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Abstract: 

A desire to produce a design support system for the early stages of electronic 
engineering design, has led to the conception of the Plymouth Engineer's Design 
Assistant (PEDA), pulling together experience from the three fields of computing, 
psychology and electronic engineering. The basic emphasis of this tool has been to use 
psychological techniques to analyze the cognitive aspects of designers in action and then 
make recommendations for design tool improvement. 

The results of the complementary psychological research, and other relevant 
literature are examined and potential avenues to realizing an improving design explored. 
A new idealized abstract representation of early electronic engineering is proposed, 
which is more in line witli the cognitive needs of designers, thus enabling the 
production of more capable design tools. The main points of the representation are 
discussed, and comparisons with other approaches and tools drawn. The abstract 
representation is then taken and used to form a specific implementation as the core to 
the PEDA tool. An overview of the PEDA tool is given, followed by a discussion 
regarding the important aspects of the implementation. Important issues and problems 
raised during the course of the research are discussed, together with suggestions for 
future work. 
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1. Introduction 

1.1. Overall Structure of this Chapter 

This introduction provides an overview of the research discussed in the rest of 

this dissertation. The research has been concerned with the means of producing a design 

tool for the early stages of electronic engineering design, which would offer improved 

support for the designer by addressing those parts of that activity which were shown to 

be important as a result of related psychological work. This process has been split into 

two parts. The first involves the generation of an abstract representation that captures 

these important aspects. The second is an implementation of this representation as a 

software based design support environment known as the Plymouth Engineering Design 

Assistant (PEDA). 

The chapter begins with an outline of the main themes behind the research. This 

is followed by a general introduction, providing background information to the subject 

of electronic engineering and its support, h ends with the aims of the research, and a 

brief outline of the fonn and content of the remaining chapters. 

1.2. Underlying Concerns, Aims and Goals 

There are a number of concerns, aims and goals that have had a crucial effect 

on the work discussed in this dissertation. They are briefly mentioned now to give an 

insight to the intended overall context of the work. 

The first concern was that a design support system should help the designer 

through a cooperative approach, and that the representation used at the core of such a 

tool should be explicitly designed with this in mind. The second, intended that 

cooperative support would be improved through a clearer knowledge of the needs of 

designers. And thirdly, these needs would in part be cognitive in nature and therefore 

would be best addressed through psychological analysis of designers in action. These 

concerns in turn promoted the view that satisfying these concerns would produce tools 

which were more useful and less complex than the results of many other approaches, 

by providing functionality which was tailored to the actual psychological needs of 

designers. The logical result of these considerations was the initialization of work on 
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the PEDA project overall, and in this case on deriving the abstract representation and 

its implementation (discussed in chapters 3 and 4), based on requirements derived in 

part from psychological studies (Ball, 1990). 

1.3. General Introduction 

This section provides a short summary of design in electronic engineering and 

its progression from a purely manual, towards an increasingly automated task. This 

development is shown to be the result of escalating design complexity over the years, 

and has resulted in a large number of support tools which are simply classified into two 

divisions. Overall trends in this area are discussed and are followed by a lead into the 

basis of the PEDA project. 

A more detailed discussion of the various aspects of these tools is not reviewed 

here. This information regarding the specific background details of requirements, 

representations, models and implementation particulars, has been moved to the 

applicable sections of chapters 2, 3 and 4 which concentrate on these aspects 

individually, 

1.3.1. The Field of Electronic Engineering 

The field of electronic engineering is a wide and diverse domain, covering many 

areas, from the large to the small, and affecting much of our modem lives. In an 

engineering sense it has traditionally been divided into two large subdomains, known 

as digital and analogue electronics. These have been exemplified to the public by 

personal computers on the digital side, and television & audio products in the analogue 

field. In addition this separation has been made more marked by correspondingly 

specialised analogue and digital design engineers. 

1.3.2. Design Activity 

The process of design is a highly complex activity, that has largely resisted 

attempts to categorise it effectively. This is shown somewhat by the plethora of 

different approaches in existence in many domains (There are for example, quite a few 



software design methodologies). It can be described however reasonably well in abstract 

terms as: "largely a process of integrating constraints imposed by the problem, the 

medium, and the designer" (Mostow, 1985). 

For description purposes this design activity is commonly divided into a number 

of stages. Unfortunately the exact description and positioning of those stages is 

somewhat open to debate and is often a source of confusion. However a simplistic view 

adequate for this text, and avoiding any exact definition of any particular design activity 

or process, would state that a design proceeds from specification to artifact with various 

hierarchical levels in between, going from abstract to reality in a logical manner. 

Obviously the real activity is much more complicated than this, but the above 

description does give the references to the early stages of design mentioned later 

somewhat more meaning in the overall context. 

1.3.3. The Need for Design Support Environments in Electronic Engineering 

Design support systems have over the years been introduced to make the task 

of producing electronic designs easier, quicker and less error prone. In the 1980s tools 

were used which provided such facilities as schematic capture and logic simulation, 

offering assistance to design entry and validation stages of design. As designs have 

become more and more complex there has been a natural tendency for design tools to 

further aid the designer by incorporating more and more of the design process. This 

has been shown to be most apparent in the VLSI arena, where the improvements in 

lithographic techniques have made possible very complex designs involving millions of 

transistors. Purely manual design of such complex designs, would be very difficult and 

as a result design tools have been very successful in this area. Further, in the computer 

design industry the process seems to be accelerating, with the technology directly 

providing the more powerful computing platforms, which the increasingly more 

sophisticated design software needs to run on, and in turn the designers using the latest 

software to achieve reasonable design times of the next generation hardware. The net 

result is that there has been a rapid growth in electronic design support systems, with 

the newer systems covering increasingly more aspects of the design cycle, and a gradual 

movement towards the higher and more abstracted levels of design. The rationale 

behind this tactic has been the placing of design resources where their impact on design 
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is greatest (Bunza, Hoffman & Thompson, 1990). promoting creativity, and finding 

design errors early on, where the cost of correcting them is relatively low. As a result 

new and improved design tools have been introduced to aid the designer, as the 

complexity of their designs has increased. This increase in complexity and a desire to 

minimize the product design time has created the need for more and more sophisticated 

design aids. 

1,3.4. Design Support Environments 

A very simple but useful classification of computer based design support 

environments splits them into two main types (Culverhouse 1988). 

The first broad category comprises the conventional toolkit, which is often the 

combination of low level circuit design systems including schematic capture, together 

with a number of functional subsystems, for example logic simulation. A large number 

of these tools exist covering a multitude of areas, for example logical, behavioural and 

mathematical simulation for both the analogue and digital domains of electronic circuit 

design. At other levels, support may be provided for the layout of VLSI designs as well 

as printed circuit board manufacture. An example of this type of tool would be the early 

Mentor Graphics IDEA 1000 system, commercially available in the middle 1980s. 

The second class of tool makes use of Artificial Intelligence based techniques 

(Winston, 1984, & Harmon and King, 1985) and often incorporates embedded specific 

expert knowledge to assist the designer in a selected area. These systems take an active 

role in certain parts of design activity and in those areas can greatly improve an 

engineer's productivity. In recent times a great deal of effort has been centred on such 

tools especially in the design automation arena and prototype systems such as the 

"Design Automation Assistant" (Kowalski and Thomas, 1985) and "VEXED" (Mitchell 

et. al., 1985) have been described. Good progress has been made, and is likely that 

these tools wil l eventually automate a great deal of design activity, perhaps even from 

the eariiest specification stage downwards. 

An examination of the literature has indicated that although current examples of 

both types of system offer much to the engineer they seemed lacking in a number of 

areas: 

Firstly, many of the conventional toolkits tend to be passive user directed 
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systems, containing little embedded knowledge about the design or the designer. As a 

result they can do little to automate the repetitive aspects of design, or help the designer 

be more creative. 

Secondly the expert knowledge embedded within the second class of systems 

tends to be very specific in its content and has dealt with particular design problems in 

comparatively narrow domains, and not with the more general issues applicable to a 

wider range of problems. Though this may be due to the difficultly of eliciting this type 

of abstract knowledge from designers (Evans, 1986). 

Another aspect seen often in design tools, has been the tendency to focus on the 

later stages of design concerning with the validation of a design through simulation or 

timing analysis, as opposed to the earlier and higher levels of the design process (the 

"what if" stages). This trend has begun to change with the development of more 

sophisticated tools, though developments in this area have been tentative. In this respect 

the knowledge based workbenches tend to cover the widest range of the design process, 

in an albeit narrow domain, going from behavioural, functional and physical 

specifications for a VLSI design, to a completed chip floor plan. 

In a similar vein, there has been a drift towards completely automating whole 

portions of the design activity, basically adopting a replacement strategy and stepping 

away from a cooperative approach to design in which the best aspects of both machine 

and operator are effectively utilized. 

However the most important consideration from the point of view of this work 

is that the basis of these tools appears to be formed from the desired end problem, for 

example a CAD based verification tool would be based on the requirements of design 

verification. In a similar way an automated design tool covering behavioural 

specification to integrated circuit floor plan, would be based on the engineering 

requirements of these areas. A more interesting and potentially more rewarding 

approach towards producing a more effective design tool, would be to derive engineers 

needs, from a rigorous analysis of designers at work. Such a tool should be more 

centred towards their needs, than those whose target is a design goal. This analysis has 

been perfonmed by (Ball, 1990) a co researcher on the PEDA project, and has been used 

to help derive a useful representation for early design and a pilot implementation in the 

PEDA system. 
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1.4, Aims of the Research 

As mentioned before, the main aim of the PEDA project was to produce a tool, 

based upon sound psychological principles and research, that offered support to the 

designer in the early stages of design, by attending to their cognitive as well as 

engineering needs. This would be done in part by paying close attention to the results 

of psychological work due to Ball, (1990) a co-researcher on the PEDA project, and 

discussed in chapter 2. High level requirements for a cooperative system, from that 

work would be used as the basis for the internal representation of early design within 

the PEDA environment. The primary goal of this research was therefore to formulate 

a representation that was a consistent and logical framework for representing important 

aspects of early engineering design within PEDA, directed by iliese requirements. 

1.5. Thesis Outline 

This chapter has given an outline of the basic motivation and aims of the 

research, and a short introductory overview of electronic engineering design. The 

contents of the remaining chapters are now described briefly. 

Chapter 2: This chapter discusses the psychological basis of the PEDA project, 

and shows how the requirements for the abstract representation in chapter 3 

were obtained and justified. 

Chapter 3: This chapter discusses the theoretical aspects of representing the 

important aspects of the above design process within a tool. It is divided into 

a series of sections each concerned with a particular aspect of design activity, 

forming a link between the requirements and how they might be achieved. 

Chapter 4: This chapter examines the PEDA tool and the implementation of the 

abstract representation discussed in chapter 3 at its core. 

Chapter 5: This chapter pools together the work described in the previous 

chapters and provides a summary and conclusions regarding the work. A section 
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is devoted to possible further work on PEDA. 

The appendices contain an example of the PEDA tool in use, an overview of the 

various tools and programming languages used in the realization of the PEDA 

system, and the program code relevant to the main text. 
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2. Requirements for Early Electronic Engineering Design: The 

Psychological Basis of the PEDA project. 

2.1. Overall Structure of this Chapter 

The aim of this chapter is to show how the set of requirements for the 

representation discussed in chapter 3 were obtained. The main emphasis of the 

discussion is on the justification for the psychological basis of the PEDA project, and 

some of the results of the work conducted by Ball (1990), the psychological researcher 

on that project, which are directly relevant to the work on the representation of early 

electronic engineering design discussed in chapter 3. The psychological work involving 

studies on the cognitive processes involved in engineering design, is outlined and then 

a link is formed to the work on realizing design support and the early design abstract 

representation discussed here in later chapters. Only those areas that are thought to be 

directly relevant to this dissertation are examined, as a complete account is given in 

Ball's thesis (Ball 1990). These areas cover a discussion on the cognitive needs of 

engineers and a set of requirements for a cooperative system that would begin to 

address them. 

The chapter ends with a discussion of other work in the literature which has 

been found to be applicable, and the overall relevance of the final requirements towards 

systems which purport to assist the early stages of electronic engineering design. 

2.2. Justification for Psychological Basis of the PEDA project. 

The PEDA system was initially conceived as a cooperative engineering design 

support tool that would offer assistance to the engineer designer during the early stages 

of design. A brief survey by Culverhouse, (1986) had indicated that contemporary 

design tools offered little assistance to these earlier stages, involving the testing of 

ideas, comparison and selection of alternatives. Very little was known by the research 

group on the PEDA project on exactly how such assistance should be afforded. 

Unfortunately it appeared that the design of computer aided support systems was 

traditionally an introspective and intuitive method done by the tool creators, who were 

often the domain experts, ie a "designed by engineers for engineers" philosophy. This 
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was not viewed satisfactory, as a sound and solid basis was required on which to base 

the development of the tool. Without this basis the tool might hinder the designer by 

not taking into account some important and unthought of aspect of design activity. It 

was logical to reason that this would be best achieved by first understanding the way 

in which engineers design, a task which lends itself to psychological study. In the 

literature there appeared to be very little prior work on the underlying processes of 

design in the field of electronic engineering, but there has been some research on 

software design processes (eg. Jeffries et al, 1981), though the majority of human 

factors research has been concerned with the Human Machine Interaction aspects of 

computers (eg Myers, 1986 or Hutchins, 1985). As a consequence the research by Ball 

into the cognitive processes involved in engineering design was instigated. One 

especially exciting aspect of this work, was that a study of engineers solving real world 

problems, might provide valuable information regarding the engineering design process, 

and indicate the particular strengths and weaknesses in their designing. This information 

could then be used in the formation of a design tool, which would be targetted at these 

cognitive needs, providing the correct type of support that engineers need. This type of 

support would have the added benefit of being comparatively general in scope, covering 

a wider range of end problems, than systems whose intelligence was aimed at one or 

two narrow domains. 

2.3. Results of the Related Psychological research 

The related research produced a number of findings about the way in which 

engineers design which have important implications for design tools that address the 

early stages of design. 

The first finding deals with the way in which the engineers initially addressed 

their designs. Ball found that the engineers tended to adopt a problem reduction strategy 

in the development of their work. Initially this would involve splitting the main problem 

into a set of smaller, more manageable subproblems that could be dealt with separately 

and with the minimum of cross interaction. Each subproblem would then be focused 

upon in turn, and in the case of the less experienced designers, developed in an 

essentially depth first manner, completing each subproblem before moving on to the 

next. The more experienced engineers would tend to adopt a more breadth first 
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approach to solving the design problems, and would only complete a subproblem to a 

particular level, before moving on to the next one. Only when all subprobiems had been 

addressed in this way, did tJiese engineers move down to the next level, splitting up the 

design as mentioned above. 

In this aspect the results of the psychological research are in agreement with, the 

majority of computer based engineering tool approaches. There are a multitude of 

commercial CAD based tools available, that cater for the hierarchical decomposition of 

designs into functional modules, aligning very well with the problem reducing strategies 

adopted. However there is little evidence for the use of a sound psychological basis in 

the development of such tools, except in software engineering (Jeffries et al 1981), and 

the similarity between results appears to be due to a fortuitous agreement between 

intuitive techniques and the psychological work. 

The apparent differences between experienced and novice designers, has in the 

instance of software development tools, been responsible for the appearance of tools 

which enforce a particular stratagem on the user, one that would hopefully improve the 

performance of novices, by adopting an idealized approach, for instance the use of 

breadth first, top down strategies (Jeffries et al 1981]. A problem with this type of tactic 

is that such techniques may hinder rather than aid the designer, in that there may be 

additional aspects of the design activity, hidden to casual analysis, that are not faced by 

the particular approach chosen. The psychological findings suggest that a design 

assistant should encourage, but not enforce a particular design strategy. This tactic is 

supported by the tentative observation that even expert designers do not always adopt 

a rigid regime and may for example expand parts of a design in at least partially depth 

first manner. In fact this overall theme appears throughout the findings, indicating that 

the design process is governed by trends. It therefore seems unlikely that user centred 

design support wil l be effectively achieved through the use of rigid methodologies, 

when the underlying activities are at present seen to be so changeable. 

The second important finding was primarily concerned with the way in which 

designers pursue alternatives. Ball found that the electronic engineers studied spent very 

little of their design time in a search for different solutions to the problems, but instead 

concentrated on one high level solution. This was found to be true over widely differing 

levels of expertise, from expert to novice and so appeared to indicate a general aspect 

of the subjects studied. He attributed the result to the use of a "satisficing" principle by 
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the designers, in which possible solutions are accepted on the grounds that they are 

good enough or "satisfactory", instead of using a more rigorous or exhaustive search for 

the "best" design. 

This trend is in stark contrast to our preconceived views as engineers of the way 

in which we design. Good design practice dictates, that designers initially examine a 

number of alternative ideas, before selecting a few to pursue further. Ball does admit 

that the engineers studied may have been performing some form of rapid and hidden 

comparison, or that the time constraints imposed on the designers during his studies 

may have influenced their design activities, away from the common engineering 

conception of an idealized route. This is countered by the observation that if extensive 

comparisons were being made, then it would be expected that this would be expressed 

in their verbal or "think aloud" protocols and little evidence was found for this in the 

eariy and more abstract stages of design. In the later stages of their design activity 

however, he did observe a trend by the more expert engineers to produce slightly 

improved versions upon the main design theme, though this activity was comparatively 

minor to that expected. (Note: Verbal protocols are a successful psychological tool used 

to gain access to the thoughts of subjects, by making them verbalize their thoughts 

whilst solving the problem.) 

Ball suggests that designers may suffer from a fonn of cognitive overioad 

affecting their searching strategies at the higher levels of design where changes have 

far reaching consequences, but cope quite well at the lower levels, with small changes 

or "tweaking", where the effects of change are generally far more manageable to the 

unaided designer. For example: a decision to use an analogue, digital or mixed 

technologies approach in the initial stages of design wil l affect ail aspects of the design 

from then on, whilst a small change involving a gain control resistor in the final design 

will have comparatively little effect on the rest of the design. 

The effects of time and other environmental constraints are harder to account 

for, although a number of different studies made by Ball (1990) with quite different 

environments produced similar results. The first study involved the use of undergraduate 

electronic engineering students making a current design log of their final year project, 

together with video and sound recordings of their activity reports. A second set of 

studies involved video and sound protocol studies of electronic engineers solving a 

particular set design problem, and employed a time pressing environment, as this was 
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the only way of reasonably collecting the verbal protocols during design. Unfortunately 

if the study had taken place over the normal time scales of a product, then the resulting 

data would have taken many man years to collate and analyze. Ball suggests that the 

results are still applicable though, as a time pressured environment is probably more 

indicative of real life design problems on projects that are working to deadlines, and 

incidentally where a design support tool would be used to most effect. 

He follows on and states that the issue of the pursuing of alternatives is further 

clouded, by the problems involved in determining the relative optimality of a design, 

and it is quite possible, that some of the engineers could have produced the "best" 

design, from their "satisficing" approaches. Unfortunately whilst designs can be judged 

on "satisficing" grounds in that they do or do not meet the design criteria, the 

determination of the "best" design is somewhat subjective and based to some degree on 

the expert designers opinions, with the anendant biases which that might entail. 

Fortunately these problems were somewhat avoided, by the observation in this case, that 

the majority of solutions provided in the second study were quite different, and so 

although one design could be the most optimal, it is unlikely that all the others were 

as well. This suggests that the methods employed by the engineers were not geared to 

producing the "best" design, but rather a satisfactory one. 

From a design standpoint, the lack of explicit alternative solution generation may 

be very important, considering the very high demands set on designers today, although 

it must be added that the "satisficing" approach may be the reason why designers can 

produce effective and reliable designs within a reasonable time scale, considering the 

complexity of even small problems. Ball indicates that some of probable causes of the 

"satisficing" tactic might be the cognitive limitations associated with the finite size of 

human working memory, in that we tend to have problems keeping track of a great deal 

of information at once, and it seems reasonable that the "satisficing" route might reduce 

the number of variables that the designer had to consider at any one time to a 

manageable level. This can be taken as a very good case for some form of 

computerized assistance regarding the management of alternatives, as a means of 

overcoming these working memory limitations. In addition the fact that engineers 

already possess some form of rudimentary selection system, indicates that a system that 

superintends this activity, by perhaps making it more explicit and accessible, may 

improve the performance in this important area. It can also be seen that some form of 
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automated comparison scheme is desirable to help compare different solutions in an 

unbiased and consistent manner. 

TTie selection of alternatives is an area that contemporary design support tools 

do not seem to address, and whilst there are many schemes for the representing of 

alternative solutions or versions (Chou & Kim, 1986). (Gabbe & Subrahmanyam, 1987) 

and (Katz, Anwarrudin & Chang, 1986), there appears to be little effort centred on the 

selection of alternatives within the framework of electronic engineering based design 

tools. Constraint based systems exist (Chan & Paulson, 1987), but the emphasis tends 

to be towards design and not comparison processes. This may again be due to the way 

in which tool requirements have been traditionally gathered, by the use of such 

techniques as retrospective and intuitive analysis of the problem domain or questioning 

of target users. Ball draws attention to research that indicates that such methods may 

give unreliable results and suggests that systematic psychological techniques (eg. 

protocol analysis) are more scientific (Nisben & Wilson, 1977 and Evans 1986). 

Another outcome of the studies is the suggestion by Ball that there is some 

evidence to support the view that the subject engineers were creating and then using 

mental models (Johnson-Laird, 1983), to simulate the behaviour of different aspects of 

the designs as they evolved. For example, what would happen at the outputs if a certain 

set of inputs were applied to a design? Interestingly, the same type of modelling could 

be potentially used to evaluate the usefulness of alternative designs for a particular 

problem. Ball suggests a tentative theoretical model for the processes in engineering 

design that involves the use of a generalized high level "design schema", an entity 

which contains knowledge which is applicable to a wide range of similar problems. The 

"design schema" controls the partitioning and decomposition of the problem into 

subproblems, together with the use and evaluation of possible solutions at each level, 

and is in effect the coordinator of the designing activity. He then proposes that the basis 

of the "design schema" is in fact the problem reduction strategy mentioned earlier. If 

this is superintended with the means of efficiently providing domain specific technical 

knowledge, then the core of a fairly sophisticated entity, that can be used to provide 

reasonably expert solutions to a wide range of design problems, is produced. 

This model may have some important ramifications for the generation of design 

aids. Firstly, if it were possible to implement the model within an aid, it could then be 

used to provide the basis of the assistance. It*s internal state would be indicative of the 
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user's state and therefore could be used to provide contextually based assistance 

relevant to the user's need at the time. This model could also be used as part of a 

training system that "taught" novice engineers how to design more effectively, by 

comparing their design activity to its internal representation, and offering advice on 

what they should be doing next or possibly intervening in some subtle, but calculated 

manner, with the aim of altering their "design schema". 

Secondly, if the user were substituted for the problem reduction strategy aspect 

of the model, then reasonably expert solutions could be produced, by correctly linking 

the required domain specific knowledge to the user, in effect producing a cooperative 

system where the best aspects of both machine and operator are effectively utilized. 

This is a desirable approach as most designers are quite capable of applying such a 

strategy, whereas it would be difficult and unnecessary to encode efficiently in an 

automated form at present. As a result engineers might be able to produce more optimal 

designs in an area away from their specialities. In addition the availability of a general 

purpose model appHcable to other design situations, involving different problem 

domains should theoretically speed the development of design assistants in those areas, 

or more ideally, allow the creation of a general purpose design assistant. 

A fourth major outcome of the psychological research relevant to the generation 

of a computer based model of design, is related to the inconsistencies, omissions and 

errors made by the engineers in their design activities. Errors can occur when the 

designer is trying to form some understanding of the problem. 

An example of this may be seen where some of the engineers studied 

inadvertently created new incorrect relationships between mathematical parameters. 

Normally trigonometric functions like sine are associated with angles, but in this 

problem this was not the case. Unfortunately the designer was given other cues that 

tended to reinforce the angle association, and one of these involved the use of the 

irrational number pi in the equation definition for the variable that would be used in the 

sine function. The error that occurred, happened when the designer was deriving some 

other equations that involved the use of other trigonometric functions which did involve 

angles. An erroneous substitution was then made using one these angles in the given 

equation. 
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For example: 

Now initially: 
a = sin(x) 
X = w.k/pi 

where: w is a length, and k is a constant 

now: 
theta = arcs ine (I/a) :- a user derivation 

later: 
w.k/pi = theta :- an erroneous substitution 

A possible explanation for this was that the engineer had failed to build up a 

complete representation of the equations. This was supported by the fact the engineers 

involved who displayed this tendency, spent the least time in initially understanding the 

requirements of the design problem, and also spent the least time referring back to the 

specifications as the design progressed. 

Errors also occurred subsequent to this representational or encoding phase, when 

applying design knowledge to generate, combine or even evaluate possible solutions. 

One example involved a designer who was perfonning an expansion of a partial 

solution, and failed to include parts of the original partial solution in the expanded 

version. Additionally inconsistency problems arose, with mathematical notation in a 

number of design solutions, where the same variable name was used in two equations 

at different points in the design work. This caused problems later when the wrong 

equation was substituted in another equation. 
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For example: 

Now initially: 

theta = arcsine(l/a) 
a angle usually called theta 
is the inverse sine of the 
Opposite divided by the hypotenuse and later: 

theta = arccosine(j/l) 
another angle, 
which wil l be called theta as well 

And finally: 
a = tan (theta) 

Now substitute for the wrong theta. 

therefore: 
instead of: 

a = tan (arccosine (j/1)), 
a = tan (arcsine (I/a)) 

Ball attributes these types of errors to a number of causes: working memory 

limitations are blamed, when the designer is concentrating on several items of 

information, and errors occur, for example the equations; and a lack of vividness of the 

problem information may have caused the problems regarding incomplete formation of 

an internal representation of the specification. 

This is an aspect of design which apparently has yet to be tackled to any great 

extent by design support environments. This may be due to the fact that most design 

tools tend to address the later stages of design, where any equations have already been 

formulated and checked for correctness. Simple mistakes, dependent on where they 

happen in the design, may cause problems when discovered, causing delays due to 

redesigns and may even invalidate the whole design solution, a result which would not 

be acceptable in the fiercely competitive design market of today. Additionally there are 

problems to do with the safety of critical systems, that occur when an ok, but 

mathematically incorrect design, is a key element in a complex system, for example an 

aircraft control system, where the reliability of such systems is an very important issue. 
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It seems, therefore, that there is a great need for some fonn of assistance to address this 

type of cognitive problem, especially in the eariier stages of design, where mathematical 

manipulation and equation generation is generally carried out. The benefits would 

hopefully involve reduced design time and greater throughput, due to the elimination 

of simple mistakes early on in the design history. 

In conclusion, the psychological research, although tentative, has produced a set 

of findings regarding the design strategies and cognitive limitations of designers which 

were generalisable over very different tasks, time scales and skill of the designers. This 

work is in general agreement with recent research in mechanical engineering by Ullman, 

Dietterich and Stauffer, (1988), who have produced a similar set of findings regarding 

the activities of mechanical engineering designers. These encouraging results have 

enabled Ball to produce a set of very general requirements for a design support system 

that would be targetted at the cognitive needs of designers. The requirements, shown 

overieaf, are quite general, but provide valuable pointers to the creation of such a 

system. 
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2.4. Requirements for a Design Support System 

The five general requirements are itemized below, together with an individual 
description relating their relevance to design support. 
A design support system should: 

(1) "Encourage the designer to consider an increased number of initial high-

level solution concepts and enable the efficient formulation of alternative 

versions of each solution concept through levels of increasing design detail." 

(2) "Assist with the choice of competing design solutions, for example, 

enabling evaluations of solutions to be made on the basis of comparative 

functional simulations." 

(3) "Superintend the designer's exploratory activity, for example, helping 

the designer to backtrack if a path proves unpromising (i.e. by providing a 

record of paths taken togetlier with the current point of exploration) or 

suggesting worthwhile paths of investigation (i.e. by suggesting design 

alternatives)." 

(4) "Ensure tlie designer*s awareness of design conflicts (e.g. i f crucially 

important constraint requirements have been overlooked when the designer 

is focusing on a narrow aspect of the overall design solution)." 

(5) "Ensure the designer's awareness of inconsistencies in the notation that 

is being used (e.g. i f nvo different design parameters have been given the 

same symbolic label)." 

The requirement (1) arose from the observation mentioned in the previous 

section, that designers tend to use a "satisficing" principle in which they focussed their 
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efforts on a single satisfactory high level solution path. It was therefore thought that 

encouraging a more explicit approach, in which options are more thoroughly 

investigated, could lead to improved design performance. 

Requirement (2) arose from the same observations as (1), but the emphasis is 

on making the selection between altematives easier, by allowing the user to apply a set 

of selection criteria to a whole set of altematives. This activity would be a difficult and 

error prone process if done by the user unaided, and whilst it would be wrong to say 

that, making such a scheme available, wil l make the user pursue altematives to a greater 

extent, it can however, make the proposition more attractive by reducing the cognitive 

burden in this area. In addition the problem of implicit biases affecting the choice of 

altematives is somewhat alleviated with the introduction of an explicit checking scheme. 

The designer can now be made aware of which constraints are being applied. Similarly 

less time should be wasted on pursuing "dead end" designs, by making sure that all the 

relevant constraints are applied in a consistent manner to the selected altematives, at an 

early stage of the design activity. 

Requirement (3) is also designed to help with the pursuing of altematives, by 

reducing the amount of information that the designer has to keep in working memory. 

The information held would hopefully allow the designer to retrace his or her steps, up 

from an unsatisfactory solution, regaining the information that was valid previously, 

before the unsatisfactory altemative was examined. 

Both requirements (4) and (5) are associated with the mistakes that designers can 

make during their designs. A designer can loose consistency with various parts of a 

design, when concentrating upon a particular aspect, and so needs to be alerted to the 

fact. The designer also needs to be alerted to inconsistencies in the notation of the 

solution, be it mathematical or otherwise, 

2.5. Other Relevant Work 

The aim of this section is to outline other work which has significantly 

influenced the selection of the requirements stated earlier, as being suitable for the 

formation of the abstract representation and implementation discussed in chapters 3 

and 4. 

Most design systems are built to satisfy a set of explicitly or implicitly specified 
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requirements and so the number of potentially influential sources is quite high. However 

there are comparatively few which are applicable to cooperative early engineering 

design. 

In the area of Co-operative interface management M . Smyth, (1988) outlines a 

set of requirements for a cooperative system, which are quite similar to Ball's in 

electronic engineering: 

(1) Increase the number of initial design solutions. 

(2) Reduce the time and cost of the design process. 

(3) Increase the number of design iterations where necessary. 

(4) Increase the designers awareness of potential design conflicts in the 

proposed solution. 

(5) Move the solution range closer to the theoretical optimal solution. 

A similar view is taken in the Mechanical domain by Ullman et. al. (1988) who 

makes a number of recommendations to improve CAD systems: 

The first is that we should raise the abstraction level at which computer 

based tools can provide external memory aids for the designer. 

Secondly, tools might also be extended by providing some means of 

constraint management assistance. 

Thirdly, there is a general need for CAD to support the human designer's 

cognitive limitations. 

A very useful and often cited paper by Mostow (1985) suggests the areas that 

a comprehensive model of design should address. 
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In short these are: 

1) The State of the design. 

2) The goal staicture of the design process. 

3) Design Decisions. 

4) Rationales for design decisions. 

5) Control of the design process. 

6) The role of learning in design. 

It can be seen that there is a degree of commonality between the sets of 

requirements. Both Ball and Smyth are in broad agreement, and Ullman makes overall 

suggestions that the other two detail. The last set of suggestions due to Mostow, appear 

to differ, but in fact are pitched at a different level, being concerned more with the 

structure of the internal model than the tool. The overall concern of all these approaches 

has been to produce better systems by taking into account more of the human design 

process than just the state of design. 

2.6. Relevance To Design Support Systems in Electronic Engineering 

Very little psychological work has previously been carried out on design in 

electronic engineering, and it appears that introspective and intuitive techniques have 

been used to formulate the specifications for many design tools in this area. 

Unfortunately, psychological evidence has indicated that these techniques can be 

ineffective (Nisbett & Wilson, 1977 and Evans 1986), and so there has arisen a real 

need to determine accurately the needs of designers. The research done by Ball has 

been successful so far in that it has produced a set of requirements, that should address 

some of these needs. Some aspects of design activity have also been addressed by 

contemporary tools. These aspects wil l be covered in the next chapter where the 

requirements are linked to the derivation of an abstract representation for the early 

stages of electronic engineering design, but in brief they can be roughly divided into 

two areas. Firstly, non intelligent tools which tend to be reasonably general, but 

normally support the later stages of design, for example from circuit design solution to 
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printed circuit board manufacture. Secondly, intelligent tools based on expert system 

approaches, which cover more of the design activity, but tend towards tackling a 

specific design problem domain, such as a digital filter, VLSI chip or mechanical 

linkage design, for example The VLSI Design Automation Assistant by Kowalski et al 

,1985, in which the intelligence is aimed at the automatic decomposition of functional 

and behavioural specifications in VLSI designs. One result of this directed effort, is that 

the intelligence has been aimed at the target problem, instead of the cognitive problems 

of the designer. It was with this in mind that the PEDA system was conceived, and by 

basing its design on sound psychological research on the cognitive processes in design, 

it was hoped that it would be more able to address the general needs of designers, 

rather than specific problem domains. 
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3. An Idealised Representation for the Early Stages of Electronic 

Engineering Design 

3.1. Overall Structure of this Chapter 

The aim of this chapter is to present an idealised abstracted representation for 

the early stages of electronic engineering design, that has been devised during the 

development of the Plymouth Engineer's Design Assistant (PEDA), a tool designed to 

aid and complement the designer in the early formative stages of design activity. The 

chapter begins with the rationale and arguments for the creation of the representation, 

and then leads on to a ful l description. The various parts of the representation are 

outlined and developed into a characteristically simple structure of altemative designs 

and constraining information. A critique then follows, comparing the high level 

idealised representation with other methods, models, approaches and environments in 

electronic engineering and related domains. The chapter concludes with an outline of 

the salient aspects of the representation in preparation for the next chapter, which 

describes a partial implementation as the core within the PEDA environment. 

3.2. Rationale for a New Representation 

The objective of this section is to provide the rationale and arguments for the 

creation of a new representation for the eariy stages of electronic engineering design, 

discussed in section 3.3. 

This is done primarily through an examination of the psychologically derived 

requirements in chapter 2. These requirements are individually scrutinised generating 

a number of issues that need to be addressed i f the requirements are to be dealt with 

adequately. Methods of achieving these aims are discussed, and where they exist 

examples from the electronic engineering design domain are taken and are shown to be 

generally unsuitable. Overall representational issues that affect the choice of a 

representation in this area of the domain are also outlined. A l l these points are then 

combined with the arguments behind the PEDA project, to state the claim for a new 

representation in section 3.2.3. 
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3.2.1. An Examination of Requirements 

Each requirement from chapter 2 can now be examined in turn, to see how they 
can be met, and to indicate the unsuitability of some common solutions in the literature. 

3.2.1.1. The First Requirement: 

The first general requirement for a design tool, taken from chapter 2, is as follows: 

"Encourage the designer to consider an increased number of initial high-level 

solution concepts and enable the efficient formulation of alternative versions of each 

solution concept through levels of increasing design detail." 

There are a number of issues that need to be addressed here before the above 

requirement can be realized. The first and most basic one is that a representation for a 

design needs to be found. Initially this may seem a comparatively easy operation as it 

is not specified within the requirements and as a result there is considerable freedom 

on how it may be realised. The literature abounds with design representations and so 

there should be little difficulty in selecting a suitable candidate. Unfortunately it is in 

this area that a number of problems arise, which stem from the basic conceptual 

emphasis of trying to meet these requirements in a simple but elegant manner. Ideally 

a representation of design is needed which is uniform in its structure. This is not only 

desirable from a aesthetic point of view, but more importantly is in line with the results 

of the psychological studies (Ball, 1990) in which designers tended not to separate the 

domains of description (unlike the proposals by Stefic et al, 1981), but merged them in 

the early stages of electronic engineering design. Sadly this reduces significantly the 

number of candidate representations from the design automation arena. Another 

meaningful problem was that representations are generally discussed in either low level 

terms, using a language such as LISP (for example Davis & Shrobe, 1983), or in very 

abstract terms (for example Sinclair el al, 1989), and cause problems regarding the level 

of design detail. This is an important issue covering the whole of the representation and 

is discussed briefly in section 3.2.4 and in section 3.4 when comparing the 

representation with other approaches. 
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In essence, what is actually required, is a simple representation for the design 

that captures the important aspects of the design in the eariy stages. A hierarchical 

structure is desirable as this neatly captures the normal design representation by 

designers in their work (Ball, 1990). One credible solution would involve the structure 

being made up from a collection of blocks that would together form a block diagram, 

very similar to the visual representation on paper. These blocks would be connected in 

the horizontal plane by connections allowing the desired mathematical functionality to 

be built up and along which information or data would be seen pass by the user during 

simulation. The blocks themselves would contain all the information, necessary to 

describe what they are, and their relationships to other blocks including information 

would be relevant to the requirements of the design. 

The second important issue raised by the first requirement deals with the 

representation of design alternatives. Again this appears to be a greatly addressed area, 

but unfortunately the effort tends to concentrate on aspects such as "version serving". 

As a result the facilities offered by these approaches are not particularly relevant to the 

needs of the designer regarding alternatives in the early stages of design. For example 

approaches may offer means of keeping track of the most up to date parts of design in 

different representations between the members of a design group (Katz et al, 1986 and 

Gabbe & Subrahmanyam, 1987), but do not aid the designer in exploring new designs. 

In addition the overall trend with these approaches is to rigidly support the separation 

of domains theme and so it would be difficult to reconcile them with the representation 

of designs mentioned eariier. 

Actually alternatives can be addressed in a very simple manner by treating 

different alternatives as separate block diagrams. Additional information can then be 

added to describe the relationship between diagrams in the same way as between 

different blocks. This method of treating blocks, block diagrams and alternatives in a 

homogeneous manner is very attractive as it allows mechanisms developed for one 

aspect of the representation to be used on the others. This wil l be seen to be extremely 

useful when constraints are discussed later. Also having only one scheme greatly 

simplifies the representation, because then there is no need for transformations between 

the various design domains. These transformations are generally needed (Walker, 1988), 

because of the differences (non isomorphism) between the domains in the later stages 
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of design. This non isomorphism makes the different domain views of the same design 

topologically different, and thus to maintain interdomain consistency, the 

transformations are required. 

The two aspects, designs and design ahematives mentioned above, go some way 

towards addressing the second statement of the first requirement, leaving the first. In 

examining this it is reasonable to assume that actively encouraging designers to pursue 

design alternatives is primarily a user interface function, however the representation has 

an important task also, by providing a simple and clear means of portraying alternative 

designs. In which case, any system that makes the representation of alternatives easy 

and, or automatic could be viewed as encouraging the user lo use them when compared 

with systems which do not provide any high level support of alternatives. This line of 

reasoning could be extended to consider an alternative management system which 

analyses the user machine interaction to determine if the designer is working on a 

different approach to a problem, and then handles the creation of new alternatives 

accordingly. Such an approach would go some way towards encouraging the user to 

explore new design concepts, whereas a "version server" which maintains historic 

consistency between the different parts of a design would not. 

3.2.1.2. The Second Requirement: 

The second requirement taken from chapter 2 states: 

"Assist with the choice of competing design solutions, for example, enabling 

evaluations of solutions to be made on the basis of comparative functional simulations." 

Two important questions that need to be answered before this requirement can 

be successively tackled are: What means can be used to distinguish between different 

designs; and what methods can be used to compare them? 

There are many ways of differentiating between designs, limited only by the 

types of information used. This may be in the functionality of the designs themselves, 

in thai an adder is different from a multiplier, or in other ways, for example this design 

was produced in 6 weeks and that one in 6 months. The only real limits to this general 

statement are the relevance of the information to the task and the difficulty in 

generating that information. In this way any design or designs could be conceivably be 
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compared on the basis of any information which was instrumental to their existence. 

This is a difficult requirement for any system, and can only be reasonably achieved 

through reducing the information required to a manageable level. 

Each piece of infoniiation can be viewed as a constraint, though not totally in 

the sense of constraint satisfaction, for example where unknown elements in an equation 

are derived from known values (Tong, 1987), or where designs are synthesised that 

meet constraints (Chan et al, 1987), but in a more general vein. With this approach any 

information contained in a design is regarded as a constraint in that it tends to make the 

design more specific, and therefore constrains it in some way. For instance i f there are 

no requirements other than: "Make something" then the design can be any object, 

whereas if the design is already an adder then it is not going to factorise easily. 

Constraints can be classified into many different areas, the following paragraphs outline 

a few of them relevant to the requirements. 

Constraints may be split into explicit constraints, which are specified within a 

representation, and implicit constraints, which are internalised within the designer. There 

has been a case to make this second form of information explicit (Mostow, 1985 and 

Ball, 1990) with regard to aiding the designer. From a practical standpoint this would 

make the information accessible to all, allowing others (including a design tool) to 

inspect them for consistency, correctness, or relevancy, and would help prevent them 

from being forgotten, by reducing the amount of information held in the mind of the 

designer at any one time (Ball, 1990). 

The constraints may be stated requirements, or actual attributes of some stated 

objects, for example the functionality of a block. This distinction affects the way in 

which they would constrain a design. Attributes always constrain a design because they 

describe it some way, and requirements are potentially constraining because they 

describe some desired aspect, that the attributes should meet. In many cases with 

partially completed or incorrect designs, this wi l l not be so, and here is where the above 

usage of constraints differs from many others. For example where constraints are used 

as blueprints to automatically synthesize possible designs. (Gupta, 1988, and Director 

et al, 1982). 
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Another important distinction is that made between domain and non domain 

constraints. Domain constraints can include such aspects as the design functionality 

(and behaviour), which can be viewed as some sort of ultimate constraint, and aspects 

such as device or packaging physics, or power consumption, chip area and speed. Non 

domain constraints can be anything else which may effect the designs, and can range 

from when the final design solution is required, to the stability of the design 

requirements. 

Two other forms of constraints can be defined as "musts" and "desirables" and 

indicate the relative importance of requirements, (mandatory and advisory constraints: 

Popplestone et al, 1986) An example of a "must" is the mathematical behaviour of a 

design, perhaps found through analysis or simulation, and cannot vary. On the other 

hand a "desirable" is just tliat, an aspect of a design which is desirable, but not 

absolutely necessary, perhaps being indicative of a better design. An example of both 

type of constraints would be: The power consumption of the circuit must be less than 

5W, but a value less than 2W is desirable. 

Two main aspects of all these constraints are apparent. The first is that they 

reside in the part of the design which they address. In this way, if a constraint affects 

the top level of a design hierarchy then it is stated at that top level. Secondly the use 

of constraints is hierarchical in nature, hence many constraints at one level are 

applicable to lower levels. For example if a design has to be ready by next week, then 

all parts have to be ready then too. Certain constraints wil l propagate up the hierarchy 

(Ball, 1990), consequently a change at a lower level may affect the ones above it in the 

hierarchy. This type of constraint does however tend to be abstract in nature (Ball, 

1990), for example the choice to use a particular technology because it wil l produce the 

results wanted (fast enough). In a way this aspect of constraints is a form of constraint 

propagation, where changes in one place cause a corresponding change elsewhere (Chan 

& Paulson, 1987). As constraints are changed, heuristics can be used to f i l l in 

incomplete information at the various levels in the constraint hierarchy, for example a 

specified requirement for a design states a maximum delay in a particular design block. 

The design of that block has been adjusted and its overall delay is not known. A system 

heuristic is invoked, it derives the critical path delay and hence the overall delay for this 

block. 
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The final type of constraint mentioned here is the infomiation produced through 

simulation. This information is of great importance to designers as it is often the only 

source of constraint information available, indicating that a design meets or does not 

meet the stated functional requirements. 

There are many different approaches to simulation in the electronic design 

literature and so it should be relatively easy to find one which satisfies the criteria for 

this representation. A desirable quality of a simulator at this stage of design is that it 

is as general purpose as possible, so that the designer may examine a large set of 

problems, and not be limited to a particular approach, for example logical simulation. 

The use of mathematical equations to express a design's functionality affords a 

sufficiently abstract solution to this problem. There are no limitations on how the 

simulator works, and so the data flow architectures are attractive, due to their simplicity 

and their non reliance on timing constraints (important in the light that accurate timing 

is not important in the early stages of design (Ball, 1990)). The use of mathematical 

equations for the functionality, does allow the same scheme to be used at many levels, 

from calculus at one, to bit arithmetic at another. For example a designer may use 

integration at one level in their design, but be concerned with rounding errors due to 

different floating point representation. This method is conceptually attractive as it avoids 

the use of multiple representation schemes at different levels, a common tactic due to 

performance considerations. In any event speed of execution is not an issue in the early 

stages of design, where designs consist of small numbers of relatively complicated 

functionality. 

It can be seen that very little needs to be done to the basic design and alternative 

representation to realize the representation of constraints in the eariy stages of design 

as most often they are just statements about various aspects of design, and therefore can 

be treated like any other design information within the representation. Only where 

constraint propagation occurs, is a means of achieving it required. This use of constraint 

propagation in design is well represented in the literature (Chan & Paulson, 1987, 

Mostow, 1989, and Hooton et al, 1988), and can be achieved through the use of 

specialized heuristics. Simulation is seen as a special case of generating constraint 

information, its general puipose nature allowing it to test many forms of functionality. 

The second issue concerned with meeting the 2nd requirement, involves finding 
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a method of comparing and contrasting designs in a manner which is fast, simple, 

consistent, rigorous and clear. There are a number of approaches to solving this type 

of problem. Expert knowledge can be embedded in the form of heuristics, to provide 

advice on the right choices as a fonn of consultant. Another approach uses multi-

attribute theories which contain no expert knowledge but require the user to ascribe 

importance to stated comparison attributes. Calculations involving weighted averages 

can then indicate the more desirable designs (Humphreys & McFadden, 1980). In the 

first example the system would reason about the problem itself, whilst the second 

structiu^es the problem so that the designers can use their own knowledge to solve it. 

Evans (1988) discusses interactive decision aids and suggests a combined approach 

which falls between these two extremes, which may de-bias decisions somewhat. 

Conceptually this type of system might use these theories as the core of a decision 

system, but help build up the attributes through the use of heuristics which would 

convert constraints into a fonn suitable for the decision support system. Also additional 

functionality would be required in the user interface to correctly structure the problems 

and present them carefully to the designer. 

A combined system of this type would be desirable as the basis for a constraint 

comparison system as it offers a simple means of addressing the 2nd requirement, and 

is in close agreement with the overall goal of providing a system which aided the 

designer in a cooperative manner (Ball, 1990 and Smyth, 1988). The often used 

consultant based approach would require a very large amount of expert knowledge if 

it were to address a wide domain, and would exclude the designer from the decision 

process. In a similar vein a solution using a program such as M A U D (Multi-Attribute 

Utility Decomposition)(Humphreys & McFadden, 1980), whilst a decision aid, contains 

no intelligence or domain knowledge and would be of limited value (Evans, 1988). The 

joint approach would if correctly engineered, combine the best of both methods, 

extending the decision aid with the ability to derive attributes from design constraints, 

3.2.1.3. The Third Requirement: 

The third requirement discussed in chapter 2 suggests that a design tool should: 

"Superintend the designer's exploratory activity, for example, helping the 

designer to backtrack if a path proves unpromising (i.e. by providing a record of paths 

45 



taken together with the current point of exploration) or suggesting worthwhile paths of 

investigation (i.e. by suggesting design alternatives)." 

It can be seen that this requirement is very wide in overall scope, but the 

examples given do give an indication of what could be done. It is reasonable to suggest 

that to achieve this type of assistance a representation or model needs access to a 

representation of the designer's exploratory activity (Mostow, 1985, and Takala, 1989), 

The most common way of achieving this is through a history mechanism which logs 

the commands issued by the designer. Obviously such a recording system can operate 

at many levels, the lowest may be mouse button clicks, higher ones such as design 

plans, record refinement heuristics used in automating design (Mostow, 1989). At a 

higher level still we have abstract design decisions, which outline the reasons why a 

particular decision was made. 

The lowest level history trace can simply be regarded as a record of all design 

activity including both user-tool interaction and internal tool activity, for instance 

simulation events. With this type of recording the volume of data created in a typical 

session can be quite large dependent upon the size and complexity of the tool used. In 

the lifetime of a project the information recorded would be very large indeed. However 

the vast majority of this information is superfluous to the needs of the engineer in that 

the information is too low level in content and would rapidly overwhelm the engineer's 

working memory: the type of thing that needs to be avoided. Information needs to be 

presented in a form, which can be assimilated and at a level which would be useful. 

This is where the concept of design decisions arises. These are high level abstractions 

of design activity, that in this context portray to the engineering user, the important 

decisions that led to a particular meaningful event, for example: the creation of a design 

alternative, or its rejection when compared to others. In keeping with the overall 

concept of the environment, these design decisions relate different designs to the set of 

criteria that created them, therefore a design decision to use a particular technology in 

a design may be because of that technology's superior characteristics, or that the design 

team was more familiar with it. These are at a different level to those described by 

Mostow, 1989, in BOGART a tool in which design decisions are menu generated 

transformation heuristics (design plans) that form a design strategy, and can be 

"replayed" to partially complete similar designs. 

The use of design decisions leads on logically to the development of methods 
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which can extract these high level decisions from the low level history trace. This type 

of information could be extracted through a variety of knowledge elicitation techniques 

including: experimental manipulations and inferred cognitive processes; interviewing 

and self-report methods; repertory grids; rule induction; and observational methods and 

protocol analysis (see Evans, 1986 for overview). The exact method used in deriving 

the heuristics is really not important from the point of view of a representation, however 

in the light of the psychological work done on the PEDA project by Ball (1990) and 

biases (Evans, 1988), observational methods are favoured. Work towards automating 

protocol studies on engineers designing (Burton et. al.) may overcome the inherent 

slowness of these methods and make them a practical technique for knowledge 

elicitation. 

The number of heuristics in this part of the representation may not be great as 

a totally automated system, because the aim is to merely superintend the designers 

exploratory activity, and not replace it. These heuristics could be divided into two broad 

types: the first are purely automatic, producing decisions directly, for example a design 

was created because it meets the set of criteria that derived its parents; the second 

prompts the user for the decision at a particular point. Important issues here are 

concerned with where do the important design decisions occur, and i f the information 

about the decision cannot be automatically extracted, whether to ask the designer about 

it then, or later. These are important because the representation should not hinder the 

designer, which it might if it asked the user the reason for every activity. This type of 

information would be best obtained through knowledge elicitation techniques, preferably 

psychological analysis (Evans, 1986). 

The remaining issue with regard to this requirement that wi l l be discussed here, 

deals with the placement of the design decisions within a representation. In many 

systems the history mechanism is treated separately to the other parts of the 

representation, but here the overall philosophy is to avoid separating the various aspects, 

where unnecessary. As a result it is conceptually attractive to place the design decisions 

in the place in which they are most relevant, for example an alternative which was 

created for a reason, will contain that reason. The advantages of such a system include: 

simplicity, in that no complicated schemes are required to relate the history to the rest 

of the representation and secondly; the placement of the history in the representation 

allows design decisions to be used as constraints in the constraint comparison system 
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and in turn the rest of a representation can be advantageously examined by the 

heuristics when trying to extract decisions. 

3.2.1.4. The Fourth Requirement: 

The fourth requirement from chapter 2 states: 

"Ensure the designer's awareness of design conflicts (e.g. if crucially important 

constraint requirements have been overlooked when the designer is focusing on a 

narrow aspect of the overall design solution)." 

This requirement like the others is so general, that it can be tackled in many 

ways. Unfortunately the electronic design literature is less helpful than initial thoughts 

would suggest due to the automation bias prevalent in the field. Typically conflicts in 

a design would be resolved through a constraint propagation, or truth maintenance 

system, preventing "illegal" designs from existing in the first place. It is relatively easy 

however to adapt these schemes to a constraint checking and reporting role. In addition 

the asynchronous nature of the problem makes the traditional use of rule based systems 

in this area quite sensible. A simple modification to such a solution making it 

compatible with the other requirements involves viewing design conflicts as specific 

examples of the generalised constraints mentioned eariier. These are attributes which 

constrain a design in some way. In this approach design conflicts may occur when 

requirement constraints (requirements) that have been inherited from previous designs 

(in the alternative hierarchy) cannot be met by a particular design (alternative). This 

may occur for example when overall speed requirements have not been met. By 

regarding design conflicts as constraints, any part of the constraint system (including 

simulations, human and domain constraints) may be used in the generation of design 

conflicts. As a result, design conflicts can conceptually embrace anything that the 

constraint system can. 

With this knowledge two questions become significant: 1) what constraints are 

important, and 2) How do we determine that they are being overlooked? 

The second question is the easiest to answer in that it requires the existence of 

some means of checking consistency bet\veen constraints. This can almost be met 

through the use of a classic truth maintenance system but where the conventional 

approach would propagate the effects of a particular constraint, this use would require 
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a comparison between them: the first would be the result of the propagated constraint; 

and the second would be the resident constraint. Again heuristics can be used to 

perform the propagation and comparison function. This could then be used for two 

purposes: The first would be to signal the user interface to issue a warning to the 

designer; The second involves the heuristics producing a constraint as a result, which 

could also be used by the decision support function as a means of differentiating 

between designs. 

To determine which constraints are important is a little harder, as a method of 

prioritising conflicts is required. This may be achieved with a similar approach to that 

for requirement 2, which combines a decision support tool such as M A U D (3.6.6). and 

user input regarding the priority of certain conflicts. By thresholding the output of the 

tool, only those constraint violations which are deemed important enough would be 

signalled to the user, and low priority conflicts would be ignored. This approach could 

be improved, with the addition of heuristics which would automatically generate the 

priority of design conflicts. This simple method has the added advantage that it uses the 

same functionality that is used to satisfy the second requirement. 

3.2.1.5. The Fifth Requirement: 

The f i f th requirement from chapter 2 states: 

"Ensure the designer's awareness of inconsistencies in the notation that is being 

used (e,g. if two different design parameters have been given the same symbolic label). " 

This is a very similar request to that in the previous section. And again the lure 

of viewing mathematical errors and inconsistencies as constraints is attractive, but for 

slightly different reasons. 

From a conceptual point of view, it is very appealing to do this as practically 

everything is now an aspect of the constraint setup, producing a clean and practical 

system with the attendant real advantages that the resultant homogeneity entails. 

The same system as for the fourth requirement could be ideally used to prioritise 

these new constraint violations and set the level of warnings produced. In this case 

however heuristics are certainly required which can detect the various mathematical and 

logical errors produced. Unfortunately the number required to detect all potential 

mathematical violations would be quite high. Luckily the fourth requirement only 
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requires a comparatively simple consistency check and so the realization of such a 

feature as part of the constraint system would be a straight forward exercise. However 

in chapter 2, mention was made of much wider ranging mathematical problems and 

therefore it seems that the wider ranging problem needs to be addressed eventually. 

Considerable research has been conducted in the literature on symbolic algebra 

manipulation tools, which would likely reduce the incidence of certain mathematical 

errors by automating many common manipulations, such as factorization or solving 

equations. However the internal constraints of such a system if included in a 

representation would be less visible, and therefore the advantages of a homogeneous 

system could not be afforded to that part of the representation. 

3.2.2. Representational Issues Common to all the Requirements 

The aim of this subsection is to outline overall issues which affect the choice 

of the representation at all levels. These are concerned with: 1) How a representation 

forms a model of the user; 2) What aspects of design should the representation address; 

3) What is the target level of the representation; and 4) Should the representation take 

into account efficiency and other similar issues. 

3,2.2.1. Explicit and Implicit Models of the User. 

A representation can express a model of the user in two main ways. In an 

explicit model, the various stages of activity are distinctly staled and there is a 

correspondence between important user activity and state changes within the model, for 

example the user is in a particular state. The second and much less powerful implicit 

model relies on an indirect method. User activity is still recorded, but there is no 

categorisation into states. The representation described later in this chapter can be 

regarded as an explicit model of certain aspects of the early stages of electronic 

engineering design, but an implicit model of the corresponding user design activity. It 

is based upon a set of requirements, which were in turn derived from an explicit 

psychological model (Ball, 1990). but it does not contain that user model in any explicit 

form. There is an explicit representation for designs, but not the state of the user. Whilst 

an explicit model of the user is desirable (Ball 1990, Mostow 1985, Ullman, 1988 and 
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Smyth, 1988) in terms of the knowledge gained about the user design process, it is not 

essential. Many different models of the user have been suggested (see Williges, 1987 

for examples in the human computer interface field), but unfortunately their inner 

structure depends on the desired end goal. Research on psychologically derived explicit 

models of users is continuing (Ball. 1990), but until this issue is resolved, or a 

sufficiently general purpose solution found, it is reasonable to concentrate only on 

implicit solutions. 

3.2.2.2. Providing Functionality 

A vitally important consideration when creating a design representation is 

detennining what aspects of design it should address. Obviously there is little point in 

providing support for something that is not used, for instance in studies involving the 

early stages of electronic engineering it was found that designers did not use time in 

any absolute sense except as an overriding constraint (Ball, 1990). The net result would 

be that there is no point in providing a simulation tool for this stage of design that used 

time delays (for example conventional logic simulation). However in the same studies 

designers used constraint criteria to choose between approaches: would the design be 

fast enough, or would it f i t on the integrated circuit die? A system that helped them in 

this area would be used and therefore the added functionality would not be wasted. The 

requirements and background stated in chapter 2 create a unique set of goals that the 

desired representation should address. They cause problems for many common design 

representations, due to their psychological derivation. A representation may address one 

area adequately, be totally lacking in another, and offer superfluous functionality in 

other areas. This is neither ideal or desirable. It is proposed that the representation 

described later in this chapter is a better solution. 

3.2.2.3. The Level of Representation 

Another important overall concern is the level at which the representation is 

targetted. To be useful it needs to aimed at the right level. If the approach is too 

abstract then it is of little practical use, and if it is too detailed then the solution 

becomes overly complex. The desired goal therefore is to strike a balance, by describing 
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the functionality at a level sufficiently low to allow an accurate implementation, but 

abstract enough to avoid complexity or implementation issues. 

3.2.2.4. Efficiency and Implementation Concerns 

In a similar vein to the previous comment, it is important that the representation 

should make no concessions to implementation or efficiency constraints. In this way, 

the organization of the representation should not mirror a fast simulation model 

(Barzilai, 1986) or a tripartite behaviour, structtire and physical model (Walker, 1988). 

The view is that these aspects are purely in the implementation domain and should be 

dealt with there. As a result this allows a basic representation scheme to be abstracted 

away from factors which are detennined by the target language or environment. 

3.2.3, The Case for a New Representation 

A look at the literature on electronic engineering design wil l discover a large and 

active research domain. Over the years there has been a great deal of interest in this 

field. Simulation has remained the primary area, but expansion has occiured to cover 

earlier and later parts of the design process. The result is that there is now a plethora 

of approaches concerned with many aspects of design, including for example, design 

plans (Mostow, 1989), automated configuration of hardware (Bowen, 1985). and switch-

level simulation of integrated circuits (Ashok et. al., 1985). 

As research has started moving towards design environments, with the overall 

goal of incorporating all aspects of the design activity, the ability of tools to aid the 

designer in other ways has become important. Mostow (1985), Smyth (1988). Ullman 

'et. al. (1988) and more recently Ball (1990) have suggested that a better understanding 

of the user design process (activity) might be advantageous, in pointing out what is 

required, h was in this vein that the PEDA project was conceived and the basic 

groundwork for the representation and corresponding implementation laid. The flavour 

of the PEDA project placed particular constraints on the design of the PEDA tool. 

Firstly, a cooperative tool was envisaged, and secondly its form and function would be 

based on requirements derived through psychological studies. It has been suggested in 
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the preceding pages that it would be difficult to meet those requirements through any 

conventional representation in the electronic engineering domain, and multiple 

representational approaches tend to be clumsy and complicated. A new representation 

can be devised that has none of these deficiencies and has many advantages, in that it 

can address many perceived issues in a satisfactory manner. Taken together these points 

made a strong case for deriving a new representation. They can be summarized 

in overall terms as follows: 

1) The Psychological Requirements and basic PEDA approach place important 

constraints on the representation that make it difficult or clumsy to realize using 

most electronic engineering design representations, as they often do not tackle 

the areas which the requirements dictate. 

2) Other issues such as the level of detail, functionality, target level of 

representation, efficiency and implementation concerns of example approaches 

further improve the case for a new representation. 

3) Substantial advantages can be realized with a new representation, including: 

simplicity, non redundancy, and homogeneity, especially with regard to a 

constraint comparison system. 
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3.3. An Idealised Representation for the Early Stages of Engineering Design 

An examination of the requirements and the available literature regarding 
electronic design representations in the preceding section, has shown that there is a 
strong case for deriving a new representation to satisfy the particular needs of the early 
stages of electronic engineering design. Methods for realizing the various parts of the 
representation have also been discussed. In this section those suggestions have been 
taken and used as the basis of an abstracted and idealised representation, that attempts 
to address all the points put forward, in this and previous chapters, in a simple and 
elegant manner. A pictorial view of the representation's main components is given in 
Figure 1. 

Diagrom & 
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Figure I , a representation for the early stages of design: components 
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For description purposes, the representation can be easily divided into six basic parts, 

these are: 

1) A merged representation for designs and alternative design 

hierarchies, based on block diagrams and constraining information. 

2) A system for the management of block diagrams and design 

alternatives. 

3) A constraint comparison system for the analysis and selection of 

alternatives. 

4) A block diagram based mathematical equation simulator. 

5) A system to extract and record decisions made during design. 

6) A system to check for errors and inconsistencies made during design. 

These parts are now separately described. It should be noted that the descriptions are 

in relatively abstract terms. This was done mainly to satisfy the issues mentioned 

eariier. As a result the representation itself has been kept simple, concise and 

homogeneous where possible. The complexity inherent in many other approaches is not 

apparent as it has been moved to the implementation domain. 

3.3,1. Block Diagram and Alternative Design Representation 

In the abstract representation, designs are held as collections of relevant design 

information called block diagrams. These diagrams conceptually similar to the familiar 

electronic engineering block diagram, contain entities called blocks which are arbitrary 

specified organizations of design data. This organization is achieved along common 
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hierarchical lines with the most abstract or general information at the top level, and the 

most decomposed or specific at the bottom. Figure I I shows a conceptual view of this 

aspect of the representation. Note that this is very similar conceptually to many other 

design representations. The differences arise in the type of information stored and the 

way it is treated. 

Figure I I , block diagrams 

Blocks are initially specified by mathematical functionality allowing them to 

collectively address the functional requirements of the design. However any type of 

information may reside in a block, not just common design information like physical, 

functional or behavioural aspects. Anything relevant to the design can be added, for 

example design time constraints, or designer expertise. This is a basic underlying 

concept in the representation. The most important point however, is that all information 

within the representation is regarded as constraint information. This aspect wi l l pay 

dividends, with regard to constraint comparison, as it wil l allow the use of all 

information by the constraint comparison system. 
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Following on, no major distinctions have been made between the different types 

of information that can be stored in a block and in the way in which they are 

represented, and as a result this aspect of the representation can be viewed as being 

essentially homogeneous. This is an important and essential difference between the 

representation and many other approaches in the electronic design domain. These tend 

to be collections of separate representations, where for example the behaviour of a 

design may be described by a compiled program, whilst its structure is categorized by 

facts in a database. 

Finally, it should be noted that the pictorial conceptual views, show designs in 

the same style as the PEDA implementation in chapter 4. This is in no way necessary, 

but was done primarily to help link together the various parts of the representation and 

that particular implementation . 

The representation of alternative designs is addressed, through a simple 

extension to single designs. This important result is achieved by simply viewing an 

alternative design hierarchy as a collection of interconnected block diagrams. Each 

diagram contains additional (constraining) information which not only indicates the 

evolution of design alternatives, but also the reasons why a particular alternative (or in 

a loose sense version) was created, for example: "new version of diagram 1 due to 

diagram changes after simulation." A simple alternative hierarchy is shown in Figure 

I I I . In this simple example design-4 is derived from design-2 and both design-2 and 

design-3 are derived from design-1. When alternative designs are created they may 

inherit any amount of information from their predecessors, in a similar manner to object 

oriented inheritance. Thus design-4 may be almost the same as design-2 in the previous 

example, but may contain some slight differences. The representation of alternatives is 

kept simple by making no explicit distinction between the various types of related 

designs, such as alternatives, derivatives or versions. Otherwise conceptual naming 

problems could occur when a derivative design evolves so much that it becomes to all 

intents and purposes an alternative design. 

It can be seen that the above approach satisfies the requirement for alternative 

representation in a simple and straightforward manner. Furthermore it satisfies the 

additional goal of homogeneity with regard to constraints, and by promoting links 
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Alternative Designs 

Design-1 

Design-4 

Design-3 

Figure I I I , alternative designs 

between alternatives as constraints, it allows the use of that information in the constraint 

comparison process. 

3.3.2. Block Diagram and Alternative Management 

This aspect of the representation is very difficult to describe in the abstract form 

used in the rest of this section. Many facets of this aspect are firmly in the 

implementation domain, due to the intimate relationship between them and the aspects 

which they are managing. However the overall functionality of these components can 

be discussed. These components are concerned with the management of designs. They 

control the internal aspects of block diagrams together with the necessary generation, 

pruning and merging of alternative designs. This is done either automatically via 
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heuristics as a result of certain design decisions (see 3.3,5). or manually under the 

control of the user. The automatic management component is the most important 

concept here as it is an attempt to reduce the cognitive burden on the user. It is 

necessary due to the potentially very large number of alternatives that can be created 

during the course of a design. 

3.3.3. Constraint ComparLson System 

The constraint comparison system provides the user with a means of rapidly 

choosing between a set of alternative designs, and selects those with the most desirable 

characteristics. Each design is automatically checked against a set of user defined 

constraints. This is achieved through a mapping operation, in that all required 

constraints are applied to each alternative design to produce a set of comparison results. 

A Multi-attribute utility theory approach has been chosen, for this aspect, combined 

with heuristics to produce the utility values for the various constraints. This approach 

is ideally suited, as it combines a simple method which can cope with the many 

constraints, with expandability and an easily understood method. The method can be 

easily shown through the example of M A U D (Multi-Attribute Utility Decomposition) 

an automated decision analysis program (Humphreys & McFadden, 1980). In this 

program a matrix of alternative actions (in this case different designs) is draw up 

against important attributes (design criteria). Each action can then be evaluated on the 

basis of all the attributes according to multi-attribute utility theory, where each point 

in the matrix is given a utility (importance value), and the set of utilities for each action 

are combined to give an overall utility for each action (design alternative). This final 

utility is indicative of the overall desirability of a design, and allows the selection 

between designs on a consistent, systematic and rapid basis. 

It has been noted before that one the most important parts of the representation 

is the fact that almost all information can be used as a constraint. Some constraints are 

anributes (design criteria), whereas others can be used to produce utilities. There are 

two main ways by which utilities can be made, the first relies on the user providing 

them, a method which unfortunately introduces biases due to its subjective basis (Evans, 

1988), and the second uses heuristics based upon domain knowledge to provide the 

values. Both methods are included in the representation, forming a balance between 
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using the expertise of the user and that of an expert. This approach also allows easy 

expansion and change, in that heuristics can be added at any time. Figure IV shows a 

conceptual view of role of the constraint comparison system in the representation. 

Atternative Designs 

Desigrvl 

DosQi>3 

Attributes & Utilities 

Resuttant Utiirties 

Constraint 
Comparison 
System 

And 
Constraint 
Conversion 
Heuristics 

Figure IV, conceptual view of constraint comparison system. 

3.3.4, The Equation Based Simulator 

In a similar vein to the explanation regarding the management of designs, this 

section does not describe the basic operation of the simulator as this is an 

implementation aspect. What is done however is to highlight the imp>ortant aspects of 

this part of the representation. 

The simulator aspect of the representation is used for two main purposes, the 

first is its conventional role in providing simulation data to the designer, the second is 

as part of the constraint system. It is primarily this second role which distinguishes the 

simulator from others, in that it allows the use of design behaviour as a constraint in 
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the design comparison process. The simulator is general purpose to suit its requirements 

at the early stages of design. It can provide both numeric and symbolic equation based 

simulation of the mathematical behaviour of block diagrams. The use of mathematical 

equations is important as it allows the simulation of many different types of problems 

at a high level of abstraction. The simulator is easily extensible because it is limited 

only by the expressive power of the equations in the blocks. 

The representation uses a novel direct data flow approach for simulation in 

which data flows physically around a block diagram. This important step has been made 

to avoid the complications of a separate behavioural representation for simulation. 

Further simplifications are achieved by using Dataflow techniques, avoiding the use of 

an timing agenda. This can be done because timing information is not important of in 

the early stages of eariy electronic design, except as an overall design constraint (Ball, 

1990). A conceptual view of the simulation process is shown in Figure V, with numeric 

data travelling from right to left through a series of blocks and being evaluated as it 

passes through them according to the equation stored within. 
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Figure V, conceptual view of simulation process 

The usefulness of the simulator in the early stages of die design process is 

greatly improved by allowing each block in a block diagram to be simulated at a 

different level from its neighbours, and as a result a design can always be simulated if 
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it is specified at the top level. This can aid rapid prototyping in that a design need not 

be fully decomposed to determine its suitability for use. In addition any part of the 

design can be concentrated upon, and the effects of that change noted without resorting 

to expanding other parts of the design, again speeding prototyping. This can promote 

a top down design strategy with designs being verified at each level using simulation. 

Further improvements, can also be achieved by dividing the prototyping work amongst 

several designers. They can work in relative isolation, concentrating on their part, whilst 

specifying the rest of the design at a higher complete level. The isolation is not total 

however due to the fact that constraints can be applicable between different parts of the 

same design. 

The use of symbolic simulation is an important aspect of the design validation 

process as it allows designs to be proved equivalent at different levels, through the 

process of symbolically simulating a design at each level. The results of each simulation 

can then be algebraically manipulated using a tool such as REDUCE to prove the 

equations equivalent. A simple example of this process is shown in Figure V I , involving 

the equation y = Sin(a)*Cos(b). 
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Multiplier 

Q = A • B 
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Figure VI , symbolic simulation 
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3.3.5. Decision Point System 

Exploratory behaviour is further aided in the representation by the provision of 
a record of the decision points at various parts of the design cycle. These points are an 
abstraction of the user activity and encapsulate a particular decision and the reasons 
why it was made. Decision point information is an extension to the normal history 
mechanism and is generated, either automatically in the case where heuristics can 
determine what is happening, or manually by the user. Decision points are an important 
part of the representation and can be used in a variety of ways. The primary use of 
decision points in this representation is to aid designers in backtracking through their 
designs when a particular path proves unpromising (requirement 4), by providing a 
record of the important steps taken. They can also be used to help a designer new to 
a project continue with the design when the original designer is not available for 
questioning. Also if the decisions encapsulate specific design knowledge then they can 
be used to complete designs through the process of replaying (Mostow & Fisher. 1987). 

Decision points have other uses in other parts of the representation. Most 

importantly they are constraints so they can become part of the constraint comparison 

process. Additionally in the design and alternative management system they can be used 

to trigger automatic creation or merging of alternatives. Alternatives can be created 

when designs are altered after simulation, when the designer is trying out a different 

approach, or merged when the designer lumps together a whole series of derived but 

very similar designs into one. 

3.3.6. Error Detection 

An important aspect of the representation is concerned with the detection of 

errors during the course of design activity. It exists in a representation for early 

electronic engineering design, because the cost of rectifying mistakes in a design rises 

sharply, as a design progresses from stage to stage. Obviously the eariier errors are 

found out and corrected, the bener. A number of errors are highlighted in the 

requirements. The first involves inconsistencies in the representation, for example 

conflicting specifications at different levels in the alternative design hierarchy. The 

second type involves logical errors either in mathematics or notation. It is relatively 
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straightforward operation to view both types of errors as cases of constraint 

mismatching and so integrate them into the overall constraint comparison mechanism. 

However a mechanism to detect and then alert the user to these errors is still required, 

and in this representation heuristics are used. 

The inconsistencies in requirements are comparatively easy to detect, but the 

logical errors require some knowledge of the domain, and mathematical errors require 

a much deeper knowledge concerning the rules of mathematics. However the use of 

heuristics does allow these features to be addressed incrementally when necessary. A 

symbolic manipulation tool such as REDUCE or Macsyma could be incorporated, as 

a replacement to many of the required heuristics. This would break with the overall 

homogeneity desired of the representation, but would greatly reducing the work required 

to reduce the incidence of mathematical errors. 
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3.4. Comparison with Existing Systems or Methods 

The aim of this section is to compare and contrast the abstract representation, 
with other approaches. This is done in two ways: The first compares the representation 
almost item by item with examples from the literature in the electronic engineering 
domain, as this allows a straight forward review of the relevant material; In the second 
combined approaches are examined, and comparisons made. 
For the first part the areas of interest are as follows: 

(i) Representation of individual designs and design alternatives. 

(ii) Constraints and constraint comparison. 

(iii) Simulation. 

(iv) History and decision record-

(v) Errors and inconsistencies. 

3.4.1. Representing Each Design and Design Alternatives 

At the centre of all traditional electronic design support systems lies the 

representation of the design itself. This stems from the early requirements of such 

systems to represent the design at the circuit diagram stage through schematic capture, 

and then model the behaviour of the design through simulation. Basically such systems 

addressed these needs by representing designs as a combination of two aspects: the first 

structure, in the form of a description or "net list"; and secondly behaviour in the form 

of preprogrammed functionality. 

Over the years these requirements have expanded to cover more aspects of 

electronic design. The basic separation of structure and behaviour has expanded to cover 

more areas dependent upon the particular emphasis of the tool, for example structure, 

behaviour and physical information (Walker, 1988). The rationale behind this particular 

tactic is to partition the concerns that the designer should consider at any particular 
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stage of design (Stefic ei al, 1982). for example designers should not concern 

themselves with physical aspects of a VLSI design, whilst examining the behaviour. The 

representation described earlier in this chapter does not adopt a partitioning scheme 

(except design hierarchy) for the representation of the different aspects of design. This 

is due mainly to the target areas of the representation being the cognitive needs of 

designer, and the early stages of electronic engineering design. In the early stages of 

design, it has been noted (Ball, 1990) that designers tend to combine certain aspects of 

a design, with constraints in abstract form breaking the separation of concerns approach 

(Stefic et. al. , 1981), allowing for example physical factors to influence initial choices 

of functionality. Secondly a large proportion of the literature produced in this field 

regarding the representation of designs is concerned with automated design (ie 

synthesis) and many of the approaches discussed are targetted at that area. (Gupta, 

1988, Walker. 1988, Leung et al, 1988, Knapp and Parker. 1985). It can therefore be 

seen that there is little need to segregate information regrading the various aspects of 

design into separate domains in a representation which is not targetted at synthesis, and 

at an area of design where designers tend to merge the various domains anyway. 

Hierarchical abstraction, a powerful technique for managing the complexity of 

design and used by designers in many stages of design including early design (Ball. 

1990), is used to great effect in the representations of designs. Unfortunately the tactic 

of partitioning the design into several areas each with its own hierarchical structure 

greatly increases the complexity of the overall design representation, when compared 

to the simple hierarchical structure of designs discussed in this chapter. The 

representation of designs in this representation is simple and uniform, where a block 

contains a series of attributes which constrain it, and wi l l itself be embedded in the 

block diagram structure. The behaviour of blocks is treated like any other attribute, and 

is specified using a mathematical equation. This is in marked contrast to more common 

representations or models, in which the behaviour may be deeply embedded within the 

simulator in the case of any early design tools, or in behavioural descriptions stored 

separately as behavioural rules, or some behaviour description language. The same 

representational scheme is used at all levels in the hierarchy, again in contrast to other 

representations or models where, the design functionality wi l l be specified in different 

terms, for example at the behavioural, function, logic, gate, circuit and switch levels 

(Mokkarala et al, 1985). This generality can be achieved, because the use of 
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mathematical equations allows the modelling of almost any behaviour, and the slowness 

of a purely equation based approach is not viewed as a problem in the early stages of 

design, where the number of blocks being modelled is small. 

The representation of alternatives or versions within a design support system is 

one of the key areas mentioned within the psychologically derived requirements (Ball, 

1990). Alternatives have been addressed in the literature in a number of ways. Firstly 

traditional CAD systems have relied on very simple version control systems. In general 

the user would manually organise the hierarchical structure of alternatives, saving each 

design and maintaining such information regarding old and new versions of a particular 

design stage. More recently there has been considerable effort in supporting this type 

of activity automatically, with examples in this area from Katz and Chang (1986), Chou 

and Kim (1986), and Gabbe and Subrahmanyam (1986). These approaches tend to 

address the traditional problems of version control, and include such items as 

maintaining the most up to date elements of a design in a team environment, 

maintaining consistency of the various parts of a design in a team environment, and 

keeping track of the various pans of a particular design going from original, through 

each refinement. 

The use of ahematives in the representation is different however to the classical 

needs of version control, and can be met with a much simpler system. The requirements 

indicate that alternatives are used to encapsulate different approaches to a problem, and 

not maintain consistency between the output of a group of designers. The simple 

method of individual designs (block diagrams), forming an alternative hierarchy meets 

these goals. Additional information linking these designs with the reasons why they 

were made allows the representation to aid backtracking when a design becomes 

unpromising. The method tightly integrates alternatives into the representation of 

designs, in contrast to that by Chou and Kim (1986), which is a external system, but 

similar to Gabbe and Subrahmanyam (1987). Their method however offers a complex 

system involving original designs followed by decompositions and is more in keeping 

with more general version control needs. The simple method of representing alternatives 

in the proposed representation is more in line with the requirements stated in chapter 2. 
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3.4.2. Constraints and Constraint Comparison 

The use of constraints in the representation differs significantly with many other 

approaches in the electronic engineering design support domain, where it appears that 

the main use of constraints and constraint based systems has been the automation of 

certain aspects of the design activity, typically in the synthesis of designs. 

In this area constraints are viewed as relations between sets of design parameters 

(Chan and Paulson, 1987), and as such may be used to critique a design, for example: 

CRITTER (Kelly, 1984) which performs constraint calculation, propagation and 

checking of functional and timing behaviour for the tools VEXED (Michell et al, 1985) 

and REDESIGN (Steinberg and Mitchell, 1984), knowledge based systems that partially 

automate the decomposition of designs, and changing designs respectively. 

These types of constraint (relationships) are commonly handled through 

knowledge based techniques, involving expert domain knowledge in the form of 

heuristics, for example OASYS (Haijani et al, 1989) which is a framework for analogue 

circuit synthesis, or algorithmic approaches, for example OPTIMIZE (Rankin, 

Siemensma, 1989) a system which uses numerical methods to minimize various cost 

functions (constraints) in an almost completed design. 

The overall impression of these systems is the use of constraints to support the 

automated machine design process, whereas their use in the representation is to aid the 

decision making process of the designer, for example Brewer and Gajski, (1986) use 

constraints and associated heuristics to evaluate designs automatically as part of the 

design synthesis process. 

This approach has a number of disadvantages, the first being that the intelligence 

of the designer using the tool is being wasted, the second is that the knowledge base 

would be very large unless the domain of interest was severely constrained. This 

approach would have severe difficulties in addressing the representation proposed in this 

chapter due to the fact that all information can be regarded as a constraint, and this is 

why the combined multi-attribute utility theory and knowledge based approach has been 

adopted. 
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3.4.3, Simulation 

The modelling of designs through simulation is a very powerful means of 

verification, and whilst formal proving methods are still in their infancy, it wil l be used 

where its cost and time advantages compared to ful l prototyping are apparent. This has 

occurred in the electronic engineering domain where many different simulation methods 

have been proposed, primarily dependent on which area of the design they aim to 

address, for example Director et al, (1985) outlines switch, circuit and process level 

simulators in the digital VLSI design domain. In these areas many different constraining 

factors have influenced these approaches. At the low end or near the device level, where 

a large number of relatively simple components are being modeled, the emphasis has 

been towards fast execution speeds, using for example improved sequential (Barzilai et 

al, 1986) or parallel (Smith, 1986) approaches. This trend towards specialization has 

been done to achieve realistic simulation times of the more complex designs. 

In other areas there has also been a trend towards generalization with the 

appearance of mixed or multi-level (Tham et al, 1984, and Takasaki et al. 1986) 

simulators, which combine a number of levels, for example unit delay, multiple delay 

and timing simulation (Chen et al, 1984). This has been extended at the high end or 

behaviour level, with the introduction of comparatively general tools based on object 

oriented (Lathrop and Kirk 1985) and rule based (Singh, 1983) principles. In this case 

the greater generality of these more flexible methods allows an efficient verification of 

the more complex designs. Where reasoning about the simulation process itself is 

important, for example reasoning about temporal aspects, Petri net methods can be 

useful (see Tadao Murata, 1989 for detailed discussion of applications). 

The simulator within the representation can be viewed as having many 

similarities to simulators in existence in the electronic engineering domain, however it 

differs in a number of significant areas. The use of mathematical equations to specify 

behaviour, allows the simulator to work at many levels in design, from a higher level 

of abstraction than the behavioural simulators to the lowest. Tliis ability allows 

simulation to be performed al any reasonable level of abstraction in different parts of 

the design, a fact which makes the simulator a powerful exploration tool as well as an 

verification tool. This is in contrast to many other simulators in this area which are 

primarily verification tools. 
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The simulator is based upon data flow principles, in keeping with the 

psychological considerations mentioned earlier (Ball, 1990), whereas many simulators 

in the digital electronic engineering domain use complex event driven schemes, to take 

into account unneeded timing considerations. The simulator is also tightly integrated 

with the representation, and in it simulation takes place on the structure, in direct 

contrast to most other simulation systems, which maintain separate data structures for 

simulation. This is a moderately important issue as it avoids the conceptual separation 

of behaviour from structure and allows simulation data to be used in situ as constraint 

information, further integrating the representation, 

3.4,4. History and Decision Record 

Electronic design support systems have traditionally supported a means of 

recording design activity known as the history trace, in which the system logs the 

selections made by the designer in the order in which they occurred. This simple system 

can be realized easily and as it is a record of past activity can be used as an aid to 

exploratory activity. There have been a number of suggestions on improving the 

usefubiess of histories, with for example Mostow, (1985) and Takala, (1989) indicating 

that the history mechanism may be used as a model of design. Takala suggests that a 

history mechanism can be improved through expansion into two dimensions, forming 

a history network for the various design objects. By raising the level of abstraction of 

histories into design plans Mostow et al, (1989) allow the replaying of these design 

decision histories on slightly different initial designs, automating the redesign process. 

These methods are however not applicable to this area of design in that the design 

decisions required are those which link design alternatives, for example the reasons why 

a particular choice was made and not the choice itself. I f the later definition is used 

then the extraction of design decisions becomes much easier, for example in BOGART 

(Mostow et al, 1989) it involves item selections made from menus or graphical displays. 

To obtain the wider context decisions, a means is required to extract the necessary 

information. The issue is left comparatively open but heuristics derived from studies of 

designers may produce the desired level of generality desired. 
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3.4.5. Errors and Inconsistencies 

The detection of user generated errors and inconsistencies is an area that appears 

to be comparatively unaddressed in electronic engineering, though there are tools such 

as REDUCE (Heam, 1984) and Macsyma (Bogen, 1983) which can help the user with 

algebraic manipulation tasks. (Equation reasoning systems do exist in other domains) 

Inconsistencies in designs are generally handled by constraint propagation, or 

some form of truth maintenance scheme. Though to detect the mathematical errors 

mentioned in chapter 2 a certain amount of mathematical knowledge is required. This 

has been done in some areas, for example in mechanical engineering the "design to 

product" project (Popplestone et al, 1986) which incorporates mathematical knowledge 

into a large computer aided manufacture system. And although the initial application 

for this information is in a similar manner to the use of REDUCE and the other tools, 

it could be used as a basis to detect user generated errors. The most common 

approaches to knowledge based design in the electronic engineering arena have tended 

to concentrate on replacing the designer in certain aspects of the design cycle, and 

whilst this tactic may effectively remove one area where user generated errors can 

occur, the other areas remain. 

3.4.6. Comparison >vith Combined Approaches 

This section discusses the salient parts of a few example approaches to 

representing electronic engineering designs. The examples have been taken mainly from 

the electronic design automation arena, due to preponderance of literature on design 

representation in this area. The comparisons are a little imfair as these approaches to 

A l design, replicate some aspect of design behaviour, whereas this representation 

attempts to provide important support for people doing design. 

3.4.6.1. "A Conceptual Framework for ASIC Design (Leung, Lisher and 

Shanblatt, 1988) 

This approach covers the making of a conceptual framework for the design of 

application specific integrated circuits in the digital VLSI arena. I t is particularly 
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interesting in that it incorporates many aspects of that design activity, and possesses 

many similarities to the representation proposed in this chapter. 

The overall emphasis of the representation is centred towards the synthesis of 

designs, from a decision making perspective, as opposed to the more common 

transformational model. The framework itself is divided into three areas: the design 

process; the design hyperspace; and the design repertoire. 

The first area or design process comprises the DOEMA (Design Object, Design 

Engine, System Manager and Expert Assistant) model of the ASIC design activity, and 

incorporates an implementation of ASIC design methodologies at various levels of 

abstraction. Design objects are used to describe the target design at a particular level 

of abstraction, and define the place where the dynamic (process) and static (design 

information) aspects of ASIC design intersect. This dynamic knowledge is separated and 

used to form the Design engine which is an embodiment of the mundane and 

mechanistic aspects of ASIC VLSI design, which involves tasks such as transformation, 

verification, simulation and test consideration (design for test). The expert assistant is 

used to make the designer aware of design alternatives, by deciding what the 

alternatives are at a particular stage and which ones should be considered. This provides 

a methodology which limits the search space and therefore the number of alternatives 

examined. The system manager is the final part of the DOEMA model and provides the 

overall glue to integrate the other aspects. 

The second area or design hyperspace consists of those parts of the design which 

tend to be stable over time, and is divided into a series of frames which are mutually 

independent (orthogonal), for example the structural, behavioural, and physical domains 

of the System Architect's Workbench (Walker, 1988). The suggestion is that the 

particular framing is not unique and depends on the designer's perspective. Two spaces 

are given as examples: the architectural space; and the algorithm space, which are 

further subdivided into: functional units, communication and control; and operation, data 

structure and data dependency respectively. The stated aim of this separation is twofold, 

the first is to try and make it easier for the designer to recognize design alternatives, 

the second that the subdivision into frames is possible on real designs. 

The final area or design repertoire is a collection of design and analysis 

techniques used for evaluating design alternatives, these techniques including resource 

configuration, which finds suitable architectures for a given algorithm ,and algorithm 
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restructuring which rearranges a given algorithm to better fit a given architecture. 

In brief it can be seen that iliis approach and representation discussed earlier in 

the chapter, have similar aims, in that they are primarily geared to help the designer 

pursue alternative approaches in their designs. They differ however in the emphasis of 

their approach, in that the knowledge embedded in the framework is targetted at the 

domain and not. as in the case of the representation, at the cognitive needs of the user. 

In addition the embedded knowledge is used in a closed fashion, in that it helps the user 

to find alternatives, but uses its own knowledge to find them, whereas the representation 

helps the designer use his own knowledge. This is an acceptable approach to a narrow 

domain, where sufficient knowledge can be elicited, but is less useful in wider domains, 

and where a more cooperative approach is required. 

The separation of design information into many frames is another area where the 

two approaches differ. As said before, this type of approach is less desirable in the early 

stages of design where the representation is aimed at. 

3.4.6.2, "An object based representation for the evolution of VLSI designs" 

(Gabbe and Subrahmanvam. 1987) 

The major aspect of this scheme is the encapsulation of design information from 

specification to implementation into a framework which represents explicitly the 

evolving design. It is based upon a transformational model of design which converts 

specifications to realizations through a set of refinement steps. These designs or 

versions are organized into a hierarchy of three levels: the architectural level, which 

determines the way in which the functionality is decomposed into subfunctions: the 

environmental level, which adds additional constraints such as technological issues; and 

the realization level, which contains various implementations and the constraints which 

they satisfy. As a result the architectural level will be composed of hierarchies of 

decompositions, the environment wil l contain contexts and realizations wil l embody 

refinements. 

Design information is also split into three areas: the first deals with the 

description of designs, from function specification to physical masks; the second 

contains the mechanisms and the domain knowledge to convert between the various 

parts in the first area; and the third contains the mechanisms and control knowledge 
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which decide what to do. 

The aim of this model to provide a means for representing iterative design 

activity. This is done through the use of design modules in the following way: A 

module realizes some degree of functionality and consists initially of specifications and 

results; and these results consist of decompositions and a series of refinements in a 

particular context. For example, a set of specifications may give rise to a number of 

alternative decompositions. Each decomposition proceeds through a series of 

refinements to produce a valid design. And each valid design is applicable to a 

particular context. This representation also includes a history mechanism based on 

transactions, and a constraint propagation system for truth maintenance. 

This approach yields a flexible but complex representation based upon the object 

oriented paradigm. In a similar manner to the previous approach, it seems that a great 

deal of effort has been spent on producing many orthogonal spaces. This interesting and 

common approach whilst perhaps much more important in the later stages of design is 

less applicable to the early stages. This model like many others appears to be targetted 

at the problem domain and not at cognitive needs of the designer, and as a result more 

adequately fits the needs of design synthesis systems. The extensive partitioning scheme 

also suggests that the model is aimed more towards the implementation of systems, 

where efficiency and size constraints are more important than the model discussed at 

the start of this chapter. 

3.4.6.3. Walker and Thomas: the System Architect's Workbench. 

This is a transformational model used for the synthesis of VLSI designs. It is 

based on various levels of abstraction and divided into three areas of description 

comprising behaviour, structure and physical domains. The levels of abstraction are 

defined as: architecture; algorithmic; functional block; logic; and circuit. For example 

the behaviour hierarchy covers performance specifications at the top level, going 

through algorithms, register transfer and boolean equations to electrical characteristics 

at the bottom. 

Transformational heuristics are used to convert from one domain hierarchy to 

another, and to maintain overall consistency. At each level in each domain a different 

representation can be used, thus the representation forms the glue to a number a 
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separate systems. Another reason for the separation of domains is the non isomorphism 

of designs at this stage of the design activity. For example a behavioural description 

may not have a one to one correspondence with its equivalent structure. 

This approach is basically very different from the representation, as it is geared 

towards synthesis where the requirements are quite different. As a result alternatives or 

versions, decision points and a decision support system are not usually explicit parts of 

synthesis models. In a similar vein the various domains can be merged, if the aim is to 

address the cognitive needs of designers in the early stages of design. 

3.4.6.4. Knapp and Parker Advanced Desisn AutoMation project (ADAM) 

This is a similar synthesis representation to the one previously. In it designs are 

split into four separate non isomorphic subspaces: dataflow behaviour; structural; 

physical; and timing and control. Again these spaces are organized in hierarchical 

manner. In a similar way the other parts of the model are not explicit parts of this 

representation, but do exist as parts of the larger system, for example the design planner 

in the A D A M system (Knapp and Parker, 1986). In interesting point here is that time 

issues in simulation have been separated away from behaviour. 

3.5. Summary 

The chapter has presented a abstract representation for the eariy stages of 

electronic engineering design, which in spite of being simple, tackles the important 

aspects of that design activity by taking into account the cognitive needs of designers 

in their work. The representation itself contains an explicit block diagram representation 

of design alternatives, together with a means to compare and contrast those designs, a 

dataflow simulator and means to extract and record design decisions, detect errors and 

inconsistencies made by the designer. The representation is then compared on a piece 

by piece basis with other approaches, and then in whole against a few representative 

representation models of electronic design, to show that these systems do not adequately 

address the cognitive needs of designers in early design, and that it is a valid and useful 

attempt to do so. 
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One important aim of the representation was to target i t at a level suff icient ly 

concrete that it is a real aid in producing an implementation, but abstract enough to not 

include many implementation issues. Chapter 4 shows the next step and discusses how 

an example implementation: PEDA was realized. 
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4. The PEDA Representation for Early Electronic Engineering 

Design 

4 .1 . Overa l l St ructure o f this Chapter 

This chapter discusses a partial implementation of the abstract representation fo r 

the early stages of electronic engineering design, discussed in the previous chapter. This 

implementation has been used as the core of the Plymouth Engineer's Design Assistant 

(PEDA), a designer support tool for the early stages of electronic engineering design. 

I t was envisaged to promote the rapid generation and selection of alternative designs, 

according to a set of desired criteria, in a consistent and uniform manner. A brief 

outline of the various parts of the PEDA system is given first which then leads on to 

a discussion on the relevant parts of the implementation. Wi th each section there is a 

brief statement outlining the areas where the implementation interacts with the user 

interface. The chapter ends wi th an example showing how the parts are integrated, 

fol lowed by a summary. 

4.2. The P lymouth Engineering Design Assistant : A n Overv iew 

The PEDA Environment discussed in Baker et. al. (1989) is a tool designed to 

address some important needs of engineer designers in the early stages of electronic 

engineering design. I t was developed as part of a jo in t project in developing a 

psychologically based engineering design assistant, and was conceived out of a desire 

to produce a design support environment that bener addressed the needs of engineers 

during the process of designing. This prototype system came to be known as the 

Plymouth Engineering Design Assistant or PEDA and was originally envisaged as a 

system that would promote engineer creativity in a natural manner, whilst of fer ing 

assistance in those areas where human performance is poor. I t was intended that P E D A 

would aid design by offering advice, pointing out inconsistencies and errors in a 

constructive and helpful manner. This advice would be applicable to a broader range 

of problems than many expert system approaches, which have tended to concentrate on 

relatively narrow domains. A psychological study of the way engineers design, would 

furnish information about the engineering design process, including the strengths and 
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weaknesses of designers. This knowledge would then be used to build a set of 

requirements that the PEDA would need to address i f i t were to be successful in its 

primary aims. 

The system itself is presented to the user as a screen based drawing board that 

allows manipulation of block diagrams using a mouse. Mathematical blocks are selected 

f rom a palette and can be incorporated wi th in a diagram to provide any level of 

functionality required, f r o m user specified mathematical functions to components such 

as memory devices. Hierarchical design is supported, and a fac i l i ty to zoom in a 

particular level is provided. More optimal design is encouraged by the ability to 

explore, develop, and compare many alternative designs, using a set of constraint 

criteria. The generation and deletion of alternatives is monitored and in some cases 

handled automatically according to a small set of heuristics governing the stage of 

design. Backtracking of design activity is also supported through a record of design 

activity. 

The PEDA environment has been implemented using the knowledge based 

system building tool ART, and the C O M M O N LISP language on a SUN 3/60 

workstation. The project was undertaken by three research assistants and their associated 

supervisors. L . Ball the psychology researcher would investigate the way in which 

electronic engineers design. The results of his work would be directly useful to G. M . 

Venner whose investigations would cover the Human Computer Interaction aspects of 

the project, and to D.G.C. Scothem whose work is the subject of this dissertation. 

The PEDA tool can be conceptually divided into two parts, the first is the user 

interface partially completed by G.M.Venner who tragically died part way through her 

research, and the second is the implementation of the early design model discussed in 

chapter 3. 

4.2.1. The PEDA User Interface: Overview 

The user interface for PEDA has a direct manipulation interface intended to 

reduce the gulf between user and system during execution and evaluation, and to give 

the user a feeling of direct engagement (Hutchins et. al. , 1985). The system is based 

upon a drawing board, rather than the more familiar desktop, metaphor. In this case 

designers create their diagrams using the mouse to select objects f r om a palette. 

87 



Thereafter a pop-up menu associated wi th a particular created component or object 

presents the user wi th the choice of relevant, valid functions that can be performed on 

i t . Other important aspects of the interface are concerned wi th the communication of 

various aspects of design knowledge and in the portrayal of the evolution of the design 

process to the user. A typical view of the user interface to PEDA is shown in 

Figure V I I . 
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Figure V H , Users view of the PEDA system. 

4.2.2. PEDA Internal Design Representation: Overview 

The implementation of the early design representation wi th in PEDA provides a 

framework fo r representing many important aspects of design activity within the tool. 
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The core representation consists of: 

1) A Base representation for mathematical block diagram hierarchies, wi th a 

selection of commonly used blocks in a library. 

2) A logical extension to the block diagrams to realize the formation of 

alternative designs, containing any amount of specifiable information. 

3) A small set of heuristics to validate the automatic generation of new 

alternative and decision information dependent upon user input. 

4) A small set of constraints including domain and non domain types, and 

heuristics to convert them into weightings and provide consistency checks. 

5) A Mathematical data f low simulator capable of either numeric or symbolic 

operation, stateless, interruptible, and not dependent upon the use o f an explicit 

representation of time for its operation. 

Figure V I I I , PEDA core representation 

In the fo l lowing sections these aspects are explained together w i th the associated 

background required. Li the text comparisons are made wi th other schemes. This 

overlaps slightly with chapter 3, but was thought necessary due to the greater emphasis 

on implementation issues made here, and in the literature. 

4.3, The Representation o f Designs W i t h i n the P E D A System 

4.3.1. The Representation o f Ind iv idua l Designs W i t h i n the P E D A System 

The representation of a design is one of the most used concepts within the 

design arena, and many different schemes have been proposed. Wi th in the f ie ld of 

electronic design, hierarchical descriptions involving primarily structure, behaviour and 

other data are the most common. The abstract representational fo r early design in 
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chapter 3 makes very few demands on the exact structure of design representation and 

as a result a similar scheme has been adopted fo r the PEDA system. However there are 

a few notable differences due to the removal of constraining factors such as the 

separation of concerns (Stefic et al, 1982). The basic elements o f an electronic 

engineer's design are stored as an adaptation of the circuit diagram often used to 

represent designs on paper or on the screens of Engineering C A D systems. A 

representation that closely corresponds to a paper design has been adopted, as this leads 

to a simple, compact fo rm, with little or no conversion required between the visualized 

and internal artifact. 

Unfortunately a more abstract representation than a straight forward logic circuit 

diagram is really needed and so to produce this more general f o r m , the circuit diagram 

was redefined as a block diagram and the circuit elements such as gates, transistors and 

so on, to entities known as functional blocks. At this level the behaviour of the 

functional blocks can be portrayed by general mathematical functions, and provides 

considerable freedom in describing function (behaviour). This is in contrast wi th many 

commercial electronic engineering C A D systems, which deal w i th block diagrams at a 

later stage of design, for instance at the logic diagram level and below, and offer 

facilities such as fast gate level simulation. 

In common wi th most design representations and the recommendations of the 

psychological work discussed earlier, the block diagrams are hierarchically organized, 

allowing the greater complexity of designs at lower levels to be hidden f rom the 

engineer unless required. Connectivity between blocks is s imply achieved via 

connections to ports residing within each block. Figure I X shows these basic structural 

concepts. 

The structure was designed so that an Engineer's block diagram could be easily 

represented. ELach block diagram or 'wor ld ' consists of a series o f interconnected 

functional blocks (The terms 'block* and 'functional block' are used interchangeably 

in this dissertation). These blocks can potentially perform almost any mathematical 

functions, although within PEDA only a representative selection have been defined at 

present. They are again hierarchical in nature, so that complicated functions can be 

defined initially at a high level, then later decomposed into a equivalent block diagram, 

if or when required. 
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Figure I X , block diagram basic pictorial structure. 

4,3.1.1. Functional Blocks 

The functional block is as mentioned previously the standard structural unit fo r 

representing block diagrams in PEDA. From an implementation perspective, the 

hierarchical nature of these diagrams can be seen to be important in a number of ways. 

By allowing blocks to be represented in tenns of others, the representation can be made 

compact and maintainable. In addition it melds well wi th Object Oriented Techniques 

(Stefic & Bobrow, 1985), which can greatly reduce the amount of programming effort 

required. The initial very simple PEDA block hierarchy is shown in Figure X . 

Each block can generally perform some fo rm of mathematical function. The 

places for all-block, alt-block and memory in the hierarchy are associated with the way 

in which the various blocks behave, and w i l l be discussed in the section devoted to the 

simulation aspects of PEDA, though in brief: all-blocks require all their inputs valid; 

alt-blocks need only one; and memories are a special case requiring varying input 

conditions. The all-blocks provide a small set of useful elements including common 

mathematical functions. There are three special cases within the all-block category, 

these are demux, round and the maths function. The demux block produces ' n ' outputs 
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Figure X, PEDA block functionality. 

from one input and therefore allows one block output to be connected to the input of 

many others. The round block performs a variable rounding or truncation operation on 

an input, allowing experimentation with various data bit widths. The maths function 

block lets the designer specify an equation, through links to the underiying LISP 

language, or to symbolic manipulation, and equation solving tools such as REDUCE or 

Macsyma when operators such as integration are required. 
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4,3.1.2. PEDA Block Representation 

A frame based approach has been adopted in representing functional block 
diagrams. A simplified view of frames is used in which a frame is viewed as a structure 
which characterizes an object. This structure contains a number of 'slots*, which when 
filled describe some important aspect of the object. A more complete outline on the use 
of frames and slots given by Winston (1984). The use of frames for representing a 
block diagram is convenient and flexible, as it allows any information appropriate to 
the design to be added as a new *slot\ 

In PEDA each functional block contains a number of slots, which in turn hold 

various attributes, for example its functional behaviour, structure and other information 

relating it to other blocks. This is in marked contrast to most models which split the 

design representation into a number of different domains. In these approaches the 

Physical, Structural and Behavioural aspects are separated, in accordance with the 

common consensus on electronic design representation. However as mentioned in 

chapter 2, it is difficult to separate these aspects in the early stages of electronic 

engineering design, and so this has not been done in the PEDA environment. 
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The structure is represented in PEDA as ART Schemata, these are frame like 

constructs similar in appearance to LISP lists and are discussed in the appendices. An 

example block shown in Figure X I , will demonstrate the internal structure of blocks. 

(defschema adder-12 
(instance-of adder) 
(instance-of block) 
(instance-of all-block) 
(function (if (Nan-Check A B) 

(set-Nan 'Q) 
(setq Q (-1- A B) 

) 
(contains 

adder-12-port-A 
adder-12-port-B 
adder-12-port-Q 

adder-12 is an instance-of adder 
inherited from adder 
inherited from adder 
Tlie Addition Function 

it contains three ports called: 

+ other slots used by PEDA and ART 

Figure X I , block schema - structure 

In this figure the block adder-12 has a slot called instance-of which indicates 

that adder-12 is an instance of the blocks adder, all-block and block. The instance-of 

slot is part of the inheritance mechanism and the net result is that adder-12 will inherit 

set slots and their contents from those other schemata. This is in essence a copying 

operation, with special rules regarding the how, why and when slots and their values 

are copied. The mechanism for this will be discussed later. In the example many of 

these slots have been removed to aid readability. The inheritance mechanism greatly 

improves productivity and can be seen to be an ideal way in which to generate this type 

of structure, an instance where there is a good mapping between the language and 
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problem. The slot 'contains' describes the ports in the block. In this case there are three. 

Figure X I I shows the corresponding structure of these ports. 

(defschema adder-12-port-A ; Input port A 
(instance-of input-port) 
(conn-from Or-12-port-Q) ; Input from another block 
; + other slots used by PEDA and ART 

) 

(defschema adder-12-port-B ; Input port B 
(instance-of input-port) 
(conn-from And-lO-porl-Q) ; Input from another block 
; H- other slots used by PEDA 

) 

(defschema adder-12-port-Q ; Output pon Q of adder-12 
(instance-of output-port) 
(conn-to muItiplier-5-port-A) ; Output to another block 
; +other slots used by PEDA 

) 

Figure XTT, port to port connection - structure 

Each port is either an instance-of an input or output port and is connected to its 

opposite in another block. This is done via the slots corin-from and conn-to. In this 

example Port A in the adder is connected to Port Q in an Or Block, 

The hierarchical nature of block diagram designs can be quite easily 

accommodated through the creation of further blocks, and linking them to the base 

block via the slot 'contains*. This is shown in Figure X I I I . The block diagram worId-1, 

contains an all-block function-1. which is decomposed into an adder and two 

multipliers. Data superfluous to this description has again been removed from the block 

descriptions to aid readability. This data would encompasses the port descriptions and 

normal inherited information. 
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(defschema world-1 
(instance-of world) 
(contains function-1) 

) 

(defschema function-1 
(instance-of all-block) 
(contains adder-1) 
(contains multiplier-1) 
(contains multiplier-2) 

) 

(defschema adder-1 
(insiance-of adder) 

) 

(defschema muItiplier-1 
(instance-of multiplier) 

) 

(defschema multiplier-2 
(instance-of multiplier) 

) 

Figure X I I I , a simple block hierarchy 

4.3.1.3. Block Templates 

When a block is created or copied, the set of slots and values that it has, are 

dependent upon the type of block it is. When it is created, these values are taken from 

blocks in a block library, which are used as templates to form the new block structure. 

When the block is copied, an existing block in a design is used as the template. It can 

be seen that both operations are very similar. Two mechanisms are used to effect these 

processes. The first is a straight forward inheritance procedure, using the instance-of 

relation in ART. This is used to copy slots and values which are identical in the 

template and created block. The second is a set of rules which are used for slots and 

values which are different. They are also used to build up the new block structure 

including any sub blocks or ports in the new block. 

When a block is created or copied, the block schemata structure is duplicated. 

The copying rules use the 'contains' slot value to find successive blocks in the block 

diagram hierarchy. Each block copied is given a name based upon tlie type of block it 
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is. For example adder-1, adder-2 etc. Each copy is then made an instance-of the original 

block, by giving it a slot Mnstance-of with the value of the original block. The 

inheritance mechanism takes over and the majority of the remaining slots are created 

and filled. Finally the 'contains' slot, the interconnectivity and the functionality of the 

new block structure are then set up to reflect the original. This process is itemised in 

Figure XIV. 

1) Recursively copy original block using contains slot as a pointer to lower 
blocks. 

2) Give each copied block a name based upon its type. 

3) Make each new block an instance-of its original, and wait for inheritance 
to finish. 

4) Make 'contains' slot reflect new structure. 

5) Make interconnectivity reflect new structure. 

6) Make functionality reflect new structure. 

Figure XIV, block creation and copying method. 

4.3.1.4. Links to the User Interface 

Designs are linked quite closely to the user interface. Blocks have a dual identity 

in that they also have a visual aspect. This is achieved through slots in each block 

which are used and maintained by the user interface. Li addition the initiator for the 

template copying mechanism is the user interface, so that when the user copies a block 

icon, the underlying representation is also being copied. 
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4.3.2. Alternative Designs Within PEDA 

4.3.2.1. Alternative Designs 

In common with efforts concerning individual designs, the use and representation 

of alternative designs, or more commonly versions has been extensively discussed in 

the literature. A common approach mentioned earlier, concentrates on the management 

of versions in a manner similar to computer software version management. These tools 

are primarily concerned with versions within the context of projects and the integration 

of work from different members of design teams. As a result integration of the various 

partial designs including changes and revisions is handled to maintain consistency. 

The management of versions is often treated separately to the designs 

themselves, and this has advantages and disadvantages. An important advantage is that 

this type of version system can be used with any design representation tool. This is 

similar in principle to using a software management tool with any programming 

language, and as a result a design team can use a preferred system of version control 

with all their other tools. The main disadvantage with this approach is the lack of 

integration between the two systems. This is mainly a conceptual problem in the early 

stages of design, where alternatives and design are intimately entwined. Some recent 

approaches do integrate designs and aspects of the evolution of designs (versions) 

through the use of object oriented practices. An interesting use of versions by Lathrop 

& Kirk (1985), introduces the versional block as part of the design structure, 

introducing alternatives at any point in the block design diagram. 

4.3.3. The PEDA Representation of Alternatives 

The requirements for the representation of versions within PEDA are different 

from many other CAD tools (see chapters 2 & 3). The tool is designed to address the 

early stages of design, and the aim here is not to provide a method of organizing the 

most current designs, but to encourage the designer to consider many different design 

alternatives. Thus the representation is geared more towards alternatives as opposed to 

versions, in that versions portray the evolution of a design whereas alternatives are 

viewed as different approaches to the same problem. This is very similar to the concept 
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of Multiple Worids (P. Veerkamp et. al., 1989). The structures that address versional 

issues are therefore not needed, and a simple approach can be adopted, albeit without 

the flexibility, or complexity of approaches discussed in chapter 3. 

The PEDA representation of alternatives relies on information in the form of 

attributes residing in each block diagram linking them into a alternative hierarchy or 

tree like structure consisting of derivatives and alternatives in a similar manner to the 

definition of the version plane by Katz, Anwarudin & Chang (1986). This structure is 

then superintended by the addition of information again in the form of block attributes 

explaining the reasons why a particular alternative was made. Figure XV, shows a 

pictorial representation of an example alternative structure. 

ALT-5 

ALT-6 

ALT-7 

Figure XV, alternative tree. 

In this diagram, the alternative designs: alt-2, alt-3 and alt-4 have all been 

derived from the base design ali-1. Successive changes to alt-2 produces derivatives: 

alt-5; alt-6 and alt-7. A general rule of thumb for this type of pictorial representation 

would be, that derivatives are aligned vertically, whilst alternatives are arranged 

horizontally. However in this example alt-7 could be very different from alt-2, and so 

could be classified as an alternate design to alt-2. To avoid this form of potential 

confusion (first mentioned in chapter 3), no explicit distinction is made between 

alternative and derivative designs in PEDA. Alternatives are made useful, by the 
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presence of attributes which record the reasons why that alternative was created. A 

particular alternative will have a whole set of reasons, found by examining it and its 

preceding alternatives. This is important, because the alternative tree can become quite 

complex as potential designs are explored, and therefore some means of aiding 

alternative navigation is necessary. 

The previous alternative tree can be used as an example to show the linking of 

information in the various altemative designs. Figure X V I , shows the textual 

representation of the seven alternatives ali-1 to alt-7, again with the irrelevant 

information removed. Each altemative shown contains infonnation which shows which 

altemative it was derived from and example reasons for their creation. 

Finally it should be noted that because alternatives are blocks, there is no need 

for separate mechanisms to handle their creation and copying. 
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(defschema alt-1 
(instance-of design-alternative) 
(reason "Want a Filter") 

) 

(defschema alt-2 
(instance-of design-alternative) 
(derived-from alt-1) 
(reason "partial digital, partial analogue") 

) 

(defschema alt-3 
(instance-of design-alternative) 
(derived-from alt-1) 
(reason "fully digital" ) 

) 

(defschema aIt-4 
(instance-of design-alternative) 
(derived-from alt-1) 
(reason "fully analogue") 

) 

(defschema alt-5 
(instance-of design-alternative) 
(derived-from alt-2) 
(reason "vary input blocks after simulation") 
) 

(defschema alt-6 
(instance-of design-alternative) 
(derived-from alt-5) 
(reason "vary output blocks after simulation") 

) 

(defschema aIt-7 
(instance-of design-alternative) 
(derived-from alt-5) 
(reason "tweak filter coefficients after simulation") 

) 

Figure X V I , alternative tree structure 
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4.4, The Management of Alternatives, and History Tracing. 

4.4.1. The Management of Alternatives in PEDA 

The management of alternative designs within PEDA can be divided into two 

parts: The first deals with the conventional aspects of version management for example 

the saving and restoring of designs; and the second with reducing the cognitive loading 

on the user. 

Very little needs to be said about the parts of PEDA which manage the saving 

and restoration of designs to disk, as they offer the bare minimum of functionality, 

providing only saving and restoration of the entire design workspace. Designs are saved 

in the following simple manner: 

1) Form a list of the relevant blocks (schemata). 

2) Iterate over the list and Write the text of each schemata in the list to a save 
file. 

The restoration of schemata files is even simpler as ART directly provides the 

functionality for it. 

For the second part, some aspects of alternative management have been 

automated by the addition of controlling heuristics in order to reduce the effort of 

creating alternatives during design work. The aim here has been to examine the history 

trace and the evolving design and determine, where important decisions are being made 

and then create alternatives together with the reasons for their creation. At present 

automatic support for this in PEDA is very restricted. Cuirently the history trace is 

examined for the occurrence of design changes after a simulation in that alternative. The 

rationale being that the designer is about to try out a new idea and so a fresh alternative 

is created, complete with links to the previous alternative and the reason for creating 

the new alternative being a design alteration after simulation. This simple example is 

shown pictorially in Figure XVTII, and in outline fonn in Figure X I X . 
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Figure XVII I , automatic creation of altematives (pictorial) 

Rule: 
IF current mode is constmction 
AND last mode was simulating 
AND modifying a block diagram 

THEN create new altemative from current design 

Figure XIX, automated creation of altemative (example rule) 

4.4.2. History Tracing. 

The history trace is a useful device in electronic design as it offers a partial 

record of the design steps used to produce a design. Conventional uses of history 

provide the user with a record of their selections and what the system has done. The 

information typically in a history trace is of quite a low level, though there are 

exceptions. For example, Mostow (1989) uses a record of history or "design plan" to 
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produce alternative designs. The recorded history of design decisions or design 

selections, made in a previous design can be replayed upon a slightly different starting 

design to partially complete it. These design decisions are derived from a history of 

menu commands which are at a comparatively high level. 

The Basic history mechanism within PEDA is indeed a straight fonvard record 

of all design activity within the system. Whilst this can create vast volumes of data, 

especially during simulations, it does allow a permanent record of all design work in 

an albeit low level form. Much of this information is of dubious use to the designer, but 

it does provide any heuristics present, access to the fu l l history. A sample history trace 

is given in Figure X X and portrays the commands used to produce a block diagram and 

subsequent simulation. 

[create world wodd-1 1] 
[select adder 2] 
[create block adder-1 worid-1 100 100 3] 
[select multiplier 4] 
[create block multiplier-1 world-1 200 100 5] 
[connect adder-l-portQ multiplier-1-portA 6] 

[Start Simulation 100] 

Figure XX, example history trace. 

The history trace is generated in two ways. The first appends a command to all 

the command rules in the user interface. When the user makes a selection, a rule in the 

user interface part of PEDA responds. The additional command placed in each user 

interface command rule places a fact in the ART database, indicating the command, 

together with relevant arguments and the command number. This number is required 

so that the order of commands can be determined. The second method monitors the 

changes to blocks and associated schemata, so that items such as a program trace can 

be provided. This activity is simple requiring only one rule matching all block 

schemata, but the generated history trace can be enormous. 
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4.5, Links to User Interface 

It can be seen that both the management of alternatives and history tracing 
mechanisms are closely involved with the user interface. The history mechanism is 
actually initiated within the user interface command rules, and the decision rule uses 
the history trace, in part. 

4.6. The PEDA Constraint System 

4.6.1. Introduction 

The use of constraints in electronic engineering design tools has been touched 

upon in chapter 3, with systems performing constraint propagation and maintaining 

consistency. In the abstract representation any infonnation can be viewed as 

constraining, though it might not be associated with any constraint propagation or truth 

maintenance system. 

This approach has been adopted in PEDA with constraints being any represented 

information, which might have constraint propagation attributes associated with it. This 

is due to the fact that the main aim of constraints in the representation (or PEDA for 

that matter) is to bolster comparisons, and not to maintain consistency, though of course 

this is sometimes necessary. Constraints generally describe some feature, and for items 

like the structure, this would entail aspects like the block hierarchy and 

interconnectivity, or a description of design behaviour. These may or may not have 

associated constraint propagation heuristics. 

Additional constraints in this area which have been included in PEDA are 

attributes like speed, power, chip area and design time. Some constraint propagation 

heuristics have been incorporated to propagate these aspects from the lower levels of 

a design hierarchy to higher ones, deriving for example the critical delay in a block 

diagram. Certain constraints dictate limits, whereas other dictate desirable features. 

These various factors can be explained with the use of an example. Figure X X I 

shows a partially described top level block, with the unimportant information removed. 
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(defschema design-1 
(instance-of design-altemative) 
(contains multipIier-block-1) ; 
(contains multiplier-block-2) 
(contains multiplier-block-3) 

; Normal stmcture 
information 

(must-have (speed fast)) ; 
(must-have (chip-area large)) 
(must-have (power medium)) 
(must-have (design-time medium)) 

Absolute requirements 

(desirable (speed very-fast)) ; 
(desirable (chip-area medium)) 
(desirable (power low)) 
(desirable (design-time zero)) 

Desirable requirements 

(speed fast) ; 
(chip-area large) 
(power medium) 
(design-time low) 

) 

Actual characteristics 

Figure X X I , example use of Constraining Information. 

A l l the infonnation in the design altemative design-1 is a constraint on the 

design. Starting at the top it can be seen that the design is constrained to be a design-

altemative which contains a number of other blocks. These multiplier blocks need not 

be described here, but by the virtue of their existence they limit the realization of this 

particular altemative. Other constraints which form a boundary on the design are the 

must-have's. These invoke the use of heuristics to derive the associated actual values 

from elsewhere in the design hierarchy. This may be achieved through inheritance 

(which is a simple form of constraint propagation), for the example chip-area, where 

the value is propagate from a library component. Heuristics can be used to infer other 

values, for example estimating the design lime required in a large and complex 

component, or estimating the overall speed of the design. The desirable constraints place 

additional emphasis on the overall requirements, though at no time are any constraints 

used to remove a design altemative. They are used to compare designs. The actual 

characteristics are shown at the bottom of the block, and define the capabilities of the 

design altemative in actuality. 
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4.6.2, Constraint System Implementation 

4.6.2.1. What Constraints are in PEDA 

Al l information within the PEDA system is regarded as a constraint, however 

the constraint comparison mechanism deals with only certain types of constraint at 

present. Constraint requirements are generally specified by the user and are of the form 

(must-have (<constrain(> <value>)) and (desirable {<constraint> <value>)). They are 

usually placed in the top level block diagram description. Constraint values can be 

specified by the user, inherited from data libraries or derived from existing constraint 

values in other parts of the design (or other designs), by heuristics. They are generally 

of the form (<constraint> <value>). The format of constraint requirements and 

constraint values is summarized in Figure X X l l . 

Constraint Requirements: 

1) (must-have {<constraint> <value>) 

2) (desirable (<constraint> <value>) 

Constraint Values: 

(<constraint> <value>) 

Examples: 

Constraint requirements: 
(must-have (power low)) 
(desirable (power very-low) 

Constraint value: 

(power very-low) 

Figure X X n , constraint format 
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4,6.2.2. How Constraints are used in PEDA 

Constraints are primarily used in PEDA to compare alternative designs. This 
process can naturally be split up into three layers (Figure X X n i ) : 

User 
T flow 

Layer 1) Derivation of Overall Design Utility 
T flow 

Layer 2) Constraint Comparison 
T flow 

Layer 3) Constraint Derivation 

Figure X X I I I , constraint system layers 

The first layer is concerned with producing an overall value or utility for each 

design which is used as a direct indicator of the overall suitability of that design with 

regard to the requirements. This is fed by the results of the second layer which performs 

the comparison of individual constraints to fonn a set of desired utilities. The third layer 

derives the actual constraint values required from available constraint values according 

to inbuilt algorithms or heuristics. This overall flow of information is also shown in 

Figure XXni. 

At the bottom layer exists the parts of the constraint system which satisfy 

requests for constraints which have yet to be derived. Figure X X I V shows the overall 

method by which such constraint requests are met. As can be seen a rule based 

approach is used. The figiu*e shows a generic rule, but in actuality a rule for each type 

of constraint is used. 

Rule: 
IF can satisfy a constraint request directly: 

THEN apply corresponding algorithm or heuristic to available 
constraints to do so. 

Figure X X r V , constraint derivation 
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The central concept is that any particular unresolved constraint requirement wi l l 

have a rule trying to satisfy it. A rule wil l be able to succeed when all it's criteria are 

met, and as a result may enable other rules to succeed. The process wil l continue if 

possible until all unresolved constraints are derived. This effect can be explained with 

an example. Figure X X V shows the constraint satisfaction rule for the calculation of 

chip area. 

1) Wait untiJ following rule activity has finished and required chi[>area is 
valid. 

Simple approach assuming that chip-area calculation are enabled. 

Rule: Calculate a block's area. 
IF there is a block(i), 

AND that block contains a request for block area. 
AND that block contains other blocks(ii). 
AND all those blocks(ii) have chip areas. 

THEN calculate the block's(i) chip-area as being the sum of the 
blocks'(ii) chip-areas. 

Figure XXV, example of constraint derivation: chip area 

The calculation of chip area for a block is quite simple being the sum of the 

chip areas of all blocks contained in that block. Consider a block diagram design 1 

containing 2 blocks, block 1 and block 2. Both block 1 and Block 2 contain two blocks, 

block 3 and block 4, and block 5 and block 6 respectively. Blocks 3 to 5 have chip-

areas inherited from a library, the other blocks' chip areas have yet to be determined. 

The chip area constraint satisfaction rule will try and derive the chip areas for blocks 

1, 2 and 3. It cannot do this for the design as the chip areas for blocks 1 and 2 have not 

been calculated. However it can produce the chip area for block ] , by adding the chip 

areas for blocks 3 and 4. In a similar manner the chip area for block 2 can be derived. 

Only after both blocks 1 and 2 have chip areas can the rule derive the chip area for the 

design. Figure X X V I shows the chain of rule firing and constraint derivation for this 

example. It should be noted that actual numeric values of chip-area are used in this 

example. For this type of constraint, numeric values are required and so symbolic terms 
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The design: 
design 1: 

chip area is required. 
contains blocks 1 and 2. 

block 1: 
contains blocks 3 and 4. 

block 2: 
contains blocks 5 and 6. 

block 3: 
chip area 2 

block 4: 
chip area 1 

block 5: 
chip area 3 

block 6: 
chip area 4 

Rule firings: 

First 
For block 1, chip area is 2 + 1 = 3 

Second 
For block 2, chip area is 3 + 4 = 7 

Third 
For design 1, chip area is 3 + 7 = 10. 

Rule2 fires: chip area required in block 3 
Rulel fires chip area in block 3 is 1 + 3 = 4 
Rulel fires chip area in block 1 is 4 + 2 = 6 

Figure X X V I , chip area constraint derivation example. 

would be converted via a lookup process using user or library derived tables. 

The second layer of the constraint system is concerned with constraint 

comparison, and making sure that the required constraint values are available so that 

the comparison process can take place. Figure X X V I I Shows the overall order of these 

processes. The constraint requirements are generally supplied by the user or from a 

library, but the system does cater for the eventuality of deriving constraint requirements 

if there is a real need, using the same method as for constraint values. 

Comparison of requirements and values is done through a semi hetunstic 

technique. Symbolic values are converted into corresponding numerical values using via 

conversion factors supplied by the user or libraries, where applicable. The difference 

between these values is then converted to a result in a particular range using heuristics 
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1) IF The constraint value has not been derived: 
THEN derive it: -> Constraint Derivation. 

2) IF the constraint requirement has not been derived: 
THEN derive it: -> Constraint Derivation. 

3) Compare constraint value with constraint requirement, to produce a 
constraint resuh. 

Figure X X V H , constraint comparison. 

or a non linear transfer function. Where a must-have constraint requirement is exceeded 

the violations can be flagged. An example (shown in Figure X X V I I I ) using chip area 

can outline the process of constraint comparison. 

design-1: 
must have constraint requirement: chip area large, 
desirable constraint requirement: chip area medium, 
chip area constraint value: 25 units. 

lookup values: 
chip area large is 100 units, 
chip area medium is 10 units. 

test for constraint violation: 
25 is less than 100 so pass. 

Compare constraint: 
use heuristic, returns constraint result of 7 when given constraint value of 
25 and constraint requirement of 10. 

Figure X X V I I I , constraint comparison example. 

A design has a must have constraint requirement for chip area of large. It also 

has a desirable chip area of medium. The derived chip area constraint value for the 

design is 25 units. The derived value is already a numerical value and so need not be 

modified. A chip area of large is looked up in the technology table for the process 

under consideration and returns a value of 100 units. Similariy medium gives a value 

of 10. The value of 25 is less than 100 so a must have constraint violation does not 

occur. The value of 25 is compared with 10 by a heuristic to give a constraint result or 
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utility of 7, where 1 is bad and 10 is good. Tliis value is then used by the first layer in 

the constraint system. 

The top layer in the constraint system is concerned with the derivation of the 

overall design utility for alternative designs. This functionality is outlined in 

Figure XXIX. 

1) Gather all relevant constraint results: -> Constraint Comparison, 

2) Derive importance value for each constraint result, from: i) user input; 
2) library; 3) other method. 

3) If required, convert each importance value into a numeric value using 
heuristic or algorithmic technique. 

4) Multiply each constraint result (numeric) by importance value (numeric), 
to give overall utility (numeric), for design alternative. 

5) If required, convert overall utility into symbolic value (such as low, 
medium & high) using heuristic or algorithmic technique. 

Figure XXIX, derivation of overall design utility 

The results from all constraint comparisons are combined using an approach 

similar to MAUD (discussed in chapter 3). In this method each constraint result is 

multiplied by an separate importance factor (which is usually linear). The resultant 

values are than added to give a final utility for each design, after normalization. In 

addition conversion to and from symbolic and numeric values is provided where 

necessary. 

An example will clarify the operation of the top layer of the constraint system. 

A set of design alternatives are being examined. These designs design-1 to design-3 are 

shown in Figure XXX. 

The three constraints of importance here are chip-area, power and speed. The 

constraint results of these constraints for all three designs have already been determined 

by the lower layers in the constraint system. These results are then multiplied by the 

corresponding importance values of 0.5, 0.3 and 1 respectively. When added together 

and normalized (divided by the total number of importance values) the resultant utility 
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is an indication of the desirability of that design. In this case the design design-1 is the 

most desirable. 

(defschema design-1 
(chip-area medium) 
(power high) 
(speed very-fast) 

) 
(defschema design-2 

(chip-area medium) 
(power low) 
(speed slow) 

) 
(defschema design-3 

(chip-area high) 
(power medium) 
(speed fast) 

) 
chip-area lookup factors: 

very-small 10, small 7, medium 5, 
high 3, very-high 1. 

Constraint results: 

design-1: chip-area 5, power 3, speed 10. 
design-2: chip-area 5, power 7, speed 3. 
design-3: chip-area 3, power 5, speed 7. 

Importance factors: 
chip-area .5 
power .3 
speed 1 

Final utilities 
design-1: (2.5 + 0.9 + 10)/1.8 = 7.4 
design-2: (2.5 + 2.1 + 3)/1.8 = 4.2 
design-3: (1.5 + 1.5 + 7)/1.8 = 5.6 

Selected design: design-1. 

Figure XXX, overall design utility example 
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4.6.3. Links to the User interface 

The constraint system is linked to the user interface in a number of places. 

However unlike some other parts of the representation there is a relatively clear line 

between the two. The instigation of the design comparison process is the most 

immediately apparent point. The second is the display of results in the form of overall 

design utilities. The various lookup tables for importance values and conversions are 

also points of contact, as is the setting and modification of design constraint 

requirements and values. 

4.7. Simulation of Designs 

Simulation has been greatly used by electronic engineers to check the validity 

of their work. In this broad domain simulation has been greatly used to model both 

digital and analogue designs, though traditionally commercial CAD packages have 

concentrated on digital logic simulation of circuit diagrams. More recent commercial 

efforts have combined analogue and digital simulation tecliniques, allowing the 

verification of mixed designs, expanding markedly the usefulness of such tools. In the 

VLSI arena simulation tools have addressed more stages of the design activity 

hierarchy, commonly classified as: Behaviour at the top and most abstract; Function; 

Logic; Gate; Circuit and Switch at the bottom. Performance considerations are 

considered very important at the later stages, due to the size and complexity of the 

design at that level, for example: simulating a large (1 million transistor) microprocessor 

at the switch level requires a very high perfonnance simulator, if reasonable run times 

are envisaged. High performance is basically required because of the requirements of 

both simulation speed and accuracy. At the high levels the design wi l l consist of a 

relatively small number of interconnected elements of corresponding high functionality. 

As design progresses these wi l l be decomposed into a larger set of elements, until at 

the bottom individual components are specified. Behavioural simulations can quite 

accurately model the behaviour of devices, but are comparatively slow. Switch level 

simulators approximate devices to switches, and are relatively fast. Thus in the initial 

stages, overall design behaviour of the top level design is best verified using a 

behavioural simulator, and in the later stages the overall behaviour of the low level 
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design is adequately verified using a switch level simulator, with the other types in 

between. A general purpose simulator could be used for all levels, but performance 

would suffer at the lower levels. This happens with analogue designs which require 

more accurate device level simulators, such as SPICE, but again the run times can be 

prohibitive. The net result is that different types of simulator have evolved to offer the 

best compromise between speed and accuracy at a particular level. Generality is 

supported by combining approaches into mixed mode simulators, which support a 

number of levels. This whole area has been well addressed and there are many 

examples in the design automation literature. 

Efforts in the knowledge based arena have produced simulators which tackle the 

behavioural and functional levels which tend to be based around a high level language, 

commonly LISP, or an Object Oriented language, tliough there are a few rule based 

systems. This can be explained from the fact that the main emphasis of these systems 

is in applying knowledge based techniques (encoding expert knowledge in heuristics for 

example) to a particular problem, circuit synthesis for example, and these languages 

provide an easier platform for this type of work. Also at the higher levels less raw 

computation is required, as there are less elements to model, though some aspects of 

behaviour can be troublesome (differential equations and integration for example). This 

is also applicable in the initial stages of design, where the behaviour is described by 

mathematical equations, and it is at this stage where the PEDA simulator is designed 

to operate. 

In terms of general usage the relatively common digital circuit simulator is often 

used to simulate the behaviour of digital logic circuits. However in the context of this 

project a mathematical function simulator is more general. It simulates the behaviour 

of connected mathematical functions. Also implicit in the implementation of digital 

circuit simulators is the notion of time. Tliese simulators model behaviour at specific 

instants separated by a delay. Approximations to continuous behaviour can be made if 

the delay is small enough. Another type of simulator follows from data flow principles 

in which data flows along a network of connections. At the junction of connections are 

nodes which have a mathematical function associated with them. When all the required 

data is at a node, it is evaluated and the results of the calculations passed on down the 

network. This type of arrangement is very flexible and has the advantage that time 

sequencing is not an integral part of it. It can be regarded as a more general type of 
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simulator than the digital circuit simulator. The PEDA simulator is of this second type. 

A simulator was required that possesses a great deal more flexibility than what the 

simple digital simulator has to offer. 

4.7.1. The PEDA Simulator 

The simulator within the PEDA environment was conceived as a general purpose 

system. It was designed like many others to perform a number of roles: the first, offers 

a means of modelling the behaviour of arbitrarily abstracted block diagrams, placing 

near the top level of the design activity hierarchy (behaviour„.circuit); The second aim 

is to provide a means of verifying that the behaviour of the block diagram at any level 

corresponds to the required behaviour in the specifications. The third aim is to produce 

a rich source of constraint information. These aims are met with the use of multiple 

paradigms, combining both rule based and object oriented programming techniques, to 

produce a simple yet powerful simulator engine. The underlying richness of the 

implementation languages are used to ful l effect, allowing the specification of design 

behaviour as mathematical equations, stored within the blocks themselves. Abstract 

simulation is performed with no explicit use of events or delays, in accordance with the 

psychological requirements, and abstract representation. However if these devices are 

required, they can be accommodated easily, by changing the functional behaviour of 

blocks, through the addition of an extra port on each block which would receive 

synchronisation data. 

4.7.2. PEDA Simulator Operation 

The PEDA simulator provides the basic underlying mechanism by which the 

behaviour of block diagrams is modelled. It controls the f low of data between blocks 

and the subsequent equation evaluation within them. There is a close relationship 

between data, behaviour and the structure in that the data is physically moved aroimd 

the structure during simulation. 
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The basic operation of the simulator is as follows: 

1) Data packets are created at the outputs of input file blocks, using the 

data stored within a file. 

2) Data packets move along the connections between blocks, from the 

output of one block to the input of the next. 

3) The presence of all the required data packets at the inputs to the block 

wil l cause it to evaluate them according to the equation specified within. 

4) The resultant evaluation wil l create new packets at the output(s) of the 

block and the packets at the inputs are destroyed. 

5) Output file blocks store their input data in a file. 

The previous steps are not completed in any set sequence, making the simulator 

essentially asynchronous. It is in fact data driven, and operations are performed on a 

demand basis, though regulatuig mechanisms have been added to improve the 

interactive performance with respect to the user, spreading the evaluation of data across 

all viable blocks in time. If this were not done evaluation may be perfonned in a batch 

processing manner, with the processing of all the data through one block at a time. This 

is a problem due to the recency action of the ART inference engine, in which the most 

recent patterns to match have a greater priority than new ones (see appendices). 

4.7.3, PEDA Simulator Implementation 

The simulator combines the use of rules and Object Oriented LISP written in 

ART. Its operation is centred around the movement and manipulation of data in the 

form of data packets around the block diagram. This approach is in keeping with the 

general philosophy of the tool, in that the operation is closely matched to the conceptual 

views of simulating the operation of a block diagram, and simplicity. The explanation 

has been divided into a number of areas: The first discusses the makeup of data 

packets, how they are moved aroiuid the block diagram and how they are maintained. 

The second deals with the data driven operation of the blocks in response to valid data 

at their inputs, and the third deals with the evaluation mechanism of the data within the 

blocks themselves. 
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4,7.3.L Packets 

PEDA uses a flexible arrangement for the representation of Data Packets. They 
may be simple structures embodying just data and location, or they might contain 
varying additional information dependant on need. The inheritance mechanism is used 
both for new packets and the associated functionality required. As a result new types 
of packet can be easily added. Various numeric data types are supported at variable 
levels of accuracy or uncertainty. An example packet is shown in Figure X X X I l . 

(schema P-1 
(instance-of packet) ; A data Packet. 
(node multipIier-l-portA) ; It is associated witli this port. 
(data-type fixnum) ; A 32 bit integer. 
(overflow null) ; Set to true is overflow has occurred. 
(data 7) 

) 
; Has a value of 7.0 

Figure X X X I I , packet structure 

This particular packet P-1 contains the integer value 7. The value 7 is accurate 

because an overflow did not occur when it was created. The packet is at present situated 

in the input port, port A on multipIier-1. 

4.7.3.2. Packet Movement 

Packets are moved by altering two types of slot. TTie first is the node slot in a 

packet, the second is the packet-link slot in a poa. The node slot is used to associate 

a packet with a particular port, and the packet-link slot is used to maintain an ordered 

queue of all the packets residing at a particular port. To Move a packet the node slot 

is altered, and the corresponding packet-link slots in the source and destination ports 

changed to reflect this. A typical packet-link slot in a port is shown in Figure XXXIU.) . 

Packet queues are maintained so that ordering of data is preserved when a number of 

packets are at a port, for even though exact timing information is not required in the 

simulator, the order of data must be maintained for the results to be meaningful. The 

decision to move a particular packet is made by rules, candidate packets are handled 
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on a random basis, and as a result packet movement is essentially asynchronous. An 

outline of the simple rule which moves packets is given in Figure X X X I V 

(defschema input-file-l-portQ 
(instance-of port) 
(conn-to multiplier-l-portA) 
(packet-link (P-1 P-2 P-3 P-4)) 

) 

This is a port. 
It is connected to another port. 
The queue of packets. 

Figure XXXUI, packet queue 

Rule: Faster packet move 
IF there is a port 
AND that port has data packets 
AND that port is connected to another port 

THEN move the data packets to the other port * 

•Note moving packet just involves modifying the packet link slot. 

Figure XXXIV, outline of packet move rule 

4.7.3.3. Packet Maintenance 

Packets are maintained, through the use of inheritable OOP code. This handles 

all aspects of packet maintenance, including creation, deletion, and slot manipulation. 

4.7.3.4. Data Driven Operation of Blocks 

The operation of most blocks is managed by a small number of rules. They 

observe the input ports of blocks and invoke the data evaluation mechanism when the 

input criteria are satisfied. This generally occurs when data packets reside at all the 

inputs of a block. The exceptions to this simple approach are blocks with non standard 

input requirements, such as memory devices, files and the A L T block. In these cases 
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slightly modified rules have been used. Figure X X X V shows an outline of the relevant 

rule for the all block. 

Rule: function all block 
IF there is an all block 

AND there is a data packet associated with all its input ports 

THEN invoke the data evaluation functionality for that block. 

Figure X X X V , all block evaluation invoking rule. 

4.7.3,5. Data Evaluation 

Data evaluation is achieved by applying the functionality described within a 

block to the data at the input ports. Object Oriented Programming techniques have been 

used to achieve this with basic types of blocks, which include All-blocks, Alt blocks 

and the memory devices. Figure X X X V I shows how this is done for the all block. 

1) Examine the fimction-conn-in slots to determine the input variables and the 
ports which are associated with them. 

2) Do the same for the function-conn-out slots and output ports. 

3) Get the relevant input data and bind it to the corresponding variables. 

4) Evaluate (execute) the functionality of the block defined in the function 
slot. 

5) Take results and convert to data packets and place in output ports. 

6) Remove input packets. 

Figure X X X V I , all block evaluation 
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4.7.4, Links to User Interface 

The simulator is relatively imconnected to the user interface. The only direct 

control starts or stops simulation, all other effects are achieved by manipulating the 

blocks themselves or observing the results. For example if floating point results are 

required then the data type slot of the relevant blocks is changed to floating point. 

Similarly an observation of the packets gives a simulation trace. 

4.7.5. PEDA Simulation Example 

This basic operation of the PEDA simulator is best outlined with an example. 

The block diagram for a very simple design is shown in Figure X X X V I I . 

@ = A • ID @ @ = A • ID @ 

Figure X X X V I I , example 

The design consists of a 2 input multiplier, fed from two input files: f i leA & 

fileB, and is in turn connected to one output file: fileZ. Initially data is read in from the 

input files and is placed on their outputs as data packets (Figure X X X V I I I ) . These data 

packets are moved along the connections linking the input file blocks to the multiplier 

(Figure XXXIX) . When the all the inputs to the multiplier are ready, the data is 

evaluated, the old data is destroyed and the result made available at the output as a new 

packet (Figure XL). This in turn moves along the connection to the output file block, 

where the data is stored in a file, and the now redundant data packet is destroyed 
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(Figure XLI) . The above set of sequences are performed until the input data is 

exhausted. 

Figure X X X V I I I , input data from files 

Figure XXXIX, packet movement between blocks 

The overall approach of the simulator is centred upon the fact that the rules and 

OOP code provide the means by which the behaviour is simulated, and are not 

themselves descriptions of the behaviour. This confers some advantages in that it allows 

the implementation of the simulator to be changed without affecting the simulation 

behaviour, and secondly it allows the modelling of arbitrarily difficult behavioiu-. In this 
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Figure X L I , output data to files 

implementation the behaviour is described in LISP, but within these confines it can be 

any mathematical equation as long as the description language can manage it. A 

common attribute of many simulators is that they limit the modelling of behaviour to 

a small set of functions, usually logical. This is true to some extent in this case, but the 

limits are only specific to the implementation language, and not the method in general. 
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4.7.6. Feedback and the AlternativeCAJt) Block. 

In a event driven data flow simulator a number of problems can arise when 

feedback is used. In these cases at least one of a block's inputs is dependent on its 

output. An example of feedback is shown in Figure X L I I . In this port B on the 

multiplier is dependent on its output from port Q. The majority of blocks require that 

all their inputs are available before evaluation wil l occur. As a result a block with 

feedback wil l never evaluate. This problem is solved in the PEDA simulator with a 

special type of block called the Alt block. This block does not obey the general rule of 

evaluation and wi l l pass any input to its output. When this block is used in the feedback 

path in conjunction with a setup data from an input file block, the feedback problem 

can be avoided. A secondary advantage of this approach is that it makes explicit the 

initial conditions of all blocks in the block diagram. The placement of the Alt block can 

also be seen in Figure X L I I . 

File A contains the data to be used during the simulation, whilst File i contains 

the initialisation data for port B of the multiplier. Without this data simulation would 

not proceed as the input requirements for the multiplier would not be satisfied. 

m£ I 
0 A 

All 

0 - A AU B 

3 

3 
3 

6* A*B A 

DEMUX mi 
A 

Figure X L I I , use of the alternative block. 
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4.8. Integration in the PEDA Representation: An Example 

The following example shows how the basic parts of the PEDA implementation 

are used and work together. The example given is that of a engineering producing a set 

of different designs and then comparing them. 

The designer interacts with the PEDA system using the user interface. To start 

a new design the user selects a block from the library palene. When this block is placed 

upon the drawing board, a skeletal block is created, containing mainly graphical data. 

The template copying mechanism is invoked and the block is filled out to contain all 

the required data. The first block in this example is an adder. The block structure of the 

adder created is shown in Figure X L I I I . 

It should be noted that the graphical information maintained by the user interface 

has not been included in this example. The adder has two input and one output port, a 

number of constraint values for chip area, power, speed and design lime, the 

functionality of an adder (function slot), and links between the functionality and the 

ports (function-conn slots). 

Two more blocks are created for this design, both adders, adder-2 and adder-3. 

They are very similar to adder-1 and so are not shown. For this design the outputs of 

adder-1 and adder-2 are connected to the inputs of adder-3. To do this the conn-from 

and conn-to slots of the respective adders' ports are modified to point to the 

corresponding ports. This can be seen in Figure XLIV. 

Four input files and one output file are added to the design, and linked to the 

unused input and output ports. 

The user interface can then be used to modify the behaviour of the blocks 

specifying the base number type that each block works with. This data is stored in the 

blocks and wil l be used by the simulator. When the simulator is invoked the user 

interface is used to watch and display the results of the simulation. The dynamic 

operation of the simulator is explained in section 4.7 with an example in 4.7.5. 

At any time the history tracing mechanism can be enabled, producing a record 

of events in the ART fact database. This is discussed in section 4.4 an example partial 

history trace is shown in Figure XX. 

If after simulation the designer decides to modify the design, then the decision 

test rule wil l fire and signal the creation of a new design altemative. The template rules 
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(defschema adder-1 
(instance-of all-block) 
(instance-of adder) 
(chip-area medium) 
(power low) 
(speed 100) 
(design-time v-low) 
(function (Setq Q (+ A B))) 
(function-conn-in (function A in adder-l-port-A)) 
(function-conn-in (function B in adder-l-port-B)) 
(function-conn-out (function Q to adder-l-port-B)) 
(contains adder-l-port-A) 
(contains adder-l-port-B) 
(contains adder-l-port-Q) 

) 

(defschema adder-l-port-A (defschema adder-l-port-B 
(instance-of input-port) (instance-of input-port) 
(contained-in adder-1) (contained-in adder-1) 
(direction in) (direction in) 
(conn-from) (conn-from) 

) ) 

(defschema adder-l-port-Q 
(instance-of output-port) 
(contained-in adder-1) 
(direction out) 
(conn-to) 

) 

Figure X L I I l . example adder block structure 

wil l build up the new alternative from the original. The designer can also instigate a 

new alternative from tlie user interface. The decision test rule is discussed in section 

4.4.1. 

With a number of separate designs, the user may wish to compared them. The 

user interface is used to select the particular constraints needed for comparison and a 

library of lookup tables for the conversions between symbolic and numeric values. At 

this stage the user may decide to input a new set of importance values or use an in 

house derived library. The comparison process can then be started. A l l required 

constraints that need to be found are derived using the built in heuristics. The constraint 

values are then compared with the requirements to give the set of results or utilities, and 

these are combined to form an overall utility using the importance values as weighting 

126 



(defschema adder-l-port-Q 
(instance-of output-port) 
(contained-in adder-1) 
(direction out) 
(conn-to) 

) 

Becomes: 

(defschema adder-l-port-Q 
(instance-of output-port) 
(contained-in adder-1) 
(direction out) 
(conn-to adder-3-port-A) 

) 

And: 
(defschema adder-3-port-A 

(instance-of input-port) 
(coniained-in adder-3) 
(direction in) 
(conn-from) 

) 

Becomes: 

(defschema adder-3-port-A 
(instance-of input-port) 
(contained-in adder-3) 
(direction in) 
(conn-from adder-l-port-Q) 

) 

Figure XLIV, modification of conn-to and conn-to slots 

factors. The final utilities for each ahemative are displayed and the highest one 

highlighted by the user interface. This process is discussed in section 4.6.2.2 

The constraint system can be used in a variety of ways. For example, a potential 

alternative design can be rapidly evaluated to test its suitability. Alternatively the 

criteria may be changed to determine the effects on the designs. The net result is that 

the tool facilitates easy application of 'what if* strategies. 

4.9. Summary 

The aim of this chapter has been to show how the relatively abstract 

representation of early electronic engineering design discussed in chapter three has been 

used to form a design tool called the Plymouth Engineer's Design Assistant (PEDA), 

targeted at some of the users cognitive needs. The description has been split into the 

same broad categories as chapter 3. and the key parts of the implementation are 

described in moderate detail. At the same time the implementation is compared with 

other approaches which have substantial implementational aspects. The emphasis has 

been on portraying the simplicity of the implementation, which is due in part to the 

simplicity of the abstract representation on which it is based, and a disregard for many 

implementation constraints. These include for example, the size and speed of the final 
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tool, which can only be justifiably done in a research context. Certain parts of the 

implementation have been discussed in more detail, for example the data flow simulator 

to show this simplicity, and also to show how a design and its behaviour take place at 

the same level, where the data physically moves around the design itself. This and other 

issues raised by the work wil l be discussed in the next chapter. 
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5. Contributions, Final Discussion And Further Work 

5.1. Overall Structure of This Chapter 

The aim of this chapter is to bring together the statements of the preceding four 

chapters into a summary of the ideas and research embodied in the work to date. The 

chapter begins with a description of what contributions the research has achieved to 

date, both in terms of the idealised abstract representation of early electronic 

engineering design, and the partial realization of this representation in PEDA. a 

cooperative tool designed to aid the engineer in this area. This is then followed by a 

general discussion of some of the important issues concerned with electronic design 

representational that have been raised during the course the research and have been 

outlined in the main text. A discussion of the problems encountered during the research 

leads on to an outline of topics in which further work may be carried out. The chapter 

and dissertation is rounded off with a few concluding remarks. 

5.2. Contributions 

The work described within this thesis has been concerned primarily with two 

main points. The first deals with the abstract definition of a idealised representation for 

early electronic engineering design; The second is concerned with an implementation 

of key parts of that representation as the core of a cooperative electronic engineering 

design tool known as the Plymouth Engineer's Design Assistant (PEDA). 

The representation differs significantly from many others in that its basis has 

been shifted away from an analysis of the end problem towards the cognitive needs of 

the designers themselves. To achieve this aim the requirements for the representation 

have based primarily on the results of psychological research in this field (Ball. 1990). 

This psychological emphasis has produced a representation which caters mainly for the 

generation and selection of design alternatives. It is based upon the merging of all the 

information regarding an eariy design into two loose hierarchies: The first deals with 

the decomposition of equation based block diagrams: And the second orders these 

diagrams into collections of alternative designs. Al l infonnation held within the 

representation is conceptually viewed as constraining a design or set of designs and can 
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be used as criteria to choose between them. The implementation realizes the two 

hierarchy representation, addresses some important aspects of the constraint system and 

the navigation of the altemative hierarchy. Also included are a rule based, multilevel, 

data f low equation based simulator. The overall features of both the representation and 

to a lesser extent the implementation are itemized below: 

1) A merged representation for block diagram and altemative design 
hierarchies (versions). 

2) A System for the management of block diagrams and design 
alternatives. 

3) A constraint comparison system for the analysis and selection of 
alternatives. 

4) A block diagram based mathematical equation simulator 

5) A system to extract and record decisions made during design. 

6) A system to check for errors and inconsistencies made during 
design. 

5,3. Final Discussion 

This section attempts to cover some important issues or points that were raised 

during the research. Some of these issues have already been covered in the previous 

chapters, but are included here with the others not only for convenience, but to put them 

all in a common perspective. 

5.3.1. The Overall Approach to Applying Knowledge Based Techniques to Design 

Tools 

The use of A I or knowledge based techniques in design support tools still has 

much to offer the designer Traditionally tools based upon these techniques have 
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supported the designer from two quite different perspectives (Smithers et al, 1989): The 

first creates involves creating an automatic design system, that replaces some aspect of 

the design activity using domain specific knowledge elicited from experts; The second 

adopts a cooperative approach and attempts to provide some form of intelligent design 

support system which will aid the designer. It can be seen that the approach used has 

many very important implications for tool designers and end users alike. 

The first and more common approach has been and will continue to be for some 

time an area of extensive research, especially in the digital VLSI domain. However 

there are a number of problems to this strategy, the most apparent resulting from the 

increasing sophistication of design tools in this area. The need for powerful systems, 

has spurred the production of more capable and wider ranging tools which have slowly 

moved towards the early stages of design. As this occurs they tend to require 

increasingly greater amounts of embedded design knowledge to address all these areas, 

and it can be seen that a general purpose system based upon these principles, would 

need a vast amount of expert knowledge that would given present day technology, 

require a long time to elicit. This great repository of knowledge would also create 

additional problems, with regard to the verification and maintenance of the information 

stored within. 

The second class of systems however offer an arguably superior approach in that 

they realise assistance by providing support for those areas in which the performance 

of engineers has traditionally been poor or tedious, and not providing assistance in those 

areas in which they are good at. This targeting of support will hopefully produce useful 

systems which are achievable using current technology, however it seems that the main 

problems are replaced with others which are associated with the means of deriving what 

types of support are required. 

In areas where it has been shown that certain traditional knowledge elicitation 

techniques fail , other techniques are required (Evans, 1986). The psychological studies 

upon which the requirements for early electronic engineering design in this thesis are 

based are slow and laborious (Ball, 1990). As a result fast and accurate methods wil l 

be necessary if the aim of producing systems which meet the overall needs of designers 

is to be met. 
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5.3.2. The Target Domain of Knowledge Based Systems. 

To find the areas where assistance should be provided in a design support 

system it appears that traditionally, introspective and intuitive methods have been used. 

This has produced a large number of contemporary systems which are primarily 

oriented at the design problem, in both classes of system described in the previous 

subsection. As a result systems have been produced to address designers' needs through 

satisfying the domain needs, with the main point being that if a system removes the 

designer from a particular mundane or repetitive aspect of design, then assistance is 

being afforded. 

In reply to such techniques it would be reasonable to counter that in depth 

studies of the way in which designers design are urgently required to f ind out what are 

designers' needs after all. It does indeed look worrying that we are not sure that we are 

addressing the real needs of engineers or not, especially in the light that it is indeed 

very difficult and time consuming to elicit that knowledge (Evans, 1986 & Ball, 1990). 

This has been to some degree and approaches that look into the human aspects of 

design have been made. Unfortunately these have tended to tackle only the Human 

Computer Interaction (HCI) aspects of systems, and not the underlying design process 

model or representation. Suggestion have recently been made for truly cooperative 

systems which are domain independent (Smyth, 1988). Other studies (Ball, 1990 & 

Ullman et al. 1988) make similar recommendations, and add weight due to the 

techniques used to remove biases from introspective accounting that is often used. It is 

therefore reasonable to suggest that such techniques could be advantageously used to 

produce the requirements for truly cooperative systems. 

5.3.3. The Complexity Inherent in Design Systems 

An examination of the electronic design arena in both the research and 

commercial field will show that in general the tools are become more and more 

complex and that this trend shows no real signs of stopping. This is the normal result 

of tool designers adding more functionality to their products. 
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As systems' complexity increases they become harder to manage and maintain. 

This can be generally tackled in two ways: The first uses tools and methodologies to 

manage the complexity; The second attempts to reduce the complexity in the first place. 

The psychological requirements for a system that addresses the early stages of 

electronic engineering design has been shown to produce a simple abstract 

representation and consequently relatively uncomplicated end system. This 

representation does however anempt to some important aspects of that activity, which 

are not covered by other tools, in a consistent, homogeneous and uncomplicated 

manner. 

It can therefore be seen that there are real benefits to be won in overall system 

complexity and usefulness to the use of psychological methods in deriving the 

requirements for cooperative systems in the early stages of design at least. 

However there may be real benefits to using similar techniques in other parts of the 

design activity. 

5,3.4. The Target Level of Representations 

Another point made apparent by the research and previously mentioned was 

concemed with the level at which a representation is targetted. This is a simple issue, 

but has important ramifications for all later aspects of design, in that i f the 

representation is placed at too high a level, or described in too abstract terms, then it 

can become vague and then loose its usefulness, by allowing too much freedom in a 

subsequent implementation. Whereas, if it is pitched at too low a level, then it may lose 

clarity amidst the clutter of implementation issues. 

It appears that many representations in electronic engineering design seem to be 

targetted at too low a level and as a result their description is ful l of implementation 

details, regarding the particular language details for example. If these details are 

removed, not only does the representation become simpler and clearer, but also 

independent of constraints such as language and related paradigm issues. 
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5.3.5. How Target Languages Shape Representations 

Another interesting observation has been the apparent effect that the target 
language has upon the structure of many representations. In these it is often very 
difficult to separate the representation from the language and the representation is often 
described in language terms. For example an object oriented representation wil l mirror 
closely the object oriented features of the chosen implementation language, or a 
representation separating structure and behaviour wil l based on a language which 
promotes this. Whilst it may be argued that representations may be developed 
independent of the target language this appears not to be so in the electronic 
engineering domain, because the representations are not described in language 
independent terms. 

In a similar vein, representations are greatly influenced by the paradigm 

preferences of the designers, thus instead of getting a representation which mirrors the 

internal aspects of the design activity we get for example: object oriented 

representations; rule based representations; blackboard representations; and database 

representations. To some degree, these trends cannot be avoided as languages are often 

used as conceptual aids, but the implementation should be derived from the abstract 

representation and not the other way around. 

5.3.6. The Use of the Separation of Concerns in Representations 

The subdivision of the representation of designs into a number of non interacting 

domains of description is a common theme in electronic engineering design and can be 

viewed as an extension of "Divide and Conquer" complexity reduction techniques used 

by engineers in many disciplines. However it appears that care should be shown in 

deciding how to partition the information, and in the early electronic engineering design 

activity it would be difficult, due to the amount of interaction between the commonly 

accepted domains, for example structure, behaviour and physical. As design tools 

improve the different types of information that are stored wil l increase and in return so 

wil l the potential number of domains. To help reduce the chaos that may result, further 

study wil l be needed to determine the areas and the degree of partitioning that best 

model the different parts of the design activity. 
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5.3.7. The Similarity Between the Representation of Soft^vare and Engineering 

Designs 

An interesting observation found during the course of the work, was the apparent 

similarity between electronic engineering and software design representations especially 

at the functional level, for example logical block diagrams in commercial electronic 

design tools, and ACP diagrams in MASCOT. This statement of the obvious, does 

however have the implication that research in electronic engineering design may have 

much to gain from work in the software gain and vice versa. In addition it does indicate 

that it may be possible to produce tools that address both domains if the areas of 

commonality are found. 

5.4. Problems Encountered 

This section outlines some of areas in which problems were encountered during 

the research. Not all the problems are discussed here as a few are apparent from the 

previous section on issues. 

5.4.1. The Ambiguity of Terminology (Design Process) 

This problem arose out the need for communication between the members of the 

interdisciplinary group of researchers and their supervisors on the PEDA project. Two 

facts emerged from the resultant dialogue: The first was that phrases and terminology 

were not consistent between members of the different professions and as a result a great 

deal of time was spent in achieving a reasonably dialogue; The second problem arouse 

out of definitions in common use in the engineering design assistant arena. These were 

phrases like "Design Process" and "Constraint" which tended to have a number of 

definitions in the literature, and made the process of analysis quite difficult. 
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5.4.2. Limitations of Target Languages 

This is a problem common to most attempts at implementation, in that there is 
a semantic gap between the language and the intended artifact, in this case the 
representation. 

It is reasonable to state that this wi l l always be a problem, but the combination 

of effective language and environment can reduce this greatly. Even so, with a language 

such as the chosen ART, there are a number of problems. Tliere may be a paradigmatic 

gap, between the representation and the implementation, for instance the abstracted 

representation may be hierarchical and the language may use a blackboard. This can be 

solved with multi-paradigm languages such as ART, but the results can be clumsy and 

inelegant. The language may be low level, and so too much time is spent worrying 

about details. The features of the language or environment may be extensive but poorly 

integrated, for example in ART different object oriented mechanisms are used for both 

schemata and icons. Some features may be extremely powerful and others infuriatingly 

limited, as again was the case with ART's reasoning mechanisms and user interface 

respectively. The sophisticated environments generally have long learning curves, but 

once learnt are very productive tools. And finally the resultant systems tend to be 

resource hungry, and run slowly when compared to more conventional tools. 

5.5. Further Work 

It can be seen from the text of chapter 4 that the pilot PEDA system 

incorporates only part of the functionality required by the psychological requirements 

and abstract representation. There is therefore a great deal of scope for further work on 

the tool in many areas, not only on the implementation but on refinements to the 

abstract representation itself, areas such as classic version control and communication 

with other tools such as REDUCE or Macsymma. The following sections precis the 

individual areas targetted for further work. 
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5.5.1, Representation of Designs and Design Alternatives 

The representation of designs as alternatives are one of the most completely 

implemented parts of the representation, though it must be said that the approach chosen 

is not particularly efficient from the point of view of the memory required by designs 

or the speed of creating or subsequent manipulation of design alternatives. These factors 

can be addressed in a number of ways, and are indeed a priority target for additional 

research due to the slowness of the particular implementation of the PEDA tool. 

However the advances made in these areas in LISP the underlying language for the type 

of tools used to create PEDA may make such effort wasted. In fact this was one reason 

why efficiency considerations were not deemed important in the production of PEDA 

in the first place. 

The second area that can be examined is fundamental to the representation as 

it deals with the number of constraints used. At present the implementation deals with 

constraints in a totally free format. The psychological requirements suggest the types 

of information required as a minimum, and it has been the aim of the work to keep this 

type of information as small as possible. However in real systems the amount of 

information available can become quite large and so it is an important area for further 

work to determine what specific domain infonnation (ie constraints) are the best to use, 

from the point of view of the constraint comparison system. 

5.5.2. Management of Designs and Design Alternatives 

The functionality within the PEDA implementation that deals with the 

management of designs and their alternatives is in fact quite minimal, providing the 

barest of necessary features. In a more comprehensive system this would need to be 

addressed, through an examination of the abundant literature in the area of software 

version management or involving studies (perhaps psychologically based) to gather a 

better understanding of the actual requirements in this particular area. 
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5.5.3. The Constraint Comparison System 

Again, the constraint comparison system has only been sufficiently implemented 
to test out the ideas embodied in the abstract representation and would need to be 
extended greatly if it were to meet the aims of the psychological requirements fully. 
The number of constraint heuristics could be considerably extended, but the number and 
type of constraints need to be known as mentioned before. In addition the multi-
attribute constraint comparison engine requires further investigation before completing. 

5.5.4. The Simulator 

The simulator like the representation of designs and alternatives is one of the 

most completed parts of the implementation, though again there are many aspects that 

warrant further review. 

The simulator like many other parts of the implementation is quite inefficient 

in terms of execution speed and other normal constraints, and although this is adequate 

for very small test designs, it needs to be tackled if the PEDA tool is to be effectively 

used on larger work. Simulation is an area which has been extensively examined over 

the years and improvements to this system should be realizable within the context of 

its conception, although it is a comparatively high level simulator and much work has 

concentrated upon improving the speed of low level simulators. 

It may also be advantageous to investigate interfacing a symbolic manipulation 

tool such as REDUCE or Macsymma to the simulator, greatly improving its capabilities, 

and at the same time providing facilities such as equation solving. However these tools 

tend to be large, offer many features that may not be required and tend to be closed 

systems providing limited access to a knowledge based system. 

5.5.5. The Decision Point System 

In a similar vein to the previous topics a great deal of work can be conducted 

on the decision point system. This could utilize considerable weight of literature 

available on decision analysis and studies intended to elicit generalized and specific 

heuristics on detecting and extracting the important design decisions and the reasons 

142 



behind them. These ideas could be joined into a framework that then provided a semi-

automated means of annotating designs with the additional information required to tell 

the designs why a particular design decision was made. 

5.5.6. The Detection and Correction of Errors 

This is an area that has not been covered at all in the PEDA implementation, 

and as such there are plenty of opportunities for further work here. There are many 

possible avenues to explore, concerned with the detection of mathematical constraint 

violations, and the adoption of REDUCE or Macsymma as a base symbolic 

manipulation tool together with heuristics to detect other constraint violations, in a 

similar way to truth based systems, may be a reasonable way forward. 

Again the problems of inaccessibility may force other schemes to be investigated. 

5.5.7, Implementations in Other Languages or Environments 

One of the fundamental aspects of the abstract representation is that it is 

implementation independent and therefore attempts to avoid specific details about 

languages or particular representational schemes. These issues are dealt with by a 

panicular implementation. The aim here has been to simplify the abstract representation 

by removing these considerations, and make the abstract representation as generic as 

possible. The specific implementations can therefore take advantage of the features of 

a particular language or environment, or improvements in algorithms and heuristics, 

whilst still addressing the needs of the abstract representation. A possible avenue for 

further work is produce implementations in different environments or languages, taking 

into account the knowledge gained from other approaches, but without having to resort 

to a particular language paradigm, which may occur if the representation was derived 

from that language. 
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5.6. Concluding Remarks 

The overall aim of this thesis has been to produce a knowledge based design 
support tool for the early stages of electronic engineering design. This has been done 
by first presenting a new idealised abstract representation for those stages whose 
purpose is to direct the production of cooperative design tools to the areas of that 
activity that have been shown in the literature to be important. By being based upon this 
psychological input the representation is targetted at those needs specifically, instead 
of through side effect and as a result contains far less redundant functionality in this 
area than many other design systems targetted at later stages of design activity. 

hi addition it is shown that by addressing the cognitive needs of designers, any 

explicit or implicit knowledge held by the representation and largetted at those needs 

wil l be useful in wider range of problems than systems targetted at a particular end 

problem, because the cognitive problems experienced by the designer are common 

across many problems. 
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A. PEDA in Use 

The following figures give a view of the PEDA tool in use. They show the user 

interface primarily developed by G.M. Venner, discussed briefly in the main text. The 

interface is basically a screen based driven drawing board, using a mouse for the direct 

manipulation of block diagrams. Figure X X V I shows the form of the interface, where 

the designer is using the tool to produce a trial FIR filter. The main work area is in the 

centre, where block diagrams can be built up from the palette of common blocks on the 

left. Operations are performed either using the fixed menu which indicates overall 

options available. Pop up menus or direct manipulation of the various visible blocks in 

the palette or main window. All menus are context based, indicating the current options 

available for any selected object. In this case a Pop up menu is visible and one of the 

multiplier blocks is about to be moved. 
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The second figure shows the completed FIR example. It has a main input, an output and 

three coefficient inputs C I , C2 & C3. In addition there are three multipliers and two 

adders. The Demux blocks perform no other function than converting one input into two 

outputs. Connectivity is indicated by lines between the ports on the respective blocks. 
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The Results of a simulation run are indicated in Figure X X V I I I . Ports can be 

probed, to examine the data passing through them. When this happens the port is 

darkened and a probe window appears. As simulation proceeds the data through each 

probed port can be seen in the corresponding probe window. The interesting point to 

be noted is that changes can be done on the f ly , with results being produced 

incrementally. Finally it should be noted that this is indeed an incorrect design, and wi l l 

produce the wrong results. For correct operation a delay is required between each 

demux and multiplier block. 
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B. The ART Expert System Development Tool 

This appendix outlines and describes the capabilities of the Automated 

Reasoning Tool (ART), a large and complex hybrid expert system development tool, 

which was used extensively to investigate and develop the PEDA environment discussed 

in chapter 4. Although important in the implementation of the PEDA tool, it was not 

thought that an explanation of ART was appropriate to the main text. However for 

completeness and an overview of the associated terminology it is included here in the 

appendices. 

Introduction 

ART is one of group of large, hybrid general purpose expert system 

development tools, which combine a number of paradigmatic approaches, to facilitate 

the production of knowledge based systems. The ART system documentation lists its 

primary features as: 

1) A language for knowledge representation and programming. 

2) An Inference Engine. 

3) A complete programming environment. 

The A R T Languaee 

The ART language can be subdivided into a number of areas. These are: 

1) Facts 

2) Schemata 

3) Rules 

4) Viewpoints 
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Facts 

A fact is a means of representing knowledge or infonnation in ART. Each fact 

is a separate item of information and is stored in an area known as the Fact database. 

Al l facts are unique and are numbered. To the programmer Facts appear in two forms 

1): as text separated by spaces and wrapped in round brackets, for example: 

(friends Hillary John Lee) 

or 2) within square brackets and preceded by a unique fact number, for example: 

f-1211[friends Hillary John Lee] 

The first form is used within the ART programming langauge, which is an 

extension to COMMON LISP, and has a similar syntax, the second is the printed form 

of facts residing in the fact database. Facts are relatively free format, variable length 

entities, similar in conception to LISP lists. 

Schemata 

ART Schemata are used to organize knowledge about items which are related 

to one another. To the programmer schemata consist of a number of 'slots* which 

contain 'values'. A example schema is shown below. 

(defschema bug-eyed-alien ; Name 
(has-legs yes) ; Attribute slot 
(has-suckers no) ; Attribute slot 
(number-of legs 2) ; Attribute slot 
(type alien) 

) 
; Relation slot 
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The schema has an overall name, and several named slots. Each named slot can 

contain attributes or the name of another schema. In the latter case, this forms a 

relational link between the two schemata and allows the schema system in AJ^T to 

automatically maintain the logical consistency of information represented as schemata. 

For example, if the relational link is an inheritance relation, then its presence in a 

schema allows the inheritable slots and their values, in the related schema, to be 

inherited, in the schema with the link. If the relation slot is then subsequently altered 

then the inherited slots wil l subsequently change to reflect this. For example: 

1) An Empty schema: 

(defschema alien-I-saw 
; No slots yet 

) 

2) Report bug-eyed alien; 

(defschema alien-I-saw 
(instance-of bug-eyed-alien) ; inheriting relation slot 
(has-legs yes) ; Attributes slot inherited 
(has-suckers no) ; from bug-eyed alien. 
(number-of legs 2) 
(type alien) ; Relation slot causing 

) ; inheritance. 
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3) Realize mistake: 

(defschema alien-I-saw 
(instance-of false-sighting) ; new inheriting relation slot 
(type none) ; this attribute now inherited 

) 

This can also be shown pictorially in Figure X X X I V . 

ADervl-Sow 

Bug-Eyed-Alien 

Instance-of 

AGen-t-Saw 

ADD UNK 

False-Slghling 

InsTance-of 

Alien-I-Saw 

C H A N G E UNK 

Figure X X X I V 

The inheritance mechanism is very flexible and can be tailored extensively to 

requirements. 

There is an intimate relationship beuveen schemata and facts within ART. The 

information within a schema exists not only as a schema definition, but as a series of 

fact triplets of the form (<slot> <schema> <value>). for example: 
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The schema: 

(defschema todays-catch 
(no-of-cod 10) 
(no-of-conger 4) 
(no-of-haddock 4) 

) 

exists also as the facts: 

(no-of-cod todays-catch 10) 
(no-of-conger todays-catch 4) 
(no-of-haddock todays-catch 4) 

When a schema is modified, there are corresponding changes to the fact database 

and vice versa. This is done to present a uniform interface to the rule pattern matching 

system, allowing rules to work with both conventional and schema derived facts. 

Rules 

ART rules are a means of defining the procedural knowledge that is available 

to an application. Two major types of rules are provided; 1) Forward chaining rules 

respond to facts by taking action; and 2) backward chaining rules respond to goals by 

trying to satisfy them. 

In ART a rule has a left hand side (LHS) and a right hand side (RHS). The LHS 

contains a set of patterns which the rule tries to match to all the facts available in the 

fact database. The RHS contains procedural code which is executed if the match was 

successful. This is the same mechanism as condition-action pairs in forward chaining 

production systems. An example of a simple forward chaining rule in ART is as 

follows: 
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(defrule find-all-persons-with-blue-eyes 
(instance-of ?name person) 
(colour-of-eyes ?name blue) 

; look for somebody 
; this person has blue eyes 

—<^ 
(printout t ?name " has blue eyes") 

) 

; print result if true 

This rule contains two patterns, the first looks for persons in the fact database, 

the second looks for eyes that are blue. The '?name' is a variable that has been used 

to link the patterns together. The rule can only fire if there are facts in existence in 

which there is a person, and that person has blue eyes. 

Backward chaining is achieved through an extension to the forward system, with 

special goal fact patterns causing rules to produce facts which satisfy the patterns in a 

conventional forward chaining rules. An example of this is shown next. 

(defrule calculate-volume-of-cylinder 
(goal (volume ?name ?volume)) ; volume required 
(instance-of ?name cylinder) ; of a cylinder, 
(radius ?name ?radius) ; Both radius 
(length ?name ?length) ; and length specified. 

=> 
(setf ?volume (* ?radius ?radius ?length 3.14159)); Now calculate volume 
(assert (volume ?name ?volume)) ; and Assert in database. 

) 

The goal pattern in this rule would be linked to a corresponding pattern in 

another forward chaining rule. If that pattern needs to be matched, then this goal 

directed rule will be activated. 
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Viewpoints 

Viewpoints are a powerful means of segregating data into separate models of a 

situation that an application is considering. This is not done by creating multiple 

databases and copying data, as this would be very time consuming for large models, but 

through different viewpoints on one database. This is achieved through tag information 

on each fact, which lists which viewpoint it appears and the one it is removed from. 

This mechanism which extends to multiple dimensions, enables the production of rapid 

hypothetical reasoning systems, and is a key feature of ART. 

Actions 

Actions are an Object Oriented (OOP) addition to ART that permits the 

association of inheritable procedural code to schemata slots. This code can be invoked 

from procedural code, or automatically when schemata data is accessed, modified or 

removed. Multiple inheritance is also allowed. 

Inference Engine 

ART contains an inference engine that uses declarative and procedural 

knowledge captured in the ART language to derive conclusions about an application. 

Making use of known facts, it attempts to match patterns in rules and then apply their 

consequences, often generating more facts, in an interactive manner, until a set of goals 

are met This operation takes place in cycles, which are divided into three steps. 

These are: 

1) Match 

2) Select 

3) Fire. 
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Match 

Facts are matched against patterns in the LHS of rules. Every time a rule's 

patterns are satisfied the rule is said to be 'activated', and its name is placed on the rule 

agenda together with the associated facts which satisfied the match. The rule agenda is 

a list of pending rules waiting to be executed. 

Select 

When all matching has occurred, one pending rule is selected from the agenda. 

This is either random, or based upon an importance value or 'salience' number, 

specified in the rule definition. 

Fire 

The selected rule is then executed or 'fired' which involves executing the 

procedural code in its RHS. 

The above cycle then repeats, reforming the rule agenda each time until there 

are no new matches, or the inference engine is halted. This procedure makes ART's rule 

based operation effectively data driven, and if order is required it has to added 

externally. Also, as the rule agenda is reformed each cycle is created new each cycle, 

it is possible for some rules which were originaUy activated, to never fire, if a change 

to the fact database prevents the match for a particular pattern match. On the other hand 

it is quite possible for a rule to fire many times if there a many combinations of facts 

which match its patterns. This happens often, due to the flexibility of the pattern 

matching mechanism and the use of variables and wildcards in the patterns. Endless 

matching is prevented through a scheme called refractoriness in which a particular fact 

combination is only matched once to a particular rule pattern. 
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Programming Environment 

ART includes an interactive development environment called the ART Studio, 
which includes the two editors vi and EMACS, and offers tracing and debugging aids 
to the developer. The Studio exists in two forms, for driving Window and Character 
based interfaces. The window based interface, provides extra facilities, for the 
production of graphical interfaces, using icons, graphical images, and mice based menu 
systems. 
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C, PEDA Core Implementation Program Code 
. _*_ ModeiART; Package:art-user; Base:10. -*-
; Basic PEDA Schema D e f i n i t i o n s : Blocks. 
; Links to iconic representation data removed 

;;; Switch for j o i n t PEDA or j u s t representation 
(deffacts version 

(dinos version) 
; ( j o i n t - v e r s i o n ) 
) 
;;; Basic PEDA schema s l o t d e f i n i t i o n s 
(defschema our-instance-of 

(instance-of i n h - r e l a t i o n ) 
(inverse our-has-instances) 
(slot-what share-value) 
(new-relations 

(instance-of (?domain)(?range)) 
) 

) 
(defschema copy-of 

(instance-of r e l a t i o n ) 
(new-relations ( i s - a (?domain)(?range))) 

) 
; ; inheritance of block s t r u c t u r e handled by copy-of methods 
(defschema contains 

(instance-of r e l a t i o n ) 
(inverse contained-in) 

) 
(defschema conn-to ;; b u i l d s up conn-to l i n k s i n a copy 

(instance-of r e l a t i o n ) 
(inverse conn-from) 

) 
(defschema function-conn-in 

(instance-of s l o t ) 
(slot-what nothing) 
(slot-how-many multiple-values) 

) 

(defschema function-conn-out 
(instance-of s l o t ) 
(slot-what nothing) 
(slot-how-many multiple-values) 

) 

(defschema function 
(instance-of s l o t ) 
(slot-what share-value) 

) 
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(defschema stream 
{instance-of s l o t ) 
(slot-what nothing) ;;don't i n h e r i t 

) 
(defschema functions 

(instance-of r e l a t i o n ) 
) 

(defschema has-fired 
(functions) 

) 

(defschema has-not-fired 
(functions) 

) 
(defschema f u n c t i o n - f i r e d 

(instance-of r e l a t i o n ) 
(slot-what share-value) 
(slot-how-many single-value) 
(new-relations 

(functions (?range)(?domain))) 
) 
(defschema template 

(instance-of r e l a t i o n ) 
(new-relations (is-a (?domain)(?range))) 

) 

(defschema template 
(instance-of i n h - r e l a t i o n ) 

) 
;;; Simulator data type specs 
(defschema data-type 

(instance-of r e l a t i o n ) 
(slot-how-many single-value) 
(slot-what share-value) 
(size) 
(printing-representation ( p r i n c ) ) 

) 

(defschema number 
(i s - a data-type) 

) 

(defschema r a t i o n a l 
( i s - a number) 

) 

(defschema r a t i o 
( i s - a r a t i o n a l ) 

) 
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(defschema integer 
(is-a r a t i o n a l ) 

) 

(defschema fixnum 
(is-a integer) 
(size 32) 

) 

(defschema bignum 
(is-a integer) 
(size not-known) 

) 

(defschema f l o a t 
(is-a number) 

) 

(defschema s h o r t - f l o a t 
(is-a f l o a t ) 
(size (23 8)) 

) 

(defschema s i n g l e - f l o a t 
(is-a f l o a t ) 
(size not-known) 

) 

(defschema double-float 
(is-a f l o a t ) 
(size not-known) 

) 

(defschema l o n g - f l o a t 
(is-a f l o a t ) 
(size not-known) 

) 

(defschema complex 
(is-a number) 

) 

;;; Start Defining Blocks Now 
(defschema world ;; Where block diagrams l i v e 

(instance-of instantiated-window-icon) 
(window world) 
(display-parameters) 
(menu world) 
(no-of-options 5) 

) 

(defschema base-world 
(is-a world) 

) 

C-3 



;;; Central D e f i n i t i o n of block 
(defschema block 

(function-conn-in) 
(function-conn-out) 
(function) 
(copy-of) 
(template) 
(result-data-type fixnum) 
( f u n c t i o n - f i r i n g s 0) 
( f u n c t i o n - f i r e d has-not-fired) 
(result-data-type fixnum);;; d e f a u l t data type 

; + iconic representation data 
) 

(defschema a l t - b l o c k ;;; blocks that do not require a l l 
(is-a block) ;;;inputs 

) 

(defschema a l l - b l o c k ;;; blocks that do require a l l inputs 
(is-a block) 

) 

(defschema port 
(is-a block) 
(conn-to) 
(conn-frem) 
(packet-link) 

) 

(defschema input-port 
(is-a port) 
( d i r e c t i o n in) 

; + g i l l ' s iconic representation data 
) 

(defschema output-port 
(is-a port) 
( d i r e c t i o n out) 

; + g i l l ' s iconic representation data 
) 
(defschema f i l e 

( is-a block) 
(di r e c t i o n ) 
(stream) 
(data-type) 
(data-count 1) 

) 

(defschema memory 
(is-a functional-block) 
(size) 
(data) 
(function ("function performed by r u l e " ) ) 

) 
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(defschema ROM 
(is-a memory) 

) 
(defschema RAM 

(is-a memory) 
) 
(defschema round 

(is-a a l l - b l o c k ) 
( b i t s ) 
(function ("function performed by a c t i o n " ) ) 
(result-data-type) 

) 

(defschema packet 
(node free-packets) 
(data-type n u l l ) 
(overflow n u l l ) 
(data n u l l ) 
(has-instances) 

) 
(defschema d a t a - f i l e 

(data-type integer) 
(data) 

) 

(defschema free-packets ;?; the place where a l l packets 
(is-a port) ;;;eventually go 
(packet-link ()) 

) 

(defschema simulator-defaults 
(mode construction) 
(last-mode construction) 
(no-of-words-input-at-a-time 1) 
(no-of-functions-at-a-time 1) 

) 

(defglobal ?*function-eval* = 0) 

;;from f i l e s . 
; ;max f i v e evals per r u l e 
; f i r e 
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;;This i s a l i b r a r y of common functions 
;; We have: 
adder 
m u l t i p l i e r 
a l t 
f u n c tion 
recip 
And 
Or 
Xor 
not 
i n v e r t 
s i n 
cos 
tan 
asin 
acos 
atan 
Reduce 
demux 
Round 
i n p u t - f i l e 
o u t p u t - f i l e 

Templates have been used to reduce r e p e t i t i v e e f f o r t 
Added test constraints f o r a low power moderate speed 
l i b r a r y . 
Iconic (display) information has been removed. 

(defschema adder 
(is- a a l l - b l o c k ) 
(template 2mux1) 
(chip-area medium) 
(power low) 
(speed 100) 
(design-time v-low) 
(function ( i f (Nan-check A B) 

(set-Nan 'Q) 
(setq Q (+ A B)) 

) 
) 

) 

(defschema m u l t i p l i e r 
( i s - a a l l - b l o c k ) 
(chip-area medium) 
(power medium) 
(speed 200) 
(design-time v-low) 
(template 2mux1) 
(function ( i f (Nan-check A B) 

(set-Nan 'Q) 
(setq Q (* A B)) 

) 
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(defschema Bool-and 
(is- a a l l - b l o c k ) 
(chip-area low) 
(power low) 
(speed 50) 
(design-time v-low) 
(template 2muxl) 
(function ( i f (Nan-check A B) 

(set-Nan 'Q) 
(setq Q (and A B)) 

) 

(defschema a l t 
(template 2mux1) 
(is-a a l t - b l o c k ) 
(function ( i f (equalp A 'NAN) (setq Q B)(setq Q A))) 

) 

(defschema Bool-Or 
(is-a a l l - b l o c k ) 
(chip-area low) 
(power low) 
(speed 50) 
(design-time v-low) 
(template 2muxl) 
(function ( i f (Nan-check A B) 

(set-Nan 'Q) 
(setq Q ( i o r A B)) 

) 
) 

) 

(defschema Bool-Xor 
(is-a a l l - b l o c k ) 
(chip-area low) 

(power low) 
(speed 90) 
(design-time v-low) 
(template 2mux1) 
(function ( i f (Nan-check A B) 

(set-Nan 'Q) 
(setq Q (xor A B)) 

) 
) 

) 

(defschema demux 
(is-a a l l - b l o c k ) 
(template 1mux2) 
(function ( i f (Nan-check A) 

(set-Nan 'P 'Q) 
(setq P A Q A) 

) 
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(defschema recip 
( i s - a a l l - b l o c k ) 
(chip-area high) 
(power medium) 
(speed 1000) 
(design-time v-low) 
(template Imuxl) 
(function 
(cond 

((Nan-check A)(set-Nan 'Q)) 
((equalp A 0) 
(progn ( p r i n t o u t t t "Error: t r y i n g to di v i d e a 

number by 0 i s a bad move") 
(break))) 

(T (setq Q (/ 1 A) )) 
) 

) 
) 

(defschema Bool-not 
(is- a a l l - b l o c k ) 
(chip-area v-low) 
(power v-low) 
(speed 10) 
(design-time v-low) 
(template Imuxl) 
(function ( i f (Nan-check A) 

(set-Nan 'Q) 
(setq Q (not A)) 

) 

(defschema i n v e r t 
( i s - a a l l - b l o c k ) 
(chip-area medium) 
(power low) 
(speed 150) 
(design-time v-low) 
(template 1muxl) 
(function ( i f (Nan-check A) 

(set-Nan 'Q) 
(setq Q (- A)) 

) 
) 

) 
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(defschema s i n 
(is-a a l l - b l o c k ) 

(chip-area high) 
(power medium) 
(speed 2000) 
(design-time v-low) 
(template Imuxl) 
(function ( i f (Nan-check A) 

(set-Nan 'Q) 
(setq Q (sin A)) 

) 
(defschema cos 

(is-a a l l - b l o c k ) 
(chip-area high) 
(power medium) 
(speed 2000) 

(design-time v-low) 
(template Imuxl) 
(function ( i f (Nan-check A) 

(set-Nan 'Q) 
(setq Q (cos A)) 

) 
(defschema tan 

(is-a a l l - b l o c k ) 
(chip-area high) 
(power medium) 
(speed 2000) 
(design-time v-low) 
(template Imuxl ) 
(function ( i f (Nan-check A) 

(set-Nan 'Q) 
(setq Q (tan A)) 

(defschema asin 
(is - a a l l - b l o c k ) 

(template Imuxl) 
(chip-area high) 
(power medium) 
(speed 2000) 
(design-time v-low) 
(function ( i f (Nan-check A) 

(set-Nan 'Q) 
(setq Q (asin A)) 

) 
) 

) 
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(defschema acos 
(is-a a l l - b l o c k ) 
(template Imuxl) 
(chip-area high) 
(power medium) 
(speed 2000) 
(design-time v-low) 
(function ( i f (Nan-check A) 

(set-Nan 'Q) 
(setq Q (acos A)) 

) 
) 

) 
(defschema atan 

(is-a a l l - b l o c k ) 
(template 1muxl) 
(chip-area high) 
(power medium) 
(speed 2000) 
(design-time v-low) 
(function ( i f (Nan-check A) 

(set-Nan 'Q) 
(setq Q (atan A)) 

) 
) 

) 
(defschema Reduce 
; not implemented 

) 
(defschema i n p u t - f i l e 

(is-a f i l e ) 
(template Omuxl) 
( d i r e c t i o n in) 

) 

(defschema o u t p u t - f i l e 
(is-a f i l e ) 
(template ImuxO) 
(d i r e c t i o n out) 

) 
(defschema round! 

(is-a round) 
(template Imuxl) 

(chip-area medium) 
(power low) 
(speed 200) 
(design-time v-low) 

) 
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;;; Now template d e f i n i t i o n s 
(DEFSCHEMA 2MUX1 

(is-a block) 
(CONTAINS 2mux1-port-A 2mux1-port-b 2mux1-port-q) 
(function-conn-in ( f u n c t i o n A i n 2mux1-port-A)) 
(function-conn-in ( f u n c t i o n B i n 2mux1-port-B) ) 
(function-conn-out ( f u n c t i o n Q to 2mux1-port-Q) ) 

) 
(DEFSCHEMA 2mux1-port-a 

(is- a input-port) 
) 
(DEFSCHEMA 2mux1-port-b 

(is- a input-port) 
) 

(DEFSCHEMA 2mux1-port-q 
(is- a output-port) 

) 
(DEFSCHEMA 1MUX1 

(IS-A BLOCK) 
(CONTAINS Imuxl-port-A 1muxl-port-q) 
(function-conn-in ( f u n c t i o n A i n 1muxl-port-A) ) 
(function-conn-out ( f u n c t i o n Q to 1muxl-port-Q) ) 

) 
(DEFSCHEMA Imuxl-port-a 

(is - a input-port) 
) 
(DEFSCHEMA Imuxl-port-q 

(is - a output-port) 
) 
(DEFSCHEMA 1MUX2 

(IS-A BLOCK) 
(CONTAINS 1mux2-port-A lmux2-port-q 1mux2-port-r) 
(function-conn-in ( f u n c t i o n A i n 1mux2-port-A) ) 
(function-conn-in ( f u n c t i o n Q to 1mux2-port-Q) ) 
(function-conn-out ( f u n c t i o n R to 2mux1-port-R) ) 

) 
(DEFSCHEMA 1mux2-port-a 

(is- a input-port) 
) 
(DEFSCHEMA 1mux2-port-q 

(is- a output-port) 
) 

(DEFSCHEMA 1mux2-port-r 
(is- a output-port) 

) 

C-11 



(DEFSCHEMA 1MUXO 
(IS-A BLOCK) 
(CONTAINS ImuxO-port-portA) 
(function-conn-in ( f u n c t i o n A i n 1muxO-port-A) ) 

) 
(DEFSCHEMA 1muxO-port-a 

(is-a input-port) 
) 
(DEFSCHEMA OMUXl 

(IS-A BLOCK) 
(CONTAINS Omuxl-port-q) 
(function-conn-out (fu n c t i o n Q to Omuxl-port-Q)) 

) 
(DEFSCHEMA Omuxl-port-q 

(is-a output-port) 
) 
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;General source-block template copying rules 
(defglobal ?*template-salience* 

= (- *maximum-salience* 100)) 
; Most of template copying handled by normal inheritance 
; mechanisms, but 
; some s l o t s are special: 

(defrule template-slot-contains 
(declare (salience (- ?*template-salience* 20))) 
(template ?object ? o r i g i n a l - o b j e c t ) 
(contains ?original-object ?original-contents) 
(not (contains ?object 

= (our-get-icon-name ? o r i g i n a l - o b j e c t 
?original-contents ?object))) 

=> 
(bind ?object-contents 

(our-get-icon-name ? o r i g i n a l - o b j e c t 
?original-contents ?object)) 

(assert 
(contains ?object ?object-contents) 
(template ?object-contents ?original-contents) 

) 
) 
(defrule template-slot-input 

(declare (salience (- ?*template-salience* 20))) 
(template ?object ? o r i g i n a l - o b j e c t ) 
(input ?original-object ?) 
(not (input ?object (?object))) 

=> 
(assert (input ?object (?object))) 

) 
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; The next r u l e bulids up the correct function-conn s l o t s 
; i n each new block. This process i s a l o t easier 
; to do procedurally. Most of the hassle i s i n 
; correct pattern matching 

(defrule template-slot-function-conn 
(declare (salience (- ?*template-salience* 20))) 
(template ?new-port ? o r i g i n a l - p o r t ) 
(contains ?original-block ? o r i g i n a l - p o r t ) 
(template ?new-block ?original-block) 
(contains ?new-block ?new-port) 
( s p l i t 

((function-conn-in ?original-block 
(function ?var i n ? o r i g i n a l - p o r t ) ) 

(not (function-conn-in ?new-block 
(function ?var i n ?new-port))) 

=> 
(assert 

(function-conn-in ?new-block 
(function ?var i n ?new-port))) 

) 
((function-conn-out ? o r i g i n a l - b l o c k 

(function ?var to ? o r i g i n a l - p o r t ) ) 
(not (function-conn-out ?new-block 

(function ?var to ?new-port))) 
=> 
(assert (function-conn-out ?new-block 

(function ?var to ?new-port))) 
) 

) 
=> 
) 
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General source-block copying rules 
Very s i m i l a r to template f i l l rules 
But uses copy of r e l a t i o n to s i g n i f y that a copy should 
be made. 
Only the s l o t s which don't i n h e r i t normally are given 
special treatment. 
The rest take pot luck w i t h the i s - a inheritance 
mechanism. 

;(in-package 'au) 
defglobal ?*copy-salience* = {- *maximum-salience* 100)) 
;;; C o p y - o f - f i l l not used as copy-of r e l a t i o n asserts i s - a 
;;; r e l a t i o n automatically 
#\ 
(defrule c o p y - o f - f i l l 

(declare (salience ?*copy-salience*)} 
(copy-of ?object ? o r i g i n a l - o b j e c t ) 
(instance-of ? o r i g i n a l - o b j e c t ?parent) 
(not (instance-of ?object ?parent)) ;; not asserted 

=> 
(assert (instance-of ?object ?parent)) 

) 
U 
(defrule copy-slot-contains 

(declare (salience (- ?*copy-salience* 20))) 
(copy-of ?object ? o r i g i n a l - o b j e c t ) 
(contains ? o r i g i n a l - o b j e c t ?original-contents) 
(not (contains ?object =(our-get-icon-name 

?or i g i n a l - o b j e c t ?original-contents ?object))) 
=> 

(bind ?object-contents 
(our-get-icon-name ? o r i g i n a l - o b j e c t 

?original-contents ?object)) 
(assert 

(contains ?object ?object-contents) 
(copy-of ?object-contents ?original-contents) 

) 
) 
(defrule copy-slot-input 

(declare (salience (- ?*copy-salience* 20))) 
(copy-of ?object ? o r i g i n a l - o b j e c t ) 
(input ? o r i g i n a l - o b j e c t ?) 
(not (input ?object (?object))) 

=> 
(assert (input ?object (?object))) 

) 

C-15 



(defrule copy-slot-function-conn 
(declare (salience (- ?*copy-salience* 20))) 
(copy-of ?new-port ? o r i g i n a l - p o r t ) 
(contains ?original-block ? o r i g i n a l - p o r t ) 
(copy-of ?new-block ?original-block) 
(contains ?new-block ?new-port) 
( s p l i t 

((function-conn-in ?original-block 
(function ?var i n ? o r i g i n a l - p o r t ) ) 

(not (function-conn-in ?new-block 
(function ?var i n ?new-port))) 

=> 
(assert (function-conn-in ?new-block 

(function ?var i n ?new-port))) 
) 
((function-conn-out ?o r i g i n a l - b l o c k 

(function ?var t o ? o r i g i n a l - p o r t ) ) 
(not (function-conn-out ?new-block 

(function ?var to ?new-port))) 
=> 

(assert (function-conn-out ?new-block 
(function ?var to ?new-port))) 

) 
) 

=> 
) 
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(defrule copy-slot-conn-to 
(declare (salience (- ?*copy-salience* 30)}) 
(schema ?original-source-port 

(conn-to ?original-dest-port) 
) 
(schema ?copy-source-port 

(not (conn-from ?)) ;; make sure not a dest port 
(not (conn-to ?)) ;; has no conn-to value 
(copy-of ?original-source-port) 

) 
(schema ?copy-dest-port 

(copy-of ?original-dest-port) 
) 
(schema ?original-source-block 

(contains ?original-source-port) 
) 
(schema ?original-dest-block 

(contains ?original-dest-port) 
) 
(schema ?copy-source-block 

(contains ?copy-source-port) 
(copy-of ?original-source-block) 

) 
(schema ?copy-dest-block 

(contains ?copy-dest-port) 
(copy-of ?original-dest-block) 

) 
=> 

(assert (schema ?copy-source-port 
(conn-to ?copy-dest-port) 

) 
) 

) 
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;;; -*- Mode:ART; Package:art-user; Base:10. 
; ; ; Rules For The Behaviour of d i f f e r e n t types of block 
(defrule f u n c t i o n - a l l - b l o c k 

(declare (salience (+ ?*function-eval* 2))) 
(schema simulator-defaults 

(mode simulating) 
) 
(schema ?fb 

(instance-of a l l - b l o c k ) 
; (active yes) ;;; f o r m u l t i mode 

( f u n c t i o n - f i r e d has-not-fired) ;;; only do once, 
(function ?) ;;; others a chance t h i s cycle 
(function-conn-in ( f u n c t i o n ? i n ?)) 

) 
( f o r a l l (function-conn-in ?fb each and every input 

must be ready 
m u l t i p l e f i r i n g 

(function ? i n ?port)) 
(instance-of ?port port) 
(packet-link ?port ?) 

) 
=> 

(invoke 'do-function-eval ?fb) 
(modify (schema ?fb ( f u n c t i o n - f i r e d h a s - f i r e d ) ) ) 

) 
(defrule function-ALT-block 

(declare (salience (+ ?*function-eval* 2))) 
(schema simulator-defaults 

(mode simulating) 
) 
(schema ?fb 

(instance-of a l t - b l o c k ) 
; (active yes) ;;; f o r m u l t i mode 

( f u n c t i o n - f i r e d has-not-fired) ;;;only do once, give 
(function-conn-in ( f u n c t i o n ? i n ?)) ;;; others a 
(function ?) ;;; chance t h i s cycle 

) 
(exists 

(function-conn-in ?fb 
(function ? i n ?port) ) ; ; ; any input can be ready 

) 
=> 

(instance-of ?port port) 
(packet-link ?port ?) ;;; m u l t i p l e f i r i n g 

(invoke 'do-function-eval ?fb) 
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(defrule function-ROM 
(declare (salience (+ ?*function-eval* 2))) 
(schema simulator-defaults 

(mode simulating) 
) 
(schema ?fb 

(instance-of ROM) 
; (active yes) ; ; ; f o r m u l t i mode 

( f u n c t i o n - f i r e d has-not-fired) ;;; only do once, give 
(function ?) ;;; others a chance t h i s cycle 
(function-conn-in (function address i n ?port-address)) 
(function-conn-out 

(function data-out to ?port-data-out)) 
(data ?data) ;;; data of form (1 2 3 4 5 6 7 ) etc. 

) 
(schema ?port-address 

(instance-of port) 
(packet-link (?packet $?)) 

) 
(schema ?port-data-out 

(instance-of port) 
) 

=> 
(bind ?address (get-data ?packet)) 
(destroy-packet ?packet) 
( i f ((lengths ?data) <= ?address) 

then ( p r i n t o u t t t "error address " ?address 
" exceeds size of ROM: " ?fb) 

else (create-packet-with-data 'packet 
?port-data-out (nth ?address ( l i s t $ ?data))) 

) 
(modify (schema ?fb ( f u n c t i o n - f i r e d h a s - f i r e d ) ) ) 

) 
(defrule function-RAM-read 

(declare (salience (+ ?*function-eval* 2))) 
(schema simulator-defaults 

(mode simulating) 
) 
(schema ?fb 

(instance-of RAM) 
; (active yes) ; ; ; f o r m u l t i mode 

( f u n c t i o n - f i r e d has-not-fired) ;;;only do once, give 
;;; others a chance t h i s cycle 
(function-conn-in (function address i n ?port-address) ) 
(function-conn-in (function R-W i n ?port-R-W)) 
(function-conn-out 

(function data-out to ?port-data-out)) 
(data ?data);; data of form (1 2 3 4 5 6 7 ) etc. 

) 
(schema ?port-address 

(instance-of port) 
(packet-link (?address-packet $?)) 

) 
(schema ?port-R-W 

(instance-of port) ;;; always an address 
(packet-link (?R-W-packet $?)) 

) 
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(schema ?port-data-out 
(instance-of port) 

) 
(schema ?R-W-packet ;;; not using the get-data method 

(instance-of packet) 
(data R) 

) 
=> 

(bind ?address (get-data ?address-packet)) 
(destroy-packet ?address-packet) 
(destroy-packet ?R-W-packet) 
( i f ((lengths ?data) <= ?address) 

then ( p r i n t o u t t t "error address " 
?address " exceeds size of RAM: " ?fb) 

else (create-packet-with-data 'packet 
?port-data-out (nth ?address ( l i s t s ?data))) 

) 
(modify (schema ?fb ( f u n c t i o n - f i r e d has-fired) )) 

) 
(defrule function-RAM-write 

(declare (salience (+ ?*function-eval* 2 ) ) ) 
(schema simulator-defaults 

(mode simulating) 
) 
(schema ?fb 

(instance-of RAM) 
; (active yes) ; ; ; f o r m u l t i mode 

( f u n c t i o n - f i r e d has-not-fired) ;;;only do once, give 
;;; others a chance t h i s cycle 
(function-conn-in (function address i n ?port-address)) 
(function-conn-in (function R-W i n ?port-R-W)) 
(function-conn-in (function data-in i n ?port-data-in) ) 
(data ?data) ;; data of form (1 2 3 4 5 6 7 ) etc. 

) 
(schema ?port-address 

(instance-of port) 
(packet-link (?address-packet $?)) 

) 
(schema ?port-R-W 

(instance-of port) 
(packet-link (?R-W-packet $?)) 

) 
(schema ?port-data-in 

(instance-of port) 
(packet-link (?data-packet $?)) 

) 
(schema ?R-W-packet ;;; not using the get-data method 

(instance-of packet) 
(data W) 

) 
=> 

(bind ?address (get-data ?address-packet)) 
(bind ?input-data (get-data ?data-packet)) 
(bind ?data-lst ( l i s t s ?data)) 
( i f ((lengths ?data) <= ?address) 

then ( p r i n t o u t t t "error address " 
?address " exceeds size of RAM: " ?fb) 
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else (progn 
(setf (nth ?address ?data-lst) ?input-data) 

(modify-schema-value ?fb 'data 
(seq$ ?d a t a - l s t ) ) 

) 
) 
(destroy-packet ?address-packet} 
(destroy-packet ?data-packet) 
(destroy-packet ?R-W-packet) 
(modify (schema ?fb ( f u n c t i o n - f i r e d h a s - f i r e d ) ) ) 

(defrule f i l e - i n p u t - b l o c k ;;; behaves j u s t l i k e any other 
(declare (salience (+ ?*function-eval* 2 ) ) ) ; ; ; block 
(schema simulator-defaults 

(mode simulating) 
) 
(schema ? f i l e - b l o c k 

(instance-of f i l e ) 
( f u n c t i o n - f i r e d has-not-fired) 
( d i r e c t i o n in) 
(stream ?file-name) 
(contains-ports ?node) 
(data-count ?data-count) 

) 
(schema ?file-name 

(data-type ?data-type) 
(data ?data-sequence) 

) 
(te s t (>= (lengths ?data-sequence) ?data-count)) 

=> 
( p r i n t o u t t t " " ?data-count " " ?data-sequence) 
(bind ?new-data (nth$ ?data-sequence ?data-count)) 
(bind ?packet (create-packet 'packet)) 
(put-data-type ?packet (type-of ?new-data)) 
(insert-data ?packet ?new-data) 
(place-packet ?packet ?node) 
(modify-schema-value ? f i l e - b l o c k 

'data-count (+ ?data-count 1)) 
(modify-schema-value ? f i l e - b l o c k 

' f u n c t i o n - f i r e d 'has-fired) 
) 
(defrule f i l e - o u t p u t - b l o c k ;;; behaves j u s t l i k e any other 

(declare (salience (+ ?*function-eval* 2))} ;;; block 
(schema simulator-defaults 

(mode simulating)) 
(schema ? f i l e - b l o c k 

(instance-of f i l e ) 
( f u n c t i o n - f i r e d has-not-fired) 
( d i r e c t i o n out) 

(stream ?file-name) 
(contains-ports ?node)) 

(schema ?node 
(packet-link (?packet $?)) 

) 
=> 

(bind ?existing-data (get-schema-value ?file-name 'data)) 
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(bind ?new-data (get-data ?packet)) 
(destroy-packet ?packet) 
(modify-schema-value ?file-name 'data 

(seq$ (nconc ( l i s t s ?existing-data) ( l i s t ?new-data)))) 
(modify-schema-value ? f i l e - b l o c k 

' f u n c t i o n - f i r e d 'has-fired)) 
;;; Now the ru l e that moves the packets along connections 
;;; between blocks 
(defrule faster-packet-move 

(declare(salience (+ ?*function-eval* 2))) 
(schema simulator-defaults 
(mode simulating)) 

(schema ?port 
(instance-of port) 
(conn-to ?dest) 
(packet-link ? s o u r c e - l i s t ) ) 

=> 
(for packet-name in$ ?source-list 
do 

(move-packet packet-name ?port ?dest) 
) 

) 
;;; This r u l e waits u n t i l a l l functions that can f i r e , have 
(defrule last-function-done 

(declare (salience (- ?*function-eval* 10))) 
(schema simulator-defaults 

(mode simulating) 
) 
(schema has-fired 

(functions ?)) 
=> 

(bind ?x (get-schema-value 'has-fired 'functions)) 
(for f b i n ?x do 

(modify-schema-value f b ' f u n c t i o n - f i r e d 
'has-not-fired) 

) 
) 
;;; I n i t i z a t i o n r u l e s : 
(defrule s i m u l a t o r - i n i t i a l i s e 

(schema simulator-defaults 
(mode construction) 

) 
=> 

(init-packets) 
( c l e a r - f u n c t i o n - f i r i n g s - s l o t s ) 
(resize-data-slot-in-memory-schema) 

) 
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;;; changed to behave l i k e blocks 15/5/89 
(setq * d a t a - f i l e - d i r * "-dino/ART/GROUP/") 
;;;Once f o r a l l f i l e s 
(defrule l o a d - a l l - i n p u t - f i l e s 

(schema ? f i l e - b l o c k 
(instance-of f i l e ) 
( d i r e c t i o n in) 
(stream ?file-name) 

) 
=> 

( l e t ( ( t h e - f i l e (merge-pathnames * d a t a - f i l e - d i r * 
(format n i l " - a . a r t " ?file-name)))) 

( i f ( p r o b e - f i l e t h e - f i l e ) then ( a r t - l o a d t h e - f i l e ) ) 
) 

) 
(defrule save-files 

(declare (salience (- ?*function-eval* 12))) 
(schema simulator-defaults 

(mode simulating)) 
(schema ?file-name 

(instance-of d a t a - f i l e ) ) 
=> 

( l e t ( ( t h e - f i l e (merge-pathnames * d a t a - f i l e - d i r * 
(format n i l " - a . a r t " ?file-name)))) 

(with-open-file 
#L(output-stream t h e - f i l e : d i r e c t i o n 

:output : i f - e x i s t s :supersede) 
(pr i n t o u t output-stream (list-schema ?file-name)) 

) 
) 

) 
;;;Each run through reset data count 
(defrule i n i t i a l i s e - f i l e - b l o c k s 

(declare (salience (+ ?*function-eval* 3))) 
(schema simulator-defaults 

(mode simulating) 
) 
(schema ? f i l e - b l o c k 

(instance-of f i l e ) 
( d i r e c t i o n in) 
(stream ?file-name) 
(contains-ports ?node) 

) 
(schema ?file-name 

(data ?data-sequence) 
) 

=> 
(modify 

(schema ? f i l e - b l o c k 
(data-count 1) 
( f u n c t i o n - f i r e d has-not-fired) 
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Mode:ART; Package:art-user; Base:10. 
The action do-function-eval provides the means by which 
a block evaluates i t s data 
The action Map-vars-to-ports forms a l i s t of equation 
variables and t h e i r corresponding packets, and c a l l s 
do-eval. 
The purpose of do-eval varies between the types of 
block, but f o r a l l - b l o c k s i t : 
1) binds the input variables to the input packets' 
values. 

2) evaluates the equation i n the block's f u n c t i o n s l o t . 
3) rounds the r e s u l t s to the required value 
4) creates output packets at the r i g h t p o r t s , containing 
the r e s u l t s . 
5) Destroys the input packets, 

s t a r t with do-function eval 
(defaction do-function-eval (block)() 

(map-vars-to-ports block) 
) 
; Now debugging before method 
(defaction (map-vars-to-ports before) (block) () 

( p r i n t o u t t t "map-vars-to-ports c a l l e d on " block) 
) 
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; ; Now get a l i s t of variables and t h e i r packets 
(defaction map-vars-to-ports (block)() 

( l e t ( ( f - c - i - l i s t 
(get-schema-value block 'function-conn-in)) 

; ; ; l i s t of sequences of s l o t function-conn-in 
( f - c - o - l i s t 

(get-schema-value block 'function-conn-out)) 
;;; same f o r function-conn-out 

(input-vars n i l ) 
(output-vars n i l ) 
(packets n i l ) 

) 
(setq input-vars ; form l i s t of input variables 

(for f - c - i i n f - c - i - l i s t 
c o l l e c t ( l i s t (nth$ f - c - i 2)(nth$ f - c - i 4)) 

) 
) 
(setq output-vars ; form l i s t of output variables 

(for f-c-o i n f - c - o - l i s t 
c o l l e c t ( l i s t (nth$ f-c-o 2)(nth$ f-c-o 4)) 

} 
) 
(setq packets ; produce a l i s t of input packet l i s t s 

; i n correct order 
(for var-pair i n input-vars 

c o l l e c t 
( i f ( s l o t - n u l l (nth 1 var-pair) 'packet-link) 

; i f s l o t i s n i l then 
NIL 

; else 
(car 

( l i s t s (get-schema-value (nth 1 var-pair) 
' p a c k e t - l i n k ) ) ) 

) 
) 

) 
(do-eval block input-vars output-vars packets) 

) 
) 
(defaction ; debugging before action (method) 

(do-eval before)(block)(input-vars output-vars packets) 
(p r i n t o u t t t "do-eval c a l l e d on " block 

" with " input-vars output-vars packets) 
) 
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(defaction ; main action 
do-eval ( a l l - b l o c k ) ( i n p u t - v a r s output-vars packets) 
( l e t ((packet-name n i l ) (result-data-type 

(get-schema-value a l l - b l o c k 'result-data-type)) 
) 

;;; progv creates new dynamic variables 
; ; ; and restores o l d ones when i t f i n i s h e s 
(progv (mapcar #'car input-vars) 

(mapcar #'get-data packets) ; variables now bound 
(mapcar #'destroy-packet packets) ; remove packets 

; from inputs 
;;; Now evaluate the fun c t i o n s l o t ' s contents 
(eval (invoke 'perform-function a l l - b l o c k ) ) 
;;; Now create o/p schemata and populate 
(for var-pair i n output-vars 
do 

(setq packet-name (create-packet 'packet)) 
(put-data-type packet-name result-data-type) 
(insert-data packet-name (eval (nth 0 v a r - p a i r ) ) ) 

;;; r e s u l t of evaluation 
(place-packet packet-name (nth 1 v a r - p a i r ) ) 

;; move packet now to p o r t , eg portQ 
) 

) ; ;; end progv 
) ;;end l e t 

) 
(defaction do-eval 

( a l t - b l o c k ) ( i n p u t - v a r s output-vars packets) 
( l e t ((packet-name n i l ) 

(result-data-type (get-schema-value a l t - b l o c k 
'result-data-type)) 

) 
;;;progv creates new dynamic variables and restores o l d 
;;;ones when i t f i n i s h e s 

(progv (mapcar #'car input-vars) 
(mapcar 
#'(lambda ( x ) ( i f x (get-data x) 'NAN)) packets) 

; variables now bound 
(mapcar 

#'(lambda ( x ) ( i f x (destroy-packet x ) ) ) packets) 
; remove packets from inputs 

; ; ; Now evaluate the function s l o t ' s contents 
(eval (invoke 'perform-function a l t - b l o c k ) ) 
; ;; Now create o/p schemata and populate 
(for var-pair i n output-vars 
do 

(setq packet-name (create-packet 'packet)) 
(put-data-type packet-name result-data-type) 
(insert-data packet-name (eval (nth 0 v a r - p a i r ) ) ) 
;;; r e s u l t of evaluation 

(place-packet packet-name (nth 1 v a r - p a i r ) ) 
;; move packet now to po r t , eg portQ 

) 
) ; ; ; end progv 

) ;rend l e t 
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( d e f a c t i o n perform-function ( b l o c k ) ( ) 
( l i s t * $ (get-schema-value block ' f u n c t i o n ) ) 

) 
( d e f a c t i o n ;; c l e a n up o p e r r a t i o n s 

(do-eval a f t e r ) ( b l o c k ) ( i n p u t - v a r s o u t p u t - v a r s p a c k e t s ) 
;;; update the f u n c t i o n - f i r i n g s s l o t 
(modify-schema-value b l o c k 

' f u n c t i o n - f i r i n g s 
(+ (get-schema-value b l o c k ' f u n c t i o n - f i r i n g s ) 1)) 

) 
( d e f a c t i o n 

do-eval ( r o u n d ) ( i n p u t - v a r s o u t p u t - v a r s p a c k e t s ) 
( l e t * ( ( i n p u t - p o r t (second ( c a r i n p u t - v a r s ) ) ) 

(output-port (second ( c a r o u t p u t - v a r s ) ) ) 
( i n p u t - p a c k e t ( c a r p a c k e t s ) ) 
( b i t s (get-schema-value round ' b i t s ) ) 
(data (get-data i n p u t - p a c k e t )) 
(data-type (get-data-type i n p u t - p a c k e t ) ) 
( r e s u l t - d a t a - t y p e 
(get-schema-value round ' r e s u l t - d a t a - t y p e ) ) 

( o v e r f l o w - l i s t ( g e t - o v e r f l o w i n p u t - p a c k e t ) ) 
(output-packet n i l ) 

) 
(destroy-packet i n p u t - p a c k e t ) 
( m u l t i p l e - v a l u e - b i n d ( r e s u l t overflow) 

(our-round r e s u l t - d a t a - t y p e ( l i s t s b i t s ) data) 
( s e t q output-packet ( c r e a t e - p a c k e t ' p a c k e t ) ) 
(put-data-type output-packet r e s u l t - d a t a - t y p e ) 
( i n s e r t - d a t a output-packet r e s u l t ) 
( i f overflow then 

(put-overflow output-packet round)) 
(place-packet output-packet output-port) 

) 
) 

) 
( d e f a c t i o n (our-round b e f o r e ) ( n u m b e r ) ( b i t s data) ; debugging 

( p r i n t o u t t t "our-round c a l l e d on " number ) 
) 

( d e f a c t i o n ; round a fixnum to a number of b i t s 
our-round ( f i x n u m ) ( b i t s data) 
( l e t * ( ( s i g n (signum d a t a ) ) 

(number (abs d a t a ) ) 
( r e s u l t ;;; performs round 
(* ( m a s k - f i e l d 

(byte (- b i t s 1) 0) number) s i g n ) ) 
) 

; ( p r i n t o u t t t "our-round 'fixnum' c a l l e d on " dat a ) 
( p r i n t o u t t t " r e s u l t i s " r e s u l t ) 
( i f (> ( i n t e g e r - l e n g t h data) b i t s ) 

( v a l u e s r e s u l t 'overflow) 
( v a l u e s r e s u l t n i l ) 

) 
) 
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t h i s a c t i o n i s a l i t t l e c o m p l i c a t e d 
f i r s t i t braks up the d a t a i n t o t h r e e i n t e g e r s -> 
mantissa, exponent and s i g n . 
the mantissa i s a f r a c t i o n i e the b i t order i s r e v e r s e d 
so masking i s done from the l e f t 
the exponent i s an i n t e g e r so i t i s done the same way as 
a fixnum 

( d e f a c t i o n ; round short f l o a t u s i n g b i t mask 
our-round ( s h o r t - f l o a t ) ( b i t s data) 
( l e t * ( { b i t s - m ( f i r s t b i t s ) ) 

( b i t s - e (second b i t s ) ) 
( r e s u l t n i l ) 
( e - s i g n n i l ) 
(mantissa n i l ) 
(exponent n i l ) 
(m-sign n i l ) 
(m-p-mantissa n i l ) 
(m-p-exponent n i l ) 
(m-p-m-sign n i l ) 

) 
; ( p r i n t o u t t t "our-round ' s h o r t - f l o a t ' c a l l e d on " d a t a 

( m u l t i p l e - v a l u e - s e t q 
(m-p-mantissa m-p-exponent m-p-m-sign) 
( i n t e g e r - d e c o d e - f l o a t m o s t - p o s i t i v e - s h o r t - f l o a t ) 

( s e t q max-digits ( i n t e g e r - l e n g t h m-p-mantissa)) 
; ; ; no of d i g i t s i n the l a r g e s t s h o r t - f l o a t "about 23 
( m u l t i p l e - v a l u e - s e t q ( m a n t i s s a exponent m-sign) 

( i n t e g e r - d e c o d e - f l o a t data) 
;;; break up the data i n t o i t s components 
) 
( s e t q e - s i g n (signum exponent)) 
( s e t q m-r 

(* ( m a s k - f i e l d 
(byte max-digits (- ma x - d i g i t s b i t s - m ) ) 
mantissa) m-sign)) 

;; should be ok , needs l o o k i n g i n t o , 
( s e t q e -r (* ( m a s k - f i e l d (byte (- b i t s - e 1) 0) 

(abs exponent)) e - s i g n ) ) ; ; t h i s i s ok 
now check f o r overflow and r e t u r n r e s u l t 

( s e t q r e s u l t ( s c a l e - f l o a t m-r e - r ) ) 
( p r i n t o u t t t " r e s u l t i s " r e s u l t ) 
( i f (not (equalp r e s u l t d a t a ) ) 

( v a l u e s r e s u l t 'overflow) 
( v a l u e s r e s u l t n i l ) 

) 
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-*- ModerART; Package:art-user; Base:10. -*-
Packet operations now supported : 
(don't address packets d i r e c t l y now!!!) 

(coerce-to <type> <data>) 
(insert-data <packet> <data> 
(put-data-type <packet> <data> 
(put-overflow <packet> <data> 
(get-data <packet>) 
(get-data-type <packet>) 
(get-overflow <packet>) 
(create-packet 'packet) 
(destroy-packet <packet>) 
(move-packet <packet> <from> <to>) 
(create-packet-with-data 'packet<data>) 
(place-packet <packet> <port>) 
non active value version !!!!! 

(defaction ; change type catch NANS 
(coerce-to whopper) (number)(data) 

( i f (equalp data 'Nan)(values 'Nan) 
(whopper-continue number data) 

) 
) 
(defaction coerce-to (number)(data) 

(convert (type-of data) number data) 
) 

(defaction convert (number number)(data) 
(coerce data number) 

) 

(defaction convert ( f l o a t i n t e g e r ) ( d a t a ) 
(values (coerce (round data) i n t e g e r ) ) 

) 
(defaction convert (integer f l o a t ) ( d a t a ) 

(values (coerce (round data) i n t e g e r ) ) 
) 

(defaction convert (number r a t i o ) ( d a t a ) 
(values (coerce ( r a t i o n a l i z e data) r a t i o ) ) 

) 
(defaction convert (number complex)(data) 

(values (coerce (complex data) complex)) 
) 
(defaction convert (complex number)(data) 

(format t "Warning converting data type -
from -A to -A, you w i l l lose information -
on: -A complex number data) 
(values (coerce (realpart data) number)) 

) 
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(defaction get-data (packet)() 
|# ( p r i n t o u t t t "get-data " 

(get-schema-value packet 'data) " from packet " 
packet)§ I 

(values (get-schema-value packet 'data)) 
) 

(defaction get-data-type (packet)() 
H ( p r i n t o u t t t "get-data-type " 

(get-schema-value packet 'data-type) 
" from packet " packet)#| 

(values (get-schema-value packet 'data-type)) 
) 
(defaction get-overflow (packet)() 
U ( p r i n t o u t t t "get-overflow " (get-schema-value packet 

'overflow) " from packet " packet)#| 
(values (get-schema-value packet 'overflow)) 

) 
(defaction insert-data (packet)(data) 

( l e t ((data-type (get-data-type packet)) 
(new-data n i l ) 

) 
; ( p r i n t o u t t t data) 
; ( p r i n t o u t t t (equalp data ' n u l l ) ) 

(cond 
((equalp data ' n u l l ) 

(modify-schema-value packet 'data ' n u l l ) ) 
((schemap data-type) 

(progn 
; ; ( p r i n t o u t t t "doing i n s e r t data w i t h " data) 

(setq new-data 
(coerce-to (get-data-type packet) data)) 

#( p r i n t o u t t t "insert-data " data " i n packet " 
packet)U \ 

(modify-schema-value packet 'data new-data) 
) 

) 
(T 
(progn 
( p r i n t o u t t t 
"Error !! t r y i n g to i n s e r t data of unknown type: " 
data-type) 
(break) 

) 
) 

) 
) 

; (p r i n t o u t t t "done insert-data") 
) 
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(defaction put-data-type (packet)(data-type) 
I # ( p r i n t o u t t t "put-data-type " 
data-type " i n packet " packet)#| 
(cond 

((equalp data-type ' n u l l ) 
(modify-schema-value packet 'data-type ' n u l l ) ) 

((schemap data-type) 
(modify-schema-value packet 'data-type data-type)) 

(T (progn 
(prin t o u t t t 

"Error ! ! t r y i n g to put-data-type of unknown type: 
data-type) 
(break) 

) 
) 

) 
) 
(defaction put-overflow (packet)(data) 
; (p r i n t o u t t t "put-overflow " data " i n packet " packet) 

(modify-schema-value packet 'overflow data) 
) 
(defaction add-to-packet-link (packet p o r t ) ( ) 
; (format t "adding to packet-link -A -A-%" packet port) 

(modify-schema-value port 'packet-link 
(creates 

(append 
( l i s t s (get-schema-value port 'packet-link)) 

( l i s t packet)) t ) 
) 

) 
(defaction delete-from-packet-link ( p o r t ) ( ) 

( l e t * ((old-value 
( l i s t s (get-schema-value port ' p a c k e t - l i n k ) ) ) 
(new-value (cdr old-value)) 

) 
( i f new-value 

(modify-schema-value port 'packet-link 
(creates new-value t ) ) 

(retract-schema-value port 'packet-link) 
) 

) 
) 
(defaction make-packet (packet)() 

( l e t * ((packet-name (gentemp "P-"))) 
(put-schema-value 'packet 'has-instances packet-name) 

; (prin t o u t t t "make-packet " packet) 
(values packet-name) 

) 
) 
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(defaction use-existing-packet (packet) () 
( l e t * ( ( p a c k e t - l i s t 

( l i s t s (get-schema-value 
'free-packets ' p a c k e t - l i n k ) ) ) ) 

# ( p r i n t o u t t t "use-existing-packet " (car 
p a c k e t - l i s t ) ) # | 

;; e x p l i c i t change to packet-link s l o t now done.-
;; no active value 

(invoke 'delete-from-packet-link 'free-packets) 
(values (car p a c k e t - l i s t ) ) 

) 
) 
(defaction create-packet (packet)() 
; (pri n t o u t t t "create-packet" ) 

( l e t ( ( p a c k e t - l i s t 
( l i s t s (get-schema-value 'free-packets 

' p a c k e t - l i n k ) ) ) ) 
( i f p a c k e t - l i s t 

(setq packet-name ;; use e x i s t i n g packet 
(invoke 'use-existing-packet packet)) 
;; otherwise make one 

(setq packet-name (invoke 'make-packet packet)) 
e x p l i c i t change to packet-link s l o t now done.-
no active value 
(values packet-name) 

(defaction destroy-packet (packet)() 
; (p r i n t o u t t t "destroy-packet " packet) 

( l e t * ((port (get-schema-value packet 'node))) 
;; e x p l i c i t change to packet-link s l o t now done.- no 
;; active value 
(delete-from-packet-link port) 

data s l o t now n u l l 
data s l o t now n u l l 
data s l o t now n u l l 

) 
) 

(put-data-type packet ' n u l l ) 
(put-overflow packet ' n u l l ) 
(insert-data packet ' n u l l ) 

(modify-schema-value packet 'node 'free-packets) 
; e x p l i c i t change to packet-link s l o t now done. 
; no active value 
add-to-packet-link packet 'free-packets) 

(defaction move-packet (packet (source p o r t ) ( d e s t p o r t ) ) ( ) 
(invoke 'delete-from-packet-link source) 

(modify-schema-value packet 'node dest) 
(invoke 'add-to-packet-link packet dest) 

) 
(defaction place-packet (packet (dest p o r t ) ) () 

(modify-schema-value packet 'node dest) 
(invoke 'add-to-packet-link packet dest) 

) 
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(defaction ;;; quick shorcut 
create-packet-with-data (packet)(data) 

(insert-data (create-packet packet) data) 
) 
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;;; Simple decision h e u r i s t i c t o t e s t ideas 
(defrule decisioni 

(declare (salience *maximum-salience*)) 
;; to we have a i n s t a n t i a t i o n of a component 
(or 
(utterance ?time ?window 
(mouse-click ?button & l e f t ?times & 1 ? ? ) ) 

(utterance ?time ?window 
(menu-mouse-click ?x-w ?y-w (?block) ?button & r i g h t 

?times & 1 ? ? (?area & #L| d e l e t e ] ) ) ) 
) 
;; ignore the o l d utterances 
(not (and (utterance ?high-time & -?time ? ?) 

(test (> ?high-time ?time)))) 
(schema current 

(mode construction) ;; we are now c o n s t r i c t i n g 
(last-mode simulating) ;; and we were simulating 

) 
(schema ?window-icon ;; bind variables f o r new world 

(window ?window) 
(display-parameters (?x ?y ?w ?h)) 

) 
=> 

;; say we are creating new world 
( p r i n t o u t t t "creating new world as changes to " 

?window-icon " a f t e r a simulation") 
(bind ?new-world (get-icon-name ?window-icon)) 
;; Create newwindow f o r new world: 
;; User i n t e r f a c e s t u f f 
(create-window ?new-world 'graphics 

( i n c f ?x 10) ?y 
(+ ?x ?w) (+ ?y ?h) 
( s t r i n g ?new-world) 

) 
(#Lai::create-window-icon ?new-world) 
; create new world now 
; s l o t s w i l l be f i l l e d i n by inheritance 
; and s l o t f i l l rules 

(assert (schema ?new-world 
(our-instance-of world) 
(child-world-of ?window) ;; l i n k to parent world 
(reason "changes a f t e r a simulation") ;; noddy reason 
(window ?new-world) 

) 
) 
;; create rest of the block diagram 
(for icon i n 

( l i s t * $ (get-schema-value ?window-icon 
'our-contains-icons)) 

bind new-icon 
do 
(setq new-icon (get-icon-name icon)) 
(our-create-icon icon new-icon) ;; make a copy 
(our-add-icon-to-window new-icon ?new-world) 
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(parse 
M a s s e r t (schema ,?new-world 

( o u r - c o n t a i n s - i c o n s ,new-icon) 
) 

) 
) 

) 
; ( p r i n t o u t t t "done") 
(refresh-window ?new-world) 
(modify (schema c u r r e n t 

(last-mode c o n s t r u c t i o n ) 
) 

) 
) 
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;;; Define t e s t constraints 
(defschema constraints 

(kinds chip-area design-time power) 
) 

(defschema chip-area 
(values (v-large large medium low v-low)) 
(v-large 1 0 0 0 0 ) 
(large 1 0 0 0 ) 
(medium 100 ) 
(low 10 ) 
(v-low 1) 

) 
(defschema design-time 

(values (v-long long medium short 
(v-long 1 0 0 0 0 ) 
(long 1 0 0 0 ) 
(medium 100 ) 
(short 10 ) 
(v-short 1 ) 

v-short)) 

high medium low v-low)) 

) 

(defschema power 
(values (v-high 
(v-high 1 0 0 0 0 ) 
(high 1 0 0 0 ) 
(medium 100 ) 
(low 10) 
(v-low 1) 

) 

(defschema speed 
(values (v-fast f a s t medium slow v-slow)) 
(v-fast 10) 
( f a s t 100 ) 
(medium 1 0 0 0 ) 
(slow 1 0 0 0 0 ) 
(v-slow 1 0 0 0 0 0 ) 

) 
; ; use i t e r a t i v e method t h i s time instead of r u l e based 
approach 
(defun calc-constraint-value (schema c o n s t r a i n t ) 

( l e t ( ( c o n s t r a i n t - l i s t 
(remove n i l 

( c a l c - c o n s t r a i n t - l i s t schema c o n s t r a i n t ) ) ) ) 
( i f ( n u l l c o n s t r a i n t - l i s t ) n i l 
( v a l u e s - l i s t (mapcar c o n s t r a i n t - l i s t ) ) 

) 
) 

) 
(defun c a l c - c o n s t r a i n t - l i s t (schema c o n s t r a i n t ) 

(nconc ( l i s t (get-schema-value c o n s t r a i n t 
(get-schema-value schema c o n s t r a i n t ) ) ) 

(fo r block i n 
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( l i s t * $ (get-schema-value schema 'contains-blocks)) 
j o i n 

( c a l c - c o n s t r a i n t - l i s t block c o n s t r a i n t ) 
) 

) 
) 
;;; Interface rules f o r c a l c u l a t i n g c o n s t r a i n t values 
(defrule calc-constraint-time 
?f <- (utterance ?time ?window (menu-mouse-click ?x-w ?y-w 

( ( ) ) ?button & r i g h t ?times & 1 ? ? (|time|))) 
(schema ?window-icon 

(window ?window) 
) 
(schema design-time 

(values ?values) 
) 

=> 
( p r i n t o u t "the range of times i s " 

(for value i n ( l i s t * S ?values) 
c o l l e c t ( l i s t value 

(get-schema-value 'design-time v a l u e ) ) ) ) 
*;; returns number, requires wrap around 
;; to convert back to values 
(calc-constraint-value ?window-icon 'design-time) 

) 
(defrule calc-constraint-chip-area 
?f <- (utterance ?time ?window (menu-mouse-click ?x-w ?y-w 
( 0 ) ?button & r i g h t ?times & 1 ? ? ( | area | ) ) ) 

(schema ?window-icon 
(window ?window) 

) 
-> 

(calc-constraint-value ?window-icon 'chip-area) 
) 
(defrule calc-constraint-power 
?f <- (utterance ?time ?window (menu-mouse-click ?x-w ?y-w 
( ( ) ) ?button & r i g h t ?times & 1 ? ? (|power|))) 

(schema ?window-icon 
(window ?window) 

) 
=> 

(calc-constraint-value ?window-icon 'power) 
) 
(defrule calc-constraint-speed 
?f <- (utterance ?time ?window (menu-mouse-click ?x-w ?y-w 
( ( ) ) ?button & r i g h t ?times & 1 ? ? (|speed|))) 

(schema ?window-icon 
(window ?window) 

) 
=> 
;; l i n k i n t o calc path seq s t u f f not completed ) 
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-*- Mode:ART; Package:art-user; Base:10. -*-
Using viewpoints. 
these set of r u l e extract the separate paths from an 
interconnected set of blocks so that the delay 
associated with a path can be cal c u l a t e d . 
Feedback loops and feedforward paths are i d e n t i f i e d 
Not f u l l y integrated w i t h PEDA. 

(defrule start-path-seq ;;; s t a r t path generation 
(schema current 

( f i n d paths) 
) 
(schema ?output 

(instance-of port) 
(conn-to ?next) 
(our-contained-in ?block) 

) 
(not (schema ?input &-?output 

(instance-of port) 
(conn-from ?) 

(our-contained-in ?block) 
) ; ; ; f i n d an entry point 

) 
=> 

(sprout 
(assert (path-seq ?output ?next));;;; and s t a r t there 

) 
) 
(defrule continue-path-seq-1 

(schema current 
( f i n d paths) 

) 
(schema ?input 

(instance-of port) 
(conn-from ?) 
(our-contained-in ?block) 

) 
(schema ?output &-?input 

(instance-of port) 
(conn-to ?next) 
(our-contained-in ?block) 

) 
(path-seq $?body ?input) 

;;; forget about c i r c l e here 
=> 

(sprout 
(assert (path-seq $?body ?input ?output ?next)) 

) 
) 
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(defrule prevent-to-much-circle ; ; ; stop loops fom being 
repeated i n d e f i n i t e l y 

(declare (salience *constraint-salience*)) 
(schema current 

( f i n d paths) 
) 
(path-seq $? ?from $?body ?from $? ?from $?) 

=> 
(poison "loop t r a v e l l e d more than once") 

) 

(defrule clean-up 
(declare (salience - 5 ) ) 
(schema current 

( f i n d paths) 
) 
(viewpoint ?vp 

?x<- (path-seq $?body) 
) 
(viewpoint ?vp2 

(path-seq $?body ? $?) 
) 

=> 
( r e t r a c t ?x) 

) 
(defrule clean-up-2 

(declare (salience - 5 ) ) 
(schema current 

( f i n d paths) 
) 

?x<-(path-seq $? ?body $? ?body) 
=> 

( r e t r a c t ?x) 
) 

(defrule clean-up-3 
(declare (salience - 6 ) ) 
(schema current 

( f i n d paths) 
) 
(path-seq $?) 

=> 
(believe ?root "collaspsing path-seq to s i n g l e - l e v e l " ) 

) 
(defrule print-path-seq 

(declare (salience - 1 0 ) ) 
(schema current 

( p r i n t paths) 
) 
(viewpoint ?vp 

?x<- (path-seq $?body) 
(not (path-seq $?body ?)) 

) 
=> 
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( p r i n t o u t t t 
(creates ( l i s t 'path-seq #L:splice ( l i s t s ?body) )) ) 

) 

(modify-schema-value 'current ' f i n d 'paths) 
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;;;; A u x i l i a r y Functions 
(defun member-relation-p (schema r e l a t i o n value) 

( l e t ( ( s l o t - v a l u e (get-schema-value schema r e l a t i o n ) ) ) 
(cond ( ( n u l l slot-value) NIL) 

((symbolp slot-value) 
( i f (equalp slot-value value) s l o t - v a l u e ) ) 

( ( l i s t p slot-value) 
(member value ( l i s t * $ s l o t - v a l u e ) ) ) 

) 
) 

) 
(defun i n i t - p a c k e t s () 

(for packet i n 
( l i s t * $ (get-schema-value 'packet 'has-instances)) 
do 

( i f packet 
(destroy-packet packet) 

) 
) 

) 
(defun c l e a r - f u n c t i o n - f i r i n g s - s l o t s () 

(for the-block i n 
( l i s t * $ (get-schema-value 'block 'has-instances)) 
do 

(modify-schema-value the-block ' f u n c t i o n - f i r i n g s 0) 
) 

) 

(defun resize-data-slot-in-memory-schema () 
(for memory i n 

( l i s t * $ (get-schema-value 'memory 'has-instances)) 
bind size data new-data 
do 
( i f memory 

( i f (setq size (get-schema-value memory 'size)) 
( i f ( s l o t - n u l l memory 'data) 

(setq new-data 
(make-list size : i n i t i a l - e l e m e n t 'NAN)) 

(progn 
(setq data 

( l i s t s (get-schema-value memory 'data))) 
(setq new-data 

(replace 
(make-list size : i n i t i a l - e l e m e n t 'NAN) data)) 

) 
) 

) 
(modify-schema-value memory 'data new-data) 

) 
) 

) 
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(defun Nan-check (&rest vars) ;; returns t i f any vars are 
;; (N)ot (A) (N)umber 

(not (for var i n vars 
always 
(not (equal var 'Nan)) 

) 
) 

) 
(defun set-Nan (&rest vars) 

(for var i n vars 
do 
(setf (symbol-value var) 'Nan) 

) 
) 

; function our-get-icon-name, returns new-icon name 
; given mux mux-text -1 adder, returns: adder-text - 1 

(defun our-get-icon-name 
(original-parent o r i g i n a l - i c o n new-parent) 

(progl 
( i n t e r n 
(concatenate 
' s t r i n g ( s t r i n g new-parent) 
(subseq ( s t r i n g o r i g i n a l - i c o n ) 

(mismatch ( s t r i n g o r i g i n a l - p a r e n t ) 
( s t r i n g o r i g i n a l - i c o n ) :test #'char-equal) 

(defun insert-schema-value (schema s l o t value) 
( i f (not (sl o t p schema s l o t ) ) ( s l o t c schema s l o t ) ) 
( i f (eql (slot-get-type schema s l o t 'slot-how-many) 

'single-value) 
(modify-schema-value schema s l o t value) 
(put-schema-value schema s l o t value) 

) 
) 
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