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ABSTRACT 

SPATIAL AND SEASONAL VARIATION IN THE PERFORMANCE OF 
ALGORITHMS FOR DERIVING IN-WATER PROPERTIES 

FROM OCEAN COLOUR 

Anthony Guy Westbrook, BSc. Hons. 

The on-going calibration and validation of visible satellite imagery remains a core 
activity of the scientific community in pursuit of high quality data characterising the 
oceanic chlorophyll field, providing input to models assessing primary productivity 
and the potential role of the oceans in climatic regulation. This work serves to 
examine the operational characteristics of semi-analytical algorithms that are 
designed to derive key optical properties from space born observations of ocean 
colour. 

The collection of vî ater samples contemporaneously vi/ith precision profiled 
radiometry conforming to similar spectral bands to those of the NASA Sea Viewing 
Wide Field of view Sensor (SeaWiFS) was planned and executed, with appropriate 
field sampling techniques developed in accordance with the SeaWiFS Ocean 
Optics protocols (Mueller and Austin, 1995). Data were collected during extensive 
fieldwork sampling at a near coastal survey site and during two deep Atlantic 
researctT" programmes. 

Histoncai and recently developed algorithms designed to retrieve the diffuse 
attenuation coefficient at 490nm and chlorophyll-a pigment concentrations from 
upwelling radiances were applied to the optical data, to compare the 
mathematically retrieved in-water properties with the values measured in-situ. The 
radiometric data were then used to generate general and local algorithm 
modifications to assess possible differences in the mathematically retrieved values. 
Statistical analyses of the errors in mathematical retrieval of in-water properties 
identified stmctured variability resulting from the empirical approach to algorithm 
generation, supporting the point of view that locally constrained algorithms provide 
a method of achieving significantly improved results. 

The problems associated with the derivation of semi-analytical algorithms are then 
discussed and errors analysed. The new algorithms generated here are found to 
compare well with their source data and with work by other investigators. 
Systematic variability was found within the data sets and the affect this has on the 
determinations is discussed. 

It is suggested that data users be afforded details of the equations employed in the 
production of readily available remote sensing products, placing them in a position 
where they are better able to assess the data in the context of their work. 
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Chapter 1: Introduction 

1. AIMS AND OBJECTIVES 

The research presented in this thesis was undertaken through the sponsorship of 

the Natural Environment Research Council (NERC) as part of the SeaWiFS 

Exploitation Initiative (SEI). The wori< was funded in recognition of the importance 

to the research community of continued investigation into the quality of satellite 

derived observations of key bio-optical parameters of the surface mixed layer that 

may be determined by satellite remote sensing. 

The aim of this project is to optimise the performance of published algorithms used 

to derive specific remotely sensed products from the colour of the oceans. Several 

algorithms are available (for features such as the ASOnm diffuse attenuation 

coefficient and chlorophyll-a) but they are spatially and temporally limited. In order 

to address these limitations this project vwll; 

• Collect high quality bio-optical data for use within the algorithms; 

• Use that data to construct the empirical relationship between the in-water 

parameters and the radiometric input; 

• Assess the en-or distribution between the retrieved and measured variables to 

compare existing and new algorithms (which have arisen from this wori^) and to 

describe any improvement. 

• In addition, using the approach to pigment grouping by Bidigare et al. (1990), and 

analysis by Aiken et al. (1995). investigate the influence of pigment groups 

other than chlorophyll-a on ocean colour and the feasibility of retrieving these 

parameters from the radiometry. 
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1.1 Introduction 

The activities of mankind are changing the atmospheric concentration and distribution 

of greenhouse gases and aerosols. This can produce a radiative forcing by changing 

the characteristic reflection or absorption pattems of solar radiation by the Earth's 

surface and atmosphere, or the consequent emission and absorption of ten^strial 

radiation (Houghton et a/.. 1996). One such gas is carbon dioxide. CO2. 

Away from the influence of land, the many hued nature of the ocean surface when 

viewed remotely results from the presence and activities of microscopic organisms 

that make up the base of the marine food chain (Aiken et a/. 1992; Kirk, 1994; Ikeda 

and Dobson. 1995). The autotrophic organisms that make up the phytoplankton use 

CO2, one of the building blocks of life, through its role in the process of photosynthesis 

(Williamson, 1990; Hall and Rao, 1991; Hooker e/a/., 1992; Kiri<, 1994). Increasing 

atmospheric concentrations of CO2 could cause enhanced growrth in marine primary 

producers, with associated increases in carbon fixation and the subsequent removal 

of excess CO2 from the atmosphere (Williamson, 1990; Watson et a/., 1991; Aiken ef 

a/., 1992; Robins a/., 1996). 

The greenhouse effect is a natural process that keeps the planet Earth in moderate 

temperature regulation, as without heat-absorbing gases in the atmosphere the 

average surface temperature would be 33°C colder than the present figure which, 

excluding Antarctica, is 15°C (Williamson. 1990; Houghton e/a/., 1996). 

The CO2 concentration in the atmosphere has increased mari<edly over the past 

100 years due to anthropogenic inputs; an observed increase of SOppmv (from 

310ppmv to 360ppmv) has been observed between 1955 and 1995 at Mauna Loa, 

Hawaii (Asrar and Greenstone, 1995). Aided by contributions from other 
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greenhouse gases, such as methane, nitrous oxide. halocartDons and ozone, this 
trend is continuing at a rate which is expected to produce significant worid-wide 
warming of between 0.9 and 3.5°C by the year 2100. Even the lower projection 
requires an average rise greater than any seen in the last 10.000 years (Houghton 
et a/., 1996). CO2 is removed from the atmosphere by a number of processes that 
operate on different time scales, and is subsequently transferred to various 
reservoirs, some of w^ich eventually return it to the atmosphere (Houghton et a/., 
1996). The fastest process is the uptake by vegetation in the ten-estrial and marine 
biosphere, with long term removal of part of this CO2 to the ultimate sink, the deep 
ocean sediments. Carbon is fixed in plant and animal material through primary and 
secondary production then by the processes of deep-water chemistry, ecology and 
sedimentation (Lalli and Parsons, 1997). 

The two major bio-optical variables derived from ocean colour data are the near-

surface chlorophyll-a concentration, units: mg m'^, and the diffuse attenuation 

coefficient at 490nm. Kd{A90nm), units: m'\ The former parameter leads to maps 

of global phytoplankton distributions which can be used as data input for models to 

estimate the role of the oceans in the regulation of atmospheric CO2 (Aiken et al, 

1992). Kd(490n/77) describes the biologically mediated absorption of light within the 

surface layers of the sea; a high attenuation coefficient means that light is 

absorbed rapidly with depth as a result of material in the water This process can 

cause significant heating and affect the physical structure of the upper water-

column (Sathyendranath etai, 1991). Research by Zaneveld etal. (1993) 

indicates that Kd(490nm) can also be used to estimate the depth of the euphotic 

zone, at which the downwelling photosynthetically available radiation (PAR) 
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between 400-700nm. has fallen to 1 % of its surface value (Morel and Berthon, 
1989). 

The birth of satellite oceanography was probably in August 1964 at Woods Hole 

Oceanographic Institute (WHOI) v^en a meeting entitled "Oceanography from Space" 

was held. After various experiments, the Coastal Zone Colour Scanner, CZCS. was 

incorporated into the NIMBUS-7 satellite which was operational from 1978 until 1986. 

This was the first dedicated ocean colour viewing system which was intended as a 

proof of concept sensor only but produced a time series of global imagery with an 

accompanying ground tmthing calibration and validation effort (a process v\/here by 

remotely sensed observations are matched with contemporaneous observations 

made in-situ). This extended beyond its anticipated operational phase (Austin and 

Petzold. 1981; Claris, 1981; Holligan etal., 1989). 

The success of the CZCS mission set the scene for future ocean colour viewing 

satellites. The Modular Optoelectronic Scanner (MOS), designed and built by the 

Institute for Space Research (Germany), was launched 21 March 1996 onboard the 

Indian Remote sensing Satellite (IRS-P3), and has been providing colour imagery over 

17 spectral channels covering the visible and infra red, IR. The repeat cycle is 24 

days and the satellite is not dedicated solely to ocean colour viewing as it also canies 

sensors dedicated to extra ten^strial research. 

The Ocean Colour Temperature Scanner (OCTS) was launched by the National 

Space Development Agency of Japan (NASDA) on board the Advanced Earth 

Observing Satellite (ADEOS). This sensor successfully collected ocean colour data 

from August 17 1996 until June 30 1997 v^en a power failure prematurely ended the 

mission. The OCTS radiometer had eight nan-ow spectral bands in the visible and 4 in 

the IR, with a repeat cycle of three days. 
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The National Aeronautic and Space Administration (NASA) Sea viewing Wide-
Field-of-view Sensor (SeaWiFS), earned on the ORBIMAGE 2 satellite, was 
successfully deployed in August 1997 and the first images were received during 
September of the same year. The radiometer has eight narrow spectral bands, six 
in the visible range and two in the near IR (see Table 1.1). The sun-synchronous 
polar orbit allows a global repeat visit every 24 hours. It is the high level 
specification of the SeaWiFS radiometer and the sophistication of the 
accompanying ground truthing calibration and validation experiments (building 
upon all that had been learned through the CZCS mission) which enabled the 
project goals for sensor performance to be met as reported by McClain et a/. 
(1998). 

With the advent of sophisticated satellite observation systems in the last 15-20 

years, oceanography has entered a new era. It is now possible to routinely obtain 

ocean basin-wide information within a few hours of observation of mixed layer 

phytoplankton biomass distributions from ocean colour (Smith and Baker, 1978; 

Robinson, 1985; Williamson, 1990; Hooker ef a/.. 1992; Aiken ef a/., 1995). This 

may be achieved to an accuracy of +/-35% over the range of 0.05 to 50 mg m'^ 

(Hooker ef a/., 1992) using the optical signature of the ubiquitous phytoplankton 

pigment chlorophyll-a. From these data it is possible to investigate the surface 

mixed layer of the marine biosphere to quantify its variability and to obtain baseline 

data against which future spatial and temporal patterns of change may be 

assessed (Hooker ef a/.. 1992; Lalli and Parsons, 1993; Houghton ef a/.. 1996). 

These data fomri one of the inputs into the increasingly sophisticated coupled 

atmospheric and oceanic general circulation models (GCMs) which are the tools of 

future climate change prediction (Houghton ef a/., 1996). 
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Table 1.1. The SeaWiFS band set and some in-water characteristics to which they 

relate. 

Band SeaWiFS 
Wavelength, 
nm, and 
centre, A. 

Approxi-
mate 
Colour 

In-water phenomena to which the bands 
relate (description is from shorter 
wavelengths to longer wavelengths). 
Interpretation based on data collected by 
Bidigare efa/. (1990). 

1 402^22 
(412) 

Violet • dissolved organic material (DOM) high 
absorption (decreases with longer 
wavelength) 

• phytoplankton pigment low absorption 
2 433-453 

(443) 
Blue • chlorophyll-a (CHL-a) maximum blue 

absorption 
• increasing carotenoid absorption 
• increasing chlorophyll-b (CHL-6) 

absorption 
• increasing chlorophyll-c (CHL-c) absorption 

3 480-500 
(490) 

Blue • CHL-a minimum absorption 
• decreasing at)Sorption 
• CHL-c decreasing absorption 
• Photosynthetic carotenoids (PSC) high 

absorption 
• Photoprotective carotenoid (PPG) high 

absorption (decreasing) 
4 500^20 

(510) 
Blue/ 
Green 

• CHL-a increasing absorption 
• CHL-b minimum absorption 
• CHL-c minimum absorption 
• PPG minimum absorption. 
• PSG decreasing absorption 

5 545-565 
(555) 

Green • GHL-a, CHl-b and GHL-c increasing 
absorption 

• PSG low absorption (decreasing) 
• PPG zero absorption 
• DOM low absorption 

6 660-680 
(670) 

Red • CHL-a red absorption maximum 
• CHL-b and GHL-c decreasing absorption 
• DOM low absonption 

7 745-785 
(765) 

Infra red • atmospheric correction 
• Phytoplankton pigment zero absorption 
• DOM zero absorption 

8 845-885 
(865) 

Infra red • atmospheric correction 
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It is the interpretation of these input parameters that forms the focus of this wori<, 
which further explores the relationship between the light field as it would be viewed 
by SeaWiFS, and the optical properties of the medium driving the remotely sensed 
observations through modelling of data collected in-situ. This wori< therefore 
serves three purposes: 

(i) to provide data for the calibration and validation of SeaWiFS; 

(ii) to test existing algorithms relating ocean colour imagery to in-water 

properties (see chapter 3); 

(iii) to assess the performance characteristics of new algorithms arising from the 

field measurements collected (see chapter 8). 

The proposed wortc plan was centred on the collection of contemporaneous in-water 

data (the apparent optical properties of the medium, AOP, and phytoplankton 

pigments) and remotely sensed observations. Because the delayed launch of 

SeaWiFS (three years) meant that it was only possible to collect the in-water 

observations presented here, no satellite ground tnjth match-ups were possible. 

As is the case in soil with ten-estrial plants growing on land, natural seawater forms a 

medium in which a range of photosynthetic flora grow, these organisms are highly 

diverse and vary in colour, albeit often very subtly. With this in mind, the field 

sampling phase of the wori< presented here covered a diverse range of bio-optical 

regimes. It follows that the attenuation of light in one locality that is attributable to a 

given in-water dominant algal group, and hence pigment(s), may not be so at 

another location where the water has a different phytoplankton composition and 

hence pigment assemblage. If additional material not related to the standing algal 

crop is also present in the water, then its colour will also become a function of the 
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prevailing sedimentology as well as dissolved organic material (of both organic and 
inorganic origin) (Jeriov. 1968; Gordon and Morell 1983; Dyer, 1986; Kirt^. 1994; 
Aiken et a/., 1995). The presence of these materials within the particulate and 
dissolved fractions of seawater leads to the concept of type case 1 and type case 2 
waters, a summary of which is presented in figure 1.1. This study was involved 
primarily with sampling in type case 1 waters. 

C A S E 1 WATERS 
(4) Re-suspended sediments 

(1) Living algal cells (5) Terriginous material 
(2) Associated debris of (6) Additional Dissolved organic 

organic origin material from sources other 
(3) Associated dissolved organic than organic origin 

material (7) Anthropogenic influx 

C A S E 2 WATERS 

Figure 1.1. The broad optical classification of water types (Gordon and Morel, 
1983). 

1.2 Introduction to the field sites 

The field work was earned out in three parts: 

(i) a seasonal study at a near coastal site (station L4) in the western English 

Channel from January to September 1995; 

(ii) a spatial variability study from the UK to the Falkland Islands, the Atlantic 

Meridional Transect during the first cruise of the programme (AMT-1) from 

September to October 1995; 
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(iii) a second spatial variability study from Iceland to a station at 20°W / 37°N 
near the Azores during June and July 1996. The latter work was in support 
of the Natural Environment Research Council (NERC) Plankton Reactivity in 
the Marine Environment (PRIME) study. 

The following sub-sections provide a general understanding of the location of the 

sampling sites. 

1.2.1 Coastal fieldwork campaign at station L4, Plymouth 

Station L4 is located in the western English Channel at 50°15.0'A//04°13.0Wand 

sampling at this site has been extensive over several decades by staff of the 

Marine Biological Association. MBA. and more recently their sister organisation. 

Plymouth Marine Laboratory, PML. Data collection in support of this study was 

undertaken coincident with continuing MBA-PML sampling programmes using the 

research vessel Squilla (Holligan and Harbour, 1977; Lavender ef a/., 1996; Pond 

efa/.. 1996; Lavender e/a/., 1997). 

The sampling programme ran weekly from January to September 1995, weather 

and ship availability permitting. Figure 1.2 shows a map of the sampling site 

location. 
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50"20'N 

50°I5'N 

50°10'N 

SO '̂OS'N 

30 m 

50m 

+ 

Hand 
Deeps 

Plymouth 

L4 
50° 15' N, 4 ° 1 3 ' W 

Eddystotie 
R(Kks 

4"30'W 1 
4*'20'W 

West 
Ruts 

30 m 

50m 

4''10'W 4°00'W SO'̂ OO'N 

Figure 1.2. The location of the L4 sampling site off Plymouth in the western English 
Channel, and inset the general location of the site within the Bntish Isles. 

1.2.2 The f irst Atlantic Meridional Transect, AMT-1 

AMT-1 crossed the Atlantic Ocean from 52°N to 52°S aboard the British Antarctic 

Survey (BAS) vessel RRS James Clark Ross (Robins et a/., 1996; Westbrook et 

a/.. 1998). see figure 1.3. In the North Atlantic the cruise track left the western 

approaches to the European continental shelf in a westerly direction until reaching 

the 20°IV meridian before turning south. Apart from an unscheduled visit to 

10 
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Madeira, the track maintained this heading until 9.24°A/ / 20°UV before turning south 
west, traversing the south Atlantic oceanic gyre. The track then followed the 
Brazilian coast at a distance of approximately 200 nautical miles. After a logistics 
stop in Montevideo (Uruguay) the last section of the cruise programme terminated 
at Stanley, Falkland Islands. The AMT-1 pigment data collected during this work 
have been incorporated into the NASA SeaWiFS algorithm generation data base. 

60 N 
60 W 40 W 20 W 

40 N 

20 N 

20 S 

40 S 

60 S 

North 

r Azores Azores 
Stream 

Current Front 

CWB/ Cape 
Verd^F -

razil 
Ctnrrent 

A Sub Tropical 
i - .^ Front 

Falkland 
Istes 

A M T l 
A M T 2 

Figure 1.3. RRS James Clark Ross cruise track during AMT-1 (23/09/1995 to 
24/10/1995), including the major regional current features. Key: NEC-North 
Equatorial Cun-ent. ECC-Equatorial Counter Current, SEC-South Equatorial 
Current, FC-Falklands Cun-ent, CWB- Central Water mass Boundary, MAR-
Mid Atlantic Ridge. 

11 



Chapter 1: Introduction 

1.2.3 The Plankton Reactivity in the Marine Environment (PRIME) cruise 

The research cruise on board RRS Discovery ^rom Iceland to 37*A// 20*14^during 

May and June 1996 was part of the PRIME study, which was concerned with the 

role of plankton in the food chain and associated biogeochemical cycling. 

lOOOm S T A R T 

lOOOm 

1000m 

SÔ N 

CTD stations 
> Optics stations 

0̂  
30Pn 

Figure 1.4. RRS Discovery cruise track, July 2 to July 21 1996. 

i : 



Chapter 1: Introduction 

The cruise was divided into three parts. Firstly a process study on a cold core eddy 
south of Iceland was undertaken; secondly, a survey of the physical and biological 
structure of the waters along the 20'W meridian from SO^'N to 37**A/ (see figure 1.4); 
and thirdly an eight day Lagrangian time-series process survey at 37'A/ / 20'W. The 
work described here was carried out during the second and third parts of the cruise 
(Westbrook eta!., 1999). 

1.3 Thesis overview 

Chapter two is gives the reader a background in the fundamentals of both in-water 

and air-water interface optical theory as applicable to ocean colour remote sensing 

calibration and validation exercises (satellite 'match ups' or 'ground truth'). Also 

covered is a description of the analytical basis of the two band algorithm and the 

various radiometric inputs and a section introducing the optical characteristics of 

the main constituents usually encountered while undertaking contemporaneous 

bio-optical sampling is also included. In chapter 3 the algorithms under 

consideration are discussed. In Chapter 4 the optical methodologies that were 

developed in preparation for the field sampling and concun-ent instnjment 

calibration are introduced and explained. In chapter 5 the sampling quality control 

procedures employed during data analysis and the statistical test used to 

demonstrate how the algorithms perform are presented. Algorithm performance is 

assessed in terms of statistically significant differences in the shape of the enror 

distribution of the measured versus retrieved parameter(s). 

In Chapter 6 an introduction to the phytoplankton pigments identifiable by HPLC is 

given, as well as details of the sampling, storage and analysis procedures 

13 
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employed. Chapter 7 contains the results arranged by field work session, and in 
chapter 8 the analysis and interpretation of these results is illustrated. 
In chapter 9 conclusions of the research are drawn, with suggestions for future 
work. Some proposed solutions to technical problems encountered are presented 
in appendix 2, while appendix 3 contains selected publications arising out of this 
and other work executed during the period covered by this research. 

14 
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2. OPTICAL THEORY 

In this section the optical theory employed in later chapters is presented. The text 

follows the definitive work presented in Kirk (1994) with some reference to Mobley 

(1994). 

2.1 LIGHT AND ITS PROPERTIES 

Electromagnetic radiation is energy emitted from a body and varies as a function of 

the thermodynamic state of that body. The energy emanates as electromagnetic 

waves, the length of which distinguish the various components of the 

electromagnetic spectrum e.g. gamma waves {^.03A), X-rays i^A), visible light 

(^=655nm), RADAR (^Ocm) and radio waves («300m). The bandwidth of the 

emitted spectrum depends upon the inherent energetic state of the source and 

may change as, for example, the body cools. This study is concerned with the 

visible band from 400nm (deep violet) to 700nm (dark red). This band constitutes 

38% of the solar irradiance incident at the Earth's outer atmosphere, and the use 

of the light in this narrow band by autotrophic organisms makes it essential for life 

on Earth (Kirk, 1994). 

2.1.1 The geometric notation describing the light field 

Consider a downward and upward beam of light, both in the same vertical plane. The 

downward beam has zenith angle 0, the upward beam has nadir angle 6>,, (equivalent 

to a zenith angle of ^80^-6^). Assuming that the x-y plane is the vertical plane of the 

15 
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sun. or any other reference vertical plane, then ^ is the azimuth angle for both beams 
of light (Kirk, 1994). as illustrated in figure 2.1. 

Honzontal 

Z >| 

Vertical 

Figure 2.1. The angles defining direction within a light field. 

2.2 PROPERTIES OF THE LIGHT FIELD 

Energy is emitted from a light source as electromagnetic radiation in accordance 

with the geometric convention outlined in figure 2.1. The following section details 

how this radiating energy is quantified, with particular reference to those quantities 

used to characterise ocean colour in the context of remote sensing 

16 
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2.2.1 Radiant energy 

Radiant energy is that carried by an electromagnetic wave. It is a measure of the 

capacity of the wave to do work by force upon a medium or body, heating it or 

changing its state. The unit of energy is the joule. 

Radiant energy = F(A) (J) (2.1) 

2.2.2 The radiant flux 

The radiant flux, 0, is the flow of energy with respect to time past a fixed location 

in space, so is measured in J s"' or Watts. 

^A) = dF(A)/dt (W) (2.2) 

2.2.3 The radiant Intensity 

The radiant intensity,/("A;, is a measure of radiant flux upon an infinitesimally small 

point in space per unit of solid angle in a specified direction: 

I(A,z) = dW/doj (Wsr^). (2.3) 

2.2.4 Radiance 

It is not practicable to derive a value of 1(A) from equation 2.3, as it assumes an 

infinitesimally small detector area, which produces an insoluble equation. However, 

we can consider a radiance meter that has geometric dimensions describing the 

measurement cone (refer to figure 2.2), then the photodiode detector will have an 

17 
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area, A (m^), at the apex of the cone By dividing the radiant intensity by A it is 
possible to quantify the radiance component of the light field. Radiance is the 
energy per unit time per unit solid angle incident upon an elemental area, A, from 
the direction (0, 4>)\ 

L(A,Z, 6t(fi) = dI(X,z, 0,(/>) /dA (Wrn^sr') (2.4) 

2.2.5 Upwell ing radiance 

The special case of upwelling radiance, LU(A,Z,0,(/>), is of particular importance as 

this is a measurement of the vertically back-scattered light field that is ultimately 

viewed from space (as shown in figure 2.2). 

Solid angle: 
dco 

Figure 2.2. Upwelling radiance 

i<s 
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2.2.6 Radiant flux density (Irradiance) 

In-adiance, E, is the radiant flux incident upon an elemental surface of unit area, A, 

divided by the irradiated surface area of that element, dA, m'^. Therefore: 

Irradiance. E(X,z) = d0/dt • dA (Wm'^J (2.5) 

In a light field the radiance intensity gives a measure of the energy from the point 

of view of a small area viewing a cone. An alternative approach is to measure the 

entire energy falling on that same point if it were considered to be a sphere of 

infinitely small surface area. The total energy incident on the surface of this sphere 

would therefore be equivalent to the radiant intensity received over dco, which for a 

sphere is 4;rsteradians. 

An irradiant light field is highly scattered by the constituent components of the medium 

and may be described as a light field that will not form a shadow. Irradiance is 

measured by one of two instalment types (i) vector inradiance meters or 

(ii) scalar in-adiance meters: 

(i) Downwelling vector irradiance is measured using a flat cosine collector over a 

viewing angle of 0<0<n/2 and 0<(j><27r. Vector inradiance is therefore measured in 

the vertical with the instnjment viewing vertically upwards measuring downwelling 

irradiance, Ed(X, z), therefore: 

Ed(k,z) ^ f2M^2M) cosadco (2.6) 
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nil In 

where ^dm- | J dO d^ 

Radiometers incorporating cosine collectors to measure Ed(A, z) must be deployed 

vertically in the water. NASA protocols require a limit of 10° as the maximum angle for 

Ed(A,z) data (Mueller and Austin, 1995). This is further discussed in section 4.2.3. 

(ii) Scalar irradiance detectors measure the magnitude from all directions of a solid 

sphere that the sensor is designed to view. 

Instruments measuring scalar irradiance are favoured for studies of primary 

production, as they present realistic values of the light received by the 

plant cells, which make use of light regardless of its direction of propagation. 

2.3 TRANSMISSION THROUGH THE AIR / S E A BOUNDARY 

To propagate the light field through the air-water interface the effects of 

(i) refraction and (ii) reflection at the boundary need to be considered. 

These effects are summarised in figure 2.3. 

20 
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(a) (c) 

Figure 2.3. (a) An incident beam of light at zenith angle, Oa, is partly reflected and 
partly refracted as it passes through the air/sea interface, (b) A light beam from 
below at nadir angle, 6lv, is refracted away from the vertical as it passes through 
into the air. A small part of the beam is reflected downwards again at the water-air 
boundary, (c) A light beam incident from below at a nadir angle greater than 49° 
undergoes complete intemal reflection at the water-air boundary (Kirk, 1994). 

2.3.1 Refraction at the boundary 

As light passes from the air through to the water it is slowed by the refractive index of 

water, n^ (the ratio of the speed of light in water to that in a vacuum), with the result 

that the portion of the incident beam passing through the surface is bent towards the 

normal. This change in angle is governed by Snell's law (equation 2.7): 

sin6>., 
(2.7) 

where 6a and 0^ are the respective angles between the nomial and the incident 

transmitted beams and where n^ and na are the refractive indices of water and air 
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respectively, the ratio of which is 1.33 (and hence 0.75 when passing from water to 
air). 

2.3.2 Reflection at the boundary 

The dependence of reflectance, r, of unpolarized light on the zenith and azimuth angle 

of the incident light in at the air / water interface (9a) is given by Fresnel's equation 

(see equation 2.8) 

(2.8) 

The reflectance is a function of zenith angle and is shown in table 2.1 for various 

angles of incidence. Note that for angles up to 50° the reflectance is small, increasing 

rapidly after this angle. 

Table 2 .1. Change in ref ectance (%) with zenith angle, (Kirt^, 1994). 
Zenith angle of incidence, 
Oa (degrees). 

Reflectance, r (%). Zenith angle of incidence, 
Oa (degrees). 

Reflectance, r (%). 

0 2 50 3.3 
5 2 55 4.3 
10 2 60 59 
15 2 65 8.6 
20 2 70 13.3 
25 2.1 75 21.1 
30 2.1 80 34.7 
35 2.2 85 58.3 
40 2.4 87.5 76.1 
45 2.8 89 89.6 
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2.4 INHERENT OPTICAL PROPERTIES 

When a photon of light enters water it will be either scattered or absorbed, (figure 

2.4). The absorption and scattenng properties of water for any given wavelength 

are expressed in terms of the absorption coefficient, the scattering coefficient and 

volume scattering function. These are the inherent optical properties of the water 

itself, i.e. are not a function of the geometric structure of the light field that may 

pervade it (Kirk, 1994; Mobley. 1994). 

The contributory factors of attenuance of a radiant flux are expressed by equation 

2.9 and illustrated in figure 2.4. 

L(X).dV 

L(X) 

1 / 
dL(X,r)^L(X.O)-
expf(-dlnL(X)/dr)rJ L(X)-dL(X) 

Figure 2.4. The combined effects of absorption and scattering upon an incident 
radiant light fiekj, L, of wavelength, k. when passing through solid element of a 
medium (of length r). 
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c = a + 6 (m-^) (2.9) 

where c is the beam attenuation coefficient which comprises the absorption 

coeffident, a, and the scattering coefficient, b. From figure 2.4 

= AW, the attenuance, related to c (A) by dividing by the distance along the 

path the beam is travelling through the medium, dr Thus, as shovwi in figure 2.4, 

the diminution of an incident radiant beam of light by a scattering and absorbing 

medium will result in a portion being attenuated in accordance with equation 2.10. 

c ( A ) = ^ (m') (2.10) 

The portion of the beam scattered out of the direction of propagation, at angle i//, 

is represented in figure 2.4 by L(Jl).dVar[6 may be described by the volume 

scattering function, fi, from equation 2.11. 

(2.11) 

Equation 2.11 is integrated over all angles (0 to 4;z) to derive the total volume 

scattering cxjefficient, b(A), described in equation 2.12. 

bW=jfi(Z,^)da} (m') (2.12) 
4/r 
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When viewed from above the colour of the ocean is purely the result of the back-
scattering of the incident light field (the portion of the downwelling light field 
scattered in the upwelling direction). It is possible to distinguish between scattering 
in the forward, bf, and backward, bb, directions as shown in equation 2.13: 

bW = b,{A)+ (2.13) 

Forward scattering is over 0 <y/<7i/2 and backward scattering over 

7i/2<y/<7r, hence /)^and bb are described by equations 2.14 and 2.15 respectively 

(Kirk. 1994). 

bf = 27rjfi{y/)s\nii//)di// (2.14) 

and 

b,=2n\p(,y/)s\n(,y,)d^ (2.15) 
all 

2.4.1 Scattering mechanisms 

A photon is scattered when it interacts with some component of a medium in such a 

way that it diverges from its original path. The scattering of photons serves to increase 

their path length through the medium and hence increase the likelihood of the photon 
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being absorbed. The effect of scattering is therefore to intensify the attenuation 
process 

The scattenng of light in natural waters is an important aspect of marine optics. In the 

atmosphere and very pure liquids the majority of scattering is over small forward 

angles In the purest oceanic waters there are complicated chemical relationships 

between the dissolved minerals, suspended particulates and biological constituents 

which cause photons to diverge in various ways and many directions. Some of these 

are shown in figure 2.5 (Kirk, 1994). 

external 
reflection 

refraction 

internal 
reflection and 
refraction 

Figure 2.5. Light interaction with of a particle suspended in a water body resulting 
in scattering. 

The amount of scattering within a medium depends upon the relative size of the 

spherical equivalent particle radius, r, and the wavelength, A, of the incident radiation 

and may take the form of (i) scattering by density fluctuations, termed molecular or 

Rayleigh scattering, for r « A and/or (ii) scattenng due to suspended particulates, for 
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2.4.1(i) Scattering due to density f luctuations 

The Rayleigh model applies to particles that are small relative to the wavelength of 

light, e.g. gases v^th only v^eak inter-molecular associations. For a gas molecule 

that lies within a light field, a dipole is induced by the electric vector and as the 

dipole oscillates at the excitation frequency the molecule emits quanta in all 

directions, thus light is scattered the same amount in the forward and backward 

directions. 

It is not appropriate to apply this theory to liquids as the strong interactions 

between the molecules make it impossible to consider them individually as discrete 

scatterers. Due to density fluctuations, however, the resultant localised 

inhomogeneities can be regarded as dipoles and behave as such in their 

interaction with light (Kirk, 1994). 

2.4.1(ii) Scattering by s u s p e n d e d particulate material 

Mie scattering provides an approach to predict the scattering by particles of any 

equivalent spherical size, particularly those of size greater than the wavelength of 

visible light. Even the clearest natural waters contain relatively high levels of 

particulates (e.g. sediments or phytoplankton). Natural waters have a particle size 

distribution that increases approximately exponentially towards the smaller 

particulates, i.e. the number of particles greater than D is proportional to 1/D^. 

where y is a constant that varies between 0.7 to 6. depending upon the water body 

(K\rk, 1994). 
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A s with Rayleigh scattering, Mie theory considers the oscillations set up in a 
polarizable body by the incident light field, and the light re-radiated by the body a s 
a result of these oscillations (Kirk, 1994). The particle is considered to interact with 
light a s a series of multi-poles within the particle, with overall scattering being the 
additive effect of these multi-poles. Mie theory predicts that most of the scattering 
is in the forward direction, within small angles of the incident beam axis. 

Where the medium contains particles of large and in*egular size relative to the 

wavelength of light, the potential outcome is illustrated in figure 2.5 where all or 

some of an incident beam of light is either reflected at the surface of the particle 

upon entry, is refracted upon passage through the particle before becoming further 

internally reflected upon exit, or will be further refracted upon re-entry into the 

water. This type of scattering is predominantly in the forward direction, both v^thin 

small angles of the beam axis (due to refraction) and large angles (due to 

reflection). 

2.4.2 Absorption 

The atoms of all elements have unique physical properties resulting from their 

electronic structure. An atom receiving a quantum of light becomes excited (raised to 

a higher energetic state). This resultant change is manifest as changes in the 

nDtational and vibrational characteristics of the electronic energy structure in v^ich it is 

"stored", being either immediately re-emitted or remaining, changing the stnjcture of 

the atom. 
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The interaction of a photon of light with matter may initiate a changes in the chemical 
structure with a wide range of possible outcomes, depending upon the bandwidth of 
the prevailing light field and the chemical composition of the medium. 
There are four possible outcomes of molecule - light field interaction resulting from 
photochemical interaction: absorption followed by re-emission, molecular destnjction, 
molecular construction and energy transfer. It is generally considered that the breaking 
down of molecules (photodegradation) brings about detrimental effects, whereas 
initiation, propagation, cycloaddition are more constructive outcomes (Hill, 1983). 
In remote sensing, the absorption and scattering by pure water (see figure 2.6) is a 
well defined quantity (Smith and Baker. 1978; Smith and Baker 1981; Buiteveld eta!., 
1994; Pope and Fry, 1997). The selective absorption of light by pure water forms the 
background against which the optical significance of in-water constituents are 
assessed (Austin and Petzold. 1981, Mueller and Trees, 1997; Moore etaL, 1997). 
Buiteveld et a/. (1994) have made measurements of the absorption and scattering 
properties of pure water, the resulting coefficients for which are summarised in figure 
2.6. 
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(a) 

& 0 01 

300 400 500 600 700 800 
Wavelength (nm) 

(b) 
002 

t= 0 005 

300 400 500 600 700 800 
Wavelength (nm) 

Figure 2.6. (a) Absorption and (b) scattering coefficients for pure water from 300-
QOOnm as determined by Buiteveld et al. (1994). The units in each case are m \ 

Other in-water characteristics relevant to this study are the absorption and scattenng 

characteristics of (i) suspended particulate material (SPM) which may be either 

organic (phytoplankton, zooplankton) or inorganic (sediments) and (ii) dissolved 

organic material (DOM). In the case 1 environment the key optically significant 

fractions are the phytoplankton and their degradation products (Gordon and Morell, 

1983). Figure 2.7 shows an example of the absorption spectnjm of various fractions of 

a sample of water collected during field wori< earned out in the course of this research 

at a sampling station In the western English channel (site L4). 
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Figure 2.7. (a) An example of the absorption spectra of some constituents of a 
water sample collected at station L4 from a depth of 10m (1995. SDY 167). Data 
were detennined from spectrophotometric analysis of a water sample 
concentrated on a Whatman GF/F filter pad (Mueller and Austin. 1995). DOM 
data were obtained from a sample filtered to 0.2//m (Kirt^, 1980; Mueller and 
Austin, 1995). The biological fraction was removed using a hot methanol bath. 
Data were connected to zero absorption at 750nm, but the path length 
amplification factor, A, had not been applied (Cleaveland and Weidenman, 1993) 
(b) 'Unpackaged' specific absorption coefficient spectra of some pigments 
identified in this study: chlorophylls -a, -b and -c, and the carotenoids grouped as 
photosynthetic (PSC) and photoprotective (PPC) types acconjing to Bidigare et 
a/.. (1990). 
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2.5 T H E A P P A R E N T O P T I C A L P R O P E R T I E S AND THEIR R E L E V A N C E T O 
R E M O T E S E N S I N G 

Operational satellite oceanography is concerned with deriving key optical 

properties of the worid's oceans by collecting radiometric measurements in-situ to 

enable the characterisation of the back-scattered light field as a function of the 

incident light and the in-water constituents of the surface waters. The signal 

received from a space borne radiometer includes skylight, the direct solar beam 

reflected from the surface a s well as light back-scattered by the atmosphere (Kirk, 

1994). The components of the signal are summarised in equation 2.16: 

EsiA) = T.Ew{A)-^T.Er(A)+Ea(A) (2.16) 

where Es{X) is the total irradiance anriving at the detector, T.Ew(X) is the part of the 

emergent flux remaining after transmission, T, through the atmosphere. T.Er{X), 

similariy, is the portion of the reflected solar beam remaining. Ea{X) is the in-adiant 

signal received by the sensor from light back-scattered by the atmosphere. Remote 

sensing radiometer systems typically view an irradiant atmospheric upwelling light 

field over a small angle (radiance) whereby E would be replaced by L in equation 

2.16. 

The unwanted effects are removed by a suite of corrective models such that the 

only remaining part of the received signal is that containing information about the 

surface waters, Lw(X, 0, tp), the emergent or water leaving flux. This flux is a 

function of the incident light field as well a s the in-water constituents, the key 

feature that differentiates the apparent from the inherent optical properties. The 
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apparent properties are a function of the incident light field and the medium, 
whereas the inherent optical properties are of the medium only, regardless of the 
geometric distribution of the pervading light field. 

The vertically emergent flux may be characterised by ship borne radiometric 

techniques in terms of remote sensing reflectance. Rrs(A), by measuring the 

downward in-adiance. Ed(A,z) and the corresponding upwelling radiance, 

Lu(k,z,e,4i, by profiled radiometry. Rrs(k), therefore, represents an integration of 

the optically significant in-water constituents and their absorbing and scattering 

properties. The apparent properties are often termed quasi-inherent optical 

properties as they remain broadly similar for any given water mass (seasonal 

variations accounted for) from one field work session to the next (Kirk, 1994). 

A s the incident irradiance (comprising skylight and the direct solar beam) 

penetrates the water column, the sub-surface light field retains some 

characteristics of its angular structure (the geometry of which is further complicated 

by light field perturbations due to waves at the interface). A s the processes of 

scattering and absorption, which are wavelength dependent, further modify the 

light field, the spectral characteristics and the angular stnjcture are changed until 

only isotropic blue green (^A2Qr)m-b^0r)m) light remains. 

2.5.1 The diffuse attenuation coefficient 

The diffuse attenuation coefficient. Kd(X), is a measure of the rate of diminution of the 

downwelling irradiant light field by the water column and the in-water constituents as it 

propagates through the water column. The properties of the light field throughout the 

water column depend upon the nature of the incident light field, the interface effects, 
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the absorption and scattering characteristics of the in-water constituents and their 
concentration (as well as vertical variability), and the water depth. Equation 2.17 
illustrates that the variability in the absorption of inBdiant light by water may be 
expressed in temis of the additive effects of the absort)ing fractions present therein: 

Kd(A)= Kd(X, Kd(X, X)+ Kd(X, SPM) + Kd (A, C) (m') (2.17) 

where Kd(X) is the total diffuse attenuation coefficient for vertically dovmward 

in^diance, Kd(/l, W) denotes the Kd(X) for pure water, Kd(A, Y) for dissolved organic 

material (DOM), Kd (X,C) for phytoplankton pigments and Kd (A^SPM) for suspended 

particulate material other than phytoplankton related material 

(Kiri<.1994). 

The absorption model approach to accounting for the component partial Kd(A) values 

will hold true only if scattering is considered to be low enough to be insignificant. A 

photon scattered within an in-adiant light field is not lost from it but follows a longer 

path length through it, with the consequence that it has an increased chance of 

absorption. Scattering will become significant in waters containing a high 

concentration of mineral particles of low intrinsic colour, virfien the assumption that 

relative rates of absorption are proportional to the partial vertical attenuation 

coefficients wnll be in error {Kirk, 1994). High levels of scattering may also be seen in 

waters where there are bloom conditions of coccolithophores, especially those 

containing high numbers of detached coccoliths suspended in the water (Balch et al., 

1991; Kiri^. 1994; Van Den Hoek etaL, 1995). 

34 



Chapter 2: Optical Theory 

Kd(X,z) is measured with either a scalar (Ir^ or vector downwelling irradiance 
radiometer. In this study a vector cosine collector was used, with a common Teflon 
Lambertian diffuser serving the 6 downwelling detectors (described in section 4.1). 
The attenuation of light in the sea follows a model of exponential decay as described 
by the Beer-Lambert law of diffuse attenuation. (Pilgrim, 1987; Pilgrim and Aiken 
1989; Gordon. 1989; Kiri<, 1994), summarised in equation 2.18. 

Ed{X,z) = EdiXSi-ye'"^^'^' (2.18) 

where Ed(X,z) is the measured vertical irradiance at wavelength. A, and depth, z, 

Ed(A,Cf) is the irradiance at an infinitesimal distance below, and normal to, the surface, 

and Kd(A) is the diffuse attenuation coefficient. 

Because the vertical attenuation of irradiance is a function of the prevailing light 

field, its value will be affected by solar elevation, cloud cover and sea state. The 

processing protocols for profile data are discussed in chapter 5 and serve to 

minimise measurement errors. 

2.5.2 The variation of Kd(X) measurement with sun angle 

In case 1 waters where scattering is low, Kd(Ji) varies in accordance with the 

absorption coefficient and zenith angle, 0, of the refracted solar beam just below the 

surface (equation 2.19) and relates to the increased path length (compared to the 

vertical case) that the photons travel, and hence their increased likelihood of being 

absort)ed. The result is increased values of Kd(A) being derived from profiling as the 

zenith angle of the sun increases. 
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cosO 
(2.19) 

The S e a W i F S satellite follows a sun synchronous polar orbiting pattern, so 

potential en-ors in the measurement of Kd(/.) introduced by changing sun zenith 

angle are minimised by scheduling all measurements of the in-water light field to 

coincide as closely with solar noon as logistics allow. The sun zenith angle during 

the sampling carried out in three field work sessions are shown in figure 2.8. 

AMT-I 

1 0 

• Field data 

20 30 
Consecutive record no 

40 

(McClainetal .1995) 

Figure 2.8. Sun zenith angle calculated for each field work sampling time and 
location. Also the cut-off (blue line) above which work should not be 
attempted. Consecutive record no. relates sequentially to the field sampling 
occasions during the campaigns a s illustrated. 

The blue line represents the flag for solar zenith angle of 70° suggested by 

McClain et a/. (1995) which translates to a sub-surface angle of 45° (using 

equation 2.7). The rationale for this cut off was to limit uncertainty in radiometric 

atmospheric correction due to the extended path length at high solar zenith angles, 

as well as the high level of Fresnel reflectance which starts to increase rapidly at 
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this angle (70°), thus limiting the amount of light entering the water as well as 
increasing the optical path length between the water surface and the radiometer. 
These factors lead to en-oneously high levels of Kd(k) calculated from profiled 
radiometer data, and hence useful work should not be attempted. It can be seen 
from figure 2.8 that the wori< carried out during this study was at all times within 
this value. 

2.5.3 The upward beam attenuation coefficient 

Upwelling radiance is isotropic at shallow depths as the back-scattered light field is 

independent of the geometric distribution of the incident light. The upwelling light 

field is characterised using the same methodology as the downwelling light field, 

but from the Lu(A,z) profile (d,<fi are no longer required in the notation a s the 

propagation is vertical) from which Lu(A,0') and KL(A) are derived by regression 

analyses. The term KL(A) is used to denote the upward beam attenuation 

coefficient a s the measurement taken a s Lu(X,z) by the PRR-600 is actually the 

upwelling component of Eu(Z, z) measured over a small field of view looking 

vertically down. The upwelling radiance sensor is then viewing Eu(Ji, z) a s 

described by equation 2.20: 

Lu(A,z) = Eu(A,z) dco (2.20) 

where dco is the field of view of the upwelling sensor. Lu(A,z) data were collected 

simultaneously with Ed(A,z). 
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As with the downwelling in^diance data, upwelling radiances are extrapolated to just 
below the surface (z=Cf) by least squares regression analyses, yielding in each case 
an average Kd(A) value representative of the profiled depth. 

2.5.4 Water leaving radiance 

The water leaving radiance measured by an above surface radiometer is the 

portion of light rays being emitted by the water surface after refraction pointing in 

the direction of the sensor, i.e. leaving the water within the instantaneous field of 

view (IFOV) of the sensor. The intensity of the water leaving radiance over the 

measured narrow bands relate to the intensity of a con-esponding satellite image 

pixel once atmospherically corrected for that wavelength. During this study the 

measurement of Lw(X,0') was derived from the PRR-600 radiometer upwelling 

sensor measurements. In order to extrapolate this value through the surface, 

consideration has to be given to the effect of refraction on the emergent flux. 

The propagation of Lu(A.O') through the water-to-air interface to Lw(Ji,0*) is earned 

out in the following manner, summarised in equation 2.21 (Mueller and Austin, 

1995): 

LwiA) = Lui^fi-) • '"^."^'^^ (2.21) 

where Pw is the refractive index of sea water and p is the Fresnel reflectance of 

the water-air interface (0.02% at nomnal incidence). Equation 2.21 reduces to 
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1 

and so 

Lw(/ l ,0") = Lw(A ,0 - ) . 0.5569 (2.22) 

i.e. the emergent flux in any wavelength will be 55.7% as intense as it was at an 

infinitesimal distance below the surface, a s the upwelling light field diverges due to 

refraction when passing through water-air boundary. 

2.5.5 Normalised water leaving radiance 

Water leaving radiance may be used a s a direct measurement of ocean colour, but 

to standardise the radiometric input for in-water algorithms, and allow the 

comparison of different bio-optical data sets, it is necessary to normalise the 

measured Lw(A). One method of achieving this is to derive the normalised water 

leaving radiance, that is the equivalent value that would be derived if the sun were 

at the zenith, at the mean earth-sun distance, with all atmospheric effects 

removed. This process is summarised in equation 2.23 (Mueller and Austin, 1995). 
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whereFo(A) is the mean extra terrestrial irradiance. Es(>l,0*) is measured by a 

surface mounted radiometer conforming to the same specifications a s the sub­

surface unit. with logged measurements incorporated Into the data stream being 

collected from the in-water profiler. 

In this study Es(A,0*) was only logged during AMT-1 as a result of additional 

instnjmentation being deployed in tandem with the PRR-600 (see chapter 4). 

During the other programmes (the L4 survey and PRIME cnjise) only in-water 

measurements of the light field were collected. The decision was therefore taken to 

use the remote sensing reflectance a s the radiometric input into the algorithms, a s 

described in the following sub-section. 

2.5.6 Remote sensing reflectance 

The remote sensing reflectance is a measure of the back-scattered light viewed 

over a small angle, radiance , Lu(A,z), a s a function of the downwelling incident 

irradiance. Ed(A,z), {K\rk, 1994; Moore etal., 1997): 

Rrs{Afi') = M ^ ^ (2.24) 

For the purposes of algorithm development, Rrs(X.O') the values of Lu(A,zO') and 

Ed(A,zO*) were calculated by extrapolation to a point an infinitesimal depth below 

the surface (0 ) which, derived from a line of best fit, represents a practical 

integration of the light field - water column interaction over the useable profiled 

depth (see chapter 5). 
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Because band ratio algorithms are employed in this study, extrapolation of Rrs(Jl) 
through the surface is not required as Rrs(Ai) and Rrs(Xj) are close so the interface 
effects are only weakly dependent upon wavelength (Aiken et a/., 1995). It will be 
noted that equation 2.25 will yield units for Rrs(A) of sr \ and that this will cancel 
out in the band ratio algorithm a s Rrs(Ai)/ Rrs(Aj). 

2.5.7 THE DIFFERENCE BETWEEN USING Lu(Ah Lwn(A) OR Rrs(A) AS THE 

RADIOMETRIC INPUT INTO ALGORITHMS 

The previous sections (2.54, 2.55 and 2.56) detail three commonly used 

mathematical expressions of ocean colour. During the developmental stages of 

semi-analytical remote sensing algorithm generation, the inputs (light field and in-

water constituent data) must be representative of those that will be required when 

operational, i.e. must emulate the characteristic optical signature of the waters 

resulting from the its biogeochemical contents. Past studies have used various 

inputs, table 2.2 details the results of some of these studies. 

Table 2.2 Sample of Kd(A) algorithms c enera ed by 0 her inves tigators. 
Investigators band ratio 

radiometric 
input: 

A B R^(%) 

Austin and 
Petzold, (1981) 

Kd(490) 
Kd(520) 

0.088 
0.066 

-1.491 
-1.398 

90.1 
99.5 

0.022 
0.044 
Smith and Baker 

(1978) 
Moore et a/. 
(1997) 

Kd{490) Rrs(A,a) 0.129 -1.337 n/a 0.0192 
Pope and Fry (1997) 

Mueller and 
Trees. (1997) 

Ktf(490) Lwn(A,z,e,^) 0.1 -1.3 90.0 0.022 
Smith and Baker 
(1978) 
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The relationship between Lu(i:j) will describe the variability in back scatter of the 

water at the two wavelengths, / and j (assuming no spectral dependence of the 

downwelling light field due to the interface effects). This measurement, however, 

although representative of the colour of the ocean a s it would be seen above the 

surface at that instant, requires further information about the nature of the incident 

irradiance to be included in the measurement for comparisons to be made with 

data collected at different sites. From section 2.5.4. equation 2.21, it may be seen 

that there is a robust mathematical relationship relating the subsurface upwelling 

radiance with the above surface water leaving radiance. Once established, the 

water leaving radiance, Lwf/.y), may be normalised to the incident in-adiance to 

derive the reflectance. It is this value of 'what returns as a function of what goes in' 

which is used for the generation of algorithms as such data may be related to the 

similar optical parameter sensed remotely. Lwn(X) and Rrs(k) are both expressions 

of reflectance, Lwr)(X) is a function of the water leaving radiance normalised to an 

idealised incident irradiance (discussed in section 2.5.4); Rrs(X) is a function of the 

water leaving radiance nomnalised to the downwelling incident in-adiance above the 

sea surface at the time of profiling. 

From equations 2.23 and 2.24 it may be seen that the difference between Lwn(i:j) 

and Rrs(i:j) is Fo{i) I Fo{j) which amounts numerically to 

198.5/iH/cm'^nm'^ / = 1.045 where/=443nm and y=555nm 

(Greg and Carder, 1990). If converting an algorithm that uses Lwn(i:j) to use 

Rrs(i:j), the ratio derived above will have the effect of changing the value of the 

empirical constraints of a two-band ratio algorithm of the form x=A[R(i:j)f where 

{hereV\se6A=A[Fo(i:j)f. 
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2.6 AN E X A M P L E O F W A T E R C O L O U R C H A R A C T E R I S T I C S D E R I V E D F R O M 

T H E M E A S U R E M E N T O F T H E A P P A R E N T O P T I C A L P R O P E R T I E S 

Figure 2.9 illustrates an example of data, derived from a processed PRR-600 

profile, and shows the relationship between the light arriving at the outer edge of 

the atmosphere (Greg and Carder. 1990), the corresponding irradiant light intensity 

measured just below the water surface, Ed(A,0'), and the corresponding emergent 

flux also measured just below the surface, Lu(A,0). 

0.01 
412 443 488 510 560 665 

Figure 2.9 Values over the S e a W i F S bands for Lu(A,0*) derived from profile 
measurements. Also displayed are corresponding Ed(A,0*) data and f'H / . i 
(the extraterrestnal solar constant). The units for Ed(/.,z) and PoiA) are 
/ijWcm ^nm'^ and for Lu(A,z) and are ^Wcm'^nm'^sr\ 

The difference between the top curves, from fot A) to Ed(/„0*), are due to the 

attenuation of the incident beam as it propagates through the atmosphere and the 

sea surface. 
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2.7 THE OPTICAL DEPTH 

From Beer-Lambert's law (equation 2.18) it can be seen that the diminution of 

in-adiance is controlled by e"̂ . where -x is the exponent, Kd(A) 'Z. This is the 

geometric distance times the diffuse attenuation coefficient Kd(A), this is termed 

the optical depth, y(A). This which describes the depth to which a certain diminution 

of irradiance will result for a given physical depth (Kirk, 1994) a s detailed in 

equation 2.25: 

y(A) = Kd(A),z (2.25) 

e.g. at Am, and a Kd{490) of 0.026m ': y(Jl) = 0.026 x 4 = 0.104. 

Significant optical depths are those employed by workers involved in studies of 

primary productivity, where knowledge of light level depths to characterise the 

waters under study may be obtained from ^=2.3, where Ed(X,z) = 0.1 x Ed(X,0') 

and <'=4.6, where Ed(X,z) = 0.01 x Ed(X,0'). 
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2.8 THE DIFFUSE ATTENUATION LENGTH 

An often used assessment of the relationship between the attenuation of the 

underwater light field and Kd(A) is the use of the attenuation length, £k(A), which is 

^/Kd(A). For instance if Kd(490) is calculated from the measured profile a s 

0.026m'\ then 1 attenuation length = 1/0.026 = 38.5/7?. The diminution of 

irradiance over £kW=1 may be seen from equation 2.26: 

Ed(A,z) = £d(0) X expl-KdW • 1/Kd(A)] (2.26) 

v i^ich is e'^ or 37%. 

The diffuse attenuation length is the depth above which 90% of the back-scattered 

irradiance emanates, and so is considered to be the depth to which a remote 

sensor receives information relating to the optical properties of the waters. The 

diffuse attenuation length describes a diminution of irradiance regardless of 

physical depth. 

2.9 THE BASIS OF THE BAND RATIO APPROACH FOR THE DEVELOPMENT 

OF ALGORITHMS DESIGNED TO DERIVE THE CONCENTRATION OF IN-

WATER CONSTITUENTS FROM OCEAN COLOUR 

The flux emergent from the water surface is a function of the downwelling light 

field, the interface effects and the inherent optical properties. Band ratio 

algorithms wori< on the principle that a variable to be retrieved (e.g. the [CHL-a], 

[SPM] and/or Kd(A)) is empirically related to the intensity of the upwelling light field 

in one or more wavebands. In this manner an analytical approach to the 
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determination of optical properties is used to propose the form of the algorithm, 
while empirical relationships are used to determine the numerical coefficients 
(Aiken ef a/.. 1995; Moore et a!., 1997). 

The radiometric input used in this study is the Rrs at two wavelengths / and / The 

value of Rrs{A) for any given wavelength is determined by the downwelling light 

field, the interface effects and the inherent optical properties. Rrs(A,0*), may 

therefore be expressed analytically a s 

/ ^ . ( A , 0 - ) = ^ ^ - f ^ - ^ > ' ^ ( " ' ^ - ^ (2.27) 

where is the refractive index of sea water. R(Z,0') is the irradiance reflectance 

an infinitesimal distance below the s e a surface, p is the Fresnel reflectance at 

nonnal incidence and is 0.02 for the visible spectrum, p is the Fresnel reflectance 

for sun and sky irradiance which ranges from 0.021 for a nadir sun angle to 0.064 

for a solar zenith angle of 60°, and for totally diffuse skylight has a value of 0.066. 

giving a mean value of 0.043. The rterm is the water to air reflectance for totally 

diffuse in-adiance and is 0.48. Q is the undenwater irradiance-to-radiance ratio 

{Eu{A)iLu{Z)), which is only weakly dependent upon wavelength. This would be ^ 

for a Lambertian reflector, but from the work of K\rk (1994) may be closer to 5. The 

(1 - p)(l - p)nl^ term accounts for the effect of the air/sea interface and shows a 

weak relationship with wavelength, varying with the refl-active index of water. The 

(1-r'R(X,0')) term can be ignored in case one waters where R(A,0') has a maximum 

value of 0.08-0.1. 
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Assuming the interface term is constant, the ratio of remote sensing reflectances at 
wavelengths / and j is expressed as 

j^^rJfi^^^mniOm (2.28) 

where Rrs(i:J) is shorthand for the ratio Rrs(AjyRrs(J\j). 

A s Q has a very weak dependence on wavelength over this range (Aiken et a/.. 

1995) the main determinand of the radiance ratio is thd in^diance reflectance, 

R(Ji), which may be expressed a s 

(2.29) 

where the G(/JO,X) term represents the wavelength dependence of R on the cosine 

of the refracted solar beam just below the surface. The back-scattering, bb{X), and 

absorption, a(A), coefficients (m" )̂ are the inherent optical properties and are the 

sum of the optical properties of pure sea water and the optically active in-water 

constituents. 

By the contemporaneous collection of the remote sensing reflectance using 

profiling radiometry and in-water measurements of downwelling in-adiance and 

upwelling radiance, the analytically derived form of the algorithm may be 

constrained by the empirically derived numerical coefficients determined fi-om 

analysis of field data. 
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3. REMOTE SENSING ALGORITHMS 

In chapter 2 the analytical basis to the band ratio approach to algorithm 

development was introduced. The algorithms presented in this section are 

designed to calculate two products from upwelling radiances derived from a 

satellite image, or modelled from profiled radiometry. The products are (i) the 

diffuse attenuation coefficient, Kd(490) (m"'), see section 3.1, and (ii) the surface 

mixed layer pigment concentration in terms of chlorophyll-a (mg m" )̂, s e e section 

3.2. 

3.1 ALGORITHMS FOR THE DERIVATION OF THE DIFFUSE ATTENUATION 

COEFFICIENT 

Since the derivation of water leaving radiances had become routinely available 

over large spatial scales from C Z C S ocean colour satellite imagery, a method 

existed for the derivation of optical properties of the surface waters of the wortd's 

oceans, to estimate the nature and scale of variability across the globe. 

A highly robust relationship relating the upwelling light field with the diffuse 

attenuation coefficient was presented by Austin and Petzold (1981) as part of the 

Nimbus Experiment Team (NET) C Z C S ground truthing campaign. The fonn of the 

relationship is shown in equation 3.1: 

A:£/(A,) = V4 + A:IV(/1,) (3.1) 
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where Kd(Ai) is the diffuse attenuation coefficient at the required wavelength and 

Kw(Ai) is the diffuse attenuation coefficient of the purest water at that wavelength. 

Ai and Aj are the wavelengths of the optical measurements that are significantly 

affected by the water property under consideration, and form the radiometric input 

into the model. The algorithm is constrained by the empirically derived constants, A 

and B, which are determined by naperian log-log regression of the Kd(Ai)-Kw(Ai) 

ratio against corresponding light-field measurements. 

The radiometric input into the Austin and Petzold (1981) algorithm was the ratio of 

measured upwelling radiance Lu(i:j), where / was A43nm and j was 550nm from a 

data set consisting of 88 points. Two algorithms were developed to determine 

Kcf(490) and Kd(520), as illustrated in equations 3.2 and 3.3 respectively. 

Kd{490) =0.0883! 

-1.491 

Lu{442f 

Kd(520) =0.0663 

Lu{550) 

-1.398 

+ 0.022 (3.2) 

iLuiSSO)} 
+ 0.044 (3.3) 

where the values of Kw(490) and Kw(520) were those determined by Smith and 

Baker (1978). 

This technique has since been re-evaluated by Moore et al. (1997) and Mueller 

and Trees (1997), in support of the N A S A - S e a W i F S programme. 
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3.1.1 The SeaWIFS pre-launch Kd{490) algorithm (Mueller and Trees, 1997) 

In the eariy stages of the S e a W i F S project, equation 3.2, was officially adopted a s 

the pre-launch algorithm for the derivation of Kd(490). Consideration was then 

given to the effect upon the retrieval of optical properties using the standardised 

radiometric input proposed by the S e a W i F S community, normalised water leaving 

radiance, Lwn(A). Also considered was the potential effect upon the algorithm 

performance of the wavelength shift from detection of upwelling radiances over a 

20nn7 band centred at 550nm to a ^Onm band centred at 555nm. A new algorithm 

was therefore generated, following the same form a s equation 3.2, using a data set 

of 242 measurements collected during cruises in the Arabian sea . one cruise in the 

Gulf of California and the First Atlantic Meridional Transect. A linear regression of 

the relationship between ln[Kc/(490))-Kw(490)] and \n[Lwn(i:j)] yielded: 

Kdi490) =0.1 

-13 

Lwn{443)' 

Lwn{555) ^ 
+ 0.022 (3.4) 

where Kw{490) is the value determined by Smith and Baker (1978). This algorithm 

has been recommended to the scientific community as the definitive method of 

determining Kd{490) from scenes imaged by S e a W i F S . 
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3.1.2 The SeaWiFS Kd(490) algorithm (Moore et a/.,1997) 

During the analysis of data from the Atlantic Meridional Transect cnjise series, 

equation 3.4 was re-woriced to take advantage of advances in the determination of 

the diffuse attenuation coefficient for pure water by Pope and Fry (1997). The 

modification is included in equation 3.5. 

Kd(490) =0.129 

- 1 J 3 7 

Rrs(443)~ 

Rrs(555) 
+ 0.01922 (3.5) 

where Kw(490) is the value determined by Pope and Fry, (1997). It was reported 

by Moore et a/. (1997) that the incorporation of this new value for Kw(490) resulted 

in the linearity of the relationship between \n[Rrs(i:j)] and \n[Kd(/li)-Kw(Ai)], 

(where Ai was 443nm, Aj was 555nm and Ai was 490nm), at low values of 

Kd(49Q). 

3.2 THE PIGMENT ALGORITHMS 

The two band ratio pigment algorithms presented here are of the classic type by 

Clark (1981), that arose from the C Z C S validation and calibration effort, and a 

more recent algorithm by Moore ef a/. (1997), based on wori^ undertaken by Aiken 

et al. (1995), v^ ich proposed a refined model that generated an algorithm 

employing a hyperbolic analytical fit to the relationship between the light field band 

ratio and the C H L - a concentration. 
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A remote sensing system senses back scattered light over a translucent layer 
which raises the issue of what constitutes the surface pigment concentration in 
stratified waters which leads to vertical variability in the phytoplankton 
concentration. Clari< (1981) investigated the effect upon the concentration of 
chlorophyll-a and concluded that no statistically significant difference existed 
between the surface chlorophyll-a concentration and a value derived from the 
application of an optical weighting function calculated from the pigment profile for a 
data set containing 55 profiles. The uncertainty in the determination of pigment 
concentrations by high performance liquid chromatography (HPLC - see chapter 6) 
is ± 2 0 % (Latasa et a/., 1996) which would indicate that the variability in the pigment 
concentration used for algorithm development due to the measurement technique 
can far exceed variability due to sub-surface stratification. 

3.2.1 The C Z C S pigment algorithm (Clark, 1981) 

This algorithm (equation 3.6) was developed for c a s e 1 waters and retrieves the 

combined concentration {mg m'^) of C H L - a and C H L - a like pigments from C Z C S 

imagery using the ratio of the in-adiance reflectances measured at AAOnm and 

550nm. The rationale for choosing these wavelengths relates to the absorption 

characteristics of CHL-a , which has a maximum absorption at 443nm and a 

minimum d o s e to 550nm (Hall and Rao, 1981; Jeffrey et a/., 1997). 

(CHL-a + phaeophytin-a) = L32 
/?(440) 
R(550) 

•1.42 

(3.6) 

52 



Chapters: Remote Sensing Algorithms 

where R(X,0*) is the in-adiance reflectance, Eu/Ed. The constants are empirically 
derived by log-log regression. The PRR-600 does not directly measure Eu{X), so 
Q, the theoretical ratio of Eu{X) to Lu(X) was taken as ;rto convert Lu{X,0') to 
Eu(A.O'), which formed the radiometric input Into the model, 

3.2.2 The CZCS-type SeaWiFS global pigment algorithm (Aiken etaL, 1995; 

Moore et a/., 1997) 

This c a s e 1 C H L - a algorithm is derived from investigations undertaken upon pre-

launch S e a W i F S bio-optical data collected during calibration and validation 

exercises, as well a s the extensive use of climatological data bases. The algorithm 

constraints were then re-calculated by Moore ef a/. (1997) where the relationship 

was re-analysed to accept Rrs(X,0') as the radiometric input. This work resulted in 

equation 3.7. 

C H L - a = 
{Rrs{Xi)l Rrs{X^))-C 

CXA,-A,).{Rrs{Xj)JRrs{X,)) 
(3,7) 

The final parameters for the curve fit (to the empirical relationship) were Ai = 

0-764, A2 = 32-29, S = 0-88. C = 19.63 where Rrs(^), Rrs(Xj) are the remote 

sensing reflectances, Lu{X,0')/Ed{Xfi'), at 443nm and 556nm respectively. 

The results of the application of the algorithms presented here to the radiometry 

earned out during this work may be found in the data analysis section (chapter 8), 

where comparisons are made with contemporaneous in-situ data. 
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4. OPTICAL METHODOLOGY 

The following section details the protocols that were followed during preparation 

for. and execution of, the field radiometry. The Biospherical Instruments Inc. 

Profiling and Reflectance Radiometer (PRR-600) was purchased in advance of the 

launch of S e a W i F S to undertake satellite calibration and validation work. The 

instrument was supplied by the manufacturers for this purpose, which meant that it 

had to meet the challenging specifications contained in the Ocean Optics Protocols 

for S e a W i F S validation, volume 5 (Mueller and Austin, 1992) and the revision that 

constituted volume 25 of the same series (Mueller and Austin. 1995). 

Because of the complex nature of the measurement of light, and the need to 

account for and minimise all potential errors, the instnjment was subjected to on­

going characterisation to ensure that the most appropriate method of deployment 

was executed from all the platforms used. 

During AMT-1 the ocean colour measurement programme was undertaken in 

collaboration with NASA personnel using a specialised deployment technique 

which allowed the simultaneous collection of data from two discrete radiometer 

systems: the PRR-600 and the Canadian Satlantic S e a W i F S profiling radiometer. 

A fijil description of the methodology was presented in the AMT-1 cruise report, 

Robins ef al., (1996). 
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4.1 T H E P R R ^ O O 

The PRR-600 is a purpose built S e a W i F S band profiling radiometer which 

measures downwelling irradiance, Ed(A^z) and upwelling radiance 

LU(A,Z). Figure 4.1 shows the major features of the underwater module and table 1 

the operational specifications 

rradiance sensor, Ed(/^z). 
cosine collector 180° FOV 

PRR-600 unctefwater unit 
houses sensors and supporting 
electronics including 
communication link. 

Pressure transducer 

Temperature sensor 

Radiance sensor. LiJCx.z), 
hdfaTgle10°(20''FOV) 

Figure 4.1 Schematic of the Biospherical Instruments Inc. PRR-600 
underwater unit. 

The unit is of robust construction, capable of withstanding 26 bar within its margin 

of safety. Data collection is via analogue to digital converter (housed in the 

underwater unit) and then RS422 interface (for communication cable lengths in 

excess of 50m). The digitised signal is then converted to RS232 for transfer from a 
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battery or mains powered deck box to a personal computer (PC). Management of 
the instrument is by a sophisticated disk operating system (DOS) driven package 
of programmes provided by the manufacturers, which includes a high level user 
interface. During deployment, selected calibrated data are available in real time 
either by channel or as a graphical representation. 

Table 4 1 Summary of the PRR-600 operational specifications 

X(nm) TAG OH General notes (see also appendix 2). 

Ed{A^2) 0 1 DownweUing irradiance sensor, E<l(A,z). 

E</C443) 0 2 Units:/iWcm'^nm"' 

Ed(48d) 0 3 Field of view: 180° (cosine collector). 

£c/(510) 0 4 

Ed(560) 0 5 

£(^(665) 0 6 

PAR 0 7 Units: /£cm"*sec"'nm''. This measurement represents an integration of the energy 
sensed over 400nni -700nm. 

£d(GND) 0 8 Irradtance eensor Ground 

Temp. 0 9 
Platinum resistance thermometer. Units: **C. 

Depth 0 10 
Piezo electric pressure transducer, range Om - 200m. 

Lu(412) 1 1 UpweDing radiance sensor, Lu ( A , z , 0 , ^ ) . 

Lu(AAZ) 1 2 Units: fjWcm-^nm'sr' 

a;(488) 1 3 Field of viev^: 10" half angle in vrater. 

iM5^0) 1 4 

iMseo) 1 5 

1 6 

a/(683) 1 7 

Lu{GNO) 1 8 Radiance sensor ground 

4.1.1 Downwelling irradiance sensor 

The physical basis of the cosine collector is the Lambertian diffuser (figure 4.2). 

This is a material that effectively diffuses an incident light beam or field (be it 

collimated, diffuse or both) by the nature of the microstructure of the material and 

the intense scattering effect it has on the light propagating through it. 
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Pressure housing 

7/ 

Lambertian diffuser 
(common) 

Sensor suite 
Ed(A,z) 

Figure 4.2 The PRR-600 downwelling irradiance cosine collector. 

Typical materials used to achieve full incident light field diffusion are opal glass or 

teflon; the latter is used in the PRR-600. The instnjment response changes in 

accordance with the angle of incidence of the light arhving at the face of the 

diffuser (described by the zenith, 0, angle). The photodiode response is inversely 

proportional to the zenith angle, i.e. the measured irradiant light will vary by the 

cosine of this angle. 

4.1.2 Upweil ing radiance s e n s o r 

In order to simulate ocean colour as it would be viewed by satellite, the sensor is 

required to view the upwelling irradiance over a small solid angle as illustrated in 

figure 4.3. 
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'I. 

Collimated sensor 
housing constnjction 
defines field 
of view(FOV). 10** 

Pressure 
housing 

Figure 4.3. The PRR-600 upwelling radiance sensor head, Lu(A,z). 

4.1.3 Instrument calibration 

The calibration of light sensors is an evolving branch of research into marine 

optics, and consequently the accurate calibration of an instrument such as the 

PRR-600 was for the most part left to the manufacturer and personnel at the 

National Institute for Standards and Technology (NIST) with further 

characterisation (such as field of view, FOV, and spectral analyses) earned out at 

PML by the author. 

The PRR-600 was initially calibrated by the manufacturers pnorto purchase in 

1993. The instrument subsequently developed a fault in its Li/(443) channel and 

was returned for repair and re-calibration pnor to the commencement of the 

fieldwork. 
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After extensive use in parallel near shore optical oceanographic research 
programmes, the PRR-600 was deployed during AMT-1. After deployment the 
instrument was sent to NIST for further calibration. 

4.1.3(i) PRR-600 Calibration history 

Programmed calibrations were earned out at the following times (full intensity 

calibrations are in italic): 

Cal.1: At Biospherical Instruments Inc. post manufacture 1993 

Cal.2: At Biospherical instruments Inc. December 1994 

CaL3: At PML during July 1995 

Cal.4: At NIST post AMT-I, December 1995 

Cal.5: At PML August 1996 

CaL6: At PML August 1997 

4.1.3(ii) Downwelling irradiance sensor calibration 

To calibrate the in-adiance sensor the instrument was mounted such that the Ed(A) 

head viewed a stable light source at a series of fixed distances; care was taken 

that all additional light was excluded from the working area. Net voltage readings 

were calculated for the instrument and the standard reference photodiode at each 

incremental distance from the light source. If the standard S e a W i F S lamp was 

used (as was the c a s e at NIST and PML) then a reference photodiode w a s not 

59 



Chapter 4: Optical Methodoloov 

required as the output of the standard S e a W i F S lamp was precisely known, 
provided the correct power management protocols were observed. 

Two stages of processing established the linearity of the instrument response, 

enabling a calibration curve of volts per irradiance unit to be established. By 

applying these data to the voltage readings derived from optical profiles in the field, 

absolute irradiance values were obtained for each instalment scan. Linearity 

checks were carried out at PML, the details of which are given in section 4.1.6. 

4.1.3(iii) Upwelling radiance sensor calibration 

The upwelling light field in natural waters is diffuse so in order to calibrate a sensor 

designed to make such a measurement this light field must be re-created using a 

standard lamp viewed via a diffuse reflector. 

There are two methods of calibrating a radiance sensor (i) by transferring the 

calibration via an integrating sphere from an irradiance sensor, in effect measuring 

in^adiance, then calculating what would be sensed of that same light field when 

viewed over a small angle or (ii) by placing a Lambertian plaque at a fixed point in 

front of the light source, and an-anging that the radiometer views it at a s narrow an 

angle as possible; in this way the incident irradiance is transferred to the 

radiometer, modified by the inherent reflectance efficiency of the plaque. The 

linearity check is made possible by altering the distance between the radiometer 

and the plaque. It was not possible to do this at PML due to the fixed geometry of 

the apparatus and the wide field of view in air of the sensor head. For this reason 

the calibration supplied by the manufacturers and NIST was used. 
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4.1.4 Spectral characteristics of the instrument 

Full spectral analyses v^ere earned out for each channel to a s s e s s the out of band 

blocking efficiency from 300nm to 800nm, with more detailed characterisation in 

the region of specified band pass. These analyses enabled the calculation of the 

Full Half Wave Maximum value, FHWM. for each sensor (the spectral bandwidth at 

50% of the response). 

The location of the monochromator grating was checked using a 632nm helium-

neon L A S E R . The L A S E R output is by definition monochromatic and there was a 

perfect con-espondence between the L A S E R and the wavelength indicated by the 

monochromator. Once the spectral analyses were complete, the response of the 

reference photodiode to the monochromator lamp was measured to detemnine the 

relative response of the PRR-600 at each wavelength. It can be seen from figures 

4.4 and 4.5 that the response in the blue end of the spectnjm (at 412r?/T7 and 

443nm) produced an inconclusive nonnalised function due to the very low output 

from the monochromator light source in this range. 
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Figure 4.4. Spectral response of the PRR-600 downwelling in-adiance 
sensors. The blue line is the instrument response to the monochromator light 
source at each wavelength, the green line is the response corrected for the 
variable lamp output. 
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Figure 4.5. Spectral response of upwelling radiance sensors. The blue line is 
the instrument response to the monochromator light source at each 
wavelength, the green line is the response corrected for the variable lamp 
output. 
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Table 4.2. PRR-600 spectral analysis 
Band Band centre FHWM - Start X(nm) FHWM 
(nm) (nm) and end X(nm) (nm) 

Ed{A^2) 413 405-418 13 
£d(443) 443 437.5-447.5 10 
Ed(488) 488 482-492 10 
Ed{5^0) 507 504-512 8 
Ed(560) 556.5 551-561 10 
Ed{665) 663 659-669 10 
Lu{A^2) 412 407-416 9 
Lu(443) 443 438-448 10 
Lu{4Q&) 488.5 483^93.5 10.5 
/_u(510) 508 505-513 8 
Ly(560) 559 554-563 9 
Lu(665) 662 659-669 10 

It can be seen from table 4.2 that the spectral response of the PRR-600 matches 

very closely the manufacturers specifications, although the 560nm irradiance 

sensor was -3.5nm from its specification and -2.5nm from the corresponding 

upwelling sensor. 

4.1.5 Instrument responsivity, snrand resolution 

In order to be effective in the field the PRR-600 had to meet certain minimum 

specifications for responsivity, signal to noise and resolution, (Mueller and Austin. 

1995). 

4.1.5(1) Responsivity 

Table 4.3 shows the PRR-600 band-set and how it compares with those of the 

S e a W i F S sensor. It can be seen that the green (66Qnm) channel did not conform 

to the protocols set out by Mueller and Austin (1995), which stipulate the selection 

of bands to within ±1nm for 443nm and 410nm channels, and ±2nm for all other 

spectral bands (with the centre wavelength known to 0.2nm). The reason for this is 
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that the 560nm band was removed from the specifications after the PRR-600 was 
constructed (Mueller and Austin. 1992; Mueller and Austin. 1995). 

Table 4.3, PRR-600 spectral sensitivity (Mueller and Austin. 1995; Biospherical 

Band SeaWiFS Wavelengths 
(FV\WM- nm, and centre X). 

SeaWiFS bands 
recommended by Mueller 
and Austin, 1995 for in 
water radiometers. 

PRR-600 bands (centre k) 

SeaWiFS 
offset 

1 402^22 (412) 412 412 0 

2 433-453 (443) 443. 435 443 0 

3 480-500 (490) 490 488 -2 

4 500520 (510) 510 510 0 

5 545-565 (555) 555 560 +5 

6 66O680 (670) 665.683 665 0 

7 745-785 (765) - -

8 845-885 (865) - -

The instrument was supplied by the manufacturers to meet the S e a W i F S protocols 

with regard sensitivity, giving an Ed(A,z) saturation value of 200//M^cm"^nm'^ over 

all wavelengths (Mueller and Austin, 1995). 
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Saturation of upwelling radiances. Lu(A,z), in c a s e 1 waters were expected to vary 
slightly across the spectnjm from 7.5^Wcm'^r)m'^sr^ a\ AWnm to 
24^Wcm'^nm'^sr^ a\ 488nm and 3^Wcm'^nm^sr^ at 665nm. These c a s e 1 
saturation values are based on estimates of the expected reflectance in c a s e 1 
waters: 12.5% at 410nm. 7.5% at 488nm. and 0.5% at SlOnm (Mueller and Austin, 
1995). 

4.1.5(ii) Signal to noise ratio, snr 

Mueller and Austin (1995) suggest that the A to O converter must enable digital 

resolution to < 0.5% of the light field reading to maintain a better than 100:1 snr. To 

maintain 1 % accuracy in calibration it is necessary to digitally resolve 0.1 % of the 

radiance produced by the laboratory standards, e.g. the NIST 10001/V standard 

lamp. The PRR-600 A to D converter is specified as a bi-polar 12 bit unit with 

sufficient resolution to satisfy the protocols. 

4.1.6 Instrument linearity and stability 

During operational use the instalment was checked for (i) linearity of response and 

(ii) stability of that response in the field when deployed in regimes of widely varying 

temperature. 
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4.1.6(0 Linearity check 

A linearity check of the instnjment was attempted against the standard S e a W i F S 

lamp on two occasions. Data shown in figure 4.6, and table 4.4 were collected 

during analysis of the response of the in-adiance sensor, and show a high degree 

of stability over the range of measurement possible at the PML calibration facility. 

These data were modified by the inverse square taw for irradiance to normalise the 

response to the changing light field with distance from the calibration source. The 

inverse square law for irradiance states that: 

(4.1) 

where E(A) is a value determined for in-adiance and X is the distance from the 

source at which the measurement was taken. From equation 4.2 it can be seen 

that, assuming that the response of the instalment is linear: 

E(A) = k • and hence * = ^ ( ^ ) ' (4.2) 
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Figure 4.6. Ed{/.) sensor linearity check. 

The allowable uncertainty in linearity of the sensor and/or supporting electronics is 

0.1 % of any reading, within the normal operating range of the instrument (Mueller 

and Austin, 1995). 

Table 4.4. Summary of Ed(A) sensor linearity analysis 
Irradiance 
sensor 
(nm) 

Ed(412) Ed{44Z) Ed(488) Ed(510) Ed(560) Ecf(665) 

Mean 
response 
(V) 

-21229 -32369 -560 54 -661 5 -926.78 -1418 

avg. 
deviation 
from mean 

3 4 9 3 6 8 7.47 8 2 5 2 2 5 2866 

% 
deviation 
from mean 

1.64% 1.13% 1.27% 1 24% 2 7 3 % 2.03% 

The data presented above demonstrate that the PRR-600 greatly exceeds this 

figure in all the irradiance sensors. It was not possible to carry out this analysis for 

the upwelling radiance sensor due to the wide field of view in air (see section 
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4.1.3(iii)). After consideration it was determied that the optical facility employed in 
this experiment, which is under continual development, lacked sufficient sensitivity 
to undertake such a characterization and a s such the analyses must be considered 
experimental. 

4.1.6(ii) Stability of the instrument dark offsets during the field campaigns 

A s is the case v\nth any electronic circuit, the efficiency of operation depends upon 

the operating temperature, i.e. the cooler the circuit, the more efficiently it will 

operate. The thermal environment in which optical sensors are deployed differs 

widely and the sensor design needs to accommodate this. Figure 4.7 illustrates 

the voltages that were derived from the PRR-600 when all light was excluded 

(instrument dark readings) prior to immersion during the fieldwork that took place 

during 1995. A s a matter of routine, dark voltages were collected by continuing 

data collection with the protective caps on the radiometer post profiling, when the 

instrument had reached thermal equilibrium with the surrounding water. Data in 

figure 4.7(a) show how the dark offsets varied with the ambient temperature prior 

to immersion, illustrated in figure 4.7(b) and (d). Figure 4.7(c) shows in more detail 

the variation in instrument daric offset for the Ec/(510) channel. These data, a s they 

were collected on the deployment platform deck, represent extremes of operating 

temperature and, if uncon-ected, could give rise to en-oneous measurements of 

Ed(X) and Lu(A,). 

68 



(a) 

Chapter 4: Optical Methodoloav 

(b) 

100 150 200 250 300 
S D Y 

SO 1W ISO 200 250 300 
scrr 

-^£d(412) -^£d(443) — £df488, 
^EdfS IO) EdrSeO) -wEdteBS) 

(c) 

0 0 2 

0 0 1 5 

1 
o 0 0 1 

UJ 0 0 0 5 

c 
50 100 150 200 250 300 

S D Y 

(d) 
0 0002 

-0 0002 

-0 0006 

-^Lt ; (412) ^Lu(443) - . -Lu(488) 

- _L i i ( 510 ) ^ IM5G0) -» .Lu(665) 

Figure 4.7. 1995 fieldwork dark offset variations (for the L4 study and 
AMT-1): (a) dark offset temperatures (b) irradiance sensor dark readings 
(pWcm'^nm'^) (c) Ed(510) dark readings (^Wcm'^nm'^) (d) Lu(a) dark readings 
i^iWcm^nrn'sr^). 

Table 4.5. Analysis of the PRR-600 dark offsets 
1995 F ie ldwork 
( S D Y ) 

Ins t rument 
dark , Ed{5^0) 
(Vol ts) 

T e m p e r a t u r e 
of fset 
(Vol ts) 

I r rad iance unit 
v a l u e of of fset 

% of / ( 5 1 0 ) « 

188.41 

32 0.00068 003309 0 00124 0.0007% 

219 000068 0.05994 0.00226 0.0012% 

273 0 00068 0 06304 000238 0.0013% 

284 0.00068 003428 0.00128 00007% 

289 0.00068 005724 0.00216 0 0011% 
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It can be seen from table 4.5 that the offset in absolute calibrated units is below the 
0.1% uncertainty level specified by the S e a W I F S protocols (Mueller and Austin, 
1995) for the sub-sample of data taken from the 1995 fieldwork campaign, even 
with the highly variable range of pre-immersion temperatures encountered. It must 
be remembered that where there is a change in temperature with depth 
encountered while profiling (which is usually the case) the dark offset will change 
con-espondingly during profiling. It is therefore concluded that the PRR-600 is not 
significantly affected by the ambient water temperature within the range 
encountered during this study. 

4.1.6(iii) Calibration stability 

The stability of the absolute radiometric measurements between fieldwork sessions 

depended upon the long term effects of ageing on the instrument's detector 

system, particularly the filters. Frequent calibration was therefore essential to 

establish the stability characteristics of the instnjment to validate the optical data 

collection. 

Table 4.6 details the calibrations earned out during 1995 and 1996 
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Table 4.6 PRR-600 Stability between Biospherical Instnjments Inc. calibration 
canied out December 1994, and NIST calibration December 1995. These data are 
represented as % drift between the calibration sessions. 

Sensor module Calibration by 
Biospherical 
Instruments 
12/29/1994 
Cel . factor (Wunit*) 

Calibration by NIST 
10/12/1995 

Cal.factor(Wunit*) 

% deviation 
between 
calibrations 

Ed{A^2) 0.030259 0.029184 -3.55 

Ed(44Z) 0.030709 0.029809 -2.93 

Etf(488) 0.032488 0.032624 0.42 

Ecf(510) 0.0321598 0.031227 -2.90 

Etf(560) 0.033089 0.031693 -4.21 

Ed(665) 0.033188 0.031954 -3.72 

Lu{4^2) 0.637654 0.606 ^.96 

Lu(AAZ) 0.631975 0.6088 -3.67 

Lu{AQa) 1.185165 1.15367 -2.65 

U(510) 0.675182 0.6496 -379 

Lu(560) 1.582458 1.55917 -1.53 

Liy(665) 1.87536 1.67995 7.64 

It may be seen that the red channel. /.u(665), showed the highest drift between 

calibration sessions during this period and was excluded from further use until 

investigation and repair could be undertaken. This procedure serves to both track 

the drift of the sensors and provide data to update the calibration coefficient files 

used to derive the absolute radiometric values from the instrument. 

7 1 



Chapter 4: Optical MethodoloQv 

4.1.7 Instrument sampl ing resolution 

For instalments using an-ay sensors (such as the PRR-600) resolution will depend 

upon the profiling and scan rates, in general 5 or more samples should be taken 

over all logged channels per meter, sampled to within 10 mill iseconds at each 

depth. The sampling rate specif ied by Biospherical Instruments Inc. for the PRR-

600 Is 2-ZHz, which equates to 8 to 12 scans per meter at a typical deployment 

rate o10.25ms \ meeting the protocol requirement. 

4.1.8 S e n s o r angular response character ist ics 

Data in figure 4.8 show field of view, FOV, data collected to test the instrument 

specification against the protocols. The tests were earned out at the PML 

calibration facility using a lamp with a stable power source and an indexing head 

arranged such that the instnjment could be rotated, generating a series of different 

viewing angles. 
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(a) (b) 

-90 -70 -50 -30 -10 10 30 50 70 90 
Zenith angle {^) 

0 5 10 15 20 25 30 35 40 

Zenith angle (^ ) 

Figure 4.8. FOV analyses for (a) Ed(488) sensor (b) the Lu(488) sensor. Data 
are signal output {mv) measured as the sensors were oriented over the range of 
angles shown, and are modified for the immersion coefficient. 

Data collected during the exercise were corrected for the immersion coefficient 

[where Ed(490,0') = 0.796 * Ed(490,0*)) to account for the diffehng instrument 

viewing angles arising as the measurements were carried out in air. 

4.1.9 I ns t r umen t ope ra t i ng d e p t h 

The protocols dictate that the radiometer must operate to 200m (the lower photic 

zone), measured to a resolution of 0.5m with an accuracy of 0.2a77 over bands 1-4 

(Mueller and Aust in, 1995). 
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(b) 
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Figure 4.9 (a) pressure sensor calibration and (b) the variability of pressure 
transducer readings at the surface (converted to depth) during the 1995 
fieldwork. The pressurising manifold used was calibrated in pounds per square 
inch, psi. 

Data in figure 4.9 show the characterisation that was carried out on the PRR-600 

depth sensor and show the instrument to be lineariy stable within the range of 

operating pressures encountered in the field Also illustrated (figure 4.9(b)) are the 

changes in zero offset at the surface that resulting from variability in the ambient 

atmospheric pressure at the time of sampling. The profile data are corrected for 

this value (to set the instrument pressure gauge zero offset) during data 

processing. During the 1995 field campaign, for example, when extensive 

measurements were taken over wide temporal and spatial scales, the variability 

measured by the pressure transducer translated to a maximum offset of ±0.18m. 
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4.1.10 Tempera tu re s e n s o r cha rac te r i sa t i on 

Raw voltage data were collected from the PRR-600 sensor package coincident 

with thermometer readings. Data in figure 4.10 show a high level of stability within 

the temperature range of the waters sampled duhng this work. 
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c/) 
C 
o 
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c 
(D 
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0 2 4 6 8 10 12 14 16 18 20 

T e m p , ( t h e r m o m e t e r ) 

Y=0.060191X-0.01373 (R^=99.6%, n=7) 

Figure 4.10. Temperature sensor calibration. 
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4.2 S U B - S U R F A C E P E R T U R B A T I O N S O F T H E U N D E R W A T E R L IGHT 
F I E L D B Y T H E M E A S U R E M E N T P L A T F O R M 

Mueller and Aust in (1995) stipulate that the measurement of in-situ optical 

data is to be achieved with an uncertainty of <5%. The following section 

details some suggestions from the protocols and how this was this was 

achieved. 

4.2.1 Sh ip s h a d o w avoidance 

When profiling from a ship it is not possible to fully avoid the deployment 

platform from influencing the optical measurements. Assuming the ships hull 

is of an appropriate sub-water line colour (e.g. matt black) the major obstacle 

to accurate measurement is the ship's shadow. Figure 4,11 shows the 

generalised deployment strategy used to combat this effect. For all the 

sampling undertaken during this work the radiometers were deployed over the 

starboard quarter, normal to the centre-l ine of the vessel. In each case 

telescopic cranes were used to locate a pulley block at the maximum possible 

extension, with the radiometer cables run f rom a separate winch located 

slightly forward on deck. It often proved difficult to achieve the Ideal condit ions 

depicted in figure 4.11 without the ship njnning over the cable or coming 

around and shadowing the instrument during the cast. 
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Vessel stem should face 
Into the sun, with 
deployment made at the 
maximum limit of crane 
extension within the arc 
shown. 

Figure 4 . 1 1 . Deployment orientation of the relative positions of the platform, 
crane and sun. 

The success of data collection during difficult condit ions depended upon the 

effect iveness of the technicians and crew and the prevailing weather. Casts 

were aborted often, or used to generate data for analysis of ship shadow 

effects. 

4.2.2 Protocols for avoiding in-water light field perturbations due to the 

deployment platform 

Mueller and Austin (1995) suggest that the radiometers should be deployed a 

certain distance away from the ship to minimise optical perturbations to the 

sub-surface light field from the vessel superstructure. Avoidance of this effect 

can be characterised in temis of attenuation length, ^/KdiX). Figure 4.12 

outl ines these considerations: 
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Figure 4.12. The protocol regarding the avoidance of ship stnjcture 
perturbations to the undenwater light f ield. 

For measurements of Ed(X) the calculation to describe ^ is as fol lows: 

sin(48.4") 
(4.3) 

where 48.4° is the critical angle, 6t , for Snell 's window. For upwelling radiance 

the measurement distance should be no less than 1.5/KL (where KL is the 

diffuse attenuation coefficient for upwell ing irradiance measured over a small 

angle). These distances should be increased if the instmment is deployed off 

the beam of the vessel, although may be reduced if working in overcast 

conditions. As a matter of routine the deployment cranes were used to their 

maximum extension. Table 4.7 details sample deployments from each field 
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program to show a comparison of the actual values of ^ achieved, compared 
to the distances that were required by the protocols, equation 4.3. 

Table 4.7. A comparison of radiometer deployment crane extension distances 
in the field, and those sug jes ted by Mueller and Austin (1995). 
Field sample Kd(490n/n) 

im) {m) 
Max. crane 
extension 
available (/n) 

AMT-1 11.5 
AP272A 0.02796 0.03847 35.8 39 
AP280A 0.03574 0.06342 21 23.7 
AP290A 0.06444 0.05642 11.6 26.6 
U 4 
P950206A 0.2506 0.18297 3 8 
P950628A 0.07246 0.16759 10 9 
P950724A 0.29151 0.29361 3 5 
PRIME 10.5 
P960711A 0.04128 0.07843 18 19 
P960714A 0.02854 0.03683 26 40.7 
P960717A 0.02237 0.04862 33 30.8 

It can be seen that the protocols were met on very few occasions, hence 

perturbed shallow profile data were removed prior to further analyses (as 

outl ined in chapter 5). 

4.2.3 Stability and control of the instrument attitude during sampl ing 

(tilting and surging) 

A s discussed in chapter 2, profiling radiometers are constnjcted such that they 

measure the appropriate upwell ing and downwell ing component of the light 

field (depending upon the type of sensor). Deviations from the vertical during 

measurement produce tilt errors resulting in under-reading (by c o s ^ of Ed(X) 

and a corresponding much smaller error in the measurements of the Lu(A). For 

this reason Mueller and Austin (1995) set a limit of 10° from the vertical 
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beyond which data to be used for SeaWiFS calibration and validation are to be 
discarded. 

When embarking upon this study it quickly became clear that the PRR-600 

and its deployment system supplied by the manufacturers could easily become 

unstable, leading to a hysteresis effect as the instrument 'surged' in the water 

column Examples of this effect are shown in figure 4.13. 

An improved deployment technique was designed and constructed to be both 

inherently stable and minimise any shading of the radiometers from the 

revised frame. The Biospherical Instruments Inc. system and the new vahant 

are shown in figure 4.14. 

(a) (b) 

f 015 

Oeptr ^T^i 

Figure 4 13. Shallow profile data collected using the PRR-600. The hysteresis 
is due to tilt and surge of the radiometer during profiling Data are from (a) the 
Ed(510) sensor down and upcast (JLIW cm'^nm'^) and (b) the corresponding 
Lu(510) downcast {f.iW cm'^nm'^sr'^). 
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The solution was to develop a deployment system that would al low the 
instrument to be suspended from the winch wire with an weight of non 
reflective colour (^AOkg) tethered below it. A vane was added to reduce the 
likelihood of the communicat ions lead becoming entangled with the 
deployment warp, a particular problem when significant current shear Is 
present. The sensor package was located on the extremity of the frame to 
remove the rig from its field of view. 

(a) 

balanced radiometer 
hand lowered on Kevlar 
communication lead 

(M 

5 _ 
PRR-600 instmment 
adversely affected by 
tilt and roll 

(b) 

PRR-600 movement 
limited to the vertical thus 
reducing tilt and roll 
effects 

warp from crane aboard 
vessel, comms. lead 
deployed by hand 

2.75m 

40+ kg weight suspended 
below rig 

Fig. 4.14. (a) the manufacturer 's deployment system, and (b) the new method 
developed for this study. 
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Figure 4.15 shows the method of deployment used from RV Squilla during the 
L4 study and RRS Discovery during PRIME. 

Fig 4.15 The deployment technique used to collect radiometric data from RV 
Squilla. 

4.2.3(1) S e a trial of improved sys tem 

The performance of the revised deployment system was assessed in March 

1995 from RV Squilla, with 0.75-1 m of swell and stable overcast 

meteorological condit ions. The crane was used to its maximum extension of 

4m. The casts were made as similar as possible, with the sensor held just 

below the surface for 2 minutes prior to the start of each cast, before being 

lowered in 5m increments, with a stop for 1 minute at each depth increment of 

5m. Data in figure 4.16 show the results of the study and represent the 

fluctuations in light field due to the sum of surging and surface wave effects, 

illustrating the improved stability of the modified system. It may be seen that 
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the regression analyses carried out for the two deployment techniques indicate 
a significant increase in the depth dependent variance of the light intensity 
measurements collected with depth, improving from to 98 4 % for Ed(510nm) 

(a) (b) 

— (R^=38 4. n«119) 

6 9 

(R ' -99 8. n-395) 

(C) (d) 

Mpth(m) 

(R'=96 4, n=l56) 
— (R»=99 6. n=472) 

Figure 4.16. Data collected using (a) the PRR-600 Ed(510) and (b) the Lu(510) 
channels using the manufacturer 's deployment system (as shown in figure 
4.14a). (c) and (d) are the profiles obtained at the same location as in (a) and 
(b). but 30 minutes later and using the modified deployment frame, (4.14b). The 
units for irradiance are ^JW cm'^nm'\ and radiance cm'^nm'^sr\ Also shown 
are the degrees of var iance describing the stability of the readings obtained f rom 
dln{Ed)/dz and dln(Lu)/dz respectively. 

The good correspondence in the upwelling radiance data result from the 

inherently stable nature of the upwelling light field. The central issue is that 
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much of the data shown in figure 4.16(a) and (b) were collected while the 
sensor was not in the vertical plane, whereas a greater portion of the data 
collected using the modified technique falls within a narrower limit, illustrated in 
figure 4.16(c) and (d), with reduced instability. Data in figure 4.17 show tilt and 
roll measurements collected during the second A M T (using a dual plane 
inclinometer mounted on the frame) showing the orientation during a typical 
deployment. 

-o 
c 
o 

> 

100 

Depth (m) 
— X — Y 

150 200 

Figure 4.17. Tilt (Y) and roll (X) data collected from a typical profile up-cast 
dunng AMT-2 (SDY 122. 1996). Data were binned at 0 2m intervals 

It can be seen that the deployment technique developed ensures that the 

radiometer collected data from within the 10"" limit stipulated by Mueller and 

Austin (1995). 
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4.2.4. The rad iomete r d e p l o y m e n t t e c h n i q u e used d u r i n g AMT-1 

During sampling at the L4 site and dunng PRIME, the deployment rig shown in 

figure 4.14(b) proved to be highly effective. In preparation for the AMT-1 a 

variation of the design was constructed using the same criteria, but able to carry 

two discrete radiometer systems, with up-the-wire communications and data 

transfer (Robins et a/., 1996). The ng that was constnjcted is illustrated in figure 

4.18 and was successfully deployed to 220rr7 (the initial design system has a 

capability of 90m, the limitation being the length of the communications lead). 

Real time link via conductor core 
cable and slip ring winch 

PRR-600 
sensor 
package 

Satlantic A-D 
providing real 
time link to surface 

II 

II Stabilising weight 
(-40kg). 

Satlantic separate 
LuU) and mX) 
sensor packages 

Figure 4.18. The deployment system used for optics data collection during 
AMT-1 . 
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The system was more susceptible to rotation due to cun-ent shear than the 
system illustrated in figure 4.14, the reason being that the vane was removed to 
accommodate the second set of radiometers 

This system of deployment was successfully used during subsequent AMT 

cnjises (usually with only the Satlantic radiometer system fitted), updated to 

incorporate a beam transmissometer, a downwelling scalar PAR sensor and a 

CTD-F sensor package fitted with a tilt and roll module. Figure 4.19 illustrates the 

layout of the radiometer deployment technique used during AMT-1 from RRS 

James Clark Ross. 

FWD 

Aft scientific winch 

-^00 
Dedicated 7 core 
slip ring winch 

Max reach of crane 
(X) = 11.5m clear of 
gunwale 

Figure 4.19. Deployment of optical the profiler during AMT-1 . 
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5. O P T I C A L DATA P R O C E S S I N G AND S T A T I S T I C A L A N A L Y S I S 
M E T H O D O L O G Y 

In this section the techniques used to process and quality control the optical data 

sets generated during this study are discussed. Also detailed are the statistical 

methodologies employed to assess the performance of the algorithms presented In 

chapter 8. 

5.1 O P T I C A L DATA P R O C E S S I N G M E T H O D O L O G Y 

The objective of the optical data analyses was to constmct a processing procedure 

that could be applied to profiles from all f ieldwork with a minimum level of 

subjectivity. To this end the work was undertaken using the Quattro Pro PC 

spreadsheet programming language V. 5 (Boriand Intematlonal Inc., 1993), 

allowing an Interactive element to the processing at key stages, to be combined 

with procedural consistency. 

Initially, Ed(A) and Lu(A) data were plotted against depth. Napieran log - light 

Intensity t ransfomied data were then plotted, to confomfi to the straight line 

relationship in accordance with Beer Lambert 's law (Pilgrim and Aiken, 1989; 

Gordon, 1989). The plots were then examined for deviations f rom this relationship, 

which indicated one of three possible effects: (i) that the light field had been 

affected by stratified in-water constituents, e.g. the bio-physical variability often 

associated with a thermocline (see figure 5.1), or (ii) that the input of incident 

irradlance, Ed(A,0*), was not a constant value due to atmospheric effects such as 
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cloud perturbations, (see figure 5.2), or (iii) that the sub-surface light field had 
become perturbed by the ship's shadow (see figure 5.3) or wave effects at the air-
sea interface (see f igures 5.4 and 5.5). 

Before any further processing took place, these potential errors had to be 

quantif ied and their effect removed. This frequently resulted in a cast being 

rejected as unusable. 

5.1.1 Removal of in-water effects 

The accuracy of Rrs(A,0') values derived f rom the profile data was dependent upon 

obtaining the con-ect measurement of the radiometric quantit ies logged at each 

depth. It would not be correct to suppose that there was no fine scale physical 

inhomogeneity in the mixed layer, so the Kd(A) value calculated from the 

radiometry represents a practical integration incorporating any fine scale structure. 

Data collected in the vicinity of relatively large scale features such as a thermocl ine 

must be removed as the spectral distribution of these data will not necessarily be 

representative of the surface. Figure 5.1 shows a comparison of an R(443,0') and 

corresponding temperature profile. These data illustrate a common problem with 

the use of light profiling techniques, especially in regions where there is a shal low 

thermocline, as the only portion of the light profile that is representative of the 

upper mixed layer in figure 5.1 is the top 20m. Below this depth the thermocline 

and associated biological activity (the presence of which is assessed from the 

vertical chlorophyll-a f luorescence data obtained from the CTD-F casts also earned 

out on station) introduces variability in measurement. This leads to the spectral 
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intensity of the light field changing which results in erroneous assessment of the 
diminution with depth and hence the denved ocean colour measurement. 

+ 1 5 5 G 

+ 1 4 5 

10 20 30 
Depth (m) 

40 50 

— Ed{4A3nm) Lu{AA3nm) R{4A3nm) Temp 

Figure 5 .1 . Changes in the underwater light field associated with the 
temperature profile at 443nm The data displayed here were obtained by 
profiling and show the downwell ing irradiance and upwelling radiance and 
corresponding reflectance (in natural log space) In addition to the optical 
measurements temperature and chlorophyll f luorescence are shown. 

It can be seen that the reflectance ratio increases below the thermocline indicating 

either a lowering in the rate of attenuation of Lu(A) and/or a rise in the attenuation 

of Ed(A). On this basis the region of the cast shown in figure 5 .1 , the section below 

15-20m would be rejected for the purpose of the surface layer Kd(A) derivation by 

least squares regression analysis. It may be seen that two shoulders are visible in 

the profile data which are due to atmospheric effects (see section 5.1.2) Note that 

these effects are cancelled out when the data are considered in terms of 

reflectance. 
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5.1.2 Removal of perturbations in the incident skylight, Ed(A,0*) 

The second potential effect that may cause irregulanties to sub-surface 

measurement of the light profile is variation in the incident light field. 

(a) (b) 

(R'=99 0%, r>=1302) iR'=98 8%, n=389) 

20 30 40 
Depm(m) 

10 20 30 40 50 
Depth (m) 

Figure 5.2. The change in measured Ed(490nm) with depth dunng a cast 
where the illumination condit ions were affected by changing cloud thickness 
and/or type. These perturbed data were removed from the cast phor to further 
analyses. Plot (a) illustrates the raw data and (b) the same profile with the 
data affected by changing incident irradiance removed. The units of irradiance 
in this instance are /.iW cm ^nm'\ 

There are two distinct shoulders, one at 9m and another at 25m visible in the data 

which are the result of decreasing incident irradiance during profiling (due to 

factors such as thinning cloud) increasing the subsurface measured intensities 

logged during these periods. These data are removed pnor to further analyses, as 

shown in, figure 5.2(b). Data below 30m deviate from the straight line relationship 

possibly due to the detection of further meteorological perturbations or due to 

structural changes in the water column and are hence also discarded. 



Chapter 5: Optical Data Processing 

5.1.3 S h i p s h a d o w a n d w a v e e f fec ts 

At shallow depths the integnty of the data can be seriously compromised by sub­

surface perturbations in the underwater light field by not only the deployment 

platform but also the air/water interface. 

5.1.3 (i) S h i p s h a d o w e f fec ts 

Ship shadow effects show up in the surface of the \n[Ed(A,z)] profile with depth. 

The effect is manifest as a non-linear portion of the curve with lower radiometric 

values over the affected depth as shown in figure 5.3. These data are removed 

prior to further analyses. 

10 15 20 25 
Depth (m) 

Ed(490) — Lu{490) 

30 35 40 

Figure 5.3. An example of the effect of ship's shadow on the sub-surface optical 
profile. The low light levels were apparent in the data from the top 5 meters, 
which are affected by the ship. The units of irradiance are juWcm'^nm ^ and of 
radiance are cm^nm'^sr\ 
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5.1.3 (ii) Ref ract ion ef fects of the inc ident d o w n w e l l i n g l ight f ie ld at the air/sea 
interface 

Near surface perturbations of the light field have a profound effect upon shallow 

measurements made by profiling radiometers due to refraction patterns caused by 

surface waves. Data in figure 5.4 show Ed{A90nm) measurements collected at 

shallow depths, and the wide variation in the readings typically obtained. These 

data are routinely rejected from the profile to a depth of 2-5rr7 in deep oceanic 

regions, and 0.5-2r77 when working inshore, depending upon the depth of the 

thermocline and the stability of the incident light field and/or water turbidity 

240 

220 I 
200 I 

5 180 I 
I 160 

^ 140 4 

120 -

100 -

80 
0 2 0 4 0 6 0.8 

Depth (m) 
1.2 1 4 

Figure 5.4 The variation in measured Ed(A90nm) below the surface. These 
data are either averaged or removed from the data set prior to further 
processing. The units of irradiance are fjW cm^nm\ 

To examine this effect further a time senes of data were collected with the radiometer 

deployed below the surface to a depth of I m for 2 minutes, followed by a further 2 
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minutes suspended above the sea surface. This process was repeated four times. 
Figure 5 5 presents a section of the time series of data obtained and demonstrates the 
air/water interface effect upon the incident in-adiance. The sea conditions were clear 
oceanic waters, no wind, no swell and surface waves of 5-10cm height. 

400 J 

350 . 

300 • 

250 • 

200 • 
UJ 

150 • 

100 • 

50 • 
200 400 600 800 1000 1200 

Consecutive record number 
Ed(490nm. 0+) Ed{A90nm, 0-) 

Fig 5.5. Ed(490) data collected above and below the air sea interface. The 
above surface measurements were adjusted for the immersion coefficient, which 
for the PRR-600 at 490nm, is Ed (0> 0.796 • Ed(0*). The units of irradiance are 

cm^nm'\ 

If large amounts of data are removed then the cast is may have to be rejected, 

except in very turbid waters where an isotropic light field (purely diffuse) may 

prevail at shallow depths. 

Once the optical profile data had been subjected to the rigorous pre-processing 

quality control procedures detailed here, further processing stages were carried out 

for each up and downwelling channel. From equation 2.19 in chapter 2. it was 

shown that the vertically downward attenuation of irradiance may be described by: 
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(5.1) 

By plotting \r\[Ed(/,.z)] against depth, z, and performing least squares regression 

analyses, equation 5.1 may therefore be solved for Kd(/,) and Ed(/.,0) as shown in 

equation 5.2. 

\n[Ed(A.=)] = ^ ^ . = ̂  \n[EdiAfi-)] (5.2) 

where - Kd. 
dz 

The upwelling radiance, LU(A,Z), profile data were similariy treated to derive values for 

KL(A) and con-espondingly Lu(A^O'). It may be noted from figure 5.6 that there is a 

strong similarity between the attenuation coefficients, Kd(A) and KL(A) derived from 

profiled measurements using the Ed(A) and Lu(A) sensors respectively. 

0.3 J 

0.25 •• 

0.2 
o 

0.2 

0 .15 0 .15 

0.1 • 

0 .05 

0 

0 0.05 0.1 0 .15 0.2 0.25 0.3 
Kcf (490) 

— Y = 0.971X (R^=95.8%. n = 51) 

Figure 5.6. Illustration of the relationship between K/.(490; and Kd(490; for the 
amalgamated data set comprised of the L4. AMT-1 and PRIME data. 
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5.2. S T A T I S T I C A L M E T H O D O L I G I E S 

The statistical and descriptive methodologies used in chapter 8 to descrit)e the 

observations presented in chapter 7 are presented here. 

5.2.1 Departures from normality 

The following terms, in conjunction vwth the Kolmogorov-Smimov two sample test (see 

section 5.2.4), are used to describe structured deviations, v ^ e r e present, from the 

nonmal case of the error frequency distribution. Equations are not given for their 

derivation as this is considered beyond the scope of this description. Their calculation 

was undertaken using subroutines provided with the Quattro-pro spreadsheet. 

(Boriand International Inc., 1993). 

5.2.2(i) S k e w n e s s (assymmetry) 

Skevmess is apparent in a distribution in which the mean and median are not of the 

same value, i.e. that one side of the curve is drawn out more than the other. The 

conventional sample statistic for measuring skewness is denoted g 1 . Curves may be 

either drawn out to the left, negative g 1 , or right, positive g1 (Sokal and Rohlf, 1995). 
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5.2.2(11) Kurtosis 

Kurtosis describes the proportion of items found in the tails in relation to those in the 

shoulders compared to the 'bell' shaped nonmal distribution. 

The conventional sample statistic for measuring Kurtosis is denoted g2. A negative 

g2 indicates platykurtosis (fewer items at the centre but more at the tails than a 

normal case) and a positive g2 indicates leptokurtosis (more i tems at its centre 

than at the tails) (Sokal and Rohlf, 1995). 

5.2.3 A s e s s m e n t of the deviation from the normal distribution c a s e using the 

Kolmogorov-Smimov two sample test (Sokal and Rohlf, 1995) 

The null hypothesis of the Kolmogorov-Smimov two sample test is that the two 

samples are distributed identically, thus the test is sensitive to location, dispersion, 

skewness and kurtosis. It is based on the unsigned differences between the relative 

cumulative frequency distributions of the two samples. The critical value is calculated 

using equations 5.3 and 5.4. 

The example given in table 5.1 uses the comparison between two algorithms, 

designed to retrieve Kd(490nn7): one, A 1 , developed from other work equation 3.5 

(Moore ef a/., 1997) and the other, A2, developed in this wori^, equation 8.2. These 

relationships were both applied to the remote sensing reflectance data collected 

during AMT- 1 , (further discussed in section 8.1.2). 

Analytical procedure: 
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1. Tabulate the cumulative frequency (F1 and F2) of the error distributions for 
algorithms A1 and A2, 

2. Compute relative cumulative frequencies by dividing F through by n in each case, 

3. Compute the values for the absolute difference between the relative cumulative 

frequency columns, d, 

4. Find the largest value of d, 

5. Where D is the termed the maximum unsigned difference, this value is in turn 

multiplied by the product of nyn^ to normalise the values. 

Table 5.1. Worthed examp e of the Kolmogorov-Smimov two sample test. 
Bin A1 F t 

(ni=20) 
A2 F2 

(n2=20) 

F l 

«i 

F2 

-0.6 0 0 0 0 0.0000 0.0000 0.0000 
-0.52 0 0 1 1 0.0000 0.0500 0.0500 
-0.44 0 0 1 2 0.0000 a 1000 a 1000 
-0.36 0 0 0 2 0.0000 a 1000 01000 
-0.28 2 2 3 5 a 1000 0.2500 0.1500 D 
-0.2 3 5 0 5 0.2500 0.2500 0.0000 
-0.12 2 7 3 8 0.3500 O4000 0.0500 
-0.04 5 12 4 12 0.6000 0.6000 0.0000 
0.040 2 14 4 16 0.7000 08000 0.1000 
a i 2 3 17 4 20 0.8500 1.0000 01500 
0.2 3 20 0 20 1.0000 1.0000 0.0000 

The critical value for this statistic can either be found from tables or may be 

calculated using equations 5.3 and 5.4. 

Da = Ka (5.3) 
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where Ka -f-lM-] (5.4) 

where a denotes the probability level that the populations are distributed 

identically, e.g. p=0.05. In this case the critical value was calculated to be 8.589. 

By comparing this to nin2Da. where a value of 0.15*20*20 = 60 was obtained, due 

to the magnitude of the critical value (which is considerably smaller) the null 

hypothesis that the en-or distributions are the same and hence will contain samples 

from the same population must be rejected. Had the critical value been greater 

than nin2Da, then the null hypothesis must be accepted (at the p=0.05 level). 

5.2.4 Accuracy and precision 

The terms accuracy and precision are employed in the context of this work to describe 

the manner in which an algorithm may mathematically retrieve an in-water property 

from upwelling radiances as a function of the location and spread of the peaks and 

troughs when data are viewed as either along cnjise track or time plots. Simple 

graphical examples are given in figure 5.7. 
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5 ^ 
£ 3 

— Accurate but imprecise 

'5 2C 

— Precite but nacurate 

Figure 5.7. The concept of accuracy and precision as applied to this v^ork. 
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6. P IGMENTS DETERMINED B Y HIGH P E R F O R M A N C E LIQUID 
C H R O M A T O G R A P H Y (HPLC) 

In this chapter the major classes of phytoplankton pigments identifiable by HPLC are 

introduced, as well as the methodology employed in the collection of the water samples 

and their subsequent laboratory analyses. 

6.1 T H E R A N G E O F P IGMENTS P R E S E N T IN P H Y T O P L A N K T O N 

The biological sampling rationale was to establish the concentrations of the chlorophyll 

and carotenoid components of the pigment assemblage present at the time of the 

contemporaneous optical casts. There are three classes of pigment in phytoplankton: 

(i) the chlorophylls, (ii) the carotenoids and (iii) the phycobilins (Hall and Rao, 1981; 

Rowan, 1989; Kiri^, 1994; Jeffrey et a/., 1997). The third group was not identified by the 

HPLC analysis undertaken during this study, so are beyond the scope of this work. 

6.1.1 The chlorophylls 

CHL-a (a bluish-green colour) is the principle ubiquitous photosynthetic pigment of all 

higher green plants and algae and exists in two fonns in natural populations of 

phytoplankton: CHL-a and divinyl chlorophyll-a (DV-a) (Jeffrey et al., 1997/ During 

the fieldwork these two pigments were identified as observations of DV-a in the 

oligotrophic waters indicating the presence of prochlorophytes (Suzuki and Handa. 1995) 
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Figure 6.1 (a) shows the proportion of the total observed CHL-a that was found to be DV-
a dunng AMT-1. These data are further discussed in chapter 7. 

(a) 

(b) 

0.8 + 

0.4 + 

6 0 4 0 

Nortti 

20 0 

Latitude 

-20 ^ 0 

Soutti 

-60 

Latitude 

Figure 6.1. Pigment data collected dunng AMT-1 showing (a) the change in the ratio 
of DV-a as a proportion of the T-CHL-a along the cruise track, and (b) the vanability 
in photoprotective carotenoids (PPC) as a proportion of the total carotenoid (TC) 
assemblage. 

There are additional chlorophylls (b and c) that co-exist with CHL-a in certain 

photosynthesising plants, e.g. CHL-b occurs in red algae (Rhodophyta), CHL-c occurs in 
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diatoms and brown algae (Heterokontophyta), 

6.1.2 The carotenoids 

The carotenoids are a diverse yellow and orange class of pigments found in all 

photosynthesising cells. They are usually either hydrocarbons (carotenes) or oxygenated 

hydro-carbons (carotenols or xanthophylls). They have triple banded absorption spectra 

between 400nm to 550nm, and are found in the chloroplast lamellae in dose proximity to 

the chlorophylls. There are two broad sub-groups: the photosynthetic carotenoids which 

include fucoxanthin, hexanoyloxyfucoxanthin, butanoyloxyfucoxanthin, prasinoxanthin, 

beta-carotein; and the photoprotective carotenoids v^ i ch include diadinoxanthin, 

alloxanthin, zeaxanthin, lutein). The colour of these pigments are usually masked by the 

intense green of CHL-a, although in autumn they are seen as leaf yellowing in ten^strial 

plants as the CHL-a and phycobilins break down first and are washed out (the latter being 

water soluble). 

Photosynthetic carotenoids assist in the photosynthetic process by absorbing photons in 

regions of the spectnjm that CHL-a does not and passing captured energy to the reaction 

centres in the photosynthetic pathway. Photoprotective carotenoids, however, are used to 

combat the potentially lethal effects of high levels in incident in-adiance on aquatic algal 

populations. In such conditions the photoprotective pigments as a proportion of the total 

will be higher, changing the colour of the cell and acting as a short-wave light filter (Kiri<, 

1994). An example of variability within the carotenoid component of the pigment 

assemblage is illustrated in figure 6.1(b). v\4iere the PPC observed during AMT-1 make 
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up varying proportions of the total carotenoid concentrations observed. This PPC 
variability is accompanied by corresponding changes in the PSC concentration observed. 

6.2 P IGMENTS IDENTIFIED B Y T H E H P L C A N A L Y S I S 

Data in table 6.1 detail some of the key pigments that may be determined for wrtiich 

standards are readily available (Jeffrey et a/., 1997). 

Table 6.1 HPLC pigments grouped according to Bidigare et a/. (1990) 
Pigment 
(common 
name). 

Chemical 
formula 
(colour) 

Taxonomic 
indicator for 

Use by plant 

Chlorophylls 
Chlorophyll-a C55H72N405Mg 

(blue-green) 
Present in all green 
algae. 

Principle photosynthetic pigment. 
Usually dominant, but the relative 
concentration varies widely (Kirit, 
1994). 

Divinyl chtoro 
-phyil-a 

CssHToNUOsMg 
(green) 

Prochlorophytes Becomes present in greater quantities 
in the oligotrophic regions (Suzuki and 
Handa, 1995). 

Chtorophyil-6 C5sH7oN406Mg 
(olive/emerald-
green) 

Prasinophytes, 
chlorophytes, 
prochlorophytes. 

Photosynthetic accessory pigment, 
usually present In green algae (Vernon 
and Seeley, 1966). 

Chtorophyll-cj C35H3oN405Mg 
(Light olive-
green) 

Brown algae, 
diatoms, 
dtnoftagetlates. 

Photosynthetic accessory pigment 
found in green and brovim algae, 
Important in the prymneslophyte 
Emiliania huxlei (Vemon and Seely, 
1966). 
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Table 6.1 continued 
Phaeopigments 

Chlorophyllide-a C35H34N405Mg 
(blue-green) 

Degradation product of 
chlorophyll-a. 

Phaeophorbide-a C35H36N4O5 
(yellow-grey) 

Degradation product of 
chlorophyll-a. 

Pha80phytin-jt> QSH36N4O5 
(yellow-grey) 

Degradation product of 
chlorophyll-i>. 

Carotenoids 
Internal standard 

Canthaxanthin C40HS2O2 
(red) 

Cyanobacteria 
(Van Den Hoek et a/., 
1995). Trace pigment in 
some blue-green algae, 
diatoms (Jeffrey et a/., 
1997). 

Very rare occurrence in the wild 
makes it suitable for use as an 
internal standard. 

Photo protective carotenoids 
Oiadinoxanthin C40H54O3 

(yellow) 
Diatoms, 
prymnesiophytes 
drnoflagellates. 
(KirK 1994; Jeffrey etal., 
1997). 

Photoprotective carotenoid 

Alloxanthin C42HS8O6 
(yellow-orange) 

Cryptomonads (Jeffrey et 
a/..1997) 

Photoprotective carotenoid 

Zeaxanthin C49HS6O2 
(ye[[owK>range) 

Rhodophyta, chlorophytes 
(Kirk. 1994). 
prochlorophytes 
cyanobacteria 
(Jeffrey etaf., 1997). 

Photoprotective carotenoid 

Lutein C40H56O2 
(yellow) 

Chlorophyta, 
rtiodophyta 
(Kirk. 1994; Jeffrey e/a/ . , 
1997) 

Photoprotective carotenoid 

Beta Carotein C4oH5e 
(yellow-orange) 

All marine algae except 
cryptophyta. (Writ. 1994). 

Photosynthetic carotenoid 

Photosynthetic carotenoids 
19'-Hexanoyloxy 
-fucoxanthin 

C48H68O8 
(orange) 

Prymnesiophytes and some 
dinoflagellates (Jeffrey et 
a/., 1997). 

Photosynthetic carotenoid 

19'-Butanoyloxy 
-fucoxanthin 

C4SH64O8 
(yellow-orange) 

Chrysophytes e.g. 
Peiagococcus, some 
prymnesiophytes with traces 
in Ermliania huxlei (Jeffrey et 
at., 1997). 

Photosynthetic carotenoid 

Fucoxanthin CAaHssOe 
(orange) 

Diatoms (Kirit. 1994; 
(Jeffrey e/aA, 1997). Brown 
sea weeds, some 
dinoflagellates (Jeffrey et 
at., 1997). 

Photosynthetic carotenoid 

Prasinoxanthin C40HS6O4 
(deep pink) 

Prasinophytes (Jeffrrey et 
al.,1997) 

Photosynthetic carotenoid 

Peridinin C39H50O7 
(brick red) 

Photosynthetic 
dinofTagellates, except those 
containing endosymbionts 
(Jeffrey a/.. 1997). 

Photosynthetic carotenoid 
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6.3 WATER SAMPLING, FILTRATION AND STORAGE 

The procedures that were used to derive measurements of the chlorophyll and 

carotenoid components of the phytoplankton pigment assemblage, from water sample 

collection and storage to analysis by high performance liquid chromatography, HPLC, 

are presented in this section. 

The goals for filtration were to minimise contamination and particle degradation, 

maximise retention, and concentrate an adequate amount of particles on the filters for 

accurate measurements to be derived by HPLC (Mueller and Austin. 1995). 

6.3.1 Water collection 

The water sampling strategy inevitably varied considerably from platform to platform, 

but the rationale remained the same. The objective was to collect water as close to 

the time of the optical cast as possible, filter the sample and preserve it in liquid 

nitrogen (LN2) for subsequent laboratory analysis. The time between sampling and 

LN2 preservation was kept to a minimum, with a repeatable sampling pattern being 

established and executed throughout all fieldwork. 
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6.3.1(i) Sampling at station L4 

Samples were collected using Niskin bottles at a depth of ^m using the crane fitted to 

the starboard after quarter of RV Squilla (see figure 4 15) As the survey progressed a 

four bottle string was used dunng the summer of the sampling to extend the 

measurement suite below the surface, thus allowing the targeting of water column 

structure to be vanability identified by temperature and/or chlorophyll fluorescence 

profiles. The bottle depths were targeted from an assessment of the temperature 

profile (see figure 6.2). Historical data from prior PML work were used as a guide to 

sampling, (Holligan and Harbour, 1977). 

(a) 

20 X 
Dep»i(m) 

(b) 

Figure 6.2. Typical L4 site temperature data collected during 1995 sampling 
where (a) illustrates winter conditions (SDY 30) and (b) early summer 
conditions, (SDY 179) at station L4. The red crosses overlaid on the plots 
indicate the sample bottle depths targeted from these temperature data. 

Samples were collected on the same day each week, weather and logistics permitting 

Filtration was carried out immediately after the samples were drawn from the bottles 

using the positive pressure filtration system described in section 6 3.2(i). 
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6.3.1(ii) Sampling during AMT-1 and PRIME 

The CTD bottle water sampling system used on board RRS James Clark Ross during 

AMT-1 and RRS Discovery during PRIME varied only in the method of sample 

targeting. 

During the AMT-1 daily sampling stations, two CTD rosette mounted Niskin bottles 

were used to sample at each main depth (which were the same at each station), and 

one bottle at two extra depths (determined during the CTD downcast). Typical CTD 

casts were to a depth of 200m (see figure 6.3). In addition to the bottle samples 

collected at the profile site, additional samples were collected from the 

uncontaminated sea water supply at a depth of 7m while underway. Two litre samples 

from the first five depths were filtered and stored in LN2 at each optics profiling site. 

The sampling resolution depended upon information collected on station from profiled 

radiometric measurements of photosynthetic available radiation (PAR) and 

temperature structure derived from an undulating oceanographic recorder (UOR), 

which was lowered vertically down to lOOm upon arrival on station to obtain a quick 

look CTD-F cast (the profiling CTD/bottle rosette on board James Clark Ross had no 

fluorometer fitted during AMT-1 to determine the vertical chlorophyll structure). 
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+ 0.25 
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Figure 6.3. AMT-1 DOR derived chlorophyll fluorescence (CHL) and 
temperature (Temp ) data. The red crosses overlaid indicate the depths at 
which sample bottles were fired. 

The CTD rosette used 12 * 20 litre Niskin bottles deployed from a dedicated winch 

located slightly aft on the starboard side of the vessel. Sub-samples were siphoned 

into the 2 litre bottles ready for filtration. Similar sampling protocols were followed 

during PRIME sampling, with two litre water samples collected from each bottle from 

each CTD-F cast duhng the cruise programme. 
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6.3.2 Filtration 

Whatman GF/F filters were used as specified by Mueller and Austin (1995). The GF/F 

filter has a finely woven glass fibre microstructure (see figure 6.4a), with a nominal 

pore size of 0.7/ym, around which the size retention is normally distributed. Also 

shown, figure 6.4(b), is an electron microscope scan of a 0.2^m Nucleopore 

membrane filter, (of the type used to examine the absorption spectrum of the DOM 

fraction illustrated in figure 2.7). 

Figure 6.4. Scanning electron micrograph of (a) a Whatman GF/F {0.1/um) 
glass fibre filter pad and (b) a 0.2//m Nulceopore membrane filter. Images 
generated courtesy of the University of Plymouth Electron Microscopy Unit. 
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6.3.2(1) Positive pressure filtration system 

The water samples were filtered as soon as was practicable after collection using a 

purpose built low positive pressure filtration system (figure 6.5). The system design 

brief was to produce a portable, robust, efficient and easy to use apparatus that 

would not contaminate the sample and would cause minimum sample degradation 

during filtration. 

Figure 6.5. One half of the water filtration system used throughout the 
fieldwork showing the bottles, pressurising manifold and 25mm filter housings. 

Modifications to the filter housings and a possible design for an automated filtration 

and storage system are discussed in appendix 2. 
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6.3.2(11) Filtration rig components 

The filtration rig used Tygon R3603 tubing with a specification that was non-

contaminating as well as providing a good grip over the operational pressure ranges 

of 0-15 psi. The filter housing quick release connectors were made from 

Polypropylene and stainless steel, preventing fluid flow upon disconnection. The 

Nalgene T ' section joints were made of polypropylene, as were the non-return valves. 

The Gelman Sciences 25mm filter housings were made of Teflon with a stainless steel 

filter support. The Nalgene sample bottles were of non-contaminating polypropylene 

construction (to DIN 13316 and 168) which were available in 0.5/, 1/and 2/capacities, 

sharing a common lid size enabling ease of switching between sample volumes. The 

bottles were suitable for the field temperatures encountered which ranged between 4-

32°C, with minimal losses due to shattering. The sample bottles were fitted straight 

onto the positive pressure filtration rig, where up to 12 samples could be filtered 

simultaneously or the system used in two discrete sections of 6. 

Pressure was applied using a standard oil-less Millipore twin manifold pump with 

pressure taken from what is usually the 'exhaust' port, this was kept to a minimum 

during filtration to minimise phytoplankton cell disnjption during filtration. 
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6.3.2(iii) Filtration procedure 

The following section outlines the filtration protocols that were observed from water 

collection to sample storage in liquid nitrogen. While the filtration time may increase in 

waters containing relatively high levels of suspended particulate material, the process 

was typically completed in 10-15 minutes. 

(a) The primed cryo-flask (see section 6.1.3) and set of mari<ed vials were to hand to 

enable the filters to be frozen immediately they were transferred from the housings. 

(b) The rig was set up with Whatman 25mm GF/F filters prior to sampling to save 

time. If more than 12 samples were to be taken at any one filtration session then 

bottles were re-primed with new filters as they became available. 

(c) The pump operating pressure and the integrity of all unions were checked for 

leaks. 

(d) The two litre sample containers were brim-filled from the CTD bottles (to set the 

sample volume) and the lids screwed down. The bottles were then inverted and 

placed upon the racks (the non-return valves and snap connectors preventing the 

sample being spilt during transfer). 

(e) The bottles were connected to the pressurising manifold and the filter housings. 

Pressure was applied to the sample by adjustment of the pump regulator and the 

isolation switch, which would often require a raised pressure to break the surface 

tension of the water across the filter pad before reducing the pressure once flow was 

established. The filtrate was either left to drain or could be captured for further 

analyses. 
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(f) As the filters became blocked the regulator valve was adjusted to increase the 
pressure slightly. Should it not have proven possible to filter the entire sample, the 
unfiltered volume was measured and subtracted from the whole and/or smaller bottles 
were used for future samples before the increased sample volumes were once again 
appropriate. 

(g) As the sample bottles emptied, the isolation valves were shut, with the regulator 

valve being opened as necessary to blow off the excess pressure. 

(h) Upon completion of filtering (by which time the valves were shut) the regulator was 

opened completely. 

(1) The snap connectors that linked the filters to the waste pipe-work were released to 

allow dear access to the filter housings, which were then unscrewed to allow access to 

the filters; these were then removed using flat faced forceps. 

(j) The filter papers were carefully placed in the cryo-vials which were immediately stored 

in liquid nitrogen. All the filtration rig components were then rinsed in clean fresh water 

ready for ne-use. 

6.3.3 Cryogenic preservation and transportation 

In order to arrest sample degradation once filtered the marked cryo-vials were 

immediately stored in LN2 at -196°C until analysis. Logistical arrangements were made 

during each fieldwork session to ensure that this was possible. 
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6.4 PIGMENT PROCESSING BY HPLC 

In this study the derivation of pigment concentrations by HPLC was undertaken using 

routine analysis techniques by trained technicians. In this way the operation was 

employed as a 'black box" process employing the methodology of Wright ef a/.,(1991), 

the focus of this work being the chromatogram analysis. 

Pigment samples were processed at two sites on similar systems: (i) Plymouth Marine 

Laboratories (PML) under the guidance of Dr. Ray Bariow; and (ii) at the Centre for 

Hydro-optics and Remote Sensing (CHORS) under the guidance of Dr. Charies Trees. 

The HPLC chromatograms were recorded as a scaled deflection against time as 

determined by the optical detectors (typically at 443nm-455nm absorbance and/or 

SlOnm fluorescence). The area under the curve of the chromatogram is proportional 

to the concentration of the separated pigment as it passes through the detector, the 

identification of which was made on the basis of retention time, Rt (the time taken for 

the compound to reach the detector from the injection of the sample into the column) 

and by periodic comparison of the component peaks with a library of absorption 

spectra obtained from known standards. 
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6.4.1 Running the samples through the CHORS HPLC 

The samples were taken from the nitrogen and dissolved in 100% acetone for a 

minimum of 15 hours and kept in the dark at -20*'C. The samples were then 

centrifuged for 5 minutes before a sub-sample (600/z/) was placed in the HPLC auto 

sampler vial. The vials were then placed in the racks, with the temperature control of 

the tray set to -1°C to inhibit sample degradation during analyses (a njn of 48 samples 

takes about 24 hours). 

An internal standard solution of canthaxanthin was used at CHORS. which is found 

only rarely in wild populations of cyanophyta. heterokontophyta, haptophyta and 

dynophyta (Van Den Hoek et a/., 1995) and was added to the extracting solvent to 

account for any changes in volume by using the identified concentration to normalise 

all the subsequently resolved pigments. Since canthaxanthin is a carotenoid, its 

fluorescence spectrum would not offset any accompanying fluorometric analyses, (see 

section 6.4). 

Pigments were separated by an ODS-2 column using a three solvent system at a flow 

rate of 1m/ min\ A sample run took 25 minutes with the pigment peaks being 

detected by two absorption detectors; a Thermal-Separation Products (TSP) UV2000 

measuring absorption at 436nm and 450nm, and a TSP Spectra Focus scanning 

detector measuring 32 channels from 396nm to 524nm. In addition a Spectrasystem 

FL 3000 scanning fluorescence detector was used to detect and quantify degradation 

products. Although CHL-a and DV-a co-elute on this column, their absorption 

characteristics vary at 436nm and 450nm. Their separation was achieved by the 
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CHORS system employing the di-chromatic equation technique (Latasa et a/., 1996). 
It was therefore possible to account for the divinyl chlorophyll-a component by 
monitoring changes in the ratio as a function of changes in the divinyl chlorophyll-a 
(Dv-a) percentage of the total Chlorophyll-a (Chl-a) concentration. 

6.4.2 Running the samples through the PML HPLC 

The same methodology was used for sample preparation and analyses as described 

for the CHORS HPLC analyse in the last section, but employing different hardware. 

The system used was a Shimadzu HPLC with dual LC-6A pumps and an SPD-6AV 

spectrophotometric absorption detector and RF-535 fluorescence detector with an 

SCL-6B controller. The type of system employed was capable of resolving CHL-a and 

dv CHL-a directly (Bariow et a!., 1997), see figure 6.7. 

6.5 Calibration of the fluorometer used during the AMT-1 along track sampling 

The following section describes the calibration procedure that was undertaken prior to 

AMT-1, (which was then re-calibrated at the end of AMT-2). The concentration of the 

chlorophyll-a standard was detennined spectrophotometrically from the measured 

extinction coefficients (Vemon and Seely. 1966) prior to adding 2 drops of 0.1N 

hydrochloric acid (HCL) for data collection post acidification, as shown in table 6.2 and 

equations 6.1 and 6.2. Data were corrected for the optical density, (logio(1/T)], at 750nm. 
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As any absorption in evidence at this wavelength was an artifact of the optical 
characteristics of the spectrophotometer as chlorophyll-a is optically Inactive in this 
spectral region. 

Table 6.2. Absorption characteristics of the standard chlorophyll-a 

Wavelength 
{nm) 

Reading, 
(optical 
density) 

Reading corrected for absorption, 
at 750nm, (optical density) 

630 0.156 0.099 

645 0.188 0.131 

665 0.742 0.685 

750 0.057 

Post acidification 

665 0.449 0.391 

750 0.057 

Chlorophyll-a= [l 163{A^,) - 0.14(4,^)- 13 \(A^,)] x y x 100 (g m'^ (6.1) 

v^ere the constant, 10/5, accounts for the use of a 5cm rather than the 1 cm cuvet used 

to generate the relationship. 

Chlorophyll-a= 26.7{A^,^ - A^,,)x x lOO (6.2) 

From these data the concentration of the standard was calculated to be 

1.645 mg m"̂ . Data in table 6.3 show the range of standard concentrations that were 

generated to calibrate the fluorometer. 
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Table 6.3 Sample stand ard dilution. 
Ditutkm of standard 

sample 

Concentration 

1.0 1.563 

0.8 1.251 

0.6 0.938 

0.4 0.623 

0.2 0.313 

0.1 0.157 

Examination of these standards in the fiuorometer gave the results listed in table 6.4. Fa 

was derived for each standard concentration using equation 6.3. 

r^Lt u it fnu n .^^omumc extracted . „ Chlorophyll -a = (Rb- Ra)* •_ — * Fa 
Volume filtered 

where Rb is the reading before acidification, and Ra the reading after 

(mgm"^ (6.3) 

Table 6.4. The calculation of Fa from the range of standard dilutions 
Oil. Con. Rb Ra Diff. Ra Rb/Ra Fa 

1.0 1.645 1.8 1.08 0.72 1.66 2.171 

0.8 1.316 1.48 0.85 0.63 1.741 1.985 

0.6 0..987 1.12 0.689 0.431 1.626 2.176 

0.4 0.623 0.51 0.32 0.19 1.59 3.291 

0.2 0.249 0.44 0.24 0.2 1.83 0.782 

0.1 0.165 0.2 0.12 0.08 1.67 1.954 

AVG.Fa 2.0597 

From table 6.4 it can be seen that the average value of Fa, the calibration factor, was 

determined to be 2.06 for the fixed optical configuration of the fluorometer. 
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6.6 FLUOROMETRIC CHLOROPHYLL-a ANALYSES 

During the AMT-1 cruise, fluoromethc analyses of water samples were earned out 

in-vitro in tandem with the collection of HPLC samples for storeage. During the cruise, 

samples were collected at approximately two hourly intervals, and were extracted in 

^Omls of 90% HPLC grade acetone in the dark at -20°C. These samples were then 

analysed one day in arrears to dehve the concentration of CHL-a and phaeophytin-a 

(Yentsch and Menzel. 1963). Data in figure 6.6 show the resultant CHL-a data 

generated from the along cruise track measurements. 

265 270 275 280 285 
S D Y 

290 295 300 

Figure 6.6. Underway fluorescence data collected during AMT-1. The red dots 
correspond with the times (SDY) of the daily CTD casts and do not relate to 
the Y-axis. 

These data give an indication of along track variability in phytoplankton biomass. 
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6.7 PIGMENT DATA PROCESSING METHODOLOGY 

The chromatograms produced for each pigment sample contain the peaks and 

associated areas for each compound separated by the system. Figure 6.7 shows a 

typical chromatogram of the type routinely identified in oceanic water samples. Also 

shown are some algal groups commonly associated with these pigments. The 

chromatograms were recorded and then re-analysed prior to transfer of the peak areas, 

residence times and calibration factors to a spreadsheet, to enable the concentration of 

each pigment identified to be calculated. 

6.7.1 HPLC calibration data 

The peak areas obtained from the HPLC were converted to concentrations by the 

application of the calibration factors obtained from HPLC analysis of pure pigment 

samples of known concentration (from spectrophotometric detenmination). Table 6.5 and 
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Figure 6.7. Typical chromatogram produced by HPLC analysis. 

and 6.6 respectively show the calibration data (as well as retention times) that were 

determined at CHORS and PML prior to the commencement of this study. The calibration 

data were obtained by running standards through the configured HPLC system, and the 

instrument analogue response is thus calibrated. 
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Table 6.5 Calibration data applied to the CHORS HPLC. 
Identified pigment Detector 

wavelength [nm) 
Retention factor (Rf). Retention time» mins, 

(Rt). 

canthazanthin (internal standard) 450 ******** ******* 
chlorophylk: 450 0.00125 6.4 

peridinin 450 ******** 7.8-8 
butanoyloxyfucoxanthin 450 0.0012 8.4 
fucoxanthin 450 0.00296 8.9 
hexanoyloxyfucoxanthin 450 0.00124 9.5 
prasinoxanthin 450 0.00136 10.8 
diadinoxanthin 450 0.00117 13.1 
alloxanthin 450 0.000823 14.7 
lutein 450 0.00131 16.9 
zeaxanthin 450 0.00131 16.9 
chlorophyll-/) 450 0.00199 20 
chlorophyll^ 436 0.0027 21.234 
chtorophyma 450 21.234 
phaeophort>ide-a 450 ********* >10<14 
phaeophytin-a 450 0.8476 24.5 
phaeophytin-6 450 0.04535 23.1 

Table 6.6 Calibration data applied to the PML H PLC. 
Pigment identified Detector 

wavelength {nm) 
Retention factor (Rf) Retention time (Rt) 

(mins). 

chlorophyll-c3 440 00.239 0.9 
chlorophyll-c2 440 1.969 1.23 
peridinin 440 4.64 2.02 
butanoyloxyfucoxanthin 440 6.902 3.63 
fucoxanthin 440 7.0523 3.92 
prasinoxanthin 440 6.353 4.84 
hexanoyloxyfucoxanthin 440 5.572 5.14 
diadinoxanthin 440 11.784 6.95 
alloxanthin 440 10.455 9.19 
zeaxanthin 440 9.569 11.3 
lutieln 440 13.954 11.51 
chlorophyll-b 440 2.916 19.62 
dfvinyl chtorophyll-a 440 4.097 23.4 
chlorophytl-a 440 3.19 23.82 
alpha-caroteln 440 10.665 28.86 
beta^rotein 440 6.043 28.91 
phaecphortide-al 670 8.391 3.186 
phaeophorbide-a2 670 11.556 3.879 
phaeophorbide-a3 670 11.556 4.257 
chlorophyll-a 670 3.897 23.9 
phaeophytin a 7 670 6.378 2921 
phaeophytin a2 670 8.033 30.772 
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6.7.2 Conversion of HPLC chromatogram output to pigment concentrations 

The method of deriving pigment concentrations from the HPLC data differed between the 

two sites: (1) the equation used to derive pigment concentrations from the CHORS system 

was as follows (equation 6.4): 

10830 
(mg m~^) (6.4) 

where Rf is the calibration coefficient for that pigment, volume extracted is the volume of 

90% acetone (contaminated with canthaxanthin) in which the filter pad is immersed 

during pigment extraction, and 10830 is the average canthaxanthin signal (peak area) 

obtained from analysis of the extraction acetone/canthaxanthin mixture. This value was 

used to correct the identified pigment concentrations from each sample njn, accounting 

for extract volume changes due to factors such as evaporation during handling. 

(ii) The algorithm used for the PML system: equation 6.5 was used to derive pigment 

concentrations from the PML data. 

Cone. = 

^ Area 
6 'volume of extract {ml) 

0*3 • volume filtered {I) 
1000' (mg m'^) (6.5) 

where the constants, 6 and 0.3, account for the sample dilution during analyses. 
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7. R E S U L T S 

The following section presents a summary and description of the observations 

made during the fieldwork. 

7.1(i) Temperature structure observed at station L4 during the 1995 sampling 

programme 

Temperature data are illustrated in figure 7.1 for 1995 which were collected using a 

PML built sensor package. These data show that a weak thermocline persisted up 

to SDY 72, intensifying up to SDY 226 with stratification then decreasing as the 

water column became increasingly mixed throughout the remainder of the year due 

to steadily decreasing diel patterns of radiative forcing, and increased surface 

mixing due to wind. These data con-espond with the pigment analyses presented in 

figure 7.3(ii), where differences were observed in the phytoplankton assemblage 

during the onset of water column stratification, and in section 8.3.2 the seasonally 

variable physical stnjcture of the water column is discussed and related to the 

performance of remote sensing algorithms designed to retrieve chlorophyll-a from 

remote sensed ocean colour. 
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Figure 7.1. 1995 station L4 temperature data from the CTD-F sensor package 
deployed at the L4 site. 

7.1(ii) Temperature structure observed along the AMT-1 cruise track 

The thermal structure of the water column was characterised along track using a 

temperature sensor on board an undulating oceanographic recorder. UOR (Aiken, 

1985; Aiken and Bellan, 1990). These data complemented the daily station vertical 

sampling where a suite of profiling instruments were deployed (Robins e^ a/., 

1996). These included CTD, Lu(A), Ed(A) with the addition of a 12 bottle (120 litre 

total) water sampling rosette. Data in figure 7.2 illustrate the vertical temperature 

structure to 200m measured using the CTD on station. The data follow the cruise 

track (see figure 1.3), so do not represent a tnje latitudinal section; and because 

data were collected daily, only variability at a scale of >250 nautical miles was 
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resolved. The data show a strong thermocline in evidence at the start of sampling 
in the western approaches at 47.0°A/, intensifying towards the 23.3°A/ sampling 
site, the maximum extent of which was not resolved as sampling was only to 200m. 
The depth of the thermocline increased from 20.0°N to the equator but over only 
the top 40 -175m, deepening to a maximum below 200m at about 15°S. 

Q. 

Q 

n 

•200 

50 40 30 20 

North 

10 0 -10 

Latitude 

30 -40 -50 

South 

Figure 7.2 Contoured Temperature profile data collected at each daily station stop along 
the AMT-1 cruise track. 

The depth of the thermocline diminished sharply by 30.0°S, giving way to cooler 

mixed surface waters to 200m from 35.0°S to 40.0°S, with a weak thermocline 

observed from 40.0°S to 52.0°S. 

These data provide a general understanding of the background physical structure 

that broadly correlates with the changing biological regimes apparent in the 

con-esponding phytoplankton pigment analysis presented in section 7.3(iv). 
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7.1(iii) Temperature structure observed along the PRIME cruise track 

Data in figure 7.3 show the vertical temperature stmcture down to 80m from the 

start of the cmise at 59.4°/\/ to the most southeriy extent of the track at 37.2°A/. A 

weak thermocline existed at 59.0°/V to a depth of 25 -30m. From 57.5 - 51.0°A/ 

the temperature of the surface waters became warmer as the survey progressed 

southwards, intensifying the thermocline. as indicated by the closely stacked 

isotherms, down to a depth of 20 - 30m from 51.0 - 43.0°A/ and deepening to 50 

60m from 41.0°A/to 37.0°A/. 
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Figure 7.3 CTD cast temperature structure data collected during the transect south from 
59.415°A/to 37.175°A/ during the PRIME cruise. The latitude scale does not correspond with the 
absolute values of the sampling site locations due to the interpolation and display properties of 
the contouring package used. 
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These data helped provide a general understanding of the along track 

variability of the associated optical, see section 7.2, and biological, see section 7.3(iv) 

observations (Westbrook et a/., 1999). 

7.2 OPTICAL CHARACTERISTIC DETERMINATION FROM FIELD 

RADIOMETRY 

It would not be appropriate to display here the vast number of optical data that were 

generated during this study. The core data products that form the radiometric 

input to the models investigated are the remote sensing reflectances, calculated 

just below the surface, Rrs(Z,0'), the observed values of which are displayed in figures 

7.4, 7.5 and 7.6 for the three field programmes. Accompanying these data are the 

corresponding measured diffuse attenuation coefficients, Kd(Jl). For reference, in 

each case the chlorophyll-a concentration (derived from the HPLC analysis) is also 

displayed. 

The L4 data set included measurements collected using the Lu{6S5nm) channel that 

was subsequently found to be faulty (due to excessive drift between calibrations, 

see section 4.16; data subsequently collected usjng this channel were excluded 

from analyses). Data in figure 7.4(a) show a downward trend in the measured Rrs(A) 

values as the sampling progressed. 7.4(b) illustrates the con-esponding Kd(A) data 

which showed a trend towards increasing water clarity throughout the period of the 

study (from the winter through to the summer 1995). 

Figure 7.5 illustrates the Rrs(A) and Kd(A) data observed during AMT-1. In Figure 
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7.5(a) shows that from the start of the cruise at A7.0°N the Rrs(A) values ranged from 
0.009sr^ at 4^2nm to 0.003sr^ at 560nm. The Rrs{4^2nm), Rrs{A4Znm), and to a lesser 
extent, the Rrs{490nm) data show values increasing through 40°A/ to 30°A/. Observations 
in these three channels were then reduced at the 19.5°A/ site, con-esponding with 
a rise in the measured Rrs{5e0nm). Between 19.5°A/ and the equator further peaks 
were observed at 412nm, 443nm and 490nm, a pattern repeated between the equator 

and 19.6°S. Between 30.2°S and 46.0°S the spectral Rrs(A) intensity was reduced. Data ii 
figure 7.5(b) show Kd(X) data derived from radiometric measurements collected 
at the daily station sampling sites. As with the Rrs(X) data, the Kd(A) measurements 
also show a spectral variability which characterise the along track variability. Throughout 
the study the 412nm, 44Znm and 490/7/77 Kd(X) data were observed to be similar 
At the start of the optical data collection programme in the western approaches the 
Kd(Jl) data follow a downward trend to 23.3°N, where the observed values then 
rose sharply (particulariy at 4'\2nm and 443nm) through 19.5°A/ before becoming 
reduced at 9.2°A/, where the data were relatively stable through to 19.6°S, before 
rising along the rest of the track to 47.0°S, the final station of the study where optical 
data were collected. 

Figure 7.6 illustrates a summary of the optical data in terms of Rrs(X) and Kd(^,) 

observations made during PRIME. Data in figure 7.6(a) show the Rrs(X) variability 

observed in the waters at the start of the cnjise track (59.4°A/ 20.0°W/) where there 

was little observed spectral dependency through to 46.0°A/ at which point the 412nm, 

443nm and 490nm wavelength data intensified. This was accompanied by a reduction 

in the intensity of the corresponding 510nm and SSOnm channels. The Kd(A) data 

shown in figure 7.6(b) show corresponding spectral variability in the 4^2nm and 

443nm wavelengths from 49.5°A/to 42.9°A/, whereas data collected from 42.1°A/to 
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36.7°A/ show greater variation at 560nm. 
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Figure 7.4. (a) Rrs(A,0) against time (SDY) and (b) the corresponding Kd(A) 
values derived from analyses of radiometric profiles carried out during the L4 
study. The December 1995 calibration of the PRR-600 identified the Ed(665) 
channel as becoming unstable (see chapter 4); these data were excluded 
from work carried out from the beginning of AMT-1 onwards. The units for 
Rrs(A) are sr^\ Kd(X): m'\ and mg m'^ for Chlorophyll-a (CHL-a). 
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Figure 7.5. (a) Rrs(A.O) against latitude and (b) the corresponding Kd(A) values 
derived from analyses of radiometnc profiles carried out during AMT-1. The units 
for Rrsf/i; are sr ;̂ Kd(A): m \an6 mg m'^ for Chlorophyll-a (CHL-a). 
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Figure 7.6. (a) Rrs(A.O) against time (SDY) and the corresponding latitudinal 
position of the sampling site and (b) the corresponding Kd(A) values derived from 
analyses of radiometnc profiles carried out during the PRIME study. The units for 
Rrs(A) are sr \ Kd(l): m'\ and mg m'^ for Chlorophyll-a (CHL-a). 
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7.3 PIGMENT CONCENTRATIONS DERIVED BY HPLC 

The pigment data presented here, together with the optical characteristics of the 

water itself and those substances dissolved in it. represent the sum of the driving 

influences on the optical signature of the surface waters at each sampling site. In 

order to generate a data set incorporating a range of conditions (both to provide 

the basis for calculating algorithm empirical constraints and to enable effective 

testing of the established pigment-light field relationships) sampling over a range of 

phytoplankton concentrations was required. In addition to the variation in 

concentration, variability in the composition of the pigment assemblage from site to 

site (in space and time) was also observed, arising from either spatial or seasonally 

changing phytoplankton species' dynamics. Aspects of the pigment data analyses 

were considered in two ways: (i) as a compilation of all three data sets (figure 7.7) 

and (ii) as data derived from each fieldwori< programme (figures 7.8. 7.10 and 

7.12); a summary of the ratios of certain key pigment groups determined by 

regression analysis of these data may be found in table 7.2, and comparisons with 

other work in table 7.3. 
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The pigment groups were discussed in section 6, with a summary presented in 
table 6.1. A list of those that could have been determined by the analyses (i.e. for 
which pure pigment standards had been obtained), had they been present, may be 
found in section 6.7.1, tables 6.5 and 6.6 (Jeffrey et a/.. 1997). The combined data 
set data set consists of 18 data derived from the L4 study. 20 from AMT-1 and 13 
from PRIME. The data are either single surface samples or are an average of data 
derived from those observations made in the first Kd(A90nm) optical depth (see 
section 6.3.1), (Clark, 1981). 

In this section the pigment data are first treated as an amalgamated data set and 

then in two ways for each of the 3 individual sampling programmes: firstly as a 

study of the inter-pigment ratios between the observed groups and secondly as a 

study of how the presence of a pigment or variability of its ratio with other pigments 

present, may be used to infer the con-esponding presence of a range of 

phytoplankton groups. These data illustrate the variability in biological regime 

achieved when undertaking the fieldwork. although care must be taken as biomass 

and relative pigment concentration can be misleading due to inter-species cell size 

variability. This technique requires validation by the taxonomic identification of 

phytoplankton samples by microscopy, which is beyond the scope of this worî . 
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7.3(i) Pigment relationships derived from all fieldwork 

(a) 
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Figure 7.7. Regression analyses of some key pigments derived from an 
amalgamation of the L4. AMT-1 and PRIME data sets:(a) chlorophyll-a to total 
pigment, (b) total chlorophyll to total pigment, (c) total carotenoids to total 
pigment, (d) total carotenoids to total chlorophyll, (e) photosynthetic 
carotenoids to total carotenoids, (f) photoprotective carotenoids to total 
carotenoids. The units of all pigment concentrations are mg m'^. 
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Data in figure 7.7 show the total chlorophyll (T-PIG) to total pigment (T-CHL) ratio. 
Observations were described by a high degree of the variance explained, 
R^=96.5%. as was the case with the T-PIG:total carotenoid (TC) ratio at 
R^=90.7%. Within these fractions, however, lesser degrees of covariance were 
evident from the lower variances observed between other groups. For example: 
the T-PIG:CHL-a relationship had a lower of 88.3%, indicating that the relatively 
poor covariance shown in figure 7.7(a) was due mainly to variability within the 
[CHL-a], a factor less significant when the CHL group were considered as a whole. 
Data in figure 7.7(c) show regression analyses of the T-PIG:TC (R^=90.7%) and 
(d) TC:T-CHL (R^=77.1%). the relatively low variance in each case being due to 
the variability in the CHL (mostly CHL-a as discussed above) and TC (mostly the 
photoprotective carotenoid. PPC. fraction), as can be seen from the high degree of 
variance explained in the TC as a function of the photosynthetic carotenoid fraction 
(PSC) at 98.5% (figure 7.7(e)). It may be seen, however, from figure 7.7(f), that the 
TC were large compared to the PPC (4.45 fold on average). The scales of 
variability of these observations is further discussed in a global context at the end 
of section 7.3(iv). 

7.3(ii) Pigment relationships derived from the L4 study data 

When considered in isolation, the L4 pigment data set showed a similar pattern of 

inter-pigment relationships to the combined data shown in figure 7.7, although the 

T-PIG:T-CHL relationship, figure 7.8(b), displayed a lower variance of 89.7% than 

the corresponding value derived from the combined data set. Data in figure 7.8(c) 

show the well correlated total pigment concentration (R^=94.4%) observed as a 

proportion of the carotenoid concentration, albeit a larger fraction than that 
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determined from the amalgamated data set (from 2.42 to 2.77). The TC correlate 
well as a function of the PSC. with a vanance of 98.5% so the T-PIG:TC 
relationship is not. therefore, significantly reduced by the PPC variability, which 
also covahes with the TC with an value of 69 2 % 
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Figure 7.8 Regression analyses of the key pigments dehved from the L4 
study: (a) chlorophyll-a to total pigments, (b) total chlorophyll to total pigment, 
(c) total carotenoids to total pigments, (d) total carotenoids to total chlorophyll, 
(e) photosynthetic carotenoids to total carotenoids, 
(f) photoprotective carotenoids to total carotenoids. The units of all pigment 
concentrat ions are mg m'^. 
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In chapter 6, section 6.5, the sequential structure of a typical HPLC chromatogram, 
and some key pigments that could be identified from the technique, were 
illustrated. To re-cap, table 7.1 presents a summary of these data (first introduced 
in table 6.1): 

Table 7.1. Some key pigments identifiable by HPLC, and the classes of 

Pigment name 
(abbreviations used in 
the following 
discussion) 

Pigment type: 
PSC=photosynthetic carotenoid, 
PPC= photoprotetive carotenoid 

Taxonomic indicator 
for: 
(Jeffrey eial., 1997) 

Peridinin 
(PER) 

P S C • Dinoflagellates 

Butanoyloxyfucoxanthin 
(BUT) 

P S C o Pelagophytes 
o Prymnesiophytes 

Fucoxanthin 
(FUCO) 

P S C « Diatoms 
o Prymnesiophytes 
• Pelagophytes 

Hexanoyloxyfucoxanthin 
(HEX) 

P S C • Prymnesiophytes 

Alloxanthin 
(ALLO) 

PPC 0 Cryptophytes 

Zeaxanthin 
(ZEA) 

PPG • Cyanobacteria 
o Prochlorophytes 

Chlorophyll-6 
(CHl-b) 

Chlorophyll • Prasinophytes 
• Chlorophytes 

Divinyl chlorophyll-b 
(DV-6) 

• Prochlorophytes 

Divinyl chlorophyll-a 
(DV-a) 

Chlorophyll • Prochlorophytes 

As is the case with the distribution of ten-estrial and freshwater plants, it is also true 

that at a given marine sampling site there will be a range of algal species 

represented but, within these groups will be organisms which are typically found in 

a range of physical environments and are thus broadly indicative of the dominant 

features of the phytoplankton population dynamics that can be expected to prevail 

from one sampling site to the next. 
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With regard the major groups detailed in table 7.1, dinoflagellates are usually the 
most numerous of the phytoplankton in stratified, nutrient poor tropical and 
subtropical waters (Holligan and Harbour, 1977; Lalli and Parsons 1997). 
Prymnesiophytes are important members of the phytoplankton from the tropical to 
sub-polar Atlantic, although some species (e.g. Emiliania Huxleyi) may thnve in 
neritic zones (Balch et a/., 1991). Diatoms are found in all waters, especially the 
nutrient rich temperate coastal waters and are a strong feature in upwelling zones 
(Lalli and Parsons, 1997). Cyanobacteha and prochlorophytes are present in the 
oligotrophic nutnent depleted oceanic gyres (Barlow et a / . 1993; Kirk, 1994; Van 
Den Hoek, 1995). 

Figure 7.9 illustrates a time plot (SDY) of the relative proportions (by normalising to 

[Chl-a]) of the pigment concentrations observed dunng the L4 seasonal study. 

30 37 58 65 72 93 100 114 129 165 167 170 174 179 188 205 219 233 
SDY 

I I P E R 

I I Z E A 

BUT 

DV-b 

F U C I I HEX I I ALLO 

CHL-b I DV-a I O T H E R S 

Figure 7.9. Some key pigment groups identified from the L4 study data set, 
expressed as a percentage of the [total pigment], normalised to the [CHL-a]. For 
key to pigments see table 7.1. 

139 



Chapter 7: Results, Field Sites And Campaigns 

It can be seen from figure 7.9 that the observations may be separated into two 
sections: (i) up to SDY 165 and (ii) SDY 167 to 233. Although the overall pigment 
concentration was low (<0.5 mg m^ of CHL-a from figure 7.4), during the first 
section the relatively high BUT and HEX concentrations suggested the presence in 
the phytoplankton population of prymnesiophytes. The pigment markers for this 
group continued to be present after SDY 167, but their relative importance within 
the overall pigment assemblage was reduced. Post SDY 167 FUCO became more 
important, whereas BUT became much reduced in relative importance indicating 
greater proportion of diatoms were present. 

The occurrence of PER post SDY 165 indicated the presence of dinoflagellates. A 

single instance of DV-a was observed at SDY 205, indicating the presence of 

prochlorophytes, organisms more usually associated with the nutrient depleted 

oceanic gyres. This pattern broadly agrees with data presented by Holligan and 

Harbour (1977), who carried out a study of the phytoplankton population dynamics 

at a station close to L4: E l , during 1975 and 1976. They found that diatoms were 

abundant through May (SDY 120-150) in the surface waters, and then sub-surface, 

with dinoflagellates dominant in the thermocllne from June to August (SDY 151-

242), and diatoms once again becoming abundant as the thermocline eroded 

during September (SDY 244-273). The pigment data presented in figure 7.9, 

although a limited time series, show diatoms persisted in the surface waters 

through the full period of the study in conjunction with the increasing concentration 

of PER from SDY 167. 

Prior to SDY 165 the pigments that were observed, but are not displayed in figure 

7.9, were dominated by chlorophyll -c7/-c2 (between 0.1 and 34.8%) an accessory 

pigment found in diatoms (Vernon and Seely. 1966). Post SDY 165 the dominance 

was by beta carotein at values ranging between 2.1 and 8.5% of the total 
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normalised pigment. This pigment is present in all marine algae except 
cryptophytes (Jeffrey et a/.. 1997). 

7.3(iii) Pigment relationships derived from the AMT-1 study data 

The AMT-1 pigment data illustrated in figure 7.10 broadly followed a similar pattern 

of relationships as found in the amalgamated data set, figure 7.7, although the 

pigment fraction represented a lower proportion of the T-CHL on average at 1.30, 

down from the value of 1.54 shown in figure 7.7(b). The data displayed generally 

lower variances throughout the observed pigment groups. The T-PIG:TC 

relationship, figure 7.10(c), showed a relatively low degree of variance explained at 

72.0%, which may be explained by data in figure 7.10(d) where the co-variance 

between the carotenoid assemblage and the T-CHL were described by an R^ 

value of 51.3%, although the exclusion of three outliers (circled) improved this to 

89.1%. Further variability is apparent in figure 7.10(e) where, although still high at 

94.8%, the variance explained in the PSC:TC ratio was reduced from the higher 

value displayed in figure 7.7(e) of 98.5%. 
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Figure 7.10 Regression analyses of the key pigments derived from the 
AMT-1 study; (a) chlorophyll-a to total pigments, (b) total chlorophyll to total 
pigment, (c) total carotenoids to total pigment, (d) total carotenoids to total 
chlorophyll, (e) photosynthetic carotenoids to total carotenoids, 
(f) photoprotective carotenoids to total carotenoids. The units for concentration 
of all pigments are mg m'^. 
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Data in figure 7.10(f) show a poor PPC TC relationship. The spread in these data, 

as was the case with the TC T-CHL data in figure 7.10(d), showed improvement 

with the variance explained from 59.3% to 8 9 . 1 % by exclusion of four points (circled). 

These data therefore indicated a change in the pigment assemblage had taken place 

dunng the sampling, altenng the average TC PPC relationship from TC=1 996 x 

(PPC)+0.035 to TC=0.529 x (PPC)+0.013. In the case of 7.10(d) the three 'outliers 

(circled) are positioned at the latitude 23.3°N and ^9.5°N sampling sites in 

tendrils f lowing offshore associated with the upwell ing of nuthent rich water off the 

coast of Mauritania, and a site on the approach to South America at 33.2''S. In the 

case of 7.10(f) the circled data were collected from the Latitude 9.5°N, once again 

in the region associated with the West Afhcan 

^ 60 

Lattude 

P E R 

ZEA 

HEX BUT I FUC 

Dy-b I CHL-b \ I Dv 

ALLO 

O T H E R S 

Figure 7.11. Some key pigment groups identified from the AMT-1 data set plotted 
against latitude. Data are presented as a percentage of the [total pigment], 
normalised to [CHL-a]. For key to pigments see table 7 .1 . 
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Mauritanian upwelling zone, and three sites 33.2°S. 40.9°S and 46.0°S, 
the latter two being in the Falklands current. These observations are therefore 
distinct from the remaining data which were collected in the oligotrophic north and 
south Atlantic. 

The along track AMT-1 pigment data Illustrated in figure 7.11 show several key 

taxonomic markers were observed during the programme. At A7.0°N, present in 

the phytoplankton population were prochlorophytes, indicated by the DV-a and 

ZEA. The presence of HEX and BUT indicated that prymnesiophytes were present, 

with FUCO indicating the presence of diatoms. 

On this basis it may be seen that the prochlorophytes dominated the observations 

through the 37.9°A/and 33.6°A/sampling sites. By 23.3**A/the population became 

once again dominated by prochlorophytes and cyanobacteria. The 

prymnesiophytes that were in evidence at A7.0°N, and to a lesser extent at 37.9°A/, 

were also observed through 23.3°A/, before decreasing once again at 5A0°N. At 

19.5**A/the incidence of cyanobacteria and prochlorophytes became reduced in 

favour of prymnesiophytes with further evidence provided by the observation of 

HEX at a relatively higher concentration. At this site the high relative concentration 

of FUCO indicated diatoms were also in evidence, dropping off by 1.4°A/. with 

continued observations of HEX and BUT dominated in relative concentration by 

DV-a and ZEA. This pattern continued through to 19.6°S where FUCO began to 

increase in relative importance. A notable exception was the observation of PER 

at 11.5**S, a marker for dinoflagellates. Beyond 27°S the cyanobacteria and 

prochlorophytes gave way in relative Importance to observations of diatoms and a 

low proportion of prymnesiophytes, shown by the low relative concentrations of 

BUT. 
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The observed pigments unaccounted for in figure 7.11 were mostly chlorophyll 
-c1l-c2 from a minimum value of 0.5% to a maximum of 21.7% at 33.2°S, 
probably in a diatom bloom where high levels of fucoxanthin were observed and 
were increasing. Diadinoxanthin ranging between 0.08% to 12% (present in 
diatoms, prymnesiophytes and dinoflagellates) was also observed (Kirk, 1994; 
Jeffrey et a/., 1997), with small quantities of prasinoxanthin ranging from between 
0.04 to 3.8%, a phototsynthetic carotenoid present in prasinophytes (Jeffrey et a!., 
1997) also in evidence. 
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7.3(iv) Pigment relationships derived from the PRIME data 

(a) 
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Y-1 234X*0035(R'«9e9%, n-13. P<0 05) 
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— Y=1 776X+0 029 (R»=99 9%. r»=l3. P<0 05) 
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Figure 7.12. Regression analyses of the key pigments dehved from the PRIME 
study: (a) chlorophyll-a to total pigments, (b) total chlorophyll to total pigment, 
(c) total carotenoids to total pigments, (d) total carotenoids to total chlorophyll, 
(e) photosynthetic carotenoids to total carotenoids, (f) photoprotective 
carotenoids to total carotenoids. The units of all pigment concentrations are 
mg m'^. 
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The PRIME cnj ise data showed strong correlations between the concentrat ions of 
the observed groups, where in each variances determined by regression analyses 
were found to be in excess of 98.1 % The reason for these data displaying such 
consistent inter-pigment ratios was the limited diversity of biological regimes 
sampled and the high quality of the subsequent HPLC analysis. The T-PIG:CHL-a 
and T-PIG:T-CHL ratios shown in figure 7.12(a) and (b) respectively were higher 
than the values derived from the amalgamated data set. the converse being the 
case with the carotenoid fraction which, on average, formed a lower proportion of 
the T-PIG. The average PSC:TC ratio was slightly lower than the value determined 
for the whole data set, whereas the PPC formed a greater proportion of the TC. 
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Figure 7.13. Some key pigment groups identified from the PRIME study expressed 
as a percentage of the [total pigment], normalised to [chlorophyll-a]. For key to 
pigments see table 7 .1 . 

Data in figure 7.13 show the pigment assemblage variability observed, with HEX 

and BUT indicating that prymnesiophytes were present, and diatoms indicated to 

be present from the observations of FUCO. PER was also observed, which is 
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indicative of dinoflagellates. A notable change was observed at the 49.54°A/ site 
with the presence of ZEA, indicating that cyanobacteria and / or prochlorophytes 
were present. This pattern continued to 42.1°A/ where DV-a was also observed, 
further evidence that prochlorophytes were dominant between these two groups. 
At 39.9°A/ the ZEA concentration was relatively strong compared to the DV-a 
concentration, indicating that cyanobacteria could be the dominant feature between 
these two groups, with prochlorophytes less numerous. Data collected in the region 
of 37.0°A/ at the PRIME lagrangian study site, from 37.1°A/ to 36.9°A/. show 
variability in the observations made with increasing incidence of cyanobacteria and 
prochlorophytes, which may not have been detected at the last station due to the 
absence of DV-a. The relative importance of prymnesiophytes is seen to be low 
from the 39.94°A/ sampling site onwards. The remainder of the observed pigment 
distribution is dominated by beta carotein (between 0.1 and 5.4%) and chlorophyll-
c to the north of the front with normalised concentrations ranging between 0.1 and 
9%. 

A summary of data derived from linear regression analyses of the pigment data 

sets presented here is detailed in table 7.2. In the case of the AMT-1 data, there 

were displayed more than one potential linear relationship was displayed for. (i) 

the TC compared with T-CHL, figure 7.10(d), and (ii) the PPC compared with the 

TC, figure 7.10(f). When the higher concentration values were removed (3 and 4 

data respectively) a change in these inter-pigment relationships was apparent 

between these groups representing a consistent and structured alteration in the 

species diversity of the algal biomass sampled. In table 7.2 the regressions derived 

from the lower numbers of data are given in bold. 
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The pigment data presented here broadly fall within the ratio ranges reported by 
Aiken et al. (1995) who earned out a study of HPLC pigment data from a wide 
diversity of biogeochemical provinces. Their findings are summarised in table 7.3, 
and it will be noted that some regressions required inversion for comparison to be 
possible. 

Table 7.2 HPLC pigment data analysis summary 
Pigment ratio ALL DATA L4 AMT-1 PRIME 

CHL-a: T-PIG 1.901 1.869 2.820 2.430 
T-CHL:T-PIG 1.539 1.610 1.300 1.776 
TC:T-PIG 2.429 2.774 2.820 2.278 
TCT-CHL 0.539 0.530 0.287 (20obs.) 

0.905 (17 obs.) 
0.777 

PSCiTC 1.166 1.168 1.065 1.234 
PPC:TC 4.449 4.405 1.996 (20 obs.) 

0.529 (16 obs.) 
5.155 

It may be seen that the fieldwork data presented here fall within the ratio extremes 

of the various groups determined by this previous work. Comparing in more detail: 

the CHL-a:T-PIG data derived here are all within 90% of the global mean reported 

by Aiken et al. (1995) at 0.464. corresponding with the North East Atlantic (NEAT) 

Biogeochemical Ocean Flux study (BOFS) data at 0.422. The CHL-/):T-PIG data 

observed during this work match closely that reported (0.042), at an average value 

of 0.057. There is significant spread within the data, with the L4 study mean value 

of 0.083 con-esponding with the value of 0.085 detennined from data collected in 

the Greenland Iceland Norweigan (GIN) seas, whereas the AMT-1 value of 0,061 

most closely corresponds to a value of 0.066 determined for the Georges Bank 

area. The PRIME data yield a low value of 0.025 which corresponds closely to the 

values reported for NEAT of 0.016-0.024. The average CHL-c:T-PIG ratio 

determined here at 0.086 is higher than the figure of 0.077 reported by Aiken et al. 

(1995), driven by the values from all the fieldwork being generally close to the 
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mean, except the PRIME data, which exhibited a high value for this relationship of 
0.124, comparing closely with the value reported from the NEAT data of 0.134. 
The L4 and AMT-1 data are described by similar values of 0.067 and 0.061 
respectively conforming closest to data reported in the literature from the Georges 
Bank area. 

Table 7.3. Ratio values between some pigment groups from the study by Aiken ef 

Cruise CHL-a;T-PIG CHL-6:T-PIG Chl-c;T-PIG PSC:T-PIG PPC:T-PIG TO: CHL-a 

L4 mean, 
(this work). 

0.429 0.083 0.067 0.223 0.087 0.645 

AMT-1 mean, 
(this work). 

0.462 0.061 0.061 0.184 0.257 1.206 

PRIME mean, 
(this work). 

0.409 0.025 0.124 0.312 0.171 1.200 

All fteldwork mean, 
(this work). 

0.464 0.057 0.086 0.249 0.175 1.017 

Global minimum 
(Aiken ef ai. 1995) 

0.367 0.006 0.020 0.186 0.043 0.522 

Global maximum 
(Aiken e/a/.. 1995) 

0.544 0.085 0.154 0.377 0.249 1.129 

Global mean 
(Aiken e/a/., 1995) 

0.475 0.042 0.077 0.276 0.128 0.814 

The TC:CHL-a data show that, on average, the pigment assemblage was 

dominated by the TC fraction, exceeding the concentration of the observed T-CHL 

with a mean value for all fieldworî  of 1.017. A breakdown of the sampling 

included in this study shows that at the L4 site a low value was determined of 

0.645, corresponding closely to the Georges Bank data (0.665), where AMT-1 and 

PRIME observations of 1.206 and 1.200 respectively more closely compare with 

data from the GIN seas, where a value of 0.129 was reported. 

Within the TC data, the PSC:T-PIG values derived here produced a mean of 

0.249, corresponding closely with the global value of 0.276 reported by Aiken ef a/. 

(1995). There was variability within the data, however, from 0.223 for the L4 study 

to 0.184 for AMT-1 and 0.312 for the PRIME data. The PPC:T-PIG data displayed 

150 



Chapter 7: Results. Field Sites And Campaigns 

similar variability with a mean value of 0.175 made up of 0.087 from the L4 study, 
0.257 for AMT-1 (exceeding the global maximum of 0.249) and 0.171 for PRIME. 

It is apparent that the ratios determined from the pigment data generated by this 

study fall largely within the extremes of data reported in the literature 

(comprehensively summarised in Aiken et al. (1995)). 

The pigment data resulting from this study therefore withstand rigorous quality 

control and provide a suitable basis for comparison with the contemporaneous 

measurements of ocean colour and the assessment of the SeaWiFS algorithm, 

and others, discussed in chapter 3 and applied to these data in chapter 8. 
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8. DATA ANALYSIS 

In this section the results presented in chapter 7 are analysed and discussed. For 

clarity: the term 'general' applies to the algorithm generated from the amalgamated 

data set, as opposed to the term 'local' which refers to the algorithms derived from 

each of the three component data sets. 

8.1 GENERATION OF GENERAL ALGORITHMS TO RETRIEVE Kd(490nm) 

FROM SeaWiFS SATELLITE IMAGERY 

The diffuse attenuation coefficient, Kd(A), at 490nm is a core data product from 

C Z C S imagery, and more recently the S e a W i F S project, (Austin and Petzold. 

1981; Mueller and Trees, 1997) as it is closely relates the optical properties of 

oceanic waters to the S P M and associated CDOM, or in c a s e 1 water describes 

the 'bio-optical state' (Smith and Baker, 1978). At each depth the spectral 

characteristics of ocean waters have a maximum downwelling irradiant intensity at 

a wavelength, Ed(A,Zmax), determined by the minimum corresponding value of 

Kd(A) which, in case 1 waters is 490nm for C H L - a concentrations ranging from 

0.01 mg m'^ to I.Omg m'^ (Smith and Baker, 1978). 

Austin and Petzold (1981) developed the methodology whereby Kd(490nm) may be 

derived from the blue {443nm) and green (550nm) ratio of water leaving radiances 

measured by the C Z C S . This methodology is to be used here, applying ocean 

colour data collected during the field work using the PRR-600 radiometer. 

The algorithm accounts for the sum of the partial contributions to Kd(A,) of the 

diffuse attenuation coefficient of the water and the in-water constituents which, 
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from section 1 (figure 1.1), are DOM and SPM (inorganic and organic). There are, by 
definition, only phytoplankton and an amount of dissolved organic material associated 
with the standing algal crop in the dissolved fraction present in the open ocean marine 
environment, except in the special case of a dominance in the phytoplanton of 
coccolithophores where the SPM will contain a significant quantity of calcium 
carbonate which is secreted extennally by the algae (Balch et al., 1991; Kirk, 1994). 
Figure 8.1 illustrates the relationship between the Kd(490nm) attributable to in-
water constituents (accounting for diffuse attenuation by the water itself, Kw) and 
the coincident ocean colour measurements in terms of Rrs(443:560, 0) made over 
the three fieldwork programmes {Kdm w a s calculated according to the procedure 
outlined in section 2.5.1, equation 2.17). 

Kd = exp[c] * Rrs(i:j, O'f + Kw, the final form of which was 

( Rrs(Aifi-) 
Kd{X) = A + Kw{A) (m') (8.1) 

where, in this case. >A= exp[c] = exp[-2.273] = 0.103 

and S = / n =-1.148 

The algorithm generated from this study for the derivation of Kd{4S0nm) from water 

leaving radiances measured using the S e a W i F S methodology was therefore: 

Kd(490) = 0.m 

-I.M8 

1^^(443)" 

Rrs{560) 
+ 0.0192 (m^) (8.2) 
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Figure 8 .1 . Comparison of the measured Kd(A), (Kdm -Kw), and 
Rrs(443:560. 0") where (a) shows the original data and (b) illustrates the 
napenan log transformed data The units for Kd f /J and Kw are m\ 

The least squares regression analysis illustrated in figure 8.1(b) yields 

Y=-1.148X-2.273, from which: 

ln[Kc(-Kw] = \r\[Rrs(i:j, O f ] + c 

Kd-Kw = {RrsOl 0 ))'^ x exp[c] 
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There are two steps to assessing the effectiveness with which the empirical 
constants derived by regression analyses constrain equation 8.2: by comparison 
with the source data and with algorithms generated from different data. 
The Kd{A90nm) data are discussed in more detail in section 8.1.2, where a 
comparison is made with the algorithm of Moore et. a/. (1997), equation 3.5. 

Table 8.1 contains a summary of comparisons between the general algorithm and 

its source data, divided into the individual research programmes (the figure 

references indicate the con-esponding graphical representations of these 

relationships). It may be seen that there is a variability in the precision on average 

between the algorithms which is driven by the different empirical constraints with 

which the measured values may be retrieved from the corresponding algorithms, 

even when the degree of variance explained between the measured and retrieved 

values is consistently high. 

These data illustrate the diversity within the measurements collected during this 

study, and the problem faced by wori^ers attempting to apply general algorithms to 

water leaving radiances measured at a specific site. This is further discussed in 

section 8.1.2. 

Table 8.1 General algorithm regression and en-or analysis (comparison 

Figure 
no. 

Comparis 
-on with 
source 
data from 
field 
program 

m(=B) C 
{%) 

Average error {%)= 
V {(measured- retrieved) f measured 
L^y< f ^ •100 

77 

8.2 L4 0.729 0.036 86.2 12.65 
8.3 AMT-1 0.807 0.005 91.3 14.42 
8.4 PRIME 0.907 0.007 94.7 19.34 
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8.1.2 Comparison of the Kd(4B0nm) field measurements with the Moore eta/ . 
(1997) algorithm 

A comparison was made between the algorithm based upon data collected during 

the fieldwork (equation 8.2) and an algorithm derived from parallel work 

undertaken to retrieve Kd(4S0nm) values from measured remote sensing 

reflectances in S e a W i F S bands 2, 443nm, and 5, 555nm. In chapter 3 it was 

pointed out that Moore et a/. (1997) generated equation 3.5 to derive Kd{490nm). 

To re-cap: 

Kd{490) =0.129 

- I J 3 7 

Rrs{443nmy 
Rrsi555nm) 

+ 0.0192 (m'^) (8.3) 

Because this algorithm was generated from a data set not included in this study, 

the relationship serves as an inter-comparison with the Ed{490nm) measurements 

collected during the fieldwork from which Kd(490nm) were detemiined. Data in 

figure 8.2, 8.3 and 8.4 show the results of comparisons made for each programme. 

It can be seen that equation 8.3 overestimates Kd{490nm) from the radiometry 

collected at station L4, as Kdm-Kdc x 0.775+0.096, compared to the AMT-1 data 

set as Kdm=Kdc x 0.973+0.004 and PRIME as Kdm-Kdc x 0.985-0.002, illustrating 

an inherent effect when combining data sets to create generally applicable 

algorithms. The empirical constants derived have a smoothing effect on the data, 

the extent of which depends upon the diversity of the water types from which the 

algorithm source data were collected. When data from fieldwork covering a limited 

number of bio-optical regimes are used to generate an algorithm, the bias inherent 
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in the relationship will be towards those conditions (e.g. in the case of Kd(A) 
algorithms relatively clear or turbid waters) in which the measurements were 
undertaken. In the case of the Kd(4S0nm) retrievals presented here, such an 
algorithm produces erroneously high values from the radiometric data collected 
from a bio-physical regime of relatively high turbidity. This effect is apparent in 
figure 8.2(b), where regression analysis applied to the L4 study data shows a bias 
as the measured Kd(490nm) value {Kdm) is about 77.5% of the magnitude of the 
con-esponding value calculated from equation 8.3, Figures 8.3(b) and 8.4(b) show 
a ratio close to 1:1 relationship in each c a s e as the AMT-1 and PRIME data were 
collected in waters where the Kd{A90nm) values matched closely the waters from 
which the empirical constraints driving equation 8.3 were determined. These data 
provide procedural validation for the radiometric quality control techniques 
employed in the analysis of the data presented here (see chapters 2, 4 and 5). 
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Figure 8.2 Comparison of the measured L4 Kd(490nm) data against the calculated 
Kd(490nm) using equation 8.3 to test the Kd(490nm) derived from the Ec/(490, z) 
profile values measured during the fieldwork sessions, denoted here by Kdm. The 
units of Kd(A) are m'\ 
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Figure 8.3 Comparison of the measured AMT-1 Kd(490nm) data against the 
calculated Kd(490nm) using equation 8.3 to test the Kd(490nm) derived from the 
Ed(490. z) profile values measured during the fieldwork sessions, denoted here by 
Kdm. The units of Kd(A) are m'\ 
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Figure 8.4 Comparison of the measured PRIME Kd(490nm) data against the 
calculated Kd(490nm) using equation 8.3 to test the Kd(490nm) derived from the 
Ed(490, z) profile values measured dunng the fieldwork sessions, denoted here 
by Kdm. The units of Kd(A) are m'\ 

160 



Chapter 8: Data Analysis 

Figure 8.5 shows the results of a comparison made between the two algorithms 
(equations 8.2 and 8.3) applied to the amalgamated data set. Figure 8.5(a), 
illustrates the effectiveness with which equation 8.2 retrieves data from all three 
field campaigns, with a close to 1:1 relationship of Kdm-^.044 x Kdc and a 
variance explained of 95.7%. It can be seen from figure 8.5(b) that equation 8.3 is 
biased by the relatively high Kd(A) data to over estimate and produce a relationship 
of Kdm^O.797 x Kdc, with 93.4% of the variance explained. Using the Kolmogorov-
Smimov two sample test, the frequency distribution of the errors in retrieval for each 
algorithm was found to be significantly different at the p=0.05 level, where 
/?7n2D(o.o5) = 450 for a critical value of 13.581, so the null hypothesis that the 
distributions are the same is rejected. The g1 and g2 statistics indicate that the two 
distributions do. however, have similar characteristics, with the values for 
skewness indicating equation 8.2 to be less positively biased than equation 8.3, 
but displaying a greater degree of platykurtosis. This pattern of skewed error 
distribution is further apparent if the performance of equations 8.2 and 8.3 are 
compared when applied to the optical observations made during each of the 
individual field works. 

Figure 8.6, 8.7 and 8.8 illustrate the relationship between equation 8.2 and 8.3, 

with the data sets broken down into retrieved Kd{490nm) values from the L4, 

AMT-1 and PRIME studies respectively. From figure 8.6 it is once again apparent 

that equation 8.3 is overestimating Kd{490nm) when compared to values computed 

from equation 8.2. For to the L4 data set where the error distributions were found 

to be significantly different at the p=0.05 level, where n;n2D(o.o5)= 220 for a critical 

value of 8.589. The g1 and g2 statistics indicate that data derived from equation 
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8.2 has a more positively skewed error distribution than that from equation 8.3. and 
displays much more leptokurtosis. 

The same applies to the error distributions for data derived from AMT-1 and 

PRIME, shown in figures 8.7 where n7n2D(o.o5)= 60 for a critical value of 8.589 and 

8.8 nin2D(o.o5)= 12 for a critical value of 6.653 respectively. This indicates both 

en-or distributions to be significantly different at the p=0.05 level, though to a 

lesser degree in the case of AMT-1 and PRIME as the radiometric data more 

closely conform to the empirical limits constraining equation 8.3 due to the 

dominance in the source data used to derive equation 8.2 of observations made in 

the deep oceanic Atlantic in these programmes. In the c a s e of figure 8.7 (AMT-1 

data) the g1 value indicates the distribution of errors to be similariy structured in 

the degree of skewness, but equation 8.3 displays much more negative 

platykurtosis than equation 8.2. The PRIME data error distributions show the en-ors 

not to be skewed in the c a s e of equation 8.2, with the g2 value indicating equation 

8.2 to display high leptokurtosis and 8.3 high platykurtosis. 
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(a) This work, equation 8.2 

04 

(c) Error frequency distribution 

I 0 1 0 2 0 3 
Kdc (eq. 8 2 ) 

_ Y«1.044X(R'=95.7%. n=51.P<0 05)) 

0 4 

L i 
• Eq 8 2 Q E q 8 3 

Eq. 8 2 g 1 = O 3 0 5 ; g2= -1 .041 
Eq 8 3 g 1 = 0 46; g 2 = - 0 608 

(b) Moore et al. (1997), equation 8.3 

0 4 

0 3 

I 0 2 

0 1 

0 

1:1 

D 0.1 0 2 0.3 
Kcfc(eq 8 3) 

— Y»=0.797X(R^3.4%.n=51.P<0 05) 

0 4 

Figure 8.5 Comparison of the values 
of Kd(490nm) derived by profiling the 
PRR-600 Ed(490nm), and the 
corresponding values retrieved from 
This work, equation 8.2; (b) Moore et 
al. (1997). equation 8.3. (c) Error 
frequency distribution. The units for 
Kd(A) are m \ 
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(a) 
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SDY 

200 250 

(b) 
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Kdc (eq. 8.3) 

— Y=0.666X+0 024 

Kdm — Kdc(eq .8 .2 ) 

Kdc (eq.8.3) — Kw 

(c) 
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-026 -019 -012 -008 0016 0088 015* 0223 0 2 « 0361 0 43 
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• Eq 8 2 Q E q 83 

Eq. 8 2 g1= 1 766; g2 = 3 861 
Eq. 8 3 g1= 1 190. g2= 1 0 9 6 

Figure 8.6 (a) Companson and (b) regression analysis of the retrieved values of 
Kd(490nm) f rom equations 8.2 (Kdc(490nm) this work) and 8.3 (Kdc(490nm) 
Moore et a!., (1997)) for the L 4 data set. The units for Kd(A) are m V (c) shows a 
histogram of the frequency distribution of the errors. 
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Eq 8 3: g i= 0 203 . g2= -2 033 

Figure 8.7 (a) Comparison and (b) regression analysis of the retneved values of 
Kd(490nm) from equations 8.2 (Kdc(490nm) this work) and 8.3 (Kdc(490nm) 
Moore et a/., (1997)) for the AMT-1 data set. The units for Kd(/.) are m'\ (c) shows 
a histogram of the frequency distribution of the errors 
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(a) 

0.2 

^f^v 184 186 188 190 192 194 196 198 200 
LAT(N): 59 4 52 3 46.3 39 9 37.0 36 9 36 9 

— Kdm 

— Kdc (eq. 8.3) 

Kdc (eq. 8.2) 

Kw 

(c) 

0 0 5 0 1 
hit (ec; 8 3 ) 

0 1 5 0 2 

• Eq 82 Q E q 83 

Eq. 8 2 g1= 0 000 ; g2= -2 685 
Eq 8 3: g1= 1.821; g2= 3.172 
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Figure 8.8 (a) Companson and (b) regression analysis of the retrieved values of 
Kd(490nm) from equations 8.2 (Kdc(490nAr7) this work) and 8.3 (Kdc{490nm) Moore 
et a!., (1997)) for the PRIME data set. The units for Kd(/.) are m \ (c) shows a 
histogram of the frequency distribution of the en-ors. 
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This analysis illustrates that the general algorithm yields error values which, rather 
than being normally distributed about a zero mean, are structured becoming 
evident when comparing the measured and retrieved variables. Also that the 
pattern of these en-ors is related to the magnitude of the empirical algorithm 
constraints. This is especially evident when the algorithms are applied to the 
radiometric data from the three field sampling programmes. 

167 



Chapter 8: Data Analysis 

8.2 FIELDWORK SITE SPECIF IC Kd(Jl) ALGORITHMS 

Up to now the optical data sets generated from the observations made during the 

three field campaigns have been considered in their entirety, and the effectiveness 

of this approach to the retrieval of Kd(490nm) from the radiometry has been 

discussed. Further investigations were made to ascertain how fieldwork specific 

algorithms would perform when compared with the general approach. A summary 

of the algorithms of the form illustrated in equation 8.1 were generated using the 

same procedure outlined in section 8.1, and are presented in table 8.2. 

Table 8.2 A summary of the Kd(490nm) algorithm constants. A and B, 

Field X (nm) A B n P 
session (%) 

L4 490 0.101 -1.318 85.7 18 <0.05 
AMT-1 490 0.088 -0.964 64.7 20 <0.05 
PRIME 490 0.1219 -1.337 91.2 13 <0.05 

Figures 8.9. 8.10 and 8.11 illustrate comparisons of the general and fieldwork 

specific Kd(490nm) algorithms presented in table 8.2. 

In figure 8.9 it can be seen that up to Kd{A90nm)=0A5m'\ the Kdc(490nm) derived 

from the general algorithm underestimates the value of Kdc(A90nm) from the L4 

specific variant. Above 0.15m"^ the algorithm overestimates. The g1 and g2 values 

derived from the frequency distribution of the en-or shows the general algorithm to 

be slightly more skewed in the general case than the local algorithm. In the case of 

kurtosis. however, the general algorithm displays leptokurtosis and the local variant 
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Local - g1 = 0 916, g2 = -0.578 

Figure 8.9 (a, b) comparison of the general Kd(490nm) algorithm (equation 8.2) 
with the L4 fieldwork specific variant shown in table 8.4. Also shown are the values 
for absorption at 490nA77 by pure water Kdm represents the Kd(490nm) derived 
from profiles of Ed{490nm), Kdc represents the value of Kd(490nm) derived from 
the algorithms. The units for Kd(A) and Kw(A) are m \ (c) shows a histogram of the 
frequency disthbution of the errors. 

169 



Chapter 8: Data Analysis 
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Figure 8.10 (a. b) comparison of the general Kd(490nm) algorithm (equation 8.2) 
with the AMT-1 fieldwork specific variant shown in table 8.4. Also shown are the 
values for absorption at 490nn7 by pure water. Kdm represents the Kd(490nm) 
derived from profiles of Ed(490nm), Kdc represents the value of Kd(490nm) 
dehved from the algorithms. The units of Kd(/.) and Kw(A) are m'\ (c) shows a 
histogram of the frequency distribution of the errors. 
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Figure 8.11 (a. b) comparison of the general Kd(490nm) algorithm (equation 8.2) 
with the PRIME fieldwork specific vahant shown in table 8.4 Also shown are the 
values for absorption at A90nm by pure water. Kdm represents the Kd{490nm) 
dehved from profiles of Ed(490nm), Kdc represents the value of Kd{490nm) 
derived from the algorithms. The units for Kd(/.) and KW(A) are m'\ (c) shows a 
histogram of the frequency distribution of the errors 
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displays platykurtosis. The L4 data when applied to the two algorithms indicate the 
retrieval errors from the general and locally derived variants to be from significantly 
different distributions, at the p=0.05 level, as nrn2D(o.o5)yields a critical value of 
8.589 with a derived value of 40. 

In figure 8.10 it may be seen that the AMT-1 general algorithm slightly 

underestimates Kd(490nm) up to a value of 0.04/7? ', starting then to overestimate 

above Q.Q6m'\ The AMT data njn2D(o.o5) yields a critical value of 8.589 with a 

derived value of 80. 

The two algorithms, when applied to the PRIME data (the results of which are 

illustrated in figure 8.11), show that for estimations of Kcf(490nm) over 0.04m'' the 

general algorithm underestimates when compared to data calculated using the 

PRIME specific variant as, from figure 8.11(a), it may be seen that when applied to 

the more turbid waters the general algorithm underestimates, when compared to 

the local algorithm. Statistical analysis of the PRIME data yields an ntn2D(o.o5) value 

of 24, and a critical value of 6.653. The algorithms display different g1 but similar 

g2 patens, with the general algorithms displaying negative skewness (-0.359) and 

platykurtosis (-2.089), while the local algorithms displaying positive skewness 

(1.072) and varying degrees of platykurtosis. greater in the case of the PRIME 

local algorithm (-0.996). 

The algorithm modifications presented in this section result from analyses of the 

measured undenwater light field at each station. The difference in the worî  canied 

out here from the original Austin and Petzold (1981) approach is the value 

assigned to the empirical constants, A and B in equation 1, and the form of the 

radiometric input, which determines and constrains the relationship between the 

measured light field ratio and the retrieved Kd(Jl). In terms of the frequency 
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distribution of the errors, the algorithms are all significantly different at the p=0.05 
level; with the exception of the PRIME specific algorithm, the field sampling specific 
algorithms perform with increased precision over the source data than the general 
relationship determined from the full data set. In all cases the distribution of errors 
in retrieval by the local relationships follow different patterns of skewness about the 
mean when compared to the general case, such that the algorithms perform 
operationally in a significantly different manner. 

8.3 RETRIEVAL OF CHLOROPHYLL-a CONCENTRATION FROM PROFILED 
RADIOMETRY 

The following section details the results of the application of the pigment algorithms 

developed by (i) Clark (1981), equation 3.6, and (ii) Moore etal., (1997), equation 

3.7. to the radiometric data. These data were then compared with the HPLC 

derived CHL-a concentrations. 

8.3.1 The C Z C S CHL-a (pigment) algorithm (Clark. 1981) 

The algorithm generated from the C Z C S survey (equation 3.6) was applied to the 

radiometric data collected during each programme, the results of which are 

illustrated in figure 8.12. During the L4 study, from figure 8.12(a), it can be seen 

that there is a low percentage of variance explained, of 13.5%, between the 

measured chlorophyll-a concentration (CHL-a) and the values retrieved from the 
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algorithm, although the plots follow a more similar pattern after SDY 125, an effect 
that corresponds with the measured CHL-a values plotted concurrently with the 
Kd(A) data displayed in figure 7.4. 

Figure 8.13 shows a much improved retrieval of CHL-a from the in-situ radiometry 

collected during AMT-1, when compared to the HPLC measurements, although a 

consistent under-estimation is apparent from the data where: retrieved CHL-a 

=0.325 X (HPLC CHL-a)+0.025 described by a variance of 52.8%. A second 

relationship was identified by considering the high measured [CHL-a] at the 23.3°A/ 

and 19.5°/V sampling sites (circled), yielding an improved degree of variance 

explained (R^=71.9%) with these data excluded. Data in figure 8.14 show that the 

retrieval characteristics of equation 3.6, when applied to the PRIME data, resolve I 

the corresponding CHL-a data collected (R^=88.5%) well, notably the data from the 

sites in the high biomass waters north of the 39.9**A/ sampling site, however it 

underestimates in the relatively low biomass waters to the south of this station. 
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Figure 8.12 The CZCS pigment algorithm (equation 3.6) applied to the L4 data, 
showing both the phase similarity of the data and regression analyses between the 
measured and retheved concentrations. The CHL-a concentration is in units of 
mg m'^. 
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Figure 8.13 The CZCS pigment algorithm (equation 3.6) applied to the AMT-1 
data, showing both the phase similarity of the data and regression analyses 
between the measured and retrieved concentrations. The low value red circled in 
(b) corresponds with the red boxed data point in (a). The CHL-a concentration is in 
units of mg m'^. 
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Figure 8.14 The CZCS pigment algorithm (equation 3.6) applied to the PRIME 
data, showing both the phase similarity of the data and regression analyses 
between measured and retrieved concentrations. The CHL-a concentration is in 
units of mg m' 
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8.3.2 The CZCS-type SeaWiFS pigment algorithm (Moore et a/., 1997) 

The performance of the SeaWiFS-CZCS type algorithm, equation 3.7, was very 

similar to the C Z C S algorithm presented in section 8.3.1. CHL-a data retrieved 

from the radiometry compare poorly in the L4 coastal study, figure 8.15(a), 

displaying the same large errors evident in figure 8.12(a), with the phase similariy 

of the observations persisting beyond SDY 125 as was the case with the C Z C S 

algorithm (see figure 8.12). 

The AMT-1 data, figure 8.16, show good agreement between the retrieved and 

measured variables in the low concentration waters, accounting for 44.3% of the 

variance, underestimating significantly at the 23.3°Wand 19.5°A/ sampling sites. 

These bias the regression analysis which was re-run excluding these data (red 

line) with an improvement in the value to 75.0% and corresponding 

improvement in the retrievals from: retrieved [CHL-a] = 0.405 x (HPLC CHL-

a)+0.109 to: retrieved [CHL-a]= 1.088 x (HPLC CHL-a)+0.015. The changing 

biomass was cleariy resolved by this algorithm, as was the case with the PRIME 

data, figure 8.17, retrieving accurate values and giving good agreement with the 

HPLC derived observations (R^= 86.6%). It may be seen from figure 8.17(a) that 

for data collected at the sampling sites to the north of 39.9°A/ in the higher 

concentration waters, equation 3.7 produced low estimates of the true CHL-a 

concentration, whereas in the very low biomass waters south of this station this 

algorithm slightly over-estimated the measured values. 
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Figure 8 .15 The CZCS-SeaWiFS type pigment algonthm. equation 3.7. applied to 
the L4 data, showing both the phase similarity of the data and regression analyses 
between the measured and retrieved concentrations. The CHL-a concentration is 
in units of mg m'^. 
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Figure 8.16 The CZCS-SeaWiFS type pigment algorithm, equation 3.7, applied to 
the AMT-1 data, showing both the phase similarity of the data and regression 
analyses between the measured and retrieved concentrations. The CHL-a 
concentration is in units of mg m'^. 
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Figure 8.17 The CZCS-SeaWiFS type pigment algorithm, equation 3.7, applied to 
the PRIME data, showing both the phase similarity of the data and regression 
analyses between the measured and retneved concentrations. The CHL-a 
concentration is in units of mg m'^. 

As discussed in chapter 1 (section 1.0) the field sites included here were chosen 

because it was considered that they were representative of the case 1 
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marine environment. 

From figures 8.12(a) and 8.15(a) it can be seen that the L4 study represents a 

special case from the point of view of the retrieval of the CHL-a from both the 

pigment algorithms discussed in this section where although there were similarities 

between the measured and retrieved values with time, a low degree of the 

variance was explained at R^= 13.5% (equation 3.6) and 13.1% (equation 3.7). As 

discussed eariier, the measured and retrieved data began to converge after SDY 

125. where the peaks and troughs were better resolved by the algorithm derived 

data, even though the absolute values still varied significantly. Some insight into 

this phenomenon may be derived from the variability of the water column thermal 

structure illustrated in figure 7.1, when a thermocline began to build from about 

SDY 130. intensifying through SDY 175 to about SDY 260, at which time the 

thennocline became eroded. Station L4 is situated 6.5 nautical miles south of the 

Plymouth breakwater which mari<s the mouth of the estuary served by two major 

rivers, the Plym and the Tamar (fed by other tributaries), with additional seaward 

flow entering from the east via the river Yealm. Seasonal storm activity and the 

associated fresh water input can have an effect upon the suspended particulate 

fractions of the water column (Dyer, 1986) and the dissolved organic fraction 

(Carder et.al., 1989; Kirk. 1994) which can have an effect upon the colour of the 

water and reduce the relative optical significance of the phytoplankton pigments in 

the blue end of the spectrum (as illustrated in figure 2.7). Weekly PMUMBA 

sampling of salinity at the L4 site was found to be erratic and inconclusive, but the 

effect seen in figure 8.12(a) and 8.15(a) during the eariy stages of sampling (SDY 

30 to about SDY 125) of 1996 could be explained by the presence of high DOM 
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concentrations associated with terrestnal fresh water land runoff which has an 

exponentially increasing optical significance towards the shorter visible 

wavelengths (and into the UV) so competing directly for blue (AAZnm) light with 

CHL-a. Carder ef a/. (1989) have demonstrated that a DOM absorption coefficient 

of O.OOSm^ at AAOnm can give nse to errors in the estimation of CHL-a derived 

from upwelling radiances of OAmg m'^. This hypothesis is consistent with the 

anomalous values produced by equations 3.6 and 3.7 in this instance and is further 

illustrated in figure 8.18 by spectrophotometric analysis of coincident 0.2 micron 

filtrate for absorption spectra (Westbrook. unpublished data), analysed in 

accordance with the protocol laid out in Mueller and Austin (1995). 
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Figure 8.18 Detail of the absorption spectra of available samples from the 1995 L4 
sampling campaign of the <0.2 micron fraction as determined by spectrophotometry. The 
legend refers to the sampling date. 
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Further research led by the author in the Plymouth area has resulted in the 
tentative establishment of a region specific link between the optical spectnjm of the 
dissolved fraction (<0.2 micron) at the SeaWiFS band 1 wavelength and the 
associated carbon concentration as determined by total carbon analysis 
(Alvarez-Salgado and Miller, 1998. This was found to be jiMCf^ - 1087 
(a(ys)412n/77) + 137.5 (R^=87.6%, n=8) and hence the range of total carbon 
concentrations represented by the a(ys)412nm data in figure 8.18 is 247 to 490 fiM 
C which compares with typical values of 80 C which may be observed 
away from the coastal zone (Vodacek et a/., 1995) where only nominal influence is 
exerted by this fraction on the blue absorption (443nm; A90nm). These results are 
preliminary and further experiments to increase the number and diversity of the 
source data are required to refine the relationship and allow further algorithm 
development, particularly in the light of the high intercept value given above. 

8.4 RETRIEVAL FROM RADIOMETRY OF THE CO-VARYING CAROTENOIDS 

ASSOCIATED WITH C H L O R O P H Y L L - a FROM THE RATIOS IDENTIFIED BY 

HPLC ANALYSIS 

In this section an example of the retrieval of CHL-a and total carotenoid (TO) 

concentrations is presented which could in theory have been derived from 

SeaWiFS image scenes of the AMT-1 cmise track. Data in Figure 8.19 show the 

concentrations of these pigments as determined by HPLC. Figure 8.19(b) 

illustrates the regression analysis results carried out to determine the relationship 

between these two pigment groups, but with the outliers (circled) separated out. 

Included in both regressions were a low value inset in a square. The two outliers 
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relate to anomalous data shown in figure 7.10(d), where it may be seen that at the 
23.3°A/ and 19.5°A/ sampling sites there was evidence of a change in the pigment 
assemblage (as discussed earlier). To simulate these data from the radiometry. the 
along track CHL-a concentration was calculated from the Moore et ai (1997) 
algorithm, equation 3.7, the retrieval characteristics of which were discussed in 
section 8.3.2. From figure 8.19(b) it was then established by regression that for 18 
data points a relationship existed of [TC]=1.257 x [CHL-a]+0.002 (R2=94.4%), 
whereas for the two data driving the second relationship (plus one anchoring data 
point near the origin) similar analysis indicated that: [TC]=0.222 x (CHL-a)+0.0273 
(R^=81.3%). 

Figure 8.20(a) shows the retrieved CHL-a and TC concentrations derived from the 

above methodology for 18 data (green line) and for 3 data (red line). It may be 

seen that the corrected data more closely match the pattern of co-variance shown 

in figure 8.19(a). The con-ected TC data compare poorly with the corresponding 

measured data, overestimating with a regression relationship of TC retrieved = 

1.215 X (TC HPLC)+0.070 (R^=67.6%), but the technique does demonstrate the 

link that may be exploited between the semi-analytical algorithm and local 

knowledge leading to possible improved estimations of accessory pigment 

distributions from satellite imagery. 
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Figure 8.19 (a) AMT-1 CHL-a and TC data measured by HPLC and (b) regression 
analyses of TC:CHL-a for 20 data points, and for two outliers (plus 1 anchor data 
point). The pigment concentrations are in units of mg m^. 
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Figure 8.20 (a) AMT-1 CHL-a data retrieved from the radiometry by the algorithm 
(Moore et a/., 1997) . equation 3.7, and TC from the relationship identified f rom the 
HPLC analyses by regression shown in figure 8.18(b). Also shown (b) is a 
regression analyses to compare the retrieved TC concentration against the 
corresponding HPLC TC. The pigment concentrations are in units of 
mg m . 
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8.5 THE GENERATION OF ALGORITHMS TO RETRIEVE THE MAJOR 

PIGMENT GROUPS FROM UPWELLING RADIANCES 

It may be seen from section 7.5 (table 7.3), where the results of the pigment 

analyses were presented and compared with previous wori<, that the observations 

made during this study follow accepted patterns of pigment assemblage co-

variability (Aiken a/., 1995). In the last section aspects of the co-variance 

identified were explored by utilising, as an example, the effectiveness with which 

the TC concentration may be derived from the relationship established between 

this group and CHL-a, which was in turn derived from upwelling radiances by the 

Moore et a/. (1997) algorithm. In this section the relationship between the light field 

and the major pigment groups is explored directly. 

Figure 8.21 illustrates the development of an algorithm designed to derive CHL-a 

from upwelling radiances determined at each sampling site during AMT-1. As has 

been the case in previous discussions, the regression analysis is driven by the high 

levels of CHL-a measured at the 23.3°A/and 19.5°A/sampling sites. Figure 8.21(a) 

shows a regression both including (green line) and excluding (red line) these data 

(circled). 

Equation 8.4 is the algorithm resulting from the second regression analysis, where 

n=18, and R^=71.7% in figure 8.21(a). 

CHL-a = 0.702 

-0.914 

Rrs(560) 
(mg m'^) (8.4) 
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Figure 8.21 Development of an algorithm to derive the concentration of CHL-a 
from upwell ing radiances where (a) illustrates the data from which the algorithm 
was generated, (b) presents a regression analysis of the retrieved against 
measured concentrat ions and (c) shows the same information as (b) but displayed 
as an along cruise track plot. The CHL-a concentration is in units of mg m'^. 
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As in section 8.1, the empirical constraints were determined by Napieran log-log 

regression. The same techniques were then applied to some further components of 

the measured pigment data. The algorithms thus derived are detailed in table 8.3. 

Table 8.3 Pigment algorithm summary. Key: T-CHL, T-CAR = total carotenoids, 
T- P S C = total photosynthetic carotenoids, T-PPC = total photoprotective 
carotenoids, T-PIG = total pigment. 
Field 
work 

Chl-a T-CHL T-CAR T -PSC T-PPC T-PIG 

Alldata A 0.494 0.668 0.396 0.297 0.093 2.071 
B -0.728 -0.723 -0.525 -0.841 -0.147 -0.705 
R^{%) 50.3 52.1 39.4 54.2 5.40 50.3 

L4 A 0.449 0.765 0.783 0.254 0.079 0.938 
B -0.421 -0.115 -0.025 -0.131 -0.045 -0.323 
R*(%) 4.6 4 9 0.3 0.3 0.06 0.026 

AMT-1 A 0.702 1.189 0.795 0.866 0.132 2.028 
B -0.914 -0.952 -0.855 -1.448 -0.252 -0.898 
R'(%) 71.7 46.6 69.1 73.0 12.5 57.4 

PRIME A 1.163 1.577 1.254 1.027 0.248 1.163 
B -1.399 -1.344 -1.223 -1.402 -0.864 -1.399 
R'(%) 62.5 68.8 70.5 75.7 77.0 62.5 

As the pigment data set had been demonstrated to contain a degree of co-

variance, there should have been a broadly similar relationship between the ratios 

derived from the HPLC analyses and the corresponding ratios retrieved using the 

algorithms. Some comparisons are detailed in table 8.4. 

Table 8.4 Comparison of pigment concentrations derived by HPLC and retrieved 
from the algorithms detailec in table 8.3. 
Pigment ratio From HPLC analysis Retrieved from algorithm 

TC:T-CHL 0.42 0.79 
PSC:T-CHL 0.30 0.31 
PPC:T-CHL 0.12 0.43 

It may be seen from table 8.4 that there is a degree of similarity between the 

sample ratios determined from the measured and retrieved pigment data sets, 
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although the small number of data collected during this study, and the narrow 

range of the measurements make the pigment data unreliable in this context. 

Data in Figure 8.22 shows the similarities that could be established between the 

pigment concentrations that were derived from the HPLC analysis of the water 

samples, and the same quantities derived from pigment component algorithms 

applied to the radiometry carried out coincident with sampling. 
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60 40 20 0 -20 
Nor th Lat i tude 

T-CHL T-CAR T-PSC • 

-40 -60 
South 

T-PPC 

(a) Measured concentrat ions 

North 
0 

Latitude 
4 0 
South 

T-CHL T-CAR T-PSC T-PPC 

(b) Retrieved concentrat ions 

Figure 8.22 Along track plot of values for (a) measured concentrations of the major 
pigment groups and (b) corresponding data determined from the algorithms 
detailed in table 8.5 as applied to the AMT-1 radiometric data set. 
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Figure 8.23 Regression analyses of (a) T-CHL (retneved) v T-CHL (measured) 
and (b) T-CAR (retrieved) v T-CAR (measured). The pigment concentrat ions are in 
units of mg m'^. 
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Figure 8.24 Regression analyses of (a) T-PSC(retr ieved) v T-PSC(measured) and 
(b) T-PPC(retr ieved) v T-PPC{measured). The pigment concentrat ions are in units 
of mg m'^. 
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Data in figure 8.22 illustrate an example of the retrieved and measured T-CHL, TC, 

PSC and PPC concentrations derived by (a) HPLC and (b) the algorithms detailed 

in table 8.3. Regression analyses of these data are presented in figures 8.23 and 

8.24, with an assessment of the average en-ors presented in table 8.5. On this 

basis it can be seen that the algorithms perform very poorly. 

In this instance the use of algorithms to retrieve the carotenoid fractions from the 

ocean colour measurements yield broadly accurate but highly imprecise 

estimations. The use of semi-analytical algorithms to determine the concentration 

of accessory pigments will produce accurate results due to the predictable co-

varying nature of the pigment assemblage, rather than their direct covariance with 

the light field measurements. The reasonable accuracy of the approach applied to 

these data mean that should this technique be applied to satellite derived 

measurements of general variability then the data may prove useful. The natural 

variability in the inter-pigment ratios observed between sampling sites, however, 

means that if precise determinations of the pigment assemblage are to be derived, 

then local knowledge must form part of the input into the model, or an alternative 

approach should be investigated. 
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Table 8.5 Errors in pigment retrieval (derived from the 

Pigment 
assemblage 
component 

Average % error= 
^ ^^(HPLC value - retrieved value)\^ 

* I 0 0 

Pigment 
assemblage 
component ^ [ HPLC value j 

* I 0 0 

Pigment 
assemblage 
component 

n 
* I 0 0 

CHL-a 80.929 
T-CHL 71.129 
T-CAR 71.291 
T-PSC 87.977 
T-PPC 71.751 
T-PIG 146.433 

It is concluded that the range of Chl-a encountered during data collection for this 

study ranged from 0.001 mg m'^ to 1.98 mg m'^ which was insufficient to generate 

any relationship that could improve upon the Moore et al. (1997) approach. 
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9. SUMMARY AND CONCLUSIONS 

This chapter brings together the salient points from the results and subsequent 

data analysis, with some comment on the methodologies employed, followed by a 

summary of the findings. 

9.1 W-S/rt; DATA COLLECTION 

The instruments employed to obtain the core measurements were 'off the shelf 

technology. During the preparatory phases of the project consideration was given 

to the development of effective, but practical, solutions to the problems that would 

be encountered while undertaking field observations. 

9.1.1 Radiometric measurements 

The accuracy of the optica! sampling was carried out to within the limits set for 

SeaWiFS calibration and validation exercises of 5% absolute and 1% relative 

radiometric accuracy (Hooker at. a/.. 1992). traceable to the SeaWiFS calibrated 

standard lamp. Drift in the voltages output by the sensors incorporated into the 

PRR-600 was tracked by periodic calibration carried out by the manufacturers 

(Biospherical Instruments Inc.) and the USA National Institute of Standards and 

Technology (NIST), as detailed in chapter 4. The Kd(X) values derived from the in-

situ radiometry were therefore taken to have met the required quality control 

objectives outlined in chapter 4 for the purpose of algorithm generation and for 
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making comparisons with the work of other investigators. Summary data were 
presented in section 7.2. 

9.1.2 Phytoplankton pigment analyses 

The pigment analyses brought together a spatially and temporally diverse suite of 

measurements which, for the purposes of interpretation, were treated both as 

individual data sets (applicable to the sampling programme) and as an 

amalgamation of all three data sets (applicable more generally), see section 7.3. 

Particularly notable were the data collected at the 23.3°A/ and 19.5°A/ sampling 

sites during AMT-1 (section 7.3(iii)). These sampling locations produced varied 

data in both the chlorophyll and carotenoid fractions as the phytoplankton 

population changed from domination by prochlorophytes (evident from the 

relatively high divinyl chlorophyll-a and zeaxanthin signal) to diatoms (from the 

fucoxanthin signal). As well as the broad quantification of the standing crop at 

basin scales, the detection and understanding of local features of this type using 

satellite imagery is important at the local scale. These data allow the assessment 

of the effect that the variability in the pigment assemblage has upon the optical 

characteristics of the water and hence algorithm performance. 

The analyses presented in section 8.5 showed that the observations constituted 

too nan-ow a range of data (the chlorophyll-a concentration ranged from 0.01 to 

1.99mg m'^) for meaningful pigment algorithm generation from this work that could 

compare with or improve upon the work of Clark (1981) or Aiken et al. (1995). This 

conclusion is based upon the poor light field - pigment relationships summarised 

in section 8.5, table 8.3. and the error analysis detailed in table 8.5. 
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9.2 THE DEVELOPMENT OF ALGORITHMS FOR THE DERIVATION OF 
Kd(490nm) USING THE OPTICAL DATA C O L L E C T E D DURING THE FIELD 
WORK 

New algorithm empirical constraints were presented in section 8.1 as 

modifications to the Kd(490nm) algorithm for SeaWiFS based on analyses of the 

data sets collected during the field sampling. To re-cap, equation 9.1 shows the 

form of the general algorithm derived in section 8.1. 

Kd{490) = 0.\03 

- I .M8 

Rrs{560) 
+ 0.0192 (m') (9.1) 

The application of this algorithm assumes a vertically mixed ocean, as the 

calculations were based upon values determined from measurements of ocean 

colour representative of one diffuse attenuation length (see sections 2.4 and 5.1). 

These data may be related to the pigment concentration (in terms of chlorophyll-a, 

Smith and Baker 1978) and the penetration of PAR into the surface waters to give 

an estimate of the availability of the underwater light field to autotrophic organisms 

through the attenuation properties of the waters (Zaneveld et al., 1993). 

It can be seen from figure 2.7(b) (from the work by Bidigare et al. (1990)) that in 

case 1 waters, although phytoplankton are active absorbers in this region, the 

specific pigment absorption at 560nm is relatively low (ranging from 0.0009-

0.0061 mg'^), driven by chlorophylls -a, -b and - c and the photosynthetic 

carotenoids. At 443nm the specific absorption is much higher (ranging from 
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0.0129 - to 0.0442m^ mg'^) due to chlorophylls -a , -b and - c and the total 
carotenoids (photoprotective and photosynthetic). all of which are more active 
absorbers at this shorter wavelength of light. The value of the light field reflectance 
band ratio will therefore not only be affected by changing biomass, but also relative 
differences in concentrations of each pigment assemblage component present at 
the optical profiling station. These factors are taken into account during the 
smoothing process that accompanies the derivation of the empirical constraints at 
the semi-analytical algorithm generation stage (see section 8.1). The algorithm(s) 
therefore are able to retrieve precisely only one value for the property determined, 
with the frequency distribution of the errors becoming significantly different within a 
certain range of variation, as the radiometric input deviates from the limits set by 
the constraints determined by the range of source data. 
AMT-1 and PRIME provided a cross comparison between this study and a 
radiometric data set collected over a range of similar biological regimes. The 
variability in the accuracy of the mathematical retrievals illustrated that the 
algorithm generated here remains effective over a wide range of Kcf(490nm), from 
that of close to pure water, 0.0200m'^ observed during AMT-1 and PRIME, to 
values as high as 0.2920m'' measured during the L4 study. 
In section 8.2 consideration was given to the generation of field site specific 
algorithms, where there were indications that greater degrees of precision were 
possible, even though the relationships were based on low numbers of local data, 
and hence potentially had a lower statistical significance. Rigorous assessment of 
the error distributions using a statistical test (see section 5.2) indicated that the 
general and local algorithms displayed significantly different perfonnance 
characteristics at the p=0.05 level. This analysis demonstrates that it is not 
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appropriate to apply algorithms to remotely sensed observations of waters that 
significantly deviate from those observed during the collection of algorithm source 
data. New relationships must be produced if accuracy is to be maintained. 

In summary: all the algorithms designed to retrieve Kd(Jl) discussed here are 

consistently accurate (In terms of location), regardless of the data set to which they 

were applied. In terms of precision (absolute error), however, they yield widely 

varying results. The numbers and diversity of the data used to constrain the 

relationships profoundly influence the result. For this reason it is not possible to 

derive 'global' Kd(A) values from a single algorithm which fully utilises the level of 

accuracy in radiometric input that is now available from S e a W i F S . Future effort 

should be focussed upon the generation of Kd(A) maps from satellite imagery, 

using a network of locally derived algorithms from continuing spatially and 

seasonally extensive ground truth data collection programmes. This would 

accurately represent the maximum possible range of variability, locally identified, 

over the biogeochemical regimes that make up the worid's oceans. While this is 

not practical in the short term, the inclusion of a bio-optical component when 

designing programmes of research is becoming increasingly common, routinely 

producing comprehensive suites of observations at key locations. 

201 



Chapter 9: Summary And Conclusion 

9.3. COMPARISON OF STANDARD ALGORITHMS DESIGNED TO RETRIEVE 
CHLOROPHYLL-a WITH MEASURED VALUES DETERMINED BY HPLC 

Algorithms designed to retrieve the chlorophyll-a concentration from upwelling 

radiances were compared with contemporaneous in-situ data, and their 

effectiveness a s s e s s e d . The relationships established between the major 

components of the pigment assemblage were explored to a s s e s s which of the 

various groups, if any, could be retrieved from the radiometry (further discussed in 

section 9.5). The H P L C chlorophyll-a data were used to test the retrieval 

characteristics of the two established pigment algorithms discussed in chapter 3: 

(i) the C Z C S algorithm (section 8.3.1), and 

(ii) the CZCS- type S e a W i F S pigment algorithm (see section 8.3.2). 

Both the algorithms presented show a degree of correlation between the H P L C 

measurements of chlorophyll-a and the corresponding values retrieved from the 

radiometry during the AMT-1 and PRIME cruises, but a very poor correlation for 

data resulting from the L4 seasonal study. Evidence presented in section 8.3.2 

(figure 8.18) indicates that this may be due to possible deviation from the c a s e 1 

oceanic environment at station L4 during the survey. Here the c a s e 1 algorithms 

were found to be less effective in areas where it may be considered that there 

were additional non-phytoplankton related optically significant material. It is 

concluded that the C Z C S algorithm still perfomried well, even when applied to 

radiometry where the green band used was +10nm from the original C Z C S 

specification of 550nm, but tended to under-estimate in the oligotrophic regions, 

where the chlorophyll-a concentration was found to be very low, see figure 8.12. 

This could be due to the absence of phaeophytin-a data, the presence or othen^^ise 
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of Nwhich was not identified by the H P L C analysis. The retrieved values derived 
from the CZCS- type S e a W i F S algorithm for the chlorophyll-a concentration co-
varied closely with the measured values in the low concentration areas traversed 
during AMT-1 and PRIME. These regions of the worid's oceans, although relatively 
sparsely populated by photosynthetic algae, with chlorophyll-a concentrations 
generally below 1.5 mg m'^ (Aiken et a/., 1995; Westbrook et a/., 1998; Westbrook 
etal., 1999) are very large. The accurate determination of the phytoplankton 
biomass at low concentrations is therefore an important scientific objective to 
provide characteristic baseline values for surface algal biomass distributions which 
may be used in climate models (Houghton ef a/., 1996). The AMT-1 light field and 
pigment data were included in the NASA S e a W i F S algorithm generation data 
base. Although algorithm performance must continually be a s s e s s e d through 
periodic calibration and validation exercises, this can now be satisfactorily 
achieved using the NASA S e a W i F S chlorophyll-a case 1 algorithm. 

9. 4. RETRIEVAL FROM RADIOMETRY OF MAJOR GROUPS OF PIGMENTS 

FROM THE INTER-PIGMENT RATIOS ESTABLISHED BY THE HPLC 

ANALYSIS 

From the relationships established by the pigment analyses presented in section 

7.3, it follows that the calculation of the chlorophyll-a concentration from pixel 

intensities isolated from an imaged S e a W i F S oceanic scene allows the subsequent 

determination of the concentration of the associated pigment groups that have 

been identified as co-varying with it from the H P L C pigment analysis. The example 

presented in section 8.4 (figures 8.18 and 8.19) illustrates the results of a 
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comparison between the measured and retrieved concentrations of the total 
observed carotenoids (TC) determined in this way. Regression analyses of these 
data indicated two distinct relationships. The use of both relationships when 
applied to the appropriate locations along the AMT-1 cai ise track resulted in 
retrieved data more closely matching the measured values (as illustrated in figure 
8.20). 

This approach could be adopted in any region of the worid oceans for which the 

seasonal and temporal variability of the pigment assemblage has been studied. 

9. 5 THE RETRIEVAL OF COMPONENTS OF THE PIGMENT ASSEMBLAGE 

BY THE APPLICATION OF ALGORITHMS TO OCEAN COLOUR 

MEASUREMENTS 

Semi-analytical algorithms were derived for chlorophyll-a, total chlorophyll, total 

carotenoids, total photosynthetic carotenoids, total photoprotective carotenoids and 

total pigment using the methodology illustrated in figure 8.21. A summary of the 

algorithms was given in table 8.3. It is concluded that the poor degree of variance 

explained in the regression analysis was due to the insufficient range of observed 

pigment concentrations for constnjction of any algorithms which, although enabling 

a degree of light field-pigment group covariance, the algorithms generally achieved 

very poor precision when compared with the values measured in-situ. 
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9.6 FUTURE WORK 

The performance of all the algorithms discussed here must be tested against data 

derived from additional fieldwork to a s s e s s the spatial applicability of this work and 

any improvement in the resolution of in-water parameters discussed, when 

compared with data derived from the standard algorithms currently in use. This 

must be a continuing process of evolution within all research organisations using 

ocean colour remote sensing data products. 

A s discussed eariier, with the development of the pigment algorithm by Aiken et a/. 

(1995) also presented by Moore etal. (1997). the derivation of the c a s e 1 

chlorophyll-a concentrations from upwelling radiances received by the space borne 

S e a W i F S is a technique that is providing data of acceptable quality over the 

narrow range of concentrations found in the open oceans (see figures 8.16 and 

8.17). In these localities the empirical algorithm constraints reflect the diversity of a 

substantial source data set. Data retrieved from the ecologically and economically 

important near coastal c a s e 2 environment is generally less well understood. 

Particulariy, the DOM fraction has been widely reported as being a highly 

significant factor, contributing to errors in the retrieval of in-water parameters (Kirk, 

1980; Tassan , 1988; Carder ef a/., 1989; Aiken etaL, 1995). Together with the 

assessment of primary productivity and phytoplankton species diversity from 

satellite derived products, this area of work still constitutes a significant challenge 

for remote sensing scientists. 
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9.8 SUMMARY 

This work a s s e s s e d and applied the state of the art optical sampling techniques to 

enable the collection of high quality data from a range of sampling sites and 

deployment platfomris and forms a practical reference to assist those undertaking 

such observations in the future. The application of these techniques resulted in a 

data set forming a high quality basis for the assessment of currently available 

algorithms designed to derive the optical properties discussed, as well as the 

presentation of new algorithm constraints for Kd{ASOnm) derivation. 

While all these algorithms, old and new, were proven applicable, it was shown that 

the precision with which Kd{49Qnm) may be derived mathematically can be both 

spatially and / or seasonally restricted (Westbrook et a!., 1999). Limited s u c c e s s 

was reported in the use of 'locally' derived algorithms, which were compared with 

the 'general' variants, resulting in a significant difference in the performance 

between them being identified. These observations form the basis of the 

conclusion that empirical algorithm scaling is a vital consideration when including 

routinely available airborne or satellite Kd(A) data in programmes of research. 

A s a result of this wori< a further understanding of remote sensing algorithms has 

been achieved that needs to be considered by all wort<ers in the field using such 

data in their day to day research. The form and empirical basis of all remote 

sensed data products needs careful consideration when either making 

comparisons with ground tmth data or using such data products as a source of 

information directly. 
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To this end the remote sensing community should be prepared to publicise the 
equations used to generate data products with a reference accompanying imagery 
where the generation and development of the algorithm may be found, ensuring 
that only published algorithms be used. In this manner investigators wishing to 
employ these optical data may be able to a s s e s s the suitability of a product for 
their purposes and enable the research community to make full use of the high 
accuracy radiometric input (1% relative and 5% absolute) now routinely available to 
algorithms from S e a W i F S and the next generation of sensors either awaiting 
launch or under construction. 

207 



List Of References 

10. R E F E R E N C E S 

Aiken J , (1985). The undulating Oceanographic Recorder Mark 2. A multirole 
oceaographic sampler for mapping and modelling the biophysical marine 
environment. In: Mapping Strategies in Chemical Oceanography. Zirino A., Ed . 
American Chemical Society, 209, 315-332. 

Aiken J . and Bellan I.. (1990). "Optical Oceanography: an assessment of towed 
measurement". In: Light and Life in the S e a . Hening P.J . . Campbell M., Whitfield 
M. and Maddock L.. Eds . Cambridge University Press. 39-57. 

Aiken J . . Moore G .F . , Holligan, P.M., (1992). Remote sensing of oceanic biology in 
relation to climate change, mini review. Journal of Phycology, 28, 579-590. 

Aiken, J . , Moore G.F. , Trees C .C . . Hooker S .B . and Clark O.K., (1995). The S e a W i F S 
CZCS-type pigment algorithm. NASA Tech. Memo. 104566, Vol. 29. 
S .B. Hooker and E.R. Firestone, eds., NASAGoddard Space Flight Centre, 
Greenbelt, Maryland, 24pp. 

Alvarez-Salgado, X.A. and Miller, A . E . J . (1998). Simultaneous determination of 
dissolved organic carbon and total dissolved nitrogen in seawater by high 
temperature catalytic oxidation: conditions for precise shipboard measurements. 
Marine Chemistry 62:325-333. 

Asrar G., and Greenstone R., (1995). Mission to planet Earth/ Earth observing system 
(MTPE/EOS) . NASA Goddard Space Flight Centre. Greenbelt, MD 20771. 

Austin R.W. and Petzold T . J . , (1981). The determination of the diffuse attenuation 
coefficient of sea water using the Coastal Zone Colour Scanner. In Oceanography 
from Space, Gower J .F .R . , ed.. (1981). Marine Science Volume 13, Proceedings of 
the C O S P A R / S C O R / I U C R M symposium on Oceanography From Space. Plenum 
Press, 233 Spring Street, New Yori<. 10013. 

Balch W.M., Holligan P.M., Ackleson S . G . , Voss K.J . , (1991). Biological and 
optical properties of mesosclae coccolithophore blooms in the Gulf of Maine. 
Limnology and Oceanography, 36(4), 629-643. 

Bariow R.G. . Cummimgs D.G. and Gibb S.W., (1997). Improved resolution of 
mono- and divlnyl chlorophylls a and b and zeaxanthin and lutein in phytoplankton 
extracts using reverse phase C-8 H P L C . Marine Ecology Progress Series, 
Vol. 161, pp. 303-307. 

Bariow R.G. . Mantours R . F . C , Gough M.A. and Fileman T.W., (1993). Pigment 
signitures of the phytoplankton composition in the northeastern Atlantic during the 
1990 spring bloom. Deep S e a Research, Vol. 40, pp. 459-477. 

208 



List Of References 

Biospherical Instruments Inc.. (1995). The PRR-600 Profiling Reflectance 
Radiometer users manual. Biospherical Instruments Inc., 5340 Riley Street, S a n 
Diego, C A 92110. 

Bidigare R.R.. Ondnjsek M.E., Morrow J.H. and Kiefer D.A., (1990). In-vivo 
absorption properties of algal pigments. S P I E Vol. 1302. Ocean Optics X (1990), 
pp. 290-302. 

Boriand International Inc.. (1993). Quattro Pro for Windows version 3. reference 
manual. Corporate headquarters. 1800 Green Hills Road. P.O. box 660001, Scotts 
Valley. C A 95067-0001. 

Bulteveld H., Hakvoort J . H. M. and Donze M., (1994). The optical properties of pure 
water. International Society of Optical Engineers (SPIE) , Vol. 2258 Ocean Optics XII. 
174-184. 

Carder, K.L., Steward R.G. , Harvey G.R. and Ortner P.B., (1989). Marine humic 
and fulvic acids: their effects on remote sensing of ocean chlorophyll. Limnology 
and Oceanography, 34. 68-81, 

Clark D.K.. (1981). Phytoplankton pigment algorithms for the NIMBUS-7 C Z C S . In 
Oceanography from Space, Gower J . F . R . . ed..(1981). Marine Science Volume 13. 
Proceedings of the C O S P A R / S C O R / I U C R M symposium on Oceanography From 
Space. Plenum Press. New Yori<, 233 Spring Street, New York. 10013. 

Cleveland J . S . and Weiderman A.D., (1993). Quantifying absorption by aquatic 
particles: a multiple scattering correction for glass fibre filters. Limnology and 
Oceanography 38(6) 1321-1327. 

Dyer K. R., (1986). Coastal and eastuarine sediment dynamics. John Wiley and 
Sons, Chichester. Sussex, England. 

Gordon H. R., (1989). Can the Lambert-beer law be applied to the diffuse 
attenuation coefficient of ocean water. Limnology and Oceanography 34(8) 1389-
1409. 

Gordon H.R. and Morel A., (1983). Remote assessment of ocean colour for 
interpretation of satellite visible imagery: A review. 114pp. Springer-Veriag. New 
York. 

Greg W. W. and Carder K. L., (1990). A simple spectral solar irradiance model for 
cloudless marine atmospheres. Limnology and Oceanography, 35(8) 1657-1675. 

Hall D.O. and Rao K.K.. (1981). Photosynthesis, third edition. Edward Arnold 
(Publishers) Limited. 41 Bedford Square, London, WC1 3DQ. 

Hill R. (course manager), (1983). Photochemistry: light, chemical change and life. 
The open university press. Walton Hall. Milton Keynes. 

209 



List Of References 

Holligan P. M. and Harbour D., (1977). The vertical distribution and sucession of 
phytoplankton in the Western English Channel in 1975 and 1976. Journal of the 
Marine Biological Association, UK, 57, 1075-1093. 

Holligan P.M., Aarup T., Groom S . B . , (1989). The North S e a satellite colour atlas. 
Continental Shelf Research, 9.665-765. 

Hooker S . B . , Esa ias W . E . , Feldman G . C . , Gregg W W., McClain C.R. , (1992). An 
Overview of S e a W i F S and Ocean Colour. NASA Tech. Memo. 104566, Vol.1, S .B. 
Hooker and E.R. Firestone, eds., NASA Goddard Space Flight Centre, Greenbelt, 
Maryland, 24pp. 

Houghton J .T . , Meira Filho L.G. . Callander B.A.. Harris N., Kattenberg A., and 
Maskell K., eds. (1996). Climate Change 1995. the science of climate change. 
Contribution of woricing group 1 to the second assessment report of the 
intergovernmental panel on climate change. The Press Syndicate of the University 
of Cambridge, The Pitt Building, Trumpington Street, Cambridge, C B 2 IRP. 

Ikeda M. and Dobson F.W.. eds., (1995). Oceanographic applications of remote 
sensing. C R C press. New York. 

Jeffrey S.W., Mantoura R . F . C . , Wright S.W.. eds.. (1997). Monographs on 
Oceanographic methodology 10: Phytoplankton pigments in oceanography. United 
Nations Educational. Scientific and Cultural Organisation. Place de Fontenoy, 
75700 Paris. 

Jeriov N.. (1968). Elsevier Oceanography Series, volume 5 - Optical 
oceanography. Elsevier Publishing Company, 335 Jan Van Galenstraat. P.O. Box 
211, Amsterdam, The Netherlands. 

Kirk J .T .O. . (1980). Spectral absorption properties of natural waters: contribution of 
the soluble and particulate fractions to light absorption in some inland waters of 
South Eastern Australia. Australian Journal of Marine and Freshwater Research, 
31. 287-296. 

Kirk. J .T .O. . (1994). Light and photosynthesis in aquatic ecosystems, second 
edition. Cambridge University Press, The Pitt Building. Trumpington Street, 
Cambridge, C B 2 1RP. 

Lalli C M . and Parsons T.R., (1993). Biological oceanography: an introduction. 
Pergamon. Elsevier Science Ltd.. The Boulevard, Langford Lane, Kidlington. 
Oxford. 0 V 5 1GB, UK. ISBN 0 08 041014 6 

Lalli C M . and Parsons T.R. , (1997). Biological oceanography; an introduction, 
second eddition. Butterworth-Heineman. Linacre House, Jordan Hill, Oxford, 0 X 2 
8DP. UK. ISBN 0 7056 33840 

210 



List Of References 

Latasa M., Bidigaire R.R., Ondnjsek M.E., Kennicutt M.C., (1998). H P L C analysis 
of algal pigments: a comparison exercise among laboratories and 
recommendations for improved analytical performance. Marine Chemistry, 51, 315-
324. 

Lavender S . , Westbrook A.G. , Aiken J . , Pilgrim D.A., (1997). The derivation of water 
leaving radiances during P A C E , proceedings of the Third International Remote 
Sensing Conference, Copenhagen, Denmart<. 

Lavender S . . Westbrook A.G. . Moore G.F . , Bottrell H., (1996). Plymouth Atmospheric 
Con^ction Experiment (PACE) , 23rd Intemational Remote Sensing Society 
Conference, Reading, UK. 

McClain R. C , Amgo K., E s a i a s W. E . , Darzi M., Patt F. S . , Evans R. H., Brown J . 
W., Brown C. W., Barnes R. A. and Kumar K.. (1995). S e a W i F S algorithms, part 
1. NASA Tech. Memo. 104566, Vol.28. Hooker S .B. and Firestone E.R., eds., 
NASA Goddard Space Flight Centre, Greenbelt, Maryland, 38pp., plus colour plates. 

McClain C.R.. Cleave M.L, Feldman G.C. , Gregg W.W. and Hooker S .B . , (1998). 
Science Quality S e a W i F S Data for Global Biosphere Research. Sea Technology, 
reprint. 5pp. 

Mobley, C D . , (1994). Light and water; radiative transfer in natural waters, 
Academic Press Limited, 24-28 Oval Road, London. NW1 7DX. ISBN 0-12-
502750-8. 

Moore G. , Aiken J . , Hooker S . B . and R e e s N., (1997). Remote sensing of bio-
optical provinces. 24th International Remote Sensing Conference, Reading, UK. 

Morel. A, and Berthon, J . - F . , (1989). Surface pigments, algal biomass profiles and 
potential production of the euphotic layer: Relationships re-investigated in view of 
remote-sensing applications. Limnology and Oceanography., 34 (8), 1545-1562. 

Mueller J .L . and Austin R.W., (1992). Ocean optics Protocols for S e a W i F S 
validation. NASA Tech. Memo. 104566, Vol. 5, Hooker S .B. and Firestone E.R., 
eds.. NASA Goddard Space Flight Centre, Greenbelt, Maryland, 43 pp. 

Mueller J .L . and Austin R.W., (1995). Ocean optics Protocols for S e a W i F S 
validation. Revision 1. NASA Tech. Memo. 104566. Vol. 25, Hooker S .B . and 
Firestone E.R., eds., NASA Goddard Space Flight Centre, Greenbelt, Maryland, 67pp. 

Mueller J .L . and Trees C . C . , (1997). Revised S e a W i F S Pre-launch Algorithm for 
the Diffuse attenuation Coefficient /<(490). In Yeh E. . Barnes R. A., Darzi M., 
Kumar L., Eariy E. A., Johnson B. C , Mueller J .L . , (1997). C a s e studies for 
S e a W i F S calibration and validation. Part 4. NASA Tech. Memo. 104566. Vol. 41. 
Hooker S .B. and Firestone E.R., eds., NASA Goddard Space Flight Centre, 
Greenbelt, Maryland, 35pp. 

211 



List Of References 

Pilgrim D. A., (1987). Measurement of the extinction coefficient in turbid estuarine 
waters. Continental Shelf Research Vol. 7, 11/12 pp 1425-1428. 

Pilgrim D.A, and Aiken J . . (1989). Measurement of the diffuse optical attenuation 
coefficient. The Hydrographic Jounnal, 54, 23-27. 

Pond D., Hanis R., Head R,, Harbour D., (1996). Environmental and nutritional 
factors determining seasonal variability in the fecundity and egg viability of Calanus 
helgolanicus in coastal waters off Plymouth. Marine Ecology Progress Series, 143, 
45-63. 

Pope R.M. and Fry E . S . , (1997). Absorption spectmm (380-700nm) of pure water II. 
Integrating cavity measurements. Applied Optics, 36(33), pp.8710-8723. 

Robins D.B.. BaleA.J . , Moore G.F . , R e e s N . W., Hooker S.B. , Gallienne C P . , 
Westbrook A.G. . Maranon E. , Spooner W.H. and Laney S.R. , (1996). AMT-1 Cnjise 
Report and Preliminary Results. NASA Tech. Memo. 104566, Vol. 35, Hooker S .B . 
and Firestone E.R., eds.. NASA Goddard Space Flight Centre, Greenbelt, Maryland. 
87 pp. 

Robinson I.S., (1985). Satellite oceanography, an introduction for oceanographers 
and remote sensing scientists. Ellis Horwood series in Marine Science. Ellis 
Horwood Limited, Chichester, UK. 

Rowan. K.S., (1989). Photosynthetic pigments of algae, Cambridge University Press. 

Sathyendranath. S . , Gouveia, A.D., Shetye, S .R . , Ravindran, P. and Piatt, T., 
(1991). Biological control of surface temperature in the Arabian Sea , Nature 
(London). 349. 54-56. 

Smith R.C. and Baker K.S. . (1978). Optical classification of natural waters. 
Limnology and Oceanography, 23, 260-267. 

Smith R.C. and Baker K.S. . (1981). Optical properties of the clearest natural 
waters (200-800nm). Applied Optics, 20(2), pp.177-184. 

Sokal R.R. and Rohlf J . , (1995). Biometry, third Ed . W.H. Freeman and Company, 
USA. 

Suzuki K. and Handa N.. (1995). Distribution of the prochloropyte prochlorococcus 
in the Central Pacific Ocean as measured by H P L C . Journal of the American 
Society of Limnology and Oceanography. 40(5), 983-989. 

Tassan S . , (1988). The effect of dissolved 'yellow substance' on the quantitative 
retrieval of chlorophyll and total suspended sediment concentrations from remote 
measurements of water colour. International Journal of Remote Sensing. 9(4). pp. 
787-797. 

212 



List Of References 

Van Den Hoek C , Mann D.G. and Jahns H.M., (1995). Algae an introduction to 
phycology. The press syndicate of the University of Cambridge. The Pitt Building, 
Tnjmpington. Cambridge, C B 2 1RP. 

Vernon L.P, and Seely G.R. , (1966). The chlorophylls, physical, chemical and 
biological properties. Academic Press, New York. 

Vodacek A., Hoge F . E . , Swift N.S.. Yungel J .K. , Peltzer E.T. . Blough N.V., (1994). 
The use of in situ and aiboume fluorescence measurements to determine UV 
absorption coefficients and D O C concentrations in surface waters. Limnology and 
Oceanography. 40(2). 411-415. 

Watson A . J . , Robinson C . Robinson J . E . , Williams P.J . and Fasham J .R. , (1991). 
Spatial variability in the sink for atmospheric carbon dioxide in the North Atlantic. 
Nature (London) 350:50-3. 

Westbrook A.G. . Pinkerton M.P., Aiken J . and Pilgrim D.A.. (1999). Simulated 
Performance of remote sensing ocean colour algorithms during the 1996 PRIME 
cnjise. Deep S e a Research PRIME special issue, accepted. 

Westbrook A. G. . Aiken J . and Pilgrim D.A., (1998). Spatial variation in the 
performance of algorithms for the interpretation of remotely sensed measurements 
of ocean colour during the first Atlantic Meridional Transect (AMT-1). Applied 
Optics and Optoelectronics, Proceedings of the Applied Optics Divisional 
Conference of The Institute of Physics, Brighton (talk, paper bound in 
proceedings). 6pp. 

Williamson P.. (1990). Oceans, carbon and climate change, an introduction to the 
Joint Global Ocean Flux Study ( J G O F S ) . Scientific Committee on Oceanic 
Research, Halifax, Canada. ISBN 0-9694959-0-0 

Wright S.W.. Jeffrey S.W, Mantoura R . F . C . , Llewellyn C.A.. Bjornland T., Repeta 
D. and Welschmeyer N., (1991). Improved H P L C method for the analysis of 
chlorophylls and carotenoids from marine phytoplankton. Marine Ecology Progress 
Series. 77, 183-196. 

Yentsch C . S . and Menzel D.W., (1963). A method for the determination of 
phytoplankton chlorophyll and phaeophytin fluorescence. Deep S e a Research. 10, 
221-231. 

Zaneveld, J .R.V. , Kitchen J . C . and Mueller J .L . , (1993). Vertical structure of 
productivity and its vertical integration a s derived from remotely sensed 
observations. Limnology and Oceanography, 38(7), 1384-1393. 

213 



Appendices 

APPENDIX 1: A C R O N Y M S AND S Y M B O L S 

A C R O N Y M S 

AMT Atlantic Meridianal Transect 

B O F S Biogeochemical Ocean Flux Study 

PRR-600 Biospherical Instmments Inc. Profiling and Reflectance 
Radiometer 

RRS James Clark Ross B A S Research Vesse l 

B A S British Antarctic Survey 

CDOM Coloured Dissolved Organic Material 

C H O R S Centre for Hydro-Optics and Remote Sensing 

C Z C S Coastal Zone Colour Scanner 

CASI Compact Airborne Spectrographic Imager 

C T D - F Conductivity Temperature and Depth with Fluorometer 

DOM Dissolved Organic Material 

FWHM Full Half Wave Maximum 

H P L C High Performance Liquid Chromatography 

IR Infra Red 

IFOV Instantaneous Field Of View 

L A S E R Light Amplification of Stimulated Emitted Radiation 

MBA Marine Biological Association 

NASA National and Aeronautics Space Administration 

NIST National Institute of Standards and Technology 

N E R C Natural Environment Research Council 

NRA National Rivers Authority (now the Environment Agency. EA) 
R R S Discovery N E R C Research vessel 

PAR Photosynthetically Available Radiation 

P A C E Plymouth Atmospheric Correction Experiment 

PML Plymouth Marine Laboratory 

RV Squilla PML Research vessel 

L4 Sampling station S W off Plymouth. UK 

S e a W i F S S e a Viewing Wide Field of View Sensor 
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snr 

S P M 

S D Y 

UOR 

UoP 

USA 

UV 

Signal to noise ratio 

Suspended Particulate Matter 

Synchronous Day of the Year 

Undulating Oceanographic Recorder 

University of Plymouth 

United States of America 

Ultra Violet 

SYMBOLS 

a Absorption coefficient 

A Attendance 

Azimuth angle 

bb Back-scattering coefficient 

c Beam attenuation coefficient 

C Celsius 

Oc Critical angle 

z Depth 

£ K Diffuse attenuation length 

Kd(/i) Diffuse attenuation coefficient (general case) at wavelength, A 

Kdm(A) Diffuse attenuation coefficient at wavelength, 2. derived from sub­
surface profile measurements of Ed(A, z) 

Kdc(A) Diffuse attenuation coefficient at wavelength, A, derived using algorithms 
applied to the upwelling light field ratio at two wavelengths. 
/ and j 

Kw(A) Diffuse attenuation coefficient (general case) of pure water at 
wavelength, A 

Ed(A,z) Downwelling monochromatic in-adiance at depth z 

bf Forward scattering 

p . Fresnel reflectance 

Hz Hertz 

Ed(A,0-^) Incident solar In-adiance above the s e a surface 
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E(A) Irradiance 

R(i:j) Irradiance band ratio reflectance 

Fo(A) Mean extraten-estrial irradiance at the outer Earth's atmosphere 

m Meter 

/y Micro (10"®) 

6̂  Nadir zenith angle 

nm Nanometer (^0'^ m) 

Lwn(X) Normalised water leaving radiance (normal to the air/sea interface) 

Y Optical depth 

r Path length 

fii Path length amplification factor 

7t Pi 

n Quantum number 

L Radiance 

F Radiant energy 

0 Radiant flux 

/ Radiant intensity 

Pa Refractive index of air 

Pw Refractive index of water 

R(X) Reflectance at wavelength, a 

RRSW Remote sensing reflectance at wavelength, A 

Rrs(i:j) Remote sensing reflectance band ratio 

I// Scattering angle 

b Scattering coefficient 

s Seconds 

0) Solid angle 

4* Suggested distance from platform for profiling radiometer 
deployment 

0* The location of a quantity an infinitesimal distance above the 
sea surface 

0' The location of a quantity an infinitesimal distance below the 
sea surface 

t Time 
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Lu(X,z,e,^) Upwelling monochromatic radiance at depth 2, from direction (6! ^ 
Variance 

Ki(X) Vertically upward diffuse attenuation coefficient at wavelength, X 

V Volts 

P Volume scattering function 

Lw(X) Water Leaving Radiance (normal to the air/sea interface) 

A Wavelength 

6 Zenith angle 

APPENDIX 2. 

PROPOSED IMPOROVEMENTS TO THE APPARATUS USED DURING THE 
C O U R S E OF THIS STUDY 

There were a number of areas encountered when undertaking this programme of 

research that can be improved upon as a result of the experience gained. 

2.1 MODIFICATIONS TO THE PRR-600 

There are a number of steps that need to be taken to upgrade the PRR-600 for it to 

match the specifications of newer state of the art radiometers, 

(i) The PRR-600 needs to be returned to the manufacturers, Biospherical Instmments 

Inc. for upgrading and calibration. Particulariy the issue of out of band blocking of the 

type of filters used in this instrument needs to be addressed. 
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(ii) A software programme is required to interface the PRR-600 with state of the art 
PML calibration facilities to allow full 0.2nm resolution spectral analyses to be earned 
out. 

(iii) The constnjction of a mating collar is required to allow the instrument to be field 

calibrated using the NIST/NASA developed SeaWiFS Quality Monitor (SQM). NASA 

have indicated that they are prepared to undertake this if the PRR-600 were to be 

used for future SeaWiFS calibration and validation research. 

(iv) For the PRR-600 to be included in future SeaWiFS calibration and validation 

exercises, a tilt and roll sensor must be fitted. The specification suggested by the 

SeaWiFS protocols (Mueller and Austin, 1995) that all radiometer data are flagged by 

tilt and roll will be strictly adhered to in future as such modules are now available at 

nominal cost. 

(v) Although the derivation of the sub-surface remote sensing reflectance, 

RRS(^,0'), has been effectively calculated here, the derivation of normalised water 

leaving radiance, LWNW. requires the incident irradiance, Ed(Z,0*), to be logged 

either on deck or just below the surface, contemporaneously with data from the 

underwater unit. These data are an essential aid for the quality control and analysis of 

in-water radiometer profiles, and must also be flagged for tilt and roll of the 

deployment platform. 'Deck cells' are routinely supplied by the manufacturers. A 

beneficial modification to the standard deck cell would be the inclusion of an above 

surface pressure transducer to allow the correction of the underwater unit depth 

sensor to the ambient atmospheric pressure. Errors of up to 0.3m are possible over 
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the normal range of 30mb between typical high and low pressure systems that 
dominate the weather in the North East Atlantic. 

2.2 CHARACTERISATION OF THE UNDERWATER OPTICAL SIGNATURE OF 

THE V E S S E L 

Future work should take into account suggestions by Mueller and Austin (1995) that 

experimental radiometric profiling be earned out at distances incrementally closer to 

the deployment platform edge to examine the range at which perturbations to the sub­

surface light field become apparent in the measurements. This work should be canied 

out for each deployment platform in both bright sunshine and overcast skies. 

2.3 SOFTWARE DEVELOPMENT 

PML staff have developed a comprehensive suite of programs for the processing of 

radiometric data collected during extensive oceanic research. While the quality of the 

processing may be comparable to the work undertaken in this study using the 

Quattro-pro spreadsheet, the efficient use of computing power and the display 

capabilities provided by the Interactive Data Language. IDL, programme means it is 

rapidly becoming the standard throughout sections of the optical oceanographic 

community, and hence such a program is required for the processing and display of 

PRR-600 data. This would include potential for the automated inter-comparison of 

data streams derived from different radiometers deployed simultaneously. 
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2.4 IMPROVED METHODOLOGY FOR BIOLOGICAL SAMPLE COLLECTION 

There is scope for improvements in the collection of water samples in the following 

areas: 

2.4.1 FILTER HOUSING RE-DESIGN 

There is a requirement to re-design the 25mm Gelman Sciences filter housings 

currently in use for two reasons: (a) the knurled body of the housings cut the 

operators hands during extended field sampling, especially in cold waters. The use 

of gloves is not practical due to the small size of the housings, and other operations 

such as the insertion of filters; (b) the filter housings leaked occasionally due to a poor 

design of the o-ring seat An alternative design is presented in figure A2.1. 

(a) (b) 

I GF/F filter Stainless 
steel frit 

Figure A2.1. Proposed improved design for the standard Gelman Sciences 
25mm filter housings, where (a) shows the general construction and (b) a 
detail in the vertical plane across X-X. 
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The main improvements that this design has over the existing system is the quality of 
the machining of the mating faces, and the location and design of the o-ring groove to 
prevent leakage. The housings would be easier to use due to increased size, with the 
two components clamped together by interlocking wedges located on the outer 
surface. This has the advantage of a small amount of travel when joining the halves 
together, and a greater torque being easy to apply due to the clamps being located at 
the maximum pitch circle diameter possible. 

2.5 GENERAL FILTRATION SYSTEM IMPROVEMENTS 

The system of using Nalgene bottles of various capacities, but which share the same 

dimension lid was very effective when it became necessary to vary the sample 

volume, particularly during the L4 study. There were, however, problems with leakage 

around the unions which require re-manufacture to an improved design. This work 

would will need to be one off as repeated attempts to purchase corrosion resistant 

components from specialist suppliers have been unsuccessful. The rebuilding of the 

racks is required to allow the use of 41 sample bottles for sampling in the oligotrophic 

zones. 
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2.6 DEVELOPMENT OF AN AUTOMATED WATER SAMPLING, FILTRATION AND 
LIQUID NITROGEN STORAGE SYSTEM 

The filtration and storage of algal samples is a core component of satellite calibration 

and validation campaigns. These data are collected at discrete intervals 24 hours a 

day (where possible) depending upon the numbers and capabilities of the personnel 

involved. An automated system of along-track filtration would greatly simplify the 

sample collection procedure, allowing operators to devote time to increasing or 

consolidating the suite of measurements undertaken during the fieldwork. These 

could include ship borne HPLC analysis and/or measurements (e.g. DOM) that are 

best made as soon as possible after water collection due to the problems of sample 

degradation during storage. The system would also serve to remove errors in 

biological sampling by fatigued and/or inexperienced personnel, or from ships of 

opportunity. 

Based on experience gained during this study, and a review of state of the art pump 

and valve technology, it is considered feasible to construct a fully automated 

sampling system that could store samples in liquid nitrogen. Figure A2.2 shows a 

schematic of how the system would operate. 
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pump and pump 

filtration con toller 
module and servo 

module 

computerised 
controller module 

sample handling 
controller and 
hardware 
module 

liquid nitrogen 
St or cage module 

Figure A2.2 Proposed schematic of a fully automated water sampling and LN2 
portable storage facility. 

The system would be modular (at least during the prototype phase of development) 

to minimise the dependency of component design upon the whole, and to allow easy 

inter-change ability and repair in the field. The sample handling components of the 

system would be constructed from general purpose plastics such as Teflon, with 

appropnate grades of stainless steel used for all fittings and machine parts. 

Proposed filtration procedure: 

A sample of sea water is introduced from the sampling platform uncontaminated 

supply into the filtration module where a filter pad is placed in the sampling chamber 

and retained by pneumatic pressure. By switching of the sample water and the 

introduction of positive pressure (or vacuum) from an air pump the sample is filtered, 

phor to a volume of filtered sea water being flushed through the reservoir to 

collect the residue. All valves and chambers are closed and the pneumatic pressure 

retaining the filter is released. The filter is transferred to the liquid nitrogen storage 
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module where it is sandwiched gently between two non contaminating fine teflon 
plates, retaining the filtered sample in a chamber above the surface of the LN2 where 
the sample will quick freeze to -196°C. The entire process is servo controlled by CPU, 
which also logs the sample collection time. The CPU may also be interfaced v^th a 
standard DGPS to log the precise time and location from which the sample was 
collected. It is estimated that the construction of such a system would be time 
consuming due to the precision of manufacture required for the electro-mechanical 
components. Such a system would, however, improve the effectiveness with which 
undenA/ay sampling could be achieved. 

2.7 FUTURE HPLC ANALYSES 

The HPLC analysis was undertaken using the most sophisticated systems and 

techniques available at the sites where analyses were undertaken. Improvements to 

detectors and data collection software are on-going and should be incorporated into 

the analysis pathway as a matter of course. For future satellite calibration and 

validation work (where samples require freighting) the regulations regarding the 

transportation of liquid nitrogen and the interest shown by customs officials carry with 

them a high risk of sample thawing due to delays. Lab based HPLC analysis is 

acceptable when the cruise terminates in the country in which the laboratory analysis 

is to be carried out (or where the samples may be accompanied by scientific 

personnel), and where fresh supplies of LN2 are available. 
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A minimum of three replicate samples should be collected unless the water budget 
absolutely forbids it, with representative samples being stored in separate shipping 
dewars in case of losses. Unpublished data collected by the author resulting from 
analysis of triplicate samples collected in waters off north west Scotland indicated 
errors in HPLC analysis using internal standard con-ection techniques may be as high 
as 20% hence triplicate analysis are preferable to ensure the reduction of these 
errors, particulariy important in algorithm development. 
In studies employing more than one HPLC, consideration should be given to 
increasing this level of replication to at least six for sampling sites from various 
biological regimes, to test the performance of the facilities when identifying different 
pigment assemblages. 

APPENDIX 3: 

PUBLICATIONS (either published or in press) 

(In the interest of saving space, only sample publications and reports are 
included here ). 

Lavender 8., Westbrook A.G., Aiken J. and Pilgrim D.A., (1997). The derivation of water 
leaving radiances during PACE. Proceedings of the third intemational remote sensing 
conference, Copenhagen, Denmark. 6pp. 

Westbrook A. G.. Aiken J. and Pilgrim D.A., (1998). Spatial variation in the 
performance of algorithms for the interpretation of remotely sensed measurements of 
ocean colour during the first Atlantic Meridianal Transect (AMT-1). Applied Optics and 
Optoelectronics, Proceedings of the Applied Optics Divisional Conference of the 
Institute of Physics, Brighton (talk, paper bound in proceedings). 

Westbrook A.G., Pinkerton M.P., Aiken J. and Pilgrim D.A., (1999). Simulated 
performance of remote sensing ocean colour algorithms during the 1996 PRIME cnjise. 
Deep Sea Research PRIME special issue, accepted. 
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Abstract. 

A description of P A C E is presented, outlining the concept and measurement 
platforms as well as the instrumentation that was deployed in order to achieve atmospheric 
closure. Contemporaneous measurements of atmospheric and in-water constituents are 
combined with above / in-vvater optical data to correct / validate the optica! imagery, which 
conforms to the N A S A S e a W i F S band set, (Hooker et a / . , 1992; Mueller et. al., 1992). 
Preliminary results are presented, including a sample Compact Airborne Spectrographic 
Imager ( C A S I ) image, to demonstrate the site suitability and variations in suspended 
sediment. The data will be processed to derive the following products: validation of Case 2 
(sediment dominated water) atmospheric correction procedures; comparison of S e a W i F S / 
C A S I imagery with ground truthing and atmospheric data; development / validation of 
remotely sensed algorithms to describe ocean colour. 



IntroductioD. 

This inter-agency project involved Natural Environment Research Council ( N E R C ) 
and Environmental Agency ( E A ) , formally the National Rivers Authority ( N R A ) , C A S I 
sensors mounted on light aircraft. The Meteorological Research flight ( M R F ) , Plymouth 
Marine Uboratory ( P M L ) , University of Plymouth (UoP) and Andrew Wilson ( R S A D U 
Monks Wood) provided in-situ atmospheric / in-vvater measurements. T w o operational 
periods of 2 weeks were set aside, u i th measurements firom all platforms being achieved on 
16 August 1995 when there were clear sky conditions. 

The Plymouth sound area has been the focus of much attention, particularly from 
P M L (e.g. Morris et al., 1982; Holligan ei al., 1983) and UoP (e.g. Pilgrim and Mil lward, 
1989; Fitzpatrick, 1990), with numerous optical and biogeochemical studies extending from 
the Plym and Tamar estuaries to beyond the Eddystone lighthouse (see Figure 1). With 
historical data as a background to the study, remote sensing applications may be assessed in 
conjunction to a wide variety of seabed and in-water parameters (Fitzpatrick, 1990). 

O f particular importance is the weekly plankton survey that takes place at station L 4 , site of 
survey vessel 1 ( S V l ) . Th is survey has continued from the original project, the 
Biogeochemical Ocean Flux Study ( B O F S ) , and has been run by P M L for some years. By 
using this site as a model for Case 1 oceanic water (in Summer) the project benefits from the 
depth of previous knowledge. Throughout 1995, the weekly surveys were increased to 
include optical characterization of ocean colour, with additional biological samples collected 
to undertake pigment determination by High Performance Liquid Chromatography ( H P L C ) . 
This site also forms the location for a parallel but related project: the Plymouth Marine B io -
optical Data buoy (P lyMBOE)y) , (Pinkerton, 1995). 

Core scientific objective: Aintospiteric closure 

Atmospheric correction is a very important procedure for both aircraft and satellite 
sensors as only 5 to 10% of the signal originates from the water. It is not feasible to be constantly 
measuring all the atmospheric parameters necessary, so models have to make broad assumptions, 
particularly about aerosols. 

The models calculate the water-leaving radiance from the signal received at the sensor, 
by dividing the atmosphere up into it's scattering and absorbing components. The main absorbers 
are ozone, water vapour and the gases, and the main scatterers are molecules and aerosols. The 
absorbers are quantified by their optical depths, which are calculated by multiplying the 
concentration by the absorption coefficient and scale height factor Molecular scattering is 
quantified by the Rayleigh optical depth, which can be calculated to a reasonable accuracy using 
the surface pressure. The aerosol scattering and Rayleigh-aerosol interaction are much more 
complex and have been calculated by many different methods. Al l of these are based on 
assumptions about the aerosols, and so by measuring some of the aerosol parameters it will be 
possible to validate these assumptions. 
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Figure 1: PACE Aircraft Flightlines and location of SVl and SV2. 

In Case 1 waters (dominated by photosynthetic pigments) where the optical properties of 
the water are smoothly varying and the aerosol contribution can be considered constant models 
have been reasonably successful However, in the Case 2 waters (dominated by suspended 
sediment) wliich are present in the coastal zone the water parameters and aerosol properties 
exhibit large variations over small spatial scales. Consequently modified models need to be 
considered whereby the aerosol variations can be assumed and corrected for 

By flying the MRF concurrently with a multispectral aircraft radiometer and taking 
extensive ground truth measurements it would be possible to collect the meteorological data 
required for testing and modifying the atmospheric models. The vertical aerosol structure will he 
investigated (by flying at several heights in the boundary layer and one above) to see i f the 
atmosphere can be treated, in models, as one or several distinct layers. The aircraft sensor will be 
flown at the same heights, allowing multi-height images to be corrected. This would provide a 
method by which the various models could be validated and compared over suspended sediment 



laden waters. The measurements will also be applied to satellite data i f there are suitable cloud 
free conditions. 

Methodology. 

The field campaign was split into four categories: 

a) Remotely Sensed Imagery ( C A S I ) collected by N E R C and E A . 

Both aircraft followed a loop of three flight lines around the Plymouth Sound area (see 
Figure 1), including both Case 1 and 2 water conditions. Overflights occurred at altitudes of 
2000, 5000, and 10000 feet to investigate the vertical atmospheric structure. The two survey 
vessels were placed at the intersection of the two flightlines just inside the breakwater, and at 
the middle of the Eddyslone flightline. This gave a validation point for each flightline 

b) Meteorological measurements collected by M R F . 

The M R F collected general atmospheric data, such as wind speed and humidity, plus 
more detailed aerosol measurements continuously over each flight line. Atmospheric parameters 
such as the total water content and ozone concentration will be used to determine water vapour 
absorption and investigate the contribution of tropospheric ozone to the total ozone optical depth. 
Measurements of the number densities of aerosol particles, aerosol light scattering and aerosol 
size spectrum can be used to calculate the aerosol scattering phase function. 

The M R F was flown concurrently with a multispectral aircraft radiometer to provide 
measurements of the atmosphere, including information on the type, size and distribution of 
aerosols. This will be combined with ground truth measurements of the upwelling radiance to 
validate atmospheric correction models. 

The survey area was mapped by a set of three flightlines, which were flown at three 
altitudes of 10000, 5000 and 2000 feet (same as airbome imagery). 

c ) Sun Photometry. 

A sun photometer was deployed from a ground station at Rame Head which provided 
optical depths for input into the atmospheric correction scheme. 

d) Shipbome radiometry and water and sampling. 

Ground truthing was carried out at two sites: 

S V l ( P M L research vessel Squilla) surveyed the physical stnicture of the region, using an 
Undulating Oceanographic Recorder ( U O R ) , throughout the day. The vessel was situated at 
station L 4 , some 6.5 nautical miles South-West of Plymouth between Rame Head and the 
Eddystone lighthouse (see Figure 1). A range of measurements were taken at this site: 



a) Throughout the pre-flight survey and during the L 4 station sampling, measurements 
of chlorophyll-a fluorescence, total suspended material (SPM) , Optically significant 
Dissolved Organic Carbon ( O D O C ) and pigment determination by H P L C . 

b) A series in-water optical profiles of dovvnwelling and upwelling radiance, Ed and L^, 
(412, 443, 488, 510, 555 & 635 nm) with temperature and depth, were collected 
throughout the overflight period using the Biospherical Instruments Profiling 
Reflectance Radiometer (PRR-600) . 

c ) Water-leaving radiance (Lw) measurements to characterize the water surface 
colour and incident light field. Th is was achieved using two P M L designed and 
calibrated spectrometers corrected for tilt and roll. 

S V 2 ( P M L research vessel Tamaris) was anchored at a site near the breakwater, underneath 
the intersection of the two Plymouth Sound flightlines (see Figure 1). Th is provided a Case 2 
validation point and involved measurements of: 

a) In-situ measurements of chlorophyll-o fluorescence, H P L C pigment analysis, S P M 
and O D O C . 

b) Optical profiles using the Canadian Satlantic SeaWiFS profiling radiometer ( E j and 
Lu at 412 ,443 ,490 ,510 ,550 & 632 nm) during the overflights. 

c ) Measurements of L ^ and Ed, using the N E R C Equipment Pool for F ie ld 
Spectroscopy ( E P F S ) Spectron SE-590. 

Results, 

The atmospheric and in-water information were position located to the airborne remote 
sensing imagery and atmospheric models have been adapted for use in sediment laden waters 
using the research that is currently being undertaken at PML. These models are based on a 
"bright" pixel atmospheric model (Moore et ai, 1996), which assumes there is water-leaving 
radiance in the near infrared (700 - 900 nm). This near infrared water-leaving radiance is caused 
by the S P M scattering the light and can also be used to derive S P M maps (Hudson et ai, 1994). 

Figure 2 shows the variation in bottle sample derived S P M during the survey period. S V I 
has consistently low S P M concentrations in keeping with the Case 1 nature of the water between 
Rame Head and Eddystone (Holligan and Harbour, 1977). S V 2 has much higher S P M 
concentration, which vary tidally and describe the Case 2 situation within the Sound 

Figure 3 is a geometrically corrected C A S I colour composite overlaid with a contour map 
of the Plymouth Sound bathymetry. The C A S I image was geometrically corrected in 
Erdas/Imagine using Ground Control Points (GCPs) from the Geographical Information System 
(GIS) based contour map. The image (collected using an 80 degree Field O f V iew lens) had been 
previously roll corrected, during the E A calibration procedure, as can be seen from the undulating 
edge. A true colour composite has been produced from the original 14 waveband data, which 
displays the visible water colour. 
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Figure 2: Ins it u data collected during the overflight period. 
a) Plot of S P M for S V l and SV2 . 
b) Plot of derived water-leaving radiance for S V l . 

F igure 3: Geometrically corrected C A S I colour composite (bands at 669, 555 and 444 nm) 
of Plymouth Sound overiaid with bathymetry contours, at 5 meter increments. 



Discussion. 

The fieldwork experiment produced numerous amounts of high quahty data, which is being 
incorporated into a Geographical Information System (GIS). The GIS will provide a means 
of both storing and cross referencing the data. The ground truth measurements will allow the 
development of algorithms, e.g. chlorophyll and suspended sediment, from the atmospherically 
corrected imagery. At present PACE awaits the N E R C CASI imagery, which will allow the 
development of the atmospheric correction procedure and validation with ground truthing data. 

Future planned PACE experiments will include imagery from fiiture ocean colour satellite such 
as SeaWifs, Ocean Colour Temperature Sensor (OCTS) and Medium Resolution Imaging 
Spectrometer (MERIS). 
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Abstract. Coincident biological and radiometric data were collected during the first 
Atlantic Meridional Transect cruise (AMT-l) from the UK (Grimsby) to the Falklands (Port 
Stanley). Recently developed algorithms were applied to the daU to compare the performance 
of retrieved in-water properties, the diffuse attenuation coefficient, Kd(A90nm), and the 
surface chlorophyll-a concentration, with the values measured contemporaneously in situ. 

1. Introduction 

The Atlantic Meridional Transect (AMT) is a twice yearly survey that traverses the 
Atlantic Ocean from 52**N to 52'*S (see figure 1) using the British Antarctic Survey 
(BAS) vessel RRS James Clark Ross (Robins et a/., 1996). In the North Atlantic the 
AMT course follows the 20** W meridian through the West African upwelling before 
ttiming South West at 10**N towards South America. 

The A M T covers a wide diversity of bio-physical regimes providing a 
platform for the assessment of bio-optical variability, and hence the calibration and 
validation of satellite derived ocean colour measurements. This information is timely 
that the NASA SeaWiFS sensor on board the Orbital Sciences Corp. Sea Star satellite 
(Hooker et ai, 1992) has been successfully launched (August 1997) and 
commissioned (September 1997). The water leaving radiances detected by the remote 
sensor, once atmospherically corrected, are governed by established optical theory 
describing the physical interaction between the underwater light field and the in-water 
constituents distributed throughout the surface layer of the water mass (Elachi, 1987; 
Kirk, 1994). 

The objective of algorithm development is to apply contemporaneous 
biological and optical measurements using in-water radiometry to develop 
relationships to enable the determination of accurate values of the water constituents 
from remotely sensed data. 



2. Methods 

2. / Optical measurements 

The Biospherical Instruments Inc PRR-600 radiometer was deployed during the daily 
station in accordance with the SeaWiFS ocean optics protocols (Mueller and Austm, 
1995; Robins et a/., 1996). Calibration o f the instrumentation was traceable to the 
National Institute o f Standards and Technology (NIST), Washington D C The PRR-
600 consists o f a robust pressure housing, with a 7 channel downwelling irradiance 
sensor, luJfA,:). m the upper face, and a 7 channel upwellmg radiance sensor, l.uf/^z}, 
in the lower, as shown in figure 2. Also contained in the housing are temperature and 
pressure sensors. 
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Figure i Map showing the track of HHS James Clark Ro.ss during .\MJ-\ (23/09/195 to 24/10/1995), 
including the major regional current features Key NEC-Nonh Equatorial Counter Current. E C C -
Equaiorial Counter Current. SEC-South Equatorial Counter Current, FC-Falklands Current, CWB-
Ceniral Water mass Boundary; MAR-Mid Atlantic Ridge. 

The measured intensities for downweMing irradiance, Ed(k,z), and upweliing radiance, 
IM(A,Z), were used to derive attenuation coefTicients, KdfX^z} and K/ fA^z), by least 
squares regression analysis of, for Kcif/J. Infh'JfA^zjj where KJ(/ij d dzlEdfkzij, 
(Pilgrim and Aiken, 1989). 



For each profile Ed(k,z) and Lu(X,z) data were extrapolated to just below the surface, 
(r=0'), to obtain values o f the remote sensing reflectance, RRS(^O'), from: 

Lu(Xfi ) 

Ed(Xfi-) 
(1) 

2.2 Biological measurement.s 

Water samples were collected from the CTD bottle rosette at all sampling stations 
and filtered onto Whatman GF/F filters with a nominal pore size o f 0.7^m, using a 
positive pressure filtration system. The samples were then stored in liquid nitrogen 
where they remained at - 1 9 6 T until analysis. The phytoplankton pigment analysis 
was carried out using High Performance Liquid Chromatography (HPLC) in 
accordance with the SeaWiFS protocols (Mueller and Austin 1995; Wright et ai, 
1991) at the Centre for Hydro-Optics and Remote Sensing (San Diego, California). 
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Figure 2 (a) Schematic of the Biospherica! Instruments Inc Profiling and Reflectance Radiometer 
(PRR-600) underwater unit (b) The deployment system used during AMT-1 (incorporating an a 
additional radiometer, the Satlantic SeaWiFS profiler) 

3. Algorithms 

The algorithms presented are for two products: ( i ) the mixed layer chlorophyll-^/ 
concentration and ( i i ) the vertically dovvnwelling diffuse attenuation coefficient, Kd, 
at 490nm. 



(i) The CZCS-type SeaWiFS global pigment algorithm (Moore et a/., 1997) 

This case 1 (Gordon and Morel, 1983) chiorophyll-a algorithm was derived from 
investigations undertaken by Aiken et al. (1995) during SeaWiFS calibration and 
validation exercises, as well as the extensive use of climatological data bases: 

C h l ^ = (2) 

where RBS(^I)* ^RS(^2) are the remote sensing reflectances at 443nm and 555nm 
respectively and revised coefficients by Moore et ^7.(1997) are: A, = 0-764, A2 = 
32-29, B = 0-88, C = 19.63 (from an analytical fit to an empirical relationship). 

(ii) The SeaWiFS Kci(490nm) algorithm (Moore et a/.,1997) 

By developing the relationship between the remote sensing reflectance. RRS(V and 
contemporaneous measurements of the diffuse attenuation coefficient at 490nm 
equation 3 was derived: 

Kdimnm) = 0.129 
Rjfs{555nm) 

+ 0.0192 (3) 

where 0.0192 m'* is the diffuse attenuation coefficient of pure water at 490nm (Pope 
and Fry, unpublished, cited in Moore et al., 1997). 

4. Results 

Figure 3 (a and b) shows a comparison of the values for chlorophyll-a measured and 
calculated from the radiometry using equation 2. (a) along-track and (b) calculated 
versus measured, regressions are given for all 19 data and with one 'outlier' removed. 
Figure 3(c and d) show values for Kci(490rm) measured and calculated from the 
radiometry using equation 3. (c) along track and (d) calculated versus measured, 
regressions are given. 
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Figure 3. (a) Values of retrieved chJorophyll-a from the radiometry compared with the contemporaneous 
measurements derived by HPLC and (b) a regression analysis of these data, (c) Kci(490nm) retrieved 
from radiometry and the corresponding measured values retrieved from the downwelling irradiance 
sensor with (d) a regression analysis of these data. 

5. Discussion and conclusions 

From the results it can be seen that there is good agreement between the bio-optical 
measurements taken in-situ and values derived from the simulated satellite ocean 
colour data, in terms of RR^X,(T), when applied to the algorithms presented in 
equations 2 and 3. The calculated and measured variables match each other closely, 
and clearly define the biological regimes traversed during the cruise in terms of 
chlorophyll-^i concentration and ^f/(490nm) (figure 3a and 3b). The regression 
analysis of the retrieved and measured chlorophyll-a concentrations, illustrated in 
figure 3(c), is biased by the high value at 20°North, where the calculated value is 
lower. The regression is improved by removing this data point. The fraction of 
variance explained by regression of the Kd{A90r\m) data illustrated in figure 3(d) 
shows good agreement between the calculated and measured values. These algorithms 
are presented as an effective means of deriving these properties from SeaWiFS scenes 
of the Atlantic Ocean. 
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ABSTRACT 

Coincident pjgment and undenwater radiometric data were collected during a cruise 
along the 20'W meridian from 60'N to 37*N in the north-eastern Atlantic Ocean as part 
of the Natural Environment Research Council (NERC) thematic programme: Plankton 
Reactivity in the Marine Environment (PRIME). These data were used to simulate the 
retrieval of two bio-optical variables from remotely-sensed measurements of ocean 
colour (for example by the NASA Sea-viewing Wide Field-of-View Sensor, SeaWiFS). 
using two-band semi-empirical algorithms. The variables considered were the diffuse 
attenuation coefficient at 490 nm. [Kd(490), units: m'^] and the phytoplankton pigment 
concentration expressed as optically-weighted chlorophyll-a concentration [Ca, units: mg 
m"^. It was found that there was good agreement between the measured and the 
retrieved bio-optical values. Algorithms based on the PRIME data were generated to 
compare the performance of local algorithms (algorithms which apply to a restricted area 
and/or season) with global algorithms (algorithms developed on data from a wide variety 
of water masses). The use of local algorithms improved the average accuracy, but not 
the precision, of the retrievals: en-ors were still ±36% {K^) and ±117% (Ca) using local 
algorithms. 

INTRODUCTION 

The Coastal Zone Color Scanner (CZCS) which operated from the NIMBUS 7 satellite 
between 1978-1986 produced unprecedented basin-scale information on a variety of 
biological processes, including the development and spatial structure of algal blooms 
(Esaias et a!., 1986; Yoder ef a!., 1988; Feldman et al.. 1989). Based on this success, a 
number of international space agencies are developing ocean colour observation 
capabilities. For example the European Space Agency (Europe) are developing the 
Medium Resolution Imaging Spectrometer (MERIS) and NASA have been operating 
SeaWiFS since September 1997 and will soon (1999) launch the Moderate Resolution 
Imaging Spectrometer (MODIS). These sensors have more spectral bands, higher 
radiometric resolution and better calibration stability than CZCS. Improved bio-optical 
algorithms must be developed for these new sensors if they are to deliver accurate 
estimates of bio-optical variables for use in the wider oceanographic research 
community. 

This study considered a number of state-of-the-art algorithms, including those currently 
used operationally by SeaWiFS. Twobatid bartd-ratio algorithms use the ratio of 



remote-sensing reflectance just above the sea surface at two wavebands. The 
algorithms are referred to as semi-empirical because the form of the equation is based 
on the physics of the relationship between the bio-optical variable and the band-ratio, 
but the constants in the equation are produced by fitting to real data. There are no 
universally "correct" constants because the relative abundances of various 
phytoplankton pigments vary significantly with region and season (Aiken et at., 1995). 
Different pigments have different absorption spectra and consequently the pigment 
composition affects the. relationship between the colour of the ocean and the 
concentration of phytoplankton in the water. If the empirical constants have been 
derived from data measured in a variety of oceanic areas over a number of seasons, a 
global algorithm is produced which may be applied universally. Global algorithms will 
tend to perform well in areas where the composition of phytoplankton pigments is similar 
to the data used to generate the algorithm, and pooriy othenA/ise. If the algorithm has 
been generated from data measured only in a specific location and/or at a specific time 
of the year, the algorithm is called a local algorithm and is strictly only applicable to the 
regions/seasons where the original data were measured. Local algorithms, applicable to 
the north-eastern Atlantic Ocean in late Spring, were developed using the PRIME data 
in this study, and these are compared to the equivalent global algorithms. 

The two major bio-optical variables derived from ocean colour data are the near-surface 
chlorophyll-a concentration (Ca. units: mg m'^) and the diffuse attenuation coefficient at 
490 nm, K^490), units: m The former parameter leads to maps of global 
phytoplankton distribution which can be used as data inputs for models to estimate the 
role of the oceans in the regulation of atmospheric CO2 (Aiken et al., 1992), a 
greenhouse gas. The latter parameter describes the biologically-mediated absorption of 
light within the surface layers of the sea: a high attenuation coefficient means that light is 
absorbed rapidly with depth as a result of material in the water. This process can cause 
significant heating and affect the physical stnjcture of the upper water-column 
(Sathyendranath et al., 1991). Research by Zaneveld et al. (1993) indicates that /<cK490) 
can also be used to estimate the euphotic zone depth, the depth where the downwelling 
photosynthetically available radiation (PAR) between 400-700 nm has fallen to 1 % of its 
surface value (Morel and Berthon, 1989). Algorithms for both and Kd(4Q0) have been 
considered in this study. 

The RRS Discovery research cruise from Iceland to 37*N 20*W during May and June 
1996 was part of the NERC thematic programme Plankton Reactivity in the Marine 
Environment (PRIME) which was concerned with the role of plankton in the food chain 
and associated biogeochemical cycling. The cmise was divided into three parts; firstly, a 
process study on a cold core eddy south of Iceland; secondly, a survey of the physical 
and biological structure of the waters along the 20°W meridian from^ 60*'N to 27"^; and 
thirdly, an eight day Lagrangian time-series process survey at ST^N 20*W. The wori^ 
described here was earned out during the second and third parts of the cnjise (Fig. 1). 
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Figure 1. RRS Discovery track during the second part of the PRIME cruise; July 2 to July 
21 1996. Marked on the chart are the positions of the CTD casts and the optical profiling 
Stations. 



METHODS 

The general biophysical structure of the water column was characterised by a total of 21 
conductivity, temperature, depth and in situ chlorophyll-a fluorescence (CTDF) casts 
spaced regularly over the transect (Fig. 1). The underwater light field (profiled 
downwelling Irradiance and upwelling radiance in seven spectral bands) was measured 
simultaneously with phytoplankton pigment concentrations at 13 bio-optical stations. A 
mixture of new and existing bio-optical algorithms for Ca and Kd{490) were applied to the 
optical measurements to investigate how welt the bio-optical algorithms would perform 
with SeaWiFS data. SeaWiFS became operational in September 1997, so no remotely-
sensed ocean colour measurements exist for the PRIME study during the period of the 
cruise and it is not possible to test the retrieval directly. 

Phytoplankton pigment measu/vments 

At all bio-optical stations, water samples from typically 12 depths were collected using 
the CTD bottle rosette. The samples were filtered through Whatman GF/F filters, using 
a positive pressure filtration system, and stored in liquid nitrogen until analysis at 
Plymouth Marine Laboratory (PML) using High Performance Liquid Chromatography 
(HPLC) in accordance with the methodology of Wright ef a/. (1991). The pigment 
concentrations were optically weighted (Gordon and Claris, 1980) to account for the 
greater contribution to the optical signal received at the satellite by phytoplankton near 
the surface. CQ is calculated by optically weighting the total chlorophyll-a concentration 
produced by summing the monovinyl and divinyl forms. 

Optical measurements 

Downwelling irradiance and upwelling radiance in seven 10 nm wide bands between 407 
nm and 675 nm were measured by profiling a high-precision radiometer through the 
water column to 100 m. The radiometer used was a Profiling and Reflectance 
Radiometer (PRR-600) manufactured by Biospherical Instruments (Fig. 2). The optical 
measurements confonned closely to the SeaWiFS project calibration and validation 
protocols (Mueller and Austin, 1995). The radiometer was calibrated before and after the 
cruise using calibration standards traceable to the National Institute of Standards and 
Technology (NIST). Washington D.C.; the uncertainty was estimated to be less than 5% 
absolute. 
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Figure 2. The Biospherical Instruments Profiling and Reflectance Radiometer, 
PRR 600, with spectral bands compared to the NASA SeaWiFS. 

Downwelling in^diance at wavelength A (nm) and depth z (m) is denoted as E(^A,z) with 
units: nW cm'^nm"^ upwelling radiance is similariy denoted as Lui^z) with units: 
cm"^ nm'^ sr V The diffuse attenuation coefficient is defined as: K<y(A)=dEd(A)/dz. The 
mean value of K(^490) for the surface 30 m and the mean downwelling in^diances just 
below the surface, Ed(Jl,0'), were calculated by least squares regression (Pilgrim and 
Aiken, 1989). A similar analysis gave the upwelling radiance just below the surface, 
denoted as Lu(A,0'). The remote-sensing reflectances just below the sea surface, 
Rrsi^yO ), were calculated as Equation 1: 

The propagation of remote-sensing reflectances through the water surface, to give the 
remote-sensing reflectance just above the sea surface lRrs{^fi*)l was taken to be 
spectrally independent. The SeaWiFS algorithms were tested using ratios of ^ ^ ( ^ 0 " ) by 
application of Equation 2, which also defines R(Ai:A2): 

(Equation 2) 

Where the algorithms use bands different to those measured by the PRR, a correction 
was applied to reconcile the two, assuming that the undenwater light field is spectrally 
smooth. 



Algorithms forKd(490) 

The form of the band-ratio algorithm used for the retrieval of Kd(490) from remotely 
sensed ocean colour imagery has remained unchanged since the CZCS mission (Austin 
and Petzold. 1981) and is given as Equation 3: 

A:^(490) = a,(490) + A[R{443:555)f (Equation 3) 

where aw(490) is the absorption coefficient (units: m'^) of pure water at 490 nm. and A 
and B are fitted constants. The value of 3^(490) used initially was measured by Smith 
and Baker (1978) but has been revised following advances in the measurement of the 
optical properties of pure water (Buiteveld et al., 1994). The empirical constants derived 
from field measurements have changed as more data have been collected and as 
instrument technology has improved. This study considered three Kd(490) algorithms 
(Table 1): the SeaWiFS pre-launch algorithm; the operational SeaWiFS global 
algorithm; and a PRIME local algorithm generated by least-squares regression in log-
space from the 13 PRIME data points. 

Table 1. Diffuse attenuation coefficient algorithms used in this study. 

Kd{490) algorithm Reference Constants Kd{490) algorithm 
a^490) [m-^] A B 

SeaWiFS pre-launch Mueller and Trees (1995) 0.022 0.127 -1.403 
SeaWiFS global Moore ef a/. (1997) 0.0181 0.129 -1.337 
PRIME local derived in this paper 0.0181 0.135 -1-730 

Algorithms for Ca 

A variety of foans of algorithm have been used to estimate Ca and three formulations 
were considered: logarithmic, hyperbolic and polynomial (Table 2). 

As with the Kd(490) algorithms, the coefficients were obtained empirically by fitting to 
data from field measurements. The global constants represent the state-of-the-art in 
semi-empirical band-ratio pigment algorithms. The local constants were derived from the 
13 measurements made during the PRIME cruise by using a quasi-Newton optimisation 
routine to minimise the mean-square retrieval error. With only 13 optical stations, it was 
not possible to divide the data into different areas where the phytoplankton populations 
or water structure may have been different and the cnjise is considered as a whole. 



Table 2. Pigment algorithms used in this study. 

Pigment algorithm Fomiulation Constants 
Global Local 

C Z C S algorithm 
after Clark (1981) 

Logarithmic 
Q = /4[/?(443:550)f 

A 
B 

1.13/jt 
-1.71 

1.80 
-2.04 

SeaWiFS global 
CZCS-type algorithm 
Moore etal. (1997) 

Hyperijolic 

C = 
/?(443:555)-^ 

[ 5.7?(443:555) J 

A 
B 
C 

19.63 
-17.29 
0.880 

-21.86 
21.03 
1.706 

NASA post-launch 
SeaWiFS algorithm 

Polynomial 
C„ = A + WiB + Cx + Dx^+ Ex^) 

where: x = log /f(490:555) 

A 
B 
C 
D 
E 

-0.040 
0.341 
-3.001 
2.811 
-2.041 

0.0283 
0.173 
-0.841 
-5.203 
4.545 

and: 5(m = }2^ 
Fo(555) 185.9 

* Fd^X) is defined as the mean extra-terrestrial solar irradiance, in >xWcm'^nm'\ (Meckel 
and Labs, 1984). 

RESULTS AND DISCUSSION 

The contoured CTD-F data (Fig. 3) shows the biophysical stmcture of the water column. 
The physical structure varied from a weak thermocline at the north end to a shallow 
mixed surface layer and more pronounced themiocline at the southern end. 

The PRIME cmise track crossed a frontal feature at latitude 50°N, as observed in 
previous studies (Pollard and Pu, 1985) with the different water structures on either side 
probably resulting from the effect of an eddy on a single water mass (Kraus and Kase, 
1984). This feature is considered further by Wade and Heywood (1999). The surface 
phytoplankton concentrations declined significantly away from the feature on both sides, 
suggesting that nutrients were being brought into the surface layer adjacent to the front, 
possibly as a result of divergence. To the north, the phytoplankton maximum was 
restricted to the surface mixed layer, while south of the front the phytoplankton formed a 
sub-surface maximum at 60 m. Fig. 4 shows the variation of Kd(490) an6 Ca along the 
cruise track and emphasizes the influence of the frontal region at 50°N. The cluster of 
points at 37°N shows the relative stability of the measurements made throughout the 
Lagrangian survey; Ca was stable at about 0.08 mg m'^, with a standard deviation of 
only 0.04 mg m compared to 0.38 mg m"̂  for the cruise as a whole; Kd(490) was 
approximately 0.026 m , with a standard deviation of only 0.002 m'̂  compared to 0.051 
m for the whole cruise. 
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Figure 3. (a) Temperature and (b) Chlorophyll-a fluorescence from the CTDF casts 
during the PRIME transect. 
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Figure 4. Measured Kd(490) and Ca during the PRIME cruise. 

Pigment composition 

The pigments in this investigation were grouped as chlorophyll-a, chlorophyll-6, 
chlorophyll-c, photosynthetic carotenoids and photoprotective carotenoids, the 
concentrations of which are denoted as: Ca. Ct, Cc, C P S and Cpp, respectively (Aiken et 
a!., 1995). Total pigment concentration (CTP) was calculated as Ca+Cb+Cc+Cps+Cpp and 
the ratio of the concentration of each pigment group to Crp was calculated (Table 3). 

Table 3. Ratios of the concentrations of pigment groups to total pigment concentration. 

_ ^ Cp5 Cpp Cps +Cpp 
Cjp Qp CJP CJP CJP 

PRIME mean 0.304 0.025 0.124 0.312 0-171 1.503 
Global maximum* 0.544 0.085 0.154 0.377 0.249 1.129 
Global mean* 0.475 0.042 0.077 0.276 0.128 0.814 
Global minimum* 0.367 0.006 0.020 0.186 0.043 0.522 

* Values from the study by Aiken a/. (1995). These were used to constrain the 
SeaWiFS global Kd(490) algorithm and the SeaWiFS global CZCS-type phytoplankton 
pigment algorithm (both: Moore et a/. 1997). 

The pigment compositions generally lie within the global maximum and minimum values 
reported in Aiken ef a/. (1995) and consequently the global algorithms of Moore et a/. 
(1997) should perform relatively well. The ratio of total carotenoid concentration to 
chlorophyll-a concentration tends to be high, with the mean lying above the global 



maximum. This would lead to a lower R(443:555) than expected (Aiken et a/., 1995) and 
hence cause algorithms to over estimate Kd(490) and Ca. 

Performance of Algorithms for Kd(490) 

All three algorithms display the form of the relationship between R(443:555) and Kd(490) 
well. The relationship between the measured values and the estimates from the different 
algorithms are compared in Fig. 5 and summarised in Table 4. 
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Figure 5. Comparison of measured Kd(490) and retrieved Kd(490) for the algorithms 
given In Table 1. 

Table 4. Kd(490) algorithm performance. 

K<X490) algorithm 
Error = 100 

"Retrieved A :^ (490 ) - Measured A:^(490)' 
Error = 100 

Measured A:^(490) 

Minimum Mean Maximum Standard 
(%) (%) (%) deviation (%) 

SeaWIFS pre-launch 
(Mueller and Trees. 1995) 

-20 +26 +78 24 

SeaWiFS global 
(Moore ef a/., 1997) 

-26 +19 +67 23 

PRIME local -40 +2.7 +54 23 
(this work) 

Both global algorithms for Kd(490) performed relatively well on average (93% of the 
variance in Kd(490) over the cruise was explained by both the SeaWiFS pre-launch and 
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SeaWiFS global algorithms) but there was still significant scatter. The magnitude of the 
scatter is very similar to that observed in previous studies: 90 .1% of the variance was 
explained in the study by Austin and Petzold (1981) and 90% of the variance was 
explained in the work by Mueller and Trees (1997). The global algorithms tended to 
over-estimate Kd(490) over the cruise, possibly due to an increasing proportion of 
carotenoids relative to chlorophyll in the pigment assemblage to the south of the front, 
giving lower values for the band-ratio than expected. In the relatively clear waters at 
ay^N. where Kd(490) is low and R(443:555) is high, the algorithms gave estimates of 
Kd(490) which tended towards the absorption coefficient of pure water at 490 nm. 

The local algorithm performed well on average as the same data set were used for 
derivation and testing. However, the standard deviation of the error is the same as the 
global algorithms (about 23%). and only 90% of the variance in Kd(490) was explained. 
This imprecision is either due to random measurement error or actual variability in the 
relationship between R(443:555) and Krf(490) over relatively small space and time 
scales. As optical measurements during PRIME conformed closely to SeaWiFS 
protocols (Mueller and Austin, 1995), measurement error is estimated to be less than 
10%: 5% calibration enror and about 5% deployment en-or (for example, due to 
instrument self-shading and shadowing by the ship). Assuming normally-distributed 
errors, there is a 95% chance that the true Kd(A90) lies within 46% of the retrieved value 
(twice the standard deviation) and the error due to the algorithms themselves is 
estimated to be about ±36%. 

In summary, estimates of Kd(490) over the north-eastern Atlantic may be obtained which 
should be accurate on average, but imprecise. The average accuracy of the estimates 
could be improved from about 20% to near zero using a local algorithm and a more 
extensive data set, but random errors of ±36% could remain. The value of such data 
was dependent on the application and the sensitivity of optical and biological 
oceanographic models to Kd(490) must be considered carefully when inputs derived 
from ocean colour remote sensing were used. Different algorithm formulations will be 
required to improve the precision of the estimates; such advanced algorithms are under 
consideration. 

Performance of Algorithms for Ca 

All the algorithms display the general form of the relationship between ocean colour and 
the concentration of phytoplankton in the water, i.e. a high R(443:555) when Cs is low. 
and vice versa (Fig. 6). Table 5 indicates that there would be good general agreement 
between near-surface chlorophyll-a concentration measured in-situ by HPLC, and an 
estimate obtained from a well calibrated ocean colour sensor in space using any of the 
algorithms described here. The percentage errors shown in Table 5 should be 
considered in the context that the ambitious goal of the SeaWiFS mission was to obtain 
estimates of pigment concentration from space to ±35% (Hooker et a/., 1992). The low 
pigment concentrations sampled during the southern part of the cruise meant that small 
errors in Ca equated to large percentage errors and drive the poor retrievals obtained 
using the Clari<, (1981) and Moore etal., (1997) algorithms. 
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Figure 6. Comparison of measured Ca and retrieved Ca for the algorithms given in Table 
2: (a) Global logarithmic and hyperbolic algorithms; (b) Global polynomial algorithm; 
(c) Local logarithmic and hyperbolic algorithms; (d) Local polynomial algorithm. 

Data in figure 6, and the accompanying en-or analysis summarised in table 5, show the 
NASA post-launch polynomial algorithm performed best, explaining 90% of the variance 
in Ca. The SeaWiFS CZCS-type hyperbolic algorithm (Moore et a/., 1997) performed 
well at higher pigment concentrations (0.5-1.5 mg m"^) but overestimated at low 
concentrations (less than 0.5 mg m'^); the algorithm explained 88% of the variance. The 
simple logarithmic form developed for CZCS (Clark, 1981) underestimated pigment at all 
concentrations but still explained 89% of the variance. The proportion of the variance in 
pigment concentration explained by these band-ratio algorithms is very similar to values 
reported by previous studies: the chlorophyll algorithm of Clari< (1981) explained 90.8% 
of the variance and the R(443:555) algorithm of Moore ef a/. (1997) explained 87.5% of 
the variance in chlorophyll concentration (reported in Aiken ef a/., 1995). 
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Table 5. Phytoplankton pigment algorithm performance. 

Algo­
rithm 
type 

Ca algorithm ^ , ̂ « Retrieved C - Measured C„ 
% Error = 100 2 2_ 

L Measured Q 

Algo­
rithm 
type 

Ca algorithm 

Minimum 
(%) 

Mean 
(%) 

Maximum 
(%) 

Standard 
deviation 

(%) 

Global 
Clark (1981) logarithmic -94 -71 -20 19 

Global Moore ef a/. (1997) hyperbolic -59 +76 +520 148 Global 
NASA polynomial -80 -3.1 +190 67 

Local 
PRIME logarithmic -82 +5.5 +135 70 

Local PRIME hyperbolic -81 -2.2 +183 65 Local 
PRIME polynomial -82 +0.1 +191 66 

The local Ca algorithms were based on the whole PRIME data set. All three forms had 
mean errors near zero as the same data were used for their derivation and subsequent 
testing. The standard deviation of the error from the local logarithmic algorithm was 
greater than the global logarithmic algorithm. This implies that the logarithmic 
formulation was not well suited to describing the fomri of the relationship between 
R(443:555) and Ca in the north-western Atlantic Ocean, inrespective of the amount of 
data used to constrain it. The local polynomial algorithm error had a standard deviation 
very similar to that of the global polynomial algorithm; given that this algorithm had 5 
fitted parameters and has been fitted to only 13 data points, the lack of a significant 
reduction of error implies that the NASA SeaWiFS post-launch global algorithm was 
close to the best performance which could be expected from this form of algorithm. The 
performance of the SeaWiFS CZCS-type hyperbolic algorithm improved considerably 
when local parameters were used instead of global values. This could be because the 
algorithm was developed from measurements In regions which are significantly different 
in terms of phytoplankton pigment composition than existed during PRIME and implied 
that the average accuracy could be further improved using more in situ data. 
The local algorithms were not significantly more precise than the global algorithms; the 
proportion of the variance explained does not change by more than 1 % between the 
global and local forms. The errors could arise either from fundamental limitations of the 
technique or random en-ors In data collection or processing. Total optical measurement 
en-or was estimated to be less than 10% as discussed eartier in this paper. HPLC 
measurements of pigment concentration at PML, using an internal standard, were 
estimated to be in en-or by less than 5%. The time lag between the radiometer and CTD 
deployments will give en-ors In algorithm performance if the phytoplankton is patchy. 
Data in Fig. 4 show the stability of the bio-optical structure of the water during the 8-day 
Lagrangian time series study and suggest that It is unlikely that patchiness on small time 
scales could account for the large differences In the algorithm performances observed. 
Data quality can be considered to be good within ±15%, and etrors between measured 
and retrieved pigment concentrations beyond this will arise as a result of the variability 
of the relationship between Ca and both R(443:555) and R(490:555). The standard 
deviation of the error in Ca estimated by the local algorithms was about 66% (Table 5). 
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With 95% confidence we can state that the actual value lies within an interval of ±2 
standard deviations from the mean; here, this is ±132% of the estimate, of which about 
±117% results from fundamental limitations of two-band ratio algorithms. 

In conclusion, there is scope to improve the average accuracy of Cg estimates using 
local two-band ratio algorithms, but natural variability could still lead to errors of more 
than ±100% of the estimate. This lack of precision should be considered carefully when 
data from remote measurements of ocean colour are used. The use of more spectral 
bands, either in semi-empirical three-band ratio algorithms or using spectral inversion 
techniques, may improve retrieval precision. 
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