
Sediment Transport and Morphodynamics at an Estuary 

Mouth: a Study using Coupled Remote Sensing and 

Numerical Modelling 

by 

Eduardo Siegle 

A thesis submitted to the University of Plymouth 

in partial fulfilment for the degree of>, 

Doctor of Philosophy 

School of Earth, Ocean and Environmental Sciences 

Faculty of Science 

September 2003 



LIBRARY r^CRE 

I — _^71J3 ^ " ^ K U 

iDa\e U O C T 2003S 



Aos me us pais 

To my parents 



Abstract 

Sediment Transport and Morphodynamics at an Estuary Mouth: a Study using 
Coupled Remote Sensing and Numerical Modelling 

Eduardo Siegle 

The balance of the physical processes that drive the morphodynamics of a complex inlet system is 
investigated in this work. For this purpose, an innovative technique using coupled video imaging 
and numerical modelling has been used to study the relative importance of the driving forces that 
control the sandbar dynamics at the Teignmouth inlet system. The sandbars that form the ebb tidal 
delta are highly dynamic, leading to a cyclic morphological behaviour. 

Application of the numerical model (MIK£21 HD, NSW, ST) served two separate functions. The 
hydrodynamic model has been used for the image processing and, combined with the sediment 
transport module, the full model has been used to understand the relative importance of the driving 
forces at the region. The iterative application of the hydrodynamic model and the video images, 
with the modelled water levels used as input to the image processing, provides the video-based 
intertidal morphology that is used in further modelling experiments. This loop is repeated several 
times during the three-year study period that covered a complete morphological cycle. This results 
in a quantitative assessment of the relative influence of the key processes that control the 
environment and in initial steps towards the prediction of its evolution. In order to assess the 
relative importance of the driving forces a series of modelling experiments were designed to 
include a variety of forcing conditions. These include the tidal range, wave conditions and river 
discharge values. 

The relative importance of each of the physical processes on the sediment transport and consequent 
morphodynamics varies across the region. The main inlet channel is dominated by tidal action that 
directs the sediment transport as a consequence of the varying tidal flow asymmetry, resulting in 
net offshore transport. Sediment transport over the shoals and secondary channels at both sides of 
the main channel is dominated by wave related processes, displacing sediment onshore. The 
interaction between waves and tide generated currents controls the transport over the submerged 
sandbar that defmes the channel's seaward extent. High river discharge events are also proven to be 
important in this region as they can change sediment transport patterns across the area. Waves play 
a major role in the sandbar morphodynamics. Despite the relative low frequency of high wave 
energy events that reach the region they are responsible for large amounts of sediment 
displacement, catalysing some dramatic morphological changes. Therefore, the temporal 
distribution of storms defines the cyclic behaviour of such environments, making the system more 
dynamically active over the winter months. It is also during this period that river discharge values 
reach high peaks, increasing the capacity of the ebbing tidal flows and interacting with the 
opposing waves. The opposite occurs during summer periods, when less energetic conditions lead 
to slower morphological changes. The application of an initial sedimentation/erosion model proved 
to be useful in giving qualitative predictions of the morphological evolution of such a complex 
sandbar system, reflecting the initial morphological changes for different forcing conditions. 
Qualitative comparisons between the modelled sedimentation/erosion patterns and the video based 
observations of the changes at the dynamic offshore sandbar show that the model is able to 
reproduce its overall evolutionary tendency. The morphological adjustment of the system to the 
forcing conditions shows the progression towards the next morphological stage, allowing the initial 
steps towards predicting the evolution to be taken. 

The technique applied, coupling the numerical model with the video images, has been shown to be 
of great value in providing a better understanding of the processes that control the dynamics of inlet 
systems. At short time-scales, quantitative information about the acting processes and how they 
interact has been gained by the modelling experiments, and at medium time scales, the combined 
application resulted in qualitative predictions of the evolution of most regions of the system. 
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averaged velocities in x- and y-directions 

Pa(x,y,t) atmospheric pressure (kg/m/s ) 

Qb rate of wave dissipation 

qb bed load sediment transport (m^'/s/m) 

qs suspended load sediment transport (m^/s/m) 

qt total sediment Uansport (m^/s/m) 

R straight distance fi-om ground location to the camera 

r bed roughness 

s relative density of the sediment 

SxXt Sxy, Syy radiation stresses 

/ time (s) 

T wave period (s) 

Ttiiss wave dissipation period 

U, V depth averaged velocity components in the x- and y-direction 

xvni 



W, V velocities in the x- and y-directions (m/s) 

instantaneous shear velocity related to skin friction 

shear velocity for combined wave-current 

image coordinates 

V,Vx,Vy(x,y,t) wind speed and components in x- and y-directions (m/s) 

settling velocity 

x ,y space coordinates (m) 

z vertical elevation (m) 

Zc distance from the ground plan to the camera 
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Chapter 1 

Introduction 

1.1. General Introduction 

Inlet systems are common features around the world's coastline, being highly important for 

the exchange of materials between land and sea. The influence of these systems over the 

adjacent environments and their ecological and economical importance has afforded them 

special considerations within coastal sciences. Geographically, coastal regions are amongst 

the most densely populated by humans due to favourable conditions, being home for 70 % 

of all human beings (Charfas, 1990). Anthropogenic pressures on these region results in 

serious environmental stress, with some of the most dramatic consequences being related 

to the river mouths. Construction, dredging, changes in fi-eshwater flow, and pollution are 

some of the activities that affect these systems. Additionally, natural pressures are also 

expected to increase due to global changes, making understanding and managing coastal 

zones one of the most important challenges facing us (Huntley et al., 2001). 

Since the nineteenth century, with the expansion of sea routes and ports, studies trying to 

understand the interactions between the flow, sediment and structures became increasingly 

common (Stevenson, 1886). This resulted in several studies using empirical relationships 

to understand the hydraulic and sedimentary behaviours of inlets (e.g. LeConte, 1905; 

O'Brien, 1931) and observational studies aiming at the management o f inlet systems. More 

recently, as a result of the better understanding of some of the physical processes and 

available computer technology, tidal inlets have come within the reach of mathematical 

modellers. The possibility of modelling many of the complex physical processes which 

take place within inlets enables researchers to test hypotheses on how these systems work 

and to identify the most important knowledge gaps (as reviewed by De Vriend, 1996 and 

De Vriend and Ribberink, 1996). Additionally, during the last decade the development of 

alternative monitoring techniques such as the use of video imaging of the nearshore 
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regions (Lippmann and Holman, 1991; Holman, 1994) resulted in a valuable database 

documenting their evolution. 

The overall aim of this thesis is to better understand the processes that drive the 

morphological evolution of inlet sandbar systems. Through the combined application of in 

situ measurements, numerical modelling and video imaging, tests have been carried out in 

order to assess the importance of the processes controlling morphological evolution, and 

the relative importance of these processes in different regions of the system. By applying 

these techniques to different stages of the evolutionary cycle, the initial steps towards 

improving the predictability of the behaviour of the sandbar system have also been taken. 

In this study the nomenclature proposed by Hayes (1975) is used, with the estuary mouth 

being considered an inlet due to the dominance of tidal flows. 

The Teign inlet, Teignmouth, Devon, UK was chosen for this study due to its complex and 

active morphodynamic behaviour. Due to its challenging nature, this site has been the 

subject of a series of studies and field campaigns (e.g. EU projects such as C0AST3D' and 

COASTVIEW^) and is also one of the selected sites in the Argus programme (Holman, 

1994). Since February 1999 an Argus video system gathers hourly video images from the 

area, providing invaluable information on the morphological evolution of the sandbar 

system. Thus Teignmouth displays large morphological changes over short periods of time, 

and there is a large quantity o f high quality data available to document these changes and 

to drive and calibrate numerical models. The numeric2il model applied in this study is the 

MIKE2I modelling system developed by the DHI Water & Environment. This model was 

applied in this study as part of a collaboration between the University of Plymouth and the 

DHI Water & Environment within the EU SWAMIEE project (Contract No. 

ERBFMRXCT97-01I1). 

' for details see the project web site at http://www.hrwallingford.co.uk/projects/COAST3D/ 
^ for details see the project web site at http://www.ihecoastviewproject.org 
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1.2. Specific Objectives 

Within the overall aim of better understanding the balance of driving forces at the vicinity 

o f an inlet system and assessing the value of the innovative technique applied in this study, 

some specific objectives were defined: 

• Apply, calibrate and validate a numerical area model (MIKE21) at the Teignmouth 

area; 

. Apply and validate techniques to extract morphological information from video 

images; 

Integrate video imaging information with numerical modelling experiments, to better 

understand the behaviour of the sandbar dynamics from short to medium temporal 

scales; 

• Identify and assess the relative importance o f the key processes across the complex 

sandbar system at the Teign inlet, through the combined application of a numerical 

model, field data and Argus video images; 

• Take initial steps towards assessing the predictability of such complex environments. 

1.3. Thesis outline 

Following this introductory chapter (Chapter 1) is the theoretical background to the study 

in the Literature Review (Chapter 2). A synthesis of the research conducted on the subject 

of inlet sandbar dynamics is presented in this chapter focusing on applied techniques such 

as numerical modelling and video imaging in the study of coastal processes. 

The area of the present study is the Teign inlet system (Teignmouth, UK). A detailed 

description of the study area is presented in the first section of Chapter 3. The second 

section of Chapter 3 describes the field data available to this study with a brief description 

of the instrumentation and analysis used. 

In Chapter 4 the setup of the numerical model is described followed by the presentation of 

its calibration and validation through comparisons with the measured data via time-series 
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comparisons and statistical parameters that help in assessing the quality of the modelled 

results. This chapter shows the quality of the calibrated model that is applied in the 

experiments carried out in Chapters 5 and 7. The description of each module is given in 

Appendix I . 

A description of the video imaging techniques applied to obtain and extract information 

fi-om the images is presented in Chapter 5. This chapter also includes the integration of 

numerical modelling and video imaging through the application of the modelled water 

levels to the image analysis. The use in the model of the intertidal morphology extracted 

from the video images allows modelling to be carried out for different evolution stages of 

the ebb-tidal delta system in Teignmouth. The results are then compared with 

measurements made through the use of traditional surveying techniques. 

Chapter 6 looks at the physical controls of the sandbar system based on experiments 

carried out with the validated model. These experiments include a range of forcing 

conditions whose relative importance on the sediment transport is assessed during one 

morphological stage (October/November 1999). 

The numerical model (Chapter 4) and the imaging techniques (Chapter 5) are applied in 

Chapter 7 in order to extend the modelling experiments at different stages o f the 

evolutionary cycle, providing quantitative information on the processes that govern the 

morphological evolution. The comparison o f the modelled sedimentation/erosion patterns 

with video images allows a qualitative prediction of the system's evolution. Finally, a 

conceptual model of the functioning o f the Teignmouth sandbar system is given. 

General conclusions o f this study and suggestions for future work are presented in the 

concluding Chapter 8. 
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Chapter 2 

Literature Review 

2.1. Foreword 

The present study is focused on improving understanding of the processes that drive the 

dynamics of the sandbars that form an ebb-tidal delta system. As these processes involve 

different temporal scales, the coupled application of a numerical model and video imaging 

is applied in order to carry out several "small scale" modelling experiments at a "medium 

scale" o f morphological process. Hence, the literature review in this chapter is divided into 

three main sections: 1) a general overview of inlet systems and their morphodynamic 

behaviour; 2) the modelling o f inlet processes and limitations that arise from the 

application of numerical models at such complex systems; and finally 3) an overview of 

the video imaging technique applied in order to link the different time scales. 

2.2. Inlet Systems 

2.2.1. Definition and general morphology 

Inlet systems are defined as being the passage between the ocean and the adjacent estuary 

or lagoon, encompassing the channel and associated sediment bodies (Hayes, 1969, 1980). 

Inlets have a large variety of forms, associated with barrier islands or being in essence the 

mouth of a river where the discharge of freshwater may be significant (Komar, 1996). 

According to Bruun (1978) three main features form a tidal inlet: the ocean section, which 

includes the external sediment bodies (ebb-tidal delta) and one or several channels; the 

gorge channel, meaning the section with minimum cross-sectional area and the bay section 
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with its shoals (flood tidal delta) and channels. The nomenclature commonly used in the 

studies of tidal inlets is the one proposed by Hayes (1975) and is represented in Figure 2.1. 

Ebb-tidal delta 

The ebb-tidal delta represents the sediment body resulting fi-om the interaction of tidal 

currents, waves and wave generated longshore currents acting at the ocean section of the 

inlet. The typical morphology of ebb-tidal deltas is shown in Figure 2.1. The main 

components of the ebb-tidal delta are the main ebb channel; charmel margin linear bars; the 

terminal lobe, at the end of the main ebb chaimel; the swash platforms, formed by the wave 

action over the shoals; and marginal flood channels which may occur at both updrift and 

downdrift sides of the inlet running parallel to the shore. The detailed morphology and 

sedimentary structures of such deposits can be found in Hayes (1975, 1980); FitzGerald 

and Nummedal (1977) and Boolhroyd (1985). 
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Figure 2.1. General inlet morphology (modified from Davis, 1994). 
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Flood-tidal delta 

Sediment transported into the estuarine portion o f the inlet and deposited by the 

decelerating flood tidal currents form the flood-tidal delta (Figure 2.1). The major 

components are the flood ramps, flood channels and the higher landward margin that 

protects the delta from ebb currents (ebb shield). Details of the flood-tidal delta 

morphology are described in Hayes (1975, 1980), Boothroyd (1985) and Moslow and 

Heron (1994). 

Channel 

The narrowest and deepest part of the inlet connecting the ocean to the embayment or 

estuary is the inlet channel. The channel is responsible for the exchange of flows and 

sediments in both directions, landwards and seawards. The channel variability is also a 

result of the relative influence of waves and tidal processes. Under the dominance of tidal 

processes, the channel is deeper and relatively stable, with strong tidal currents removing 

deposited sediment (Boothroyd, 1985). With the increasing influence of wave related 

processes, such as longshore currents, the channel becomes less stable and tends to 

migrate. The channel migration is usually downdrift (FitzGerald, 1988; Davis, 1994), 

however the updrift migration was also registered in some cases (Davis, 1983; Aubrey and 

Speer, 1983; Reddering, 1983). In situations of channel migration the channel presents an 

asymmetric profile, reflecting the accumulation of sediments at one of its margins (Hayes, 

1980). 

Based on the inlet morphology as a result of the controlling processes, several 

classifications of inlets were proposed (e.g. Hayes, 1979; Oertel, 1975; Davis, 1994; Hicks 

and Hume, 1996). Most of these studies refer to typical barrier-island inlets with no 

structural control. As the present study focuses on an inlet influenced by the presence of a 

headland, some attention will be given to this kind of environment. The influence of a 

structural control on the ebb tidal delta morphology was shown for example in studies of a 

rock-bound tide-dominated estuary (Kennebec River, USA - FitzGerald et al., 2000a) and 

at inlets of the New Zealand coast (Hume and Herdendorf, 1992, Hicks and Hume, 1996). 
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Hicks and Hume (1996) classified seventeen inlets of the New Zealand coast according to 

the morphology and size of their ebb tidal deltas. The authors identified four basic shapes 

of ebb deltas (Figure 2.2), TTiese shapes appear to be related mainly to delta size and the 

shoreline configuration through its control on wave exposure, shape of the space available 

for the delta to occupy, and alignment of the ebb tidal jet. 

dominani 

Rock 
Headland A -

tidal ddta 

tenidaJdar 

Rock T + 
Headland 

Rode controls 
deflecting ebb jet 

Figure 2.2. Schematic diagrams depicting controls on ebb delta size and shape, where a) 

free-form ebb delta; b) constricted ebb delta; c) high-angle half delta; and d) low-angle 

half-delta (after Hicks and Hume, 1996). 
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The free-form ebb delta (Figure 2,2a) is a longshore elongated and reasonably symmetrical 

delta occurring o f f inlets on relatively sUaight, exposed shorelines experiencing significant 

littoral drift. The constricted ebb delta (Figure 2.2b) presents a similar basic shape but is 

less elongated alongshore and occurs where the inlet occupies a broad shoreline angle. The 

lateral spread of the delta is restricted by the offset between the headland and the barrier. 

Figure 2.2c shows the shape of the high-angle half-delta, which presents a near shore-

normal bar. This type of delta occurs when the ebb jet runs hard against the headland, 

resulting in a significant shoal forming on the barrier side of the inlet. The low-angle half-

delta (Figure 2.2d) occurs in the form of a longshore-elongated wedge-shaped deposit. The 

delta is pinched between the beach and an ebb tidal jet forced to flow at a low angle to the 

shoreline. 

The presence of a structural control typically results in asymmetric ebb shoals, usually with 

triangular or elongate wave-dominated swash platforms of shore-normal orientation built 

in the lee of the headland (Hume and Herdendorf, 1992; Hicks and Hume, 1996). This 

delta morphology is akin to that described by Oertel (1977) and suggests that inlet currents 

rather than longshore currents are the dominant factor influencing the accumulation of 

sediments at the inlet. Typically a marginal flood tidal channel separates the ebb tidal delta 

from the beach. The size of the ebb tidal delta varies as a factor of the headland shelter 

(Hume and Herdendorf, 1992). 

2.2.2. Importance of inlet systems 

Due to their high ecological and commercial importance and the influence they have over 

neighbouring areas, inlets have been the subjects of many studies within the field of coastal 

science and engineering. Historically, the need for navigation has been the most important 

application driving research for understanding physical processes at inlet systems (Mehta, 

1996). With many harbours and marinas associated with inlet entrances, they are important 

for economical and recreational activities that rely on the channel stability. With the 

objective of maintaining the navigable channel, several studies focused on the channel 

stability controls considering empirical relationships between morphological and 

hydrological processes (e.g. LeConte, 1905; O'Brien, 1931, 1969; Escoffier, 1940; Bruun 
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and Gerritsen, 1960; Jarret, 1976; Walton and Adams, 1976; Hume and Herdendorf, 1988; 

Van de Kreeke, 1992). The importance of the channel stability is also related to ecological 

aspects, due to the exchange of dissolved and particulate substances controlling the water 

quality and ecology of the associated embayment or estuary (Goodwin, 1996). 

Inlets have also a strong influence over the sediment budget of the coastal regions, 

affecting the stability of adjacent beaches and/or barrier islands (e.g. Oertel, 1977; 

FitzGerald et al., 1984; FitzGerald, 1988; Fenster and Dolan, 1996; Williams et al., 2003). 

The sand bodies associated with inlets, such as the flood and ebb-tidal deltas are important 

temporary and permanent sand reservoirs. Additionally, ebb-tidal deltas strongly influence 

the wave energy distribution along the adjacent shoreline. This protects the shoreline from 

the incoming waves and defines the sediment transport patterns dictating the inlet sand 

bypass processes, (e.g. Goldsmith et al., 1975; Hayes, 1979; FitzGerald et al., 1984; Oertel, 

1988; FitzGerald, 1996). 

2.2.4. Morphodynamics 

Inlets can be considered morphodynamic systems, fianctioning through the interaction of 

three main components: fluid dynamics, sediment transport and morphological changes 

(Figure 2.3). The fluid dynamics is induced by the energy input in the system through 

waves and currents and is influenced by the bottom topography. This mutual adjustment of 

topography and fluid dynamics is linked by the sediment transport over time. Gradients in 

sediment transport result in local erosion and deposition changing the morphology. The 

changed morphology wil l lead to changes in the hydrodynamics that may then re-inforce or 

suppress the morphological changes imposed by the forcing conditions. 

Morphodynamic processes are time-dependent and occur at different time-scales. Based on 

the idea of "primary-scale relationship" proposed by De Vriend (1991), for each scale level 

it is possible to identify a specific morphodynamic system (Figure 2.4). Small scale 

processes (e.g. ripples formation) are forced by single events, such as waves or tides. In 

this case the morphodynamic adjustment can be followed in detail as a real time-process. 

The evolution of channel and sandbars is a response to single events (such as a storm) 

10 
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through to seasonal variations in the forcing conditions. In general, at lower time and 

temporal scales individual fluctuations in the forcing conditions are important, whilst at 

large scales the evolution is a response to mean trends in environmental conditions. The 

time scales involved in this study range fi-om small, by applying the model in order to 

imderstand the physical processes acting on the system (Chapter 6), to medium, when 

combining the model application with the video imaging techniques in order to extend the 

small scale model applications over a larger period of time (Chapters 5 and 7). 

Forcing 
(tides, waves, wind) 

Fluid dynamics 

i 

Sediment transport 

Morphological change 

Figure 2.3. Coastal morphodynamic system. 
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Figure 2.4. Inlet features (bold) and their main forcings (italic) as a function of time and 

space (after De Vriend, 1991). 

At inlet systems, probably the most dynamic region is the ebb-tidal delta, which is under 

the influence of several forcing conditions (e.g. tides, waves, winds) causing changes at 

different temporal scales, ranging from short- to long-term related changes. Assuming that 

the forcing conditions remain constant throughout time, it is expected that the morphology 

will reach an equilibrium state, characterised by relationships between morphology and 

hydrodynamics. Examples are the relationships between the inlet tidal prism and the ebb-

tidal delta volimie (Walton arid Adams, 1976) and between the tidal prism and the cross-

sectional area of the inlet channel (LeConte, 1905; O'Brien, 1931, 1969; Jarrett, 1976, 

Hume and Herdendorf, 1988). However, even when comparing inlets under similar energy 

conditions, there is still scatter in the data of such relationships. Additionally, the 

variability in the ebb-tidal delta volume at individual inlets is also not taken into account 

(FitzGerald, 1996). As shown by several authors, ebb-tidal delta volumes may change 

considerably over time, mainly at mixed energy (tide-dominated) shorelines, with cyclic 

behaviour of volume growth and decay (e.g. Oertel, 1977; FitzGerald, 1982, 1984; 

Slingeriand, 1983; Sha, 1989; Smith and FitzGerald, 1994; Van de Kreeke, 1996; Kana et 

12 
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al., 1999; FitzGerald et al., 2000a; Williams et al., 2003). A series of conceptual models 

with regard to processes on outer deltas were derived from these studies and reviews were 

given by FitzGerald (1996) and FitzGerald et al. (2000b). 

These investigations documented the variables that control the morphodynamic processes, 

highlighting the importance of the wave and tidal energy, tidal prism, inlet geometry, 

sediment supply, regional stratigraphy, slope of the nearshore and engineering 

modifications. The interactions of these processes combined with the spatial extension of 

the inlet system define the temporal scale of the cyclic behaviour of the ebb-tidal deltas. 

Sediment transport in the inlet channels is controlled by the ebb/flood dominance, with 

most inlets presenting landward transport during storms, when large waves result in more 

sediment being transported to the channel and the storm surge increasing the flood 

currents, driving sediment towards the flood-tidal delta. Under less energetic situations, 

sand is transported in a net seaward direction being deposited on the ebb-tidal delta. Wave 

action over the delta generates onshore currents that wi l l interact with the ebb flows. 

During higher wave energy conditions, when the wave generated currents dominate the 

ebb flows, sediment over the shoals is transported onshore, usually in the form of sandbars. 

These sediment transport processes are usually associated with large amounts of sediment 

being bypassed to the downdrifl shoreline, and at stable inlets this process occurs through 

the formation, landward migration and attachment of large sandbar complexes (FitzGerald 

et al., 2000b). This study focuses on a stable inlet, but influenced by the presence of a 

structural control (headland), resulting in less sediment bypass and in a consequent 

retention of sediment, which is a fiinction of the amount of headland shelter (Hume and 

Herdendorf, 1992; Hicks and Hume, 1996). Few studies focused on the dynamics of these 

structurally controlled inlets and there is relatively little known about the net sediment 

transport patterns at the entrance of such inlets (Stumpf and Goldschmidt, 1992; Fenster 

and FitzGerald, 1996; Fitzgerald et al., 2000a). 

2.3. Modelling Inlet Processes 

Inlet processes are very sensitive to the external forcing conditions. Thus, changes to these 

conditions due to natural causes (e.g. sea level rise) or induced by human activities (e.g. 

13 
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Structures, dredging) can have considerable impacts on the system. The need to better 

understand and predict these highly complex and dynamic systems led, in recent years, to 

the development of mathematical models of their behaviour. I t has become possible to 

model many of the complex processes (waves, currents, sediment transport, morphological 

changes) which take place in the vicinity of an inlet (De Vriend, 1996). However, due to 

the range in time and space scales involved in inlet processes, limitations arise in the 

application of process-based models over larger time scales (De Vriend, 1996; Van de 

Kj-eeke, 1996). Since models that predict the small-scale processes well are not necessarily 

appropriate for long-term predictions, De Vriend (1996) classified different types of 

models according to the scales of the modelled morphodyneimic process: 

. Data-based models: use only measured data aiming directly at the phenomena to be 

described (e.g. geostatistical models such as the extrapolation in time of a certain 

parameter of the system's state via a linear regression analysis of observed values); 

Empirical relationships: also based on observations, but establishing relationships 

between measured peu-ameters (e.g. linezu* relationships between tidal prism and 

channel cross-sectional area or ebb-tidal delta volume); 

. Process-based models: based on first physical principles (conservation of mass, 

momentum, energy, etc) and use mathematical equations to describe waves, currents, 

sediment transport and bottom change; 

Formally integrated, long-term models: derived from a process-based model by formal 

integration over time and space, with empirical or parametric closure relationships to 

prevent the model becoming unstable; 

• Semi-empirical, long term models: describe the dynamic interaction between large 

elements of the system, using empirical relationships to represent the effects of smaller-

scale processes. 

As the model applied in this study is a process-based model, more details are given about 

the concepts of such models. The basic concepts of process-based models is the coupling 

of standard models of the constituent physical processes (waves, currents, sediment 

transport) via a bottom evolution module based on sediment conservation (De Vriend et 

al., 1993). Figuj-e 2.5 shows the basic model concepts summarised here and indicating the 

type of application carried out in this study: 

14 
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. "initial sedimentation/erosion" (ISE) models go only once through the sequence of 

constituent models. Calculations are based on the assumption o f an constant bed 

topography and only the rate of sedimentation or erosion is computed at every location; 

. "medium-term morphodynamics" (MTM) models include the feedback of the new 

bottom topography into the hydrodynamic and sediment transport computations 

through a looped system which describes the dynamic time-evolution of the bed; 

. "long-term morphological" (LTM) models, in which the constituent equations are not 

describing the individual physical processes, but integrated processes at higher level o f 

aggregation. 

As the present study makes use of an "initial sedimentation/erosion" (ISE) model, more 

details about this type o f models eu-e given in the next section. In the present study, in order 

to extend the application of an ISE model at different morphological conditions, a data 

assimilation process (from video derived intertidal morphology - section 2.4) is combined 

with the model application (Figure 2.5). 

Details of the morphodynamic models (MTM) with their potentials and limitations can be 

found in several applications carried out over recent years (e.g. Latteux, 1980; O'Connor et 

al., 1981; De Vriend, 1987; Andersen et al., 1988, 1991; O'Connor and Nicholson, 1992; 

De Vriend et al., 1993; Roelvink and Van Banning, 1994; Wang et al., 1995; Cayocca, 

2001; Van Leeuwen and De Swart, 2002). 

2.3.1. Initial sedimentation/erosion models 

The initial sedimentation/erosion models are the widest used in practice, mainly when 

studying 3D environments such as inlets. Advantages o f this type o f models over the M T M 

models include the smaller computational effort, relatively easy implementation and, the 

latest process descriptions can usually be included without too many unexpected 

complications (De Vriend et al. 1993). However, models of this type are difficult to 

interpret in terms of longer-term morphological evolution, and they can only provide 

information on phenomena at a time scale much smaller than the morphological one. 

Without the feedback mechanism between the morphological evolution and the 

hydrodynamics and sediment transport, the ISE models cannot predict near equilibrium 
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situations. They only describe the first morphological adjustment after a strong distortion 

of the system (e.g. due to human interference, or in this study, the presence of a sandbar). 

According to De Vriend (1994), in such distorted systems, a few "primary" transport 

phenomena appear to be predominant, and the morphological adjustment process tends to 

be monotonous in time. Therefore an ISE model can be expected to yield a reliable 

indication of this process (Figure 2.6), The cyclic behaviour of the sandbar system subject 

of this study means that it would never reach the dynamic equilibrium situation represented 

by the solid line in Figure 2,6. Due to its cyclic bar migration, the system is always 

"strongly distorted" and thus evolving to a new state (as represented by the dashed line in 

Figure 2.6). Therefore, the ISE model is applied at different "strongly distorted" situations 

during the evolutionary cycle of the system, reproducing the "primary" transport 

phenomena for each situation, resulting in a qualitative prediction o f its morphological 

evolution. 

Data 
assimilation 
(e.g. from 

video images) 

Bed 
topography 

Wave field 

Current field 

Sediment 
transport 

Sediment 
balance 

^ ISE-model J 

Morphological 
update 

Parametric or 
Formally 
averaged 

model 

Q M T - m o d e l J Q L T - m o d e l ^ 

Figure 2.5. Concept of the initial erosion deposition (ISE), medium term (MT) and long 

term (LT) models (modified from De Vriend et al., 1993). In the present application, the 

left-hand side of the diagram is applied (ISE model and data assimilation). 
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Figure 2.6. Behaviour of a "distorted" system (modified from De Vriend, 1994). 

The main results of the ISE models are the transport patterns and the consequent 

sedimentation/erosion rates. The sedimentation/erosion rates are not always very 

representative of the actual evolution after some time, whereas the transport pattem is 

usually more so (De Vriend et al., 1993). This makes the interpretation of longer-term ISE 

models simulation easier on the basis of the estimated yearly residual transport rates. 

Studies using ISE models are usually comparative, in order to predict the hydrodynamic 

and morphological changes due to alterations to the environment or to test the effects o f 

different forcing conditions on the sediment traiisport patterns and initial 

sedimentation/erosion rates. 

As mentioned above, limitations of the application of such models are not only associated 

with the assumption of constant bed morphology, and some others are listed here: 

• lack of knowledge of relevant physical processes. Inlets are extremely complex 

dynamic systems with a variety of processes and mechanisms. At this moment they are 

insufficiently understood to be sure that the elementary physics incorporated in a 

simulation model is sufficient to reproduce the phenomena of interest; 
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inability to incorporate all the relevant processes in models. Any simulation model 

depends on empirical or parametric submodels, implying simplifications and 

approximations which may affect the results; 

the wide range of different length and time-scales involved; 

lack of relevant data; 

errors in input data; 

accumulation of result errors through time. 

2.4. Application of video imaging techniques 

Until a few years ago, information on coastal morphodyneunics has been obtained from 

field experiments. Although much of our present understanding of nearshore processes 

originated from these field measurements, they are limited to an observation time scale 

(instantaneous and event scales - Figure 2.4), are conditioned by weather and wave 

conditions and are relatively expensive. Recent monitoring techniques, based on video 

observations of the nearshore zone are a good alternative to cope with these limitations of 

traditional measurement campaigns. By applying video imaging techniques, knowledge of 

coastal dynamics can be enlarged through the provision of usefiil information about 

hydrodynamics and morphodynamics of the coastal zone. Furthermore, the application of 

such techniques provides data over a wide range of space and time scales, varying from a 

storm-event (hours-days) to longer-term beach development (years-decades). 

In 1992 the Coastal Imaging Lab (Oregon State University - USA) started the Argus 

program (Holman, 1994), based on the work of Lippmann and Holman (1989) which 

showed the usefulness of video imaging for coastal monitoring. An Argus station is 

equipped with one or more video cameras connected to a personal computer with an image 

processing system. These cameras are pointed obliquely edong the nearshore region of 

interest. Every daylight hour data are gathered, comprising one snap shot image and a ten-

minute time-exposure image (Figure 2.7). A time exposure image is an averaged image of 

600 snap shots, recorded every second during a period of ten minutes (Figure 2.7b), such 

that it averages image intensity removing short-term variability revealing featiu^es of 
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interest This data set provides information with a large temporal and spatial extent, as well 

as a high temporal and spatial resolution. 

Nowadays, around twenty Argus stations are present at selected locations around the 

world. In the United Kingdom, the Institute of Marine Studies of the University of 

Plymouth collaborate closely with the Coastal Imaging Lab of the Oregon State University 

(USA) within the context of the Argus Program. 

Figure 2.7. Example of snap-shot (a) and time-exposure (b) Argus video images. 

2.4.1. Extracting information from images 

The quantification of intensity variability of an image into a two-dimensional array of 

picture elements is the basis of video image processing. Variations in the intensity of each 

pixel are determined by the amount of light reflected by the pixel area. Pixel intensities 

may change on very short time-scales, and the amount, and rate, at which they change may 

be attributable to nearshore hydrodynamic processes, and subsequently quantified (Down, 

1999). Using time-exposure images, rectified to produce a map view with known scaling, 

cross-shore intensity profiles at prescribed longshore distances can be easily found 

(Lippmann and Holman, 1989). The time series data from video images are usually in the 

form of non-dimensional image units, with 256 grey shades ranging linearly in value from 

0 (black) to 255 (white) or in the case of colour images pixel values are given in terms of 
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red, green and blue (RGB). To improve contrast, images can be adjusted to the fiill 

dynamic range using the limit values in the image prior to sampling (Lippmann and 

Holman, 1989). 

The analysis of intensity time series from Argus images pixels allows observation of 

different geophysical signals, such as flow velocities (Dovm, 1999); wave parameters 

(Lippmann and Holman, 1991; Holman et al., 1993; Stockdon and Holman, 2000; of rip 

currents (Van Noort, 1997; Symonds et al., 1997; Ranasinghe et al., 1999, Reniers et al., 

2001); beach cusps (Holland, 1998); bar morphology (Van Enckevort and Ruessink, 

2003a, b) nearshore bathymetric information (Aaminkhof et al., 2003) and intertidal 

morphology. The latter is of interest of the present study and is described in more detail 

below. 

One promising application of video images developed over the recent years is the 

extraction of the intertidal morphology for the study of coastal morphodynamics. Al l 

techniques aimed at the extraction of the morphology from the video images are based on 

the detection of the shoreline location at different times during a tidal cycle, with the 

shoreline being considered the contour line of the local water level. In order to define the 

morphology, the horizontal and vertical location of the shoreline needs to be defined. 

The first approach for the estimation of subaerial profiles using video images was made by 

Holman et al. (1991). They developed a technique to estimate beach profile by video 

imagery using either a shadow from a pole or the light from a narrow slit, drawing a line 

across the beach at a known location and orientation. Viewed from the longshore direction, 

the line will appear as a visible beach profile that can be digitised from the image and the 

ground coordinates of the profile uniquely determined. The authors conclude that the 

success of this technique suggests that profile data may be routinely collected using an 

automated system without the need for a survey team, thus allowing the ready collection of 

long time series for climatological studies. 

Plant and Holman (1997) developed a technique to map the Shoreline Intensity Maximum 

(SLIM) from time-averaged video images. The SLIM is a peak in the cross-shore intensity 

profile, related to the ultimate dissipation of wave energy or shoreline break. The main 

limitation of this technique is the need for a well defined SLIM which is a function of the 
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wave conditions and shoreface gradient. The measurement error for individual shoreline 

estimates on the steeply sloping beach used in field comparison was of about 0.10 m (in 

the vertical). Estimates of the cross-shore component of the beach slope were made 

accurately to within 10 % of the mean slope and the cross-shore position of the mean slope 

and the cross-shore position of the mean water level could be estimated to within 1 m, on 

average. 

At some sites, the method developed by Plant and Holman (1997) is not applicable since 

often no shoreline break is present. An example is Noordwijk, Netheriands, where the 

existence of an almost emerging inner breaker bar results in hardly any dissipation at the 

wateriine (Janssen, 1997). Focusing on this problem, Janssen (1997) developed a method 

to estimate intertidal beach levels from the images also i f no shoreline break is present, 

using the standard deviation images. These images highlight regions of high and low 

variance in images taken over the same time as the time averaged images. He showed the 

presence of a spatial shift between the location of the standard deviation maximum and the 

time average maximums in the cross-shore transect, with the detected shoreline being 

situated seaward of the surveyed shorelines. This, combined with the detection of some 

spatial jumps of the cross-shore location led to certain uncertainties in the correct shoreline 

position. 

Davidson et al. (1997) analysed video images from a strongly macrotidal beach (maximum 

tidal range « 7.5 m) at Perranporth, United Kingdom where the shoreline features 

identified by Plant and Holman (1997) and Janssen (1997) were not always recognisable. 

One of the most consistently observed shoreline features in both the standard deviation and 

time-exposure images was the sharp increase in intensity with offshore distance which is 

theoretically located close to the point of maximum run-up. The technique developed by 

Davidson et al. (1997) is based on mapping the maximum extent o f shoreward swash as 

indicated by the rapid spatial intensity change. Comparisons between the video data and a 

total station survey show an excellent agreement in the estimated 3-dimensional intertidal 

morphology with standard errors of less than 0.1 m. 

Considering the limitations of the above described methods, Aaminkhof and Roelvink 

(1999) developed a new method, which has a more generic applicability. The method 
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presented by Aaminkhof and Roelvink (1999) makes use of the colour information ft-om 

the Argus images. Generally, image intensities are defined in the red, green and blue 

(RGB) colour space, where the colour of each pixel is defined as a mixture of these 

colours. The application presented uses the pixel intensities within a region of interest 

converted to the Hue Saturation Value (HSV) colour space. The reason to do so is that the 

HSV colour space separately treats the colour information (by means o f H and S) and the 

greyscale information (by means of V). Investigation o f HSV intensities o f multiple 

images fi-om different Argus stations has indicated that both dry and wet pixels are 

clustered in the HS space, but at rather different locations. Using techniques to separate 

wet and dry pixels they obtain the definition of the horizontal co-ordinates of the time 

averaged location of the wateriine. 

With the objective of producing a non-site specific technique for the detection of the 

shoreline for a range of different wave conditions and beach characteristics, Kingston et al 

(in prep.) applied an Artificial Neural Network model to differentiate between sand and 

water regions in a video image. In order to identify the horizontal spatial location of the 

shoreline, the authors trained the Artificial Neural Network with RGB values obtained 

fi-om sample inputs and a manual binary classification of sand or water as the output. The 

shoreline pixel intensities are estimated from histograms of pixel intensities, resulting in 

the threshold value of the shoreline intensity. By testing their technique at different sites, 

typical root mean square errors in the range of 0.2 to 0.5 m were found when comparing 

the extracted morphology to intertidal maps produced by traditional survey techniques. 

One source of inaccuracy in these above mentioned methods comes from the assumption 

of a spatially horizontal water surface, an assumption that is often invalid in coastal regions 

where pressure gradients associated to inlets are important (Siegle et al., 2002 - Appendix 

II) . As the image processing depends heavily on accurate water level information, care 

needs to be taken when applying these techniques to inlet regions. This problem is later 

addressed in Chapter 5, were more details on the image processing can be found. 
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2.4.2. Video imaging of inlet systems 

The first application of video imaging to the study of the dynamics of an inlet system was 

within the EU ftmded INDIA (MQI /dynamic Initiative - .41garve) project (for more details 

about the project see O'Connor et al., 1998; Williams et al., 1999; Williams et al., 2003). 

This video system was deployed over a fourteen-month period overiooking the Barra Nova 

Inlet, Algarve, Portugal. 

Using the video images gathered at this location, Morris et al. (2001), Morris et al. (in 

press) and Balouin and Howa (2002) undertook a qualitative and quantitative analysis of 

the morphological evolution of the inlet system. Results of quantitative time-stack analysis 

of the images (Morris et al., 2001; Morris et al., in press) enabled the emzilysis of the rapid 

morphological changes in the channel morphology; whilst a more qualitative analyses of 

the rectified video images combined with some digitisation techniques (Balouin et al., 

submitted) resulted in a conceptual model of the inlet functioning. 

These studies provided a good description of the morphological variability of this inlet 

system by quantifying its temporal evolution. The comparison with in situ measurements 

allowed the correlation of the video-derived morphological changes with the forcing 

conditions. Through the analysis of this fourteen-month period, these authors found that 

the inlet morphology has a seasonal cyclic behaviour. The seasonal variation in the wave 

climate defines the main perturbations to the inlet morphology (Morris et al., 2001). 

A similar approach to study the morphological evolution of an ebb-tidal delta from the 

analysis of video images is taken in this study, with the observation and digitisation of 

morphological features providing valuable information for the understanding of the 

ftinctioning of such systems. 

2.4.3. Combining video imaging and numerical modelling 

Only a few studies have to date focused on the coupling of video imaging techniques and 

numerical modelling tools. In the application of techniques for the intertidal morphology 

extraction from images (as described in section 2.4.1) some techniques are combined with 
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the modelling of waves in order to establish their setup on the shoreface, reducing errors in 

the vertical estimation of the shoreline location (e.g. Janssen, 1997; Aaminkhof and 

Roelvink, 1999). For the quantification of the surf-zone bathymetry from video images, 

Aaminkhof et al. (2003) combined a Breaker Intensity Model v^th images in order to 

correlate the video-observed wave parameters with the nearshore morphology. 

Reniers et al. (2001) used the time averaged video images of the surf zone to calibrate the 

modelled wave dissipation coefficients by comparing the measured intensity and the 

computed roller energy. The wave roller energy estimated from the images was compared 

with that computed by the niunerical model. Further visual comparisons of modelled roller 

energy and image intensity distribution were carried out in order to optimise the wave 

dissipation coefficients. Their objective was to verify the physical processes implemented 

in the numerical model with video and in situ measurements o f rip currents. This 

application however, is a comparison of results from both techniques separately without 

iteratively combining them. 

These studies are akin to the technique applied in Chapter 5, when using the modelled 

water levels for the video image processing in order to obtain the intertidal morphology. 

However, no attempt of iteratively coupling these techniques has been made in order to 

better understand the morphodynamics of such environments. Hopefully, the coupling of 

both numerical modelling and video imaging here applied at a relatively small but very 

challenging inlet system wil l help in the imderstanding of the functioning and predictive 

evolution of such environments. 
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Chapter 3 

Study Area and Available Data 

3.1. Site description 

The current study is focused on the estuarine inlet of the river Teign at Teignmouth, 

Devon, UK (Figure 3 1). The inlet is located in the southern portion of Teignmouth's 2-km 

long beach, which is protected by a seawall (Figure 3.2). A sandy spit (The Point) 

extending from the north and a rocky headland (The Ness) on the south constrict the 

narrow inlet channel connecting the estuary to the Lyme Bay (English Channel). In the 

adjacent nearshore region, a complex system of intertidal sandbars composes the ebb 

shoals 

Jnited 
Kingdom 

200 200 400 600 

ArguB coordinale* (m) 

Figure 3 1. Study area The nearshore bathymetry (for October 1999) is plotted over a 

rectified Argus image. 
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Figure 3 2. The beach, protected by a seawall with The Ness headland in the background 

The location of a harbour in the estuary makes the channel a busy waterway that is 

navigationally very problematic As a resuh of the cyclic behaviour of the sandbar system 

that forms the ebb shoals described below, the channel is in need of constant drag-dredging 

to maintain a navigable shipping lane 

Comparable to others in East Devon the Teign estuary is a drowned river valley filled with 

sediments (Robinson, 1975) The estuary is approximately 6 km long and up to 800 m 

wide, with a total area of approximately 37 km^, of which 21 km^ forms its large intertidal 

area The catchment area of the Teign basin is approximately 380 km^ with additional 

inputs from the Rivers Lemon and Bovey. River discharge varies between less than 

10 m^ s'̂  in summer to peaks of over 150 m^ s'* in winter months 

Teignmouth is a macrotidal region Tides in the region are semi-diurnal with tidal range 

varying between 1.2 to 4.5 m, from neap to spring tides respectively. The site is relatively 

protected from Atlantic swell with significant wave heights greater than 0.5 m for less than 

10 % of the year (Miles, 1997). 

26 



Chapter 3 - Study Area and Available Data 

Sediment characteristics vary considerably around the inlet region and adjacent sandbars. 

Based on grab samples taken during the COAST3D project (see item 3.2.1.4) and 

summarised in Sutherland and Soulsby (2003), the offshore of the ebb-tidal shoal the 

median grain size {dso) varied between 0.15 and 0.2 mm. On the beach the grain size varied 

from 0.2 to over 2 mm. In the main channel and to the south of the channel, near the Ness, 

the grain size was greater than 2 mm with the greatest measured value being 14 mm. 

3.1.1. Relevant Previous Studies at the River Teign Inlet 

Teignmouth's ebb-tidal delta sandbar system has been studied since the 19^ century when 

Spratt (1856) first documented the cyclic movement of the sandbars. In his report 

proposing the construction of a jetty at the inlet entrance in order to maintain the 

navigability of the channel he suggests that the sandbar dynamics at the channel entrance 

follows a cyclic pattern. However, his study is based only on some sporadic observations 

and surveys of the area. Despite not suggesting the causes of the cyclic behaviour, he 

concludes that: "the movement of the Bar sands were governed by a law, instead of being 

wholly fortuitous ". 

Robinson (1975) made a more detailed observation of the cyclic evolution of the sandbar 

dynamics at the region, presenting an illustrated and, to some extend documented history 

o f the morphological evolution o f the ebb-tidal delta. The author based his study on the 

observations of morphological maps of the area over a period of 10 years, from 1964 to 

1974 and two tracer experiments accompanied by some hydrodynamic information. Figure 

3.3 sunmiarises the cycle described by Robinson (1975) with three main morphological 

stages that complete a cycle in approximately three years. Stage I is characterised by the 

growing Ness pole, which is projected across the main channel. He suggests that the 

instability of the Ness pole caused mainly by wave attack leads to its fragmentation. The 

second stage is characterised by the development of the offshore sandbars (Outer and Inner 

poles). Finally, stage 3 occurs when the onshore migrating sandbars attach to the beach 

causing the accumulation of sediments in the form of the Attached bank. 
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Qualitatively Robinson (1975) suggests that it is the interaction between waves and tidal 

currents that drives the cycle with distinct wave- and current- dominated environments. As 

for the sediment balance, he suggests that the system is a self-contained unit of sediment, 

with a closed cell of sediment isolated from the changes taking place in the coastal and 

offshore areas. 

Toignmouth 

Figure 3.3. Diagrammatic representation of the main changes in bank positions (Robinson, 

1975). 

Nunney (1980) attempts to provide a descriptive model of the sediment dynamics in the 

Teign estuary. Despite focusing more at the upper part of the estuary, the author also 

includes the middle and lower portions of the estuary in his study. Through the analysis of 

the sediment characteristics and their relations to the local hydrodynamics, he found that 

the net transport of medium sands is always down the estuary, with more sediment being 

carried during ebb than flood tides. However, most important in the sediment dynamics of 

the lower estuary seems to be the ebb/flood dominance controlling the transport over the 

flood tidal delta (Salty flat). Nunney (1980) suggests a clockwise movement of sediment at 
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this region, with flood tides dominant at the west portion and ebb dominant at the east side 

of the flood delta. Studying the mineralogy of the medium sands of the flood tidal delta, he 

found that they are principally derived from the New Red Sandstones, with the main local 

source being the eroding cliffs at the southern side of the inlet. This study by Nunny (1980) 

also suggests a two-way exchange of material through the estuary entrance, supplying the 

sand circulation system within the lower part of the estuary. 

Pritchard (2000) and Pritchard and Huntley (2002) carried out detailed observations of the 

Teign river plume front. When runoff is sufficient, a radially shaped brackish water plume, 

roughly symmetrical about the mouth, develops at the ebb tide (Pritchard and Huntley, 

2002). According to these authors, the water is flushed from the estuary through the narrow 

inlet channel, and when entering Lyme Bay the discharge current immediately decelerates. 

Based on X-Band radar images used to map the plume development and spreading, 

Pritchard (2000) shows that a clear frontal development occurs only when the decelerating 

flow leaves the main channel. The relevance of their findings to this study is the indication 

that the vertical circulation is small compared to the horizontal circulation at the inlet 

charuiel region, where the application of a depth-averaged model can reproduce well the 

main hydrodynamic processes. 

Based on geomorphological observations and previous studies, Carter and Bray (2003) 

made a qualitative assessment of the regional sediment transport paths. They conclude that 

the main sediment inputs are the cliff erosion and some fluvial input (mainly fine 

sediments). A summary of their findings is shown in Figure 3.4. As for the sediment 

transport paths, the authors divided the region in two main areas: south and north of the 

Teign estuary entrance. At the south of the estuary entrance, sediment supplied from the 

cliff erosion result in some substantial beaches, with well developed backshore berms. 

According to the authors, these are linked by a weak, discontinuous net northwards 

sediment transport pathway (Figure 3.4). Due to the configuration of the coast, with 

headlands confining pocket beaches, only small quantities of sediments are able to bypass 

the headlands. However, the authors believe that despite small, some contribution to the 

sediment budget of the sandbar system at the estuary mouth might come fi-om the south. At 

the north of the estuary entrance, the evidence gathered by the authors shows net 

south/south-westwards longshore transport along Teignmoulh's beach (Figure 3.4). Based 

on several previous studies, the authors conclude that this southwards transport takes place 
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whenever winds and waves from the east, south-east or east-south-east are operating. Some 

slight drift reversal (i.e. north-eastwards) may occur when the wave approach is from the 

west-south-west. However, offshore and inshore diffraction and refraction of waves from 

this direction is such that they have negligible capacity for littoral transport. This very 

qualitative information helps by providing a general overview of the main transport paths 

at the region, however, no quantitative information of the regional sediment budgets is 

available. 

Within the COAST3D project (see section 3.2), the extensive field measurements resulted 

in further insight into sedimentary processes at the region. From sedimentological and 

morphological evidence based on sediment samples and side scan sonar data, Van Lancker 

et al. (2001) evidenced the highly dynamic changes in bedforms and sediment mobility. 

From the sediment trend analysis they verify the need of fair-weather and storm-dominated 

processes to explain the textural and morphological differentiation at this site. Hoekstra et 

al. (2001) studied the sediment transport at the mouth of the estuary, at the intertidal region 

of the Sprat Sand. Results of high resolution ripple profile measurements and 

sedimentology were used to estimate the bedload transport rates. The authors conclude that 

the bedload transport is mainly a result of migrating bedforms that develop on top of the 

shoal and within a thin layer of sediment. The combination of waves and currents results in 

a substantially increased migration rate. Both studies highlight the importance of the 

interaction between tidal currents and waves controlling the observed local sediment 

transport, with high energy wave events being responsible for large amounts of sediment 

displacement. These observations are however limited in terms of assessing the relative 

impact of each process on the sediment transport and local morphodynamics. 
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Figure 3 4. Sediment transport at the Teignmouth region (from Carter and Bray, 2003). 
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3.1.2. Nomenclature and Main Morphologic Features 

Despite the dynamics of the sandbars that form the ebb tidal delta at Teignmouth, some 

morphological features are easily identified and are characteristic to the whole 

evolutionary cycle. The nomenclature used in this study is based on the distinct 

characteristics of the morphological features visible in the region and is presented in Figure 

3.5. 

Inlet channels: at the region of interest there are three channels directing the tidal flows. 

Two of them are permanent features (the main channel and the flood channel) and one 

occasional (the secondary channel). The importance of the secondary channel is variable, 

depending on the morphological stage of the system. 

Sandbars: a number of sandbar like features are visible in the study area, being divided in 

ebb- and flood-tidal delta features. The ebb-tidal delta sandbars are the most dynamic and 

complex of the system, with intertidal and subtidal features. At the southern side of the 

charmel the elongated sandbar (Ness sandbar) is linked to the offshore sandbar, north of the 

channel, by the submerged sandbar, forming an overall "U" shaped depositional 

environment (terminal lobe) at the outer portion of the main inlet channel. Also to the north 

of the channel is the triangular shaped sandbar (Sprat Sand), which is separated from the 

beach by the flood channel. At the estuary side of the inlet, an evident flood tidal delta 

(The Salty) is visible at low water. This sandbar remained relatively stable over the years 

(Robinson, 1975; Nunney, 1980) and is mainly composed of marine sands (Nunney, 1980). 

Beach: the beach adjacent to the inlet is classified as being dominantly reflective (Mariflo-

Tapia, 2003, according to classification proposed by Masselink and Short, 1993). The 

morphology is characterised by a steep reflective high tide beach and a flat terrace around 

low tide. On these types of beaches, surf zone processes at high tide are similar to those on 

reflective beaches, whereas during low tide the surf zone will be dissipative with several 

lines of spilling breakers (Marifio-Tapia, 2003). 
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1 

a. main inlet channel 

e. offshore sandbar 

i. beach 

b. secondary channel 

f. Sprat sand 

j . flood tidal delta 

c. Ness sandbar 

g. flood channel 

k. The Ness 

d. submerged sandbar 

h. sandy spit 

Figure 3.5. Oblique and rectified merged Argus video images of the study area with the 

definition of the nomenclature used in this study (Images from the 24/01/2000). 
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3.2. Available data 

This study covers approximately three years of the evolution of the sandbars that form 

Teignmouth's ebb-tida! delta (1999 - 2002). In order to accomplish this, data fi-om several 

sources collected over this period is used. The main source of in situ measurements during 

this period was the COAST3D project, which provided an excellent database for the model 

validation. Additionally, Argus video images were collected continuously over the studied 

period. This data set is complemented by separate field campaigns and by the installation 

of a weather station by the University of Plymouth. 

3.2.1. C O A S T 3 D main experiment 

The international C0AST3P* (COAstal STudy of three-dimensional sand transport 

processes and morphodynamics) project ran from October 1997 to March 2001 and was 

ftinded under the European Commission's Marine Science and Technology Research 

Programme (MAST-llI project No. MAS3-CT97-0086). A consortium of 11 partners 

including hydraulic laboratories, universities and national regulatory authorities from five 

EU states (UK, Netherlands, France, Spain and Belgium) undertook the project. The 

purpose of the C0AST3D project was (Soulsby, 2001): 

• to improve understanding of the physics of coastal sand transport and 

morphodynamics. 

• to remedy the present lack of validation data of sand transport and morphology 

suitable for testing numerical models of coastal processes. 

• to deliver validated modelling tools, and methodologies for their use, in a form 

suitable for coastal zone management. 

This was achieved by making field measurements purpose-designed for numerical model 

evaluation, with adequate boundary conditions and a dense horizontal array of 

measurement points, in conditions typical of the European coastline. Previous coastal 

experiments in Europe and elsewhere had placed their main emphasis on hydrodynamics; 

an innovative feature of the present project was that the emphasis throughout was on sand 

For more details see http://www.hrwallingford.co.uk/projects/COAST3D 

34 



Chapter 3 - Study Area and Available Data 

transport and morphodynamics. The project focused on the dynamics of non-uniform (3D) 

coasts, rather than on the relatively well understood uniform (2D) cases. Experiments were 

performed at two sites: a quasi-uniform (2.5D) stretch of the Dutch coastline and a frilly 

3D site on the UK coast (Teignmouth). 

Within the COAST3D project a series of numerical area models were validated using this 

database, including the University of Liverpool 2DH hydrodynamic and moiphodynamic 

model (Pan et al., 2001), the DELFT3D-M0R model (Walstra et al., 2001), the 

T E L E M A C version of PISCES model (Sutherland et al., 2001, Walstra et al., 2001) and 

the CIIRC model with the LIMOS wave mode! (Sierra et al., 2001). 

The data used in this study includes only part of the data collected during the experiments 

at Teignmouth, UK, and is given in Table 3.1. Figure 3.6 shows the location of all the 

instruments deployed during the main experiment (October - November 1999) and a brief 

description of the data used in this study is given below. Full details can be found in 

Whitehouse and Sutherland (2001). 

Table 3.1. C0AST3D main experiment instruments used for the model validation. 

Station' Instrument" Date deployed 
(GMT) 

Date recovered 
(GMT) 

Easting 
(OSGB) 

Northing 
(OSGB) 

Elevation 

3 frame 25/10/99 16:37 23/11/99 07:45 294695 71907 1.09 

5a S4 25/10/99 15:30 16/11/99 09:43 294955 72515 0.65 

5b S4 I6/II/99 09:46 22/11/99 08:55 294962 72491 0.65 

7 waverider 25/10/99 08:16 23/11/99 08:10 295224 72378 --
8 tide gauge 25/10/99 26/10/99 294347 72656 -
9 frame 26/10/99 08:06 22/11/99 17:54 294593 72481 1.09 

11 tide gauge 21/10/99 26/11/99 293885 72696 -
14 S4 25/10/99 15:41 22/11/99 13:23 294304 72447 0.65 

24 S4 25/10/99 17:19 22/11/99 13:33 294234 72319 0.65 

25 frame 26/10/99 07:14 22/11/99 17:30 293952 72218 1.12 

26 ADP 25/10/99 09:16 22/11/99 09:32 294840 71810 ~ 

28 frame 26/10/99 06:43 22/11/99 15:12 294289 72016 1.09 

33 frame 25/10/99 14:20 22/11/99 07:56 294519 71312 1.00 

38 met. station 20/10/99 26/11/99 294371 72642 --
•Station numbers followed by "a" or "b" indicate changes in the locaiion. ••frame: when 
deployed (e.g. eletromagnetic velocity meter and pressure sensor). • • • Elevation above the 

more than one instrument was 
bed (if appropriate). 
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N o r t h Xr 

Figure 3.6. Locations of instruments during the main field campaign in Teigmnouth 

(October 1999 bathymetry in relation to the ACD). Figure taken from Whitehouse and 

Sutherland, 2001). Each numbered circle represents a sensor location. Those used in the 

present work are highlighted (black circles) and are detailed in Table 3.1. 

i . 2. L L Hydrodynanucs 

Water levels: Instrument locations 8 and 11 (Figure 3.6) indicate the locations of the 

pressure sensors installed for the water level measurements. At location 11 (harbour) the 

unit averaged over 20 seconds. The unit at location 8 (Pier) averaged over 180 seconds in 

order to remove swell and waves, and all averages were corrected and time stamped at the 
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centre time of the average. Both systems were levelled by land survey closed looped 

traverse to the same two neeu-by Ordnance Survey Bench Marks. The typical resolution was 

1 or 2 mm providing accuracies of around 5 mm or better (Whitehouse and Sutherland, 

2001), 

Wave measurements: The wave data come from stations 7, 3, 4 and 25 (Figure 3.6). At 

stations 7 and 3 directional data is available, while at stations 4 and 25 the data is non-

directional. At station 7 a Datawell Directional Waverider buoy was deployed providing 

the wave boundary condition for the numerical model validation (Chapter 4). Significant 

wave heights and periods were determined for stations 3, 4 and 25 from pressure sensor 

records. The time-step of wave data collection was of one hour and the direction is given in 

degrees relative to the true North. 

Van Rijn et al. (2000) estimated the accuracy of the wave measurements during the 

C0AST3D experiments obtained through pressure sensors. This was done considering 

inaccuracies related to the water depth caused by the imknown height of the sensor above 

the bed, related to sedimentation/erosion near the instrument, and through comparisons 

with other instruments. The authors conclude that the significant wave height in non

breaking conditions derived from pressure sensors may have an uncertainty of maximum 

10 %. In breaking conditions this uncertainty may increase to a maximum of 15 %. 

Flow velocity measurements: The flow velocity data was collected by eletromagnetic 

velocity meters (stations 5, 9, 14, 24, 25, 28 and 33) and by an Acoustic Doppler Velocity 

meter (ADV - station 26). The eletromagnetic velocity meters used were the EMF sensors 

(manufactured by Delft Hydraulics) at stations 9, 25 and 28 and the S4 sensors 

(manufactured by InterOceans Systems Inc.) at stations 5, 14, 24 and 33. The flow velocity 

measurements were made every 10 minutes, being averaged over 10 minutes for the 

eletromagnetic velocity meters and over 40 seconds for the ADV measurements. The 

height above the bed where the measurements were made are indicated in Table 3.1. 

Van Rijn et al. (2000) assessing the accuracy of these measurements concluded that time-

averaged velocities smaller than 0.05 m s"' may have an inaccuracy of maximum 100 %; 

time-averaged velocities in the range of 0,15 to 0,3 m s'* may have an inaccuracy of 
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maximum 30 %; and time averaged velocities larger than 0.5 m s*' are assumed to have 

and inaccuracy of maximum 15 %. 

River discharge: The river discharge time series used in this study was obtained from the 

UK Environmental Agency (South West Branch) and covers more than three years 

(January 1999 - August 2002). The gauging station gives four measurements per hour of 

the fluvial inflow at the upper limit of the estuary. 

3,2.L2, Meteorological conditions 

During the C0AST3D main experiment, the meteorological station provided only a few 

days of data at the beginning and at the end of the experiment due to technical problems. 

The gap in data collection was completed with data provided by the UK Meteorological 

Office, from its station at the Isle of Portland, some 75 km east of Teignmouth (UTM 

456293.12 mE, 5601008 mN), at an exposed site 52 m above the sea level. Over the short 

period that the measurement coincided, there was good agreement of barometric pressure 

and wind direction and air temperature between the two sites. However, wind speeds were 

generally higher at Isle of Portland. During the period of three days of coinciding 

measurements the wind speeds were about 3 m s"' higher in average, at the Isle of Portland. 

3,2,1.3, Bathymetric and topographic surveys 

During the main experiment four subtidal surveys were made (Table 3.2) and the overall 

coverage is indicated in Figure 3.7. These surveys were made by m.v. Sir Claude Inglis 

(HR Wallingford) using differential GPS positioning. The intertidal region was surveyed 

with the use of a DGPS system and the surveyed points are also indicated in Figure 3.6. 

The co-ordinates system applied for the surveys was the Ordnance Survey National Grid of 

Great Britain (OSGB), which is a Transverse Mercator Projection with spheroid OSGB 36. 

Depths were measured in meters and originally reduced to the Admiralty Chart Datum 

(ACD), which is 2.65 m below the Ordnance Datum Newlyn (ODN)- In order to work with 

the same datum as the one used in the Argus video imaging system (see section 3.2.2), in 

this study the depths were reduced to ODN. 
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Van Rijn et al. (2000) assessed the measurement errors for the bathymetric and 

topographic surveys. The beach survey performed using a DGPS receiver mounted on a 

small vehicle moving over the beach, presents horizontal and vertical inaccuracy of about 

0.05 m on relatively flat areas and about 0.1 m on steep sloping face of bars. The 

inaccuracy of the ship survey used in the offshore sandbar comparison may be as large as 

0.25 m in shallow depths (such as over the off shore sandbar) due to relatively large ship-

induced motions. 

Table 3.2. Bathymetric surveys carried out during the main experiment. 

Survey Dates wave condition 

SI 2 7 - 2 8 October 1999 0.2 to 0.3 m; 3 to 6 s 

S2 6 - 8 November 1999 0.1 to 0.4 m, 3 to 10 s 

S3 16-17, 19 November 1999 0.1 to 0.3 m, 3 to 7 s 

S4 2 4 - 2 5 November 1999 0.3 to 0.75 m, 5 to 7 s 

In order to obtain the bathymetry of a larger region to be included in the model domain the 

surveyed data was complemented with data from digitised charts. The estuary region is 

included by the use of a 1979 survey (Nunney, 1980) and the offshore region is represented 

by data derived from the Admiralty Chart 3155. 

Additionally to the COAST3D surveys, some topographic surveys of the intertidal region 

were carried out during July and August 2000 in order to validate the application of 

techniques to extract quantitative information from the video images (as described in 

Chapter 5). These surveys were conducted using a total station referenced to the OSGB co

ordinate system and their positions are shown in Chapter 5 (Figure 5.15). These surveys 

were referenced to the ODN datum. 
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Teignmouth 

The Ness 

293600 293800 294000 294200 294400 294600 294800 295000 295200 

Easting (m) 

Figure 3 7 Example of the COAST3D surveys coverage area and resolution Black points 

indicate the vessel bathymetric survey and red points indicate the beach quad bike survey 

( 6 - 8 November 1999, Survey 1, OSGB) 

3.2.1.4. Sediment samples 

During the COAST3D pilot experiment 10 grab samples of the region of interest were 

analysed (sieved) whilst during the main experiment a total of 92 grab samples were 

analysed in order to establish their median grain size (dyj) and sorting (d) Figure 3.8 

shows the position and dso of the grab samples for both experiments 
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Teignmouth 

1 
293600 293800 294000 294200 294400 294600 294800 295000 295200 

Easting (m) 

Figure 3.8. Sediment samples distribution and median grain size values for the COAST3D 

pilot (red) and main (black) experiments. Co-ordinates are in OSGB, depths in ODN and 

grain size in millimetres. 

3.2.2. Ai^us Video System 

Additionally to the in situ measurements, Argus video images of the study area were 

collected every daylight hour continuously since February 1999. The five-camera Argus 

system is located on the top of Ness Head close to the estuarine inlet (Figure 3.9). These 

five cameras are directed to cover the inlet and Teigiunouth beach (Figure 3.10). 
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Figure 3.9. The Ness, with the arrow indicating the position of the Argus video cameras, 

detailed in the right hand side. 

C amcra 4 t amcra 5 

Figure 3.10. Images from the five cameras in Teignmouth and a merged image showing a 

panoramic view of the cameras field of view (05 March 2000, 12:00h). 
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The Argus system co-ordinate system is given in metres, with the origin of the grid being 

the shoreline (x) and the camei-as position (y). As a convention, the orientation of the x-axis 

is shore normal, with the positive x-axis pointing in seaward direction. The y-axis is 

directed perpendicular to the x-axis, such that the co-ordinate system obtained is positive in 

mathematical sense (Aaminkhof and Kingston, 2002). The vertical reference level for the 

Argus system at Teignmouth is the ODN datum. Some details of the basic image 

processing and accuracy are given below and serve as a basis for the technique applied in 

Chapter 5. 

The Teignmouth Argus video system was running before the start of this project, however, 

the author was directly involved in the maintenance of the system and determination of the 

cameras geometries for the image processing. Additionally, the author was involved in the 

planning and relocation of the cameras to a new frame in December 2001 (shown in Figure 

3.9). This was necessary due to the erosion of the Ness cliff, compromising the old 

camera's frame. 

3.2.2,1, Basic Elements of Image Processing 

The basis of video images processing is the quantification of intensity variability of an 

image into a two-dimensional array of picture elements or pixels (Holman et al,, 1993). 

According to these authors, the successful use of video image processing for any study 

requires an understanding of three component problems in increasing order of difficulty: 1) 

temporal aspects of video sampling, 2) spatial aspects and the transformation between 

image and ground coordinates, and 3) the relationship between image data and geophysical 

signals of interest. Some aspects related to these problems are described below and more 

details about the Argus imaging photogrammetry and calibration can be found in Lipmann 

and Holman (1989) and Holland et al. (1997). 

Coordinates Transformation 

In order to use oblique images to quantify offshore and longshore length scales it is 

necessary to transform the image using some photogrammetric equations (Lippmann and 

Holman, 1989). A geometric analysis is conducted by utilising objects of a known location 
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that are visible within the image to calculate the camera orientation relative to a given 

coordinate system. When transforming from ground to image coordinates the equations are 

fully defined. However, since the image is two-dimensional while the ground is three-

dimensional, the opposite process, rectification, is not fully defined, as ground coordinates 

are three-dimensional, while image coordinates are two-dimensional (Lippmann and 

Holman, 1989). To solve this problem, one dimension is assumed known. For the Argus 

images the vertical coordinate (z) is assumed to be the local water level. 

To make a physical analysis of the images, each oblique image produced by the cameras 

has to be rectified, deriving field coordinates from image coordinates. The geometry and 

labelling conventions used in the rectification process are shown in Figure 3.11 (after 

Lippmann and Holman, 1989). Small letters (jc, y) represent image coordinates, and capital 

letters {X, Y) denote the ground coordinates. The optic centre of the camera is located at 

point O, a distance Zc above the x-y (ground) plane. The camera nadir line intersects the 

ground at the nadir {N). The image points lie in the focal plane, which is considered the 1:1 

positive, consistent with traditional photogrammetry conventions. The focal plane is 

separated from O by the focal length fc, determined by the camera lens. The optic axis 

centre of the focal plane at point p, called the principal point, and forms an angle r (camera 

tilt) with the vertical nadir line. The principal line passes through the principal point and 

bisects the focal plane. The principal point is also the origin for the image coordinates 

system with the principal line as the axis. The nadir point acts as the origin for the 

camera coordinates system with the principal line in the ground plane defining the positive 

y axis (Lippmann and Holman, 1989). 
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<^^^y Focal Plane 

Ground Plane 

Figure 3.11. Geometric conventions for Argus photogrammetry (Lippmann and Holman, 
1989). 

The ground location of any point Q is determined from its image coordinates (x̂ , yq) by 

XQ = sec(r + a ) tan / 

rg = Z,tan(r + a ) 

Where the angles a and /are defined as 

(3.1) 

a = tan' 

and (3.2) 

r = tan' 
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Transformation in the opposite direction, from ground to image points, is done by simply 

inverting and combining 3.1 and 3.2 to yield 

=/ctan 

and 

tan 

r 2 2 \ 1/2 

(3.3) 

As these equations are function of the camera tilt (z) and focal length {f^, the application 

of these relationships in the field involves several complications (Lippmann and Holman, 

1989). Field measurements of tilt are difficult and inaccurate, and the focal length of a 

zoom lens is also hard to estimate. The second complication arises from the use of 

amplified images. This will cause the apparent focal length of the image to be altered by an 

unknown amount. The "magnified" focal length can be solved analytically using 

tan 

(3.4) 

Where is the measured distance from the principal point to the right-hand edge of the 

enlarged image and <̂ is the horizontal field of view of the lens. However, for most cases, 5 

itself is not accurately known, and the direction of aim of a camera in the field is generally 

chosen to give the best view. Therefore the ground coordinates system defined by the 

principal line does not match the "natural" beach related coordinates system. In particular 

the angle of rotation ^between these two coordinates systems, as well as the camera roll 0 

relative to the horizon, are hard to estimate in the field, complicating the use of the 

equations 3.1 to 3.3. In summary, the application of photogrammetry in the field requires 

the accurate knowledge of four camera related parameters 5, r, ^ and 6 which cannot be 

measured with sufficient accuracy in the field (Lippmann and Holman, 1989). 

Relatively accurate estimates of these additional unknowns {8, r, <j> and 9) can be 

determined by making use of clearly visible and defined objects v^thin the field of view of 
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the camera, with known locations in the oblique image as well as on the ground. These 

known points are called Ground Control Points (GCP). By knowing both the ground and 

image coordinates of the GCP's, equations 3.1, 3.2 and 3.3 can be solved iteratively to 

calculate the unknowns. To solve the four parameters {S, r, ^and 0) two GCP's are needed, 

thereby yielding a unique solution. If three or more GCP's are used, the problem is 

overdetermined and the solution can be optimised by applying a least squares solution. The 

use of this technique results into typical errors in the estimates of r, ^and fc less than 0.25°, 

0.5° and 0.5%, values which satisfactorily compare to the errors of the order of 1° when 

measuring these properties directly in the field (Lippman and Holman, 1989). 

Oblique Image Rectification 

After the determination of the geometry through the use of GCP's, ground coordinates (x, 

y) can be computed for every image location (Uj, Vi). This creates a rectified image, that is 

the projection of the original oblique image onto a horizontal plane at a certain vertical 

level. Starting from a known geometry the computations are executed for every single 

pixel, based on the Walton approach, that works with similar triangles (Aaminkhof, 1996). 

Geometrically, a linear relationship between image and ground coordinates yield 

^ _Ax + By + Cz + D 
' Ex + Fy + Gz'\'\ 

and (3.5) 

Hx + Jy + Kz + L 
K = 

Ex+ Fy + Gz + \ 

These expressions contain eleven parameters (A...L) which describe the geometry. To solve 

this system of eleven equations in eleven unknowns (A...L) six GCP's are needed, with 

each serving two relations between image and ground coordinates. If it is not possible to 

find six suitable GCP's in the cameras field of view, the parameters S, r, ^and ^and the 

camera position (x, y, z) can be used. The additional relations obtained through their use 

makes the use of two GCP's enough to obtain the eleven equations that solve the eleven 

unknowns. If more GCP's are used, a least squares approach is possible to solve this linear 

system of equations. 
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Knowing the eleven parameters of the Walton vector m = {A...L) the ground coordinates {x, 

y, z) can be deduced from the inverted equations: 

{EU, -A)X^^ {FU, - B)y + {GU, - C)r = /> - (/, 

{EK - H)x + {FV, - J)y ^{GK-K)Z = L- V., (3.6) 

z = z tide 

The third equation has been added to create a system of three equations and three 

unknowns. In nearshore applications the vertical level is assumed to be the tidal level 

{Z(ide)- This rectification process generates a plan view image, used for the physical 

analysis. 

At Teignmouth, the geometry for each of the five cameras is created by calculation of the 

parameters 5, r, ^and fusing the information of at least two GCP's. However, usually a 

larger number of GCP's are visible and used for the Teignmouth images. Geometries are 

created using MATLAB® routines (developed under the Argus Programme coordinated by 

the Coastal Imaging Lab - Oregon State University) containing the relations described 

above. For the application of these routines the MATLAB's Image Processing Toolbox is 

required. The input consists of a selected image that permits the clear visualisation of the 

GCP's, a camera file containing the (x, y, z) coordinates of the camera location and two 

distortion parameters and a file containing the ground plane coordinates of a number of 

GCP's. 

GCP's for Teignmouth cameras were chosen after detailed investigation of selected images 

allowing the identification of each GCP which were then surveyed in situ. Field 

determination of GCP's coordinates was made through topographic surveys using a 

Differential Global Positioning System (DGPS). Geometries for each camera are created 

on a regular basis of I or 2 geometries per month, or according to any detected change in a 

camera's orientation. 

Image Quantification and Pixel Resolution 
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Using the image processing system the oblique image is converted into a 640 x 480 array 

of pixels. Pixels are ordered according to a (Uj, Vi) pixel coordinates system, with origin in 

the upper left comer of the image. Normal image resolution is the single pixel, where the 

location of a circular target is defined according to the nearest pixel. This resolution can be 

improved by using sub-pixel techniques, which means that the location of a target is 

determined from centre of mass considerations: U,- and Frcoordinates of the target are 

defined as the mean values of the U,- and ^ -̂coordinates of the pixels inside the target 

(Aaminkhof, 1996). Comparing these improved coordinates to those obtained with normal 

image resolution yields an indication of the error within the digitised image. The observed 

differences are a function of the distance of a pixel to the centre of the screen. As such the 

image is said to be radially distorted (lens distortion). In order to correct this, image 

coordinates are undistorted first before being transformed into ground coordinates (see 

Holland et al., 1997). For this process another MATLAB® routine developed under the 

Argus Programme is applied (Holland et al., 1997). 

With every pixel representing a part (AS) of the camera field of view (S) of approximately 

30**, the method of breaking up the images into the array of pixels implies in a ftmdamental 

limit on resolution. For the Teignmouth cameras, the angular field of view of every pixel 

(AS) is approximately 307640 (= 0.047°), allowing estimation of the pixel resolution in x 

and y dimensions. As it is based on the straight distance (R) from ground location to the 

camera, the pixel resolution depends on the position in the field of view: 

Ax^^R'AS 

and (3.7) 

RAS 
Ay as 

cos 

Numerically, the pixel resolution can be obtained through the known geometries for a 

given image. With the definition of image and ground coordinates as described in section 

5.2., one can start from a location within the ground plane, compute its screen coordinates, 

move half a pixel in both positive and negative x- and y- direction and recompute the 

ground plane coordinates of the new "moved" points. The latter two represent the comers 
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of the "footprint" of the original pixel on the ground plane. After a correction for the 

camera orientation the dimensions of this footprint in x- and y- direction can be calculated 

(Aaminkhof, 1996). An example of calculated longshore and cross-shore pixel resolution 

for Teignmouth Argus images is shown in Figure 3.12. 

3.2.3. Weather Station and Pressure Sensor (pier) 

In order to support the video image data, the University of Plymouth installed a weather 

station and a pressure sensor at the Teignmouth pier that started collecting data from 

August 2000. Since then it is recording the meteorok)gical conditions, water levels and 

non-directional wave data. The water levels measured at this station are used in the image 

processing, being referenced to the ODN datum. When technical problems result in gaps in 

the recorded time series the predicted water levels are applied. 

Cross-shore pixel resolution (m) Longshore pixel resolution (m) 
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Figure 3.12. Argus video images pixel resolution for the Teignmouth cameras system (26 

October 1999). 
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3.3. Conclusion 

This chapter provided the information about the study area, the nomenclature used to 

describe its morphological features, and the data available for the study. The high quality 

data set available for this region allows the numerical calibration and validation (Chapter 

4) and to describe the morphological evolution of the dynamic sandbars (Chapters 5 to 7). 

The photogrammetric relations used in the image processing are applied in Chapter 5 when 

combining the numerical model and video images, and also for the description of the 

morphological evolution through the use of rectified video images (Chapters 6 and 7). 

Throughout the thesis, several references are made to the description here provided. 

51 



Chapter 4 - Numerical Modelling 

Chapter 4 

Numerical Modelling 

4.1. Introduction 

The high level of complexity of regions such as estuarine inlets involves the interaction of 

several forcing parameters. Tidal currents interacting with the discharge through the inlet 

and with incoming waves result in complex flow patterns that are also shaping and co-

interacting with the local morphology. The application of numerical area models at the 

coastal environment is a powerfiil tool that combined with field measurements can add to 

the understanding of such regions. Modelled results can help in filling spatial and temporal 

gaps of field measurements. 

Recently, much effort has been devoted in the development and application of numerical 

area models (for hydrodynamics, waves, sediment transport and morphodynamics) in order 

to simulate the physical processes at such sites. A review of the development and 

application of two-dimensional, depth-averaged models is given by De Vriend (1994), The 

advances in such applications lead to more recent intercomparisons of several area models, 

such as De Vriend et al. (1993); Nicholson et al. (1997); P^chon et al. (1997); Davies et al. 

(1997); Walstra et al. (2001); Davies et al. (2002); Davies and Villaret (2002) among 

others. 

A difficulty for the evaluation of such numerical area models arises fi-om the usually 

limited measured data sets available for coastal regions. A unique database for the 

calibration and validation of such numerical models is one of the achievements of the 

C0AST3D project (Soulsby, 1998, 2001); Measurements at Teignmouth, one of the 

studied field sites within the COAST3D project, included a dense spatial coverage of 

instruments, allowing the assessment of model performance over the entire study area 

(Sutherland et al., 2001). Using this database, several numerical models were applied and 
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validated for the Teignmouth region by the COAST3D project partners (e.g. Hall et al. 

2001; Sutherland et al., 2001; Pan et al, 2001; Sierra et al., 2001; Walstra et al. 2001a, b). 

In this study, the well-known N411CE21 modelling system developed by the DHI Water & 

Environment is applied at Teignmouth and validated using the COAST3D database. Three 

modules of the MIKE2I system were applied, including the two-dimensional 

hydrodynamic module (HD), the nearshore spectral wind-wave module (NSW) and the 

non-cohesive sediment transport module (ST). The development of MIKE2I started at DHI 

in 1970 and has since been extended for different applications (e.g. Abbott et al., 1981; 

Abbott and Larsen, 1985). A description of each of the applied modules and their 

formulations is given in Appendix I and is based on the scientific documentation of the 

MIICE21 system and on relevant literature. 

During this study no changes were made to the model formulation and algorithms, the 

author was involved in the pre- and post-processing of data and modelled results of the 

experiments, in the model setup, and in the adjustment of parameters relevant to the 

calibration and calibration of the numerical model. 

The chapter structure includes the description of the model setup used in this application 

followed by the calibration and validation of each module, which compares the modelled 

results to the measured data from the C0AST3D main experiment. This allows a 

qualitative and quantitative (through the use of statistical parameters) judgement of the 

quality of the applied numerical model. Combined with the remote sensing techniques 

(Chapter 5) the validated numerical model is applied for the study of the physical processes 

driving this complex region in Chapters 5, 6 and 7. 

4.2. Model Setup 

Since the MIKE21 modules (HD, NSW and ST - Appendix I) work separately, it is 

necessary to run them sequentially and apply the results from one module as input for the 

next module. The first module to be run is the NSW module, since its results (wave 

radiation stresses) serve as input for the HD module. The ST module uses results of both 
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previous modules as input, being the last module to be run. Without running the modules 

in order to get an equilibrium condition at each tidal level, the model is assumed to be 

operating at a "frozen tidal state", which is a limitation of every standard numerical model. 

Figure 4.1 shows the interrelation of the different MIKE21 modules v^th the ST module. 

The setup of each module applied in this study is described separately below. 

Bathymetry Wave Data Wind Data 

MIKE21 NSW - Nearehore Wind-Wave Model 

Radiation Stresses 

Bathymetry 

wave Reld 

Boundary 
Data (water 
level, fluxes) 

MIKE21 HD - 2D Hydrodynamic Model 

Water Level 
Current Speeds and Directicms 

Sediment Data 

HI 
MIKE21 ST - Sediment Transport Model 

Figure 4.1. Interaction of MIICE21 ST v^th other modules of the MIKE21 system 
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4.2.1. Hydrodynamic module setup (HD) 

4.2.1.1. Bottom schematisation 

The definition of the model area bathymetry is one of the most important steps in the 

modelling process. The quality of the results will be directly related to the quality and 

resolution of the bathymetry applied to the model. Several sources of bathymetric data 

were used in the present set up: 

a. HR Wallingford surveys made by m.v. Sir Claude Inglis during the C0AST3D main 

experiment; 

b. DGPS beach surveys of the intertidal zone; 

c. data digitised fi-om a survey chart of the estuary fi-om 1979; 

d. data digitised from Admiralty Chart 3155. 

The coverage area of "a" and "b" is given in Chapter 3 (item 3.2.1.3) with details about 

their resolution. The digitised chart of the estuary (c) covers the whole estuary and is 

overlapped by the survey (a) at the lower estuary in the channel region. At regions where 

data is overlapped the most recent surveys are used ("a" and "b"). Data from "d" was used 

in order to cover the offshore region. The data fi-om all soiu-ces was combined into a single 

database with bed level specified relative to Ordnance Datum Newlyn (ODN)- In the 

MIKE21 bathymetry editor the bathymetric data was interpolated and converted into the 

model grid. 

4.2.1.2. Grid resolution 

With the available bathymetric data, two grids were designed for the Teignmouth region in 

order to nest the local model according to the available boundary conditions (as described 

in section 4.2.1.3): 

a. The initial grid includes the whole area covered by the available bathymetric data, 

covering the entire estuary spanning 4 km in the offshore direction and 5.5 km in the 

alongshore direction (Figure 4.2a). The grid resolution is 25 m in the x and y directions 
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and is rotated 32 degrees anticlockwise, in relation to the true North, in order to 

accommodate the initial boundary conditions to the rectangular grid. 

b. The final grid that is used in the modelling experiments represents the non-rotated 

bathymetry, and covers the entire estuary and an area of approximately 3.5 km seaward 

and 4 km alongshore, resulting in a total grid area of approximately 10 x 4 km (Figure 

4.2b). The grid resolution is 10 m in the x and y directions, resulting in approximately 

180,000 water points. This resolution was chosen according to the resolution of the 

bathymetric survey carried out at the nearshore region and also in order to get a balance 

between the bathymetry resolution and computer time, taking into account the Courant 

number (section 4.2.1.4), 

c. An extended version of the final grid was also created in order to apply the water level 

only boundary conditions. In this case the north and south boundaries are closed and 

only water levels are applied al the offshore boundary. This version of the grid is used 

for the simulations were no flow boundaries are available. The extension is based on 

Admiralty Chart digitised data, adding approximately 1 km in the alongshore extension 

of the grid. 

Model simulations with the "initial" grid are used to obtain the boundary conditions for the 

"final" grid, as described in the next sections. 

4.2J.3. Boundary conditions 

For the calibration and validation period (COAST3D main experiment), boundary 

conditions are provided by a larger regional model, as applied by the numerical modelling 

teams in the C0AST3D project"'. These boundary conditions are derived from the 

DELFT3D Continental Shelf Model (CSM) and Lyme Bay Model (LBM) and were 

generated by nesting the L B M in the CSM. 

The CSM is a hydrodynamic model for the entire North European continental shelf 

consisting of 18,050 grid cells with grid resolution of about 9 km. Due to its coarse grid 

resolution, it is not possible to obtain the boundary conditions for the local model directly. 

Therefore, a regional model covering the Lyme Bay was constructed. Using the water level 

•* The applied boundary conditions were provided by Dr Dirk-Jan Walstra ( D E L F T Hydraulics). 
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boundaries provided by the CSM, the L B M has a grid size of approximately 200 x 300 m 

in the Teignmouth area, including also the wind forcing in the simulations. Flow and water 

level conditions that fit the local model boundaries were extracted from this model and 

interpolated in order to adjust them to the 25 m grid resolution of the local model ("initial" 

grid). 

The MIKE21 model with the "initial" grid was run for the whole period corresponding to 

the available boundary conditions (October - November 1999), and through the use of the 

MIKE21 toolbox ("Transfer Boundary") the boundaries for the "final" grid were extracted 

from this simulation. These boundary conditions (flow and water level) were interpolated 

and applied in the "final" grid simulations with the 10 x 10 m resolution. Table 4.1 

summarises the boundary conditions used in the "final" model grid. 

The transitions between land and water in MIKE2I HD are represented by closed 

boimdaries (flow equal zero). At the open boundaries, regions that become dry at lower 

water levels are also considered "closed", since the model can not cope with "dry" open 

boundaries. 

An additional set of experiments was conducted in order to assess the modelling quality 

using "closed" north and south boundaries. In these experiments, the water flux boundaries 

were defined through the use of the MIKE21 wavcur tool. This tool generates boundary 

conditions for the hydrodynamic model from the result of the wave module simulations. 

Wave-driven currents are incorporated in the boundary conditions by converting the 

radiation stresses calculated by the wave module into water levels and fluxes along the 

northern and southern limits of the model domain. In applying these extracted flow 

boundaries, longshore uniformity of the bathymetry and the wave conditions outside the 

model eû ea is assumed. 

In these "closed" hydrodynamic simulations, the boundary conditions are the offshore 

water level, fluxes and levels obtained from the wave simulation and the river discharge. 

The objective of these experiments is to assess the quality of the modelling results without 

the use of boundaries extracted from a regional model, allowing it to be applied at different 

periods with different morphological conditions. 
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a. 

b. 

12 • -10 

Figure 4.2. Model grid and bathymetry for the "initial" (a) and "final" (b) grid. 

Table 4.1. Summary of the boundary conditions for the "final" HD simulation. 

Boundary Type Start - End lnter\al 

North flux (mVs/m) 25/10/99 - 25/11/99 10 min. 
extracted from the 

South flux (mVs/m) 25/10/99 - 25/11/99 10 min. 
extracted from the 

flux (mVs/m) 
"initial" simulation 

East water level (m ODN) 25/10/99 - 25/11/99 10 min. 
"initial" simulation 

West flux (river discharge - mVs) 16/10/99 - 25/11/99 15 min. measured 
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4.2.1.4. Numerical and physical parameters 

Time step: The size of the time step defines the computation time of the model run and its 

ideal size should be defined in order to balance the computer time and accuracy and 

stability of the model. An indication of the required time step is given by the Courant 

number, which is a relation between the celerity, time step and grid size: 

C^^c^ (4.1) 
^ Ax 

where c is the celerity, At the time step and Ax the grid spacing. For a fidal wave the 

celerity is: 

c = 4^ (4.2) 

where g is gravity and h is the water depth. As the information (about water level and 

fluxes) in the computational grid travels at a speed corresponding to the celerity, the 

Courant number actually expresses how many grid points the information moves in one 

time step. The MIICE21 HD module is designed for Courant numbers up to about 20, but 

high values should only be allowed in areas where the bathymetry is smooth (DHI, 2000a). 

Recommended Courant number values for the M1KE21 HD should not exceed 8 to 10. In 

this application the time step was defined as 10 s for most applications, resulting in a 

Courant number of about 5. 

Warm-up period: In order to avoid initial disturbances derived fi*om the unknown initial 

conditions, a warm-up period was defined for the simulations. The warm-up period is a 

defined number of time steps over which the forcing fimctions are gradually increased 

from zero to 100 % of their value. Additional disturbances of flooded dry points are also 

avoided by starting the simulations at high water, when flow velocities are low and the 

number of dry points in the model domain is at its minimum. 

Coriolis effect: The Coriolis term is included in the HD simulations and is a function of the 

latitude of the model domain, which is defined when creating the model grid. 
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Bed resistance: For the HD module, the bed resistance was defined in Ch^zy numbers and 

varying across the model grid. The used Chezy numbers were defined as a function of 

water depth and are one of the main calibration factors of the model. The values used are 

discussed in section 4.4 (Calibration and Validation). 

Eddy viscosity: The used eddy viscosity formulation in this application is the velocity 

based formulation (see Appendix I for details). Values of the eddy viscosity were also 

defined as varying across the grid, and the used values are given in section 4.4. 

Wave radiation stresses: The wave radiation stresses can be included in the hydrodynamic 

simulations. In this case, the radiation stresses field for each time-step given by the NSW 

module (section 4.2.2) is used as input in the HD module. 

The outputs of the MIKE21 HD module are fluxes and levels inside a model sub-area and 

at a frequency selected as appropriate to the varying studies being addressed. 

4.3.2. Nearshore Spectral Wind-V^ave module setup (NSW) 

The NSW module operates over the same bathymetry and grid spacing than the one used in 

the HD module. As described in the NSW module description (Appendix I ) , the nonlinear 

algebraic equations in NSW are solved using a once-through marching procedure in the J C -

direction. Therefore, the boundary conditions in terms of wave parameters need to be 

defmed at the offshore boundary (x=0). To adjust the Teignmouth grid to these 

requirements, it is rotated 180 degrees from North. The basic data necessary to fu l f i l the 

offshore requirements are the significant wave height (//mo), mean wave period (7^), mean 

wave direction (MWD), and the directional standard deviation (DSD), This boundary is 

defined with the measured wave data covering the whole simulation period with a temporal 

resolution of one hour. In this case the wave data used as the offshore boundary is 

originated fi-om the measurements at depth of about 10 m (measurement point 07 Chapter 

3). 
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The lateral boundary conditions (model north and south boundaries) can be chosen as 

symmetrical or absorbing. In the case of symmetrical boundary the derivatives normal to 

the boundary of the dependent variables, the zeroth and first moment of the action, are set 

equal to zero. Basically, this means that the contours are locally straight and parallel near 

the boundary. In the absorbing boundary, the incident waves at the boundary are fully 

absorbed. At the downwave lateral boundary, incident waves propagate out of the model 

without any reflection, while at inflow lateral boundary no waves can propagate into the 

model area. Different tests were carried out to define which option of lateral boundaries 

would be the most appropriate in this study. As the interest area lies well inside the model 

grid, these tests showed that there was no difference between using symmetrical or 

absorbing boundary conditions. 

The numerical scheme applied in the modelling exercises was the "upwind differencing" 

(UD). This is a first order scheme with inherent numerical diffijsion in the discretization of 

the convective terms in the y- and ^direction. This numerical scheme is recommended i f 

the purpose of the wave modelling is to obtain radiation stresses for the application in the 

HD module (DHI, 2000b). 

Bottom dissipation in the NSW module is given by the Nikuradse roughness parameter 

(ATAO and in this application it was defined as variable over the model area. The bottom 

friction in areas dominated by sand depends on the grain size of the sediment and the 

presence of bed forms (Nielsen, 1979 and Roudkivi, 1988). For the case where there is no 

bed form, the Nikuradse roughness parameter can be estimated by (Nielsen, 1979): 

k,=2.5-d,, (4.3) 

where d^o is the median grain size. In the presence of ripples ks can be much larger and 

should be estimated including the ripple characteristics. Based on the sedimentary 

characteristics of the studied region the preliminary ks parameter was calculated according 

to Equation 4.3. Afterwards, according to the presence of bedforms, the parameter was 

adjusted and also used as a calibration factor. This adjustment to the presence of bedforms 

is based on side scan sonar surveys of the area o f interest during the COAST3D main 

experiment (Van Lancker et al., 2001). It is close to the main chaimel region that the 

61 



Chapter 4 - Numerical Modelling 

surveys show the presence of ripples and megaripples (with typical wave length of 1 m), 

while the remaining o f the region is generally devoid o f bedforms. Values o f the Nikuradse 

roughness parameter {k^) can be much higher for sheet f low conditions, however these 

situations were not included in the modelling experiments. 

As the modelled area is in a macro-tidal region, correct surface elevations wil l ensure that 

the changes in wave conditions due to varying water depths are properly modelled. Tests 

were carried out using a constant surface elevation variation across the model grid using a 

water level time series as input and also using the result of the hydrodynamic simulations 

as input for the water level in the wave simulations (two-dimensional map). In the second 

case the variable water level across the region is also considered. Water levels used for the 

wave simulations were the same as the boundary conditions for the hydrodynamic 

simulations. 

Values for the three wave breaking constants were used as suggested in M1KE21 NSW 

scientific documentation. The default value for yi is 1.0, as suggested by Holthuijsen et al. 

(1989), while for a and the default values are those used by Battjes and Janssen (1978). 

The basic type of data outputs from a NSW simulation are the four integral wave 

parameters {Hsig, T, dir, DSD), the x- and ^/-components of the vector showing the mean 

wave direction, the three radiation stresses (5„, S^y, Syy) or a combination of these three 

types of output over a selected output area. 

4.3.3. Sediment Transport module setup (ST) 

As described in item 4.2.3 and showrn schematised in Figure 4.2 the sediment transport 

(ST) module uses as input the result of hydrodynamic (HD) simulations or a combination 

of HD and wave (NSW) simulations. This is defined in the simulation type, when it is 

specified whether the simulations of non-cohesive sediment transport wil l be due to piu-e 

current or waves and currents in combination. 
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The HD input data file needs to contain three items (water levels and fluxes in the x and y 

directions), and the grid spacing in the transport simulations is identical to that grid spacing 

used in the HD simulation. The sub-area and simulation period for the ST simulation are 

specified relative to the model grid used in the HD simulation. The wave input data must 

contain the wave height, period and direction, required for the calculation of transport 

rates. 

The bed resistance used in the ST module is the same then in the HD module, with Ch^zy 

numbers varying across the model grid according to the water depth. The sediment data to 

be used in the sediment transport computations was also specified as spatially varying, 

according to the data from sediment samples (Chapter 3). The bed material is characterised 

through a map of the medizm grain size {dso), and the geometric standard deviation (cTg) 

distribution. As described in section 4.2.3 both transport formulations for combined waves 

and currents available in MIKE2I ST are applied. The output data obtained from a 

MIICE21 ST simulation are averaged sediment transport rates and initial rates of bed level 

change (over the simulation period), and time series of transport rates over chosen time 

intervals. These results are saved within the previously selected sub-areas. 

4.4. Model Calibration and Validation 

In order to apply a numerical model as a valid research tool, it needs to be calibrated and 

validated against measured data. This section contains the description and discussion of the 

calibration and validation process carried out to evaluate the application of the MIKE21 

model to the Teignmouth estuarine inlet. 

There is no standard procedure for model calibration and validation in the modelling 

literature (Cheng et al., 1991). Typically, calibration and validation is accomplished by 

qualitative comparison of short time-series of water level or velocity produced by the 

numerical model with field data for the same location and for the same period of time 

(Cheng et al., 1993). According to Dyke (1996, 2001) the validation of a model is the 

comparison of model output with what can be termed current knowledge. This knowledge 

comes from in situ measurements of the compared parameters. However, a series of factors 
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needs to be taken into account when comparing model outputs to those obtained from 

measurements. These include the accuracy of the measurements (instrument calibration 

and reliability), the measurement location, which may not be precisely the same as the 

model grid points, and the fact that the model provides vertically averaged values while 

measurements are taken at one or more depths of the water column. At the present 

application, calibration is considered the process of adjusting the model in order to obtain 

calculated results that best reproduce the measiu-ements and validation is the application of 

these "tuned" model over different periods of time in order to verify its validity. Validation 

is a continuous process throughout the entire model application, by comparing the output 

with measurements and wnth the system's observed behaviour. 

In the calibration and validation description, the hydrodynamic simulations include the 

computed wave radiation stresses, so that these simulations reproduce more realistically 

the observed data. 

4.4.1. Calibration 

In this study, comparison of water levels and time-averaged current velocities (averaged 

over 10 minutes) measured at a number of stations deployed during the COAST3D main 

experiment with the model predictions form the basis for the calibration and validation. 

Qualitative analysis of time series provides a general assessment of the model 

performance, and was carried out for different pre-defined simulation periods. A more 

quantitative verification method was also applied through the use o f the relative mean 

absolute error (RMAE) (Suthedand et al., 2001; Van Rijn et al.. 2003), described in the 

next paragraph. 

Statistics representing averages of appropriate quantities, such as RMAE are based on the 

mean absolute values of measured and predicted current vectors and by the mean absolute 

error. The mean absolute value of the measured (X) and predicted {Y) values are given by: 

h4AX = {\X\) (4.4) 

and 
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MAY^{Y\) ( 4 . 5 ) 

where the angled brackets denotes an average and [A l̂ and \Y\ is the modulus of X and Y 

respectively. The mean absolute error is: 

MAE = {\Y-X\) ( 4 . 6 ) 

As discussed in Sutheriand et al. ( 2 0 0 1 ) , the use of the modulus makes the statistic non-

analytic and thus more difficult to work with than using a root-mean-square error (RMSE). 

However the MAE is not as heavily influenced by outliers as RMSE and it is equally 

applicable to vector and scalar quantities. The M A E includes errors in mean, phase, 

amplitude and directions. 

The quality of the modelled results is then given by the relative mean absolute error 

(RMAE): 

{ \ Y - X \ ' M E ) 

where ME is the measurement error. 

A perfect match between measurements and model results would be obtained with a 

RMAE value of zero. However, this wi l l never be achieved as the RMAE includes 

contributions from the measurement error. As the RMAE is derived from the ratio of two 

quantities it is highly sensitive to small changes in the numerator when the denominator is 

small. 

As described in Chapter 3, the average current velocity and wave height measurement 

errors are 0 .05 m s'* and 0.1 m respectively (Van Rijn et al., 2 0 0 0 ) . The absolute 

difference of the computed and measured values minus the measurement error cannot be 

smaller than zero (e.g. | K - X | - A / £ is set to zero, i f < 0 ) . It means that the computed value 

is within the error band range of the measured value (Van Rijn et al., 2 0 0 3 ) . Table 4.2 
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gives the qualification of model performance proposed by Van Rijn et al. (2003) as being a 

tough set of standards for models to achieve. 

As with any statistics the inherent variability of the statistics reduces as the number of 

samples increases. Sutheriand et al. (2001) recommended that 100 samples or more are 

used whenever possible. Therefore, in this study, for each two-day calibration period, 

RMAE calculations were made with a minimum of 100 samples. 

Table 4.2. Qualification of RMAE ranges for velocity and wave heights comparison 
according to Van Rijn et al. (2003). 

Qualification Velocity Wave height 

Excellent <0.1 <0.05 

Good 0.1 - 0.3 0.05-0.1 

Reasonable/fair 0.3-0.5 0.1 -0 .2 

Poor 0.5-0.7 0.2-0.3 

Bad >0.7 >0.3 

The main calibration factors are the bed resistance (Ch^zy numbers - m V ) and the eddy 

viscosity (m^s''), whose importance was assessed through a series of sensitivity tests which 

were initially carried out. 

Two calibration periods (CPl and CP2) were defined within the C0AST3D main 

experiment period: from 25/10/99 to 27/10/99 (CPl) and from 10/11/99 to 12/11/99 (CP2). 

Both periods are during spring tide conditions, the first one being during low wave 

conditions and the second one during storm conditions (Figure 4.3). 

During the calibration process, combinations of different values of bed resistance and eddy 

viscosity were applied and their results assessed through time series comparisons and 

RMAE values. Each parameter was adjusted separately, with the eddy viscosity kept 

constant while the bed resistance was adjusted and vice-versa. The calibration was started 

using realistic Ch^zy numbers derived from the Nikuradse roughness parameter, with small 

adjustments being made during the calibration procedure. An example o f the sensitivity of 
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the modelled flow velocities to different values of Chezy numbers in terms of the quality 

of the modelled results (RMAE values) is shown in Figure 4.4. The sensitivity test showed 

that the optimal model output in relation to the Chezy numbers is depth dependent. 

Although sensitivity varies from station to station, the best results in terms of RMAE are 

represented by values around 38 m'̂ '̂ s'* at stations located in deeper regions (e.g. stations 

14, 24, 26 and 9 in Figure 3.6) and values of around 34 m V in shallow areas (e.g. stations 

28 and 25 in Figure 3.6). Based on this sensitivity analysis the Chezy numbers were 

defined as varying across the model domain, with lower resistance values at deeper regions 

and higher at shallow regions. Only the best combination of calibration factors, resulting in 

the most accurate reproduction of the in situ measured conditions, is described and 

discussed in this section. 

The best combination of depth varying resistance coefficients (Chezy numbers) during the 

calibration process is given in Table 4.3. A coefficient value was assigned to each of 

several depth ranges with the most friction in the shallows and the least fiiction in the 

deepest areas. The set of coefficients was adjusted as a group until time series plots of 

measurements and predictions agreed satisfactorily and RMAE reached the lowest possible 

values. This final set of Chezy numbers is overall realistically correlated with the 

Nikuradse roughness parameter calculated for the area by Eq. 4.3 (page 60). Despite the 

fact that eddy viscosity values do not have the same influence in the calibration as the bed 

resistance, they are important throughout the calibration process. Values of eddy viscosity 

were also defined as varying across the modelled area, with values of 0.16 m^s'' inside the 

estuary and values of 0.5 mV in the offshore region. 
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Figure 4.3. Water level and wave height during each calibration period, a) 
25/10/1999 18:50-27/10/1999 18:50; b) 10/11/1999 19:40- 12/11/1999 19:40. 
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Figure 4.4. Sensitivity of the RMAE values for the flow velocity components according to 

the Ch^zy numbers (m'V*) 

Table 4.3. Depth varying Ch^zy numbers. 

Depth (m ODN) Chtey numbers (m** s"') 

H <-3 38 

-3< H <- l 34 

- I < H < 1 32 

1 < H 30 
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The model calibration and validation is assessed with the use of time series and statistic 

parameters. Figiu"es 4.5 to 4.12 show the plots of measured and modelled data for some of 

the most relevant stations (within the area of interest) with available measured data. These 

figures show plots of time series of measured and modelled water levels or currents for 

northerly and easterly components. Scatter plots of observed and predicted currents 

showing the northeriy component of current plotted against the easterly component are also 

shown, indicating whether the modelled and measured currents present a similar 

distribution. Linear regression analyses of predicted (y-axis) against observed (x-axis) 

current components are also plotted for each station. Statistical parameters for water level 

and currents for each calibration period are shown in Table 4.4 and 4.5 (page 80) when 

more than 100 samples of measured data are available and are shown for all the compared 

stations. Both calibration periods are described and discussed together in this secfion, being 

compared whenever possible. Calibration parameters were the same for both periods. 

The model reproduces well the water level and the overall circulation patterns at the 

compared positions in the area of interest, with low RMAE values for the compared time 

series. Water level time series corresponding to the pier (offshore) and harbour (in the 

estuary) are compared and shown with the respective residuals in Figures 4.5 and 4.6 for 

each period. The model reproduces the phase and amplitude of the tidal wave excellently. 

Agreement of the offshore water level is virtually perfect, with maximum residuals of 

about 0.05 m offshore with MAE of 0.013 m and 0.015 m for CPl and CP2 respectively. 

Water level in the estuary (harbour) presents maximum residuals of 0.1 m during calm 

conditions (CPl) and 0.2 m during storm conditions (CP2). Harbour M A E values of 

0.048 m and 0.091 m were obtained for CPl and CP2 respectively. RMAE values obtained 

during both calibration periods were very low (Table 4.4) showing an overall excellent 

agreement between measured and modelled water levels. Linear regression analysis 

between measured and modelled water levels result in r̂  larger than 0.99 for all cases. 

For several reasons the same degree of agreement cannot be achieved between measured 

and modelled currents as for the case of water levels. In the present study these reasons 

include mainly the model grid resolution (10 x 10 m) that at some points may not cover 

smaller-scale bathymetric features or hydrodynamic patterns of the complex environment, 

and errors originated from measurements (as discussed in Chapter 3). 
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The overall agreement in the comparison of current velocity components indicates that the 

model predicts the general measured phenomena, vAth some differences in magnitudes. A 

subjective analysis of the time series comparing measured and predicted northerly (y-

velocity) and easterly (x-velocity) current components represented in Figures 4.7 to 4.12 

shows that the model reproduces the main features measured in situ. However, some of the 

precise details and magnitudes of the currents are not always modelled correctly, as 

discussed below for each of the compared stations. The statistical parameters that provide 

an objective judgement of the model are shown in Table 4.5 for all the compared stations. 

Water level'pier 
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Figure 4.5. Time series of measured (dotted line) and predicted water level (solid line) with 
respective residual values for the calibration period I (25/10/1999 18:50 -
27/10/1999 18:50). 
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Figure 4.6. Time series of measured (dotted line) and predicted water level (solid line) with 
respective residual values for the calibration period 2 (10/11/1999 19:40 -
12/11/1999 19:40). RMAE pier: 0.0133; RMAE harbour: 0.099. 

Figures 4.7 and 4.8 compare measured and modelled currents at station 14 for CP I and 

CP2 respectively. Station 14 is located just outside of the sandbar system, being under the 

influence of the secondary channel that crosses the sandbars (Figure 3.6). Time series show 

a general good agreement for calm conditions (CPl), when the model only underestimates 

the northerly velocities. Scatter plots show similarity between measured and predicted 

currents and the linear regression between measured and calculated currents gives r̂  values 

of 0.84 and 0.86 respectively for x and y-velocities. Low values of RMAE confirm the 

good agreement between modelled and measured currents (Table 4.5). The same 

reproduction is not seen during CP2, when the presence o f waves increases the eastward 

currents and decreases the northward currents. The model represents the main features of 

the current patterns but mainly the easterly currents are underestimated, as shov^ also in 

the scatter plots of measured and modelled current components. Correlation in the linear 

regression analysis decreases mainly for the east component of the currents during storm 

conditions. The RMAE value gives a reasonable/fair qualification of the model (Table 4.5). 

Station 24 is in a similar position to station 14, but just inside the secondary channel that 

crosses the sandbar system (Figure 3.6). Figures 4.9 and 4.10 show the plots for CPl and 
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CP2 at station 24. During CPl the general features of the measured current components are 

reproduced by the model with some underestimation of the northwards currents, which can 

be seen in the time series plots and in the scatter plots. During CP2, as for station 14, the 

presence of waves in the model cause an underestimation of the cross-shore velocities (x-

velocity). Scatter plots of measured and modelled current components show that the 

overall current pattern is well reproduced. According to the qualification proposed by Van 

Rijn et al. (2003), values of RMAE show a reasonable/fair qualification of the modelled 

currents at this location. 

Measured data for station 28 is available only for part of the CPl (Figure 4.11). This 

station is just outside the Ness sandbar (Figure 3.6). Time series and scatter plots show that 

the overall current climate is being reproduced, with some differences in the j^-velocity 

magnitudes. Here, the current velocities are low increasing the importance of the 

measurement errors, favouring low RMAE values. A good agreement is given by the 

RMAE value (Table 4.5). 

Station 25 is located at the inlet channel border of the Sprat Sand, an area that dries out 

during low tide conditions (Figure 3.6). In the model this point also dries out during 

virtually the same periods (straight dropping lines in the time series). Sufficient measured 

data for comparison is available only for CP2 and is shown in the plots of Figure 4.12. Al l 

plots of Figure 4.12 show that the model reproduces well the currents at this point. The 

RMAE value shows a good agreement between measured and modelled currents (Table 

4.5). 

Stations 5, 9, 26 and 33 are located in the outer region relative to the sandbar system 

(Figure 3.6). As these stations are not inside the region of interest, only their statistical 

parameters are shown (Table 4.4). At these outer points the current velocity componenU 

are small, with maximum velocities reaching 0.3 m s"*. In general, the modelled currents 

reproduce well the measured flow patterns at the outer region as shovm by the low RMAE 

values (Table 4.5). At these stations the correct current climate is being modelled, v^th 

some differences in magnitudes during individual events. However, even some differences 

in individual events are less important due to the relatively high influence of the 

measurement errors (0.05 m s"') in the low current values. Quality of the modelled results 
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for these locations varies from excellent (CPl station 33, CP2 station 5) to poor (CP2 

station 33). 

Using the RMAE qualification ranges proposed by Van Rijn et al. (2003), the averaged 

RMAE values of all the compared stations (for current velocities) result in a good (0.25) 

modelled resuh during calm conditions (CPl) and reasonable/fair (0.35) result during 

stormy conditions (CP2). Considering that the proposed qualification ranges are based on a 

tough set of standards (Van Rijn et al., 2003), the calibration of the applied hydrodynamic 

module of the MIKE21 model can be considered well calibrated, providing reliable results 

under different forcing conditions. 

Experiments for the same calibration periods using the "closed" north and south 

boundaries (as explained in section 4.2.1) with the use of flux boundaries extracted from 

the wave simulations result in only small differences when compared to the use of flux 

boundaries derived from the regional model. The modelled water levels present the same 

RMAE values of the ones obtained through the use of flux boundaries, showing an 

excellent agreement with the measurements. For the current velocities, in general results 

give similar RMAE values for the compared individual stations and for the average over 

each calibration period. The main differences are registered at the offshore stations (26 and 

33) where the tidal currents are underestimated when "closed" boundaries are used. At the 

inlet and adjacent nearshore region the currents are still well reproduced by the model 

when the closed boundaries are used. Average RMAE values (0.35 for CPl and 0.45 for 

CP2) result in a reasonable/fair classification of the current velocity results. 

Based on the modelled wave parameters output of the NSW module, the measured and 

modelled waves are compared for the CP2, during the storm with significant wave heights 

of up to 1.8 m. Since during CPl the significant wave heights are small (around 0.2 m), 

the comparison between measured and modelled are not shown, but were also well 

reproduced by the model. In Figure 4.13 three locations of measured wave heights and 

wave periods, with one of them including measured wave directions are compared with the 

modelled results. The most offshore location compared is the station 7 (Figure 3.6) at 

around 7 m depth (Figure 4.13a). Station 4 is located northwards of the inlet channel at 

around 5 m depth (Figure 3.6) and is compared with modelled results in Figure 4.13b. The 

most onshore wave comparison is made for station 25, which is located in the intertidal 
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region at the margin of the main inlet chaimel (Figure 3.6 and Figure 4,13c). The 

comparison plots show that the model reproduces well the measured wave parameters, 

with only small deviations being observed in wave heights, wave periods, and for station 7, 

wave direction. Statistics comparisons through the use of the RMAE shows that the model 

reproduces the significant wave heights with an excellent agreement (according to the 

qualification ranges proposed by Van Rijn et al., 2003 - Table 4.2), with values being 

lower then 0.03 for all compared stations (Table 4.6). 
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Figure 4.7. Station 14, CPl. Upper panel: Time series of flow velocities; measured (dots) 

and predicted (lines). Middle panel: scatter plots of measured and predicted velocity 

components. Lower panel: Linear regression between predicted and observed velocities. 
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and predicted (lines). Middle panel: scatter plots of measured and predicted velocity 

components. Lower panel: Linear regression between predicted and observed velocities. 
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Table 4.4. Statistical parameters for the water level at the pier and harbour for both 
calibration periods. 

Station (14 MAE R M A E 

e 
pier 1.366 1.360 0.013 0.010 

'a
tio

l 

o harbour 1.234 1.212 0.048 0.039 
JD 

U a. Average 1.300 1.286 0.030 0.024 

C
al

ib
ra

ti
on

 

Pe
ri

od
 2

 

pier 

harbour 

Average 

0.961 

0.918 

0.939 

0.955 

0.893 

0.924 

0.015 

0.091 

0.053 

O.013 

0.099 

O.056 

Table 4.5. Statistical parameters for the current velocity time series at the indicated stations 
for both calibration periods. 

Station m) n MAE RMAE Qualification 

14 0.216 0.218 0.100 0.231 good 

24 0.194 0.216 0.130 0.415 reasonable 

26 0.141 0.096 0.099 0.351 reasonable 
o 
'u 9 0.091 0.091 0.088 0.420 reasonable 

C
al

ib
ra

ti
on

 F
 

28 0.179 0.211 0.087 0.208 good 

C
al

ib
ra

ti
on

 F
 

25 

5 

33 

0.099 

0.077 

0.078 

0.056 

0.065 

0.045* 

0.155 

0.000* 

good 

excellent 

Average 0.142 0.138 0.087 0.254 good 

14 0.261 0.250 0.172 0.466 reasonable 

24 0.266 0.280 0.163 0.425 reasonable 
<s 
ID 

26 0.164 0.111 0.109 0.364 reasonable 

'e
ri

o 

9 0.100 0.108 0.085 0.352 reasonable 

c 28 - - - -
ca 25 0.412 0.468 0.164 0.277 good 

C
al

it
 

5 

33 

0.091 

0.082 

0.083 

0.080 

0.049 

0.091 

0.000* 

0.509 

excellent 

poor 

Average 0.196 0.197 0.119 0.359 reasonable 

* computed value is within error band range of the measured value (excellent agreement). 
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Figure 4.13. Comparison of measured (dots) and modelled (lines) wave parameters for a) 

station 7, significant wave heights (upper panel), significant wave period (middle panel), 

wave direction fi"om true North (lower panel); b) station 4, significant wave heights (upper 

panel), significant wave period (lower panel); and c) station 25, significant wave heights 

(upper panel), significant wave period (lower panel). 
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Table 4.6. Statistical parameters for the significant wave heights time series at the 
indicated stations. 

Station MAE RMAE Qualification 

7 1.11 1.12 0.09* 0.00* excellent 
c 

C3 4 1.06 1.12 0.12 0.02 excellent 
*u 

C
al

 

25 0.77 0.70 0.12 0.02 excellent 

7 0.46 0.35 0.11 0.02 excellent 

ilO
IIB

p 

4 0.46 0.36 0.10 0.01 excellent 

V
al

ii 

25 0.36 0.26 0.10 0.01 excellent 

* computed value is within error band range of the measured value (excellent agreement). 

4.4.2. Validation 

In order to assess the quality of the calibrated HD and NSW modules, a validation 

experiment is set up including a variety of forcing conditions. The same values for the 

calibration parameters defined as optimal during the calibration experiments (for CPl and 

CP2) are maintained for the validation experiment. The chosen validation period includes 

most of the COAST3D main experiment, with a one-month model run. Water levels, 

waves and river discharge during the modelled period are shown in Figure 4.14. 

Conditions are variable during the modelled period, including spring and neap tide 

conditions, with tidal ranges varying fi"om 4.5 to 1.2 m, significant wave heights varying 

from 0.1 m during calm conditions to 1.7 m during stormy conditions, and river discharge 

generally low (under 15 m^ s"') with the exception of one high river discharge peak of 

about 53 m^ s"'. 

In the same way as for the calibration, in situ measurements are used to judge the quality of 

the modelled results through time series comparison and RMAE assessment. Water levels 

are modelled with an excellent agreement with the measurements throughout the whole 

validation period, giving low values of RMAE (Table 4.7). Flow velocities are also well 

reproduced by the model over the validation period, with RMAE values varying fi-om 

excellent to reasonable/fair (according to Van Rijn et al., 2003 - Table 4.2) depending on 
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the compared station (Table 4.8). The averaged RMAE value over all stations during the 

validation shows that the model output gives a good (0.27) result i f compared with the 

measurements. Time series of modelled current velocities are shown for four stations in 

Figure 4.15. Observation of these time series confirms that the model reproduces well the 

overall flow patterns, resulting in relatively low RMAE values. 

27/10 01/11 06/11 11/11 

River discharge 

16/11 

E 30. 

27/10 01/11 06/11 11/11 16/11 21/11 

Figure 4.14. Water level and significant wave heights (a) and river discharge (b) during the 
validation experiment period. 
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Table 4.7. Statistical parameters for the water level at the pier and harbour for the 
validation period. 

Station M) MAE RMAE 

pier 0.894 0.890 0.011 0.012 
da

tio
r 

ri
od

 
harbour 0.863 0.842 0.051 0.059 

cs 

> 
w 
a. Average 0.878 0.866 0.031 0.035 

Table 4.8. Statistical parameters for the current velocity time series at the indicated stations 
for the validation period. 

Station M) (I>1> MAE RMAE Qualification 

14 0.156 0.164 0.104 0.346 reasonable 

24 0.159 0.173 0.118 0.429 reasonable 

26 0.134 0.083 0.093 0.326 reasonable 

V ft 
9 0.070 0.071 0.071 0.296 good 

Ua 
c 
o 28 0.126 0.184 0.107 0.450 reasonable 

id
at

i 

25 0.377 0.432 0.139 0.237 good 
ea 

> 5 0.083 0.066 0.055 0.066 excellent 

33 0.070 0.054 0.055 0.071 excellent 

Average 0.146 0.153 0.092 0.277 good 

86 



Chapter 4 Numerical Modelling 

U East 

1̂  

in 0 
E 

-1 

04 
0 2 

0 
E -0 2 

-04 

0 2 

</) 
E 0 

-0 2 

0.2 

27/10 

U North 

06/11 

U East 

06/11 

U East 

U North 

06/11 01/11 

U East 

21/11 

' 1 1 

- - - t - -1 1- ^ 
U North 

27 no 01/11 06/11 11/11 16/11 21/11 

Figure 4 15. Time series of measured (red) and predicted (black) flow velocity components 
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4.4.3. Sediment Transport 

The validation of the modelled sediment transport rates and assessment of both applied 

transport formulations were carried out through the use of the modelled initial 

sedimentation/erosion rates compared to the observed morphological evolution. As the 

applied numerical model does not include the feedback fi-om the morphological evolution 

into the hydrodynamic module, the bed was only updated at the end of the run. The 

calibration period covers fourteen days, between surveys 2 and 4 of the C0AST3D main 

experiment carried out on 6^ to 8^ and 16^ to 19^ November 1999. Varying grain size and 

sorting (based on samples collected during the C0AST3D main experiment) was applied 

throughout the region of interest; however, the sensitivity of the applied transport 

formulations to the grain size was assessed by making additional model runs using 

constant sizes. 

The quality of the modelled results of the morphological changes as a consequence of the 

sediment transport rates was assessed quantitatively through probabilistic assessments by 

the application of skill scores. Skill scores are measures of the accuracy of a prediction 

relative to the accuracy of a baseline prediction (Sutheriand and Soulsby, 2003). In this 

study the Brier Skill Score was applied to assess the quality of the predicted morphological 

evolution. 

4.43.L Brier Skill Score 

Developed for the quality assessment of weather forecast models, the Brier Skill Score 

(BSS) was first applied by Sutherland et al. (2001) and Brady and Sutheriand (2001) with 

the objective of obtaining a quantitative judgement of the quality of morphodynamic 

models. Van Rijn et al. (2002), Van Rijn et al. (2003) and Sutheriand and Soulsby (2003) 

carried out fiirther applications to the modelling of coastal morphodynamics. A brief 

description of the Brier Skill Score and its decomposition in terms of amplitude, phase and 

mean are given below. More details and examples of its application can be found in the 

cited literature. 
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The BSS is a measure of the accuracy of a prediction (compared to the observed outcome) 

relative to the accuracy of a simple baseline prediction (compared to the observed 

outcome) (Sutheriand and Soulsby, 2003). The BSS is given by: 

(4,8, 
{{B-XY) 

where 5 is a set of baseline prediction depths. A' is a set of observed final depths and Y 

is a set of A' predicted final depths, with the nth point in 5, A' and K being at the same 

horizontal position. Perfect agreement gives a BSS of 1, while predicting the baseline 

condition gives a score of 0. I f the model prediction is further away fi-om the final 

measured condition than the baseline prediction, a negative score is obtained. The baseline 

in this case is the initial bathymetric survey (survey 2 of the COAST3D main experiment); 

i.e. model predictions are being assessed against a baseline prediction o f no morphological 

change. 

Murphy-Epstein decomposition of the Brier Skill Score 

Murphy and Epstein (1989) decomposed the BSS for mean, phase and amplitude errors as 

repeated in Sutherland et al. (2001) and summarised here. The decomposition shows that 

the BSS can be decomposed in terms of the anomalies in the prediction (Y'=Y-B) and the 

measurements {X'=X-E), The variance in both predicted and observed anomalies are given 

<^x'={^'^)-{^'Y and <^r=lY'^)-{Y''Y and the covariance between the anomalies is 

Sy.x.={rX')-(Y')[X'). The linear correlation between the anomalies in predicted and 

observed sets is the anomaly correlation coefficient (r^.j,.)given by: 

r , . , = ^ ^ (4.9) 

The Murphy and Epstein (1989) decomposition of the BSS shows that it can be written as: 

BSS = ̂ ^^^£l^ (4.10) 
1 + Z) 
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5 = 
2 <Ty. 

Y'X' 

2 

c = 
2 

D = 
\ J 

(4.1 la, b, c, d) 

with: 

A = measure of phase error - when the sand is moved to the wrong position; 

B = measure of amplitude error - when the wrong volume of sand is moved; 

C = measure of the map mean error - when the predicted average bed level is different 

from the measured; 

D = normalisation term. 

Further details and comments on the decomposition can be found in Murphy and Epstein 

(1989) and Livezey et al. (1996). Ranges of BSS values for a classification of the quality of 

the model output are not available for morphodynamic modelling; however Sutherland et 

al. (2001) suggest that a BSS value greater than 0.2 represents a usefiji forecast. 

As the BSS requires all three surface elevations (baseline, measured and predicted) to be at 

the same horizontal location, grids with the same size were created using the interpolation 

package SURFER (Golden Software, 1995) prior to the calculations. 

4,4,3.2, Application of the Brier Skill Score 

A set of numerical experiments was carried out for each of the applied sediment transport 

formulations. In the case of Bijker's (1967) formulation, the main adjustment factor is the 

bed-load transport coefficient, B, which is a proportionality factor in Bijker's formulation. 

Recommended values vary between 1 and 5, with B = 1 being suggested for the calculation 

of sediment transport outside the surf zone, whereas a value of B = 5 is suggested within 

the surf zone (DHI, 2000c). A spatially varying set of values can be defined for the model 

domain, being adjusted in order to obtain the best possible predictions of sediment 

transport. When applying the DHI's deterministic STP transport formulation, the main 

calibration factor is the critical value of the Shields parameter when generating the 

sediment transport tables in MIKE21 toolbox. 
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Within the region of interest, the area of the offshore sandbar is of particular interest for 

the sediment transport validation, due to its highly dynamic behaviour. Much of the 

validation shown here is based on the results of the sediment transport and morphological 

evolution of this sub-area. However, results also include the model performance for the 

region of the Ness sandbar (Table 4.9). Modelling experiments to assess the sensitivity of 

the formulations to the grain size were carried out by using constant grain size throughout 

the model domain. However, the best results were achieved when applying varying grain 

sizes which are closer to the real characteristics. 

In Figures 4.16 and 4.17 the measured and modelled sedimentation/erosion rates are 

represented for the fourteen-day interval between surveys 2 and 4 of the C0AST3D main 

experiment. Figure 4.16 shows the results for the STP formulation and Figure 4.17 for 

Bijker's formulation. A qualitative assessment from Figures 4.16 and 4.17 shows that the 

overall sediment transport patterns and initial sedimentation/erosion rates are similar for 

both formulations, mainly over the offshore sandbar, in this region, the morphological 

changes modelled with both formulations indicate the onshore transport of sediments, with 

erosion at the outer part of the sandbar and deposition on its onshore side. This is the same 

pattern shown by the measurements for the given period. The main differences between the 

formulations are found for the Ness sandbar, where the Bijker's formulation indicates an 

offshore (southwards) migration of the sandbar, which is the opposite o f that indicated by 

the measured evolution. Using the STP formulation, the Ness sandbar evolution is beUer 

represented, with only small erosion on the offshore side of the sandbar. 

The quantitative judgement of the modelled evolution through the application of the BSS 

shows that both formulations are able to predict the morphological evolution of the 

offshore sandbar, with BSS values higher than 0.2 (Table 4.10). However, the Ness 

sandbar evolution is not well predicted by either formulation, with negative veilue for 

Bijker's formulation and close to zero for the STP formulation (Table 4.10). 

Table 4.9. BSS sensitivity to grain size and formulation. 

offshore sandbar Ness sandbar 
(A^«800) (A =̂«500) 

Bijker(1967) 0.24 -0.2 

STP 0.36 0.003 
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Figure 4.16. Measured (a) and modelled using the deterministic STP transport formulation 

(b) morphological changes over a 14 days period, between surveys 2 and 4 of the 

C0AST3D main experiment. 
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Figure 4.17 Measured (a) and modelled using Bijker's transport formulation (b) 

morphological changes over a 14 days period, between surveys 2 and 4 of the COAST3D 

main experiment 
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These results are consistent with the ones found by Sutherland et al. (2001) and Sutherland 

and Soulsby (2003) when applying an area model (PISCES) at the same region and period. 

The offshore sandbar is also well reproduced in their experiments. However, negative BSS 

values for the Ness sandbar indicate a problem in reproducing the evolution of this region. 

The authors expected this problem to be due to the difference in grain sizes, since they 

applied spatially constant values of up to 0.5 mm in their experiments. In the present 

application, larger grain size values were applied, representing values closer to the reality, 

however, the spatial resolution of the grab samples is poor over this region (Figure 3.8), 

which may be one of the causes of the disparity between measured and modelled results. 

In order to assess the main causes of the difference between both sediment transport 

formulations, the Murphy-Epstein decomposition of the BSS is applied for the offshore 

sandbar region. Through the use of Equations 4.11a, b, c and d the terms for phase error 

(A), amplitude error (B) and mean error (C) were calculated. The normalisation term (D) is 

0.001 in both cases. As shown in Table 4.10, the main difference between the applied 

formulations is given by the phase error (term A), indicating that the STP formulation is 

more accurate in moving the sand to the right position. 

Table 4.10. Decomposition of BSS (offshore sandbar) 

BSS Term A Term B Term C 

Bijker(1967) 0.24 0.28 0.03 0.01 

STP 0.36 0.41 0.05 0.00 

Despite the overall transport patterns and quantities of sediment displaced by each of the 

sediment transport formulation being similar, resulting in comparable morphological 

changes over the studied period (Figures 4.16 and 4.17), the BSS values indicate that the 

STP formulation results in bener predictions. This was expected, since the STP 

formulation accounts for a range of processes that are not included in the Bijker's 

formulation (see Appendix I for details). Camenen and Larroude (2003) comparing several 

sediment transport formulations also do not recommend the use of the Bijker's formulation 

for the application of morphodynamic models of the nearshore zone, since it integrates 

only the current related sediment transport. This quality assessment of the available 

sediment transport formulations in MIKE21 ST leads to the use of the deterministic STP 
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formulation in the numerical modelling experiments of sediment transport designed for 

Chapters 6 and 7. 

One way of trying to reduce the differences between the measured and modelled evolution 

could be the application of a morphodynamic model, with feedback between the 

morphological evolution and the hydrodynamics. This limitation of updating the 

morphology only at the end of the simulation may be the cause of some of the 

discrepancies between measured and modelled morphologies. Another cause of 

discrepancies can also be the differences of the modelled velocities at some locations 

within the area of interest (as discussed in section 4.4.1). 

4.6. Conclusions 

In this Chapter, the MIKE21 numerical modelling system has been applied and validated 

for the inlet region of the Teign river at Teignmouth, UK. A unique database for the 

calibration and validation of the applied modules is derived from the C0AST3D project, 

which included a dense spatial coverage of measurements within the area of interest. The 

complexity of the studied environment makes it a challenge for the application of 

numerical area models. 

The hydrodynamic and waves modules were assessed through the traditional visual 

observation of time series comparing measured and predicted water levels, flow velocities 

and wave parameters. This gives a general evaluation of the quality of the modelling 

experiments, which can also be assessed quantitatively through the application of statistical 

parameters such as the relative mean absolute error (RMAE). It is only recently that model 

quality has been assessed through the use of such statistical parameters which provide a 

quantitative result in judging the quality of a numerical model (Brady and Sutherland, 

2001; Sutheriand et al., 2001; Van Rijn et al. 2003). Following the range of RMAE values 

recommended by these authors as a tough set of standards for models to achieve (Table 

4.2) the hydrodynamic model applied here can be classified as being between 

"reasonable/fair" and "good". Following the same classification, the wave module can be 
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considered as "excellent" in reproducing the measured wave heights at three selected 

stations. 

The quality of the sediment transport module was assessed through the comparison of 

measured and predicted morphological changes between two surveys carried out during the 

C0AST3D main experiment. It was assessed qualitatively through the visual observation 

of the measured and observed morphological changes and quantitatively through the use of 

skill scores as proposed by Sutherland et al., 2001 and Sutherland and Soulsby, 2003. From 

the two sediment transport formulations applied, the deterministic STP formulation (DHI, 

2000c) was chosen for further sediment transport experiments (Chapters 6 and 7) since it 

resulted in a better prediction of the overall morphological evolution. 

Despite the validation of the numerical model, which shows that it reproduces well the 

overall observed phenomena, as with all numerical modelling experiments, one needs to be 

aware of some limitations that arise from its application. The main limitations of the 

present application are summarised below: 

• the hydrodynamic model is depth averaged. This can be a limitation during simulations 

that include high river discharge values, since this can create a stratified water column 

at some regions. This aspect is discussed in Chapter 6 (section 6.3.1). 

. the grid resolution of 10x10 m is a relatively fine resolution, but for such a complex 

region with a variety of morphological features, some of the features may be 

undersampled at some areas. 

the sediment data available for the region is limited in its spatial distribution and may 

result in some uncertainties when applied to the varying grain size in the sediment 

transport simulations. 

• the applied modules do not form a morphodynamic model with feedback between the 

morphological changes and the hydrodynamics. At this complex and dynamic site 

where the morphological changes can be drastic and developing over short periods of 

time, this may lead to some misrepresentations of the actual morphological evolution, 

no internal checks on bed form size, bed and suspended concentrations, and bed load 

transport have been done. 

• horizontal gradients in water density are not included in the hydrodynamic simulations. 
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Considering the limitations and advantages of the applied numerical model, a series of 

modelling experiments are conducted. These experiments and their results are described in 

Chapters 5, 6 and 7. In Chapter 5, hydrodynamic modelling experiments are combined 

with video imaging techniques for the intertidal mapping method that takes into account 

the pressure gradients across the region of interest. In Chapter 6 the nimierical model 

experiments aim to assess the physical controls driving the local sediment transport and 

consequent morphodynamics of the system. And Chapter 7 combines numerical 

experiments of sediment transport with the morphological evolution observed from the 

video images. 
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Chapter 5 

Video Imaging and Numerical Modelling 

5.1. Introduction 

In this chapter, the combined application of video imaging and numerical modelling 

experiments is described and applied in order to extract the intertidal morphology from 

video images. The coupling between these two techniques is fundamental for the 

application of the numerical model at different stages of the morphological cycle at 

Teignmouth. 

Previous work and observations at the Teignmouth estuary and inlet (e.g. Nunney, 1980, 

C0AST3D project measurements, visual observations) show the existence of large 

differences in water levels in the estuary and between the estuary and the adjacent 

nearshore region. As video image processing techniques depend on accurate water levels, 

and no measurements of the pressure gradients in the inlet channel are available, the 

modelled water levels are applied in the image processing. The use of numerical modelling 

results combined with the image processing techniques is a consequence of the need for 

accurate water levels across the field of view of the cameras in order to correctly process 

the video images. As shown in the following sections, the coupled application of video 

image processing techniques and numerical modelling is carried out iteratively, since the 

results of the numerical model are used as input for the image processing and vice versa. 

This chapter starts with the description of the technique applied for the extraction of the 

intertidal morphology from video images, based on the photogrammetric techniques 

described in Chapter 3 (section 3.2,2). This is followed by a brief assessment of the water 

surface topography across the region of interest carried out through numerical modelling 

experiments (based on work carried out by the author and published in Siegle et al., 2002 -

Appendix II). This leads to the coupling of both tools, with the modelled water levels being 

98 



Chapter 5 - Video Imaging and Numerical Modelling 

used as input for the video imaging processing and its results being used in further 

numerical simulations. Prior to the application of the technique, it is validated against 

measurements obtained by traditional surveying techniques. Finally, advantages and 

limitations of the applied method are discussed in the context of using its results in the 

numerical model experiments at different stages of the morphological cycle. 

5.2. Technique Applied to Extract Intertidal Morphology from Images 

As described in the literature review (Chapter 2), there are several techniques that aim at 

the extraction of morphological information from images (e.g. Plant and Holman, 1997; 

Davidson et al., 1997; Holland and Holman, 1997; Janssen, 1997; Aaminkhof and 

Roelvink, 1999; Kingston et al., in prep.). These techniques are all based on the detection 

of the shoreline location at a number of instances diuing a tidal cycle, the shoreline being 

considered the contour line corresponding to the location of the local water level. 

In this study a method of defining contour lines with the same pixel intensities in an image 

is used for the morphology extraction from the images. This is done through the use of the 

"imcontour" routine available in the N4ATLAB® Image Processing Toolbox. This routine 

draws contour plots of the intensity image, automatically setting up the axes so their 

orientation and aspect ratio match the image. The intensity level to be drawn and the 

number of intensity contours can be detected automatically or defined manually. The 

application of this technique is based on the photogrammetric techniques described in 

Chapters. 

Applying this contouring technique to the Argus images involves the steps described 

below. The schematic diagram in Figure 5.1 illustrates the main steps: 

based on the oblique images, all the information related to the image is loaded, 

including the time, image geometry parameters, camera information and tidal level. As 

the "imcontour" tool works only with grey scale images, the image is converted to grey 

scale. This results in an image with 256 grey shades ranging linearly in value from 0 
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(black) to 255 (white). An oblique image consists of a 640 x 480 array of pixels 

ordered according to a pixel coordinates system {Ui, F,); 

- through the use of the "improfile" MATLAB® routine a sample profile of die pixel 

intensities is extracted so that the range of pixel intensity values that better represent 

the shoreline can be defined (Figure 5.1b); 

- using the "imcontour" tool the pixel intensity value defined as being the shoreline 

(mid-point of the drop in intensity) is drawn (Figure 5.1c). The intensity that will best 

define the shoreline may change from image to image as a function of solar radiation 

incidence and the composition of the aimed material (e.g. wet/dry sand, water). 

However, the abrupt change in intensity values usually verified when comparing water 

pixels with sand pixels in the images allows the definition of the intensity values that 

represent the shoreline; 

- this selected contour line of same intensity is saved with its Uj and Vj image 

coordinates, which are corrected for the lens distortion and then rectified using the 

geometrical parameters for the given image. The image is rectified using as vertical 

elevation the local tide level; 

- the rectified points with their corresponding elevation are used to create the grid (x, y, 

z) of the intertidal morphology (Figure 5. Id). 

Through the use of additional routines written for this purpose in MATLAB® most of these 

steps are carried out automatically. 

When defining the rectification level (2), these techniques for morphology extraction fi'om 

video images normally assume that the water surface is horizontal over the region of 

interest. However, as will be seen in the next sections, in regions influenced by high 

pressure gradients, the water level height is spatially variable. As it is difficult to measure 

these irregularities in coastal regions due to both the density and spatial extend of the 

measurements required, the use of numerical models provides valuable insight into the 

important physical processes. The next section discusses the combined application of the 

numerical model and the video image technique for the extraction of the intertidal 

morphology. 
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Figure 5.1. Diagram of the procedure applied for the extraction of the intertidal 

morphology from video images. 

5.3. Combination of Numerical Modelling and Video Imaging 

As described in the basic image processing (Chapter 3) and in the previous section, in the 

image processing techniques for the extraction of morphology from images, the water level 

information is needed tv^ce: 1) for the rectification process of the image or selected 

contour lines, and 2) when defining the z values for the morphology grid. 
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All the previously cited techniques for the extraction of intertidal morphology from images 

(Plant and Holman, 1997; Davidson et al., 1997; Holland and Holman, 1997; Janssen, 

1997; Aaminkhof and Roelvink, 1999; Kingston et al., in prep.) assume that the water 

surface is spatially horizontal, an assumption that is often invalid in shallow waters. In a 

region with high pressure gradients, such as inlet chaimels, if it is assumed that the water 

level is spatially horizontal, the detected shoreline and its vertical elevation are not 

necessarily correct. Differences in water levels for the rectification process for a given 

point {Ui, Vi) in the image will cause deviations of the horizontal position of its rectified 

ground coordinates (JC, y) and by defining its vertical elevation values (z) as spatially 

constant a second error is generated. This highlights the importance of accurate water 

levels when processing images, since a small difference in water level may result in large 

deviations of the horizontal shoreline position and in its associated vertical elevation. 

As it is difficult to obtain the necessary spatial resolution through measured water levels, 

the application of a numerical area model can help by providing the water surface 

topography across the region of interest. In this study the MIKE21 HD and NSW (Chapter 

4) modules are applied for this purpose. Using the calibrated model a series of experiments 

were conducted aiming to quantify the relative importance of tidal range, wave conditions 

and river discharge on the water surface topography. Part of the results presented in section 

5.3.1 are summarised from work carried out by the author and published in Siegle et al. 

(2002) (see article "Modelling water surface topography at a complex inlet system -

Teignmouth, UK" by Siegle, E. , Huntley, D.A. and Davidson, M.A. in Appendix II). 

5.3.1. Water Surface Topography 

Water surface topography is defined as the spatial water level distribution over the area of 

interest, and is quantified through the analysis of water level differences in relation to a 

fixed water level reference point. At Teignmouth, the reference water level used in the 

basic image processing is the data measured by the pressure sensor at the pier (station 8 in 

Figure 3.6). 

Large variations in the water surface topography are found across the region, with levels of 

up to 0.9 m higher in the estuary channel than in the adjacent coastal region. This 
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difference can be seen in the time series of water levels measured at the pier (station 8 in 

Figure 3.6) and at the harbour (station 11), as shown by Figure 5.2 for the COAST3D 

measurements It is during ebbing spring tides when the biggest differences are measured, 

with smaller differences occurring during neap tides. 

-05 

24/10 31/10 07/11 14/11 21/11 28/11 

Figure 5.2. a) Measured tide levels at the pier (black line) and harbour (blue line), and b) 

measured difference (= pier-harbour) in tide level between the pier and the harbour 

(October - November 1999). 

Results of the water surface topography modelling experiments for the COAST3D period 

are summarised below and the relative influence of the main processes (tidal range, waves 

and river discharge) on the water levels is assessed (based on Siegle et al , 2002 -

Appendix II). 

5.3.1.1. Tidal Range 

Water surface topography is directly related to the tidal range, with highest water level 

residuals during spring tide periods During the modelled neap tide period, only small 

changes in water surface topography are registered, with a virtually flat surface across the 
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area. Maximum residual elevations in relation to the pier reference point are less than 

5 cm. Conversely, water surface topography varies significantly during spring tide 

conditions, v^th maximum and minimum water level residuals in the inlet channel of 0.6 

and -0.3 m, respectively. This is peulicularly important for the image processing, since it is 

during spring tide conditions that the coastline extraction from images is more important, 

as this permits shoreline detection over a wider intertidal area. 

The emerged sandbars at low water spring tide periods play an important role in the 

funnelling and friction effects of the channel. This is clearly seen in the analysis of a 

sequence of contour plots of water surface topography over the modelled spring tide 

period, as shown by the example represented in Figure 5.3 for the time of maximum 

residuals (final stages of ebb tide). During the early stages of the ebb tide, the deeper water 

column and wider channel reduce these ftinnelling and friction effects in the channel. The 

observations and modelling experiments show that maximum residuals are registered at 

approximately local LW - 1 hour and minimum values at local HW - 1 hour, coinciding 

with ebb and flood peak currents. Figure 5.4 shows how the water level and mid channel 

current velocities are phase locked with the water level residuals, a response to the pressure 

gradient forces created by the difference in water level in the estuary and offshore. It is 

always when water level differences are at its maximum that the peak ebb flow velocities 

occur. 

The water surface slope between the estuary and the open sea is shown at its maximum 

gradient in Figure 5.5a for a profile along the middle of the channel on 27/10/1999. Figures 

5.5b and 5.5c present the cross and longshore velocities along the same profile, illustrating 

the relation between them and the surface slope. It shows the dominant along-channel 

velocities (x) in the funnelled channel associated with higher water level residuals that 

generate the slope. When it reaches the end of the channel, the flow spreads out and the 

slope reaches its end, with values of water level residuals close to zero. This is followed by 

a decrease in the along-channel velocity and a slight increase in the longshore velocity as 

the flow turns to the south as it leaves the channel. The channel slope cycle, from flat 

surface to the maximum slope and back to flat surface takes about 5 hours of the ebb tide 

period. 
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Figure 5.3. Contour plot of the water surface topography in relation to the pier water level 

(a) and velocity vector plot (b) at maximum ebb flow. 

5.3.1.2. Waves 

As shown by Siegle et al. (2002) the influence of waves is relatively small in the water 

level elevations at the channel region. Its influence is higher in the region outside the main 

inlet channel where high waves can cause an increase of up to 0.15 m in the local water 

levels (Appendix II). An example of the wave setup around the szmdbars is shown in 

Figure 5.6. 

5.3.1.3. River Discharge 

River discharge values varying between the real conditions (of about 7 m'' s'*) during the 

modelled period and 100 m̂  s"' caused a maximum water level increase of about 12 cm 

coincident with the peak ebb tide currents. Average values over the 25 hour period for high 

discharge show an increase of about 5 cm compared to low discharge periods. The 

opposite is verified for the minimum residuals (negative), since the flood currents are 

reduced due to the residual flow during high discharge periods. This causes the water level 

residuals during high discharge events to be closer to zero at flood periods, while for low 

discharge events the residuals become negative in relation to the pier reference point. 
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Figure 5.4. Time series of water level residuals (thick line) and water level (a - thin line) 

and current velocity (b - thin line) in the middle of the channel. 

The water surface slope gradient in the inlet channel also shows an increase in residual 

water level during high discharge events. Figure 5.7 illustrates this for the slope along the 

middle of the channel for high and low river discharge. The slope gradient is significantly 

increased at high discharge, but the offshore end of the slope is the same for both 

conditions, being defined by the channel morphology. The channel and sandbar 

morphology defines the maximum extent of the water surface deviations across the area of 

interest. This highlights the importance of the charmels and sandbar morphology for the 

water surface topography variability and distribution. The water surface slopes shown in 
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Figure 5.7 also show a flattening of the slopes at around 400 m, which is coincident with 

the secondary channel that guides the flow northwards (see Figure 5.3). This allows part of 

the flow to spread before it is fimnelled again in the final part of the main channel. 
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Figure 5.5. Along channel profile of water level differential (a), x-velocity (b) and y-

velocity (c). The situation represented is at approximately LW - 1 hour during spring tide 

(27/10/1999 00:40:00). 
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Figure 5.6, Wave effect on the water levels around the sandbars. The represented profile 

starts offshore (0 m) and ends onshore (700 m) and its exact position is given in Figure I in 

Appendix II (P3). The figure legend shows the modelled wave heights. 
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Figure 5.7. Mid channel water slope for real measured discharge £md for high river 

discharge conditions. The arrow indicates the flattening in the curve at around 400 m 

distance. 
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5.3.2. Modelled Water Levels as Input for Video Imaging Techniques 

In order to carry out the image processing with the best approximation of the real water 

level distribution, the spatially varying modelled water levels are applied. This process of 

using the modelled water levels for the morphology extraction requires the inclusion of an 

additional step in the applied extraction technique described earlier in section 5.2 and 

represented schematically in the diagram in Figure 5.1. The use of modelled water levels is 

included between the steps represented by "c" and "d" in Figure 5.1. As seen previously, 

the modelled water levels are used twice in the extraction process: 1) for the rectification 

of the Ui and Vi image coordinates into x, y and z ground coordinates, and 2) when defining 

the correspondent elevation values (z) for the extracted points for the morphology grid 

generation. 

This additional step in the image processing consists of the segmentation of coastline 

stretches in an oblique image according to the modelled water level gradients. Figure 5.8 

shows an example of how the coastline segmentation is defined for images from cameras 1 

and 2 at 13:00h on the 27/10/1999. From the overlaid modelled water levels it is possible 

to define stretches of coastline, according to regions of similar water levels, and consider 

them separately during the shoreline extraction, processing each defined segment with its 

corresponding modelled water level. This segmentation is defined according to the balance 

between the accuracy of the applied technique and processing time, udth differences of 

about 0.05 m to 0.1 m defining each segment. For the example shown in Figure 5.8, the 

measured water level at the pier at the given time is -1.98 m, resulting in differences of up 

to 0.78 m when compared to the water levels in the channel (Figure 5.8a). I f these 

differences are taken into account in the image processing, improvements can be made 

when extracting the intertidal morphology (as seen later in the technique validation -

section 5.4). 

The modelled water surface topography described in the previous section and in Siegle et 

al. (2002 - Appendix II) is specific for one morphological stage (October 1999). However, 

in order to extract the morphology at different stages o f the morphological cycle it is 

necessary to obtain the water levels around the region of interest under different 

morphological conditions. In order to do so, the numerical modelling experiments and the 

techniques to extract the intertidal morphology from images need to be carried out 
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iteratively, with model simulations under a given morphological condition providing water 

levels for the morphology extraction from the set of images representing the next 

morphological stage. 

For this purpose, ten situations with distinct morphological characteristics were selected 

from the three-year observed sandbar evolution cycle (March 1999 to April 2002). The 

morphology used for the modelling experiments is based on two surveys (March and 

October 1999) and on the intertidal morphology extracted from images for the remaining 

eight modelled morphological conditions. These modelling experiments are conducted 

iteratively with the image extraction techniques, with model results from the previous 

situation providing water levels for the intertidal morphology extraction for the next stage. 

When running the model to obtain the water level distribution, boundary conditions for the 

period corresponding to the next morphological situation are used (river discharge, water 

levels, wave data). This means that the morphology is considered constant between each of 

the ten represented stages. However, as the main influence of the pressure gradients on the 

water level occurs in the region of the inlet channel, which is relatively stable, this is a fair 

assumption. Water levels extracted from these numerical simulations are then used for 

processing the images from the following period (the period that provided the boundary 

conditions for the water level simulation). This process results in the morphology 

definition for the latter period, allowing further modelling experiments (including water 

level distribution for the following stage - as seen in item 5.3.3) to be carried out at each 

selected morphological stage of the cycle. 

In order to reduce the errors in estimating the water levels based on the previous 

morphological stage, the number and temporal distribution of the modelled periods is 

chosen according to morphological changes observed in the rectified video images. 

Increasing the temporal resolution of the modelling experiments can always reduce errors. 

Despite some limitations, the technique validation (section 5.4) shows that the use of 

varying water levels allows the extraction of a more realistic intertidal morphology from 

images. 
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5.3.3. Extracted Intertidal Morphology as Input for Numerical Model Simulations 

As one of the objectives of this study is to apply the numerical model to different stages of 

the morphological cycle at Teignmouth, the intertidal morphology extracted from the video 

images is used as an input to the numerical simulations. Following the process described in 

item 5.3.2, this also enables the use of the modelled water levels for the extraction of 

morphology from the next evolutionary stages, completing a loop between the numerical 

model and image processing outputs. The overall method approach is diagrammed in 

Figure 5.9. 

Since only the intertidal morphology is extracted from images, the subtidal bathymetry is 

assumed to be constant in relation to the last existing survey (October 1999). Despite this 

being a limitation of the method used, this assumption is reasonable since only small 

changes were observed in the subtida! morphology during the measured interval (March -

October 1999, surveys carried out by the COAST3D project). 
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Figure 5.8. Example of coastline segmentation for the image processing using modelled 

water levels for: camera 1 (a) and camera 2 (b) at 13:00h on the 27/10/1999. Black crosses 

indicate positions {Ui, V,) of water levels extracted from the model with elevation values 

indicated by black labels. Yellow lines show the stretches of coastline processed from 

average water level (yellow numbers). At the given time, the measured water level at the 

pier is -1.98 m. 
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Figure 5.9. Diagram representing the framework of the applied method. Red arrows 

represent the links between the numerical modelling and video imaging techniques. 

Based on the surveyed "background" bathymetry, the intertidal morphology extracted from 

the video images replaces the original data where information is overlapped and remaining 

data points of the previous intertidal morphology are removed. This process is earned out 

in the MIKE21 bathymetry editor, using the new intertidal data to create new bathymetries 

to be applied in the model simulations. The interpolation process fills the remaining gaps 

of data between the intertidal and subtidal morphologies. The applied interpolation method 

in the MIKE21 bathymetry editor is the "True Distance", which searches for data points in 

circles around a point. The final configuration o f the intertidal morphologies is tested in the 

model simulations through plots of modelled hydrodynamics overlaid on images at given 
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times. Drying areas in the model simulations should coincide with the dry intertidal areas 

in the images at the same tidal level, as shown in the example in Figure 5.10. Some small 

differences are expected since the comparison is made using time exposure images 

(averaged over 10 minutes) and the model output is representing one snapshot of the given 

time. Examples o f these differences can be seen at hours 10:00, 11:00 and 12:00 in Figure 

5.10, where the modelled velocity fields appear overiaid to some parts of the exposed 

sandbar in the images. 

In the next section the applied technique is validated for periods with data available from 

traditional surveying techniques and in section 5.5 the application of the technique to the 

studied morphologies is described, providing the basis for the model application at 

different stages of the morphological cycle of the sandbars. 

114 



Chapter 5 - Video Imaging and Numerical Modelling 

08 (M) 09 00 

100 200 300 400 500 eOO 700 

10:00 

0 10O 200 » 0 4 O 0 5 0 O 0 0 O r 0 O 8 O 0 

11:00 

0 100 200 300 400 500 800 700 000 

12.00 

100 300 300 400 900 800 7 0 0 8 0 0 

13:00 

0 100 200 400 500 800 700 800 

Figure 5.10. Example of modelled hydrodynamics overlaid on video images at different 

tidal levels in order to test the intertidal morphology applied in the simulations through the 

wetting and drying areas Example for 31/08/2000. Continued on next page 
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Figure 5.10 (Cont ). Example of modelled hydrodynamics overlaid on video images at 

ditTerent tidal levels in order to test the intertidal morphology applied in the simulations 

through the wetting and drying areas Example for 31/08/2000 

5.4. Technique Validation 

In order to validate the technique applied for the morphology extraction from the video 

images, periods with available data obtained through traditional surveying techniques are 

compared for the region of interest In this study, three available surveys of the intertidal 

region are used for the morphology extraction technique One period is the C0AST3D 
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main experiment survey (25 - 27 October 1999 - Figxire 5.11). The second is a survey 

carried out on the 5**" of July 2000, covering mainly the long straight attached sandbar 

(Figure 5.15); and the third survey was carried out through three cross-sections over the 

Sprat sandbar on the 30"" of August 2000. The accuracy o f the COAST3D topographic and 

bathymetric surveys was assessed by Van Rijn et al. (2000) (Chapter 3). 

The comparison of the measured morphology with that extracted from images is carried 

out using the interpolated intertidal maps for the periods with available data (e.g. October 

1999, July 2000 and August 2000). Results from the comparison for the October 1999 

period are presented in Figures 5.11 to 5.14. In Figure 5.11 the compared profiles are 

plotted over the merged video image representative of the surveyed period. The 

comparison between surveyed data and morphology extracted from the images is 

represented in Figures 5.12, 5.13 and 5.14. 

In the comparison shown in Figure 5.12 both spatially constzmt and varying water levels 

are applied for the morphology extraction. In general, all the compared profiles present a 

better result when using the varying modelled water levels, and this improvement is 

increased for profiles close to the inlet mouth, where higher pressure gradients control the 

water levels. The use of spatially horizontal water levels results in large differences in the 

extracted morphology when compared to the surveyed data. As shown by the compared 

profiles, this difference is significantly reduced when applying the modelled water levels in 

the shoreline extraction technique. 

Quantifying the vertical errors through the use of Root Mean Square Error (RMSE) values 

also shows the gain in accuracy when using the varying modelled water levels for the 

image processing. RMSE values are summarised in Table 5.1 for the compared profiles. 

Extending the comparison to the map generated by all extracted and surveyed points over 

the Sprat sandbar (yellow dots in Figure 5.11) the RMSE values are 0.373 m when using 

constant water levels and 0.144 m when applying the varying modelled water levels. The 

RMSE values present an even further reduction when comparing some particular profiles 

at the region under the channel influence (Table 5.1 - page 123). 

As shown by the modelling experiments, the main changes in water level in relation to the 

measured pier water level occur close to the channel region where the pressure gradients 
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are high Only small deviations (<0 05 m) affect the region further northward in the 

cameras field of view At this region the water level considered in the image processing is 

the one measured at the pier Example comparison profiles at this region are Profiles 7, 8 

and 9 (Figure 5.13, with positions indicated in Figure 5 11) 

^ 4 0 0 1 ^ 

14 15 10 
-11 

-200 -100 100 200 300 400 500 600 

Argus x (m) 

Figure 5 11. Validation profiles of the morphology extraction technique from the video 

images Yellow contour lines are the shorelines extracted from the images; red dots are the 

surveyed points, and black lines are the compared profiles indicated by the numbers 

Survey carried out on 25 - 27/10/99 and image from the 26/10/1999. Contour lines were 

extracted from images covering a two day interval (26 - 27/10/1999). 
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Figure 5,12. Comparison of measured morphology profiles (circles) and extracted from 

images using the modelled water level (stars) and a constant water level (diamonds) at the 

Sprat sandbar for the 26-27/10/1999. Profile locations are shown in Figure 5.11. 

Morphology comparison over the offshore sandbar is based on the C0AST3D ship survey 

of the region. For this comparison it is important to be aware of the relatively high 

measurement errors that can occur at this region, with values of up to 0.25 m (Van Rijn et 

al. 2000 - Chapter 3). Comp£U*ed profiles are 10 to 15 indicated in Figure 5.11 and 

compared with measurements in Figure 5.14. Profiles over the sandbar are approximately 

overlaid to the measurement transects. 

The offshore sandbar is also under the influence of the channel pressure gradients, and 

both constant and modelled water levels are applied in the comparison. The southem side 

of the sandbar is the most influenced by the channel water slope, while at the northem side 

only small variations are detected. RMSE values are slightly lower for all compared 

profiles when using the varying water levels (Table 5.1), with major improvement in 

accuracy for Profiles 13 and 14 (RMSE values are approximately halved). The transects of 
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these profiles include the region under the influence of the channel water levels, resulting 

in a better profile estimate fi-om the images when applying the modelled water levels. 
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Figure 5.13. Comparison of measured morphology profiles (circles) and extracted from 

images (stars). Profile locations are shown in Figure 5.11. 

Another opportunity to assess the accuracy of the technique applied to extract the intertidal 

morphology fi*om images is the survey ceuried out in July 2000. This survey covers in 

detail the straight sandbar attached to the beach, distant approximately 450 m from the 

cameras (Figure 5.15). As the modelling experiments for this morphological situation show 

that this region is under only small differences in water level in relation to the levels 

measured at the pier, the water level is assumed to be spatially horizontal for the image 

processing at this region. 

Profiles represented in Figure 5.15 and 5.16 show the compared morphology of the 

attached sandbar. The extracted morphology represents well the surveyed one, with low 
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RMSE values (Table 5.1) and high r̂  values for the compared points (Figure 5.16). The 

excellent agreement between measured morphology and the one extracted from images 

confirms that, when considering this region, the use of spatially constant water levels 

represents reality well. 
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Figure 5.14. Comparison of measured morphology profiles (circles) and extracted from 

images using the modelled water level (stars) and constant water level (diamonds) at the 

offshore sandbar for the 26-27/10/1999. Profile locations are shown in Figure 5.11. 

The only opportunity to test the accuracy of the application of modelled water levels based 

on the previous morphological stage for the image processing (applying the method 

described in items 5.3.2 and 5.3.3) are three surveyed profiles over the Sprat sandbar at the 

30* of August 2000. For the extraction of the intertidal morphology at this stage, the water 

levels modelled for the May 2000 situation are used. Boundary conditions used in the 

numerical model represent the August 2000 period; however, the previous morphological 
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conditions (May 2000) are used, completing the loop between the image processing and 

numerical modelling Results are shown in Figure 5 17 for the three profiles under the 

influence of the channel, and show an overall good agreement when compared to the 

measurements, with high r̂  values RMSE values are also low for these comparisons 

(Table 5.1). 
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Figure 5 15 Validation profiles of the morphology extraction technique from the video 

images Yellow contour lines are the shorelines extracted from the images, red dots are the 

surveyed points, and black lines are the compared profiles indicated by the numbers 

Survey and image from the 05/07/2000 Contour lines were extracted from images 

covering a three day interval (04 - 06/07/2000) 
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Figure 5.16. Comparison of measured morphology profiles (circles) and extracted firom 

images (stars) at the attached sandbar for the 05/07/2000. Profile locations are shown in 

Figure 5.15. 
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Figure 5,17. Comparison of measured morphology profiles (circles) and extracted from 

images (stars) using the modelled water levels with the previous morphology. These 

profiles were extracted from 30/08/2000 images using modelled water levels fi-om the 

previous model runs (May 2000 morphology). 

These results show that the contouring technique applied for the morphology extraction 

fi-om images results in good approximations of the measured intertidal morphology, 

representing the overall morphology with relatively small errors (with averaged RMSE of 

about 0.15 m). The application of varying modelled water levels results in an increased 

accuracy in the image processing at regions under the influence of high pressure gradients 

(e.g. the inlet channel). Water level differences of up to 0.80 m at the channel region 

highlight the importance of the use of spatially varying water levels when extracting the 

morphology fi"om images at such regions. 
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Table 5.1. RMSE* (m) values of the compared profiles, 

Sprat sandbar, beach 
and ofTshore sandbar 

(26/10/1999) 

Attached sandbar 
(05/07/2000) 

Sprat sandbar 
(30/08/2000) 

modelled constant constant water modelled water 
water level water level level level 

profile 1 0.152 0.382 0.227 0.111 
profile 2 0.226 0.508 0.191 0.062 
profile 3 0.096 0.565 0.282 0.090 
profile 4 0.128 0.300 0.143 
profile 5 0.120 0.202 0.094 
profile 6 0.124 0.266 0.072 
profile 7 N/A 0.330 0.058 
profile 8 N/A 0.201 0.064 
profile 9 N/A 0.709 
profile 10 0.285 0.296 
profile 11 0.229 0.237 
profile 12 0.131 0.132 
profile 13 0.135 0.283 
profile 14 0.183 0.226 
profile 15 0.242 0.253 

• Root Mean Square Errors (RMSE) of the compared profiles were calculated through 

n , where Zg are the extracted elevations, z„, are the measured elevations 
and w is the number of compared points. 

5.5. Application 

As described in the previous sections, the application of the combined use of numerical 

modelling and video imaging is carried out in order to obtain a number of morphological 

stages that represent the main changes in the sandbar configurations at Teignmouth. The 

nearshore morphology generated from merging the changing intertidal morphology with 

the constant subtidal bathymetry is then used for a series of modelling experiments. From 

the observed morphological evolution through rectified video images (Chapters 6 and 7), 

four morphological stages are identified that represent the main configurations in the 

evolutionary cycle. However, in order to apply the video imaging techniques with 

improved accuracies due to the modelled water surface topography, ten stages of the three-

year cycle are chosen (see Table 5.2). 
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The first two stages are based on surveys carried out during the C0AST3D project (March 

and October 1999), and the remaining eight (January, May, August 2000; February, May, 

September 2001; January, April 2002) are based on the intertidal morphology extracted 

from the video images. These stages were selected in order to allow the application of the 

loop between the numerical model and video images (Figure 5.9). In Table 5.2 the selected 

stages are indicated with a summary of the available boundary conditions for the numerical 

model application. 

The nearshore morphology of the eight stages extracted from the interactive application of 

modelled water levels and image processing are represented in Figure 5.18. These 

nearshore morphologies are the "changing" part of the model grid, with the estuary and 

remaining offshore bathymetry being considered constant over the studied period. Separate 

numerical modelling experiments carried out in Chapter 7 apply these morphologies in 

order to study the sediment transport and its controlling processes for each morphological 

stage. 

Table 5.2. Stages chosen for the numerical modelling and image processing. 

Bathymetry Modelled water levels for Model boundary conditions 
image processing based on water lev. waves river disch. 

On 
March, 24 survey meas. meas. meas. 

On 
On October, 26 survey meas. meas. meas. 

January, 23 image October 1999 morphology pred. meas. meas. 
O 
O 

o 
May, 7 image January 2000 morphology pred. N/A meas. 
August, 31 image May 2000 morphology meas. meas. meas. 
February, 11 image August 2000 morphology pred. meas. meas. 

o o 
(N 

May, 08 image February 2001 morphology pred. N/A meas. o o 
(N 

September, 19 image May 2001 morphology meas. meas. meas. 

(N 
January, 1 image September 2001 morphology meas. meas. meas. 

3̂ 
O 
fN April, 28 image January 2002 morphology meas. meas. meas. 

meas. = measured; pred. = predicted; N/A = not available. 
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Figure 5 18 (continued next page). 
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Figure 5 18 (continued next page) 
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Figure 5 18 (continued) Rectified images and nearshore morphology for each of the 

modelled periods using the extracted intertidal morphology with constant subtidal 

morphology. These morphologies are applied in the modelling experiments (Chapter 7) 

5.6. Discussion and Conclusions 

The overall aim o f this chapter was to describe and apply a technique to extract the 

intertidal morphology fi-om video images with the purpose of applying it in a numerical 

area model, thus increasing the time-scale of its application The applied technique is based 

on the same principle of previous techniques applied for the shoreline extraction from 

129 



Chapter 5 - Video Imaging and Numerical Modelling 

images (e. g. Plant and Holman, 1997; Davidson et al., 1997; Janssen, 1997; Aaminkhof 

and Roelvink, 1999; Kingston et al., in prep.). This principle is the detection of the 

shoreline location at a number of instances during a tidal cycle, assuming the vertical 

elevation of the shoreline as being the local water level. However, the main difference in 

the method applied in this study is the application of modelled spatially varying water 

levels across the region of interest for the image processing. 

As shown by measurements (C0AST3D project) and numerical modelling experiments 

(section 5.3.1 and Siegle et al., 2002) the inlet channel at Teignmouth is highly influenced 

by the pressure gradient existent between the estuary and the adjacent nearshore region. As 

the processing of images is dependent on the local vertical elevation, the inclusion of 

differences in the water level across the channel region is shown to be very important to 

obtain the correct horizontal position of the shoreline and its associated vertical elevation. 

Despite the contouring technique being simple and limited to greyscale images, it is able to 

define well the contours that best represent the shoreline in most cases. This means that it 

is able to solve part of the problem of morphology extraction from images, by locating the 

Ui and Vi coordinates of the shoreline in an oblique image. The second part of the process 

is the application of the photogranrmietric relations to convert the detected Ui, Vi positions 

in the oblique image into x, y, z ground coordinates. This part is considerably improved by 

applying accurate water levels, since they are used in the photogrammetric relations to 

rectify the coordinates and for the intertidal map definition of vertical elevations. 

When the morphology extraction is aimed at regions out of the influence of the inlet 

channel pressure gradients, the assumption of spatially horizontal water levels is accurate 

and results in good estimates of the morphological features from the images. Examples of 

this case are shown in the profiles compared over the straight attached sandbar (Figure 

5.16). At this case the intertidal map can be reproduced with an overall residual error of 

about 0.19 m. However, at regions where the water levels present high differentials in 

relation to the level measured at the pier, large variations in the horizontal and vertical 

position occur i f these differences are not considered in the image processing. This 

problem is clearly verified through the compared profiles over the Sprat sandbar, where the 

use of the measured water level at the pier resulted in a residual error of 0.37 m for the 

extracted intertidal morphology. At some locations (profiles 2 and 3 - Figure 5.11 and 
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5.12) this error can reach values of over 0.5 m. Applying the modelled water levels results 

in an improved reproduction of the intertidal morphology, with the overall error being 

0.14 m over the Sprat sandbar (for all compared points). At profiles 2 and 3 (which 

presented errors larger than 0.5 m when using constant water level) the errors are reduced 

to 0.22 and 0.09 m respectively (Table 5.1). 

The iterative application of the numerical model and image processing for the temporal 

extension of the modelling experiments uses as a start point the model calibration and 

validation period (October 1999 - Chapter 4). It is then applied at eight different stages of 

the cycle, and at each stage, the morphology extracted from the images is dependent on the 

water surface topography modelled using the previous nearshore morphology (Table 5.2). 

Limitations arise from the assumption of constant subtidal morphology and constant 

morphological conditions between the eight analysed stages. However, the validation of 

the extracted morphology from images using this principle shows an excellent agreement 

between measured and image derived morphology. An overall residual error of 0.09 m is 

found for the three profiles compared in August 2000, based on modelled output using the 

May 2000 morphology (Figure 5.17 and Table 5.1). This is the only situation with 

available measurements for the validation of the temporal extension of the modelling 

experiments. A different way of assessing the accuracy of the application is an indirect 

validation carried out through the comparison of sediment transport pattems and the 

general movement of the sandbars (as discussed in Chapter 7). 

Despite some limitations, the application of the described technique to obtain the nearshore 

morphology for numerical modelling simulations at different stages o f the evolutionary 

cycle at Teignmouth shows promising results. In the absence of in situ surveyed data from 

the region of interest at short time intervals, this application provides a good approximation 

to the observed morphological changes. In order to summarise, a list of advantages and 

limitations of the application is given below. 

Advantages: 

• the contouring technique applied to define the Ui and Vi coordinates of the shoreline is 

simple and available in the MATLAB® image processing toolbox; 
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. through the application of modelled water levels, spatially varying levels can be 

applied in the image processing; 

. by merging the extracted morphology with the surveyed subtidal bathymetry, the 

resultant nearshore morphology can be applied in the numerical model; 

• the intertidal mapping of relatively large areas can be achieved on a daily basis; 

. the loop between the numerical model and image processing in the applied method 

allows the temporal extension of the application of the numerical model; 

• errors in the estimates of water levels across the region applying the model 

interactively with images can always be reduced by increasing the temporal resolution 

of the application; 

the method reproduces well the main measured morphological features. 

Limitations: 

the efficiency of the contouring technique depends on the contrast in the images; 

intertidal maps extracted from images present larger errors than the ones expected by 

traditional surveying techniques; 

vertical coverage of the extraction technique depends on the tidal range; 

• when merging the extracted morphology with the surveyed subtidal bathymetry, the 

subtidal morphology is assumed to be constant since the last available survey (October 

1999); 

when extending the application of the technique to different stages o f the evolutionary 

cycle, the modelled water levels applied for the next stages are modelled under slightly 

different morphological conditions to the ones of the day of the image processing; 

• the use of modelled water levels increases the amount of user input in order to apply 

the technique. 

The nearshore morphologies obtained here are applied in the modelling experiments 

carried out to study the processes controlling the local sediment transport and sandbar 

dynamics. The modelled sediment transport patterns discussed in Chapter 7 also provide an 

indirect validation of the applied model when compared to the observed morphological 

changes fi-om video images. 
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Chapter 6 

Physical Controls on the Sandbar Dynamics 

6.1. Introduction 

Previous chapters have defined the tools and analysis techniques used to model the Teign 

inlet sandbars. These techniques are used in this chapter and in Chapter 7 to investigate the 

processes that control the local sediment transport and morphodynamics. 

The objectives of this chapter are to identify and assess the relative importance of the 

controlling processes across the complex sandbar dynamics at the inlet system. This allows 

the determination of the regions dominated by wave processes or by tidal processes and to 

define the variability of these regions under different wave, tide and run-off conditions. 

Knowledge of the main physical processes acting at the inlet system forms the basis for the 

study of the system at different stages of the evolutionary cycle (Chapter 7). Part of this 

chapter has been published by the author in Siegle et al. (in press). 

The chapter structure includes a brief description of the numerical experiments carried out 

in order to assess the relative importance of different physical forcing conditions. This is 

followed by the results of the modelled hydrodynamics and sediment transport, with 

emphasis on the driving forces. Finally, the conclusions of die chapter with a summary of 

the findings are given, forming the background for Chapter 7. 

6.2. Numerical Simulations 

Through the application of the MTKE21 HD, NSW and ST modules, several combinations 

of simulations are carried out.. In this exercise, the experiments are carried out for one 

stage (October 1999) of the morphological evolution of the system, which is that 
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encountered during the C0AST3D main experiment period (numerical modelling 

validation period - Chapter 4). 

The numerical modelling experiments were designed in order to cover a range of 

conditions found at the region. They include sets of simulations v^ith different boundary 

conditions over short period of times (two tidal cycles) and one longer simulation (thirteen 

days) under measured forcing conditions. The short period simulations include several 

combinations of forcing conditions, with spring or neap tides combined with waves 

varying from 0 to 1.8 m (with 0.2 m intervals) and river discharge varying from 5 to 

150m^s"' (with 20 m^ s ' intervals - these values vary between the minimum and 

maximum measured values over a four year data set). The thirteen-day simulation covers a 

period with tidal range varying from spring to neap and wave conditions varying from 

calm to stormy. The measured river discharge over this period was low and constant (of 

about 8 m"̂  s"'). Exact forcing conditions during this period are shown later in the chapter. 

The short period simulations were designed in order to assess the relative influence of the 

tidal rzmge, waves and river discharge on the sediment transport. The influence of the tidal 

range is assessed through simulations with different tidal amplitudes, while keeping the 

other forcing conditions constant. The same process is carried out for the assessment of the 

wave influence, where the varying parameters are the significant wave heights (//j/g) and 

wave directions of incidence. In these cases the parameters governing wave breaking were 

set as suggested by Holthuijsen et al. (1989): =1.0 (maximum steepness parameter), 

/2=0.8 (maximum H/d parameter; H is wave height and d is water depth) and a =1.0 

(adjustable constant). 

As described in Chapter 4, the non-cohesive sediment transport formulation chosen for the 

modelling experiments of sediment transport under currents and waves is the deterministic 

STP formulation (see Chapter 4 and Appendix I for details). 
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6.3. General Hydrodynamics 

6.3.1. Tidal circulation 

The analysis of the in situ data and results of the model simulations allow the description 

of the circulation patterns at the inlet and adjacent nearshore region during a range of 

distinct conditions. The flow velocity field represented in Figure 6.1 shows the inlet 

circulation pattern during maximum ebb and maximum flood tide currents at spring tide. 

Currents in the channel can reach up to 2.0 m s"' during spring ebb and flood tides. 

Maximum ebb flow occurs during low-tide, with smaller water depths constricting the flow 

within the main channel, resulting in a jet-like outflow with an associated circular flow 

pattern on its southem side (Figure 6.1a). In contrast, maximum flood tidal flows occur late 

in the flood tidal cycle (high tides) when water depths are greater, so the flow is more 

regularly distributed across the channel and over the sandbars. In the inner part of the inlet, 

in the curved channel, a gyre is observed in the flood flow, with currents flowing parallel 

to the sandy spit towards the inlet (Figure 6.1b). 

Tidal flow asymmetry varies along the channel with flood dominance close to the estuary 

mouth and ebb dominance seawards to the inlet entrance. Time series of modelled flow 

velocities extracted at four points in the main channel including spring to neap tidal 

conditions show this along-channel asymmetric variability (Figure 6.2). At station 1 

(indicated in Figure 6.1a) the maximum flood current exceeds the maximum ebb current by 

about 40 %, while at station 4, the opposite occurs, with maximum ebb current exceeding 

maximum flood current by about 75 %. At the intermediate stations 2 and 3, the ebb 

current is also dominant, exceeding the maximum flood currents by 10 and 50% 

respectively, showing the gradual increase in the ebb dominance at the outer part of the 

channel. This wi l l be reflected in the sediment transport patterns as discussed later in this 

chapter. 
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\\\\ 

Figure 6.1. Example vector plots indicating the modelled velocity field at the inlet region 

for maximum ebb (a) and maximum flood (b) conditions. Red numbers in (a) represent the 

position of the extracted time series shown in Figure 6.2. 

6.3.2. River discharge 

During the relatively short periods of high river discharge at the Teign river, the freshwater 

input plays an important role in the Teign inlet, with the tidal prism and river discharge 

controlling the hydraulics of the system. Model results show that high river discharge 

events, which are frequent over winter months, may change the hydraulics of the system. 

The main changes occur during neap tides, when the weaker tidal currents are largely 

influenced by the run-off, with an increase in the mid-channel ebb flow velocity by 

approximately 40 % and decrease the flood flow velocity by up to 60 %. During spring 

tides, when the relative influence of the river discharge on the tidal currents is smaller, 

high run-off values cause an increase in the mid-channel ebb flow velocity by 

approximately 20 Vo and decrease the flood flow velocity by approximately 15 %. 

Estimates of quantified classifications o f estuarine structure, such as the flow ratio 

(Simmons, 1955, in Dyer, 1997), provide a general statement of the estuarine structure 

under the influence of river discharge effects. Simmons (1955) found that when the flow 

ratio (ratio of river flow per tidal cycle to the tidal prism) is 1.0 or greater, the estuary is 
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highly stratified, when about 0.25 the estuary is partially mixed, and when it is less than 

0.1 it is well mixed. For spring tide conditions, this relation results in a partially mixed 

(flow ratio of 0.52) classification of the Teign estuary during high river discharges (of 

about 150 m^ s"*) and well mixed (flow ratio under 0.03) for low discharge (5 m"* s"*) and 

mean discharge (10,5 m^ s'' - averaged over four years of observations). During neap tide 

conditions, high river discharge values result in a stratified estuary, and low and mean 

discharge result in well mixed conditions. Considering this classification, the Teign estuary 

can be considered partially mixed (flow ratio of 0.25) when the river discharge is higher 

than 70 m"* s'' during spring tides and higher than 30 m"* s"* during neap tides. Lower river 

discharges result in a well mixed estuary. 

As a consequence, during ebb tides with high river discharges, it is likely that a plume is 

formed by the buoyant outflow of brackish water from the estuary (Pritchard and Huntley, 

2002). However, this does not necessarily mean that a stratified structure is present in the 

channel region; as it is believed that the plume is formed as the mixed brackish water 

leaves the main channel when it flows into Lyme Bay (Pritchard*, pers. comm.). From the 

analysis of X-Band radar images, Pritchard (2000) observed that the first detection of the 

plume fi-ont occurs at approximately 700 m offshore, which is outside of the region of 

interest of this study. 

These considerations are important since the model applied in this study is vertically 

homogenous. However, as the region of interest is the inlet channel and adjacent nearshore 

region, one would not expect large influences of vertical stratification in the 

hydrodynamics and sediment transport in this region. 

Dr Mark Pritchard - School of the EnvironmentAJniversity of Leeds. 
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Figure 6.2. Channel x-component of modelled current velocities from the mouth to the 

outer part ranging from spring (26/10/1999) to ntzp tide (04/11/1999) conditions. Positive 

values indicate ebb flow and negative represent flood flow. Station positions are indicated 

in Figure 6.1a. 

63.3. Wave driven circulation 

Teignmouth is protected from the Atlantic swell and the local wave climate is dominated 

by infi^uent periods of relatively small and short period wind-driven waves. These short 

period waves can be organised in well-deflned groups and present swell-like 

characteristics. Significant wave heights are greater than 0.5 m for 10 % of the year (Miles, 

1997). The direction of incidence of the waves is shown in Figure 6.3 for the available 

directional wave data (measured at l.S km of^ore during the C0AST3D experiments). 

For the observed period, waves with significant heights greater than 0.5 m reach the coast 

at an approximately shore-normal angle (115-150^. 
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High wave energy during storm periods changes considerably the hydrodynamics at the 

inlet region and beach. In the vector plots in Figure 6.4 some of the main changes in the 

flow patterns can be seen. The plots show an example of a snapshot of the modelled 

hydrodynamics during ebb tide with low- and high-energy wave conditions. Comparing 

these plots, it is clearly visible that the complex circulation in the nearshore region is a 

consequence of wave action. The regular flows during calm conditions are transformed 

into complex gyres due to the wave action. At both sides of the sandbars, the breaking 

waves generate longshore currents (in relation to the sandbar) with an overall onshore 

direction. 
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Figure 6.3, Incident wave direction scatter plot. 

The wave-current interaction at the ebb tidal jet is also visible, and one of the 

consequences is the deflection of the main ebbing flow. Depending on the incoming wave 

direction, the ebb jet can be deflected to either south or north. Figure 6.5 shows an example 

of flow deflection due to the wave-current interaction during the 12/11/1999 storm, with 

incoming waves being approximately shore-normal. During low wave energy periods, the 

ebb jet flows approximately straight out into the bay (Figure 6.5a), while the influence of 

wave generated currents causes the southwards deflection of the flow (Figure 6.5b). 
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a. H„g = 0.0 m 

b. H.^= 1.25 m 

Figure 6.4 Example vector plots indicating the modelled velocity field without (a) and 

with (b) the presence of waves (12/11/1999 13 :00h) Vectors are plotted over the rectified 

video image of the inlet region for this time 
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Another factor that is observed in the modelled wave-current interaction at the outflow of 

the main channel is the wave shoaling due to the opposing current. When the incoming 

waves encounter the opposing ebb-flow the peak of the wave height increases and becomes 

sharper. The position of the peak also moves further offshore, indicating that the wave-

current interaction causes the waves to shoal earlier than they normally would, as shown in 

the example of Figure 6.6. These effects also affect the local sediment transport, with their 

combined bottom stresses causing sediment mobilisation and hence determining the 

amount of sediment available for transport (Lyne et al., 1990; Vincent and Downing, 1994; 

Pan et al.,2001). 
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Figure 6.5 Vector plots showing the ebb flow deflection due to the wave action 
12/11/1999 00:40h). Yellow shading represents the region where current velocities are 
higher than 0.2 m s"'. The profile p-p' (a) indicates the position of the profile in Figure 6 6 
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Figure 6.6 Significant wave height for simulations without considering the wave-current 
interaction (a - black line) and considering the wave-current interaction (a - blue line) and 
the x-velocity component along the profile (b) along the profile p-p' indicated in Figure 6 5 
(12/11/1999 11 OOh). The profile starts offshore. 
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6.4. Sediment Transport 

The overall physical controls that drive the sediment transport at the sandbar system are 

described for the October/November 1999 situation surveyed during the C0AST3D main 

experiment. The understanding of the processes driving the sediment transport derived 

from this specific morphological state allows the definition and spatial distribution of the 

main acting processes across the region. 

6.4.1. General Sediment Transport Patterns 

Sediment transport patterns across the region are described based on model simulations 

under different conditions. Tidal range, waves, and river discharge were the main 

parameters varied to determine their influence on the sediment transport and consequent 

morphodynamics. Modelled results show that, independent of the nearshore morphology, 

the overall sediment transport pattern at the inlet region is controlled by the interaction of 

tidal currents, waves, and river discharge. Figure 6.7 shows schematic diagrams based on 

the model outputs of the general sediment transport patterns over two tidal cycles (25 

hours) of spring tide (tidal range of 4.4 m) and neap tide (tidal range of 1.2 m) under 

different wave conditions. 

Simulations during spring tide (tidal range of about 4.2 m) with low wave energy 

conditions (significant wave heights < 0.2 m) and low river discharge (8 m*' s"') show that 

sediment transport is restricted to the main channel (Figure 6.7a). As shown in bedload 

transport studies at other inlets, flow asymmetries in tidal channels produce large net 

transport rates (e.g. Dalrymple et al., 1978; Pickrill, 1986; Smith and FitzGerald, 1994; 

FitzGerald et al., 2000a; Williams et al., 2003). In Teignmouth, the flood dominance close 

to the inlet mouth and ebb dominance in the channel seaward to the inlet entrance is 

reflected in the sediment transport rates, which are divided into a main seaward transport 

and a secondary landward transport at the inlet mouth. The flood dominance at the inlet 

mouth allows part of the sediment that reaches the channel to be transported into the 

estuary, providing sediment to the flood tidal delta. However, due to the predominant ebb 

dominance in the channel, the majority of sediment transported to the channel is redirected 
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seawards and deposited on its offshore end. This deposition that occurs with the decrease 

in the ebb flow velocities in the outer part of the channel results in the formation of the " U " 

shaped submerged ebb shoal. 

The main sediment input to the charmel during low wave energy conditions occurs through 

the flood channel that is directed parallel to the sandy spit at the inlet mouth (location D in 

Figure 6.8). No sediment transport is registered outside the channels of the inlet system 

during calm conditions. During storm conditions, with significant wave heights of up to 

1.8 m, the sediment transport pattern changes outside the main channel. Wave induced 

longshore currents add sediment to the system from the north and south, providing more 

sediment to be transported by the tidal currents in the main channel. This result contradicts 

the idea of the system being a closed self-contained unit of sediment as proposed by 

Robinson (1975). From the modelled sediment transport patterns it is clear that there is an 

exchange of sediments between the sandbar system and adjacent regions. Addition of 

sediment to the system via longshore currents and offshore loss of sediment through the 

channel during high-river discharge in the winter months seem to control the sediment 

volume in the system. Exchange of sediment also occurs between the ebb- and the flood-

tidal delta. As discussed earlier, under low-river discharge conditions, part of the sediment 

in the main channel is redirected landwards being deposited on the flood tidal delta. 

However, with increasing river discharge, net sediment transport in the channel occurs 

only in the seaward direction and part of the flood tidal delta sediment is transported 

seawards back to the ebb tidal delta system. Weaker tidal flows during neap tide conditions 

(with tidal range of about 1.2 m) cause only little sediment transport in the main channel. 

The general sediment transport patterns are similar to those registered during spring tide 

conditions, but due to the weaker tidal flows, they occur in much smaller magnitudes in the 

channels (Figure 6.7b). During storm conditions, sediment transport outside the main 

channel is mainly concentrated over the wave dominated shoals (sandbars), as the small 

water level variation reduces the effects of wave action across the deeper marginal regions. 

* 

Wave generated currents also redisUibute the sediment deposited by the tidal currents at 

the outer part of the channel (submerged sandbar) transporting it mainly northwards in the 

direction of the offshore sandbar. Under these conditions, the south to north sediment 

bypass through the charmel is also adding sediment to the offshore sandbar. Net sediment 

transport over the offshore sandbar is shorewards (as discussed later in section 6.4.2). 
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Figure 6.7 Schematic diagrams o f calculated sediment transport patterns averaged over 

two tidal cycles for a) spring tide and b) neap tide Arrow lengths are schematically related 

to strength of transport 
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Figure 6 8 Locations of extracted time series of modelled sediment transport The 

nearshore bathymetry is plotted over a rectified Argus image. 
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A thirteen-day numerical simulation v^th realistic varying forcing conditions gives an 

averaged sediment transport pattern for the inlet system. Modelled conditions include tides 

varying from spring to neap and significant wave heights ranging from 0.2 to 1.7 m. 

Boundary conditions used in the simulation are real conditions for the period (07/11 -

19/11/1999) and are represented in the time series of Figure 6.9a. River discharge is low 

during the period with average values of about 8 m^ s'*. 

The resultant sediment transport patterns for the channels are similar to those found during 

spring tide simulations, while net transport over the shoals is defined by high wave energy 

conditions. It is during these dynamic periods that most of the sediment transport takes 

place, defining the resultant sediment transport paths over the whole thirteen days period. 

These results indicate that the magnitude and speed of the morphological changes of the 

sandbars are a function of the intensity and frequency of high wave energy events. 

Extending this idea to a larger temporal scale, one would expect major morphological 

changes at the sandbar system during the winter months (with fi-equent storms) and a more 

stable system during the sumnier months. 

The sediment transport patterns for the modelled stage of the cyclic sandbar behaviour 

(October - November 1999) are consistent with progression towards the next stages of the 

sandbars morphological evolution. The expected g r o v ^ and onshore migration of the 

offshore sandbar, as indicated by the numerical simulations for the given period, can be 

observed during the following months (as discussed in Chapter 7 when the numerical 

modelling experiments are extended to several stages of the evolutionary cycle). 

6.4.2. Driving forces on the sediment transport 

To analyse the relative influence of the acting processes on the sediment transport across 

the area, sediment transport time series were extracted from the thirteen days simulation 

(fi-om 07/11 to 19/11/1999) at different locations (Figure 6.8). Stations A, B and C are 

located in the channel, under dominant tidal flow influence, while stations D, E, F and G 
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are located over the shoals and secondary channels where sediment transport is controlled 

by the combined tidal currents and wave action or mainly due to wave action. 

6.4,2.1, Relative tidal range/wave height influence 

Sediment transport at stations A and B is dominated by tidal currents, with sediment 

transport occurring mainly during spring tides with waves having virtually no effect 

(Figure 6.9b, c). Over the submerged sandbar (station C), at the outer part of the channel, 

the sediment transport is controlled by a combination of both tidal flows and wave-

generated currents (Figure 6.9d). As shown in the time series in Figure 6.9d, the seawards 

sediment transport persistent during calm spring tide conditions starts to decrease with the 

reduced tidal range. However, it reaches its maximum peaks with the increasing wave 

energy while the tidal range is still high (day 11/11) showing the importance of the 

sediment mobilisation effects due to the interaction between tidal flows and wave 

generated currents over the submerged sandbar. From day 12 when the tidal range becomes 

smaller, the sediment transport also becomes smaller despite the increasing wave heights, 

showing that at this location the sediment transport is defined by the interaction between 

waves and tidal currents. 

In the region of the flood channel (station D), the relatively strong flood flows during 

spring tides control the sediment transport that is directed towards the inlet mouth (Figure 

6.9e). When progressing towards smaller tidal ranges, sediment transport is reduced and 

the weak tidal flows during neap tides are not able to displace any sediment at this region. 

However, the effect of the storm on the sediment transport is also registered at this region, 

when despite the reduced tidal range breaking waves generate longshore currents that 

enhance the dominant tidal flood currents at this region, displacing and transporting 

sediment towards the inlet (Figure 6.9e). 
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Figure 6.9. Time series of boundary conditions (a), sediment transport (ST) at station A 

(b), station B (c), station C (d), station D (e) and station E (f) . Jc-components (dots), y-

components (line). 

Sediment transport time series taken from the region encompassing the shoals outside the 

main charuiel (stations E, F and G in Figure 6.8) show the importance of the waves on the 

sediment transport, with the majority o f transport occurring during higher significant wave 

heights. In the secondary channel (station E - Figure 6.9f) a small amount of sediment is 

transported northwards by the ebb flow during low wave conditions. However, this 
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transport is increased when waves become higher and the tidal range is still large (days 10 

and I I ) . With the gradual decrease in tidal range and increase in wave heights the cross-

shore transport becomes dominant with sediments being moved mainly shorewards, 

showing the dominance of wave generated sediment transport over the transport by tidal 

flows in the region. 

Over the offshore sandbar (station F - Figure 6.10) almost no sediment is transported until 

waves become higher than 0.5 m, when the onshore wave-generated currents reach values 

of about 0.6 m s ' over the sandbar. These onshore currents reach values of about 1.2 m s ' 

over the sandbar when waves reach heights of 1.7 m (day 12). Over the sandbar onshore 

wave generated currents are dominant over the ebb flow currents causing currents to be 

constantly onshore during storms (Figure 6.10b). 
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Figure 6.10. Time series of boundary conditions, current velocity and sediment transport 

over the offshore sandbar (station F). x-components (dots), y-components (line). 

With different levels of exposure and submersion of the sandbar, the relative importance of 

mechanisms controlling the hydrodynamics and sediment transport differ during a tidal 

cycle (Oertel, 1972; Smith and FitzGerald, 1994; Komar, 1996). A schematic diagram 
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representing different stages of the interaction that drives sediment transport over the 

intertidal sandbar is represented in Figure 6.11. At low tide, when the sandbars are 

exposed, waves breaking at shoal margins produce onshore currents and consequent 

onshore sediment transport. When the rising tide submerges the sandbars, wave generated 

currents and tidal flows transport sediment shorewards. During the ebbing tide, it is the 

interaction of the seaward tidal currents and the onshore wave-generated currents that 

define the sediment transport pattern. With the presence of waves, cross-shore currents 

over shallow areas (sandbars) are constantly onshore, with wave-generated currents being 

dominant over the seaward ebb flow (Figure 6.10b). This circulation pattern forms gyres of 

sediment transport similar to those described by Oertel (1972), resulting in a accumulation 

of sediment over the shoals. The combination of these processes results in an overall 

shoreward net sediment transport over the offshore sandbar. 

Simulations o f storm wave conditions {Hsig = 1.8 m) combined with both neap and spring 

tidal conditions, indicate that during neap tides the quantities of sediment transported over 

the offshore sandbar are slightly higher and more regularly distributed. This is expected for 

two reasons: 1) weaker tidal flows are opposing the onshore wave-generated transport 

during this situation, and 2) due to the smaller tidal range the sandbar is submerged over 

longer periods of time, becoming exposed to the wave action. The main difference between 

both tidal conditions is visible on the southern side of the sandbar, which is exposed to the 

channel flows. During spring tide conditions, the onshore wave generated transport 

opposes a stronger offshore-directed flow at this side of the sandbar, resulting in an 

asymmetric onshore transport. This situation is represented by the sediment transport 

vectors over the offshore sandbar in Figure 6.14 (in section 6.4.2.3). 
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Figure 6 11 Diagrams showing different stages of wave - current interaction driving the 
sediment transport over the intertidal sandbar (centre) and the modelled hydrodynamic 
over the sandbar (right hand side) Tidal currents (light arrows), wave driven currents (dark 
arrows) 
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In Figure 6.12 the modelled sediment transport patterns over the sandbar are shown for the 

storm period (day 12/11; Hsig = 1.2 m) at different tide levels during an intermediate tide 

(tidal range of about 3.2 m). As represented schematically in Figure 6.11, the flows that 

control the sediment transport are the result of the interaction of wave generated and tidal 

currents over the intertidal sandbar (Figure 6.12). During the late periods of the flood tide, 

both wave and tidal currents drive the sediment shorewards (Figure 6.12a, b). With the 

beginning of the ebb tide, the interaction of opposing tide and wave generated currents 

deflect slightly northwards the overall transport over the submerged sandbar. At the 

southern part of the sandbar, exposed to the channel ebb currents, some sediment is 

transported offshore, resulting in a gyre of sediment transport over the sandbar. (Figure 

6.12c). At lower tidal levels, the exposed sandbar acts as a divisor of flow and sediment 

transport, with sediment being transported offshore in the main channel and alongshore in 

the secondary channel (Figure 6.12d, e). Breaking waves (indicated by the white pattern in 

the image - Figure 6.12d) generate longshore currents on the north face of the sandbar, 

which is protected from the ebb flow. The result is an onshore sediment transport at this 

side of the exposed sandbar (Figure 6.12d, e). These stronger onshore flows at the 

protected side of the sandbar are also reflected in the shape of the offshore sandbar, which 

is extended shorewards at this side. During the early stages of the flood tide, the sediment 

transport over the recently submerged sandbar is mainly onshore and towards the inlet 

mouth, due to the interaction between breaking waves and onshore tided flow (Figure 

6.120. 

A similar influence of the wave-generated currents is observed over the Ness sandbar at the 

opposite side of the channel (station G in Figure 6.8). Time series of modelled flow 

velocities and sediment transport for this station are represented in Figure 6.13. During 

spring tides and low wave energy, small quantities of sediment are transported in the 

offshore direction. It is however when the wave heights increase, that larger quantities of 

sediment are displaced (Figure 6.13). During storm conditions, the wave-generated 

currents are predominantly directed northwards and onshore over the Ness sandbar. The 

combination of this north-west wave generated current and the dominant ebb tidal flow, 

results in sediment being transported towards the channel and offshore, providing sediment 

to the channel and to the submerged sandbar at the outer part of the main channel. 

Depending on the tidal range and run-off conditions, part of this sediment can be bypassed 

to the offshore sandbar or transported offshore through the outer part o f the channel. The 
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bypass of sediment northwards through the channel and/or through the submerged outer 

sandbar is likely to occur during higher wave energy events that coincide with neap tides, 

when the weaker tidal currents in the channel are less efficient in transporting sedunent 

offshore. 

6.4.2.2, Angle of incident waves 

During this thirteen-day period the incident wave direction was approximately shore-

normal, with an average angle of 115 degrees fi-om the true North, resulting in the transport 

patterns described in the previous sections. Simulations with different angles of wave 

incidence during high energy events {Hsig = 1.8 m) were carried out in order to assess the 

sensitivity of the region to these changes. As expected, the main changes in the sediment 

transport directions are mainly reflected at the direction of the transport over the offshore 

sandbar and on the intensity of the longshore transport (Figure 6.14). Over the offshore 

sandbar, the quantities of sediment transported remain approximately constant, however 

the direction of transport changes according to the direction of the incoming waves. The 

experiments show that the longshore sediment transport at the beach region is highly 

influenced by the angle of the incident storms, with low quantities of sediment being 

transported at this region under south-easteriy storms. Independent on the incident wave 

direction, the longshore transport at the southern end of the beach is always southwards, 

with the incidence angle defining only the quantities of transport. The amount of sediment 

transported is sharply increased when the region is faced by a north-easteriy storm. High 

energy events from the north-east are responsible for large quantities of sediment being 

transported towards the inlet channel, through the longshore and cross-shore (over the 

shoals) transport. The predominant shore-normal storms that affect the area also result in 

the longshore transport being directed to the south, towards the inlet mouth, though smaller 

quantities of sediment are transported under these conditions at the beach region. 
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Figure 6.12. Modelled sediment transport patterns over the intertidal offshore sandbar The 

correspondent tidal phase of each plot is indicated in the lower plot. 
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Figure 6.13. Time series of boundary conditions, current velocity and sediment transport 

over the Ness sandbar (station G) x-components (dots), y-components (line). 

incident 

Figure 6.14. Sediment transport patterns for different angles of incident waves (Hstg = 

18 m) Yellow vectors (80*^; black vectors (US''); and red vectors ( U ( f ) Angles are 

given in relation to the true North, with the beach on the left and offshore on the right 
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6.4.2,3, River discharge 

A subject treated less frequently in studies of tidal inlets/estuaries is how the influx of 

freshwater affects the sediment transport patterns at its mouth. As discussed in the previous 

section, the Teign estuary is influenced by relatively small freshwater input. However, 

during winter periods these values can reach peaks that become significant in altering the 

hydraulics of the system. Numerical simulations with different run-off values used as 

forcing condition showed changes in the sediment transport patterns across the area, 

including the shoals that form the ebb-tidal delta. During high river discharge events the 

interaction of the ebb-flow and wave-generated currents over the shoals changes, as the 

seaward flow becomes stronger. Simulations with different river discharge values show the 

gradual increase in the northwards deflection of the resultant sediment transport with 

increasing ebb flow currents. Extreme cases of low and high run-off values are represented 

in Figure 6.15 for neap and spring tide conditions. 

As shown by the transport patterns in Figure 6.15, the most affected areas are the ones 

under close influence of the main channel strong flows (e.g. the Ness sandbar and the 

submerged sandbar at the outer part of the channel). The vectors shown in Figure 6.15a 

represent simulations with low (about 8 m^ s"') and high (150 m^ s"') river discharge 

conditions, both under high incoming wave energy (Hsig of 1.8 m) over two neap tidal 

cycles. Sediment transport pattern over the Ness sandbar is most affected during neap 

tides, when high river discharges sharply deflect southwards the normally onshore wave-

generated sediment transport. During spring tides the general transport pattern remains 

similar under the varying river discharge, with only higher quantities of sediment being 

transported by the stronger flows due to the increasing river discharge. The region of the 

Ness sandbar presents these large differences in transport patterns between spring and neap 

tides due to its varying wave/tide dominance. The weak tidal currents during neap tides 

allow the onshore wave generated transport to dominate, while the opposite occurs during 

spring tides, with the ebb-flows being dominant over the wave generated currents. 

At the region of the submerged sandbar at the outer part of the main chaimel, the 

increasing river discharge results in larger quantities of offshore directed sediment 

displacement independent of the tidal condition (Figure 6.15). This process may result in 
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larger quantities of sediment being removed from the system to deeper waters. As shown 

in Figure 6.15a, during neap tides a northward deflection of the transport is also registered 

as a consequence of changes in the wave-current interaction. With low river discheirge 

values, the resultant transport is bent southwards by the incoming waves (as seen in section 

6.3.2 and Figure 6.4). As the river discharge increases, the balance between the ebb flow 

and incoming waves changes resulting in a transport normal to the channel axis. 

In similar ways to the Ness sandbar, the sediment transport over the offshore sandbar is 

directed by the interaction of incoming waves and tidal flows. However, as this region is 

wave dominated independent of the tidal conditions, it is less affected by the channel 

flows. The degree of deflection of the sediment transport is given by the balance between 

the relative forces of the onshore wave-generated transport and the offshore flows, with the 

northward deflection becoming larger than the ones represented by the example of Figiu-e 

6.15 when the incoming waves are smaller. 

The sensitivity of the local sediment transport to the river discharge, mainly during neap 

tidal conditions, can be an important factor for the local sediment transport. In the same 

way as for the temporal storm distribution, the high river discharge events occur normally 

over the winter periods, resulting in an additional controlling process in the dynamics of 

the system over winter months. 

157 



Chapter 6 - Physical Controls on the Sandbar Dynamics 

a neap tide; H.,. = 1.8 m b spring tide; = 1.8 m 

Figure 6 15 Vectors of sediment transport along profiles over the Ness sandbar, the 

submerged sandbar at the outer part of the channel and the offshore sandbar during high 

energy wave event at neap tide conditions (a) and spring tide conditions (b) Black vectors 

represent sediment transport during low river discharge (8 m^ s"̂ ) and red vectors represent 

results for high river discharge events (150 s 

6.4.2.4. Segment supply 

As described in Chapter 3 (section 3 11) only qualitative information regarding sediment 

supply to the Teign inlet system is available, with the main sources of sediment being 

related to cl i f f erosion at both sides of the inlet, from the north and south coastline 

stretches (Robinson, 1975, Carter and Bray, 2003) Based on the numerical modelling 

simulations of sediment transport in the region, some quantitative estimates of the 

sediment budget can be obtained for the analysed period It is however important to be 

aware of the limitations of such quantitative estimates, one of them being related to the 
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constant drag-dredging operations across the region of the main inlet channel which are not 

taken into account in the modelling experiments. These dredging operations are not 

thought to be removing sediment from the system, but it may result in increased volumes 

of sediment leaving the main channel and also affecting the sediment bypass through the 

channel. Limitations of the numerical model should also be considered in such experiments 

(as discussed in Chapter 4). 

In order to estimate the sediment budget of the sandbar system, the total sediment 

discharge volume was calculated for transects enclosing the system, providing the balance 

of sediment input/output to the region. Using the MIICE21 sediment discharge tool, the 

volume of sediment thai crossed each transect over the studied period was calculated. 

Limitations arise in the analysis of the sediment transport rate through the inlet mouth, 

which despite being known to transport offshore the majority of sediment that reaches it, 

may provide an overestimate of the actual rates of transport. This is a consequence of the 

deeper parts of the main channel being incised in stable sandstone bedrock. In order to 

minimise unrealistically high sediment transport rates they are set to zero in the deeper 

parts of the channel. There is no data available about the exact limits o f the bedrock, and 

here it is assumed that regions of the main channel deeper than 5 m (below ODN) are 

stable. 

The modelled sediment transport rates during the given period of thirteen days are 

summarised in Figure 6.16. The overall sediment balance indicates that during the analysed 

period a sediment volume of approximately 2,000 m*' is added to the system. The main 

sources of sediment input are the longshore wave generated currents, which add sediment 

to the system from both sides. There is also a net seaward sediment U-ansport registered at 

the inlet mouth, which also provides sediment to the system. It is not clear however i f the 

estuary can be considered a source of sediments to the system or i f this input would be a 

consequence of the exchange o f sediment between the flood and ebb tided deltas, 

redistributing sediments within the system. As described in Chapter 3, Nunney (1980) 

found that the net transport of medium sands is always down the estuary, with more 

sediment being carried during ebb than flood tides. However, most important in the 

sediment dynamics of the lower estuary seems to be the ebb/flood dominance controlling 

the transport over the flood tidal delta (Salty Flat). This study by Nunney (1980) also 
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suggests a two-way exchange of material through the estuary entrance, supplying the sand 

circulation system within the lower part of the estuary. 

Within the system, the main exchanges of sediment occur between the channel and the ebb 

shoals, including the bypass of sediment across the channel. In order to estimate the 

volume of sediment that bypassed the channel from south to north, the sediment discharge 

through an along channel transect was calculated. During the storm period, an estimated 

sediment volume of 300 m"' crossed the channel transect, providing additional sediment to 

the offshore sandbar at the northern side of the channel. 

The addition of sediment to the system over the analysed period is mainly a consequence 

of the storm event that lasted for approximately three days during intermediate tide 

conditions, as shown in the time series of sediment transport across the region (Figures 6.9, 

6.10 and 6.13). Under calm wave conditions, a small but constant net loss of sediment 

from the system wil l occur through the outer part of the main charuiel. These quantities of 

sediment removed from the system may also depend on the freshwater discharge, which 

can increase the hydraulic efficiency of the main channel. 

For the analysed period, the modelled addition of sediment to the region is consistent with 

the observed increase in volume of the offshore sandbar. Figure 6.17 shows the rectified 

video images for spring tides over an approximately one-month interval that includes the 

modelled period. Applying the morphology extraction techniques described in Chapter 5, 

volume estimates of the intertidal sandbar were carried out showing an increase in the 

intertidal area and volume of the sandbar of approximately 500 m^ and 2,200 m^ 

respectively (at low tide of -2.05 m). As discussed later in Chapter 7, the observation of 

video images show that this drastic change in the morphology of the offshore sandbar 

happens mainly during the storm period that is covered in the numerical simulation. 

This net accumulation of sediment at the inlet area during the studied period cannot, 

however, be considered an average situation for the region. Sediment transport patterns 

outside the channels are clearly dominated by the storm event, whose relative importance 

would be reduced by extending the period to be analysed. As discussed in the previous 

sections, during low wave energy periods, several factors can remove sediments from the 

system. Added to the fact that very little sediment is carried to the system through 
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longshore transport during calm periods, strong ebb currents at spring tides are more 

efficient in transporting sediments offshore to deeper waters, removing them temporarily 

or even permanently from the system. This process can also be enhanced by higher river 

discharges. It seems that the balance between the slow and gradual removal of sediments 

during calm periods and the addition o f sediment during drastic storm events controls the 

overall sediment budget of the system. 

Teignmouth 

swath platfomi 

IN 

Figure 6.16. Modelled sediment transport rates across the sandbar system for the thirteen-

day simulation. 
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a. 27* October 1999 (iidal level: -2.05) b. 24* November 1999 (tidal level: -2.13) 

area: 12.000 volume: 7.100 m' area: 12.500 m": volume: 9.300 m^ 

Figure 6.17 Morphological changes of the offshore sandbar over a one-month period 

represent the pre- and post-storm situation The block diagrams represent the morphology 

of the sandbar (extracted from video images) detailed by the box in the rectified image 

The October (a) digitised sandbars shoreline is overlaid on the November (b) image. 

6.5. Discussion and Conclusions 

In this chapter, the calibrated and validated numerical model is used to simulate the 

relative importance of the processes controlling the sandbar dynamics at the complex inlet 

system The interaction of tidal currents, waves, and river discharge at the mouth of the 

Teign River produces a cyclic morphological behaviour of the sandbars that form the ebb-

tidal delta This cyclicity is controlled by the great temporal and spatial variability of the 

processes governing the local sediment dynamics The majority of the sediment 
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displacement in the channels occurs during spring tide periods, while transport over the 

shoals is dependent on the presence of waves. Addition of sediment to the system via 

longshore currents and offshore loss of sediment through the channel during high-river 

discharge events seem to control the sediment volume in the sandbars, characterising a 

non-closed system. 

Based on the modelling experiment results, waves seem to be of fimdamental importance 

in the formation, maintenance and evolution of the sandbars that form the ebb tidal delta. 

The instability of the sandbars is controlled by the competition between cross- and onshore 

migration and offshore sediment transport due to the ebb tidal flow. This type of cyclic 

behaviour with constant volume changes of ebb tidal deltas is a characteristic of mixed-

energy (tide dominated) coasts according to the classification proposed by Hayes (1979) 

and exemplified in several studies (e.g. FitzGerald, 1982; Smith and FitzGerald, 1994, 

FitzGerald et al., 2000a). At Teignmouth, the presence of a structural control (the Ness 

headland) adds to the complexity of the environment by anchoring the ebb shoals, causing 

an increase in sediment availability to the system by providing a relative protection from 

incident waves and longshore currents. This results in asymmetric ebb shoals, with typical 

triangular or elongate wave-dominated swash platforms of shore-normal orientation built 

in the lee of the headland (as observed also by Hume and Herdendorf, 1992 and Hicks and 

Hume, 1996). This delta morphology is akin to that described by Oertel (1977) and 

suggests that inlet currents rather than longshore currents are the dominant factor 

influencing the accumulation of sediments at the inlet. Typically a margmal flood tidal 

channel separates the ebb tidal delta from the beach. The size of the ebb tidal delta varies 

as a function of the headland shelter (Hume and Herdendorf, 1992). Based on the 

Teignmouth ebb delta morphology and following the classification proposed by Hicks and 

Hume (1996) (described in Chapter 2), it can be classified as being between the 

"constricted ebb delta" and "high-angle half delta" (types "b" and "c" in Figure 2.2). 

The relative importance of each physical process on the sediment transport varies across 

the region, and is summarised in Figure 6.18. The channel region is dominated by the tides, 

directing the sediment transport as a consequence of the tidal flow asymmetry in the 

channel. Part of the sediment transported by these tidal flows is deposited at the outer part 

of the channel forming a submerged sandbar that is controlled by the interaction between 

tidal flows and wave generated currents. The shoals and secondary channels at both sides 
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of the channel are dominated by wave related processes. Sediment transport in these areas 

occurs only under the influence of wave generated currents. High river discharge events 

may change sediment transport patterns across most parts of the area, causing changes to 

the relative importance of seaward flows on the interaction with the onshore wave 

generated currents. 

J \ J V wave dominated 

^ tide dominated 
limits of the region of 

- - - influence of tiigh river 
discharge events 

;3VJV 

Figure 6.18. Summarised areas of relative dominance o f tides, waves and river discharge 

over the sediment transport. 
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Chapter 7 

Sediment Transport Patterns and Morphodynamics 

7.1. Introduction 

Teignmouth's ebb tidal shoals that form the sandbar system have been studied since the 

19^ century when Spratt (1856) described the movement of the sandbars. Further 

observations supported by some hydrological and sedimentological measurements were 

made by Robinson (1975) (see Chapter 3 for further details). Previous studies (Spratt, 

1856; Robinson, 1975) and observations suggest that the movement of the sandbars 

follows a cyclical sequence. 

Bringing together the calibrated numerical model (Chapter 4), the method that couples the 

hydrodynamic numerical model with video images in order to extract the intertidal 

morphology (Chapter 5), and the assessment of the driving forces in the sandbar dynamics 

(Chapter 6), this chapter aims to better understand the morphodynamics of the system and 

to evaluate the overall technique applied in this study. Through the application of short 

period modelling experiments at different morphological stages of the sandbar system, 

qualitative predictions of the evolution are given as a function of its causing processes. The 

comparison of the predicted and observed evolution through the video data also provides 

an alternative validation of the applied techniques. A reduced version of part of this 

chapter was published by the author in Siegle et al. (2003). 

Starting with the knowledge of the main driving forces acting on the local sediment 

transport (Chapter 6), this chapter assesses the morphological evolution of the sandbar 

system at Teignmouth using three years of rectified Argus video images (March 1999 to 

June 2002). This qualitative analysis of the available video data is combined with 

modelling experiments, allowing comparisons between the modelled sediment transport 

rates, with the resulting initial sedimentation/erosion patterns, and the observed 
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morphology at each stage of the evolution. For the numerical modelling experiments 

throughout the evolutionary cycle, the morphologies applied are those previously defined 

in Chapter 5. Some references are also made to the available field data. During the 

C0AST3D project experiments for example, the intensive field campaigns provide 

information that can be related to the morphological evolution over a given event (e.g. one 

storm event). However, during most of the observed period only limited measured data is 

available (pier measured water levels and non-directional waves). River discharge 

information is available over the whole period. Details of the available data can be found in 

Chapters. 

The description of the morphological evolution is based mainly on the observation of 

rectified video images (Chapter 5). Using digitisation techniques, the evolution of the main 

features visible in the images is analysed throughout the cycle. Some area and volume 

estimates of morphologic features are carried out using the gridding facilities in the 

SURPER® software (Golden Software, 1995). The nomenclature and definition of the main 

morphological features observed throughout the evolutionary cycle are given in Chapter 3 

(Figure 3.5). 

The chapter structure includes a brief description of the model setup and the numerical 

simulations carried out, highlighting some adjustments needed in order to apply the model 

at each morphological stage. This provides the background for the main section of the 

chapter, which combines the observed morphological evolution with the numerical 

experiments. This section is sub-divided according to the main stages o f the evolutionary 

cycle. In order to summarise the knowledge obtained from the observations and numerical 

modelling experiments, a conceptual model of the evolutionary cycle is also proposed. 

7.2. Model Setup 

Based on the validation model setup (Chapter 4), the numerical experiments at different 

stages of the morphological cycle need some adjustments related to the updating of the 

original bathymetry using the video imaging technique (Chapter 5). As no in situ 

measurements are available to calibrate and validate the model at each stage, the 
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calibration parameters of the validated model for October/November 1999 are maintained 

throughout the experiments. This means however that the depth dependent bed resistance 

needs to be adjusted to the varying morphology. The sediment grain size distribution is 

also adapted for the experiments, as given below. 

7.2.3. Bed resistance 

For the calibration and validation of the numerical model, bed resistance values (Ch^zy 

number) were defined as a function of depth, using the same combination as for the 

calibration (Table 4.3 - Chapter 4). The same range of values was applied to each of the 

"new" bathymetries, resulting in specific bed resistance distributions for each 

morphological stage. 

7.2.4. Sediment data 

The varying sediment data applied for the numerical model experiments is based on 

samples obtained during C0AST3D experiment period. However, as the sandbars are very 

dynamic throughout the studied period, it is believed that grain sizes are equally variable 

throughout the cycle. Since there is no sediment data available for most of the duration of 

the observed evolution, areas and morphological features of similar grain size were defined 

for the October/November 1999 period based on the available sediment samples. These 

areas with similar grain characteristics are the inlet channel, the beach, the sandbars, and 

the offshore area. Assuming that the grain sizes remain approximately constant at each 

defined area or morphological feature, the applied spatial distributions of sediment 

characteristics were adapted to each stage of the cycle. This was done by tracking the main 

morphological features throughout the cycle and defining their grain characteristics as 

constant. This assumption may not always be correct, though it is a good approximation in 

the absence of measured data. The main limitations may be related to some differences in 

the magnitudes of the modelled sediment transport and initial sedimentation/erosion rates. 

The overall transport patterns are not expected to be affected by these variations in grain 

size, as shown by the grain size sensitivity tests during the sediment transport calibration 

(Chapter 4). 
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7.3. Numerical Simulations 

Numerical modelling experiments were designed using the set of different morphologies in 

order to inter-compare the modelled sediment transport patterns and initial 

sedimentation/erosion rates with the observed morphological evolution o f the inlet sandbar 

system. Several runs under a range of forcing conditions were carried out with each of the 

ten morphological stages described in section 5.5 in order to assess the variability of the 

controlling processes and the consequent predicted morphological evolution. 

Limitations on the longer-term, quantitative predictability of the system arise from the use 

of an initial sedimentation/erosion model (as discussed in Chapter 2) and from the limited 

amount of available measured data outside the COAST3D periods to be used as boundary 

conditions. Since the knowledge about the forcing conditions is fundamental for the 

accuracy of such predictions, measurements or the understanding of the sequencing of the 

forcing conditions would be needed throughout the simulations. Therefore, the model runs 

were designed in order to cover two tidal cycles, giving an indication o f the importance of 

the key processes and the tendencies in the morphological evolution. Usually the most 

energetic periods are reproduced, as it is during these situations that most of the sediment 

transport happens, as shown in Chapter 6. The results of each numerical experiment are 

presented according to the pre-defmed stages of morphological evolution in the next 

sections. 

The comparisons described in this chapter between the predicted sedimentation/erosion 

rates and the observed morphological evolution through video images can be considered 

also an alternative way of validating the numerical model against observations. I f the 

numerical model is reproducing the tendency of the observed evolution with a certain 

degree of accuracy, it adds confidence to the predicted results. 

7.4. Sediment Transport and Morphological Evolution 

The morphological evolution of the three-year observed cycle (Figure 7.1) is described for 

separate stages of the cycle, defined according to diagnostic observed morphological 

168 



Chapter 7 - Sediment Transport and Morphodynamics 

characteristics. Over the three-year observed period, three main stages can be defined with 

approximately the same length, and a smaller fourth stage is defined for the period of 

completion of the cycle, when the morphology returns to being similar to the initial 

condition. 

Stage 1 (March to December 1999 - Figure 7.1a, b) is characterised by the growing 

offshore sandbar. The continuous growth and onshore migration until it becomes attached 

to the beach defmes Stage 2 (January to December 2000 - Figure 7.1c). Stage 3 (January 

to November 2001 - Figure 7.Id, e) is characterised by the northward migration of the 

attached sandbar and consequent reduction o f its size, while a new offshore sandbar is 

formed. Finally, Stage 4 (December 2001 to April 2002 - Figure 7 . I f ) represents the 

completion of the evolutionary cycle, with the destruction of the beach-attached sandbar 

and growth of the offshore sandbar. A schematic diagram of the main features 

characteristic of each stage is given in Figure 7.2. 

In the following sections the characteristics of each stage and its evolution are further 

described. More detailed observations of some dramatic changes in morphology can be 

made when field data is available, helping in the understanding of the dynamic agents 

acting on the system. 

7.4.1. Stage 1 

In March 1999, the first spring tide period recorded by the Argus system installed in 

February 1999 shows the sandbar morphology that is considered the starting point in this 

description (Figure 7.1a). At this time, the morphology is defined by a relatively small 

offshore sandbar and by the remains of a shore-normal attached sandbar on the beach. The 

Ness sandbar, whose position is revealed by the breaking waves, is submerged at the outer 

part of the channel. 

The main observed morphological change during this first stage of the description is the 

continuous growth of the offshore sandbar and the spreading of the remains of the attached 

sandbar on the beach. The three separate shoals visible in March gradually merge to form 
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one larger sandbar in September (Figure 7.3). This seven months period is characterised by 

the deposition and accumulation of sediment at the offshore sandbar, with an estimated 

increase in intertidal area of about 2,500 m^, doubling its area from 2,400 m^ in March to 

4.900 m^ in September 1999. At the same time, the previously shore-normal attached 

sandbar decreases in size being spread along the beach, leading to a gradual increase in the 

beach area. This is clearly visible in Figure 7.3b, when despite the higher tidal level at the 

time of the gathered image the beach is wider than in April 1999. 

a. April 1999 b. October 1999 c. August 2000 

d. February 2001 e. May 2001 r. April 2002 

Figure 7.1. Rectified video images showing the evolution of the sandbar system from 

March 1999 to April 2002. Images were gathered at similar tide levels of about -1.90 m. 

170 



Chapter 7 - Sediment Transport and Morphodynamics 

Stage I Stage 2 

TvlDTunouth 

Stage 3 

Telonmouth 

Telsnmoulh / 

1 tN 

/ ^ / 
/J ** 

-J 
Stage 4 

Telonmouth 

Figure 7.2. Schematic diagrams with the diagnostic morphologic features of each 

evolutionary stage. Arrows indicate the direction of the sandbars migration. 

Measurements for this period are mainly from the C0AST3D pilot experiment, which 

show a storm (with Hsig of up to 1.8 m) during the 10-12/03/1999. However, since the 

video system was installed at the end of February 1999, no video data of the previous 

spring tide period is available to determine the morphological changes caused by this 

specific storm. The two available bathymetric surveys were also carried out after the storm, 
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at the 12/03 and 24/03/1999, covering a spring-tide period with small waves of about 

0.2 m). Between these two surveys only small changes over the offshore sandbar were 

measured, with differences usually laying in the range of the measurement errors (of up to 

0.25 m - Van Rijn et al., 2000). The Ness sandbar, whose approximate position is 

estimated through breaking waves in the images, remains approximately constant (with a 

convex shape) from March to July. In August the submerged sandbar appears deformed, 

becoming more parallel to the main channel, remaining constant until September (Figure 

7.3). 

Numerical experiments covering the March 1999 morphology indicate that the physical 

forces act in a similar way to the October/November 1999 situation (as described in 

Chapter 6). A gradual deposition of sediment occurs over the growing offshore sandbar 

when significant wave heights are higher than 0.5 m (Figure 7.4). The sediment transport 

patterns and initial sedimentation/erosion rates in Figure 7.4a represent the transport over 

two tidal cycles with high energy incoming waves (//j/g = 1.8 m; dir. = 115°). Lower wave 

energy results in similar transport patterns, though with a smaller sediment displacement. 

Although no wave data is available for the period between March and September 1999, the 

seasonal variation in the frequency and intensity of storms would suggest that on average 

lower wave energy was affecting the region. This less energetic situation may explain the 

relatively slow increase in volume and area of the offshore sandbar observed during this 

period. Model results for the beach region, suggest that the shore-attached sandbar is 

spread alongshore, mainly southwards, with its sediment being transported towards the 

inlet chaimel. This is a result of the dominant southwards longshore currents at this region, 

as shown by the experiments in Chapter 6. 

From September to October 1999, the offshore sandbar grows rapidly reaching an area of 

11,500 m^ at the -1.90 m reference level (same as in September 1999 - Figure 7.3b). This 

implies an area increase of about 6,600 m^ over a one-month period. Unfortunately, no 

measured data for comparisons is available for this period. However, from the observation 

of the video images, higher waves are visible during the 15-21 of October period. Despite 

not being possible to quantify the wave action during this period, wave shoaling and 

breaking are clearly visible over the sandbar. Another visible change is on the previously 

submerged Ness sandbar, which emerges at low tide in October 1999 (Figure 7,1). 
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a. April 1999 (tidal level: -2.08) b September 1999 (udal level: -1.90) 

-200 -100 0 100 200 300 400 500 800 700 -200 -100 0 100 200 300 400 500 000 700 

Figure 7.3. Rectified images for April and September 1999. Continuous black lines in b 

represent the digitised shoreline in a, and the dotted line represents the estimated location 

of the submerged sandbar through the breaking waves. 

Figure 7.4. Detail of the modelled sediment transport for a high-energy event (Hstg = 1.8 m) 

over the offshore sandbar in March 1999 Sediment transport patterns (a) and initial 

sedimentation/erosion rates (b), where deposition is represented by blue lines and erosion 

by yellow lines 
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The October - November 1999 period is covered by the COAST3D project main 

experiment measurements, allowing a more detailed assessment of the morphological 

evolution The main changes during this one-month period are registered over the offshore 

sandbar Following the growth tendency from September, it is increased fiirther in area and 

volume during this period From the visual observation of the video images, the sandbar 

remains approximately constant from the 21^ October until the 10*** of November During 

the 11-13 November a high-energy storm (Figure 4.3b - calibration period 2) caused the 

increase of the intertidal sandbar volume and area 

The importance of this storm in reshaping the morphology of the sandbar can be seen in 

the video images that cover this period. Images gathered at similar tide levels just before 

and after the storm show a considerable increase in its area As the images soon after the 

storm (15/11) were gathered at neap tide conditions, they are limited in the intertidal 

coverage area However, when compared to images at the same tidal level (-0 89 m) before 

the storm, an increase of 950 m^ in area is verified (Figure 7.5). 

a 09* November 1999 (tidal level: -0.89 m) b. 15* November 1999 (tidal level: -0.89 m) 

400 soo 600 n » 100 20O 300 400 

Figure 7 5 Pre- and post-storm images at the same tidal level showing the increase in area 

Shoreline of the sandbar before the storm (a) is overlaid on the image gathered after the 

storm (b) 
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As shown also in Chapter 6, better estimates of the morphological changes can be obtained 

by comparing the morphology extracted from the images (applying the method described 

in Chapter 5) at spring tide conditions before and after the storm. It includes a larger period 

of time, but as seen in Figure 7.5, the most drastic changes occurred during the high-energy 

event. The area and volume of the sandbar over this one-month period increased by 

approximately 500 m^ and 2,200 m"' respectively (at low tide of -2.05 m). The shape of the 

offshore sandbar shows that the main sediment deposition and consequent volume increase 

occurs at its shoreward side (Figure 6.17 and Figure 7.6). 

The same behaviour is observed from the numerical simulations covering the thirteen-day 

period that includes the storm that reshaped the sandbar morphology (see Chapter 6), 

where the onshore sediment trzmsport results in erosion at the outer end of the sandbar and 

deposition at the onshore flank (Figure 7.7). 

The increase in height of the sandbar may be a consequence of the November storm being 

coincident with a relatively high tidal range (of about 3 m), as opposed to the high-energy 

event that acted over the sandbar during the 15-21 October period, which occurred during 

neap tide. The occurrence of the storm during low tidal ranges (of about 1.7 m) appears to 

provide large amounts of sediment to the sandbar, whilst waves acting at a similar level 

over the storm have a "flattening" effect over the sandbjir. With the increased tided range, 

this flattening effect is reduced, since at low tide the deposited sediment emerges, resulting 

in an overall reduced wave action over the sandbar. 

This can also be verified through the numerical experiments, with simulations of high 

wave energy events at different tidal conditions. Results confirm that the rate of sediment 

deposition over the sandbar is higher when combined with larger tidal ranges. Typical time 

series of modelled water level, cross-shore velocity and magnitudes o f sediment transport 

over the sandbar (station F in Figure 6.8) are shown in Figure 7.8 for neap and spring tides. 

Average sediment transport at this point is higher during smaller tidal ranges when 

compared to the spring tide transport. This is mainly related to the fact that the sandbar is 

permanently submerged during neap tides, resulting in a slightly higher average sediment 

transport. During spring tides, two factors are responsible for the smaller quantities of 

sediment transported: a) Cross-shore flow velocities over the sandbar are always higher 
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than 0.6 m s"' during neap tides; b) the large variation in water depth during spring tides 

results in abrupt changes in the flow velocity. With the sandbar exposed during low tide, 

no sediment is being transported and as shown by the time series in Figure 7.8, the onshore 

wave generated currents are reduced by the strong opposing ebb flows, reducing 

consequently the amount of sediment transported mainly during the beginning of the ebb 

tide. As discussed earlier in Chapter 6, and shown in Figure 7.8, it is at the beginning of the 

ebb tide that the relative dominance of the wave-generated onshore flow over the opposing 

channel ebb flow is at its minimum, resulting in the reduction of sediment transported at 

this stage. The example shown in Figure 7.8 is o f extreme tidal ranges and wave energy. In 

reality, the combination of different relative wave height/tidal range values resuh in a 

range of sediment transport patterns over the sandbars. Further details o f the behaviour of 

the sandbar under these conditions for the October/November 1999 morphology are given 

in Chapter 6. 

The shape of the Ness sandbar remains approximately constant over this month, with a 

slight northward migration (in the channel direction) after the measured storm (Figure 

6.9a). This change is confirmed by the bathymetric surveys carried out during this period. 

The beach and the Sprat sand showed only small morphological changes over this period. 

a. 27* October 1999 (tidal level: -2.05) b. 24* November 1999 (tidal level: -2.13) 

.300 '100 

Figure 7.6. Morphological changes of the offshore sandbar over a one-month period 

represent the pre- and post-storm situation. The October (a) digitised sandbars shoreline is 

overlaid on the November (b) image. 
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a 

Figure 7.7 Detail of the modelled sediment transport over a thirteen-day simulation 

covering the storm that reshaped the offshore sandbar in October 1999 Sediment transport 

patterns (a) and initial sedimentation/erosion rates (b), where deposition is represented by 

blue lines and erosion by yellow lines (interval between lines is 0.20 m). 
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Figure 7.8. Time series of water level, cross-shore velocity and magnitudes of sediment 

transport over the offshore sandbar for neap (left) and spring (right) tide during high wave 

energy conditions (Hstg = 1.8 m) for the October/November 1999 situation. 

7.4.2. Stage 2 

During the following nine months (December 1999 - August 2000) the offshore sandbar 

presents a continuous growth and onshore migration, reaching its maximum size in August 

2000 (Figure 7.9). Over this period, again only small changes are visible on the beach and 

Ness sandbar morphology. Stage 2 is characterised by the long straight shore-attached 

sandbar. 

In January 2000 (Figure 7.9a) the offshore sandbar is elongated growing mainly in the 

onshore direction. From January to March (Figure 7.9b), the shape of the offshore sandbar 

is approximately constant, despite the whole sandbar being moved slightly northwards. 

The submerged szindbar, whose approximate position is indicated through the breaking 
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waves patterns in the time-averaged images, becomes more convex and moves offshore. 

Waves breaking at the outer end o f the offshore sandbar indicate sediment deposition and 

the beginning of the formation of a smaller sandbar at this portion. This new sandbar is 

visible in April 2000 (Figure 7.9c) and with its continuous growth it merges to the main 

offshore sandbar which is attached to the beach in May (Figure 7.9d). From May to 

August, the offshore sandbar continues to increase in size becoming more linear and shore-

normal. In the following months, from August to December 2000, the attached sandbar 

area is gradually reduced (Figure 7.9f). 

The rapid onshore growth of the offshore sandbar during this period is probably a 

consequence of the constant onshore sediment over the sandbar by the wave action and the 

reduction in the sediment transport efficiency of the secondary channel that separates the 

sandbar from the beach. The reduction of the channel width is accompanied by an onshore 

shif^ of the channel axis, causing it to become sheltered from the main ebb flows by the 

Sprat sand. The modelled hydrodynamics shows a reduction of up to 50 % in the maximum 

spring tide flow velocities along the secondary channel from October 1999 to January 

2000, with ebb flow peaks of about 1 m s"' in October being reduced to maximum 

velocities of about 0.5 m s'' in January. This gradual reduction in f low velocity enhances 

the sediment deposition at the shoreward flank of the sandbar, as shown by the modelled 

sediment transport at this stage (Figure 7.10). During high wave energy conditions, 

sediment is transported onshore over the sandbar (Figure 7.10a) with the consequent initial 

sedimentation/erosion rates showing the tendency o f sediment deposition at the shoreward 

flank of the sandbar (Figure 7.10b). This deposition and the erosion that occurs mainly at 

the channel side of the sandbar are consistent with the evolution of the sandbar, which 

grows onshore and is shifted northwards during the following months (Figure 7.9). 

The result of the numerical simulation shown in Figure 7.10 is representative of a high 

wave energy event coincident with spring tide conditions. Similar high wave energy during 

neap tides would result in higher rates of deposition at the shoreward flank of the sandbar, 

since the high onshore sediment transport would be combined with weaker tidal flows in 

the secondary chzinnel. Unfortunately, there is no measured wave data for this period in 

order to verify the exact magnitudes and timing of the acting processes. 
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a. January 2000 (tidal level: -1.75 m) b. March 2000 (tidal level: -1.87 m) 

6 i « o 2 t e 3 e o 4 a o a M « d 0 7 t t ) 

c. April 2000 (tidal level: -1.88 m) 

^ -100 0 100 

e. August 2000 (tidal level: -1.95 m) 

d. Mav 2000 (tidal level: -2.04 m) 

•an -100 6 M m ytn 0to m m m 

f. December 2000 (tidal level: -1.84 m) 

-200 -100 6 lOO 200 300 40O 800 aOO TOO •200 -too 0 100 M M 

Figure 7.9. Morphological evolution from January to December 2000. Continuous black 
lines represent the sandbar shoreline from the previous image and dotted line represents the 
approximate position and of the submerged sandbar. Tidal levels vary between images. 
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•'••i l l ! --l^^^ 

Figure 7.10. Detail of the modelled sediment transport for a high-energy event (Hsig = 

1.8 m) over the offshore sandbar in January 2000. Sediment transport patterns (a) and 

initial sedimentation/erosion rates (b), where deposition is represented by blue lines and 

erosion by yellow lines (interval between lines is 0.05 m). 

This process of growth and onshore migration of the offshore sandbar from 

October/November 1999 onwards results in the attachment of the sandbar to the beach in 

April/May 2000, reaching its maximum size in August 2000 (Figure 7.9). Numerical 

experiments for the August 2000 morphology show the same wave dominance over the 

attached sandbar, with the onshore generated sediment transport during high wave energy 
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events (Figure 7.11). With this morphological situation there is also a differentiation in 

sediment transport between spring and neap tides for shore-normal incident waves. 

Modelled flow velocities over the outer part of the sandbar are directly related to the tidal 

range, with northward currents (y-component) over the sandbar reaching maximum peaks 

of 0.6 m during spring tides and 0.15 m during neap tides. This difference wi l l result in 

variable sediment transport patterns depending on the tidal range, with shore-normal 

transport during neap tides and a northward deflected transport when the high wave energy 

coincides with larger tidal ranges. However, as for the previous simulations for other 

morphological stages, the final direction of sediment transport wi l l be defined by the 

balance of the opposing tidal and wave generated currents and also by the direction of the 

incident wave. 

At the inner portion of the attached sandbar, an inversion in the direction of sediment 

transport occurs, with the net southwards longshore current at the beach region driving the 

sediment transport (Figure 7.1 la). The predicted initial sedimentation/erosion rates for this 

situation are represented in Figure 7.1 lb, indicating the southwards deposition of sediment 

at the inner portion of the sandbar. This deposition coincides with the sandbar morphology 

observed in the background image for August 2000 (Figure 7.11). 

From the video images, the main observed change at the beach region is due to the 

attachment of the offshore sandbar. This results in local effects, with an increased beach 

volume at the location where the sandbar becomes attached, and a secondary effect, which 

is the increase in beach width northwards of the attached sandbar. The increase of over 

20 m is clearly seen between May and August 2000 (Figure 7.9d and 7.9e). This may be a 

confirmation of the resultant longshore transport being southwards, with the large attached 

sandbar acting as a barrier to the sediment transport resulting in this deposition on its 

northern side. The numerical simulations show the presence of a gyre o f sediment transport 

at the beach region northward of the attached sandbar (Figure 7.11) as a result of the 

complex circulation at this region with the sandbar acting as a barrier to the flow. This 

complex circulation can be seen in the example in Figure 5.10 (Chapter 5) showing 

snapshots of the flow fields during a spring tidal cycle imder high incident wave energy. 

The gyre of transported sediment may result in a gradual deposition at this region, resulting 

in the widening of the beach at this portion. The deposition at this region is not clear in the 

predicted morphological evolution, which is probably a consequence of the relatively small 
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quantities of sediment carried over the simulation time (two tidal cycles). However, 

considering larger time scales, it can be expected that this process would lead to sediment 

deposition at this region, which is confirmed by the observations (Figure 7.9). 

mm 

' • . * • 

Figure 7.11. Detail of the modelled sediment transport for a high-energy event (Hs,g = 

18 m) over the offshore sandbar in August 2000 Sediment transport patterns (a) and initial 

sedimentation/erosion rates (b), where deposition is represented by blue lines and erosion 

by yellow lines (interval between lines is 0.05 m) 
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Sediment transport patterns at the outer portion of the attached sandbar are also affected by 

events of high river discharges, with an increased northward deflection of the sediment 

transport direction displacing larger amounts of sediment in this direction. An example of 

this process is shown in Figure 7.12, where the vectors show the northwards deflection of 

the transport and the resuhant profile of initial sedimentation/erosion rates shows the 

consequence of larger amounts of sediment being transported northwards due to the higher 

river discharge. The deflected transport resuhs in larger erosion at the southern side of the 

sandbar and consequently in larger deposition at its northern flank. 
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Figure 7.12. Top: predicted patterns of sediment transport along the indicated profile for 

low river discharge (black vectors) and high river discharge (lOOm^ s ') (red vectors). 

Bottom: initial sedimentation/erosion rates along the indicated profile (p-p') for low river 

discharge (black line) and high river discharge (red line). 
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Comparing these predicted processes with the observed evolution of the sandbar may 

indicate the cause of the evolution to the Stage 3 of the morphological cycle. From August 

to December 2000, only small changes in morphology can be seen through the analysis of 

the video images (Figure 7.9). This is probably the consequence o f relative low wave 

energy conditions over this period. Non-directional wave data measured at the Teignmouth 

pier shows that from August to November 2000 only one event of significant wave height 

higher than I m took place. River discharge during this period is eilso low, with an average 

discharge of about lOm'^s"'. It is only in December that the frequency and intensity of 

storms increased, coinciding also with higher river discharge values, creating much more 

energetic conditions that wi l l be reflected in the sandbar morphology. 

7.4.3. Stage 3 

Following the evolutionary tendency of the morphological Stage 2, the outer portion of the 

previously straight attached sandbar is bent northwards in February 2001 (Figure 7.13a). 

This change in the sandbar shape happened over a relatively short period of time, between 

December 2000 and February 2001. Due to technical problems with the video system no 

images were recorded in January 2001, a period during which this change in morphology 

happened. Based on the observations of measured conditions during this period it is 

expected that the drastic morphological change of the sandbar is associated with a high 

wave energy event coincident with spring tide and a period o f high river discharge (Figure 

7.14). The storm event that hit the region was relatively long, lasting for approximately 

five days (10-15/01/01) with significant wave heights of up to 2.0 m. The tidal range at the 

time was of about 4 m resulting in strong ebb flows which combined with river discharge 

peaks of up to 70 m^ s * are able to enhance the northward transport over the sandbar (as 

discussed in the previous section). 

Based on the predicted sediment transport patterns of the August 2000 period (Stage 2), 

this combination of a storm event with spring tides and high river discharge seems to be 

the most likely cause of the change in morphology that happened over this short period of 

time. No directional wave data is available for the period; however, the simulations show 

that waves approaching the region at angles higher than 110 degrees from true North 
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(approx. shore-normal) would cause sediment to be transported northwards over the outer 

portion of the sandbar. Maximum quantities of sediment being transported and maximum 

northward deflection in the transport direction occur if the storm reaches the region from 

the south-westerly quadrant. 

a. Februarv2001 (tidal level: -1.96 m) b. April 2001 (tidal level: -2.10 m) 

-200 -100 0 i o o 3 0 o a a o 4 a o H D « D 7 e o 

c. September 2001 (tidal level: -2.36 m) 

- 3 » -100 0 

d. December 2001 (tidal level: -1.93 m) 
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Figure 7.13. Morphological evolution from February to December 2001. Continuous black 

lines represent the sandbar shoreline from the previous image and dotted line represents the 

approximate position and of the submerged sandbar. Tidal levels vary between images. 
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Figure 7.14. Predicted water level (a), measured waves at the pier (b), and river discharge 

(c) for January/February 2001. 

Similar simulations for the February 2001 morphology, with the bent attached sandbar, 

indicate the continuation of the northward migration of the outer portion of the sandbar and 

a slow southward displacement of the inner part of the sandbar (Figure 7.15). This anti

clockwise "rotation" of the sandbar is also verified in the video images over the following 

months (Figure 7.13b). In the numerical experiment of a storm situation this rotation 

process is shown by the strong onshore and northwards transport over the bent portion of 

the sandbar and by the constant southwards longshore transport (Figure 7.15a). Large 

amounts of sediment being transported at the exposed outer portion of the sandbar result in 

rapid morphological changes, as indicated by the predicted rates o f erosion and deposition 

over two tidal cycles (Figure 7.15b). Smaller amounts of sediment displaced by the 

longshore current result in slower morphologic£il changes at the inner portion of the 

sandbar, and are not evident in the short-term predicted initial sedimentation/erosion rates. 

The observed evolution of the sandbar indicates that after it is bent northwards, a relatively 

rapid northward migration takes place, with a consequent reduction in area of the sandbar 

(Figure 7.13). This process occurs even during calmer summer months, indicating that the 

sandbar is destabilised, probably due to its larger exposure to the incoming waves. This 

process is also reflected in the numerical experiments for both straight and bent attached 
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sandbar. I f considering the sediment transport through the main axis along the middle part 

of the sandbar, it is mainly parallel to the axis when the sandbar is straight (August 2000 -

Figure 7.11), with the dominant onshore transport meaning that little sediment is removed 

from the sandbar. With the bent sandbar, the sediment crosses through the main axis of the 

outer portion, meaning that larger quantities of sediment are being removed from the 

sandbar (e.g. February 2001 - Figure 7.15). Predicted sediment transport patterns, under 

the same forcing conditions, over two tidal cycles show that an increase in sediment 

volume crossing the sandbar axis of about 120 m"' is expected when the sandbar is bent. In 

August 2000, the sediment volume crossing the sandbar axis during two tidal cycles is of 

about 360 m^, while in February 2001 it is increased to about 480 m"'. This process of 

increased quantities of sediment being removed from the sandbar shows the importance of 

sporadic events for the development of the cycle, controlling the speed of its development. 

Without the northward bend of the sandbar due to the combination of high energy events 

during the winter months (e.g. January 2001), the sandbar would probably remain 

approximately constant over the summer months, since it would have been relatively 

"protected" from the action of waves. 

The gradual reduction of the attached sandbar coincides with the origin of a new offshore 

sandbar, which is visible in April 2001 when it emerges at low water (Figure 7.13b). When 

comparing the predicted sediment transport and initial sedimentation/erosion rates for the 

morphology in February 2001 with the observed morphology in the April image, it is 

shown that the offshore sandbar is formed in the region between opposing directions of 

sediment transport (Figure 7.16). This contradicts Robinson's (1975) idea of the offshore 

sandbar being originated by the northward growth and breaching of the Ness sandbar. 

Model results show that the offshore sediment transport driven by the ebb flow in the 

channel and the wave driven onshore transport over the shoals seem to be responsible for 

the initial sediment deposition that generates the sandbar. The initial sedimentation/erosion 

rates shown in Figure 7.15 and 7.16 indicate the region of sediment deposition between 

these two opposing flows. Although this modelled deposition region is relatively small and 

slightly offshore in relation to the formed sandbar (Figure 7.16) it indicates that there is 

indeed sedimentation at this region. This example is the result of a short period simulation 

(two tidal cycles) of storm conditions, therefore it is expected that over longer periods of 

high wave energy or periods with higher frequency of storm events (e.g. winter months) 

this process wil l be enhanced. 
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This process is controlled by the flow asymmetry resultant from the wave action (Figure 

7.17). Under the influence of waves, the flow over the shoals becomes flood dominant, 

with an onshore residual current of about 0.38 m s * and peaks close to 0.8 m s \ In the 

channel, stronger offshore flows characterise its strong ebb-dominance, independent of the 

intensity of the incident waves. The shear originated from these two opposing flows would 

create a deposition area, where the sandbar can be formed (Figure 7.16). During calm 

conditions, both channel and shoals are ebb dominant, despite the small residual offshore 

currents over the shoals (of about 0.1 m s"' - Figure 7.17). Extending the idea of this 

process to a leu-ger time scale it can be expected that during storm situations a initial 

sediment deposition would occur, while during calmer spring tide periods the dominant but 

weaker offshore flows would slowly spread the deposited sediment by moving it offshore 

and northwards. During calm neap tides, the weak tidal currents would displace only small 

amounts of sediment, with the sediment deposits remaining relatively stable. 

From the observed morphological evolution following the origin of the new offshore 

sandbar in April 2001, this idea of the formation and initial evolution of the sandbar seems 

to be consistent. In September 2001, after the less energetic summer months, the sandbar is 

less evident and spread offshore and northwards. This is clearly seen in the corresponding 

video image (Figure 7.13c), where only small remains of the sandbar are visible despite the 

lower tidal level in relation to the previous image. The opposite is observed with the 

presence of more dynamic conditions in the beginning of the winter (December 2001 -

Figure 7.13d), where the sandbar volume seems to have increased considerably, with a 

larger intertidal area despite the higher water level at the time of the image. At the southern 

side of the channel, the same process is verified by the evolution of the Ness sandbar. The 

Ness sandbar is not evident during the calmer summer months, emerging only in December 

2001 showing its large volume increase. The wave dominance on its formation can be seen 

also by its evident onshore migration (Figure 7.13d). 

A similar process of sandbar origin can be related to the Sprat sandbar (indicated by " f ' in 

Figure 3.5), which extends offshore from the sandy spit constricting the inlet channel. The 

dominance of the ebb tidal flows at its south margin contrasts with the wave and flood tide 

onshore generated flows at the northern flank. Despite being formed and maintained by the 

same process, the Sprat sandbar is much more stable than the offshore sandbar due to its 

relative protection from the incident waves. 
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On the other hand, due to the dominant wave action over the attached sandbar, it is 

gradually spread and reduced in size. Numerical simulations for the May and September 

2001 morphologies result in similar sediment transport patterns as for February 2001, 

indicating the gradual erosion and northward migration of the outer part o f this sandbar. 

a. 

•••••• • •• ~ - . 

Figure 7.15. Detail of the modelled sediment transport for a high-energy event (//j/g = 

1.8 m) over the offshore sandbar in February 2001. Sediment transport patterns (a) and 

initial sedimentation/erosion rates (b), where deposition is represented by blue lines emd 

erosion by yellow lines (interval between lines is 0.05 m). 
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Figure 7.16. Predicted sediment transport (a) and initial sedimentation/erosion patterns for 

February 2001 overlaid on the April 2001 image. In (a) the red circle highlights the new 

offshore sandbar and the yellow dots indicate the location of the channel and shoal velocity 

time series represented in Figure 7.17. In (b) the red circle indicates the location of the 

modelled sedimentation region. 
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Figure 7.17. Top: residual flow vectors for only tide simulation (black) and under the 

influence of waves {Hsiz = 1.8 m - yellow) over two spring tidal cycles in February 2001. 

Bottom: time series o f modelled cross-shore component o f the velocities over the two-tidal 

cycles at the charmel (line) and shoal (dots) locations indicated in Figure 7.16 for both 

wave energy situations. Negative values = onshore; positive = offshore. 

7.4.4. Stage 4 

During the following month, from December 2001 (Figure 7.13d) to January 2002 (Figure 

7.18a), an increase in the new offshore sandbar can be observed, v«th the attached sandbar 

remaining approximately constant. In the following three months, drastic changes in 
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morphology can be observed. The attached sandbar decreases in size and volume, and the 

offshore sandbar grows rapidly and moves shoreward (Figure 7.18b), producing a 

configuration reminiscent of the morphology observed at the beginning o f the observations 

(Figure 7.3), suggesting the completion o f a cycle in the evolution of the sandbars over this 

approximately three-year period. 

The Ness sandbar that emerges further offshore from December 2001 to January 2002, is 

visible only at its onshore portion, attached to the Ness point in April 2002 (Figure 7.18b). 

Part of the sediment that composed the sandbar may have been bypassed through the 

channel due to the wave action over this period, being a possible source o f sediment for the 

growing offshore sandbar. 

a. January 2002 (tidal level: -1.91) b. April 2002 (tidal level: -1.94) 

-2OO - 1 O O 6 l ^ 2 O O 3 0 O 4 0 O W « O r o O .200 - « » 0 1 0 0 a 0 0 3 0 0 « 0 0 « 0 

Figure 7.18. Morphological evolution from January to April 2002. 

Numerical experiments using both January and April 2002 morphologies produced similar 

sediment transport patterns over the forming offshore sandbar. These are also similar to 

those obtained for the March and October/November 1999 simulations discussed in section 

7.4.1. Sediment transport over the offshore sandbar is directed onshore and northwards 

under energetic situations {Hstg = 1.8 m and tidal range of about 4 m), resulting in an 

increased deposition at the northern side of the sandbar (as shown in the example for the 
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April 2002 simulation in Figure 7.19). The main difference in the morphology at the 

beginning of the cycle is the sandbar shape and orientation. In April 2002 the offshore 

sandbar is more exposed to the wave action due to its main axis being rotated in relation to 

the shoreline. This may increase the sediment transport over the sandbar resulting in an 

accelerated onshore migration. Observations of the following months show that the 

sandbar becomes attached to the beach in September 2002. 
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a. 

Figure 7.19. Detail o f the modelled sediment transport for a high-energy event (Hstg = 

1.8 m) over the offshore sandbar in April 2002. Sediment transport patterns (a) and initial 

sedimentation/erosion rates (b), where deposition is represented by blue lines and erosion 

by yellow lines (interval between lines is 0.05 m). 
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7.5. Conceptual Model of the Cyclic Evolution at Teignmouth 

Based on the observed evolutionary cycle of the sandbar morphology at Teignmouth and 

the knowledge obtained about the physical processes controlling the system through the 

model application at each of the previously described stages, a simplified conceptual 

model for the cyclic sandbar behaviour is proposed. The previously described results show 

that despite the relatively low frequency and intensity of high energy events that hit the 

region, these sporadic events control the local morphodynamics by catalysing the 

morphological changes. The main features of each morphological stage are summarised 

starting with the origin of the sandbar and following its evolution until its spreading and 

the possible beginning of a new cycle. 

7.5.1. Origin of the sandbars 

The flow asymmetry around the Teign estuary mouth seems to be the process responsible 

for the origin and maintenance of the sandbars. There are three main intertidal sand bodies 

at Teignmouth: the Sprat sandbar; the Ness sandbar; and the offshore sandbar (Figure 3.5). 

The Sprat sandbar, is a relatively stable sandbar formed as an offshore extension of the 

sandy spit that limits the inlet channel. The main sediment supply to this sandbar is 

probably the dominant southward longshore transport. This sandbar is stable due to its 

relative protection from the incoming waves, being controlled mainly by the tidal flows. Its 

origin is probably related to the sediment being gradually trapped at the region between the 

dominant ebb channel (main channel) and the flood channel that separates the sandbar 

from the beach (Figure 7.20a). During the three-year observed cycle only small 

morphological changes are observed at the Sprat sandbar, indicating a longer-term 

morphological evolution. 

The origin and morphodynamics of the Ness sandbar and the offshore sandbar seem to be 

directly related to the wave action, presenting as a consequence a seasonal behaviour with 

the most drastic changes occurring during winter months. Nonetheless, the same principle 

of flow asymmetry around the sandbars is expected to be responsible for their formation. 

As shown in section 7.4.3, the onshore wave generated currents over the shoals opposing 
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the main ebb flows in the channel create deposition zones that wi l l be responsible for the 

origin of these sediment accumulations over the shoals, as represented in the schematic 

diagram in Figure 7.20. These two intertidal sand bodies are linked by the submerged " U " 

shaped sandbar at the outer part of the channel, which is controlled by the interaction of 

channel tidal flows and the reworking of sediments by the incoming waves. The on- or 

offshore migration of this submerged sandbar is a function of the relative importance of 

waves or tides. 

This process of generation o f new sandbars over the shoals is constant throughout the 

cycle, with newly formed sand accumulations being added to the already existent sandbars. 

An example of merging of sandbars is shown in Stage 2 (Figure 7.9b, c and d). 

In this study no direct estimates of the influence of the drag-dredging in the charmel region 

were made. However, as the dredging is concentrated at the outer part o f the channel and is 

constantly (independent of the tidal phase) resuspending sediment, it is believed that little 

sediment is removed from the system through this process. The main affected sandbar is 

the submerged sandbar at the outer part of the chaimel and consequently the Ness sandbar. 

Pictures of the sandbars previous to the dredging activities show that at periods the Ness 

sandbar grew northwards crossing the inlet channel, being responsible for the bypass of 

sediment from south to north. Nowadays this process is probably minimised due to the 

dredging activity. 

7.5.2. Onshore migration of the sandbar 

Once formed, the sandbars continue to grow due to the gradual sediment addition from 

both sides, the channel (mainly during spring tides) £md the shoals (during higher wave 

energy periods). The magnitude o f this process is also controlled seasonally, with increased 

growth rates during more energetic periods (e.g. winter months). 

Combined with the sediment addition, the sandbar tends to move onshore, due to the large 

quantities of sediment transported by the wave action over the sandbar (Figure 7.20b). This 

process occurs during high energy events independent of the tidal range. The onshore 

migration of the sandbar is accelerated when the secondary channel that separates the 
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offshore sandbar from the beach reduces its competence for sediment transport. Due to the 

gradual landward migration of the sandbar, the main axis of the secondary channel is 

shifted becoming "protected" from the main tidal flows, leading to its abandonment and 

increased sedimentation at the shoreward flank of the sandbar. 

Additional sediment to the sandbar may come from newly formed sandbars over the 

shoals, which will migrate onshore and merge at the outer portion of the growing sandbar. 

This process is verified during Stage 2 (Figure 7.9b, c and d). 

The process of the sandbar attachment to the beach is driven mainly by wave action, which 

reshapes the sandbar so that it becomes thinner and elongated (Figure 7.20c). Interaction 

with tidal currents results in the slow northward migration of the sandbar while it is 

growing onshore. 

7.5.3. Spreading of the attached sandbar and formation of a new offshore sandbar 

Due to the wave action over the attached sandbar, it is expected that the reshaping process 

of the sandbar will continue, driving sediment constantly onshore and resulting in a gradual 

reduction in width and length of the outer portion of the sandbar (Figure 7.20c, a). 

Depending on the angle of wave incidence and the interaction with tidal currents a 

resultant northward component in the sediment transport is also expected over the outer 

portion of the sandbar. The longshore wave generated currents, with a southward resultant, 

control sediment transport at the inner portion, attached to the beach. In the observed cycle, 

the outer portion of the sandbar is bent northwards, and this is the probable cause of an 

accelerated spreading process. As discussed previously, the reorientation of the sandbar to 

face the incoming waves more directly results in larger quantities of sediment being 

removed from the sandbar. The velocity of the spreading process o f the attached sandbar is 

also dependent on the frequency and magnitude of incoming storms and the balance 

between erosion over the sandbar and deposition of sediments through the merging of the 

newly formed depositions. 

As a result of the gradual spreading and northward migration of the outer portion of the 

attached sandbar, the sandbars formed over the shoals are not able to merge with the 
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remains of the attached sandbar. This results in the formation of a secondary channel 

between the attached sandbar remains and the "new" sandbar, which wi l l then grow as an 

isolated new offshore sandbar. This process completes the evolutionary cycle as illustrated 

in Figure 7.20. 

Talanmouth Telgnmoutt) 

TeFgnmouth 

direction of net wave 
driven sodlment transport 

direction of net tide 
* drtven sediment transport 

Figure 7.20. Conceptual model for the evolutionary cycle of the ebb tidal delta sandbars at 

Teignmouth. 
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7.6. Conclusions 

The coupled use of video imaging and numerical modelling proved to be a very powerftil 

tool in order to assess the morphodynamics of this complex site. In the absence of in situ 

field measurements, the technique proposed in Chapter 5 to obtain the morphology of the 

region of interest at different stages of the morphological evolution complements the 

numerical modelling experiments. Following the assessment of the sensitivity of the region 

to the several key forces (Chapter 6), the application of the numerical model at different 

stages of the evolutionary cycle brings a valuable insight into the local morphodynamics. 

The complex interaction between tidal currents and waves controls the dynamics of the 

sandbars. Wave action over the shoals is particularly important to the local dynamics and 

defines the most drastic morphological changes of the system. High wave energy events 

are responsible for the displacement of great quantities of sediment over relatively short 

periods of time (days). This makes the system more dynamically active over the winter 

months, when a higher frequency and intensity of storms reshape the morphology. It is also 

during this period that river discharge values reach high peaks, increasing the capacity of 

the ebbing tidal flows and interacting with the opposing waves. The opposite occurs during 

summer periods, when less energetic conditions lead to slower morphological changes. 

Despite the relatively low frequency of high wave energy events that reach the region they 

can catalyse some drastic morphological changes that define the local morphodynamics. 

The main difference between the observed evolutionary cycle and those previously 

described by Robinson (1975) is probably related to human influence. The constant drag-

dredging at the region of the main channel keeps the orientation of the channel relatively 

constant and minimises the sediment bypass through the northward growth of the Ness 

sandbar. The cycle observed by Robinson (1975) includes the bypass o f large amounts of 

sediment through the growth of the Ness sandbar, which would cross the channel adding 

sediment to the offshore sandbar. 

The present application of an initial sedimentation/erosion model proved to be usefiil in 

giving qualitative predictions of the morphological evolution of the sandbar system. The 

short period simulations were carried out in order to test the effects of different forcing 
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conditions on the sediment transport patterns and initial morphological changes. These 

changes represent the first morphological adjustments of the system as a response to the 

presence of the sandbars. As discussed in Chapter 2, according to De Vriend (1994) these 

primary transport phenomena are predominant in shaping the morphology of the system, 

resulting in a reliable indication of this process. Each of the modelled morphological stages 

of the sandbar system resulted in the tendency in the morphological evolution dependent 

on the forcing conditions, and thereby predict its behaviour. 

For the longer-term predictability of this system (e.g. the whole evolutionary cycle), this 

study highlights the importance o f the knowledge of the external forcing conditions or a 

good understanding of their sequencing. High wave energy events for example, which are 

relatively rare at this region, are shown to play a major role in the morphological evolution 

and cyclic behaviour of the system. Therefore, the knowledge of the frequency and 

intensity of such events throughout the entire cycle is of fundamental importance in order 

to predict its evolution. 
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Chapter 8 

Conclusions and Future Directions 

8.1. General Conclusions 

The coupled application of a validated numerical area model and video images has been 

used to provide a better understanding of the driving forces that control sandbar dynamics 

at the inlet system of Teignmouth. The method applied here is an innovative way of 

iteratively combining the results o f a numerical model with the information extracted from 

video images. In this process, the modelled water levels are used as input to the image 

processing, which then provides the intertidal morphology that is used in further modelling 

experiments, closing the loop that can be repeated several times depending on the required 

temporal resolution. This coupled technique allowed the application of modelling 

experiments to different stages of the evolutionary cycle, resulting in a quantitative 

assessment of the relative influence of the key processes that control the environment and 

in initial steps towards the prediction of its evolution. 

The Teign river inlet system was chosen for this study due to its challenging nature, with 

complex and active morphodynamic behaviour. In addition, this site has been the subject 

of a series of studies and field campaigns, providing a unique database with in situ 

measurements and video images. 

The objectives proposed in this study aim to provide a better understanding of the balance 

of driving forces in the vicinity of an inlet system. The main conclusions of this study are 

given below in accordance to the specific objectives. 
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Application, calibration and validation of a numerical area model 

For this purpose, three modules o f the MIKE21 modelling system were applied at the 

Teignmouth region: the two-dimensional hydrodynamic module; the nearshore spectral 

wave module, and; the non-cohesive sediment transport module. The adjustable parameters 

during the calibration procedure were the bed resistance (Ch^zy numbers) and the eddy 

viscosity. Both were defined as varying across the model grid. Ch^zy numbers were set as 

being depth dependent and eddy viscosity values were dependent on the modelled region. 

The hydrodynamic module and the wave module were validated against measured water 

levels, current velocities and wave parameters obtained during the COAST3D main 

experiment. This unique database includes a dense spatial coverage of measurements 

within the area of interest, including a range of forcing conditions. The validation 

procedure included the qualitative time series comparison of measured and calculated 

values and the application of statistical parameters (relative mean absolute error - RMAE) 

in order to quantify the quality of the model. The quality of the sediment transport module 

was assessed using the COAST3D morphological surveys. This was carried out in an 

indirect way, by comparing the measured and modelled morphological changes over a 

given period. The visual observation of the morphological changes provides a qualitative 

assessment of the model quality, which is complemented by the quantitative measure 

through the use of skill scores. It is only recently that the quality of numerical models has 

been assessed through the use of such statistical parameters (Brady and Sutheriand, 2001; 

Sutheriand et al., 2001; Van Rijn et al., 2003; Sutheriand and Soulsby, 2003) and their 

validity has been confirmed in this study. 

As with all numerical modelling experiments, one needs to be aware of some limitations 

that arise from its application. In addition to the inherent limitations o f numerical models, 

the main limitations of the present application are related to the depth averaged calculated 

flows, the grid resolution, the limited resolution of the available sediment data and the use 

of an initial sedimentation/erosion model. The depth averaged calculated flows, which may 

not always represent the actual circulation at regions where stratification is important is not 

believed to affect the region of interest, since evidence shows that a stratified water column 

is formed only when the flow leaves the main channel. The applied grid resolution 

(10x10 m), which may not represent some of the features of the complex bathymetry, is the 

best possible representation of the surveyed bathymetry. The limited resolution of the 
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available sediment data may result in misrepresentations o f the quantities of sediment 

displaced, but the definition of regions of sedimentation or erosion is expected to be less 

affected. And finally, the fact that the present application is based on an initial 

sedimentation/erosion model, without the feedback between the morphological changes 

and the hydrodynamics is minimised by the application o f the model over short periods, 

reproducing the initial adjustment of the morphology to the forcing conditions. Despite 

some uncertainties attached to the application of numerical models, the partial validation of 

the numerical model shows that the applied model reproduces well the overall observed 

phenomena at this complex site. 

Combining Numerical modelling and video imaging in order to extract intertidal 

morphology from images 

The model application served two separate functions throughout this study, first with the 

hydrodynamics results being used for the image processing and second, combined with the 

sediment transport module, with the fijll model being used to understand the relative 

importance of the driving forces at the region. As one of the objectives was to apply the 

model to different stages of the morphological evolution of the system and only two 

surveys were available, an alternative way of obtaining the morphology was applied. This 

involves the use of the Argus video images available for the region. However, one 

complicating factor is the requirement of accurate water levels for the image processing. At 

inlet systems, where pressure gradients result in large horizontal differences in water 

levels, these need to be taken into account. Therefore, the modelled water levels were used 

when defining the intertidal morphology from the video images, solving the problem of 

highly variable water levels in the cameras' field of view. Combined with the shoreline 

detection method, these water levels were used twice in the processing: when converting 

the image co-ordinates into ground co-ordinates; and when defining the vertical elevation 

values corresponding to each section of the coastline. This added step in the image 

processing has been proved to considerably increase the accuracy of the extracted intertidal 

morphology, doubling the average accuracy of the extracted morphology, to an average 

value of about 0.15 m. 
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These intertidal morphologies obtained through the application of this method were 

merged with the original surveyed bathymetry in order to be applied in the numerical 

model. Thereby, the modelling experiments can be extended for different evolutionary 

stages of the sandbar system, and the comparison with observations gives a further 

qualitative validation of the numerical model. 

This technique has been shown to be a good alternative in the absence o f in situ surveyed 

data. However, some limitations arise from the application, being related to the assumption 

of constant subtidal morphology during the studied period and constant intertidal 

morphology between each of the stages. Although this limitation is not thought to cause 

large deviations in modelled water levels, reducing the time intervzds between the studied 

stages may reduce these errors. Since the limited measured data available throughout the 

three-year cycle, the optimal time intervals between the modelled stages can not be defined 

here. Nevertheless, in order to minimise possible errors arising from this assumption, ten 

stages of the morphological cycle were used, comprehending most o f the morphological 

variability of the area of interest. 

Identify and assess the relative importance of the key processes across the sandbar system 

Following the development and the application of the method of coupling the numerical 

model and video images, several experiments were carried out in order to assess the 

relative importance of the driving processes at the inlet system. A more detailed 

assessment of the driving forces was carried out for the surveyed situation (model 

validation period), when detailed bathymetric surveys and boundary condition data were 

available (Chapter 6) and shorter experiments were carried out for each of the analysed 

morphological stages (Chapter 7). Results provide valuable information about the 

interaction of forces and the resultant morphological evolution of the sandbar system. 

The controlling factor of such systems is the interaction of tidal currents, waves, and river 

discharge that produce a cyclic morphological behaviour of the sandbars forming the ebb-

tidal delta. This cyclicity is controlled by the temporal and spatial variability of the 

processes governing the local sediment dynamics. Throughout the entire observed cycle, 

there is a clear difference in the spatial distribution of the dominant processes. Over deeper 
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regions the tides dominate the sediment transport, whilst over the shoals the waves are 

dominant. Based on the numerical model results and the observation of video images, it is 

suggested that the sandbars are formed in the region between the offshore ebb tidal 

currents and the onshore wave generated currents in the area that defines the limit between 

the channel and the shoal. These opposing flows result in a gyre of sediment transport, 

with deposition taking place in the middle. Therefore, the genesis of the offshore sandbar is 

associated with high wave energy events. Once formed, the dynamics o f the sandbars are 

controlled mainly by wave action, with the mean onshore flows driving it onshore, and by 

the ebb tidal currents, which have the opposite effect, driving sediment offshore. As a 

consequence, during low wave energy periods (e.g. summer months) the forming sandbar 

may be spread in the offshore direction and during periods with higher intensity and 

frequency of energetic events (e.g. winter months) the sandbar tends to grow and move in 

the onshore direction. A similar process of opposing flows may be responsible for the 

generation and maintenance of the other sandbars that compose the system (e.g. Sprat 

Sand, Ness s£indbar), however their dynamics are controlled according to the level of 

exposure to the wave action. The more protected sandbars are relatively stable, while the 

sandbars exposed to the action of waves are very dynamic, with changes in shape and 

volume defined by the incoming wave energy. As a consequence, the magnitude of the 

morphological changes is also controlled seasonally, with increased modifications during 

the more energetic periods. Sandbars migrate landwards due to the wave generated onshore 

transport over the sandbars, resulting in a thinner and shore-normal elongated sandbar. 

This shape, which is not typical of a wave dominated sandbar, is a consequence of the 

wave action at different tidal levels. At lower tides, when the sandbar is partially exposed, 

wave action generates strong longshore (in relation to the sandbar) currents on both sides 

of the sandbar, moving sediment in the onshore direction. The spreading of the shore-

normal attached sandbar occurs as a consequence of the wave generated transport over the 

sandbar, uath the spreading rate being defined by the relative angle o f the incident waves 

in relation to the sandbar. 

Waves play a major role in the sandbar morphodynamics. Despite the relatively low 

frequency o f high wave energy events that reach the region they are responsible for large 

amounts of sediment displacement, catalysing some dramatic morphological changes. This 

is represented in the diagram in Figure 8.1, which summarises the main controlling factors 

of the sandbars morphodynamics. High wave energy events are dominant in the 
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morphological changes, with their temporal distribution defining the cyclic behaviour of 

such envirormients. The main physical process responsible for the onshore transport due to 

the wave action is the gradient in the radiation stresses generating strong onshore mean 

flows. Results indicate that river discharge may also significantly affect the morphological 

evolution, with the river discharge adding another variable to the system. High discharge 

values increase the relative importance of the ebb flows, affecting the sediment transport in 

the channel and over the adjacent shoals. 

Initial steps towards assessing the predictability of the environment 

The present application of an initial sedimentation/erosion model proved to be useful in 

providing qualitative predictions of the morphological evolution o f such a complex 

sandbar system. Based on short period simulations of the system's evolution under 

different forcing conditions, the general tendency of evolution to the next morphological 

stage is reproduced. As shown quantitatively through the application the Brier Skill Scores 

during the validation period (Chapter 4), the model showed an ability to reproduce 

correctly the evolution of the offshore sandbar when compared to measurements over the 

same period. However, the same level of prediction was not achieved in the region of the 

Ness sandbar. This may be a consequence of the limited resolution of the sediment samples 

at the region or limitations in the model capabilities of reproducing correctly the balance 

between the ebb tidal flows and the wave generated flows. Due to its location, the Ness 

sandbar is under stronger influence o f the channel flows than the offshore sandbar, and as a 

consequence, reproducing correctly the interaction of these processes is more important in 

this region than at the wave dominated offshore sandbar. Based on video observations, it 

can be seen that the Ness sandbar is less dynamic than the offshore sandbar, with a 

seasonal on- and offshore migration pattern. During periods characterised by high wave 

energy the Ness sandbar is moved onshore, towards the channel, and during periods of 

tidal flow dominance this sandbar migrates offshore. 
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Figure 8.1. Degree of sandbar morphological changes as function of tidal range and wave 

height. 

Comparing the modelled sedimentation/erosion patterns with the observed changes of the 

dynamic offshore sandbar shows that the model is able to reproduce consistently its overall 

evolutionary tendency. The morphological adjustment of the system to the forcing 

conditions shows the progression towards the next morphological stage, allouring the initial 

steps towards predicting the evolution to be taken. Due to limitations in the time-scale of 

the application of such models (as discussed in De Vriend, 1994; De Vriend and Ribberink, 

1996), only qualitafive predictions can be obtained based on the first "adjustment" of the 

distorted system. At short time-scales, the model provides the initial morphological 

response to the forcing conditions, but without the feedback between the evolution and the 

hydrodynamics the interpretation of such a model is limited at larger time-scales. 

The technique of coupling the numerical model v^th the video images applied here, has 

been shown to be of great value in providing a better understanding o f the processes that 

control the dynamic of inlet systems. At short time-scales (e.g. one tidal cycle), 

quantitative information about the acting processes and how they interact was provided by 
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the modelling experiments, and at medium time-scales, the combined application resulted 

in qualitative predictions of the evolution of the system. 

8,2. Future work 

It is recommended that future studies include, where possible, the combination of in situ 

measurements, numerical modelling and video imaging. As shown in this study, the high 

quality data sets originated fi-om these combined studies are of great help in understanding 

the processes involved in such environments. 

Future work at Teignmoulh should include the application of a fijll morphodynamic model, 

in order to assess the quantitative predictability over the whole evolutionary cycle. With 

such application, the model should also be coupled with the video images in order to 

validate its predictions and to make adjustments in the morphology i f necessary. One 

problem that may arise from the application of a morphodynamic model is the required 

computer time to simulate the whole cycle, since the grid resolution would need to be high 

in order to include the complex morphological variability and the time steps need to be 

relatively small, since small-scale processes drive the local morphodynamics. The accuracy 

of these predictions would also rely on knowledge about the forcing conditions. 

Measurements or the understanding of the sequencing of the forcing conditions (e.g. wave 

parameters, water level, river discharge) would be needed throughout the duration of the 

simulation. 

Additionally, the understanding o f larger scale sources and sinks of sediment that sustain 

the system would help in understanding the system and obtaining quantitative predictions 

of its evolution. As shown in this study, the system is open, with sediment being added or 

removed through longshore and cross-shore transport. This makes the regional sediment 

balance an important "boundary condition" for long-term simulations. 

In situ measurements of the processes and consequent sediment transport in the vicinity of 

the sandbars would bring additional information about the system. At present, such 
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measurements are being made as part of the COASTVIEW* project, through the use of a 

variety of instruments positioned at the intertidal regions of the sandbars. These 

measurements are complemented with complete bathymetric and topographic surveys. 

These data wil l certainly result in interesting information about the processes that control 

sediment transport at this region and will also form a good database for model validation. 

A continuous program of bathymetric and topographic surveys and measurement o f 

forcing conditions would be necessary for any attempt of modelling the system's long-term 

evolution. This would create a database that could be used for the long-term modelling and 

video based techniques validations. Due to its interesting behaviour, available database, 

and strategic facilities, Teignmouth is certainly an excellent location for such studies. 

for details see the project website at http://www.thecoastviewproject.org 
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A I . l . Model Description 

The numerical model used in this study is the well-known MIKE21 model developed by 

the Danish Hydraulic Institute. The development of MIKE21 started at DHI in 1970 and 

has since been extended for different applications (e.g. Abbott et al., 1981; Abbott and 

Larsen, 1985). In this study three modules of the MIKE21 system are used, the 

Hydrodynamic module (HD), the Nearshore Spectral Wind-Wave module (NSW) and the 

non-cohesive Sediment Transport module (ST). Each of these modules is described in the 

next sections. 

As this modelling system has been described in detail numerous times before in the 

literature, much of the description provided here is summarised from the M1KE21 HD 

scientific documentation (DHI, 2000a). 

AI.1.1 . M I K E 2 1 Hydrodynamic Module (HD) 

The hydrodynamic model component of MIKE21 is a general numerical modelling system 

for the simulation of water levels and flows in estuaries, bays and coastal areas (Warren 

and Bach, 1992). It simulates unsteady two-dimensional flows in one layer (vertically 

homogeneous) fluids in response to a variety of forcing functions. The water levels and 

flows are resolved on a square or rectangular grid covering the area o f interest. The main 

inputs to the model are bathymetry, bed resistance coefficients, wind fields, and water level 

and/or flux boundary conditions. The model allows flooding and drying over the 

computational grid during the simulation. 

ALLLL Two-dimensional Flow Equations 

In the hydrodynamic module the flow and water level variations are described by the 

differential equations that govern the conservation of mass and momentum in the 
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horizontal plane. These are obtained through the vertical integration of the Navier-Stokes 

equations: 

continuity: 

dt dx dy 
( A I . l ) 

x-momentum: 

dt dx\ h ) dy \ h , dx 

gP 
p. 

- O p (AI.2) 

- y i ^ , + - | : ( p J = o 

y-momentum: 

dt dy dy 

gqyjp' +q' 1 
2 1.2 p. 

+ np (AI.3) 

At closed boundaries, the flow perpendicular to the boundary is set to zero. At open 

boundaries, the surface elevation along the boundary and/or the flux through the boundary 

have to be prescribed. Using these boundary conditions and defining initial values for 

surface elevations and flux densities, the system of Equations A I . l through AI.3 forms a 

well-posed boundary value problem. Horizontal water density effects are not included in 

the above equations, which can result in errors in the surface gradients (up to 15 cm) when 

the density effects are important. 
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ALU.2, Numerical Formulation 

MIKE21 HD solves the vertically integrated equations of continuity and momentum in two 

horizontal dimensions. The Equations A I . l through AI.3 are solved by implicit finite 

difference techniques with the variables defined on a spatially staggered grid. MIKE21 HD 

makes use of an Alternating Direction Implicit (ADI) technique to integrate the equations 

for mass and momentum conservation in the space-time domain. Second order accuracy is 

ensured through the centring in time and space of all derivatives and coefficients. 

The variables are defined on a space-staggered rectangular grid with elevation and fluxes 

midway between grid points (Leendertse, 1964). The three equations are centred at z+'/j 

and they are solved in one-dimensional sweeps alternating between the x and directions. 

In the x-sweep the continuity and jc-momentum equations are solved, taking ^ from / to 

/+'/2 and p from / to /+! . For the terms involving q, the two levels of old, known values are 

used, i.e. t-V^ and t+Vz (Figure A I . I ) . The mass and momentum equations for the x-sweep 

for a sequence of grid points are: 

Aj-p';\+Bj-<;j'+Cjp';'=Dj\, 

(AI.4) 

A]-^';^+B]-p';+C]-Q=D]\, 

In thejz-sweep the continuity and ^/-momentum equations are solved, taking ^ from t-^V^ to 

/+1 and q from t+V-i to /+3/2, while terms in p use the values just calculated in the x-sweep 

at / and /+ I (Figure A I . l ) . The mass and momentum equations for the _v-sweep for a 

sequence of grid point are: 
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A,-q';.\+B,-C,^+C,q'r=D,\, 
(AI.5) 

A:-^,'+B:.g';'+c:-c,j=D:\j 

t+3/2 — 

t+1 — 

t+1/2 

t — 

t-1/2 — 

Time centre 

x-sweep y-sweep 

Figure A I . l . Time centring. 

The coefficients A, B, C, D and A*, B*, C*, D* in Equations A1.4 and AI.5 are all 

expressed in known quantities. The application of the finite difference scheme results in a 

three-diagonal system of equations for each grid line in the model. The solution is obtained 

by inverting the three-diagonal matrix using the double-sweep (DS) algorithm (Abbott and 

Minns, 1998), which corresponds to a very fast and accurate form of Gaussian elimination. 

ALLL3, Boundary Conditions 

The main purpose of the MIKE21 HD is to solve the partial differential equations that 

govem nearly-horizontal flow. Like all other differential equations they need boundary 

conditions. In general, the following boundary data are needed: 
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Surface elevations and/or Flux densities 

These are the primary boundary conditions, which are defined as the boundeuy conditions 

sufficient and necessary to solve the linearized equations. The fully linearized x-

momentum equation reads: 

^ + gh^ = 0 (A1.6) 
dt dx 

The corresponding terms in the x-momentum equation are: 

^ + . . . H . g ; , ^ + ... = 0 (AI.7) 
dt dx 

A "dynamic case" is defined as a case where 

(AI.8) 
dt dx 

i.e. a case where these two terms dominate over all other terms of the MIICE21 HD x-

momentum equation. 

It is then clear that the primary boundary conditions provide "almost all" the boundary 

information necessary for MIKE21 HD when it is applied to a dynamic case. The same set 

of boundary conditions maintain the dominant influence (but are in themselves not 

sufficient) even in the opposite of the "dynamic case", namely the steady state (where the 

linearized equations are quite meaningless). This explains why these boundary conditions 

are called "primary". They must be given at all boundary points and at all time steps. 

Secondary boundary conditions are given by the discharge or flux density parallel to the 

open boundary. The necessity for secondary boundary conditions arise because one cannot 

close the solutions algorithm at open boundaries when using the non-linearized equations. 
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As a consequence of the transport character of the convective terms, a "true" secondary 

condition is needed at inflows, whereas at outflow a "harmless" closing of the algorithm is 

required. This closing may either be obtained by defining the flow direction at the 

boundary or by extrapolation of the flux along the boundary from the inside. Furthermore, 

the fluxes outside the boundaries are needed (for the convective momentum term, the eddy 

term and the non-linear dissipation term). 

The success of a particular application of MIKE21 HD is dependent upon a proper choice 

of open boundaries more then anything else. More details about the MIKE21 HD model 

can be found in Abbott et al. (1981) and DHI (2000). 

ALLL4. Calibration Factors 

Bed resistance 

In MIICE21 HD the bed shear stress is represented by the Chezy formulation. 

which is approximated as 

where 
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P = 

9 = X 
1̂ -4 ^ 

9;./ + 9 ; . U - l +9,>f.* +9..*-. ( A I . l l ) 

It is also possible to use Manning numbers in MIKE21 HD and they are converted to 

Chezy numbers as follows: 

C = M-h'6 ( A I . l 2) 

Eddy viscosity 

The effective shear stresses in the momentum equations contain momentum fluxes due to 

turbulence, vertical integration and subgrid scale fluctuations. The terms are included using 

an eddy viscosity formulation to provide damping of short-wave length oscillations and to 

represent subgrid scale effects (see e.g. Madsen et al., 1988; Wang, 1990). 

The formulation of the eddy viscosity in the equations is implemented in two ways: 

flux based formulation 

d 
dx dxj dy\ dy\ 

(x - momentum) ( A I . l 3) 

where P is the flux in the x-direction and E is the eddy viscosity coefficient. 

velocity based formulation 

dx\ dx] dy\ dy^ 
( A I . l 4) 

where u is the velocity in the x-direction and h the water depth. 
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Strictly speaking the first formulation is only correct at a constant depth and should be 

applied carefully in order to avoid falsification of the flow pattern. The velocity based 

formulation, which is more correct, is also more difficult to implement in the numerical 

algorithm. This is because the system uses the fluxes as the unknown parameters, and not 

the velocities. Therefore the velocity-based formulation is implemented by using the 

velocities from the previous time-step. TTiis can lead to stability problems when the eddy 

viscosity coefficient becomes large. 

The eddy viscosity in MIKE2] HD can be given as a time-varying function of the local 

gradients in the velocity field. This formulation is based on the Smagorinsky concept, 

which yields: 

'dU . ^ 1 
2 

+ 
j 2 dx) 

(AI.15) 

where U, V are depth averaged velocity components in the x- and ^'-direction, A is the grid 

spacing and C, is a constant (Smagorinsky factor) to be chosen in the interval of 0.25 to 

1.0. The Smagorinsky facility is combined with the following formulation of the shear 

stresses: 

d_ 
dx dxj dy 

-HE 
2 

fdU ^ dV^ 
^dy dx ^ 

( A I . l 6) 

which is in agreement with Rodi (1980) and Wang (1990). More details of the formulation 

can be found in Smagorinsky (1963), Lilly (1967), Leonard (1974), Aupoix (1984) and 

Horiuti(1987). 

ALL 1.5. Other Driving Factors 
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Wind speed, direction and shear coefficient 

The driving force due to wind effects over the model area is calculated from the wind 

friction term: 

m-V-V^ (AI.17) 

where all variables are known in each grid point. The wind friction factor is calculated in 

accordance with Smith and Banke (1975): 

for V <V^ 

/ (v ) = U o + ^ ^ ( / . - / o ) for V,<V<V, (AI.18) 

for V>V, 
J\ 

where 

/o =0.00063 , = 0 mis 

f =0.0026 , =30 mis 
(AI.19) 

Wave radiation stresses 

The inclusion of the wave-induced flow in the model area is done through the specification 

of wave radiation stresses. By averaging the equations of motion over depth and time 

(wave period) wave radiation stress terms are included in the momentum equations. The 

additional terms are: 

x-momentum 

(AI.20) 
dx dy 
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y-momentum 

as.,, ds 
+ !Z. (AI.21) 

dy dx 

where Sxx, S^y and Syy are the three components of radiation stress. 

Coholis Term 

In MIKE21 HD the Coriolis term Q g is approximated explicitly by using ^* as defined 

in Equation A I . l I . 

AI.1.2. M I K E Z l Nearshore Spectral Wind-Wave Module (NSW) 

MIKE21 NSW is a spectral wind-wave model, which describes the propagation, growth 

and decay of short period waves in nearshore areas. The model includes the effects of 

refraction and shoaling due to varying depth, wave generation due to wind zmd energy 

dissipation due to bottom friction and wave breaking. The effects o f current on these 

phenomena are included. Wave diffraction effects are not included in the applied model 

formulation. The basic equations in MIICE21 NSW are derived from the conservation 

equation for the spectral wave action density based on the approach proposed by 

Holthuijsen et al. (1989). The various wind formulations in MIKE21 NSW are discussed 

and compared in Johnson (1998). 

N41KE21 NSW is a stationary, directionally decoupled, parametric model. To include the 

effects of current, the basic equations in the model are derived from the conservation 

equation for the spectral wave action density. A parameterisation o f the conservation 

equation in the frequency domain is performed introducing the zeroth and the first moment 

of the wave-action spectrum as dependent variables. This leads to the following coupled 

partial differential equations: 
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dx dy dO ^ 

dx dy dO ' 

The moments m^{0) are defined 

m„ (O) = ]CO"A{O), e)dco (AJ .24) 
0 

where co is the absolute frequency and A is the spectral wave action density. 

The propagation speeds c^, c^^ and are obtained using linear wave theory. The left-

hand side of the basic equations takes into account the effect of refraction and shoaling. 

The source terms To and Ti take into account the effect of local wind generation and energy 

dissipation due to bottom friction and wave breaking. The effects o f current on these 

phenomena are included. 

In M1KE21 NSW, the source terms for the local wind generation are derived from 

empirical growth relations, see Johnson (1998) for a detailed description. 

In MIKE21 NSW, boundary conditions, in form of wave parameters, must be specified for 

the incoming waves at the offshore boundary (x=0). Typically, no information is avmlable 

regarding the wave condition at the lateral boundaries (y=ymax and y=0). In this case, a 

symmetry boundary condition is usually applied indicating that the depth contours are 

assumed to be straight and parallel at these boundaries. Alternatively, absorbing boundary 

conditions can be applied. The wave field near the model north and south boundaries will 

only be correct in simple cases. Therefore, it is important in a real application that the area 

of interest is lying well inside the model area. The wave field propagating into the area of 

interest should enter the model through the offshore boundary. In general, the offshore 

boundary and the model north and south boundaries should be placed in areas where the 

wave field is reasonably uniform. 
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The formulation in MIKE2I NSW of wave breaking due to large wave steepness and 

limiting water depth is based on the formulation of Battjes and Janssen (1978). They 

introduced the following expression for the rate at which the energy is dissipated due to 

wave breaking: 

where 

i n ( e J 

H 
rms 

H. 
(AI.26) 

E is the total energy, o) is the frequency, Hrms is the r/w^-value of the wave height, Hr„ is a 

maximum allowable wave height, Qb is the fraction of wave breaking waves and a is an 

adjustable constant. Qb controls the rate of dissipation, and the maximum wave height is 

calculated by 

H„,=r,k-'iaDhir,kd/r,) (AI.27) 

where k is the wave number, d is the water depth and yj and 72 are two wave breaking 

parameters. controls the wave steepness condition and y2 controls the limiting water 

depth condition. The effect of wave breaking on the mean wave period can also be 

included. Here, the assumption is that the dissipation of energy due to wave breaking is 

concentrated on the low frequency side of the frequency spectrum. Hence, the wave 

breaking has the effect that the mean wave period is reduced. 

ALL2.L Numerical Solution 

The spatial discretization of the basic partial differential equations is performed using 

Eulerian finite difference technique. The zeroth and the first moment of the action 

spectrum are calculated on a rectangular grid for a number of discrete directions. In the x-

direction, linear forward differencing are applied while in both the;/- and ^directions it is 
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possible to choose between linear upwinded differencing, central differencing and 

quadratic upwinded differencing. The best results are usually obtained using linear 

upwinded differencing in both the;'- and ^directions. 

The source terms due to local wind generation are introduced explicitly while the source 

terms due to bottom dissipation and wave breaking are introduced implicitly. Hence, a 

nonlinear iteration is performed in each grid point. 

The nonlinear algebraic equation system resulting from the spatial discretization is solved 

using an once-through marching procedure in the x-direction (the predominant direction of 

wave propagation) restricting the angle between the direction of wave propagation and the 

x-axes to be less than 90°. Due to stability considerations the angle is further restricted 

depending on the discretization. 

AI.1.3. MIKE21 Sediment Transport Module (ST) 

MIICE21 ST is the sediment transport module of the MIKE2I modelling system for the 

assessment of the sediment transport rates and related initial rates of bed level changes of 

non-cohesive sediment due to current or combined wave-current flow. Five different 

transport theories are available for the computation of sediment transport rates in pure 

current (Engelund and Hansen, 1976; Engelund and Fredsoe, 1976; Zyserman and Fredsoe 

1994; Meyer-Peter and Muller, 1948 and Ackers and White, 1973), while two methods are 

available in the case of combined waves and current (Bijker, 1968 and DHI , 2000c). In this 

study only the transport formulations for combined waves and currents were applied and 

thereby described below. 

MIKE21 ST calculates the sediment transport rates on a rectangular grid covering the area 

of interest on the basis of the hydrodynamic data obtained from a simulation with MIKE21 

HD and the wave parameters calculated by MIKE21 NSW, together with information 

about the characteristics of the bed material. The model accounts for the influence of the 

following phenomena on the computed sediment transport rates: a) pure current or 

combined wave-current flow, b) arbitrary direction of wave propagation with respect to the 
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flow direction, c) breaking/non-breaking waves, d) graded/uniform bed material, and e) 

plane/ripple covered bed. 

The MIKE21 ST current and waves module allows the inclusion of the combined action of 

current and waves in the sediment transport. In this case, the currents may be tidal, wind-

driven, wave-driven or a combination of the three. The effects of both breaking and non

breaking waves on the transport rates are also accounted for in one of the two used 

formulations (in this case, STP formulation). The u-ansport capacity at each node of a 

rectangular grid covering the area of interest is determined using the bathymetry, the water 

depth, the sediment size and gradation, and the current and wave characteristics as input 

data. Erosion and deposition rates in the model are estimated from the computed sand 

transport. 

As mentioned before, two transport formulations for combined waves emd currents are 

available in MIICE21 ST: a) Bijker's total-load transport method (Bijker, 1967), and b) the 

theory based on the application of DHI's deterministic sediment transport model STP. 

Whereas the sediment transport rates are calculated directly at every grid point of the 

simulation area and for every time step i f Bijker's method is used, the transport rates are 

determined by interpolation in the sand transport tables generated by the utilitary program 

STBASE i f the deterministic program STP is used. STBASE is an interface that performs 

repeated calls to DHFs sediment transport program STP according to the requirements. As 

in the pure current module, the wave and current conditions are provided by the other 

modules of the N4IKE21 system. In this study, both formulations were applied and some 

details of each formulation are given below. 

ALLS J. Deterministic Sediment Transport Model - STP 

The model of Fredsoe (1984) provides the basis for the hydrodynamic description of the 

combined wave-current flow for the turbulent boundary layer. In combined waves and 

current, the non-linear interaction between the current and the wave-induced flow that 

takes place near the bed is of fundamental importance for the bed shear stresses and for the 

vertical structure of eddy viscosity. Fredsee's model for the turbulent boundary layer 
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accounts for the variation in time of both the bed shear stress and the turbulence in the 

wave boundary layer. Fluxes of non-cohesive sediment transport are calculated through an 

intra-wave period approach (Deigaard et al., 1986). This involves solving the one-

dimensional (vertical) diffusion-advection equation at various phases o f the wave period, 

combining the resulting concentration profiles with the associated velocity profiles to yield 

the instantaneous sediment fluxes and then averaging the latter over a wave period. 

The mean current above the boundary layer is assumed to have a logarithmic profile. The 

high levels of turbulence that exist near the bed due to the presence of the wave boundary 

layer, that acts as an increased resistance for the current, are accounted for by means of an 

apparent wave-related roughness larger than the geometric roughness ks related to the 

grain diameter d. 

The total transport rate of non-cohesive sediments is calculated according to the ideas of 

Engelund and Fredsee (1976), extended to cover the combined waves and current situation, 

and surf zone conditions. 

The rate o f bed load transport is calculated as a function o f the dimensionless bed shear 

stress related to skin friction 6': 

where s is the relative density of the sediment, g is the acceleration o f gravity, dso is the 

median grain size and U'/ 'xs the instantaneous shear velocity related to skin friction. It is 

assumed that the bed load responds immediately to the bed shear stress under unsteady 

flow conditions, i.e. in the presence of waves. 

The instantaneous rate of suspended load transport qs is calculated as: 

^.=i"(^,'K(r./K^ (AI.29) 
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where t is time, h is the water depth, z is the vertical co-ordinate that is measured upwards 

from the bottom, Cs is the volume concentration of suspended sediment and u is the 

velocity of the combined wave-current flow. The instantaneous concentration of suspended 

sediment is determined by solution of the diffusion equation 

dc_^d_ 

dt dz 
(A1.30) 

' dz ] ' dz 

where Ss is the diffusion coefficient for suspended sediment and its settling velocity. 

The bed boundary condition for the solution of Equation AI.30 is given in terms of bed 

concentration Cb defined as a level z=2d5o- Two alternative formulations for Cb are also 

implemented in the model: a) the deterministic formulation of Engelund and Fredsoe 

(1976), in which is determined as a function of 0' from dynamic considerations 

regarding the way in which the shear stress is transferred to the bed, and b) the empirical 

formulation of Zyserman and Fredsoe (1994). 

These formulations are only valid for plane beds, under sheet-flow conditions which occur 

for ^^O.8-1.0. For smaller values of 0\ the bed wi l l be covered by ripples. The influence 

of ripples on the suspended sediment transport is accounted for in STP by modifying the 

bed concentration, the value of the diffusion coefficient close to the bed, and the bed 

roughness. The modified values of Cb and are based on the experimental results of 

Nielsen (1979), whereas the roughness related to the presence of ripples is calculated 

according to Raudkivi (1988). STP converges gradually towards a plane-bed description 

for increasing bed shear stress or current velocity. 

The sediment difftision coefficient contained contained in the dififiision-advection equation 

is assumed to be synonymous with the eddy viscosity, this quantity being derived by 

solving the transport equation for turbulent kinetic energy. Inside the surf zone, an 

additional source of turbulence related to the intense dissipation of wave energy by 

breaking exists. This is taken into account by the use of a one-equation turbulence model 

as described by Deigaard et al. (1986a, 1986b). For irregular waves, the effect of 

breaking/broken waves coexisting with non-broken, smaller waves is accounted for 

through an equivalent breaking wave that acts as source for turbulence in the one-equation 
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model. This wave has a height Hm equal to the maximum wave that wi l l not break for the 

water depth h and wave period T considered according to the formulation of Battjes and 

Janssen (1978), see also Battjes and Stive (1985). The period of equivalent wave (called 

"dissipation period Tdiss') is defined as: 

where Qb is the fraction of waves that break at the location being considered according to 

Battjes and Janssen (1978). 

The effect of graded bed material on the total load transport rate is accounted for through a 

reformulation of the relationship between the bed concentration Cb and the bed shear stress 

6\ a criterion for the entrainment of sediment into suspension, and the consideration of 

each fraction of suspended sediment separately, by using a revised version of the method 

described in Zyserman and Fredsoe (1992). Thereby, the sediment settling velocity is 

defined for each sediment fraction and Eq. A1.30 is solved for every size fraction of 

sediment in suspension. 

AL 1,3,2, Bijker's Sediment Transport Method 

Bijker (1967) proposed one of the first sediment transport formulations that is still often 

used in engineering applications. This formulation is derived from a current only 

formulation (Frijiink, 1952) with a modification of the bottom shear stress using a wave-

current model. When selecting the Bijker (1967) formulation, the total load rate of 

sediment transport is calculated as the sum of bed-load transport {qb) and suspended load 

transport (g,): 

^, =9* + q. =9.(1 + 1.830 m' m-' (AI.32) 

qt is given in units of solid volume of bed material per unit time and unit width. 2 is a 

dimensionless factor given by: 
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Q = / , In 
I '* J 

(AI.33) 

where h is the water depth, r is the bed roughness and /y and h are Einstein's integrals that 

must be evaluated numerically on the basis of the dimensionless reference level A=r/h and 

z*. 

z, = 
KU 

(AI.34) 

w is the settling velocity of suspended sediment, A : is von Karman's constant and Ul^vc is 

the shear velocity for the combined wave-current case. The roughness r can be related to 

the Chezy number C through 

C = l8lod 12/7 (AI.35) 

According to Bijker (1967) the shear velocity for combined waves and currents is 

calculated as 

- c 1 + 
2 l ' V) 

(AI.36) 

where Uj^c is the shear velocity associated with the current, V is the depth averaged current 

velocity, Ub is the maximum value of the wave-induced velocity at the bottom and is a 

dimensionless factor that can be expressed in terms of the wave friction f a c t o r a n d the 

Ch^zy number C: 

^ = C Jf- (AI.37) 

The wave friction f a c t o r i s calculated according to Swart (1974) as: 
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A=exp 

A =0.32 

5.977 + 5.213 

-0.194 

/ / 1.47 <-5-< 3000 

^ £ 1 . 4 7 
r 

(AI.38) 

where is the amplitude of the wave-induced motion at the bottom: 

In 
(AI.39) 

with T being the wave period, and ah are evaluated using linear wave theory, qb in 

equation AI.32 is calculated according to 

q,=Bd^U^ ^ exp 
' 021 Ad ^g^ (AI.40) 

5 is a dimensionless coefficient for bed-load transport, A is the relative density for 

sediment, and // is the "ripple-factor". 

A = 5 - l = ^ - l (AI.41) 

(AI.42) 

Ps is the density of the sediment, is the density of water and C is the Ch^zy number 

related to the geometric characteristics of the bed material. C* can be obtained from 

• •=18logf^^ (AI.43) 

dgo is the sediment size for which 90 % of the bed material is finer. For uniform sediment 

dgo is replaced by d^o- It is interesting to note that the influence of the waves on the bed 
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load transport qt is included through the "stirring term" in AI.40 (the exponential). The 

"transporting term" is only related to the current. The influence of the waves on the 

suspended sediment transport is accounted for through the inclusion of Uf,wc in z. (see eq. 

AI.34). 
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Appendix I I 

Article presented at the International Coastal Symposium 2002, Templepatrick, Northern 

Ireland, and published in the Special Issue 36 of the Journal of Coastal Research. 

Siegle, E., Huntley, D.A. and Davidson, M.A. 2002. Modelling water surface topography 

at a complex inlet system - Teignmouth, UK. Journal of Coastal Research, SI 36: 675-

685. 
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Modelling Water Surface Topography at a Complex Inlet System 
- Teignmouth, UK 

Eduardo Sieglet; David A. Huntley and Mark A. Davidson 

Institute of Marine Studies 
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United Kingdom 
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ABSTRACT 

Accuiaie water surface topography data and its spatial and. temporal variability provide information about the 
interaction of physical processes acting In coastal regions. At the inlet system in Ttignmouth, UK, these data 
complement methods for the extraction of nearshore morphology using remotely sensed video techniques. The 
video methods normally assume that (he water surface is horizontal over the region, an assumption that is often 
invalid in shallow water. The study area is a complex macro-tidal inlet system bounded by a rocky headland and a 
2 km-long beach. In order to predict the water surface topography and its response to different tide, wave and river 
discharge conditions, a calibrated and validated numerical model (MI1CE21 HD, NSW) was applied. The water 
surface topography at the inlet and adjacent coast exhibits high spatial and temporal variability, mainly related to 
(he tidal phase. U is the interaction between the tidal phase and the sandbar morphology, defining (he velocity field 
in the channels, which drives the water surface topography distribution across the region. Since a small, 
unaccounted, difference in water level may result in si^ficant deviations of (he horizontal shoreline position, this 
study highlights the importance of using numerical modelling in coojonclion with the video image techniques for 
the extraction of nearshore morphology. 
ADDITIONAL INDEX WORDS: Nearshore hydrodynamics. Hwva. MIKE2I. water elevation. 

INTRODUCTION 

Spatial and temporal changes in water surface topography 
in coastal regions are a response to the balance of pressure 
gradient forces due to combined effects of irregular 
bathymetry (e.g. sandbars, channels), varying bed resistance 
(dependent on depth, grain size, bedforms), wave effects 
(fun-up and set-up) and fireshwatcr discharge. Accurate 
water surface topography data and information on its spatial 
and temporal variability can provide impoitom information 
about the interaction of these physical processes. At the inlet 
system in Tbigranouth. UK, these data complement the 
application of remotely sensed video methods for the study 
of nearshore morphology. Teignmouth is one of the sites 
included in the international Aigus programme 
(UPPMANN and HOLMAN. 1989; HOLMAN, 1994). 
with five video cameras overlooking the inlet and the 
sandbar system. Recently, several different techniques of 
shoreline identification and subsequent extraction of 
intertidol topography from video images have been 
developed (e.g. PLANT and HOLMAN, 1997; DAVIDSON 
et a/.. 1997; HOLLAND and HOLMAN. 1997; JANSSEN, 
1997; AARNINKHOF and kOELVINK, 1999; 

KINGSTON et at., submitted). The basis of ail these video 
methods is the detection of the shoreline location at a 
number of instances during a tidal cycle, the shoreline being 
considered the contour line corresponding to the location of 
the local water level. Therefore, determination of the 
shoreline comprises its horizontal spatial location and the 
associated vertical elevation (KINGSTON et a/., 
submitted). One source of inaccuracy in these methods 
comes from the assumption of a spatially horizontal water 
surface, an assumption that is often invalid in shallow water. 

As it is difficult to measure these inregulaiities in coastal 
regions due to both the density and spatial extent of the 
measurements required, the use of numerical area models 
provides valuable insight into the important physical 
processes. The model applied in this study is the MIKE2I 
Hydrodynamic model (HD) and the Nearshore Spectral 
Wind-wave model (NSW). 

Data used in this study originated from the European 
COAST3D project, in which Teignmouth was one of the 
studied areas. A detailed description of the COAST3D 
project and its achievements can be found in SOULSBY 
(2001). 
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The motivation of this work is the need for accurate 
spatial and temporal surface elevation data for the 
application of methods for the extraction of nearshore 
morphology using remotely sensed video techniques. The 
objective of this paper is to describe the varying water 
surface topography in the complex coastal region of 
Teigrunouth. UK, and to evaluate the relative importance of 
the various physical processes acting in this area. 

STUDY A R E A 

The dynamic estuarine inlet of river Teign is located in the 
southern portion of Teignmouth's beach (Figure 1). This 
coastal region has a strongly 3-dimensional nature, with a 
rocky headland (The Ness), an estuary mouth and nearshore 
sandbars (Poles) all adjacent to a 2 km-long beach, backed 
by a seawall (WHrFEHOUSE and WATERS. 2000). It has 
been suggested that complex interaction between waves and 
currents lead to a cyclic movement of sandbars systems in 
the mouth of the estuary (CRAIG-SMrFH, 1970; 
ROBINSON. 1975). 

Tides arc semi-diurnal with tidal range varying between 
1.7 to 4.2 m. Both nearshore tidal currents and waves are 
known to have large influence on sediment transport 
processes at this site. Offshore currents are generally low 
(0.2 to 0.4 m s ') but within tlie ebb shoal system influenced 
by the tidal outflow from tlie estuary the current speed is 

locally enhanced, with values exceeding 0.5 m s ' aixl 
flowing in variable directions (WHTFEHOUSE, 2001). 
Circulation around and over the sandbars is complex due to 
wave refraction arKl diffraction effects. River discharge 
varies between less than 20 m̂  s ' in summer to 50-100 
8 > in autumn and winter. These river discharges can 
enhaiKc the current speeds in the channel, which can reach 
up to 2 m s-i. The chaiuiel width varies from up to 300 m at 
high tide to just 80 m at low tide, funnelling the flow. Storm 
wave heights greater than 0.5 m are present 10% of the year, 
and are due to easterty gales (MILES et al., 1997). 

MODEL DESCRIPTION 

MIKR21 Hydrodynamic Module (HD) 

The hydrodynamic model component of MIKE21 is a 
general numerical modelling system for the simulation of 
water levels and flows in estuaries, bays and coastal area.s 
(WARREN and BACH, 1992). It simulates unsteady two-
dimensional flows in one layer (vertically homogeneous) 
fluids in response to a variety of forcing functions. The 
water levels and flows are resolved on a square or 
rectangular grid covering the area of interest. The main 
inputs to the model are bathymetry, bed resistaiKc 
coefficients, wind flelds. and water level and/or flux 
boundary conditions. The model allows flooding and drying 
over the computational grid during the simulation. 

-200 -100 300 400 500 eoo 700 800 900 100( 

Figure 1. Study area. The nearsborc balhymcUy is plotted over a rectified Argus image highlighting the positions of Profile 1 (PI - PI'). 
Profile 2 (P2 - P2'). Profile 3 (P3 - P3'). extracted time series (TSI to TS9) and the Pier and Harbour tide gauges. 
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MIKE21 HD solves the vertically integrated equations of 

continuity and momentum in two horizontal dimensions. 
The equations are solved by implicit finite difference 
techniques with the variables defmed on a spatially 
staggered grid. MIKE21 HD makes use of a Alternating 
Direction Implicit (ADI) technique to integrate the 
equations for mass and momentum conservation in the 
space-time domain. The equation matrices that result for 
each direction and each individual grid line are resolved by 
a Double Sweep (DS) algorithm. 

MIKE21 Nearshore Spectral VVind-Wave Module 
(NSW) 

MIKE21 NSW is a spectral wind-wave model, which 
describes the propagation, growth and decay of short period 
waves in nearshore areas. The model includes the effects of 
refraction and shoaling due to varying depth, wave 
generation due to wind and energy dissipation due to bottom 
friction and wave breaking. The effects of current on these 
phenomena are included. 

MIKE21 NSW is a stationary, dircctionally decoupled, 
parametric model. To include the effects of current, the 
basic equations in the model are derived from the 
conservation equation for the spectral wave action density. 
A parametcrisation of the conservation equation in the 
frequency domain is performed introducing tlie zerotli and 
the first moment of the wave-action spectrum as dependent 
variables. The basic equations in MIKE21 NSW are derived 

from the conservation equation for the spectral wave action 
density based on the approach proposed by HOLTHUUSEN 
et al. (1989). The various wind formulations in MIKE21 
NSW are discussed and compansd in JOHNSON (1998). 

M O D E L SETUP 

The model covers the whole estuary and an area of 
approximately 3.5 km seaward and 4 km alongshore, 
resulting in a total grid area of 10 x 4 km (Figure 2). The 
grid resolution is 10 m in x and y directions, resulting in 
approximately 180,000 water points. As the MIKE 21 ttow 
model is a finite difference model, the grid area has to be 
rectangular with the computational points displayed in a 
square or rectangular grid. The bathymetry used for the 
coastal region is the result of a survey carried out by HR 
Wallingford in October 1999. Bathymetry for the estuary 
was obtained from a 1979 digitised chart 

Boundary conditions applied to the hydrodynamic model 
include river discharge, water level (offshore boundary) and 
flux (north and south boundaries). Water level and flux 
boundaries were obtained from a larger well-validated 
model (Delft3D - Continental Shelf Model - WALSTRA et 
al., 2001a). The wave model (NSW) used as offshore data 
the measured wave data and water level. 

Since both modules (HD and NSW) work separately, it is 
necessary to run the NSW model using measured wave data 
(offshore boundary) and water level for the specified period. 
The radiation stresses calculated through the NSW are then 
used as input in the HD model. 
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Figure 2. Model grid and halhv-mctry. 
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CALIBRATION AND VALIDATION 

The MIKE21 model was calibrated and validated against 
field dau obtained during the COAST3D project In diis 
section a brief explaiuUion of the calibration and validation 
is given, but a more detailed description is given in SIEGLE 
et al. (in prep.). 

There is IK> starxlard procedure for model calibration and 
verification in the modelling literature (CHENG et al., 
1991). Typically, calibration or validation is accomplished 
by qualitative comparison of short time-series of water level 
or velocity produced by the numerical model with field data 
for the same location and for the same period of time 
(CHENG et a/.. 1993). The COAST3D datasets provide an 
excellent database for the calibration and validation of 
coastal area models (SUTHERLAND, 2001; WALSTRA et 
a/., 2001a). These data include accurate bathymetric 
surveys and a spatially dense array of instruments 
measuring neap/spring tides and calm/storm conditions. 

After the sensitivity tests were carried out with varying 
eddy viscosity and resistance values, the model was 
calibrated through comparisons (measured against 
calculated) of water level and velocity time scries for 
different eddy viscosity and bed resistance values. TWo 
spring tide periods were chosen for tlic model calibration, 
including calm condiUons (25-29/10/1999) and storm 
conditions (10-14/11/1999). 

Tune series of measured data and modelled results were 
compared aiKl a more objective analysis of the results was 
also carried out using linear regression analysis and the 
Relauve Mean Absolute Error (RMAE) (WALSTRA ei al., 
2001b). The best agreement between measured and 
calculated data was obtained with the use of depth varying 
resistance coefficients (Chezy numbers) as given in Table 1. 

Time series comparison of calculated water level and the 
measured data for the pier (offshore) and harbour (in the 
esmary) for both calibration periods, show that the model 
predicts accurately the water level, with maximum residuals 
of about 5 cm offshore and IS cm in the estuary at high 
water. The RMAE values of 0.009 and 0.016 (pier) and 
0.036 and 0.097 (harbour), for each calibration period 
respectively, indicate an excellent agreement. Figure 3 
compares measured and calculated water level time series 
for the second calibration period, during which the 

Tibie 1. Depth varying Chezy numbers. 

Depth (m) Cbezy numbers (m- r^) 

H <-3 40 
-3 < H < -1 34 
-1< H < 1 32 
1< H 31 

] 

V / : 

4 '— ' 
v 

1—'—• 1 

Figure 3. Measured and calculated water level time series for 
the second calibration period (pier and harbour tide 
gauge posiUons). 

experiments presented in this paper were carried out. As 
shown in SIEGLE et al. (in prep.), velocities are also well 
predicted by the model, reproducing most of the rapid 
variations in the measured tidal currents. To validate the 
model, it was successfully applied at different periods, 
which present different tide and wave conditions from those 
of the calibration period. 

WATER SURFA( 1 TOPOGRAPHY 

Water surface topography is defined as the spatial water 
level distribution over the area of interest, and is quantified 
tlirough the analysis of water level deviations in relation to 
a fixed water level reference point. The reference point used 
for Teignmouth is the position of the pressure sensor at the 
Teignmouth pier (Figure 1). 

The calculation of the water surface topography from 
MIKE21 water depths model results involves the following 
steps: (1) subtraction of the bathymetric data of the water 
depth grid, resulting in a surface elevation grid file; and (2) 
the subtraction of tlie correspondent reference water levels 
for each time step of interest Additional steps include the 
exclusion of dried area data from the emerged sandbars and 
the extraction of water level residual time series and profile 
series at points of interest. 

Using the calibrated model a series of experiments were 
conducted aiming to quantify the relative importance of 
tidal range, wave conditions and river discharge on the 
water level topography. A sensitivity analysis of the 
response of the main processes was carried out to define the 
design of each modelling experiment. Model tests were 
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focused on the spring tidal phase since maximum variability 
in water surface topography was observed during this 
period. It is also during spring tide conditions that the 
coastline extraction from video images is more important as 
this permits shoreline detection over a wider area. 

Tidal Range 

To test the water surface topography distribution in 
relation to different tidal ranges, the analysis of two rum 
was carried out. one at neap tide and the other at spring tide 
conditions. Each test period covers 25 hours (two tidal 
cycles). During the neap tide period (16/11 - 17/11/1999) 
the tidal range was 1.6 m and conditions were calm, with 
significant wave heights (H^) of about 0.1 m. During the 
spring tide tests ( U / U - 12/11/1999) the tidal range was 
approximately 4 m. with varying from 0.7 to 1.4 m. As 
described below, over the spring tide period, tests with a 
range of wave conditions were carried out. allowing the 
analysis the influence of waves to be separated from that of 
the tidal range. 

Wave Conditions 

Wave set-up and r\m-up at the beach arc usually iiKluded 
in the techniques to extract morphology from video images 
(e.g. DAVIDSON et al., 1997; KINGSTON ft a/., 
submitted). The aim of this experiment is to quantify the 
wave effects causing an overall increase in tlie water level 
residuals (e.g. in the inlet channels) and also to assess their 
relative influence across the area. This was carried out 
during the modelled spring tide period. 

Sensitivity tests showed that the most important wave 
parameter for the water surface topography distribution is 
Hsig, witli the wave period having no significant effect. For 
tliis reason, only tlic Hsig was changed for each run, varying 
from no waves (0.0 m) to 1.8 m. The period and direction 
were maintained constant with values of 6.6 s and 115o 
respectively, as they were the averaged values over the 
modelled period. 

MIKE21 NSW was ran for each wave condition using the 
same parameters as for the calibration period. The 
parameters governing wave breaking were set as suggested 
by HOLTHUUSEN et al. (1989): =1.0 (maximum 
steepness parameter), =0.8 (maximum Il/d parameter, H is 
wave height and d is water depth) and =1.0 (adjustable 
constant). 

River Discharge 

Different values of river discharge were also defined for 
model rans over the spring tide period, evaluating its 
importance to the water surface topography at the inlet and 
adjacent coast. As shown before, the Teign river discharge 
varies significanUy during the year {from less than 20 
m3 8-' to 100 m^ s'). During the modelled spring tide 

period, the measured river discharge was of about 7 m' 8->, 
but for the experiment purpose the discharge was 
incremented gradually to up to \00 m' 8-*. 

RESULTS AND DISCUSSION 
Analysis of extracted time series and profile series at 

different locations around the area of interest, at the 
positions shown in Figure 1, allows the quantification and 
assessment of the relative importance of each of the studied 
processes. Results are described and discussed for each of 
the processes analysed during the modelling experiments. 

mi: ::::: • 11 r I 

f1 ~ 
40 M so 100 120 140 100 

Ortd 

Mgure 4. Contour plot of the water surface .topography (a) and 
velocity vector plot (b) at maximum water level 
residuals (11/11/99 00:40:00). 
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Figure 5. Time series of water level residuals (thick line) and water level (Oiin line) for each of ite extracted locations (TSI to TS9). 

Tidal Range 

Water surface topography is directly related to the tidal 
range, with highest water level residuals during spring tide 
periods. During the modelled neap tide period, only small 
changes in water surface topography are registered, with a 
virtually flat surface around the area. Maximum residual 
elevations in relation to the pier reference point are less than 
5 cm. Conversely, water surface topography varies 
significantly during spring tide conditions, with maximum 
and minimum water level residuals in the inlet chaimel of 
0.4 and -0.2 m, respectively. The emerged sandbars at low 
water spring tide periods play an important role in the 
funnelling and friction effects of the channel. This is clearly 
seen in the analysis of a sequence of contour plots of water 
surface topography over the modelled spring tide period, as 
shown in Figure 4 for the time of maximum residuals (final 

stages of ebb tide). During the cariy stages of the ebb tide, 
the deeper water column and wider channel reduce these 
funnelling and friction effects in the channel. This is also 
seen in time series of water level residuals at different 
locations (Figure 5), The extracted time series show that 
maximum residuals are registered at approximately local 
LW - 1 hour and minimum values at local HW - 1 hour, 
coinciding with ebb and flood peak currents. Figure 6 shows 
how the channel current velocities are phase locked with the 
water level residuals, a response to the pressure gradient 
forces created by the difference in water level in the estuary 
aiKl offshore. 

The water surface slope between the estuary and the open 
sea is shown at its maximum gradient in Figure 7a for 
Profile I , in the middle of the channel. Figures 7b and 7c 

Journal of Coastal Research, Special Issue 36,2002 



Siegle, Huntley and Davidson 681 

oano 06M \2M 00:00 06:00 

Figured. Current speed (thin line) and residual water level 
(thick line) in the middle of (he channel (752). 

a w 

I 
s 

timai 

0 
•OJ 

t5««̂  N 

uu 
y 

uu 

-1 -1 \ 

Figure 8. Water slope (a), x-velocity (b) and y-velocity (c) along 
Profile 2 (P2 = 0 m; P2* = 4O0 m). 
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behaviour is observed for the longshore slope (Profile 2). 
from the channel crossing in between the sondbais (Figure 
8). Figure 8a shows high residuals inside the channel (up to 
140 m from the start of the profile), associated with high 
cross-shore velocities (Figure 8b). When the secondary flow 
is channelled northwards through the sandbarŝ  residuals are 
still significant, with values of about 0.1 m. associated with 
the high longshore current velocities (Figure 8c). TTie cross-
shore and longshore slopes cycles, from fiat surface to the 
maximum slope and back to flat surface takes of about 5 
hours of the ebb tide period. 

The interaction between the tidal phase and the sandbar 
morphology, which defines the velocity field in the 
channels, has a major influence on the water surface 
topography distribution across the region. The funnelled 
flow during ebb tide resiilts in high current velocities and 
maumum pressiue gradient forces between the estuary and 
the ofEshore region. 

Figure 7. Water slope (a), x-vclocily (b) and y-velodty (c) along 
Profile l (P l = 0 m; PI' = 1050 m). 

present the cross and longshore velocities along the same 
profile, illustrating the relation between them and the 
surface slope. It shows the dominant cross-shore velocities 
(x) in the funnelled charmel associated with higher water 
level residuals that generate the slope. When it reaches the 
end of the channel, the flow spreads out and the slope 
reaches its end, with values of water level residuals close to 
zero. This is followed by a decrease in the cross-shore 
velocity and a slight increase in the longshore velocity as 
the flow turns to the south as it leaves the charmeL Similar 

Wave Conditions 

The experiments with differoit modelled wave conditions 
show their distinct influence across the area of interest To 
assess wave influence on the water, level residuals, the 
average values of the extracted time series for each position 
were used to apply a polynomial regression analysis (Figure 
9). The curves fitted present an r squared value higher than 
0.99 for all positions. The range in water level residual 
values shown in Figure 9 also shows the relative increase in 
wave influence in the region outside the main inlet channel 
Gncreasing from TS7, TS8 reaching the nfaximum influence 
at TS9, behind the outer Pole sandbar). This region behind 
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Figure 9. Polynomial regression analysis of the wave induced water level residuals for each of the extracted locaUons (TSl to TS9). 

the outer Pole sandbar is a region were the waves cause a 
piling up of the water due to refraction effects around the 
sandbar. The profile shown in Figure 10 is a cross-shore 
profile at low tide over the sandbars (Profile 4 in Figure 1). 
Water level residuals for different wave conditions are 
plotted showing the significant increase in water residuals 
mainly behind the outer sandbar. At the outside of the outer 
sandbar, the waves generate an increase in water level 
residual after breaUng. As only shallow water wave 
breaking is being considered, the maximom wave height is 
taken from H„ = d (JOHNSON. 1998). 

An increase in wave height also causes an increase in the 
time of occurrence of the residual, and this also becomes 
more important when we move to lower tidal range periods. 
This is illustrated in Figure 11, which is a plot of water level 
residuals for the extreme experiments (without waves and 
with Hrfg of 1.8 m) and the tide elevation. 

lUa 2QQ 2Qfl ^ BOO 

Figure 10. Wave condiUon effects along the ProfOc 3 (P3 = 0 m; 
P3' = 700m). 
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Figure 11. Water levels (ihin line) and water level residuals for 
Hji^ = 0.0 m (soUd thick line) and for = 1.8 m 
(dashed thidt line) in the middle of the channel CrS2). 

Figure 12. Mid-channel (TS2) current speed (thin lines) and 
related water level residuals (thick lines) for real 
condition discharge (solid lines) and for 100 s** 
discharge (dashed lines). 

River Discharge 

River discharge values varying between the real 
conditions (of about 7 m^ s*i) during the modelled period 
and 100 s-i caused a maximum increase of about 12 cm 
coincidem with the peak ebb fide currents (Figure 12). 
Average values over the 25 hour period for high discharge 
show an increase of about 5 cm compared to low discharge 
periods. The opposite is verified for the minimum residuals 
(negative), since the flood currents are reduced due to the 
residual flow during high discharge periods (Figure 12). 
This causes the water level residuals during high discharge 
events to be closer to zero at flood periods, while for low 
discharge events the residuals become negative in relation 
to the pier reference point 

The water surface slope gradient in the inlet channel also 
shows on increase in residua] water level during high 
discharge events. Figure 13 illustrates this for the slope 
along the Profile 1 for high and low river discharge. The 
slope gradient is significantly increased at high discharge, 
but the oflshore end of the slope is the some for both 
conditions, being defined by the channel morphology. The 
channel and sandbar morphology defines the maximum 
extend of the water surface deviations across the area of 
interest This highlights the importance of the channels and 
sandbar morphology for the water surface topography 
voriabiUty and distribution. The water siuf ace slopes shown 
in Figure 13 also show a flattening of the slopes at around 
400 m, which is coincident with the secondary channel that 
guides the flow northwards. Ihis allows port of the flow to 
spread before it is funnelled again in the final part of the 
main channel. 

t w i n wioro 

. — 

490 KO 

Figure 13. Water slope aloag Profile I for real dlschaige and for 
100 discharge conditions. The arrow indicates 
the flattening hi the curve at around 400 m distance 
(PI « 0 m; Pr = 1050 m). -
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CONCLUSIONS 

A calibrated and validated numerical model (MIKE21 
HD. NSW) has been used to model the water surface 
topography at the complex estuarine inlet system at 
Teigimiouth. The water surface topography at the inlet and 
adjacent coast presents high spatial and temporal variability, 
mainly related to the tidal phase. The interaction between 
tidal phase and sarxlbar morphology, defines the velocity 
field in the channels, and drives the water surface 
topography distribution across the region. Maximum 
pressure gradient forces between the estuary and the 
offshore region occur when the flow is funnelled in tJie 
channels during ebb tide. The water surface slope presents 
its maximum gradient at tliis stage, with its shape directly 
related to the channel morphology. 

The effects of waves increase gradually in the regions 
outside the main channel, where refraction processes cause 
water to pile up. River discharge plays an important role in 
the water surface topography since h is directly related to 
the velocities in the channel. The higher the river 
discharges, the higher are the velocities in the channel, and 
hence the higtier are the water level residuals. 

This study demonstrates the importance of the water 
surface topography variations in the coastal region, where a 
small difference in water level may result in significant 
deviations of the horizontal shoreline position. As video-
imaging techniques to define the coastline rely on water 
elevation, the knowledge of water surface topography 
distribution will increase its accuracy. 
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