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This thesis is concerned with the numerical solution of boundary integral equa-
tions and the numerical analysis of iterative methods. In the first part, we assume
the boundary to be smooth in order to work with compact operators; while in the
second part we investigate the problem arising from allowing piecewise smooth
boundaries. Although in principle most results of the thesis apply to general prob-
lems of reformulating boundary value problems as boundary integral equations
and their subsequent numerical solutions, we consider the Helmholtz equation
arising [rom acoustic problems as the main model problem.

In Chapter 1, we present the background material of reformulation of Helmholtz
boundary value problems into boundary integral equations by either the indirect
potential method or the direct method using integral formulae. The problem of
ensuring unique solutions of integral equations for exterior problems is specifi-
cally discussed. In Chapter 2, we discuss the useful numerical techniques for
solving second kind integral equations. In particular, we highlight the supercon-
vergence properties of iterated projection methods and the important procedure
of Nystrdm interpolation.

[n Chapter 3, the multigrid type methods as applied to smooth boundary
integral equations are studied. Using the residual correction principle, we are
able to propose some robust iterative variants modifying the existing methods to
seek efficient solutions. In Chapter 4, we concentrate on the conjugate gradient
method and establish its fast convergence as applied to th€liear-systems=aris-
ing from general bounclar) element equations. For boundary.ﬁntegrall.equd,tléns

faster convergence of multlgnd type methods and fixed step convergence of the

conjugate gradient method.

[n the case of non-smooth integral boundaries, we first derive the singular
forms of the solution of boundary integral solutions for Dirichlet problems and
then discuss the numerical solution in Chapter 5. Iterative methods such as two
grid methods and the conjugate gradient method are successfully implemented
in Chapter 6 to solve the non-smooth integral equations. The study of two
grid methods in a general setting and also much of the resuits on the conjugate
gradient method are new. Chapters 3, 4 and 5 are partially based on publications
(4], |3] and {35] respectively.
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Chapter 1

Boundary Integral Equation

Reformulations

[n recent vears, boundary element methods (BEM’s) have become increasingly
acceptable and popular 1n solving boundary value problems (BVP’s) from engi-
neering applications such as applied mechanics, acoustic radiation and scattering,
potential flow probiems; see [17], [26], [30], [36] and [61]. The research into the
solution of boundary integral equations is concerned with the following major
aspects of study : (refer to [99] for a more detailed exposition and classification

of the main themes)
1. reformulation of boundary value problems into boundary integral equations;
2. solution of boundary integral equations via discretization;
3. numerical solution of the subsequent linear sysiems.

All above stages will be studied in the thesis. In this chapter, we shall study

the stage | and present the relevant theoretical results to lay a foundation for



the analysis of the discretization methods in chapters 2 and 5 as well as the
analysis of the iterative methods in chapters 3, 4 and 6. In §L.1, we present
some theoretical preliminaries for use throughout the thesis. In §1.2, we first
derive the Helmholiz equation in the context of acoustic radiation problems and
then discuss its solvability. In §1.3, we review the boundary integral equation
reformulations of boundary value problems for the Helmholtz equation (on an
interior or extertor region). [n §1.4, in order to ensure the uniqueness of solutions
of integra! equations for exterior problems, the methods of Panich [77] and Burton
and Miller {29} are adopted. The formulations in this chapter will be valid for
both 2D and 3D problems with piecewise smooth boundaries. The very important
problem of solvability of solutions of integral equations of the second kind is also
discussed. Numerical methods for seeking their solutions are investigated in later

chapters.

1.1 Mathematical preliminaries

To formally present boundary integral equation reformulations, we shall need to
introduce a few definitions. These include the concepl of compact opetators used
in the well known Riesz-Fredholm theory to establish the solvability of boundary
integral equations. Eor a compact operator, its property of eigenvalue spectrum
being (at most) countably infinite and accumulating at one possible point (zero)
will be exploited in Chapter 4 in developing the conjugate gradient type methods
(CGM’s).

Below we shall adopt the usual functional analysis notation. A typical point in

R™ is denoted by © = (z,,-- -, £,); its norm [xf = (£7, 22)Y% a = (a1, -+, a4)



denotes an n-tuple of nonnegative inlegers a; and z* denotes the monomial
x$1 587 .- z5n, which has the degree laf = ¥, «;. Similarly, if D; = 8/0z;

for 1 <7 < n,then D = D¢' ... D2» denotes a diflerential operator of order |a],

with D0 = ¢,

Definition 1.1 (functional spaces of C™, C™*)

Let 2 be a region in R™ (in the thesis, only n = 2,3 are used). For any non-
negative integer m, we define C™(Q) to be the space consisting of all functions
& which, logether with all their partial derivatives D*$ of orders |a| < m, are
bounded and continuous on Q. If0 < A < 1, we define C™*(Q) Lo be the subspace
of C™(Q) consisting of those funclions ¢ for whichk, for la| = m, D¢ satisfies in

Q) a Hélder condilion with exponent A, i.e., there is a conslanl A such that
|D°g(z) — D*é(y)| < Alz —y|*, z,yef o

Definition 1.2 (boundary spaces of C™, C™*)

Let S be an (n-1) dimensional submanifold of R*. We call § € C™, if, for each
point x € S, there exists a neighbourhood manifold \; of © such that the intersec-
tion SV, can be mapped bijectively onto some open domain U C R" and that
this mapping u = f(z) salisfies f € C™. Similarly, we say S € cmrif feomA

Jor0 < A< L . o

As a result, if J € C™ then f € C™ ', For simplicity, we denote C = C°
whenever no confusion arises. Define that a subset @ in a metric space M is
relatively compacl if every sequence in © contains a convergent subsequence, and

il the imit also lies in ©, we say © is compact.



Definition 1.3 (compact operator)
Let N and Y be Banach spaces. A linear operator K : N — Y is called compact if

il maps any bounded sel in X' inlo a relatively compact sel in Y. O

Recall that the range space of a linear operator £ : X' — Y is defined by

R(LY={y |y =Lz, z€ X},

where X and Y are two Banach spaces. It is easy to show that compact linear
operators are bounded and that any linear combination of compact linear opera-
tors is compact. Let us formally state some more important results, the proof of

which may be found in [11], [36, Ch.1] and [60, Ch.3].
THEOREM 1.4

(1) Let X, ¥ and Z be Banach spaces and let K : N\ — Y and L : Y — Z be
bounded linear operalors. Then the product KL is compacl if one of the two ~

operalors K or L is compacl.

(2) Let K : X — Y be a bounded linear operator with finite dimensional range

R(K). Then K is compact.

(3) Let X and Y be lwo Banach spaces and assume that lthe sequence K, : X —
Y of compact operalors salisfies |K, - K|l — 0, n — o0, with K : X — ¥

a linear operator. Then K s compact.

(4) Let T, Ty : X — X, n = 1,2,--- be bounded linear operators on some

Banach space X, and T,, — T pomiwise i.e., Tyx — Tz, asn — o for
p J 1 ! n b

each x € X. Then

(T, — T)K|l — 0, n — oc for any compact operalor

I\’: : :\’ and .’\-. D



Let S € R™ (with m = 2or 3) be a Jordan-measurable and compact set
(with nonzero measure) and let C(S) be the Banach space of complex-valued
continuous functions defined on § with the norm }|¢|| = masx|¢('x:)[. We now

z€

define the important integral operator K : € — C by

(Ko)(=) = [ Ko, p)(u)dy, =€ S, (L.1)

where K(z,y) is called the kernel function. Il K 15 well defined and continuous

forall z,y € S and z # y, and there exist positive constants M and a € (0, m — 1]

f

such that forall z,y € S, = # y,
K2, y)| < Mle - yl=t, (1.2)
we call both the kernel K and the operator X weakly singular.

THEOREM 1.5
The inlegral operator K wilh conlinuous or weakly singular kernel is a compact

operalor. (]
Let us now give a few more definitions which we shall use.

Definition 1.6 (transpose and adjoint operators)

For the integral operator K : C — C as in (1.1),
(1) its transpese KT : C — C is defined by
(KT¢)e) = [ K(y0)e(v)dy, =€ S
(2} its adjoint K* : C — C 15 defined by
(K0)(z) = [ Ky ply)y, =€S.

where K denotes the compler conjugate of K. ]



Definition 1.7 (null space)
Let X and Y be lwo Banach spaces and L : N — Y be a linear operalor. Then

the null space N'(L) of L in X is defined by
N(L)={de X |Ld=0}. o

THEOREM 1.8

If K is compact on a Banach space X, then dim(N(T — K)) is finile. o
We now give the solvability theorem [or a second kind integral equation
¢-Ko=/, (1.3)

with K a compact operator as defined in (1.1). The proof of the theorem can be

found in 36, Ch.1].

THEOREM 1.9 (Fredholm alternative)
Let K : C — C be compact and K* be its adjoint operalor as defined in Definition

1.6. Then either
1)

N(T - K)= {0} and N(I -K") = {0}

and R(T - K)={C} and R(IT-K")={C}

or 2)
dim(N(Z = K)) = dim(N(T - K*)) are finite

and R(I-K)={heC|(hyv)=0,veN(T-K")}

and R(I-K')={g€C|(g9.4)=0, ¢ N(T-X)},



where the product of two functions is defined by

(9.9) = [ s(z)8(z)da. C

[n general, the null space NV (AZ—K) is defined to be the space of eigenfunctions
of operater X and those values of A with which such a space is nonempty are called

the eigenvalues. The adjoint homogeneous equation of (1.3) is defined by
b - K9 =0, (L4)

where alternatively ¥ € A (Z — K*). Therefore from Theorem 1.9, we make the

following conclusions when X is a compact operator; (refer to [60, Ch.3] and {101,

Ch.2)).

(1) equation (1.3) has a unique solution if and only if (1.4) has only the trivial

solutions ¥(z) = 0;

(2) equation (1.3) is solvable only il the function f is orthogonal to any solution

of (L4)ie. (f,¢)=0. 0

Remark :

Note that Fredholm theories are only applied to integral equations of the sec-
ond kind with a compact operator; refer to [36] and [L101]. Generalization to
non-compact operator equations is not yet complete. But for the special case
when the non-compactness is due to the non-smooth boundaries, this generalizla»
tion has been carried out; see {66] and [67] and the references therein for more
details. For instance, Theorem 1.9 still holds if K is the sum of a bounded lin-

ear operator with norm less than one and a compact operator. To see this, let



us assume that we have two integral operators Ky and X; in space C such that
IK |l < 1 and K5 is compact. We want to establish the solvability of equation
(I - K, - Ka)d = ¢g. Note that both (Z — K,) and (Z — K,)™! are bounded

and non-zero. From Theorem 1.4(1) we know that the operator (Z — K,)7'K, is

compact. Therelore the solvability of equation
[T (T -K) 'Kl = (-Ki) g,

which is equivalent to equation (Z — K, — K3)¥ = g, follows from Theorem 1.9.

This particular result will be used in Chapter 5.

1.2 Boundary value problems

Firstly, we introduce our boundary value problems, which may arise from some
engineering applications. Here we consider the time-harmonic acoustic scattering
problem. Suppose an incident sound wave is intercepted by a bounded scatterer.
Reflected and diffracted sound waves generated propagate outwards from the

scattering region. The propagation can be described by the wave equation

vy LU ,
VU_EOH (1.5)

where ¢ is the speed of sound in the medium exterior to the scatterer. Here U 1s

a scalar velocity potential related to Lhe particle velocity u by

uw=U

and to the sound pressure p by

‘__3U
P= PTC)Z':



where p is the density of the medium. Let us assume that the wavelength of the
source radiation is ¢/f corresponding to a frequency f Hz and that the steady
state has been reached so that all waves present have harmonic time dependence
of this frequency. Define w = 2xf to be the angular frequency and k& = w/c the

acoustic wavenumber. Then we can write

U(p,t) = g(p)e™™" (1.6)

where @ is a complex function and p is a point in the scattered region. On
substituting (1.6) into the wave equation {1.3), we obtain the Helmholtz equation
for the unknown function ¢
(V2 + k%) =0. (1.7)
(Refer to {7}, {10}, [26] and [36] for more discussions).
Next we supply equation (1.7) with boundary conditions in order to discuss its
solvability. Let D be an open, bounded and simply connected region with closed

boundary S and open exterior £, as shown in Fig.1.1. Denote Dy = DU S and

E, = E|JS. Assume that the boundary S is piecewise smooth i.e.,

s=5---USs (1.8)

with each S; of class C!, I > 2 and is such that the divergence theorem is valid

I o - . . N
on D.. Then the  interior Helmholtz equation|is given by
+ | 1 A

Vet k=0, peD, (1.9)

and the|exterior Helmholtz equat.ion' by

7o+ k=0, peEE, (1.10)




Figure 1.1: Boundary S for interior and exterior Helmholtz problems

where Im(k) > 0. Typical boundary conditions for both problems on the closed

boundary § may be generally represented by

agf+b¢=f(p), pE S, (1.11)

n

where @ = 0 and b = | define the Dirichlet condition while ¢ = 1 and 6 = 0
define the Neumann condition, with n denoting the unit outward normal to § at
p directed into E. For exterior problems, we also require the solution to satisfy
the so-called Sommerfeld radiation condition, which characterizes the solution

behaviour at infinity,

lim r’{%q—b —ikd(p)} =0, with r=|p}, (L.12)
r

r—00

where 7 = % forpc R?and 7 =1 for pe R

Below we briefly review the theory of uniqueness and existence of the boundary
value problems for Helmholtz equations (1.9) and (1.10) with boundary condi-
ti-on (1.11) and al_sq with condition (1.12) for exterio.r problems. The results are

10



presented as theorems, the proof of which can be found in [36, Ch.3). A solu-
tion v to the homogeneous interior Dirichlet problem is that satisfying (1.9) and
w(p) =0, p € S and a solution ¥ to the homogeneous interior Neumann problem

is that satisfving (1.9) and g‘—:(p) =0, peSs.
THEOREM 1.10 (uniqueness for Helmholtz equations)

(1) If Im(k) > 0, then the interior Dirichlet and Neumann problems have at

most one solulion;

(2) For any complex number k such that Im(k) > 0, the exterior Dirichlet and

Neumann problems have at most one solution. C

THEOREM 1.11 (existence for Helmholtz equations)
(1) The interior Dirichlet problem is solvable if and only if
Lf%dS:O (1.13)
for all solutions  to the homogeneous interior Dirichlet problem;
(2) The interior Neumann problem is solvable if and only if
/Sj:/,-dS =0 (L.14)
for all solulions ¥ to the homogeneous inlerior Newnann problem;

(3) For Im(k) > 0, both the cxlerior Dirichlet and the ecterior Neumann prob-

lems are uniquely solvable. o

En what follows, the free space Cireen function Gi(p, ¢), also called the funda-
mental solution of Helmholtz equation, will play a crucial role. The fundamental

11



solution Gy, satisfies

(V% + k*)Cr(p, ) = 8(p — q), .
(1.15)

G, satisfying the radiation condition (1.12),
where § is the Dirac deita function and the second requirement is intended for

exterior problems. One of such functions has been found to be (refer to [26])

PH{(kr), in 2D

370 H H

Gelp, @) = (i.16)
ahid in 3D,

qar)?

where r = |p — g| is the distance between points p and ¢ and Hgl)(w) = Jo(z) +
iNg(z) is the Hankel function of the first kind of order zero, with Jo(z) and No(z)
the zero order Bessel functions of the first kind and of the second kind (also called
Neumann’s function) respectively. [n our analysis for the 2D case, we shall need

the following useful properties of Hankel functions :

H (=
(1) =59 = -H{(=);

(D¢, (1),
(2) 52 = -2+ )

(3) H{)(z) = Ji(z) +iN(=);

(4) H(z) = Zlog(Z) + O(1), as x — 0;

(5) H{M(z)=-ZL4+0(1), as x — 0,
where J\(z)} and N, (z) are the first order Bessel functions of the first and second
kind respectively; refer to {97] for more details. (Note that we may use the
NAG routines SITAEF, SI7TAFF, SI7ACFE and SITADF to compute functions

Jo, Ji, Ng and N, numerically).

12



1.3 Integral equation reformulations for the

Helmholtz equation

We now discuss two different bui related approaches to reformulate equations
(1.9) and (1.10) into boundary integral equations. Such reformulations can trans-
form a boundary value problem defined on a given domain to an equivalent prob-
lem (a boundary integral equation) defined only on its boundaries. One of the
advantages gained from this process is that the dimensionality of the new problem
is consequently reduced by one. For example, a 3D domain problem is reduced
to its counterpart on its 2D surface (boundary), while a 2D plane problem is
reduced to that defined on its LD boundary. In particular, for an exterior prob-
lem, the integral equation reformulation can advantageously reduce the domain
of the problem from the infinite exterior region E to the finite boundary § of
the new problem of one dimension less and more importantly ensure that the
solutions automatically satisfy the radiation condition (1.12). Then the bound-
ary integral equations may be initially solved to give the boundary information,
from which the solution to Helmholtz equation at any point of domain can be

evaluated through the integral representation inherent in the formulation.

1.3.1 Helmholtz layer potentials — indirect methods

With the explicit knowledge of fundamental solution Gi(p,q), we can actually
construct two independent solutions of Helmholtz equation . They are usually

referred to as the layer potentials

single-layer (Lzo)(p) = [s o0(q)Ge(p, 9)dS,, (1.17)

13



double-layer (AMio)(p) = [s a(q)g—%(p,q)dsq, (1.18)

where n, is the outward normal from D directed into £ at ¢ € S and p is any

point in  (Note that such a normal direction is the same for both the interior and

| the exterior problems. Refer to [26, p.29]). [t is easy to verify by straightforward
calculaltions that for any p € Q, both layer potentials L, and Al o satisfly the
Helmholtz equation (1.7) and the radiation condition (1.12); see [36, Ch.3]. The
function ¢ 1s referred to as a boundary density function. By ensuring that the
above solutions of the Helmholtz equation satisly the boundary condition on §,
such as (1.11), we can find the appropriate integral equations to be satisfied by the
density function ¢. By ’indirect methods’, we actually emphasize the fact that
the unknown density function ¢ is usually not of immediate physical interest,
but is merely an intermediate step in obtaining the appropriate solution ol the
Helmholtz equation.

To proceed, let us first study the continuity of Lio and /e and their normal
derivatives. We only need to look at the problem near 5, since these quantities
are smooth functions away from the boundary. Let us define two new operators
MI and N, derivatives of Ly and M, respectively, which will appear in later

formulations :

o aLka BGk
T — —
(io)r) = —/Sa(q)a—np-(p;q)dsq, (1.19)
_ _ OMuoe D aC: ‘
(Neolp) = 5= = g / (9) g VS0 (1.20)

The compactness of operators Ly, My, MI, N.— Np as stated in the theorem

below follows from (36, Ch.2], where Vg is the operator Ny with & = 0.

THEOREM 1.12 :ssume that boundary S € C?, then

14



1) operators Ly, Ay, M and Ny = Ny are compact in C and C** for 0 <
P k P
A<y

, L My MT, Ny =N,
—_—

(2) C CO* and CO* "2 00 for ang 0 < A < I a

The continuily properties of operators Ly, Afy and AIT, N, may be stated,

following [17], [26] and {36, Ch.2].
LEMMA 1.13
(1) If o is continuous, Lyo is also conlinuous;

(2) If o is conlinuous, Alyc and MTa are continuous excepl on boundary S,

where
(o)) - o) = (nolln) = Xo(p) + (o)),
(7o) p) + Xopy = (Fa)p) = —XBo(p) 4+ (1T o)),

where U(p.) denotes the limiting value of a potential function § from the
exterior £ lowards the boundary point p € S along the normal direction,
d(p_) similarly denotes the limiling value from the interior towards p € S
along the normal and x(p)= is the exlerior (or inlerior) angle' between the
two tangents al a point p € § for interior (or exterior) problems. Obviously

x{p) = L if the boundary S is smooth al p.

(3) If o is twice continuously differentiable, Nyo is conlinuous across the bound-

ary S. ]

'In 3D, this is the solid angle subtended by the domain of the problem. Refer to [6] and

(17].




The above lemma [acilitates the process of forming equations for the density
function o, by imposing the appropriate boundary conditions. For p € Q2 (with
Q = D for the interior and Q = E for the exterior problems), we lel ¢(p) =
(Lro)(p) and (Mo )(p) respectively. In order to impose the boundary conditions,
we take the limit as p approaches a boundary point along the normal and, using

Lemma 1.13, we obtain the following integral equations for various problems :

[Interior Dirichlet Problem|

(Lea)(p) = [, PS5, (1.21)
X)) 5 (o)) = S peS (122)

| Interior Neumann Problem]
X0) ooy (1Ta)e) = 1. pES, (1.23)
(Neo)(p) = f. pE€S, (1.24)

| Exterior Dirichlet Problem|
(Lwo)p) = f. pES, (1.25)
£gi)a(p)-%-(1‘-'1'kcr)([-?) = f, pesS,; (1.26)

[ Exterior Neumann Problem|
X2 o) 1 (Ep) = S neES (1.27)
(Nea)(p) = [, p€S, (1.28)

where the density o in different equations generally represents different functions.
For each of the above four problems, there is a choice of two integral equations,
one being of a first kind and the other ol a second kind. The latter formulation
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is usually the natural choice mainly because the Fredholm theory for integral
equations is about this case for compact operators. (We refer the reader to (21,
Ch.1 & 3|, [49], [4L, Ch.13] and [T4, Ch.5] for details of the first kind integral
equations).

Unfortunately however none of the above eight integral equations possess
unique solutions for all values of & with Im(k) > 0. To be more precise, let
us define by kp the set of wavenumbers for which the interior Dirichlet problem
has non-trivial solutions and define similarly by ky the set of wavenumbers for
which the interior Neumann problem has non-trivial solutions. [t can be shown
that both kp and ky only contain positive wavenumbers; see [26]. The two sets
kp and ky are respectively referred to as the eigenvalue spectra of the interior
Dirichlet problem and of the interior Neumann problem. For & £ kp, the equa-
tions (1.21) and (1.22) for the interior Dirichlet problem and equations (1.27) and
(1.28) for the exterior Neumann problem fail to have unique solutions; whilst for
k € ky, the equations (1.23) and (1.24) for the interior Neumann problem and
equations (1.25) and (1.26) for the exterior Dirichlet problem fail to have unique
solutions; (refer to [26] and [36, Ch.3}).

We call the numbers in the union kp |Jky ‘critical wavenumbers’. Then for
interior problems, nonuniqueness of integral equations at ’critical wavenumbers’
seems to be inherited from boundary value problems?, which is a subject outside
the scope of our discussion. But for exterior problems, because the solutions of the
exterior boundary value problems are unique for all wavenumbers with Im(k) 2> 0,

the complication of nonuniqueness for integral equations at ’critical wavenumbers’

2These 'critical wavenumbers’ are related to the resonance frequencies of a structure.
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(k € kp Ukwy) arises solely from our attempting an integral representation of the
solution rather than from the nature of the problem itself. Methods that are

designed to overcome the nonuniqueness difficulty are presented in §1.4.

1.3.2 Helmholtz integral formulae — direct methods

We now introduce alternative integral equation formulations of the Helmholtz
equation. By 'direct methods’, we mean that integral equations no longer involve
an intermediate density function o but directly relate values of ¢ with g% on the
boundary; both quantities usually of physical interests.

Recall Green’s second theorem for integration,

/(él __a:bl dS /(¢| v ¢7 —(D'?v (,‘bl)d\’ (l.)g)

where &,, ¢, are any scalar functions with continuous second derivatives in D
and n is the outward unit normal away from D. If both ¢, and ¢. satisfy the

Helmholtz equation (1.9) in D, we can obtain from (1.29)

/( i)‘b _¢2a¢1 )dS = 0. (1.30)

Here taking ¢, = ¢(q) and @2 = Gi(p, ¢) in the above equation yields

K. ¢ ,
fs(gb((,)anq - Gug)dS, =0, pEE, (1.31)

tl.e., in operater notation,

7

(Med)(p) = (La ‘)—‘j’ (2) =0, p€E. (1.32)

Further, the standard Helmholtz integral formulae may be derived (see [26])



for Interior Problems

(Ad)(p) - (L,,g—jf \p) = 4

\

—é(p), pe D,
—xey(p), pe S, (1.33)
0, pe k.

On formally differentiating both sides with respect o n,, we obtain the differen-

tiated Helmholtz formulae

(¥:8)(p) ~ (M 92 )(p) = ¢

-2, peD
(), pes, (1.34)
0, pe k.

Similarly for exterior problems, we may again use Green’s second theorem to

deduce the Helmholtz formulae. But in this case the Sommerfeld radiation con-

dition will have to be incorporated; refer to [26]. The resulting Helmholtz integral

formulae take the form :

for Exterior Problems

(A1$)(p) — (Lu

O¢
on

)p) =

<

and by formal differentiation in the direction of n,

(Ned)(p) — (M

+ 09

*on

)p) =

4

\

é(p), pEE,

XPlg(p), peS, (1.35)
0, pe b,

e (p), peE,

Xe) 22 (p), pES, (1.36)

0 peD.

b

Hence for both interior and exterior problems, values of ¢(p) and g’—:(p), peS

will be sufficient to produce the solution ¢(p’) at any field point p’ € 02 (with

= D for interior and Q = £ for exlerior problems). In general therefore the
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quantities ¢(p), g%(p), p € S may be [ound from the following boundary integral

equations

| Interior Dirichlet Problem]|

(Lep)p) =g, g=XB2f — (M f)(p), pPES,

—X(P)ﬂ(P) + (1\[{[1-)([7) =g, g= !ka! PE 5,

2

where p = g—gg

| [nterior Neumann Problem |

l(f)i)‘ﬁ(l’) + (Med)(p) = 9. 9= Lef, PES,

(Ned)(p) =9, g=MTf-X8f peS;

| Exterior Dirichlet Problem|

(Lep)(p) =9, 9= AMf —2Bf, peS§,

@#(.ﬂ) +(M{p)p) =9, 9= NS, PES,

where g = g—‘:;

| Exterior Neumann Problenﬂ

SXPo) s (g)p) =5, 9=l pES,

(Neg)(p) =9, g=MI +¥f peS.

(1.39)

(1.40)

(1.43)
(1.44)

Comparing equations (1.37)-(1.44) with {1.21)=(1.28), we can observe that in each

case the corresponding operator equations are identical except for the right hand

sides and the exchange of My with M or vice versa®. Furthermore, discussion of

3Since AL is the transpose operator of A/i, therefore if one’s homogeneous equation possesses

non-trivial solutions, so does Lhe other and vice versa. Refer to (I.1).
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uniqueness of solutions for equations (1.37)-(1.44) follows that of (1.21)-(1.28).
For interior problems, lormulatioas are unique if £ & kp U ky (2.e. ifthe boundary
value problem has a unique solution), giving a choice of integral equations of the
first kind and the second kind. For exterior problems, as before in spite of the
uniqueness of solutions of the boundary value problem, none of the boundary
integral equations (1.41)-(1.44) of the problem are uniquely solvable for all values
of k with Im(k) > 0. Next we present for exterior problems modified formulations

which are uniquely solvable for all wavenumbers.

1.4 Unique formulations for exterior problems

There have been many successful attempts to acquire boundary integral equation
formulations for the Helmholtz equation in the exterior domain which possess
unique solutions for all wavenumbers Im(k) > 0. We refer the reader to [26}
and [64] for excelient surveys of these formulations. Theoretically speaking, these
modified methods fall into two main categories, either those using a combination
of the existing formulations in order Lo overcome nonuniqueness difficulty i.e. at
k € kpUky or those using more sophisticated fundamental solutions to gain
uniqueness for all wavenumbers (refer to {36, Ch.3] and [65]). Here we only
consider one simple version in the former category, which is perhaps the most

widely used for numerical calculations.

Indirect methods

The method we consider here is based on linear combinations of single and double
layer potentials in the hope ol obtaining unique solutions. For this purpose, we
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define the uselul hybrid layer potential operator Hy (refer (1.17) and (L.18))

(Hio)(p) = (Miea)(p} - 9(Lea)(p), pEE, (1.45)

where 5 is a complex constant. Wealso define the differential hybrid layer po-

tential operator by
(Reo)(p) = (MTa)(p) + n(Nec)(p), p€ E, (L.46)

which is similar to the direct differentiation of operator H; along the normal
direction, where A/], ¥y are as defined in (1.19) and (1.20). Now let us mnake a

particular choice for 7, which will be very useful later,

Lst. t#0, tk>0, if Im(k) =0,
n=14, 0= (1.47)
0, if Im(k) > 0.
(Here note that 8 is a real number).

Clearly Hpo satisfies the Helmholtz equation (1.10) as both Lo and Ao
do. So we may proceed as in §1.3.1 based on assuming ¢(p) = (Hro)(p), p €
E in order to obtain boundary integral equations for the density function o.
To prove the uniqueness of a linear equation, it is sufficient to show that its

homogeneous equation has only trivial solutions. Then the following results based

on the assumption that § € C? can be shown; see [36, Ch.3j.
THEOREM 1.14 Provided thal 4 is chosen as in (1.47),

(1) the integral equalion of hybrid layer potential for the

[ Exterior Dirichlet Problem|

o) + (Heo)p) = 1, pES, (1.48)

[
o



1.e.

X o) + (Meo)p) - Lao)p) = £, pES,  (1.49)

<

is uniquely solvable for all wavenumbers k with Im(k) > 0;

(2) the integral equation of differential hybrid layer potential for the

| Ezierior Neumann F’roble‘rﬂ

— X(Tp)a(p) +(Rea)(p)=f, PES, (1.50)
t.e.
- X-gi)a(p) +(M{o)(p) + n(Neo)(p) = f, PES, (1.51)
is uniquely solvable for all wavenumbers k with Tm(k) > 0. a

Direct methods

For simplicity, let us define the transposed operators of H, and Ry respectively
by

HIo = Mlo - nlo, (1.52)

RTec = Mo +nNpo. (1.53)

Recall from §1.3.2 that for each boundary condition we obtained two boundary
integral equations. Based on taking linear combinations of these two equations,
we obtain the direct methods so that the operator of the new boundary integral
equation is either H] or RI. [n particular, we may take linear combinations
of (L.41) and (1.42) for Dirichlet and (1.43) and (1.44) for Neumann boundary
conditions respectively. Further, [36, Ch.3] has proved the following results con-
cerning the so-called Burton and Miller approach by assuming S € C?; see also
(29] and [69).

23



THEOREM 1.15 Provided that y is chosen as in (1.47),

(1) the following direct integral equation formulation for the

| Ecterior Dirichlel Probleml

Xy + () =9, peS, (154)
P ) 4 (MT)) - m(Len)p) = 9, pES,  (155)

is uniquely solvable for all wavenumbers k with Im(k) > 0, where p = g—“:

and g = (Ned)(p) — n{(Mro)(p) — XE6(p));

(2) the following direct integral equation formulation for the

. !
| Exterior Neumann Problem!

- @w(p) +(ReoMp)=9. PES, (1.56)
- M)y (16)p) + (Med)P) =9, PES, (1.57)

2
is uniquely solvable for all wavenumbers k with Im(k) > 0, where g =

M u(p) + (L)) = (MT)(P), 1 = 2. .

Now we remark that there is little to choose from between an indirect and
a direct method. As stated before, the direct methods lead to unknowns that
are more meaningful physically. In some practical situations, values of ¢ and
g‘% on the boundary § are of primary importance so the direct method becomes
the natural choice. We can also observe that for either boundary conditions
(Dirichlet or Neumann) an indirect method leads to equations with simpler right
hand sides that are casier computationally. If boundary S is not globally smooth
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e.g. piecewise smooth as given in (1.8), then Theorems L.14 and 1.15 will still be

valid; (see [17], [57], [66], [67] and [98] for more details).

Optimal coupling parameter 7

As discussed, any choice that satisfies (1.47) can theoretically ensure that integral
operators [’—‘%’—) + Hyl, [# +HT, [—%”) +Ry] and [—x—g"—)-%-RZ] are non-singular,
hence leading to unique solutions. However the integral equations with such
operators can siill be ill-conditioned, even though they are theoretically non-
singular. For example, the simple choice 7 = i may not be appropriate for alil
values of k. Therefore the minimization (or ‘almost minimization’) of condition
numbers of these operators is of prime importance.

\We now briefly discuss the appropriate choice of the coupling parameter 7 in
order to minimize the condition number of the integral operators. This would
require the calculation of the condition numbers of relevant integral operators,
which is in general not possible. However for simple integral boundaries, we may
only require the computation of the eigenvalues of individual operators such as
Ly, M, MT and N, to find their condition numbers, which are often possible
to be evaluated analytically. Any results so obtained may be hoped to give some
guidance for general cases.

"To gain some insight into the problem, (3] and [68] consider the special case
when the boundary S is cither a unit circle in 2D or a unit sphere in 3D. They
concluded that, for a unit sphere in 3D, the almost optimal choice is, for Dirichlet
boundary condition, 7 = max{1/2, k)i or, for Neumann boundary condition, 7 =

ki and for both Dirichlet and Neumann boundary conditions on an unit circle in



D,

i/\/n'2 + ‘l(log—g + )2, for small &,
n=
kif2, for large &,
where C = 0.5772 is the Euler constant.
One last interesting point is that the coupling parameter in (1.32) and (1.53)
can be made variable i.e. n = 5(p), p € S and 5(p) is chosen to be a piecewise
function on §. For example we may allow 7(p) = 0 on parts of S. This may

help saving computational work as well as keeping uniqueness; see [36] for some’

experiments. But the theoretical analysis remains to be established.

Regularization for singular integral equations

Note that the operator N defined in (1.20) is hyper singular, so its existence can
only be understood after some transformation in the sense of Cauchy principal
value; refer {26]. Although direct solution of integral equations involving Ny has
been attempted in [73], it is however possible to regularize the equations so that
all operators are compact. In fact, regularization technique is a very common
approach in solving Cauchy singular integral equations; refer to {43] and the
references therein for more details. Without loss of generality, let us consider
only the equation (1.57) and assume that S € C? ie. x(p) = I. Using the
following two facts (a) Ny — N is compact (see Theorem 1.12); (b) the identity
is true (see [26])

l
Lg.’VD = (l\’[o - -_3[)(.“[0 -+ %[), (l58)



we can obtain, by premultiplying (1.44) by Lo before coupling with (1.43), the

following second kind boundary integral equation

to | B

I
+ Mg+ Lo( Nk = No) + Al ~ ]]ﬁé =4 (1.59)

with g = [Le + pLo({ + MT))22. Now all integral operators are compact on C
2 k g p

'a—,‘.

and C%* 0 < A < L. Therefore equation (1.39) may be represented by (1.3).

Up till now, we have shown that boundary value problems (§1.2) may be
reformulated into integral equations of the second kind, characterized by (1.3)
1.€.

6—Kp=f peS, (1.60)

where § mav be a curve in 2D or a spatial surface in 3D, and X is compact
in ¢ when S € C? In the nexi Chapter, we shall discuss various methods for
the numerical solution of (1.60) while in Chaptiers 3 and 4 we shall investigate
iterative methods for fast numerical solutions of the resulting boundary element
equations. However, when S is only piecewise smooth, an integral equation of the
second kind in the form of (1.60) can still be obtained but K will in general no
longer be compact. Results from Chapters 2-4 can not be readily generalized to
this case. [n Chapters 5 and 6, we shall study speaifically the Dirichlet problem
defined on a non-smooth domain in the 2D case, where our integral equation is as
represented by (1.60) but the operator K can be split into the sum of a bounded

linear operator with norm less than one and a compact operator.
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Chapter 2

Numerical solution by

boundary element methods

For a general integral equation of the second kind
(T-K)=] (2.1)

where K : € — C is a compact linear operator, there are many numerical methods
one can use for finding an approximate solution. Refer to [14], [21] and [91]. In
this chapter, we first introduce projection type methods such as collocation and
Calerkin and then discuss the so-called panel method, which is perhaps the most
commonly-used methed in engineering applications. The Nystrom quadrature
method is only briefly discussed. Then we shall introduce the iterated collocation
method, which interpolates projection solutions to the continuous space in a
similar way to that of the Nystrom extension and yields globally a higher order
of convergence. Finally in this chapter, we discuss the important problem ol

numerical 1ntegration.
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2.1 Projection type methods

The main idea of projection type methods for solving integral equations of the
second kind is first to assume that the solution is in some finite dimensional
space spanned by a set of basis functions, and then to select a particular linear
combination of the basis functions by forcing the approximate solution to have a
smali residual for the projected integral equation on this space. From the general
schema, we obtain the well-known methods of collocation and Galerkin. However
in the collocation method, the projection involved is interpolatory whereas for
the Galerkin method, it is orthogonal.

Let C, be a finite dimensional space and P, a bounded projection operator
from C onto Ca, i.e., P, is a bounded linear operator from C to C,, with Pz =z,
Ve € C,. Then a projection method for solving (Z — K)o = f in the space Cp is

to find ¢, € C, such that

——
(BV]
(B%]

N—r

(T - P.K)p. = P.f.
Let the residual of ¢, be dencted by!
rn=f —dn+ K. (2.3)

Then (2.2) is equivalent Lo P.r, = 0. To provide an error analysis for (2.2), we

subtract it from (2.1), giving
¢ = bn = (I = PuK)™"($ = Pud) (24)

and

16 = dall < (T = Pak)'[[I(8 = Pad)ll. (2.5)

'We implicitly assume that KX : Lo — C is compact (sec [93]), where Ly, is the space of

essentially bounded functions.
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where the supremum norm || - || is used. It can be shown that for the compact

operator K

IZ = P.K) ' £¢, n sufficiently large, (2.6)

provided that a pointwise convergence result holds, that i1s provided

N>
bt |
vt

lim {j(v — Page)ll =0, Vypel. (2.

[n (2.6), c is some genetic constant which is dependent on K only; see [14, Ch.2.2].

Consequently, the sufficient condition (2.7) guarantees the norm convergence of

dn to &, as n — co. We now specily the choice of the projection operator P,.
For simplicity, let us consider the 1D case (;:orresponding to 1D integrals aris-

ing from 2D boundary value problems), since the extension to higher dimensions

is straightforward. [n this case the equation (2.1) may be rewritien as
(T-K)b=f a<s<b (2.8)

where K¢ = [P K(s,t)p(t)dt.
We shall define a piecewise polynomial space S™" to specify and replace Cp.

For any positive integer n, let
M,:a=np<m< - <Py <N=20b (2.9)

be a mesh, and for 1 <1 < nset [; = (g1, nil, hiy = mi—ni-a and h, = 1?.?5‘\:‘ h(j)-
Assume that h, — 0 as » — co. The choice of I, in general should depend upon
the smoothness of solution ¢ and will be specified later. With » a positive integer,
let S™ denote the space of piecewise polynomials of order r ( or degree < r-1).
That is, v € S™" il and only if u, on each subinterval /;, is a polynomial of
order ». There are no continuity restrictions imposed on S™" i.e. discontinuity is
n-1

permitted at the nodes {n;}}
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Let us assuine that S™" has d-1 continuons derivatives on [a, b with 0 < d < r,
to determine its dimensionality. Then it can be shown that N, = dim(5™") =
(n—1){(r—d)+r. Refer to [63]. Often d = 0 is chosen (z.e. the case of discontinuous
piecewise polynomials?) so we have ¥, = nr. Now let us denote by {;}V the
basis functions for the space §™. Obviously any function © € 5™ may be
expressed as

Nn

u(s) =Y aji(s), a<s<b (2.10)

[n order to use §™ for practical approximations, we need to specify it further.
To this end, let us introduce r distinct points on each subinterval [; (i = 1,---,n)

as [oliows :

s = Mi-v + ke, LSS (2.11)

where {¢;}; are the nodes of some integration rule on 0, 1} with
0 << <G L1

Then in the space S™", any continuous function v € € may be approximated b
p ) ) pp y

r

-, on each

vn, a piecewise Lagrange polynomial interpolating v at nodes {s;}

subinterval /; ( = L, -+, n). In details, we may write

va(s) = i if.-j(.s)'u(sz-): 5 € la, b, (2.12)

i1=1 j=1
where
0, s €1
vu(si;) = v(s;;) and £;(s) = s gn
i H —i: 5 E Il:
et s:‘, - sh
my

2[q this case, we arbitarily assume that functions in S™" are left-continuous at every node

except n = 1 and right-continuous at n = 1.




fori = L,---,n and j = L,---,r. Note that we have N, = nr when d = 0
is chosen {e.g. when & # Oand & # 1). We may now view the space S™"
as spanned by the independent basis functions {¥;} with ¢;(s) = fum(s) for
j=L Ny, v=INT[(7-1)/r] + 1 and m = j — (v = l)r. For convenience
wherever possible, we shall write {5}‘}3—";", or simply {5;}¥= for the nodes {st}i=

with ¢ = L, -- -, n (after collection and re-numbering). The specific space 5™, as

just defined, will be used throughout the thesis.

The collocation method

To find the approximate solution ¢, to the integral equation (2.8) in 5™ by the
collocation method, et us define our projection operator P, : C + §™" — S™"
by3

Np
Ppus) = Zu_,-v,bj(.s), a<s<b (2.13)
1

with u; = u(s;). Applying the operator P, to both sides of (2.3), we then

collocate at points s;, i = 1,2,--+, V,, giving
Nn b
> dilwilsi) - / K (si, t)di(t)de) = [(s3), (2.14)
j=1 a

fori=1,2,--, N, witho;(s;) =01l i # j and &i(s;) = 1.
As mentioned before, Lthe order of convergence of ¢, to ¢ will depend on the
smoothness of ¢ as well as the mesh [1,. A simple chaice for 11, is the umform

mesh with {7;} defined by

n;:a-%——i--(b—a,), i=0,---.n (2.15)

n

ISince 5™ is not a subspace of C, it is natural to require Pp : C + 5™ — S™7. This will

be consistent with the other assumption that K : Loy — C (or £ : C + 5™ — C).
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Proof. As in the proof of Theorem 2.1, we ouly need to show that
i — Padll = O(hy).

However this now follows from [81] using the graded mesh (2.16) with ¢ > r/8.
Thus (2.17) is proved. a

For a more complete analysis, we refer to [23] and [89] and the references therein.
In Chapter 5, we shall present the convergence analysis [or the collocation method
based on similar graded meshes when the non-smoothness of the solution is due

to the non-smooth boundaries.

The Galerkin method

To introduce the Galerkin method, we define the inner product of two functions

u and v by
(u,v)=[ubu(t)v(t)dt, (2.18)

and a new projection operator @, : C + §*" — S™" by
Quu(s) = ) (u. ¥)d(s), a<s <D (2.19)

The Galerkin method then requires Q;r, = 0 (refer to (2.3)), giving rise to a

linear system of equations
Na b b sb b
S ¢ [ [ watsds - [ [ ks, t):b;(t)ﬂa(s)dtds] = [ Js)widslds,  (2:20)
o a a Ja a
fori=1,2,---, N,. Numerical a.na]ysis of the Galerkgn method is fairly complete,
which may be the reason why it is very widely used by numerical analysts; see {50]
and [92] and the references given there. Convergence orders are similar to those

of collocation methods. However, Galerkin methods are expensive to implement
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and collocation methods are more often used in practice. So we shall not pursue

the former any further in the thesis.

The panel method

To conclude the section, we discuss the panel method which 1s commonly used in
engineering applications; (refer to [L0} and [23]). This method can be viewed as
the discrete collocation method of a low order (e.g. with r = 1).

Often the method is introduced as follows. Consider a typical boundary in-
tegral equation from reformulation of a 3D boundary value problem, as given by
(1.60)

8(p) - [ K(p,a)(a)dS, = J(p). pES, (2:21)

which is assumed to be solvable on the given boundary § C R3. Approximate
first of all the boundary S by §, where § = J .5_'j is a piecewise smooth boundary
(often §;’s are flat linear or quadratic panels). In doing so our equation (2.21)

changes to
B0 - [ K 0)dla)dS, = 1(p), (2.22)
or

)~ % [, K a)dla)dS, = 1(p).

Note that because the houndary S is non-smooth, the integral operator defined on
it may not be compact and the sclution of the boundary integral equation (2.22)
may not be smooth; (refer to Chapter 5). Equation (2.22) is then discretized using
a low order projection method (often based on piecewise constant cotlocations)

to yield the numerical solution @.(p).



This approach does not allow casy analysis of the numerical results since
l¢ — @|| is not easy to measure and [|¢ — @al| cannot be estimated by classical
analysis as the operator on 5 may not be compact. In particular the numerical
theory introduced in this chapter is not applicable. The error ||¢ ~ || in fact
determines the choice of numerical methods to be used for numerical solution of
(2.22) and hence high order numerical methods may not be needed.

However all these theoretical difficulties can be avoided if the panel method 1s
introduced in a different way. We prefer the following formal introduction of the
method. Consider again the equation (2.21). Suppose that we have a partition
of S, e, a family {A,---. A} of disjoint nonempty simply connected subsets
of § such that

5= LnJ A;. (2.23)

Define S™! to be the space of piecewise constant elements with basis functions

I, pe Ai:
Cip) = (2.24)
0, pé& A

Then in S™1' the solution function ¢ is approximated by
¢a(p) = X vitilp), (2.25)
1

where the coefficients y; are determined by application of a collocation procedure.
Choose one collocation point p; in each subregion A;. This yields a linear system

of equations for ~;

i~ i“r/A K(p;, q)dS(q) = f(p;); 7 =1,---,n (2.26)

1

Now classical analysis is applicable for error analysis and the remaining prob-

lemn is in the accurate evaluation of integrals over each surface clement A;. Those
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integrals, the surface elements of which can be mapped onto some regular do-
mains such as triangles or rectangles, are transformed into simple integrals before
numerical integration (§2.3). Other integrals can also be transformed into simple
integrals using approximate mappings, which may be found via piecewise spline
interpolations. Therefore errors in surface approximations contribute to numeri-
cal integration errors. Reler to [10], [15], [88] and §2.3. Note that the discussion
here applies also to higher order colllocation methods.

Next we shall show how to obtain continuous approximations to solution &.

2.2 Nystrom interpolation and iterated projections

[n this section we consider the iterated collocation approximation ¢;,, which 1s
closely related to the projection solution @,. Since @], often converges to the exact
solution ¢ faster than @,, it is particularly useful and attractive. The underlying
idea is in fact very similar to the Nystrom method, which we shall now briefly

introduce. The method will be used in numerical tests of §3.5.1.

The Nystrom method

Let us concentrate on the 1D equation (2.8). Denoie by {w;, ;1] a quadrature

rule?, z.e.,

b n
f d(t)dt = 3 w;d(L;) + Error term, (2.27)
a !

*In general, we may use a composite rule based on a chosen quadrature rule. Forexample, we
may first set up a mesh such as I, in {2.9) and then apply an r point quadrature rule {wj, ¢;}7 .
Lo each subinterval [; with the Lotal integration nodes N, = nr. The Nystrom method defined

tn this particular way is actually vsed in later Chapters.
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which is assumed to converge for any J € C(space of continuous functious).

Assume that ¢; € [a,b] for all j. Then such a rule can be used to approximate

(2.8) by

@n(s) - Zw,-l('(s,t_,—)qbn(tj) = f(s), a<s<h, (2.28)

j=1

which needs to be solved for ¢,(s). To solve (2.28) as a functional equation, we

set s =1L; (i =1,---,n), giving a system of equations

(f)n(t,') - ij[((s,tj)qbn(tj) = f(ti), = l,---,n: (229)
j=1
whose solution vector [@.(t1), - -, Pa(tn)]T gives the solution of (2.28) for all s €

[a,8] by

6a(5) €S w K (5, 1)bult) = f(5). (2.30)

i=1

The method of solving equation (2.8) by seeking an approximate solution ¢, {rom
C itselfis called the Nystrom quadrature method. Furthermore, equation {2.30) is
referred to as the Nystrom ertension as it can be used to vield ¢,(s) once @n(;)
are known. We refer to [Ll] and |14} for further analysis of the method. The
method 1s usually considered to be suitable and efficient for integral equations
with a well behaved kernel K (s,¢). [ts modification referred to as the product
integration method is more robust, of which the iterated projection (cellocation)
method is a special case. Reler to [31], [89] and [91]. In particular, the collocation

method may be viewed as a Nystrém method; see [1d].

Nystrom interpolation

Recall that the collocation approximation ¢, = Prd € S™" is defined by (2.13)

and (2.14). Once ¢, is obtained (or @,(s;) for j = 1,---, NV, are obtained), we
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may define, refecring back to (2.1), a new approximation (the iterated collocation)
¢, € C by

¢, C 7 K (231)

The process of (2.31) is called the Nystrém interpolation (refer to (2.30)). Such an
interpolation is essential in developing multigrid methods in Chapter 3, where we
use (2.31) (referred to as the Picard iteration) as a way of transfering approximalte

solutions between grids as well as smoothing out the residuals.

Iterated projections

Assume that K is compact from Ly to C as well as from C to C (although the
compactness of K from C + S™" to C is sufficient in the context®). It follows

immediately from (2.2) and (2.31) that

¢ = P, (2.32)

so that ¢, and ¢;, coincide at collocation points {s; Nn_ It follows in turn that

¢;, satisfies an equation of the second kind

(T -KP.eo. =/, (2.33)

n

where the compactness of KP,, : ¢ — C follows from our assumption. We now
state an important result concerning the convergence analysis of the iterated

collocation approximations.

THEOREM 2.3

Assume that f € C, {£;}, (used in defining the projection operator P, of (2.32))

5Note that 5™ C L.



are chosen lo be the |- |, |} Gauss-Legendre quadralure points shifted Lo |0, 1] and

3—-T

b
limf 1K (5,0) = K (7, t)}dt = 0.

Then ifp€ C' (0 <1< 2r) and K, (t) = K(s,t) € C™ (0 < m < r) wilh

max g-(:j[]_\%(t—)

¢, ¢ : generic conslant,
telab)

then

¢ — @Il = O(h)), with 5= min(l,r +m).

Proof. The proof follows immediately from [50].

Note from Theorem 2.3 that the iterated collocation solution may exhibit up to
O(h2r) convergence, -which is usually referred to as the superconvergence (because
O(k2") is the best possible order achievable using the space 5*7). If the solution
@ is not very smooth®, non-uniform meshes such as the graded meshes defined by
(2.16) may have to be adopted to obtain superconvergence results. One simple
application of the superconvergence analysis is that the collocation solution ¢,
may exhibit higher order of convergence at collocation points {s;}'" due to (2.32).

We refer to [23], [31] and [89] and the references there for more details.

2.3 Numerical integration

In general to implement boundary integral equation methods, all integrals in-
volved have to be numerically evalnated, because usually 1t is either impossible
or inefficient to try to find the analytical forms of integrals. The work of evalu-

ating these integrals, or setting up the discrete boundary integral equations, and

SFor the particular integral equation of (2.8), a weakly singular kernel K{s,t) determines

the possible presence of non-smooth solutions ¢; see [48].
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that of the subsequent solution of linear system of equations are the two most
expensive parts of a boundary integral equation method. For the latter problem,
the solution of linear systems, iterative methods have been developed for fast and
efficient solutions. Refer to Chapters 3, 4 and 6.

The problem of numerical integration is an important and well documented
subject. Many fundamental methods may be found in {39]. As for numerical
integrations in implementation of boundary element methods, very extensive dis-
cussion has been recently given in [17] and [78]. In this section however, we do not
attempt to present a comprehensive survey. Material to be presented will only
be sufficient in carrying out numerical experiments in later chapters. We reler to
[17], [23, §3], [39] and [7S| and the references therein for a wider exposition.

1) Introduction

To assist the practitioner with the choice of suitable integration rules, let us

classify the different cases. \Write a typical integral defined on some panel of S as

I(p) = [ K(p.ayula)dSy, pES, (2.34)

where K(p,q) is usually a function of distance r = |p — ¢! and w(q) represents
a smooth function (depending on the numerical method used for discretization).

Then to evaluate I(p), p € S, we have Lo consider the following cases :
(a) K(p,q) is well-behaved, (when p is away [rom A},
(b) K{(p,qy) is nearly singular, (when p is close to but not in A);
(¢) K(p,q) is singular at p, (when pis in A).

For the case (a), the Gauss-Legendre rule is usually applied. However other
more efficient methods are also available; (see [39]). For the case (b), the com-
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posite Gauss-Legendre rule {or an appropriate adaptive rule) may be applied to
overcome the near singularity. Other methods may also be considered; (refer to
[17]). In the case (c), there are three possible situations to be dealt with. (i)
If I(p) has a Cauchy singularity at ¢ = p, it is often a good idea il possible to
carry out some analysis of the integral belore using numerical quadrature rules;
(refer to [23, §3] and the references therein). (ii) If the singulanty is apparent,
or removable using the singularity subtraction technique, the case will be more
amenable to numerical approximations. (ii1) Otherwise the ERF rule may always
be considered for the evaluation of integrals with a weakly singular integrand.
For this case (iii), there are other useful techniques one may consider, such as the
singularity cancelling transformation for 1D integrals and the polar cocrdinate
transformation for 2D integrals. We refer to {23, §3] and the references there for
further discussions.

Next we shall first discuss the problem of transformation of boundary integrals
into ordinary integrals. Then we discuss the Gauss-Legendre rule and the sin-
gularity subtraction technique. Finally we describe the ERF rule for integrands
with end point singularities.

2) Boundary integrals

[ntegrals arising from practice are often defined on some small panel (element) of
boundary S, as discussed in 1). To integrate either analytically or numerically
such integrals, it is necessary to reduce them to some regular forms, i.e., trans-
form them to simple integrals on triangles or rectangles; (refer to the discussion
on the panel method in §2.1). The ideal situation is when a parametric represen-

tation exists which maps bijectively the boundary element onto a segment of line



(1D) or a rectangle of plane (2D). But when such a mapping is not casily avail-
able, the curve-fitting methods such as interpolations with splines will have to
be incorporated to provide an approximate mapping. See [10], [L3], [23, §3], {27]
and [28] for more details. Below we assume that such a parametric representation

(mapping) exists and go on to present some details from vector analysis.

. Suppose that we have a transformation

e = =) t € [a,b
y = y(t)

which maps bijectively [a, ] onto the ith curve segment A; (with partition § =

U A;). Define functions
1

(XX

(1) = Sy(t), dot) = - T o(0), and o(t) = VT + &,
for ¢ = [a,b]. Then the element of length becomes
dS = g(t)dt,
and the outward normal at point ¢ = (z,y) takes the form
ng = (di, d2)/g(t).

Therelfore on A;, the two layer potentials are respectively transformed to

(Lea)i(s) = [ (@), p = (z0,30),

b oG, 0 d
(Meo)lp) = [ ola) G Gadi + Gode)dl, p = (70, 30),

where g = (z,y), Gk = Ge(p,q) = %Hf)l)(kr) and r = \/(:c —z9)? 4+ (y — v0)%

. Suppose that we have for S a partition § = | JA;, as in (2.23),

1




and assume that the paramelric representation

y=y(&q) (+ En)€ER

z=2({n) |
defines an invertible mapping from a rectangle R; in £-5 plane to the surface

element A;. Define also [unctional determinants

5y o o: o o: oy

£ O T ac H

Dlz ' D:.’= ) D3= )
oy o 0: o o oy
8n &n dn 9y i @1 Bn

which are assumed not to vanish simultaneously, and the Jacobian function

J(&n) = \/D} + D} + Di.
Then the element of area becomes
dS = J{£, n)dédn
and the outward normal at ¢ = (x,y, z) becomes
—(D1, D2, D3)/J(&, ).

Similar to the LD case, on each A;, the two layer potentials become respectively

(Leod(p) = [ [ ola)Cud(€mdedn, - p = (wo0,y0, ),

c)C o or or
(o)) = [ [ oG (G20 + 52 De + g Ds)dedn. = (0,90, 50),

where ¢ = (z,y,2), Gx = Ge(p,q) = 2 ond ¢ o= \/ £~ 20)? + (y —y0)? + (2 — 20)?.

4nr

3) Gauss—Legendre rule
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The Gauss-Legendre rule is perhaps the most commonly-used numerical quadra-
ture rule in boundary integral equation methods (or BEM's). [t requires the inle-
grand to be very smooth to yield high orders of accuracy. Since the 1D integration
rule can often be naturally extended to 2D integration, we shall concentrate on

the 1D case only, writing a typical LD integral as
1
[ = / f(z)dz. (2.35)
-1

For an integrand defined on [a, b], a change of coodinates by

——

will map {a, b] bijectively to [—1, L

O Ry I

The classical Gauss-Legendre integration formula for (2.33) is given by

[ = iw]'f(:l:j) + En(/),

where abscissae {z;}} in [—1, l] are the n real and simple zeros of the orthonormal

Legendre polvnomials P! and weights {w;}7 are determined by

Cn+l I.
wi = —
’ cn Prii ()P (25)
with the error term
e+l (pty

Ea(f) = On s 1)[(2n)!]3f(2n)(£)’ —1< &<,

for f € C?[—1,1] and ¢, is the leading coefficient of P;(z) = cpz™ + ---. The
orthogonal Legendre polynomials P,(z) are known to satisfy the three term re-

currence

Pasi () = [#Pa(z) = Paoi(z)] + = Pa(z)



and their derivatives satisly
(L = 2*) Py () = n[Pai(2) = & Pa(2])],

with Po(z) = 0 and Pi(z) = z. The orthonormal Legendre polynomials are

defined by P:(z) = 28t P,(z). The zeros of P,(z) may be calculated by the

Newton-Raphson iteration, z.e., for z;

wy @ Palal
L =% T p_:_(—
n(‘EJ

n~3) cos(=1) because z; = zg_o) + O(n™1).

with initial guess 20 = (1- én 2+ i

i
For a listing of a FORTRAN routine to generate {z;}7 and {w;}}, refer to (39,
p.487]. The abscissae {z;} are located symmetrically in [—1, 1] and weights {w;}
corresponding to symmetric points are equal. Note that n = | gives the familiar

mid-point rule, whose composite form is often used.

4) Singularity subtraction

One important technique in treating the singular integrals before numerical in-
tegration is the singularity subtraction, which is also useful in solving integral
equations(see [19]). Suppose that an integrand g(z) is integrable, its integral can
be found accurately or analytically and function f(z)—g{)1s not singular. Then
the general method is to subtract from the singular integrand f(z) the function
g(z) to rewrite
[ 1)z = [ g(w)de + [(f(2) - g(2))de.

The second integral on the right hand side of the above equation is now more

amenable to numerical approximations. The choice of g(z) determines the smooth-

ness of the function f(z)—g(z). One simple application is given as follows

[ e = [ gtz + [ (HO() - o(a))is
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with the first integrand g(a) = Zlog(%) integrable and the sccond Hgl)(.u) -g(r)
non-singular. The function Hf,')(;t:) — g(z) belongs to C'. However if we choose
g(z) = ZI - "Tzllog(g), then the function Hgl)(.t) — g(=) will belong to C*. In
general, g(x) is chosen from certain series expansions of function f(z). Refer to
(23, §3]. [39] and {78] for more details.

5) ERF integration rule

The Gauss-Legendre rule may be applied to (2.35) with iniegrands having no
singularities in (=1, 1) as well as those with smooth integrands, while the simpler
ERF rule, as studied in [2], is quite useful for integrands with end point singular-
ities (at ¢ = —1 or 1). Consider (2.35) where f(z) may possess singularities at

either or both end points =1. The ERF rule is based on a variable transformation

2 gt
z=crf(l) = — / e "
0

to change (2.35) into

[ Herteea

= —= erf(f))e™ dt.

L
Notice that the new integrand is now non-singular since it is dominated by e~t’
for large |4} near possible singularities (shifted to Zoo). Consequently, the integral
may be approximated very accurately by a commposite trapezium rule to yield the
2m-+1 point ERF rule :

m
——

[ wif(z;)

-

A

with w; = %e'(j"y and z; = erf(jh). Usnally erf(z) may be numecrically com-
puted (e.g. by NAG routine S15AEF) and the choice of the step size h and the
number m depends on the strength of the singularity and the required accuracy.

See (2] for the theoretical choice and [urther details.
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Chapter 3

Multigrid Methods for Smooth

Integral Equations

[n Chapter 2, we have presented numerical methods for solving integral equations
of the second kind, concentrating mainly on the iterated projection method and
the Nystrom metho.d. Both methods, when applied to linear integral equations
such as (1.60), will produce an intermediate linear system of equations (usually
with full and complex matrix). The solution of the linear system is then used
through the Nystrém type interpolation to yield the firal approximate solution.
When the order N of the linear system becomes large, direct methods such as
Gaussian elimination with partial pivoting, requiring O(N?) operations, will be
too expensive to use. In this chapter, we introduce and investigate a class of
efficient multigrid type methods to solve integral equations iteratively, reducing
the compuiational cost to O(N?). Modified variants will also be suggested based
on the existing methods and numerical experiments will be carried out to show

their efliciency.



3.1 Introduction

Multigrid methods for a functional equation are iterative schemes that work with
a sequence of computational grids ol increasing refinement. The solutions of the
different but related problems on these grids interact with each other to obtain
iterative approximations to the continuous solution of the functional equation.
[n particular, two grid methods are the simplest examples of multigrid hierarchy.
All these methods follow the residual correction principle (RCP, §3.2), combined
with fine grid relaxations for smoothing and coarse grid corrections for improve-
ment. Such multigrid ideas have been studied and applied to the solution of
partial differential equations (PDE’s); see [1], [34] and [96], and the solution of
ol the integral equations; see {131, [52], [38] and [71]. However, as mentioned ear-
lier, discretization of integral equations usually generales non-sparse systems of
equations, being different from that of PDE’s, which produces sparse coefficient
matrices. Here we present a systematic analysis of multigrid methods, as apphed
to integral equations.

To introduce a functional equation and allow at the same time wider generality

(e.g. in dimensionality), we define our integral equation in operator notation as
(IT-Kyu=/f(p), pes, (3.1)

where K © X — X is a bounded linear integral operator over the Banach space

X and is given explicitly by

(Ke)p) = [ K ae(addSy, pES,

with S being a contour in 2D or a closed sucface in 3D (refer to (1.60) and (2.8)).



Here we choose the numerical technique to be either the iterated collocation
method or the Nystrom method. In any case, let us denote by {G[¢]}2, a se-
quence of grids (with number of grid points {¥¢}52; such that ¥, < ¥ < -++),
on each of which the approximate solution of (3.1) is denoted by u; and the ap-
proximate operator by K;. This implies that G[€] either represents the collection
of all ¥¢ collocation points with K; = KP, (for some projection operator Py) for
the iterated collocation method; or represents the union of all integration nodes
with the Nystrém method. Reler to §2.2. Symbolically we write the approximate

equation as

(I-Kdu=f fedXN [/

f
[

(2,0, (3-2)
where the subscript £ has been used to indicate that a quantity is defined on
grid G[{]; a notation which will be used from here on whenever no confusion
may arise. For each ¢, the above equation describes the process of discretization,
the solution of the discrete problem at G[¢€] points (i.e. the solution of a square
linear system), and the subsequent Nystrom interpolation (§2.4.2). We shall refer
to such a process as the G[¢] problem. To solve a G[m]| problem by mulitigrid
methods (m > 1), we make full use of available information from solving G|m-
1}, Gim-2], ---, G{1] problems.

In §3.2, we introduce the residual correction principle (RCP), which provides
a suitable framework for the motivation and convergence analysis of two gnd
methods (§3.3) and multigrid methods (§3.4). Modifed variants naturally follow
the standard methods. Numeri.cal tests are carried out in §3.5 for both a simple
model problem and a 2D exterior Dirichlet problem for the Helmholtz equation.

In §3.6, we discuss the very important problem of achieving the full efficiency of
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iterative methods.

3.2 Residual correction principle

Consider the problem of solving a [unctional equation
Au = f (3.3)

where .4 : X — X is any non-singular linear operator over the Banach space X.
In particular, X" may be the space C™ and .4 may be thought of as (Z — K) from

integral equation (3.1). Now if a related equation

with 4 : X — X, can be solved efficiently for arbitrary right hand side r € X,

we may attempt to solve (3.3) using the residual correction iterative scheme

Aut) = (A - Ayl & f
= Au® + 0 1=0,1,2, -,
t.e.
wl+t) = (T - BA)uU) + Bf (3.4)

= 04 B l=0,1,2---,

where r) = [« Au(¥ is the residual corresponding to the present iterate u!!) and

B = (.4)~'. By induction, it can be shown that

uw—u® = (T - BA)(u —u®), 1>0.

ol



Thercfore the sufficient and necessary condition for w!) to converge Lo u, starting

from an arbitrary initial guess u(®, is that

(T-BA)! -0, as ! — co. (3.5)

Clearly ul” converges to u = 47" f as | — co if (sufficient condition)

NZ - BAji < 1, (3.6)

ot
(T - BAYj < L. (3.7)
In linear algebra, when .\ is chosen to be the finite dimensional Euclidean
vector space R", the approximate LU factors of the matrix .4 or any other con-
venient approximation of .4 are used as A in order to obtain results correct to
within the machine accuracy. See [16, §8.5] for more details.
Denoting A = T — K for equation (3.3), we assume that there exists an
approximation A = T — K to it. Then the application of the residual correction

principle yields the following iteration
W) =0 (T - K0 1 =0,1,2,- -, (3.8)

with r) = f— (T - K)ul®. Choosing the approximate operator .4 or K differently,
by relating them to coarser grids, leads to various multigrid variants, as we shall

discuss shortly.

3.3 Two grid methods and their modifications

An early application of the two grid methods for integral equations is due to
Hashimoto [55]. There, to solve the equation (3.1) as a G{m| problem with a large
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value N, (say N, = r- N), the inverse of (I - K,,) from the Gln] problem with
a small value NV, (say N, = N) is used in order to form cheaply an approximate
inverse for (T — K.} which is then used in the residual correction scheme (3.4).
Here we shall concentrate on two grid iterative techniques of Atkinson [13] and
[14] which lend themselves more readily for generalization to multigrid methods
(see §3.4).
(1) Atkinson’s two-grid method 1 (TG-I). Consider two dis-

cretizations of equation (3.1) in the forin (3.2) i.e.

(I - K:l)ul = f(P): feq, (39)

for £ = m and n with ¥, > N, > ~; (implving m > n). Then Atkinson’s
method 1 for solving (3.9) with ¥, = ¥, is based on choosing A=(T-K,)in

(3.8), giving rise to the iterative scheme

(Z - KaJulr? = (K = Ka)uld + f
(3.10)
= (T-K ) +r0 1=0,1,2,--
For implementation details of (3.10), refer to {14, p.141} and part (iii) in this

section. It follows from (3.6) that the convergence of (3.10) is guaranteed if
B = T = Ka) (K = Ka)ll < L. (3.11)

But (3.11) cannot in general be proved directly since the convergence of Ky to X
is usually only pointwise and not uniform (refer to Theorem 1.4). However we
see that the convergence of (3.10) is still guaranteed if (a weaker but sufficient

condition from (3.7})
ol = T - Ka) (K = K)Pl < L (3.12)
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holds. In fact, the following can be proved using Theorem 1.1 (for compact

operators); (see [13] and [14] for the proof)
pi_m -0 as N,, N, — oco.

Therefore the method TG-1 converges when IV, is sufficiently large.
(ii) Atkinson’s two-grid method 2 (TG-2). This method is
similar to method 1 except that in place of u{!) in (3.10) we use @{) obtained by

one Picard iteration as follows
) = Kl 5 f(p), peS. (3.13)

[t can be shown ([90]) that for @) the new residual 7} = K, rl) which is in

general smoother than r{). Atkinson’s method 2 (TG-2) can be written as

(T - K el = (K = Ka)f + (K = Kn)Kmul) + f
(3.14)
= (I-K)ul 4+ (T -K.+Kn)rl), 1=0,1,2,---.

Again it follows from (3.6) that the convergence of (3.14) is guaranteed if the

iteration operator for (3.14) satisfies

[t 1s easy to show that (3.13) is true for sufficiently large N,. Actually the
following stronger result can be proved using Theorem 1.4; (see [13] and [14] for
the proof)

,B,li‘lm — 0 as N,, N, — oo.

In general TG-2 should have bettier convergence properties than TG-1, however

requiring more operations (roughly twice) per step of iteration.
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(iii) Modified two-grid method (TG-3). Here we propose a
modified methoad which is a combination of TG-1 and TG-2. Because of the
inherent smoothing properties of compact operators, the Nystrom interpolation
from Gln] 1o G{m] via

v = f+ Kavn
often renders the expensive residual smoothing in TG-2 unnecessary after the
initial few iterations. It follows from (3.13) that @) = w{)) + (0 and hence in
TC-3 we propose to start as in TG-2 until |} is sufficiently small and then
revert to the cheaper TG-1 iterations. The convergence of TG-3 is guaranteed by
those of TG-2 and TG-1.

The normal implementation of the method TG-3 for general N, N, would
require the setting up of four matrices. In practice, we usually choose points of
G[n| to coincide with those of G[m], so that we require fewer quantities. For
iterated collocation with piecewise constants or the Nystrom method in special
cases, this is the case il we simply choose ¥, = ri¥, for some integer ratio r.

With such choices of ¥, N,. we only require the following quantities :

Km :© Npg» N, matrix from operator X,, evaluated al G[m] points;
Knn @ N N, matnx from operator K, evaluated at Gfm] points;
K, : N,x N, matrix [rom operator K, evaluated at G{n] points,

and the vector f,, with (fm); = f(p;), p; € G[m]. Then starting from an initial

guess u,, = 0, we can describe the two grid algorithm for TG-3 as follows :

0) Set rm = fm, um = 0, IR = 0 and input TOL (tolerance) and EPS (control)

and go to step 4);

1) Find the residual on Glml: r, = fio — @ + Ko
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2) If IR = | then goto 5);

3) U ||ra]l € EPS, then [R = 1 and goto 3);

4) Perform smoothing on G[m|: U, = U + rm and rpy = Kpr;

5) Restrict the residual rp, to Gln}: rn = RYrm;

6) Solve exactly on G[n}: (1 — K,)va = ra;

7) Interpolate v, to obtain v, on Gim], v = (rm + Kmatn) ;

8) Add on the correction vy Lo U, Um = Upm -+ Upn;

9) If flzm)] < TOL exit with solution in u,; otherwise go to step 1),

Here the restriction operator R™ may be taken to be the so-called injection oper-
ator for the iterated collocation method with piecewise constant approximations
or the Nystrom method in special cases, provided that the points of G{n] are a
subset of G[m]. But for iterated collocation method with piecewise polynomials
of order higher than 1, step 3 may have to be calculated by r, = fo —un+ Knm2m
where K, is the N, % N, matrix from operator K,, evaluated at G{n| points
and u, is the solution vector on Gin|. In practice, this step may be replaced by
a linear interpolation of some appropriate order; refer to [58]. Note that step 6
is in general carried out using a direct solver where the LU decomposition of the
matrix is kept for use in each iteration.

Since equation (3.9) with £ = n is solved by a direct solver (step 6 in Lhe
algorithm), the computational cost is O(N?) arithmetic operations. Cleacly to
maintain the total computing cost at O(V2) level, we should use the criterion that
N, < ¢N¥3 where ¢ is some small constant. Fora fixed value of N, increasing iV,

m
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results in increase of the cost of LU factorization but should reduce p!, . and ,Hrll.lm
hence resulting in faster convergence. On the other hand, taking smaller values
for N, reduces the factorization cost, though increasing the required number of
iterations and can also result in the divergence of (3.10) and (3.14). The choice
of the optimal ratio V,,/N,, in order to minimise the solution time, is a problem
dependent parameter and somewhat difficult to analyse but will be examined
experimentally in §3.5. In the next section on multigrid methods, we will work
with a family of grids with decreasing mesh sizes, as set up for (3.2), hence to a
large extent alleviating the above problem.

Finally we remark that, although the convergence indicators pf . and ,G,E_lm
can be shown to go to zero as N,, N,, — oo, we may in fact give sharper and
more precise bounds for them in terms of step size h,, if we assume that the

kernel K of the compact operator is Holder-continuous of some order; (refer to

[72]). Below we shall state one such result.

THEOREM 3.1

Suppose that our 1D inlegral equation of the second kind is given by
u(s) ~ (Ku)(s) = f(s), 0<s<U, (3.16)

where the operator K defined by (Kv)(s) = J3 K(s,t)u(t)dt is assumed compact

in Cl0, 1}. Assume that the kernel function salisfies
K.(t) = K(s,t) € Cllelel and K,(s) = K(s,t) € Clela-iel

for some real number a > 0, where [a] = INT(a) is the integer part of a. Let us

discretize (3.16) by the Nysirom method based on the lrapezium rule. Then using



lwo grid methods, there ezisls an integer Ny > 0 such that for N,,, N, > Ny
phm = MT - K) M (Km = K S eNz,
Bl = WT-Ka)'(Kn = KiKnll < ez

where ¢ is a conslant independent of N, and N,,, and v = min(2, o).

Proof. See (80] for the details. O

3.4 Multigrid variants and their modifications

Here we consider iterative methods which use more than two grids in order to soive
(3.2) to the level of the discretization error at the finest grid. For equation (3.2),
let us denote, for any integer £ {or ¥¢), an approximate inverse of A, = (T -Ky)
by B;. Starting with uso), the residual correction principle can be used to yield

the iterative scheme
W = (T - B A + Bof, 1=0,1,2,---; €=1,2,---. (3.17)

which converges to the solution of (3.1) provided || — BeA¢|| < L. In this notation,
the two grid methods TG-1 and TG-2 for the adjacent grids G[é], G{é-1] use the

following approximate inverses respectively :
TG-1 B = (T-Ke), (3.18)

TG-2 B = (T-Ke)  (T-Keoy +K0)=T +(T-Ke21) 'K (3.19)

For two grid methods, all coarse grid equations for residual correction are
usually solved using direct elimination methods. However each of such functional
equations may also be solved by other two grid methods instead of direct meth-
ods. Repeating the process, we shall get a nested recursion of two grid methods
involving multiple grids. This leads us to multigrid methods.
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To be more precise, let us define by TG(u,v,7,) a 7. step two grid method
operating on two distinct grids Gu] and Gluv] (with v > v), where v, > 1. Here
in our two grid method (either TG-1 or TG-2) coarse grid equations on Glv)
may be solved by any method. We [urther specify such a method to be either
the TG(v,w,y.) method — another two grid method (interacting between G{v]
and Clw| with v > w) of a fixed step 7, if G[v] is not yet the coarest grid; ora
direct solver if G[v] is already the coarest grid. Therefore when solving the G[¢]
problem by a TG({,£ - 1,7,) method, we actually implement a sequence of fixed
step two grid methods i.e.

TG(¢, -1, ),

TG(E-1, €2, v-1),

TG(2, L, Ya)-
On the coarsest grid G{1], we employ a direct solver. Methods so generated are
called the multigrid methods. The numbers y;, ¢ = 2,---,£ — | are usually (but
not necessarily) chosen to be the same i.e. 7y =4 > 1. Such a number v is Llle
integer indicating the cyclic pattern of a multigrid procedure; see [34] and [52]. [f
v = 1 we have the familiar V-cycling and v = 2 is the preferred W-cycling; refer
to (52|, [96] for further details'. If the sequence of above two grid methods are of
mixed type (either TG-1 or TG-2), we obtain different multigrid variants. Very
often these two grids are chosen of the same type. From types TG-1 and TG-2,
we obtain the corresponding multigrid methods MG-1 and MG-2 respectively.

All other multigrid variants may be considered Lo be combinations of MG-1 and

I'The necessity of such a parameter y can also be seen in the convergence analysis of this

section.



MG-2. We shall discuss MG-3 shorily, which is oue such combination.
[n operator notation, the approxiinaie iaverses for MG-1 and MG-2 can be

written via

MG S (3.20)

MG2 {0 (3.21)
| B =0 (T - K + K, £=2,3,-

as generalizations of (3.18) and (3.19) respectively where O_Sj) for 7 = 3,4 1s also

an approximate inverse of Ay, = (T — Ky) for £ = 1,2,--- and is defined by

. r-l . .
QSJ) — L(I_ BE})A!)“BP)
u=0
= [T—-(T-BYA))4Y 7=34 £=1,2,---. (3.22)

Refer 1o [38).
We are now in a position to investigate the convergence properties of MG-1

{rarely referred to in the literature) and MG-2.

THEOREM 3.2

Let €9 = \T — BV An|| for j = 1,2,3,4. Then

(1) & <& +ELED+ 1), m=23,00 (3.23)
(2) €D <&+ (EL)(ED+), m=23,. (3.24)

Proof. (1) To simplify, let us denote by

U, = T-B"A,

V, = T-B®A,.
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From equation {3.18) we havef, = T — A;!, A;. Using this, (3.20) and (3.22) we
have
Ve = I-(T-(T-BE A AL A

L([ -3 V}_I(I—L(,). (326)

H

Taking norms, we obtain for £ = m the inequality (3.23).

(2) For the proof of (3.24), along similar lines, see {38]. O
Theorem 3.2(1) has associated the convergence of MG-1 with that of TG-1

but has not actually proved it since £{!) may not go to zero as m — co. In view

of the condition (3.7), we can establish the convergence of MG-1 by showing that
P =T — BP ALY — 0 as ¥, — co.

The above result can be readily deduced from the following technical lemma

(using (3.26)).

LEMMA 3.3
Let {U;}° and {V}° be uniformly bounded linear operators as defined in (3.25),
saltisfying

Ve =l + L’;’_,(I - L{t), {2 2; (.327)

where v > | is some integer constant. Then if v 2 2 and U}, |VE] —

0 as Ny — oo (for any £), we have
IVl — 0 as ¥V, — co.

Proof. Square both sides of (3.27) and take norms. o
Similar to the case of two grid methods, better convergence properties can be

expected from MG-2 because of the additional residual smoothing step, though
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MG-1 is roughly hall as expensive as MG-2 per iteration. As mentioned earlier,
many hybrid multigrid methods can be proposed (using ideas similar to TG-
3) based upon a combination of MG-1 and MG-2; though they often require
careful programming and tuning in order to make them more efficient than MG-
2. Here we propose and test a simple three grid method which can be viewed as a

combination of MG-1 and MG-2 (or TG-1 and TG-2) to be referred to as MG-3

and characterised by

’

B®) = (T-K,)!

-t

MG-3 ¢ BB = 1+ BRI, (3.28)

!
Q
~
)
L

o~

1

Bsﬁ) 2,3,

\

with | €t < €— 1 (often t = L may be chosen) and (referring to (3.22))
Al . <
Q¥ = ¥ (T - B A,)#BP. (3.29)
u=0

To present a convergence analysis analogous to those of MG-1 and MG-2, let us

intreduce similar to (3.23) the quantities :

U = T— A7 A,
1 v, = T-8B®A4,., (3.30)
; (5)
]’\’[ = I - B[ At-

Then we have from (3.28)
Vo= AT Ko = KK
and from (3.30)

Wy = T-[T-(T- B8 A.)47 A
= U+ V(T - Uy).
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Further, noticing that ||} — 0 and [[V,|| — 0 as N, — oo, we can prove the

following result along the lines of the proof of Theorem 3.2 and Lemma 3.3.

THEOREM 3.4

Let €3) = |7 — BO) An|| and pi®) = (T - BOAL)|l. Then

() e<pl BB,

2) p9 -0 as N, — oo,

where 81 _, = denoles the convergence rate of TG-1 based on levels m-t and m,
and -81[,{71-1 the convergence rate of TG-2 based on levels | and m-t. m

3.5 Numerical experiments

In this section, we apply the iterative methods presented in §3.3-3.4 to two test
problems. The first problem has the simple kernel K{(p,q) = cos{wpq) and has
been considered by many authors ({14], {52] and [38]). For this model problem
with smooth kernel we demonstrate the fast convergence of all iterative methods

-compared to the direct method and emphasize in particular the fact that two grid
methods are performing as well as the multigrid methods.

The second problem arises from the boundary integral equation reformulation
of the exterior acoustic problem with Dirichlet boundary COllldiliOH: which will
also be served as a model problem in the next chapter. This problem having a
weakly singular complex valued kernel is perhaps more representative of practical
situations, where the set up time could form a major part of the total computing

time (see §3.6).
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3.5.1 Test problem 1

The integral cquation of the second kind is given by

u(p) — A /01 cos(wpq)u(q)dg = f(p), p€0,1] (3.31)

where larger values of A corresponds to a more difficult problem (less well-
conditioned). We choose f(p) such that the exact solution is u(p) = e? cos(7p).

The operator K in (3.2) and (3.17) is defined via the Nystrom method by

Ve
(Keu)(p L (P, q;)u(p;) (3.32)

where K, corresponds to discretizing K with trapezium rule on a uniform mesh

ol size h[ = l/(!\fl - l)

3.5.2 Test problem 2 — the exterior Helmholtz equation

Here we consider the exterior Dirichlet boundary value problem for the Helmholtz

equation (§1.2)

[

(V2 + E%)o(p) = 0, pEE,

| é(p) = fp), - pESs, (3.33)

lim r!/2{32 —ikd(p)} =0, pE€E,

where & = w/c is the acoustic wavenumber, w the angular frequency of the sound
source and ¢ the speed of sound in the infinite acoustic medium £ exterior to a
smooth contour S in R%. \We assume an integral representation for the solution
#(p) as a linear combination of the single and double layer Helmholiz potentials

in the form (§1.3.1)

#(p) = (Heu)(p) = fsu(q){%(p, ) — nGr(p,q)}dS,, pe E (3.34)
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Table 3.1: Direct method for test problem | and test problem 2 (CPU times)

Test problem 1 Test problem 2

N | Set up | Solution | N | Set up | Solution

129 1.3 9.8 [ 8l 59.1 15.3

[S{]
o
-
[ 1]
e
fans ]
bt
—

257 4.9 73.9 | 243

513 19.1 380.5

where n, denotes the unit normal to S at ¢ directed into E. Imposing the Dirichlet
boundary condition using appropriate jump properties of the potentials (Lemma

1.13) we obtain

)+ [ 205K p.a) ~ nCulp ahula)dSe = f(), pES  (33)

where Gr(p,q) = Tngl)(kIp — q|) is the fundamental solution of the Helmholtz
equation in R% and n is the coupling parameter. Here we choose S from a family of
ellipses paramelerized by = = acos(t), y = bsin(t) with ¢ € {0, 27], where in par-
ticular b/a = I, 3 and 4 are chosen, keeping the mean length of the axes (a + b)/2
equal to unity. We use n = ik/2 so as to minimize(’almost’) the condition number
of (3.35); refer to §1.4. In all cases we take & = 5 and the boundary conditions
are chosen such that the problem is equivalent to the radiation problem having
one point source at (x,y) =(0.0,0.5) with strength (2+3i); refer to [10]. The
numerical method is the iterated collocation method (§2.2) defined on piecewise
polynomial space S™! based on equally spaced subdivisions in ¢ € [0,2x] with
the collocation points at mid-points of subintervals.

All numerical experiments for test problem 1 and test problem 2 are carried
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out on PRIME 9950 and PRIME 830 respectively. In table 3.1, we give the CPU
times (in seconds) required for solving both problems directly. Tables 3.2-3.3 give
a comparison of the CPU times ol iterative methods for test problem I, whilst
tables 3.4-3.5 are the CPU times for the sccond test problem. In tables 3.2-
3.5 for iterative methods, we put the required numbers of iterations to achieve
the tolerance of 10~* in brackets and denote by ’*’ divergence. As expected
the direct method is the most expensive method of solution of (3.2). For the
smooth test problem 1, the choice of the coarse grid is not very crucial, however
for the practical test problem 2 the choice N, x (V,,)¥3 appears to be the
most appropriate. All the two grid methods compare favourably with multigrid

methods in reducing the total computing time.

3.6 Remarks and further discussion

We have presenlted multigrid type iterative methods for the numerical solution
of the second kind integral equations, all of which perform considerably more
efficiently than the direct solution of (3.2). The two grid methods and in particu-
lar our modification TG-3 perform satisfactorily and are also easy to implement.
However, the multigrid methods interacting between three or more grid levels
including MG-3 are more efficient than the two grid methods and in particular
MG-2 is the most robust method.

As can be seen from results in table 3.1 (in particular for the test problem 2),
the set up time can form a major part of the total computing time. We observe
that in multigrid type methods (and in the conjugate gradient method of the

next Chapter) the matrix K, from (3.2) is only required in calculating results
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of matrix vector multiplications. However matrix vector multiplications may be
carried out accurately without the explicit knowledge of all the elements of A,

Kae = [(Ku)(p), (Ku)(pa), -, (K)o

This seems to suggest that all that is needed is some efficient method of evaluating
accurately the functional (Ku)(p) at all G[€] points. Such a method will reduce
the set up time as well as the solution time ol iterative methods. This idea
has been exploited by Hackbusch and Nowak in their recent work [53], [54] and
[76], promising to reduce the complexity of a matrix vector multiplication {rom
O(N?) to O(Nelog*?N,y) where d is the dimension associated with the integral
boundary; (i.e. d = 2 for 2D and d = 3 for 3D).

Their method, referred to as the panel clustering, is based on the assumption
that the kernel of the integral operator, K(p, q), has a finite series expansion or
an accurate finite series approximation at the ’far field’ (i.e. [p — ¢} large). We

now give a brief description of the panel clustering method. Following (3.1), let

us define a linear integral operator by

(Ku)(p) = [ K(p, aula)dS,, (3.36)

where § C RY is a (d-1) dimensional manifold. For a partition of §, § =

n
U Ay, by a panels (elements?) as in (2.23), iterative methods with the collocation
i=1

approximation require the values of the quantities

(Kun)(p) = Y- [ K(pa)uala)ds, (3.37)

?Here our pancl method is as introduced in §2.1. There is no assumption on sucface approx-

imation for the moment.
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at all G[r] points in §. We now seek an alternative representation for (3.37). For
cach point p € G[n|, we are able to represeat the boundary S by a combination

of panels (A) and clusters (T)

s=a---Ua,Uny---yr. (3.38)

where each cluster T is a union of several panels (A), 7 = O(l) and ¢ =
O(log®*? n). In (3.38), clusters {T;}5 are said to be in the ’far field’ with re-
spect to p, by requiring that |p — ¢ is sufficiently lacge (¢ € T}, 7 = 1,---,¢)
while panels {2} are said to be in the ‘near field’ accordingly. Hence (3.37) can

be replaced by

(Cua)(p) = X [ K(ra)ua(atS, + 3 [ K(pahunla)dSy (330

=1
In T; — the ‘far field’, the kernel A'(p,q) has a finite series expansion or an

accurate finite series approximation as assumed

K(p.q) = Y. Ki(p;q5)®ilq) (3.40)
icln

where all $;(q) are independent of p and [/, is an index set indicating the order

of the expansion and g¢; is the center of cluster T;. Now we may substitute (3.40)

for j =1,---,cinto (3.39), giving

(Kua)(p) = L/ K(p, ¢)ua(q)dS, + L Y Ku{p; q,)_/ qun(q)dS,. (3.41)

=l mel,

Since the quantities
J;: :,[r (p"‘(q)uﬂ(q)dsq; m g In: J = l: SRS (312)

are independent of p, they can be computed first and once only for a given u,.
It can be shown that the work of computing all possible J for all p € G[n] is of
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order O(n) operations. The first sum in (3.41) corresponding to the 'near field’
AU - U A, will be evaluated accurately, requiring the work of O(L) operations .
for each p € G[n|. Therefore from (3.42), evaluating
- c
(Ku)p) = 3 [ K(pqyun(a)dSy+ 3 X Knlpia)-JF,  (3.43)
i=p Vi j=l mel,
for all p € G[n] will require roughly O(nc) i.e. O(N,log?*?N,) operations. In
the mean time the storage is also reduced to that of a similar order. We refer the
reader to [34] and the references therein for more details.

Such works on reducing the set up time may improve most iterative methods
substantially. But the present method is not readily applicable to many practical
problems (even to some model problems). Apart from the complex programming,
the main problem lies in the unavailability of an eflicient series expansion such as
(3.40). In [54], the expansion is obtained from the Taylor series, which requires
the use of higher derivatives of a function. As is well known, it is generally not
trivial to implement numerical differentiation accurately. In [54], only the case of
weakly singular kernels is considered.

Another approach has been studied by Rokhlin [84] in solving the Laplace
equation, where the solulion is represented by a double layer potential. The
integral equation hence obtained is discretized by the Nystrom method based
on the trapezium rule. The approach suggested there is highly complicated,
restrictive and is not as competitive as that of Hackbusch and Nowak; see [76].
[t appears that much further work is still required to develop practical schetﬁes

to improve the existing iterative methods. \We refer also to [94] for a general and

prospective exposition.
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Table 3.2: Two grid methods for test problem I (CPU times)

Al N Nl TG TG-2 TG-3 | Set up
bl120 9l 06 (2) 12 (2) 07 (2)| 13
17l 07 (2) 13 (2) 07 (2)] 1.3
33 10 () 15 (2) 1.0 (2)] 14
651 2.1 (2) 29 (2) 24 (2)| 1.3

27 LT| 27 (2) 49 (2) 27 (2)| 5.0 |
330 3.1 (2) 52 (2) 30 (2)] 5.2
65| 47 (2) 68 (2) 46 (2)| 53
120 | 123 (1) 129 (1) 1.8 (1) 6.0

wf129 9f 09 (3) 17 (3) 10 (3)] L3 |
T 07 (2) 12 (2) 08 (2)] L3
33 10 (2) 13 (2) 10 (2)| td
65 235 (2) 29 (2) 24 (2)] 13
257 17| 2.7 (2) 4.9 (2) 27 (2)| 50
330 3.1 (2) 52 (2) 30 (2)] 5.1
651 4.7 (2) 68 (2) 46 (2)| 53
120 | 12.3 (1) 129 (1) 118 (1)| 6.0
o129 off 19 (6) 1.9 (6)| 13
7 11 (3 24 () L1 (3)] 13
3 10 (2) 21 (3) L0 (2)] 1
65| 25 (2) 29 (2) 24 (2 15
257 17| 40 (3) 9.9 (4) 3.9 (3] 5.0
31 3.1 (2) 78 (3) 30 (2| 5.l
63 47 (2) 68 (2) 46 (2)| 53
120 [ 143 (2) 159 (2) 137 (2)| 6.0
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Table 3.3: Multigrid methods for test problem | (CPU times)

A Ny fEMG-L MG-2 MG-3 | Set up
1 9fl20 (2) 16 (1) L7 (2) 2.1
1T L9 (2) L5 (1) L8 (2) 2.1

3Bl Ls (2) 15 (1) 20 (2) 2.1

257 17050 (1) 61 (1) 45 (1) 8.0
33049 (1) 38 (1) 48 (1) 8.0

65| 5.7 (1) 63 (1) 64 (L) 8.0

10 9426 (3) 29 (2) 23 (3) 2.1
17119 (2) 24 (2) 18 (2) 2.1

3I1s (2) 22 (2) 22 (2) 2.}

257 17175 (2) 96 (2) 69 (2) 8.0
33049 (1) 9.0 (2) 48 (L) 8.0

65157 (1) 159 (1) 63 (1) 8.0

100 gl ¢ ¢ 2.1
17l 50 (3) w7 (13) ¢ 2.1

33018 (2) 29 (3) 38 (3) 2.1

257 Al ¢ * 8.0
3196 (3) 121 (3) 142 (5) 8.0

6579 (2) 9.1 (2) 114 (3) 8.0




Table 3.4: Two grid methods for test problem 2 (CPU times)

bla| N, N, TG-1 TG-2 TG-3
L 81 9f 227 (19) 251 (10) 231 (16)
2 67 (1) 95 (3) 82 (3)
243 9|l 1725 (19) 1943 (10) I8L.0 (186)
27| 416 (4) 688 (3) 486 (3)
SLfl 443 (2) 769 (2) 488 (2)
31 81 9l 465 (39) 464 (31) 487 (31)
2 103 (6) 125 (4) 112 ()
243 9 [ 363.7 (40) 398.9 (20) 399.1 (32)
27| 6L.7 (6) 835 (4) 67.0 ()
SIf 393 (3) 729 (2) 633 (3)
4| 81 9l 845 (72) 716 (27) 383 (13)
7l 110 (7)) 133 (3) 123 (6)
243 9l T08.5 (78) 366.8 (29) 3243 (13)
27 |1 822  (8) 106.7 (5) 854 (7)
81| 372 (3) 824 (2) 626 (3)
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Table 3.5: Multigrid methods for test problem 2 (CPU times)

blal Nw m N |  MG-1 MG-2 MG-3
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Chapter 4

Conjugate Gradient Method for

Smooth Integral Equations

For the numerical solution of an integral equation of the second kind, we have
discussed in the last Chapter a class of multigrid type iterative methods that in-
teract between two or more grids by referring Lo the underlying integral equation.
These methods are in general efficient, but they all involve choosing appropriate
parameters (such as ratios between step sizes of different grids and the cycling
pattern) as well as requiring careful and complex programming to ensure fast
convergence. Here in this chapter, we present the easily programmable conjugate
gradient method (CGM), which is lree from problem dependent parameters, al-
ways converging and above all superior to direct methods. We then prove the fast
convergence of the CGM for solving linear systems arising from the (liscret.iz'ation
of integral equations with a compact operator. [n fact, as a linear system solver,
the use of CGM is noi just limited to those arising from the discretization of

integral equations of compact operators. In Chapter 6, we shall demonstrate its



fast convergence even when applied to a class of non-compact operator equalions.

4.1 Introduction

Recall the setting of §3.1, where a second kind integral equation is defined in

operator notation by

(T-K=1(p), pES, (4.1)

and its approximate equation on grid G[£] is given by
(Z - Koue = . (4.2)
The solution of (4.2) is determined via the Nystrom interpolation
wlp):=f+Kwuy peSs, (4.3)

after the solution vector u, = [(we)(p1), (we)(p2), -+, (we)(pw,))T is found by solv-

ing the following linear system

.-'ltg, = f, .‘l,{ =1 - [\'-[, (ll.‘l)

with f = [f(p), f(p2), -, f(pw,)]T. Here we shall concentrate on solving (4.4)
as a linear svstem of size Ny« Ny, whilst iterative methods from Chapter 3 have
been aimed at («.2).

As noted in [27], the application of simple iterative methods ({16, §8.9} and [46,
Ch.10]) such as the successive overrelaxation (SOR) to (<1.4) runs into difficulty in
ensuring the convergence. So Burten [27] suggested the use of a simple conjugate

gradient method for solving exterior acoustic problems and observed the fast

convergence. However for solving matrix equations with complex elements several
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variants of the conjugate gradient method can be found in the literature; (see [85)]
for example). Here we shall adopt the version as used in [27] and provide it with
a convergence analysis.

This chapter is divided into several sections. In §1.2, we state and prove our
main results concerning the rate of convergence of the conjugate gradient method
for matrices possessing eigenvalue clustering properties. In §4.3, we discuss the
spectral properties of compact integral operators, leading to the application of the
theory of §4.2 with some emphasis on solving Helmholtz equations. Some numer-
ical results for the 2 and 3 dimensional exterior acoustic problems are presented

in §d.4.

4.2 The conjugate gradient method
The conjugate gradient (CG) method for solving a n < n linear system
Az =b (4.3)

where A is symmetric and positive definite, is due to Hestenes and Steifel [59].
The method is based on the fact that, z* is the solution of (4.5) ilf it minimizes
the quadratic functional

#(z) = 5" Aw — 27, (4.6)

Strictly speaking, the CG method is a direct method, as in the absence of any
rounding errors it would yield the exact solution z° in at most n steps. Here we
shall show that for a large class of problems arising from discretization of second
kind integral equations a sufficiently accurate solution can be obtained in p steps
say, where p is independent of n but depends on the characteristics of the problem
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and the accuracy requirement. We reler the reader to {46, Ch.10] and also to the
later parl of this section for examples of CG algorithms.

An important property of the CG method used in deriving error bounds for
the method is the analogy between CC iterations and a polynomial curve fitting;
see {39] and [62]. If we define the A-norm (energy norm) of a vector z € R" by

lz|la = 27 Az, it can be shown that il z is an approximation to z*, then

E(2) = 2[¢(2) — d(z’)] = rTA r = ||z — 2"l (4.7)
where r = b — Az is the residual vector and hence E(.) is a measure of the error.
Further, let us denote the eigenvalues of 4 by {A;} with corresponding normalised
eigenvectors {(_]I.}, i=1,2,---, n. If (%) is the approximation to z* after k steps
of the CG method and the initial residual vector ro = b — Az(® = % 5iq,, it can

be shown that

n

E(z®) = 3 wilpi (M) (4.8)

—
where w; = s2/A; and py(A) is the k-th degree polynomial which satisfies p;(0) = 1

and is the leas! square fil to zero at the points A; with weights w;, 1.e. p;

minimises the functional i:w;[pk(,\;)]? among all the &-th degree polynomials
i=1

satisfying pe(0) = L. Clearly, il 4 has m (m < n») distinct eigenvalues, then

E{(z(™) = 0, i.e. 2™ = z* in the absence of rounding errors. This property for

an algorithm is usually called the fixed step termination. We now state and prove

some results concerning the efficiency of the CG method, in particular when the

matrix has some desirable clustering properties; (refer to the next section for
examples).

THEOREM 4.1

Lel A be an n > n symanetric positive definite malriz wilh eigenvalues ) < A; <
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Ap < oo < A, then after r ileralions of the CG method applied to Az = b, Lhe

approzimation z{*) salisfies

E(z) vC - l]z (4.9)

——= < d[e(C)]", C)=

E(z®) ~ lolCl,  alC) [\/5 + 1
where C = A, /A, is the 2-normn condition number of A.
Proof. Reler to [38] for a detailed proof. Here we only give a brief outline in

order to motivate the proof of next theorem. Let us construct an r-th degree

polynomial p.(A) by

b [z /o

to be used in comparison to the least square polynomial fit p; to give an error

-+
"'

bound, where T,{y) = cos(rcos™' y) = {(y + V3T = 1) = (v — Vy? — 1)7]/2 is the

r-th order Chebyshev polynomial of the first kind ([43]). Therefore, we have
E(z) <Y wilp. (M)
1

Following the relations (see [43} and [83])

IT.(y)] <1 il jy <1,

(4.10)
[r[ (\nf:\\l)] = ‘I—(l-:;"y-‘
where o = [:;_g::] , we obtain
L(:l:(")) o"
= < 4 4.11
B © T ()
< de” (4.12)
Thus the proof is complete. O

[t can be seen from (4.9) that o(C) = o approximales the convergence rate of
the CG method. Sce also [20]. Clearly (4.11) may provide a sharper bound but
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(1.9) i.e. (4.12)is tradilionally referred Lo in most literature. Here we [ollow the
tradition, while bearing in mind that all theoretical error bounds so generated
may be sharpened.

[t follows from (4.9) that for well-conditioned problems we can expecl a fast
convergence. In particular il all the eigenvalues of A are clustered around one
point then C =~ | and hence o(C) will be very small, inclicating‘that perhaps
one or two CG iterations may.yield sufficiently accurate solutions. In general for
many cases of practical interests arising from boundary element methods (see {3]
and [20]) the spectrum of A, E(A), includes a few eigenvalues either side of a
main cluster region. This is due to the desirable eigenvalue clustering property of
compact operators; (see the next section). We shall now improve the estimate in

(4.9) by proving an important result concerning the order of convergence of the

CG method for matrices with such eigenvalue distributions.

THEOREM 4.2

Let 4 be an n X n symmeltric positive definite malriz, where most of ils eigen-
values cluster in a region [a,8). To be precise, we assume O < A; < a for
i=1,2,---.8 Ay >8 fori=n—-m++1,---,n while the remainingn —m - £
eigenvalues are inside [, B]. Then after p = tht,- +n +r sleps of the CG

i=1

method applied lo Az = b, the approzimation ') salisfies

E(E(#)) l “a1r Y = \/—E-—l
) < Ale(C), o(C) = [\/'C'+l

where C = 3/a and

2

(4.13)

1, for A; > 9,
b = ’ (4.14)

lmeA/m + 1], otherwise,

and |.| denotes the integer parl of a real number.
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Pcool. In view of equation {4.8) we aim to construct p,(A) which satisfies p,(0) =

| and takes sufficiently small values in modulus at the eigenvalues of A. Consider

pu(A) = U{A)- V(X)) - W, (A) (4.15)

t
where U,, V; and 1V, are polynomials of degreeof ¢ = Z t;, r and m respectively
1

and are given by

[(ﬁ .\)cos(z’:) +{A; —A)]
¢ Ty
ud) = I T [am(_w] (4.16)

i=

V() = ﬁ*‘:"”‘]/ [BT“] (4.17)
A

Wad) =[] |t-=. (4.18)

i=n—m+1 '\i

Using the relation in (4.10) and the condition (4.14), we have for (4.16) that
Ui(A)] <1 for A € [a, 8] (4.19)

Furthermore, it can be easily shown that U,(A;) = 0 for ¢ = 1,2,---,¢ and
U,(0) = L. As for (4.17), clearly V7(0) = 1 and similar to the proof of Theorem
4.1 it can be shown that

\/E—l '
vC + 1

[V ES:

for A € {o,8]. (+.20)

For (4.18) it is easy to see that 117,(0) = land W,(A;) = 0fori = n—-m+1L,- -, n,
and that

noooA = A
I1

i=n-m+l i

<1 for A € [a, ). (4.21)

[t now follows from (4.8) and (4.13)-(4.21) that

F

Be) < 3wl (AP € max (017 B(z), (4.22)

which completes the proof. G

Remarks
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(a)-

(b).

In Theorem 4.2, we proved that any iteration of the CG method, after

t
. e ' . -

p = L t; -+ m > ¢ + m steps, can reduce the error substantially provided
1

C = B/a ~ 1, as o(C) would be close to zero. Clearly choosing a smaller

cluster region [a,B] would in general imply larger values for £ and m and

therefore, mayv not necessarily give a sharper error bound. The number of

iterations required to achieve a certain degree of accuracy depends crucially

on £, m and C = B/a. Fortunately in the case of second kind integral

equations with compact operators the values of £, m and C are generally

small, hence implving fast convergence from (:1.13). Notice that if we choose

£ = m =0, Theorem 4.2 reduces to Theorem 4.1.

The number of iterations required to obtain the error bound (4.13) is inde-
pendent of r, indicating that if we were to solve a family of linear systems
of different order, then a "fixed” number of the iterations of the CG method
can be expected to yield similar order of accuracy, provided that the cluster
regions are the same and € and m are the same. This fact will be exploited

in §4.3 and §4.4.

In general, linear systems arising {rom boundary element methods are com-
plex and non-Hermitian (Z.e. A # A"). We can casily show that all results
in the section for real symmetric and positive definite matrices A are also
valid for complex Hermitian positive definite matrices A, provided that a
-

real transpose vector y 1s replaced by a complex transpose conjugate y*

and that the A-norm for a complex vector y is defined by |iylls = y° Ay

Therefore for the complex linear system Az = b, the CG method may be
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applied to the equivalent problem (refer to [27] and {83])
By=15 (4.23)

where B = AA" and z = 4'y. The matrix B is not formed explicitly as it
is only required in matrix-vector multiplications such as v = Bu, which is
the most expensive part of a CG iteration and is suitable for calculations on
vector and parallel processors; refer to [8], [16, p.571] and the CG algorithm
below. The 2-norm condition number of B = A A" is the square of that of A,
which is why the CG method is rarely used for solving the normal equation
(4.23); see [85]. In our application area however ihe condition number
of 4 and hence that of B are generally small and, more importantly, the

clustering property of B can guarantee fast convergence (Theorem 4.2).

(d) . If the eigenvalues of 4 cluster around p* say, we may expect the eigenvalues
of 44" to cluster around ||, as is indeed the case in all our numerical
calculations of §4.4. In particular if A is obtained as a result of discretizing
the second kind operator (AZ ~ K) where K is compact, it is easy to show
that A is the only possible point of eigenvalue accumulation. e leave

further discussion to the next section.

Finally in this section, we describe a CG algorithm for solving Az = b via

AA*y = b for a non-singular complex and non-Hermitian matrix A and an arbi-

trary right hand side complex vector b.

ALGORITHM - Conjugate gradients :

0) Setz:=0, p:=0, r:=b, ¢, :=1 and input TOL;

) Compute ¢y :=7»"r, E:= /G



2) If £/jbll- < TOL, then exit with solution i;
3) Compute 8 := c2fey;

4) Assign ¢ 1= ca;

5) Compute p:=r + Bp;

6) Compute g := A*p;

7) Compute a := ¢»/q"g;

8) Compute z :=z +aq, r:=r—adlg

9) Return to step 1) and continue. a

4.3 Spectral properties of compact operators

In this section, we shall apply the results o‘[ the last section to the solution of
second kind integral equations. Particularly relevant and important is the fact
that, for § € C?, many of the integral operators fs K(p, q)o(q)dS, arising in the
boundary integral formulations of elliptic PDE’s (see Chapter t) are compact.
The lollowing spectral property of compact operators (refer to {60} and {73]) is
precisely the one which ensures the fast convergence of the conjugate gradient

(CG) method (refer to Theorem 4.2).

THEOREM 4.3
Let K be a compact operator on a Hilbert space‘ (N.(.,)x). Then X(X), the
eigenvalue spectrum of K, is (al most) countably infinite and A = 1) is the only

posstble point of accurnulalion. 0
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Provided that X in (4.1) is compact, A = L is the only point of accumulation
of (T — K). It follows from the Fredhotm-Riesz theory that, provided | & L(K),
the equation (4.1) has a unique solution (see Chapter 1). However in practice,
if dist(1, (X)) is small, then (4.1) suffers from ill-conditioning which makes it
difficult to obtain accurate approximations u, to solution u; see [10] and [L4].

From Theorem 4.3 and [11, §4.5], we know that eigenvalues of the approximate
operator K, converge to those of K and that these eigenvalues also have one
possible point of accumulation (zero) independent of the size Ny, provided that
K is compact. As also known from Theorem 1.12, integral operators arising from
reformulations of Helmholtz equations are compact so the efficiency of the CG
method is ensured for their numerical solutions (Theorem 4.2). In the rest of
the section, we first illustrate the clustering property of compact operators for
the case of a simple geometry S and then show the similar property exhibited by
discrete normal operators in order to justify the use of the CG algorithm of last.
section as a fast solver.

Let us for the moment concentrate on the 3D exterior Helmholtz problem
where the structure of the boundary § is a unit sphere (refer to (4.1) and Chapter
1). The following result from (3] gives the eigenvalues of the relevant integral

operators.

THEOREM 4.4
The eigenvalues of the operator (3T + MI — L), for the Dirichlet problem, are

giuen by

An(k) = —ikho(k){nja(k) + 72(K)}, n=0,1,2,-- (4.24)



and the etgenvalues of the operator (37 + Al + 9 Ny), for the Neumann problem,

are given by
polK) = —iRR () a() + ga(R)), m= 0,12 (4:25)

whilst, the eigenvalues of the reqularised operator —3T + My + n{Lo( Vi — No) +

M2 - é] for the Neurnann problem, are given by

nk
1"

§a(k) = ik2ho(k){jul(k) + (M)}, n=0,1,2- (4.26)

where h, denotes the spherical Hankel funclion of the first kind and j, denoles

the spherical Bessel-funciion of order n; (see [3] and [97]). o

[n order to observe more clearly the characteristics of A,(k) and p,(k), let
us look at the potential theoretic case k = 0, where (4.24), (4.23) and (:.26)

respectively reduce to (refer to [3])

1 L+ 2p

An = - - — = .1,2,"', ‘L?_-
3 qmsn "0 (4.27)
L 1+ 2pa(n+ 1)

hn = —— — =0,1,2,---, 4.28

K R D (4.28)

1oy 22n+1)—10

5, = —(=4+-)- >+ 7 =0,1,2,---, 4.2

GHi - gmrnr e " S (4.29)

where asymptotically both A, and §,, obviously bounded, accumulate al one
point as expected for compact operators'.

Now we consider the problem of solving the matrix equation Az = b via
the normal equation A4y = b with A = [ - K,. The clustering property
of A4 will follow that of A. In fact, we can show that AA* is the matrix

associated with operator (T — K )(Z — K,)°, which approximates the operator

IWe do not expect p, to have the similar asymptotic behaviour since the operator Np is

non-compact.
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(I-KNZT-K) =T-K-K*'-KK*. Note that K -+ X* +AK" is also a compact
operator if K is compact; (see Theorem 1.4). Hence the eigenvalue accumulation
point for AA* is still 1. [f K is a normal operator, that is, if X'K = KK*,
then A (AA4') = X(4°4) = [N(4)]? where A; denotes the i-th eigenvalue of its
argument. We note in passing that for integral equations of the form (2.8j for
example we can show that if the kernel of the integral operator K is Hermitian
te. K(z,y) = K(y,z) then K is a normal operator; see {21, p.27]. This may be
used as an important sufficient condition. For the case where S is a sphere, we

can prove the following result concerning the continucus problem.

THEOREM 4.5
If an operator K is a combination of the identily operalor I and polential opera-

tors Ly, Aly, AT and Ny or their products, then it is normal.

Proof. Following [3|, when § is a sphere, all operators forming X have the or-
thorgonal spherical harmonics S™(-) as their eigenfunctions and hence so will K,
implying that K is normal; see [73]. 0

Remarks

(a). In view of Theorem 4.5 and the proceeding remarks, we can expecl the
eigenvalues of A.4* to cluster around some fixed point in a similar manner

to that of A. This accumulation point is just the square of that for A.

(b). Much work has been done in the field of CG methods with preconditioners;
(refer to [16, Ch.8] and [46, Ch.10] and the references therein). In theory,
preconditioning is very attractive since it can reduce the condition number

and hence improve the speed of convergence. However no such precondi-

86



tioners exist even for the case of solving integral equations with compact
operators, which can preserve the eigenvalue clustering pattern as well as

reduce the condition number.

4.4 Numerical results and comparison

Here we consider the solution of the exterior acoustic problem in both 2 and 3
dimensional space. The domain of integration S is chosen to be a family of el-
lipses in 2D, characterised by the equation (z/a)? + (y/b)* = | and axisymmelric
ellipsoids in 3D, characterised by (z/a)? + (y/a)® +(z/c)* = 1. We do not discuss
the details of the underlying discretization method, as it should not greatly affect
the efficiency or otherwise of the conjugate gradient method, provided the re-
sulting linear systems mimic the spectral properties of the continuous equations.
Numerical methods presented here are based on the point collocation method
(refer to the panel method of §2.1), where the unknown function is approximated
by a constant over each element. Throughout the section, the ALGORITHM
— Conjugate Gradients presented in last section is used with the initial guess
z(0) = [0,0,-- ,O]T_

Dirichlet Problem

Here we consider the 2-dimensional problem (§3.5.2). In Figs.d.1-4.2, we plot
the approximate eigenvalue spectra with compact operators for a Lypical case of
a = 0.5and b = 1.5. We have computed the eigenvalues in four discrele cases
with & = 50, 100, 200 and 300 collocation points respectively. We note that
as expected the eigenvalues cluster around 1 and the number of very distinct

eigenvalues remains almost the same as N increases. The results from our nu-
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merical calculations are surnmarised in Tables 4.1-4.2, for various choices of the
problem and method parameters. The surface parameters a and b are chosen so
that d = (a + 6)/2, the typical length of the domain, is unity. In Tables 4.1-4.2,
st is the actual number of steps of the CG method required in order for the root
mean square (R¥S) norm of the residual for the approximate solution defined by
n 1/2
> r?/:\'] to be less than the required tolerance 7 (where r; is the residual of
1
the i-th equation). Furthermore, C is the 2-norm condition number of A-A*, N is
the size of the matrix, k is the wavenumber and 7 is the coupling parameter. The
actual problem we are solving is equivalent to that of having one point source
with strength (2+43i) placed at point (0.0,0.5); refer to §3.5.2. A blank entry in
tables 4.1-4.3 indicates that the value of its corresponding parameter has not
been changed from its previous value. [n the Table 4.1, we compare CPU times
on PRIME 850 for the CG method with 7 = 1078 to those of direct solution.
From the Table 4.1, we note that the CG method reduces the CPU times by
substantial amounts. But in comparison to Tables 3.4-3.5, it is not as efficient as

the multigrid type methods. From the Table 4.2, we can draw the following two

conclusions :

(a). [ncreasing NV does not in general change the essential properties of the ma-
trices approximating the underlying integral operator and hence for a given
tolerance leaves g, the required number of CG steps, unchanged. ln genceral,

i is quite small and also decreasing T does not increase . substantially.

(b). The choice of the coupling parameter p(k) = ik/2 (see §2.3) is useful in
improving the condition number of the continuous operator and hence that

of the matrix approximating it. [t does not however necessarily reduce g
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as varying 5 changes the eigenvalues and affects their distributions slightly.

Neumann Problem

Here we consider the 3-dimensional problem (refer {3) and {10]). On discretizing
the non-regularised equation (refer Theorem 2.12), involving the non-compact
operator Ny, there is usually no clustering of the eigenvalues of 4 and indeed
the eigenvalues and the condition number become larger in modulus as N is
increased; see (4.25). In this case, a direct linear solver or a multigrid type method
should be used; refer to {6} for some initial results. Theoretically preconditioned
CG methods are potentially attractive methods f[or solving such linear systems
arising from discretization of integral equations with non-compact operators —
unfortunately at present such general preconditioners are not available.

Below we adopt the regularised formulation (1.59) and present the numerical
results in iable 4.3. The parameters and also the conclusions are much the same
as those for the Dirichlet problem. Here [, 8] and m are as in Theorem 4.2 (for
the matrix 44*) and £ = 0 in all cases. The surface parameters are chosen such
that d = (a + a + ¢)/3 = 1. Furthermore, the actual problem being solved here
is equivalent to that of having one point source with strength (2-+3i) placed at
point (0.0,0.0,0.2); refer to [10].

\We point out here that due to the limitations on the available dynamic memory
on our computer we were unable to run the 3D problem for larger values of .
Nevertheless the results in table 4.3 clearly demonstrate, among other things, the
dense clustering pattern of the eigenvalues and also the effect of the choice of the
coupling parameter as (k) = ki in reducing the condition number of the matrix

as well as p (slightly). We observe that relatively few CG steps are required to
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Table 4.1: Direct method and CG method for Dirichlet problem (CPU times)

N | Set up || Direct Conjugate gradients
bfa =1 bja =3 bfa =4
8t 59.1 153 | 11.3 (p=3)| 17.5 (p=9)| 17.5 (p=9)
243 ] 5275 | 400.1] 87.3 (p=5)| 159.8 (p=9)| 159.8 (p=9)

vield a sufficiently accurate approximation zy to z°.
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2:51

fig.4.1 Approximate Eigenvalue Spetrum of A = (| — K)

[K : compocl operotor | : identity operotor|

The 20 Rcoustic Problem : See Section 4.4
on on ellipse with 0=0.5 & b-1.5
(porometers ¢=5.0 & n=--2.51)
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Fig.4.2 Approximate Eigenvalue Spefrum of B = AA’
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Table 4.2: CG method for Dirichlet problem in 2D

a k n N C I
1.0 1.0 50  illoo 98 10-* 6
200 9.8 0% 6

300 100 107% 6

300 100 107 9

25 300 73[ 10 9

/2 372 50  if 100 162 0= 9
i 300 162 107° 12
! 2.5 || 300 11.3 ) 107 16
1/3 4/3 50 2.5 (200 138 107¢ -14
10.0 501 200 19.2)10°% 17

Table 4.3: CG method for Neumann problem in 3D

a c k n | N C (a,8) m| T m
1.0 1.0 5.0 b 50 325 (0.19,1.16) 4 | 107Y 15
100 34.7 41107 16

50101 100 8.0 21107 12

20 201 100 80 (0.27,0.38) 4 [ 0™ 9

3/4 3/2 2.0 P50 142 (026,0.44) 6| 1070 14
201 | 50 7.2 5|0 11

100 7.3 51107 12

/2 2 20 201 30 64 (0.260.59) 4 [0 11
100 6.4 4 110" 12




Chapter 5

Numerical Solution of
Boundary Element Equations

on Non—-smooth Boundaries

In this Chapter, we study the problem of solving boundary integral equations
(BIE) defined on non-smooth boundaries. Here in general the resulting integral
operator is no longer compact, though bounded, and the solution is non-smooth.
In particular, we investigate the boundary integral equations arising from re-
formulation of a 21D Helmholtz equation with the Dirichlet boundary condition.
Using Mellin transforms and the theory of singular integral equations(SIE) in
85.1, we frst obtain the explicit form of singular solutions due to the boundary
non-smoothness. Then in §5.2, both the collocation and the iterated collocation
methods are applied to solve the integral equation with a non-compact operator.
‘The singularity in the solulion causes the slow convergence of exisiing methods

without modifications. To restore the appropriate order of convergence, we adopt
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the "mesh grading” technique in our numerical metheds. The associated problem
of numerical instability is discussed and the stability of discrete integral operator
equations is established. We also give a briel discussion of other relevant nu-
merical techniques. I[n §5.3, a numecrical example is presented to illustrate and

support the theoretical analysis of §5.2.

5.1 Singular behaviour of integral solutions

5.1.1 Introduction

By assuming that the integral boundary § is sufficiently smooth, we may estab-
lish the smoothness and the compactness of all relevant integral operators from
reformualting the Helmholtz equation. Refer to [69]. These two properties of in-
tegral operators have been explicitly used throughout Chapters 2-4 when integral
operator equations are solved by numerical methods. There, both the smooth-
ness and the compactness are required in studying efficient numerical methods
(see Chapter 2); while the latter is essential in developing iterative methods (see
Chapters 3-4). However when the boundary of interest admits corners and edges
(i.e. has geometric singularities), the solution to an integral operator equation
will usually possess similar non-smooth behaviour near such singularities and
the underlying integral operator is non-compact. Here we consider the solution
of the Helmholtz equation on some non-smooth exterior domain in 2D.

As in 8§1.2 and §3.5.2, the 2D Helmholtz equation in a domain £ exterior to

some closed boundary S with the Dirichlet boundary condition is given by
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(V?+k%)e(p) = 0, peE,

Y é(p) = f(p), pES, (3-1)
rlﬂgr”z{g—f - ik¢(p)} =0, peE,

The solution ¢(p) of this equation may be represented by Hia, where (see §1.4)

(Hao)(p) = [ A5 = 1Gubola)ls, p€ B (52)

where o(p) is an unknown density function. By imposing the Dirichlet boundary

condition this yields the second kind integral equation (see §1.4)

P+ [(Gn.a) - 10up.a}o(a)dS, = S5), pES (3

where x(p)w is the internal angle at point p between the two tangents (note that
x(p) = 1 at all smooth points). In (5.3), Gi(p.q) is the fundamental solution
for the Helmholtz equation and 7 is a non-zero coupling parameter required to
ensure the uniqueness of o(p) for any k. Here we choose 7 = ki/2 as this choice
can be shown to improve the conditioning of the equation (5.3). (See (3], [68] and
§1.4).

On a non-smooth boundary S, the integral operator H, is no longer compact
and the solution & may not be smooth, even if f is. Refer to [18], [19], [49]. The
solvability of an integral equation such as (5.3) on piecewise smooth boundaries
may be established through the generalized Fredholm theory; (refer to the remark
in §1.1 and [66]). As for the behaviour of the solution o, the theory is not complete
if the boundary S is non-smooth. In the case of Laplace’s equation, analysis has
been carried out to obtain the analytical properties ol solutions for polygonal
domains ({37],{42]). For the Helmholtz’s equation, only the dipole distribution
(the double layer potential) for the interior problem was heunstically analysed in
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[82]. As is known (see §L.4), representation of solution by the dipole distribution
does not guarantee the existence of an unigue solution for the resulting boundary
integral equation at all wavenumbers.

The precise knowledge of the solution behaviour is generally of fundamental
importance. In practice, most of the commonly-used numerical techniques for
solving integral equations are derived and analysed based on some global assump-
tion of the behaviour of solutions. Often the solution to the integral equation is
assumed to belong to the spaces of C? or C* [unctions (see [51}). Then the order
of convergence of a particular numerical method can be determined accordingly
using classical analysis. Here in this section, we analyse the theoretical behaviour
of the solution of the boundary integral formulation for the exterior Helmholtz
problem on polygonal domains by considering the formulation (5.3) which is valid
for all wavenumbers.

Without essential loss of generality, let us suppose that the non-smooth
boundary § has a single corner point at o and comprises of two straight lines
', and [5 and a smooth curve B, as shown in Fig.5.1, where the angle between
[, and 'y is denoted by a and the point o is set to be the onigin in Cartesian
coordinates with I'y along the x-axis. Let us further assume that the lengths of
both T, and [, are £ and the closed boundary S is defined in the anticlockwise

direction as depicted. [n fact the curves may be denoted by

Mo (s, 0), D<s<d,
B (z(s),y(s)), £ <s < by,
L : ((T-s)cosa,(T —s)sina), t; <s<T,

where s is the arc length measured anticlockwise from the corner point o and
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Figure 5.1: 2D Boundary Curve § with a corner at point o

o~

r/
T = £ +1, is the total length of boundary 5. Note that ['; may also be denoted
by
. : (scosa.ssina), 0<s<{,
where s is the arc length measured clockwise from the corner point o. Recall from

Chapter 1 that the fundamentat solution in 2D is given by the Hankel function

of the first kind
{ -
Gulp.q) = {H(kr), r=lp-dl, (54)

where the derivative of Hf)l)(r) IS

dHE ) (2)

- (1.
P = —Hl)(z:). (5.

ut
(4]
et

In our study, we shall require the following expansions of the Hankel functions

near ¢ = () (see {97, Ch.3})

.')‘
H'(z) = Zlogz+ Ru(z), (5.6)
S
H"z) = -= + -slogs + Ri(z), (5.7)
iy

L
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where functions Ro(z) and R, (z) = o(?) -+ P(z*) are analytical (differentiable),
with P(-) denoting an absolutely convergent power series. Note that d R'd:)/’l 1S
continuous in the vicinity of z = 0.

We are primarily interested in the behaviour of solution o in the neighbour-
hood of o where ¢(p) may not be smooth. In what follows, we shall proceed our
investigation in three subsections. In §3.1.2, we rewrite the boundary integral
equation (5.3) defined on S into a sum of integrals using kernel expansions, each
integral defined on one of the three segments of S. Then we shall form a new
singular integral equation which contains the most singular integral. In §3.1.3,
we apply the Mellin transform to the new singular integral equation to obtain an
equation more amenable to classical analysis — the Cauchy type singular integral
equation. Finally in §5.1.4, in order to determine the analyticity of the Mellin
transform of o near point o we shall use the the theory of solutions of singular
integral equations. We analyse such analyticity information by using the inverse

Mellin transform to reveal the singular behaviour of solution o. We leave the

problem of numerical solution for (5.3) until §5.2.

5.1.2 Boundary integral equations

Counsider the boundary integral equation (5.3). Using (5.6)~(5.7), it can be wnit-

ten as

i}’p) - ;L{:)Hgl)(kr) + kH(,l)(kr)Grad('r) -nqto(q)ds, = f(p), (5.8)

p € S§/{0}.

98



To study the behaviour of the solution of (5.8) near p = o, let us write 1t niore

explicitly for the cases where p € I'y and p € I's. We havefor pe T :

y 14
"%"J - l’f/ H{ (ks — 5')o(s, 0)ds’
s < 0

ssina /‘ o(p')ds'
.) b

27 Jo e
k%ssina

-+ ——jot log(kr,)a(p')ds’

4
it ksR,(kr,)sina n )
- 1/0 (qH (kr ) + 1(kry) Yo(p')ds (5.9)

Tyt

_ %/;’{’]Hf)l)(kr,) + kH(l')(kr,)G;-ad(r,) -ng}a(q)dS,

= f(p), 0<s<,

where ¢ = (z(t),y(t)) € B, r, = |p—q|l and p' = (s'cosa,s'sina) € [y with

ry = |p—p'l. Also for p = (scosa, ssina) € Ty, we have similarly

1 4
) U H ks - oa(p)ds
2 4 Jo

!

5sin a /‘ a(s',0)ds
0

2T rf,

k%ssin o

t
+ ——-—-—f log(kr,)o(s',0)ds'
0

47
[t ksR\(kry)sina
_ = (Vfpp )+ 1A
.l./o {nHy (kry) = Ty

- ll / {’]Hg!)(k"s) - kH(ll)(k"s)G"“d("s) : "*q}a(q)dsq
¢ B

Yo (s',0)ds’ (5.10)

= f(p), 0D<s <,

where again g = (2(¢),y(t)) € B, r, = {p—gq| and p' = (5'cosa,s'sina) € [,
with ry = |p — p'{. Here the case for p € B need not to be written down as it
would be similar to equation (3.8).

[n the remaining of this section; we shall denote by C° the space of complex
and continuous functions in |0, 00) and by C' the space of complex and continu-
ously differentiable functions in {), 00), unless we specily otherwise. In order to
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determine the smoothness of above integrals as [unctions of s (except those with
the kernel ———i-——), let us make the minimal assumption that o & c°.
Then we can show that those integrals in (5.9) and (5.10) involving the bound-

ary B or the kernel function R, define C' functions because the integrands are

sufficiently smooth. The kernel of other integrals may be typified by

Hg')(k\/sfz + 52 — 2s's cos a') (5.11)

where the angle o’ may take any value (in particular o' € [0,27)). From relation
(5.6), the logarithmic kernel is implicitly represented by (3.11) when o’ = 0. Then

the continuity of such integrals follows immediately [rom the lemma below.

LEMMA 5.1

The single layer potential operator Ly - C°0,€] — C°0,¢] defined by

L
Lyu(s) = / H{Y (ks + 57 — 25's cos a'Ju(s')ds’ (5.12)
o
s compac! for any value of o'.

Proof. From expansion of (5.6) we can see the relation Hgl)(kr) = A(s, s')B(s, s'),
with 4 = |s — 5’|"H(()')(kr) bounded and B = Is—+l" (0 < v < 1) weakly singular,
satisfying the sufficient conditions for compact operators ( (14, Ch.1]). Thus the
lemma is proved. 0

We have assumed that the solution ¢ is a C° function but not a C'' function.
Hence C! functions are considered to be sufficiently smooth not to contribute to
the singular behaviour of ¢. From the assumption u € C°, we cannot show that

Lyu defined by (5.12) has any additional smoothness. However Lyu may possess

some additional smoothness if we take u from some subspace of C® Now let us
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define a subspace of C? by

C° = {u : ue C%0,00) and u(s)/s” is bounded for some p > 0}.

Later on we shall prove that in general the solution to (5.8) belongs to the space
of C° for some value of p that depends on the wedge angle a. Here using the

space C°, we have the following results.

THEOREM 5.2

Ifu € C° then (Liu)(s) defined by (5.12) with o' > 0 is a C' function.

Proofl. Write the derivative %’—) as D(s)=k f} H(ll)(kr)LmT“"—’u(s’)d.s’ where

r=1\/s?+s?—2s'scosa’. For any s’ > 0, we have

s'sina’, sina’ # 0,

min r =
+€{0,¢] .
s, sina’ =0,
s'cosa’ — s ) )
and ——-———] < I. Since rH(l')(kr) is bounded, we therefore have
r 1
iH(ll)(LP) s'cusra'—.su(sl)l < o u_s-JP') . ,-'ll—p
G e
where ¢;, ¢, are constants independent of s, s'. Hence Liu € C'. o

THEOREM 5.3

Ifu € C° then (Lyu)(s) defined by (5.12) with o' =0 is a C' function.

Proof. Define a function E(s) = f{log|s — t|u{t)dt. Then we have (Leu)(s) =
2 E(s) = u(s), where u(s) is a C! function (using (5.6)). Obviously E(0) exists.
For s > 0, we use the series expansion :

o0
log s — Z%s'jtj, 0<t <s,
log|s — ¢| = j;l
logt — Z%sft‘j, s <t <,

=1
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to obtain

] [4
E(s) = [Olog|.s-¢|u(c)(zt+[ log |s — tlu(t)dt

’ - 1 .
= Iogs[ u(t)dt - ) —/ tu(t)dt
o 0

j_—.l JSJ

4 o0 5j 4 .
+/ log t u(t)dt — > —;f t™u(t)dt.
3 —y J J2
=1

Therefore Lyu € C1. O

Thus we can conclude that all integrals in {5.9) and (5.10) except those with

1
37 La? _2s'scosa

the kernel define not only C° functions of 5 but also C' functions

if we assume o € C° As we are interested in the behaviour of o(p) near p = o

i.e. 5 =), let us introduce the notation

a,(s) = 0(5,0), o2(s) = o(scosa,ssina),

2(s) = f(scosa,ssina),

fi(s) = f(s.0),
and

Uy =0+ 03, Y2=0p— 0

f1=f|+f—z, f-z:f—1~fg, D<s <L

Then using the above equations and by forming (5.9)%(5.10), we may transform

(5.8) into the following uncoupled equations

. ssina [ bi(s')ds' |
1.!;._; - ss-ma/‘ W;(s')ds = (), (5.13)
2 0

27 5% 5% — 25'5cosox

for j = L2and ) < 5 </,

where F;(s) are continuons C° functions(j = 1,2). Now we remark that £ is

originated [rom four parts (comparing with (5.8)) i.e.
Fi(s) = Vils) + (Nut;)(s) + (Xeo)(s) + (Yieth;)(s) (5.14)

c e - , . ) . X%
where A%, N4, ¥ 1 C° — C° are compact operators (in particular C® =" ¢!
= Y - rm oW - *
and C° —» €' ) from Lemma 5.1 and Theorems 5.2-5.3 and Vj(s) represents
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some linear combination of the given function f. Clearly we have established
that F; € C'if¢; € C% and [ € C', allowing us to concentrate on the singular
part of the equation (5.13).

Remark :

In general if o(0) # 0, the simple change of variable of &(p) = o(p) — (o) can
reset the integral equation (5.8) with the new unknown function . Further we

have & € C° Refer to [9] and [49] for further discussion.

5.1.3 Application of Mellin transforms

To study the singular integral equation {5.13), we first need to know more about
its singularity type. To this end, we now employ the very useful analytical ool
of Mellin Transforms to convert (5.13) into some better known forms of singular
integral equations; (refer 1o {95}, {22]). The generalised Mellin transform of a
function ¥(s) is defined by

(= 5]

A(€) =/; W(s)s¢ ' ds

with its inverse transform given by

1 ¢t

P(s) = — - A(€)s e,

27t Je~ix
where the constant ¢ € ((‘1 ,¢2) is a real number(to be specified). We note that the
change of variable s = e will reveal the close relationship between the Mellin
transform and the Fourier transform z.e.

A(if) = /m e~ (e~ )d, —oo < £ < 0.

—0Q
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Applying the Mellin transform to both sides of (5.13), we immediately obtain the

corresponding equations

4,(8) sma‘/C'ﬂ--"c’vd{,A /‘ £d5jo = (s')%ds’ = 0,6, (5.15)

T9 4..21 —ioo + 5! —2s5'scosa

-

forj=1,2andc—tco < £ <c+ic0.

Due to the fact that (3.13) is only required for a finite interval, the existence of
Mellin transforms of ¥;(s) and F(s) can be ensured by continuing the functions.
For a locally integrable function on (0, oo) the definition of Mellin transform may
be generalised (see [22]). In the domain ¢, < Re(§) < ¢z where Mellin transforms
exist, both A;(s) and ®;(s) are analytical since 567! is an entire function with
respect to &(see [100, p.92]). Now using the equality s + s? — 2s'scosa =

(s — se'@)(s’ — se™™@), we can carry out the integration ([47, p.284])

£ (s")-¢'ds’ (1-¢) : 4
= R, - & .
/c‘) 57+ 52 — 2s'scos @ 2is%(1 = ') sina (1, ¢ é-’se"“)
e ™ Fi(1,&; 1+ &, :.-a)] , (5.16)

where 0 < s < £ and the hypergeometric function is defined as usual by
20
anbc;’::L —, |zl <1,

with the coefficients (d), = (d)(d+1)(d+2) - (d+n—1)and (d)o = . Since the

modulus |——=| may be larger than I, we then require the Kummer's relations
set
to transform (5.16) into hypergeometric functions of convergent series; (see [70,

Ch.3|). This leads us to

4 (sr)—i'ds, Trsin(Tr _ Q)E.r . Se_‘.a
= TEMT T OR R,en 48—
/o 57 + 52 — 2s’scos a 21s€'sin @ LT+ [4 )
Y o )], (5.17)
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where we have used the equalities

r\(.z - E:)r(_EI) _ £l _ l and [1(.2 — {f)[\({l) _ l - El
(1 —¢&)? ¢ I'(1)? sin 7€'

Applying the series expansions (of F}) to both {5.16) and (5.17}, we may then

obtain the function

r
/‘ (s')"tds’
0 52+ 52— 2s'scosa
=, .. sin na

2.() s(n - {')Ef'sina’ s> ¢

n=1 s

(e, s)

(5.18)

wsin{w — a)f’ L( )nsln na ‘,

s lsinasinmf’ sfsina n+§’

where 11(€',5) at s = 0 or £ will not be required. Next we evaluate the following

integral (relating to the Mellin transform)

oc 7 E-E' i wno— d
f sSHI(E s)ds = mé S”?( .H)E
0 (£ —&)sinasinwé!
65'5 = sin na sinna

Tsina L (n—=¢&Yn-¢) C(nre)(n+9)

(5.19)

where we assume that Re(£) > Re(¢'), aithough both terms (for £, £') would have
poles at integer points. But this can be cured if we choose ¢ in the inverse Mellin

transform such that |e|] < 1 (so (5.19) is always valid). At this point, if we denote

sin{mw — a)f’

,-({’) - sin w&'
and
Iz ¢ o [T A e d¢’
E) = T 2 oo "(“[(u—e)(n—f)"(n+£')(ﬂ+£) a

with the understanding that the analyticity of R;’s (j = L,2) are only determined
by ®;’s (since the second term wilt be analytical everywhere except at the integer

points), we then can obtain the [ollowing integral equation of Cauchy type

2 4ire

A0 ;L DN o _ (5.20)

T i e €€
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for j = 1,2, ¢ < Re(€) < c» and |c] < L. Note that the righi hand side of
(5.20) also involves the unknown function Aj;(€) (refer to (5.14)). This point
will be discussed later in detail. [n summary, we have established that (5.13) is
essentially a Cauchy type singular integral equation; (see (5.20)). To solve the
above equation (5.20), we shall use the Carleman-Vekua method; {refer to [44]

and [79}).

5.1.4 Singular form of solutions of integral equations

Consider a new unknown function S(£) determined by the Cauchy type integral

. c+ice pf! 'E--":'/ [’ .
Sié) = == T2 e v Re(d) £ (5:21)

271 Je—is 6' - E

Then using the Plemelj theorem (see |79, Ch.XV}]) for boundary points Re{¢) = ¢,

we have
l I pevics p(€)06€N(E) .,
S7() = 5"(5)31'(5) + o /;_iw (€ )f' — (¢ )df ;
| L petico p(E)E-EA(E)
S50 =~ + 5 [ T2 e,

where S7(€) and S5 (€) are the two limits of 5;(€) taken from the right and left

side of Re(£) = ¢ respectively, with
55(€) = 57(6) = r(£)A,(0), (5.22)
and S;(€) is analytical in {€ : Re(€) € (e1,e2)/{c}}. With this notation, equation
(5.20) can be replaced by the boundary integral problem
A;(€) £ 57(&) = 2R,(8), (5.23)
or the non-homogeneous Hilbert problem(using (5.22))

(£ 7(€))S](§) — $7(&) = 2R,(€)r(&). (5.24)
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Combining (5.22) and (5.24) gives rise to the required solution

o EST(E) +2R,(8)
Ai(€) = ETORE

(5.25)

where 57 (£) has no poles on Re(¢) = ¢ and SJ-'(E.) is analytical on the left of
Re(£) = c except for negative integer points and the choice of ¢ = 0 appears to
be appropriate(refer Lo [82}).

Recall that the [nverse Mellin Transform of Aj(€) is given by

bils) = = [T aje)stde

P2rl Je—ive
| perioe £57(€) +2
gﬁ_i c—100 1 :F r(f)

sTHE, (5.26)

using (3.25). Closing the integration contour from the left, we can then use the
well-known theory of residues to evaluate the definite integral in (3.26) by looking
at all the poles of the integrand; see [100, Ch.VI}. Those poles which are close to

zero will determine the singular form of functions #;’s i.e. solution o.

THEOREM 5.4
If the given function f(p) € C', then in Cp space the solution a(p) of equation

(5.8) near the corner behaves like

w

}

o(p) = Af L oo(p), with 8= min{z: -
a 2x —a

where A is a conslant, r is the distance of p from the corner and oo(p) is a

smoother function than r8 (0 < B < 1).

Prool. First, from (5.25), we know that apart from the possible integer poles!

and those from the roots of

L Fr(€) =0 te. sinné = ksin{m — a)f

'An integer pole of £ = n for a function ¢(z) corresponds to the non-singular component z®

of ¢(ir).
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any other poles can only come from ¢;(£), which is the Mellin transform of C!
functions and whose poles £ must satisfy that Re(§) < —1. As for the equation

L £ r(€) = 0 above, its solutions (on the left half of Re(€) = 0) are given by

2n - I)w 2nw
‘E = —( ) r : fOF' +
2 —a a
(2rn - )= 2nw .
E = - , = , for =, n=1,2---.
o r—a
Hence using the theory of residues completes the prool. W

To carry out the convergence analysis of numerical methods in the next sec-
tion, we now specifv the necessarv space setting. Following the above theorem,
we can state that ¢ € C° with the specific value of p = 3 where 3 is given in
Theorem 3.4. To make use of the numerical analysis results from the literature,

we shall replace C'° by another general subspace of C° This is defined by
C; = {z: fla(s) — z(0),. < oo}

with the norm
iyllrw = qpax. sup |s*=* D*y(s)I,

Sir

where D is the 1D differentiation symbol as introduced in §1.1. Denote by C]
the space of those € [unctions which vanish at (). Then we have o € (,5 with 3
from Theorem 3.4 and r = 0. Note that Cf is a subspace of €% which contains
functions of complex values, and is similar to space settings lrom the literature;

e.g., see (9], [33] and |74, Ch.4].
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5.2 Numerical solution of singular boundary

integral equations

[n general for a singular boundary integral equation where the singularities are due
to the non-smooth boundary, we can write the underlying non-compact operator
as G+C with G a bounded linear operator and C a compact operator. In particular,
we may take G to be the sum of wedge operators and C is usually called the
compact perturbation. The method for solving such an integral equation is first
to study the so-called model integral equation with the operator G alone and then
to apply the results obtained to the original integral equation with the operator
G+C.

In this section, we investigate the numerical solution of the boundary integral
equation (35.13) from reformulation of the exterior Helmholtz equation defined on
the non-smooth boundary S with a corner. Following the above general schema,
we first fo;m the model integral equation with the wedge operator in §5.2.1. Then

we apply both collocation and iterated collocation methods (with non-uniform

be established in special cases. To complete the theoretical analysis, we discuss
in §5.2.3 the modified collocation and iterated collocation methods. We conclude

the section in §5.2.4 with a briefl discussion of other numerical methaods.

5.2.1 The model integral equation

Let us now write the integral equation (5.13) in details as

¥i(s) _ ssina /0‘ i(s')ds’ + (Za;)(5) + (Waa)(s) = Vi(s),

2 ' 2@ 52 } 52 — 25's5cos a
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for j = 1,2 and 0 < s < £, with Zy, W, : C% — C° compact operators (refer to

(5.14)). To simplify, it may be rewritten in an equivalent form

B3(5) T (K5)(s) + (Zu))(s) + (Wao)(s) = Vi(s), (5.21)

0<s<{

where the operator Z, is still compact and K : C°[0, 1] — C°[0, L} is defined by

== 4(0), 5=0,
(Ke)(s)={ ° (5.28)

fo K(%)r,f;(t)#, D<s< I,

with 1ts kernel
sin & ¢ (,
7 L+E2—2cosa '

K(t) =

The operator K is the same as that arising [rom the solution of Laplace’s equation;
refer to [9], {33] and {74}

Without loss of generality let us consider the '—' sign case only and drop the
subscript 7 for ¢ and . Note that in equation (5.27), both ¢ and ¢ are unknowns.
The complete equation for o containing the operator X may be written in the
form of a system of operator equations; (refer to {74, Ch.5]). Since all other
integral operators except K are compact in % they can be considered to be the
COII][);LCl perturbations of the operator . So we shall concentrate on the reduced

integral equation®

(T - K)u(s) =V (s), 0<s <, (5.30)

which is referred to as the model integral equation. Throughout the remaining

part of the chapter, we shall concentrate on the numerical analysis of (5.30). The

2Here the unknown ¥ is replaced by u to aveid possible confusion later with the notation

for basis functions &,°s.
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close relationship between (5.30) and the complete equation will be discussed

towards the end of the next subsection.

For operator K, the following results are known (see [74])

LEMMA 5.5

(i) In C°0,1], the spectrum of X is given by

0,22}, D0<ac<m,
spec(K) =

[2=2,0], 7 < a < 2=.

(ii) If0 < a < 2w, then
A : C°0,1] — C°[0, L] = Ix — al/m < 1,

w
-~

L < T -K)T O, 1] — OO, 1] € ———
7+ 'w - al : : e

(iii) T — K is conlinuously invertible in Cj.

The equation (5.30) can be shown to be strongly connected to a classical Wiener-
Hopf equation (see [60, Ch.5]), the numerical analysis of which has been carried
out in [9]; (see also [12]). [n fact ifin {5.30) weset s = e~ , ¢ = e~" and introduce

the notation x(8) = K(e™%), g(8) = V(e7?), and v(8) = u(e™?), we obtain

o(8) - /0°° k(8 — TYo(r)dr = ¢(8), B € [D,c0). (5.31)

5.2.2 Collocation methods and their numerical analysis

We now consider the numerical solution of the model equation (5.30) by collo-
cation and iterated collocation melthods based on piecewise polynomials. Recall

from §2.1 the definition of the space S™" of piecewise polynomials based on a
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mesh of (n+1) points on [a,b]. Here we have [a,b] = {0, 1]. "Therefore our mesh

points are defined as
fl,:0=np<m< - <oy <y =1L

For 1 < i < nweset l; = (ni-y,nl, hiy = mi — nia and h, = |l2}15xnh(j)'
Then S™ is the space of piecewise polynomials of order r on each subinterval
l;, i=1,---,n; (see §2.1). To use the space S™ for approximation of continuous
functions, we can view it as the space spanned by the independent Langrange
polynormials {;bj}"lv", where vV, = nr is the dimension of space §™" and ¥;’s
are discontinuous in {0, 1]; (refer to (2.12)). We shall use the space S™" in this
subsection, but in the next subsection, we shall need the slightly modified vanants
of §™. For that purpose and along the similar lines of defining 5™, let us
define S™" to be the general space of piecewise polynomials of order » on each

2V

subinterval /;, i = u,---,v with | <u, v < n and v < v (elementis in SJ" are

n.r

supposed to take zero value outside these subintervals). Obviously §"" = S}

and S™ = ST UST , forany | Su < n.

As in §2.1, define the nodes of some quadrature rule on [0, 1) by {&}] with

D<E <+ <€ < 1and the collecation points on [0, 1] by
5; = My + Elh(u)) 1<% ‘Vu:

where v = INT{(j — 1)/r) + 1, [ = j—(v—1)r.

Then a projection operator P, : C%0, 1] + 5™ — 5™ is defined by

(Pad)(s) = 5 d(s;)0i(s), s € 0.1, (5.3

i=1

[&4]
(]
N
p —

which interpolates ¢(s) at every collocation point, i.e.,

(’Pn‘nb)('si) = ¢(s;), =1, Ny

12



Using operator notation, the collocation approximalion w, € 5™ to solution u of

equation (3.30) is defined by (refer to §2.1)
(T - PuK)un = P,V (5.33)
Further the product integration approximation u, may be defined by
(T -KPo)u, =V, (5.34)

with the relation to u, given by

wn = Pat] (5.35)
and having the equivalent definition
=V 4+ Kup. (5.36)
From equations (5.30) and (5.33), we can ecasily get (as in §2.1)
w =1y, = (I —P.K)HT = Pau (5.37)
and then
e — wall < I = Pak)7HE- (T = Pa)ull, (5.38)

Here we are interested in the uniform or the supremum norm. From equations

(5.30) and (5.34), we have similarly
u~u,=(I-KP,)"'K(T-"Puu (5.39)
and further, using the identity
(T -KP)"'=T+K(T-P.K) 'Pa, (5.40)
we obtain for the product integratic_m solution

e = sl < len + call(Z = Pak) - (L =~ Paul, (5.41)

13




where ¢, c; are generic constants independent of n and the solution u. Next to

be considered are the following two questions :

(1). Does the stability hold i.e., can we prove that?

T - PK) Y| € c3, ¥n; (5.42)

(2). Does the consistency hold for (5.39) and (5.41), t.e., do the interpolation
errors ||(Z — P.)u|| and [|K(Z — Pn)ul} converge to zero uniformly (and with

a cerlain rate) as n — 0.

Let us first consider the second question. Due to the singular behaviour
of u [using piecewise polynomial approximations on uniform meshes(see (2.15))
ie, g, =ifn{i=0,---,n)l, the convergence rate would be only O(1/n?). See
[74, Ch.4], [S1] and the numerical tests in §5.3. To restore the optimal order of

convergence, we shall employ the so-called graded mesh(see (2.16))
Ma:me=(/n)?, i=0,---,n, ¢> 1L (5.43)

Further the following convergence results may be proven (see [74, Ch.d]).
THEOREM 5.6

(i) If the mesh grading ezponenl q in (5.43) salisfies ¢ > r[3, then

T = Pr)uflee < can™ |lullg;
(ii) If &,---,& are chosen lo be the Gauss-Legendre quadrature nodes shifted
to [0,1] and q > 2r/(3, then

IKAT — Pa)ulle < csn™ lll2rs ,

JRecall from §2.1 that such a stability result holds if K is compact.
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where the constants c;, cs only depend on ¢ and r. a

We now Lurn to look at the first question, that of proving (5.42). This seems
to be the difficult part of the analysis and the result is only proved in special
cases. For piecewise constant approximations with r = 1 and g > 1 the proof is
carried out in [74] and for the linear case with r = 2 it is only obtained in 18] for
the uniform mesh (g = ). In the case of »r = 2 and g > 1, the proof of stability
is known [rom [74, Ch.4] provided that #/2 < a < 37/2. Due to the lack of
complete theoretical proof of the stability result (5.42) for collocation methods,
we shall proceed to discuss their modified variants which overcome the problem.

At this point, we discuss the lil.lk between the numerical analysis of a com-
pact perturbation equation of (5.30) and that of the model equation (5.30) using
collocation methods. For simplicity of presentation, let us consider the following

equation which is a compact perturbation equation of the model equation (5.30)
(I-K-Llu=g, geC0,1] (5.44)

where £ is a compact operator in C°[0, 1). \When using collocation methods for
numerical solutions, all the above analysis for (5.30) will apply to (5.44) except
that of the stability result. Bul the stability can also be established through the

theorem below.

THEOREM 5.7
Let us consider equation (5.44) with K as defined in (5.28) and lel P, be the
projection operator as in (5.32). If both (I ~ K)™' and (T — K — L)™' ezist in

CO, then the stability result (5.42) for the model equalion (5.30) ensures thal for
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the perturbation cqualion (5.44)
Z = PuK — PoL)™')| € c5, for n sufficiently large.
Proof. From the following relation
(T = Po(K + L)) = (T = Pk )T = (T — PaK) "PaL), (5.45)
we shall try to show that |7,7'l| < ¢y for sufficiently large n, where
To =T - (Z-P.K)"P.L.

Define T = T — (T — K)'L. Then we see that 7 is invertible in C° since
T = (I —K)"(I-K -L). Now from the proposition L4 of L1, p.3] (i.e. if T~
exists and 7, converges to T uniformly, then 7,7! is uniformly bounded), we only

need to show that 47, — T} — 0 as n — oo. But we have
Ta—T = (T = Puk) ™ (Pa - DT - X)L, (5.46)

which converges to zero uniformly; (refer to Theorem L.4). Hence the proof is
complete. -
As for the discussion of the relation of the complete equation (3.8) with the
model equation (5.30), we refer the reader to {74, p.130I. The important point
is that the model equation (5.30) mimics the essential singular features of the

complete integral equation (5.8).

5.2.3 Modified collocation methods

The complete analysis of collocation projection methods has been recently carried

out through making small modifications either by changes to interpolation on
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intervals near geometric singularity {33] or by dropping one very small interval
coutaining the singular part [9]. [ both modified methods, the main modification
is on the projection space of piecewise polynomials. We now introduce the two
methods as applied to the model singular integral equation (5.30).

For the first modified method {Method 1), we shall use the new space 5 of
piecewise polynomials instead of the space S™ (as defined in the last subsection),
where S™ = ST U S . Here we employ the graded meshes [1,’s as defined by

5.43). Then a projection operator P, : C°[0, I] + §*" — S may be similarly
proj ! i i

defined by

“(5-"—1/2): s€ [y and ' <y,
('ﬁ,,u)(.s) = "
S u(s(s). s € LU Uln,
j=ir+1

where ¥';’s and s;'s are the same as those defined in §5.2.2 using the graded
mesh [1, of (3.13) and s;1y/2 = (go=1 + ns)/2. The modified collocation sclution

i, € S™ may be defined by (refer to (5.33))

(I - ’}BHK:)ﬁn = 7-)11"': (547)

and the modified product integration solution @), € C® by (refer to (5.34))

(Z = KB, =V, (5.48)

or

a, =V + Kia,.

Then using Lemma 5.5(z¢), z.e., the fact that [[K|| < 1, we can show the [ollowing

results of convergence and superconvergence; (see |33} for the proof).

THEOREM 5.8
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(i) Suppose the mesh grading ezponent q in (5.43) satisfies ¢ > r/B. Then
there ezisls an integeri = 1' 1.e. aspaceS.." such that for all n sufficiently
large

llu = Gallo < csn™"[lullrg;

(i) If &,---,& are chosen lo be the Gauss-Legendre quadralure nodes shifted
to [0,1] and q > 2r[8, then there exists an integer i = i* i.e. aspaceS.’

such that for all n sufficiently large

lu — @llee < con™ |luflars,

where the conslants cg, cg only depend on q and r. a

[n our second modified method (Method II), we shall employ the following

graded mesh in place of Tl in (5.43)

L+ ¢
nn.l: ""0=0: "’:':(;—:-E)q: 1= l.,"',Tl: (12 L (549)

where ¢ > 0 is some fixed integer. Note that for any £ > 0, all II,_,, mesh points

form a subset of 1,4 mesh points?. First we approximate (3.30) by the truncated

equation
(T - K)u, =V, (5.50)
where
(Ku)(s) = [(') [\‘(%)u(t)#, s € (0, 1],

with e(r) = g = (2£4)9 — 0 as n — co. To solve (5.50) by collocation methods
rl.-rl - ]

we here modily the space 5™ by using Srr = Sn. Then we may define the

1 This fact will be used towards the end of the subsection.
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projection operator Py, : €00, 1] + §™7 — §™ by

. O, s € Il,
(Pa)(s) =4
2 ulsi)i(s), s€ 0/,

where ¥;’s and s;’s are as defined as in §5.2.2 but using the mesh Il ¢ of (5.49).

The projection solution is analogousty given by (refer to (5.33))
(T = PuKo)tem = Pal, (5.51)
and the modified projection solution ], by (refer to (3.34))

(T - K. P, =V (5.

o
o
[{%]
p

[n such a setting, the following has been proved in {9].
THEOREM 5.9

(i) If the mesh grading ezponent q in (5.49) satisfies ¢ > r/3, then for n
sufficiently large

lw — italle £ O(n77) ;

(it) If &,---,& are chosen lo be the Gauss-Legendre quadrature nodes shifted

to [0,1] and q 2 2r[B in (5.49), then for n sufficienlly large

e — @yl £ O(n7"),

provided thal £ is appropriately larye in bolh cases. O

The two modified methods introduced above are both desirable and attractive
theoretically. The reason is that we have the uniform boundedness of (ZT—P,K)"".
But since they both involve one unknown parameter — i* for the first method
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(Method I) and £ for the second method (Method II), it may appear to hinder

the implementation. In practice however, the choice of i* = 0 for Method I and

£ = 0 for Method II is often satisfactory. Therefore it is possible and necessary

to make full use of the theoretical results and to build a practical and rcliable

strategy in numerical implementation. The following two points will clarily the

situation.

(a).

(b)-

Often the possible ill conditioning of collocation equations (caused by the
instability of discrete integral operator equations) can be revealed by the
algorithm used for their numerical solutions, when starting with z* =0 for
Method Ior £ = 0 for Method IL [n this case, larger values of i* or £ may
be successively tried to restore the stability, which will be achieved and will

not damage the asymptotic rate of convergence according to the theories.

Once the unmodified collocation coeflicient matrix has been calculated and
stored, it is not necessary to recalculate a new coefficient matrix when we
switch-to modified methods. Such a new matrix can be simply extracted
and formed from its unmodified counterpart of size N, ¥, with ¥, = nr.
In particular, by Method I, it will be of size m x m with i = {(n —1*)r +1°
and, by Method II, of size m x m with in = (n = £ — 1)r. The reduction

in sizes eflectively decreases the overall complexity in final solution.

5.2.4 Other numerical techniques

Although collocation methods discussed above are more often used in the engi-

neering practice (see [24]), other numerical techniques such as Galerkin methods

and Nystrém methods may also be useful as is the case for solving a gencral second
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kind integral equation (see [14] and Chapter 2). Extensions of these methods to
problems defined on non-smooth boundaries have been recently established; see
[32], [49] and the references therein. In [32], a complete error analysis of Galerkin
methods for (5.30) using piecewise polynomials on graded meshes is shown with-
out any modifications. As for Nystrdom methods, small modifications similar to
those in Method T are required to prove uniform convergence on graded meshes;

see [49] for further details.

5.3 Numerical experiments

We now present an example arising from the analysis of the boundary integral
equation of the Helmholiz equation on a wedge in order to illustrate the effect
of non-smooth solution on convergence rates. The equation to be solved can be

represented in the form

kssina

a(s) - %/Ol {-r;Hgl)(kr) + —F—H(ll)(kr)} o(s')ds' = f(s),

0< s <1,

witha=7=/10, k=50, =231, r=/s"+s>—2s'scosa and f(s) is found
accurately so the solution is o(s) = 5'/2e?™ = s!/2,

We shall experiment with the product integration collocation method (§5.2.2-
5.2.3) with piecewise constant and piecewise linear basis functions. Suppose that
the interval {0, 1] is subdivided into n small intervals with 0 = 70 <y < -+ <
a1t < 7n = |. Then in the case of piecewise constants, we collocate at the
mid-points of each interval, while in the case of piecewise linears we collocale at

the two Gaussian points on cach interval. The error is measured by (for a given

121



value of n with ¥, collocation points)

En = llow = oll = max{|lo;(s;) - o(s;)ll}

over all collocated points s;’s, where o, represents the product integration solu-
tion (refler to (5.34)). As in [63], using the error E,, we may calculate the esti-
mated order of convergence (EOC) by the formula EOC = log( En/E3,) [ log?2.
In Table 5.1 we show the results from using the uniform mesh i.e. using (5.43)
with ¢ = 1. Columns 3 and 6 denote the ratio between two errors of successive
mesh sizes; while columns | and 7 list the corresponding EOC value. From the
table, we see that all EOC values are below 0.5 but increasing as n increases.
So we may expect the asymptotic rate of convergence to be O(h'/?). Then we
employ the graded mesh (5.43) with ¢ = 4 for the piecewise constant case and
with ¢ = 8 for the piecewise linear case. The corresponding resulis are hsted in
Table 5.2. [t can be envisaged that the new rates of convergence are O(h?) and
O(h?) respectively, i.e. EOC x 2 and EOC = 4 respectively. [t should be noted
that here we need not apply the modified methods (§5.2.3) since no numerical

instability was observed.



Table 5.1: Errors of the uniform mesh case

N, Piecewise Constants Piecewise Linears
(i=0) E, En.;2/En | EOC E, EnfEq | EOC
16 22E-1 12E-1
32 20E-1 g [.11 15 | LLE-1 1.14 ! 19
l 64 | .16E-1 ; 1.19 25 : .88E-2 1.21 i 27
i 128 A3E-1 E .25 32 :: 69E-2 1.27 | 34
Table 5.2: Errors of the graded mesh case
N, Piecewise Constants i Piecewise Linears
(i* =0) E, E.a/En | EOC } En Enp/ Ea | EOC
1 |
16 T3E-2 i .728-2 |
32 25E-2 2.97 .57 ! D6E-3 12.8 3.68
64 72E-3 3.40 V.77 | 304 17.1 4.09
128 19E-3 3.70 1.89 || .I8E-5 18.1 4.18
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Chapter 6

Iterative Solution of
Boundary Element Equations

on Non—-smooth Boundaries

6.1 Introduction

[n Chapters 3—4, we discussed the application of some iterative methods and es-
tablished their convergence analysis for solving Fredholm integral equations of the
second kind with compact operators. However as we have seen in the last chapter,
boundary integral equations defined on non-smooth boundaries usnally possess
non-smooth operators. Therefore it is not a trivial task to extend or generalize
the iterative techniques developed in Chapters 3-4 for numerical solutions of such
integral equations. Obviously, the use of the conjugate gradient method as as an
efficient solver, as introduced in Chapter 4, does not appear to be feasible. The

reason is Lthat in general the spectra of the underlying integral operators are no
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longer clustered (refer to Lemma 3.3). As for multigrid methods, some work has
been carried out for the analysis and application of the methods; e.g. see [57|,
[86], [87) and [88]. The work so far on the convergence analysis of multigrid meth-
ods as applied to second kind integral equations with non-compact operators is
incomplete in the sense that only uniform meshes have been considered, which
are known to yield slowly converging approximations. Also the existing analy-
sis is mostly centred on proving the convergence of multigrid methods but the
equally important problem of overall efficiency is not fully studied. Furthermore,
in all these papers, the stability of discrete operators is only assumed, though
following the work of [18} such an assumption may be justified when employing
uniform meshes. [n this chapter we shall use the convergence results available
from Chapter 5 so as to prove the convergence of multigrid methods for the solu-
tion of the discrete equations. Therelore our analysis also ensures the convergence
of the discrete approximations to the solution of integral equations with optimal
orders. We shall also report on our experiments with the conjugate gradient (CG)
method as applied to some non-smooth integral equations.

As concluded in Chapters 3-4, for second kind integral equations with compact
operators, the two grid methods are more efficient than the conjugate gradient
method and they are almost as efficient as multigrid methads, yet being much
easier to implement. Hence in this Chapter we shall confine ourselves to the study
of two grid methods and the conjugate gradient method.

[n §6.2, under some appropriate assumptions, we first generalize the two grid
methods of Chapter 2 (for compact operator cquations) to solve the integral

equation of bounded linear operators with compact perturbations and then prove



the convergence resulls for these generalized two grids. The specific application of
the two grid methods of §6.2 to integral equations- on non-smooth boundaries 1s
dealt with in §6.3, where a very general scheme of operator splitling is presented
to gain good two grid efficiency. Some numerical experiments are carried out
in §6.4, where we compare several variants of the two grid methods. The final

section §6.5 is devoted to the experiments with the CG method.

6.2 General iterative schemes

Many boundary integral equations from practical applications can be character-

ized by a second kind integral equation of the form
(D+Clu= f(s), sE€la,b], (6.1)

where D = T + B is a bounded linear operator with bounded inverse D~* and C
is a compact operator in some Banach space X'. Here we let X' be the Banach
space of continuous functions over [a, b] with the supremum norm. For boundary
integral equations on smooth boundaries (refer to Chapter 2), we may specily that
D =171 and C = —K; (see (2.8)). While for equations on non-smooth boundaries
(refer to Chapter 5), we consider the model equation (5.44) which is equivalent
to (6.1) with D =T — K and C = —L. llere, the collocation projection method
is our prime choice for solving integral equations. However, the analysis of the
section will be valid for both the iterated collocation and the Nystrom method.

To concentrate on the analysis only, let us adopt the notation used in §3.1 and
use the setting of grids and approximate operators for simplicity of presentation.

Let us denote by {G[{]}52, a sequence of grids (with number of grid points {¥;}72,
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such that ¥, < N, < ---), on cach of which the approximate solution of {6.1)
is denoted by u; and the approximate operators of D and C are denoted by D
and C; respectively. For the iterated collocation method (refer to §2.1), G[{]
represents the collection of Ny collocation points and Dy = DPy and € = CPy
(for some projection operator Py); while for the Nystrom method (refer to §2.2),
G|[l] represents the union of all ¥, integration nodes' and the operators T, and C;
are defined through the composite interpolatory quadrature rule. Symbolically

we write the approximate equation as
(Dy + C)wls) = f(5), se€lab, (6.2)

ie.

(T + B+ Chui(s) = f(s), s<la,b) (6.3)
where w; € X. Evaluating (6.2) at the nodes {s}}}"" vields the linear system of
size Np x N

(D1 + Cuilsh) = f(s3), 55 € G[I). - (6.4)

The system {6.14) is first 1o be solved for the N unknowns u(s}) which are then

used to compute u(s) for other s € [a, b} via
wi(s) = f(5) = (B + Co)u(s).

To measure the discretization ecror, we may subtract {6.2) from (6.1) to obtain

w—u = (D + CY YDy =D+C - C)u, (6.5)

i.e.

I = wll < (Dr+C)7' |- 1D~ D+ Ch = Chulf. (6.6)

'In general, an r point interpolatory quadrature rule is applied to each of the { subintervals

in {a, b] so we have ¥y = [r,




Here in this section, we make the following assumplions (concerning (6.6)):
Al: the first term is uniformly bounded ie. |[(Dy+C)'fl < e

A2 the second term converges to zero as [ — oo, Vu € X.

Fotlowing Theorem 5.7, it can be shown that the assumption A1l is equivalent
to requiring {|D; || € ¢2 since C is compact in X. We remark that of the two
assumptions (i) Al is in general more difficult to prove; (ii) A2 can generally
be satisfied from the convergence of the interpolatory quadrature rule used. For
the moment, let us assume that both Al and A2 are true’ and concentrate on
investigating the convergence of iterative methods. For the application in the
next section, we shall discuss again the two assumptions.

By varving [ in (6.2), we form a sequence of approximate equations with
operators {D;} and {Ci}. Suppose that we choose two integers [ = m, n such
that » < m, correspouding to a fine grid Gfm| with N,, points and a coarse grid
G[nl with N, points respectively. Then we intend to solve the equation on the
operaticnal fine grid G|m]

(D +Cn)um = f (6.7)
by a two grid method i.e., repcatedly using the information ohtained cheaply [rom
a solution of a residual equation on the coarse grid Gin| in order to efficiently solve
(6.7). Reler to [14i and Chapter 3 for related two grid ideas and implementation
details. We shall now generalize the two grid ideas of Chapter 3. Here we start

with the generalization of Method [I.

{Method II|

2This implies the convergence of approximate solutions to the solution of the underlying

integral equation.
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To introduce the two grid method, suppose that there exists an approximation

u{7) for the solution of (6.7), with its residual r(}) = f — (D, + Crn)ul?). Then we

propose the following smoothing step
Dl = f = Coll?) i @) = D(f = Courl)?) (6.8)
and subsequently compuie the new residual
A = f — (D + Ca)al). (6.9)

It can be easily shown that

) = )+ D)
(6.10)
H) = —CaDo.
Now the correction equation for #7) on grid G{n| is given by
(D, + C o) = 7D, (6.11)

which is solved accurately by a direct solver (Gaussian elimination with partial
pivoting) for v{")(s?). The Nystrom interpolation is then used to give the correc-

~mn

tion function v{7)(s) for s = st =1, Ny

Doavl(s) = #7) = Cool) de. vl (s) = DA = Canl?). (6.12)

m

Hence our new approximation is naturally given by

w0 = g 3 () = D) DAY 1), (6.13)

m

Expanding the right hand side of (6.13) in terms of u{7}, r{7), we can obtain the
iterative formula in a more standard form (refer to §3.2)

u(n:-H) - '“(n:) + B.,.S;') (6.14)
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where B = D.YHT - |T = Ca(Dn + Ca) '€ D'} The iteration operator can be

immediately given by (assume A = D,y +Cr)

T - BA T—DHT [T = Coa(Dn +Ca) ' ICn D { D + C)

= D'CuD;'Con — D7) Ca(Dn 4+ Ca) ' (Dm + Cim)D;,'Cin

= DMCm — Ca{Dn +Ca) (D + C)ID;' Cn. (6.13)

Let us denote by q,lnl'n = ||Z — BA|| the two grid reduction factor. Then using the

boundedness of D! in (6.15), we have

nhl, < callCn = Ca(Da + Ca) ™ (D + C i D Cnll (6.16)
To further simplify :),ln['n, we shall require the following lemma
LEMMA 6.1
LetlU, V : Y — Y be linear bounded operalors in some Banach space Y and

U,, V, two operalor sequences defined on Y converging lo U, V pointwise (i.e.
salisfying U,z — Uz and Voo — Vz, Yz € Y as p — oo) respectively. Then
the uniform boundedness of either operator sequence will guarantee the pointwise

convergence UV, — UV ie UpVpr — UV, VT €Y as p — co.

Proof. Let us assume withoui loss of generality that ||(fp}] < ¢ Then for each

€Y,y =Vect wehave

1oV, = V) + Uy — UV

f{UpVpr — UV |

IN

el (Ve = V)il + 1Ly — UV

< dl(Ve = V)l + (e, = Uyl

which goes to zero as p — co. llence the lemma is proved. a
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Applying the lemma to terms in (6.16), we sce thal

C..D:' — CD-!' pointwise as m,n — oo,
} ) :

m

(6.17)
Ca(Dn +Ca) (D + Cn)D! — CD7' pointwise as m,n — 0o.

Since C is compact and from the relation

[Cm - Cn(pn + Cﬂ)-l(’Dm + Cm)ID;‘l

= (CuDZ' =CD ™) +[CD™" = Co(Dn + Co) " (D +C)DL'], (6.18)

we therefore conclude that r;,ln[.n — Dasm,n — co; {reler to {11, p.§] and Theorem

1.4). Thus we have proved the following convergence result.

THEOREM 6.2
The two grid method [T of (6.14) converges for sufficiently large values of m,n

with n < m. [n particular, its reduclion factor satisfies

lim nﬂn =10 O

m,n—oc

| Method I

We now generalize the Method I and then proceed to present its convergence
analysis; {refer Lo [14, Ch.3] and Chapter 3). Method [ is similar to Method [l
(based on (6.8)-(6.14)) except that the smoothing step (6.8) is missed out. In-
stead, with current approximation u{7), we go on to set up the correction equation
for v{7) on Gln|

(Da + Ca)ol) = (2, (6.19)

in place of (6.11). Then we employ the Nystrém interpolation equation to find

the correction function v{7)(s) for s = sto3=hey N

m

Duv{(s) = 71 = Cul) i wl(s) = DAL - Cari™). (6.20)

m m
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Finally our new approximation is given by

™ =) 5 4, (6:21)
which gives rise to an iterative formula for Method I
wdr ) = ol gy el (6.22)

where By, = DI = Co(Da + Ca)~']. The corresponding iteration operator is

given by (again assume 4 = D, + ()

T-Bd = T-D'T-Co(Dn+Co) '{Dim +Cm)

DN Com = Ca( D +Ca) 7], (6.23)

m

the norm of which ||Z — B, 4’| cannot be shown to converge to zero as m. n — oo.
In view of the sufficient condition (3.7), let us define ¢!, . = §(Z — B,4)*[i. Then

it is easy to verify that

L < calllCn = CalDa + Ca) (Do + C )| D5 Cal

+¢5)l{Cm = Ca(Dr + Co) H(Din + Ca)I D! Cn i

THEOREM 6.3
The two grid method | of (6.22) converges for sufficiently large values of m n

with n < m. In particular, its 2-step reduction faclor salisfies

lim ¢! =0
 Conn

m,n=-

Prool. Using Lemma 6.1 and by referring to (6.17) and (6.18), the proof imme-

diately [ollows. 0
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For implementation of both the method I and the method [l, we now present

the following detailed algorithm. Here we shali require these quantities :

D N, x N, matrix from operator D,, evaluated at G{m| points;

C.. : N, x N, matrix from operator C, evaluated at G[mn] points;

Cmn N, x N, matrix from operator C, evaluated at G|} points;

4, : N, x N, matrix from operator 4, = D, + C, evaluated at G[n| points,

and vector f,, with (fm); = f(p;), pj € G[m|, where D, is usually of some sparse
form depending on the boundary that defines D. Then starting from an initial
guess of u, = 0, we can describe our general two grid algorithm GTG-1/2

as follows :
0) Set rpy = fin; um = 0, and input TOL(tolerance) and go to step 3;

1) Find the residual on G[ml: rp = foo = (Dm + Con )t

2) Perform smoothing on G{m|: tm = um + D trm and rp, = =Cp D:lray;

(This step is for Method [I only)

3) Restrict the residual rm to Gln}: rn = R rm;

4) Solve exactly on Gln|: Anvn = ra;

5) Interpolate v, to obtain v, on Glm), vin = D7 (rm — Cunvn) ;
6) Add on the correction v 10 i, Um = Um + Vin;

7) If flunj| € TOL exit with solution in %n,; otherwise go to step 1.

Here the restriction operator R? may be taken Lo be the so-called injection oper-

ator, if we choose N,, = riV, for some integer ratio r and if we are using the panel
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method (piecewise constant approximations) or the Nystréom method of special
choices such that ail G|r] points form a subset of' G{m|. But in general RZ, rep-
resents the process of finding the residual r, on grid Glr], i.e., rp = fo — Anmim,
where A, is a N, % N,, matrix from operator A,, = D, + C,, evaluated at G[r]
points. If G[n] @ Gjm|, we may also obtain the r, values (on G[r]) from a simple
(linear) interpolation of the r, values.

It now remains to discuss the efficiency of both two grid methods. Inspection
of the algorithms reveals that both require the solution of Dnv = r for many
right hand sides. As is well known, the direct inversion of Dy, would require
O(N2) operations. Therefore the generalized two grid methods do not promise
to require only O(V?2) operations, the ideal two grid efficiency(refer to [52], (58]
and Chapter 3), unless the solution of the system D,v = r can be found in O(N2)
operations. Thus the complexity of the operator D is of great importance®. In
the next section however, we shall see that for a particular type of problem it is

possible to choose an appropriate operator D in order to solve Duv = r in O(V2)

operations, leading to practical algorithms.

6.3 Application to polygonal boundaries

Often in practice, non-compact operators in boundary integral equalions may
arise from either non-smooth kernels (see the Ng operator in §1.3-1.4) or non-

smooth boundaries (scc Chapter 3). Here we assume that the non-compactness

3We note that in [87] for a first kind integral equation, D happens to be a operator of
convolution kernel. Therefore, Pmv = 7 can be solved in O(N2) operations when a Fast

Fourier Transformation (FFT) algorithm is employed.
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of the integral operator is due to the non-smoothness of the boundary. Ll this
case, polygonal boundaries, as considered in [19], are of particular interests since
integral operators on general boundaries of curved corners will have the same
singular behaviour as those on polygons except for a compact perturbation; (refer
to [18]).

We see from Chapter 5 that second kind integral equations on boundaries

with a typical corner may be represented by (5.44) i.e.
(Z-K-L)(s)=V(s), 0<s<, (6.24)

which characterizes the complete integral equation (5.8), where L is compact in

C°[0,1]. To apply the results from last section, we shall rewrite (6.24) as
(D+C)(s)=V{(s), 0<s< 1, (6.23)

where D =T -~ K5, C=Ks—K - L and (Kso)(s) = fs K()e(1)%, 0<s <1
with 0 < § € 1 fixed, where D! exists since ||Ksl| < [[K]] < 1. This operator
Ks is somewhat similar to that defined in [37] and [88]. For § > 0, K — K will
be compact because of the continuity of its kernel, implying that C is compact.
Therefore (6.25) falls into the class represented by (6.1).

For the numerical solution of (6.25), we shall use the collocation methods as
introduced in §5.2. In order to set up a projection operator on G|I}, we can follow
(5.32) of §5.2.2 to obtain P, : C°[0, 1] + S*" — 5. Using Pi, we may define our

product integration approximation to ¢ in (6.25) as follows
(D( -t C,')‘{.l'il = V, (626)

where Dy = T — KsP; and C; = CPy; (refer to (5.34)). To give an error analysis
for (6.26), we can refer back to (6.6), which requires both the stability (A1) and
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system associated with D,, increases as the mesh grading exponent g increases
for the same §. Therelore, the theoretical complexity of our two grid methods is
O(N3), rather than O(NZ) which was the case with smooth operator equations
of Chapter 3. Nevertheless, efficiency of order O(IV2) may be practically restored
and observed because of the following two observations : (i) system Dpv = 7
may be solved efficiently by a secondary iterative process; see [86} and [87]; (Z)
although theories predict that the convergence rate of two grid methods goes to
zero as m, n — oo, in practice, we only require it to be less than 1 for convergence
and often very reasonable convergence can be observed once m,n > no (typically
np x 40). The effect of (iZ) is now expanded in more details. Essentially we shall
make special choices of D in order to solve Dpv = r more efficiently.

Minimum §-Algorithm (M§)

Suppose that N* is the largest order of linear system one particular computer
can handle. Then using rth order piecewise polynomials on a graded mesh (with

grading exponent g), we define

§ = (L) nt=INT [VT] (6.27)

n*

and choose § = §°, where INT].] denotes the integer part of a number. With such
a choice of § for setting up (6.25), we then adopt the first modified collocation
method (§3.2.3) with i = ¢~ = L. For any m < n', the projection operator P.. on

[0, "] is based on piecewise constant approximations. Therefore the matrix D

associated with operator D,, will be of the form
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D= (6.28)

~ X

the inverse of which is found in O(NV,,) operations and has the same sparse struc-

ture, given by

L .
(Dm)ij’ -/
(D)= 9 o, it j#L (6.29)
(Dem)ij : -
\ _——(Dm)ii(Dm)ll; t>1. 3=1

Thus the complexity of two grid methods is restored to O(.V2) operations. Ac-
tuallv. the idea may also be specialized. For given sufficiently large m.n: no <

m,n < n’, we may make this choice for §
§=8= (=), (6.30)

maintaining the complexity of two grid methods at O(N2) operations.

We note that the choice for §* in (6.27) may be generalized to

= ()

where 7 > 1. Further we may use the piecewise polynomial ST to define our col-
location projection approximations; (refer to §5.2.3). The matrix D, associated

with operator D, is now of the form
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where #, is a 7 x 7 full matrix, 45 is a (V, — 7) x 7 matnx and [ is the
) .

(Npm = 7) % (Nm — 7) unit matrix. The inverse of D, can be shown to be given

by

bt Aft 0
—."'lg."‘l_l I

The work for computing 47" is O(r*) and the work for the multiplication Ay A7"
is O(N,,7?). Therefore we only require O(N,,) operations to calculate D7! if we
fix 7. The case for the extreme choice 7 = 1 is discussed in (6.27)-(6.30).

Intermediate Operator Algorithm (IO)

Let us now adopt the second modified collocation method of §3.2.3 with £ = ().

To this end, we rewrite (6.25) as
(Z-T)(s)=V(s), 0<s< L, (6.31)

where 7 = K + £. Following (5.50), we first approximate (6.31) by an interme-
diate operator equation

(I =T =V, (6.32)
with (7.#)(s) = [} [((%)‘t,’)(f.)# + (LY)(s), e(m) = (£)? and m > no. Since J.
is now a compact operator, we may solve (6.32) by unmodified two grid methods
of Chapter 3. That is, we employ the two grid methods of last section with
the choiceof D = 7 and C = —7.. A complexity of O(N2) operations may be

expected. Refer to [14] and §3.3 for algorithmic details.

6.4 Numerical experiments

Here we solve the example given in §5.3 by various two grid methods discussed
in the previous section. We demonstrate and compare their convergence and cfii-
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ciency. [n all the following experiments, iterative solutions are terminated when
a residual in root mean square norm (RMS) less than TOL is obtained. The
choice for TOL should be based on expected level of discretization error and will
be discussed in more details. The number of iterations required to achieve the
desired accuracy is denoted by “STEPS” and the corresponding cpu seconds used
by Prime-750 by "CPU”. A direct solver requires CPU =0.2, 5.0 and 130.0 re-
spectively for solving a linear system of order 36 x 36, 108 < 108 and 32 = 324
We shall adopt the consistent notation amoeng all tables such that "q” denotes the
mesh grading exponent, “MIETHOD?” distinguishes " V.I” for variant 1 and "V.II”
for variant I of two grid methods and *** means no convergence. Throughout the
section, we shall use for numerical solutions the iterated collocation approxima-
tions based on both piecewise constant and piecewise linear approximations(§6.3).
Therefore, orders of convergence of both approximations are O(kY?) with uni-
form meshes (¢ = 1); while the graded meshes with ¢ > 4 and g > 8 respectively
should restore convergence orders to O(h?) for piecewise constant and O(h},) for
piecewise linear approximations.

As with all iterative methods, the stopping criterion has a great effect on the
actual efficiency of the methods. Ideally we would like to stop our iterations
whenever the errors are below the level of the discretization error as in general
there is little to be gained by solving the discrete boundary element equations to
levels of accuracy far smaller than the underlying discretization error |ju — wualf.
The precise knowledge of the discretization error is in general not available, except
that in our case the error is of the form O(n~=®) where a = 1/2, 2, 4 for example

depending on the discretization method and the smoothness of the solution (or
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the choice of the grading cxponent ¢). For our test problem, we can obtain some
knowledge of the exact discretization error by solving the system directly. We find
that the following choice for the tolerance TOL is appropriate so that it is below
our observed level of the discretization error : (i) with ¢ = 1, choose TOL=10"?
for any N, < 324; (ii) with ¢ = 1, choose TOL=10"2 for N, = 36, TOL=10""
for ¥, = 108 and TOL=10"% for &, = 324; (iii) with g = 8, choose TOL=10""
for Vv, = 36, TOL=10"° for ¥, = 108 and TOL=10"5 for ¥, = 324.

In Tables 6.1-6.2, we solve the integral equation by the so-called direct two
grid methods. By 'direct’ we mean the ‘unmodified’ variants i.e. two grid methods
applied to equation (6.31). We observe that two grid methods converge in all cases
and in particular convergence is faster as N,,, NV, increase. Since the integral
operator J = K + L involved here is known to be non-compact, we are unable
to justify theoretically the couvergence of direct two grid methods. Results from
Tables 6.1-6.2 show that the direct two grid methods converge at reasonably
fast rates. However in the 3D case, the slowing down in convergence due to the
presence of non-compact operators has been observed in [15] and [17].

[n Tables 6.3-6.4, we experiment with the general iterative schemes [or two
grid methods (§6.2-6.3) with a fixed cut § around the corner (s = 0). To compare,
we choose two different cuts & = (})7 and 8 = (5)7 (notice the dependence upon
the mesh grading exponent ¢). As expected, convergence of two grid methods
with the larger cut §; is [aster than that of the smaller cut §, but at the same
time the computational cost (e.g. in computing D;.') associated with §, is greater
than that with 8,. Comparing Tables 6.3-6.4 with Tables 6.1-6.2 respectively, we

see thal the convergence in the former two is overall much faster than that in

L



the latter two but CPU times are also greater in the former. Similar tests with
two grid methods using the general iterative scheme (i.e. using a general §) for
potential flow problems on non-smooth boundary can be found in [86] and [88],

where § = 5 is chosen. See also [57}.

In Tables 6.5-6.6, we present the results of solving the same integral equation
by the Minimum §-algorithm (§6.3). Here on the PRIME-750, the minimum §
is chosen to be §° = (45)? depending on the exponent q. We also present the
results from the comparable choice § = (ﬁ)q Finally in Tables 6.7-6.8, results
are obtained from applying the 10 algorithm (§6.3). The intermediate corner cut
is indicated by £(:V,) = ()7 Numbers in Tables 6.5-6.8 corpare favorably
with those of previous tables.

[n conclusion, we favour the use of algorithms Mé and IO from both the

theoretical and the practical points of view.

6.5 Application of the conjugate gradient method

Having looked into two grid methods for solving non-smooth integral equations,
we now consider the application of the conjugate gradient (CG) method, as in-
troduced in Chapter 4. Thus the study of iterative methods would be more
complete.

As is well known, the eigenvalues of a compact operator may cluster at one
point (zero); (refer to Theorem +1.3). But for eigenvalues of a non-comapct op-
eralor, such a simple clustering pattern may not be present. [t might be true
that eigenvalues of a non-compact operator (only duc to non-smooth boundaries)
do not accumulate at any point of an interval; (refer to Lemma 5.5). This may
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suggest that the use of the CG method for the solution of the linear systems
resulting [rom discretization of such non-smooth operator equations is not ap-
propriate although the method converges for any linear system asymptotically
(provided that the round off error is sufficiently small).

However it is usually true that a non-compact operator is approximaled by a
sequence of discrete compact operators and the approximate eigenvalue spectra
of these discrete compact operators often do possess a simple clustering pattern.
Therefore the CG method should not entirely be ruled out as an efficient iterative
method for solving non-compact integral operator equations.

We have observed, for our particular problem, that unlike the case of compact
operators the number Oy of eigenvalues outside the clustering region increases
as N increases. The difference in clustering behaviour would indicate that the
conjugate gradient method may loose its fixed step convergence property. How-
ever for a given value of ¥ the number Oy of eigenvalues outside a given region
is relatively small. Hence the present conjugate gradient method may still prove
to be efficient as a practical fast solver. Below we solve the same model problem
as in §6.4 using the CG method (Chapter 4) and present the related details.

[n Figs.6.1-6.2, we plot the approximale eigenvalue spectra of the non-compact
operator & plus an identity operator Z, i.e. A = T — s and its normal operator
B = A.A°, using the piecewise constant approximations. While in Figs.6.3-6.4, we
plot the corresponding approximate spectra from using piecewise linears. For each
figure, we have computed the eigenvalues of three discrete cases with ¥ = 50, 150
and 300 collocation points respectively. From these figures (6.1-6.4), we can

observe the clear clustering patterns of eigenvalue distribution around the point
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A = 1. Recall the convergence analysis of the CG method discussed in Chapter
4. There we claim that convergence of the CG method is very fast whenever
eigenvalues cluster. This certainly predicts a good efficiency of the CG method
when applied to our model problem. Hence we adopt the ALGORITHM -
conjugate gradients of §1.2 for numerical solutions.

In Tables 6.9-6.10, we list the results obtained from using the CG method for
both the piecewise constant and the piecewise linear approximations. The tests
are again carried out on PRIME 750 with the usual double precision arithmetic
(with around 14 significant figures). The stopping criterion is as chosen in §6.4.
We note that the CG method is quite fast for the case of uniform meshes (g = 1)
and gerenally slow for the case of non-uniform meshes (¢ > 1 i.e. when close
to the non-compact operator). Viewing the performances of the CG method
(Tables 6.9-6.10) as well as two grid methods (Tables 6.1-6.8), we may conclude
that all iterative methods® are quite efficient in terms of number of steps to
achieve the required accuracy and effective in reducing the solution time for linear
systems involved. In summary, two grid methods are more efficient than the CG
method as is the case with solving smeoth integral equations {Chapters 3-4). To
further improve the CG method, preconditioning techniques may be potentially
important. However much theoretical su-1d_v is needed towards the development

of such preconditioners.

Sprovided that the discretization method is of low order for the present CG method.
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Table 6.1: Direct two grid methods for the piecewise constant case.

q | METHOD | Fine[m] Coarse[n] | STEPS CPU
L V.1 324 12 L L5
36 L L9

108 L 75

108 12 I 0.2

!. 36 L 05

V.1l ; 324 12 L 29

36 I 33

108 1 89

108 12 I 04

i 36 L 0.6

4 V. 324 12 12 17.6
36 4 6T

5 108 2 9.4

108 12 408

36 207

VLI 324 12 $ 224

5 36 3 9.1

108 2121

108 12 310

36 2 1.0
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Table 6.2: Direct two grid methods for the piecewise linear case.

q | METHOD || Fine[m] Coarse[n} | STEPS CPU
1 Vi 324 12 1 15
|
36 l 2.0
108 R
108 12 I 0.2 }
36 | 1 0.3
VI 324 12 I 2.9 i
36 | 34
' I
108 | 192,
i 108 12 ‘ I 0.4 :
; 36 L0 :
8 A 324 12 18 32.9 E
36 6 133
{ 108 2 (2.
108 12 11 3.9 !
36 319 |
V.1l 324 12 13 37.0
36 4125
108 'y |.3.ni
108 12 6 2.1
36 315
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Table 6.3: Ceneral iterative schemes [or the piecewise constant case (fixed §).

ql 6 METHOD {| Fine[m] .Coarse[n] | STEPS CPU
L VI 324 12 415
i 36 4 82

108 4 15.0

108 12 4 09

36 4 L3

A 324 12 3 1.8

36 3 124

108 3 188

108 12 314

36 317

| VI 324 12 4 6.3
| & 36 472
108 4140

108 12 4 0.8

| . 36 4 1.2
| ARl 324 12 3 10.0
' _ 36 3 106

108 3 17.0

| 108 12 3 1.2
36 3 L5

4 L v 324 12 10 174
(3) 36 10 18.9
108 10 28.4

! 108 12 8 L7
! 36 § 23
|l V.11 324 12 10 37.8
36 10 39.2

. 108 10 48.5

108 12 7T 3.1

36 736

_ V. 324 12 10 15.9

| (T!,.,)‘ 36 10 174
: 108 10 27.1

108 12 8 16

36 8 22

V.11 324 12 10 33.1

36 10 34.2

108 10 43.7

108 12 T 27

36 7T 32
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Table 6.4: Ceneral iterative schemes for the piecewise linear case (fixed §).

ql § METHOD || Finefm] Coarse[n) | STEPS CPU
1 V. 324 12 1 24
L 36 I 28
! 108 I 83
108 12 1 0.3
36 I 05
V.11 324 12 I 45
36 1 5.0
108 1 104
I 108 12 Il 05
f 36 I 0S8
|

. A | 324 12 1 63
SR 36 121
o 108 1 2.0
; 108 12 4+ 08
! 36 1 05
! A 324 12 3100
. 36 - 1 39
; 108 193
: I 108 12 3 1.2
| il 36 1 0.7
8 . V. 324 12 ‘ '

, )
(4) 36 5 96
108 2 104
i 108 12 ' *
! 36 3 L0
VI 324 12 d !
36 1 16.2
: 108 2 145
108 12 ¢ *
36 3 LT
. V. 324 12 " ¥
() 36 ' !
o 108 2 96
- 108 12 ’ ¢
36 ' ¢
V.1 324 12 + +
36 6 206
108 2 13.1
108 12 ¢ ¢
36 ¥ *
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Table 6.5: Minimum §-algorithin (MJ) for the piccewise constanl case.

q 6 METHOD || Fine[m] Coarse[n] | STEPS CPU

i ] 17400 VI 324 121 I 15

z 36 | L 1.9

108 | I 75

108 12 | 1 0.2

36 | 1 05

VI 324 12 | L 23

36 | 1 33

L0S ; L 8.9

108 12 I 04

36 , 1 06

Co 1324 Vi 324 12 113
; 36 . I L9

; 108 ' 1 75

.| 1/108 108 12 I 0.2

36 i 05

1/324 v 324 (2 129

| 36 1 3.3

1 108 | I 89
: 1/108 108 12° L Q4]
g 36 1 06,

4 ) V.l 324 12 12 176

] () 36 1 6.7

| 108 | 293
' 108 12 4 08|

36 | 2 0.7

! V.11 324 12 | 8§ 225

' 36 3 9.1

i 108 2 122
: 108 12 3 L0

: 36 ¢ 2 L0
() VI 321 12 | 12 176"

: s 36 | 4 6.7

L 108 | 2 93

; ‘ 108 12! 4 0.8

(%) 36 . 2 0.7

e VI 324 12 | s 225

L 36 3 9.

- () 108 2122

" 4 108 12 i 8 27

| (m) 36 | 314
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Table 6.6: Minimum §-algorithm (M§) for the piecewise linear case.

2
o
<

q ] METHOD || Finejm} Coarse[n| [ STEPS

L 17400 V.1 324 12
36
108

108 12
36
V.l 324 12
36
108
108 12
36

—h o =N = N
SO mum OO N—w
St =] =0~ Ut $=OO

1/324 v.I 324 12
36
108
1/108 108 12
36
1/324 V.11 324 12
: 36

108
1/108 108 12
36

_—l = = Y e BT e DD
SO~
D~ DL~ O DO

OO mLan

. V. 324 12
(%) 36
108

108 12
36

V.1 324 12
36

108

108 12
36
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Table 6.7: Intermediate operator algorithm (/Q) for the piecewise constant case.

q | METHOD | Fine[m] Coarse[n] | STEPS CPU
1 Vil 324 12 1 1.5
36 l 1.9
108 | 7.3
108 12 | 0.2
| 36 l 0.5
VIl 324 12 { 2.8
36 ! 3.2
108 l 8.6 :
108 12 1 0.4 .
| 36 I 0.6
4 Vil 324 12 12 169
36 4 6.4
108 2 9.2
108 12 d4 0.7
36 2 “'7'
VoI 324 12 8 219
36 3 8.9
108 2 119
108 12 3 L.0
36 2 L.0
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Table 6.8: Intermediate operator algorithm (/0}) for the piecewise linear case.

q | METHOD || Fine[m] Coarse[n] | STEPS CPU
L VI 324 12 I L6
36 I 2.1
108 178
108 12 L 02
36 L 05
VI 324 12 : L 2.9?
36 } 34
| 108 1 9.2
' 108 12 : L04
| 36 I 0.7
8 VI 324 12 1S 27.0
36 6 10.6 1
108 : 2 1021
108 12 2.2,
36 SRR
VI 32.1 12 13 36.8 '
36 1125
! 108 2 1238
108 12 6 2.1
36 315




Table 6.9: The CG method with piecewise constant approximations (CPU times).

q | Size N | Number of CG Steps | CPU Scconds
l I 36 5 0.2
108 b3 L.8
2 324 ) 15.6 i
| 36 L3 0.6 |
L0S 29 3.2 !
324 42 131.3

Table 6.10: The CC method with piecewise linear approximations (CPU times).

T :
q | Size N i Number of CG Steps | CPU Seconds ;
l 36 5 ‘ 0.2
. ]
108 b) 1.8
i 324 3 16.2
| e | .
L 36 ; 31 1.4
|
i 108 57 20.1
| 324 89 291.0
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