

)

(defschema function-1
(instance-of all-block)
(contains adder-1)
(contains multiplier-1)
(contains multiplier-2)

)

(defschema adder-1
(insiance-of adder)

)

(defschema muItiplier-1
(instance-of multiplier)

)

(defschema multiplier-2
(instance-of multiplier)

)

Figure X I I I , a simple block hierarchy

4.3.1.3. Block Templates

When a block is created or copied, the set of slots and values that it has, are

dependent upon the type of block it is. When it is created, these values are taken from

blocks in a block library, which are used as templates to form the new block structure.

When the block is copied, an existing block in a design is used as the template. It can

be seen that both operations are very similar. Two mechanisms are used to effect these

processes. The first is a straight forward inheritance procedure, using the instance-of

relation in ART. This is used to copy slots and values which are identical in the

template and created block. The second is a set of rules which are used for slots and

values which are different. They are also used to build up the new block structure

including any sub blocks or ports in the new block.

When a block is created or copied, the block schemata structure is duplicated.

The copying rules use the 'contains' slot value to find successive blocks in the block

diagram hierarchy. Each block copied is given a name based upon tlie type of block it

96

is. For example adder-1, adder-2 etc. Each copy is then made an instance-of the original

block, by giving it a slot Mnstance-of with the value of the original block. The

inheritance mechanism takes over and the majority of the remaining slots are created

and filled. Finally the 'contains' slot, the interconnectivity and the functionality of the

new block structure are then set up to reflect the original. This process is itemised in

Figure XIV.

1) Recursively copy original block using contains slot as a pointer to lower
blocks.

2) Give each copied block a name based upon its type.

3) Make each new block an instance-of its original, and wait for inheritance
to finish.

4) Make 'contains' slot reflect new structure.

5) Make interconnectivity reflect new structure.

6) Make functionality reflect new structure.

Figure XIV, block creation and copying method.

4.3.1.4. Links to the User Interface

Designs are linked quite closely to the user interface. Blocks have a dual identity

in that they also have a visual aspect. This is achieved through slots in each block

which are used and maintained by the user interface. Li addition the initiator for the

template copying mechanism is the user interface, so that when the user copies a block

icon, the underlying representation is also being copied.

97

4.3.2. Alternative Designs Within PEDA

4.3.2.1. Alternative Designs

In common with efforts concerning individual designs, the use and representation

of alternative designs, or more commonly versions has been extensively discussed in

the literature. A common approach mentioned earlier, concentrates on the management

of versions in a manner similar to computer software version management. These tools

are primarily concerned with versions within the context of projects and the integration

of work from different members of design teams. As a result integration of the various

partial designs including changes and revisions is handled to maintain consistency.

The management of versions is often treated separately to the designs

themselves, and this has advantages and disadvantages. An important advantage is that

this type of version system can be used with any design representation tool. This is

similar in principle to using a software management tool with any programming

language, and as a result a design team can use a preferred system of version control

with all their other tools. The main disadvantage with this approach is the lack of

integration between the two systems. This is mainly a conceptual problem in the early

stages of design, where alternatives and design are intimately entwined. Some recent

approaches do integrate designs and aspects of the evolution of designs (versions)

through the use of object oriented practices. An interesting use of versions by Lathrop

& Kirk (1985), introduces the versional block as part of the design structure,

introducing alternatives at any point in the block design diagram.

4.3.3. The PEDA Representation of Alternatives

The requirements for the representation of versions within PEDA are different

from many other CAD tools (see chapters 2 & 3). The tool is designed to address the

early stages of design, and the aim here is not to provide a method of organizing the

most current designs, but to encourage the designer to consider many different design

alternatives. Thus the representation is geared more towards alternatives as opposed to

versions, in that versions portray the evolution of a design whereas alternatives are

viewed as different approaches to the same problem. This is very similar to the concept

98

of Multiple Worids (P. Veerkamp et. al., 1989). The structures that address versional

issues are therefore not needed, and a simple approach can be adopted, albeit without

the flexibility, or complexity of approaches discussed in chapter 3.

The PEDA representation of alternatives relies on information in the form of

attributes residing in each block diagram linking them into a alternative hierarchy or

tree like structure consisting of derivatives and alternatives in a similar manner to the

definition of the version plane by Katz, Anwarudin & Chang (1986). This structure is

then superintended by the addition of information again in the form of block attributes

explaining the reasons why a particular alternative was made. Figure XV, shows a

pictorial representation of an example alternative structure.

ALT-5

ALT-6

ALT-7

Figure XV, alternative tree.

In this diagram, the alternative designs: alt-2, alt-3 and alt-4 have all been

derived from the base design ali-1. Successive changes to alt-2 produces derivatives:

alt-5; alt-6 and alt-7. A general rule of thumb for this type of pictorial representation

would be, that derivatives are aligned vertically, whilst alternatives are arranged

horizontally. However in this example alt-7 could be very different from alt-2, and so

could be classified as an alternate design to alt-2. To avoid this form of potential

confusion (first mentioned in chapter 3), no explicit distinction is made between

alternative and derivative designs in PEDA. Alternatives are made useful, by the

99

presence of attributes which record the reasons why that alternative was created. A

particular alternative will have a whole set of reasons, found by examining it and its

preceding alternatives. This is important, because the alternative tree can become quite

complex as potential designs are explored, and therefore some means of aiding

alternative navigation is necessary.

The previous alternative tree can be used as an example to show the linking of

information in the various altemative designs. Figure X V I , shows the textual

representation of the seven alternatives ali-1 to alt-7, again with the irrelevant

information removed. Each altemative shown contains infonnation which shows which

altemative it was derived from and example reasons for their creation.

Finally it should be noted that because alternatives are blocks, there is no need

for separate mechanisms to handle their creation and copying.

100

(defschema alt-1
(instance-of design-alternative)
(reason "Want a Filter")

)

(defschema alt-2
(instance-of design-alternative)
(derived-from alt-1)
(reason "partial digital, partial analogue")

)

(defschema alt-3
(instance-of design-alternative)
(derived-from alt-1)
(reason "fully digital")

)

(defschema aIt-4
(instance-of design-alternative)
(derived-from alt-1)
(reason "fully analogue")

)

(defschema alt-5
(instance-of design-alternative)
(derived-from alt-2)
(reason "vary input blocks after simulation")
)

(defschema alt-6
(instance-of design-alternative)
(derived-from alt-5)
(reason "vary output blocks after simulation")

)

(defschema aIt-7
(instance-of design-alternative)
(derived-from alt-5)
(reason "tweak filter coefficients after simulation")

)

Figure X V I , alternative tree structure

101

4.4, The Management of Alternatives, and History Tracing.

4.4.1. The Management of Alternatives in PEDA

The management of alternative designs within PEDA can be divided into two

parts: The first deals with the conventional aspects of version management for example

the saving and restoring of designs; and the second with reducing the cognitive loading

on the user.

Very little needs to be said about the parts of PEDA which manage the saving

and restoration of designs to disk, as they offer the bare minimum of functionality,

providing only saving and restoration of the entire design workspace. Designs are saved

in the following simple manner:

1) Form a list of the relevant blocks (schemata).

2) Iterate over the list and Write the text of each schemata in the list to a save
file.

The restoration of schemata files is even simpler as ART directly provides the

functionality for it.

For the second part, some aspects of alternative management have been

automated by the addition of controlling heuristics in order to reduce the effort of

creating alternatives during design work. The aim here has been to examine the history

trace and the evolving design and determine, where important decisions are being made

and then create alternatives together with the reasons for their creation. At present

automatic support for this in PEDA is very restricted. Cuirently the history trace is

examined for the occurrence of design changes after a simulation in that alternative. The

rationale being that the designer is about to try out a new idea and so a fresh alternative

is created, complete with links to the previous alternative and the reason for creating

the new alternative being a design alteration after simulation. This simple example is

shown pictorially in Figure XVTII, and in outline fonn in Figure X I X .

102

Figure XVII I , automatic creation of altematives (pictorial)

Rule:
IF current mode is constmction
AND last mode was simulating
AND modifying a block diagram

THEN create new altemative from current design

Figure XIX, automated creation of altemative (example rule)

4.4.2. History Tracing.

The history trace is a useful device in electronic design as it offers a partial

record of the design steps used to produce a design. Conventional uses of history

provide the user with a record of their selections and what the system has done. The

information typically in a history trace is of quite a low level, though there are

exceptions. For example, Mostow (1989) uses a record of history or "design plan" to

103

produce alternative designs. The recorded history of design decisions or design

selections, made in a previous design can be replayed upon a slightly different starting

design to partially complete it. These design decisions are derived from a history of

menu commands which are at a comparatively high level.

The Basic history mechanism within PEDA is indeed a straight fonvard record

of all design activity within the system. Whilst this can create vast volumes of data,

especially during simulations, it does allow a permanent record of all design work in

an albeit low level form. Much of this information is of dubious use to the designer, but

it does provide any heuristics present, access to the fu l l history. A sample history trace

is given in Figure X X and portrays the commands used to produce a block diagram and

subsequent simulation.

[create world wodd-1 1]
[select adder 2]
[create block adder-1 worid-1 100 100 3]
[select multiplier 4]
[create block multiplier-1 world-1 200 100 5]
[connect adder-l-portQ multiplier-1-portA 6]

[Start Simulation 100]

Figure XX, example history trace.

The history trace is generated in two ways. The first appends a command to all

the command rules in the user interface. When the user makes a selection, a rule in the

user interface part of PEDA responds. The additional command placed in each user

interface command rule places a fact in the ART database, indicating the command,

together with relevant arguments and the command number. This number is required

so that the order of commands can be determined. The second method monitors the

changes to blocks and associated schemata, so that items such as a program trace can

be provided. This activity is simple requiring only one rule matching all block

schemata, but the generated history trace can be enormous.

104

4.5, Links to User Interface

It can be seen that both the management of alternatives and history tracing
mechanisms are closely involved with the user interface. The history mechanism is
actually initiated within the user interface command rules, and the decision rule uses
the history trace, in part.

4.6. The PEDA Constraint System

4.6.1. Introduction

The use of constraints in electronic engineering design tools has been touched

upon in chapter 3, with systems performing constraint propagation and maintaining

consistency. In the abstract representation any infonnation can be viewed as

constraining, though it might not be associated with any constraint propagation or truth

maintenance system.

This approach has been adopted in PEDA with constraints being any represented

information, which might have constraint propagation attributes associated with it. This

is due to the fact that the main aim of constraints in the representation (or PEDA for

that matter) is to bolster comparisons, and not to maintain consistency, though of course

this is sometimes necessary. Constraints generally describe some feature, and for items

like the structure, this would entail aspects like the block hierarchy and

interconnectivity, or a description of design behaviour. These may or may not have

associated constraint propagation heuristics.

Additional constraints in this area which have been included in PEDA are

attributes like speed, power, chip area and design time. Some constraint propagation

heuristics have been incorporated to propagate these aspects from the lower levels of

a design hierarchy to higher ones, deriving for example the critical delay in a block

diagram. Certain constraints dictate limits, whereas other dictate desirable features.

These various factors can be explained with the use of an example. Figure X X I

shows a partially described top level block, with the unimportant information removed.

105

(defschema design-1
(instance-of design-altemative)
(contains multipIier-block-1) ;
(contains multiplier-block-2)
(contains multiplier-block-3)

; Normal stmcture
information

(must-have (speed fast)) ;
(must-have (chip-area large))
(must-have (power medium))
(must-have (design-time medium))

Absolute requirements

(desirable (speed very-fast)) ;
(desirable (chip-area medium))
(desirable (power low))
(desirable (design-time zero))

Desirable requirements

(speed fast) ;
(chip-area large)
(power medium)
(design-time low)

)

Actual characteristics

Figure X X I , example use of Constraining Information.

A l l the infonnation in the design altemative design-1 is a constraint on the

design. Starting at the top it can be seen that the design is constrained to be a design-

altemative which contains a number of other blocks. These multiplier blocks need not

be described here, but by the virtue of their existence they limit the realization of this

particular altemative. Other constraints which form a boundary on the design are the

must-have's. These invoke the use of heuristics to derive the associated actual values

from elsewhere in the design hierarchy. This may be achieved through inheritance

(which is a simple form of constraint propagation), for the example chip-area, where

the value is propagate from a library component. Heuristics can be used to infer other

values, for example estimating the design lime required in a large and complex

component, or estimating the overall speed of the design. The desirable constraints place

additional emphasis on the overall requirements, though at no time are any constraints

used to remove a design altemative. They are used to compare designs. The actual

characteristics are shown at the bottom of the block, and define the capabilities of the

design altemative in actuality.

106

4.6.2, Constraint System Implementation

4.6.2.1. What Constraints are in PEDA

Al l information within the PEDA system is regarded as a constraint, however

the constraint comparison mechanism deals with only certain types of constraint at

present. Constraint requirements are generally specified by the user and are of the form

(must-have (<constrain(> <value>)) and (desirable {<constraint> <value>)). They are

usually placed in the top level block diagram description. Constraint values can be

specified by the user, inherited from data libraries or derived from existing constraint

values in other parts of the design (or other designs), by heuristics. They are generally

of the form (<constraint> <value>). The format of constraint requirements and

constraint values is summarized in Figure X X l l .

Constraint Requirements:

1) (must-have {<constraint> <value>)

2) (desirable (<constraint> <value>)

Constraint Values:

(<constraint> <value>)

Examples:

Constraint requirements:
(must-have (power low))
(desirable (power very-low)

Constraint value:

(power very-low)

Figure X X n , constraint format

107

4,6.2.2. How Constraints are used in PEDA

Constraints are primarily used in PEDA to compare alternative designs. This
process can naturally be split up into three layers (Figure X X n i) :

User
T flow

Layer 1) Derivation of Overall Design Utility
T flow

Layer 2) Constraint Comparison
T flow

Layer 3) Constraint Derivation

Figure X X I I I , constraint system layers

The first layer is concerned with producing an overall value or utility for each

design which is used as a direct indicator of the overall suitability of that design with

regard to the requirements. This is fed by the results of the second layer which performs

the comparison of individual constraints to fonn a set of desired utilities. The third layer

derives the actual constraint values required from available constraint values according

to inbuilt algorithms or heuristics. This overall flow of information is also shown in

Figure XXni.

At the bottom layer exists the parts of the constraint system which satisfy

requests for constraints which have yet to be derived. Figure X X I V shows the overall

method by which such constraint requests are met. As can be seen a rule based

approach is used. The figiu*e shows a generic rule, but in actuality a rule for each type

of constraint is used.

Rule:
IF can satisfy a constraint request directly:

THEN apply corresponding algorithm or heuristic to available
constraints to do so.

Figure X X r V , constraint derivation

108

The central concept is that any particular unresolved constraint requirement wi l l

have a rule trying to satisfy it. A rule wil l be able to succeed when all it's criteria are

met, and as a result may enable other rules to succeed. The process wil l continue if

possible until all unresolved constraints are derived. This effect can be explained with

an example. Figure X X V shows the constraint satisfaction rule for the calculation of

chip area.

1) Wait untiJ following rule activity has finished and required chi[>area is
valid.

Simple approach assuming that chip-area calculation are enabled.

Rule: Calculate a block's area.
IF there is a block(i),

AND that block contains a request for block area.
AND that block contains other blocks(ii).
AND all those blocks(ii) have chip areas.

THEN calculate the block's(i) chip-area as being the sum of the
blocks'(ii) chip-areas.

Figure XXV, example of constraint derivation: chip area

The calculation of chip area for a block is quite simple being the sum of the

chip areas of all blocks contained in that block. Consider a block diagram design 1

containing 2 blocks, block 1 and block 2. Both block 1 and Block 2 contain two blocks,

block 3 and block 4, and block 5 and block 6 respectively. Blocks 3 to 5 have chip-

areas inherited from a library, the other blocks' chip areas have yet to be determined.

The chip area constraint satisfaction rule will try and derive the chip areas for blocks

1, 2 and 3. It cannot do this for the design as the chip areas for blocks 1 and 2 have not

been calculated. However it can produce the chip area for block] , by adding the chip

areas for blocks 3 and 4. In a similar manner the chip area for block 2 can be derived.

Only after both blocks 1 and 2 have chip areas can the rule derive the chip area for the

design. Figure X X V I shows the chain of rule firing and constraint derivation for this

example. It should be noted that actual numeric values of chip-area are used in this

example. For this type of constraint, numeric values are required and so symbolic terms

109

The design:
design 1:

chip area is required.
contains blocks 1 and 2.

block 1:
contains blocks 3 and 4.

block 2:
contains blocks 5 and 6.

block 3:
chip area 2

block 4:
chip area 1

block 5:
chip area 3

block 6:
chip area 4

Rule firings:

First
For block 1, chip area is 2 + 1 = 3

Second
For block 2, chip area is 3 + 4 = 7

Third
For design 1, chip area is 3 + 7 = 10.

Rule2 fires: chip area required in block 3
Rulel fires chip area in block 3 is 1 + 3 = 4
Rulel fires chip area in block 1 is 4 + 2 = 6

Figure X X V I , chip area constraint derivation example.

would be converted via a lookup process using user or library derived tables.

The second layer of the constraint system is concerned with constraint

comparison, and making sure that the required constraint values are available so that

the comparison process can take place. Figure X X V I I Shows the overall order of these

processes. The constraint requirements are generally supplied by the user or from a

library, but the system does cater for the eventuality of deriving constraint requirements

if there is a real need, using the same method as for constraint values.

Comparison of requirements and values is done through a semi hetunstic

technique. Symbolic values are converted into corresponding numerical values using via

conversion factors supplied by the user or libraries, where applicable. The difference

between these values is then converted to a result in a particular range using heuristics

110

1) IF The constraint value has not been derived:
THEN derive it: -> Constraint Derivation.

2) IF the constraint requirement has not been derived:
THEN derive it: -> Constraint Derivation.

3) Compare constraint value with constraint requirement, to produce a
constraint resuh.

Figure X X V H , constraint comparison.

or a non linear transfer function. Where a must-have constraint requirement is exceeded

the violations can be flagged. An example (shown in Figure X X V I I I) using chip area

can outline the process of constraint comparison.

design-1:
must have constraint requirement: chip area large,
desirable constraint requirement: chip area medium,
chip area constraint value: 25 units.

lookup values:
chip area large is 100 units,
chip area medium is 10 units.

test for constraint violation:
25 is less than 100 so pass.

Compare constraint:
use heuristic, returns constraint result of 7 when given constraint value of
25 and constraint requirement of 10.

Figure X X V I I I , constraint comparison example.

A design has a must have constraint requirement for chip area of large. It also

has a desirable chip area of medium. The derived chip area constraint value for the

design is 25 units. The derived value is already a numerical value and so need not be

modified. A chip area of large is looked up in the technology table for the process

under consideration and returns a value of 100 units. Similariy medium gives a value

of 10. The value of 25 is less than 100 so a must have constraint violation does not

occur. The value of 25 is compared with 10 by a heuristic to give a constraint result or

111

utility of 7, where 1 is bad and 10 is good. Tliis value is then used by the first layer in

the constraint system.

The top layer in the constraint system is concerned with the derivation of the

overall design utility for alternative designs. This functionality is outlined in

Figure XXIX.

1) Gather all relevant constraint results: -> Constraint Comparison,

2) Derive importance value for each constraint result, from: i) user input;
2) library; 3) other method.

3) If required, convert each importance value into a numeric value using
heuristic or algorithmic technique.

4) Multiply each constraint result (numeric) by importance value (numeric),
to give overall utility (numeric), for design alternative.

5) If required, convert overall utility into symbolic value (such as low,
medium & high) using heuristic or algorithmic technique.

Figure XXIX, derivation of overall design utility

The results from all constraint comparisons are combined using an approach

similar to MAUD (discussed in chapter 3). In this method each constraint result is

multiplied by an separate importance factor (which is usually linear). The resultant

values are than added to give a final utility for each design, after normalization. In

addition conversion to and from symbolic and numeric values is provided where

necessary.

An example will clarify the operation of the top layer of the constraint system.

A set of design alternatives are being examined. These designs design-1 to design-3 are

shown in Figure XXX.

The three constraints of importance here are chip-area, power and speed. The

constraint results of these constraints for all three designs have already been determined

by the lower layers in the constraint system. These results are then multiplied by the

corresponding importance values of 0.5, 0.3 and 1 respectively. When added together

and normalized (divided by the total number of importance values) the resultant utility

112

is an indication of the desirability of that design. In this case the design design-1 is the

most desirable.

(defschema design-1
(chip-area medium)
(power high)
(speed very-fast)

)
(defschema design-2

(chip-area medium)
(power low)
(speed slow)

)
(defschema design-3

(chip-area high)
(power medium)
(speed fast)

)
chip-area lookup factors:

very-small 10, small 7, medium 5,
high 3, very-high 1.

Constraint results:

design-1: chip-area 5, power 3, speed 10.
design-2: chip-area 5, power 7, speed 3.
design-3: chip-area 3, power 5, speed 7.

Importance factors:
chip-area .5
power .3
speed 1

Final utilities
design-1: (2.5 + 0.9 + 10)/1.8 = 7.4
design-2: (2.5 + 2.1 + 3)/1.8 = 4.2
design-3: (1.5 + 1.5 + 7)/1.8 = 5.6

Selected design: design-1.

Figure XXX, overall design utility example

113

4.6.3. Links to the User interface

The constraint system is linked to the user interface in a number of places.

However unlike some other parts of the representation there is a relatively clear line

between the two. The instigation of the design comparison process is the most

immediately apparent point. The second is the display of results in the form of overall

design utilities. The various lookup tables for importance values and conversions are

also points of contact, as is the setting and modification of design constraint

requirements and values.

4.7. Simulation of Designs

Simulation has been greatly used by electronic engineers to check the validity

of their work. In this broad domain simulation has been greatly used to model both

digital and analogue designs, though traditionally commercial CAD packages have

concentrated on digital logic simulation of circuit diagrams. More recent commercial

efforts have combined analogue and digital simulation tecliniques, allowing the

verification of mixed designs, expanding markedly the usefulness of such tools. In the

VLSI arena simulation tools have addressed more stages of the design activity

hierarchy, commonly classified as: Behaviour at the top and most abstract; Function;

Logic; Gate; Circuit and Switch at the bottom. Performance considerations are

considered very important at the later stages, due to the size and complexity of the

design at that level, for example: simulating a large (1 million transistor) microprocessor

at the switch level requires a very high perfonnance simulator, if reasonable run times

are envisaged. High performance is basically required because of the requirements of

both simulation speed and accuracy. At the high levels the design wi l l consist of a

relatively small number of interconnected elements of corresponding high functionality.

As design progresses these wi l l be decomposed into a larger set of elements, until at

the bottom individual components are specified. Behavioural simulations can quite

accurately model the behaviour of devices, but are comparatively slow. Switch level

simulators approximate devices to switches, and are relatively fast. Thus in the initial

stages, overall design behaviour of the top level design is best verified using a

behavioural simulator, and in the later stages the overall behaviour of the low level

114

design is adequately verified using a switch level simulator, with the other types in

between. A general purpose simulator could be used for all levels, but performance

would suffer at the lower levels. This happens with analogue designs which require

more accurate device level simulators, such as SPICE, but again the run times can be

prohibitive. The net result is that different types of simulator have evolved to offer the

best compromise between speed and accuracy at a particular level. Generality is

supported by combining approaches into mixed mode simulators, which support a

number of levels. This whole area has been well addressed and there are many

examples in the design automation literature.

Efforts in the knowledge based arena have produced simulators which tackle the

behavioural and functional levels which tend to be based around a high level language,

commonly LISP, or an Object Oriented language, tliough there are a few rule based

systems. This can be explained from the fact that the main emphasis of these systems

is in applying knowledge based techniques (encoding expert knowledge in heuristics for

example) to a particular problem, circuit synthesis for example, and these languages

provide an easier platform for this type of work. Also at the higher levels less raw

computation is required, as there are less elements to model, though some aspects of

behaviour can be troublesome (differential equations and integration for example). This

is also applicable in the initial stages of design, where the behaviour is described by

mathematical equations, and it is at this stage where the PEDA simulator is designed

to operate.

In terms of general usage the relatively common digital circuit simulator is often

used to simulate the behaviour of digital logic circuits. However in the context of this

project a mathematical function simulator is more general. It simulates the behaviour

of connected mathematical functions. Also implicit in the implementation of digital

circuit simulators is the notion of time. Tliese simulators model behaviour at specific

instants separated by a delay. Approximations to continuous behaviour can be made if

the delay is small enough. Another type of simulator follows from data flow principles

in which data flows along a network of connections. At the junction of connections are

nodes which have a mathematical function associated with them. When all the required

data is at a node, it is evaluated and the results of the calculations passed on down the

network. This type of arrangement is very flexible and has the advantage that time

sequencing is not an integral part of it. It can be regarded as a more general type of

115

simulator than the digital circuit simulator. The PEDA simulator is of this second type.

A simulator was required that possesses a great deal more flexibility than what the

simple digital simulator has to offer.

4.7.1. The PEDA Simulator

The simulator within the PEDA environment was conceived as a general purpose

system. It was designed like many others to perform a number of roles: the first, offers

a means of modelling the behaviour of arbitrarily abstracted block diagrams, placing

near the top level of the design activity hierarchy (behaviour„.circuit); The second aim

is to provide a means of verifying that the behaviour of the block diagram at any level

corresponds to the required behaviour in the specifications. The third aim is to produce

a rich source of constraint information. These aims are met with the use of multiple

paradigms, combining both rule based and object oriented programming techniques, to

produce a simple yet powerful simulator engine. The underlying richness of the

implementation languages are used to ful l effect, allowing the specification of design

behaviour as mathematical equations, stored within the blocks themselves. Abstract

simulation is performed with no explicit use of events or delays, in accordance with the

psychological requirements, and abstract representation. However if these devices are

required, they can be accommodated easily, by changing the functional behaviour of

blocks, through the addition of an extra port on each block which would receive

synchronisation data.

4.7.2. PEDA Simulator Operation

The PEDA simulator provides the basic underlying mechanism by which the

behaviour of block diagrams is modelled. It controls the f low of data between blocks

and the subsequent equation evaluation within them. There is a close relationship

between data, behaviour and the structure in that the data is physically moved aroimd

the structure during simulation.

116

The basic operation of the simulator is as follows:

1) Data packets are created at the outputs of input file blocks, using the

data stored within a file.

2) Data packets move along the connections between blocks, from the

output of one block to the input of the next.

3) The presence of all the required data packets at the inputs to the block

wil l cause it to evaluate them according to the equation specified within.

4) The resultant evaluation wil l create new packets at the output(s) of the

block and the packets at the inputs are destroyed.

5) Output file blocks store their input data in a file.

The previous steps are not completed in any set sequence, making the simulator

essentially asynchronous. It is in fact data driven, and operations are performed on a

demand basis, though regulatuig mechanisms have been added to improve the

interactive performance with respect to the user, spreading the evaluation of data across

all viable blocks in time. If this were not done evaluation may be perfonned in a batch

processing manner, with the processing of all the data through one block at a time. This

is a problem due to the recency action of the ART inference engine, in which the most

recent patterns to match have a greater priority than new ones (see appendices).

4.7.3, PEDA Simulator Implementation

The simulator combines the use of rules and Object Oriented LISP written in

ART. Its operation is centred around the movement and manipulation of data in the

form of data packets around the block diagram. This approach is in keeping with the

general philosophy of the tool, in that the operation is closely matched to the conceptual

views of simulating the operation of a block diagram, and simplicity. The explanation

has been divided into a number of areas: The first discusses the makeup of data

packets, how they are moved aroiuid the block diagram and how they are maintained.

The second deals with the data driven operation of the blocks in response to valid data

at their inputs, and the third deals with the evaluation mechanism of the data within the

blocks themselves.

117

4,7.3.L Packets

PEDA uses a flexible arrangement for the representation of Data Packets. They
may be simple structures embodying just data and location, or they might contain
varying additional information dependant on need. The inheritance mechanism is used
both for new packets and the associated functionality required. As a result new types
of packet can be easily added. Various numeric data types are supported at variable
levels of accuracy or uncertainty. An example packet is shown in Figure X X X I l .

(schema P-1
(instance-of packet) ; A data Packet.
(node multipIier-l-portA) ; It is associated witli this port.
(data-type fixnum) ; A 32 bit integer.
(overflow null) ; Set to true is overflow has occurred.
(data 7)

)
; Has a value of 7.0

Figure X X X I I , packet structure

This particular packet P-1 contains the integer value 7. The value 7 is accurate

because an overflow did not occur when it was created. The packet is at present situated

in the input port, port A on multipIier-1.

4.7.3.2. Packet Movement

Packets are moved by altering two types of slot. TTie first is the node slot in a

packet, the second is the packet-link slot in a poa. The node slot is used to associate

a packet with a particular port, and the packet-link slot is used to maintain an ordered

queue of all the packets residing at a particular port. To Move a packet the node slot

is altered, and the corresponding packet-link slots in the source and destination ports

changed to reflect this. A typical packet-link slot in a port is shown in Figure XXXIU.) .

Packet queues are maintained so that ordering of data is preserved when a number of

packets are at a port, for even though exact timing information is not required in the

simulator, the order of data must be maintained for the results to be meaningful. The

decision to move a particular packet is made by rules, candidate packets are handled

118

on a random basis, and as a result packet movement is essentially asynchronous. An

outline of the simple rule which moves packets is given in Figure X X X I V

(defschema input-file-l-portQ
(instance-of port)
(conn-to multiplier-l-portA)
(packet-link (P-1 P-2 P-3 P-4))

)

This is a port.
It is connected to another port.
The queue of packets.

Figure XXXUI, packet queue

Rule: Faster packet move
IF there is a port
AND that port has data packets
AND that port is connected to another port

THEN move the data packets to the other port *

•Note moving packet just involves modifying the packet link slot.

Figure XXXIV, outline of packet move rule

4.7.3.3. Packet Maintenance

Packets are maintained, through the use of inheritable OOP code. This handles

all aspects of packet maintenance, including creation, deletion, and slot manipulation.

4.7.3.4. Data Driven Operation of Blocks

The operation of most blocks is managed by a small number of rules. They

observe the input ports of blocks and invoke the data evaluation mechanism when the

input criteria are satisfied. This generally occurs when data packets reside at all the

inputs of a block. The exceptions to this simple approach are blocks with non standard

input requirements, such as memory devices, files and the A L T block. In these cases

119

slightly modified rules have been used. Figure X X X V shows an outline of the relevant

rule for the all block.

Rule: function all block
IF there is an all block

AND there is a data packet associated with all its input ports

THEN invoke the data evaluation functionality for that block.

Figure X X X V , all block evaluation invoking rule.

4.7.3,5. Data Evaluation

Data evaluation is achieved by applying the functionality described within a

block to the data at the input ports. Object Oriented Programming techniques have been

used to achieve this with basic types of blocks, which include All-blocks, Alt blocks

and the memory devices. Figure X X X V I shows how this is done for the all block.

1) Examine the fimction-conn-in slots to determine the input variables and the
ports which are associated with them.

2) Do the same for the function-conn-out slots and output ports.

3) Get the relevant input data and bind it to the corresponding variables.

4) Evaluate (execute) the functionality of the block defined in the function
slot.

5) Take results and convert to data packets and place in output ports.

6) Remove input packets.

Figure X X X V I , all block evaluation

120

4.7.4, Links to User Interface

The simulator is relatively imconnected to the user interface. The only direct

control starts or stops simulation, all other effects are achieved by manipulating the

blocks themselves or observing the results. For example if floating point results are

required then the data type slot of the relevant blocks is changed to floating point.

Similarly an observation of the packets gives a simulation trace.

4.7.5. PEDA Simulation Example

This basic operation of the PEDA simulator is best outlined with an example.

The block diagram for a very simple design is shown in Figure X X X V I I .

@ = A • ID @ @ = A • ID @

Figure X X X V I I , example

The design consists of a 2 input multiplier, fed from two input files: f i leA &

fileB, and is in turn connected to one output file: fileZ. Initially data is read in from the

input files and is placed on their outputs as data packets (Figure X X X V I I I) . These data

packets are moved along the connections linking the input file blocks to the multiplier

(Figure XXXIX) . When the all the inputs to the multiplier are ready, the data is

evaluated, the old data is destroyed and the result made available at the output as a new

packet (Figure XL). This in turn moves along the connection to the output file block,

where the data is stored in a file, and the now redundant data packet is destroyed

121

(Figure XLI) . The above set of sequences are performed until the input data is

exhausted.

Figure X X X V I I I , input data from files

Figure XXXIX, packet movement between blocks

The overall approach of the simulator is centred upon the fact that the rules and

OOP code provide the means by which the behaviour is simulated, and are not

themselves descriptions of the behaviour. This confers some advantages in that it allows

the implementation of the simulator to be changed without affecting the simulation

behaviour, and secondly it allows the modelling of arbitrarily difficult behavioiu-. In this

122

me A

A
Q - A ' B A

Figure XL, evaluation of data

FDa tar resuCtznS d o ^

ROE A

1 ni£ s
A

Figure X L I , output data to files

implementation the behaviour is described in LISP, but within these confines it can be

any mathematical equation as long as the description language can manage it. A

common attribute of many simulators is that they limit the modelling of behaviour to

a small set of functions, usually logical. This is true to some extent in this case, but the

limits are only specific to the implementation language, and not the method in general.

123

4.7.6. Feedback and the AlternativeCAJt) Block.

In a event driven data flow simulator a number of problems can arise when

feedback is used. In these cases at least one of a block's inputs is dependent on its

output. An example of feedback is shown in Figure X L I I . In this port B on the

multiplier is dependent on its output from port Q. The majority of blocks require that

all their inputs are available before evaluation wil l occur. As a result a block with

feedback wil l never evaluate. This problem is solved in the PEDA simulator with a

special type of block called the Alt block. This block does not obey the general rule of

evaluation and wi l l pass any input to its output. When this block is used in the feedback

path in conjunction with a setup data from an input file block, the feedback problem

can be avoided. A secondary advantage of this approach is that it makes explicit the

initial conditions of all blocks in the block diagram. The placement of the Alt block can

also be seen in Figure X L I I .

File A contains the data to be used during the simulation, whilst File i contains

the initialisation data for port B of the multiplier. Without this data simulation would

not proceed as the input requirements for the multiplier would not be satisfied.

m£ I
0 A

All

0 - A AU B

3

3
3

6* A*B A

DEMUX mi
A

Figure X L I I , use of the alternative block.

124

4.8. Integration in the PEDA Representation: An Example

The following example shows how the basic parts of the PEDA implementation

are used and work together. The example given is that of a engineering producing a set

of different designs and then comparing them.

The designer interacts with the PEDA system using the user interface. To start

a new design the user selects a block from the library palene. When this block is placed

upon the drawing board, a skeletal block is created, containing mainly graphical data.

The template copying mechanism is invoked and the block is filled out to contain all

the required data. The first block in this example is an adder. The block structure of the

adder created is shown in Figure X L I I I .

It should be noted that the graphical information maintained by the user interface

has not been included in this example. The adder has two input and one output port, a

number of constraint values for chip area, power, speed and design lime, the

functionality of an adder (function slot), and links between the functionality and the

ports (function-conn slots).

Two more blocks are created for this design, both adders, adder-2 and adder-3.

They are very similar to adder-1 and so are not shown. For this design the outputs of

adder-1 and adder-2 are connected to the inputs of adder-3. To do this the conn-from

and conn-to slots of the respective adders' ports are modified to point to the

corresponding ports. This can be seen in Figure XLIV.

Four input files and one output file are added to the design, and linked to the

unused input and output ports.

The user interface can then be used to modify the behaviour of the blocks

specifying the base number type that each block works with. This data is stored in the

blocks and wil l be used by the simulator. When the simulator is invoked the user

interface is used to watch and display the results of the simulation. The dynamic

operation of the simulator is explained in section 4.7 with an example in 4.7.5.

At any time the history tracing mechanism can be enabled, producing a record

of events in the ART fact database. This is discussed in section 4.4 an example partial

history trace is shown in Figure XX.

If after simulation the designer decides to modify the design, then the decision

test rule wil l fire and signal the creation of a new design altemative. The template rules

125

(defschema adder-1
(instance-of all-block)
(instance-of adder)
(chip-area medium)
(power low)
(speed 100)
(design-time v-low)
(function (Setq Q (+ A B)))
(function-conn-in (function A in adder-l-port-A))
(function-conn-in (function B in adder-l-port-B))
(function-conn-out (function Q to adder-l-port-B))
(contains adder-l-port-A)
(contains adder-l-port-B)
(contains adder-l-port-Q)

)

(defschema adder-l-port-A (defschema adder-l-port-B
(instance-of input-port) (instance-of input-port)
(contained-in adder-1) (contained-in adder-1)
(direction in) (direction in)
(conn-from) (conn-from)

))

(defschema adder-l-port-Q
(instance-of output-port)
(contained-in adder-1)
(direction out)
(conn-to)

)

Figure X L I I l . example adder block structure

wil l build up the new alternative from the original. The designer can also instigate a

new alternative from tlie user interface. The decision test rule is discussed in section

4.4.1.

With a number of separate designs, the user may wish to compared them. The

user interface is used to select the particular constraints needed for comparison and a

library of lookup tables for the conversions between symbolic and numeric values. At

this stage the user may decide to input a new set of importance values or use an in

house derived library. The comparison process can then be started. A l l required

constraints that need to be found are derived using the built in heuristics. The constraint

values are then compared with the requirements to give the set of results or utilities, and

these are combined to form an overall utility using the importance values as weighting

126

(defschema adder-l-port-Q
(instance-of output-port)
(contained-in adder-1)
(direction out)
(conn-to)

)

Becomes:

(defschema adder-l-port-Q
(instance-of output-port)
(contained-in adder-1)
(direction out)
(conn-to adder-3-port-A)

)

And:
(defschema adder-3-port-A

(instance-of input-port)
(coniained-in adder-3)
(direction in)
(conn-from)

)

Becomes:

(defschema adder-3-port-A
(instance-of input-port)
(contained-in adder-3)
(direction in)
(conn-from adder-l-port-Q)

)

Figure XLIV, modification of conn-to and conn-to slots

factors. The final utilities for each ahemative are displayed and the highest one

highlighted by the user interface. This process is discussed in section 4.6.2.2

The constraint system can be used in a variety of ways. For example, a potential

alternative design can be rapidly evaluated to test its suitability. Alternatively the

criteria may be changed to determine the effects on the designs. The net result is that

the tool facilitates easy application of 'what if* strategies.

4.9. Summary

The aim of this chapter has been to show how the relatively abstract

representation of early electronic engineering design discussed in chapter three has been

used to form a design tool called the Plymouth Engineer's Design Assistant (PEDA),

targeted at some of the users cognitive needs. The description has been split into the

same broad categories as chapter 3. and the key parts of the implementation are

described in moderate detail. At the same time the implementation is compared with

other approaches which have substantial implementational aspects. The emphasis has

been on portraying the simplicity of the implementation, which is due in part to the

simplicity of the abstract representation on which it is based, and a disregard for many

implementation constraints. These include for example, the size and speed of the final

127

tool, which can only be justifiably done in a research context. Certain parts of the

implementation have been discussed in more detail, for example the data flow simulator

to show this simplicity, and also to show how a design and its behaviour take place at

the same level, where the data physically moves around the design itself. This and other

issues raised by the work wil l be discussed in the next chapter.

128

References for Chapter 4

Baker, K. D . , Ball, L. J., Culverhouse, P. R , Dennis, I . . Evans, J. st. B. T., Jagodzinski,

A. P., Pearce, P. D . , Scothem, D . G. C . and Venner, G. M. , "A Psychologically Based

Intelligent design Aid," in (to appear) Intelligent CAD Systems 3: Practical Experience

and Evaluation, ed P. Veerkamp (Ed.), Berlin: Springer-Veriag.

Hutchings , E. L., Hollan, J. D. & Norman, D. A.,"Direct Manipulation Interfaces,"

Human Computer Interaction. Vol. 1, pp. 311-338, 1985

Katz, R. H., Anwarrudin, M. , Chang, E., "A Version server for Computer-Aided Design

Data," Proceedings of the 23rd ACM/IEEE Design Automation Conference. 1986.

Lathrop, R. H. and Kirk, R. S., "AN Extensible Object-Oriented Mixed-Mode

Functional Simulation System," Proceedings of the 22nd ACM/IEEE Design

Automation Conference, pp. 630-636,]985.

Mostow, J., Bariey, B. and Weinrich, T., "Automated reuse of Design Plans," Rutgers

University, Department of Computer Science, AI/Design Project Working Paper No.

146, 1989.

Stefic, M. , Bobrow, D. G., Bell, A., Brown, H. Conway, L., Tong, C, "The Partitioning

of Concerns in Digital System Design," Xerox pare internal paper VLSI-81-3, Dec

1981.

Stefic, M , & Bobrow, D. G., "Object-Oriented Programming: Themes and Variations,"

The A I Magazine. 1985.

Veerkamp, P., Kwiers, R. P., and Hagen, Paul ten, "Design Process Represntation in

IDDL," Preliminary Proceedings of the Third Eurographics Workshop on Intelligent

C A D Svstems. April 1989.

Winston, P. H., "Artificial Intelligence 2nd Ed," Addison-Wesley, 1984.

129

130

Chapter 5: Contributions, Final discussion and Further

Work

131

5. Contributions, Final Discussion And Further Work 133

5.1. Overall Structure of This Chapter 133

5.2. Contributions 133

5.3. Final Discussion 134

5.3.1. The Overall Approach to Applying Knowledge Based

Techniques to Design Tools 134

5.3.2. The Target Domain of Knowledge Based Systems 136

5.3.3. The Complexity Inherent in Design Systems 136

5.3.4. The Target Level of Representations 137

5.3.5. How Target Languages Shape Representations 138

5.3.6. The Use of the Separation of Concerns in

Representations 138

5.3.7. The Similarity BetM'een the Representation of Software

and Engineering Designs • • 1^9

5.4. Problems Encountered 139

5.4.1. The Ambiguity of Terminology (Design Process) 139

5.4.2. Limitations of Target Languages 140

5.5. Further Work 140

5.5.1. Representation of Designs and Design Alternatives 141

5.5.2. Management of Designs and Design Alternatives 141

5.5.3. The Constraint Comparison System 142

5.5.4. The Simulator 142

5.5.5. The Decision Point System 142

5.5.6. The Detection and Correction of Errors 143

5.5.7. Implementations in Other Languages or

Environments 143

5.6. Concluding Remarks 144

132

5. Contributions, Final Discussion And Further Work

5.1. Overall Structure of This Chapter

The aim of this chapter is to bring together the statements of the preceding four

chapters into a summary of the ideas and research embodied in the work to date. The

chapter begins with a description of what contributions the research has achieved to

date, both in terms of the idealised abstract representation of early electronic

engineering design, and the partial realization of this representation in PEDA. a

cooperative tool designed to aid the engineer in this area. This is then followed by a

general discussion of some of the important issues concerned with electronic design

representational that have been raised during the course the research and have been

outlined in the main text. A discussion of the problems encountered during the research

leads on to an outline of topics in which further work may be carried out. The chapter

and dissertation is rounded off with a few concluding remarks.

5.2. Contributions

The work described within this thesis has been concerned primarily with two

main points. The first deals with the abstract definition of a idealised representation for

early electronic engineering design; The second is concerned with an implementation

of key parts of that representation as the core of a cooperative electronic engineering

design tool known as the Plymouth Engineer's Design Assistant (PEDA).

The representation differs significantly from many others in that its basis has

been shifted away from an analysis of the end problem towards the cognitive needs of

the designers themselves. To achieve this aim the requirements for the representation

have based primarily on the results of psychological research in this field (Ball. 1990).

This psychological emphasis has produced a representation which caters mainly for the

generation and selection of design alternatives. It is based upon the merging of all the

information regarding an eariy design into two loose hierarchies: The first deals with

the decomposition of equation based block diagrams: And the second orders these

diagrams into collections of alternative designs. Al l infonnation held within the

representation is conceptually viewed as constraining a design or set of designs and can

133

be used as criteria to choose between them. The implementation realizes the two

hierarchy representation, addresses some important aspects of the constraint system and

the navigation of the altemative hierarchy. Also included are a rule based, multilevel,

data f low equation based simulator. The overall features of both the representation and

to a lesser extent the implementation are itemized below:

1) A merged representation for block diagram and altemative design
hierarchies (versions).

2) A System for the management of block diagrams and design
alternatives.

3) A constraint comparison system for the analysis and selection of
alternatives.

4) A block diagram based mathematical equation simulator

5) A system to extract and record decisions made during design.

6) A system to check for errors and inconsistencies made during
design.

5,3. Final Discussion

This section attempts to cover some important issues or points that were raised

during the research. Some of these issues have already been covered in the previous

chapters, but are included here with the others not only for convenience, but to put them

all in a common perspective.

5.3.1. The Overall Approach to Applying Knowledge Based Techniques to Design

Tools

The use of A I or knowledge based techniques in design support tools still has

much to offer the designer Traditionally tools based upon these techniques have

134

supported the designer from two quite different perspectives (Smithers et al, 1989): The

first creates involves creating an automatic design system, that replaces some aspect of

the design activity using domain specific knowledge elicited from experts; The second

adopts a cooperative approach and attempts to provide some form of intelligent design

support system which will aid the designer. It can be seen that the approach used has

many very important implications for tool designers and end users alike.

The first and more common approach has been and will continue to be for some

time an area of extensive research, especially in the digital VLSI domain. However

there are a number of problems to this strategy, the most apparent resulting from the

increasing sophistication of design tools in this area. The need for powerful systems,

has spurred the production of more capable and wider ranging tools which have slowly

moved towards the early stages of design. As this occurs they tend to require

increasingly greater amounts of embedded design knowledge to address all these areas,

and it can be seen that a general purpose system based upon these principles, would

need a vast amount of expert knowledge that would given present day technology,

require a long time to elicit. This great repository of knowledge would also create

additional problems, with regard to the verification and maintenance of the information

stored within.

The second class of systems however offer an arguably superior approach in that

they realise assistance by providing support for those areas in which the performance

of engineers has traditionally been poor or tedious, and not providing assistance in those

areas in which they are good at. This targeting of support will hopefully produce useful

systems which are achievable using current technology, however it seems that the main

problems are replaced with others which are associated with the means of deriving what

types of support are required.

In areas where it has been shown that certain traditional knowledge elicitation

techniques fail , other techniques are required (Evans, 1986). The psychological studies

upon which the requirements for early electronic engineering design in this thesis are

based are slow and laborious (Ball, 1990). As a result fast and accurate methods wil l

be necessary if the aim of producing systems which meet the overall needs of designers

is to be met.

135

5.3.2. The Target Domain of Knowledge Based Systems.

To find the areas where assistance should be provided in a design support

system it appears that traditionally, introspective and intuitive methods have been used.

This has produced a large number of contemporary systems which are primarily

oriented at the design problem, in both classes of system described in the previous

subsection. As a result systems have been produced to address designers' needs through

satisfying the domain needs, with the main point being that if a system removes the

designer from a particular mundane or repetitive aspect of design, then assistance is

being afforded.

In reply to such techniques it would be reasonable to counter that in depth

studies of the way in which designers design are urgently required to f ind out what are

designers' needs after all. It does indeed look worrying that we are not sure that we are

addressing the real needs of engineers or not, especially in the light that it is indeed

very difficult and time consuming to elicit that knowledge (Evans, 1986 & Ball, 1990).

This has been to some degree and approaches that look into the human aspects of

design have been made. Unfortunately these have tended to tackle only the Human

Computer Interaction (HCI) aspects of systems, and not the underlying design process

model or representation. Suggestion have recently been made for truly cooperative

systems which are domain independent (Smyth, 1988). Other studies (Ball, 1990 &

Ullman et al. 1988) make similar recommendations, and add weight due to the

techniques used to remove biases from introspective accounting that is often used. It is

therefore reasonable to suggest that such techniques could be advantageously used to

produce the requirements for truly cooperative systems.

5.3.3. The Complexity Inherent in Design Systems

An examination of the electronic design arena in both the research and

commercial field will show that in general the tools are become more and more

complex and that this trend shows no real signs of stopping. This is the normal result

of tool designers adding more functionality to their products.

136

As systems' complexity increases they become harder to manage and maintain.

This can be generally tackled in two ways: The first uses tools and methodologies to

manage the complexity; The second attempts to reduce the complexity in the first place.

The psychological requirements for a system that addresses the early stages of

electronic engineering design has been shown to produce a simple abstract

representation and consequently relatively uncomplicated end system. This

representation does however anempt to some important aspects of that activity, which

are not covered by other tools, in a consistent, homogeneous and uncomplicated

manner.

It can therefore be seen that there are real benefits to be won in overall system

complexity and usefulness to the use of psychological methods in deriving the

requirements for cooperative systems in the early stages of design at least.

However there may be real benefits to using similar techniques in other parts of the

design activity.

5,3.4. The Target Level of Representations

Another point made apparent by the research and previously mentioned was

concemed with the level at which a representation is targetted. This is a simple issue,

but has important ramifications for all later aspects of design, in that i f the

representation is placed at too high a level, or described in too abstract terms, then it

can become vague and then loose its usefulness, by allowing too much freedom in a

subsequent implementation. Whereas, if it is pitched at too low a level, then it may lose

clarity amidst the clutter of implementation issues.

It appears that many representations in electronic engineering design seem to be

targetted at too low a level and as a result their description is ful l of implementation

details, regarding the particular language details for example. If these details are

removed, not only does the representation become simpler and clearer, but also

independent of constraints such as language and related paradigm issues.

137

5.3.5. How Target Languages Shape Representations

Another interesting observation has been the apparent effect that the target
language has upon the structure of many representations. In these it is often very
difficult to separate the representation from the language and the representation is often
described in language terms. For example an object oriented representation wil l mirror
closely the object oriented features of the chosen implementation language, or a
representation separating structure and behaviour wil l based on a language which
promotes this. Whilst it may be argued that representations may be developed
independent of the target language this appears not to be so in the electronic
engineering domain, because the representations are not described in language
independent terms.

In a similar vein, representations are greatly influenced by the paradigm

preferences of the designers, thus instead of getting a representation which mirrors the

internal aspects of the design activity we get for example: object oriented

representations; rule based representations; blackboard representations; and database

representations. To some degree, these trends cannot be avoided as languages are often

used as conceptual aids, but the implementation should be derived from the abstract

representation and not the other way around.

5.3.6. The Use of the Separation of Concerns in Representations

The subdivision of the representation of designs into a number of non interacting

domains of description is a common theme in electronic engineering design and can be

viewed as an extension of "Divide and Conquer" complexity reduction techniques used

by engineers in many disciplines. However it appears that care should be shown in

deciding how to partition the information, and in the early electronic engineering design

activity it would be difficult, due to the amount of interaction between the commonly

accepted domains, for example structure, behaviour and physical. As design tools

improve the different types of information that are stored wil l increase and in return so

wil l the potential number of domains. To help reduce the chaos that may result, further

study wil l be needed to determine the areas and the degree of partitioning that best

model the different parts of the design activity.

138

5.3.7. The Similarity Between the Representation of Soft^vare and Engineering

Designs

An interesting observation found during the course of the work, was the apparent

similarity between electronic engineering and software design representations especially

at the functional level, for example logical block diagrams in commercial electronic

design tools, and ACP diagrams in MASCOT. This statement of the obvious, does

however have the implication that research in electronic engineering design may have

much to gain from work in the software gain and vice versa. In addition it does indicate

that it may be possible to produce tools that address both domains if the areas of

commonality are found.

5.4. Problems Encountered

This section outlines some of areas in which problems were encountered during

the research. Not all the problems are discussed here as a few are apparent from the

previous section on issues.

5.4.1. The Ambiguity of Terminology (Design Process)

This problem arose out the need for communication between the members of the

interdisciplinary group of researchers and their supervisors on the PEDA project. Two

facts emerged from the resultant dialogue: The first was that phrases and terminology

were not consistent between members of the different professions and as a result a great

deal of time was spent in achieving a reasonably dialogue; The second problem arouse

out of definitions in common use in the engineering design assistant arena. These were

phrases like "Design Process" and "Constraint" which tended to have a number of

definitions in the literature, and made the process of analysis quite difficult.

139

5.4.2. Limitations of Target Languages

This is a problem common to most attempts at implementation, in that there is
a semantic gap between the language and the intended artifact, in this case the
representation.

It is reasonable to state that this wi l l always be a problem, but the combination

of effective language and environment can reduce this greatly. Even so, with a language

such as the chosen ART, there are a number of problems. Tliere may be a paradigmatic

gap, between the representation and the implementation, for instance the abstracted

representation may be hierarchical and the language may use a blackboard. This can be

solved with multi-paradigm languages such as ART, but the results can be clumsy and

inelegant. The language may be low level, and so too much time is spent worrying

about details. The features of the language or environment may be extensive but poorly

integrated, for example in ART different object oriented mechanisms are used for both

schemata and icons. Some features may be extremely powerful and others infuriatingly

limited, as again was the case with ART's reasoning mechanisms and user interface

respectively. The sophisticated environments generally have long learning curves, but

once learnt are very productive tools. And finally the resultant systems tend to be

resource hungry, and run slowly when compared to more conventional tools.

5.5. Further Work

It can be seen from the text of chapter 4 that the pilot PEDA system

incorporates only part of the functionality required by the psychological requirements

and abstract representation. There is therefore a great deal of scope for further work on

the tool in many areas, not only on the implementation but on refinements to the

abstract representation itself, areas such as classic version control and communication

with other tools such as REDUCE or Macsymma. The following sections precis the

individual areas targetted for further work.

140

5.5.1, Representation of Designs and Design Alternatives

The representation of designs as alternatives are one of the most completely

implemented parts of the representation, though it must be said that the approach chosen

is not particularly efficient from the point of view of the memory required by designs

or the speed of creating or subsequent manipulation of design alternatives. These factors

can be addressed in a number of ways, and are indeed a priority target for additional

research due to the slowness of the particular implementation of the PEDA tool.

However the advances made in these areas in LISP the underlying language for the type

of tools used to create PEDA may make such effort wasted. In fact this was one reason

why efficiency considerations were not deemed important in the production of PEDA

in the first place.

The second area that can be examined is fundamental to the representation as

it deals with the number of constraints used. At present the implementation deals with

constraints in a totally free format. The psychological requirements suggest the types

of information required as a minimum, and it has been the aim of the work to keep this

type of information as small as possible. However in real systems the amount of

information available can become quite large and so it is an important area for further

work to determine what specific domain infonnation (ie constraints) are the best to use,

from the point of view of the constraint comparison system.

5.5.2. Management of Designs and Design Alternatives

The functionality within the PEDA implementation that deals with the

management of designs and their alternatives is in fact quite minimal, providing the

barest of necessary features. In a more comprehensive system this would need to be

addressed, through an examination of the abundant literature in the area of software

version management or involving studies (perhaps psychologically based) to gather a

better understanding of the actual requirements in this particular area.

141

5.5.3. The Constraint Comparison System

Again, the constraint comparison system has only been sufficiently implemented
to test out the ideas embodied in the abstract representation and would need to be
extended greatly if it were to meet the aims of the psychological requirements fully.
The number of constraint heuristics could be considerably extended, but the number and
type of constraints need to be known as mentioned before. In addition the multi-
attribute constraint comparison engine requires further investigation before completing.

5.5.4. The Simulator

The simulator like the representation of designs and alternatives is one of the

most completed parts of the implementation, though again there are many aspects that

warrant further review.

The simulator like many other parts of the implementation is quite inefficient

in terms of execution speed and other normal constraints, and although this is adequate

for very small test designs, it needs to be tackled if the PEDA tool is to be effectively

used on larger work. Simulation is an area which has been extensively examined over

the years and improvements to this system should be realizable within the context of

its conception, although it is a comparatively high level simulator and much work has

concentrated upon improving the speed of low level simulators.

It may also be advantageous to investigate interfacing a symbolic manipulation

tool such as REDUCE or Macsymma to the simulator, greatly improving its capabilities,

and at the same time providing facilities such as equation solving. However these tools

tend to be large, offer many features that may not be required and tend to be closed

systems providing limited access to a knowledge based system.

5.5.5. The Decision Point System

In a similar vein to the previous topics a great deal of work can be conducted

on the decision point system. This could utilize considerable weight of literature

available on decision analysis and studies intended to elicit generalized and specific

heuristics on detecting and extracting the important design decisions and the reasons

142

behind them. These ideas could be joined into a framework that then provided a semi-

automated means of annotating designs with the additional information required to tell

the designs why a particular design decision was made.

5.5.6. The Detection and Correction of Errors

This is an area that has not been covered at all in the PEDA implementation,

and as such there are plenty of opportunities for further work here. There are many

possible avenues to explore, concerned with the detection of mathematical constraint

violations, and the adoption of REDUCE or Macsymma as a base symbolic

manipulation tool together with heuristics to detect other constraint violations, in a

similar way to truth based systems, may be a reasonable way forward.

Again the problems of inaccessibility may force other schemes to be investigated.

5.5.7, Implementations in Other Languages or Environments

One of the fundamental aspects of the abstract representation is that it is

implementation independent and therefore attempts to avoid specific details about

languages or particular representational schemes. These issues are dealt with by a

panicular implementation. The aim here has been to simplify the abstract representation

by removing these considerations, and make the abstract representation as generic as

possible. The specific implementations can therefore take advantage of the features of

a particular language or environment, or improvements in algorithms and heuristics,

whilst still addressing the needs of the abstract representation. A possible avenue for

further work is produce implementations in different environments or languages, taking

into account the knowledge gained from other approaches, but without having to resort

to a particular language paradigm, which may occur if the representation was derived

from that language.

143

5.6. Concluding Remarks

The overall aim of this thesis has been to produce a knowledge based design
support tool for the early stages of electronic engineering design. This has been done
by first presenting a new idealised abstract representation for those stages whose
purpose is to direct the production of cooperative design tools to the areas of that
activity that have been shown in the literature to be important. By being based upon this
psychological input the representation is targetted at those needs specifically, instead
of through side effect and as a result contains far less redundant functionality in this
area than many other design systems targetted at later stages of design activity.

hi addition it is shown that by addressing the cognitive needs of designers, any

explicit or implicit knowledge held by the representation and largetted at those needs

wil l be useful in wider range of problems than systems targetted at a particular end

problem, because the cognitive problems experienced by the designer are common

across many problems.

144

References for Chapter 5

Ball, L., "Cognitive Processes in Engineering Design," PhD Thesis, Department of

Psychology, Polytechnic South West, Devon, UK, 1990.

Smithers, T., Conkie, A., Doheny, J., Logan, B., and IVIillington, K., "Design as

Intelligent Behaviour: An A I in Design Research Programme," Fourth International

Conference on Applications of Artificial Intelligence in Engineering. July 1989.

Evans, J. St. B. T., "Knowledge Elicitation in the Training and Assessment of High

Level Cognitive Skills," Report Prepared for the Army Persoruiel Research

Establishment, 1986.

Smyth. M. , "Articulating the Designer's Mental Codes," LUTCHl Research Centre

internal paper (draft) ref: HCC/L/24, 11th May 1988.

Ullman, D. G., Dietterich, T. G., and Stauffer, L. A., "A Model of the Mechanical

design process Based on Empirical Data," A I EDAM, vol. 2, no. 1, pp. 33-52, 1988.

145

Appendix A

146

A. PEDA in Use

The following figures give a view of the PEDA tool in use. They show the user

interface primarily developed by G.M. Venner, discussed briefly in the main text. The

interface is basically a screen based driven drawing board, using a mouse for the direct

manipulation of block diagrams. Figure X X V I shows the form of the interface, where

the designer is using the tool to produce a trial FIR filter. The main work area is in the

centre, where block diagrams can be built up from the palette of common blocks on the

left. Operations are performed either using the fixed menu which indicates overall

options available. Pop up menus or direct manipulation of the various visible blocks in

the palette or main window. All menus are context based, indicating the current options

available for any selected object. In this case a Pop up menu is visible and one of the

multiplier blocks is about to be moved.

PIUTTC

r n

B

EE3

WW
[U l K l I f

l i f t M U M]

(l l M U t l)

ciMuuo wrow

Ob uu
(Z 3

1

•]

l i i tB ir
f t i i t *

0 E

| _ ^ T l i > t . | U

i t | : g

0

ICM M I t

Figure X X V I , block diagram construction.

A-1

The second figure shows the completed FIR example. It has a main input, an output and

three coefficient inputs C I , C2 & C3. In addition there are three multipliers and two

adders. The Demux blocks perform no other function than converting one input into two

outputs. Connectivity is indicated by lines between the ports on the respective blocks.

m m

[H3 S

[3n

B

• t H l t t *

COtUtfCI «IH0O>

u n . i iiip> I

OtJUII

(£

• J

3

OtJUII

(£
Cl

c

• J

3

^ U L I I P L I t l

I T

• •1=5 [i c 3

n

c

n

c

n

ROOT
(l i v

r i M t
• i t t k

4caiR UJOtt I

3 F> 1
•

Figure X X V I I , completed block

The Results of a simulation run are indicated in Figure X X V I I I . Ports can be

probed, to examine the data passing through them. When this happens the port is

darkened and a probe window appears. As simulation proceeds the data through each

probed port can be seen in the corresponding probe window. The interesting point to

be noted is that changes can be done on the f ly , with results being produced

incrementally. Finally it should be noted that this is indeed an incorrect design, and wi l l

produce the wrong results. For correct operation a delay is required between each

demux and multiplier block.

A-2

1 + f t H

[w T J

P3r3

i t M
M i l

O M U U VUOOV

^ i M n . i i " ^ g

6

11.11 11.

i . i i . e •

11.11 11.

i . i i . e •

1 "

ROOT

r i i i t
H l t U

27.TI 17.

-U

l . l > «S. .

Figure XXVTII, block diagram simulation.

A-3

Appendix B;

A-4

B. The ART Expert System Development Tool

This appendix outlines and describes the capabilities of the Automated

Reasoning Tool (ART), a large and complex hybrid expert system development tool,

which was used extensively to investigate and develop the PEDA environment discussed

in chapter 4. Although important in the implementation of the PEDA tool, it was not

thought that an explanation of ART was appropriate to the main text. However for

completeness and an overview of the associated terminology it is included here in the

appendices.

Introduction

ART is one of group of large, hybrid general purpose expert system

development tools, which combine a number of paradigmatic approaches, to facilitate

the production of knowledge based systems. The ART system documentation lists its

primary features as:

1) A language for knowledge representation and programming.

2) An Inference Engine.

3) A complete programming environment.

The A R T Languaee

The ART language can be subdivided into a number of areas. These are:

1) Facts

2) Schemata

3) Rules

4) Viewpoints

B-1

Facts

A fact is a means of representing knowledge or infonnation in ART. Each fact

is a separate item of information and is stored in an area known as the Fact database.

Al l facts are unique and are numbered. To the programmer Facts appear in two forms

1): as text separated by spaces and wrapped in round brackets, for example:

(friends Hillary John Lee)

or 2) within square brackets and preceded by a unique fact number, for example:

f-1211[friends Hillary John Lee]

The first form is used within the ART programming langauge, which is an

extension to COMMON LISP, and has a similar syntax, the second is the printed form

of facts residing in the fact database. Facts are relatively free format, variable length

entities, similar in conception to LISP lists.

Schemata

ART Schemata are used to organize knowledge about items which are related

to one another. To the programmer schemata consist of a number of 'slots* which

contain 'values'. A example schema is shown below.

(defschema bug-eyed-alien ; Name
(has-legs yes) ; Attribute slot
(has-suckers no) ; Attribute slot
(number-of legs 2) ; Attribute slot
(type alien)

)
; Relation slot

B-2

The schema has an overall name, and several named slots. Each named slot can

contain attributes or the name of another schema. In the latter case, this forms a

relational link between the two schemata and allows the schema system in AJ^T to

automatically maintain the logical consistency of information represented as schemata.

For example, if the relational link is an inheritance relation, then its presence in a

schema allows the inheritable slots and their values, in the related schema, to be

inherited, in the schema with the link. If the relation slot is then subsequently altered

then the inherited slots wil l subsequently change to reflect this. For example:

1) An Empty schema:

(defschema alien-I-saw
; No slots yet

)

2) Report bug-eyed alien;

(defschema alien-I-saw
(instance-of bug-eyed-alien) ; inheriting relation slot
(has-legs yes) ; Attributes slot inherited
(has-suckers no) ; from bug-eyed alien.
(number-of legs 2)
(type alien) ; Relation slot causing

) ; inheritance.

B-3

3) Realize mistake:

(defschema alien-I-saw
(instance-of false-sighting) ; new inheriting relation slot
(type none) ; this attribute now inherited

)

This can also be shown pictorially in Figure X X X I V .

ADervl-Sow

Bug-Eyed-Alien

Instance-of

AGen-t-Saw

ADD UNK

False-Slghling

InsTance-of

Alien-I-Saw

C H A N G E UNK

Figure X X X I V

The inheritance mechanism is very flexible and can be tailored extensively to

requirements.

There is an intimate relationship beuveen schemata and facts within ART. The

information within a schema exists not only as a schema definition, but as a series of

fact triplets of the form (<slot> <schema> <value>). for example:

B-4

The schema:

(defschema todays-catch
(no-of-cod 10)
(no-of-conger 4)
(no-of-haddock 4)

)

exists also as the facts:

(no-of-cod todays-catch 10)
(no-of-conger todays-catch 4)
(no-of-haddock todays-catch 4)

When a schema is modified, there are corresponding changes to the fact database

and vice versa. This is done to present a uniform interface to the rule pattern matching

system, allowing rules to work with both conventional and schema derived facts.

Rules

ART rules are a means of defining the procedural knowledge that is available

to an application. Two major types of rules are provided; 1) Forward chaining rules

respond to facts by taking action; and 2) backward chaining rules respond to goals by

trying to satisfy them.

In ART a rule has a left hand side (LHS) and a right hand side (RHS). The LHS

contains a set of patterns which the rule tries to match to all the facts available in the

fact database. The RHS contains procedural code which is executed if the match was

successful. This is the same mechanism as condition-action pairs in forward chaining

production systems. An example of a simple forward chaining rule in ART is as

follows:

B-5

(defrule find-all-persons-with-blue-eyes
(instance-of ?name person)
(colour-of-eyes ?name blue)

; look for somebody
; this person has blue eyes

—<^
(printout t ?name " has blue eyes")

)

; print result if true

This rule contains two patterns, the first looks for persons in the fact database,

the second looks for eyes that are blue. The '?name' is a variable that has been used

to link the patterns together. The rule can only fire if there are facts in existence in

which there is a person, and that person has blue eyes.

Backward chaining is achieved through an extension to the forward system, with

special goal fact patterns causing rules to produce facts which satisfy the patterns in a

conventional forward chaining rules. An example of this is shown next.

(defrule calculate-volume-of-cylinder
(goal (volume ?name ?volume)) ; volume required
(instance-of ?name cylinder) ; of a cylinder,
(radius ?name ?radius) ; Both radius
(length ?name ?length) ; and length specified.

=>
(setf ?volume (* ?radius ?radius ?length 3.14159)); Now calculate volume
(assert (volume ?name ?volume)) ; and Assert in database.

)

The goal pattern in this rule would be linked to a corresponding pattern in

another forward chaining rule. If that pattern needs to be matched, then this goal

directed rule will be activated.

B-6

Viewpoints

Viewpoints are a powerful means of segregating data into separate models of a

situation that an application is considering. This is not done by creating multiple

databases and copying data, as this would be very time consuming for large models, but

through different viewpoints on one database. This is achieved through tag information

on each fact, which lists which viewpoint it appears and the one it is removed from.

This mechanism which extends to multiple dimensions, enables the production of rapid

hypothetical reasoning systems, and is a key feature of ART.

Actions

Actions are an Object Oriented (OOP) addition to ART that permits the

association of inheritable procedural code to schemata slots. This code can be invoked

from procedural code, or automatically when schemata data is accessed, modified or

removed. Multiple inheritance is also allowed.

Inference Engine

ART contains an inference engine that uses declarative and procedural

knowledge captured in the ART language to derive conclusions about an application.

Making use of known facts, it attempts to match patterns in rules and then apply their

consequences, often generating more facts, in an interactive manner, until a set of goals

are met This operation takes place in cycles, which are divided into three steps.

These are:

1) Match

2) Select

3) Fire.

B-7

Match

Facts are matched against patterns in the LHS of rules. Every time a rule's

patterns are satisfied the rule is said to be 'activated', and its name is placed on the rule

agenda together with the associated facts which satisfied the match. The rule agenda is

a list of pending rules waiting to be executed.

Select

When all matching has occurred, one pending rule is selected from the agenda.

This is either random, or based upon an importance value or 'salience' number,

specified in the rule definition.

Fire

The selected rule is then executed or 'fired' which involves executing the

procedural code in its RHS.

The above cycle then repeats, reforming the rule agenda each time until there

are no new matches, or the inference engine is halted. This procedure makes ART's rule

based operation effectively data driven, and if order is required it has to added

externally. Also, as the rule agenda is reformed each cycle is created new each cycle,

it is possible for some rules which were originaUy activated, to never fire, if a change

to the fact database prevents the match for a particular pattern match. On the other hand

it is quite possible for a rule to fire many times if there a many combinations of facts

which match its patterns. This happens often, due to the flexibility of the pattern

matching mechanism and the use of variables and wildcards in the patterns. Endless

matching is prevented through a scheme called refractoriness in which a particular fact

combination is only matched once to a particular rule pattern.

B-8

Programming Environment

ART includes an interactive development environment called the ART Studio,
which includes the two editors vi and EMACS, and offers tracing and debugging aids
to the developer. The Studio exists in two forms, for driving Window and Character
based interfaces. The window based interface, provides extra facilities, for the
production of graphical interfaces, using icons, graphical images, and mice based menu
systems.

B-9

Appendix C

B-IO

C, PEDA Core Implementation Program Code
. _*_ ModeiART; Package:art-user; Base:10. -*-
; Basic PEDA Schema D e f i n i t i o n s : Blocks.
; Links to iconic representation data removed

;;; Switch for j o i n t PEDA or j u s t representation
(deffacts version

(dinos version)
; (j o i n t - v e r s i o n)
)
;;; Basic PEDA schema s l o t d e f i n i t i o n s
(defschema our-instance-of

(instance-of i n h - r e l a t i o n)
(inverse our-has-instances)
(slot-what share-value)
(new-relations

(instance-of (?domain)(?range))
)

)
(defschema copy-of

(instance-of r e l a t i o n)
(new-relations (i s - a (?domain)(?range)))

)
; ; inheritance of block s t r u c t u r e handled by copy-of methods
(defschema contains

(instance-of r e l a t i o n)
(inverse contained-in)

)
(defschema conn-to ;; b u i l d s up conn-to l i n k s i n a copy

(instance-of r e l a t i o n)
(inverse conn-from)

)
(defschema function-conn-in

(instance-of s l o t)
(slot-what nothing)
(slot-how-many multiple-values)

)

(defschema function-conn-out
(instance-of s l o t)
(slot-what nothing)
(slot-how-many multiple-values)

)

(defschema function
(instance-of s l o t)
(slot-what share-value)

)

C-1

(defschema stream
{instance-of s l o t)
(slot-what nothing) ;;don't i n h e r i t

)
(defschema functions

(instance-of r e l a t i o n)
)

(defschema has-fired
(functions)

)

(defschema has-not-fired
(functions)

)
(defschema f u n c t i o n - f i r e d

(instance-of r e l a t i o n)
(slot-what share-value)
(slot-how-many single-value)
(new-relations

(functions (?range)(?domain)))
)
(defschema template

(instance-of r e l a t i o n)
(new-relations (is-a (?domain)(?range)))

)

(defschema template
(instance-of i n h - r e l a t i o n)

)
;;; Simulator data type specs
(defschema data-type

(instance-of r e l a t i o n)
(slot-how-many single-value)
(slot-what share-value)
(size)
(printing-representation (p r i n c))

)

(defschema number
(i s - a data-type)

)

(defschema r a t i o n a l
(i s - a number)

)

(defschema r a t i o
(i s - a r a t i o n a l)

)

C-2

(defschema integer
(is-a r a t i o n a l)

)

(defschema fixnum
(is-a integer)
(size 32)

)

(defschema bignum
(is-a integer)
(size not-known)

)

(defschema f l o a t
(is-a number)

)

(defschema s h o r t - f l o a t
(is-a f l o a t)
(size (23 8))

)

(defschema s i n g l e - f l o a t
(is-a f l o a t)
(size not-known)

)

(defschema double-float
(is-a f l o a t)
(size not-known)

)

(defschema l o n g - f l o a t
(is-a f l o a t)
(size not-known)

)

(defschema complex
(is-a number)

)

;;; Start Defining Blocks Now
(defschema world ;; Where block diagrams l i v e

(instance-of instantiated-window-icon)
(window world)
(display-parameters)
(menu world)
(no-of-options 5)

)

(defschema base-world
(is-a world)

)

C-3

;;; Central D e f i n i t i o n of block
(defschema block

(function-conn-in)
(function-conn-out)
(function)
(copy-of)
(template)
(result-data-type fixnum)
(f u n c t i o n - f i r i n g s 0)
(f u n c t i o n - f i r e d has-not-fired)
(result-data-type fixnum);;; d e f a u l t data type

; + iconic representation data
)

(defschema a l t - b l o c k ;;; blocks that do not require a l l
(is-a block) ;;;inputs

)

(defschema a l l - b l o c k ;;; blocks that do require a l l inputs
(is-a block)

)

(defschema port
(is-a block)
(conn-to)
(conn-frem)
(packet-link)

)

(defschema input-port
(is-a port)
(d i r e c t i o n in)

; + g i l l ' s iconic representation data
)

(defschema output-port
(is-a port)
(d i r e c t i o n out)

; + g i l l ' s iconic representation data
)
(defschema f i l e

(is-a block)
(di r e c t i o n)
(stream)
(data-type)
(data-count 1)

)

(defschema memory
(is-a functional-block)
(size)
(data)
(function ("function performed by r u l e "))

)

C-4

(defschema ROM
(is-a memory)

)
(defschema RAM

(is-a memory)
)
(defschema round

(is-a a l l - b l o c k)
(b i t s)
(function ("function performed by a c t i o n "))
(result-data-type)

)

(defschema packet
(node free-packets)
(data-type n u l l)
(overflow n u l l)
(data n u l l)
(has-instances)

)
(defschema d a t a - f i l e

(data-type integer)
(data)

)

(defschema free-packets ;?; the place where a l l packets
(is-a port) ;;;eventually go
(packet-link ())

)

(defschema simulator-defaults
(mode construction)
(last-mode construction)
(no-of-words-input-at-a-time 1)
(no-of-functions-at-a-time 1)

)

(defglobal ?*function-eval* = 0)

;;from f i l e s .
; ;max f i v e evals per r u l e
; f i r e

C-5

;;This i s a l i b r a r y of common functions
;; We have:
adder
m u l t i p l i e r
a l t
f u n c tion
recip
And
Or
Xor
not
i n v e r t
s i n
cos
tan
asin
acos
atan
Reduce
demux
Round
i n p u t - f i l e
o u t p u t - f i l e

Templates have been used to reduce r e p e t i t i v e e f f o r t
Added test constraints f o r a low power moderate speed
l i b r a r y .
Iconic (display) information has been removed.

(defschema adder
(is- a a l l - b l o c k)
(template 2mux1)
(chip-area medium)
(power low)
(speed 100)
(design-time v-low)
(function (i f (Nan-check A B)

(set-Nan 'Q)
(setq Q (+ A B))

)
)

)

(defschema m u l t i p l i e r
(i s - a a l l - b l o c k)
(chip-area medium)
(power medium)
(speed 200)
(design-time v-low)
(template 2mux1)
(function (i f (Nan-check A B)

(set-Nan 'Q)
(setq Q (* A B))

)

C-6

(defschema Bool-and
(is- a a l l - b l o c k)
(chip-area low)
(power low)
(speed 50)
(design-time v-low)
(template 2muxl)
(function (i f (Nan-check A B)

(set-Nan 'Q)
(setq Q (and A B))

)

(defschema a l t
(template 2mux1)
(is-a a l t - b l o c k)
(function (i f (equalp A 'NAN) (setq Q B)(setq Q A)))

)

(defschema Bool-Or
(is-a a l l - b l o c k)
(chip-area low)
(power low)
(speed 50)
(design-time v-low)
(template 2muxl)
(function (i f (Nan-check A B)

(set-Nan 'Q)
(setq Q (i o r A B))

)
)

)

(defschema Bool-Xor
(is-a a l l - b l o c k)
(chip-area low)

(power low)
(speed 90)
(design-time v-low)
(template 2mux1)
(function (i f (Nan-check A B)

(set-Nan 'Q)
(setq Q (xor A B))

)
)

)

(defschema demux
(is-a a l l - b l o c k)
(template 1mux2)
(function (i f (Nan-check A)

(set-Nan 'P 'Q)
(setq P A Q A)

)

C-7

(defschema recip
(i s - a a l l - b l o c k)
(chip-area high)
(power medium)
(speed 1000)
(design-time v-low)
(template Imuxl)
(function
(cond

((Nan-check A)(set-Nan 'Q))
((equalp A 0)
(progn (p r i n t o u t t t "Error: t r y i n g to di v i d e a

number by 0 i s a bad move")
(break)))

(T (setq Q (/ 1 A)))
)

)
)

(defschema Bool-not
(is- a a l l - b l o c k)
(chip-area v-low)
(power v-low)
(speed 10)
(design-time v-low)
(template Imuxl)
(function (i f (Nan-check A)

(set-Nan 'Q)
(setq Q (not A))

)

(defschema i n v e r t
(i s - a a l l - b l o c k)
(chip-area medium)
(power low)
(speed 150)
(design-time v-low)
(template 1muxl)
(function (i f (Nan-check A)

(set-Nan 'Q)
(setq Q (- A))

)
)

)

C-8

(defschema s i n
(is-a a l l - b l o c k)

(chip-area high)
(power medium)
(speed 2000)
(design-time v-low)
(template Imuxl)
(function (i f (Nan-check A)

(set-Nan 'Q)
(setq Q (sin A))

)
(defschema cos

(is-a a l l - b l o c k)
(chip-area high)
(power medium)
(speed 2000)

(design-time v-low)
(template Imuxl)
(function (i f (Nan-check A)

(set-Nan 'Q)
(setq Q (cos A))

)
(defschema tan

(is-a a l l - b l o c k)
(chip-area high)
(power medium)
(speed 2000)
(design-time v-low)
(template Imuxl)
(function (i f (Nan-check A)

(set-Nan 'Q)
(setq Q (tan A))

(defschema asin
(is - a a l l - b l o c k)

(template Imuxl)
(chip-area high)
(power medium)
(speed 2000)
(design-time v-low)
(function (i f (Nan-check A)

(set-Nan 'Q)
(setq Q (asin A))

)
)

)

C-9

(defschema acos
(is-a a l l - b l o c k)
(template Imuxl)
(chip-area high)
(power medium)
(speed 2000)
(design-time v-low)
(function (i f (Nan-check A)

(set-Nan 'Q)
(setq Q (acos A))

)
)

)
(defschema atan

(is-a a l l - b l o c k)
(template 1muxl)
(chip-area high)
(power medium)
(speed 2000)
(design-time v-low)
(function (i f (Nan-check A)

(set-Nan 'Q)
(setq Q (atan A))

)
)

)
(defschema Reduce
; not implemented

)
(defschema i n p u t - f i l e

(is-a f i l e)
(template Omuxl)
(d i r e c t i o n in)

)

(defschema o u t p u t - f i l e
(is-a f i l e)
(template ImuxO)
(d i r e c t i o n out)

)
(defschema round!

(is-a round)
(template Imuxl)

(chip-area medium)
(power low)
(speed 200)
(design-time v-low)

)

C-10

;;; Now template d e f i n i t i o n s
(DEFSCHEMA 2MUX1

(is-a block)
(CONTAINS 2mux1-port-A 2mux1-port-b 2mux1-port-q)
(function-conn-in (f u n c t i o n A i n 2mux1-port-A))
(function-conn-in (f u n c t i o n B i n 2mux1-port-B))
(function-conn-out (f u n c t i o n Q to 2mux1-port-Q))

)
(DEFSCHEMA 2mux1-port-a

(is- a input-port)
)
(DEFSCHEMA 2mux1-port-b

(is- a input-port)
)

(DEFSCHEMA 2mux1-port-q
(is- a output-port)

)
(DEFSCHEMA 1MUX1

(IS-A BLOCK)
(CONTAINS Imuxl-port-A 1muxl-port-q)
(function-conn-in (f u n c t i o n A i n 1muxl-port-A))
(function-conn-out (f u n c t i o n Q to 1muxl-port-Q))

)
(DEFSCHEMA Imuxl-port-a

(is - a input-port)
)
(DEFSCHEMA Imuxl-port-q

(is - a output-port)
)
(DEFSCHEMA 1MUX2

(IS-A BLOCK)
(CONTAINS 1mux2-port-A lmux2-port-q 1mux2-port-r)
(function-conn-in (f u n c t i o n A i n 1mux2-port-A))
(function-conn-in (f u n c t i o n Q to 1mux2-port-Q))
(function-conn-out (f u n c t i o n R to 2mux1-port-R))

)
(DEFSCHEMA 1mux2-port-a

(is- a input-port)
)
(DEFSCHEMA 1mux2-port-q

(is- a output-port)
)

(DEFSCHEMA 1mux2-port-r
(is- a output-port)

)

C-11

(DEFSCHEMA 1MUXO
(IS-A BLOCK)
(CONTAINS ImuxO-port-portA)
(function-conn-in (f u n c t i o n A i n 1muxO-port-A))

)
(DEFSCHEMA 1muxO-port-a

(is-a input-port)
)
(DEFSCHEMA OMUXl

(IS-A BLOCK)
(CONTAINS Omuxl-port-q)
(function-conn-out (fu n c t i o n Q to Omuxl-port-Q))

)
(DEFSCHEMA Omuxl-port-q

(is-a output-port)
)

C-12

;General source-block template copying rules
(defglobal ?*template-salience*

= (- *maximum-salience* 100))
; Most of template copying handled by normal inheritance
; mechanisms, but
; some s l o t s are special:

(defrule template-slot-contains
(declare (salience (- ?*template-salience* 20)))
(template ?object ? o r i g i n a l - o b j e c t)
(contains ?original-object ?original-contents)
(not (contains ?object

= (our-get-icon-name ? o r i g i n a l - o b j e c t
?original-contents ?object)))

=>
(bind ?object-contents

(our-get-icon-name ? o r i g i n a l - o b j e c t
?original-contents ?object))

(assert
(contains ?object ?object-contents)
(template ?object-contents ?original-contents)

)
)
(defrule template-slot-input

(declare (salience (- ?*template-salience* 20)))
(template ?object ? o r i g i n a l - o b j e c t)
(input ?original-object ?)
(not (input ?object (?object)))

=>
(assert (input ?object (?object)))

)

C-13

; The next r u l e bulids up the correct function-conn s l o t s
; i n each new block. This process i s a l o t easier
; to do procedurally. Most of the hassle i s i n
; correct pattern matching

(defrule template-slot-function-conn
(declare (salience (- ?*template-salience* 20)))
(template ?new-port ? o r i g i n a l - p o r t)
(contains ?original-block ? o r i g i n a l - p o r t)
(template ?new-block ?original-block)
(contains ?new-block ?new-port)
(s p l i t

((function-conn-in ?original-block
(function ?var i n ? o r i g i n a l - p o r t))

(not (function-conn-in ?new-block
(function ?var i n ?new-port)))

=>
(assert

(function-conn-in ?new-block
(function ?var i n ?new-port)))

)
((function-conn-out ? o r i g i n a l - b l o c k

(function ?var to ? o r i g i n a l - p o r t))
(not (function-conn-out ?new-block

(function ?var to ?new-port)))
=>
(assert (function-conn-out ?new-block

(function ?var to ?new-port)))
)

)
=>
)

C-14

General source-block copying rules
Very s i m i l a r to template f i l l rules
But uses copy of r e l a t i o n to s i g n i f y that a copy should
be made.
Only the s l o t s which don't i n h e r i t normally are given
special treatment.
The rest take pot luck w i t h the i s - a inheritance
mechanism.

;(in-package 'au)
defglobal ?*copy-salience* = {- *maximum-salience* 100))
;;; C o p y - o f - f i l l not used as copy-of r e l a t i o n asserts i s - a
;;; r e l a t i o n automatically
#\
(defrule c o p y - o f - f i l l

(declare (salience ?*copy-salience*)}
(copy-of ?object ? o r i g i n a l - o b j e c t)
(instance-of ? o r i g i n a l - o b j e c t ?parent)
(not (instance-of ?object ?parent)) ;; not asserted

=>
(assert (instance-of ?object ?parent))

)
U
(defrule copy-slot-contains

(declare (salience (- ?*copy-salience* 20)))
(copy-of ?object ? o r i g i n a l - o b j e c t)
(contains ? o r i g i n a l - o b j e c t ?original-contents)
(not (contains ?object =(our-get-icon-name

?or i g i n a l - o b j e c t ?original-contents ?object)))
=>

(bind ?object-contents
(our-get-icon-name ? o r i g i n a l - o b j e c t

?original-contents ?object))
(assert

(contains ?object ?object-contents)
(copy-of ?object-contents ?original-contents)

)
)
(defrule copy-slot-input

(declare (salience (- ?*copy-salience* 20)))
(copy-of ?object ? o r i g i n a l - o b j e c t)
(input ? o r i g i n a l - o b j e c t ?)
(not (input ?object (?object)))

=>
(assert (input ?object (?object)))

)

C-15

(defrule copy-slot-function-conn
(declare (salience (- ?*copy-salience* 20)))
(copy-of ?new-port ? o r i g i n a l - p o r t)
(contains ?original-block ? o r i g i n a l - p o r t)
(copy-of ?new-block ?original-block)
(contains ?new-block ?new-port)
(s p l i t

((function-conn-in ?original-block
(function ?var i n ? o r i g i n a l - p o r t))

(not (function-conn-in ?new-block
(function ?var i n ?new-port)))

=>
(assert (function-conn-in ?new-block

(function ?var i n ?new-port)))
)
((function-conn-out ?o r i g i n a l - b l o c k

(function ?var t o ? o r i g i n a l - p o r t))
(not (function-conn-out ?new-block

(function ?var to ?new-port)))
=>

(assert (function-conn-out ?new-block
(function ?var to ?new-port)))

)
)

=>
)

C-16

(defrule copy-slot-conn-to
(declare (salience (- ?*copy-salience* 30)})
(schema ?original-source-port

(conn-to ?original-dest-port)
)
(schema ?copy-source-port

(not (conn-from ?)) ;; make sure not a dest port
(not (conn-to ?)) ;; has no conn-to value
(copy-of ?original-source-port)

)
(schema ?copy-dest-port

(copy-of ?original-dest-port)
)
(schema ?original-source-block

(contains ?original-source-port)
)
(schema ?original-dest-block

(contains ?original-dest-port)
)
(schema ?copy-source-block

(contains ?copy-source-port)
(copy-of ?original-source-block)

)
(schema ?copy-dest-block

(contains ?copy-dest-port)
(copy-of ?original-dest-block)

)
=>

(assert (schema ?copy-source-port
(conn-to ?copy-dest-port)

)
)

)

C-17

;;; -*- Mode:ART; Package:art-user; Base:10.
; ; ; Rules For The Behaviour of d i f f e r e n t types of block
(defrule f u n c t i o n - a l l - b l o c k

(declare (salience (+ ?*function-eval* 2)))
(schema simulator-defaults

(mode simulating)
)
(schema ?fb

(instance-of a l l - b l o c k)
; (active yes) ;;; f o r m u l t i mode

(f u n c t i o n - f i r e d has-not-fired) ;;; only do once,
(function ?) ;;; others a chance t h i s cycle
(function-conn-in (f u n c t i o n ? i n ?))

)
(f o r a l l (function-conn-in ?fb each and every input

must be ready
m u l t i p l e f i r i n g

(function ? i n ?port))
(instance-of ?port port)
(packet-link ?port ?)

)
=>

(invoke 'do-function-eval ?fb)
(modify (schema ?fb (f u n c t i o n - f i r e d h a s - f i r e d)))

)
(defrule function-ALT-block

(declare (salience (+ ?*function-eval* 2)))
(schema simulator-defaults

(mode simulating)
)
(schema ?fb

(instance-of a l t - b l o c k)
; (active yes) ;;; f o r m u l t i mode

(f u n c t i o n - f i r e d has-not-fired) ;;;only do once, give
(function-conn-in (f u n c t i o n ? i n ?)) ;;; others a
(function ?) ;;; chance t h i s cycle

)
(exists

(function-conn-in ?fb
(function ? i n ?port)) ; ; ; any input can be ready

)
=>

(instance-of ?port port)
(packet-link ?port ?) ;;; m u l t i p l e f i r i n g

(invoke 'do-function-eval ?fb)

C-18

(defrule function-ROM
(declare (salience (+ ?*function-eval* 2)))
(schema simulator-defaults

(mode simulating)
)
(schema ?fb

(instance-of ROM)
; (active yes) ; ; ; f o r m u l t i mode

(f u n c t i o n - f i r e d has-not-fired) ;;; only do once, give
(function ?) ;;; others a chance t h i s cycle
(function-conn-in (function address i n ?port-address))
(function-conn-out

(function data-out to ?port-data-out))
(data ?data) ;;; data of form (1 2 3 4 5 6 7) etc.

)
(schema ?port-address

(instance-of port)
(packet-link (?packet $?))

)
(schema ?port-data-out

(instance-of port)
)

=>
(bind ?address (get-data ?packet))
(destroy-packet ?packet)
(i f ((lengths ?data) <= ?address)

then (p r i n t o u t t t "error address " ?address
" exceeds size of ROM: " ?fb)

else (create-packet-with-data 'packet
?port-data-out (nth ?address (l i s t $?data)))

)
(modify (schema ?fb (f u n c t i o n - f i r e d h a s - f i r e d)))

)
(defrule function-RAM-read

(declare (salience (+ ?*function-eval* 2)))
(schema simulator-defaults

(mode simulating)
)
(schema ?fb

(instance-of RAM)
; (active yes) ; ; ; f o r m u l t i mode

(f u n c t i o n - f i r e d has-not-fired) ;;;only do once, give
;;; others a chance t h i s cycle
(function-conn-in (function address i n ?port-address))
(function-conn-in (function R-W i n ?port-R-W))
(function-conn-out

(function data-out to ?port-data-out))
(data ?data);; data of form (1 2 3 4 5 6 7) etc.

)
(schema ?port-address

(instance-of port)
(packet-link (?address-packet $?))

)
(schema ?port-R-W

(instance-of port) ;;; always an address
(packet-link (?R-W-packet $?))

)

C-19

(schema ?port-data-out
(instance-of port)

)
(schema ?R-W-packet ;;; not using the get-data method

(instance-of packet)
(data R)

)
=>

(bind ?address (get-data ?address-packet))
(destroy-packet ?address-packet)
(destroy-packet ?R-W-packet)
(i f ((lengths ?data) <= ?address)

then (p r i n t o u t t t "error address "
?address " exceeds size of RAM: " ?fb)

else (create-packet-with-data 'packet
?port-data-out (nth ?address (l i s t s ?data)))

)
(modify (schema ?fb (f u n c t i o n - f i r e d has-fired)))

)
(defrule function-RAM-write

(declare (salience (+ ?*function-eval* 2)))
(schema simulator-defaults

(mode simulating)
)
(schema ?fb

(instance-of RAM)
; (active yes) ; ; ; f o r m u l t i mode

(f u n c t i o n - f i r e d has-not-fired) ;;;only do once, give
;;; others a chance t h i s cycle
(function-conn-in (function address i n ?port-address))
(function-conn-in (function R-W i n ?port-R-W))
(function-conn-in (function data-in i n ?port-data-in))
(data ?data) ;; data of form (1 2 3 4 5 6 7) etc.

)
(schema ?port-address

(instance-of port)
(packet-link (?address-packet $?))

)
(schema ?port-R-W

(instance-of port)
(packet-link (?R-W-packet $?))

)
(schema ?port-data-in

(instance-of port)
(packet-link (?data-packet $?))

)
(schema ?R-W-packet ;;; not using the get-data method

(instance-of packet)
(data W)

)
=>

(bind ?address (get-data ?address-packet))
(bind ?input-data (get-data ?data-packet))
(bind ?data-lst (l i s t s ?data))
(i f ((lengths ?data) <= ?address)

then (p r i n t o u t t t "error address "
?address " exceeds size of RAM: " ?fb)

C-20

else (progn
(setf (nth ?address ?data-lst) ?input-data)

(modify-schema-value ?fb 'data
(seq$?d a t a - l s t))

)
)
(destroy-packet ?address-packet}
(destroy-packet ?data-packet)
(destroy-packet ?R-W-packet)
(modify (schema ?fb (f u n c t i o n - f i r e d h a s - f i r e d)))

(defrule f i l e - i n p u t - b l o c k ;;; behaves j u s t l i k e any other
(declare (salience (+ ?*function-eval* 2))) ; ; ; block
(schema simulator-defaults

(mode simulating)
)
(schema ? f i l e - b l o c k

(instance-of f i l e)
(f u n c t i o n - f i r e d has-not-fired)
(d i r e c t i o n in)
(stream ?file-name)
(contains-ports ?node)
(data-count ?data-count)

)
(schema ?file-name

(data-type ?data-type)
(data ?data-sequence)

)
(te s t (>= (lengths ?data-sequence) ?data-count))

=>
(p r i n t o u t t t " " ?data-count " " ?data-sequence)
(bind ?new-data (nth$?data-sequence ?data-count))
(bind ?packet (create-packet 'packet))
(put-data-type ?packet (type-of ?new-data))
(insert-data ?packet ?new-data)
(place-packet ?packet ?node)
(modify-schema-value ? f i l e - b l o c k

'data-count (+ ?data-count 1))
(modify-schema-value ? f i l e - b l o c k

' f u n c t i o n - f i r e d 'has-fired)
)
(defrule f i l e - o u t p u t - b l o c k ;;; behaves j u s t l i k e any other

(declare (salience (+ ?*function-eval* 2))} ;;; block
(schema simulator-defaults

(mode simulating))
(schema ? f i l e - b l o c k

(instance-of f i l e)
(f u n c t i o n - f i r e d has-not-fired)
(d i r e c t i o n out)

(stream ?file-name)
(contains-ports ?node))

(schema ?node
(packet-link (?packet $?))

)
=>

(bind ?existing-data (get-schema-value ?file-name 'data))

C-21

(bind ?new-data (get-data ?packet))
(destroy-packet ?packet)
(modify-schema-value ?file-name 'data

(seq$ (nconc (l i s t s ?existing-data) (l i s t ?new-data))))
(modify-schema-value ? f i l e - b l o c k

' f u n c t i o n - f i r e d 'has-fired))
;;; Now the ru l e that moves the packets along connections
;;; between blocks
(defrule faster-packet-move

(declare(salience (+ ?*function-eval* 2)))
(schema simulator-defaults
(mode simulating))

(schema ?port
(instance-of port)
(conn-to ?dest)
(packet-link ? s o u r c e - l i s t))

=>
(for packet-name in$?source-list
do

(move-packet packet-name ?port ?dest)
)

)
;;; This r u l e waits u n t i l a l l functions that can f i r e , have
(defrule last-function-done

(declare (salience (- ?*function-eval* 10)))
(schema simulator-defaults

(mode simulating)
)
(schema has-fired

(functions ?))
=>

(bind ?x (get-schema-value 'has-fired 'functions))
(for f b i n ?x do

(modify-schema-value f b ' f u n c t i o n - f i r e d
'has-not-fired)

)
)
;;; I n i t i z a t i o n r u l e s :
(defrule s i m u l a t o r - i n i t i a l i s e

(schema simulator-defaults
(mode construction)

)
=>

(init-packets)
(c l e a r - f u n c t i o n - f i r i n g s - s l o t s)
(resize-data-slot-in-memory-schema)

)

C-22

;;; changed to behave l i k e blocks 15/5/89
(setq * d a t a - f i l e - d i r * "-dino/ART/GROUP/")
;;;Once f o r a l l f i l e s
(defrule l o a d - a l l - i n p u t - f i l e s

(schema ? f i l e - b l o c k
(instance-of f i l e)
(d i r e c t i o n in)
(stream ?file-name)

)
=>

(l e t ((t h e - f i l e (merge-pathnames * d a t a - f i l e - d i r *
(format n i l " - a . a r t " ?file-name))))

(i f (p r o b e - f i l e t h e - f i l e) then (a r t - l o a d t h e - f i l e))
)

)
(defrule save-files

(declare (salience (- ?*function-eval* 12)))
(schema simulator-defaults

(mode simulating))
(schema ?file-name

(instance-of d a t a - f i l e))
=>

(l e t ((t h e - f i l e (merge-pathnames * d a t a - f i l e - d i r *
(format n i l " - a . a r t " ?file-name))))

(with-open-file
#L(output-stream t h e - f i l e : d i r e c t i o n

:output : i f - e x i s t s :supersede)
(pr i n t o u t output-stream (list-schema ?file-name))

)
)

)
;;;Each run through reset data count
(defrule i n i t i a l i s e - f i l e - b l o c k s

(declare (salience (+ ?*function-eval* 3)))
(schema simulator-defaults

(mode simulating)
)
(schema ? f i l e - b l o c k

(instance-of f i l e)
(d i r e c t i o n in)
(stream ?file-name)
(contains-ports ?node)

)
(schema ?file-name

(data ?data-sequence)
)

=>
(modify

(schema ? f i l e - b l o c k
(data-count 1)
(f u n c t i o n - f i r e d has-not-fired)

C-23

C-24

Mode:ART; Package:art-user; Base:10.
The action do-function-eval provides the means by which
a block evaluates i t s data
The action Map-vars-to-ports forms a l i s t of equation
variables and t h e i r corresponding packets, and c a l l s
do-eval.
The purpose of do-eval varies between the types of
block, but f o r a l l - b l o c k s i t :
1) binds the input variables to the input packets'
values.

2) evaluates the equation i n the block's f u n c t i o n s l o t .
3) rounds the r e s u l t s to the required value
4) creates output packets at the r i g h t p o r t s , containing
the r e s u l t s .
5) Destroys the input packets,

s t a r t with do-function eval
(defaction do-function-eval (block)()

(map-vars-to-ports block)
)
; Now debugging before method
(defaction (map-vars-to-ports before) (block) ()

(p r i n t o u t t t "map-vars-to-ports c a l l e d on " block)
)

C-25

; ; Now get a l i s t of variables and t h e i r packets
(defaction map-vars-to-ports (block)()

(l e t ((f - c - i - l i s t
(get-schema-value block 'function-conn-in))

; ; ; l i s t of sequences of s l o t function-conn-in
(f - c - o - l i s t

(get-schema-value block 'function-conn-out))
;;; same f o r function-conn-out

(input-vars n i l)
(output-vars n i l)
(packets n i l)

)
(setq input-vars ; form l i s t of input variables

(for f - c - i i n f - c - i - l i s t
c o l l e c t (l i s t (nth$ f - c - i 2)(nth$ f - c - i 4))

)
)
(setq output-vars ; form l i s t of output variables

(for f-c-o i n f - c - o - l i s t
c o l l e c t (l i s t (nth$ f-c-o 2)(nth$ f-c-o 4))

}
)
(setq packets ; produce a l i s t of input packet l i s t s

; i n correct order
(for var-pair i n input-vars

c o l l e c t
(i f (s l o t - n u l l (nth 1 var-pair) 'packet-link)

; i f s l o t i s n i l then
NIL

; else
(car

(l i s t s (get-schema-value (nth 1 var-pair)
' p a c k e t - l i n k)))

)
)

)
(do-eval block input-vars output-vars packets)

)
)
(defaction ; debugging before action (method)

(do-eval before)(block)(input-vars output-vars packets)
(p r i n t o u t t t "do-eval c a l l e d on " block

" with " input-vars output-vars packets)
)

C-26

(defaction ; main action
do-eval (a l l - b l o c k) (i n p u t - v a r s output-vars packets)
(l e t ((packet-name n i l) (result-data-type

(get-schema-value a l l - b l o c k 'result-data-type))
)

;;; progv creates new dynamic variables
; ; ; and restores o l d ones when i t f i n i s h e s
(progv (mapcar #'car input-vars)

(mapcar #'get-data packets) ; variables now bound
(mapcar #'destroy-packet packets) ; remove packets

; from inputs
;;; Now evaluate the fun c t i o n s l o t ' s contents
(eval (invoke 'perform-function a l l - b l o c k))
;;; Now create o/p schemata and populate
(for var-pair i n output-vars
do

(setq packet-name (create-packet 'packet))
(put-data-type packet-name result-data-type)
(insert-data packet-name (eval (nth 0 v a r - p a i r)))

;;; r e s u l t of evaluation
(place-packet packet-name (nth 1 v a r - p a i r))

;; move packet now to p o r t , eg portQ
)

) ; ;; end progv
) ;;end l e t

)
(defaction do-eval

(a l t - b l o c k) (i n p u t - v a r s output-vars packets)
(l e t ((packet-name n i l)

(result-data-type (get-schema-value a l t - b l o c k
'result-data-type))

)
;;;progv creates new dynamic variables and restores o l d
;;;ones when i t f i n i s h e s

(progv (mapcar #'car input-vars)
(mapcar
#'(lambda (x) (i f x (get-data x) 'NAN)) packets)

; variables now bound
(mapcar

#'(lambda (x) (i f x (destroy-packet x))) packets)
; remove packets from inputs

; ; ; Now evaluate the function s l o t ' s contents
(eval (invoke 'perform-function a l t - b l o c k))
; ;; Now create o/p schemata and populate
(for var-pair i n output-vars
do

(setq packet-name (create-packet 'packet))
(put-data-type packet-name result-data-type)
(insert-data packet-name (eval (nth 0 v a r - p a i r)))
;;; r e s u l t of evaluation

(place-packet packet-name (nth 1 v a r - p a i r))
;; move packet now to po r t , eg portQ

)
) ; ; ; end progv

) ;rend l e t

C-27

(d e f a c t i o n perform-function (b l o c k) ()
(l i s t * $ (get-schema-value block ' f u n c t i o n))

)
(d e f a c t i o n ;; c l e a n up o p e r r a t i o n s

(do-eval a f t e r) (b l o c k) (i n p u t - v a r s o u t p u t - v a r s p a c k e t s)
;;; update the f u n c t i o n - f i r i n g s s l o t
(modify-schema-value b l o c k

' f u n c t i o n - f i r i n g s
(+ (get-schema-value b l o c k ' f u n c t i o n - f i r i n g s) 1))

)
(d e f a c t i o n

do-eval (r o u n d) (i n p u t - v a r s o u t p u t - v a r s p a c k e t s)
(l e t * ((i n p u t - p o r t (second (c a r i n p u t - v a r s)))

(output-port (second (c a r o u t p u t - v a r s)))
(i n p u t - p a c k e t (c a r p a c k e t s))
(b i t s (get-schema-value round ' b i t s))
(data (get-data i n p u t - p a c k e t))
(data-type (get-data-type i n p u t - p a c k e t))
(r e s u l t - d a t a - t y p e
(get-schema-value round ' r e s u l t - d a t a - t y p e))

(o v e r f l o w - l i s t (g e t - o v e r f l o w i n p u t - p a c k e t))
(output-packet n i l)

)
(destroy-packet i n p u t - p a c k e t)
(m u l t i p l e - v a l u e - b i n d (r e s u l t overflow)

(our-round r e s u l t - d a t a - t y p e (l i s t s b i t s) data)
(s e t q output-packet (c r e a t e - p a c k e t ' p a c k e t))
(put-data-type output-packet r e s u l t - d a t a - t y p e)
(i n s e r t - d a t a output-packet r e s u l t)
(i f overflow then

(put-overflow output-packet round))
(place-packet output-packet output-port)

)
)

)
(d e f a c t i o n (our-round b e f o r e) (n u m b e r) (b i t s data) ; debugging

(p r i n t o u t t t "our-round c a l l e d on " number)
)

(d e f a c t i o n ; round a fixnum to a number of b i t s
our-round (f i x n u m) (b i t s data)
(l e t * ((s i g n (signum d a t a))

(number (abs d a t a))
(r e s u l t ;;; performs round
(* (m a s k - f i e l d

(byte (- b i t s 1) 0) number) s i g n))
)

; (p r i n t o u t t t "our-round 'fixnum' c a l l e d on " dat a)
(p r i n t o u t t t " r e s u l t i s " r e s u l t)
(i f (> (i n t e g e r - l e n g t h data) b i t s)

(v a l u e s r e s u l t 'overflow)
(v a l u e s r e s u l t n i l)

)
)

C-28

t h i s a c t i o n i s a l i t t l e c o m p l i c a t e d
f i r s t i t braks up the d a t a i n t o t h r e e i n t e g e r s ->
mantissa, exponent and s i g n .
the mantissa i s a f r a c t i o n i e the b i t order i s r e v e r s e d
so masking i s done from the l e f t
the exponent i s an i n t e g e r so i t i s done the same way as
a fixnum

(d e f a c t i o n ; round short f l o a t u s i n g b i t mask
our-round (s h o r t - f l o a t) (b i t s data)
(l e t * ({ b i t s - m (f i r s t b i t s))

(b i t s - e (second b i t s))
(r e s u l t n i l)
(e - s i g n n i l)
(mantissa n i l)
(exponent n i l)
(m-sign n i l)
(m-p-mantissa n i l)
(m-p-exponent n i l)
(m-p-m-sign n i l)

)
; (p r i n t o u t t t "our-round ' s h o r t - f l o a t ' c a l l e d on " d a t a

(m u l t i p l e - v a l u e - s e t q
(m-p-mantissa m-p-exponent m-p-m-sign)
(i n t e g e r - d e c o d e - f l o a t m o s t - p o s i t i v e - s h o r t - f l o a t)

(s e t q max-digits (i n t e g e r - l e n g t h m-p-mantissa))
; ; ; no of d i g i t s i n the l a r g e s t s h o r t - f l o a t "about 23
(m u l t i p l e - v a l u e - s e t q (m a n t i s s a exponent m-sign)

(i n t e g e r - d e c o d e - f l o a t data)
;;; break up the data i n t o i t s components
)
(s e t q e - s i g n (signum exponent))
(s e t q m-r

(* (m a s k - f i e l d
(byte max-digits (- ma x - d i g i t s b i t s - m))
mantissa) m-sign))

;; should be ok , needs l o o k i n g i n t o ,
(s e t q e -r (* (m a s k - f i e l d (byte (- b i t s - e 1) 0)

(abs exponent)) e - s i g n)) ; ; t h i s i s ok
now check f o r overflow and r e t u r n r e s u l t

(s e t q r e s u l t (s c a l e - f l o a t m-r e - r))
(p r i n t o u t t t " r e s u l t i s " r e s u l t)
(i f (not (equalp r e s u l t d a t a))

(v a l u e s r e s u l t 'overflow)
(v a l u e s r e s u l t n i l)

)

C-29

-*- ModerART; Package:art-user; Base:10. -*-
Packet operations now supported :
(don't address packets d i r e c t l y now!!!)

(coerce-to <type> <data>)
(insert-data <packet> <data>
(put-data-type <packet> <data>
(put-overflow <packet> <data>
(get-data <packet>)
(get-data-type <packet>)
(get-overflow <packet>)
(create-packet 'packet)
(destroy-packet <packet>)
(move-packet <packet> <from> <to>)
(create-packet-with-data 'packet<data>)
(place-packet <packet> <port>)
non active value version !!!!!

(defaction ; change type catch NANS
(coerce-to whopper) (number)(data)

(i f (equalp data 'Nan)(values 'Nan)
(whopper-continue number data)

)
)
(defaction coerce-to (number)(data)

(convert (type-of data) number data)
)

(defaction convert (number number)(data)
(coerce data number)

)

(defaction convert (f l o a t i n t e g e r) (d a t a)
(values (coerce (round data) i n t e g e r))

)
(defaction convert (integer f l o a t) (d a t a)

(values (coerce (round data) i n t e g e r))
)

(defaction convert (number r a t i o) (d a t a)
(values (coerce (r a t i o n a l i z e data) r a t i o))

)
(defaction convert (number complex)(data)

(values (coerce (complex data) complex))
)
(defaction convert (complex number)(data)

(format t "Warning converting data type -
from -A to -A, you w i l l lose information -
on: -A complex number data)
(values (coerce (realpart data) number))

)

C-30

(defaction get-data (packet)()
|# (p r i n t o u t t t "get-data "

(get-schema-value packet 'data) " from packet "
packet)§ I

(values (get-schema-value packet 'data))
)

(defaction get-data-type (packet)()
H (p r i n t o u t t t "get-data-type "

(get-schema-value packet 'data-type)
" from packet " packet)#|

(values (get-schema-value packet 'data-type))
)
(defaction get-overflow (packet)()
U (p r i n t o u t t t "get-overflow " (get-schema-value packet

'overflow) " from packet " packet)#|
(values (get-schema-value packet 'overflow))

)
(defaction insert-data (packet)(data)

(l e t ((data-type (get-data-type packet))
(new-data n i l)

)
; (p r i n t o u t t t data)
; (p r i n t o u t t t (equalp data ' n u l l))

(cond
((equalp data ' n u l l)

(modify-schema-value packet 'data ' n u l l))
((schemap data-type)

(progn
; ; (p r i n t o u t t t "doing i n s e r t data w i t h " data)

(setq new-data
(coerce-to (get-data-type packet) data))

#(p r i n t o u t t t "insert-data " data " i n packet "
packet)U \

(modify-schema-value packet 'data new-data)
)

)
(T
(progn
(p r i n t o u t t t
"Error !! t r y i n g to i n s e r t data of unknown type: "
data-type)
(break)

)
)

)
)

; (p r i n t o u t t t "done insert-data")
)

C-31

(defaction put-data-type (packet)(data-type)
I # (p r i n t o u t t t "put-data-type "
data-type " i n packet " packet)#|
(cond

((equalp data-type ' n u l l)
(modify-schema-value packet 'data-type ' n u l l))

((schemap data-type)
(modify-schema-value packet 'data-type data-type))

(T (progn
(prin t o u t t t

"Error ! ! t r y i n g to put-data-type of unknown type:
data-type)
(break)

)
)

)
)
(defaction put-overflow (packet)(data)
; (p r i n t o u t t t "put-overflow " data " i n packet " packet)

(modify-schema-value packet 'overflow data)
)
(defaction add-to-packet-link (packet p o r t) ()
; (format t "adding to packet-link -A -A-%" packet port)

(modify-schema-value port 'packet-link
(creates

(append
(l i s t s (get-schema-value port 'packet-link))

(l i s t packet)) t)
)

)
(defaction delete-from-packet-link (p o r t) ()

(l e t * ((old-value
(l i s t s (get-schema-value port ' p a c k e t - l i n k)))
(new-value (cdr old-value))

)
(i f new-value

(modify-schema-value port 'packet-link
(creates new-value t))

(retract-schema-value port 'packet-link)
)

)
)
(defaction make-packet (packet)()

(l e t * ((packet-name (gentemp "P-")))
(put-schema-value 'packet 'has-instances packet-name)

; (prin t o u t t t "make-packet " packet)
(values packet-name)

)
)

C-32

(defaction use-existing-packet (packet) ()
(l e t * ((p a c k e t - l i s t

(l i s t s (get-schema-value
'free-packets ' p a c k e t - l i n k))))

(p r i n t o u t t t "use-existing-packet " (car
p a c k e t - l i s t)) # |

;; e x p l i c i t change to packet-link s l o t now done.-
;; no active value

(invoke 'delete-from-packet-link 'free-packets)
(values (car p a c k e t - l i s t))

)
)
(defaction create-packet (packet)()
; (pri n t o u t t t "create-packet")

(l e t ((p a c k e t - l i s t
(l i s t s (get-schema-value 'free-packets

' p a c k e t - l i n k))))
(i f p a c k e t - l i s t

(setq packet-name ;; use e x i s t i n g packet
(invoke 'use-existing-packet packet))
;; otherwise make one

(setq packet-name (invoke 'make-packet packet))
e x p l i c i t change to packet-link s l o t now done.-
no active value
(values packet-name)

(defaction destroy-packet (packet)()
; (p r i n t o u t t t "destroy-packet " packet)

(l e t * ((port (get-schema-value packet 'node)))
;; e x p l i c i t change to packet-link s l o t now done.- no
;; active value
(delete-from-packet-link port)

data s l o t now n u l l
data s l o t now n u l l
data s l o t now n u l l

)
)

(put-data-type packet ' n u l l)
(put-overflow packet ' n u l l)
(insert-data packet ' n u l l)

(modify-schema-value packet 'node 'free-packets)
; e x p l i c i t change to packet-link s l o t now done.
; no active value
add-to-packet-link packet 'free-packets)

(defaction move-packet (packet (source p o r t) (d e s t p o r t)) ()
(invoke 'delete-from-packet-link source)

(modify-schema-value packet 'node dest)
(invoke 'add-to-packet-link packet dest)

)
(defaction place-packet (packet (dest p o r t)) ()

(modify-schema-value packet 'node dest)
(invoke 'add-to-packet-link packet dest)

)

C-33

(defaction ;;; quick shorcut
create-packet-with-data (packet)(data)

(insert-data (create-packet packet) data)
)

C-34

;;; Simple decision h e u r i s t i c t o t e s t ideas
(defrule decisioni

(declare (salience *maximum-salience*))
;; to we have a i n s t a n t i a t i o n of a component
(or
(utterance ?time ?window
(mouse-click ?button & l e f t ?times & 1 ? ?))

(utterance ?time ?window
(menu-mouse-click ?x-w ?y-w (?block) ?button & r i g h t

?times & 1 ? ? (?area & #L| d e l e t e])))
)
;; ignore the o l d utterances
(not (and (utterance ?high-time & -?time ? ?)

(test (> ?high-time ?time))))
(schema current

(mode construction) ;; we are now c o n s t r i c t i n g
(last-mode simulating) ;; and we were simulating

)
(schema ?window-icon ;; bind variables f o r new world

(window ?window)
(display-parameters (?x ?y ?w ?h))

)
=>

;; say we are creating new world
(p r i n t o u t t t "creating new world as changes to "

?window-icon " a f t e r a simulation")
(bind ?new-world (get-icon-name ?window-icon))
;; Create newwindow f o r new world:
;; User i n t e r f a c e s t u f f
(create-window ?new-world 'graphics

(i n c f ?x 10) ?y
(+ ?x ?w) (+ ?y ?h)
(s t r i n g ?new-world)

)
(#Lai::create-window-icon ?new-world)
; create new world now
; s l o t s w i l l be f i l l e d i n by inheritance
; and s l o t f i l l rules

(assert (schema ?new-world
(our-instance-of world)
(child-world-of ?window) ;; l i n k to parent world
(reason "changes a f t e r a simulation") ;; noddy reason
(window ?new-world)

)
)
;; create rest of the block diagram
(for icon i n

(l i s t * $ (get-schema-value ?window-icon
'our-contains-icons))

bind new-icon
do
(setq new-icon (get-icon-name icon))
(our-create-icon icon new-icon) ;; make a copy
(our-add-icon-to-window new-icon ?new-world)

C-35

(parse
M a s s e r t (schema ,?new-world

(o u r - c o n t a i n s - i c o n s ,new-icon)
)

)
)

)
; (p r i n t o u t t t "done")
(refresh-window ?new-world)
(modify (schema c u r r e n t

(last-mode c o n s t r u c t i o n)
)

)
)

C-36

;;; Define t e s t constraints
(defschema constraints

(kinds chip-area design-time power)
)

(defschema chip-area
(values (v-large large medium low v-low))
(v-large 1 0 0 0 0)
(large 1 0 0 0)
(medium 100)
(low 10)
(v-low 1)

)
(defschema design-time

(values (v-long long medium short
(v-long 1 0 0 0 0)
(long 1 0 0 0)
(medium 100)
(short 10)
(v-short 1)

v-short))

high medium low v-low))

)

(defschema power
(values (v-high
(v-high 1 0 0 0 0)
(high 1 0 0 0)
(medium 100)
(low 10)
(v-low 1)

)

(defschema speed
(values (v-fast f a s t medium slow v-slow))
(v-fast 10)
(f a s t 100)
(medium 1 0 0 0)
(slow 1 0 0 0 0)
(v-slow 1 0 0 0 0 0)

)
; ; use i t e r a t i v e method t h i s time instead of r u l e based
approach
(defun calc-constraint-value (schema c o n s t r a i n t)

(l e t ((c o n s t r a i n t - l i s t
(remove n i l

(c a l c - c o n s t r a i n t - l i s t schema c o n s t r a i n t))))
(i f (n u l l c o n s t r a i n t - l i s t) n i l
(v a l u e s - l i s t (mapcar c o n s t r a i n t - l i s t))

)
)

)
(defun c a l c - c o n s t r a i n t - l i s t (schema c o n s t r a i n t)

(nconc (l i s t (get-schema-value c o n s t r a i n t
(get-schema-value schema c o n s t r a i n t)))

(fo r block i n

C-37

(l i s t * $ (get-schema-value schema 'contains-blocks))
j o i n

(c a l c - c o n s t r a i n t - l i s t block c o n s t r a i n t)
)

)
)
;;; Interface rules f o r c a l c u l a t i n g c o n s t r a i n t values
(defrule calc-constraint-time
?f <- (utterance ?time ?window (menu-mouse-click ?x-w ?y-w

(()) ?button & r i g h t ?times & 1 ? ? (|time|)))
(schema ?window-icon

(window ?window)
)
(schema design-time

(values ?values)
)

=>
(p r i n t o u t "the range of times i s "

(for value i n (l i s t * S ?values)
c o l l e c t (l i s t value

(get-schema-value 'design-time v a l u e))))
*;; returns number, requires wrap around
;; to convert back to values
(calc-constraint-value ?window-icon 'design-time)

)
(defrule calc-constraint-chip-area
?f <- (utterance ?time ?window (menu-mouse-click ?x-w ?y-w
(0) ?button & r i g h t ?times & 1 ? ? (| area |)))

(schema ?window-icon
(window ?window)

)
->

(calc-constraint-value ?window-icon 'chip-area)
)
(defrule calc-constraint-power
?f <- (utterance ?time ?window (menu-mouse-click ?x-w ?y-w
(()) ?button & r i g h t ?times & 1 ? ? (|power|)))

(schema ?window-icon
(window ?window)

)
=>

(calc-constraint-value ?window-icon 'power)
)
(defrule calc-constraint-speed
?f <- (utterance ?time ?window (menu-mouse-click ?x-w ?y-w
(()) ?button & r i g h t ?times & 1 ? ? (|speed|)))

(schema ?window-icon
(window ?window)

)
=>
;; l i n k i n t o calc path seq s t u f f not completed)

C-38

-*- Mode:ART; Package:art-user; Base:10. -*-
Using viewpoints.
these set of r u l e extract the separate paths from an
interconnected set of blocks so that the delay
associated with a path can be cal c u l a t e d .
Feedback loops and feedforward paths are i d e n t i f i e d
Not f u l l y integrated w i t h PEDA.

(defrule start-path-seq ;;; s t a r t path generation
(schema current

(f i n d paths)
)
(schema ?output

(instance-of port)
(conn-to ?next)
(our-contained-in ?block)

)
(not (schema ?input &-?output

(instance-of port)
(conn-from ?)

(our-contained-in ?block)
) ; ; ; f i n d an entry point

)
=>

(sprout
(assert (path-seq ?output ?next));;;; and s t a r t there

)
)
(defrule continue-path-seq-1

(schema current
(f i n d paths)

)
(schema ?input

(instance-of port)
(conn-from ?)
(our-contained-in ?block)

)
(schema ?output &-?input

(instance-of port)
(conn-to ?next)
(our-contained-in ?block)

)
(path-seq $?body ?input)

;;; forget about c i r c l e here
=>

(sprout
(assert (path-seq $?body ?input ?output ?next))

)
)

C-39

(defrule prevent-to-much-circle ; ; ; stop loops fom being
repeated i n d e f i n i t e l y

(declare (salience *constraint-salience*))
(schema current

(f i n d paths)
)
(path-seq $? ?from $?body ?from $? ?from $?)

=>
(poison "loop t r a v e l l e d more than once")

)

(defrule clean-up
(declare (salience - 5))
(schema current

(f i n d paths)
)
(viewpoint ?vp

?x<- (path-seq $?body)
)
(viewpoint ?vp2

(path-seq $?body ? $?)
)

=>
(r e t r a c t ?x)

)
(defrule clean-up-2

(declare (salience - 5))
(schema current

(f i n d paths)
)

?x<-(path-seq $? ?body $? ?body)
=>

(r e t r a c t ?x)
)

(defrule clean-up-3
(declare (salience - 6))
(schema current

(f i n d paths)
)
(path-seq $?)

=>
(believe ?root "collaspsing path-seq to s i n g l e - l e v e l ")

)
(defrule print-path-seq

(declare (salience - 1 0))
(schema current

(p r i n t paths)
)
(viewpoint ?vp

?x<- (path-seq $?body)
(not (path-seq $?body ?))

)
=>

C-40

(p r i n t o u t t t
(creates (l i s t 'path-seq #L:splice (l i s t s ?body))))

)

(modify-schema-value 'current ' f i n d 'paths)

C-41

;;;; A u x i l i a r y Functions
(defun member-relation-p (schema r e l a t i o n value)

(l e t ((s l o t - v a l u e (get-schema-value schema r e l a t i o n)))
(cond ((n u l l slot-value) NIL)

((symbolp slot-value)
(i f (equalp slot-value value) s l o t - v a l u e))

((l i s t p slot-value)
(member value (l i s t * $ s l o t - v a l u e)))

)
)

)
(defun i n i t - p a c k e t s ()

(for packet i n
(l i s t * $ (get-schema-value 'packet 'has-instances))
do

(i f packet
(destroy-packet packet)

)
)

)
(defun c l e a r - f u n c t i o n - f i r i n g s - s l o t s ()

(for the-block i n
(l i s t * $ (get-schema-value 'block 'has-instances))
do

(modify-schema-value the-block ' f u n c t i o n - f i r i n g s 0)
)

)

(defun resize-data-slot-in-memory-schema ()
(for memory i n

(l i s t * $ (get-schema-value 'memory 'has-instances))
bind size data new-data
do
(i f memory

(i f (setq size (get-schema-value memory 'size))
(i f (s l o t - n u l l memory 'data)

(setq new-data
(make-list size : i n i t i a l - e l e m e n t 'NAN))

(progn
(setq data

(l i s t s (get-schema-value memory 'data)))
(setq new-data

(replace
(make-list size : i n i t i a l - e l e m e n t 'NAN) data))

)
)

)
(modify-schema-value memory 'data new-data)

)
)

)

C-42

(defun Nan-check (&rest vars) ;; returns t i f any vars are
;; (N)ot (A) (N)umber

(not (for var i n vars
always
(not (equal var 'Nan))

)
)

)
(defun set-Nan (&rest vars)

(for var i n vars
do
(setf (symbol-value var) 'Nan)

)
)

; function our-get-icon-name, returns new-icon name
; given mux mux-text -1 adder, returns: adder-text - 1

(defun our-get-icon-name
(original-parent o r i g i n a l - i c o n new-parent)

(progl
(i n t e r n
(concatenate
' s t r i n g (s t r i n g new-parent)
(subseq (s t r i n g o r i g i n a l - i c o n)

(mismatch (s t r i n g o r i g i n a l - p a r e n t)
(s t r i n g o r i g i n a l - i c o n) :test #'char-equal)

(defun insert-schema-value (schema s l o t value)
(i f (not (sl o t p schema s l o t)) (s l o t c schema s l o t))
(i f (eql (slot-get-type schema s l o t 'slot-how-many)

'single-value)
(modify-schema-value schema s l o t value)
(put-schema-value schema s l o t value)

)
)

C-43

