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The Distribution and Reactivity of Organochlorines in Estuaries 

Andrew O. Tyler 

Abstract 
In February 1997, the Governing Council of the United Nations Environment 
Programme initiated a protocol to reduce the risks to human health and the 
environment arising from persistent organic pollutants. The initial list of 12 
families of organochlorine pollutants included polychlorinated biphenyls 
(PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated 
dibenzofurans (PCDFs) selected for their persistence, bioaccumulation 
capacity and toxicity. The aim of this work was to further understanding of the 
behaviour of these organochlorines (OCs) in estuarine systems. 

Field surveys were conducted at UK estuarine (Humber, Clyde and Dee) and 
coastal locations. Sediments were analysed for OCs and a range of chemical 
and physicochemical properties (trace metals, organic carbon content, 
specific surface area). Hydrographic measurements were also made to assist 
in defining the estuarine environment. Concentrations of PCDD/DF on a dry 
weight basis ranged from non-detectable (n.d.) to 11100 pg g"̂  and PCB from 
n.d. to 3000 ng g \ Estuarine OC contamination was generally elevated 
above coastal waters concentrations. 

The distribution of OCs was studied to determine the extent of source, 
compound physicochemical, and particulate geochemical influences. In the 
Clyde estuary some source-related effects were observed but in the Humber 
estuary, characterised by highly dynamic conditions, these were masked by 
mixing of sediments. The characteristics of the sorbent were found to be of 
key importance with the content and nature of particulate organic carbon 
being the major control. 

To further understand the sorption behaviour of OCs, partitioning experiments 
were conducted with ^"C analogues of the compounds under realistic 
estuarine gradient conditions (K^ range from 2.4 x 10** to 49.4 x 10"* for TCB 
and 23.1 x 10Mo 313 x 10^ for TCDD). Particle concentration was found to be 
of key importance and it was concluded that this effect was transferable to 
environmental situations. Salinity was found to be a minor influence on 
partitioning behaviour. 

Development of sorption sub-models and their incorporation into an 
integrated estuarine contaminant transport model was demonstrated. A 
particle interaction-based sorption model was shown to only partially account 
for the observed partitioning behaviour; inclusion of an irreversibly adsorbed 
fraction may more adequately represent estuarine partitioning. Riverine and 
outfall discharges were simulated in the integrated contaminant transport 
model to demonstrate the influence of tidal hydrodynamics, sediment 
dynamics and variable partitioning applied to the Humber estuary. 
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Chapter 1. Introduction 

1. Introduction 

1.1 Pollution in Estuaries and Coastal Waters 

By virtue of their geography and dynamic environment, estuaries and coastal 

waters have long been repositories for industrial pollution (Olausson & Cato. 

1980). Widespread use of organic chemicals in agriculture has resulted in 

land runoff and river-borne discharge into estuaries. Industry, attracted to 

estuary sites by the proximity of sea transportation, urban settlements, and 

cooling water, has used estuaries and coastal waters as a site for direct 

discharge of effluent. Terrestrial and coastal combustion sources have 

combined through river runoff and direct deposition to load estuaries and 

coastal waters with combustion related contaminants. 

Although estuaries form an interface between rivers and the receiving waters 

of the adjacent shelf sea, they tend to act as a filter and sink for pollution 

received through riverine, atmospheric and direct pathways (Schubel & 

Carter, 1984). Many contaminants of concern tend to associate with sediment 

particles which can be retained in estuaries over decadal timescales only 

being dispersed by a gradual remobilisation of bed sediments into coastal 

waters. 

In recent years, there has been particular concern over the widespread 

occurrence of persistent chlorinated organic compounds in the marine 

environment. This largely man-made class of organic compounds has been 

used extensively in agricultural and industrial applications since the 1900's. 

Until fairly recently the accumulation of these compounds in environmental 

media and their low level toxicity was not appreciated and scientific 

investigation was hampered by analytical problems associated with 
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identification and quantification of these compounds at concentrations 
typically found In marine environments. 

In February 1997, the Governing Council of the United Nations Environment 

Programme initiated a global legally binding instrument to reduce the risks to 

human health and the environment arising from the release of twelve classes 

of Persistent Organic Pollutants (POPs); aldrin, dieldrin, DDT, endrin, 

chlordane, hexachlorobenzene, mirex, toxaphene, heptachlor, PCBs, dioxins 

and furans. This unprecedented international action was taken in response to 

the wide acceptance that these POPs posed a risk to human health and to 

the environment, and were subject to long-range transport to regions where 

they had never been previously used, thus posing a global threat (UNEP, 

1999). This thesis focuses on polychlorinated dibenzo-para-dioxins (PCDDs), 

polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls 

(PCBs), three members of this high priority group of POPs. 

1.2 Hydrography of Estuaries and Coastal Waters 

1.2.1 Estuarine Classification 

A working definition of an estuary is provided by Cameron & Pritchard 

(1963):- "a semi-enclosed coastal body of water having a free connection to 

the open sea and within which the sea-water is measurably diluted with fresh 

water deriving from land drainage". Estuaries are sometimes classified on the 

basis of shape with the 'coastal plain' estuary usually a result of land sinkage 

or a flooded river valley, the 'deep basin' such as the Nonwegian fjord, and the 

'bar-built' estuary consisting of a bar enclosing a channel. 

An alternative and more geochemically significant classification is on the 

basis of salinity stratification. The four classifications are: vertically mixed, 

slightly stratified, highly stratified and salt wedge. Vertically mixed estuaries 

tend to be shallow, often with large tidal ranges (up to 15 m), low river flows 

and occasionally wave environments. The salt wedge estuary at the other 
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extreme exhibits a saline intrusion beneath the high outflow of fresh water. 
The resulting salt wedge migrates up and down the estuary under the 
influence of tide and river flow. 

1.2.2 Estuarine Hydraulics 

By virtue of its geology and geographical position an estuary exhibits a 

complex interplay between river flow and tidal influx, which causes an 

interaction between marine and terrestrial sediments. The complexity of 

estuarine environments is further compounded by the various timescales over 

which these processes occur. Most estuaries experience strong tidal 

influences producing semi-diurnal or diurnal influxes of seawater and the 

spring and neap variations arising from the lunar cycle. This influx interacts 

with river discharges within the estuary varying on seasonal cycles but also 

strongly influenced by random events such as river spates and storm surges 

induced by extremes of weather. Superimposed on these variations are the 

longer timescale variations in geomorphology and climate. 

1.2.3 Estuarine Sediment Dynamics 

The hydraulics of an estuary imply a dynamic sediment transport regime 

which is further complicated by the mixing between seaward fluxing lithogenic 

sediment from land runoff and riverbed sources, and calciferous material from 

marine origins (Postma, 1980). A wide spectrum of sediment type may be 

encountered within an estuary and may vary from non-cohesive, sand, gravel 

and shell fragments to fine clay and silt material, which is often rich in organic 

matter and highly cohesive. 

Sediment transport is strongly influenced by tidal and seasonal changes. 

Tidal hydrodynamics dominate the resuspension and deposition of sediments 

and strong flows often lead to the development of a geochemically reactive 

'turbidity maximum' in the upper reaches of an estuary. The seasonal cycle 

plays an important part in the retention of sediments within an estuary. During 
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low river flow conditions, tidal asymmetry leads to a landward transport of 
sediment known as 'tidal pumping' (Uncles et a/., 1985). This process is 
reversed when high river flows flush sediments down-estuary. The result of 
this process is sediment retention times measured in years compared with 
water flushing timescales of days (Bale etal., 1985; Uncles etaL, 1983). 

The interplay between estuarine hydrography and sediment type produces a 

complex distribution of sediment. A general upstream increase in finer, 

lithogenic, organic rich sediment is usually observed. This is combined with 

hydraulic influences which tend to deposit finer sediments in embayments 

and on the Inside of bends in the estuary often leaving extensive inter-tidal 

mudflats and scouring all except the coarse sand/gravel fractions in the main 

flow channels. In many estuaries this natural distribution is further influenced 

by capital and maintenance dredging and artificial obstructions to current 

flows. 

1.3 Biogeochemistry of Estuaries and Coastal Waters 

1.3.1 Biogeochemical Transport 

The biogeochemistry of estuaries and coastal waters is strongly dependent 

on the hydrography, sediment regime, and geochemistry of water and 

sediment. Trace contaminants are transported either dissolved in the water 

column or adsorbed to sediments. In some cases, temporary biological 

compartments may also play a role in contaminant transport. Dissolved phase 

contaminants are diluted and dispersed through mixing in the estuary and 

flushing into the receiving coastal waters. Sediment bound contaminants 

follow more complex transport pathways and represent the major contaminant 

burden in an estuary often over decadal timescales (Van Zoest & Van Eck, 

1993a; Wade efa/. . 1994). 

Although transport is dominated by physical processes in an estuary, it is the 

biogeochemistry of sediments and water, and the physicochemical properties 
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of the contaminant which often determine preferred transport pathways. Many 
compounds of concern are hydrophobic, and sorb onto and into sediment 
particles. This leads to their long retention in an estuary which, combined with 
their toxicity, resistance to degradation and liability to bioaccumulate, results 
in their status as high priority contaminants. 

1.3.2 Sediment-water Partitioning 

The extent and reversibility of contaminant partitioning onto sediments is 

subject largely to geochemical influences. Most sediment bound 

contaminants are found to prefer sediments with a high surface area 

indicating more active sites for adsorption (Turner ef a/., 1991). Trace metals 

are often found preferentially bound to ferrous or humic coatings on particles. 

For organic contaminants, the nature of the organic fraction of the particle is 

seen to be more influential (Broman ef a/., 1991). Within an estuary, the 

salinity gradient is seen to strongly influence metal partitioning behaviour 

although there is considerable variation between metals. For organic 

contaminants, salinity seems influential and partitioning is dominated by the 

estuarine gradient in particle characteristics. 

1.3.3 Role of Biota 

Biota may play a part in the partitioning and subsequent transport of 

contaminants although estuaries are not always particularty fertile due to their 

turbidity-reduced light penetration. Estuaries are usually subject to a single 

plankton bloom in the summer which may be exposed to contaminants in the 

water column (Delbeke ef a/., 1990). However, the main exposure of biota to 

estuarine contaminants is through bed-dwelling species which filter-feed on 

sediments resulting in accumulation of lipophilic compounds in lipid tissues 

and leached metals in digestive systems. Although there is a carcinogenic 

risk to biota from toxic trace contaminants, by far the main threat to biota 

within an estuary is deoxygenation caused by domestic sewage discharge 

and organic 'oxygen demanding' wastes from industry. Several estuaries 

A.O. Tyler, PhD Thesis 



The Distribution and Reactivity of Organochlorines in Estuaries 

declared dead have revived once oxygen balances have been restored even 
though bed sediments still remain repositories for toxic trace contaminants. 

1.4 Structure, Nomenclature & Physical Properties of 

PCDD/PCDF/PCBs 

1.4.1 Chlorinated Organic Compounds 

Organochlorine compounds (OCs) are hydrocarbon compounds containing 

one or more carbon-chlorine bonds. The classes of 0 0 compounds are 

extensive, ranging from lower molecular weight aliphatic compounds to the 

high molecular weight aromatic compounds. 

OOs can originate from both natural and anthropogenic sources. Large 

quantities of OCs are biogenically derived, mainly from marine algae. Much of 

this is in the form of multi-chlorinated methane and ethane compounds 

(EuroChlor, 1994). PODDs and PCDFs have a significant number of natural 

combustion sources which include volcanoes, forest fires etc. Evidence from 

Japanese sediment cores dated back --8,000 years clearly show the 

presence of dioxins (Hashimoto et a/.. 1990). However, the general increase 

in environmental concentrations over the last century has been largely due to 

industrial sources (Alcock ef a/., 1993; Halsall et a/., 1997) and certain OCs 

such as PCBs are entirely anthropogenically derived and were produced for 

many years until environmental concerns led to a halt in manufacture and 

restriction on usage and disposal (Tanabe, 1988). 

1.4.2 Chemical Structures and Nomenclature 

The structure of high molecular weight OCs implies a class of compounds 

which tend to be less flammable, more stable, more hydrophobic, and 

consequently more cause for environmental concern. Figure 1.1 shows the 

structure of the PCDD. PCDF and PCB families of compounds; 
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Dibenzodioxin Dibenzofuran 

6 6' 
Biphenyl 

Figure 1.1. Chemical Structures of Dibenzodioxin, Dibenzofuran and Biphenyl 
(Numbers Indicate Chlorine Positions for PCDD, PCDF and PCS) 

Tradenames & Acronyms 

PCDDs, PCDFs and PCBs are referred to by a number of acronyms and, in 

the case of commercially produced PCBs, several tradenames. Table 1.1 

gives some of the common names by which these compounds are known; 

Compound Tradenames & Acronyms 
Polychlorinated dibenzodloxins Often refered to as PCDDs or dioxins, a 

name that is also sometimes used to refer 
to both PCDDs and PCDFs 

Polychlorinated dibenzofurans Often refered to as PCDFs or furans 
Polychlorinated biphenyls Refered to collectively as PCBs. Several 

tradenames including Aroclor®, Clophen®, 
Phenoclor®, Kaneclor®, Santotherm®. 
Fenclor® 

Table 1.1. Tradenames and acronyms for PCDDs, PCDFs & PCBs. 

1.4.3 Physical and Chemical Properties 

The physical and chemical properties of OCs are of primary importance in 

determining the behaviour of these compounds in the marine environment. 
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The systematic change in physicochemical properties within a family of 
compounds also helps to simplify the othenwise complex problems of 
predicting behaviour for a wide range of individual congeners. The following 
physical and chemical properties contribute to the environmental properties of 
these compounds (Howard. 1989; Verschuren, 1983). 

Molecular Weight 

Molecular weight gives a first approximation of the behaviour of an individual 

compound. As molecular weight increases, the solubility of the compound 

decreases as well as its tendency to volatilise. 

Water Solubility 

Water solubility is a primary property in the consideration of OC behaviour in 

aquatic systems and as such provides a good estimation of a compounds 

tendency to partition into the aqueous phase. It is also used in the estimation 

of likely volatilisation of the compound from water. 

Vapour Pressure 

Vapour pressure is a key property required for estimation of the volatilisation 

of OCs from water or sediment. Using vapour pressure and solubility, Henry's 

Law Constants can be calculated for estimation of water-air exchange of 

OCs. 

Octanol-water Partitior) Coefficient 

The octanol-water partition coefficient, K^̂  is a measure of the polarity of the 

compound and is therefore essential in determining the partitioning behaviour 

of an OC between environmental compartments. The K^̂  of a chemical is 

defined as the ratio of concentration in the octanol phase to its concentration 

in the aqueous phase of a two-phase octanol/water system. 
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Kow — 
concentration in octanol phase 

concentration in aqueous phase 

Congener Specific Properties 

1.1 

Although OCs tend to be high molecular weight, low solubility, low vapour 

pressure, high K^̂  compounds, there is a significant range of physical and 

chemical properties encountered within a specific family of compounds. The 

changes in physical and chemical properties generally reflect the degree of 

chlorination; solubility and vapour pressure fall, and K^̂  rises as chlorination 

increases. The chlorine substitution arrangement is also influential in 

determining physical and chemical properties. The general trend In properties 

is helpful in estimating the behaviour of families of OCs once the behaviour of 

a few congeners are established. The following tables (Table 1.2 & 1.3) 

summarise some of the properties of PCDDs and PCBs and illustrate the 

range of physical and chemical properties. 

Compound Vapour 
Pressure (Pa) 

Solubility 
(^g/l @ 20°C) 

log 

2,3,7.8-TCDD 6.2x10' 0.019 6 . 0 - 7 . 0 
1.2.3,4.7-PeCDD 8.8x10-® 0.118 7.4 
1,2,3,4,7,8-HxCDD 5.1x10-^° 0.004 7.8 
1,2,3,4,6,7.8-HpCDD 7.5x10-'° 0.002 8.0 
OCDD 1.1x10-'° 0.000074 8.2 

Table 1.2. Physical and chemical properties PCDD congeners (DoE, 1989) 

Compound 
[lUPAC] 

Vapour Pressure 
(mm Hg)* 

Solubility 
(mg/l)* 

log K,,* 

2,4-DiCB [7] 1.8x10"^ 1.4 5.15 
2',3.4-TCB [33] 7.7x10-' 0.078 6.1 
2,2',5.5'-TeCB [52] 3.7x10'^ 0.046 6.26 
2,2',3.4,5'-PeCB [87] 1.6x10-^ 0.022 6.85 
2,2'4,4',5,5'-HxCB [153] 5.2x10-® 0.0088 7.44 
2,2'3.3'4.4'5.5'-OCB[194] - 0.0070 8.68 
Decachlorobiphenyl - 0.015 9.60 

Table 1.3. Physical and chemical properties of PCS congeners f Errc/fson, 
7986, *Hutzingeretal., 1974) 
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1.5 Environmental Properties of PCDD/PCDF/PCBs 

By virtue of their physical and chemical properties, OCs have distinctive 

environmental properties which dominate their biogeochemical behaviour and 

result in their persistence and bioavailability. These properties have been 

used by UNEP to select the priority OCs for preparation of the POPs Protocol. 

The POPs Protocol sets criteria which include atmospheric half life > 2 days, 

persistence in water with half life > 2 months, persistence in soil and 

sediments with half life > 6 months, and bio-accumulation factors of > 5,000 

or log > 5 (UNEP, 1998). There are a range of physical and chemical 

properties associated with different families of compounds and individual 

congeners within these families. This leads to a wide variation in the 

environmental properties observed for OCs. 

1.5.1 Hydrophobicity 

The hydrophobicity of OCs is one of their most characteristic and important 

properties giving rise to their tendency to preferentially adsorb onto sediment 

in marine environments. This has significant implications for their transport in 

the marine environment and their ability to disperse. This is discussed in 

detail later in this chapter. 

Quantification of hydrophobicity can be implied from a number of 

measurements. A simple estimation may be obtained from the solubility of the 

compound in water, but the common measure used widely by environmental 

chemists is the K^̂  (Lyman, 1982). 

The parameter does have limitations in its use for environmental studies 

due to the fact that it does not consider the geochemistry of the partitioning 

phases as they would occur in a natural marine system. However, its 

relationship to sediment/water partition coefficients (Mackay, 1991) and 

bioconcentration factors for aquatic life (Gobas ef a/., 1991) make it a useful 
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starting point for investigations of OC behaviour Later in this chapter, the 
sediment/water partition coefficient, K̂ ,. will be introduced; this takes better 
account of both the properties of the compound and the partitioning phases. 

1.5.2 Lipophilicity 

The apolarity of OCs gives rise to another important environmental property 

closely related to hydrophobicity, that of lipophilicity. This expresses the 

preference of the compound to partition into lipid or fat phases. As with 

hydrophobicity, K^̂  is a useful parameter with which to assess lipophilicity. It 

must be noted that the definition of lipid is somewhat loose as the term covers 

a large number of diverse chemicals present in natural environments (Harvey 

& Boran, 1985). Operationally, lipid may be defined as that which partitions 

into the apolar phase of a two phase apolar-polar system. By definition it 

therefore excludes some 'lipid' components such as the phospholipids. This is 

not considered a limitation as, on the principle of 'like dissolves like', OCs will 

always favour an apolar phase. 

1.5.3 Volatility 

Although not a property usually associated with high molecular weight 

compounds, the volatility of certain OCs can be an important consideration in 

their long term transport and fate (Atlas et a/., 1986; Halsall et a/., 1999). 

Methods for estimating the volatility of organic compounds generally rely on 

the value of the Henry's law constant, H as an indicator of susceptibility to 

volatilisation. From the tables given above. Henry's Law Constant can 

approximated thus (Lyman, 1982); 

H = ^ (a tmm'moM) 1.2 
S 

where P^gp is the vapour pressure in atmospheres (atm) and S is the solubility 

in mol m" .̂ P^gp and S must be applied for the compound in the same physical 

state. 
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As the value of H falls the compound is essentially less volatile. In the range 
10'^<H<10"^, volatilisation is slow and at a rate determined by H. Below about 
2 X 10"^, the compound tends to partition into water and transfer is gas phase 
controlled. Between 10"^ and 10'^ liquid phase and gas phase resistances are 
both important and volatilisation can be a significant transfer mechanism 
(Lyman, 1982). Theoretically therefore, for a compound such as 2,2',5,5'-
tetrachlorobiphenyl with a Henry's law constant of 3.05 x 10*^. volatilisation 
may be expected to be important. It must be borne in mind that this 
calculation does not account for the dynamics of the marine environment 
which will be a major influence on actual volatilisation rates. 

1.6 Sources of PCDD/PCDF/PCBs to the Marine 

Environment 

Chlorinated organic compounds have been manufactured for many years for 

agricultural and industrial applications and are now considered ubiquitous in 

the environment (Berry et a/., 1993). Unlike PCDD/PCDFs, PCBs are entirely 

man-made and have been placed on government priority lists following 

discovery of their widespread occurrence in the environment. The use of 

PCBs has been banned and their disposal is strictly regulated. 

1.6.1 Usage and Manufacture 

Polychlorinated biphenyls 

Probably the most notorious OC deliberately produced by man, PCBs were 

manufactured from 1929 until 1976 when their production was effectively 

halted by the US Toxic Substances Control Act 1976. World production 

figures of between 1.2 x 10® and 1.53 x 10® kg have been estimated (Russian 

production figures are not known) of which approximately 30% is now 

resident in the environment (Tanabe, 1988). 
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The thermal stability and inertness of PCBs as well as their excellent dielectric 
properties have made them ideal for use as fluids in electrical transformers 
and capacitors and as hydraulic fluids. They have also found use in a range 
of other applications including fire retardants, heat transfer applications, and 
plasticizers. PCBs were manufactured under a range of brandnames (e.g. 
Aroclor®, Clophen® and Kanechlor®) each containing a unique mixture of 
congeners (Erickson, 1986). 

Polychlorinated dibenzo-p-dioxins and polychlonnated dibenzofurans 

PCDDs and PCDFs have no commercial uses and are produced entirely as 

un-wanted by-products of industrial production. Although largely produced 

from incineration/combustion processes, industrial production has been a 

significant source in the past. PCDD/PCDFs have been found in paper pulp 

mill sludge where chlorine bleaching is in use (Champoux, 1996; Clement, 

1989; Kahkonen et al., 1998; Wade ef a/., 1997), manufacture of chlorinated 

phenols such as POP (Hagenmaier ef a/., 1986; Turkstra & Pols, 1989), PCBs 

(Erickson, 1986, Tanabe, 1988), herbicides (Rappe, 1992a), and chloroalkali 

(Kannan ef a/., 1999). The occurrence of PCDD/PCDFs as co-contaminants 

in PCB mixtures has been suggested as contributing to the toxic effects of 

these mixtures (Tanabe, 1988). Dioxin exposure of Vietnam forces and 

citizens was found to be due to PCDD/PCDF co-contamination of 2,4,5-T 

used as a defoliant (Gough, 1991). 

1.6.2 Sources 

Sources of PCDD/PCDFs and PCBs to the marine environment arise from 

three principal sources; manufacture, industry and combustion; 

Manufacture 

Manufacture of either the compound itself or another product of which the OC 

is a precursor or formation product is an obvious source of OCs. Several of 
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the largest incidents of OC contamination for example, have arisen as a direct 
result of deliberate discharges or accidents at chemical plants. The ICMESA 
TCP production plant at Seveso, Italy was responsible for a major dioxin 
release following an accident in 1976 (Bertazzi, 1991) and the herbicide plant 
at Newark on the Passaic River, USA caused severe contamination by 
dioxins which were formed as a by-product of the manufacture of 2,4,5-
trichlorophenoxy acetic acid (Rubinstein et a/.. 1990). More recently, severe 
environmental contamination by OCs has been reported in Russian plants 
formerly used for the manufacture of chemical weapons (Federov et ai, 
1993). 

Industrial 

PCBs have been widely used in industrial applications where they are 

distributed widely in small quantities which are extremely difficult to regulate. 

Although there have been some major contamination incidents from industrial 

use of PCBs such as the General Electric capacitor manufacturing plant on 

the Hudson River, USA which caused significant releases of contamination 

over many years (1950-1976) (Bopp et a/., 1981), most releases of PCBs 

from industrial sources are small. These emissions are often caused by failure 

to identify the substance, breaking of old equipment (e.g. transformers, 

capacitors) or illegal dumping to avoid the high costs of professional disposal 

services. 

Combustion 

Combustion sources are identified as the major source of dioxins (Abad a/., 

1997; Alcock etai, 1999; Rappe, 1992b). Combustion processes resulting in 

the possible formation of dioxins include chemical, hospital and municipal 

incinerators as well as domestic fires, vehicle exhausts, power stations and 

accidental fires (DoE, 1989; Meharg et a/., 1997). Although the chemistry of 

dioxin formation in combustion is not fully understood (lino et a/., 1999), it is 

known that temperature and residence time in incinerators are critical to 
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dioxin formation and destruction (Bumb et al. 1980; Tuppurainen ef a/., 1998). 
As a result, the polluting incinerators tend to be those with a large throughput 
where control of these parameters is difficult, or those which are not in 
continuous use such as hospital incinerators which also incinerate 
considerable quantities of plastic material. Toxic chemical incinerators have 
received much attention as potential sources of dioxins although it is these 
incinerators which use the most advanced technology to ensure optimum 
combustion conditions. 

1.7 Toxicity of PCDD/PCDF/PCB to Marine Biota 

Ecotoxicological research presents the greatest challenges associated with 

understanding the impact of chlorinated organic compounds in the marine 

environment. Importantly, it is also vital to the determination of 'priority 

compounds' for hazard assessment. As with their physicochemical properties, 

chlorinated organic compounds have a wide range of toxic effects, 

mechanisms of toxicity and degrees of toxicity. Furthermore, toxicity varies 

considerably between target species. 

1.7.1 Assessment of Toxicity 

Of ail the OCs. 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7.8-TCDD) has 

probably attracted the most attention in toxicity studies. Although not typical in 

its toxicity, it has been described as "the most potent carcinogen known to 

man" (Culliton, 1991). This compound provides an illustration of the 

complexities associated with assessing the toxicity of OC compounds in the 

marine environment. Attention on dioxins was renewed by a re-assessment of 

dioxin toxicity by the US Government which again promoted their extreme 

toxicity (USEPA, 1994a. b, c). 
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1.7.2 Toxic Mechanisms 

The exact mechanisms of OC toxicity, in common with most environmental 

pollutants, are not completely understood. Dioxins are known to have a high 

binding affinity to hepatic cytosolic receptor protein (Ah receptor) eliciting a 

range of toxic responses including body weight loss (many laboratory animals 

die of a wasting syndrome), thymic atrophy, dermal disorders, hepatic 

damage, teratogenicity, reproductive toxicity and immunotoxicity (Vos ef a/., 

1988). The mechanisms of toxicity of other OCs (e.g. PCBs) are known to 

have similarities to that of dioxins. Of crucial importance in determining the 

toxicity of an individual congener is the substitution position of the chlorine 

atoms (Miyata ef a/.. 1989). For dioxins, substitution at the 2. 3, 7 and 8 

positions illicits the greatest toxic response. For PCBs, those that achieve 

isostereomerism with dioxins by having four or more chlorine atoms in para 

and meta positions and no chlorines in ortho positions (coplanarity), induce 

similar toxic responses. Bearing in mind the dependence of physical and 

environmental properties on the degree and position of the chlorine atoms, 

there are important implications for toxicity arising from geochemical transport 

and fate. 

1.7.3 2,3,7,8-TCDD Toxicity 

Most of the research associated with 2.3,7.8-TCDD toxicity has been 

conducted on terrestrial species with the objective of determining the likely 

toxicity to humans and safe levels for human intake. Research has taken two 

paths; epidemiological investigations in humans exposed to the compound 

following industrial accidents, and toxicological studies involving laboratory 

animals. 

There have been several well publicised cases of dioxin contamination of 

humans. These include the 1976 Seveso accident where 35,000 humans 

were exposed following a chemical plant explosion (Bertazzi, 1991) and the 
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exposure of Vietnamese civilians and US troops serving in Vietnam following 
application of 2.4,5-trichlorophenoxyacetic acid (2,4,5-T) as a defoliant. 
Despite several reported toxic effects including chloroacne, no human has 
ever died as a direct result of dioxin exposure (Gough, 1991). Epidemiological 
studies continue on exposed populations but these, by their nature, take 
many years to produce results and so far have been inconclusive. 

Laboratory toxicological studies have highlighted a fundamental problem in 

assessing the priority of 2,3,7,8-TCDD as a pollutant and assigning a 'safe 

maximum human intake'. This problem is the extreme variance in sensitivity 

to 2,3,7,8-TCDD between various species. Doses <1 [xg kg"̂  are lethal to 

guinea pigs, whereas hamsters tolerate doses of milligrams per kilogram 

(Poland & Knutson, 1982). This contrast has fuelled scientific debate and 

subsequent legislation for several years with no sign of a conclusive 

statement. In the marine environment the problem is even greater with a 

fundamental lack of data on which to base risk assessments. 

1,7.4 Toxicity in the Marine Environment 

The capacity for biomagnification discussed later in this chapter results in 

concentrations of OCs in target species high enough to elicit a toxic response. 

Outward signs of toxic defects have been found throughout the marine 

foodchain. In phytoplankton, Biggs et al. (1978) reported significant inhibition 

of growth in estuarine species exposed to Aroclor 1254 with a consequent 

shifting of the community structure towards smaller forms, At the top of the 

foodchain, fish and marine mammals have been reported with a range of toxic 

responses supposed to result from environmental pollution including 

lymphocystic infection of flatfish and fin erosion and skin ulcer disease in 

various species (McCain etal., 1992. Vos etal., 1988). 

Immunotoxic effects have been reported where direct suppression of the 

immune system caused by exposure to OCs leaves the target species 
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vulnerable to other viruses and infections. It was this type of response that 
was highlighted as a possible explanation for the deaths of 18,000 common 
seals {Phoca vitulina) in the North Sea during 1988. The seal epidemic was 
caused by an outbreak of phocine distemper virus which in itself was not a 
result of the suspected PCB contamination. It was thought however, that the 
scale of the mortality could be explained by immunosuppression by PCB toxic 
effects. The results of a detailed study of dead and live seals following the 
epidemic did not lead to conclusive evidence of PCB implication in the deaths 
(Hall efa/., 1992; Skarre etal., 1990). 

In recent years a further chronic toxic effect has been widely reported arising 

from exposure of animals and fish to a range of contaminants. This so-called 

estrogenic activity results from chemicals inadvertently mimicking the 

behaviour of the hormone estrogen (Colborn et a/., 1993). This produces 

disruption of the sexual development of male species with consequent 

reductions in sperm count, fertility and structural abnormalities in reproductive 

organs (Cotton, 1994; The Lancet, 1995). PCBs, PCDDs and PCDFs have 

been reported as estrogenic compounds by a number of authors (Routledge 

& Sumpter, 1996; Sumpter & Jobling, 1995). Sumpter & Jobling (1995) report 

estrogenic activity in male rainbow trout arising from concentrations of Aroclor 

1221 at concentrations as low as I^M. 

1.7.5 Management of Toxicity 

The issue of toxicity and hazard assessment of OCs presents managers and 

scientists with a problem. On the one hand, the issue of toxicity is central to 

the study of a compound of potential environmental concern. On the other 

hand, the wide range of toxic effects and species dependency, together with 

the mass of contradictory data result in a confused picture not conducive to 

management and regulatory decisions. 
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The toxic equivalent system developed for dioxins and furans is an attempt to 
provide a simple expression of toxicity as it relates to a family of compounds. 
The system is based on normalisation of the toxicity of the various toxic 
congeners against the toxicity of 2,3,7,8-TCDD. the most toxic congener 
(Kutz et a/., 1988). Of the 210 dioxin/furan congeners, only the 17 2,3,7,8-
substituted congeners are seen as having significant toxic potential. As the 
reference congener, 2,3,7,8-TCDD is given unit value. All the other 2,3,7,8-
substituted congeners are then assigned a multiplier ranging from 0.5 
(1,2,3,7.8-PeCDD) to 0.001 (OCDD, OCDF) based on their relative toxicity. 
Although the multipliers assigned are still subject to debate, the international 
Toxic Equivalent Factor (TEQ) system has proved successful in presenting 
dioxin/furan data in a meaningful and comparable format. It is worth noting 
that the system has no geochemical significance and is irrelevant when 
considering the transport and fate of the compound in the aquatic 
environment. 

Although there have been attempts to extend the TEQ system to include 

some of the co-planar PCB congeners due to their synergistic toxic effects, 

the system is reliant on large data sets of congener specific toxicity which 

exist for very few families of OCs. 

1.8 Biogeochemical Behaviour of PCDD/PCDF/PCBs in 

Estuaries and Coastal Waters 

The behaviour of chlorinated organic compounds in the marine environment 

is the major focus of this thesis. In this chapter a brief overview of the 

partitioning into the various compartments of the marine system (water, 

sediment, air, biota) is provided together with a summary of removal 

mechanisms (biodegradation, photodegradation and volatilisation) significant 

in determining behaviour in estuarine systems. Subsequent chapters provide 

a more detailed discussion of the partitioning behaviour of OCs. 
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1.8.1 Sediment-Water Partitioning 

The partitioning of OCs between water and sediment is a major influence on 

their transport and fate in marine environments. The environmental properties 

of OCs, in particular their hydrophobicity, result in a strong affinity with the 

solid phase. Unlike dissolved phase components which disperse rapidly in 

estuarine and coastal environments, the transport and fate of sediment-bound 

OCs is dominated by the complex dynamics of sediment transport. 

The processes which dominate the mechanisms of sorption appear to be 

complex. Scientific knowledge in this area is limited to a basic understanding 

of the controlling parameters for OC sorption and virtually non-existent for 

quantification of sorption kinetics and reaction rates. Data available from field 

and laboratory studies shows the sorption of OCs to marine sediment to be 

dependent on a number of general factors; the physicochemistry of the 

compound, the geochemistry of the solid phase and the nature of the 

dissolved phase. 

The physicochemistry of OCs dictates their basic sorption tendencies to any 

sorbing phase (e.g. sediment, biota). The geochemistry of the dissolved and 

solid phases, on the other hand, are dependent on a large number of 

parameters all of which are highly variable in estuarine and coastal 

environments. 

1.8.2 Sediment/water-Biota Partitioning 

The partitioning of OCs into biota is important as it is primarily through this 

pathway that ultimately human exposure to OCs may be achieved. Some of 

the highest OC levels in human breastmilk in the world are found amongst the 

Inuit people living in the Arctic (Oehme, 1991). This high exposure is due to 

the global transport of OCs to higher latitudes (discussed in Section 1.9.1) 

and the largely fish/seal-based diet of the Inuit. The properties of toxicity. 

A.O. Tyler. PhD Thesis 



The Distribution and Reactivity of Organochlorines in Estuaries 

persistence and liability to bioaccumulate have resulted in widespread 
accumulation throughout ecosystems and the marine environment, often 
serving as the ultimate repository for contaminants of terrestrial origin, has 
therefore suffered acutely from accumulation of these contaminants 
(Hashimoto efa/., 1998). 

Bioaccumulation, biouptake/depuration rates, biomagnification and 

biodegradation are all complex processes dependent not only on the 

environmental properties of individual compounds but also to a large extent, 

on the biology of the target species. Experiments on marine biota have been 

carried out on a small number of plants and species allowing conclusions to 

be drawn on the basic behaviour of OCs in biota (Axelman ef a/., 1997). 

Extrapolation of observations to other species is not easy and results may 

only be generalised with caution. 

Bioaccumulation and Biomagnification 

The lipophilicity and persistence of OCs promotes an extraordinary degree of 

bioaccumulation coupled with an unusual capacity amongst marine 

ecosystems to amplify contaminant concentrations despite comparatively low 

water/sediment concentrations (Wade et a/., 1997). Marine mammals 

inhabiting pristine oceans show considerably higher PCB body burdens than 

their terrestrial counterparts living in close proximity to pollution sources 

(Tanabe. 1988). 
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Figure 1.2. PCB levels in different compartments of the coastal zone of the 
Southern Bight of the North Sea. Concentrations in g*' lipid, (after Delbeke 

&Joiris, 1988) 

Within a marine ecosystem, biomagnification through the foodchain is well 

illustrated by the processes shown in Figure 1.2 where analysis of PCBs 

(expressed on a lipid weight basis) in a number of species is shown in a 

foodweb. Clearly, species at the top of the foodchain receive a significantly 

enhanced dose of PCBs through predation (Champoux, 1996; Delbeke & 

Joiris, 1988; Kannan etal., 1999). 

Nowhere is biomagnification more in evidence than in top predators such as 

marine mammals (seals, whales, dolphins, porpoises). These species have 

thick subcutaneous fat (blubber) deposits forming a significant proportion of 

their bodyweight into which the lipophilic OCs partition and are retained. In 

addition, a significant transfer of OCs occurs during lactation. Striped dolphins 

for example may transfer 60% of PCB residues in the mother to the new-born 

through lipid-laden milk (Tanabe ef a/. 1994). Obviously exposure of young to 

such concentrated doses of OCs raises serious concerns over potential toxic 

impacts. 

22 A.O. Tyler, PhD Thesis 



The Distribution and Reactivity of Organochlorines in Estuaries 

1.8.3 Bio-uptake and Depuration 

There have been limited process studies on the uptake of OCs into marine 

plants and biota. The only reliable data has been obtained under controlled 

conditions in laboratory experiments or implied from analysis of levels in biota 

from natural waters and it is from these data that the mechanisms behind 

bioaccumulation processes must be deduced. 

Uptake of OCs into plants is a significant pathway to accumulation in grazing 

biota within marine systems. Certain plants have a significant capacity to sorb 

organic substances and thus act as a reservoir and even a transport 

mechanism for OCs in aquatic systems (Gobas ef a/., 1991). 

Aside from predation, the pathways by which OCs are taken up by benthic 

species are not well understood. It is likely that, given the sediment-bound 

nature of OCs, ingested sediments must form an important source of OC 

contaminants. Accumulation mechanisms in this case could either be through 

direct ingestion or filtering of contaminated particles, or uptake directly from 

pore waters. Mesocosm studies involving dioxins have underlined the 

importance of the foodchain pathway for biomagnification from contaminated 

sediments to higher benthos (e.g. fish; Muir ef a/., 1992). 

As with geochemical relationships, there is evidence that depuration 

mechanisms are dependent on the structural details of the compound. 

Accumulation experiments with ragworm {Nereis diversicolor), showed 

significant differences in extent and kinetics of depuration between the six 

PCB congeners studied (lUPAC Nos. 52, 44, 95, 101. 87. 153). Slow 

elimination and the significant presence of some pentachlorobiphenyls, as 

well as low occurrence of biphenyls highly chlorinated in one ring, were 

observed in the ragworm population (Goerke & Weber, 1990). 
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It is believed that the nature of the bioconcentration process for OCs in plants 
such as the macrophytes and in fish are similar, resulting largely from lipid-
water partitioning. However, differences are observed, particularly when 
considering the nature of certain OCs with very high K^̂ . Whilst for plants, the 
plant-water partition coefficient, Kp̂ „ - K̂ ^ relationship is linear for all K̂ ^ values 
(Gobas ef a/., 1991), in fish (e.g. rainbow trout, Salmo gairdneri) the 
relafionship breaks down for K̂ ^ values above 6 (Servos et a/., 1989). For 
marine mammals on the other hand, analysis of species in Lake Baikal, 
Siberia (Kucklick efa/.. 1994) showed good correlation between log BCF (Bio-
Concentration Factor) and log K^w for OCs (PCB, HCH, heptachlor and 
toxaphene). 

1.8.4 Removal Processes 

There are a number of removal processes which are vital to describing the 

overall transport and fate of OCs in the marine environment. The first two are 

degradation processes (biodegradation, photodegradation) which are most 

important for removal or transformation of the compounds and potentially 

important for the remediation of seriously contaminated areas. The third 

process is volatilisation which although not usually associated with high 

molecular weight compounds, has been shown to be a significant removal 

process for certain compounds. 

B/odegradaf/on 

OCs are generally regarded as highly resistant to biodegradation. However, 

considerable research has been carried both under controlled conditions in 

the laboratory and in field studies demonstrating that biodegradation is 

possible and makes a contribution, albeit small, to removal of OCs from 

marine environments (Kobayashi & Rittmann. 1982; Reichardt ef a/., 1981). 

Interest in biodegradafion as a possible remedial measure for OC 

contaminated sediments or effluents is attractive given the existing use of 

enhanced microbial biodegradation in sewage treatment. The use of carefully 
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selected populations of microbes, and maintenance of conducive 
environmental conditions may significantly improve the biological treatment of 
these wastes. 

In the natural environment, the significance of biodegradation as a removal 

process is highly variable (Lake et a/., 1992). Within a typical estuary a range 

of degrading environments will be encountered, some with a high potential for 

degrading certain OCs and some with little or no potential. Evidence from 

studies of PCB degradation even suggest that for complete mineralization of 

a higher chlorinated biphenyl an anaerobic environment might be required 

followed by an aerobic environment to complete the degradation (Abramowicz 

ef a/., 1993). 

Unlike natural compounds, anthropogenic OCs are resistant to 

biodegradation often because the enzymes necessary to effect the necessary 

transformations for removal through common metabolic pathways are missing 

(Kobayashi & Rittmann, 1982). With OCs, the persistence of the compounds 

is thought to arise from the chlorine content and substitutions in the mefa-

position on the benzene ring as well as the size of the compounds. These 

characteristics suggest that the location of the chlorine atom, the halogen 

involved and the extent of chlorination are the important considerations in 

determining the potential for degradation (Abramowicz et a/., 1993; Rhee ef 

a/.. 1993). 

Degradation Mechanisms 

The principal degradation mechanism for OCs is successive dechlorination 

(Abrahamsson & Klick. 1991; Ballerstedt ef a/., 1997). In PCBs. for example, 

stepwise dechlorination of 2,3,4,3',4'-pentachlorobiphenyl results in a mono-

biphenyl transformation product which would be easily metabolised by 

aerobic bacteria (Abramowicz ef a/., 1993). 
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The mechanisms by which dechlorination may be achieved are not well 
understood. Both aerobic and anaerobic dechlorination of OCs has been 
demonstrated but the efficiency of these methods is highly variable. Aerobic 
bacterial biodegradation of PCBs is well studied but seems to be limited to the 
lower chlorinated congeners. Anaerobic degradation on the other hand has 
been shown to be capable of dechlorinating even highly chlorinated OCs 
although interestingly, under these anaerobic conditions, the lower 
chlorinated transformation products are more recalcitrant (Abramowicz ef a/.. 
1993). 

Photodegradation 

Limited photodegradation of OCs has also been reported (Choudhry ef a/., 

1985; Friesen ef a/., 1993; Mackay, 1991) although in comparison with other 

organic chemicals it cannot be considered a major removal mechanism. 

The radiation most likely to initiate photodegradation is from high energy short 

wavelength photons at the blue and near UV end of the spectrum 

(approximately, 390 nm) (Mackay, 1991). In estuarine and coastal waters 

there is a high degree of light attenuation by water and suspended particulate 

matter (SPM) reducing the exposure of OCs to photolysis except for the small 

concentrations in the dissolved phase and sediments suspended in the water 

column. 

Photolysis is highly dependent on the structure of the OC. Although dioxins 

are not readily degraded under biological and chemical conditions, there is 

some evidence for PCDD/PCDF photodegradation in aquatic environments. 

Laboratory experiments using lake water demonstrated, by analysis of 

photoproducts, that the degradation mechanism involved a rapid 

dechlorination, ring opening with C-0 bond cleavage, and hydroxylation, 

possibly by reaction with hydroxy radicals (Friesen ef a/., 1993). 
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Air-Sea Exchange 

Earlier in this chapter the volatility of OCs was introduced as a potentially 

significant transfer mechanism. In fact it appears that their volatility has been 

largely responsible for the global transport of these compounds to polar 

regions and that the atmosphere acts as a major source of OCs to the ocean 

(Wania & Mackay, 1993). Atlas ef al. (1986) estimated that up to 98% of 

PCBs entering the ocean came from atmospheric transfer (c. 1.7001 year^). 

The mechanisms of air-sea transfer of OCs are complex. OCs will exist in the 

atmosphere in either the vapour phase or bound to particles (Welsch-Pausch 

& McLachlan, 1998). It has been suggested that by far the larger amount of 

OCs in the atmosphere exists in the vapour phase (Harner ef a/.. 1998) 

although in coastal regions closer to potential sources, higher concentrations 

may be found in the particulate phase (Atlas & Giam, 1986). There are 

several ways in which atmospherically transported OCs may be deposited. 

Dry deposition of particle-bound OCs would occur under gravitational settling 

or impact with the sea surface. Wet deposition is regarded as the major 

transfer process with scavenging from both vapour and particulate phases. 

From current knowledge we may expect estuarine and coastal zones to 

exhibit a complex coupling with the atmosphere so that areas of 

contamination may act as sources whereas pristine areas will remain as sinks 

for OCs. In this way the historical legacy of OC pollution will remain in flux for 

many decades to come. 

1.9 Reported Concentrations of PCDD/PCDF/PCBs in 

Estuaries and Coastal Waters 

From our understanding of the behaviour of OCs. the importance of marine 

environments as a reservoir for these contaminants should not be 

underestimated. Concentration of industrial developments in the vicinity of 
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estuaries and coastal waters, runoff from agricultural land into rivers and 
hence the sea, and the environmental properties of OCs all point to coastal 
environments as a sink for OCs from many sources. 

Environment P C B load 
(tonnes) 

Percentage of 
P C B load 

% of world 
production 

Terrestrial & coastal 
Air 500 0.13 
River and lake water 3.500 0.94 
Seawater 2.400 0.64 
Soil 2.400 0.64 
Sediment 130.000 35 
Biota 4.300 1.1 
Total (A) 143.000 39 

Open Ocean 
Air 790 0.21 
Seawater 230.000 61 
Sediment 110 0.03 
Biota 270 0.07 
Total (B) 231,000 61 

Total load in the 
environment (A + B) 

374.000 100 31 

Degraded and incinerated 43.000 4 
Land-stocked 783,000 65 
World production 1.200,000 100 

Table 1.4. Estimated PCB ioads in the environment (Tanabe, 1988) 

Table 1.4 provides an analysis of global PCB loads emphasising the 

importance of the marine environment and particularly the coastal regions as 

an OC reservoir. The marine environment in total represents over 90% of the 

PCB load in the environment of which over 50% is present in the coastal 

zone. 

1.9.1 Global Concentrations 

Although research described in this thesis concentrates predominantly on 

concentrations of OCs in estuarine and coastal environments, it is impossible 

to ignore the global consequences of the transport of OCs from terrestrial and 
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coastal areas to the world's most remote places. The following section 
summarises oceanic and shelf sea concentrations; estuarine concentrations 
are discussed in Chapter 3. 

A comprehensive global sampling exercise carried out by Iwata ef a/. (1993) 

analysed PCBs in air and seawater. PCB concentrations showed a 

remarkable homogeneity in the oceans and sea sampled. In previous surveys 

during the 1980's a clear peak in concentration of PCB In mid latitudes was 

observed. As contamination in developed nations has decreased, levels have 

fallen but an expansion of PCB usage in tropical regions has tended to 

compensate in lower latitudes. The occurrence in high latitudes has been 

caused by latitudinal transport so that the overall picture is of similar 

concentrations in all the world's oceans. Further analysis carried out by the 

authors examining the congener patterns also showed an increase in the ratio 

between lower chlorinated and higher chlorinated congeners as the latitude 

increased. This is consistent with the transport model developed which would 

preferentially transport the lower chlorinated, higher volatility congeners. 

OC concentrations in open ocean marine mammals provide a good indication 

of the extent of OC contamination as well as illustrating the biomagnification 

of these compounds in top predators. The geographical distribution of PCBs 

in these samples taken in the early 1980's show a strong peak in PCB levels 

in the mid-latitudes coinciding with high levels in marine mammals (Tanabe, 

1988). In dolphins from the Pacific, concentrations up to 40 îg g'̂  wet blubber 

have been recorded. Is it also evident that from seawater concentrations in 

the pg g'̂  range, the top predators have accumulated body burdens of ng g'̂  

(wet blubber). 

1.9.2 Background Concentrations 

To understand the significance of OC concentrations reported for the marine 

environment, it is necessary to put them in the context of the typical 
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background concentrations for the environment sampled. The global levels of 
PCBs reported by Iwata ef a/. (1993) indicate that for PCBs in water this 
background figure is well above the limits of analytical detection (8.3 pg M for 
Z PCBs). 

In estuaries and coastal waters, the determination of 'background' 

concentrations becomes more difficult as proximity to sources becomes a 

significant influence. Dioxin studies in Japan revealed PCDDs at significant 

concentrations (^ 2-8 ng g'̂ ) in core samples dating back approximately 8000 

years. In coastal areas however, concentrations of 10-100 pg g'̂  have been 

regarded as 'background' (Turkstra & Pols, 1989). In practice, typical 

background concentrations should be determined for each environment by 

sampling a number of what may be regarded as 'relatively clean reference 

sites' for comparison purposes. It is clear that what constitutes 'clean' for a 

pristine ocean could not be applied to an industrialised estuary. 

1.9.3 Shelf Seas 

The dynamics of shelf seas are inextricably linked to coastal and estuarine 

systems resulting in continuous exchanges of water masses, sediment and 

biota. In European waters there have been several surveys of OC levels in 

the North Sea and the Baltic Sea both of which receive a considerable 

contaminant load from their coastal waters. 

Concentrations of OCs in seawater and suspended sediment have been 

reported by several authors. Schulz-Bull ef a/. (1991) in a survey of the North 

Sea and English Channel reported dissolved total PCBs (sum of 31 

congeners) ranging from 13 to 415 pg I V In the Baltic Sea, average 

PCDF/PCDF dissolved concentrations of 0.12 pg 1"̂  were reported set against 

suspended particulate concentrations averaging 0.23 pg V (Broman ef a/., 

1992). 
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In bed sediments a considerable variation in concentration of OCs throughout 
the North Sea has been observed, with the southern North Sea and 
Skagerrak exhibiting the highest burdens. High concentrations (up to 28 ng 
g'̂  dry weight) were found either in areas receiving direct sources of 
contamination (e.g. estuary plumes, offshore incineration area) or in sinks for 
fine organic rich sediments. Of the latter, the Skagerrak is an example of a 
relatively source-free region which receives a pre-contaminated sediment 
load from the counter-clockwise circulation in the southern North Sea (Lohse, 
1991). 

The pattern of dioxin contamination in North Sea bed sediments was studied 

by Evers ef al. (1993). In the central North Sea, away from coastal pollution 

sources, total PCDD/PCDF concentrations of 657 pg g*̂  (dry weight) were 

encountered whereas estuary plumes showed elevated concentrations as 

high as 10557 pg g ' \ This evidence strongly suggests that estuaries make a 

major contribution to the shelf sea concentrations of OCs. 

OC concentrations in shelf sea biota have been the focus of some study. 

Delbeke ef al. (1990) found PCB concentrations in net plankton (>50(im) in 

the North Sea varying from non detectable (n.d.) to 3 |ig g"̂  dry weight which 

showed a strong increase in lower latitudes when expressed on a ^g 1'̂  basis. 

In zooplankton on the same survey, concentrations ranged from n.d. to 3 

As discussed earlier in this chapter, recent studies of biota in the North Sea 

have focused on marine mammals following an outbreak of phocine 

distemper epizootic in the North Sea common seal {Phoca vitulina) in 1988 

which was thought at the time to be connected to high concentrations of 

PCBs in these top predators. A comprehensive survey at the time showed 

PCB concentrations in blubber (expressed as Aroclor 1254 equivalent) 

ranging from 0.7 - 99 ^g g'̂  wet weight (Hall ef al., 1992). In a similar study of 
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the same species in Norwegian waters, concentrations of PCBs in blubber 
varied from 0.4 - 38 lag g'\ 

1.10 Gaps in Knowledge 

A thorough review of published and on-going research at the outset of these 

studies identified clear gaps in knowledge of the occurrence of chlorinated 

organics in estuaries and coastal waters and the geochemical processes that 

dictate their transport and fate. Specifically, the following gaps in knowledge 

were highlighted as Issues towards which this these studies could make a 

contribution; 

1. Significant lack of data on dioxin levels and distribution in marine 

environments. Virtually no data available for the UK marine 

environment. 

2. Little information available on sources of dioxins and PCBs to the 

marine environment. 

3. Limited knowledge of the sorption preferences of chlorinated organics 

in estuary and coastal environments. Few attempts to quantify the 

sorption behaviour of dioxins and PCBs. 

4. Very little information quantifying water-sediment partitioning 

coefficients in marine environments. No investigations of the 

dependence of partitioning coefficient on master estuary and coastal 

variables. 

5. No attempts to model dioxin and PCB behaviour on a mechanistic 

basis in marine environments. 
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1.11 Aims of the Study 

Based on the perceived gaps in knowledge, studies have focused on 

elucidation of the partitioning behaviour of chlorinated organics through 

detailed analysis of their occurrence in the marine environment and by 

studying their partitioning under laboratory conditions. Specific aims of this 

thesis were therefore; 

1. To present a comprehensive review of literature on dioxin and PCB 

sources, toxicity, sampling, analysis, environmental concentrations and 

behaviour in marine systems. 

2. To establish sampling methodologies and analytical protocols for the 

measurement of environmental concentrations of dioxins, PCBs and 

supporting variables. 

3. To conduct field surveys in a number of contrasting estuary and 

coastal sites aimed at establishing distributional patterns, elucidating 

sources of dioxins/PCBs, and determining the variation with sample 

geochemistry. 

4. To quantify the dependence of sorption behaviour on the geochemistry 

of the particulate phase. 

5. To study the sediment-water partitioning behaviour of dioxins and 

PCBs under laboratory conditions. 

6. To bring together field and laboratory data in a sediment-water 

exchange model describing the sorption behaviour of dioxins and 

PCBs in marine systems and to demonstrate the integration of such a 

model in an integrated estuarine contaminant transport model. 
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Chapter 2. Field Sampling and Analysis 
2. Field Sampling and Analysis 
2.1 Surveys 

From Spring 1991 through to Autunnn 1993 a programme of field surveys was 

conducted. Where possible these surveys vi/ere timed to coincide with other 

on-going studies and monitoring programmes to maximise the amount and 

type of data collected. A range of vessels were used on these surveys varying 

from the Natural Environment Research Council (NERC) vessel RRS 

Challenger Xo chartered fishing vessels. The Scottish Environment Protection 

Agency (SEPA) vessel Endrick II was used for the Clyde work and the 

Environment Agency vessel Sea Vigil was used for the Number survey. A 

number of additional short excursions were made to a number of study sites 

to collect samples for laboratory experiments (Humber, Clyde, Dee. Beaulieu, 

Dart). All the surveys conducted involved the sampling of sediment and water. 

Some of the estuarine surveys also included measurements of primary 

hydrographic variables (current flow, SPM concentration, salinity etc.). Study 

sites are shown in Figure 2.1 and Table 2.1 summarises the main surveys 

conducted. 

Survey Site Date Measurements Survey Site Date 
Hydrographic Chemical 

Morecambe Bay Spring 1991 
UK Coastal Waters Summer 1991 
Clyde Estuary Summer 1991 
Dee Estuary Autumn 1991 
Clyde Estuary Summer 1992 
Clyde Estuary Summer 1993 
Humber Estuary Autumn 1993 

Table 2.1. Survey Programme 
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I I Main study Site 

• Additional Study Site 

O Additional Experimental Site 

Figure 2.1. Study Sites 

2.2 Sampling Strategy 

Each of the surveys conducted during the study involved the sampling of 

sediment for analysis and on some surveys, the collection of SPM. Sampling 

methodologies were determined at the start of the study based on previous 

experience and other work (Delbeke at a/., 1990; Turner et a/., 1991). These 

methods were kept consistent throughout the study. 
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2.2.1 Bed Sediments 

Bed sediments were collected using a variety of methods depending on 

sample site location (sub- or inter- tidal) and the nature of substrate. Typically, 

at least 500 g of sample was taken to provide sufficient material for the suite 

of analyses undertaken. Sub-tidal samples were collected using Shipek grab. 

Day grab or piston corer. In upper estuary regions where consolidated 

cohesive sediment was found, the piston corer was used where possible with 

the advantage of maintaining good sample integrity and providing a short 

core. In areas of non-cohesive sediment (Dee, Number and lower Clyde 

estuaries) the Shipek grab was used. Offshore (Morecambe Bay) a box corer 

was used and sub-cores were retrieved for analysis. At all times, care was 

taken in abstracting the sample from the sampling device to avoid any 

possible contamination from the device or from previous samples. In inter-

tidal areas samples were collected by hand using hexane washed spatulas. 

Samples for organic analysis were stored in 500 g hexane-washed glass jars. 

Jar caps were lined with hexane-washed aluminium foil. Separate samples 

were taken for inorganic analyses and stored in acid-washed plastic pots. All 

samples were frozen at -20°C as soon as practically possible and kept frozen 

in the dark until required for analysis. 

2.2.2 Suspended Particulate Matter 

SPM was collected separately for organic and inorganic analysis. For organic 

analysis an all-glass filtration apparatus was used. Typically, 1000 ml of 

seawater was filtered through hexane-washed glass fibre filters under 

vacuum. Filters were stored frozen in hexane-washed aluminium foil wraps 

prior to analysis. SPM for inorganic analysis was collected by similar methods 

but using a bulk filtration system capable of filtering approximately 10 I of 

water through 142 mm diameter Millipore filters (0.45 ^m poresize). 
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2.3 Sample Analysis 

The analysis of OCs is not straightforward due to the low concentrations 

encountered in environmental samples and the difficulties in isolating, 

identifying and quantifying them. Laboratory methodologies involve extensive 

sample clean-up procedures prior to analysis and quality assurance is 

required to ensure reproducible and comparable analyses. 

2.3.1 Selection of Compounds for Analysis 

The first step in analysis of OCs such as dioxins and PCBs is to determine 

the specific compounds which are to be the target of the analysis. For these 

studies specific families of compounds were to be Investigated. With PCBs 

comprising 209 congeners and dioxins and furans, 135 and 75 congeners 

respectively, analysis and quantification of all congeners was impractical and 

for the purposes of this study, unnecessary. What was required for this study 

was a range of representative congeners allowing congener-specific 

geochemical variability to be investigated (Duinker ef a/., 1988). 

Currently, the selection criteria that have been used to choose OC 

compounds for analysis are not consistent. Much PCB analysis has been 

conducted on a 'total PCB' basis with samples of technical mixtures used as 

external quantification standards. This method suffers from differences 

between samples and commercial mixtures which distort the results obtained 

by this method of quantification. A refinement of this has been the selection 

by the International Committee on Exploitation of the Sea (ICES) of seven 

congeners representing PCBs with chlorination extents from tri-chlorlnated to 

heptachlorinated (lUPAC Nos. 28. 52. 101. 118, 153. 138 and 180). The 

basis of selection for the 'ICES T Is largely on the prevalence in technical 

mixtures and the fact that these congeners are relatively easy to analyse 

accurately. The selection is not on the basis of ecological significance (e.g. no 

focus on toxic coplanar congeners) and supplementary lists of congeners for 
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analysis are appearing such as the extended 29 congener list used by the UK 
Ministry of Agriculture, Fisheries and Food (MAFF) which includes some of 
the more toxicologically significant congeners. It was decided that the 'ICES 
T list would be adequate for this study bearing in mind the range of 
chlorinities represented and the availability of other datasets for inter-
comparison. To further aid inter-comparison, 'total' PCB was also analysed. 

In contrast with the PCBs, dioxin congener selection criteria have been based 

on toxicological studies for some time and a 'standard' analysis is almost 

always undertaken comprising the 17 toxicologically significant 2,3,7,8 

substituted dibenzo-p-dioxin and dibenzofuran congeners. As with the PCB 

list, this 'standard' analysis spans a wide range of chlorinities and was 

therefore accepted for this study. 

The overall sampling, storage and analytical procedure determined at the 

outset of the studies in summarised in Figure 2.2. 

BED SEDIMENT SUSPENDED PARTICULATE MATTER 

SAMPLING 

STORAGE 

Piston corer 
Shipokerab 
Hsnd srab 

Hexane washed glass - foU liners _ j \ 
' Add washed plastic containers -20»CindaA 

- Bulk filtration; 
- AU-glass filtm*Jon apparatus (organics) 
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N— - Add washed plastic containers 

OpUTQ 
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Sail removal (narwpure H,0 wash) • slave 
through 1 mm mesh 

PCD, PCDF. PCO Analysis SoQd Phase Charaoorlsatlon. 

ANALYSIS 

ICES T-congener 2,3.7.8 congener Upid 
spodflc • total PCB spedflc PCDD/DF dotennination 

^ ^ ^ 
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Solveniextraclion Solvent extraction 
n * gravfmetilc 
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IdentiScationftiuantirtca'jon 
GC-HRMS 

(Am&Mgeera/.. 1990) 

Total Organic Spedfic Surtaco C:H:Ncofflaffl Co. Fe. Mn. Al 
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acetic add 
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Figure 2.2. Summary of Sample Collection, Storage and Analytical Protocols 
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it should be noted that all samples analyses were carried out on a dry weight 
basis and are reported as dry weight unless explicitly stated othenA/ise. 

2.3.2 Sample Preparation, Extraction and Cleanup 

Samples for analysis were analysed immediately where possible, or defrosted 

from frozen samples. Prior to analysis, samples were sieved through a 1 mm 

mesh and oven-dried at 40°C. The dried sample was weighed (approx. 50 g), 

spiked with sixteen ^^C dioxin and furan internal standards, and soxhiet 

extracted with toluene (Mallinckrodt-Nanograde) for 12 h. The resultant 

extract was reduced to a volume of about 0.5 ml by freeze-drying, prior to 

liquid chromatography. 

The solvent extracts were subjected to liquid chromatography on a two-stage 

silica (Merck. 70-230 mesh)/florisil (BDH, 60-100 mesh) column. The sample 

was eluted initially with hexane (Mallinckrodt-Nanograde) whereby the total 

PCB fraction was eluted through the entire column and the PCDD/PCDFs 

transferred to the top of the florisil column. 

2.3.3 Detection and Quantification of PCDD/PCDF 

PCDD and PCDF sample analysis was carried out according to an 

established method (Pettit et a/., 1990). Following liquid chromatography, the 

upper silica column was discarded and 2% methylene chloride (Mallinckrodt-

Nanograde) in hexane was passed through the lower florisil column prior to 

eluting the PCDD/PCDF fraction with 100% methylene chloride. The collected 

PCDD/PCDF fraction was reduced to a suitable volume by freeze-drying, 

solvent exchanged with nonane (Mallinckrodt-Nanograde), and transferred to 

septum cap vials for autosampler chromatographic injection. 

For the analysis of dioxins and furans, the sample was injected onto a 60m x 

0.25mm i.d. DB5 column at an initial temperature of 130°C, held for 2 min, 

then programmed to 270°C at 20°C min ' \ held at 270°C for 10 min, then 
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programmed to a final temperature of 286°C at 1°C min*\ The column was 
directly interfaced to a VG 70S magnetic sector mass spectrometer operating 
at 28eV, 10,000 x resolving power in the selected ion monitoring mode. The 
instrument monitored three of the most intense molecular isotope peaks for 
each of the dioxins and furans. Confirmation of the presence of each 
compound was made by reference to the EPA Draft Proposals QAL 152 
1/1/87, resting on a correlation of retention times (± 3s). and the verification 
that the relative intensity of the isotope peaks was within ± 15% of the 
theoretical value. 

In addition to the quantification of all 17 2,3,7,8-substituted dioxin and furan 

congeners, total homolog concentration was quantified for all homologs (tetra, 

penta. hexa, hepta, and octa). This was achieved by injecting a 'window 

defining' mixture containing ^̂ C standards of the first and last eluting 

congeners in each homolog group. All peaks between these marker 

congeners were assumed to be congeners within the same homolog group 

provided that they met the criteria specified above. The number of peaks 

were also checked against the theoretical number of congeners in the 

homolog group, 

2.3.4 Detection and Quantification of P C B 

Following cleanup the sample was evaporated to dryness in a freeze-drier 

and reconstituted with 1 ml toluene. A VG 70S magnetic sector GC-MS 

interfaced to an HP 5890GC with DB5 capillary column was used for the 

analysis. The instrument was configured to operate in selected ion mode with 

maximum sensitivity at 1000 resolution. Mass calibration was checked to 

ensure that reference peaks had correct centroids. PCB standards were run 

in order of ascending concentration followed by a blank. Samples were run in 

batch mode ensuring that the signal-noise ratio was greater than 2:1 and 

response was maximised within ± 5 seconds of reference retention time. 
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2.3.5 Analysis Quality Assurance 

Quality assurance of the sample analysis was a considered of paramount 

importance, particularly considering the acknowledged difficulties In the 

analysis. The laboratory had participated in the development of acceptance 

criteria for analytical data and these guidelines were followed rigorously 

throughout (Ambidge ef a/., 1990). Specifically these guidelines state that the 

ion responses for the three ions must maximise within ± 1 scan, with a signal 

to noise ratio > 2:1 for all relevant channels. This protocol gives routine 

detection limits down to 1 pg 1"̂  of PCDD and PCDF injected. Prior to sample 

analysis, a standard mixture of dioxins was analysed, and the instrument was 

tested for the above criteria, and the calibration verified. The analysis was 

then performed including blank runs to accommodate for any carry-over 

through use of an autosampler on the GC-MS instrument. Recoveries of the 

^^C spikes were in the range 75-80% and the reproducibility was ± 10%. 

Every three months, the full method and instrumentation are validated by the 

analysis of a standard reference material; a spiked soil sample provided by 

Cambridge Isotope Laboratories. Typical results are provided in Appendix I. 

In addition, full procedural blanks submitted for analysis under this project 

were all found to be below the limits of detection which are given in Table 2.2. 

External quality assurance was performed via submission of blind replicates 

for analysis. Two sets of samples (4 replicates) were submitted and the 

results of the analysis are given in Table 2.2. From this it can be seen that the 

reproducibility was fair with percentage standard deviation generally below 

20%. Higher standard deviations tend to coincide with lower concentrations 

highlighting the difficulties of analysis at such low concentrations. 
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Homolog Sample HI13 (pg g'̂ ) Sample HI6 (pg g'̂ ) Detection 
Limit 

(pg g-') 

Homolog 

Mean Std Dev 7o Std 
Dev 

Mean Std 
Dev 

% Std 
Dev 

Detection 
Limit 

(pg g-') 

2378-TCDD 7 3 43 2 1 41 1 
TCDD 370 54 15 237 51 21 10 
PeCDD 212 26 12 149 17 11 20 
HxCDD 110 16 14 77 12 16 40 
HpCDD 302 47 16 219 47 21 10 
OCDD 1775 64 3 1231 148 12 50 
TCDF 137 14 10 99 21 21 10 
PeCDF 277 35 13 182 53 29 20 
HxCDF 114 13 12 79 10 13 40 
HpCDF 97 25 25 75 10 14 20 
OCDF 427 12 3 303 49 16 50 
PCDD 2777 104 4 1915 210 11 
PCDF 1054 67 6 738 65 9 
PCDD/PCDF 3831 163 4 2654 255 10 
TEQ 24 5 19 14 2 11 
Total PCB 72 13 17 53 7 13 

Table 2.2. Replicate Sample Analysis Results (n = 4) and Detection Limits for 
Chlorinated Organic Analyses 

As can be seen from the above table, there is a variability in the detection 

limits for different homologs as well as error margins in replicate samples. 

Analytical results were reported by the laboratory with varying precisions 

depending on the achievable quantification of the congener or homolog. 

Throughout this work it has been necessary to sum homologs to present Total 

PCDD, Total PCDF and Total PCDD/PCDF. In doing so, the figures reported 

by the laboratory have been used for consistency and to maintain an audit 

trail to the original reported data. This often results in the total values being 

reported to an unrealistic number of significant figures. It should be stressed 

therefore that this reporting convention does not imply that the results for 

summations of homologs are precise to this number of significant figures. In 

general, totals for PCDD and PCDF should be considered to a precision of 

two significant figures. 

2.4 Sediment Characterisation 
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Geochemical investigation of hydrophobic contaminants in aquatic 
environments necessitates a characterisation of the solid phase. Specifically, 
information is required on the geochemical composition of the particles and 
an indication of their geological origin i.e. whether marine-derived or of fluvial 
origin. The characterisation of sediments for this study followed a protocol to 
ensure that all analysed samples could be described in terms of their 
geochemical characteristics. 

2.4.1 Specific Surface Area 

Specific surface area (SSA) gives an important measure of the availability of 

particle surface sites for adsorption. SSA was determined using gravimetric 

multi-point BET N2 adsorption (Brunauer ef a/., 1938). Sample pre-treatment 

concentrated on preservation of the original particle structure prior to analysis 

using freeze drying with subsequent storage under vacuum desiccation to 

prevent loss of surface area by water vapour adsorption. Between 100 and 

300 mg of sample was accurately weighed into an aluminium bucket and out-

gassed in the apparatus (full description: Carter, 1983) using a vacuum pump 

with cold trap until constant weight was achieved 10 hr). The sample was 

cooled to 77°K using liquid nitrogen and the uptake of successive doses of N2 

gas (at 40 mm Hg intervals, taking approximately 25 minutes to equilibrate) 

was monitored by a CI Electronics microbalance. SSA was then calculated 

using the BET equation (Brunauer ef a/., 1938) assuming monolayer 

coverage of the particles by nitrogen gas which has a known specific surface 

area. 

2.4.2 Carbon Content 

The carbon fraction of the solid phase presents a geochemically significant 

fraction when considering the behaviour of chlorinated organic compounds in 

estuarine and coastal waters (Broman et al., 1991; Delbeke ef al., 1990). 

Total carbon consists of inorganic and organic fractions and it is the organic 

fraction which may control the sorption behaviour of organic compounds. 
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Recent studies of hydrophobic organic compound behaviour have focused on 
a further sub-phase of the total organic carbon fraction, namely the lipid 
content (Preston & Raymundo, 1993). 

The term 'lipid' covers a wide range of substances generally referred to as 

'fats' and comprising a large number of mainly natural compounds in aquatic 

systems. Chlorinated organic compounds are apolar which requires the 

definition of lipid to be further refined into apolar and polar fractions. Although 

natural lipids are largely apolar, there are some more polar fractions such as 

the phospholipids, which are not thought to be significant in controlling 

chlorinated organic compound reactivity (Schneider, 1982). 

Determination of Total Organic Carbon Content 

Total organic carbon content determination was carried out by loss on ignition 

following high temperature ashing. A pre-weighed sample (1-2 g) was dried at 

40°C, ground and placed in a crucible in a high temperature oven for 6 hours 

at 500°C. Following ashing, the sample was re-weighed to determine the loss 

on ignition. 

Determination of Apolar Lipid Content 

Time was spent developing a reliable method for the determination of apolar 

lipid content. Initially, a modified method based on that of Dole and Meinhertz 

(1960) was used. This method used a binary mixture of hexane and propan-

2-ol (1:4 v:v) to extract a sediment sample in an ultrasonic bath. The binary 

mixture was then decanted into a separation funnel and water added. The 

phases were separated using the separation funnel and the hexane fraction 

was evaporated to give a dry mass of lipid material. This method was found to 

have poor reproducibility at the concentrations being analysed. Heterogeneity 

in extraction efficiency, difficulties in accurately separating the phases, and 

inadvertent transfer of sediment to the separation funnel were believed to 

contribute to the poor results. 
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A method was therefore adopted which avoided liquid-liquid phase separation 

and provided a more rigorous extraction of the lipid material from the 

sediment sample. The method of Delbeke ef a/. (1990) was chosen as an 

established method for determination of lipid content in marine sediments. 

Sediments were dried at low temperature (40°C), homogenised with a pestle 

and mortar and placed in a soxhiet thimble. The sediments were then 

extracted for 5 hours with a 150 ml mixture of 10% acetone, 90% n-hexane. 

Following extraction the extracts were evaporated to dryness, weighed, and 

the apolar lipid fraction resolubilized with successive 2 ml hexane washes and 

carefully decanted. The resultant extract was evaporated to dryness again 

and weighed. Subtraction of the two weight determinations yielded the total 

apolar lipid content. Table 2.3 shows the reproducibility of this method on a 

number of replicate sediment samples; 

Batch n Mean 
(mg 9 

Std. Dev. % Std. 
Dev. 

1 6 10.55 0.7 6.6 
2 4 1.54 0.12 7.8 
3 5 1.36 0.12 8.8 
4 4 5.32 0.38 7.1 
5 4 31.27 1.23 3.9 

Table 2.3. Reproducibility of Apolar Lipid Determinations. 

2.4.3 Trace Metals (Fe, Mn, Ca , A!) Analysis 

Trace metals (Fe. Mn, Ca, Al) were analysed for certain samples to give an 

indication of sediment geochemistry and reactivity. Ironimanganese ratios 

gauge the relative importance of each oxide phase to the particle surface 

properties (Turner, 1990) and have been used to distinguish different particle 

populations on a geographical basis (Duinker & Nolting, 1976). Calcium 

content of sediments Is used as an indicator of particles of marine origin and 

can be used as a tracer of marine-derived material (Loring et al., 1983; Turner 

et a/., 1992). The Ca:AI ratio is also used as a normalising parameter for grain 

45 A.O.Tyler, PhD Thesis 



The Distribution and Reactivity of Organochlorines in Estuaries 

size and mineralogical effects. It may also be of value when discriminating 
between particle populations (Turner ef a/., 1994). 

Trace metal determinations were carried out by flame atomic absorption 

spectrophotometry (AAS) using the flame mode following a partial leaching to 

extract the 'available' metals i.e. those associated with the hydrous Fe and 

Mn coatings and available for participation in geochemical reactions. 

Approximately 250 mg of sample was sieved and extracted using 0.05 M 

hydroxylamine-hydrochloride in 25% v/v acetic acid (BDH AristaR) for 16 h at 

room temperature (Turner ef a/., 1991). Samples were analysed using an 

Instrumentation Laboratory 151 atomic absorption spectrophotometer in the 

flame mode. Table 2.4 summarises the detection limits and relative standard 

deviations for the metals determined; 

Metal Detection Limit 
(ng mi )̂ 

Relative Std. 
Dev. (%) 

Fe 0.03 9.2 
Mn 0.03 8.8 
Ca 0.15 7.5 
Al 0.5 12.6 

Table 2.4. Detection limits and relative standard deviations for metal 
analyses. 
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Chapters. Distribution of Organochlorines in 
Estuarine and Coastal Waters 

3. Distribution of Organochlorines in Estuarine and 

Coastal Waters 

This chapter presents the primary data sets obtained from samples collected 

at the project survey sites. These include the various hydrographic supporting 

datasets, and the analytical results from the sampling surveys. Analytical 

results have been presented as spatial and axial distributions for the estuary 

study sites. Concentrations of analytes in cores have been presented as 

vertical profiles. Despite the general lack of data for chlorinated organic 

studies in the UK, intercomparisons have been made with existing UK and 

international studies. 

Throughout this chapter a common nomenclature has been adopted for 

sampling station identification. The survey stations are numbered with a prefix 

as follows; C - Clyde survey, H - Humber survey, D - Dee Survey. The type of 

sampling station is indicated by a second letter; S - Sub-tidal station, I - Inter-

tidal station, C - Core sample station, T - Tidal station. 

3.1 Study Sites 

The literature review (Chapter 1) identified a lack of data on dioxins in 

estuaries and coastal waters and a scarcity of data on PCB concentrations. It 

was decided therefore that an initial survey was necessary to establish a 

general picture of contaminant concentrations and distributions and to assist 

in the selection of sites for detailed investigation. A number of criteria were 

assessed when considering study sites; 
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• Existing contaminant concentrations (from initial survey); 

• Previous studies of the sites; 

• Accessibility and operational constraints; 

• Classification of site I.e. typical, abnormal etc.; 

• Offers of fieldwork collaboration; 

• Compatibility with related research programmes e.g. North Sea 

programme, Sediment Resuspension Study (SERE), and Land Ocean 

Interaction Study (LOIS). 

In addition, consideration was given to estuaries with contrasting 

hydrodynamics, sediment regimes and geochemical characteristics. Figure 

3.13 shows a map of the UK with all study sites indicated. The samples 

analysed and key analytes/determinants are given in Table 3.1. All analyses 

are reported on a dry weight basis unless otherwise stated. 

Date Location Samples 
Analysed 

Key Analytes & 
Determinants 

Spring 1991 Morecambe Bay 1 bed 
1 core 

PCDD, PCDF, PCB 

Summer 1991 Tweed, Tees, 
Tyne, Number, 
Mersey, Clyde 

8 bed PCDD, PCDF, PCB, SSA. 
C, OrgC, Lipid. Fe, Ca, Mn 

Summer 1991 Number 5 bed PCDD, PCB. SSA, Fe, Mn 
Summer 1991 Clyde 5 bed PCDD, PCDF, PCB, SSA, 

C, OrgC, Fe, Ca, Mn 
Autumn 1991 Dee* 9 bed PCDD, PCDF, PCB. SSA. 

C, OrgC, Fe. Ca, Mn 
Summer 1992 Clyde* 36 bed 

3 S P M 
PCDD, PCDF. PCB, SSA. 
C. OrgC, Lipid, Fe, Ca, Mn 

Summer 1993 Clyde* 13 bed 
8 S P M 
3 core 

PCDD. PCDF. PCB. SSA. 
C. OrgC. Lipid. Fe. Ca. Mn 

Autumn 1993 Number* 22 bed 
9 S P M 

PCDD. PCDF, PCB. SSA, 
C, OrgC, Lipid. Fe. Ca, Mn 

NOTE: C - Carbon, OrgC - Organic Carbon, 
*hydrographic measurements made (salinity, 
oxygen, current speed/direction) 

SSA - Specific Surface Area, 
temperature, pH, dissolved 

Table 3.1 Summary of Field Sampling Programme 

48 A.O.Tyler, PhD Thesis 



The Distribution and Reactivity of Organochlorines in Estuaries 

3.1.1 UK Coastal Waters 

The survey of UK marine sediments was carried out as part of a broad 

assessment of OC concentrations. The sites chosen were mainly at the 

mouths of large industrialised estuaries and a 'pristine' estuary (Tweed). Two 

surveys were carried out; one as part of the NERC SERE programme in 

Morecambe Bay and the second as part of the MAFF CIROLANA '91 cruise 

of coastal monitoring stations. A total of 8 bed sediment samples were 

analysed from coastal and estuarine plume sites. A sediment core sample 

was analysed from Morecambe Bay. 

3.1.2 Dee Estuary, Wales 

Site Description 

The Dee Estuary is a macrotidal estuary situated in Liverpool Bay on the west 

coast of England and Wales (see Figure 3.1). The estuary receives its main 

freshwater input (36.8 cumecs average fluvial input) from the River Dee. The 

estuary extends as far as the weir at Chester with the seaward boundary 35 

km downstream discharging into Liverpool Bay. The estuary is funnel shaped, 

dividing into two distinct zones; the upper zone extending 15 km downstream 

from the weir with a 100 m wide canalised channel contained between flood-

banks, and a lower estuary, approximately 5 km wide and roughly rectangular 

(Shell, 1987). 

The Dee estuary is a relatively uncontaminated estuary receiving water from 

a largely rural catchment, although Law et a/. (1991) reported a source of 

PCBs from a contaminated industrial site. The estuary receives inputs of 

domestic sewage and relatively small amounts of industrial effluent. The 

estuary supports an important salmon fishery and has a large population of 

grey seals {Halichoeris grypus). The entire estuary is designated as a Site of 

Special Scientific Interest (SSSI). 
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Figure 3,1. Dee Estuary Location Map 

Hydrograpfiy and Sediment Regime 

A programme of hydrographic measurements was carried out over a three 

day period in December 1991. Neap tidal conditions prevailed and river flow 

was below average (12.9 ± 4.4 m^s*^ regulated flow for the previous 5 days). 

Axial transects of the estuary were conducted and two tidal stations were 

occupied (Turner etal., 1994). 

The Dee Estuary is subject to strong tidal influences with a mean spring tidal 

range at the mouth of 7.7 m. The tidal wave is asymmetric within the estuary 

such that at Connah's Quay the ebb tide lasts --10 h followed by a --2 h flood 

tide. Tidal currents in the estuary reach 1.5 m s'^ during spring tides. Currents 

measured as part of this study at a mid-estuary tidal station (DT2) indicate 

maximum currents up to 1 m s'̂  (Figure 3.2). 

50 A.O.Tyler, PhD Thesis 



The Distribution and Reactivity of Organochlorlnes in Estuaries 

| 2 2 S 

0.6 O 
5 

Direction 
. Velocity (Near Surface) 
Velocity (Near Bottom) 

Time 

Figure 3.2. Mid-Estuary Current Flow l\/leasurements - Station DT2 
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Figure 3.3. Axial Salinity Profile 

Measurements of salinity distribution on an ebb tide axial transect show some 

limited salinity stratification at the mouth of the estuary (Figure 3.3). Tidal 

cycle salinity distributions reflect the tidal wave modification. Figures 3.4 a & b 

show measurements of salinity at the lower (DT2) and upper estuary (DT1) 

tidal stations shown in Figure 3.1. The upper estuary station shows the effect 

of the long ebb tide with a period of 4 hours of riverine flow followed by an 

extremely rapid rise in salinity with the flood tide. At the lower estuary station, 

the salinity profile follows the semi-diurnal tidal pattern. 
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Figure 3.4. Tidal Cycle Salinity Profile, (a) Lower Estuary (DT2), (b) Upper 
Estuary (DT1) 

The Dee Estuary is characterised by the significant accretion of sediments in 

the estuary over a period of many years. In 1732 salt marsh encroachment 

and siltation resulted in canalisation to keep the navigable channel open to 

Chester which was then Britain's second port (BMT, 1990). 

Suspended sediment concentrations in the estuary were determined from the 

dried mass retained on pre-weighed Whatman GF/C filters (pore size 1.2 |im) 

after vacuum filtration of *1000 ml water. Suspended sediment 

concentrations were generally less than 60 mg \'\ considerably lower than 

other macrotidal estuaries in the UK (Morris et a/., 1987; Turner et a/., 1991). 

The <63 |im fraction of peripheral inter-tidal sediments was 44 ± 2 1 % 
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although the estuary has a predominately sandy bed and extensive 
sandbanks. The estuary receives sediment from offshore and the adjacent 
north Wales coast (BMT, 1990; Turner et a!., 1994). 

Particle Characteristics 

The origin of sediments in the estuary has been confirmed by geochemical 

characterisation using Ca:AI ratios. The Ca content of estuarine sediment is 

principally of marine origin and may be used as an indicator of marine origin. 

Using the Ca:AI ratio allowed normalisation for grain size and mineralogical 

effects thus discriminating between particle populations. Ca:AI ratios for 

sediments within the estuary compared well with ratios for Irish Sea 

sediments (--120), which could be considered as the marine end-member of 

the sediment mixing series. However the riverine end-member sediments 

above the weir at Chester had ratios which indicated significant fluvial origins 

(Ca:Al = 7.8). This ratio corresponded with a similar value (Ca:AI = 6.4) for 

permanently suspended particulate matter found in the estuary. 

Both SSA and lipid measured in the estuary were low in comparison with the 

other major study sites. SSA values ranged from 2.2 m^g"^ in the river to 5.6 ± 

3.0 m^ g"̂  in the outer estuary. Lipid content was generally low in estuary 

sediments, ranging from non-detectable to 4.4 mg g'V 

3.1.3 Clyde Estuary 

Site Description 

The Clyde Estuary is a partially stratified, meso-tidal estuary situated on the 

west coast of Scotland (Figure 3.5). The Clyde system consists of an estuary, 

an inner Firth and an outer Firth, together referred to as the Firth of Clyde. 

The estuary phase, the focus for this study, is taken as extending from a tidal 

weir at the city of Glasgow to a line drawn between Gourock and Kilcreggan. 

The Clyde Estuary is an industrialised estuary with direct pollutant inputs from 
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Glasgow via industrial/domestic sewage outfalls and atmospheric deposition 
from incinerator and other diffuse sources (SEPA, pers comms). 
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Figure 3,5. Clyde Estuary Location Map 

Hydrography & Sediment Regime 

During the 1992 Clyde survey a programme of hydrographic measurements 

was carried out to define the hydrographic regime within the estuary. Current 

flow measurements were made at two tidal stations in conjunction with 

salinity, temperature and turbidity measurements. River discharge during the 

field measurements was 152 m^ s \ 

Tidal range in the estuary varies between 1.9 m (neaps) and 3.0 m (springs). 

Current speeds measured during this survey at the lower estuary station, CT2 

are illustrated in Figure 3.6. A maximum current of 0.5 m s'^ was recorded on 

the surface with bottom current velocities not exceeding 0.15 m s"V 

Salinity distribution was measured during the August 1992 survey (see 

Figures 3.7 a and b). In the upper estuary a significant salt gradient is 

observed becoming less pronounced with downstream distance. This 

compares well with similar profiles measured by Mackay & Leatherland 

(1976). 
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Figure 3.6. Current Speed and Direction (Surface & Bottom) at Lower Estuary 
Station (CT2) 
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Figure 3.7. Tidal Cycle Salinity Profile at Upper (CT1) and Lower (CT2) 
Estuary Stations 
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The Clyde has a high biological oxygen demand from sewage discharges in 
the upper estuary (Scottish Environmental Protection Agency and Scottish 
Office Agriculture, Environment and Fisheries Department). Sediments 
sampled in the upper estuary were obsen/ed to be anoxic, particularly in sub­
surface sediments. Measurements made during this study showed evidence 
of some oxygen depletion at the bottom of the water column at the lower 
estuary station, CT1 (see Figure 3.8). 

. Bottom 
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Tidal State (Hours +/. HW) 

Figure 3.8. Dissolved Oxygen at Lower Estuary Station 

The sediments in the estuary are mainly fine silt and clays. Concentrations of 

SPM in the estuary are relatively low and invariant (Balls, 1988; Curran, 

1986). Mackay & Leatherland (1976) estimated that 100,000 tonnes of 

suspended sediment enter the Clyde Estuary annually. Of this, nearly 8.000 

tonnes is derived from the Municipal Sewage Works (MSW) at Shieldhall and 

Dalmuir (Scottish Environmental Protection Agency, 1996). Until the early 

1980s the estuary was dredged upstream to within approximately 2 km of the 

weir. Since then the estuary has been dredged up to the confluence with the 

River Kelvin with most dredging focused between Clydebank and Rothesay 

Dock (Douglas Hoad, Clyde Ports, pers comms). 
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Particle Characteristics 

Ca:AI ratios ranging from 1.0 to 25.8 with an average of 7.0 ± 5.7 indicate that 

the majority of sediments in the estuary are of fluvial origin. Of the three main 

estuaries under study, the Clyde Estuary has the highest organic carbon 

content in bed sediments with average lipid content of 4.2 ± 3.8 mg g V 

Specific surface areas are comparatively low 4.7 ± 3.8 m^g"^ probably due to 

sediment pore blocking by organic material. 

3.1.4 Number Estuary 

Site Description 

The Humber Estuary is one of the UK's major industrialised estuaries, 

situated on the north east coast of the UK (Figure 3.9). The estuary, 

stretching 62 km from Trent Falls (confluence of the River Trent and River 

Ouse) to Spurn Point, is a macro-tidal estuary with a characteristic flare in 

width from 0.5 km in the tributary rivers to approximately 8 km at Spurn Point. 

Tidal influence extends beyond Trent Falls a further 72 km up the River Trent 

and 62 km up the River Ouse. Water depths in the estuary are generally 

shallow with the main channel maintained for shipping by dredging (Denman, 

1979; Justice & Arnett. 1990; Woodward & Fair, 1993). 
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Figure 3.9. Humber Estuary Location Map 
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Hydrography and Sediment Regime 

Although the Humber Estuary is a well studied estuary (Humber Estuary 

Committee), some limited hydrographic measurements were made 

concurrently with sampling. These measurements included salinity, SPM and 

current flow. River discharge during the field measurements was 234 m^ s'\ 

Maximum tidal range at Saltend on spring tides is 7.4 m and 3.9 m on neap 

tides. River input varies from approximately 200 m^s'^ to 1550 m^s'^ during 

flood conditions. The combination of morphology and large tidal ranges result 

in a highly dynamic well mixed estuary. Current velocities measured during 

this study recorded velocities up to 3 m s"̂  at Trent Falls, 1.5 m s"̂  at Saltend 

and 2 m s'̂  at Immingham. These are consistent with literature values 

(Woodward & Fair. 1993). 

The well mixed characteristics of the estuary result in a relatively uniform 

vertical salinity distribution although stratification, covering 5 salinity units, 

may be present at near the mouth. Measurements of salinity variation at tidal 

stations HT1. HT2 and HT3 are shown in Figure 3.10. 
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Figure 3.10. Salinity Measurements at Trent Falls (HT1), Salt End (HT2) and 
Immingham (HT3) 
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Number sediment is predominately of marine origin with an estimated 60000 
tonnes of sediment deposited in the estuary annually (Pethick, 1988). The 
erosion of adjacent coastlines (--1.4 x 10® tonnes per year) provides the 
source for much of this material (McCave, 1987). Approximately 200000 
tonnes of fluvial material passes directly through the estuary due to the 
dynamic conditions maintaining suspension of this predominately fine 
sediment (Pethick, 1988). Sediment residence time in the Number is 
estimated at approximately 40 years (Turner ef a/., 1991). 

Suspended sediment concentrations are elevated in the estuary with 

characteristic turbid swirls known locally as 'warps'. A range of SPM 

concentration from 200 mg 1'̂  at the mouth to over 1,000 mg 1'̂  at Saltend is 

typical (Freestone ef a/., 1987). Measurements made during this survey 

(Figure 3.11 a, b, c) recorded SPM concentrations in the proximity of 

Immingham (HT3), Salt End (HT2) and Trent Falls (HT1). 
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Figure 3.11. Measurement of Suspended Particulate Matter Concentration at 
(a) Trent Falls (HT1), (b) Salt End (HT2), (c) Immingham (HT3) 

In the upper estuary, at Trent Falls, SPM concentrations are seen as variable 

with no distinct pattern. Typically 200-300 mg is in permanent suspension. 

At Salt End in the middle estuary (30 km from Trent Falls), some tidal 

variation is noted with permanently suspended concentrations of 

approximately 400 mg \'\ It should be noted that this mid-estuary station was 

situated close to a tidal mud flat which provided a localised source of mobile 

sediment. At the Immingham outer estuary station (43 km from Trent Falls), 

significant tidal influence is observed with concentrations varying between 

100 and 900 mg 1^ 
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Particle Characteristics 

The dynamic physical environment of the Humber results in bottom sediments 

in the main channels of the Estuary dominated by coarse sediments of marine 

origin. Inter-tidal areas hold finer sediments in the clay/silt fraction (Justice & 

Arnett. 1990). Average Ca:AI ratios from main channel samples taken during 

these studies were 105 ± 22 indicating the marine origin of these deposits. 

The Humber has been characterised by sediments of high specific surface 

area. Turner et al (1991) measured SSA of suspended sediments in the 

estuary averaging approximately 25 m^ g'\ Measurements of bed sediments 

made during this study confirmed this data with an average SSA of 18 ± 5.8 

m^ g'\ The higher value for suspended sediments would be expected with 

finer sediments held in suspension. In contrast with the Clyde, the Humber 

has low lipid content with less potential for pore blocking by organic material 

(Glegg et al., 1987; Titley et al., 1987). Additionally, the Humber contains 

major anthropogenic sources of amorphous Fe derived from acid-iron waste 

discharges on the south bank of the Estuary (Millward & Glegg. 1997; Newell 

et al., 1984). Adsorption of 'fresh' Fe on particle surfaces increases particle 

surface area and reactivity (Turner, 1990). 

3.1.5 Summary of Sediment Characteristics 

The characteristics of sediment in the estuaries under study are key to 

understanding the sorption preferences of DCs. Bed sediment 

physicochemical characteristics are presented in Table 3.2. Dee and Humber 

Estuary sediments are seen to be dominated by sediment of marine origin. 

Lipid content is low in both estuaries. The Clyde Estuary is dominated by 

lithogenic sediments with higher lipid content indicating the organic-rich 

nature of the sediment. Surface area is low in the Dee and Clyde estuaries. In 

the Dee estuary this is probably due to the coarser sediments whereas, in the 

Clyde, this is more likely due to pore blocking by organic matter. In the 
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Humber Estuary, the SSA is much higher and this is attributed to surface 
active anthropogenic Fe coatings on the sediments. The importance of these 
contrasting sediment characteristics in determining chlorinated organic 
contaminant distributions will be discussed in the next chapter. 

Estuary S S A (m^g )̂ Lipid (mg g"") Ca:AI Ratio 
Dee 4.1 +3 .6 1 .0±1.6 131.9 ±98 .4 
Humber 17.9 ±5 .8 1.4 ± 2 . 9 105.8 ±22 .4 
Clyde 4.7 ±2 .8 4.2 ±3 .8 7.0 ± 5 . 7 

Table 3.2. Summary of Physicochemical Characteristics in the Humber, Dee 
and Ciyde Estuaries 

3.2 Occurrence of PCDD/PCDF & PCBs 

The following section discusses the distribution of chlorinated organics at the 

coastal and estuarine study sites described above. Distributional data is 

presented spatially on maps with data plotted in quantified bands. Where 

survey stations were occupied during more than one year's survey, the 

concentrations have been averaged (residence times in the estuary are 

sufficiently long that temporal comparisons between surveys only 1-2 years 

apart are not realistic). The same data has also been plotted axially with 

estuary features marked where relevant. A full summary of the analytical data 

is presented in Appendix II. 

Under this study, apolar lipid content has been employed as a normalising 

measurement. The specific relevance of apolar lipid content as the chosen 

normalising parameter is discussed in detail in the next chapter. The spatial 

distribution maps have lipid normalised data co-plotted with raw data for 

comparison. Where lipid content falls below 0.5 mg g'\ data has not been 

plotted. Such low content is close to the limit of detection and has the 

potential effect of distorting normalised values. A full discussion of these data 

Is presented in the Chapter 4. 
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3.2.1 UK Coastal Waters Survey 

Figure 3.12 shows the sampling locations occupied in the UK and a summary 

of the data from the UK coastal waters survey is given in Table 3.3. 

UK Coastal Survey Sites 

• Bed Sediment Sample 
• Core Sample 

Figure 3.12. UK Coastal Sun/ey Sites 

63 A.O.Tyler. PhD Thesis 



The Distribution and Reactivity of Organochlorines in Estuaries 

Congener/ 
homolog 

Tyne Mersey Tees Humber Tweed M'cambe 
Bay 

Clyde 
(lower 

estuary) 

Dee 
(lower 

estuary) 
2.3.7.8 TCDD n.d. 0.3 0.1 n.d. 0.8 <0.3 3.5 3 
TCDD 1 3 1 2 4 6 17 20 
PeCDD <1 <9 <1 <13 <12 <0.6 47 50 
HxCDD 3 <7 3 4 11 10 34 60 
HpCDD 3 9 2 5 24 40 79 120 
OCDD 13 36 3 10 89 150 110 500 
2.3.7.8 T C D F 1 2 n.d. 2 2 2 4 10 
T C D F 4 11 2 9 16 21 16 60 
P e C D F 3 4 2 5 10 16 15 40 
HxCDF 6 9 3 7 15 35 28 70 
HpCDF 9 8 14 6 13 22 35 110 
O C D F 59 13 3 6 16 22 6 110 
Total PCDD 21 65 8 35 128 206 287 750 
Total P C D F 81 46 23 32 69 116 99 390 

Table 3.3. Concentrations (pg g V of PCDD and PCDF from the UK Coastal 
Survey 

With the exception of the Clyde sample (taken in the Inner Clyde Estuary), all 

samples were taken at the mouths of each estuary, and with the exception of 

the Morecambe Bay core, all samples were representative of surface 

sediments. From Table 3.3, total PCDD can be seen to vary from 8 - 750 

pg g-̂  and PCDF from 23 - 390 pg g'\ This compares with PCDD 

concentrations in the range 256 - 445 pg g"̂  and PCDF varying from 354 -

673 pg g"̂  reported by Evers et al. (1993) in the coastal Wadden S e a and 

southern North Sea. 

To put these data in context and bearing in mind the ubiquity of their 

occurrence, it is desirable to establish a benchmark or 'background' 

concentration. The general paucity of data for marine sediments makes this 

difficult. Laane (1992) suggests that until natural production of these 

compounds has been proved, background should be taken as zero. On this 

basis, with the reported ubiquity of these compounds (Tanabe et a/., 1994), 

most estuarine and coastal sediments would be considered as elevated 

above background. Turkstra & Pols (1989) regarded PCDD/PCDF sediment 

concentrations of between 10 and 100 pg g"̂  on a T E Q basis (see Chapter 1, 

section 1.7.5) as 'background' in their study of estuaries in the Netherlands. 
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Norwood et a/. (1989) in a study of Narragansett Bay obtained values of < 
0.93 and 15 pg g^ for 2,3,7,8 TCDD and TCDF, respectively, at their 
'relatively clean reference site'. Oehme et a/. (1993) considered 47 pg g^ total 
PCDD/PCDF as a background concentration in studies of the Barents Sea. 

Although the Tyne, Mersey, Tees, Humber, Dee and Clyde are estuaries 

receiving pollutant inputs from large conurbations and industrial activities, 

only the Dee and the Clyde have PCDD/PCDF concentrations exceeding the 

background' values above. In general, set against the 'background' values 

suggested by Turkstra & Pols (1989) and Non/vood et a/. (1989), surface 

sediments from coastal locations around the UK show no conclusive evidence 

of significantly elevated PCDD/PCDF concentrations. 

Morecambe Bay Core Sample 

A core sample was taken from a box core in Morecambe Bay. The core was 

sectioned and sampled at the surface, 14cm and 28cm depth. The resulting 

profile of PCDD, PCDF and PCB is shown in Figure 3.13. 

28 

Concentration (PCDD/DF, pg g ^ P C B , ng g^) 

50 100 150 200 

• Total PCDD 
• Total P C D F 
• Total P C B 

250 

Figure 3.13. Profile of PCDD, PCDF and PCB in Morecambe Bay Core 
Sample 
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Concentrations in the core are relatively \O\N compared with other shelf sea 
sannples collected in the southern North Sea (Evers ef a/., 1993). The 
concentrations of both PCDD and PCDF fall rapidly with depth. At 28 cm, 
concentrations for several homologs are below detection. Conversely. P C B 
concentrations increase in depth; an obsen/ation often reported from P C B 
core analyses (Van Zoest & Van Eck, 1993b; Alcock ef a/., 1993). Although 
no dating of the core was attempted the decline in PCB concentrations is 
often dated from the mid-1970s when PCB production and usage declined. 
This would tentatively suggest sedimentation of approximately 1 cm yr^ if the 
14 cm sample represented a pre-decline maximum. The elevated surface 
concentrations for PCDD/PCDF seem to indicate recent anthropogenic Inputs 
possibly derived from atmospheric deposition, increased estuarine inputs or 
dumping of contaminated material in the region. More detailed segmentation 
of the core and accurate dating would be required to strengthen any 
conclusions. 

3.2.2 Dee Estuary 

General Concentrations and Comparison with Other Studies 

Nine stations were sampled in the Dee estuary; 5 sub-tidal stations and 4 

inter-tidal stations (see Appendix II for full data summary). Concentrations of 

PCDD ranged from 530 - 1880 pg g ' and PCDF from 340 - 710 pg g"\ Total 

PCBs in the range non-detectable to 20 ng g*̂  were found. There is very little 

other data on chlorinated organics in the Dee estuary for comparison. A 

survey by Law ef a/. (1991) reported one sample with a concentration of 45 

MO g'̂  (dry mass expressed as Arochlor 1254). This sample was taken several 

kilometres upstream of Chester. Within the estuary, most samples analysed 

were below detection. Only a single sample in fine sediments at West Kirby 

indicated a measurable concentration of 0.09 \xg g'^ (dry mass expressed as 

Arochlor 1254). 
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Spatial and Axial Distributions 
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Figure 3.14. Spatial Distribution ofPCDD in the Dee Estuary 
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Figure 3.15. Axial Distribution ofPCDD in the Dee Estuary 
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Figure 3.16. Spatial Distribution ofPCDF in the Dee Estuary 
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Figure 3.17. Axial Distribution of PCDF in the Dee Estuary 
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Figure 3.18. Spatial Distribution of PCS in the Dee Estuary 
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Figure 3.19. Axial Distribution of PCS in the Dee Estuary 

Figures 3.14 - 3.19 show the spatial and axial distributions of PCDD, P C D F 

and PCB in the Dee Estuary. PCDD and PCDF concentrations are relatively 

homogenous in the estuary. There is little variation between inter-tidal and 

sub-tidal samples, reflecting the well mixed sediment conditions in the 

estuary. PCB concentrations are more variable with the highest 

concentrations found in two sub-tidal samples close to (DS3) and at the 

mouth (DS5) of the estuary. Consistent with the PCDD/PCDF measurements, 
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there is little difference between inter-tidal and sub-tidal samples taken in 
close proximity. 

3.2.3 Clyde Estuary 

General Concentrations 

In total, 42 km of the Clyde Estuary was sampled from the weir to the Inner 

Firth with surveys conducted in 1991, 1992 and 1993. Concentrations of total 

PCDD. PCDF and PCB varied considerably within the estuary but were 

generally the highest measured at the three principal study sites. Maximum 

values for total PCDD and PCDF were 11100 and 2891 pg g'̂  respectively. In 

addition to surtace samples, sub-surface and core samples were also taken 

and are discussed below. A full tabulation of analytical data is provided in 

Appendix II. 

Comparison with Other Studies 

There has been no known sampling and analysis of PCDD and P C D F in the 

Clyde Estuary to compare with the analyses made during this study. 

However, there are some samples from the Clyde Estuary analysed for PCBs 

by the Scottish Environmental Protection Agency (SEPA). A limited number of 

samples are reported in the UK National Monitoring Programme Scottish 

Regional Report (SEPA & SOAEFD) . This report gives PCB concentrations 

as a sum of the 1 C E S 7' congeners (Nos. 28. 53, 101. 118, 138, 153, 180). 

Values reported in the estuary include 7.2 ng g'̂  at Erskine and 12 ng g'̂  at 

Port Glasgow. These values compare with those measured during this survey 

which range from non-detectable to 108 ng g'\ 

Other data has been provided by Mr. D. Pirie at S E P A who reports P C B (sum 

I C E S 7) concentrations ranging from 17 to 47 ng g"̂  and total PCB 

concentrations ranging from 43 to 111 ng g'̂  in the upper estuary (from the 

weir to 0.5km downstream of Dalmuir). This compares with concentrations 
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(sum I C E S 7) measured during this study in the upper estuary ranging from 
non-detectable to 132 ng g'\ 

A comprehensive survey of the sewage sludge dumpsite located in the outer 

Firth of Clyde also sampled a bed sediment in close proximity to the most 

seaward samples taken on this study (Kelly and Campbell, 1995). A 

concentration of 45 ng g"̂  for Z ICES 7 congeners was reported. This 

compares closely with concentrations of 22 and 44 ng g'̂  Z I C E S 7 at the two 

seaward end member stations (CS27 and CS28). Concentrations up to 500 

ng g"̂  were measured at the former dumpsite in the outer Firth. 

Spatial and Axial Distributions 

Figures 3.21 - 3.26 show the spatial and axial distributions of PCDD, P C D F 

and PCB In surface samples. 

The same general pattern of distribution is evident for PCDD, PCDF and P C B 

in the estuary. Determining whether such co-distribution is due to common 

sources or preferential accumulation at particular sites requires further 

investigation (see Chapter 4). At the weir, concentrations are low but 

immediately downstream at Station C S 2 (0.8 km below the weir) there is a 

marked peak in concentration which includes the highest PCB concentration 

(3000 ng g*̂ ) measured during these studies. Between 0.8 km and 

approximately 4.0 km from the weir concentrations are relatively low but start 

to increase from this point to an upstream maximum at 15 km from the weir, in 

the vicinity of the Dalmuir MSW and the confluence of the Clyde and Cart 

tributary. In the middle estuary concentrations are generally low until, at 

approximately 35 km from the weir there Is another significant peak in all 

analytes In the vicinity of the Ironotter Point long outfall. 
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Figure 3.20. Spatial Distribution ofPCDD in the Clyde Estuary 1991-1993 
(*Mean for Two or Three Years) 
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Figure 3,21. Axial Distribution ofPCDD in the Clyde Estuary 
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Figure 3.22. Spatial Distribution of PCDF in the Clyde Estuary 1991-1993 
(*Mean for Two or Three Years) 
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Figure 3.23. Axial Distribution of PCDF in the Clyde Estuary 
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Figure 3.24. Spatial Distribution of PCB in the Clyde Estuary 1991-1993 
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Figure 3.25. Axial Distribution of PCB in the Clyde Estuary 

Clyde surveys were conducted yearly over a period of three years. Due to the 

long residence times of sediments in the estuary there is a considerable 

'inertia' in the system when examining time-dependent trends of such 

persistent compounds. There is considerable variability noted between 

samples taken at the same stations in consecutive years. In the upper estuary 

samples taken during different surveys record similar concentrations but in 
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the middle estuary there is significant variability. Such variability underlines 
the problems inherent in sampling discrete locations particularly in an 
environment where the characteristics of the sampling media are likely to vary 
considerably. This emphasises the importance of considering the nature of 
the sample media when interpreting the results. 

Sub-surface and Core Samples 

During the 1993 Clyde survey the opportunity was taken to sample three of 

the upper estuary stations at two depths (surface and 10 cm). In addition, 

three core samples were analysed to depths of 30 cm. The results from the 

two-depth samples in the upper estuary are summarised in the following 

table; 

Station (depth) Total PCDD Total P C D F Total P C B 
(pg g (pg g (ng g ' ) 

CS1 (0cm) 2260 862 268 
CS1 (10cm) 2190 740 307 
C S 3 (0cm) 5125 2891 974 
CS3(10cm) 8015 1415 -
C S 4 (0cm) 4410 1440 198 
CS4(10cm) 5120 1520 221 

Table 3.4. Total PCDD, PCDF and PCB Concentrations at 0 cm and 10 cm 
depth at Upper Estuary Stations 

Table 3.4 shows a strong homogeneity in the top 10 cm of the bed sediment 

for alt analytes. The percentage standard deviation ranged from 2% to 48% 

with an average of 15%. This observed homogeneity indicates that either the 

bed sediments have been fairly well mixed (e.g. through natural or external 

disturbance), or that the flux of pollutant input in recent times has been fairly 

constant. The estuary is subject to dredging operations which disturb 

sediments. However at Stations CS1 and C S 3 no dredging has been carried 

out, and at CS4 no dredging would have taken place since the mid-1980s. It 

may be speculated that the observations are caused partly by a constancy in 
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the flux of source material and partly through natural re-working of sediments 
In the estuary. 

Three core samples were taken in the estuary to a depth of 25 cm. Two cores 

were taken in close proximity in the upper estuary approximately 150 - 300 m 

below the weir. A third core was taken in the River Cart. The PCDD and 

PCDF concentrations for the three cores are shown in Figures 3.26 a-c. 
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Figure 3.26. Clyde Estuary Core Sample PCDD/PCDF Concentration Profiles, 
(a) CC1, (b) CC2, (c) CC3 

Station CC1 shows a relatively homogenous profile except for one sample at 

12.5 cm depth which indicates concentrations of PCDD rising to 100000 pg 

g'\ This profile could be explained by a historical peak in inputs which has 

subsequently become buried in less contaminated sediments but the nearby 

core at Station CC2 shows no evidence of a peak in concentration at depth 

with generally lower concentrations homogeneously distributed throughout 

the profile. Alternatively, a localised organic rich layer may explain the 

accumulation at this one depth (organic carbon analyses were not, 

unfortunately, carried out for these cores). At the second location, C C 3 in the 

River Cart, the profile shows a distinct surface layer peak in concentration 

down to 7.5 cm. Below this depth, no detectable PCDD/PCDF could be found. 

Figure 3.27 shows the PCB concentration profile in the three core samples. 

The higher concentrations in cores CC1 and C C 2 are consistent with 

PCDD/PCDF concentrations in the same cores. Both CC1 and C C 2 show 

elevated concentrations in the 12.5 - 17.5 cm layers. C C 3 shows the same 

dramatic reduction in concentration beneath this level observed for 

PCDD/PCDF. Without core dating and a knowledge of likely disturbances in 

the past, it is difficult to relate the observed depth profiles to specific sources 

or events. However, in a study of a salt marsh sediment core, Van Zoest & 
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Van Eck (1993b) found a significant peak in PCB concentration at 

approximately 15 cm depth which was dated to approximately 1965. Alcock et 

al. (1993) in a study of PCBs in UK soils dating from 1940 to 1992. also 

observed a sharp Increase In soil PCB content between 1940 and the early 

1960s with a maximum during the late 1960s / early 1970s. This was followed 

by a dramatic reduction in concentrations. Although relating the observed 

core profiles to the rise and peak in PCB inputs may be unsustainable, the 

reduction in concentration in the surface layer may reflect reduced inputs in 

recent years. 
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Figure 3.27. Clyde Estuary Core Sample PCB Concentration Profiles 

3.2-4 Humber Estuary 

The detailed Humber survey was carried out in October 1993 with a limited 

number of samples collected earlier in 1991. A full summary of the analytical 

data is presented in Appendix II. Total PCDD/PCDF concentrations in the 

estuary were in the range non-detectable to 3827 pg g V These 

concentrations are elevated with respect to 'background' concentrations 

reported in the literature (Oehme et al. 1993; Turkstra & Pols, 1989). Evers 

al. (1993) reported PCDD/PCDF values in North Sea estuaries from 1006 to 
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4736 pg g"̂  including two samples taken at a station at the mouth of the 
Humber Estuary with total PCDD/PCDF values of 1846 pg g'̂  (surface, <63 
^m) and 10557 pg g"̂  (15 cm, <63 ^m). No samples analysed as part of this 
survey reached concentrations as high as that of the 15 cm depth samples 
analysed by Evers etal. (1993), although surface sample concentrations were 
similar to these data. 

Total PCB concentrations ranged from non-detectable to 84 ng Q'\ Klamer & 

Fomsgaard (1993) reported S C B concentrations (summation of 12 

congeners) ranging from --3 - 20 ng g'̂  in the Humber plume. The only station 

in the same vicinity as this study recorded a Z C B concentration of 

approximately 17 ng g*̂  compared to concentration of between 9.8 and 51.6 

ng g"̂  (summation of 7 congeners) at stations close to the estuary mouth 

(HI14, HS10. HS11). 

Spatial and Axial Distributions 

The spatial and axial distribution of total PCDD, PCDF and PCB in the 

estuary is shown in Figures 3.28 - 3.33. The spatial and axial plots of PCDD, 

PCDF and PCB indicate relatively homogenous distributions with few clear 

patterns of concentration, in contrast with the Clyde Estuary distributions. 

Generally, concentrations are higher in the finer accumulated inter-tidal 

sediments than the coarser sub-tidal bed sediments. In the upper estuary 

sub-tidal PCDD and PCDF concentrations are low and show a general 

downstream increase. Inter-tidal sediment concentrations in the upper estuary 

are relatively high but in the middle estuary, approximately 25 to 40 km from 

Trent Falls, fall noticeably except for one sample at Salt End near to Hull. 

Concentrations rise again in the lower estuary possibly Indicating additional 

anthropogenic inputs in this region known to receive significant inputs from 

chemical industries situated on the south bank of the estuary. 
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Figure 3.28. Spatial Distribution ofPCDD in the Humber Estuary. 
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Figure 3.29. Axial Distribution ofPCDD in the Humber Estuary 
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Figure 3.30. Spatial Distribution ofPCDF in the Number Estuary. 
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Figure 3.31. Axial Distribution ofPCDF in the Number Estuary 
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Figure 3.32. Spatial Distribution of PCS in the Number Estuary 

90 

80 

70 

0)60 

c 50 
o 

•J 
£ 40 
o 
u 
§ 3 0 
O 

- • - Sub-tidal 
• Inter-tidal 

10 20 30 40 50 

Distance below Trent Fal ls (km) 

60 70 

Figure 3.33. Axial Distribution of PCS in the Number Estuary 

Suspended Sediment Samples 

In addition to bed samples, suspended sediment samples were analysed for 

PCDDs, PCDFs and PCBs. Suspended sediment represents a major 

transport pathway for such hydrophobic contaminants and is an important 

determinant in transport studies. Considerable problems are apparent in 

collecting sufficient suspended sediment for analysis whilst avoiding gross 

contamination. Difficulty was encountered in achieving analytical detection 
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limits. From 9 samples analysed, PCDD/PCDF congeners could only be 
quantified in 4 samples. In these samples only 2.3.7,8 TCDD (3 - 4 pg g"^) and 
1,2,3,4,6.7,8 HpCDD (14 - 20 pg g* )̂ were detected. These concentrations are 
similar to bed sediment concentrations and although the data should be 
treated with caution, there is an indication that the suspended sediment 
adsorbed dioxin is probably derived from resuspended bed sediment. Further 
work in this Important area is required using suitable bulk filtration techniques 
to obtain more material for accurate quantification of all major congeners. 

3,2,5 Covariation Between PCDD, PCDF and P C B 

The covariation between PCDD and PCDF, and PCDD/PCDF and PCB has 

been examined. Some covariation might be expected between PCDD and 

PCDF as most sources of dioxin contain both dioxin and furan congeners. A 

correlation between PCDD/PCDF and PCB may also be expected where 

there is a commonality in sources, for example a mixed waste effluent or 

PCBs which are co-contaminated with PCDD/PCDF (Tanabe. 1988). 
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Figure 3.34. Correlation between Total PCDD and Total PCDF in the Number 
Estuary (r" = 0.79) 
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Figure 3,35. Correlation between Total PCDD and Total PCDF in the Dee 
Estuary 

A positive linear correlation (r^ = 0.79) was found between Total PCDD and 

Total PCDF in the Humber Estuary (Figure 3.34). In the Dee Estuary there 

was also a positive correlation with some non-linearity in the relationship 

(Figure 3.35). The Clyde Estuary showed no significant correlation between 

Total PCDD and Total PCDF. 
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Figure 3.36 Con-elation between Total PCDD/PCDF and Total PCS in the 
Number Estuary (r^ = 0.76) 
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A positive correlation (r^ - 0.76) between Total PCDD/PCDF and Total PCB 
was found in the Humber (Figure 3.36) but again there was no significant 
correlation in the Clyde Estuary. In the Dee Estuary some non-linear 
correlation is observed but negatively correlated (Figure 3.37). 
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Figure 3.37. Congelation between Total PCDD/PCDF and Total PCB in the 
Dee Estuary 

The cases where positive correlation has been found probably suggest that 

the dominant source(s) contain both PCDD and PCDF in a relatively constant 

ratio. This is further examined in Chapter 4 where PCDD:PCDF ratios are 

examined. In the Clyde Estuary, the ratios vary significantly possibly 

indicating multiple sources contributing to the contamination. The correlation 

between PCDD/PCDF and PCB in the Humber may be indicative of PCB co-

contamination with PCDD/PCDF but is more likely due to the sorption 

properties of sediments which would preferentially adsorb both PCB and 

PCDD/PCDF. This is discussed in detail in Chapter 4. The inverse correlation 

observed between PCB and PCDD/PCDF in the Dee indicates independent 

sources for these contaminants. It should be noted however, that the number 

of samples is probably too small to draw firm conclusions. 
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3.3 Summary 

Table 3.5 summarises the concentrations of OCs measured in estuary and 

coastal sediments. A summary of reported concentrations from other reported 

work for the same sites is also presented together with results from other 

comparative surveys in estuaries and shelf seas in Europe and the USA. The 

general summary from this comparison is that UK estuaries and coastal 

waters are not heavily contaminated with PCBs, PCDDs and PCDFs. The 

concentrations in estuaries are above those recorded for shelf seas and are 

somewhat higher than values established as 'background' for coastal waters. 

However, the contamination of estuary sites falls well below that recorded for 

estuaries such as the Hudson River and coastal regions such as Chesapeake 

Bay. 
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Compound Estuary/coastal 
Environment 

Concentration Reference 

Total PCDD/PCDF Barents Sea 2 3 - 103 pg g-̂  Oehme etal., 1993 
PCDD/PCDF T E Q Barents Sea 0.31-1.1 pg g-' Oehme efa/., 1993 
2.3.7,8-TCDD Hudson River, USA n.d. -21000 pg g"̂  Bopp etaL, 1991 
2.3.7.8-TCDD Hudson River, USA^ 120-260 pg g-' Bopp etal., 1991 
Total PCDD/PCDF N.E. USA estuaries -2000 - -30000 pg g'̂  Nonfood etal., 1989 
Total PCDD/PCDF Rhine estuary 0 .2 -18 ng g"̂  Evers etal., 1988 
Total PCDD/PCDF Rhine estuary^ 2350 - 4736 pg g"' Evers etal., 1993 
Total PCDD/PCDF Wester Scheldt^ 1146- 1541 pg g-' Evers etal., 1993 
PCDD/PCDF T E Q Netheriands 

estuaries 
10 -5180 pg g-' Turkstra & Pols. 1989 

Mean PCDD Fukuoka. Japan 11000 pg g"̂  (rivers) 
7600 pg g"̂  (offshore) 

Ohsaki etal., 1997 

Mean PCDF Fukuoka. Japan 1300 pg g'̂  (rivers) 
980 pg g"̂  (offshore) 

Ohsaki etal., 1997 

Total PCDD/PCDF N. North Sea 443 - 1406 pg g-' Oehme etal., 1993 
PCDD/DF TEQ N. North Sea 5.5-17.2 pg g-̂  Oehme etal., 1993 
Total PCDD/PCDF Humber estuary^ 1846- 10557 pg g"' Evers etal., 1993 
Total PCDD/PCDF UK coastal sites 31 -1140 pg g-̂  This work 
Total PCDD/PCDF Humber estuary < n.d. - 3827 pg g'̂  This work 
2.3.7.8-TCDD Humber estuary < 0.2 - 20.2 pg g'̂  This work 
PCDD/DF TEQ Humber Estuary 1 - 38.9 pg g-' This work 
Total PCDD/PCDF Clyde estuary < 4 8 - 13324 pg g-' This work 
2.3.7.8-TCDD Clyde estuary < 0 .5 -28 pg g ' This work 
PCDD/DF T E Q Clyde estuary < 1 .6-60 pg g-' This work 
Total PCDD/PCDF Dee estuary. Wales 870 - 2590 pg g'̂  This work 
2.3,7.8-TCDD Dee estuary, Wales 2 - 4 pg g-̂  This work 
PCDD/PCDF T E Q Dee estuary. Wales 1 0 - 2 3 pg g-̂  This work 
Total PCB Hudson River. USA -10 ng g ' \ Aroclor 

1254 
Boppefa/. . 1982 

Total PCB Mohawk River, 
USA=̂  

380 ng g'\ Aroclor 
1254 

Bopp etal., 1982 

Total PCB Chesapeake Bay, 
USA^ 

70 ng g"\ Aroclor 
1254 

Bopp etaL, 1982 

Total PCB San Francisco Bay. 
USA" 

30 ng g ' \ Aroclor 
1254 

Bopp etaL, 1982 

P C B s W. Mediterranean^-^ 1.7-16.6 pg I-' DachsetaL, 1997 
P C B s Humber Plume^ 2.92 - 19.07 ng g"' Klamer & Fomsgaard. 

1993 
Total PCB Clyde estuary < 1 - 3000 ng g-̂  This work 
Total PCB Humber estuary < 1 - 84 ng g'̂  This work 
Total PCB Dee estuary, Wales < 1 - 20 ng g*̂  This work 
Total PCB Dee estuary, Wales < 1 - 45000 ng g*' Law etaL, 1991 

Table 3.5. Reported OC concentrations in estuaries and coastal 
plumes.(Surficial Bed Sediments except ^SPM, ^<63/jm fraction. ^0-5 cm, "0-

10 cm, ^Sum of 12 congeners) 

87 A.O.Tyler, PhD Thesis 



The Distribution and Reactivity of Organochlorines in Estuaries 

Chapter 4. Controls on Estuarine Distribution of 
Organochlorines 

4. Controls on Estuarine Distribution of 

Organochlorines 

Based on the OC distributional data reported in Chapter 3, this chapter 

examines the data in the context of the controlling factors which influence 

occurrence. The 'fingerprint' of samples is compared between sites and 

against standard samples as an indication of source. The behaviour of 

individual compounds is examined to detennine how the physicochemistry of 

the compound may influence patterns of distribution. Sediment characteristics 

determined during the sample analysis are then presented and a detailed 

examination of the relationship between adsorbed OCs and the solid phase is 

conducted. The result of this detailed examination provides the basis for a 

geochemical interpretation of environmental occurrence at the study sites as 

well as forming the basis for distributional modelling. 

4.1 Controls of Distribution 

In Chapter 1 there was a detailed review of factors which are influential in 

determining distribution. These may be summarised as three major controls 

on the distribution of chlorinated organics in the environment; 

4.1.1 Sources 

The sources of OCs are an obvious control on distribution. Chlorinated 

organic compounds enter the environment via both direct e.g. chemical 

manufacturing, accidental spillage (Clement et a/., 1989; Hagenmaier ef a/., 

1986; Turkstra & Pols, 1989) and diffuse sources e.g. atmospheric deposition, 

terrestrial run-off (Bumb ef a/., 1980; Halsall et a/., 1993). PCBs have not 

been manufactured in the UK since 1976 so direct sources tend to be limited 
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to accidental spillage e.g. during decommissioning of industrial equipment 
using PCBs. PCDD/PCDFs are unwanted by-products of manufacturing and 
combustion processes and as such, often enter the environment via diffuse 
sources such as road run-off and atmospheric deposition. Overall, 
atmospheric deposition is the primary diffuse source to the marine 
environment (Rappe 1992b). Although PCDD/PCDFs are not manufactured, 
their formation through different reaction pathways result in distinctive 
patterns in their homolog groups and congener profiles. These patterns can 
be used to identify potential sources (Swerev and Ballschmiter. 1989). 

4.1.2 Compound Chemistry 

The physical chemistry of organic compounds is a fundamental determinant 

of their behaviour once released into the marine environment. The families of 

PCB and PCDD/PCDF compounds span a wide range of physicochemical 

properties. For example, the polarities of PCBs expressed as log K^̂  values 

range from 5.15 (2,4-DiCB) to 9.6 (decachlorobiphenyl) (Erickson, 1986). 

Although PCBs and PCDD/PCDFs are typically presented as summations of 

their individual compounds or even on a toxicity normalised basis (Kutz a/., 

1988), when in the environment they behave as individual compounds. With 

long environmental residence times in marine sediments this can become an 

important factor in understanding their distribution. 

4.1.3 Sorbent Physicochemistry 

Numerous studies of contaminant reactivity in the marine environment have 

stressed the importance of sorbent physiochemistry in determining sorption 

preferences (Broman et a/.. 1991; Delbeke et a/., 1990; Duinker, 1986; 

Grathwohl. 1990; Murphy et a/., 1994; Preston & Al-Omran. 1989). Although 

theoretical sediment-water partition coefficients can be established from basic 

compound physicochemistry it is found in practice that these can be 

significantly modified by the nature of the sorbent. Estuarine systems 

commonly contain a wide range of sediments varying from coarse mineral 
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particles, usually of marine origin to fine organic rich particles from fluvial 
origins. In industrialised estuaries, natural particles may be modified by 
anthropogenic inputs, such as high organic loads from domestic sewage 
works and acid-iron wastes from metai processing plants. 

4.2 Source Related Distribution 

PCDDs and PCDFs arise from a number of well characterised sources 

including incineration, domestic fires, vehicle exhausts, chemical 

manufacturing processes involving use of chlorine, and sewage sludge. 

Under certain conditions it is possible to elucidate the source of dioxins found 

in environmental samples by comparing their homolog profiles or congener 

patterns with characteristic source 'fingerprints' (Fattore et a/., 1997; Naf et 

a/.. 1992; Swerev & Ballschmiter, 1989). There are a number of indicators 

which can be used in assessing sources; 

• The profile of the homologs 
• The PCDD:PCDF ratio 
• The isomer-specific distribution of compounds of the same degree of 

chlorination 
• The patterns of the 2,3,7,8 substituted congeners 
• The general pattern of the congeners 

In this study homolog profiles, PCDDPCDF ratios and 2,3,7,8 substituted 

congener patterns have been used for inter-comparison with published 

source data. PCDD and PCDF analyses have been summarised in homolog 

profile and congener pattern format in an attempt to determine potential 

sources. Concentrations of each homolog or congener have been expressed 

on a normalised basis by expressing as a fraction of the total PCDD or PCDF 

for the sample. This facilitates intercomparison between samples of differing 

PCDD/PCDF concentrations. It should be noted that it is not possible to inter-

compare the 2,3,7,8 substituted congener patterns with the homolog profiles 

as the latter contain the total number of congeners in each homolog group. 
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• Sewage Sludge (Hagenmaier et al 
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Figure 4.1 a-d. Typical PCDD/PCDF homolog profiles for a range of sources 
(Hagenmaier et al., 1993; Rappe, 1992a) 

Figure 4.1 a-d shows homolog profiles for samples of manufacturing and 

combustion sources taken from published literature (Hagenmaier et al . , 1993; 

Rappe, 1992a). Figure 4.1a shows homologs for two atmospheric air samples 

and an atmospheric deposition sample. Although some variation is noted, 

there are clear similarities between the air samples from two different sources 

and between the air and deposition profile. There are also similarities 

between the pentachlorophenol (PCP) source profiles derived from two 

different samples (Figure 4.1b). This observed consistency in the character of 

these source profiles forms the basis of the source-occurrence matching 

approach. Profiles derived from municipal sewage sludge and PCB waste are 

also presented in Figure 4.1c and d respectively. 

The source-occurrence techniques cannot be applied in the same way to 

PCBs as these are manufactured as a mixture of congeners which give 

particular products a signature of PCB congeners. Theoretically this might 

allow individual product use to be identified but the similarity between different 

products and the modification of these signatures through degradation and 

differential environmental behaviour makes such identification impractical. 
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4.2.1 Atmospheric Sources 

Atmospheric sources (incineration, domestic fires, vehicle exhaust) are the 

largest diffuse source of dioxins to the environment (Rappe, 1992b). In a 

comprehensive study of PCDDs and PCDFs in UK freshwater lakes and 

reservoirs. Rose & McKay (1996) reported atmospheric inputs as the 

predominant source to sediments based on homolog profile and congener 

pattern analysis. It is important therefore to determine the contribution of 

atmospheric deposition to the occurrence of chlorinated organics in the 

estuaries under study. This assessment has been carried out using homolog 

profile and congener pattern analysis comparing profiles and patterns in the 

samples from the study estuaries with patterns/profiles from atmospheric 

studies. 

In an independent study conducted by the Warren Spring Laboratory (WSL) 

(Clayton et a/., 1992; Coleman ef a/., 1997) detailed analyses were carried 

out on air samples collected over a 12 month period at air sampling stations 

at Cardiff, London, Manchester and Stevenage. Samples of both ambient air 

and deposited atmospheric particulates were analysed. 2,3,7,8 substituted 

congeners from the WSL survey have been summarised to provide a 

congener pattern representative of UK atmospheric samples. Initially a 

comparison was carried out between samples from the four sampled cities. 

This comparison is summarised in Figure 4.2 and shows a close similarity 

between each site. For the purposes of this assessment it is assumed 

therefore that these sites are typical for the UK and that atmospheric profiles 

and patterns at the estuary study sites would be similar. 
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Figure 4.2 Atmospheric Sample Congener Patterns for Four UK Cities 

To confinm that the patterns in atmospherically deposited particulates (a 

pathway for estuarine input) are similar to those in ambient air samples, a 

comparison between atmospheric concentrations and deposition 

concentrations is summarised in Figure 4.3, confirming the similar pattern of 

2.3,7,8- substituted congeners in deposited and atmospheric samples. 
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Figure 4.3. Atmospheric and Deposition Concentrations (R^ = 0.95, p < 0.001) 
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On the basis of these comparisons it has been assumed that the congener 
patterns from the WSL survey are representative of general UK atmospheric 
deposition and can be reasonably compared with estuary samples collected 
during this study. 

4.2.2 Other Sources 

The other principal sources considered under this project are municipal 

sewage waste which is known to be discharged at some of the estuary study 

sites (Figure 4.1d). and the chemical manufacture or use of 

pentachlorophenol (Figure 4.1b) which is also carried out at one known 

location within the study sites. PCDD/PCDF co-contamination with PCB waste 

has been previously documented (Erickson, 1986; Tanabe, 1988) and a 

comparison profile is presented (Figure 4.1c). 

4.2.3 Clyde Estuary 

The Clyde Estuary showed notable variation in homolog profiles implying 

heterogeneity in source inputs to the estuary. The source-occurrence studies 

of the Clyde Estuary have concentrated on two regions where distribution 

studies indicate possible variations in sources. The first of these is the upper 

estuary region where the River Cart joins the Clyde Estuary and sewage 

discharges are present (see Figure 4.4). The industrial history of the Clyde 

estuary has resulted in a number of possible PCB and PCDD/PCDF sources 

in the past. A locomotive plant located 6 miles upstream of the weir at 

Hamilton and the Babcock dock in the River Cart both used PCBs. There are 

a number of historical pentachlorophenol (PCP) sources in the estuary 

including the Paisley sewage works and a Ministry of Defence factory located 

just above the weir at Dulmarnock (SEPA, pers comms). The second region 

of interest is in the lower estuary where a considerable increase in 

PCDD/PCDF concentration is observed (see Figure 4.5) in the vicinity of the 

Ironotter Point outfall. 
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Figures 4.4 and 4.5 show homolog profiles and PCDDPCDF ratios in the 
Clyde Estuary. There is a remarkable variation in PCDD:PCDF ratio in the 
whole estuary from 0.36 to 39.9 with an average of 5.15. This compares with 
a range of 0.13 - 7.71 (mean = 1.93) in the Rhine estuary where 45 samples 
were collected in 1984 and 1985 (Evers et a/.. 1988). and a range of 0.42 to 
2.43 (mean = 0.8) reported by Evers ef a/. (1993) for a number of estuary 
mouth and shelf sea locations (Wadden Sea. Ems-Dollard, Rhine, Wester 
Scheldt, North Sea, Number). Compared with these other studies the profiles 
in the Clyde show a general dominance of higher chlorinated homologs, with 
dibenzodioxin concentrations usually greater than dibenzofuran 
concentrations. From the source signature profiles shown in Figures 4.1 a-d, 
this would be indicative of PCP-derived sources where hepta- and octo-
homologs are dominant and municipal sewage sludge sources where 
dibenzofuran concentrations are relatively low and heptachlorinated 
dibenzodioxin and octochlorinated dibenzodioxin homologs are abundant. 

Upper Clyde Estuary 

In the upper estuary, shown in Figure 4.4, the variation of homolog profiles in 

the vicinity of the River Cart confluence is presented. Upstream of the 

confluence with the River Cart, homolog profiles at stations CS7 to CS11 

show a general dominance of HpCDD and OCDD for the dibenzodioxins but a 

relatively flat profile for dibenzofurans. These profiles have similarities to the 

atmospheric profile in Figure 4.1a. To further confirm atmospheric sources as 

a major contributor to these sites, a typical Clyde estuary congener pattern 

has been compared to the congener patterns established as typical of UK 

atmospheric deposition (Figure 4.3). 
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The congener pattern in Figure 4.6 compares reasonably with the 

atmospheric deposition congener pattern (Figure 4.3) although OCDF is 

enhanced in the estuarine sample possibly indicating the interference of other 

sources or the relative reduction of other lower chlorinated compounds due to 

degradation and loss from the system (see detailed discussion later in this 

Chapter). 

Downstream from these sites, within the White Cart Water and Black Cart 

Water there is a large increase in the PCDD:PCDF ratio indicating a 

significant increase in PCDD input in this area. Similar observations in the 

Rhine suggested that PCP derived inputs were responsible (Hagenmaier et 

at, 1986). Downstream of the confluence there is some evidence, although 

not entirely conclusive, that homolog profiles have been modified by this 

input. Stations CS13 - CS15 show considerable similarity to the River Cart 

profiles. These observations support the previously discussed increase in 

concentration in this region shown in Figure 3.22 and 3.24. 
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Lower Clyde Estuary 

There is a known sewage source in the lower Clyde Estuary at the Ironotter 

Point outfall which discharges into the centre of the estuary. All the homolog 

profiles in this region show a strong dominance of OCDD and OCDF. Several 

of the stations have high PCDD:PCDF ratios which may indicate additional 

PCDD inputs in the area. This may imply a source of municipal sewage-

derived dibenzodioxins which have relatively high OCDD concentrations (see 

Figure 4.1d). 

The signature profile of combustion-derived atmospheric inputs is not 

particularly strong compared with the profile in Figure 4.1a which shows a 

dominance of higher chlorinated dibenzodioxins and lower chlorinated 

dibenzofurans. In a comprehensive study of historical PCB levels in UK soils. 

Alcocl< ef a/. (1993) observed a gradual shift in the relative proportion of 

individual congeners with time. In the most recent samples, a greater 

proportion of higher molecular weight homolog groups was observed. 

Czuczwa & Hites (1986) also noted that environmental samples show a bias 

towards the OCDD congener whereas combustion sources are generally 

more evenly distributed. Rappe (1992a) suggested that photochemical 

degradation of lower chlorinated species and photochemical formation of 

higher chlorinated dioxins may enhance HpCDD and OCDD in the 

atmosphere thus altering atmospherically deposited profiles. 

The modification of homolog profiles may be explained by two factors. 

Chlorinated organic compounds do not all have the same degradation 

potential or degradation pathways. Higher chlorinated congeners are less 

susceptible to oxidative transformation (Adriaens et a/., 1995). However, 

reductive chlorination is an identified pathway that has been observed for 

chlorinated organics which would tend to remove higher chlorinated 

compounds (Abramowicz et a/., 1993; Adriaens et a/., 1995). The pathway 

and extent of degradation will be dependent on the presence of the microbial 
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population (Kobayashi & Rittmann. 1982) which is likely to be highly variable 
in an estuary where both aerobic and anaerobic conditions exist. The 
modification of homolog profiles of environmental samples over time is highly 
likely. Prediction of exactly how profiles will change with time is difficult and is 
likely to vary spatially within an estuary. 

The second factor, differential transport, is more complex and is discussed in 

greater detail later. The homologs represent a wide range of chemical 

compound properties with the lower chlorinated, more polar compounds, 

having lower solubilities, binding preference and a higher volatilisation 

potential. Loss of lower chlorinated compounds from bed sediments by 

dissolution and volatilisation will therefore alter the profiles. 

The long residence time of sediments within estuary systems inevitably leads 

to significant biogeochemical modification of the signature profiles. It is likely 

that only samples taken in close proximity to major point sources would 

provide enough evidence to allow unequivocal identification of a specific 

source. 

4.2.4 Dee Estuary 

Figure 4.7 presents the homolog profiles for the Dee estuary. The most 

striking observation is that the homolog profiles are almost identical. 

Furthermore, PCDDiPCDF ratios only vary from 1.4 - 2.6 with a mean of 1.8 ± 

0.48. These ratios are similar to those reported by Evers et a/. (1988) in the 

Rhine estuary, 1.93 ± 1.66. 

The homogeneity in the profiles may be explained by the relatively dynamic 

conditions in the Dee estuary which result in sediment re-working and mixing 

of sediments of different origins (BMT, 1990; Turner & Millward, 1994). It may 

also indicate that the sources to the estuary are predominately diffuse and 
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relatively uniform over the entire system. This would imply atmospheric 
deposition as the major source to the estuary. 
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Figure 4.7. Homolog Profiles and PCDDiPCDF Ratios for the Dee Estuary 

It is difficult to form any firm conclusions on the source of PCDD and PCDF to 

the estuary. The profiles are flatter than those observed in the Clyde possibly 

indicating an atmospheric source. However, the lower chlorinated 

dibenzofurans characteristic of atmospheric aerosols are not present in the 

profiles. This may well be due to aquatic degradation and transportation 

processes selectively removing the lower chlorinated compounds. There is no 

evidence of any PCB derived sources (reported in Law ef a/., 1991) but this is 

unsurprising given that the industrial source was located well upstream in the 

river and the sediment re-working evident in the estuary. 

4.2.5 Number Estuary 

The homolog profiles for the Humber Estuary are plotted in Figure 4.8. 

PCDD:PCDF ratios range from 0.73 to 2.8 with an average of 1.86 comparing 

closely with ratios in the Dee estuary. The homogeneity in PCDDPCDF ratios 
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is also consistent with the Dee and in contrast with the Clyde. There are less 
discernible trends in the homolog profiles than in the Clyde. Most show 
dominance of higher chlorinated dioxin homologs with a more even 
distribution of furan homologs. 
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Figure 4.8. Homolog Profiles and PCDD.PCDF Ratios for the Number Estuary 

Although there is significant industry located on the Humber Estuary, there 

are no established significant OC sources to the estuary. The only exception 

is a well publicised source of dioxins well upstream of the estuary reported in 

the Public Register which indicated PCDD/PCDF concentrations up to 64000 

pg 9"̂  TEQ in sediments of a tributary of the River Rother sampled in October 

1991. In 1993 the concentrations in these sediments close to the Coalite 

Chemicals chlorophenol facility at Bolsover ranged from 5144 to 45311 pg g'̂  

TEQ. None of the profiles in Figure 4.8 corresponds with the characteristic 

PCP homolog profile shown in Figure 4.1b. A detailed study of the sediments 

of the River Doe Lea (which received the PCP plant discharge) was carried 

out under this study. Source-occurrence pattern matching to source samples 
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was conducted as well as geochemical investigations. The results of this work 
remain sub judice and unfortunately cannot therefore be reported. 
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Figure 4.10. Correlation Between the Normalised Concentrations of 
Environmental Samples and Average UK Atmospheric Deposition Sample (R^ 

Range = 0.73- 0.83, p = <0.001) 

Overall it is possible that the Humber PCDD/PCDF load is predominately 

atmospherically derived. It is likely that point sources do exist but these are 
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readily masked by the dynamic mixing conditions within the estuary. Further 
confirmation is provided by congener pattern analysis of samples at various 
locations within the estuary and shown in Figure 4.9 and 4.10. 

The predominance of atmospheric deposition as the major source of PCDD 

and PCDF to the Number Estuary is understandable when considering the 

extent of urbanisation in the region and the large number of emitting industrial 

sources. 

4.2.6 Use of Source-Occurrence Matching In Estuaries 

This study has permitted an analysis of homolog profiles and congener 

patterns for environmental samples and comparison with source-derived 

profiles/patterns. The profiles in the Humber and Dee estuaries indicate the 

homogeneity that can exist in a dynamic estuary where source-related effects 

are rapidly masked by the redistribution of impacted sediments. In the Clyde, 

under more quiescent conditions, some indication of point sources can still be 

elucidated although not unequivocally. The long retention time for estuarine 

sediments allows degradation and other loss mechanisms (e.g. volatilisation, 

dissolution) to selectively remove compounds on the basis of their 

physicochemical properties. 

It is suggested that the application of these largely qualitative source-

occurrence techniques must be used with caution in estuarine environments. 

Where a strong point source exists, environmental samples taken in the near 

vicinity may permit the source to be relatively unambiguously identified 

(Jonsson et a/., 1993). Further from the source, or in dynamic mixing 

conditions, it is unlikely that such identification would be possible. The 

application of more sophisticated quantitative multivariate techniques (Naf et 

a/., 1992) is not considered justifiable in these circumstances where multiple, 

predominately diffuse sources are likely, and samples represent a significant 

time history of inputs. 
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4.3 Compound Chemistry 

The physical chemistry of organic compounds is a fundamental control on 

their behaviour in the environment (Duinker, 1986; Larsson, 1983; Mackay. 

1991). In considering the controls on particulate sorbed hydrophobic organic 

compounds, the K̂ ^ provides an excellent 'catch-all' property which is 

universally used in the study of organic compound behaviour (Lyman, 1982). 

The relationship between K̂ ^ and chemical structures is more complex but in 

general terms, high molecular mass compounds (e.g. PCBs, dioxins, furans) 

will have a high aromaticity, high apolarity, low solubility, small Henry's Law 

constant (therefore low volatility) and high lipophilicity. In the environment this 

translates to a high binding potential to particles, high biouptake and 

bioaccumulation potential and probably a resistance to degradation. 

Although they may all be classed as high molecular mass compounds, within 

the families of PCB, PCDD and PCDF compounds there is a wide range of 

values. These are summarised in Tables 1.1 and 1.2. Solubilities, for 

example, range from 0.019 mg M for 2,3,7.8-TCDD to 0.00074 mg 1'̂  for 

OCDD. For the PCBs. solubilities range from 1.4 mg for 2,4-DiCB to 0.007 

mg |-̂  for 2.2',3,3',4.4',5,5'-OCB. Within these families, the degree of 

chlorination is the major determinant of aromaticity. The other significant 

influence is the position of the chlorines on the benzene rings. 

4.3.1 Implications for Behaviour in an Estuary 

Both PCBs and PCDD/PCDFs enter the environment as a mixture of 

compounds. In the case of PCBs, this is usually in the form of a manufacturer 

prepared technical mixture which has been specifically engineered for an 

application. For dioxins and furans. as seen in the previous section, the 

source will tend to produce a characteristic mixture of compounds. Once in 

the environment, these compounds will behave independently of one another 

and their environmental transport and fate will reflect their individual 

A.O.Tyler, PhD Thesis 



The Distribution and Reactivity of Organochlorines in Estuaries 

compound properties. Although this is well understood in many contaminant 
studies, the focus in studies of chlorinated organics is often on the family as a 
whole (e.g. analysis conducted and reported against a reference technical 
mixture in the case of PCBs). 

A number of observations might be expected in an estuary based on the 

range of physical chemistry encountered in these groups of compounds. The 

lower chlorinated congeners would be expected to volatilise more readily and 

to solubilise more easily. They would therefore be expected to disperse more 

readily in the environment. The higher chlorinated compounds would be 

expected to bind more efficiently to sediments and be more resistant to 

degradation and therefore persist longer. The net effect would be a shift in the 

relative pattern of congeners from lower chlorinated to higher chlorinated 

compounds over a period of time. This is demonstrated by Gotz et a/. (1994) 

comparing homolog profiles between dissolved and SPM samples. The 

dissolved sample profiles showed a higher proportion of the lower chlorinated, 

more soluble homologs. The pattern analyses performed in the previous 

section for sediment samples are, in almost all cases, skewed towards higher 

chlorinated congeners when compared with unaltered patterns from 

characterised sources. 

Demonstrating the hypothesised effects is more difficult. In the Clyde Estuary, 

the mixing of sediments is limited and a gradient is formed. Sediments 

contaminated in the upper estuary will move gradually down the estuary over 

protracted periods of time. By plotting the ratio between the lowest chlorinated 

homolog (TCDD/F) and the highest chlorinated homolog (OCDD/F) for 

PCDDs and PCDFs against distance downstream, some pattern might be 

evident suggesting that downstream sediments contained reduced 

proportions of lower chlorinated compounds i.e. the TCDD/F:OCDD/F ratio 

would be lower. 
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Figure 4.11. Ratio of (a) TCDDiOCDD and (b) TCDFiOCDF Concentration 
with Axial Distance in the Clyde Estuary (- — Arbitrarily Defined to Highlight 

Change in Ratio) 

Figure 4.11 a and b show the tetra:octa-chlorinated ratios in the Clyde 

Estuary (there are some outlying data points for both graphs which have not 

been plotted and the line is hand-drawn to highlight the change in ratio with 

downstream distance). In the upper estuary the ratios are highly variable but 

in the lower estuary there is some evidence of a general reduction in ratio 

indicating a higher proportion of higher chlorinated compounds in this region. 
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Interpretation of this data is not straightforward as there are several factors 
which may lead to these obsen/ations. However separation of these factors 
based on the data analysed is not possible. 

The first cause of changes in homolog ratios is the interference of individual 

sources. In the Clyde this has already been demonstrated where some 

regions, including the lower estuary, show evidence of direct source related 

patterns. Trying to remove these effects by normalisation against source 

characterised profiles might be possible in extremely well defined situations 

e.g. in close proximity to a known high concentration source, but in the mixed 

environment of an estuary the source signature is not strong enough. 

Degradation is another effect which will lead to an apparent change in 

homolog ratios (Kobayashi & Rittmann. 1982; Rappe, 1992b; Reichardt ef a/., 

1981). This is extremely complex and the degradation pathways are not well 

understood. Dechlorination has been shown to be a lil^ely degradation 

pathway which might have the effect of removing lower chlorinated 

compounds but at the same time forming lower chlorinated compounds from 

higher chlorinated precursors (Adriaens et a/., 1995; Abramowicz ef a/.. 1993; 

Hutzinger ef a/, 1974; Rhee ef a/., 1993). The dependence of degradation 

extent and pathway on a complex range of conditions including the bacterial 

populations in abundance prevent any form of normalisation to remove the 

effects of this factor (Lake ef a/., 1992). 

Demonstration of the hypothesis that differential transportation of compounds 

occurs in the estuary cannot be concluded from analysis of the homolog 

ratios. It is however interesting to compare the situation in the Humber 

Estuary where the sediments are highly mixed by the dynamic environment 

(Falconer & Owens, 1990). Figure 4.12 a and b show the ratios plotted for the 

Humber Estuary (excluding some outlying points). The notable differences 

between the pattern of TCDD:OCDD ratios in the Clyde and Humber is 

accounted for by the predominance of OCDD previously noted in the Clyde 

and attributed to source related inputs. 
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Figure 4.12. Ratio of (a) TCDDiOCDD and (b) TCDF.OCDF Concentration 
with Axial Distance in the Humber Estuary 

No discernible patterns are evident in the Humber Estuary ratios. As well as 

effectively masking any source related effects that may exist, the mixing 

conditions in the Humber prejudice any attempts to determine geochemically 

related changes. The Humber is subject to significant internal cycling of 

sediments where tidal pumping and seasonally variable river flows combine to 

give particle residence time of approximately 18 years (Grant & Middleton. 
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1993). One of the consequences of this dynamic sediment regime is that 
indiscriminate mixing completely masks the emergence of distinct source 
related homolog profiles. 

4.4 Sorbent Physicochemistry 

The importance of the sorbent in determining the sorption behaviour of PCBs 

and dioxins is very widely reported (Broman ef a/., 1991; Delbeke et al, 1990; 

Duursma et al., 1989; Hiraizumi et al., 1979; Jonsson ef a/., 1993; Klamer et 

al., 1990; Lohse, 1991; Means ef a/. 1980; Pierard ef al., 1996; Steen ef al., 

1978). The relationship between the sorbent and the sorbate is not 

straightforward however. Three key factors are generally considered; the 

concentration of sorbent material, the physical structure of the sorbent 

material, and the geochemical composition of the sorbent material (Murphy ef 

al., 1990). The relative importance of these controls appear to depend 

considerably on the environment under study. 

Sediments analysed in the study estuaries have been quantitatively 

characterised in terms of their physical and geochemical composition. 

Surface area has been used as a measure of the physical characteristics of 

particles and the sites available for surface adsorption (Glegg ef a/., 1987; 

Hiraizumi ef al., 1979). Organic carbon content has been measured to 

indicate geochemical composition (Delbeke ef al., 1990). The cumulative 

importance of sorbent physical and geochemical characteristics was 

demonstrated by Zhou ef al. (1995a) in experiments with the high molecular 

weight pyrethroid. tefluthrin which has a similar log K̂ ^ (6.5) to 2,3,7.8-TCDD 

(6.8). In initial experiments, Zhou ef a/, examined the variation of partition 

coefficient with different 'pure' mineral particles and demonstrated that 

surface area was the key determinant for sorptive capacity. The next 

experiments dosed the pure mineral particle with humic acid to produce a 

range of mass fraction organic carbon ( f o J contents. This demonstrated the 

importance of organic carbon content, with partitioning coefficient increasing 
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with increasing f^. Finally, various different humic coatings were applied to 
demonstrate the importance of organic carbon composition in determining 
sorption preference. 

While the solid-solution partitioning of a hydrophobic organic compound 

between pure water and a homogenous mineral particle or single 

characterised organic carbon coating may be a relatively unambiguous 

relationship, the modification of both the solution and solid phases in a natural 

estuarine system significantly complicates the sorption behaviour. Although 

the literature reaches a clear consensus that physical and geochemical 

sorbent characteristics determine sorption behaviour, there is significant 

disagreement on the relative importance of the major controls. In particular, 

studies investigating total organic carbon as a sorption control have 

sometimes identified TOC as a major control (Karickhoff et a/., 1979; Lohse, 

1991; Means et a/., 1980; Paviou & Dexter, 1979; Preston & Raymundo, 

1993; Steen ef a/., 1978) but a similar number have observed no significant 

correlation between TOC and hydrophobic organic compound sorption 

(Broman etai, 1991; Duursma ef a/., 1989; Klameref a/., 1990; Pierard ef a/., 

1996). The most likely explanation for this apparent contradiction in 

observation is that the composition of organic matter is also of key importance 

(Grathwohl. 1990; Maruya ef a/., 1996; Murphy ef a/., 1994; Zhou ef a/., 

1995b). 

To develop the simple sediment-water phase model further, a number of 

additional phases have been defined. These are shown diagramatically in 

Figure 4.13. Three compartments have been identified; particulate, dissolved 

and colloidal. Operational definitions of the size range for each compartment 

are taken from Sigleo & Means (1990). It is common for the colloidal 

compartment to be ignored in sediment-water partitioning models but the 

properties of material in this compartment are often highly preferential for 

sorption of hydrophobic organic compounds (Baker ef a/., 1986; Burgess ef 
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a/., 1996; Sigleo & Means. 1990; Wijayaratne & Means, 1984) and are 

discussed in detail in Chapter 5. 
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Figure 4.13. Sediment-Water Partitioning Sorbent Phases (operational sizes 
from Sigleo & Means, 1990) 

This section focuses on the solid phase where the particulate compartment 

has been divided into two main phases; a base mineral particle phase, and an 

associated carbon phase. These phases have been characterised in terms of 

SSA, total carbon, organic carbon and apolar lipid content. The covariance 

between these physicochemical descriptors and concentrations of total 

PCDD, PCDF and PCB in the Clyde and Number estuaries is summarised in 

Tables 4.1 and 4.2 and discussed in detail in the following sections. 

Correlat ion Matrix - Linear Fit Values 
PCDD PCDF PCB Total C Org. C Lipid SSA 

PCDD 1.00 
PCDF - 1.00 
PCB - - 1.00 
Total C 0.35* 0.52 0.54 1.00 
Org. C 0.30* 0.52 0.57 - 1.00 
Lipid 0.21* 0.53 0.64 - - 1.00 
SSA 0.04* 0.01* 0.02* - - - 1.00 

Table 4.1. Con-elation Between PCDD, PCDF and PCB, and Sediment 
Characteristics in the Clyde Estuary f* - not significant, p> 0.1) 
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Correlation Matrix - Linear Fit Values 
PCDD PCDF PCB Total C Org. C Lipid 

PCDD 1.00 
PCDF - 1.00 
PCB - - 1.00 
Total C 0.68* 0.65* 0.12* 1.00 
Org. C 0.67* 0.61* 0.04* - 1.00 
Lipid 0.82 0.86 0.83 - - 1.00 

Table 4.2. Correlation Between PCDD, PCDF and PCB, and Sediment 
Characteristics in the Number Estuary (* - not significant, p> 0.1) 

4.4.1 Mineral Phase 

Surface area has been determined for sediments in each of the main study 

estuaries. The mineral base phase of the particle is subject to modification by 

absorbed and adsorbed coatings. Particles in the Number may contain fresh 

iron coatings (Turner et a/., 1991) which augment the specific surface area 

(17.9 ± 5.8 m^ g"^) of the underlying matrix. Organic carbon Is likely to reduce 

surface area by blocking the pore structure of the particle (Karickhoff, 1984, 

Glegg ef a/., 1987). This latter effect introduces a complication in considering 

the sorptive capacity of estuarine sediments where particles may have their 

surface area, and therefore their adsorptive capacity, reduced by organic 

carbon coatings which in turn increase absorbtion potential by providing 

apolar absorption sites. 

Some evidence of possible organic carbon pore blocking action in the Clyde 

Estuary is shown in Figure 4.14 where high surface areas are only seen for 

particles of relatively low lipid content. No significant correlations were found 

for any compounds with SSA. Figure 4.15 is illustrative of the relationships 

found (R^ values ranging from 0.01 to 0.04, p > 0.1). 
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Figure 4.14. Relationship between Lipid Content and Specific Surface Area in 
the Clyde Estuary (- — Arbitrarily Defined to Indicate Possible Pore 

Blocking) 
4500 

4000 

— 3500 
O) 

2 3000 
c 

I 2500 

(J £.\J\J\J 

o 
^ 1500 
Q 
O 
OL 1000 

500 

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 
Specific Surface Area (m^g-^) 

Figure 4.15. Relationship between PCDD and Specific Surface Area in the 
Clyde Estuary 

Although the importance of surface area has been demonstrated in laboratory 

Studies using pure mineral particles, it seems that the physical structure is of 

only minor importance in natural estuarine sediments where geochemical 

composition dominates. Based on the sorption model developed by Karickhoff 
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(1984), Curtis et a/. (1986) determined that mineral effects would become 
important at organic carbon content < 0.02% and compound log K^̂  < 4. On 
this basis, it is unlikely that any SSA relationships would be noted for 
organochlorine compounds and estuarine sediments (no samples analysed 
were < 0.02 % organic carbon content). This is exemplified by one specific 
sample in the Clyde Estuary at Station CS10. As Figure 4.16 shows, at this 
station the SSA was one of the highest recorded in the estuary (9.9 m^ g"^) but 
the lipid content was below detection limits. Visually, the sample consisted of 
a fine grey coloured clay which was possibly representative of substrate 
sediments uncovered following localised dredging. At this station, as shown in 
Figures 3.21-3.26, the concentration of PCBs and PCDD/PCDFs was very 
low compared with surrounding sediments indicating that the 
physicochemistry of the sediment at this station was not a preferential sorbent 
for chlorinated organics. 
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45 

Figure 4.16. Axial Profile of Lipid Content and SSA in the Clyde Estuary 

A number of studies have noted correlation between size fractions in bed 

sediments and hydrophobic organic compound concentrations (Delbeke et 

a/., 1990; Klamer et a/., 1990; Paviou & Dexter, 1979; Preston & Al-Omran, 

1989). However, it has been variously observed in natural systems that there 

is often a strong correlation between particle size fraction and the organic 
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carbon composition (Delbeke et a/., 1990; Lohse. 1991; Paviou & Dexter, 
1979) which again points to geochemical composition dominating over 
physical structure in estuarine and coastal environments. 

4.4.2 Geochemical Composition 

The carbon phase consists of two sub-phases; organic carbon, and inorganic 

carbon. In an estuary the inorganic carbon phase may be derived from marine 

sources e.g. marine carbonates, whereas the organic phase is likely to be 

derived from lithogenic or anthropogenic sources (Preston & Prodduturu, 

1992). The organic carbon geochemistry of natural sediments is extremely 

complex due to the huge number of organic carbon compounds, both 

anthropogenically and llthogenically derived, which contribute to the 

geochemical matrix (Karickhoff ef a/., 1979; Maruya et a/., 1996; Preston and 

Al-Omran, 1989; Zhou ef a/., 1995a, b). In an estuary, long sediment 

residence times permit significant modification of organic matter during 

sedimentation and burial. Such changes In organic matter during burial are 

summarised in Figure 4.17. 

SEDIMENTATION 
Living 

Organisms , Elimination of hydrophillc 
groups, increasing C and 
decreasing H and O 
content. 
Increasing molecular 
weight, polymerisation -
polycondensatlon -
aromatlsation 

DIAGENESIS 
(ANAEROBIC) 

Fulvic Acid, 
Humic Acid, Humins 

CATAGENESIS 

Kerogen 

Figure 4.17. Change of the Organic Matter During Burial (after Grathwohl, 
1990) 

Grathwohl (1990) examined K^̂ s for a number of chlorinated aliphatic 

compounds on sediments with widely ranging natural organic carbon contents 

arising from different stages of diagenesis and weathering. It was observed 
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that the relative amount of oxygen-containing functional groups increased or 
decreased with burial and weathering. High oxygen-containing functional 
groups resulted in an increase in the overall polarity of organic polymers in 
the organic matter with consequent reductions in sorption capacity. Although 
no detailed analysis of organic matter has been performed, it is hypothesised 
that organic material sedimenting in an estuary such as the Clyde may be 
significantly transformed over long time periods with consequent variations in 
its polarity and sorption capacity. 

In practice, these transformations would be extremely difficult to parameterise 

and predict. A simple two-compartmentalisation has been adopted between 

apolar organic carbon and polar organic carbon. On the broad principle that 

'like dissolves like', extremely lipophilic chlorinated organic compounds would 

be expected to have an affinity for apolar sorption sites and this is a 

consistently reported observation for hydrophobic organic compounds (Al-

Omran & Preston, 1987; Broman ef a/., 1991; Delbeke ef a/., 1990; Delbeke & 

Joiris, 1988; Preston & Al-Omran, 1989; Preston & Raymundo, 1993). This 

apolar organic phase is referred to operationally as the apolar lipid phase. 

The apolar lipid phase contains a complex cocktail of components including 

free sterols, fatty alcohols, free fatty acids, triacylglycerols, wax and sterol 

esters and hydrocarbons (Galois etal., 1996). 

Polar material in the solid phase may also be important for the sorption of 

hydrophobic organic compounds, in particular the presence of humic material 

which is a major feature of estuarine particles (Murphy et a/., 1990; Murphy 

a/., 1994; Zhou et a/., 1994). The definition of humic material is difficult due to 

the extreme heterogeneity in its composition (Gauthier ef a/.. 1987). Harvey & 

Boran (1985) described marine humic substances as "a macromolecule 

composed of amino acid-carbohydrate condensation products with some fatty 

acids attached through ester linkages along with a little bit of everything else 

in the sea " ! 
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One point of note, particularly in the light of the apolar lipid extractions 
performed under this study, is that humic substances would not generally be 
considered solvent extractable. In fact, the molecular structure of humic 
material will often consist of a hydrophilic molecule with apolar functional 
groups. This permits the material to act as a bridge between apolar organic 
compounds and the aqueous phase and underlines its potential importance in 
partitioning behaviour (Chiou et a/., 1986; Gauthier ef a/., 1987; McCarthy & 
Jimenez, 1985; Zhou ef a/., 1995a). The formation of humic acids is not well 
understood but work carried out by Harvey and co-workers and summarised 
in Harvey & Boran (1985) proposes a marine lipid as a precursor to a marine 
fulvic acid which is in turn a precursor to a marine humic acid. In an estuary 
system, lipid material may degrade to humic material and in doing so, change 
the sorption potential for hydrophobic organic compounds. 

Carbon Geochemistry in the Number and Clyde Estuaries 

Under this study, the nature of the carbon phase has been analysed to 

characterise the particles in the study estuaries and identify the impact on 

sorptive capacity. As far as possible, samples analysed for chlorinated 

organic compounds were also analysed for total carbon, total organic carbon 

and apolar lipid content. 

Examination of the relationship between the carbon phases shows marked 

differences between the particulate carbon chemistry of the two main study 

estuaries. Figure 4.18 shows an extremely strong correlation (R^ = 0.999, p < 

0.001) between total carbon and total organic carbon in the Clyde Estuary. 

From these analyses, it appears that almost all (98 ± 6%) of the carbon in 

Clyde Estuary sediments sampled during this study is of organic origin. In 

contrast, the organic component of carbon in Humber sediments is only 52 ± 

25 %. A similar analysis performed for a sediment sample from the Mersey 

estuary indicated that organic carbon content represented 54% of the total 

carbon content (Al-Omran & Preston, 1987). 
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Figure 4.18. Relationship between Total Carbon and Total Organic Carbon in 
Clyde and Humber Estuary Sediments 

Figure 4.19 shows the relationship between apolar lipid content and total 

organic carbon in the study estuaries. No correlation between organic carbon 

and apolar lipid content is observed in the Humber. In the Clyde there is some 

correlation with an indication that sediments with a high total organic carbon 

content have a disproportionately high apolar lipid content. The mean lipid 

content of total organic carbon Is 7.7 ± 7.5% in the Clyde and 9.88 ± 10.23 % 

in the Humber. This compares with 15% lipid in TOC for a Mersey sediment 

sample (Al-Omran & Preston, 1987) and 26 ± 23 % in nine Baltic Sea 

samples (Broman et a/., 1991). Galois et a/. (1996) in a comprehensive 

analysis of lipid biomarkers in the Marennes-OI6ron Bay, France, found that 

on average over a year. 10.5% of particulate organic carbon in SPM 

consisted of lipid material. Of this. 43 % on average consisted of apolar lipid 

content. 
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Figure 4.19. Relationship between Total Organic Canbon and Apolar Lipid 
Content in Clyde and Humber Estuary Sediments 

PCDD and PCDF Covariance with Organic Carbon 

Total PCDD and PCDF covariation with each defined carbon compartment 

(total carbon, total organic carbon and apolar lipid content) has been plotted 

for the Humber Estuary In Figure 4.20 a-c. 
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Figure 4.20. Covariation of total PCDD and PCDF with (a) Total Carbon, (b) 
Total Organic Carbon, and (c) Apolar Lipid Content in the Number Estuary 

Correlations between total PCDD/PCDF and total carbon and total organic 

carbon are similar but not significant (R^ = 0.68, PCDD; 0.65, PCDF, p > 0.1 

for total carbon and = 0.67, PCDD; 0.61, PCDF, p > 0.1 , for total organic 

carbon). However, significant correlations (p < 0.001) were found for apolar 

lipid content (R^ = 0.82, PCDD; 0.86, PCDF) indicating that an adequate 

description of organochlorine sorption preference in this estuary requires a 
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distinction between polar and apolar particulate organic carbon phases. This 
has been further tested by co-plotting total TCDD and OCDD against apolar 
lipid content. From the discussion in section 4.3, a weaker correlation might 
be expected for lower chlorinated homologs and this is borne out in Figure 
4.21 although the difference in correlation coefficients does not merit a 
significant conclusion to be drawn. 
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Figure 4.21. Covariance between Apolar Lipid Content and TCDD (F^ = 0.66, 
p < 0.001), OCDD (R^ = 0.78, p < 0.001) in the Humber Estuary 

In the Clyde Estuary similar analyses of the covariance between PCDD and 

PCDF and particulate carbon phases show weak correlations (R^ varying from 

0.21 - 0.53), particularly for PCDD. This is exemplified in Figure 4.22 which 

shows a plot of all samples analysed for total PCDF in the Clyde Estuary but 

no significant correlation. Zhou et a/. (1998) observed that organic carbon 

covariance with PAHs was enhanced when samples were grouped according 

to degree of contamination. Figure 4.23 shows the covariance between total 

PCDF and TOC for samples with PCDF concentrations < 1600 pg g V 

The Clyde Estuary is characterised by higher lipid content (4.2 ± 3.8 mg g'^) 

compared with the Humber Estuary (1.4 ± 2.9 mg g"^). It is hypothesised that 

particulate matter in the Humber Estuary is lipid-limited so that apolar organic 
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compounds must seek limited preferable sorption sites for long tenm 
adsorption. Organochlorine compounds will tend to cycle in the estuary 
system until securing permanent sorption sites. In the Clyde by contrast, there 
is an abundance of lipid material which may irreversibly absorb highly 
lipophilic compounds soon after they enter the system. This would imply that 
preferential sorption sites are identified by geographical proximity to sources 
and that there is less cycling of compounds in the system. 
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Figure 4.22. Total PCDF Covahance with Total Organic Carbon (f^-0.24, p > 
0.1). All Samples in the Clyde Estuary 
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Figure 4.23. Total PCDF Covahance with Total Organic Carbon (f^-0.52, p < 
0.01). Samples with total PCDF < 1600 pg gr' in the Clyde Estuary 
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PCS Covariance with Organic Carbon 

In the Humber Estuary there is no significant correlation between total PCB 

and either total carbon (R^ = 0.12, p > 0.1) or total organic carbon (R^ = 0.04, 

p > 0.1). Hovtfever, there Is strong correlation with apolar lipid content shown 

in Figure 4.24a. This underlines the Importance of apolar lipid as the key 

organic carbon phase in understanding the sorption behaviour of these OCs. 
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Figure 4.24. Covariance between Total PCB and Apolar Lipid Content in the 
(a) Humber Estuary (F^ - 0.83, p < 0.001) and (b) Clyde Estuary (R^ = 0.63, p 

< 0.001) 
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In the Clyde Estuary correlations between PCB and total carbon, total organic 
carbon and apolar lipid content are similar (R^ = 0.54, 0.57 and 0.64 
respectively with p < 0.001) but Increasing in correlation with the apolarlty of 
the carbon phase (Figure 4.24b). The association of PCB with lipid content 
was stronger than PCDD and PCDF in the Clyde Estuary. 

4.4.3 Particle Association Models 

A number of workers have proposed sorption models to describe the natural 

partitioning behaviour of hydrophobic compounds (Adriaens et a/., 1995; Di 

Toro & Horzempa, 1982; Di Toro et a/., 1986; Karickhoff, 1984; Preston & 

Raymundo. 1993; Wu & Gschwend. 1986). These models describe the 

association of hydrophobic compounds Into various particle phases over 

different timescales. 

Preston & Raymundo (1993) In studies of Linear AlkyI Benzene (LAB) 

association with estuarine sediments discriminated between contaminant 

Incorporated within the bulk of the particle (particle volume related) and 

therefore possibly derived directly from the source, and contaminant 

associated with the particle surface (surface area related) and more likely to 

have adsorbed to particles within the wider environment. By relating these 

processes to geometrical parameters, two relationships were established; 

For bulk association, 

[Particulate Contaminant] oc [Lipid] 

For surface adsorption, 

log [Particulate Contaminant] x log [Lipid] 

This model has been tested by comparing linear particulate contaminant-llpid, 

and log-log particulate contaminant-llpid relationships. Figure 4.25 a-c show 

example log-log relationships for the Humber Estuary. These can be 

^ 25 A.O.Tyler, PhD Thesis 



The Distribution and Reactivity of Organochlorines in Estuaries 

compared with Figure 4.20c and 4.24 which show the linear relationships. 
Table 4.3 compares R^ values for the linear and log-log relationships, and 
provides the gradient and intercept for the significant log-log relationships. 
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Figure 4.25. Log. Lipid Content vs (a) log. PCDD, (b) log. PCDF, (c) log. PCB 
in the Number Estuary 

Estuary Compound log P - log Lipid linear P - Lipid Estuary Compound 

P a b P 

Humber 
PCDF 0.70 <0.01 0.80 2.58 0.86 < 0.001 

Humber PCDD 0.60 <0.02 0.88 2.91 0.82 < 0.001 Humber 
PCB 0.52 < 0.05 0.90 1.48 0.83 < 0.001 

Clyde 
PCDF 0.53 <0.01 0.67 2.21 0.53 < 0.01 

Clyde PCDD 0.18 ns 0.42 2.77 0.21 ns Clyde 
PCB 0.78 < 0.001 0.98 1.61 0.64 < 0.001 

Table 4.3. Correlation Comparison for Linear and Log-log. Relationships 
between Lipid and Contaminant Concentration (P). ns - not significant. 

Significant correlations are found between PCDD, PCDF, PCB and lipid 

content in both estuaries for both relationships with the exception of PCDD in 

the Clyde Estuary. In the Humber Estuary the linear relationship provided a 

better fit than the log-log relationship whereas there was little difference in the 

Clyde. The implication, at least for the Humber Estuary, is that chlorinated 

organic compounds in the estuary may be associated with source derived 

particulate matter where the contaminant is inherently bound into the particle 

interstices or particle-associated organic matter. This is consistent with the 

homolog profile analysis that indicated atmospheric deposition as the 
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predominant source to the Number. One further point of note is that the 
gradient (a) and intercept (b) for the log-log relationships are similar and the 
gradient is close to that obtained by Preston & Raymundo (1993) for LABs 
and with the theoretical gradient of 2/3 predicted by the surface association 
model. 

The surface association model described by Preston & Raymundo (1993) is 

often presented as a two-stage adsorption process. The first stage consists of 

a physical adsorption to the particle which is a function of the available 

sorption sites on the particle surface. Adsorption rates and extents are likely 

to be related to the physical properties of the particles (i.e. specific surface 

area) and the availability of suitable particles (i.e. concentration of particles in 

the solute - see Chapter 5), and exist in a relatively reversible state of 

sorption. In the second stage, over longer timescales, the hydrophobic 

organic compound is adsorbed into lipophilic material within the particle matrix 

where it remains in a relatively irreversibly sorbed state. The extent and 

kinetics of this stage are a function of the polarity of the particle matrix and 

the resistance of the apolar sites to subsequent modification (e.g. 

degradation). 

The kinetics of the sorption process has been described as a two-stage 

process with a rapid initial adsorption within minutes, followed by a slower 

absorption over a period of hours -> days (Di Toro & Horzempa, 1982). This 

was summarised by Karickhoff (1984) by defining two components; a rapidly 

adsorbed 'labile' fraction (Pi), and a 'non-labile' fraction (P^)- The labile 

component is assumed as equilibrium (K,) with the non-labile fraction treated 

as a mass transfer coefficient (K2); 

C < - ^ ^ P i < - ^ ^ P n , 4.1 

There are problems in reconciling such sorption models with the observations 

of bed sediment adsorbed OCs in natural systems. The first obstacle is that. 

^ 2Q A.O.Tyler, PhD Thesis 



The Distribution and Reactivity of Organochlorines in Estuaries 

in contrast to marine metal chemistry, there are no analytical methods 
established to discriminate between the labile and non-labile components. 
The second issue relates to timescale. The adsorption kinetics of stage 1 and 
2 are not coincident with sediment residence timescales within an estuarine 
system (years decades) or the timescales for removal of high molecular 
weight compounds from the system (years decades depending on 
compound, Adriaens et a/., 1995). In sampling bed sediments for high 
molecular weight compounds a temporally integrated sample is analysed 
where, although some exchange processes including surface adsorption of 
'new' contaminant and migration into the particle matrix may be in progress, a 
high proportion of the sorbate consists of absorbed contaminant highly 
resistant to desorption processes. This quasi-steady state accounts for the 
dominance of physical estuary processes in distributing hydrophobic 
contaminants in an estuary and explains the homogeneity in distribution 
observed for the Humber with dynamic mixing conditions, compared with the 
heterogeneity of distribution in the Clyde resulting from the selective 
deposition of sediments of differing geochemical characteristics on a 
geographical basis. 

Although physical processes are assumed to dominate the distribution of 

chlorinated organics in estuaries, some release of compounds may be 

expected. As already discussed, solubilisation and volatilisation may account 

for some desorption of the more polar compounds. Other compounds may 

rely on the breakdown of the sorbent to promote a search for more 

preferential sorption sites. This has been reported by Delbeke et a/. (1990) 

and Delbeke & Joiris (1988) who highlighted the temporary role of the biota 

as a compartment for hydrophobic contaminant sorption. The lipid material 

within particle matrices identified as the primary sorption site for apolar 

compounds can also be considered as a temporary compartment as there are 

established degradation pathways for this material (Harvey & Boran, 1985). It 

can be hypothesised that chlorinated organic compounds would be released 

during breakdown of the apolar matrix. This would provide a continually 

^ 2g A.O.Tyler, PhD Thesis 



The Distribution and Reactivity of Organochlorines in Estuaries 

cycling proportion of the chlorinated organic load within the estuary. However, 
in comparison with the reservoir of chlorinated organic compounds held in 
sedimentary repository this would only represent a relatively small fraction 
and would be unlikely to significantly influence the observed associations with 
bed sediments. 

4.4.4 Normalised Distributions 

The preceding analysis has established apolar lipid content as the primary 

control on chlorinated organic compound distribution. On this basis, apolar 

lipid content has been selected as an appropriate normalisation parameter to 

assist in removing sedimentary variability from distribution analysis of OC 

occurrence. Lipid normalised PCDD, PCDF and PCB spatial and axial 

distributions have been plotted. Where lipid content falls below 0.5 mg g'\ 

data has not been plotted. Such low content is close to the limit of detection 

and has the potential effect of distorting normalised values. 

Spatial distributions of raw and lipid normalised bed sediment concentrations 

are shown in Figures 3.20, 3.22 and 3.24 (Clyde Estuary) and 3.28, 3.30 and 

3.32 (Number Estuary). Axial profiles of OC concentration for sub-tidal 

sediments on a lipid normalised basis are shown in Figures 4.26 and 4.27 

(Clyde Estuary) and 4.28 and 4.29 (Number Estuary). The Clyde Estuary 

distributions can be compared with raw distributions in Figures 3.21. 3.23 and 

3.25. 
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Figure 4.26. Axial Distribution of Lipid Normalised PCDD and PCDF in the 
Clyde Estuary 
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Figure 4.27. Axial Distribution of Lipid Normalised PCS in the Clyde Estuary 

In the Clyde Estuary, the normalised distribution shows significant differences 

to the raw distribution. PCDD and PCDF distributions both indicate low 

concentrations from the weir to 10km in contrast to the peak immediately 

below the weir and the generally rising concentrations in the raw data. This 

implies that the concentrations measured in this upper estuary region are a 
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function of the sediment type rather than significant sources in the vicinity. 
Elevated concentrations are still evident at between 10 and 20 km from the 
weir indicating that this is probably an area where sources exist, possibly 
attributable to the MSW in this area. The peaks in concentration in the vicinity 
of the Ironotter outfall are also evident in the normalised profile indicating 
sources present in this area. 

The lipid normalised PCB distribution is more complex. A single high 

concentration sample is still evident immediately below the weir. There is no 

evidence of elevated normalised PCDD/PCDF concentrations at this site 

which indicates that a specific point source of PCBs may be responsible for 

this occurrence. Concentrations in the middle and lower estuary are fairly 

homogeneous with the exception of a number of isolated elevated 

concentrations. These locations have little coincidence with stations showing 

elevated PCDD/PCDF concentrations. Similarly, there is no evidence of 

elevated concentrations of PCB in the vicinity of the Ironotter Point outfall 

where PCDD/PCDF concentrations are high. One further point of note is that 

the normalised inter-tidal samples are generally very low, particularly for 

PCBs. Inter-tidal areas, located at the periphery of the main flow channels 

and subject to lower current flows, are often regions of accretion of fine 

sediments. From this analysis it seems that sediment type is the major 

determinant of OC content in these sediments rather than sources directly to 

these regions. These sediments may have originated close to a point source 

and then been selectively distributed into these areas by physical transport 

processes. 
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Figure 4.29. Axial Distribution of Lipid Normalised PCB in the Number Estuary 

In the Humber Estuary, the effect of lipid normalisation is to reduce the spatial 

variation in PCDD, PCDF and PCB concentrations in sediments. Figures 

3.28, 3.30 and 3.32 clearly show the effect of normalisation in comparison 

with raw values where the fairly even distribution is further homogenised by 

the normalisation. It has already been concluded from the homolog analysis 
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that the dynamic mixing conditions in the Number have resulted in an even 
distribution of compounds In the estuary. Similar effects have been observed 
in studies of trace metal distribution in the Number Estuary. Grant & 
Middleton (1993) studied metals distribution which, following nonnalisation, 
were found to be uniform despite the presence of a number of significant 
point sources within the estuary. This led to the conclusion that the sediments 
in the Number Estuary represented a 'single well mixed pool'. 

4.5 Summary 

This Chapter has considered the three major controls on OC distribution in 

estuaries; source, compound physicochemistry and sorbent geochemistry. 

Neither of the study estuaries has received major known sources of OCs in 

the past and although some evidence of point sources exist in the Clyde 

Estuary, the main source to the Clyde, Number and Dee estuaries appears to 

be atmospheric deposition. The influence of compound physicochemistry, 

although fundamentally of key importance, cannot be easily separated from 

the other controls in particular the geochemistry of the sorbent. Physical 

characteristics of the sorbent were found to be of little importance but the 

organic carbon fraction, in particular the apolar lipid content, was found to be 

of major significance in determining sorption preference. Although 

determination of the preferred sediments for sorption was a function of 

sediment characteristics, the geographical occurrence has been found to be 

strongly dominated by the mixing characteristics of the estuary. The dynamics 

of the Number Estuary resulted in extensive mixing of sediments and a 

consequent homogenous distribution of contaminants within the estuary 

whereas the Clyde Estuary's relatively quiescent environment tends to 

selectively distribute sediment-bound OCs within geographically distinct 

zones. 

Dynamic sorption models are not generally effective in describing the 

observed bed sediment associated partitioning due mainly to the 

inconsistency between dynamic sorption timescales and the residence times 
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of estuarine sediments and persistency of adsorbed OCs. However, although 
deposited sediments hold the vast majority of the estuarine inventory of OCs, 
there remains a key requirement to understand and model the dynamic 
sorption behaviour of these compounds to suspended particulate matter. This 
compartment represents a major pathway for exposure to biota and release 
into the wider environment and is therefore of management concern. The next 
Chapter seeks, through laboratory experiments, to further understanding of 
the key processes influencing sorption behaviour and to parameterise this 
behaviour in sorption models. 
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Chapter 5. Laboratory Investigation of Sorption 
Behaviour 

5. Laboratory Investigation of Sorption Behaviour 

Chapter 4 discussed the key controls on chlorinated organic compound 

sorption in the selected estuaries based on analysis of bed sediments. This 

was achieved by determining the covariance of solid phase sorption with 

sediment properties. The transport mechanism for hydrophobic organic 

compounds in an estuary is predominately by advection and cycling of SPM. 

In order to better understand the solid-solution partitioning process in 

estuaries it is necessary to study the partitioning behaviour between natural 

suspended sediments and waters. This chapter presents the results from 

laboratory experiments designed to evaluate the sorption behaviour of PCBs 

and dioxins onto natural estuarine sediments. 

5.1 Radioisotope Sorption Studies 

The use of radioisotopes in environmental science is widespread (Caron et 

a/., 1985; Goulding, 1986; Horzempa & Di Toro, 1983; Larsson, 1983; Voice 

ef a/., 1983; Rawling et a/., 1998). These studies generally involve the 

introduction of a radiolabeled analog of the compound under study to a 

reactor maintained under carefully controlled laboratory conditions. For the 

type of compounds under study in this project, this label would usually be '̂*C. 

The environmental conditions in the microcosm can be controlled and 

monitored to study the behaviour of the compound under these synthetic 

conditions. In such laboratory experiments, use of radiolabelled compounds 

have a number of key advantages; 

• Chromatographic or spectrometry techniques are unnecessary, resulting in 

reduced processing of samples and allowing large numbers of samples to 

be analysed for each experiment. 
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• Detection limits are low, limited only by the background activity count 
detected by the scintillation counter. 

• Possibilities for contamination are greatly reduced. 

There are also disadvantages which must be taken into account when 

designing and executing experiments; 

• It is not possible to monitor degradation during the experiment as the ^"C 

label will be counted whether it is still associated with the precursor 

compound or with some degradation by-product. In this study the relatively 

short timescales for experiments and the high molecular weight 

compounds used mitigate against this problem. 

• Although impurities in the ^'*C-labelled compound are small; if these 

impurities have different properties to the target compound (e.g. much 

higher solubility) they can significantly affect the apparent partitioning (Gu 

efa/. , 1995). 

With these factors in mind, the development of an experimental protocol was 

undertaken. 

5.2 Experimental Development 

5.2.1 Objectives 

Following the study of sorption preferences for compounds in bed sediments, 

the following objectives were established for the sorption experiments; 

• Estimation of compound solubility in natural and pure water. 

• Study of the effect of particle characteristics on partitioning coefficient. 

• Study of the variation of partition coefficient with a natural estuarine 

salinity, SPM concentration and particle type gradient. 
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Experimental development was conducted over a 4 month period to refine the 
method and ensure its suitability for the planned study. A thorough review 
was conducted initially to examine the approaches already in use. Active use 
of radiolabelled compounds in laboratory environmental sorption experiments 
started in the early 1980s (Horzempa & Di Toro, 1983; Larsson, 1983; Voice 
ef a/., 1983). The general experimental methodology was to add a spike of a 
radiolabelled stock compound to a multi-phase (sediment-water, sediment-
water-air) system usually held in a small receptacle such as a centrifuge tube. 
The sample was equilibrated for a fixed period of time and then separated. 
Separation was usually achieved by centrifugation and the resulting phases 
either added directly to a scintillant for counting on a scintillation counter or, in 
the case of particulate matter, filtered and added to a scintillation cocktail. 
Compound adsorbed to the glass walls of the receptacle was also extracted 
with hexane and added to scintillant for counting. Following counting, the 
counts for each phase were converted to mass via the specific activity of the 
compound which then allowed calculation of the partition coefficient (Voice ef 
a/., 1983). Other techniques have involved variations on this basic design 
including use of dialysis membranes for solid-water separation to avoid 
centrifugation (Brunk etal., 1997; Landrum etal., 1984). 

5.2.2 Experimental Method 

The method chosen for development follows closely the methods of Caron ef 

a/. (1985), Means (1995), and Zhou & Rowland (1995). It has subsequently 

been further developed by co-workers continuing the studies in this field 

(Rawling ef a/., 1998). The initial objectives in the development of a robust 

technique were assurance that the mass balance of partitioning between 

water, sediment, and the reactor was quantified, and that the experiments 

produced readily repeatable results. 

Initially the method was developed using 9-methylanthracene which was 

readily available prior to delivery of the organochlorine compounds. 9-

A.O.Tyler. PhD Thesis 
1 o o 



The Distribution and Reactivity of Organochlorines in Estuaries 

methylanthracene is a compound of higher solubility than most 
organochlorine compounds, so although its use allowed the development of 
the basic experimental design, it did not assist in addressing one of the 
fundamental problems associated with such experiments conducted with 
highly hydrophobic compounds, namely adsorption to the walls of the glass 
reactor. This additional phase Is a major consideration in the experimental 
design and two approaches were tested to assess the optimum method for 
determining the sediment-water partition coefficient. 

Tesf Substances 

Two compounds were selected for use in the experiments; ^'*C-[UL]-2,2',5,5'-

tetrachlorobiphenyl (2.2'.5.5'-TCB - lUPAC 52), and ' 'C-[UL]-2,3.7,8-

tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). These compounds were selected 

for a number of reasons; 

• Contrasting K^̂  and solubility values (see Table 5.1 below) 

• Analysed as part of the bed sediment study 

• Most widely studied of the polychlorinated biphenyl and dioxin compounds 

permitting maximum inter-comparability with other studies 

2,2',5,5'-TCB 2,3,7,8-TCDD 
Manufacturer Sigma Chemical Co. Radian Corporation 
Specific Activity 13.32 mCi mmol'^ 33 mCi mmol"^ 
Purity >98% >99% 
Concentration 21.9 ^ig 1-̂  18.5 ng r 
Molecular Mass 292 320 
log octanol-water partition 
coefficient 

5.84" 6.80*^ 

Solubility @ 25°C 25.4 \xg V ^ 0.019 ^ig 
'Hawker & Connell (1988), 'Rapaport & Eisenrich (1984), *^Shui etal. (1988) 

T"ab/e 5.1. Properties of ^"C-labelled Compounds Used in Sorption Studies 

The stock of 2.3,7,8-TCDD was obtained from the MAFF CSL Food Science 

Laboratory in Norwich. The 2,2',5,5'-TCB was obtained directly from Sigma 
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Chemical Co. The purity of both compounds was checked by the supplier 
prior to despatch. Both compounds were supplied in toluene and upon 
receipt, diluted stock solutions of both compounds were made up in hexane. 
The activity of the stock solution was regularly checked by injection of a stock 
spike into liquid scintillant and counting on the scintillation counter. 

At all times stock solutions were kept refrigerated in the dark to minimise the 

potential for bacterial and photodegradation (Marple et a/., 1986). All the 

experiments were conducted over a 9 month period from first obtaining the 

radiolabelled compounds. 

Spiking and Equilibration 

In previous and subsequent work the preparation of the reactor has been 

seen to be important in minimising adsorption of highly hydrophobic 

compounds to the glassware (Hunter et a!., 1996; Rawling et a/.. 1998). 

Hunter ef a/. (1996) found that up to 80% of 2,2'.5,5'-TCB could be lost to 

glassware if cleaning methods were not adequate. For these studies, new 

centrifuge tubes were used. Before each set of experiments these were 

soaked in a Decon 90 solution, rinsed with deionized water, dried in a 

constant temperature oven at 2 0 0 X for at least 4 hours and then hexane 

rinsed prior to use. 

The introduction of the radiolabelled spike is another important consideration 

in initiating experiments. The general approach taken usually involves the 

addition of the spike in solvent which is then evaporated prior to addition of 

the sorbent matrix (Means. 1995; Walters & Guiseppi-Elle, 1988; Zhou ef a/., 

1995a). In this study a 25 |il spike containing 0.02 jiCi of compound was 

placed on the wall of an empty tube by microsyringe. The hexane carrier 

solvent was then evaporated under a laminar flow hood. 
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Once the spike was successfully transferred to the centrifuge tube, a 20 ml 
aliquot of the suspended sediment-water sample was added to the tube. The 
top of the tube was sealed with a hexane-washed glass stopper. The tubes 
were then placed on a shaker for 12 hours during which the SPM was 
maintained in suspension. After reference to the literature, 12 hours was 
considered a reasonable time for such hydrophobic compounds to reach an 
apparent equilibrium state (Cornelissen ef a/., 1997). Karickhoff (1984) 
reported sorption of polynuclear aromatic hydrocarbons reaching apparent 
equilibrium within a 'few hours'. Di Toro & Horzempa (1982) report sorption of 
a hexachlorobiphenyl to various sorbents, including sediments, within 
'minutes to hours' and a number of radiochemical sorption studies have 
adopted incubation times of < 24 hours (Means ef a/., 1980; Rawling ef a/.. 
1998; Voice efa/. . 1983). 

Phase Separation 

The separation of the phases following incubation is of major importance in 

determining the sediment-water partition coefficient. The operational definition 

of the phase separation process and its relevance to actual environmental 

conditions are discussed below. Two general approaches to phase separation 

have been employed previously; direct counting of sediments, and calculation 

of adsorbed mass by mass balance following determination of the glass-

adsorbed and solute mass. 

Direct counting of sediments follows two general approaches. The less 

common approach was adopted by Voice ef a/. (1983) who filtered solids 

following centrifugation to remove a sample of supernatant, and added the 

filter paper directly to the scintillation vial. Hegeman ef a/. (1995) centrifuged 

samples, withdrew the supernatant and added the particles to MeOH for 

direct extraction. Hunter ef a/. (1996) followed a similar approach by 

extracting PCB directly from sediments with acetone at the end of the 

equilibration. The alternative calculation of the mass balance to determine 
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solid phase concentrations has been used widely (Means. 1995; Murphy ef 
a/., 1994; Rawling ef a/., 1998; Walters & Guiseppi-Elle, 1988). 

During the experimental development, a method of direct extraction of 

sediments was attempted initially. Following centrifugation the supernatant 

sample was taken (4 ml), followed by removal and disposal of the remainder 

of the supernatant. Hexane was then added to the tube which was placed in a 

shaker for 12 hours to extract both the sediments and the glass wall adsorbed 

compound. Separately the glass wall adsorbed mass was determined in 

experiments conducted in the absence of particles, and subtracted from the 

solid + glass wall mass to provide the solid phase adsorbed mass of 

compound. Although this technique seemed to work well with the experiments 

conducted with 9-methyl anthracene (mean K̂ j = 1938, n=8) where 

reproducibility was excellent (standard deviation ranging from 1.1 to 2.8 % ) , 

once applied to the highly hydrophobic 2,3,7,8-TCDD replicate percentage 

standard deviations rose to between 20 and 114 %. There are probably 

several reasons for this; 

• The glass wall adsorbed fraction was taken as a mean from the 

experiments in the absence of particles. There was significant variation in 

the measurement of this fraction (63 % standard deviation for n=3). 

• The glass wall adsorption experiments were conducted in the absence of 

particles which would result in modified thermodynamic equilibrium 

conditions. 

• It was extremely difficult experimentally to avoid take-up of particles in the 

pipette when decanting the supernatant from the centrifuge tubes. With the 

high solubility 9-methyl anthracene this made significantly less difference 

than with the low solubility 2,3,7,8-TCDD. 

As a result of the unsatisfactory results from this approach the method was 

modified. Thus, following removal of the supernatant sample, the particles 

were discarded and the glass wall was extracted with 4 ml of hexane with the 
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centrifuge tube placed back on the shaker for a further 12 hours to ensure 
that the wall-adsorbed compound was sotubilized by the hexane. A 2 ml 
sample of the hexane was then added to liquid sclntillant for counting. Table 
5.2 shows comparative percentage standard deviations for the two methods 
applied to the same set of samples. The values for 2,3,7,8-TCDD are still 
fairly high (31 - 59 %) but this is attributed to the general difficulties in working 
with this very low solubility compound. Percentage standard deviations for 
experiments using 2,2',5,5'-TCB were routinely < 20 %. It was decided at an 
early stage, based on these method development results, that all samples 
would be analysed at least in triplicate for all experiments. 

Sample No. % Standard Deviation 
Direct Particle 

Extraction (n=2) 
Glass Wall 

Extraction (n=4) 
1 105 31 
2 20 59 
3 47 17 
4 98 52 
5 114 42 

Table 5.2. Comparison between Standard Deviations for 2,3,7,d-TCDD 
obtained from Alternative Extraction Methods 

The centrifugation of samples was also carefully considered. Servos & Muir 

(1989) and Gschwend & Wu (1985) both observed little difference in 

values obtained from different centrifugation speeds and times, particularly at 

low suspended sediment concentrations (< 10 mg 1'̂ ). Suspended sediment 

concentrations used In this study were well below this concentration. In this 

study therefore the samples were centrifuged for 30 minutes at 3,000 rpm. 

The centrifuge tube was loosely covered with a hexane washed foil cap to 

prevent entry of extraneous material and reduce any evaporative loss. To 

what extent this centrifugation process removes so-called 'Non-Settling 

Particles' cannot be determined and the implications of this are discussed 

later. 

143 A.O.Tyler, PhD Thesis 



The Distribution and Reactivity of Organochlorines in Estuaries 

Mass Determination and Partition Coefficient Calculation 

Following phase separation, each pair of solute and glass-wall extracted 

samples were added to a counting vial containing 10 ml of Ultima Gold 

scintillation cocktail (Canberra Packard). This was then counted on a Philips 

4700 scintillation counter. Prior to commencement of the experiments, 

quench curves had been prepared for both compounds for hexane and water. 

These were prepared by adding a known concentration spike of the target 

compound to a counting vial containing the scintillation cocktail. A quenching 

agent (carbon tetrachloride, CCI4) was then added to each vial at different 

concentrations to provide a range of quenching standards which were then 

counted on the scintillation counter. The resulting counting efficiency was 

calculated by first subtracting the background count, and then expressing the 

counts per minute (CPM) as a fraction of the known disintegrations per 

minute (DPM) of the reference spike. The quench curves were prepared by 

plotting the counting efficiency against the External Standard Channels Ratio 

(ESR) used by the instrument. From the ESR value, the quench curve was 

used to determine the counting efficiency. Example quench curves for 

2,2,5,5-TCB in hexane and water are shown in Figure 5.1 a and b. 

s 0.71 

1.2 1.4 1.6 1.8 
External Standard Channels Ratio (ESR) 
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lU 0.7 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 
External Standard Channels Ratio (ESR) 

1.9 

Figure 5.1. Quench Curves for2,2',5.5'-TCB in (a) Water Matrix, and (b) 
Hexane Matrix 

Samples were counted for 20 minutes or until two standard deviations from 

the mean count was less than 1%. Following counting, the CPM recorded by 

the scintillation counter were converted to DPM using the quench curves to 

provide an efficiency and applying the efficiency factor as follows; 

DPM = CPM. Efficiency 5.1 

The absolute DPM was then calculated by subtracting the background DPM 

from the DPM. Finally, the K̂ , was calculated as follows; 

Kd = 
(As - (Ac + Aw) V 

Ac m 
5.2 

where P is the particulate concentration, C is the dissolved concentration, Ag, 

Ac, and A ^ are the activities of the original spike, supernatant and wall 

adsorbtion respectively, V is the dissolved phase volume (ml) and m is the 

particulate mass (mg). Experiments were conducted to measure recovery of 

the '̂̂ C spike with recoveries measured at 78 ± 15% based on 10 samples. 
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It should be noted that this study determined single point values rather 
than repeating each point on the mixing gradient for a range of added spikes 
masses to produce a sorption isotherm. The assumption inherent in this 
approach is that the empirical Freundlich equation (Equation 5.3) widely used 
to describe the sediment-water partitioning, has a value of n = 1; 

P = Kd. C'^ 5.3 

such that, 

P = K^. C 5.4 

A wide range of sorption experiments using hydrophobic organic compounds 

has shown this to be a reasonable assumption (Horzempa & Di Toro, 1983; 

Means & Wijayratne, 1982; Rawling et a/., 1998; Voice ef aA, 1983; Walters & 

Gulseppi-Elle, 1988) and where non-linear isotherms have been noted, this 

has arisen in experiments where sorbate concentrations far higher than those 

normally encountered in environmental media have been used (Grathwohl, 

1990; Karickhoff et a/.. 1979). Assuming linear isotherms permitted a far 

larger number of samples to be processed than would have been possible if 

sorption isotherms were produced for each sample. 

5.2.3 Study Sites, Sample Collection and Mixing 

Four study sites were chosen for sorption experiments. Two of these, the 

Number and Clyde estuaries, were chosen as they were the primary sites for 

the distribution studies. Two others, the Dart and Beaulieu estuaries were 

chosen as sites of a convenient size and proximity to the laboratory to permit 

rapid processing of samples after collection. The Dart Estuary is a small 

estuary located in South Devon with its source on Dartmoor, draining 

moorland and agricultural land. The Beaulieu Estuary is another small 

estuary, situated in Hampshire and draining the heath and marshland of the 

New Forest. It is reported to contain relatively high concentrations of DOC 
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(Hunter & Liss, 1982) and Fe (Holliday & Liss, 1976). There is no knowledge 
of any studies of OCs in either estuary. 

Immediately prior to each batch of experiments (usually less than 48 hours), 

the estuary was visited and two large volume samples taken (typically 20 

litres) from the River End Member (REM) and the Marine End Member 

(MEM). Depending on the location, these were either taken from the 

bank/shore, a bridge, or from a vessel and stored in a plastic carboy. A 

portable salinometer was used to check the salinity before sampling to ensure 

the maximum range of salinities possible. Upon return to the laboratory, a 

sub-sample was filtered to obtain an accurate measure of the SPM 

concentration and the salinity was re-checked. During the duration of the 

study, the following sampling surveys were conducted; 

Date Estuary 
September 1993 Tamar* 
January 1994 Clyde 
February 1994 Number 

Clyde 
March 1994 Number 

Beaulieu 
March 1994 Dart X 2 
April 1994 Clyde 

*Only used during method development 

Table 5.3. Sorption Experiment Sampling Surveys 

Most of the experiments conducted involved the admixing of the two end 

member samples taken from the study estuaries. The sample volume used in 

the incubations was kept constant at 20 ml so aliquots from each end 

member sample was used in varying proportions to simulate the estuarine 

gradient. One key consideration in the use of this method is that a gradient is 

simultaneously simulated for a suite of variables including particle 

composition, SPM concentration, salinity and pN. As such It represents the 

field environment as closely as possible but has the disadvantage of 
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permitting less diagnosis of specific controlling variables. To investigate the 
influence of salinity independent of particle composition, one experiment was 
conducted where the MEM was pre-filtered before use. This permitted a 
simulation of the salinity gradient while maintaining homogeneity in the 
composition (but not the concentration) of the SPM. 

Figure 5.2 shows the mixing gradients created for the four study estuaries. 

End member SPM and salinities are summarised in Table 5.4 and 5.5. The 

Clyde, Beaulieu and Dart estuaries have SPM concentrations within a similar 

range (< 80 mg M). In all cases, the REM sample was taken in the river where 

the SPM concentration was relatively low. Samples in the MEM contained 

significantly higher SPM concentrations. In the Number Estuary the SPM 

concentrations in the end members were similar (250 and 300 mg 1"̂ ) resulting 

in a relatively homogenous distribution decreasing seawards. 

Beauheu 

Dart II 

Salinity 
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Figure 5.2 Mixing Gradients (SPM v Salinity) for (a) Clyde, Beaulieu, Dart and 
(b) Number Estuaries 

5.3 Experimental Results 

Table 5.4 and 5.5 summarises the values measured during the 

experiments in the end member samples. The percentage in the dissolved 

phase has been calculated from the K̂ , using following equation; 

%Dissolved = 
100 

( l + Kd.SPM .10- ' ) 
5.5 

In all cases the K^s for 2,3,7,8-TCDD were substantially higher (usually at 

least one order of magnitude higher) than 2,2',5,5'-TCB as would be expected 

from the solubility and data. In the Clyde, Dart and Beaulieu estuaries 

there was large decrease in at the MEM but in the Number Estuary the 

difference in REM and MEM K̂ ,s was less, with a rise in at the MEM. The 

gradient is discussed in more detail below. 
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Estuary Salinity SPM 
(mg 1-̂ ) 

TCB Kd % 
Dissolved 

TODD Kd % 
Dissolved 

Number 0.4 300 5.6 X lO'' 6 23.1 X 10' 1 
Clyde 0.9 6.5 18.0 x 10' 46 313.1 X 10' 5 
Beaulieu 0.8 6.0 49.4 x lO'* 25 - -
Dart 1 0 1.8 32.7 X 10' 63 - -
Dart II 0.5 2.3 26.7x10* 62 - -

Table 5.4. K^, Salinity and SPM for REM Samples (n=4) 

Estuary Salinity SPM 
(mg V) 

TCB % 
Dissolved 

TCDD Kd % 
Dissolved 

Number 23.8 250 10.7x10' 4 32.2 X 10' 1 
Clyde 32.2 74.5 3.3 X 10' 29 78.9 X 10' 2 
Beaulieu 31.2 47.6 12.9 X 10' 14 - -
Dart 1 32.5 39 2.4 X 10' 52 - -
Dart II 29.0 9.4 11.1 X 10' 49 - -

Table 5.5. K ,̂ Salinity and SPM for MEM Samples (n-4) 

Direct comparison of K^s from this study and other work is difficult as the 

simulated environment differs significantly between studies. An average K̂ , for 

2,2',5,5'-TCB of 5.2 x 10' in 5 estuaries (Scheldt, Rhine, Ems, Weser and 

Elbe) was measured by Duinker (1986). Van Zoest & Van Eck (1993b) found 

50% of 2.2',5,5'-TCB in the Scheldt Estuary bound to particulates. Nau-Ritter 

& Wurster (1983) reported K^s for ^'C-Aroclor 1254 onto pure mineral 

particles (illite and chlorite) of between 1 x 1 0 ' and 1.4 x 10'. In laboratory 

studies conducted using natural samples, Rawling etal. (1998) measured K ,̂s 

of typically 12 x 10' -15 x 10' at similar solids concentrations. For 2.3.7,8-

TCDD, Broman et a/. (1991) reported an average K̂ , of 400 x 10' for nine 

stations in the Baltic Sea. Abarnou ef a/. (1987) found 80% adsorption of 

hexachlorobiphenyl (slightly more apolar than 2,2',5,5'-TCB) to SPM. The K^s 

reported from the literature are all consistent with those determined during 

these experiments. 
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5.3.1 Solubility 

A set of initial experiments were conducted to determine an indicative 

solubility of 2,2',5,5'-TCB in both filtered river water and MilliQ deionized 

water and 2,3,7,8-TCDD in filtered river water. This was achieved by adding a 

spike of known activity to a volume of water, equilibrating and counting the 

activity in the dissolved phase. The experiments using 2,3,7,8-TCDD were 

conducted during the method development and gave elevated values 

(solubility of - 0.3 |ag 1'̂ ) compared with a published solubility of 0.019 |ig 1"̂  

(Shui ef a/., 1988). This may have been due to the high concentration of 

2,3,7,8-TCDD (18.5 ^ig 1'̂ ) required to achieve a reasonable DPM, or the 

presence of DOM in the river water. Rawling ef a/. (1998) found that at 

concentrations above the published solubility at saturation there was a 

dramatic increase in solubility and highly variable results. The 2,3,7,8-TCDD 

experiments were also conducted using the initial methods where the glass 

wall fraction was not determined directly and this may have also adversely 

affected repeatability. 

The solubility of 2,2',5,5'-TCB was found to be 12.3 ± 0.7 ^g I*' (n=4) in MilliQ 

deionized water which compares favourably with the published solubility of 

25.4 j ig M (Mackay et a/., 1980) and a solubility of 15 jig M reported by 

Rawling et a/. (1998) using a similar radiochemical method. In filtered river 

water there was a small increase in solubility to 16.8 ± 2.4 fag 1"̂  (n=4). This 

increase in solubility in river water may be explained by the presence of 

dissolved organic matter in the river water which has been widely reported to 

increase apparent solubility (Chiou ef a/, 1987; Hassett & Anderson, 1979; 

Gauthieref a/., 1987; Hunchak-Kariouk efa/., 1997). 

5.3.2 Solids Concentration Effect 

Environmental sorption science has introduced a significant level of 

complexity in understanding and interpreting the data generated from field 
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measurements, laboratory experiments and model predictions by the use of 
operational definitions of various system phases. This is brought about by the 
need to compartmentalise the environment into manageable phases which 
don't necessarily align exactly with the physicochemical nature of the 
environment under study. In consideration of the notional solid-water 
partitioning of organic compounds, at a simple level two phases are defined; 
particulate (P) and dissolved (C) with a partition coefficient defined as; 

p 
Kd = - 5.6 

Many workers have, however, found this two-phase system to be over-

simplistic when considering the mechanisms of organic compound sorption in 

the marine environment (Baker at a/., 1986; Burgess ef a/., 1996; Eadie ef a/., 

1990; Hassett & Millicic, 1985; Hinton et a/., 1993; Pankow & McKenzie. 

1991; Sigleo & Means, 1990; Wijayaratne & Means. 1984). This is due to the 

complexity of the composition of the dissolved, quasi-dissolved and 

particulate phases. Of relevance to organic compound sorption is truly 

dissolved organic matter (may include dissolved humics), colloid-bound 

apolar material (e.g. lipid), colloidal-bound humic material and both inorganic 

and organic phases of the particulate phase as discussed in Chapter 4. 

The possibilities for hydrophobic organic compound sorption are summarised 

diagramatically in Figure 5.3. The operational separation between 'dissolved' 

and 'solid' phases has been typically set at approximately 0.4 | im (Sigleo & 

Means, 1990). However, this cut-off includes colloidal material (typically in the 

size range > I nm to < 0.4 ^m) in the dissolved fraction. This colloidal material 

has a complex composition but is widely reported to contain both polar and 

apolar organic matter. 

^ ^2 A.O.Tyler, PhD Thesis 



The Distribution and Reactivity of Organochlorines in Estuaries 

PARVCULATE 

Adsorption to 
Particulate 

0.4 um 

Adsorption into 
Particulate Freely Dissolved 

Hydrophobic Organic 
Compound 

Bound to Colloidal 
Apolar Material 

DISSOLVED 

Bound to DOM 

1 nm 

Bound to Colloidal 
Humic Material 

COLLOIDAL 

increasing 
Binding 

Capacity 

Figure 5.3. Possible Phases for Hydrophobic Organic Compound Sorption 

Of particular interest in both the dissolved and colloidal fractions, is the 

presence of humic material which contributes significantly to the high sorptive 

capacity reported for colloidal material. No experiments have been designed 

under this study to examine the interaction of PCBs and dioxins with colloidal 

phases or, more specifically, the humic substances which may be present. It 

is not proposed therefore to engage in a lengthy discussion on the role of 

these sub-phases, although the presence of the colloidal phase is an 

important consideration in the solids concentration effect discussed below. 

In a practical sense during this study, the definition of the various phases are 

considered more simply. Although there may be implications for sorption 

kinetics and reversibility in the transfer of hydrophobic organic compounds 

between the phases outlined above, in an estuarine system there are only 

two primary transport pathways; advection and dispersion in the water, and 

dispersion according to the sediment dynamics. On this basis, the solid phase 

can be defined as that which is dominated by sediment transport and 

therefore would include all suspended and bed sediment material found in the 
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estuary, and the dissolved phase can be taken to include colloidal phases 
which would be largely transported within the water column. W e can 
understand the sediment-water partition coefficient to be a 'transport pathway 
partition coefficient'. For integrated estuarine modelling purposes, such as 
described in Chapter 6, this two-phase description is quite sufficient. 

The solids concentration effect is a very widely reported observafion in 

sorption studies (Gschwend & Wu, 1985; Lodge & Cook, 1989; O'Connor & 

Connolly, 1980; Voice ef a/. 1983). There has been an on-going debate for 

many years over the occurrence of the effect and its realism to actual 

environmental conditions. The first observations of an apparent decrease in 

sediment-water partition coefficient with increasing suspended solids 

concentration was first reported by O'Connor & Connolly (1980). Apart from 

conceding that there was no fundamental basis for the correlation - which 

appears on face value not to observe the laws of thermodynamic equilibrium -

they presented comprehensive data for many compounds illustrating the 

effect. 

Data from this study has been analysed to show the relationship between the 

K̂ i obtained and the SPM concentration in the sample. Figure 5.4 a and b 

shows the relationships derived for the four study estuaries. These are 

consistent with other studies which also established relationships of the form; 

log = -b. log SPM + a 5.7 

A summary of regression constants together with those from other studies on 

the sorption behaviour of 2,2'5,5'-TCB are presented in Table 5.6. The Clyde, 

Dart and Beaulieu estuaries all show a significant apparent solids 

concentration. The linear regression gradients for these estuaries are similar 

and compare very closely with a number of other studies summarised in 

Table 5.6. The overall magnitude of the K,, differentiates between the sites 

which compares with other Investigations using different sorbents (Voice ef 
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a/., 1983). The Number also shows a correlation albeit weaker which may be 
explained by the relatively homogenous SPM concentration distribution used 
in the experiments. When considering this data it must be remembered that, 
unlike most studies specifically examining the solids concentration effect, 
these simulated gradients also embody the changes in particle composition, 
salinity etc. However, the solids concentration effect is evident for both the 
Number and the other estuaries even though the slope of the SPM 
concentration gradients are opposed (see Figure 5.2). 

Beaulieu Estuary 
Dart Estuaiy 
Clyde Estuary 

0.5 1 1.5 

log SPM 
2.5 

5.05 

2.39 2.40 2.41 2.42 2.43 2.44 

log SPM 
2.45 2.46 2.47 2.48 

Figure 5.4. 2,2',5,5'-TCB as a Function of SPM for the Study Estuaries (a) 
Beaulieu, (FC = 0.94, p < 0.02;; Dart, (FC = 0.99, p < 0.007^; Clyde, (F^ = 0.95, 

p < 0.05;,- (b) Number, (F^ = 0.54, nof significant) 
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Sample SPM 
Range 
(mg. 1 ^) 

Regression 
Constants 

Reference 

a b 
Unfiltered Lake 
Michigan water 

0.3-1.9 0.75 5.00 Eadie ef a/. (1990) 

Unfiltered Lake 
Superior water 

0.2-8 1.08 5.30 Baker etal. (1986) 

Unfiltered North 
Sea coastal water 

1-150 -0.94 6.20 Duinker(1986) 

Filtered R. Plym -10-1000 0.61 4.50 Rawling etal. (1998) 
Filtered English 
Channel water 

-10-1000 0.50 4.00 Pawling etal. (1998) 

Dart estuary 1.8-39 -0.86 5.72 This work 
Beaulieu estuary 6.0-47.6 -0.66 6.16 This work 
Clyde Estuary 6.5-74.5 -0.68 5.78 This work 
Number Estuary 300-250 -2,45 10.86 This work 

T"ajb/e 5.6. Comparison between Regression Constants for log = -b. log 
SPM + a Obtained from Various Studies of 2,2'5,5'-TCB Sorption 

To attempt to isolate the solids concentration effect, the REM with its natural 

SPM from the Dart estuary was admixed with filtered Dart estuary MEM water 

thus maintaining the same particle composition but varying the solids 

concentration. The salinity gradient was still simulated simultaneously. Using 

the same unfiltered MEM and REM samples, a standard gradient was also 

simulated for comparison. Figure 5.5 shows the log SPM vs log K̂ , for both 

filtered MEM and unfiltered cases. 

The use of the filtered MEM maintained solids concentrations at the lower end 

of the scale. However, there was overlap in SPM concentration with the 

unfiltered samples at approximately 2 mg I V Both experimental results show 

an equally strong linear correlation between log K̂ j and log SPM. In addition, 

the gradient of the linear regression is almost identical. The implication from 

these observations is that the solids concentration effect is an important effect 

in these experiments, and possibly more influential than other parameters 

such as salinity. 
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Figure 5.5. vs SPM for the Filtered and Unfiltered MEM in the Dart Estuary 
(Unfiltered, = 0.99, p < 0.001, n=3; Filtered MEM, = 0.99, p < 0.01, n=3) 

It was not the intention of these studies to further contribute to the debate on 

the solids concentration effect. From a practical standpoint, it is important to 

distinguish between a laboratory artefact, a real phenomena but which only 

exists in the laboratory experiment, and a real phenomena measured 

experimentally and transferable to the real environment (e.g. particle 

interaction effects). A number of explanations have been put forward over the 

past 20 years to explain the solids concentration effect. Central to many of 

these explanations is the presence of the 'third phase', the colloidal or Non-

Settling Particulate (NSP) phase. 

The early work by O'Connor & Connolly (1980) was conducted on a wide 

range of inorganic metals and organic chemicals implying that the solids 

concentration effect is not chemically promoted but may be due to physical 

interactions. Voice et a/. (1983) surmised that the solids concentration effect 

was due to the presence of a NSP phase which was derived from the solid 

phase but counted in the dissolved phase following separation and that the 

effect would be likely to occur in the environment. This investigation was 

followed by the work of Gschwend & Wu (1985) where increasing NSP 
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concentrations with solids concentration were demonstrated. By pre-washing 
sediments to reduce the availability of material likely to form NSPs. partition 
coefficients were shown to be linear with solids concentration (Walters et a!., 
1989). An alternative explanation was proffered by Di Toro ef a/. (1986) using 
an experimental design that explicitly excluded variations in NSP 
concentrations. It was suggested that increased higher solids concentrations 
may be responsible for increasing particle interaction induced desorptlon 
which would lower values. Mackay & Powers (1987) continued the 
development of the model proposed by Di Toro ef a/, and added to the 
explanation by proposing a sorption process consisting of a 'loose surface 
accumulation' of apolar organic compounds which can be disrupted by 
particle collisions. As the solids concentration rises, the potential for particle 
interaction-induced desorption increases. The relationship between and 
SPM concentration was summarised in the following equation which is 
discussed in detail in the next chapter; 

K _ foc.Koo 

• (1 + 0.7 .foc.Koc.SPM) 

where foe is the fraction of organic carbon, is the organic carbon partition 

coefficient, and SPM is the solids concentration. This is referred to in this 

study as the Di Toro & Mackay Model. Using values of K̂ ^ = 0.41.K^v, 

(Karlckhoff. 1984), f̂ .̂ = 0.15. and a range of solids concentrations covering 

those measured during this study (extended from 1 mg 1'̂  to 1.000 mg 1"̂ ), the 

relationship in Figure 5.6 was derived. 

The main point of note from this model is that the realistic natural solids 

concentrations used in these studies are on the upper flatter part of the curve 

and may be approximated as a straight line (R^ = 0.96, p < 0.01). This is 

consistent with the observations from this study. Mackay & Powers (1987) 

define a breakpoint in the curve when there is sufficient concentration of 

sorbent to sorb half the compound. At higher sorbent concentrations it is not 
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possible to sorb more than half because collision-induced desorption rates 
are rapid. The application of this model is discussed in further detail in 
Chapter 6. 
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Figure 5.6. log vs log SPM using the Di Toro and Mackay Model 

Work over the past few years has continued to investigate the effect (Jepsen 

et a/., 1995; Pawling ef a/.. 1998; Zhao & Lang. 1996) much of which has 

focused on investigation of the NSP explanation. Servos & Muir (1989) found 

experimental determination of NSP concentration to explain a significant part 

of the effect but indicated that particle interactions or some similar hypothesis 

was required to fully explain the observations. Pawling ef a/. (1998) on work 

using natural samples, observed that no additional NSP effect was seen in 

highly turbid samples (-500 mg M), This implied that NSP material released in 

situ via SPM was of limited importance. This conflicts with previous 

experimental observations (e.g. Gschwend & Wu, 1985; Servos & Muir, 1989) 

where either particle populations still contained significant pore water colloids, 

or pure water was used as a solute which would not have been in equilibrium 

with the SPM and promoted material transfer. 

In summary, there still remains uncertainty in the causes of the particle 

concentration effect but there is no doubt that it is a feature of all typical 
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sorption experiments and is likely to increase in importance with higher K^^ 
compounds (Booij, 1993). There is corroborating field evidence that the solids 
concentration effect may be observed under actual environmental conditions. 
Baker et a/. (1986) measured solids concentration effects with PCB 
congeners at SPM concentrations of - 0.2 - 6 mg 1'̂  and Bergen et al. (1993) 
reported similar results at concentrations of - 0 - 30 mg \'\ Of particular 
relevance, Zhou et al. (1998) showed a correlation between SPM 
concentration and PAH concentrations in Number Estuary. 

In deriving suitable partitioning descriptors for use in integrated contaminant 

transport models, an established relationship between and SPM 

concentration is straightfonward to implement. Provided that extrapolation of 

the laboratory measured relationship to the field is reasonable which may be 

assumed given the efforts spent in eliminating laboratory artefact, then 

whether the effect is caused by NSPs or particle interactions is largely 

hypothetical. The release of NSPs from particles and their subsequent 

transport within the water body would be encompassed by an operationally 

defined 'transport pathway partition coefficient' and particle interaction effects 

could be assumed to be directly represented by laboratory conditions. The 

inclusion of solids concentration effects via a sorption sub-model in an 

integrated estuary model is discussed in Chapters. 

5.3.3 Characterised Sediments 

An attempt was made to study the sorption of 2,3,7,8-TCDD onto sediments 

for which sorption characteristics were known (SSA and apolar lipid content). 

A range of lipid content were chosen ranging from n.d. to 10.7 mg g*̂  and with 

a range of SSA values from 3.4 to 9.9 m^ g'V It should be noted that these 

particle characteristics were determined on whole sediments whereas a 

<63jim fraction was used in the experiments. The experiments yielded no 

meaningful correlations. The values for all populations were of similar 

magnitude and subject to percentage standard deviations of between 17 and 
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58%. The lack of correlation may have been simply due to the mis-match 
betv\/een characteristics measured in whole sediments and those in the 
<63^m fraction used in the experiments. However, it was observed that, with 
the exception of one sample, the lipid content and SSA were inversely 
correlated. This may have resulted in a some levelling of the sorption 
competitiveness between the different particle populations resulting in the 
observed homogeneity in partition coefficients derived. 

5.3.4 Estuarine Salinity Gradient 

As already discussed, the estuarine gradient simulated for these experiments 

implicitly includes gradients in salinity, particle composition and SPM 

concentration. The variation of 2.2',5.5'-TCB with salinity (representing 

conservative mixing) has been plotted for the 4 study estuaries (Figures 5.7 a 

and b). Standard deviations on all samples were usually better than 20%. 
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Salinity |^ 

Figure 5.7. Comparison of 2,2',5,5'-TCB vs Salinity in ttie (a) Dart (n=4), 
Beaulieu (n=4) and Ciyde (n=3) Estuaries, and (b) f-iumber Estuary (n=4) 

The Dart, Beaulieu and Clyde estuaries are seen to exhibit a very similar 

behaviour with high K̂ , values at the REM, falling rapidly within the low salinity 

zone (salinity. 0 - 5) to a MEM of < 25% of the REM value. The Humber 

exhibits a contrasting behaviour with a relatively even distribution increasing 

slightly with salinity. values in the Humber are of a similar magnitude to 

those in the lower Dart, Clyde and Beaulieu estuaries. 

From the sediment analyses reported in Chapter 4, the Humber and Clyde 

estuaries were seen to have contrasting characteristics. Sediments in the 

Humber were more homogenous with a lower apolar lipid content compared 

with Clyde sediments. Although the homogeneity in SPM concentration 

sampled in the Humber for the experiments was more of a function of the 

timing and precise location of sampling, the homogeneity in SPM composition 

is expected and would be expected to give rise to relatively uniform 

partitioning within the estuary. This observation is also borne out by analyses 

of SPM for PAH conducted by Zhou et a/. (1998) which show a general 

homogeneity with the salinity gradient in the Humber Estuary and partitioning 

experiments conducted using '̂̂ C permethrin and bis (2-ethylhexyl) phthalate 

both of which showed very similar trends to those found for both 2,2'5,5'-TCB 

and 2,3,7,8-TCDD (see below) in the Humber Estuary (Zhou & Rowland, 
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1997). The Clyde, alternatively, has a heterogeneous suspended sediment 
population which would be likely to give rise to variable partition coefficients. 
In the upper estuary fine, organic rich sediments would tend to provide strong 
binding surfaces whereas, in the lower estuary, dilution of this material with 
lipid depleted sediments probably of marine origin would provide less 
competitive sites for sorption. 

Figure 5.8 shows the variation of the K̂ , for 2,3,7,8-TCDD with salinity in the 

Clyde and Number estuaries. Standard deviations were high (averaging just 

over 50%) for these experiments reflecting the difficulty of working with this 

extremely hydrophobic compound. Despite this, trends were established 

consistent with the observations made for 2,2',5,5'-TCB. Partition coefficients 

for 2,3,7.8-TCDD were 3-4 times higher than 2,2',5,5'-TCB in the Number, 

and 17-24 times higher in the Clyde. In the Clyde, where a reservoir of apolar 

organic material on particles is established, this increase in is consistent 

with the increase in K̂ ^ values derived from the K^̂  values in Table 5.1 using 

the relationship = 0.41 (Karickhoff, 1981) which yields a 2,3.7,8-TCDD 

K(, of 11 times the 2,2'5,5'-TCB value. It also suggests that the Number SPM 

may represent a depleted source of suitable sorption sites. 
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Figure 5.8. Variation of 2,3,7,8-TCDD with Salinity in the Clyde and 
Humber Estuaries (n=4) 
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Salting Out 

In the Clyde Estuary, the for 2,3,7,8-TCDD showed a rapid decrease in the 

low salinity region. By contrast, in the Number the was relatively constant 

with some slight increase towards the MEM in an assumed relatively 

homogenous particle population. The observation was further corroborated by 

an experiment conducted using samples from the Dart estuary using 2,2',5.5'-

TCB where a comparison was made between the natural estuarine gradient, 

and a gradient where the effects of change in SPM composition were 

removed by filtering the MEM. The results are shown in Figure 5.9. 
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Figure 5.9. Comparison between vs Salinity for Filtered and Unfiltered 
Marine End Members (MEM) 

Increased K̂ , values overall for the filtered MEM samples were observed as 

would be expected where the highly sorptive particle population from the 

REM was present throughout the gradient and not diluted with marine origin 

particles. The more remarkable feature is the significant increase in K̂ , 

towards the MEM (the MEM value itself should be treated with caution as the 

mass of particles was so small (0.23 mg 1'̂ ) that in such a small test sample 

(20 ml), possibilities for large errors were present in computing the particulate 

concentration). 
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The 'salting out' effect is a widely reported observation for hydrophobic 
organic compound solubility in a salinity gradient (Brunk et al., 1997; 
Karickhoff, 1984; Means, 1995; Rawling et al., 1998; Rossi & Thomas, 1981; 
Zhou & Rowland, 1997). Other authors have reported constancy in partition 
coefficient with salinity changes for some PAHs (Hegeman ef a/.. 1995), and 
Means & Wijayaratne (1982) reported a decrease in for atrazine which 
was explained in terms of colloidal changes. 

Means (1995) hypothesised that increasing electrolytes as the salinity 

increases alter the structure of water and its interactions with non-electroytes. 

In addition, compression of the electrostatic double-layer assists sorption 

potential. The effect of 'salting out* is expressed by the Setchenow 

relationship; 

' o g ( ^ ) = 5.9 
C r 

where, C '̂̂  and C^^ are the relative solubilities in river water and seawater 

respectively, is the Setchenow constant. By plotting the total molar salt 

concentration, M against log K^VKj^ (where K̂ ^ and K "̂ are the partition 

coefficients at some salinity S and in unsaline water), it is possible to deduce 

the Setchenow coefficient (Means, 1995). This was carried out for the 

filtered MEM Dart estuary experiment, excluding the MEM data point (Figure 

5.10). 

Although the dataset is extremely limited (the other datasets have a gradient 

of particle composition and therefore cannot be treated in this way), a linear fit 

may be appropriate. The gradient provides a measure of the Setchenow 

coefficient which in this case is = 2.6. This value is somewhat higher than 

those reported by Means (1995) for pyrene in a number of environments 

(0.273 - 0.846). Means suggests that if the slope was equal to a value of -0 .3 

(typical Setchenow constants for a range of PAHs measured in solution and 

referenced to Whitehouse, 1984), then salting out may be taken to be solely 
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responsible for the decrease in solubility. Above this value other factors such 
as changes associated with the organic phase of the sorbent are likely to be 
important. In this case, salting out is probably only a small influence and this 
is substantiated by Karickhoff (1984) who provides a factor of 1.2 for changes 
in partition coefficient in a freshwater-seawater saline gradient. For the Dart 
experiment, the factor is approximately 1.8 so we can conclude that salinity 
changes pe rse are not a major control on sorption behaviour. 

S 0.10 

-0.10 
Molar Concentration, M 

Figure 5.10. Plot of log (K/Kdo) vs Molar Concentration for 2,2'5,5'-TCB in the 
Dart Estuary with Filtered MEM used to Simulate Salinity Gradient 

5,3.5 Summary 

The experiments conducted have permitted the relative importance of salinity, 

particle concentration and particle composition on the partitioning of TCB and 

TCDD to be determined. Particle concentration is found to be a significant 

influence in determining the extent of sorption. Although there is still 

discussion on the mechanisms leading to this effect, the balance of opinion 

would describe the effect in terms of NSP material with a high sorptive 

capacity acting as a third phase, and increasing particle interactions with 

higher solids concentration contributing to desorption. In both cases, these 
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effects can be reasonably extrapolated for real environmental conditions and 
this is substantiated by findings from field studies. The effect of salinity on 
sorption behaviour, whilst measurable, is not a major consideration. Particle 
composition is likely to be a major control on sorption behaviour. Experiments 
conducted under this study were not conclusive and future studies should try 
and better investigate the relationship between SPM geochemical properties 
and K^. Chapter 6 will concentrate on the approaches to incorporating these 
findings in models of contaminant transport. 
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Chapter 6. Modelling Organochlorine Behaviour in 
Estuaries 

6. Modelling Sorption Behaviour 

In previous chapters, the controls on the adsorption of OCs onto particles 

have been identified and quantified. The objective of this chapter is to 

develop a partitioning sub-model, together with associated algorithms, for 

OCs. The sub-model is designed to be integrated within an estuarine model 

capable of predicting water and sediment transport under varying conditions 

of river flow and tidal hydrodynamics. This Chapter shows the application of 

this coupled chemistry-hydrodynamic model to the transport of OCs in the 

Number Estuary. 

6.1 Sorption Sub-model Development 

6.1.1 Ka - Salinity Relationships 

Incorporation of sorption relationships in models of contaminant transport 

requires the ability to encapsulate the sorption behaviour of compounds in a 

relationship related to the major estuarine variables (e.g. salinity, SPM 

concentration) which are readily predictable (Endicott & Cook, 1994). In 

studies of metal behaviour in several estuaries an exponential K̂ , - salinity 

relationship has been found to define the reactivity of trace constituents 

(Turner & Millward, 1994; Turner & Tyler, 1995) and has been adopted in 

estuarine contaminant transport models such as ECOS (Liu ef a/., 1998; 

Plymsolve. 1991) and PISCES (Ng etal. 1996) in the form; 

lnKd = b. ln (S + 1 ) - lnKd° 6.1 

where K̂^̂  is the partition coefficient in freshwater and b is a contaminant and 

estuary specific constant. 

^ Qg A.O.Tyler, PhD Thesis 



The Distribution and Reactivity of Organochtorines in Estuaries 

In the sorption studies salinity has been used as the reference variable for the 
simulated estuarine gradients. As shown in Figure 5.2, SPM concentration in 
the mixing experiments is linear with salinity and particle compositional 
parameters will also hold a linear relationship with salinity. It has been 
possible to apply the - salinity model to the estuarine gradients simulated 
in the experiments by plotting In against In (S + 1) (Figure 6.1); 
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Figure 6.1. In (S + 1) vs In (KJ Relationship for (a) 2,2\5,5'-TCB in the Dart, 
Beaulieu, and Clyde Estuaries, (b) 2,2',5,5'-TCB and 2,3.7,8-TCDD in the 

Clyde Estuary, and (c) 2,2',5,5'-TCB and 2,3,7,8-TCDD in the Humber 
Estuary 

Estuary Compound P b In K," 
Dart 2,2',5,5'-TCB 0.99 < 0.001 -0.76 12.7 
Beaulieu 2,2',5,5'-TCB 0.98 < 0.01 -0.49 13.3 
Clyde 2,2',5,5'-TCB 0.99 < 0.01 -0.58 12.4 
Humber 2,2',5,5'-TCB 0.52 > 0.1 0.15 10.9 
Clyde 2.3,7,8-TCDD 0.77 > 0.1 -0.49 15.0 
Humber 2,3,7,8-TCDD 0.60 >0 .1 0.13 12.2 

Table 6.1. In (S + 1) vs In (KJ Relationship R^, p and Values for b and Kf 

A linear relationship with significant correlations is established for 2,2*.5,5'-

TCB in the Clyde. Dart and Beaulieu estuaries (see Table 6.1). The values for 

b and In K° are similar in these three estuaries, which are characterised by 

steep axial gradients in particle composition. The Humber, with it's axially well 

mixed conditions and uniform particle composition does not show a significant 

correlation with either 2,2'5,5'-TCB or 2,3,7,8-TCDD. A non-significant 

correlation is also found in the Clyde Estuary for 2,3,7,8-TCDD but this is 

probably due to the high standard deviations obtained in the sorption 

experiments. 
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In trace metal studies, salinity has a major physicochemical importance 
(Turner & Millward, 1994). Certain metals (e.g. Cd and Zn) exhibit lower K ,̂s 
as salinity increases due to chloride-complexation of sorbable metal ions 
(Bourg, 1987). Others (e.g. Cs) may face Increasing competition for sorption 
sites from seawater cations (Mg**, Ca**) (Olsen et a/.. 1981). The - salinity 
relationship therefore has a causative link to the controlling parameters for 
metal sorption behaviour. For chlorinated organic compounds, it has already 
been established that salinity per se is not a major influence and that the 
concentration and composition of particulate matter is the primary control. 
The linearity observed is a function of the relationship between salinity and 
SPM concentration/composition as simulated in the experiments and has no 
reasonable relationship to the known physicochemical controls on chlorinated 
organic sorption. Notwithstanding these comments, these established 
relationships are still a useful way to represent sorption on a wholly empirical 
basis with salinity acting as a surrogate for processes which are either not 
fully understood or not quantifiable. 

6.1.2 Chlorinated Organic Sorption Model 

The development of a sorption model capable of predicting K̂ , from known 

physicochemical controls on chlorinated organic sorption has therefore been 

investigated. In Chapter 5, the model developed by Di Toro ef a/. (1986) and 

expanded upon by Mackay & Powers (1987) was introduced in the context of 

the solids concentration effect. Under this study the model has been 

assessed and applied to the experimental datasets. The performance of the 

model applied to an estuarine gradient has been compared with the 

laboratory data for each of the study estuaries. 

Di Toro & Mackay Model 

The Di Toro & Mackay particle interaction model was developed originally by 

Di Toro to model the reversible sorption of trace metals to pure clay 

substrates. Three sorption processes were defined; 
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surface reversible adsorption 

C , + SPM => k3,3 => C,=SPM 6.2 

where C„ is the dissolved phase contaminant concentration, k^^^ is the 

adsorption rate constant and SPM is the SPM concentration. 

spontaneous desorption 

C^=SPM k 3 ^ = > C„ + SPM 6.3 

where is the spontaneous desorption rate constant, 

particle interaction induced desorption 

C«=SPM + SPM => k ^ = > C„ + 2.SPM 6.4 

where k^^ is the particle interaction induced desorption 

At equilibrium, the reversible partition coefficient K^j^i's; 

_ Kads 

( k s - d H- SPM .kp-d) 

It should be emphasised that this relationship has been defined for 

exchangeable surface bound OCs. The 'true' partition coefficient K̂ ,, can 

defined as; 

Kd = Kd[r)+ K^ip) 6.6 

where K^^^ is the partition coefficient for OCs which are permanently adsorbed 

within strong binding sites on the particles, as described by Kan a/. (1997). 

^ j2 A.O.Tyler, PhD Thesis 



The Distribution and Reactivity of Organochlorines in Estuaries 

Defining the reversible partition coefficient, excluding particle interaction 

effects, as K̂ n̂ j where; 

kads 
KdM 6.7 

.s - d 

then. 

Kd[rJ = 
Kd[xl 

^SPM.Kd|xi' 
6.8 

1 + 

where o = Kas^k^^ and is defined by Mackay & Powers (1987) as a collision 

efficiency term. By relating K(,[̂ , = K^. foe, Mackay & Powers extended the 

model to incorporate the role of particulate organic carbon in the sorption 

process as follows; 

Kd[rl = 
Koc.fc 

rSPM.Koc.foc 
6.9 

1 + 

Mackay and Powers (1987) gave 1/u a value of 0.7 based on experimental 

mean values for the slope of the K^^,^ vs SPM graph (Di Toro ef a/., 1986). 

Values for the study estuaries have been obtained (see Figure 5.4) and 

tabulated in Table 6.2; 

Estuary Compound 1/u 
Dart 2,2'5,5'-TCB 0.87 
Beaulieu 2,2'5.5'-TCB 0.66 
Clyde 2,2'5.5'-TCB 0.68 
Clyde 2,3.7.8-TCDD 0.57 
Number 2.2'5,5'-TCB 2.45 
Humber 2,3,7,8-TCDD 1.81 

Table 6.2. Value for Collision Efficiency, 1/u for Study Estuaries and 
Compounds 

Values of 1/u are similar to the mean values determined by Di Toro et a/. 

(1986) in all estuaries except for the Humber estuary. The values obtained for 
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different compounds (2,2',5,5'-TCB and 2,3,7,8-TCDD) In the Clyde are 
similar. The experimentally determined values of 1/u (Table 6.1) have been 
used in the application of the Di Toro and Mackay model rather than the 
mean value provided by Mackay & Powers. Applying the Di Toro & Mackay 
Model initially to varying K^j. and SPM values, but assuming a constant f̂ ^ (= 
0.2), the predicted behaviour of the OCs is shown in Figure 6.2. 

5.5 p 

5 .-

4.5 .. 

4 

•D 3.5 -. 

O) 
o 3 .. 

2.5 . 

2 -

1.5 -

K « = 1 0 x 1 0 * 

^ K « = 5 0 x 1 0 * 

* v ' K „ c = 100x10* 
X • K«;= 150x10* 

"•kK„ = 2 5 0 x 1 0 * 

-2 -1 0 1 2 3 4 5 

log SPM 

Figure 6.2. Predicted K^s Using ttie Di Toro & Mackay Model with Varying 
SPM Concentration and (f^ = 0.2, 1/u = 0.7) 

The model has been applied over a wide range of sediment concentrations 

from 0.01 - 10,000 mg 1'̂  and for a range of values consistent with high 

molecular weight compounds. At relatively low SPM concentrations there is 

no solids concentration effect and the is directly related to K^.foc- However, 

within the range of SPM concentrations typically encountered in an estuarine 

system (10 - 1000 mg 1'̂ ) a solids concentration effect is applicable at all 

relevant values. There is little significant difference in the SPM 

concentration range over which the solids concentration effect is noted and by 

100 mg \'\ the relationship is linear for all values of K^. This emphasises the 

basis of the model as predicting the physical sorption of exchangeable 

surface bound OCs rather than the physicochemical adsorption of the 

resistant component. 
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Figure 6.3. Behaviour of Di Toro & Mackay Model with Varying SPM 
Concentration and f^^ (K^ = 1 x 10^, 1/u = 0.7) 

Figure 6.3 shows the behaviour of the model with a fixed K^c of 1 x 10® and f^c 

varying from 0.01 to 0.5. At low SPM concentrations f̂ ^ has a strong influence 

on K ,̂ but at higher SPM concentrations, the relationship between K̂ , and 

SPM becomes independent of fo,.. The range of typical estuarine SPM 

concentrations falls within the transition zone and therefore will be of 

significance. It is suspected that the model becomes unrealistic at this point 

because of its reliance on a purely physical process that is reversible and 

does not consider the physicochemical potential to irreversibly adsorb into the 

particle matrix. Mackay & Powers (1987) also state that the model predicts a 

lower extent of sorption than is observed, perhaps because collisions are less 

than 100% efficient. 

Sorption Sub-model Model Performance 

To assess the performance of the K^- salinity relationship (Equation 6.1) and 

the Di Toro and Mackay model (Equation 6.9), both have been applied to the 

sorption study datasets and inter-compared. In the application of the Di Toro 
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and Mackay model, the values of K^c has been derived from the K̂ ^ value for 
the compound according to Karickhoff ( 1 9 8 1 ) ; 

Koc = 0 . 4 1 . K^(Karickhoff. 1 9 8 1 ) 6 . 1 0 

Unfortunately, foe values were not obtained for samples used in the sorption 

experiments. These have been calculated from the observed and the 

values using Equation 6 . 1 1 . Van Zoest & Van Eck ( 1 9 9 1 ) validated this 

relationship with a number of PCB congeners measured in the marine 

environment. The values obtained for are also in reasonable agreement 

with general organic carbon levels obtained from analysis of bed sediments in 

the various estuaries. 

f ^ 
Toe = 

l\oc 

6 . 1 1 

The values of l/o are taken from the experimentally derived values in Table 

6 . 2 and the SPM concentrations are from the experimental gradients given In 

Tables 5 . 4 and 5 . 5 and shown in Figure 5 . 2 . 
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Figure 6.4. Comparison between Di Toro & Mackay Model and K^Salinity 
Relationship, and Values measured in the Sorption Experiments for 

2,2',5,5-TCB in (a) Dart Estuary, (b) Beaulieu Estuary, (c) Clyde Estuary, (d) 
Number Estuary and (d) 2,3,7,8-TCDD in the (e) Clyde Estuary, and (f) 

Number Estuary 

The application of the Di Toro and Mackay model and the K̂ j - salinity 

relationship for the Clyde, Beaulieu, Dart and Humber estuaries is shown in 

Figure 6 . 4 . Results for the application of the Di Toro and Mackay model to the 

Humber are not shown as the model failed to make any reasonable prediction 

of the measured gradient. 
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The K^j-salinity relationship provides a good description of the measured data 
from which it has been derived, particularly in the Dart, Clyde and Beaulieu 
estuaries which are characterised by a significant axial variation in particle 
composition. The empirical basis of the relationship requires site specific 
constants for Kj^ and b to be determined experimentally and therefore no 
generic estuary application can be envisaged. 

The Di Toro and Mackay model potentially offers a generally applicable 

relationship for all estuary systems. In the Clyde, Dart and Beaulieu estuaries 

the model performs well in predicting the trend of axial variation of K .̂ There 

is tendency in all estuaries for the model to underestimate the high partition 

coefficient in the very low salinity zone. In Figure 6.2 the Di Toro & Mackay 

model predicts a solids concentration effect at the very low SPM 

concentrations present at the REM (1.8 mg M). This may not happen in reality 

due to low collision frequencies in such a disperse particle population. 

A major factor in the underestimation of the REM partition coefficient is likely 

to arise because the Di Toro & Mackay model is predicting the reversible 

taking no account of the likely permanent binding that will take place. The 

reversibility of chlorinated organic sorption and the identification of a 

irreversibly sorbed fraction has been studied by a number of workers (Di Toro 

& Horzempa, 1982; Horzempa & Di Toro, 1983; Karickhoff, 1984; Wu & 

Gschwend, 1986). A two-phase sorption model can be proposed where initial 

sorption to the particle surface is followed by a slower incorporation in the 

particle matrix. This secondary process results in a much tighter binding 

which is more resistant to desorption. For highly hydrophobic compounds 

such as PCBs and PCDD/Fs. adsorption into the particle matrix may occur 

fairly readily, particularly if the particle has organic carbon coatings which are 

preferential for adsorption. If this were occurring during the mixing 

experiments (Di Toro & Horzempa found an adsorbed PCB fraction strongly 

resistant to desorption after only 3 hours of equilibration), then the solids 
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concentration effect would be lessened and K̂ , values would be higher. This 
would not be accounted for in the Di Toro & Mackay Model. 

To provide an estimate of the irreversibly adsorbed fraction, the percentage of 

reversibly adsorbed O C predicted by the Di Toro and Mackay model has 

been subtracted from the measured percentage of particulate adsorbed OC. 

This of course assumes that the failures in the Mackay and Di Toro model to 

fully represent the observations is wholly due to omission of the permanently 

bound fraction. Table 6.3 summarises the percentage of particulate bound 

OC and the estimate of irreversibly bound OC. The latter has also been 

plotted in Figure 6.5. 

Estuary Compound Total % Adsorbed 
(Range) 

% Irreversibly Adsorbed Estuary Compound Total % Adsorbed 
(Range) 

Mean Standard 
Deviation 

Dart 2.2'.5,5'-TCB 3 9 - 4 9 12 2 
Beaulieu 2,2'.5,5'-TCB 7 5 - 8 6 27 3 
Clyde 2,2',5,5'-TCB 54-71 18 4 
Clyde 2,3.7,8-TCDD 9 5 - 9 8 39 1 

Table 6.3. Range of Particulate Adsorbed OC and Estimated Irreversibly 
Adsorbed Fraction for the Study Estuaries 
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Figure 6.5. Axial Variation of Estimated Irreversibly Adsorbed OC Fraction 
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There is a notable constancy (standard deviations range from 1 - 4 %) in the 
irreversible fraction estimated for each of the estuaries. The magnitude of this 
fraction varies from 12 % in the Dart Estuary for 2,2',5,5'-TCB to 39 % in the 
Clyde Estuary for 2.3,7,8-TCDD. and correlates with the general magnitude of 
partition coefficient in the estuary and the polarity of the compound (2,3,7,8-
TCDD has an estimated irreversible fraction of twice that of 2,2'5,5*-TCB in 
the Clyde Estuary). These observations provide a potential means to extend 
the Di Toro and Mackay model to determine K^^^ (see Equation 6.6) 
parameterised on the basis of particulate organic carbon content and the 
compound's K^̂ . Further experiments would be required to develop a suitable 
algorithm but the linearity observed in the irreversibly adsorbed fraction 
implies that this relationship would probably be simple. 

The Di Toro and Mackay model fails to satisfactorily reproduce the axial K̂ j 

variation for 2,3.7,8-TCDD in both the Clyde (see Figure 6.4e) and Number 

estuaries. It may be speculated that this highly hydrophobic compound 

exhibits a reduced desorption potential (as illustrated by its estimated 40% 

irreversibly adsorbed fraction, Table 6.3) and therefore cannot be described 

accurately by a model which predicts particle interaction-induced desorption. 

The reasons for the inability of either relationship to predict the sorption 

behaviour of 2,3,7,8-TCDD or 2,2',5,5'-TCB in the Number estuary are not 

entirely clear. In all aspects of this work the Number estuary has contrasted 

sharply with the other study estuaries and the sorption behaviour appears to 

be no exception. The SPM concentrations in the experiments (250-300 mg 1"̂ ) 

were the highest amongst the estuaries studied and the lack of a discernible 

SPM concentration gradient was also unique although not untypical for the 

Number Estuary (REM = 302 mg Y\ MEM = 254 mg \ \ Zhou & Rowland. 

1997). At these SPM concentrations, the Di Toro & Mackay model predicts 

high particle-induced desorption rates which may not be occurring if a 

significant fraction of OC is being permanently absorbed. 
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The organic carbon content of the particulate phase is an important input to 
the Di Toro and Mackay model as illustrated in Figure 6.3. For this 
application, derived foe values have been used whereas actual values would 
have been preferable. The values do however seem reasonable, and 
compare well with measured values. For example, in the Humber estuary 
derived fo^ values are in the range 0.08 - 0.14 which compares with measured 
values of 0.0571 - 0.0981 (Zhou & Rowland, 1997). In Chapter 4, It was 
shown that apolar lipid content is a more precise indicator of chlorinated 
organic compound sorption preferences. The importance of the nature of 
particulate organic matter as well as its fractional content has been well 
demonstrated for hydrophobic compound sorption (Murphy et a/., 1990; Zhou 
et a/. 1995a). This is further underlined by Mackay & Powers (1987) where 
the potential sensitivity of the K^c - K̂ ^ relationship to the 'condition' of the 
organic carbon is identified. As the organic carbon fraction becomes more 
'open and fluffy' the value for will approach that of the K^. The semi-
empirical model is sensitive to the values obtained for which might explain 
the underestimation of in the REM of some estuaries as this zone would be 
characterised by organic material with high sorptive capacity. Overall, the use 
of foe as a quantitative descriptor of sorption preference is probably too crude 
and future models will need to develop a more rigorous parameterisation of 
the controls on sorption. 

6.2 Integrated Contaminant Transport Modelling 

Ever increasing regulation of discharges of contaminants to estuarine and 

coastal waters present challenges to industry and the regulator in determining 

acceptable levels of consent for discharge, and then monitoring highly 

complex waste stream discharges and estuarine water quality to determine 

compliance and maintenance of Environmental Quality Standards. As a result 

there has been an increasing adoption of numerical models to assist in 

evaluating individual discharges and the combined effects of multiple 

discharges into the same receiving waters (GESAMP, 1991). 
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Although water quality models for parameters such as dissolved oxygen are 
well established and reliable, models for trace contaminants are still at a 
developmental stage. There are some key challenges which still exist in 
modelling trace organic contaminants within integrated estuarine and coastal 
models and these are discussed in this Chapter Notwithstanding these 
limitations, results from the sorption studies and modelling have been 
implemented in an integrated estuary model of the Number Estuary to 
demonstrate how such models can contribute to management decision 
making. 

6.2.1 P I S C E S Estuarine Contaminant Transport Model 

The P I S C E S estuarine contaminant transport model was developed as a 

component of this research programme. The objective was to build upon 

established models of estuarine physics and develop geochemical sub­

routines that could describe the behaviour of trace metal and organic 

contaminants. The author was actively involved in the development of the 

model throughout the programme. This included a significant input to the 

specifications and extensive testing and validation of the model code. Under 

this study the author prepared all the relevant input data, performed the 

model runs and processed/presented all of the resulting model data. 

The overall function of the model is described in Figure 6.6. P I S C E S is based 

on the established DIVAST model which provides numerical code to predict 

hydrodynamics, sediment and solute transport (Falconer, 1993; Falconer & 

Chen, 1991; Falconer & Owens, 1990). The model predicts the hydrodynamic 

flow within the estuary from bathymetric depths and the tidal wave 

propagation in the estuary interacting with riverine flows. The sediment 

transport is based on the size distribution of the bed sediment and the bed 

stress calculated from the hydrodynamics to predict erosion and deposition. 

The salinity gradient is also modelled as a conservative dissolved constituent. 
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Figure 6.6. Functional Outline of the PISCES Contaminant Transport Model 

Basis of Numerical Model 

The P I S C E S model defines two transport pathways for contaminants in the 

estuary; dissolved transport, or adsorbed to suspended particulate matter. 

The distribution of contaminants between the two phases is described by the 

which is related to salinity either by explicit tabulation of against salinity, 

or by the relationship defined in Equation 6.1. The transport of the 

contaminant in the dissolved phase is defined by an integrated transport and 

mass balance equation containing the following terms; 

184 A.O.Tyler, PhD Thesis 



The Distribution and Reactivity of Organochlorines in Estuaries 

Advection 
f ( C . u . v ) 

Dispersion/Diffusion 
f (C. D) 

Mass Transformation 
f ( S o . S „ S J 

where C is the dissolved phase concentration, u and v are velocity 

components in the x and y directions, D is dispersion and diffusion 

coefficients, and S^, S^, S^ are source/sink, volatilisation, and degradation 

terms respectively. 

Transport in the solid phase is modelled using the van Rijn formulation (van 

Rijn, 1984a; van Rijn, 1984b) which describes the advection, diffusion, 

erosion and deposition of sediments based on sediment diameter to 

determine critical erosion and settling velocities. A modification was made to 

the formulation so that cohesive sediments (diameter <40|im) were modelled 

as a permanently suspended 'wash load'. This is shown in diagrammatic form 

in Figure 6.7. 
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Figure 6.7. Sediment Transport in the PISCES Model 

At each timestep of the model, the predicted salinity in each computational 

ceil is used to determine the K̂ ,. Based on the concentrations in the ceil at the 

previous timestep, the new K̂ , is used to re-partition the contaminant into the 
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dissolved and solid phases followed by application of the transport equations 
described above. 

6.2.2 Model Configuration 

The model was configured for the Humber Estuary from Trent Falls to the 

estuary mouth (Figure 6.8). A 300 x 300 m computational grid size was 

selected with a timestep of 60s. The calibration and validation of the 

hydrodynamics, sediment transport and salinity gradient is described in Ng et 

a/. (1996) in Appendix II. 
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R. Ouse 

R. Trent 

Grimsby 
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Seaward Model, 
Boundary / 

Figure 6.8. Number Model Configuration Showing Discharge Locations, Axial 
Transect and Timesenes Stations 

It would be highly desirable to implement the sorption relationships described 

in this Chapter within the modelling framework. These relationships describe 

partitioning as a function of K^, SPM, f̂ ^ and some empirical constants. There 

is however a fundamental problem with such an implementation. The 

modelling of sediment transport Is based on physical sediment characteristics 

which determine the settling and erosion velocities. The grain size of 

sediments does not have a direct or straightforward relationship to the 

geochemical characteristics e.g. f̂ .̂ This 'missing link' prevents a direct 

prediction of K̂ , from master estuarine variables estimated by the model. For 

the purposes of this demonstration therefore, the empirically determined -
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salinity gradient for 2,2,5,5'-TCB has been used with salinity as the 
conservative master estuarine variable predicted by the model. Two 
gradient scenarios have been defined and are shown in Figure 6.9. Scenario 

1 is the empirically derived - salinity relationship for the Number. Scenario 

2 is the relationship derived for the Beaulieu. These have been selected to 

represent contrasting sorption behaviour. 

Salinity 

Figure 6.9. - Salinity Relationships Used in the Modelling 
(—Scenario 1 - Number, Scenario 2 - Beaulieu) 

Three contaminant discharge scenarios have been defined. Two of these are 

configured to represent point discharges at the middle and mouth of the 

estuary that might be representative of an outfall discharge {MD2, MD3). The 

third scenario, located at the REM represents a riverine discharge (MD1). The 

model has been run for 10 tidal cycles (120 hours). This has allowed the 

model to establish a reasonable equilibrium. It does not, however, extend to 

the full flushing time of the estuary which is approximately 40 days (Turner et 

a/., 1991). Table 6.4 summarises the discharge scenarios with the locations 

shown in Figure 6.8. 
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Location Reference 
(Figure 6.9) 

Discharge 
Concentration 

(Mg 1 

Discharge 
(m's'') 

River 
Discharge 

(m^ s )̂ 
Scenario 

River MD1 1.0 250 250 1 
River MD1 1.0 250 250 2 
Mid-
estuary 

MD2 10.0 0.5 250 1 

Lower 
estuary 

MD3 10.0 0.5 250 1 

Table 6.4. Model Run Scenarios 

It should be stressed that the objective of the modelling has been to 

demonstrate the integration of dynamic sorption in an estuary model and to 

show the influence of partition coefficient in determining estuarine distribution, 

rather than provide a wholly realistic simulation of PCBs in the Humber 

Estuary. 

6.2.3 Model Predictions 

Predictions from the model have been output at hourly intervals and 

referenced to High Water (HW). From this data, axial profiles have been 

extracted along the transect shown in Figure 6.8 and timeseries plots have 

been obtained at three locations, TS1, TS2 and TS3 also shown in Figure 

6.8. 

Riverine Discharge Scenarios 

The tidal dynamics of dissolved and particulate phase PCB is shown in 

Figures 6.10 and 6.12. Generally concentrations are in the range 0 - 5 |ig g'̂  

(particulate phase) and 0 - 0 . 1 |ag M (dissolved phase) which is high but 

reflects the relatively high concentration set for the river discharge (1 \xg \'\ 

compared with 0.1 - 2800 \xg for the contaminated Hudson River, USA, 

Paviou & Dexter, 1979). The predicted environmental concentrations are not 

however unrealistic of industrialised estuary sites. In a study of New Bedford 

Harbour, USA, Brownawell & Farrington (1985) reported dissolved phase 

concentrations in the range 0.0036 - 0.329 iig 1"̂  with concentrations in pore 
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waters up to 20.1 \ \ Duursma et al. (1989) reported SPM concentrations 

up to 0.4 ^ig g^ and Paviou & Dexter (1979), concentrations up to 1.77 fig g \ 

Figure 6.10 shows the spatial distribution of suspended particulate PCB at 

four tidal states; HW - 3 (maximum flood), HW (slack water), HW + 3 

(maximum ebb) and Low Water (LW - slack water). In Figure 6.10a the flood 

tide is transporting material up-estuary. This material has been previously 

contaminated and therefore there is a high concentration of contaminated 

material is maintained in the upper estuary. At HW (Figure 6.10b) most of the 

contaminated material has been transported into the river and downstream 

penetration is limited. As the ebb tide reaches its maximum (Figure 6.10c) 

much of the contaminated SPM is moved downstream so that by LW (Figure 

6 10d) the distribution extends halfway down the estuary. The axial profile 

shown in Figure 6.11 also illustrates this dynamic tidal behaviour. There is a 

rapid reduction in concentration with axial distance which is caused primarily 

by dilution through mixing with uncontaminated MEM waters and SPM. 

Within 15 km of the riverine discharge, concentrations have fallen to trace 

quantities. 
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Figure 6.10. Suspended Particulate Phase PCS Concentration Distribution at 
(a) HW - 3, (b) HW, (c) HW -h 3, (d) LW (River Discharge, Scenario 1) 
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Figure 6.11. Axial Profile of Suspended Particulate PCS Concentration (River 
Discharge, Scenario 1) 

Figure 6.12 shows the dissolved phase PCB concentration for two tidal states 

(HW - 3. LW) corresponding to the SPM distributions shown in Figure 6.10. 

Figure 6.13 shows clearly the strong correlation between dissolved and 

particulate concentrations (compared with Figure 6.11) which is to be 

expected with the model's assumption of instantaneous and fully reversible 

kinetics. The tidal timeseries of PCB concentration in SPM and water also 

highlights this correlation and is shown in Figure 6.14. At TS1, approximately 

3km from the river discharge input, the tidal cycle can be clearly seen with 

highest concentrations at LW when the current speed is very low and lowest 

concentrations at HW when the location is under the influence of relatively 

clean water brought upstream by the flood tide. At station TS2 the 

concentrations have fallen by an order of magnitude due to dilution. By TS3, 

there is no significant dissolved phase concentration and only peaks of SPM-

associated concentration either side of LW. 
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The significance of the change in K̂ , in the estuary has been demonstrated by 
comparing the relationship between K̂ , and salinity derived for the Humber 
with that for the Beaulieu, both applied within the Humber model. Figure 6.15 
shows the axial transects for PCB concentration in SPM and water using the 
Beaulieu - salinity relationship. The most significant observation is that 
although the PCB concentration associated with SPM is almost the same 
(slightly higher at LW), the dissolved concentration is approximately an order 
of magnitude lower with the Scenario 2 - salinity relationship. The broad 
implication of these predictions is that assuming an unlimited capacity for 
sorption to sediments, the particulate phase concentration is dependent on 
the concentration of contaminant input to the system. Dissolved phase 
concentrations by contrast, are determined by the partition coefficient. 
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Figure 6.15. Axial Profile of Dissolved PCS Concentration in (a) SPM, and (b) 
Water (River Discharge, Scenan'o 2) 

Outfall Scenarios 

The two outfall discharge scenarios demonstrate the effect of mid- and lower 

estuary inputs typical of an industrial outfall discharging to the estuary. 

Figures 6.16 and 6.17 show the PCB concentration in SPM at the mid-estuary 

(MD2) and lower estuary (MD3) stations respectively (see Figure 6.8). The 

concentrations in SPM are low, typically less than 0.05 ug g*\ As expected 

therefore, dissolved phase concentrations were insignificant and have not 

been plotted. 

Tidal dynamics dominate the dispersion of PCB from the simulated outfall 

discharges. Although the discharge is high, the influence of the discharge is 

fairly limited (within 10 km of the discharge location). During slack water (HW 

and LW) the discharged material 'pools' in the vicinity of the discharge 

creating elevated concentrations. These pools then disperse as the current 

speed increases. Figure 6.17c shows material from the lower estuary 

discharge advecting outside the estuary on the ebb tidal flow. 

195 A.O.Tyler, PhD Thesis 



The Distribution and Reactivity of Organochlorines in Estuaries 

430000 

420000 

410000 

Concentration (ug/g) 

480000 

0 0 1 0 0 

0 0050 

0 0025 

0 0O20 

0 0015 
490000 500000 510000 520000 530000 540000 

Easting (m) 3 

Concentration (ug/g) 

0 0200 

430000 

cr. 42 ' : : :0C 

410000 

400000 

4 4 : : : 

4«0000 490000 500000 510000 520000 530000 540000 

Easting (m) 

400000 

00100 

0 0050 

0 0025 

0 0020 

0 0015 

430000 

410000 

480000 490000 500000 510OO0 520000 530000 540000 

Easting (m) 

Concentration (u^g) 

0 0200 

0 0100 

0 0050 

0 0025 

0 0020 

0 0015 

196 
A.O.Tyler, PhD Thesis 



The Distribution and Reactivity of Organochlorines in Estuaries 

C o n c e n t r a t i o n {ug/g) 

0 0200 

480000 00 490000 00 500000 00 510000 00 520000 00 530000 00 540000 00 

E a s t i n g (m) 

00100 

0 0050 

0 0025 

0 0020 

0 0015 

Figure 6.16. Suspended Particulate Phase PCS Concentration Distribution at 
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Figure 6.17. Suspended Particulate Phase PCB Concentration Distribution at 
(a) HW' 3, (b) HW, (c) HW -h 3. (d) LW (Mid-estuary Discharge) 
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There are areas, illustrated well in Figure 6.17b. where there are elevated 
concentrations away from the discharge location. The area southeast of the 
discharge location was identified by Falconer & Owens (1990) as an area of 
high net deposition based on DIVAST model runs (used as the physics 
modelling basis for the PISCES model). Such areas will tend to act as sinks 
for sediment associated contaminants and may therefore be of management 
importance. 

6.2.4 Summary 

This Chapter has demonstrated the possibilities for incorporating sorption 

relationships within an integrated contaminant transport model applied to a 

dynamic estuary. However, there remain enormous challenges to developing 

integrated contaminant transport models capable of representing organic 

contaminant behaviour in an estuary. As already highlighted, there is currently 

a 'missing link' between the physical sediment characteristics which the 

physics models use to represent sediment dynamics, and the geochemical 

characteristics which have been shown to be key in determining OC sorption 

behaviour. It may be that a reasonable parameterisation of the relationship 

between physical and geochemical characteristics can be derived. This might 

be expected given that finer sediments have a tendency towards a high 

surface area and high apolar lipid content whereas coarser sediments, often 

from marine origin, tend to be lipid depleted with lower surface areas. If a 

relationship can be defined, it is likely to be estuary-specific and would need 

to be empirically determined. 

The reversibility of sorption and kinetics of sorption reactions are not 

considered in the current model. This is a major failing but one which is 

extremely difficult to address without methods to distinguish between 

irreversibly sorbed chemical and the fraction available for desorption. 

Incorporation of kinetics is somewhat easier as these can be detemnined 

experimentally and new models are being developed to incorporate reaction 
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kinetics. It must also be remembered that the modelling of sediment dynamics 
is also at a rudimentary stage, particularly for cohesive sediments and this is 
likely to hamper accurate modelling of hydrophobic compound behaviour for 
the foreseeable future. 

There are several other factors which must also be considered in developing 

integrated models for organic compound behaviour. Dissolved organic carbon 

is seen to be an important influence in determining partitioning. There has 

been very little attempt made to model the complex dynamics of DOC in 

estuaries. Organic compounds have a number of complex removal processes 

which must also be represented. Of these, volatilisation is perhaps the most 

simple and can be incorporated as a half life or derived using a fonnulation 

which considers the mixing conditions more rigorously (Lyman, 1982). 

Degradation is extremely complex and realistic modelling is not achievable at 

present. In most cases the degradation pathways are poorly understood. The 

pathways and particularly the rates are highly dependent on the type and 

quantity of degrading microbes which themselves are likely to have highly 

variant populations within an estuary. As the compounds degrade (e.g. 

dechlorinate in the case of organochlorines) the degradation by-products will 

have a different geochemical behaviour. For example, through dechlorination, 

OC degradation products will tend to have lower polarity, more likelihood of 

volatilisation, and a lower partition coefficient. 

Finally, timescale is a major consideration in organic contaminant modelling. 

The persistence of these compounds requires that models are able to 

represent the dynamics over long periods of time. This is not practical with the 

approach demonstrated in this Chapter, which is more suited to studying the 

short term impact of specific anthropogenic inputs. The algorithms required to 

fully represent the estuarine tidal dynamics are numerically expensive with 

model run times that are impractical for long term studies. Fugacity models 

have shown some success in representing a multi-phase system over long 
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times scales (Mackay, 1991) but there is a considerable way still to go in fully 
representing all the known significant controlling influences. 
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Chapter 7. Summary and Future Work 
7. Summary and Future Work 

7.1 Summary of Studies Conducted 

7.1.1 Distribution of O C s in the UK Marine Environment 

This work provides the first comprehensive survey of polychlorinated dibenzo-

p-dioxin and polychlorinated dibenzofuran distribution in UK estuaries and 

coastal waters. It also significantly supplements the data on polychtorinated 

biphenyl occurrence. This contribution to knowledge is vital given the recent 

international priority status given to these compounds through the UNEP 

Persistent Organic Pollutant Protocol. 

In the UK estuaries studied, although there was evidence of elevated 

concentrations of OCs, these were not considered of undue concern when 

compared to other reported studies of estuarine environments in Europe and 

the USA. 

7.1.2 Factors Influencing OC Distribution 

The factors contributing to the observed distributions formed a major focus of 

this work. Three principal factors were considered; the source of OCs, the 

physicochemical properties of the OC compounds, and the geochemical 

composition of the particulate sorbent. The homolog profiles and congener 

patterns for the samples were compared against reference profiles and 

patterns for characterised sources. This led to the overall conclusion that 

atmospherically derived diffuse sources were a significant input to estuaries 

with samples comparing with atmospheric deposition patterns from a sun/ey 

of dioxins and furans in UK urban air. Elucidation of specific point sources 

was found to be difficult due to the mixing of sediments in the estuary 

combined with the long residence times of OCs. However, there was some 
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evidence that the Clyde estuary may have been contaminated with point 
sources of pentachlorophenol and possibly sewage sludge. Overall it was 
considered that source-occurrence matching techniques are likely to be of 
limited use in an environmental system where the dynamic conditions 
effectively mix the sample material on such a wide geographical basis, except 
possibly where there is a significant source and samples are collected 
relatively close to the emission. 

The physicochemical properties of OCs vary widely and imply a significant 

range of environmental properties. In practice it is very difficult to separate 

distributional effects arising from the property of the compound, from other 

influences. Tentative evidence was found in the Clyde Estuary, with its' fairly 

distinct down-estuary gradient of sediment type, that ratios between lower 

chlorinated and higher chlorinated homologs changed with downstream 

distance implying that material contaminated in the upper estuary may be 

selectively transported down-estuary. In the Humber estuary, with its' highly 

dynamic mixing conditions, no pattern was observable. 

The role of particulate sorbent properties in determining sorption preferences 

was studied in detail. The physical structure of the particles, measured by 

determining their specific surface area, was found to be of little importance. 

On the other hand the composition of the particle, in particular the content 

and type of organic carbon, was found to be a major controlling factor. 

Determination of apolar lipid content was undertaken as this represents the 

most apolar phase of the organic carbon phase of the particle. This was found 

in both estuaries, but particularly the Humber Estuary, to have the strongest 

correlation with adsorbed OC. The relative abundance of lipid material in the 

Clyde estuary was thought to weaken the lipid-OC relationship as OCs may 

readily locate preferential sorption sites at or close to the point of input to the 

system. In the Humber estuary, OCs may cycle within the system seeking 

sorption sites on the relatively lipid depleted particles. 
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A particle association model was applied to the data to try and determine 
whether sorbed OC was associated with the bulk of the particle or more 
loosely associated with the particle surface. The implication from the model is 
that OCs may tend to be inherently bound into the particles interstices or 
particle-associated organic matter and may even remain associated with 
source-derived particulates. Further confirmation of the adsorbed state of 
OCs to estuarine particles is considered difficult as the residence times of 
sediments in an estuary infer that at any time, whilst some OC may be in 
exchange (either partitioning into another environmental compartment, or 
migrating within the particle itself), the bulk of the adsorbed OC will be semi­
permanently incorporated in the particle. This relatively steady state condition 
explains the predominance of physical processes in distributing OCs within an 
estuary. 

OC concentrations were normalised against lipid content to highlight the 

distribution with the variation in sorbent characteristics substantially removed. 

In the Clyde Estuary this was useful in assisting Identification of possible 

sources to the estuary. In the Humber the effect was predominately to further 

reduce the spatial variation in OC concentration which underlined the 

characteristics of the Humber as a single well mixed pool of sediment. 

7.1.3 Sorption Studies 

To further study the sorption behaviour of OCs under realistic estuarine 

conditions, sorption experiments were designed where a ^'^C-labelled OC 

compound was introduced into a simulated estuarine gradient of salinity, 

particle composition and particle concentration. values were found to vary 

significantly with the polarity of the compound and the estuarine environment 

(K^ range from 2.4 x 10' - 49.4 x 10' for TCB and 23.1 x 10' - 313 x 10' for 

TCDD). The influence of salinity on OC sorption was examined and although 

some evidence of 'salting out' was seen, it was concluded that salinity p e r s e 

was a relatively minor influence. 
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The model was configured with time-varying hydrodynamics and sediment 
dynamics for the Humber Estuary. Model scenarios were selected to simulate 
a riverine input and point source discharges. The model predicted the 
dispersion of OC under tidally varying conditions. The partitioning between 
dissolved and solid phases was modelled for two contrasting K^-salinity 
relationships taken from the experimental sorption studies. These suggested 
that the particulate phase concentration is regulated by the source input of 
OC (assuming an unlimited sorption capacity). Dissolved phase 
concentrations were highly dependent on the and changed by over an 
order of magnitude for the relationships tested. 

The simulation of hypothetical discharge scenarios demonstrated the use of 

the model in determining the dispersive capacity of receiving waters and the 

consequent environmental concentrations of OC. The model was also able to 

identify sink areas for particulate bound OC. 

7.2 Future Work 

The following areas have been identified as priorities for future investigation; 

1. The recent inclusion of PCDD, PCDFs and PCBs on the UNEP 

international priority list should be responded to by a UK-wide survey to 

establish the distribution of these contaminants in all UK marine 

environments in the proximity of urban areas. 

2. Analysis of SPM for OCs is vital to understanding their transport in 

estuaries. Collection of sufficient material without contamination is a major 

challenge and will require the construction of special apparatus to bulk 

filter sufficient volumes of water. As well as OC analysis, the SPM samples 

need to be characterised in terms of lipid content, surface area etc. 

3. More attention is needed to study the composition, origins and 

geochemical modification of apolar lipid material. Specifically, the 
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degradation of this material and subsequent release of sediment-bound 
OCs needs to be studied. 

4. Methods need to be developed to discriminate between labile and non-

labile fractions of adsorbed OC. This is important in the derivation and 

validation of suitable sorption sub-models. 

5. Sorption sub-models need to be extended to incorporate both reversibly 

and irreversibly sorbed OC. 

6. To further the integrated modelling of OCs in estuarine environments, it is 

essential to derive the relationship between the characteristics of 

sediments which determine their physical transport, and those properties 

that determine their geochemical behaviour. This will permit prediction of 

the major processes which influence the transport and fate of OCs in 

estuaries. 
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Lot - MAR - 2198S85A 

INTERLABORATORY CONSENSUS VALUES AND TOLERANCE UMfTS 
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- V TARGET -
v::.VAtUE^^ -

: CONSENSUS; 
•.•VALUE''-' .;:. 

(ng/fl) 

. . V ,-

'-'LoWaf- . 
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DIoxins 

2.3.7.8-TCOD 0.5 0.46 t 0.03 0.26 0.67 1 
ri.2,3.7.8-PCDD 1.0 0.96 1 0.06 0.56 1.37 1 
1 1.2.3,4.7.8-H3cCOD 1.0 0.90 > 0.06 0.50 1.29 1 

1 ,̂3,6.7.e-HxCOD 1.0 0.87 1 0.05 0.52 1̂ 1 1 
l.Z3.7.B.94HxC0D 1.0 0 ^ X 0.06 0.46 1.33 1 
1Z3.4.6.7.8-HpC0D * 1.5 1.39 t 0.10 0.71 2.07 1 
OCOO 3.51 t 0.22 1.98 5.03 1 

j Furans 

j 2.3,7.8-TCDF 0.S 0.45 1 0.03 0 ^ 0.64 

i;2.3.7.8-PCOF vo 0.87 t 0.04 0.59 1.15 

Z3.4.7.a-PCDF 1.0 0.86 t 0.06 0.41 1.31 

1.0 0.88 t 0.05 0.53 1-23 

i;2.3.6.7.8-HxCOF 1.0 0.95 s 0.09 0.34 1.56 

1.2.3,7.8.9-HxroF 1.0 0.82 s 0.06 0.39 1.26 

1 2,3.4.6.7.8-HxCDF 1.0 0.91 t 0.06 0.48 1.35 

j 1.2.3,4.6.7.8-HpCOF 1.5 1.27 t 0.11 0.52 zo^ 

1 U.3.4,7.8.9-HpCOF 1.5 1.12 t 0.12 0^5 1.98 

1 OCOF 2.5 2.25 1 0.15 1.17 3.33 1 
*Tho target value reprosents the amount of each analyte that was Inftlalty added to the sol. The difference 
between these values and the consensus values should be a good indication of the expected percent 
recovery of the analytical procedure. 

''Refers to nr»ean value and confidence limit (at the 95% confidence »evel) of Inrertaboratofy study based on 
triplicate analyses by 10 laboratories. 

^These values represent the upper and lower 95% toferance Ilmiis which Indicate the range of resists that 
95% of the laboratories should obtain 95% of the time for a single sampla analysis. 

'indudes average value of 1.0 ng/g present in native soD before fortificatiorL 



Test Certificate No: 

Name of Laboratory : Rechem Environmental Research 
Address : Rechem International 

Charleston Rd Hythe Southampton S045 3NX 

Name of Client: Rechem 
Address : Fawley 

Sample Identifier : Reference Soil for December 1995 
Sample No: 15075/D 

Instrument: VG 70S 
GC Column : DBS 

Calibration File : 151295 

Date of Receipt 
Date of Analysis 
Date of Report 

expressed as ng / g 

Congener Cone TEFs TEQ DL Rec % 

2,3,7.8-TCDF 0.34 0.100 0.0338 0.0400 73 
1.2,3,7.8-PeCDF 0.90 0.050 0.0451 0.0700 56 
2,3.4,7.8-PeCDF 0.95 0.500 0.4735 0.0700 56 

1,2,3,4,7.8-HxCDF 0.86 0.100 0.0863 0.0500 65 
1.2,3.6,7.8^xCDF 0.90 0.100 0.0900 0.0500 70 
2.3.4,6.7.8-HxCDF 0.85 0.100 0.0849 0.0500 66 
1,2,3,7,8.9-HxCDF 0.88 0.100 0.0879 0.0800 60 

1.2.3A6,7,8-HpCDF 1.24 0.010 0.0124 0.0600 70 
1.2.3,4,7.8.9-HpCDF 1.29 0.010 0.0129 0.0900 63 

OCDF 2.29 0.001 0.0023 0.0800 

2,3.7,8-TCDD 0.40 1.000 0.3980 0.0700 62 
1,2,3.7.8-PeCDD 0.76 0.500 0.3815 0.0800 68 

1.2.3,4 J.8-HxCDD 0.84 0.100 0.0836 0.1200 65 
1.2.3.6 J.8-HxCDD 0.85 0.100 0.0847 0.1100 68 
1.2.3.7,8.9-HxCDD 0.80 0.100 0.0799 0.1000 

1.2,3.4.6,7,8-HpCDD 1.36 0.010 0.0136 0.0600 67 
OCDD 3.43 0.001 0.0034 0.0500 55 

TEQ 1.9738 

15/12/95 
19/12/95 

Test Method : 
Blank : S8 

1122 

T E Q 

T E F 

Cone 

OL 

Isomer Not detected 

Toxic Equivalent Value 

Toxic Equivalent Factor 

Concentration 

Detection Value 

Name of Analyst: K Pettit 

Signature of Analyst: / ^ ^ ^ ^ 
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Test Certificate No: 

Name of Laboratory : Rechem Environmental Research 
Address : Rechem International 

Charleston Rd Hythe Southampton S045 3NX 

Name of Client: Rechem 
Address : Fawley 

Sample Identifier : Reference Soil for November 
Sample No: 15043/D 

Instrument: VG 70S 
GC Column : DBS 

Calibration File : 51295 

expressed as ng / g 

Date of Receipt 
Date of Analysis 
Date of Report 

28/11/95 
05/12/95 
06/12/95 

Test Method : 
Blank : s8 

1122 

Congener Cone TEFs TEQ DL Rec % 

2,3J.8-TCDF 0.45 0.100 0.0449 0.0401 66 
1,2,3,7.8-PeCDF 1.11 0.050 0.0554 0.0501 58 
2,3,4.7,8-PeCDF 0.65 0.500 0.3231 0.0401 58 

1.2.3,4J.8-HxCDF 1.01 0.100 0.1014 0.0200 64 
1.2.3.6.7.8-HxCDF 1.14 0.100 0.1137 0.0301 63 
2.3,4.6J,8-HxCDF 1.05 0.100 0.1050 0.0200 65 
1,2,3J.8.9-HxCDF 0.89 0.100 0.0895 0.0301 63 

1.2.3A6.7.8-HpCDF 1.53 0.010 0.0153 0.0401 61 
1,2.3A7,8.9-HpCDF 1.52 0.010 0.0152 0.0501 55 

OCDF 2.74 0.001 0.0027 0.0501 

2.3,7,8-TCDD 0.54 1.000 0.5371 0.0401 66 
1.2.3.7.8-PeCDD 0.98 0.500 0.4890 0.0200 66 

1,2.3.4.7,8-HxCDD 1.01 0.100 0.1009 0.0501 63 
1.2,3.6.7.8-HxCDD 1.05 0.100 0.1052 0.0501 64 
1.2,3,7.8.9-HxCDD 1.00 0.100 0.1000 0.0501 

1,2,3,4,6.7,8-HpCDD 1.56 0.010 0.0156 0.0401 60 
OCDD 4.54 0.001 0.0045 0.0601 52 

TEQ 2.2186 

T E Q 

T E F 

Cone 

D L 

Isomer Not detected 

Toxic Equivalent Value 

Toxic Equivalent Factor 

Concentration 

Detection Value 

Name of Analyst 

Signature of Analyst 

K Pettit 
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station Year Sample TEQ PCDD/F PCDD P C D F 2378TCDD TCDD PeCDD HxCDD HpCDD OCDD TCDF PeCDF HxCDF HpCDF O C D F 
Number Sampled (pg g ' ) (pg g") (pg g ' ) (pg g") (pg g ' ) (pgg-^) (pg g-̂ ) (pg g") (pg g ' ) (pg g-̂ ) (pg g") (pg g") (pg g ' ) (pg g-̂ ) (pg g ' l 
Mersey 1991 Sub-tidal 1.6 111 65 46 0.3 3 <9 <7 9 36 11 4 9 8 13 
Tyne 1991 Sub-tidal 1.5 102 21 81 n.d. 1 <1 3 3 13 4 3 6 9 59 
Humber 1991 Sub-tidal 1.7 67 35 32 n.d. 2 <13 4 5 10 9 5 7 6 6 
Tees 1991 Sub-tidal 0.6 31 8 23 0.1 1 <1 3 2 3 2 2 3 14 3 
Tweed 1991 Sub-tidal 2.8 197 128 69 0.8 4 <12 11 24 89 16 10 15 13 16 
Clyde 1991 Sub-tidal 7.6 384 285 99 3.5 17 47 34 79 110 16 15 28 35 6 
Oee 1991 Sub-tidal 15.0 1140 750 390 3.0 20 50 60 120 500 60 40 70 110 110 
Morecambe Bay 1991 Core (1cm) 3.7 322 206 116 <0.3 6 <0.6 10 40 150 21 16 35 22 22 
Morecambe Bay 1991 Core (14 cm) 1.7 117 71 46 0.3 3 <5 <5 18 50 15 6 <5 10 15 
Morecambe Bay 1991 Core (28 cm) 1.2 78 48 30 0.3 3 <3 <5 10 35 8 <3 <5 9 13 

Table A.1. PCDD and PCDF Analyses for UK Coastal Sites 

station Year Sample Total P C B 
Number Sampled ng g ' 
Clyde 1991 Sub-tidal 7 
Dee 1991 Sub-tidal 15 
Morecambe Bay 1991 Core (1cm) 5 
Morecambe Bay 1991 Core (14 cm) 33 
Morecambe Bay 1991 Core (28 cm) 36 

Table A.2. PCB Analyses for UK Coastal Sites 



station Year Sample S S A Fe Mn Al Ca 
Number Sampled (mg g ') (mg g 'l (mg g ' ) (mg g ' ) 
IVIersey 1991 Sub-tidal <1 0.71 0.17 0.075 14.4 
Tyne 1991 Sub-tidal <1 0.97 - - 14.5 
Tees 1991 Sub-tidal <1 0.45 0.12 0.053 35.5 
Tweed 1991 Sub-tidal 2.6 1.43 0.08 0.2 18.1 
Clyde 1991 Sub-tidal <1 1.08 0.042 0.19 1.46 
Dee 1991 Sub-tidal - 1.86 0.57 0.29 37.30 
Morecambe Bay 1991 Core (1cm) 1.9 0.97 0.2 0.081 16.2 
Morecambe Bay 1991 Core (14 cm) 2.7 0.9 0.1 0.073 14.6 
Morecambe Bay 1991 Core (28 cm) 2.1 0.62 0.17 0.1 25.7 

T"ajb/e A.3. Geochemical Sediment Characteristics for UK Coastal Sites 



Station Year Sample Distance T E Q PCDD/F PCOD P C D F 2378TCDD TCDD PeCDD HxCDD HpCDD OCDD T C D F PeCDF HxCDF HpCDF O C D F 
Number Sampled (km) (pg g ' ) (P9 9 ') (pg 9 ' ) (pg 9"') (pg g*') (pg 9"') (P9 9"') (pg g ' ) (pg g ' ) (pg g-̂ ) (pg g ' ) (pg g ' ) {pg g ' ) (P9 9 ' ) 

CS1 1992 Sub-tidal 0.0 52.9 1228 325 903 0.5 5 15 20 35 250 248 175 210 145 125 
0 3 2 1992 Sub-tidal 0.8 35.2 8299 6401 1898 0.6 6 10 285 1500 4600 148 80 250 770 650 
C S 3 1992 Sub-tidai 2.1 11.4 2736 2058 678 0.5 16 30 92 380 1540 58 15 95 230 280 
C S 4 1992 Sub-tidai 3.9 11.5 2270 1612 658 0.5 20 27 50 315 1200 60 17 101 200 280 
CS4(U) 1993 Sub-tidal 3.9 19.1 3122 2260 862 3.0 110 30 60 400 1660 195 90 112 165 300 
CS4(L) 1993 Sub-tidal 3.9 17.4 2930 2190 740 3.0 60 40 40 350 1700 170 70 110 140 250 
C S S 1992 Sub-tidal 4.6 17.6 2706 1911 795 0.5 32 24 60 325 1470 100 90 105 175 325 
C S 6 1991 Sub-tidal 5.3 57.0 5986 4666 1320 28.0 86 180 100 800 3500 210 170 320 350 270 
C S 6 1992 Sub-tidai S.3 16.6 2615 1774 841 1.0 65 60 74 275 1300 148 210 115 118 250 
C S 7 1991 Sub-tidal 7.5 36.0 3418 2472 946 17.0 40 87 85 405 1855 106 135 310 260 135 
C S 7 1992 Sub-tidal 7.5 23.4 3150 2110 1040 1.0 57 53 105 395 1500 175 190 175 210 290 
CS7(U) 1993 Sub-tidai 7.5 27.3 5850 4410 1440 5.0 50 50 100 640 3570 320 170 100 350 500 
CS7(L) 1993 Sub-tidal 7.S 2S.9 6640 5120 1520 5.0 50 50 100 640 4280 550 240 100 130 500 
0 8 8 1991 Sub-tidal 8.8 60.0 4600 3060 1540 20.0 110 120 100 550 2180 230 240 420 460 190 
C S S 1993 Sub-tidal 8.8 15.5 8016 5125 2891 0,9 74 4 4 565 4478 387 460 4 870 1170 
C S 9 1992 Sub-tidal 10.3 27.9 4600 3060 1540 5.0 50 75 135 700 2100 300 230 195 225 590 
CM 1992 inter-tidal 10.4 3.2 120 80 40 1.0 10 10 10 10 40 10 10 12 5 3 
C S I O 1992 Sub-tidai 10.8 4.5 1605 1398 207 1.0 10 10 10 18 1350 7 10 10 5 175 
CS10 1993 Sub-tidai 10.8 21.2 4685 3950 735 3.0 30 60 60 500 3300 115 120 60 110 330 
CI3 1992 Inter-tidal 11.6 6.5 3532 3409 123 0.5 5 10 10 84 3300 13 10 10 20 70 
CI2 1992 Inter-tidal 11.9 8.2 5114 4989 125 0.5 5 10 10 64 4900 12 1 22 14 76 
CS11 1991 Sub-tidal 12.0 37,6 3666 2770 896 17.0 75 104 73 528 1990 96 100 210 350 140 
CS11 1992 Sub-tidal 12.0 27.3 4898 3368 1530 6.0 38 20 135 425 2750 330 170 180 275 575 
CI4 1992 Inter-tidai 12.4 18.6 4850 4130 720 1.0 10 10 10 600 3500 175 10 140 280 115 
C S 1 2 1993 Sub-tidai 13.1 27.5 6480 5270 1210 5.0 50 50 50 920 4200 345 240 50 230 345 
C S 1 3 1993 Sub-tidal 13.3 11.1 2986 2206 780 2.0 36 20 20 230 1900 200 20 20 180 360 
CS14 1993 Sub-tidal 13.8 16.2 1794 1170 624 3.0 30 60 60 170 850 110 64 60 60 330 
CS15 1993 Sub-tidal 14.2 40.4 13245 11100 2145 3.0 30 60 60 1650 9300 325 140 250 300 1130 
C S 1 5 1992 Sub-tidal 14.8 21.6 8790 7163 1627 4.0 27 10 45 31 7050 194 80 88 115 1150 
CIS 1992 Inter-tidai 14.8 4.3 242 132 110 1.0 10 10 10 100 2 43 10 10 45 2 
CS16 1993 Sub-tidai 1S.8 1.6 48 23 25 0.4 4 5 9 2 3 4 5 9 4 3 
CS17 1992 Sub-tidai 17.6 12.1 5790 4994 796 1.0 15 20 34 175 4750 70 45 48 68 565 
C S 1 8 1992 Sub-tidai 20.5 3.2 334 285 49 1.0 10 10 10 5 250 10 10 10 4 15 
CS18 1993 Sub-tidal 20.5 31.7 13324 11060 2264 2.0 20 20 20 2600 8400 470 20 24 740 1010 
CI6 1992 Inter-tidal 20.6 3.0 213 134 79 0.5 5 10 10 13 96 5 10 14 30 20 
CI7 1992 Inter-tidal 21.7 2.3 169 129 40 0.5 5 5 10 21 88 5 5 10 10 10 



station Year Sample Distance T E Q PCDD/F PCDD P C D F 2378TCDD TCDD PeCDD HxCDD HpCDD OCDD TCDF PeCDF HxCDF HpCDF O C D F 
Number Sampled (km) (pg g ' ) <pg g-̂ ) (pg g ' l (pg 9") (pg g ' ) (pg g-̂ ) (pg g ' ) (pg g ' ) (pg g-̂ ) (pg g ' l (pg 9') (pg g ' ) (pg g-') (P9 9'> 

CI8 1992 Inter-tidal 22.2 6.1 2555 2373 182 1.0 10 10 10 43 2300 15 10 12 16 129 
CI9 1992 Inter-tidal 23.1 2.9 73 37 36 1.0 10 10 10 2 5 10 10 10 4 2 
CS19 1992 Sub-tldal 27.3 3.3 478 434 44 1.0 10 10 10 4 400 10 10 10 4 10 
Clio 1992 Inter-tldal 28.5 17.9 7619 5119 2500 1.2 3 10 8 98 5000 15 20 85 180 2200 
C S 2 0 1992 Sub-tidal 31.5 3.8 888 826 62 1.0 10 10 10 16 780 10 10 10 8 24 
c m 1992 Inter-tidal 34.6 3.6 149 97 52 1.0 12 10 10 15 50 20 10 10 8 4 
CS22 1992 Sub-tidal 35.0 13.0 3184 2330 854 1.5 20 10 35 365 1900 94 45 105 155 455 
CS21 1992 Sub-tidal 35.3 5.0 838 538 300 1.0 10 10 10 78 430 27 10 24 24 215 
CS24 1992 Sub-tidal 35.8 23.5 9777 8595 1182 1.5 13 10 17 55 8500 142 85 90 45 820 
CS23 1992 Sub-tidal 36.2 4.3 1335 1210 125 1.0 10 10 10 30 1150 8 10 10 12 85 
C S 2 5 1992 Sub-tidal 38.3 20.6 10237 9205 1032 1.0 16 18 86 285 8800 88 50 64 120 710 
CI12 1992 Inter-tidal 39.4 3.2 116 77 39 1.0 10 10 10 7 40 10 10 10 6 3 
CS26 1992 Sub-tidal 39.5 9.5 4470 3931 539 1.0 6 10 10 155 3750 30 20 30 84 375 
CS27 1992 Sub-tidal 40.3 19.0 2708 2037 671 1.0 10 22 75 300 1630 50 26 180 150 265 
CS28 1992 Sub-tidal 41.5 6.8 1855 1389 466 1.0 6 13 20 140 1210 35 20 36 75 300 
CC1 1993 Core (2.5 cm) - 52.7 30338 21313 9025 <4 <40 <40 123 2190 19000 115 <40 350 960 7600 
CC1 1993 Core (12.5 cm) - 156.8 107300 100000 7300 <5 <50 <50 <100 12000 88000 100 <50 <100 800 6400 
C C l 1993 Core (17.5 cm) - 82.0 51487 35857 15630 <7 <70 <70 <70 1857 34000 110 <70 400 1120 14000 
CC1 1993 Core (22.5 cm) - 58.7 36405 28275 8130 <5 <50 <50 <70 1275 27000 190 <50 270 870 6800 
CC1 1993 Core (27.5 cm) - 64.9 36185 33845 2340 <4 <40 <50 145 2700 31000 130 <50 300 1010 900 
C C 2 1993 Core (2.5 cm) - 42.6 5540 4060 1480 <5 50 <50 870 440 2700 310 220 280 170 500 
C C 2 1993 Core (7.5 cm) - 35.3 3915 2840 1075 <5 <50 <50 <50 340 2500 240 185 230 20 400 
C C 2 1993 Core (17.5 cm) • 13.7 5250 4290 960 <1 60 <10 <20 630 3600 260 <10 <20 300 400 
C C 2 1993 Core (22.5 cm) - 33.2 4336 3170 1166 <5 <50 <50 <50 470 2700 156 100 270 230 410 
C C 2 1993 Core (27.5 cm) - 36.0 6489 5040 1449 <5 <50 <50 <50 1540 3500 370 160 79 170 670 
C C 3 1993 Core (2.5 cm) - 23.9 8214 6852 1362 <2 34 <20 58 260 6500 210 90 187 175 700 
C C 3 1993 Core (7.5 cm) - 18.8 9490 8200 1290 <2 <20 <20 <20 1000 7200 220 <20 <20 170 900 
C C 3 1993 Core (12.5 cm) - 2.4 0 0 0 <0.6 <6 <9 <10 <4 <5 <6 <9 <10 <8 <5 
C C 3 1993 Core (17.5 cm) - 1.9 0 0 0 <0.4 <4 <7 <10 <4 <5 <4 <7 <10 <8 <5 
C C 3 1993 Core (22.5 cm) - 2.8 0 0 0 <0.6 <6 <10 <20 <6 <5 <6 <10 <10 <8 <5 

Table A.4. PCDD and PCDF Analyses for the Clyde Estuary. Distance from weir (km). U - Upper, L - Lower (10 cm). 



station 
Number 

Year 
Sampled 

Sample Distance 
(km) 

Total P C B 
(ng g ') 

PCB(ngg-^) Sum I C E S 7 station 
Number 

Year 
Sampled 

Sample Distance 
(km) 

Total P C B 
(ng g ') 28 52 101 118 138 153 180 

Sum I C E S 7 

CS1 1992 Sub-tidal 0.0 10 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.07 
C S 2 1992 Sub-tidal OS 3000 11 14 14.9 6.1 18.6 15.5 27.8 107.9 
C S S 1992 Sub-tidal 2.1 400 0.8 0.8 1.2 1.1 1.7 1.4 1.2 8.2 
C S 4 1992 Sub-tidal 3.9 152 2.8 7.7 9.4 6.6 6.5 6.1 4.5 43.6 
CS4(U) 1993 Sub-tidal 3.9 268 - - - - - - • -
CS4{L) 1993 Sub-tidal 3.9 307 - - - - - - - -
C S S 1992 Sub-tidal 4.6 254 2.6 2.5 2.9 2.8 2.S 1.9 <0.01 15.51 
C S 6 1991 Sub-tidal S.3 57 - - - - - - - -
C S 6 1992 Sub-tidal S.3 726 12 14 15.4 9.5 9.7 6.5 7.1 74.2 
C S 7 1991 Sub-tidal 7.5 36 - - • - - - - -
C S 7 1992 Sub-tidal 7.5 520 9.5 1.4 1.6 1.5 4.1 3.1 <0.01 21.21 
CS7(U) 1993 Sub-tidal 7.5 198 - - - - - - - -
CS7{L) 1993 Sub-tidal 7.5 221 - - - - - - - -
C S S 1991 Sub-tidal 8.8 59 - - - - - - - -
C S 8 1993 Sub-tidal 8.8 974 - - - - - - - -
C S S 1992 Sub-tidal 10.3 486 12 19 20 17 22 7 35 132 
CM 1992 Inter-tidal 10.4 7 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.07 
CS10 1992 Sub-tidal 10.S 18 1.9 2 2.4 2.1 0.9 o.s <0.01 10.11 
CS10 1993 Sub-tidal 10.8 374 - - - - - - - -
CI3 1992 Inter-tidal 11.6 105 3.1 4.7 5.2 5.1 7.2 6.7 9.2 41.2 
CI2 1992 Inter-tidal 11.9 50 1.7 1.9 1.2 1.3 1.1 0.9 0.9 9 
CS11 1991 Sub-tidal 12.0 37 - - - - - - - -
CS11 1992 Sub-tidal 12.0 537 3 0.1 0.2 0.3 2 2.1 <0.01 7.71 
CI4 1992 Inter-tidal 12.4 277 6.2 9.1 10.1 9.4 11.2 10.6 5.2 61.8 
CS12 1993 Sub-tidal 13.1 126 - - - - - - - -
C S 1 3 1993 Sub-tidal 13.3 247 - - - - - - - • 

CS14 1993 Sub-tidal 13.8 157 - - - • - - - -
CS15 1992 Sub-tidal 14.8 950 10 15 11 10 12 17.3 4.7 80 
CIS 1992 Inter-tidal 14.8 70 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.07 
CS16 1993 Sub-tidal 15.8 197 - - - - - - - -
CS17 1992 Sub-tidal 17.6 67 2.3 4 2.7 2.8 2.5 2.3 1.4 18 
C S 1 8 1992 Sub-tidal 20.S 9 0.5 0.5 0.4 0.4 0.6 0.45 0.01 2.86 
C S 1 8 1993 Sub-tidal 20.5 1270 - - - - - - - • 

Ct6 1992 Inter-tidal 20.6 16 0.2 <0.01 <0.01 <0.01 0.1 0.1 <0.01 0.44 
CI7 1992 Inter-tidal 21.7 27 0.2 0.6 1.1 1.4 0.9 <0.01 <0.01 4.22 
CIS 1992 Inter-tidal 22.2 20 1.7 1.9 2.4 2.1 1.7 1.5 1.1 12.4 



Station 
Number 

Year 
Sampled 

Sample Distance 
(km) 

Total P C B 
(ng g ' ) 

P C B (ng g-') Sum I C E S 7 Station 
Number 

Year 
Sampled 

Sample Distance 
(km) 

Total P C B 
(ng g ' ) 28 52 101 118 138 153 180 

Sum I C E S 7 

CI9 1992 Inter-tidal 23.1 1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.07 
CS19 1992 Sub-tidal 27.3 3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.07 
Clio 1992 Inter-tidal 28.5 24 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.07 
C S 2 0 1992 Sub-tidal 31.5 90 1 6.8 7 4.8 5.7 5.9 3.3 34.5 
c m 1992 Inter-tidal 34.6 48 2.6 2.4 2.6 2.5 2.6 3.1 3.2 19 
CS22 1992 Sub-tidal 35.0 171 2.8 9 7 6.7 6.3 9 0.01 40.81 
CS21 1992 Sub-tidal 35.3 60 0.8 2.8 2.9 3 1.7 1.9 1 14.1 
CS24 1992 Sub-tidal 35.8 7 0.4 1.3 1.4 1.2 0.7 0.7 0.1 5.8 
CS23 1992 Sub-tidal 36.2 4 0.5 0.2 <0.01 <0.01 <0.01 <0.01 <0.01 0.75 
CS25 1992 Sub-tidal 38.3 126 0.1 0.6 0.7 0.6 1 1.2 <0.01 4.21 
CM2 1992 Inter-tidal 39.4 32 1.1 1.5 1.6 1.4 0.9 0.7 <0.01 7.21 
CS26 1992 Sub-tidal 39.5 34 0.3 0.34 0.6 0.9 1 1.1 1 5.24 
CS27 1992 Sub-tidal 40.3 247 2 2.6 3.1 3.2 4.7 4.6 2.1 22.3 
CS28 1992 Sub-tidal 41.5 120 3.2 5.6 5.8 4.4 8.1 7.7 9.7 44,5 
01 1993 Core (2.5 cm) 887 - - - - - -
C1 1993 Core (12.5 cm) 1430 - - - - - -
C I 1993 Core (17.5 cm) 1240 - - - - - -
C I 1993 Core (22.5 cm) 794 - - - - - -
C I 1993 Core (27.5 cm) 881 - - - - - -
C2 1993 Core (2.5 cm) 277 - - - - - -
C2 1993 Core (7.5 cm) 343 - - - - - -
C2 1993 Core (17.5 cm) 995 - - - - - -
C2 1993 Core (22.5 cm) 359 - - - - - -
C2 1993 Core (27.5 cm) 430 - - - - -
C 3 1993 Core (2.5 cm) 130 - - - - - -
C3 1993 Core (7.5 cm) 234 - - - - - -
C 3 1993 Core (12.5 cm) 9 - - - - - -
C 3 1993 Core (17.5 cm) 3 - - - - - -
C3 1993 Core (22.5 cm) 4 - - - - - -

Table A.5. PCB Analyses for the Clyde Estuary. Distance from weir (km), 
U - Upper, L - Lower (10 cm). 



Station Year Sample Sample Distance Total C O r g C Lipid Cont. SSA Fe Mn Al C a 
Number Sampled (km) (mg g ' ) (mg g 'l (mg g ') (m' g ') (mg g ') (mg g ') (mg g ' ) (mg 9 '} 
CS1 1992 Sub-tidal SUB 0.0 30.4 30.3 1.39 12.5 2.87 2.02 1.10 1.09 
C S 2 1992 Sub-tidal SUB 0.8 85 84.6 8.32 5.1 10.80 1.09 1.40 4.99 
C S 3 1992 Sub-tidal SUB 2.1 74.3 72 6.01 3.6 6.40 0.45 1.20 7.67 
CS4 1992 Sub-tidal SUB 3.9 70.9 70.9 8.83 3.4 11.7 0.58 1.5 4.14 
CS4(U) 1993 Sub-tidal S U B 3.9 - - 9.319 - 21.7 14.7 - -
CS4(L) 1993 Sub-tidal SUB 3.9 - - 9.12 - 22.2 13.5 - -
C S S 1992 Sub-tidal SUB 4.6 84.4 84.4 10.2 3.4 7.95 0.29 1.40 3.52 
C S 6 1991 Sub-tidal SUB 5.3 - - - 2.2 12.6 0.447 0.63 4.02 
C S 6 1992 Sub-tidal SUB S.3 93.5 93.5 8.39 4.1 6.42 0.42 0.95 3.28 
C S 7 1991 Sub-tidal SUB 7.5 66.8 66.5 - <1 6.9 0.32 0.38 5.05 
C S 7 1992 Sub-tidal SUB 7.5 81.9 81.9 13.8 5.8 10.50 0.37 1.30 5.05 
CS7(U) 1993 Sub-tidal SUB 7.5 98.8 97.9 11.89 - 23 1.35 - -
CS7(L) 1993 Sub-tidal SUB 7.5 - - 6.27 - 16.4 0.38 - -
C S 8 1991 Sub-tidal SUB 8.8 - - - 3.6 14.3 0.449 1.1 5.13 
C S S 1993 Sub-tidal SUB 8.8 - - 12.34 - - - - -
C S 9 1992 Sub-tidal SUB 10.3 73.5 73.5 5.6 4.8 6.88 0.29 1.10 4.46 
C l l 1992 Inter-tidal IT 10.4 3.8 3.8 0.25 1.8 1.36 0.09 0.20 0.98 
CS10 1992 Sub-tidal SUB 10.8 6.9 6.9 n.d. 9.9 2.62 0.33 0.51 5.39 
CS10 1993 Sub-tidal SUB 10.8 - - 2.8 - - - - -
CI3 1992 Inter-tidal IT 11.6 - 32.6 1.98 7.6 2.33 0.06 0.63 1.78 
CI2 1992 Inter-tidal IT 11.9 63.5 63.5 2.31 7.2 6.70 0.19 1.40 4.94 
CS11 1991 Sub-tidal SUB 12.0 S9.9 59.9 - 3.1 8.2 0.158 0.83 3.82 
CS11 1992 Sub-tidal SUB 12.0 98.7 98.4 11.23 6.1 8.54 0.40 1.03 4.26 
CI4 1992 Inter-tidal IT 12.4 63.9 63.7 - 7.4 3.74 0.07 1.00 2.31 
CS12 1993 Sub-tidal SUB 13.1 - - 4.16 - 9.14 0.27 - -
CS13 1993 Sub-tidal SUB 13.3 - - 6.19 - 16.3 0.67 - -
CS14 1993 Sub-tidal SUB 13.8 - - 4.16 - - - - -
CS15 1993 Sub-tidal SUB 14.2 37.9 37.7 4.79 - - - - -
CS15 1992 Sub-tidal SUB 14.8 71.5 71 5.06 2.6 3.39 0.23 0.84 2.25 
CIS 1992 Inter-tidal IT 14.8 57.1 57 2.75 2.6 1.53 0.02 0.46 1.10 
CS16 1993 Sub-tidal SUB 15.8 - - S.267 - - - - -
CS17 1992 Sub-tidal S U B 17.6 56.8 56.3 1.17 2.1 1.21 0.07 0.42 0.91 
CS18 1992 Sub-tidal S U B 20.S 2.4 2.4 0.22 1 0.94 0.11 0.19 0.78 
CS18 1993 Sub-tidal SUB 20.5 - - 4.65 - 12.1 0.47 - -
CI6 1992 Inter-tidal IT 20.6 1.8 1.2 0.51 2.6 1.48 0.06 0.26 1.74 
CI7 1992 Inter-tidal IT 21.7 9.6 9.6 0.63 1.8 0.83 0.06 0.19 0.S6 



Station Year Sample Sample Distance Total C Org C Lipid Cont. S S A Fe Mn Al C a 
Number Sampled (km) (mg g ') (mg g ' ) (m'g-') (mg g ') (mg g ' ) (mg g-*) (mg g-') 
CIS 1992 Inter-tidal IT 22.2 - - - 3.7 1.93 0.19 0.40 1.40 
CI9 1992 Inter-tidal IT 23.1 1.6 1.6 n.d. 6.7 0.87 0.03 0.09 0.16 
CS19 1992 Sub-tidal SUB 27.3 5.2 5.2 0.07 1.9 1.20 0.29 0.16 1.09 
Clio 1992 tnter-ttdal IT 28.5 30.1 29.8 0.91 3.4 1.40 0.10 0.35 4.89 
C S 2 0 1992 Sub-tidal SUB 31.5 76.1 76.1 0.19 1.2 1.67 0.14 0.17 4.38 
c m 1992 Inter-tidal IT 34.6 64.7 63.8 1.93 5.9 2.29 0.04 0.38 2.00 
CS22 1992 Sub-tidal SUB 35.0 44.2 44.2 3.31 7.8 7.70 0.36 0.98 7.20 
CS21 1992 Sub-tidal SUB 35.3 33.9 30.3 1.66 10.4 3.08 0.12 0.38 9.32 
CS24 1992 Sub-tidal SUB 35.8 48.3 46.3 4.55 4.9 10.40 0.34 1.00 4.88 
CS23 1992 Sub-tidal SUB 36.2 13.1 12.7 0.41 1.9 1.42 0.10 0.29 1.16 
CS25 1992 Sub-tidal SUB 38.3 39.1 36.2 1.54 3.6 3.46 0.18 0.48 3.60 
CI12 1992 Inter-tidal IT 39.4 8.8 8.6 1.61 1.1 0.89 0.06 0.26 4.70 
CS26 1992 Sub-tidal SUB 39.5 31.2 29.9 0.83 4.4 2.72 0.29 0.36 3.44 
CS27 1992 Sub-tidal SUB 40.3 59.2 56.5 2.74 7.4 6.56 0.28 0.79 6.99 
CS28 1992 Sub-tidal SUB 41.5 68.5 67.7 1.88 6.6 4.33 0.20 0.61 7.03 

Table A,6. Geochemical Sediment Characteristics for the Clyde Estuary. Distance from weir (km). 
U - Upper, L - Lower (10 cm). 



station Year Sample Distance T E Q PCDD/F PCDD P C D F 2378TCDD TCDD PeCDD HxCDD HpCDD 
(pg g ' ) 

OCDD T C D F P e C D F HxCDF HpCDF 
(pg g ' ) 

O C D F 
Number Sampled (km) (P9 9 ') (pg 9 ') (P9 g ') (pg g ' ) (pg g ' ) (pg g ' ) (pg g ' ) (pg g") 

HpCDD 
(pg g ' ) (pg g ' ) (pg g ' ) (pg g ' ) (pg g ' ) 

HpCDF 
(pg g ' ) (pg g ' ) 

HS1 1993 Sub-tidal 0.4 5.2 377 257 120 0.8 62 28 <10 27 140 40 40 20 10 10 
HI1 1993 Inter-tidal 4.5 12.3 1821 1318 503 4.0 190 120 61 97 850 48 144 61 40 210 
HI2 1993 InteMldal 4.8 13.9 1651 1163 488 3.5 140 110 52 116 745 67 160 56 33 172 
HS2 1993 Sub-tidal 4.9 1.0 47 27 20 <.2 5 <4 <4 3 19 4 7 <4 4 5 
HI3 1993 inter-tidal 7.2 24.1 3827 2771 1056 7.0 370 213 110 303 1775 138 278 114 98 428 
HS3 1993 Sub-tidal 12.1 1.0 50 21 29 <.2 4 <4 <4 2 15 4 14 <4 4 7 
HI4 1993 inter-tidal 13.5 16.2 2358 1602 756 2.6 344 138 79 159 882 118 256 79 56 247 
HS4 1993 Sub-tidal 15.1 7.6 956 653 303 2.8 130 87 <5 58 378 54 76 37 16 120 
HIS 1991 Inter-tidal 17.9 38.9 2216 1273 943 20.2 45 176 123 71 858 304 148 110 185 196 
HS5 1993 Sub-tidal 17.9 1.2 64 38 26 <.2 5 <5 <5 4 29 5 <5 <5 3 18 
HI6 1993 Inter-tidal 22.4 14.7 2654 1915 739 2.0 237 149 77 220 1232 99 182 80 75 303 
HS6 1993 Sub-tidal 28.2 1.4 64 28 35 <0.2 4 <5 <5 5 20 3 13 6 4 10 
HI7 1991 Inter-tidal 31.9 24.2 3072 1888 1184 0.6 5 170 100 293 1320 314 164 128 149 429 
HS7 1993 Sub-tidal 33.2 6.2 577 425 152 1.3 62 50 52 38 223 31 44 23 14 40 
HIS 1993 Inter-tidal 36.8 1.4 n.d. n.d. n.d. <0.2 <2 <4 <10 <2 <5 <2 <4 <10 <4 <5 
HS8 1993 Sub-tidal 38.2 5.7 284 201 83 0.4 13 12 50 12 115 9 13 27 6 29 
HI9 1991 Inter-tidal 43.3 23.6 1107 483 624 15.0 148 49 52 80 154 163 81 86 68 226 
HMO 1993 Inter-tidal 43.3 16.3 2253 1562 691 5.0 190 150 72 150 1000 120 205 72 47 247 
HS9 1993 Sub-tidal 49.0 11.6 1626 1005 621 1.7 160 130 67 110 538 164 136 72 33 216 
HS10 1993 Sub-tidal 55.2 4.0 244 145 99 0.5 15 13 42 13 62 20 23 26 7 23 
HS11 1993 Sub-tidal 57.9 9.9 1222 755 467 1.3 127 97 65 76 390 140 102 43 20 162 
HI14 1993 Inter-tldal 58.5 1.4 n.d. n.d. n.d. <0.2 <2 <4 <10 <2 <5 <2 <4 <10 <4 <5 
HI11 1991 Inter-tidal 58.7 30.9 2693 1453 1240 9.9 222 206 83 151 791 284 167 170 195 424 
HI12 1993 Inter-tidal 58.7 13.4 1783 1226 557 3.5 116 144 56 140 770 52 198 67 56 184 
HI13 1991 Inter-tidal 61.1 9.3 559 295 264 4.8 53 40 21 31 150 66 32 32 39 96 

Table A. 7. PCDD and PCDF Analyses for the Number Estuary. Distance from Trent Falls (km) 



Station 
Number 

Year 
Sampled 

Sample Distance 
(km) 

Total P C B 
(ng g ') 28 52 101 

P C S (ng g ') 
118 138 153 180 

Sum I C E S 7 

HS1 1993 Sub-tidal 0.4 7 0.5 0.7 0.9 1.4 0.7 0.9 <0.5 5.1 
HI1 1993 Inter-tidal 4.5 44 2.4 3.4 7 9.3 <0.5 5 <0.5 27.1 
HI2 1993 Inter-tidal 4.8 39 3 5.6 8.4 10.7 2.1 1.2 <0.5 31 
HS2 1993 Sub-tidal 4.9 2 1 0.8 <0.2 <0.5 <0.5 1.6 <0.5 3.4 
HI3 1993 Inter-tidal 7.2 75 6.8 6 15 12 2.4 1.9 <0.5 44.1 
HS3 1993 Sub-tidal 12.1 1 0.5 <0.2 <0.2 <0.5 <0.5 <0.5 <0.5 0.5 
HI4 1993 Inter-tidal 13.5 67 4.4 7.5 12 16.9 1.9 2.7 1 46.4 
HS4 1993 Sub-tidal 15.1 32 4.7 9.6 14.4 15.6 3.7 4.6 1.4 54 
HIS 1991 Inter-tidal 17.9 - - - - - - - - -
HS5 1993 Sub-tidal 17.9 2 0.9 1.1 <0.2 <0.5 <0.5 <0.5 <0.5 2 
HI6 1993 Inter-tidal 22.4 53 2.8 4.7 7.7 10.2 1.2 2.3 <0.5 28.9 
HS6 1993 Sub-tidal 28.2 1 <0.2 <0.2 <0.2 <0.5 <0.5 <0.5 <0.5 n.d. 
HI7 1991 Inter-tidal 31.9 - - - - - - - - -
HS7 1993 Sub-tidal 33.2 37 3.1 10.4 16.4 17.9 4.6 7.4 2.1 61.9 
HIS' 1993 Inter-tidat 36.8 <1 <0.5 <0.5 <0.2 <0.5 <0.5 <0.5 <0.5 0 
HS8 1993 Sub-tidal 38.2 4 0.3 1.1 1.7 1.4 0.6 0.9 <0.5 6 
HI9 1991 Inter-tidal 43.3 - - - - - - • - -
HI10 1993 Inter-tidal 43.3 27 3.6 4.7 9 11.4 1.2 1.4 <0.5 31.3 
HS9 1993 Sub-tidal 49.0 43 2.5 3.5 6.9 8.9 <0.5 1.2 <0.5 23 
HS10 1993 Sub-tidal 55.2 5 0.4 1.6 2 1.7 1.9 1.2 1 9.8 
HS11 1993 Sub-tidal 57.9 36 2.9 8.7 14.6 21.4 2.4 0.9 0.7 51.6 
HI14 1993 Inter-tidal 58.5 <1 <0.2 <0.2 <0.2 <0.5 <0.5 <0.5 <0.5 n.d. 
HI11 1991 Inter-tidal 58.7 - - - - - - - - -
Ht12 1993 Inter-tidal 58.7 84 5.5 5.7 9 10.4 1.5 1 <0.5 33.1 
HI13 1991 Inter-tidal 61.1 - - - - - - - - -

Table A.8, PCB Analyses for the Number Estuary. Distance from Trent Falls (km). 



station Year Sample Distance Total C O r g C Lipid Cont. S S A Fe Mn Al C a 
Number Sampled (km) (mg g ') (mg g-') (mg g-') { m ' g ' ) (mg g ' ) (mg g ') (mg g ') (mg g 'l 
HS1 1993 Sub-tidal 0.4 40.6 29.6 0.127 - - - - -
HI1 1993 Inter-tidal 4.5 - - 1.151 - - - - -
HI2 1993 Inter-tidal 4.8 - - 0.902 - - - - -
HS2 1993 Sub-tidal 4.9 n.d. n.d. n.d. - - - - -
HI3 1993 Inter-tidal 7.2 - - n.d. - - - - -
HS3 1993 Sub-tidal 12.1 - - n.d. - - - - -
HI4 1993 Inter-tidal 13.5 - - 1.549 - - - - -
HS4 1993 Sub-tidal 15.1 - - 0.427 - - - - -
HI5 1991 Inter-tidal 17.9 - - - 22.3 8.5 1 0.41 36.4 
HS5 1993 Sub-tidal 17.9 8.6 1.7 n.d. - - - - -
HI6 1993 Inter-tidal 22.4 - - 1.634 - - - - -
HS6 1993 Sub-tidal 28.2 - - 0.327 - - - - -
HI7 1991 Inter-tidal 31.9 - - - 8 3.81 0.5 0.16 23.2 
HS7 1993 Sub-tidal 33.2 15 5.5 0.39 - - - - -
HI8 1993 Inter-tidal 36.8 27.1 14.4 1.409 - - - - -
HS8 1993 Sub-tidal 38.2 8.9 1.9 0.242 - - - - -
HI9 1991 Inter-tidal 43.3 - - - 21.3 8.51 0.82 0.42 40.6 
HMO 1993 Inter-tidal 43.3 54.7 46.8 3.28 - - - - -
HS9 1993 Sub-tidal 49.0 - - 0.983 - - - - -
HS10 1993 Sub-tidal 55.2 - - 0.112 - - - - -
HS11 1993 Sub-tidal 57.9 29.6 15.9 1.48 - - • - -
HI14 1993 Inter-tidal 58.5 - - 0.085 - - - - -
HI11 1991 Inter-tidal 58.7 - - - 18.2 7.28 0.66 0.34 34.2 
HI12 1993 Inter-tidal 58.7 - - 1.765 - - - - -
HI13 1991 Inter-tidal 61.1 - - - 19.9 7.71 0.9 0.36 35.2 

Table A.9. Geochemical Sediment Characteristics for the Number Estuary. 
Distance from Trent Falls (km) 



Station Year Sample Distance T E Q PCDD/F PCDD P C D F 2378TCDD TCDD PeCDD HxCDD HpCDD OCOD T C D F PeCDF HxCDF HpCDF O C D F 
Number Sampled (km) (pg g ' ) (pg g-') (pg g ' ) (P9 9 ') (pg g ' ) (P9 9 ') (pg g ' ) (pg g ' ) (pg g ' ) (P9 9 ') (pg g ' ) (pg g ' ) (pg g ' ) *pg 9 ' ) 
DM 1991 Inter-tidal 0.0 15.0 987 597 390 4.0 17 40 45 75 420 75 45 60 100 110 
012 1991 Inter-tidal 13.0 10.0 870 530 340 2.0 20 30 40 70 370 60 40 50 90 100 
DS1 1991 Sub-tidal 15.0 19.0 1540 900 640 3.0 20 50 80 250 500 60 100 130 150 200 
DI3 1991 Inter-tidal 17.0 23.0 1630 1010 620 3.0 30 60 80 160 680 120 80 90 140 190 
DS2 1991 Sub-tidal 24.0 22.0 2472 1792 680 4.0 27 SO 75 140 1500 75 85 130 140 250 
DS4 1991 Sub-tidal 31.0 18.0 1640 980 660 2.0 25 55 85 175 640 75 90 125 160 210 
DI4 1991 Inter-tidal 32.0 22.0 2S90 1880 710 4.0 30 60 80 230 1480 90 90 120 180 230 
DS3 1991 Sub-tidal 35.0 21.0 979 605 374 4.0 20 40 5 100 440 90 60 4 100 120 
DSS 1991 Sub-tidal 37.0 15.0 1140 750 390 3.0 20 50 60 120 500 60 40 70 110 110 

Table A. 10. PCDD and PCDF Analyses for the Dee Estuary. Distance from Chester weir (km) 

Station Year Sample Distance Total P C S 
Number Sampled (km) ng g ' 
DM 1991 Inter-tidal 0.0 11 
DI2 1991 Inter-tidal 13.0 13 
DS1 1991 Sub-tidal 15.0 <1 
DI3 1991 Inter-tidal 17.0 2 
DS2 1991 Sub-tidal 24.0 2 
DS4 1991 Sub-tidal 31.0 3 
DI4 1991 Inter-tidal 32.0 <1 
DS3 1991 Sub-tidal 35.0 20 
DSS 1991 Sub-tidal 37.0 15 

Table A. 11. PCS Analyses for the Dee Estuary. 
Distance from Chester weir (km). 



Station Year Sample Distance Lipid C o n t Fe Mn Al C a 
Number Sampled (km) (mg 9"') (mg g ') (mg g ') (mg g ') (mg g-̂ ) 
DI1 1991 Inter-tidal 0.0 0.42 0.73 0.14 0.45 5.7 
012 1991 Inter-tidal 13.0 0.44 1.60 0.49 0.27 34.5 
DS1 1991 Sub-tidal 15.0 n.d. 0.49 0.10 0.09 17.0 
DI3 1991 Inter-tidal 17.0 n.d. 2.68 1.10 0.53 42.8 
DS2 1991 Sub-tidal 24.0 n.d. 0.29 0.09 0.04 16.2 
DS4 1991 Sub-tidal 31.0 n.d. 0.35 0.10 0.07 14.1 
DI4 1991 Inter-tidal 32.0 2.61 5.35 1.06 0.71 37.7 
DS3 1991 Sub-tidal 35.0 4.4 4.06 0.47 0.42 34.6 
DS5 1991 Sub-tidal 37.0 - 1.86 0.57 0.29 37.3 

Table A. 12. Geochemical Sediment Characteristics for the Dee Estuary. 
Distance from Chester weir (km). 
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Introduction 

Estuaries receive waste from a number of diffuse and direct sources including outfalls, 
dump sites', landfill sites', and by atmospheric deposition\ The hydrodynamics of estuaries 
and coastal waters ensure that hydrophobic pollutants are widely distributed. Waters around 
the United Kingdom are significantly polluted with hydrophobic organic pollutants and it is 
suggested that such contamination may be adversely affecting marine life. 

The problems associated with the analysis of polychlorinated dibenzo-p-dioxins and 
polychlorinated dibenzofurans (PCDDs and PCDFs) at the trace concentrations found in 
environmental samples have resulted in little comprehensive research on the behaviour of 
PCDDs and PCDFs in estuaries and coastal waters. Quantitative information on partitioning 
behaviour and sorption reaction kinetics is not yet available; much of which is required as a 
precursor to modelling PCDD/PCDF transport and fate in complex marine systems. 

Approach and Methodology 

The first objective of the current three year study has been to establish a primary 
database of esiuarine data for general reference and calibration of future model developments. 
Such datasets are currently not available for UK estuarine and coastal waters. Over a period 
of 1 year, sediments samples have been taken using grab and core samplers from a number 
of key coastal locations around the UK including the Mersey, Tees, Tyne, Tweed, core 
samples from the Irish Sea and axial surveys of the Dee, Clyde and Humber. 

Sample analysis has been carried out using methods adapted from analysis of soil 
samples. Samples were solvent extracted and the exiraciant concentrated. Liquid 
chromatography was then used to eluie the extractant and the PCDD/PCDF collected, 
concentrated to a suitable volume. The PCDD/PCDF analysis was carried out by passing the 
sample through a gas chromalogram directly interfaced to a high resolution mass spectrometer 
(VG 70S) operating in the selected ion monitoring mode (SIM). Homolog groups and specific 
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congeners were identified and quantified by reference to '̂ C PCDD/PCDF IQSs/ 
To supplement the PCDD/PCDF data, all samples were analysed for particulate CHN 

using a combustiometric technique, lipid content using the Dole & Meinhurtz solvent 
extraction method and specific surface areas (SSA) established using BET adsorption*. 

Results and Discussion 

Homolog 

|2,3,7.8 TCDD 
TCDD 
PeCDD 
HxCDD 
[HpCDD 
OCDD 
p.3,7.8 T C D F 
rrcDF 
PeCDF 
HxCDF 
HpCDF 
jOCDF . 
Total PCDD 
frotal PCDF 
Nato/CCMS 
^Equivalent 

Sediment Samples PCDD/DF (ppt dry weight) 
Clyde 

(Distance 
Estuary Stations 
from Glasgow, km) 

1 
(3km) 

16 
86 

180 
100 
800 

3500 
28 

210 
170 
320 
350 
270 

4666 
1320 

57 

2 
(4km) 

7 
40 
87 
85 

405 
1855 

17 
106 
135 
310 
260 
135 

2472 
946 

36 

3 
(5km) 

19 
no 
120 
100 
550 

2180 
20 

230 
240 
420 
460 
190 

3060 
1540 

60 

4 
(10km) 

9 
75 

104 
73 

528 
1990 

17 
96 

100 
210 
350 
140 

2770 
896 

37.6 

5 
(22km) 

1.5 
17 
47 
34 
79 

108 
3.5 

15.9 
14.5 
28 
35 
5.9 

285 
99.3 

7.6 

Morcambe Bay 
(Core Sample) 

0 cm 
6 
6 

< 0 . 6 
10 
40 

150 
2 

21 
16 
35 
22 
22 

206.6 
116 

3.7 

14cm 
0.3 
3 

<5 .0 
<5 .0 
18 
50 

3.0 
15 
6 

<5 .0 
10 
15 
81 
51 

1.7 

28cm 
0.3 
2.5 

<3 .0 
<5 .0 
10 
35 
0.5 
8 

<3 .0 
<5 .0 

9.0 
13 
55.5 
38 

1.2 

Table L PCDD/PCDF Concentrations in Morcambe Bay and Clyde Estuary Sediments. 
Table 1 summarises results from analyses carried out on core samples from Morcambe 

Bay and the axial survey of the Clyde. The samples from Morcambe Bay are representative 
of a UK coastal shelf sea environment receiving waste from a number of industrialised 
estuaries (Clyde, Mersey, Dee» Severn). The Clyde is an industrialised estuaiy with direct 
pollutant inputs from the City of Glasgow via industrial/domestic sewage outfalls. 

Due to their ubiquity in the marine environment, it is difficult to determine 
'background* concentrations of PCDD/DF in the marine environment. Turksira and Pols 
(1989) regarded total PCDD/PCDF sediment concentrations of between 10 and 100 ppt as 
background levels in their study of the Noordzeekanaal in the Netheriands. Norwood et al 
(1989) in a study of Nanaganselt Bay obtained a value of < 0.93 ppt 2,3,7,8 TCDD at their 
'relatively clean reference site". Set against these assessments, the levels of PCDDs and 
PCDFs found in Clyde sediments may be regarded as elevated and those in Morcambe Bay 
as background. PCDDs and PCDFs were, however, concentrated in the surface sediments in 
Morcambe Bay whereas PCB concentrations increased with depth. 

The source of PCDD/PCDFs to the Clyde estuary is not clear. Sample homolog 
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profiles from local incineration sources and direct sewage inputs may help in the future to 
elucidate the source. From the axial distribution of PCDDs and PCDFs (discussed below) 
however, it would seem likely that a direct source(s) to the estuary is present. 

Due to their hydrophobicity. the transport and axial distribution of PCDDs and PCDFs 
in estuaries is dominated by the physicochemical characteristics and transport mechanisms of 
estuarine sediments. Generally, orgariic micropollutants are expected to favour fine sediments 
with high surface areas, high organic carbon content and high lipid content. Clyde sediments 
in the lower estuary tend to be of marine origin with high grain size and low organic content 
compared with the upper estuary's finer, organic rich sediments. An expected general 
decrease in total PCDD and PCDF concentration was therefore observed down the estuary. 

An initial examination concludes that the dispersive hydrodynamics of the estuary and 
the effectiveness of an estuary as a filler for fine grained sediments received from it's 
uibutary rivers, is probably responsible for the observed dilution. In this case however, the 
homolog profiles have been examined more closely to see the way in which individual chloro-
L ~ » ~ l . I - - - -

Homplpg Clyde'Estuary Stations 
1 2 3 4 • 

(3km) (4lun) (5 km) (10 km) -. (22kn^f 
TCDD 1.8 1.6 3.6 2.7 6.0 
PeCDD 3.9 3.5 3.9 3.7 16.5 
HxCDD 2.1 3.5 3.3 2.6 12.0 
HpCDD 17.2 16.4 18.0 19.2 27.7 
OCDD 75.0 75.0 71.2 71.8 37.8 

TCDF 15.9 11.2 14.9 10.7 16.0 
PeCDF 12.9 14.3 15.6 11.2 14,6 
HxCDF 24.2 32.6 27.3 23.4 28.2 
HpCDF 26.5 27.5 29.9 39.1 35.2 
OCDF 20.4 14.3 12.3 15.6 5.9 

Table 2. Homolog concent rations as a percentage of total PCDD/PCDF 
Table 2 shows individual homolog concentrations as a percentage of the total 

PCDD/PCDF concentration. In the upper estuary (sites 1,2), octachlorinated congeners 
dominate the dibenzodioxin pattem. Downstream at sites 3 and 4, a reduction in relative 
OCDD concentration is noted, compensated by an relative increase in HpCDD concentrations. 
At the outer estuary site 5, a significant decrease in OCDD is compensated by relative 
increases in all the lower chlorinated homologs. The pattem for PCDF homologs is less clear 
but a downstream decrease in OCDD concentration relative to the other homologs is also 
obvious. In the Humber. a similar pattern is observed from sediments taken axially down the 
estuary with OCDD relative concentrations decreasing from 69.9 % to 50.8 % and TCDD 
increasing from 0.2 % to 18 %. 

Two possible explanations of these observations can be made. Several studies of PCB 
behaviour indicate that metabolic biodegradaiion of a PCB can occur*, a first stage of which 
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is often dechlorination^. This would result in a coupled relative increase in lower chlorinated 
congeners and decrease in lower chlorinated congeners as a function of the pollutant's 
residence time in the estuary. Bearing in mind the widely reported persistence of PCDDs and 
PCDFs*°. the extent of the apparent 'dechlorination' may be unlikely. 

An alternative explanation is based on the observed dependence of geochemical 
behaviour on the basic physicochemical properties of the compound and in particular the 
octanol-water partition coefficient" (often used to express the hydrophobicily of the 
compound). Variations in the partitioning behaviour of individual congeners on the basis of 
their chlorinity would infer differential transport within the estuary system resulting in 
changes in the relative homolog concentrations as observed in Clyde and Humber sediments. 

Initial studies of PCDD and PCDF contamination in UK estuaries have therefore 
concluded that PCDD and PCDF transport and distribution is significantly affected by the 
hydrodynamics of the estuary and the physicochemical characteristics of sediment within the 
estuary. Axial variations in the relative concentrations of individual chlorohomologs suggests 
that dechlorination or differential geochemical transport may be important mechanisms in the 
behaviour of PCDDs and PCDFs in esiuarine environments. 
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Introduction 

The impact of tighter regulation of European water quality is resulting in an increased 
awareness of the iunfluence of trace organic contaminants in marine ecosystems. In many 
cases however, limited scientific knowledge of the mechanisms and kinetics dominating 
contaminant behaviour in estuary systems is hampering model development and the effective 
implementation of new legislation. 

Ongoing research has demonstrated the complexity of chlorinated organic pollutant 
geochemistry in aquatic environments. The importance of congener specific physicochemical 
properties is well established', but only recently has the geochemistry of the solid phase 
sorbant been shown lo be significant'. Strong variations in such controlling variables are 
commonplace in dynamic cstuarine systems. 

Approach and Methodology 

This paper presents the second report of a current three year research programme 
studying the transport and fate of polychlorinated dibenzo-p-dioxins (PCDDs), 
polychlorinaled dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) in aquatic 
systems. In 1991 a pilot survey of the Clyde estuary in Scotland was carried out'. This was 
followed in the summer of 1992, by a major survey where over 40 samples of bed sediment, 
inter-tidal sediment and suspended particulate matter (SPM) were collected and analysed. 

Sediment samples were collected using grab and corer techniques. Bulk water samples 
were filtered in all-glass apparatus for SPM collection. All samples were analysed for 

223 



ENV 

PCDDs, P C D F s (2,3,7.8-subsUtuiedcongeners) and PCBs (loial and I C E S 7 congeners). The 
analytical methodology, carried out to an established prolocor, is given in a previous paperV 
In addition to the organic micropollutant analyses, determinations of carbon content 
(combusliometric technique), specific surface area (SSA) ( B E T adsorption) and lipid 
content (solvent extraction) were also made. 

Results and Discussion 

The Clyde estuary is situated on the west coast of Scotland and is an industrialised 
estuary with direct pollutant inputs from the city of Glasgow via industrial/domestic sewage 
outfalls and atmospheric deposition from incinerator and other diffuse combustion sources. 

In total. 42 km of the estuary was sampled from the weir to the inner firih. 
Concentrations of total P C D D , P C D F and PCB varied considerably within the estuary. 
Maximum values for total P C D D and P C D F were 9200 and 2500 ppt respectively compared 
with 4700 and 1500 ppt in the 1991 survey. Total PCB concentrations varied from I to 3000 
ppb. Significant changes in other variables were also observed; lipid content ranged from 
below detection (0.3 mg/g approx) to 13.8 mg/g. SSA varied from < 1 to 12.5 mVg. 

JO 21 
Oilljnc* (hinl 

Figure I. Axial Variation of Total PCDD and PCDF with Distance Down-e.stiiary. 

Figure I shows ihc axial variation of total P C D D and P C D F with distance down-
esiuary(I99l and 1992 surveys). Major anthropogenic inputs to the estuary are also marked. 
The estuary is characterised by three peaks in concentration. Close to the weir, a peak in 
P C D D / P C D F concentration coincides with the highest P C B concentration measured in tlie 
estuary (3000 ppb), and may be due to co-contamination\ The second peak occurs at the 
confluence of the River Cart with the Clyde estuary (12kni), and is examined in more detail. 
Concentrations in the middle of the estuary (21 - 35 km) are low, coinciding with sedi 
of low lipid content ( < 1.5 mg/g) and SSA ( < 2 mVg). The third P C D D / P C D F peak < 
in the inner firth in the vicinity of a long outfall at Ironotter Point. 

menls 
peak occurs 
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Although the 1992 survey generally confirms observations of a systematic varation 
in P C D D i P C D F ratio in the 1991 survey (approx 2), there is significant change in 
P C D D i P C D F ratio in the vicinity of the River Cart confluence coinciding with a peak in totaJ 
P C D D / P C D F concentration. In the upper estuary (0 - 12 km) P C D D : P C D F ratios range 
from 0.4 to 2.4 (avg. 2.2). In the mid-esluary region (12 - 35 km) P C D D i P C D F ratios vary 
from 4.4 to 9.7 (avg. 6.3). Samples taken in the River Cart at the interface between the 
upper and mid estuary regions have P C D D i P C D F ratios of 27.7 and 39.9. Two major factors 
appear to influence the distribution of P C D D / P C D F within the estuary; solid phase sorbani 
characteristics and pollutant input sources. 

Generally, the estuary may be classified into regions of fine sediment with high 
surface areas and lipid content favourable for the adsorption of lipophilic contaminants^ and 
areas of coarse sediment of marine origin with low lipid content. The upper estuary and inner 
firth have high SSA and lipid content compared with the middle estuary. Broadly, this pattern 
is refiected in the P C D D / P C D F distribution. 

If the P C D D and P C D F concentrations are normalised for lipid and SSA, the peak 
concentrations occur in the middle estuary. Assuming that the P C D D and P C D F is bound 
in the lipid fraction of the sediment, these mid-esluary sediments hold a far greater 
contaminant load that those of the more lipid rich upper estuary sediments. Dilution effects 
may in part explain these observations; P C D D / P C D F inputs in the upper estuary bound to 
lipid-rich sediments are transported down-estuary and diluted by coarser lipid depleted 
sediments in the mid-estuary region. 

The Clyde estuary is subject to a multiplicity of potential sources of 
P C D D / P C D F / P C B . The estuary is known to receive direct waste input from the iron/steel 
industry, PCB dump Icachate and PCP as well as other diffuse combustion sources. The 
profile of homolog groups in environmental samples is well established as a signature of 
P C D D / P C D F sourcer 

In this study concentrations of each homolog group, tetra- through octa-, have been 
normalised against loul P C D D and total P C D F to produce homolog profiles. From the 
distribution of relative homolog concentrations, the upper estuary was identified as a region 
of significant homolog profile variation. This has been investigated in detail by mapping 
sample homolog profiles. Results for an up-estuary area ( 5 - 1 8 km) are shown in Figure 2. 

Homolog profiles ai stations 7 and 8, although biased to the octa- homolog show 
significant concentrations in all other homolog groups similar to that expected in combustion 
source profiles. The River Carl joins the Clyde estuary 12 km from the weir. Sample 111 in 
the White Cart Water and 112 in the Black Can Water have completely different homolog 
profiles dominated by the octa- homolog group. The White Cart Water receives waste from 
an outfall known to discharge PCP waste. PCP homolog profiles also exhibit the dominance 
of the octa- homolog group. 

225 



ENV 

» a T I I 10 

Figure 2. Homolog Profiles for Samples in ihe Clyde Esiuory (5 - 18 k/n) 

Downstream of the River Cart confluence, the Iioinolog pattern in the esiuary also 
changes significantly, showing the same octa- homolog dominance as the River Cart samples. 
The change in homolog profiles also coincides w'lXh a variation in P C D D : P C D F raiio and a 
peak in P C D D and PCDP conccniraiion. The conclusion from ihcsc observations is tliai ihe 
River Carl tributary is making a significant csuiary input of PCP derived PCDD/VCOV-
which dominates the downstream P C D D / P C D I " distribution. 
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Concentrations of polychlorinaied dibenzo-para-dioxins (PCDDs) and poiy-
chlorinated dibenzofurans ( P C D F s ) have been determined in sediments from 
U . K . coastal locations adjacent to the estuaries of the Dee, Humber, Mersey, 
Tees, Tweed and Tyne and from an offshore site in Morecambe Bay. The 
sediments had total P C D D / D F conceniraiions of < 100 pg g ~ ', except for the 
Dee and Morecambc Bay which had total P C D D (total P C D F ) concentrations 
of 750 (390) and 20? pg g " ' (116 pg g " ' ) , respectively. However, esiuarine 
sediments collected during axial transects of Dee, Humber and Clyde Estuaries 
had total P C D D (total P C D R concentrations in the range 530-1880 (340-
710), 300-1890 (260-1240) and 290-4670 pg g"' (100-1540 pg g"') , 
respectively. Examination of the homologuc groups showed that about 70% of 
P C D D s were in the octa-chlorinaied form in the Dee and Clyde, whereas for 
P C D F s the hepta- and hexa-chlorinated forms were relatively more important. 
The association of P C D D / D F s with panicle surfaces was interpreted using data 
on sediment characteristics and a two-stage adsorption model. The conclusions 
from this study have implications for the estuarine transpon of P C D D and 
P C D F and their uptake by benthic organisms. 

Introduction 

According to Kjeller ec al. (1991) the concentrations of polychlorinated dibenzo-para-
dioxins and polychlorinated dibenzofurans (denoted as P C D D / D F s ) in soils have been 
increasing since 1900 because of a growth in atmospheric deposition. These obser­
vations support the contention that PCDD/DFs have penetrated many environmental 
reservoirs, including estuaries (Department of the Environment, 1989). Thus, atmos­
pheric inputs of halogenated hydrocarbons, as the products of incineration and power 
generation (Brown et al., 1990; Atkinson, 1991), contribute to estuarine contamination. 
However, influxes also come from sewage disposal (Weerasinghe et a/., 1985; 
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Hagenmaier et aJ., 1986) and leachates from landfills and redundant industry 
(Commoner ei a/., 1987; Bopp et a/., 1991) and potentially from offshore dumping 
activities (Law et a/., 1991). 

Studies of the partitioning behaviour of organic micropollutants in the marine 
environment suggest that the physicochemical properties of suspended particulate 
matter (SPM) and sediments can determine the fraction in the particulate phase. Studies 
on PCBs in the Scheldt Estuary show that the sediment PCB concentration is dependent 
on the organic caibon content, specifically the lipid fraction (Delbeke et a/., 1990). 
Similarly, the concentrations of linear alkyi benzenes (LABs) in River Mersey sediments 
are linked to the particle properties, although contaminant-grain size relationships were 
obscured by a stronger correlation between the contaminants and organic carbon 
content and lipid concentrations (Preston & Raymundo, 1993). Furthermore, laboratory 
uptake experiments of hydrophobic organic compounds (e.g. anthracene) onto mineral 
phases doped with various concentrations of humic material showed that the removal 
of the organics was augmented by higher concentrations of adsorbed humics (Murphy 
et a/., 1990). However, in a study of PCDD/DFs in River Rhine sediments there were 
no strong statistical correlations between the concentrations of the contaminants and 
either the <\6\im grain size fraction or the percentage of organic carbon (Evers et a/., 
1988). 

The association of chlorinated organics with particles is also complicated by the fact 
that they can undergo degradation (Kobayashi & Rittmann, 1982). Halogenated phenols 
undergo progressive dehalogenation in anoxic marine sediments and at temperatures up 
to 30'C (Abrahamsson & KJick, 1991). PCBs have also been observed to undergo 
dechlorination, which was specific to the chlorination pattern of the congeners (Rhee ei 
al.y 1993). This process is clearly important and must be considered, along with the role 
of grain size and particulate organic matter, in the interpretation of the sedimentary 
distribution of chlorinated organics. 

Despite the toxicological imponance of these compounds (Poland & Knutson, 1982) 
there is no information on their distribution and behaviour in U.K. estuaries and coastal 
waters, mainly due to the constraints imposed by the complex analytical methodology 
(HMIP, 1989). Nevertheless, information is vitally needed especially since chlorinated 
compounds may be implicated in adverse affects on marine life (Reijnders, 1986). In this 
paper we report, for the first time, determinations of the concentrations of PCDD/DFs 
in sediments from U.K. estuaries. Particular attention was given to the Dee, Humber 
and Clyde Estuaries, each of which have a contrasting geochemistry. This study provides 
an essential database for the development of conceptual models for the transport and 
fate of PCDD/DFs in estuaries and coastal waters. 

Methods 

Sample collection 
Sediments were collected using grab and core samplers from strategic coastal locations 
around the U.K. (see Figure 1), including estuarine plume regions of the Mersey, 
Tees, Tyne and Tweed, core samples from the Irish Sea, and during axial estuarine 
surveys of the Dee, Humber and Clyde. Sediment samples were coned and quartered, to 
obtain representative aliquots, and then stored in hexane-washed glass containers at 
- 20 -C. 
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Figure 1. Location of sampling sites and toial PCDDs (D) and PCDFs ( • ) in coastal 
surface sediments. 

Analysis of PCDDs and PCDFs 
PCDD and PCDF analyses were carried out by an established GC-MS method (Penit 
et a/., 1990). This laboratory has participated in the development of acceptance criceria 
for analytical data and during this study it has applied the agreed quality controls for 
analyses of PCDD/DFs (Ambidge ei a/., 1990). Prior to analysis, samples were sieved 
through a 1 mm mesh and oven-dried at 40 'C. The dried sample was weighed (about 
50 g), spiked with sixteen *'C dioidn and furan internal standards, and soxhiet extracted 
with toluene (Mallinckrodt-Nanograde) for 12 h. The resultant extract was reduced to a 
volume of about 0-5 ml by freeze-drying, prior to liquid chromatography. 

The solvent extracts were subjected to liquid chromatography on a two-stage silica 
(Merck, 70-230 mesh)/fiorisiI (BDH, 60-100 mesh) column. The sample was eluted 
initially with hexane (Mallinckrodt-Nanograde) whereby the total PCB fraction was 
eluted through the entire column and the PCDD/DFs transferred to the top of the florisil 
column. The upper silica column was discarded and 2% methylene chloride 
(Mallinckrodt-Nanograde) in hexane was passed through the lower florisil column prior 
to eluting the PCDD/DF fraction with 100% methylene chloride. The collected 
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PCDD/DF firaction was reduced lo a suitable volume by freeze-drying, solvent 
exchanged with nonane (Mallinckrodt-Nanograde), and transferred to septum cap vials 
for autosampler chromatographic injection. 

For the analysis of dioxins and furans, the sample was injected onto a 60 m x 0-25 id. 
DBS column at an initial temperature of 130 *C, held for 2 min, then programmed to 
270 *C at 20 "C m i n " ' , held at 270 *C for 10 min, then programmed to a final 
temperature of 286 'C at I "C min " It was directly interfaced to a VG 70S magnetic 
sector mass spectrometer operating at 28 eV, 10 000 x resolving power in the selected 
ion monitoring mode. The instrument monitored three of the most intense molecular 
isotope peaks for each of the dioxins and furans. To optimize sensitivity* the homologue 
groups (tetra- through octa-CDD/DFs) were monitored in turn, with due regard for 
their known chromatographic retention times. Confirmation of the presence of each 
compound was made by reference to the EPA Draft Proposals QAL 152 1/1/87, resting 
on a correlauon of retention times ( ± 3 s), and the verification that the relative intensity 
of the isotope peaks is within ± 15% of the theoretical value. In addition, the ion 
responses for the three ions must maximize within ± 1 scan, with a signal to noise ratio 
of 2-5. This protocol gives routine detection limits down to 1 pg 1" * of PCDD and 
PCDF injected. Prior to any analysis, a standard mixture of dioxins was analysed, and 
the instrument was tested for the above criteria, and the calibration verified. TTie analysis 
was then performed including blank runs to accommodate for any carry over through use 
of an autosampler on the GC-MS instrument. Recoveries of the " C spikes were in the 
range 75-80%, the reproducibility was ± 10% and the blanks were dependent on the 
degree of chlorination but were <10pg g" ' (assuming a 50 g sample). 

Determination of other sedimentary variables 
Freeze-dried aliquots of the samples were analysed for total particulate carbon using a 
Carlo-Erba 1108 elemental analyser and specific surface area (SSA) using BET 
adsorption (Millward et a/., 1990). Apolar lipid content was determined gravimetrically 
following solvent extraction (Delbeke ei a/., 1990). Concentrations of particulate 
calcium and iron were determined by conventional flame AAS following extraction by 
0 05 M hydroxylamine hydrochloride in 25% v/v acetic acid. 

Results and discussion 
Distribution of total PCDD/DFs in coastal sediments 

Figure 1 shows the locations of the sediment samples from the mouths of estuaries, 
together with histograms of total PCDD/DF concentrations (dry weight of the < l mm 
grain size fraction). Table 1 gives the concentrations of 2, 3, 7, 8-TCDD/DF congeners 
in these sediments and the concentrations of each homologue group tetra- through 
octa-CDD/DF. Currently, it is not possible to ascertain whether a sample contains 
elevated PCDDs and/or PCDFs because it has been suggested that background 
concentrations of halogenated organic compounds should be taken as zero until their 
natural production has been proved (Laane, 1992). However, Turksira and Pols (1989) 
regarded total PCDD/DF sediment concentrations of between 10 and lOOpg g~* as 
' background * in their study of the Noordzeekanaal in The Netherlands. Norwood et al. 
(1989) in a study of Narragansen Bay obtained values of <0-93 and 15 pg g " ' for 2, 3, 
7, 8-TCDD and TCDF, respectively, at their ' relatively clean reference site 

/^though the Tyne, Mersey, Tees, Humber, Dee and Clyde (n.b. the Clyde sample is 
located in the inner estuary) arc estuaries receiving pollutant inputs from large 
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T A B L E I . PCDD and P C D F concentradons (pg g ') in U . K . coastal surface sediments 

Morecambe Clyde Dee 
Congener/ Bay (lower (lower 
homologuc Tync Mersey Tees H umber Tweed (offshore) estuary) esmary) 

2, 3, 7, 8-TCDD ^fD 0-3 ND ND 1 6 2 3 
T C D D 1 3 I 2 4 6 17 20 
PcCDD <i <9 <1 <!3 <I2 <0 6 47 50 
HxCDD 3 <7 3 4 11 10 34 60 
HpCDD 3 9 2 5 24 40 79 120 
OCDD 13 36 3 10 89 150 110 500 
2, 3, 7, 8 -TCDF I 2 ND 2 2 2 4 10 
T C D F 4 11 2 9 16 21 16 60 
PcCDF 3 4 2 5 to 16 15 40 
HxCDF 6 9 3 7 15 35 28 70 
HpCDF 9 8 14 6 13 22 35. 110 
O C D F 59 13 3 6 16 22 6 110 
Total PCDD 21 65 10 35 140 207 287 750 
Total PCDF 81 46 23 32 69 116 100 390 
Nato/CCMS 

equivalent 1-46 1-56 0-58 1-69 2-83 3-7 7-6 15 

NO, Not detectable. 

T A B L E 2. P C D D / D F conccntradons (pg g ~ ') in a sediment core from Morccambc Bay 
in the Irish Sea 

Core profile 

Homologuc Surface Middle Bottom 
group (0 cm) (14 cm) (28 cm) 

T C D D 6 3 3 
PeCDD <0-6 <5 <3 
HxCDD 10 <5 <5 
HpCDD 40 18 10 
OCDD 150 50 35 
T C D F 21 15 8 
PcCDF 16 6 <3 
H J C C D F 35 <5 <5 
HpCDF 22 ID 9 
O C D F 22 IS 13 

conurbations and industrial activity, only the Dee and the Clyde have PCDD/DF 
concentrations higher than the * background ' values given above. The Tweed is thought 
to be non-industrialized but the PCDD/DF concentrations in Table I are comparable 
with the industrialized estuaries. The concentrations of PCDD/DFs in the surface 
sediment from Morecambe Bay are marginally above the * background * values (see 
Table 2) and the core profile shows evidence of temporal changes in the input of 
chlorinated hydrocarbons. The concentrations of PCDD/DF are higher in the surface 
layer than at depth, which could arise either because of the increase in atmospheric 
deposition of the compounds as suggested by Kjeller « a/. (1991) or because of increased 
estuarine inputs or dumping of contaminated material in this region. However, set 
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T A B L E 3. Gcochcmical characteristics of sediments in U.K. estuaries. Mean ± SD given 
for the Dee, Humber and Clyde 

SSA Carbon Lipid Iron Calcium PCDD P C D F 
Estuary (m'g - ' ) (%) (mg g"') (pgg"') (Mgg"') (pgg"') (pgg"') 

Dee 41 ± 3 6 1-7 ± 1-2 1930±1800 26 700 ± 12 560 1017 ± 5 0 9 540± 148 
Humber 18 ±5-8 4 0 ± 10 I - 6 ± 0 7 7 1 0 0 ± 1 9 0 0 33 540 ± 6000 1098 ± 6 8 0 851 ± 4 0 8 
Clyde 2-2 ± 1-2 4-5 ±2-9 6-5 ± 5-0 8620 ± 5200 3 9 0 0 ± 1 4 8 0 2449±1660 1052 ± 4 9 7 
Tweed 26 1-3 — 1430 18 100 140 69 
Tees <10 1-2 — 450 35 500 9 23 
Tyne < I 0 0-7 — 970 14 500 22 81 
Mersey <l 0 0-8 — 710 14 400 81 46 

against the * background * values suggested by Turkstra and Pols (1989) and Norwood 
et al. (1989), surface sediments from coastal locations around the U.K. show no 
conclusive evidence of elevated PCDD/DF concentrations. 

One reason for the observed differences in sediment PCDD/DF concentrations 
between the coastal locations could be due to variability in sediment characteristics. 
Table 3 summarizes geochemical parameters of the coastal and estuarine sediments 
along with their PCDD/DF concentrations. Sediments at the mouth of the Dee 
consisted of fine material with a relatively high SSA of 8-5 g " ' and total carbon 
content of 1-8%. Both these sediment characteristics contribute to the sorption of 
PCDDs and PCDFs (Evers et a/., 1988), which, for the Dee, had loul concentrations of 
750 and 390 pg g~ respectively. Similarly, the sediment at the mouth of the Humber 
had an SSA of 7-9 m^ g~ *> mainly caused by the influence of iron precipitates, and a 
total carbon content of 2-4%, together with total PCDD/DF concentrations of 295 and 
264 pg g~ ' , respectively. On the other hand, sediments from the Tees, Tyne and 
Mersey had PCDD/DF concentrations of < 100 pg g ~ ', possibly because the sediments 
consisted of coarser material of marine origin, as evidenced by high calcium contents, 
SSAs of < l m^ g" ' and lower total carbon concentrations. 

The relatively low concentrations of PCDD/DFs determined in sediments at the 
estuary mouths could be a result of long residence times for sediments within estuarine 
systems. Recycling of sediment within an estuary ensures retention; for example, a 
sediment residence time of 20 years has been estimated for the Humber Estuary (Turner 
et al., 1991). It may be concluded, therefore, that estuaries are imponant reservoirs for 
PCDD/DFs released into the aquatic environment via rivers, industrial discharge and 
dumping. Particle-bound PCDD/DFs may be slowly fluxing into adjacent shelf seas but 
continual dilution by marine sediments is sufficient to prevent elevated PCDD/DF 
concentrations being detected, except in localized coastal areas where fine, organic-rich 
materials of fluvial origin are depositing. 

Inur-estuarine comparison: Dee, Humber and Clyde Estuaries 
Axial concentrations of total PCDD/DFs. Table 4 summarizes the results from analysis of 
surface sediments collected along the axes of the Dee, Humber and Clyde Estuaries. 
Within each estuary, the concentrations of total PCDD/DFs are substantially above 
those obtained at the estuary mouths and those previously described as * background * 
values. Figure 2 shows axial concentrations of total PCDD/DFs determined in sediments 



TABLE 4. PCDD/DF concentrations (pg g ') in Dec, Humber and Clyde Esiuary sediments 

Congener/ 
homologuc 
group 

2, 3. 7, 8-
T C D D 

T C D D 
PcCDD 
HxCDD 
HpCDD 
OCDD 
2, 3. 7, 8-

T C D F 
T C D F 
PeCDF 
HxCDF 
HpCDF 
OCDF 
Total 

PCDD 
Total 

PCDF 
Naio/CCMS 

equivalent 

Dee Estuary 
(distance below weir in km) 

13 15 17 24 31 32 

390 340 640 620 

15 10 19 23 

680 

22 

430 

21 

710 

22 

35 

4 2 3 3 4 4 •1 

17 20 20 30 27 20 30 25 
40 30 50 60 50 40 60 55 
45 40 80 80 75 50 80 85 
75 70 250 160 200 100 230 175 

420 370 500 680 1500 440 1480 640 
20 10 10 30 15 20 20 15 

75 60 60 120 75 90 90 75 
45 40 100 80 85 60 90 90 
60 50 130 90 130 60 120 125 

100 90 150 140 140 100 180 100 
no 100 200 190 250 120 230 210 

597 530 900 1010 1852 650 1880 980 

Humbcr Estuary 
(distance below bridge in km) 

Clyde Estuary 
(distance below Glasgow in km) 

37 0 14 24 37 43 3 4 5 10 22 

3 20 <1 15 to 5 16 19 7 9 2 

20 45 5 150 220 53 90 110 40 75 17 
50 180 170 49 210 40 180 120 87 104 47 
60 120 100 52 83 21 100 100 85 73 34 

120 170 290 80 150 31 800 550 410 528 79 
500 860 1320 150 790 150 3500 2180 1860 1990 no 

10 27 29 11 25 5 28 20 17 17 4 

60 300 310 160 280 66 210 230 110 96 16 
40 150 160 81 170 32 170 240 140 100 15 
70 110 130 86 170 32 320 420 310 210 28 

110 190 150 68 200 39 350 460 260 350 35 
no 200 430 230 420 96 270 190 140 140 6 

750 1375 1885 481 1453 295 4670 3060 2482 2770 287 

390 950 1180 625 1240 264 1320 1540 960 896 100 

15 39 24 24 31 9 57 60 36 38 8 
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Figure 2. Axial variation in total PCDDs ( • — • ) and PCDFs ( • — i 
Esruary. (b) Number Estuary and (c) Clyde Estuary. 

') in the (a) Dee 

of the Dee, Humber and Clyde Estuaries. Overall, the concentrations of total PCDD/ 
DFs in the Clyde are about double those for the Dee and Humber. Although a down-
estuary decrease in the concentration of total PCDD/DFs is observed for the Clyde and 
Humber, there are differences in the trends of PCDD/DFs between the two estuaries. In 
the Humber, sediments have a mean PCDD:PCDF ratio of 1-2, with approximately 
equal total PCDD/DF concentrations in the lower esruar>' whereas in the Clyde there 
is considerably more total PCDD than total PCDF throughout the estuary, with a 
mean PCDD:PCDF ratio of 2-8. The pattern in the Dee Estuary is more complex 
and mid-estuarine maxima in total PCDD/DF concentrations were detected and 
the PCDD:PCDF ratio (mean 1-8) was more variable. The different estuarine 
PCDD;PCDF ratios could be either source-related or a consequence of biogeochemical 
processes. 

Group homologite profiles. The homologue groups from the axial surveys of the Dee, 
Humber and Clyde Estuaries have been estimated as a percentage of total PCDD and 
PCDF, so that the relative contribution of each homologue group can be examined 
independent of the local PCDD/DF concentration. The results are plotted against 
distance down-estuary for the Dee (Figure 3(a,b)l and the Clyde [Figure 3(c,d)|. In the 
Dee Estuary the PCDDs show little down-estuary variation, with the octa-CDD 
(OCDD) homologues being about 70% of the total, hepta-CDD (HpCCD) about 
15% and the tetra-, penta- and hexa-CDDs fTCDD, PeCDD and HxCDD) each 
contributing < 10%. For the PCDFs, OCDF represents about 30% of the total, followed 
by a 25% contribution from HpCDF and TCDF, and PeCDF and HxCDF contributing 
15-20% each. All, however, are constant with distance down-estuary. This indicates that 
in the Dee a uniform trend of PCDD/DF homologue groups is maintained throughout 
the estuary regardless of their concentration and sediment type. 
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Figure 3. Axial distribution of percentage of homologue groups: (a) PCDDs in the Dee 
Estuary, (b) PCDFs in the Dee Estuary, (c) PCDDs in the Clyde Estuary and (d) 
PCDFs in the Clyde Estuary. In (a) and (c): (« — « ) T C D D ; ( • — • ) PcCDD; 
( A — A ) HxCDD; ( • — • ) HpCDD; ( « — • ) OCDD. In (b) and (d): ( x — « ) 
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Figure 4. Relationship between specific surface area and PCDD/DFs: (a) PCDDs in 
the Clyde Estuary ( • ) and the Humber Estuary (•>; (b) PCDFs in the Clyde Estuary 
( • ) and the Humbcr Estuary ( • ) . 

In the Clyde Estuary [Figure 3(c,d)l the OCDD homologue group dominates 
throughout the estuary, being in excess of 70% in the upper 12 km. At 22 km the relative 
amount of the OCDD homologue group decreases to 40% but is compensated for by 
increases in the lower chlorinated homologues, which are thought to be more toxic. For 
the furans, HpCDF (about 30%) is the most prevalent homologue group, followed by 
HxCDF at 25% and then OCDF whose contribution decreases from about 20 to 5% in 
the down-estuary direction. On one hand, this analysis confirms the fact that the higher 
chlorinated species are the most panicle-reactive (Ernst et a/., 1988; Lodge & Cook, 
1989). However, exceptions occur in the Clyde, such as the decrease in the proportion 
of OCDD and the lack of a systematic trend in the proportions of PCDF homologues. 
Possible reasons for these observations follow. (1) The PCDD/DF homologue groups 
could originate from local man-made sources, which need to be idennfied and linked to 
the sediment composition using source-occurrence matching (Swerev & Ballschmiter, 
1989). (2) The biodegradation of specific homologues could be occurring. Studies of 
PCB behaviour indicate that metabolic biodegradation can occur (Goerke & Ernst: 
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Figure 5. Relaiionship between lipid conicnt and PCDD/DFs: (a) PCDDs in ihe Clyde 
Estuary ( • ) and the Humbcr Estuary (M); (b) PCDFs in the Clyde Estuary { • ) and 
Humber Estuary ( • ) . 

1986; Rhee et a/., 1993), an initial stage of which is dechlorination (Kobayashi & 
Rittman, 1982). The loss of chlorine atoms by higher chlorinated congeners, during a 
long particle residence time in the Clyde Estuary, could enhance the contributions of 
lower chlorinated homologue groups. Despite the fact that this process has been 
identified for PCBs, more work is required to confirm the existence of a biologically 
driven dechlorination mechanism for PCDD/DFs. (3) Differential sorption behaviour is 
taking place. Each congener possesses a physicochemical character which uniquely 
defines its hydrophobicity, lipophilicity and sorption behaviour. 

The data presented here are not in sufficient detail to unravel the relative imponance 
of each of these processes and further work is required. 

Relationships of total PCDD/DFs to sediment characteristics. Attempts have been made to 
Interpret variations in PCDD/DF sediment concentrations in terms of grain size effects 
and the concentration and type of particulate carbon (Evers ct al., 1988; Servos et al., 
1989; Broman et al., 1991). In this study, SSA was taken as the measure of grain size and 
both total carbon and lipid content were determined in selected sediments. 

Panicles in the Humber Esiuary are conditioned by a large anthropogenic source of 
iron which yields sediments with relatively high SSAs (Turner ei a/., 1991) because 
particles become coated with fresh iron precipitates. Although the total carbon content 
is similar for the Humber and the Clyde, the high calcium concentration of Humber 
sediments (see Table 3) suggests that much of the carbon is in the form of calcium 
carbonate. In contrast, the Clyde sediments have much less calcium and a larger fraction 
of the carbon is as lipids. Given the relatively high concentration of iron in Clyde 
sediments one might have expected the sediments to have high SSAs. However, the 
particulate iron is not in a freshly deposited form and sediment-bound organic molecules 
can depress the SSA by blocking some of the internal pore structure of the particles 
(Millward ct al., 1990). 

The relationships between SSA and total PCDD/DF are shown in Figure 4(a,b) for 
the Clyde and Humber Estuaries. The variables are only weakly correlated, with the 
Clyde sediments having higher PCDD/DF concentrations per m^ of particle surface, 
compared with the Humber. The PCDD/DF concentrations of sediments from the 
Dee Estuary are not correlated with SSA and the highest pollutant concentrations 
were identified with sediments of low SSA. However, the association of organic 
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micropollutants with particulate organic carbon is also important (Delbeke et a/., 1990; 
Broman et a/., 1991; Tanabe et al.y 1991; Preston & Raymundo, 1993) and Figure 5(a,b) 
shows the relationship between lipid content and total PCDD/DF concentrations in the 
Clyde and Humber estuaries. Notwithstanding the fact that there are only five data 
points, correlations between lipid content and the Humber PCDD and PCDF concen­
trations are r=0-88 (significant at 95%) and r=0-99 (significant at 99%), respectively. 

Studies of the association of LABs in River Mersey Estuary sediments has led to the 
suggestion that their panicle-water interaction involves two processes (Preston & 
Raymundo, 1993). The first one entails LAB association with the bulk panicle and its 
internal pores; a reaction which is assumed to occur at or near to the source. The second 
process occurs away from the soiu-ce and involves LAB adsorption onto surface sites 
connected with lipids. This two-stage sorption model could also be valid for PCDD/DFs 
because of their apparent association with organic phases (Servos et a/., 1989). The small 
number of samples in this work mitigate against providing definitive statistical evidence 
for this hypothesis. However, the relationship between SSA and total PCDD/DF 
indicates that the reticules of the sediment particles offer sites whereby the first of the 
two mechanisms may be satisfied. The stronger relationship between lipid concentration 
and the total PCDD/DF concentration suggests that the surface adsorption process 
could be occurring and that surface-bound lipids could scavenge PCDD/DFs from the 
water column. In order to test this possibility the lipid and PCDD data from the Clyde 
and Humber were combined and Iog[PCDD] was regressed against log[tipid] as Preston 
and Raymundo (1993) have suggested. The regression yields a correlation coefficient of 
0-92 for nine samples, which is significant at the 99% level. Furthermore, the slope of the 
regression line is 0-76, which compares with their values of 0-79 for LABs and 0-66 for 
the theoretical slope. Although the number of samples here is small there is circum­
stantial evidence that PCDD/DFs exist on sediment panicles at two different locations, 
viz one located within the panicle microsiructure and one located on the particle surface. 

Conclusions 
The results presented here, form the first benchmark survey of PCDDs and PCDFs in 
surface sediments from U.K. estuaries and coastal waters. The survey shows that 
sediments at the mouths of industrialized estuaries (Humber, Mersey, Tees and Tyne), 
in Morecambe Bay and a non-industrialized estuary (Tweed) are not significantly 
contaminated with PCDDs or PCDFs, only the Clyde and the Dee have concentrations 
above assumed ' background ' values. Inter-site variability of PCDD/DF concentrations 
could largely be due to differences in sediment characteristics. 

Sediment mobility within an estuary is strongly influenced by variability in grain size 
parameters and the chemical factors governing cohesiveness. Differential transpon of 
PCDD and PCDF homologue groups within an estuary can be anticipated, especially 
where homologue groups with greater lipophilic tendencies preferentially adsorb onto 
fine, organic-rich particulate matter. Such panicles (which could include biogenic and 
lithogenic materials) could follow a transport pathway dictated by the interplay between 
sealing and advection. However, cohesive lithogenic panicles, once deposited, may 
remain sedimented for a considerable period. Other less lipophilic homologues, on the 
other hand, may be bound to panicles with physicochemical characteristics favour­
ing different transpon pathways. The long retention times for particles in estuaries 
also suggests that biodegradation of PCDD/DFs is possibly occurring and that 
dechlorination reactions need further investigation. 
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The concentrations of PCDD/DF sediments from the inner estuaries of the Dee, 
Clyde and Humber were much higher than those at their mouths. Sediment character­
istics played an important role in determining the concentrations of total PCDD/DF 
obtained. Although the main influence was the presence of organic carbon in the form of 
lipids, the specific surface area and microstructure of the particle was also thought to 
play a role. The interpretation of the limited dataset suggests that the PCDD/DFs may 
be associated with two different types of adsorption site; those situated on the internal 
stirfaces of the sediment particles and the others situated on the external surfaces. It is 
important to identify precisely how labile the PCDD/DFs are at these particle locations, 
because this will influence their ability to repartition between particles should more 
favourable adsorption sites become available, for example during spring blooms when 
the organic-rich surfaces of phytoplankion are present. Furthermore, these findings raise 
a question as to the bioavailability of PCDD/DFs to those filter-feeding organisms using 
sediments as a source of food—as these organisms digest sediments, are both the 
surface-bound and matrix-boimd fractions of sedimentary PCDD/DFs removed from 
the particles during the feeding process? Clearly, this question can only be answered 
when more information is available on the sorption beha%nour of these toxins. In order to 
model the behaviour and transport of PCDD/DF in an estuary, more information is 
required on the extent of uptake, susceptibility to preferential sorption and possible 
re-partitioning onto more suitable solid phases, including competition from phytoplank-
lon. Experiments involving ''*C-labelled dioxins would seem to have the best potential in 
revealing their reactivity with sediment particles. 
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Spatial and short-term temporal measurements of hydrographic parameters 
(salinity and concentration of suspended paniculate matter ( S P M ) | and sedi­
ment charaacr i s t i cs (specific surface area, major and trace metals, C and N , ' " C s 
and " ' A m ) have been undertaken in a rapidly accreting macrotidal estuary 
(Dee Es tuary , nonh-cast Wales) . The composition of the sediment indicates a 
dominance of marine material in the estuary and that fine S P M is fluvial in origin, 
admixing in the water column with coarse, tidally suspended bed material. T h e 
time-variable composition of S P M in the upper estuary, where tidal energy 
converges, was tested against a particle mixing model incorporating the 
compositions of permanently suspended and temporarily suspended populations 
operationally fractionated according to settling velocities. Agreement with the 
model was reasonable but suggested additional processes such as selective 
resuspension and/or advection of panic le types. T h e behaviour and character­
istics of different sediment populations are discussed in the context of the 
cycling and fluxes of particle-bound constituents and sorptive removal of dis­
solved constituents, and a flux model for the accumulation of ' " C s in the estuary 
is develofjed. 

I n t r o d u c t i o n 

Although rivers are major contributors of continental sediment to the world ocean it has 

been shown that estuaries, encompassing the river-ocean interface, often act as net traps 

for sediment derived from coastal erosion ( K i r b y , 1987; Mulholland & Olsen, 1992). O n a 

finer scale, estuarine sediment dynamics embrace particle-selective resuspension, mudfiat 

processes, particle interactions such as flocculation, and differential settling and transport 

of grains. These processes are driven by river flow and tidal energy and are, therefore, 

spatially and temporally variable, and tend to be accentuated in macroiidal environments 

(Bale ei a/., 1985, 1989; van Leussen, 1988; Dyer , 1989; Eisma et al., 1990). From a 

chemical viewpoint, it is of fundamental importance to understand the nature and 
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mobility of estuarine particles in order to accurately determine the land-ocean fluxes 
of sediment-bound constitients (Buckley & Winters, 1983; Windom et al.y 1989; Huang 
etai-i 1992) and quantify the exchange of constituents between solid and solution ( T u r n e r 
et a/., 1993; T u r n e r & Mi l lward , 1994). 

Studies on estuarine particle dynamics have often involved geochemical tracers, i.e. 
particle populations are distinguished and/or traced according to characteristics of their 
geochemical composition. Such tracer characteristics that have been adopted include 
major element contents normalized with respect to aluminium (Gobei l ei al.y 1981), 
carbon isotope ratios (Lucotte, 1989), C : N ratios (Matson & Bririson, 1990) and artificial 
radionuclides (Brydsten & Jansson, 1989); other potential tracers include lignin (Reeves & 
Preston, 1991) and stable lead isotope ratios (Kersten et al.y 1993). T o this end we have 
conducted a geochemical study of particles [whole sediment; sieved sediment; suspended 
particulate matter ( S P M ) , and its components as distinguished by settling velocities] from 
the Dee Estuary, north-east Wales, a macrotidal estuary subject to continual accretion 
from offshore sediment sources. T h e main objective was the development of flux models 
for particles and particle-bound constituents that are generally applicable to energetic, 
macrotidal environments. 

Study site 

T h e Dee Estuary (Figure 1) drains 1816 km^ of rural north-west England and north-east 
Wales. T h e axial distance from the weir (Chester) to the mouth (Liverpool Bay, Ir ish Sea) 
is 35 km. Progressive siltation of the estuary led to canalization through saltmarsh in the 
18th century and the estuary can now be divided into two distinct zones: for 15 km 
downestuary of the weir the channel is about 100 m wide and contained between flood-
banks, hereafter termed the upper estuary; the remainder of the estuary is approximately 
5 km wide and roughly rectangular, hereafter termed the lower estuary. T h e average 
freshwater runoff^of the Dee is 36 8 m ^ s " ' , natural flow variability is regulated according 
to daily and seasonal abstraction requirements, and the freshwater input to Liverpool Bay 
is augmented by a further 40 m ' s " ' from the Mersey Estuary (Tay lor , 1986). Spring and 
neap tidal ranges at the mouth are 7 7 and 4 1 m, respectively, and mean spring tidal 
currents are about l - 5 m s ~ ' ( B M T , 1990). 

Sampling and methods 

Field measurements 
Master variable measurements were undertaken in December 1991 at a time of low river 
discharge (12-9+ 4-4 m ' s~' regulated flow for the previous 5 days) both spatially, during 
two axial transects of the lower estuary from a fishing vessel (flood and ebb tides), and 
temporally during two tidal cycles (one in the lower estuary from an anchored fishing 
vessel, and one in the upper estuary from an inflatable craft). Salinity and temperature 
were determined in situ using an M C - 5 T - S bridge; at low salinities ( < 3 psu) 500 ml 
samples were returned to the laboratory in Plymouth and the salinity was more accurately 
determined using a W T W conductivity probe calibrated against standard seawater 
diluted accordingly. T h e concentration of S P M was determined from the dried mass 
retained on pre-weighed Whatman G F / C filters (pore size 1 2 j im) after vacuum filtration 
of up to 1000 ml water. 
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S P M (O, tidal stations) and organisms ( C , cockles; M , mussels) in the (a) Dec Estuary 
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Sediment collection 
T h e locations of sediment sampling sites in the Dee Estuary and Ir ish Sea are shown in 
Figure 1. Iniertidal sediment samples for size fractionation and chemical analyses were 
collected along the west bank of the estuary during October 1991. Intertidal sediments for 
whole analysis, and cockles and mussels were taken along the same bank during December 
1991; subtidal sediments for whole analysis were collected using a Shipek G r a b deployed 
from the fishing vessel during the axial transects of the lower estuary. F o r the collection of 
S P M for chemical characterization, surface samples of about 10 I were taken at the tidal 
stations in acid-cleaned carboys and filtered through 142 mm diameter Mill ipore filters 
(pore size 0-45 nm) in a perspex assemblage under c. 2 atm nitrogen pressure. Dur ing low 
slack water at the upper station the bed was agitated using the oar of the inflatable craft and 
20 1 of the turbidized water was sampled in a carboy for S P M fractionation by settling. 

Additional marine sediment samples for whole analysis were taken by D a y G r a b in the 
Irish Sea during N E R C Challenger Cruise 88a (February 1992). 

Sediment preparation 
Sediment samples for silt fractionation were wet sieved through 63 pm nylon mesh using 
c. 20 ml dispersant (2% w/w sodium hexametaphosphate, B D H A n a l a R ) and c. 500 ml 
distilled water. A 20 ml aliquot of the sieved suspension was vacuum filtered through a 
pre-weighed 47 mm diameter Mil l ipore filter (pore size 0-45 pm), rinsed with c. 10 ml 
distilled water and freeze-dried. Sediment samples for whole analysis, after sieving 
through I mm nylon mesh, S P M samples retained on 142 mm filters and the soft tissue of 
organisms were rinsed with c. 10 ml distilled water and freeze-dried. 

In the laboratory, the 20 I turbidized sample was shaken thoroughly before being 
allowed to settle. After 3 0 m i n , about 101 containing fine suspended material was 
siphoned into a smaller vessel, leaving a residual suspension dominated (w/w) by rela­
tively dense seitlable material. T h i s time-scale is considered representative of the time 
available for grain settling around slack water, and, therefore, yields an operational, yet 
realistic separation of permanently suspended (PS; settling velocity < 0 0 l cm s"', grain 
diameter about 5 pm) and temporarily suspended ( T S ; settling velocity > 0 0 l c m s " ' ) 
estuarine sediment fractions. About 500 ml from each suspension were vacuum filtered 
through pre-weighed Mill ipore filters (0-45 \in\ pore size) and the residues were washed 
with distilled water and freeze-dried. 

Chemical analysis 
T h e specific surface area ( S S A ) of freeze-dried sediment and S P M samples was deter­
mined by a B E T nitrogen gas adsorption technique (Millvvard a/. , 1990); at least 100 mg 
sample are required for this method which limited the number of S P M analyses. 
Total contents of C and N were determined using a C a r l o - E r b a 1108 Elemental Analyser 
calibrated with sulfanilamide standards. 

Available metals, or more specifically metals associated with hydrous Fe and M n 
oxide coatings, were operationally determined following extraction from c. 50 mg S P M 
samples and c. 250 mg sieved and whole sediment samples by 0 05 M hydroxylamine-
hydrochloride in 25% v/v acetic acid ( B D H Aris taR) for 16 h at room temperature 
(T urner et al., 1991). A comparison of metals extracted from a variety of estuarine S P M 
samples by the acetic acid leach and H F (or H N O , ) digestions have shown that the leach 
removes between c. 1-5% (Al) and c. 85% ( C a and M n ) of the total metal, and that this 
fraction for a given metal is relatively invariant (Lor ing et al., 1983; T u r n e r , 1990; T u r n e r 
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el a/., 1992a). About 500 mg freeze-dried cockle and mussel tissue were microwave 
digested in P T F E bombs using 5 m l of a 3:2 mixture of H N O , and H^O^ ( B D H , Ar i s taR) . 
Analysis of A l , C a , F e , M n , Cu» Pb and Z n was performed using an Instrumentation 
Laboratory 151 atomic absorption spectrophotometer in the flame mode and analysis 
of C d and C r was performed using a Perkin E l m e r 4100 Z L Graphite furnace atomic 
absorption spectrophotometer with Zeeman splitting background correction. T h e detec­
tion limits of these analyses (ng m l " *) were as follows: A l , 0 50; C a , 0-15; F e , 0 03; M n , 
0 03; C d , 0 0 0 2 ; C r , 0 003; C u , 0 02; Pb , 0 0 7 5 ; Z n , 0 1 2 ; and analysis of five replicates of a 
sieved sediment sample gave the following relative standard deviations (%): A l , 12-6; C a , 
7 5; F e , 9 2; M n , 8 8; C d , 18 8; C r , 31-9; C u . 15-6; Pb , 8 1 ; Z n , 9-3. T h e relatively poor 
reproducibility obtained for C d , C r and C u was due to working close to the detection 
limits for this sample. 

T h e radionuclides ^*'Am and ' " C s were determined on freeze-dried sediment and 
organism samples using a high purity G e detector encased in a lead chamber. Between 15 
and 50 g freeze-dried samples were counted for between 2 and 15 h and the spectra were 
analysed using a 4 K chamiel Canberra Series 80 multi-channel analyser calibrated against 
uncontaminated sediments spiked with Amersham International standards. 

Results and discussion 

Seditneni dynamics 
Figure 2 shows the spatial and tidal distributions of salinity and S P M concentration. 
Slight stratification (up to 0-7 psu per m) is evident towards the mouth of the estuary but 
the water column is well-mixed upstream due to convergence of tidal energy. T h e tidal 
wave is essentially symmetrical in the lower estuary but is severely distorted in the upper 
estuary. S P M concentrations are low compared with other U . K . macrotidal estuaries 
(Morris ei al.y 1987; T u r n e r €f a/ . , 1991) and there is no evidence of a turbidity maximum. 
T h e < 6 3 j i m fraction of sediment was 44 + 21''o> although incertidal samples were 
selected for their muddy quality and a dominance of sandy material was observed 
throughout the estuary. A summary of all metal and radionuclide concentrations, S S A s 
and C and N contents is given in Tables 2-4. 

As a result of the residual currents in the eastern Irish Sea the Dee receives sediment 
from offshore and the adjacent north Wales coast ( B M T , 1990), T h e rate of sediment 
accretion in the Dee is compared with the Mersey and Humber, two other U . K . estuaries 
experiencing large-scale siltation from offshore sources, in Table 1. Also given is the 
supply of fluvial material calculated according to an empirically derived prediction 
equation relating catchment area (x, km^) to fluvial sediment influx (y, t a " ' ) as follows 
(Wilmot & Coll ins , 1981): 

^-^eOx^" (1) 

These estimates indicate that fluvial material comprises only a minor fraction (c. 0 - 5 " o ) of 
the total sediment supply to the Dee Estuary. T h i s is also affirmed from geochemical 
characterization of the sediment. T h e C a content of estuarine sediment is principally 
of marine origin and this parameier serves as a tracer of marine derived material (Uoring 
ei aL, 1983; Nolting ei al.y 1989; T u r n e r et al.y 1992o). Adopting a C a : A l ratio as a means of 
normalizing for grain size and mineralogical effects was found to provide a parameter 
which more clearly discriminates particle populations (Table 2). 
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T A B L E 1. A comparison ofthe accretion and fluvial input of sediment to three macrotidal 
estuaries 

Net accretion Fluvial sediment supply* 

(mma~') ( 1 0 » m » a - ' ) ( I O » t a - ' r x(km') > ' (10»ta - ' ) (% lotal) 

Dee 18 2 3 4 6 1816 0 021 0 4 6 
( B M T , 1990; this work) 

Mersey 16 1-3 2-6 4535 0 043 1-7 
(Taylor. 1986; 
O'Connor. 1987) 

Humber 12-15 2-5-30 50-6-0 27 000 0 1 7 31 
(O'Connor, 1987; 
Turner « o / . , 1991) 

'Assuming I m* = 2 t.'Calculated according to equation ( I ) . 

T h e pathways of sediment and S P M in the Dee as inferred from Ca:AI ratios are shown 
in Figure 3 and discussed below. T h e ratio in I rish Sea sediment is 120 and throughout the 
sediment o f the estuary is ofthe same order indicating effective upestuary transport and 
dispersion of marine-derived material by strong tidal currents. In the riverine section of 
the Dee above the weir, which is breached only during spring tides, this ratio in the 
sediment is an order of magnitude lower ( C a : A I = 7-8) but similar to that ofthe P S material 
(C^;A1 = 6-4). T h e S P M of the upper estuary has a ratio which varies temporally between 
the values of the P S material and the bed sediment. T h i s suggests that the P S material is 
principally fluvial in origin, and is admixed in the water column ofthe upper estuary with a 
proportion of resuspendible marine material which varies according to tidal stress on the 
bed. Assuming that the PS material behaves conservatively, combining its S P M concen­
tration of 7 2 mg I " ' (as determined by filtration) with the annual average river discharge 
yields a net land-sea flux of P S materialof 84001 a"' ,or 40"o ofthe total fluvial sediment 
input 1 0 the Dee Estuary according to equation ( I ) (see Table I ) . In the lower estuary the 
S P M is characterized by a higher C a : A l ratio than S P M in the upper estuary due to the 
admixture of advected P S material with fine marine panicles enriched in C a . Neglecting 
the possible influence of resuspension on particle distributions in the lower estuary, the 
Ca:AI ratio of marine end-member S P M may be calculated from the mixing of fluvial P S 
and marine S P M end-members, assuming that these populations behave conservatively. 
T h u s , a representative S P M concentration of 35 mg I ~' and mean C^:A1 ratio of 47 for 
lower estuary particles, and an S P M concentration of 7-2 mg I " ' and Ca:AI ration of 6-4 for 
PS particles yield a Ca:AI ratio of 58 for marine material. In practice, however, it is 
difficult to precisely parametrize the chemical composition ofthe marine end-member as it 
comprises spatially and temporally variable sub-populations derived from a variety of 
lithogeneous and biogenic sources ( T u r n e r et al.y 19926). 

Fluxes of'^'Cs and Am 
T h e radionuclides ' " C s and ^*'Am, like C a , are marine-derived constituents (from a 
remote source at Sellafield some 120 km to the north of the estuary; Hunt , 1988). T h e i r 
distributions in the Dee are uniform below the weir after A l or S S A normalization, hence a 
significant {P = 0 02) linear correlation exists between C a and * " C s . T ^ e concentrations of 
' " C s and A m in Dee sediments below the weir represent c. 40 and 15%, respectively, of 
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T A B L E 2. Acetic acid-ex tractable major element concentrations of Dee Esiuary and I rish 
Sea samples 

Al Ca Fe Mn C a : A l 
C m g g ' ) (mgg ') (mgg-') (mgg-') ratio 

Dee whole sediment 
Lower csniary x ± s 0 3 2 ± 0 - 2 0 34-7 ± 10-2 2 38 ± 1 - 6 6 0-57-hO 31 140 ± 5 4 

n 8 8 8 8 8 
R 0 07-0-71 14-1-46-0 0-35-5 35 0 099-1 06 53-220 

Upper esiuary x±s 0 34 ± 0 - 2 0 31 8 ± 1 0 - 8 1-49 ± 0 92 0 5 0 ± 0 43 120 ± 5 4 
n 4 4 4 4 4 
R 0 09-0 53 17 0--1-28 049-2-68 0 10-1-10 73-190 

River in = 2) 0 58 3-9 1-33 0 4 4 7 8 

Dec < 63 tmi sediment 
Lower estuary JC + S 0 53 ± 0 1 1 52-9 ± 2 3 - 2 2-61 ± 0 47 0 - 9 8 ± 0 38 I 0 0 ± 4 2 

n 10 10 10 10 10 
R 040-0-69 34-5-104 1 64-3-36 0 47-1-47 57-180 

Upper estuary x±s 0 64 +0 18 3 7 - 4 ± 4 6 2 31 ± 0 - 4 9 0 92+0-33 65 ± 3 0 
n 4 4 4 4 4 
R 0-38-0-78 31 2-41-2 1 59-2 67 0-66-1 41 42-107 

River ( n = l ) 0-38 14 9 1 06 0-16 39 

Dee S P M 
Lower estuary x±% 0 95 ± 0 1 8 43 2 ± 2 - 7 4 1 8 ± 0 - 6 5 1 3 9 ± 0 16 4 4 ± 11 

n 7 7 7 7 7 
R 0-72-1 24 38-7-45-9 3-34-5 21 I 22-1-60 32-63 

Upper estuary x±s 1 2 9 ± 1 04 28-8 ± 5 - 4 4 - 5 3 ± 3 - 4 8 0-57 ± 0 - 3 2 3 8 ± 2 4 
n 7 7 7 7 7 
R 0 26-2 78 18 8-35-7 0-95-10 7 0 I 8 - I 07 11-72 

PS' C'J = 1) 3-46 22-2 17-2 3-98 6 4 
T S ' ('1 = 1) 0-16 20 8 1 10 0-23 130 

Dee organisms' 
Cockle tissue ("=! ) na 11-7 0-55 0031 na 
Mussel tissue (1=1) na 3-69 043 0024 na 

Irish Sea whole sedimeni x±s 0-23 ± 0 0 6 26 6 ± 5 - 5 1 38 ± 0 - 2 5 0-28 ± 0 - 2 5 1 2 0 ± 2 2 
n 5 5 5 5 5 
R 0 12-0 27 18-1-321 1 07-1-66 025-0-30 98-150 

'Pcrmanendy suspended material, temporarily suspended material, 'dry weight, na, 
Not analysed. 

the concentrations in Irish Sea sediments near to the discharge at SellaBeld indicating a 
significant yet complex southerly transport of radionuclide contaminated sediment in the 
eastern Irish Sea. T h e ratio of ' " C s to^^'Am in the estuary ( 4 - 6 ± 0 - 9 2 ) is significantly 
higher than in the Irish Sea nearer the source ( I -3 ± 0 - 6 0 ) indicating a relative enrichment 
of ' " C s in the estuary. T h i s cannot be related to the differential decay of ' " C s 
(half-life = 30 years) and " ' A m (half-life = 435 years), and was not matched by an equiv­
alent increase in the isotopic ratio of ' " C s to " ' A m in the Sellafield discharge over decadel 
time-scales ( M c O l l et al., 1990). Ratios calculated from data given by Campl in (1993) in 
the source region are about 1 0 and 1 -3 for sand and mud, respectively; in Liverpool Bay 
the ratios are about 3-9 for both sand and mud. T h e s e values compare favourably with 
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T A B L E 3. Acetic acid-extracublc trace metal concentrations of Dee Estuary and I rish Sea 
samples 

C d 
(Mgg-') 

C r 
(Mgg-) 

C u 
(Mgg'') 

Pb 
(Mgg"') 

Zn 
(Mgg"') 

Dec whole sediment 
Lower estuary j r ± s 0 - 2 8 ± 0 - 1 0 3 - 3 ± 4 - 5 1 3 ± I 9 42 ± 2 0 I 1 0 ± 4 8 

n 8 7 7 7 7 
R 017-0 43 0 13-13-2 1-6-56 88-69 66-180 

Upper estuary jr + s 0-38 1 3 ± 0 9 3 5-4 ± 4 - 2 28 ± 2 0 I I 0 ± 5 7 
n 2 4 3 4 4 
R 0-26-0-49 0-43-2-6 1 8-10 4 0-52 44-180 

River (n = 2) I I 0 9 2-9 49 120 

Dee < 63 pm sediment 
Lower estuary x ± s 10 ± 0 75 1-7 ± 0 - 7 5 1 3 ± 1 6 52 ± 1 3 2 5 0 ± I 1 0 

n 9 10 10 10 10 
R 013-2 3 0-26-2-7 4-4-56 33-73 130-^30 

Upper estuary J t ± S 0-95 ± 0 - 8 9 1-9+ 0-72 5-2 ± 3 - 4 64+11 3 0 0 ± 4 3 
n 4 4 4 4 4 
R 0 03-1-9 I 0-2-7 2-3-10 50-77 240-340 

River ( n = I ) 1-5 15 19 36 120 

Dee S P M 
Lower estuary x ± s 2-9+1-6 1 9 ± 0 - 5 8 2 2 ± 4 8 93+13 390 ± 2 0 0 

n 7 6 7 7 7 
R 11-4 8 0-78-2-3 18-31 82-120 230-810 

Upper estuary x±s 2-8 ± 3 - 2 2 - 7 ± l l 12+11 48 ± 2 5 2 7 0 ± 1 9 0 
n 7 5 7 7 7 
R 0 55-9-3 1 1 - 4 0 1-4-34 17-79 71-530 

PS- (n=\) 8 1 19 3 42 100 830 
T S ' C"=i) 0-38 0-47 2 0 13 89 

Dec organisms' 
Cockle tissue ("=!) 0-42 t o 5 4 5 5 79 
Mussel tissue ( « = ! ) 11 0-91 11 8-5 130 

Irish Sea whole sediment jr + s 0 31 + 0 1 9 M ± 0 52 2 - 3 ± 0 - 4 3 21 ± 6 - 7 18+66 
n 5 5 5 5 5 
R 0 1 6 - 0 6 3 0-5O-I-9 1-6-2 8 11-27 6-7-23 

•permanently suspended material, *iemporarily suspended material, 'dry weight. 

those reported herein but also indicate that the ratio is independent of sediment texture. 
T h e question arises, therefore, what mechanism is responsible for the relative enrichment 
of ' " C s in Dee Estuary sediment? 

In order to assess the transport pathways of ' " C s and ^*'Am in the Irish Sea and Dee 
Estuary distribution coefficients, fC^s, have been derived. Analysis of S P M and water in 
the Ir ish Sea indicates a of 5 x 10* 1 kg"' for " ' A m (Mitchel l et al., 1990), and labora­
tory incubations using Ir ish Sea water labelled with ' " C s indicate a / C ^ of 2-5 x lOM kg"' 
(Turner & Mil lward, 1994). T h u s . ' " C s (as C s * ) has a relatively high solubility in sea-
water whereas ^*'Am (which forms insoluble hydroxides; Aston & Stanners, 1982) has a 
high particle affinity. F o r a representative S P M concentration in coastal seawater of 
5 mg r ' these K^s indicate that I % ' " C s and 70% " ' A m are transported with the S P M . 
T h u s , the " ' A m in the Dee Estuary sediments reflects the deposition of coastal S P M and 
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T A B L E 4. Carbon and nitrogen contents, specific surface areas (SSAs) and radionuclide 
concentrations of Dec Estuary and I rish Sea samples 

C 
(%) 

C : N 
ratio 

S S A 
(m'g-') 

"'Am 
( m B q g - ) 

'"Cs 
( m B q g - ' ) 

Dee whole sediment 
Lower estuary Jr±s 2 - 5 ± l - 2 12 9 ± 2 - 2 5 6 ± 3 0 7 4 ± I 4 270 ± 1 8 0 

n 7 7 8 6 8 
R 0 4 1 - 4 0 8-7-15-0 0-5-8-5 52-93 22-580 

Upper estuary x ± s 2-3 ± 1-2 12-5 + 2-2 4-6 ± 2 - 8 45 ± 3 0 I 6 0 ± 1 3 0 
n 4 4 4 3 4 
R 0-71-3-5 9-2-14-1 0 5 - 6 9 24-80 47-350 

River in = 2) 1-5 12 1 2 2 nd 38 

Dee <63 urn sediment 
Lower estuary x + s 51 ± 1 - 4 10-4+3 0 10-4± 1-6 160 740 

n 10 10 10 1 1 
R 3-9-8-4 6 3-15-6 7 1-12 1 — — 

Upper estuary x±s 4-9+0-61 9-2 + 2-9 9 - 2 ± 1-3 
n 4 4 4 na na 
R 4 1-5-5 6-5-13 0 7-7-10-7 

River ( « = I ) 19 6-6 2-5 na na 

Dee S P M 
Lower estuary x + s 5-6 ± 0 - 4 9 8-4 ± 0 - 8 5 8 3 ± 1-7 

n 7 7 3 na na 
R 4-8-6-1 7 4-10-0 6-4-9 5 

Upper estuary x ± s 5 - 6 ± 4 1 7 0 + 21 4-4 + 41 
n 6 6 4 na na 
R 1 4-10 7 5-2-108 0 5-9-3 

P S ' ( n = l ) 140 5-8 na na na 
T S ' (n=l) 1-3 l l -B na na na 

Dee organisms' 
Cockle tissue (71=1) na na na nd 32 
Mussel tissue ( n = I ) na na na nd 49 

Irish Sea whole sediment J + S 3 0 ± 2 - 7 12-2 ± 0 - 8 2 5 - 5 ± 2 - 6 460 ± 3 6 0 5 0 0 ± 3 I 0 
n 5 5 5 5 5 
R 0-91-7-8 11 2-130 2-2-8 1 170-990 210-1010 

'Permanently suspended material, *tcmporarily suspended material, 'dry weight, na, 
Not analysed; nd. not dcteacd. 

the influx and dispersion of contaminated bed load material. Combining the flux of marine 
sediment to the Dee (Table 1) with concentrations of ^^'Am and ' " C s in sediment from 
the mouth of the estuary yields respective influxes of 0 1 and 0-5 T B q a " ' . Additionally, 
for ' " C s a significant fraction enters the estuary in dissolved form and on encountering 
waters of lower ionic strength, hence lower concentration of competing sorbable ions (e.g. 
Ca^ *, Mg:^^),in theupperestuary is able to sorb onto resuspendible sediment according to 
its equilibrium in Dee low salinity water (3 x l O M k g " ' ; T u r n e r & M i l l w a r d , 1994). 
T ida l ly averaged salinity data in the upper estuary and the average freshwater discharge to 
the estuary, yield an average flux of c. 10 m*$"' seawater to the upper estuary. G i v e n the 
concentration of dissolved ' " C s in Irish Sea water close to the mouth of the Dee is 
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Irish Sea Lower estuary Upper estuary (Weir) River 

S P M = 58 S P M = 47 ± I I 
S P M = 11-72 VA 

7-8 

120 ± 54 

120 ± 22 140 ± 54 

Figure 3. Ratios of acetic acid-ex tractable Ca:Al in whole sediment and S P M and 
hypothesized particle transport in the Dee Estuary. CarAI ratio for Irish Sea S P M has 
been derived from end-member panicle mixing considerations. T h i n arrows denote 
S P M transport, including bed exchange, and thick arrows denote bed load transport. 
PS, Permanently suspended material. 

Irish Sea Lower esiuary Upper esiuory i W c i r i R i v e r 

Bed load fluK 

1^ 0 SO 

0'20 Dissolved HUM 
/ i t , = 3 * 1 0 ' I kg ' 

Sorptive • , SPM = 50 mg I 'K-
removal 

Figure 4. The cycling and fluxes ( T B q a ' )of '"Cs in the Dec Estuary. 

T A B L E 5. Removal of '"Am and '"Cs from sediment samples by ihe acetic acid leach 

"'Am '"Cs 
(%) C%) 

Dee whole sediment (n = 3) 45 0 
Irish Sea whole sediment (n= 3) 58 0 

0-5 Bq I " ' (Hunt, 1988) this results in a net flux of soluble ' " C s to the upper estuary of 
0-2 T B q a " ' . T h e instantaneous addition of 50 mg I " ' (or about 0 2 5 I " ' for a represen­
tative S S A of 5 g ' ' ) resuspendible bed sediment into the water column then yields a 
sorptive removal rate of ' " C s of 0 0 3 T B q a ~ ' according to the low salinity / C ^ , which 
amounts to about 4% ofthe total supply and l5"'o o f the dissolved supply of ' " C s to the 
estuary. These fluxes of ' " C s in the Dee Estuary are depicted in Figure 4. 

Treatment of selected samples with the acetic acid leach failed to remove any adsorbed 
' " C s ions (Table 5) indicating an irreversible reaction which results in its gradual 
accumulation in the sedimentary reservoir. F u l l B E T adsorption-desorption iso­
therms undertaken on selected sediment and S P M samples from throughout the estuary 
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Irish Sea Lower csiunry Upper estuary 

SPM = 280 : SPM = 390 i 200 
: D = I X »0* I k g - ' 

— ps = a3o 
/("o = 3 X 10* I k g - ' 

(Weirl River 

SPM - 71-530 

110 i 57 

no i 48 

Figure 5. T l i e concentrations of acetic acid-extractable Zn in Dee Estuary whole 
sediment and S P M . Z n in Irish Sea S P M has been derived from particle mixing 
considerations. PS , Permanently suspended material. 

exhibited hysteresis typical of estuarine sediments from other environments (Mi l lward 
et al.y 1989, 1990) indicating slit-shaped pores with most ofthe volume contained within 
pores of diameters 5-7 nm, thus able to accommodate irreversible fixation of ' " C s to 
internal sites (Evans et al.y 1983). Consequently, concentrations of ' " C s in cockles and 
mussels from the estuary are significantly lower than in the sediment (Table 4) because the 
bioavailable fraction o f ' " C s to detritus-feeding organisms is negligible. 

T h e r e is potential for accumulation in the estuary of other toxic trace elements which 
have a higher K^^ in the low salinity zone than in seawater via uptake onto resuspendible 
particles of the upper estuary. These include C d and Z n (Tur ne r et al., 1993; T u r n e r & 
Mil lward, 1994) and their origin may be either riverine (through catchment sources) or 
marine (Liverpool Bay, which is strongly influenced by anthropogenic sources in the 
Mersey Estuary). Removal of a significant fraciion of ' " C s in the D e c Es iuary , and 
reported csiuarine removal of other oceanic trace consiiiuents such as ^'°Pb and Pu (Olsen 
et al., 1989) and U (Maeda & Windom, 1982; van den Berg el al., 1991), has important 
implications concerning the fate of pollutants discharged into the marine environment. 

It is apparent from the ' " C s flux calculations above that this mechanism alone cannot 
account for a 3-fold enrichment of ' " C s / " ' A m in the estuary. Moreover, a similar 
enrichment is evident in the coastal (i.e. saline) environment of Liverpool Bay (Campl in , 
1993). T h u s , an additional possibility exists of a kineiically slow (of the order of months to 
years) secondary sorption reaction of ' " C s occurring within the particle lattice (Evans , 
1983) during transport of particles from the source. 

The cycling and /luxes of particulate trace metals 
T h e distribution and transport of particulate trace metals in the Dee is exemplified for Z n 
in Figure 5; values have been derived from radiotracer incubation experiments using 
low salinity Dee water and Irish Sea water ( T u m e r & Mil lward, 1994). Concentrations of 
Z n , as with all trace metals and C and N , are highest in the most mobile, P S material due to 
a large particle surface area:volume ratio. T h e retention of these particles in the estuary is 
likely to be limited to a time-scale similar to that of the freshwater replacement time, 
probably of the order of 10 days ( B M T , 1990). Combining trace metal concentrations of 
the P S fraction with the flux of this material through the estuary (8400 t a"') yields the 
following fluxes of acetic acid-extraciable particulate metals (kg a ~ ' ) to Liverpool Bay: Fe , 
1 4 x 10'; M n , 3 3 x 10^ C d , 68; C r . 160; C u , 350; Pb. 840 and Z n , 7 - 0 x lO'. 
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-); calculated according Figure 6. A comparison of observed ( • ) with predicted [(— 
to equation (2)] acetic acid-cxtraciable trace metal composition ((a) C u , (b) Fc , (c) Pb and 
(d) Zn] of resuspcndiblc particles in the upper Dee Esiuary as a function of concentration 
of rcsuspending particles, S P M . PS , Permanently suspended material; T S , temporarily 
suspended material. 

T h e range in metal and C and N concentrations of S P M of the upper estuary tidal 
station was encompassed by the P S and T S (or bed sediment) fractions suggesting that 
local rcsuspension controls the temporal distribution of S P M composition, hence particu­
late metal concentrations, in this region of the estuary. T h e metal contents of S P M in the 
lower esiuary are more uniform and are intermediate between the T S and PS fractions of 
the upper estuary suggesting that resuspension is of less importance in controlling the 
temporal distribution of S P M in the broader, less energetic region of the lower estuary. 
T h e composition of marine (Liverpool Bay) end-member material can be predicted from 
the relative proportions of P S material and lower estuary S P M as explained above, and is 
as follows: F e , 0-81 mgg"' ; M n , 0 - 7 2 m g g - ' ; C d , l-6Mgg"'i C r , < l M g g " ' ; C u , 
1 7 M g g - ' ; P b , 9 l M g g - ' i Z n , 2 8 0 n g g - ' ; C , 3 - 4 % a n d C : N . 9 I . 

A particle mixing model 
T h e time-variable particulate metal concentration of S P M in the upper estuary, Me{t)y 
due to changes in the proportion of T S material via changing tidal stress on the bed, can be 
predicted from the following equation incorporating the composition of the PS and T S 
materials: 

Me{t) = 
{SPM - SPM''^)Me''^ + SPM^'^Me''^ 

SPM 
(2) 

where: 

SPM = 5 P M " + SPM''^ (3) 
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Figure 7. Acetic acid-cxtractable Zn concentration of S P M versus S P M concentration 
for the Tamar Estuary (redrawn from Ackroyd, 1983). ( ), Predicted according to 
equation (2) using the fallowing values: 5 P M " = 3 mg I SPM" = 750 mg 1 '; Zn^^ = 
1500 Mgg-';ZA^* = 300Mgg'-

and where SPM^^ is the concentration of P S material (7-2 mg l" ' ) , of particulate metal 
concentration Me^^y SPM is the observed concentration of suspended particles, and 
SPM^^ is the variable concentration of resuspending particles of particulate metal con­
centration Me^^. Although it has been suggested that resuspension of particles engenders 
removal of dissolved constituents such as ' " C s and Z n , the model assumes that so l id-
solution interactions are ineffectual to the bulk composition of particles (Mantoura & 
Morris , 1983; T u r n e r ei a/ . , 1991)- Model predictions and measured values for C u , Pb, Fe 
and Z n are shown in Figure 6 against the concentration of S P M . Although the model 
has only been tested for a small range of S P M , agreement is only reasonable indicating 
additional effects such as advective fluxes of particle populations, selective resuspension of 
particle types and particle-particle interactions. Moreover, the implication of a coarse­
grained bed, low S P M concentrations and the absence of a turbidity maximum is that 
resuspension events are relatively short-lived in the upper Dee Estuary. 

Figure 7 shows the concentration of aceiic-Ieachable Z n in T a m a r Estuary suspended 
particles as a function of S P M concentration (Ackroyd, 1983). Representative end-
member values selected for the model prediction were as follows: 5/'Af''^ = 3 mg I " ' ; 
S / ' M ^ ^ = 7 5 0 m g r ' ; Zn^^= 1500 j igg"'; Z / i " = 300 pg g " a l t h o u g h a better fit could 
be attained (by eye) by either reducing Zn^'' to 1000 jig g ' or halving SPM^^. It is 
surprising that these data conform well with an inverse relationship predicted by a 
two end-member particle mixing model as in situ investigations have shown that T a m a r 
particles exhibit interactive behaviour (aggregation/disaggregation) and a complex distri­
bution of size, density and settling velocities (Bale et al., 1985, 1989; West ei al., 1990). 
T h e end-members can be identified as particles of fluvial origin (the advecting population, 
P S ; 5 P A f < 5 m g r ' ) and particles resuspended from the bed (the resuspending popu­
lation, T S ; 5 / ' A f > 5 0 0 m g l ~ ' ) ; the particle population which does not conform with 
the relationship (i.e. SPM < 5 mg 1"' and Z n < 5 0 0 p g g ~ ' ) can be identified as being of 
marine origin (Ackroyd, 1983) and is likely to represent an additional advecting 
population. 
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T h e implication of these observations is the general applicability of a particle mixing 
model for defining and predicting the spatial and temporal distributions of particle-bound 
constituents in energetic, macrotidal environments such as estuaries and coastal seas. T o 
this end the model provides an important component in the development of a pollution 
management tool for particle reactive contaminants. 

Conclusions 

Chemical characterization of sediment and S P M from the Dee Estuary has enabled the 
origin and transport of particles to be determined. T h e sedimentary reservoir of the 
estuary is dominated by coarse-grained material supplied by coastal and sea-bed erosion 
and transported upestuary by tidal asymmetry. T h e S P M comprises two distinct popu­
lations: fine, organic-rich fluvial material, which is the major carrier of trace constituents 
{wfw)y is spatially and temporally admixed with coarse suspendible bed nnaterial in 
accordance with tidal stress on the bed, providing the potential for sorptive removal of 
dissolved constituents such as ' " C s , C d and Z n . Calculations based on sediment flux data 
and radiochemical laboratory experiments indicate that about 15% of dissolved " ' C s 
entering the upper estuary is removed by this process. T h e time-variable composition of 
S P M in the upper estuary was predicted using a simple resuspension model based on the 
compositions of operationally fractionated PS and T S particles; agreement with field data 
was only partially successful, however, suggesting additional processes such as selective 
resuspension and/or advection of particle types. 

An important implication of these observations and model calculations is their potential 
significance to the more accurate prediction of land-ocean fluxes and internal cycling of 
pollutants in accreting, macrotidal environments. 
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Modelling adsorption and desorption 
processes in estuaries 
A. Turner and A.O. Tyler 

3.1 Introduction 
Many inorganic and organic pollutants are of great concern to water 
quality managers owing to their persistence, toxicity and liability to 
bioaccumulate (Tanabe, 1988; Robards & Worsfold, 1991; Bryan & 
Langston, 1992; McCain a/., 1992; Forstner, 1993). The major temporary 
or ultimate sink for such pollutants in estuaries is the sedimentary 
reservoir, including intertidal deposits (Hanson, Evans & Colby, 1993; 
van Zoest & van Eck, 1993; Kennicutt et ai, 1994), and definition of the 
biogeochemical mechanisms by which they absorb onto, desorb from and 
repartition amongst natural, heterogeneous particle populations is essential 
in order to assess their environmental fate. In estuaries, prediction of the 
distribution of pollutants is further compounded by intense temporal and 
spatial gradients of the reaction controlling variables such as salinity, 
dissolved oxygen concentration and particle composition, occurring both 
within the sediment and in the water column during particle suspension. 

This chapter focuses on an empirical technique to study the sorptive 
behaviour of trace metals and trace organic compounds in estuaries. 
Thus, the partitioning of constituents between particles and solution is 
determined experimentally, without identifying the inherent reaction 
mechanisms or reactant speciation, under controlled laboratory conditions 
using natural samples spiked with radiotracer analogues of the constituent 
of interest (Turner et ai, 1993). Adsorption and desorption processes may 
be modelled as a function of particle concentration, and the controlled 
variables of salinity and dissolved oxygen concentration, by incorporating 
empirically derived results into simple mass balance equations. This 
approach is exemplified herein using site-specific results from two 
contrasting estuarine environments, namely the Clyde and Humber. and 
the calculated results are discussed in the context of their agreement with 
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field measurements of trace constituents in these estuaries. Although the 
arguments and discussion are presented explicitly for sorption processes 
occurring in the water column they may be extrapolated to the intertidal 
environment where chemical reactivity is also promoted by changes in 
dissolved oxygen concentration (Kerner & Wallmann, 1992) and salinity 
(Carroll et ai, 1993). 

3.1.1 T h e C l y d e a n d H u m b e r E s t u a r i e s 

The physical characteristics of the Clyde and Humber Estuaries are listed 
in Table 3.1, and typical axial distributions of salinity, concentration of 
suspended particulate matter (SPM) and dissolved oxygen concentration 
are shown in Figure 3.1. The Clyde is a partially stratified, mesotidal 
estuary. Irregularities in its axial salinity distribution arise from a 
multiplicity of fresh water sources along the tidal estuary. The SPM 
concentrations are low and relatively invariant and an occasional, weak 
turbidity maximum results from trapping of fine sediment by convergent 
subsurface flows (Curran, 1986). The high biochemical oxygen demand of 
sewage discharges combined with the poor exchange between subsurface 
and surface waters results in an extensive area of oxygen depletion in the 
upper estuary (Curran, 1986). In contrast, the Humber is a well-mixed, 
macrotidal estuary, and a turbidity maximum generated by tidal 
resuspension of bed sediment is a regular feature of the low salinity zone 
(Turner, Millward & Morris, 1991). 

3.2 Determination of distribution coefficients 
The distribution coefficient, or partition coefficient, Kj^{v/w), parameierises 
the ratio of adsorbed particulate concentration, P (w/w), to dissolved 
concentration, C (w/v). of a constituent, and may be determined empirically 

T a b l e 3.1 Physical characteristics of the Clyde and Humber Estuaries 

Clyde" Humbcr* 

Axial length (km) 40 62 
Mean river flow (m^ s"') 44 ( + 63') 246 
Tidal range at mouth, neaps/spring (m) 1.9/3.0 3.5/6.2 
Residence time (days) 10-20 -40 
Riverine sediment discharge (t a" *) 83000 170 000 

•Mackay & Leatherland (1976); Curran (1986) 
'Turner et a/. (1991) 
'contribution from tributaries to the tidal estuary 
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Figure 3.1 Distributions of salinity, suspended particulate matter (SPM) 
and dissolved oxygen determined during axial samplings of the Clyde (E^2; 
ebb tide, river flow including tributary inputs = 152 m^ s~') and Number (1/88; 
flood tide, river flows234 m's-^). Solid lines denote near surface 
measurements and broken lines denote near bottom measurements. 
Distance is measured from the weir at Glasgow on the Clyde and from 
Trent Falls on the Number. 
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by doping natural samples with radiotracer analogues and analysing the 
adsorbed and dissolved reactant concentrations by a suitable radiochemical 
method. 

Water samples used for the experimental studies of trace metals and 
chlorinated organic compounds were collected from the shore near to the 
river and marine end-members of the Humber and Clyde Estuaries and 
stored cool and in the dark before being used. Trace metal studies using 
Humber samples were undertaken onboard Royal Research Ship Challenger 
within 48 hours of collection and are described in detail elsewhere (Turner 
et ai, 1993); the remaining experiments were undertaken in the laboratory 
in Plymouth within one week of sample collection. The simulation of 
estuarine mixing was achieved by mixing aliquots of unfiltered end-member 
samples in different proportions. For the trace metal studies mixed 
samples of 50 or 100 ml were contained within acid-cleaned 150 ml 
polyethylene vessels and spiked with 50 or 100 \i\ of a cocktail consisting 
of sub-nanomolar concentrations of '°^Cd and ^^'Cs (Amersham 
International) in dilute HCl. This resulted in a small reduction in pH in 
the Humber experiments which was neutralised by the addition of a spike 
of ammonia solution diluted accordingly. The samples were equilibrated 
for 120 hours and filtered through pre-weighed 0.45 nm pore size 
Millipore cellulose acetate filters mounted in a Millipore filtration unit. 
The filtrates and filters were stored in unused 150 ml polyethylene vessels 
and 50 mm diameter petri dishes, respectively, and their activities were 
determined using a high purity Ge detector connected to a Canberra 
Series 80 Multichannel Analyser. Disintegrations were counted for 1000 
seconds and this gave statistical counting errors { ± 0.5 a) of < 5%. The 
distribution coefficient, (ml g " i s then given as follows: 

where A^, and are the activities on the particles and in solution, 
respectively, m is the mass of particles on the filter (g), V is the volume of 
filtrate (ml), and / i s a geometry factor which corrects for the differential 
sensitivity of the detector towards filler and filtrate samples. Replicate 
experiments using estuarine samples have indicated that K^s determined 
by this technique are generally reproducible within 10% (Turner & 
Millward. 1994). 

The effect of oxygen depletion on the partitioning was investigated by 
bubbling nitrogen through a Clyde river end-member sample for 12 hours 
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prior to spiking and thereafter throughout the incubation. This achieved a 
dissolved oxygen concentration of 1.5 mg 1" ^ compared with 8.0-8.5 mg 
1 ~ ' under ambient, aerated laboratory conditions, and thus approximates 
the observed range in concentrations of the upper reaches of the estuary 
(Figure 3.1). 

Two ^*C-Iabelled chlorinated organic compounds were selected for 
investigation: 2,3.7,8-TCDD (Chemsyn), the most toxic of the dioxin 
congeners; and 22'55'-TCB, lUPAC 52 (Sigma Chemicals), an abundant 
PCB congener. A 25 ̂ 1 spike of 0.02 \iC'i compound in hexane was placed 
on the side of a hexane-washed 50 ml glass centrifuge tube using a glass 
microsyringe; the hexane was then evaporated under a laminar flow hood 
and a sample of 20 ml was added (Zhou, Rowland & Mantoura, 1995; 
Zhou & Rowland, 1997). After shaking the stoppered tube for 12 hours, 
the contents were centrifuged at 3000 rpm for 30 minutes to separate the 
particulate and dissolved phases. A 2 ml aliquot of supernatant was 
pipetted into a glass vial containing 10 ml Ultima Gold Liquid Scintillation 
Cocktail, taking care not to disturb particles at the bottom of the 
centrifuge tube. The particles were then discarded along with the 
remaining water and the residual compound adsorbed to the centrifuge 
walls was extracted in 4 ml hexane for 12 hours on a shaker. A 2 ml aliquot 
of the extract was then pipetted into a glass vial containing 10 ml 
scintillation cocktail. All sample vials were counted on a Philips 4700 
scintillation counter and calibrated against matrix-matched standards 
quenched using CCI^. The (ml g ' *) was derived from mass balance as 
follows: 

P A, - (A, + A J V 
^^-C= A, m ^^-^^ 

where and are the respective activities of the original spike, the 
supernatant and that adsorbed onto the walls of the centrifuge tube, V is 
the volume of supernatant (ml) and m is the mass of particles (g) in the 
original suspension derived from subsample filtration through pre-weighed 
Whatman GF/F filters. Experiments were performed in triplicate or 
quadruplicate and the reproducibility of the resulting K^s was generally 
better than 10% for 22'55'-TCB, and up to about 40% for 2,3,7,8-TCDD 
due to its poor solubility and consequent low activity in solution. 
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3.3 Results and model calculations 

3.3.1 F r a c t i o n of c o n s t i t u e n t in s o l u t i o n 

The KjyS for the trace metals and chlorinated organic compounds are 
shown against salinity in Figure 3.2. End-member /CpS have been 
combined with representative end-member SPM concentrations {SPM) 
(Figure 3.1) in order to calculate the fraction of constituent in solution, ^, 
as follows: 

Ko(ml g-^) 

2.3,7,8 
-TCDD 

10 15 20 25 30 

Salinity 

KD(mlg-^) 

10' 

HUMBER 

2.3.7.8 
•TCDD 

10 15 20 

Salinity 

R g u r e 3.2 Distribution coeffccients, K^s, against salinity for the Clyde and 
Humber nnixed samples. Boxed data points denote K^s determined using 
the sample incubated under de-oxygenated conditions. 
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C + PSPM (3.3) 
1 

I + K^'SPM 

The magnitude of this fraction (Table 3.2X which has important implications 
concerning the bioavailability, transport and fate of these constituents 
(Balis, 1989; Pankow & MacKenzie. 1991; Webster & Ridgway, 1994) 
varies from more than 90% for Cd and Cs in sea water and oxygen 
depleted waters of the Clyde, to less than 5% for 2,3,7,8-TCDD in the 
Humber Estuary and the low salinity zone of the Clyde. 

3.3.2 S a l i n i t y a n d par t i c l e c h a r a c t e r d e p e n d e n c e of p a r t i t i o n i n g 

All constituents in the Clyde exhibit a reduction in with increasing 
salinity; in the Humber, K^s for Cd and Cs decrease with increasing 
salinity whereas K^s for 22'55'-TCB and 2,3.7,8-TCDD are relatively 
invariant. Regarding trace metals, although inter-estuarine variability of 
end-member arises through differences in end-member particle and 
water composition, the distribution of K^s induced by mixing of end-
members is controlled principally by salinity and not changes in net 
particle character (Turner et ai, 1993). Thus, a reduction in with 
increasing salinity, S, which is characteristic of many metals (Li, Burkhardt 
& Teraoka. 1984), results from an increase in the proportion of the 
sorbabie species being complexed by sea water anions (CI" and S 0 4 ^ " ) 
and an increasing occupation of particle sorption sites by sea water 

T a b l e 3 .2 The percentage of trace metals and chlorinated organic compounds 
in solution, calculated according to Equation (3.3) using end-member and 
representative concentrations of suspended particulate maner (SPM). R E M and 
MEM denote river and marine end-members, respectively 

S P M (mg 1-') Cd Cs 22'55'-TCB 2,3,7,8-TCDD 

Humber 
R E M 1(X) 75.1 57.0 15.2 4.2 
M E M 100 93.0 94.2 8.5 3.0 

Clyde 
R E M 10 71.5 95.7 35.8 3.1 
R E M * 10 98.8 98.7 — — 
M E M 10 99.4 99.9 75.0 11.2 

•De-oxygenated river end-member sample 
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cations (Na^. K*, Ca^^, Mg^*). and may be defined by the following 
general relationship (Bale, 1987; Turner & Millward, 1994): 

\nKo = b\n(S-\- l) + ln^:g (3.4) 

where K%y the partitioning in fresh water, and b are constants. Values of 
these constants for Cd and Cs in the Clyde and Humber have been derived 
from regressions of In versus In (S + 1) and are given in Table 3.3. The 
parameterisation of the sorptive behaviour of constituents in the form of 
such generic relationships is extremely useful for the refinement of 
chemical codings in contaminant transport models (Plymsolve, 1991; Ng 
et fl/., 1996). 

Regarding chlorinated organic compounds, the information presented 
herein and elsewhere (Tyler et a/.. 1994) suggests that particle character 
rather than salinity exerts the key influence on their estuarine distributions. 
The chemical characteristics of typical Clyde and Humber end-member 
particles are given in Table 3.4. Thus, Humber river and marine 
end-member particles have similar chemical characteristics engendering a 
relatively uniform distribution of fCp, whereas in the Clyde, riverine 
particles have a higher content of Fe-Mn hydroxides and carbon for the 
sorption of compounds and a reduction in is observed as the 
proportion of riverine particles in the admixture decreases. More specifically, 
recent studies suggest that adsorption of trace organic compounds onto 
natural particles is controlled dominantly by the apolar lipid content 
(Preston & Raymundo, 1993; tyler et al, 1994). Higher absolute K^s in 
the Clyde than in the Humber are, therefore, rcHecied by inter-estuarine 
differences in particulate lipid content (Clyde sediment = 6.5 ± 5.0 mg 
g"*cf. Humber sediment 1.6 ± 0.7 mg g " T y l e r el ai, 1994). 

T a b l e 3 . 3 Regression analyses of In/C^ versus ln(S+ 1) (n = 5) for Cd and C s (see 
Equation (3.4)) 

Estuary Slope, b 
Intercept. K^^ 
(ml g - » ) (%) P 

Clyde Cd - 1.42 80800 96.5 0.002 
Cs - 1.25 11000 95.8 0.002 

Humber Cd - 0.653 6000 92.8 0.005 
Cs - 1.05 21000 99.0 < 0.001 
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3.3.3 D e s o r p t i o n m o d e l l i n g 

The foregoing discussion suggests that the estuarine distributions of trace 
organic compounds are determined largely by natural particle mixing 
processes and the rates at which sorbed compounds redistribute amongst 
different particle types. In contrast, the partitioning of trace metals in 
estuaries is controlled principally by salinity (Equation (3.4)) and their 
distributions will be determined to some extent by desorption from 
seaward fluxing particles. Assuming no loss or gain of seaward fluxing 
particles, and neglecting possible additional sources of trace metals such 
as pore-water infusion, this effect may be quantified from mass balance of 
constituent as follows (Li et a/.. 1984): 

_^ psi.sPM' = C^̂  + P^^ SPM' (3.5) 

where SPM^ is the concentration of seaward fluxing particles traversing 
an axial or vertical salinity gradient, S1-S2. Assuming that the sorption 
reaction is fully reversible, the relative changes in adsorbed particulate 
and dissolved concentrations along this salinity gradient are given as follows: 

P^^ SPM' + \/Ky 
P^' ~ SPM' + \/Kl^ 

and: 

C" P^^ Kl' 

(3.6) 

(3.7) 

T a b l e 3 .4 The composition of typical end-member particles from the Clyde and 
Humber. Fe and Mn were determined following e)ctraction by hydroxyiamine 
hydrochloride-acetic acid. Carbon and nitrogen were determined using an 
elemental analyser. Specific surface area (SSA) w a s determined using a B E T 
nitrogen adsorption technique (nd = not determined). R E M and MEM denote 
river and marine end-members, respectively. 

Fe Mn Carbon Carbon/ S S A 
(mg g-*) (mgg"*) (%) Nitrogen (m^g~*) 

Clyde 
R E M 8.40 1.02 9.9 9.2 7.1 
M E M 3.52 0.29 9.3 10.3 nd 

Humber* 
R E M 10.1 1.32 4.9 15.8 31.4 
M E M 11.2 1.05 5.2 13.9 20.6 

Turner et a/. (1993) 
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Note that these equations are also valid for trace organic compounds if 
the seaward fluxing particle population is chemically modified m situ 
through, for example, precipitation or dissolution of Fe-Mn oxides 
and/or organic coatings. 

The relative change in dissolved or adsorbed concentration of trace 
metals due to the flux of particles along a dissolved oxygen gradient, 
0 2 - 0 1 , may be calculated likewise using determined under different 
oxygen conditions. Thus: 

P^^ SPM' + 1/Xg' 

and: 

(3.8) 

^ ! ~ p O l j^02 

Figure 3.3 shows dissolved and adsorbed particulate concentration ratios 
for Cd as a function of seaward fluxing particle concentration, SPM\ 
calculated according to Equations (3.6) and (3.7) using end-member K^s 
for the Humber and Clyde, and according to Equations (3.8) and (3.9) 
using K^s determined under extreme dissolved oxygen concentrations in 
the Clyde. Although for a given concentration, SPM\ the relative change 
in dissolved concentration in the Clyde eff'ected by variations in both 
salinity and dissolved oxygen' is greater than the relative change in 
dissolved concentration in the Humber effected by variations in salinity, 
the magnitude of the adveciing particle population is considerably 
smaller in the Clyde. Thus, for a representative concentration of SPM^ in 
the Clyde o f - l O m g 1"* (Figure 3.1), C^^/C^' = C°VC°» -1.4. P^^/P^' 
- 0.02 and poz/poi ,o.04. Particle fluxes in dynamic macrotidal estuaries 
are spatially and temporally variable (Morris et ai, 1986), but a hypothetical 
particle population of concentration 250mg 1"* traversing the full 
salinity range of the Humber Estuary yields the following concentration 
ratios: C"/C^* = 1.5, and/^V^'^* = 0.35. According to these calculations 
the largest relative change in Cd concentration occurs in Clyde suspended 
particles and results in a 25- to 50-fold reduction of the adsorbed 
particulate fraction. 

3.3.4 A d s o r p t i o n m o d e l l i n g 

Sorptive removal of dissolved constituents is engendered by the addition 
of sorption sites. In estuaries this is achieved through tidally induced 
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resuspension of bed particles that are depleted of the adsorbed constituent 
relative to equilibrium. This effect may be quantified by the following 
equation derived from mass balance (Morris» 1986): 

1 + iCnSPM° 
C° 1 + K^ SPM"" + K^'SPM\\ - a) (3.10) 

where C/C° is the ratio of dissolved constituent concentration in 
turbidised water to that in ambient water (i.e. fractional removal). 5PM" is 
the concentration of added or resuspended particles, SPM^ is the 
concentration of ambient suspended particles, and a defines the depletion 
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Figure 3.3 Dissolved and adsorbed particulate concentration ratios as a 
function of fluxing particle concentration {SPM') for Cd in the Clyde and 
Humber, calculated according to Equations (3.6H3.9). 
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of adsorbed constituent on the added particles relative to equilibrium in 
the turbidised water (i.e. PV^*)- Such constituent-depleted particles are 
derived from the marine reaches of an estuary where anthropogenic 
inputs are generally less significant and particle sorption sites are 
occupied by sea water cations, and are transported up-estuary by 
asymmetric tidal currents. The calculated sorptive removal of constituents 
is shown for the Humber Estuary in Figure 3.4 within an added particle 
concentration range of Q-1000 mg 1" S using river end-member K^^ and 
an ambient particle concentration of 5 mg 1" *; the value of a of 0.50 is 
based on empirical estimates given by Morris (1986). Under these 
conditions 50% removal of dissolved constituent is achieved at the 
following approximate added particle concentrations: Cd, 700 mg 1~*; 
Cs, 250mg r ' ; 22'55'-TCB, 50mg 1 " ^ 2,3,7,8-TCDD, 20mg 1" ' . 
Application of the sorption model to the Clyde Estuary is not appropriate 
for the following reasons. Firstly, although localised disturbance of the 
bed occurs during dredging operations, there is no evidence of extensive 
resuspension from axial and vertical SPM distributions (Figure 3.1). 
Moreover, bottom current speeds are lower than the critical erosion 
velocity for representative grain diameters (Curran. 1986). Secondly, there 
is little potential for up-estuary transport of marine particles due to slow 
subsurface currents and deep basins in the outer estuary which act as 

o 
o 
o 

22'55 

0.01 

2.3. 7.8 
•TCDD 

0 200 400 600 800 1000 
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R g u r e 3.4 The removal of dissolved trace metals and chlorinated organic 
compounds as a function of added particle concentration {SPM') in the 
river end-member of the Humber Estuary, calculated according to Equation 
(3.10) for SP/Wo«5mg M and a = 0.50. 
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sediment traps (Mackay & Leatherland, 1976). i t is conceivable, however, 
that removal of certain trace metals (including Cd) may be achieved via 
the precipitation of insoluble sulphide species (Zwolsman & van Eck, 
1993). A continual source of sulphide (namely, the reducing bottom 
sediments) is not accounted for in the laboratory simulations and this 
serves to exemplify potential limitations with our attempts to replicate 
multiple, interactive environmental processes in laboratory enclosures. 

3.4 Discussion 
Although chemical parameters such as distribution coefficients are 
fundamental to understanding the geochemical reactivity of trace 

CLYDE 

b<0 

SPM ^ = SPM' 
haiociine 

low oxygen 2pne 
t i 

a - 1 

HUMBER 

b<0 

SPM lufbidity 
mawmum 

MEM 
SPM' 

t)edload 

SPM' 

REM 

a < l 

Figure 3.5 Schematic illustration of particle fluxes in the Clyde and 
Humber Estuaries. Arrow size denotes relative magnitude of the flux. The 
broken line represents the boundary of the saline intrusion and the river. 
REM and MEM denote river and marine end-members, respectively. All 
terms are defined in the text 
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constituents in estuaries, the foregoing calculations have emphasised the 
important role of sediment dynamics on chemical distributions. In the 
Humber Estuary sorption reactions are promoted by substantial resus-
pending and ad vecting particle fluxes, as conceptualised in Figure 3.5, and 
the suspended particle populations are in a dynamic state of exchange 
with subtidal and intertidal material. In highly energetic, macrotidal 
estuaries a proportion of riverine suspended particles are transported into 
the turbidity maximum, where the magnitude of the seaward advecting 
population is augmented by particles resuspended by tidal currents 
(Morris et a/., 1986). Trace metals are desorbed from these particles 
downestuary in accordance with the magnitude of Z?, the rate of change of 

with salinity, until they are deposited as the current speeds are 
reduced. An admixture of this sediment and marine derived material is 
then transported up-estuary as bedload by asymmetric tidal currents to 
the null zone where it is resuspended into the turbidity maximum 
engendering sorptive removal of dissolved constituent in accordance with 
the value of ot, the extent of depletion (relative to equilibrium) of adsorbed 
constituent on the particles. Field investigations of various dissolved trace 
metals (diagnosed as constituent-salinity plots) in the Humber Estuary 
have demonstrated conservativeness (Balls, 1985; Kitts et a/., 1994) as well 
as a variety of reactive distributions (Gardiner, 1982; Edwards, Freestone 
& Urquhart, 1987; Coffey & Jickells, 1995). Diff"erential behaviour 
amongst constituents reflects differences in chemical parameters such as 
end-member TCpS, ot, and the reversibility of sorption, whereas intra-
conslituenl variability arises from temporal variability of component 
sediment fluxes. 

Chemical reactivity in the Clyde is governed by the flux of particles 
through lateral and vertical gradients of salinity or dissolved oxygen and 
there is little exchange of particles between the water column and the bed 
(Figure 3.5). Because of the low and invariant concentrations of suspended 
particles, calculations predict that sorptive reactivity in the water column 
will result in a significant modification of the trace metal composition of 
suspended particles. Seasonal measurements of trace metals on suspended 
particles available to I M N H 4 O A C (an operational measure of an 
exchangeable particulate fraction) indicate a persistent reduction from the 
upper estuary to the lower estuary (Muller, Tranter & Balls, 1994); for Cd, 
an exchangeable particulate concentration ratio, X^^/X^\ is about 0.20, 
Although an order of magnitude greater than the adsorbed particulate 
ratio calculated (Equation (3.6)), reflecting analytical difficulties associated 
with the determination of an exchangeable fraction and the assumption in 
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the calculations that the adsorbed metal is completely exchangeable 
(Equations (3.6)-(3-9)). these field measurements demonstrate a distinct 
seaward modification of the Cd content of the suspended particle 
population. Calculations also predict that accompanying changes in the 
dissolved phase are likely to be difficult to detect Thus, conservative 
distributions of dissolved trace metals are generally observed (Mackay & 
Leatherland. 1976; MuUer, Tranter & Balls. 1994), deviations from the 
theoretical dilution line being accounted for by multiple straight line 
segments resulting from a variety of tributary inputs of different compositions 
(Mackay & Leatherland. 1976), and direct anthropogenic inputs to the 
tidal estuary (Muller Tranter & Balls, 1994). 

Although the arguments and calculations presented herein are qualitat­
ively compatible with field observations from two contrasting estuaries, 
accurate quantitative predictions will rely on a better definition of 
chemical parameters such as a and sorption time constants, and a greater 
understanding of estuarine sediment dynamics including the interaction 
between suspended populations and subtidal/intertidal deposits. Never­
theless, the partitioning data and sorption models are particulariy useful 
per se in providing a general understanding of the likely environmental 
transport and fate of constituents about which relatively little is known, 
such as PCBs and dioxins. 
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Abstract—A numerical model predicting the transport and fate of contaminants in estuaries has been 
developed and tested. The modelling framework allows for ( I ) adveciion and diffusion of contaminants in 
ihe dissolved phase, (2) partitioning of contaminants between the dissolved and adsorbed phases. (3) input 
of adsorbed contaminants to the water column due to the resuspension of bed sediment. (4) accumulation 
of contaminants in the bed sediment due to deposition of suspended sediment and (5) in the case of organic 
contaminants, losses due lo volatilization and biodcgradation. Par tide-water interactions throughout the 
estuary are encoded using relationships between empirically-derived partition coefficients and salinity, which 
have been coupled to an established two-dimensional depth integrated hydrodynamic and sediment model 
configured for the Humber Estuary. England, to simulate the distributions and transpon of cadmium and 
zinc. The model has been run for a range of tidal and river flow conditions, and has been calibrated against 
field measurementsofhydrodynamic parameters, salinity, suspended sediment concentrations and dissolved 
trace metal cone nt rat ions, and validated using independent dissolved trace metal data sets. The application 
of the model is discussed to a wide range of estuaries where the fate of trace metal contaminants is of 
immediate concern. 

Key words—modelling, trace metal contaminants, estuaries, partitioning, water quality, geochemistry 

NOMENCLATURE 
/ = time 

X and y = horizontal orthogonal co-ordinates 
U = depth averaged velocity component in 

the X direction 
K = depth averaged velocity component in 

the ,r direction 
H = total depth of water column 
C = dissolved contaminant concentration 

(w/v) 
D,,. Djt, D„ = depth averaged longitudinal dispersion 

and turbulent diffusion coefficients in the 
X and y directions 

So = source or sink of dissolved contaminant 
Sd = first-order decay rale or growth rate of 

dissolved contaminant 
5t = total kinetic transformation rate 

Ko = partition coefficient (v/w) 
P adsorbed concentration of contaminant 

(w/w) 
S = salinity 
b = gradient of In vs In (S + I) 

= partition coefficient in fresh water 
(S = 0) 

At = time step 
Ax = size of computational grid in the x and y 

direction 

'Author to whom all correspondence should be addressed. 

SPM 

SPM. 
P., 

DMS = change in mass of adsorbed contami­
nants due to adveciion and diffusion of 
suspended sediments 

= depth integrated velocity component in 
the X direction at face A 
concentration of suspended sediment 
(cohesive and non-cohesive) 

= SPM at boundary A (see Fig. I) * 
= concentration of adsorbed contaminant 

in cell ( - l.yat time nAt i f flow is moving 
from cell i - I.y lo cell i,J, or in cell i j 
at lime nAt i f flow is from cell iJ to cell 
''- \J 

= £).. at boundary A (see Fig. I) 
= concentration of adsorbed contaminant 

in cell l.yat time nAt i f derivative of SPM 
with respect to x at boundary A is out of 
cell i,J, or in cell i - 1,; at time nAi i f 
derivative of SPM vrith respect to x at 
boundary A is into cell i,j 

= change in concentration of contaminant 
in water column due to deposition of 
suspended sediment and resuspension of 
bed sediment 

= change in mass of SPM due to 
resuspension or deposition 

= conceniratioo of adsorbed contaminant 
in bed sediment if rcsuspension occurs, or 
in suspended sediment i f deposition 
occurs 

SPM" 

63 
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C = concentration of dissolved contaminant 
due to advection and difTusion of the fluid 

Pb = concentration of adsorbed contaminant 
in bed sediment 

/^=raie constant, positive for sediment 
deposition and negative for sediment 
erosion. 

INTRODUCTION 

With increasing public awareness o f the environ­
mental impact of pollutant discharges and the 
implementation o f more stringent legislation relating 
to industrial emissions (e.g. the Integrated Pollution 
Control and the EC Integrated Pollution Prevention 
and Control Directive; Commission o f ihe European 
Communities, 1993), pollution managers have sought 
accurate models to predict the transport and fate 
o f trace metals and organic contaminanls. Estuaries 
arc favourable sites for industrial and urban 
development but are physically and chemically highly 
complex environments. In the water column contami­
nants may be transported either in solution, or 
associated with suspended particles. The partitioning 
between these two phases is dependent on esluarine 
controlling variables, including salinity, p H . avail­
ability o f complexing species and the physical and 
chemical characteristics ofsuspcnded particles and is. 
therefore, difficult lo predict f rom theoretical 
considerations. 

The parameterization o f esiuarine pariicle-watcr 
interactions o f pollutants may. however, be achieved 
empirically by examining the time-dependent be­
haviour of a contaminant with its radioactive 
counterpart added to natural samples maintained 
under carefully controlled laboratory conditions 
(Turner e/o/.. 1993; Turner and Mi l lward . 1994). This 
approach yields particle-water interaction functions 
relevant to reaction conditions encountered in 
estuaries, together with the quantification o f 
adsorption kinetics through the derivation of 
reaction time constants. In this work, the 
application o f site-specific, empirically-derived par­
tition coefficients to the modelling o f estuarine 
contaminants is demonstrated using a two-dimen­
sional (2-D) depth integrated hydrodynamic and 
transport model o f the Humber Estuary. England 
(Falconer and Chen, 1991; Falconer and Owens, 
1990), incorporating experimentally-derived partition 
coefficients for Cd and Zn . 

defined by the following equation: 

dCH (dCUH dCVH\ 
dt ^ \ dx dy ) 

(i) (ii) 

DESCRIPTION OF THE NUMERICAL MODEL 

The tidal and riverine water flows are calculated 
using a 2-D, depth-integrated, numerical hydro-
dynamic algorithm (Falconer and Owens, 1990). The 
advection and diffusion o f dissolved contaminants due 
to the water flows, the potential increase in concen­
tration f rom anthropogenic and atmospheric sources, 
and the kinetic transformation o f chemical species are 

( i i i ) 

( i i i ) 

- //(5o-H5d-f5*) = 0 
(iv) 

( I ) 

The terms Sd and 5k arc the potential for volatization 
and/or degradation o f organic compounds and the 
kinetic transformation rate, respectively, but these 
aspects o f the model are not explored here. The term 
So is either a source or sink o f dissolved contaminants. 
The terms in equation (1) represent the change in 
concentration o f the dissolved contaminant due to: 
(i) local efTccis; (ii) transport by advection: 
(iii) longitudinal dispersion and turbulent difTusion; 
and (iv) source or sink, decay or growth and kinetic 
transformation efTects. 

The distribution o f contaminants between the 
dissolved and adsorbed particulate phases is defined 
by an empirically-derived equilibrium partition 
coefficient. A'D. as follows: 

(2) 

where P and C are concentrations o f contaminant 
adsorbed on suspended particles and in solution, 
respectively. The KoS employed represent quasi-
equiUbrium attained over 5 days but kinetic efTects 
may be incorporated by defining the time-dependence 
o f as determined experimentally. ATo is varied as a 
function of salinity (S) in either one o f the fol lowing 
two ways: 

(i) using the relationship (Mil lward and Turner, 
1995; Turner and Mi l lward , 1994): 

In/To = A In (5-f- I ) - h l n ^ (3) 

where b and K?, are constants; 
(ii) using explicit tabulations o f measured values o f 

Ko as a function of salinity. 

Fine cohesive sediments ( < 2 pm) are modelled as 
permanently suspended particles (wash load) using 
equation ( I ) with So, S^ and Sk set to zero. Floc-
culation, consolidation and erosion/deposition are not 
accounted for owing to their poor definition. The 
advection, diffusion and erosion/deposition o f coarser 
non-cohesive sediments are modelled using the 
formulat ion developed by van Ri jn (1984a, b). 
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The change in mass o f adsorbed contaminant in 
a computational cell i j due to the advection and 
diffusion o f the suspended sediment during the lime 
interval nA/ to (n + 0.5)A/, is calculated f rom: 

D M S = M^- Ms + Mo - Mc (4) 

where MA, MB, MQ and A / D are the masses o f adsorbed 
contaminants carried across the cell boundaries A , B, 
C and D, respectively (Fig. I ) . MA is evaluated using: 

A / . 
2 QASPMAPAI - HAD^.h dx 

(5) 

where Ax is the size o f the computational grid in the 
X and y direction. QA is ihe depth integrated velocity 
component i n the x direction at boundary A and SPM* 
is the concentration o f suspended sediment (cohesive 
and non-cohesive) at boundary A . PAI is the 
concentration o f adsorbed contaminant in cell i - l .y 
at time nA/ i f the flow is moving f rom cell i — \,j to 
cell i j ' , or concentration o f adsorbed contaminant 
in cell i .y at time / lA/ i f the flow is f rom cell i\J to 
cell /— l . y . PAI is the concentration o f adsorbed 
contaminant in cell i,Jal time nAt i f the derivative of 
SPM with respect to x at boundary A is out of the cell 
r,y. or concentration o f adsorbed contaminant in cell 
/ - l . y at lime nAt i f the derivative o f SPM with 
respect to x at boundary A is into the cell i ,y . The 
mathematical quantities MB, MC and Mo are defined 
similarly. 

It is assumed that the bed sediment is a single 
well-mixed layer and that input o f contaminant to 
the water column by resuspension is spontaneous. 
Changes in concentration o f contaminant in the water 
column due to the deposition or resuspension of 
sediment are calculated using: 

G = SPM'P' (6) 

where SPM* is the change in mass of the suspended 
sediment concentration due to resuspension or 

i j + 1 

4 

4 

B 

D 

i J - 1 

Fig. I . Advection and diffusion of suspended scdimenu into 
the computaiiooal cell i.y from its fotir neighbours across 

boundaries A, B, C and D. 

deposition, P" is the concentration o f adsorbed 
contaminant in the bed sediment i f resuspension 
occurs, or concentration of adsorbed contaminant o f 
the suspended sediment i f deposition occurs. 

A t lime (n + 0.5)A/ and in computational cell (.y, 
the concentrations o f dissolved ( C " ' " ) and adsorbed 
(/*•*'") contaminants arc determined f r o m the mass 
balance: 

C"* '" + SPM"* ' ^ Z " * ' ^ 

P^PM'H'iAx)' + D M S 
H'^'f'iAxy 

where 

+ G (7) 

(8) 

The concentration of adsorbed contaminant in the bed 
material, P^ in the cases o f deposition and erosion, 
respectively, is calculated f rom: 

dP, 
6t 

FP 

and 

d/ -

(9) 

(10) 

where Fis a rate constant which is positive in equation 
(9) and negative in equation (10). 

HUMBER ISTUARY APPLICATION 

Model set-up 

The numerical model described above has been used 
to study the spatial and temporal distribution of 
dissolved and suspended paniculate trace metals in the 
Humber Estuary [Fig. 2(a)]. The estuary is well-mixed 
(Gameson, 1982) allowing the use of a 2-D depth 
integrated formulation. The differential equations 
were solved using an implicit alternating direction 
finite difference scheme. A 2-D computational square 
grid, with a cell size o f 300 x 300 m, covers the entire 
estuary (Fig. 2(b)| and a time step of 60 s is employed. 
The fresh water discharge f rom the Rivers Trent 
and Ouse is modelled as a numerical pipeline (two 
computational cells wide) feeding into the estuary at 
Trent Falls. The length o f the pipeline and Ihe depths 
o f its cells are chosen such that (i) the tidal volume is 
the same as thai o f the two rivers and their tributaries 
combined and (i i) ihe cells at the upstream extent o f 
the pipeline are not subject to tidal influences. At the 
seaward end, a tidal elevation boundary [line A B 
shown in Fig. 2(b)l is used to drive the hydrodynamic 
module. A no-flow free streamline boundary [line BC 
shown tn Fig. 2(b)] is placed along a drogue observed 
streamline (British Transport Docks Board, 1974). 
The depth of the domains used in the calculations were 
dciermincd f r o m the recent bathymetric data supplied 
by Associated British Ports (ABP). 

A well-tested hydrodynamic module (Falconer, 
1993) is employed to calculate time and spatially 
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Fig. 2. (a) The siudy area, (b) The modelling grid. A B represents the water elevation boundary and B C 
represents the no-flow boundar>'. The dotted line represents the track along which model results ofdissolved 
contaminants and salinity are plotted in Figs 6 and 8. Labelllngs on the .v and y axes are the model 

co-ordinates. 

varying water elevations and water velocities. Two 
tides (24.8 h) o f water elevation data are used to 
provide the driving forces at the seaward boundary. 
The salinity and fine sediment distributions arc 
calculated using equation (1), with the term (iv) set to 
zero. The transport o f coarse (non-cohesive) sediments 
is evaluated utilizing a recently developed sediment 
transport module (Owens, 1987; Lin and Falconer, 
1995) and the size composition of coarse sediments in 
the Humber Estuary is taken f rom Owens (1987). 
Flooding and drying o f inicriidal zones are also 
allowed for using the algorithms developed by 
Falconer and Chen (1991). 

Calibration and validation of hydrodynamic, sediment 
transport and salinity modules 

The physical data for calibration and validation o f 
the hydrodynamic. sediment transport and salinity 
modules were obuined f rom (i) published information 
(Lowry et al., 1992), ( i i ) hydrographic measurements 

undertaken during axial and anchor station surveys in 
the Humber Estuary f rom the National Rivers 
Author i ty ( N R A ) vessel 5ea l^igi/duringOclobcr 1993 
and (i i i ) measurements undertaken by the N R A and 
A BP. 

The hydrodynamic module was calibrated against 
water elevation data obtained by A B P o n 18 October 
1993 at the Humber Bridge. King George Dock and 
Immingham. Water elevation data measured at Bull 
Fort during the same period were used to drive the 
model at the seaward boundary. River discharges were 
estimated f rom the daily mean flow data supplied by 
the N R A . The model was also run under various tidal 
conditions and was found to simulate accurately 
published velocity data (British Transport Docks 
Board, 1974; Hydraulic Research Station, 1970) at 12 
stations distributed throughout the estuary for neap 
and spring tides. 

The coarse sediment transport module was cali­
brated against suspended sediment ( > 40 urn) concen-
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iralions measured in September 1979, under a spring (British Transport Docks Board. 1980). The model 
tide and wi th a low river discharge (76 m ' s"'), at was run under similar conditions and the results are 
Middle Shoal. Sunk Channel and Halton Middle shown in Fig. 3 with high water ( H W ) times referenced 
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Fig. 3. Measured ( A ) and modelled (—) distributions of coarse suspended sediment concentrations f o r 
(a) Middle Shoal; (b) Sunk Channel; and (c) Halion Middle. High Water (HW) is referenced lo Immingham. 
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Fig. 4. Measured ( • . • , • ) and modelled (—) distributions of salinity at Trent Falls. Saltend and Holme 
Ridge. High Water (HW) is referenced to Immingham. 

to Immingham. Although good agreement was 
obtained with field data at Middle Shoal and Sunk 
Channel. 3-D effects on ihe flood plain near Halton 
Middle result in less satisfactory agreement here. 

The model was run under a spring tide to calibraie 
the salinity transport module against salinity data 
collected at Saltend and Holme Ridge during 14 and 
15 October 1993. The average river discharge into the 
modelled area was estimated at 454.6 m's" ' . The initial 
distribuiion o f salinity over the entire esluary was 
determined from published values (Gameson, 1982). 
After calibration, model results were consistent wiih 
observations ai Saliend. Holme Ridge and Trent Falls 
(Fig. 4). 

Diagnostic modelling of trace metals 

The performance o f ihe contaminant transport and 
accumulation module was assessed by running the 
model for the following partitioning scenarios under 
a typical spring tide and a high river discharge o f 
454.6 m ' s"': (1) no partitioning o f contaminants 
between the dissolved and adsorbed phases, i.e. 
Ko = 0; (2) no salinity dependence o f Ko (i.e. setting 
the value of 6 in Table 1 to zero); (3) salinity depend­
ence o f Ko based on empirically-derived parlil ioning 
results for Cd (see Table I ) ; and (4) increasing the 
salinity dependence o f Ko (increasing bto — 1.5). The 
boundary values o f permanently suspended fine 
sediment (wash load) were set at 450 and 50 mg I " ' ai 

the river and seaward ends, rcspeclively (Gameson, 
1982). The boundary values o f the dissolved 
contaminant conceniralion were based on obser­
vations o f dissolved Cd and were 0.5 / ig 1 ' ' at the 
freshwater gauging station on the River Ouse and 
0.06 / ig l ~ ' at the seaward end (Edwards et at., 1987; 
Table I ) . The rate constant f i n equations (9) and (10) 
was kept at zero. The freshwater Cd concentration 
and total river flow yield a Cd flux to the estuary o f 
19 kgday" ' . which is higher than the mean river input 
observed in 1990 (7.1 kg day"') and the combined 
input o f 3.0kg day~' f rom sewage and industrial 
efHuents ( P A R C O M . 1991). 

Dissolved contaminant concentrations derived 
f rom a 2-D modelling system are not a single-valued 
function o f saliniiy (Wood and Baptisia, 1993). as 
is evident f rom the spatial distributions o f salinity 
and dissolved constituent ai H W calculated using 
parli l ioning data for scenario 3 (Fig. 5). Thus, in order 
lo diagnose the geochemical reacliviiy simulated by 
the model in terms of dissolved contaminant-salinity 
plots (Mi l lward and Turner, 1995) the concentrations 
o f dissolved coniaminani at H W along ihe axial track 
given in Fig. 2(b) were plotted as a function o f salinity 
for the four parli l ioning scenarios. Initial and resulting 
(after 5 tidal cycles) distributions of dissolved contami­
nant arc shown in Fig. 6. The axial distributions o f 
permanently suspended fine sediment (wash load) and 
coarse suspended sediment are shown in Fig. 7 and 

Table I. End-member dissolved meul concentrations (Edwards ri al.. I9S7) and 
cnipirically-derivcd panitioning functions (calculated according to equation (3) 

using cmpiricaUy-derived *ijs; Turner et al.. 19931 fo' the Humber Estuary 

Freshwater end Seaward end 
Meul member (/ig member (pg l~') * i (ml8- ' ) b 
Zo IS.O 3.0 6400 + 0.034 
Cd 0.5 0.06 6600 -0.653 
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Fig 5 The modelled spatial distnbutions (after 5 tidal cycles) of (a) salinity and (b) dissolved Cd at HW 
(Immingham) under spring tide conditions and for a river discharge of 454 6 m's ' /Co = 6600 ml g ' and 

b - -0.653. 

reproduce the turbidity maximum which is a regular 
feature o f the low salinity reaches o f the estuary 
(Turner a/.. 1991). With no partitioning (scenario 1), 
the dissolved metal concentration varies linearly with 
salinity as expected f rom conservative behaviour, 
based on dilution only. When particle-water inter­
actions arc incorporated into the code (scenano 2), the 
dissolved concentration-salinity plot exhibits negative 
deviation f rom the theoretical dilution Hne represent­
ing removal o f dissolved contaminant through 

sorption onto suspended particle surfaces As the 
partitioning decreases exponentially with sahnity 
(scenarios 3 and 4). sorptive removal is more than 
counterbalanced by desorption f rom seaward advect-
ing suspended particles as they encounter a reduction 
in partitioning with increasing salinity and a broad 
peak in the contaminant-salinity plots is produced; 
this peaking effect is enhanced and shifted down-
esluary as the magnitude of the parameter b is 
increased 
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The results for scenario 3, incorporating partition­
ing data for Cd (Turner ei al., 1993), are shown in more 
detail in Fig. 8. Here, values ofdissolved contaminant 
concentration and salinity were calculated over a tidal 
cycle along the axial track shown in Fig. 2(b), and, 
for a given salinity, an averaged value o f dissolved 
contaminant concentration was plotted together with 
its standard deviation. Also given is a composite plot 
of dissolved Cd under various tidal conditions and 
river discharges, based on published values (Edwards 
et al., 1987) and measuremenU undertaken on samples 

collected during October 1993. The mid-csiuarine 
maximum, which is a general characteristic o f 
estuarine dissolved Cd distributions (Elbaz-Poulichet 
et al., 1987; Bcwers and Yeats, 1989), is evident f r o m 
the field data. Although a better fit with observed 
distributions could be achieved by increasing the 
magnitude o f b, it is suspected that dissolved Cd 
concentrations in the Humber arc augmented by 
additional inputs which have not been accounted for 
in the simulation. Including a single substantial 
mid-estuarine point source- o f dissolved metal (i.e. 
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Fig. 6. Initial ( ) and rcsuliing (after 5 tidal cycles; - • •) distributions of dissolved Cd at H W 
(Immingham) along the axial track shown in Fig. 2(b). (a) Ko = Q: (b) K^o = 6600 ml g"' and 6 = 0-

(c) = 6600 ml g - ' and A = -0.653; (d) = 6600 ml g-' and b ^ -1.5. 
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450 

Salinity 

Salinity 

Fig. 7. Resulting distributions of suspended sediment concentration (after 5 tidal cycles) along the axial track 
shown in Fig. 2(b). (a) Permanently suspended sediment (wash load) and (b) coarse suspended sediment. 

inclusion o f ^o) 0.012 m» s" and Cd = 10,000 pg I " 
(equivalent to 10 kg Cd d a y ' ) did not make a 
significant difference to the computed Cd distribution. 
The lack o f agreement between observed and calcu­
lated Cd distributions may be due to (i) the presence 
of inputs considerably in excess o f 10 kg day"', 
possibly via porewater infusion, and/or (ii) analytical 
uncertainties i n the dissolved Cd determinations. 
Clearly, further axial distributions of dissolved Cd are 
required, together with a better definition o f sediment 
porewaicr processes. 

Calibration and validation of the contaminant transport 
and accumulation module 

The contaminant transport and accumulation 
module was calibrated against dissolved and particu­
late trace metal data measured at Bull Fort (near the 
mouth o f the Humber Estuary), as remote as possible 
f rom anthropogenic inputs. Samples were collected 
during Challenger Cruise CH42 o f the N E R C North 
Sea Project on 27 December 1988 under mid-tide 
conditions and with an estimated river discharge o f 

0.6 

Salinity 
Fig. 8. Dissolved Cd as a function of salinity. The conunuous Unc with error ban: represents model results 
obiamed as described in the text. Triangles represent field data from Edwards et al. (1987); squares represent 

field data collected during the Sea Vigil survey in October 1993. 
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Fig. 9. Modelled (—) and measured ( A . 27 December 1988) distributions ofdissolved (a) Cd and (b) Zn 
concentraiions as a function of lime at Bull Fort. Error bars encompass the analytical uncertainty of the 

dissolved metal analysis. HW is referenced to Immingham. 

405 m ' s " ' (Lowry et al., 1992). Cadmium and zinc 
were selected because their partitioning characteristics 
have been defined (Turner o/., 1993). The boundary 
values o f dissolved metal conccniraiions and the 
empirically-derived partitioning parameters are 
shown in Table I . 

The model results and observed data (including 
error bars defining the analytical uncertainties; 
Allhaus, 1992) are plotted in Figs 9 and 10. Observed 
distributions o f dissolved Cd and Zn are reasonably 
well reproduced by the model; however, observed and 
modelled concentrations of particulate Cd and Zn 
differ by an order o f magnitude (see Fig. 10). This 
discrepancy is the result o f the difierence between the 
particulate metal associations that are modelled and 
measured. By definition of the partition coefficient 
[equation (2)] the model determines the adsorl>ed 
fraction of particulate metal, whereas the analysis o f 
particulate metals entails digestion o f suspended 
sediment samples in I M HCI which non-selectively 
dissolves a greater fraction o f particulate metals. This 
laboratory analysis includes those paniculate metals 
occluded within oxides and more refractory minerals 
which are unable to participate in short-term 
biogeochcmical reactions. 

The model was n m for a neap tide and with a 
river discharge o f 107 m ' s " ' to validate it against a 
second trace metal data set, determined f rom samples 

collected at Bull Fort during the NERC North Sea 
Project Challenger Cruise CH69 on 2 August 1990. 
Distributions o f dissolved Cd and Zn are reasonably 
well reproduced by the model. 

CONCLUSIONS 

A geochemical module based on empirically-
derived partition coefficients, coupled to a two-
dimensional depth integrated hydrodynamic model o f 
the Humber Estuary, has formed the basis o f a 
geochemical contaminant transport model. The model 
simulates reasonably accurately the axial and tidal 
distributions o f dissolved Cd and Zn in the estuary, 
although the particulate adsortxd distributions are 
difllicult to verify owing to a lack o f analytical tech­
niques capable o f determining an adsorbed com­
ponent o f particulate metals. Because the chemical 
driving variables are empirically derived, the simu­
lation o f other metals and trace organic contaminants 
wi l l rely on further experimental studies using 
site-specific samples. The model has potential for the 
more general diagnosis and prediction o f contaminant 
cycling in natural environments and further refine­
ments wi l l provide a valuable toot for the solution o f 
practical problems encountered in water quahty 
management. 
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The distribution and concentration o f polychlorinated 
dibenzo-para-dioxins ( P C D D s ) , polychlorinated dibcnzo-
furans (PCDFs) and polychlorinaled biphenyls (PCBs) in 
Humbcr Estuary bed sediment and in suspended 
particulate matter were extensively studied. D i o x i n 
concentrations in sediments ranged f r o m below detection 
to 3830 pg g ~ ' and P C B concentrations were Trom non-
dclcctable to 84 ng g " ' . These concentrations were low in 
comparison to other estuaries. T h e concentrations o f 
chlorinated organics were found to be correlated wi th 
sediment l ipid content, which is a significant factor in 
determining the contaminant d is t r ibut ion in the Number 
Estuary. Laboratory experiments were carr ied out using 
*^C-radiolabelted compounds to determine par t i t ion 
coefficients {KQ). A o f 2.5 x 10^ was determined for 
2 ,3 ,7 ,8-TCDD and that o f 6.4 x lO" f o r 2,2 ' ,5 ,5 ' -TCB; 
these did not vary signif icantly wi th sa l in i ty . There was no 
evidence in either the concentration data or the homolog 
profiles that contamination f r o m tr ibutar ies to (he 
Humber Estuary had penetrated the estuary in significant 
quantities. Copyright © 1996 Elsevier Science L t d 

The occurrence o f ch lor ina ted organic compounds in 
the marine envi ronment is o f i n t e rna t i ona l concern 
due to their persistence, t ox ic i ty and b ioaccumula t ion 
in the l ipid tissues o f marine b io ta (Delbeke & Joir is . 
1988; Gr ibb le , 1994; Tanabe et al., 1994). Ch lo r ina t ed 
organic compounds include d iox ins compr i s ing poly­
chlor inaled dibenzo-para-dioxins ( P C D D s ) , po lychlor ­
inaled dibenzofurans ( P C D F s ) a n d po lych lo r ina l ed 
biphenyls (PCBs). These compounds have not been 
well studied in the mar ine env i ronmen t , but are again 
c o m i n g under closer scrut iny f o l l o w i n g ihe pub l i ca t ion 
o f a recent U S E P A review o f the tox ic i ty o f d ioxins 
(US EPA, 1994a-c). The H u m b e r Estuary, north-easi 
UK., is considered l o be an i m p o r l a n i source o f 
pollutants l o the N o r t h Sea ( N o r t h Sea Task Force, 

1993). A l t h o u g h high conceni ra i ions o f d i o x i n s have 
been detected in bed sediments at the m o u t h o f the 
Estuary (Evers et al., 1993), Tyle r et al. (1994) f o u n d 
l i t l l e evidence o f con tamina t ion in ihe lower H u m b e r 
Estuary and other coastal sites a r o u n d the UK. . 
However , there are m a n y possible sources o f the 
ch lo r ina ted organics i n the mar ine e n v i r o n m e n t and 
concern has been expressed by the N a t i o n a l Rivers 
A u t h o r i t y ( N R A ) over significant concent ra t ions o f 
d ioxins in sediments in the v ic in i ty o f a c h l o r o p h c n o l 
p l an i located on a t r ibu ta ry to ihe River Ro ihe r 
( N R A , 1994), approx ima te ly 70 k m south-east o f the 
River Tren t ( F i g . l a ) . The mechanisms b y w h i c h 
d iox ins may be t ransported f r o m sources w i t h i n 
estuaries is largely u n k n o w n , bu t the h y d r o p h o b i c 
nature o f these compounds suggests that p a r i i c l e -
waicr interact ions i nvo lv ing suspended par t i cu la te 
matter ( S P M ) cou ld be signif icant ( M u r p h y ei al., 
1994; Hegcman et al., 1995). 

T h i s paper presents the results o f the f i r s t compre­
hensive survey o f P C D D s , P C D F s and PCBs in bed 
sediments and S P M o f the H u m b e r Estuary a n d s tudy 
o f p a r t i t i o n i n g behaviour using ' '*C-labeIled d i o x i n and 
PCB compounds . 

Materials and Methods 
Sampling 

Samples were collected d u r i n g t w o surveys o f the 
H u m b e r estuary; a l im i t ed in ter - t ida l s a m p l i n g survey 
carried ou t i n summer 199f by the M i n i s t r y o f 
Agr i cu l t u r e , Fisheries and Food ( M A F F ) as pa r t o f 
the C I R O L A N A 1991 cruise, and an extensive estuary 
survey in October 1993. Sediment samples were 
collected using a Shipek grab f o r sub- t ida l samples 
and by hand f o r i n l e r - l i d a l samples. A l l samples were 
stored i n hexane-washed glass jars w i t h f o i l cap l iners. 
Suspended par t icula te mat ter was collected b y b u l k 
f i l t r a t i o n ( -TSO-IOOO m l ) t h rough 0.7 nm hexane-
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Fig. I (a) PCDD distribulioD in the Humber Estuary expressed on a 
pg g~' and pg g~ ' lipid basis, (b) PCDF distribution in the 
Humber Estuary expressed on a pg g~' and pg g~' lipid basis. 

washed Whatman G F / F fillers using an all glass 
apparatus. Between 100 and 290 mg was collected by 
this method. Fillers were stored in hexane-washed foil 
wraps. A l l samples were stored in the dark at — 20**C 
prior to analysis. 

Analysis 
Chlorinated organic compound analysis was carried 

out using established GC-MS methods (Pettit et a/., 
1990) in accordance with agreed acceptance criteria and 

quality controls for PCDD/DF analysis (Ambidge ei al., 
1990). Sediments were sieved through a I mm mesh and 
oven-dried at 40''C prior to analysis. Full analytical 
methodologies can be found in Tyler et al. (1994). A l l 17 
2,3,7.8-substiluted PCDD and PCDF congeners were 
quantified together with the homolog totals (tctra- lo 
ocla-). Total PCB concentration and the ICES 7 
congeners ( l U P A C numbers 28, 52, 101. 118. 153, 138 
and 180) were also resolved. Two ful l procedural 'b l ind ' 
analyses were also submitted for analysis. TTiese are 
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TABLE I 
Mean and standard deviations for iwo samples analysed in quadrupticaie. 

Sample 13 (pg g ') Sample 16 (pg g~') 

Homologue Mean SD %SD Mean SD %SD 

2378-TCDD 7 3 43 2 1 41 
TCDD 370 54 15 237 51 21 

11 PcCDD 212 26 12 149 17 
21 
11 

HxCDD 110 16 14 77 12 16 
HpCDD 302 47 16 219 47 21 
OCDD 1775 64 3 1231 148 12 
TCDF 137 14 10 99 21 21 
PcCDF 277 35 13 182 53 29 
HxCDF 114 13 12 79 10 13 
HpCDF 97 25 25 75 10 14 
OCDF 427 12 3 303 49 16 
PCDD 2777 104 4 1915 210 

16 

PCDF 1034 67 6 738 65 9 
PCDD/DF 383) 163 4 2654 255 10 
TEQ 24 5 19 14 2 11 
Toul PCB 72 13 17 53 7 13 

reported as a mean and standard deviation (four 
replicates) in Table L 

Apolar lipid content, defined operationally as the 
fraction partitioning into a two phase acetone-hexane 
system, was determined on all sediments collected on 
the 1993 survey following an established method 
(Delbeke et ai, 1990). Sediments were washed with 
Mil l i -Q water to remove salt and dried at low 
temperature. Samples were then extracted for 5 h in 
10% acetone n-hexanc. Lipid content was determined 
gravimctrically following removal of the polar extract. 
Reproducibility on replicate samples was found to be 
belter than 9% on five sample runs. 

Laboratory experiments 
To investigate the partitioning behaviour of dioxins 

and PCBs in the Humber Estuary, a series of mixing 
experiments were conducted using '^C-labelled com­
pounds (Turner & Tyler, 1995). Such experiments allow 
partitioning behaviour to be studied under carefully 
controlled conditions without the difficulties encoun­
tered in determining concentrations analytically. 

The experiments were conducted using river and 
marine end member samples containing SPM taken 
from the River Ouse and Humber Estuary. A simulated 
estuarine gradient was obtained by admixing the two end 
member samples. Radiolabelled 2.2',5.5'-teira-
chlorobiphenyI-UL-'*C (Sigma Chemical Co.). with 
specific activity o f 13.32 mCi m r n o l " ' , or 2,3.7,8 
teirachlorinated dibenzo-p-dioxin-UL-"*C (Radian 
Corporation), with specific activity of 33 mCi m m o l ~ ' , 
was used in the experiments. For each experiment 0.02 
^Ci of the radiolabelled compound was added in solvent 
to a 50 ml centrifuge tube. Following evaporation o f the 
solvent, a 20 ml sample of natural water was added and 
the tube was shaken for 12 h. The tube was then 
centrifuged for 30 min at 3000 rpm to separate the 
suspended sediment, A 4 ml sample of the dissolved 
phase was removed and added to 10 ml of Ultima Gold 
scintillation cocktail (Clanberra Packard). The particles 
were resuspended and flushed f rom the tube. The tube 
was then shaken with 4 ml hexane to remove the glass-

adsorped '^C compound. Two millilitres of the hexane 
was then added to the scintillant and all samples were 
counted on a Philips 4700 scintillation counter. Each 
experiment was carried out in triplicate or quadruplicate 
and the partition coefficient, Ko, calculated by mass 
balance f rom determination of the dissolved phase 
counts (CPM) and loss to the glass. The recovery of 
the '*C spike using this method was typically > 8 0 % . 

Results and Discussion 
Concentrations and disiribuiion 

A summary o f the analytical results arc given in Table 
2 with sample sites referenced in Fig. la. P C D D / D F 
analyses were summarized using the N A T O / C C M S (or 
International) toxic equivalent factor (TEF) which sums 
the 17 2,3,7,8-substituied congeners on the basis of their 
toxic equivalence to 2,3.7.8-TCDD. 

Total P C D D / D F concentrations in the Estuary 
ranged from non-detectable to 3826 pg g ~ ' (24.1 pg 
g ~ ' TEQ). Generally, these concentrations arc elevated 
with respect to 'background' concentrations reported in 
the literature (e.g. total P C D D / D F between 10 and 100 
pg g " ' ; Turkstra & Pols. 1989). Oehme et ol. (1993) 
reported concentrations in the range 440-1400 pg g " ' 
(5 5-17.2 pg g ~ ' TEQ; Nordic model) in northern 
North Sea waters. Previous work by these authors 
(Tyler et al., 1994) reported P C D D / D F concentrations 
in coastal North Sea sediments of 43-209 pg g ~ ' (0.6-
2.8 pg g"* TEQ). Evers et al. (1993) reported PCDD/ 
D F values in North Sea estuaries f rom 1006-4736 pg 
g " ' . with two samples taken at a station at the mouth 
of the Humber Estuary with total P C D D / D F values of 
1846 pg g " ' (surface. <63 nm) and 10557 pg g " ' (15 
cm, <63 nm). No samples analysed as part o f this 
survey reached concentrations as high as that o f the 15 
cm depth samples analysed by Evers et al. (1993), 
although surface samples concentrations were compar­
able with these data. 

The distribution of total PCDD and total PCDF in the 
Estuary is shown in Figs la and lb . Generally, P C D D / 
PCDF concentrations are higher in the finer accumu-
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TABLE 2 

Sun^mary of PCDD, PCDF and PCB analyses .nd lipid dc.nnina.ions fo, cll .ampl.s. Sample si,» arc indicated in Fig. I„. 

Sample concentration (pg g"')« 
Homolog 

2378-TCDD 
TCDD 
PeCDD 
HxCDD 
HpCDD 
OCDD 
TCDF 
PcCDF 
HxCDF 
HpCDF 
OCDF 
PCDD 
PCDF 
PCDD/DF 
TEQ 

Total PCB (ng g"') 

Lipid (mg g~') 

S] 

0.8 
62 
28 

<10 
27 

140 
40 
77 
20 
10 
10 

<267 
157 

<424 
5.2 

S2 

<0.2 
4.6 

<4 
<4 

2.9 
19 
3.9 
7 

<4 
4.2 
5 

<34.5 
<24.| 
<58,6 
<1 

S3 

<0.2 
4 

<4 
<4 

2 
15 
4.3 

13.6 
<4 

4 
7 

<29 
<32.9 
<61.9 

<1 

S4 

2.8 
130 
87 

<5 
58 

378 
54 
76 
37 
15.6 

120 
<658 

302.6 
960.6 

7.6 

S5 S6 

<0.2 
5.4 

<5 
<5 

3.6 
29 
5.4 

<5 
<5 

2.5 
17.8 

<48 
<35.7 
<83.7 
<1.2 

6.6 2 1.3 32 1.6 

0.13 nd nd 0.43 nd 

<0.2 
3.8 

<5 
<5 

4.6 
20 
2.8 

13 
5.8 
3.5 

10 
<38.4 

35.1 
<73.5 

< 1,4 

1 

0.33 

S7 

1.3 
62 
50 
52 
38 

223 
31 
44 
23 
14 
40 

425 
152 
577 

6.2 

37 

0.39 

•Sample concentration: S. Sub-iidal; 1. inter-tidal 
tCoUectcd on CIROLANA '91 cruise, 
nd, not detected. 

S8 S9 SIO Sl l 11 12 13 

0.4 1,7 0.5 1.3 4 3.5 7 
13 160 15 127 190 140 370 
11.5 130 13 97 120 110 213 
50 67 42 65 50 52 110 
11.5 110 13 76 9? 116 303 

115 538 62 390 850 745 1775 
8.5 164 20 140 48 67 138 

12.7 136 23 102 144 160 278 
27 72 26 43 61 56 114 
5.8 33 6.8 20 40 33 98 

29 216 23 162 210 172 428 
201 216 145 755 1307 1163 2777 
83 1005 98.8 467 503 488 1054 

284 621 244 1222 I.SIU 1651 3831 
5.7 11.6 4 y.y 12.3 13.9 24.1 
3.8 43 5 36 44 39 72 
0.24 0.98 0.11 1.48 1.15 0.9 nd 

2.6 
344 
138 
74 

159 
882 
118 
256 
79 
56 

247 
1597 
756 

2353 
16.2 

67 

20.2 
45.1 

176 
123 
171 
858 
304 
148 
no 
185 
196 

1373 
943 

2316 
38.9 

2 
237 
149 
77 

220 
1232 

99 
182 
80 
75 

303 
1915 
739 

2654 
14.7 

53 

0.6 
4.6 

170 
100 
293 

1320 
314 
164 
128 
149 
429 

1888 
1184 
3072 

24.2 

<0.2 
<2 
<4 

<10 
<2 
<5 
<2 
<4 

<10 
<4 
<5 

<23 
<25 
<48 
<1.4 

15 
148 
49 
52 
80 

154 
163 
81 
86 
68 

226 
483 
624 

1107 
23,6 

5 
190 
150 
69 

150 
1000 
120 
205 
72 
47 

247 
1559 
691 

2250 
16.3 

27 

9.9 
222 
206 
83 

151 
791 
284 
167 
170 
194 
424 

1453 
1240 
2693 

30.9 

3.5 
116 
144 
56 

140 
770 
52 

198 
67 
56 

184 
1226 
557 

1784 
13.4 

84 

4.8 
53 
40 
21 
31 

150 
66 
32 
32 
39 
96 

295 
264 
559 

9.3 

<0.2 
<2 
<4 

<10 
<2 
<5 
<2 
<4 

<10 
<4 
<5 

<23 
<25 
<48 

<l.4 

1.55 -
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l ion of solid phase physicochemisiry can be misleading. 
P C D D / D F S and PCBs are highly apolar compounds 
with a strong afliinity for apolar lipid material. Estuarine 
particles may be coaled with liihogenic humics (Murphy 
et al., 1994) or be contaminated with anthropogenically 
derived oil or fatly (e.g. sewage) deposits which render 
them preferential for contaminant adsorption. Previous 
work (Delbeke et ai, 1990; Preston ei al., 1993; Tyler et 
al., 1994) has demonstrated an association between 
hydrophobic organic compounds and apolar lipid 
content. This association is a key factor in determining 
ihe behaviour, transport and subsequent distribution o f 
such compounds and as such apolar lipid content 
represents an ideal normalizing parameter for distribu­
tion studies. 

Samples analysed on this survey have been correlated 
with sediment lipid content. Figure 3 shows a significant 
non-linear correlation between l ipid content and total 
PCDD and PCDF and Fig. 4 shows the correlation with 
total PCB. A significant fit is found in all cases for a 
logarithmic relationship. Lipid content of sediments 
within the Estuary was generally low (non-detectable to 
3.28 mg g~ ' ) compared with other estuaries studied (e.g. 
Clyde, non-detectable to 12.3 mg g~ ' ) . However, there 
was still considerable variation of lipid content within the 
Humber Estuary which appears to contribute signifi­
cantly to the distribution o f PCDDs, PCDFs and PCBs. 

& lOOG 

Lipid Contsnt (mg g ') 

Fig. 3 Relationship between P C D F . P C D D and lipid content for 
H u m h r r Fct i inrv c^Him^nte> A Dr^r\r\ / _ — 1 \ . — . i Humbcr Estuary sediments; total P C D D (pg g"')-
P C D F (pg g - ' ) : log P C D F (J- = 0.77. p <0.01): 
log P C D D (/•='0.76. p < 0 . 0 1 ) . 

I , total 

Marine Pollution Bulletin 

To establish a more representative picture o f the 
distribution of PCDDs, PCDFs and PCBs in the 
Estuary, concentrations were normalized against lipid 
content. The resultant distributions are shown in Figs 
la. l b and 2. The effect o f lipid normalization is to 
considerably reduce the spatial variation in P C D D , 
PCDF and PCB concentrations in sediments. The 
resulting distribution is remarkably homogenous. The 
hypothesis put forward for the observed homogeneity is 
two-fold. 

I t has already been concluded f rom homolog profi le 
analysis that considerable reworking of sediments 
within the Estuary may be masking source-related 
variations in concentration. Once sorption preference 
related effects have been removed (by lipid normal­
ization) one would equally expect the observed 
homogeneity in distribution. T o further support this 
hypothesis, the partitioning behaviour o f dioxins and 
PCBs has been investigated wi th labortory experi­
ments. 

Particle-water interaction studies 
Relatively few determinations o f the partition 

coefficients for chlorinated organics exist in the 
literature, despite the fact that this function is an 
important component of the modelling of contaminant 
transport (Ng ei al., in press). The partition coefficient is 
defined as; 

where Cp is the concentration on the panicles and is 
the concentration in solution. The values of Cp and C, 
were determined f rom the mass balance of the '*C 
compounds used in the mixing experiments. The results 
arc plotted in Fig. 5 as a function of salinity. The 
partition coefficients for 2,3,7,8-TCDD are about an 
order of magnitude higher than those for 2,2',5.5'-TCB, 
reflecting the lower solubility of the former compound. 
In general these KDS are relatively low due to the lower 
apolar lipid content of particulate matter i n the 
Humber. In addition, the partitioning of these organic 
compounds shows little variation as a function o f 
salinity, as Hegeman et al. (1995) found for cosolveni 
partition coefficients for phenanthrene. Thus, the 
partitioning appears to buffer concentrations o f the 
dioxins and PCBs and may be a factor contributing to 
the observed homogeneity in bed sediment concentra­
tions. Furthermore, the mean residence time o f particles 

Upld Conttnt (mg g ' | 

" Lrrî L̂ lr." * E^.^ri,nc„.any_dc.cnni„«, V 3 , c « for 2.2-.5.5--TCB and Estuary sediments; 
{r = 0.66./><0.01). 

• , total P C B (ng g" ' ) log P C B 2 . 3 , 7 , 8 - T C D D in the Humber Estuary; 2 . 3 . 7 . 8 - T C D D ; 
2,2 ' ,5,5 '-TCB. 
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within the Humbcr has been estimated to be o f the 
order of 18 years (Turner et al., !99I), which in 
combination wi ih the elevated partilton coefficients 
suggests that estuarine retention of chlorinated organics 
from anthropogenic sources could be occurring. The 
fact there is little evidence of major contamination of 
the bed sediments suggests that the anthropogenic 
source strength is weak. 

Conclusions 

Concentrations of dioxins and PCBs in the Humber 
Estuary whilst elevated above 'background* concentra­
tions are comparatively low and below previously 
reported levels. There is no evidence of penetration to 
the Humber Estuary f rom sources o f dioxins reported in 
the contaminated tributary, in either measured con­
centrations or homolog profile analysis. 

Dioxin and PCB concentrations show a strong 
dependence on the apolar lipid content of the solid 
phase as reported in a number of other studies. Once the 
effects of bed sediment geochemistry are removed by 
lipid normalization, a homogeneity in dioxin and PCB 
distribution is observed. It is suggested that this is the 
result of sediment reworking and mixing within the 
Estuary. Further evidence supporting this hypothesis, 
derived f rom laboratory studies of partitioning beha­
viour, shows dioxin and PCB partition coefficients are 
independent of salinity in the Humber Estuary. 

This work demonstrates the importance of solid 
phase geochemistry and the dynamics of estuarine 
sediment regimes in determining the distribution of 
organochlorine contaminants in estuarine environ­
ments. 
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