
D I G I T A L W A T E R M A R K I N G F O R C O M P A C T
DISCS AND T H E I R E F F E C T ON T H E E R R O R

C O R R E C T I O N S Y S T E M

by

K A Y R Y D Y G E R

A thesis submitted to the University of Plymouth

in partial fulfihiient for the degree of

DOCTOR OF PHILOSOPHY

Centre for Research in Information Storage Technology

Department of Communication and Electronic Engineering

Faculty of Technolog^^

February 2002

90 0508783 1

I I M I V F R S ! T V O F PLVMOUTH

Dale

Class No,
Com. No.

3 0 MAY 2002 T

PLYMCU- H ' J 3 R A R Y

LIBRARY STORE

Digital Watermarking for Compact Discs and their
Effect on the Error Correction System

by

Kay Rydyger

A new technique, based on current compact disc technologj', to image the transpar­

ent surface of a compact disc, or additionally the reflective information layer, has been

designedj implemented and evaluated. This technique (image capture technique) has

been tested and successfully applied to the detection of mechanically introduced com­

pact disc watermarks and biometrical information with a resolution of 1.6^7n x lAfim.

Software has been written which, when used with the image capture technique,

recognises a compact disc based on its error distribution. The software detects dig­

ital watermarks which cause either laser signal distortions or decoding error events.

Watermarks serve as secure media identifiers.

The complete channel coding of a Compact Disc Audio system including E F M

modulation, error-correction and interleaving have been implemented in software. The

performance of the error correction system of the compact disc has been assessed using

this simulation model. An embedded data channel holding watermark data has been

investigated. The covert channel is implemented by means of the error-correction

ability of the Compact Disc system and was realised by aforementioned techniques like

engraving the reflective layer or the polysubstrate layer. Computer simulations show

that watermarking schemes, composed of regularly distributed single errors, impose a

minimum effect on the error correction system.

Error rates increase by a factor of ten if regular single-symbol errors per frame are

introduced - all other patterns further increase the overall error rates. Results show

that background signal noise has to be reduced by a factor of 60% to account for the

additional burden of this optimal watermark pattern.

Two decoding strategies, usually employed in modern CD decoders, have been

examined. Simulations take emulated bursty background noise as it appears in user-

handled discs into account. Variations in output error rates, depending on the decoder

and the type of background noise became apparant. At low error rates {r < 0.003)

the output symbol error rate for a bursty background differs by 20% depending on the

decoder. Differences between a typical burst error distribution caused by user-handling

and a non-burst error distribution has been found to be approximately 1% with the

higher performing decoder.

Simulation results show that the drop of the error-correction rates due to the pres­

ence of a watermark pattern quantitatively depends on the characteristic type of the

background noise. A four times smaller change to the overall error rate was observed

when adding a regular watermark pattern to a characteristic background noise, as

caused by user-handling, compared to a non-bursty background.

Contents

1 Introduction 1

1.1 The Compact Disc 1

1.2 The Compact Disc's Vulnerability to Errors 4

1.2.1 Coping with Errors on Compact Discs 4

1.2.2 Manufacturing Errors on Compact Discs 5

1.2.3 Blemishes resulting from User-handling 6

1.2.4 Definitions 7

1.3 Compact Disc Standards 8

1.4 Contribution to Knowledge 10

1.5 Organisation of the Thesis 11

2 Background to the Investigation 12

2.1 The Compact Disc System - Benefits and Problems 12

2.2 Watermarking and Steganography on Compact Discs 13

2.3 Scanning Microscopy 18

2.4 Error Correction Simulations 19

2.5 Measuring Error Distributions 22

2.6 Performance of Compact Disc Player's Decoder Strategies 22

3 Experimental Apparatus and Techniques 26

3.1 A CD-based Image Capture System 26

3.1.1 Introduction 26

3.1.2 Basic Construction of a Compact Disc Player 27

3.1.3 Presentation of the Novel Capture System 28

3.1.4 Necessary Hardware Alterations to the Standard CD-Device . . 31

11

CONTENTS iii

3.1.5 Control and Data Acquisition Software of the Capture System . 33

3.1.6 Capabilities of Capture System 37

3.2 Modelling the Error Recovery Process 38

3.2.1 Experimental Apparatus versus Simulation Techniques 38

3.2.2 Basics about the Channel Coding for Compact Discs 39

3.3 Software Implementation of the Channel Coding and Decoding 42

3.3.1 Introduction 42

3.3.2 Implementation of EFM-Modulation 43

3.3.3 Implementation of the Interleaver 44

3.3.4 Cross Interleave Reed-Solomon Decoder Schemes 44

3.3.5 Sub-code Channel and Synchronisation Patterns 45

3.3.6 Random Number Generator 46

3.3.7 Control of the Software 46

3.3.8 Computing Environment and Tests 48

4 Results of Graphical Capture System 50

4.1 Methodology' 50

4.2 Properties of the System 52

4.2.1 Resolution of the Scanning Process 52

4.2.2 Signal-to-Noise Ratio of the Read-Out Signal 54

4.2.3 Using Different Compact Disc Players 55

4.3 Data and Image Processing Software 57

4.4 Interpretation of Results 60

4.4.1 Detecting Handwriting on the CD Surface 60

4.4.2 Fingerprints on Compact Discs 61

4.4.3 Watermarks and their Capturing on Compact Discs 63

4.5 Further Applications 69

4.5.1 Random User-Handling and Dirt 69

4.5.2 Moire-Pattern 70

4.5.3 Detecting Manufacturing Defects during Read-out 72

4.6 Conclusions and Applicability for Watermarking 77

CONTENTS iv

5 Watermarking and Punctured Code Simulations 79
>

5.1 Definitions and Background 79

5.1.1 Error Concealment 79

5.1.2 Definitions of Error Rates 81

5.1.3 Limits of Computer Simulation 81

5.2 Conformance of Computer Simulation and Statistical Analysis 83

5.3 Decoder Algorithms applied to Memoryless Channels 83

5.4 Decoding Burst Errors 86

5.4.1 Introduction 86

5.4.2 Reproduction of Error Burst Probabilities and Good Data Gap

Probabilities in a Bursty Channel 87

5.4.3 Decoder Algorithms Applied to Bursty Channels 90

5.4.4 Error Correction Capacity on a Bursty Channel and Memoryless

Channel 93

5.4.5 Discussion 93

5.5 Performance of Watermark Sequences 96

5.5.1 Introduction 96

5.5.2 Motivation for Considering Background Noise 98

5.5.3 Using Intentional Errors as Watermarks 100

5.5.4 Choosing non EFM-Words as Error Symbols 114

5.5.5 Changes to the Overall Error Rate when Introducing Watermarks 117

5.5.6 Conclusions 119

6 Conclusions and Discussions 122

6.1 Conclusions 122

6.2 Future Work 132

A Theory of Reed-Solomon Encoding and Decoding for Compact Discs 134

A. l Galois-field Arithmetic and Basics of E C C 134

A.2 Cyclic Code Encoding 136

A. 3 Reed-Solomon Syndrome Decoding 137

B Software Listings 140

B. l Control Software for the Experimental Apparatus 140

CONTENTS V

B.2 Simulation Software for Compact Disc Channel Modelling 149

B.2.1 Flowchart of the Encoder and Decoder Program 149

B.2.2 Program listing 149

List of Abbreviations

ADC Analog-to-Digital Converter

CD Compact Disc

CD-DA Compact Disc Digital Audio

C D - R Compact Disc Recordable

CD-ROM Compact Disc Read Only Memory

CD-RW Compact Disc Rewritable

C I R C Cross-Interleave-Reed-Solomon-Code

CLV constant linear velocity

codec Coder/Decoder

C R C Cyclic Redundancy Check

DRM Digital Rights Management

DVD Digital Versatile Disc

E C C Error Control Code

E C Error correction

E F M Eight-To-Fourteen Modulation

G F Galois Field

HP Hewlett Packard

LSB least significant bit

NRZI non-return to zero inverted

NRZ non-return to zero

P C B Printed Circuit Board

P C Personal Computer

V I

P D F probability density function

PPM Portable Pixmap file format

R F Radio Frequency

R L L run-length-limited

rpm rounds per minute

SCSI Small Computer System Interface

SNR Signal to Noise Ratio

V I]

List of Figures

1.1 Schematic view of defect classification in a Compact Disc 6

3.1 Structure of the experimental setup 27

3.2 Servo circuits in a compact disc player 28

3.3 Structure of the image capture system. The photo shows the opened

compact disc player and the trigger circuitry 31

3.4 Schematic diagram of the interface trigger to A D C 33

3.5 Bitstream of the encoding system of the Compact Disc 40

3.6 C I R C decoder structure 42

4.1 Photograph of radial scratches on compact disc 52

4.2 Laser-signal response to five radial scratches in compact disc 53

4.3 Voltage drop due to a black stripe on surface. The other peaks signify

surface scratches 54

4.4 Signal response of two different players to scratches on the compact disc.

a) Toshiba XM3301B, b) Toshiba XM4101B 55

4.5 Fourier transform of data in Figure 4.4a (XM3301B) 56

4.6 Fourier transform of data in Figure 4.4b (XM4101B) 56

4.7 Captured overview of a disc surface with random scratches 59

4.8 Image capture of the words "KAY=' and "CRIST" written on the surface

of a compact disc with a ball-point pen 60

4.9 Captured fingerprint on the surface of a disc. The image was processed

using an emboss filter 61

4.10 A second captured fingerprint with different filter operations applied

(contrast stretching) 62

vni

LIST O F F I G U R E S ix

4.11 Captured surface image of three punctured distortions, compact disc
plays without errors. The true size of the distortions is about ten times
smaller 65

4.12 Four punctured distortions in the reflective layer, imaged by the author's

capturing technique. The size of the small dot is about 100^7n 66

4.13 Photograph of this distortions taken by an optical microscope. Compare

to Figure 4.12 67

4.14 Photograph of the same four distortions taken by a scanning electron

microscope. Compare to Figure 4.12 67

4.15 A group of punctured holes in the reflective layer, captured during the

playing of the compact disc 68

4.16 One punctured hole in the reflective layer, captured with maximum res­

olution during the playback of the compact disc 69

4.17 Two captures of the same disc, a) cleaned disc b) after touching. The

shaded areas mark lower reflection caused by grease and dust 70

4.18 a) Moire-pattern in the substrate detected on a badly manufactured disc

b) a clean, good disc without moire-pattern 71

4.19 Demonstrative example of an injection artefact in badly manufactured

compact discs (Easier AG, Germany) 71

4.20 A captured overview picture of a badly manufactured disc with lots of

defects seen as small dots 73

4.21 A zoomed-in version of 4.20, showing distinctively the defects, moire-

pattern and a part of the boundary 74

4.22 A photograph of the surface taken by a conventional optical microscope. 75

4.23 Image capture of the disc with a circular boundary drawn by a ball-pen

around reflective layer defects 76

5.1 Diagram showing interpolation and symbol error rate (crosses) as ob­

tained by the author's software. The straight line represents the inter­

polation rate, published in [1] as a result of statistical calculations. . . . 84

5.2 Decoder I and II compared in terms of Pxx values on a non-bursty chan­

nel. Decoder II shows better performance 85

LIST O F F I G U R E S x

5.3 Decoder I and II compared in terms of interpolation, click and symbol
error rate on a non-bursty channel. Decoder II shows better performance. 86

5.4 Gilbert model 87

5.5 Different probability density functions used for simulations of bursts

(area under slope standardised to one), a) bursts caused by a memory-

less, non-bursty channel, b) bursts emulating measured distribution in

2] on a clean disc, c) bursts with a ten times higher probability assum­

ing a scratched disc. Curve b and c is reproduced using a combination

of random number deviates 89

5.6 Relation between stretch factor of gap lengths n to obtained error rate

r. The error distribution is constant while scaling the gap distribution

with factor n to achieve different input symbol error rates 91

5.7 Decoder I and II compared in terms of symbol error rate and interpo­

lation rate on a bursty channel. Decoder II shows the better correction

performance 92

5.8 Decoder II applied to a non-bursty channel model and one with the

distribution presented in paragraph 5.4.2. Towards lower input error

rates the difference is evident and can be extrapolated to the deviation

of several magnitudes 94

5.9 Correctibility of equidistant error symbols (EQU) together with back­

ground noise. The relative error frequency / is bcised on the correction

rates for background noise only 100

5.10 Correctibility of a sequence of errors with varying length at the begin­

ning of each frame (ESE) plus background noise based on error rates of

background noise only 102

5.11 Schematic illustration of a shifted sequenced error pattern (ESS) (refer

to Figure 5.12) 102

5.12 Correctibility of a pattern with shifted sequences of erroneous symbols

each frame (ESS) plus background noise. The relative error frequency is

/ > 10 pointing to a lower correctibility than without shifting (compare

to Figure 5.10) 103

LIST O F F I G U R E S xi

5.13 Schematic view of error groups distributed over a frame (E G R) .

a) 2 symbols per frame, b) 5 symbols per frame, c) 12 symbols per frame. 104

5.14 Correctibility of groups of error symbols (E G R) plus background noise.

For low error rates r < 0.07 the pattern is identical to the one used in

Figure 5.10 105

5.15 Correctibility of a pattern with alternating error-free and erroneous

frames (E Q F l) plus background noise 106

5.16 Equidistant erroneous frames, the intermediate gap length is variable,

a) one frame distance between one erroneous frame, b) two frames

distance between one erroneous frame 107

5.17 Correctibility of a pattern of alternating error-free and erroneous frames

plus background noise. The erroneous frames are filled with alternating

error and non-error symbols (EQF2) 107

5.18 Equidistant erroneous frames, the intermediate gap length is variable.

The erroneous frames are filled with alternating error and non-error

symbols.

a) one error-free frame distance between one erroneous frame, b) two

frames distance between one erroneous frame 108

5.19 Correctibility of a pattern of alternating error-free and erroneous frames

plus background noise. The erroneous frames are filled alternatingly

with one error and two non-error symbols (EQF3) 108

5.20 Equidistant erroneous frames, the intermediate gap length is variable.

The erroneous frames are filled with alternating one error and two non-

error symbols.

a) one error-free frame distance between one erroneous frame, b) two

frames distance between one erroneous frame 109

5.21 Correctibility of randomly distributed one-symbol errors (RES) approx­

imating the lower limit of / = 1 very slowly I l l

LIST O F F I G U R E S xii

5.22 Summarised overview offour error patterns- The notation "PDF" means
bursty background noise is added. The other notations refer to the type
of pattern used. Three different groups are recognisable with different
types of approximation. The next four patterns are shown in the next
diagram. Figure 5.23 112

5.23 Set of the next four error patterns (continued from Figure 5.22) 113

5.24 The relative error frequency / is standardised to the introduced symbol

error rate r. The minimum signifies a good ratio of correctibility to

information content. Four error patterns are shown here, the next four

in the next diagram, Figure 5.25 115

5.25 Set of the next four patterns, relative error frequency / standardised to

the introduced error rate r (continued from Figure 5.24) 116

5.26 Output error rates of background noise with varying input error rates

r if a) a regular watermark pattern is present and b) only background

noise is to correct 118

B . l Flowchart of the channel encoder implementation for CD audio 150

B.2 Flowchart of the channel decoder implementation for CD audio 151

List of Tables

1.1 Standards defining "Compact Discs" 9

2.1 Algorithmic view of decoder strategy I. / denotes the number of erased

symbols in a code word. C l is the inner Reed-Solomon decoder, C2 the

outer decoder 21

2.2 Algorithmic view of decoder strategy II 21

3.1 A choice of possible error conditions during reading of a C D - R O M / C D -

DA (taken from the SCSI-2 specification) 35

5.1 Lowest error probability to detect when decoding 2.5 • 10^ frames with

1,10 or 40 symbol errors occurring. One additional symbol error leads

to the resulting standard error 82

5.2 Output symbol error rates Psym,random/bursis of non-bursty, random back­

ground errors and bursty background errors, combined with systemati­

cally induced symbol errors of two different error rates rimro- The ratio

shows that random and bursty noise have different correction rates Psym,

as expected, but also that the ratio of correctibility is depending on the

rate of induced errors 98

5.3 After decoding 250000 frames the number of symbol errors n varies

depending on the form of noise present. The induced error rate is

Tintro = 0.0625, which is a tw^o-symbol error per frame 99

5.4 Considering the values derived from Table 5.3 it becomes evident that

introducing a two-symbol error per frame does not have the same eflfects

on the output correction rate on bursty and non-bursty background noise. 99

5.5 Fast random number generator for distributing erroneous symbols. . . . 110

xni

Acknowledgement

I would like to express my gratitude to all the people who supported me during my

time in Plymouth.

Thanks go to my supervisors Dr. T. Donnelly and Dr. P. J . Davey for their informal

and friendly support and the University of Plymouth for giving me this opportunity.

Last, not least of all, I would like to thank all those friends in Plymouth who befriended

and supported me during my brief stay in Plymouth and influenced me in their own

way.

X I V

Author^s declaration

At no time during the registration for the degree of Doctor of Philosophy has the author

been registered for any other University award.

This study was financed by a University of Plymouth studentship.

During the research programme I undertook a course of advanced studies. These in­

clude the extensive reading of literature relevant to the research project, and attendance

of seminars on signal processing, coding and computing. The work has been regularly

presented at research seminars.

Signed

Date

X V

Chapter 1

Introduction

1.1 The Compact Disc

The compact disc (CD) is nowadays a very important medium for permanently storing

information. It was introduced in 1980 by Philips and Sony as the next generation

successor of the vinyl record. The convenience of use and the immense data capacity

predestined it for further development and exploitation.

Soon after its introduction it was employed for other uses such as storing raw digital

data. The basic technology behind it proved to be reliable, easy-to-use, inexpensive and

extendable. Today CDs and their writable relatives CD-RW, C D - R are everywhere;

they are used for distributing and conserving music, for multimedia applications, as

a storage medium for computers and as backup medium. Simply speaking, the user

is free to duplicate digital data and store it without quality loss on this inexpensive

medium.

The successor of the CD, the Digital Versatile Disc (DVD), based on a similar

technology' with an increased storage capacity, is now gaining commercial momentum

1.1 The Compact Disc

and shows an even greater commercial potential than its predecessor.

There are still certain important issues to be addressed though. The uncontrollable,

lossless duplication of digital data, which is in most cases protected by copyright laws,

is a worry to the music industry and many software manufacturers.

Protecting digital data from being copied is a controversial topic. Even Philips,

the inventor of the compact disc, states in a recent interview [3] that today's copy

protection measures for audio compact discs are a nuisance for the consumers and

technically not feasible.

The traditional argument for copy-protecting solutions goes as follows. The digital

data representing music, program code or other forms of data belongs to the rightful

owner who has the copyright of these data. By buying a CD or software (this does not

apply to so-called Freeware), the consumer acquires the right to use the data. The use

of the data by the consumer is though bound to the license restrictions that apply and

does not include free copying.

Being technically in the situation to have the data at his free disposal, the user

is able to make copies and redistribute these without technical restrictions. This is

certainly not the intent of the copyright holders, thus technical solutions hand in hand

with legal regulations try to circumvent this.

The technical side of circumvention of unauthorised copying of audio compact discs

consists mainly of simple ideas that violate the compact disc standard. None of the

measurements against software piracy are successful either. The latest advances in

copy protecting audio compact discs are based on differences of the capabilities of

CD rewriter devices to normal audio CD devices. CD rewriters are confused by non­

standard manufactured discs. Sooner or later the manufacturers of CD rewriters will

1.1 The Compact Disc

allow for copying of these specially protected, wrong discs as a sales argument.

The broader and more promising picture shows so-called Digital Rights Manage­

ment (DRM) systems coming up [4]. They are focussed towards locking the digital

content away by encrypting it and limiting therefore its distribution to only those who

pay. The architecture is still being developed and the further development extends its

use to description, identification, trading, protection, monitoring and tracking of all

forms of rights usages over both tangible and intangible assets.

Only by taking this global approach, can control over digital contents and rights

be ensured. A crucial part is to be played by so-called watermarking and labelling

techniques.

Because of their high abstraction level, digital data themselves are perfectly copy-

able in an infinitive number without the possibility to track them. Distribution of

digital data defies control therefore. Obviously it is not possible to imprint additional

data, like ownership certificates, instruction for distribution or tracking information on

them.

The technique of watermarking gives a means to do exactly this. In general extra

information is added in such a way that it does not degrade the quality of the data nor

extends the volume of the data unreasonably. This information is hidden to the user

and it must be ensured that removing it is a highly difficult procedure. It encompasses,

for example, copyright messages, serial numbers or instructions for the use of the data.

Copyright notes can help to prosecute the copyright violator, whereas serial numbers

serve to identify them.

Adding hidden watermarking data can be targeted at several goals. One also must

consider the specific storage medium the data resides on. Watermarking the hardware

1.2 The Compact Disc's Vulnerability to Errors

medium has similar applications like watermarking the pure data stream. An approach

which combines both, hardware and abstract data seems to be most promising.

In this work new ways of watermarking techniques are presented and investigated.

The medium is, as mentioned before, the compact disc digital audio, which is the basic

format for all other compact disc deviates. The DVD is covered as well, since it employs

the same, but a more optimised technology. This work investigates the use of the CD

device as a low-cost image scanning (capturing) system, which has been devised and

implemented by the author and which primarily makes new watermarking techniques

specific to this device possible.

Adding extra data is especially considered with regard to the error correction ability

of these devices. By using error correction it is feasible to superimpose data in the form

of errors without loss of the user-data. Different methods, ranging from mechanically

puncturing compact discs to directly altering the digital data, are investigated.

In this regard the employment of the CD image scanning device as a low cost scan­

ning system is demonstrated. The author compares the image scanning system with

electron scanning microscopes, which are much more expensive. The high resolution

gained with this cost-effective system opens a variety of new applications, only one of

them being secure watermarking.

1.2 The Compact Disc's Vulnerability to Errors

1.2.1 Coping with Errors on Compact Discs

Being manufactured in mass production and having a bit density in the sub-micron

range, imperfections, inherent and introduced, of the compact disc make it almost

1.2 The Compact Disc's Vulnerability to Errors

impossible to store and read information without errors. The advantage of using digital

encoding is that error-correction algorithms can be applied to cope with almost any

deterioration of the signal. Besides imperfections caused by non-optimum compact disc

players, causing mis-tracking or mis-focusing, the need for an error correction system

derives mainly from non-optimal production methods and mis-handling of compact

discs.

The Compact Discs Standard, as proposed by Philips [5] and specified amongst

others by the British Standard (and European Standard) BS EN 60908 [6], takes this

into account by specifying the limits under which a compact disc is expected to oper­

ate. Due to the need for accepting a non-optimal environment, a sophisticated coding

scheme for storing digital data has been conceived which accepts the presence of errors

in certain limits as laid down in this standard.

Two types of errors occur: random errors and burst errors. Random symbol errors

have no correlation with other errors; when errors occur in a group of symbols they are

called burst errors.

1.2.2 Manufacturing Errors on Compact Discs

Optical media manufacture consists of various production steps such as injection mould­

ing, sputtering, protective coating or bonding. These process steps imply possible de­

fect sources which compromise the playability of the media. Most common defects in

the production process are:

bubbles: Air-filled holes in the substrate.

black spots: Dirt in the substrate,

bump: Distortion of the reflective layer.

1.2 The Compact Disc's Vulnerability to Errors

pinholes: Holes in reflective layer.

oil stains: Oily remains on the reflective layer.

lacquer splashes: Remains of lacquer on the surface.

metal-layer scratches: Scratch on the reflective layer.

metal-layer scratch
pinhole oil stain \ bump

metal layer
coating

polycarbonate
substrate

black spot

laquer splashes

bubble

surface scratch

Figure 1.1: Schematic view of defect classification in a Compact Disc.

The various types of defects occurring on a compact disc are shown in Figure 1.1.

The maximum dimensions for bubbles and black spots are lOO^m and 300/xm re­

spectively according to the standard [6]. The minimum distance, measured between

adjacent defects (of maximum diameter) along the track, must be at least 20mTn. Con­

forming with the standard burst errors due to local defects on the manufactured disc

shall not induce audible effects for any error decoding strategy.

1.2.3 Blemishes resulting from User-handling

Blemishes which are introduced during use, are attributed to the following:

1.2 The Compact Disc's Vulnerability to Errors

scratches on the protective layer side: these are permanent damage to the sur­

face. They result usually from careless user handling, but can be cured with

commercial CD repair kits. Usually they appear as very thin lines and a number

of them grouped together pose problems to the error correction system,

dust, dirt: these are temporary stainings on the surface that can be wiped away quite

easily with soap or white spirit.

fingerprints: grease from fingers sticking on the surface of a CD.

1.2.4 Definitions

For a clear understanding of the following chapters, a definition of commonly used

terms is given here. Other publications might use slightly different definitions,

sample: The digital signal recorded on a compact disc is sampled in two channels (for

stereo reproduction) at a frequency of 44100 Hz with 16bit quantisation. Each

32bit sample value (audio-sample) consists of two mono-audio-samples each of

them 16bit long.

symbol: Each mono-audio-sample is made up of two 8bit symbols. A symbol is the

smallest addressable unit in the en/de-coding process.

frame: A frame is the smallest logical unit in the en/de-coding process. One frame at a

time serves as input for the error correction system. It contains 6 audio-samples;

in the encoded case 8 error correction symbols are added, which amounts to 588

bits including synchronisation bits, E C bits, merging bits (Figure 3.5).

error: The term error denotes a not-intended, wrong value stored in a symbol. It can

refer to samples or bigger units as well if explicitly mentioned.

1.3 Compact Disc Standards 8

erased, flagged symbol: The Reed-Solomon error correction system receives at its

input erasure flags (appendix A), one per symbol. They notif}^ the decoder of a

possible error on this symbol. Knowing the position improves the error correction

ability.

left, right channel: Recordings are done independently on two channels to give the

listener a spatial (stereo) impression. Both left and right channels are recorded

on the compact disc.

input symbol error rate r: Wrong symbols per second before the error correction

process took place.

output symbol error rate P^x' Wrong symbols per second after error correction

process took place.

concealment: Detected wrong samples are not played back, but concealed or muted,

depending on the method used by the CD-player. Concealment only applies to

compact disc audio players.

click: An audible noise in the loudspeaker as a result of a miscorrection or an unde­

tected, not concealed error.

1.3 Compact Disc Standards

Nowadays the term compact disc denotes not only one kind of optical storage medium,

but a variety of different standards and specifications. Starting from the standard

developed by Philips and Sony [7], described in the Red Book, the original specification

was extended in many ways to satisfy increasing customer needs. To each of the new

1.3 Compact Disc Standards

standards a new "coloured book'' was dedicated, describing the logical and physical

structure of the data and the medium.

Red Book
Yellow Book

Orange Book
Green Book

Part I
Part II

Part III
Blue Book

White Book
C D - R O M / X A

CD Extra
FORM-1
FORM-2
MODE-1
MODE-2

Rock Ridge
ISO-9660
C D - U D F
C D - R F S
CD-Text

physical format for audio CDs (a/k/a CD-DA)
physical format for data CDs (a/k/a CD-ROM)
physical format for recordable CDs
physical format for CD-i
CD-MO (Magneto-Optical)
CD-WO (Write-Once; includes "hybrid" spec for PhotoCD)
CD-RW (Rewritable)
CD Extra (occasionally used to refer to LaserDisc format)
format for VideoCD
extended Architecture, a bridge between Yellow Book and CD-i
a two-session CD, 1st is CD-DA, 2nd is data (a/k/a CD Plus)
2048 bytes of data, with error correction, for data
2324 bytes of data, no ecc, for audio/video
standard Yellow Book sectors
may be of form-1 or form-2
extensions allowing long filenames and UNIX-style symlinks
file layout standard (evolved from High Sierra format)
industry-standard incremental packet-writing file system
Sony's incremental packet-writing file system
Philips' standard for encoding disc and track data on audio CDs

Table 1.1: Standards defining "Compact Discs".

Table 1.1 gives a short over\'iew of these standards. Indeed all these formats can

be called compact discs, since the design of the physical medium is the same. The

specifications laid out in the Red Book standard (CD-DA, compact disc digital audio)

form the basis for all other compact disc formats. It describes the physical properties of

the medium and goes on to specify the coding of the user data, the basic error correction

scheme, EFM-modulation, frame format and sector layout. These are common to all

other standards, differences evolve at upper layers, i.e. further error correction is added,

certain sector contents have different use and the file system structure is changed or

newly designed [8, 9 .

Without restricting generality this work only deals with the least common denom-

1.4 Contribution to Knowledge 10

inator, the CD digital audio. The format layout explained in the following chapters

refers to CD-DA and is common to other CD formats as well.

lA Contribution to Knowledge

This work presents a new technique based on current compact disc technology to im­

age the transparent surface of a compact disc or additionally the reflective information

layer. This technique (image capture technique) has been tested and successfully ap­

plied to the detection of compact disc watermarks and biometrical information.

The capture system comprises specialised hard- and software utilising the compact

disc technology. Images of human fingerprints on a disc's surface have been captured

in high quality.

The author's work also introduces a new idea of watermarking the compact disc

medium as part of a future DRM system. It has been shown by the author that wa­

termarked discs can be identified on their digital fingerprints using the novel author's

capture system, whilst playing the compact disc normally. Two different ways of imple­

menting mechanical watermarks have been investigated and successfully demonstrated.

Watermark sequences have been tested against their influence on the compact disc's

error correction system. Quantitative results regarding the effect of certain watermark

patterns are presented. Optimal sequences have been found.

Special error distributions, composed of random and burst errors, as present in user-

handled discs were investigated on their correctibility by two error strategies through

computer simulation. Conformance with published results in the case of a memoryless

channel were found, the work extends the results on error correction to special error

distribution functions. These results were used as a basis for predicting effects of

1.5 Organisation of the Thesis 11

proposed watermarking schemes on the compact disc system.

1.5 Organisation of the Thesis

Chapter 2 gives an overview of the issues, dealt with in this thesis. It presents the

necessary background to put it into an historical, scientific context. Work done by

other authors tangent to the various fields presented in this work is critically discussed

with regard to the author's own work.

In Chapter 3 the experimental apparatus and the respective control software along

with the author's own simulating system to backup experimental results is described.

The experimental system served as a working demonstration of the capabilities.

The basics to compact disc technology are briefly treated, followed by a discussion

of both the experimental and the theoretical system. The software implementation is

presented with all its components.

Chapter 4 presents experimental results achieved with the apparatus. Discussions of

said results are included in their respective context. Comparison with other common

image capture systems are shown, the relevance of these results to the initial issue

watermarking and further possible exploration is also demonstrated.

Chapter 5 finally deals with simulation of the experimental technique in order to

obtain new insights to the error-correction process and the relevance to new techniques

of watermarking.

The thesis is concluded with Chapter 6, reviewing the author's work and discussing

it in detail. A paragraph is devoted to future areas of interest.

Chapter 2

Background to the Investigation

2.1 The Compact Disc System - Benefits and Prob­

lems

This work incorporates research in more than one area. It is positioned between copy

protection research, copyright managementj implementing these issues into current

hardware of compact disc players and discussing the capability of the new technique.

It has long been an issue for software makers and record labels to restrict the

capabilities of the compact discs system to a more controllable medium. Engineering

the compact disc has been done without paying much attention to the fact that the data

stored on it is perfectly duplicable. But it must be considered that none counted on

the wide availability of CD recorders for home consumer use nor has anyone taken into

account the falling prices for storage media like hard magnetic discs or the availability

of compression formats like MPEG Audio Layer-3 (mp3).

Even the DVD has, according to the opinion of some experts, only rudimentary

copy protection standards built in (10, 11 .

12

2.2 Watermarking and Steganography on Compact Discs 13

It is therefore of interest to propose and investigate new approaches for the compact
disc system. Due to the number of technologies involved, the systenn possesses a high
extensibility.

As the compact disc system employs a variety of technologies, the author's work

also covers many areas, including error correction, watermarking, scanning microscopy,

error distributions on compact disc, error correction algorithms and computer simula­

tions.

2.2 Watermarking and Steganography on Compact

Discs

As the discussion about copyrights on music, software etc. goes on, ways are needed

to enforce related legal issues. Simple copy protection is not always suitable, because

copy protection schemes are likely to be broken by hackers. The more widespread and

desirable the information content is, the quicker ways are found to circumvent anti-

piracy measures [12]. Furthermore the consumer is annoyed by being deprived of his

right to make legal back-up copies.

Watermarking and steganography both aim at hiding information [13]. Classical

steganography deals with embedding a secret message in a cover message. There are no

requirements about the resilience against attempts for removal [14]. Usually, once the

covert channel is uncovered, the means for exchanging information through this channel

is void. This is opposed to watermarking techniques, where secret information is also

hidden, but a possible attack to make the watermark undetectable or even to remove

it completely is hindered by certain methods. The existence of a watermark can even

2.2 Watermarking and Steganography on Compact Discs 14

be known to the attacker, but the importance lies in their robustness against attempts
to remove it. This is why watermarking techniques are valuable means for hiding
information, whenever the cover-data is available to third-parties and the existence of
a watermark is known. The information hidden by a watermark is always associated
to the digital object to be protected, whereas steganographic methods just hide any
information.

If we cannot protect binary data against illegal copying we introduce watermarks

to prove the ownership of the data. These copyright messages can serve to prove

the ownership of the data before a court, if legal infringements have happened. Data

content protected this way are therefore not anonymous anymore, they have a copyright

owner and possibly an authorised owner, who, for example, paid for them.

Apart from protecting the ownership by hiding a copyright notice in the data,

watermarking can serve two other functions.

The second function is called fingerprinting and is used to track illegal distribution

of data. For this purpose diff'erent watermarks specific to the recipient of the data

are generated and embedded in the data content. The recipient distributing the data

illegally can be found by looking up the watermark listed for this recipient. Then it is

known that it was him, who gave the copyrighted data away. Here the watermark has

to be robust against attacks like in the previous case.

The third function implements a sender identification and authentification and con­

tent verification (15, 16]. Two powerful aspects of information can be included in wa­

termarks. The first is error control code (E C C) information, which enables the receiver

to make use of error detection and correction systems on the watermarked object. The

second combines the possibilities of public key cryptography [17] with watermarking.

2.2 Watermarking and Steganography on Compact Discs 15

In fact sender authentification methods with watermarking can easily be conceived
using public key systems.

J . Lee and C.S. Won [18] propose in their work an image authentication and cor­

rection system. Briefly speaking watermarks are added to an image in place of the

LSB (least significant bit). These watermarks contain the E C C information, which

makes it possible to correct the image after alteration. The watermarks though can

only be retrieved if the right key is known to the recipient (and thus correction of the

watermarked image). The possession of the right key is ensured by the sender encod­

ing the watermarking key with his private key and then by the recipient decoding the

watermarking key with the public key of the sender [19 .

There are other useful areas where watermarking techniques can be employed. Copy

protection systems can be implemented as well. Therefore the copy device must check

for the presence of watermarks to decide whether it is allowed to make a copy (or how

many) and not.

How are steganographic techniques related to compact disc technology? Since these

techniques provide a powerful means for many copyright issues, it is desirable to include

them in actual CD technology.

Redundancy of data, which is a prerequisite of hidden data channels, can be found

in many places in compact discs. The compact disc system is engineered with a redun­

dancy of stored data of up to 30%. This serves mainly for the detection and correction

of symbol errors, for which a highly-optimised storage medium, like the compact disc, is

particular vulnerable. Part of this redundancy however can be used for other purposes.

To the author's knowledge there are no publications of specific watermarking tech­

niques for compact disc systems. Since the compact disc system has its own way of

2.2 Watermarking and Steganography on Compact Discs 16

encoding and decoding along with special physical properties and limits, it is therefore
of general interest to analyse the compact disc system with regard to this technology.

This work tackles the problem from two different points of view\ First symbols of

the data stream can be altered to make space for watermarking information. This is

done without changing the error correction information accordingly. Thus watermarks

are present on the compact disc but do not degrade the real information content due

to the error correction ability of the CD device. In this case care must be taken not to

exceed the maximum error correction capability. Also locations must be determined

where it is the least severe to the error correction to introduce these watermarks. As

it is commonly known, bursts (long sequences) of symbol errors can weaken the error

correction system much more than randomly distributed symbols. The question there­

fore is, how a S3'Stematic allocation of symbols performs in terms of error correction

capacity. This work will suggest some symbol error allocation algorithms which show

a good performance. The tool to accomplish this task is a simulation of the channel

encoding and decoding process as it is done in real compact disc players. Information

hiding is thus simulated while considering a real-world scenario, where the error cor­

rection information is partly used up for correcting natural blemishes on the compact

disCj as caused by user-handling or failures in the manufacturing process.

Secondly an apparatus for detecting physical watermarks will be proposed in this

work.

For generating digital watermarks one does not necessarily rely on modifying the

pure data content alone. Other introduction processes are conceivable. Considering the

structure of a compact disc, there are many ways which allow the watermarking of the

actual physical medium. The benefits can be comparable to watermarking digital data,

2.2 Watermarking and Steganography on Compact Discs 17

as discussed earlier, though with other characteristics. The real advantage evolves when
both, watermarks on the digital data and watermarks on the actual physical medium,
are combined. As it will be shown watermarking the physical medium is not without
effect on the digital data. Both go hand in hand and the error correction process
further improves the number of possible applications.

In this sense introducing watermarks means damaging or puncturing the physical

medium. If it is done in-between the limits of the error correction capability, it is

without effect on the restored (audio) signal. In order to detect such watermarks, the

compact disc player must be enabled to process these artificial blemishes.

The advantages of this are numerous. Due to the connection between errors in

the digital data content and errors in the actual physical medium the two of them are

bound together. Thus it is ensured that the digital data belong to its storage medium.

This feature can be part of a DRM system, although it must be ensured that compact

disc players have this capability built in.

In general the fingerprinting feature permits the marking of compact discs individ­

ually and uniquely; applicable solutions depend on the way it is implemented.

Implementing it into actual CD technology is not hard at all. The following chapters

will give a thorough investigation and discussion. The technique for detecting addi­

tional watermarks on the medium itself relies on the principle of a scanning microscope

for which the CD player is used. It will be shown that besides detecting watermarks

or other distinctions, the technique is able to scan compact discs with high resolution

thus making it possible to increase data capacity by adding graphical information on

"top" of the digitally-encoded data.

2.3 Scanning Microscopy 18

2.3 Scanning Microscopy

Apparatus for scanning discs are commonly used in the quality-checking process in

compact-disc manufacturing. The scanners are part of the production hne and provide

process information for quality optimisation. Being specialised for CD-ROM. DVD,CD-

R, C D / D V D - R W / R A M , they detect all kinds of manufacturing errors, such as defects

on surface, reflection layer and substrate, tilt irregularities and resia thickness [20].

Commercially available basic systems cost about £3000 sterling. These systems

use customised hardware, different from a common CD-device. The CD is spun up to

lOOOrpm, line scanning it with a matrix camera, photodiode or interferometer. Mea­

surement time extends to 10s maximum. A maximum spatial resolution for defects

of llfxm is achieved (specifications according to [20]). Additionally, bundled software

characterises the type of defects and gives information in order to optimise the pro­

duction process. Various other commercial systems are also available [21].

The author's work however employs an unmodified readout head, reducing the costs

substantially. The drawback is a slower scanning time, which depends on the reading

speed of the CD device. Using modern CD-devices the scanning process can be speeded

up by 52 times compared to early single speed (data transfer rate 150 kB/s) devices,

i.e a 65min CD is scanned in 1.4 minutes. The resolution across tracks though is better

(1.7/i7n), since each adjacent track is scanned individually. The resolution along tracks

is dependent on the hardware used, in particular on the analog-digital converter and

on the speed of the CD device, which in this case limits the resolution to about 15^m.

In [22] a scanning optical microscope is presented. The setup uses a conventional

CD reading head, where the laser is replaced by the end face of a single-mode fiber.

Employing automatic focus control the microscope is able to scan over curved objects

2.4 Error Correction Simulations 19

having a spatial cut off frequency of 1.1 line pairs//im. This system uses self-built
scanning mechanics which enables it to keep track even without the existence of pits
on a CD.

For the author's application using the built-in tracking control into the CD device

was more appropriate, since the interest lies specifically in the readout-signal, which

the CD-player processes. The low-cost factor and the fact that verĵ few modifications

are necessary in order to add new functionality to CD devices, makes this technique

attractive for a future element in copy protection and copyright protection systems.

The scanning system's setup will be presented in Chapter 3. A discussion of the

possibilities under special consideration of watermarking purposes (different finger­

printing techniques) and comparison to other image capture systems will be presented

in Chapter 4.

2.4 Error Correction Simulations

Format and encoding procedures for compact discs are defined in various standards

6, 23, 24, 25]. Computer simulations can give information about behaviour and limits

of the coding process. As mentioned before (1.3), CD-DA and CD-ROM channel

coding are different. CD-ROMs employ additional coding in order to meet the more

strict requirements for data storage, where interpolation and muting of unrecovered

errors from C I R C cannot be tolerated. The additional coding comprises a second layer

E C system (CRC) and another step of scrambling for data whitening [26 .

To the author's knowledge computer simulations of the compact disc channel have

been published in only one other article. In this work J.D. Roberts et al [27] simulate

the channel coding of a CD-ROM system. Information about the correctibility of burst

2.4 Error Correction Simulations 20

errors according to their position relative to the CD-ROM sector boundaries have been
obtained. Their research shows clearly that burst errors (i.e. scratches on the surface)
achieve a higher correctibility if they lie near the centre of a CD-ROM sector compared
to the edges of a sector.

The author's work extends the work of [27] by applying the simulation to special

error patterns in conjunction with watermarking purposes. It investigates not only

one symbol error burst but concentrates on predicting the effects of complex error

structures. Errors, like defects in the substrate or dirt on the surface, are handled by

considering certain error distribution already present. These error distributions have

been measured in publications of other authors and are used in this work. Additionally

different error decoder strategies have been considered as there are different algorithms

used in compact disc players nowadays.

The encoding procedure complies in the main parts with [6] (For differences see

Section 3.3). Decoding is not a subject of standardisation. Published algorithms for

error decoding strategies [1, 28, 29] have been used along with developed algorithms

for interleaving and eight-to-fourteen (EFM) decoding.

A number of different decoding strategies are presented in [29. 28]. The author's

software implements four of them. One of these four has been chosen to be employed

in any simulation run. It was first introduced in 1995 in [30], thus being a relatively

modern algorithm. The schema is outlined in Table 2.2 and in the following named

"strategj^ 11". A slightly more simple one, first published in 1982 in [1], has been tested

as well, mainly to make a comparison between both of them. This algorithm, referred

in the following by "strategy' P', is outlined in Table 2.1.

2.4 Error Correction Simulations 21

C i Decoder

IF s i n g l e - e r r o r or zero-error syndrome
THEN modify at most one symbol accordingly
ELSE assign erasure f l a g s t o a l l symbols of the received word.

C2 Decoder
IF s i n g l e - e r r o r or zero-error syndrome
THEN modify at most one symbol accordingly
ELSE IF f>2

THEN copy C2 erasure fl a g s from CI erasure f l a g s
ELSE IF f=2

THEN t r y two-erasure decoding
ELSE IF f<2 or two-erasure decoding f a i l s

THEN
assign erasure f l a g s to a l l symbols of the received word.

Table 2.1: Algorithmic view of decoder strategy I. / denotes the number of erased
symbols in a code word. C l is the inner Reed-Solomon decoder, C2 the outer decoder.

C i Decoder

IF s i n g l e - e r r o r or zero-error syndrome
THEN modify at most one symbol accordingly
ELSE IF f>2

THEN copy output Cl erasure f l a g s from input Cl erasure fl a g s
ELSE IF f=2

THEN t r y two-erasure decoding
ELSE IF f<2 or two-erasure decoding f a i l s

THEN
assign erasure f l a g s t o a l l symbols of the received word.

C2 Decoder

IF s i n g l e - e r r o r or zero-error syndrome
THEN modify at most one symbol accordingly
ELSE IF f>2

THEN copy C2 erasure f l a g s from Cl erasure f l a g s
ELSE IF f=2

THEN t r y two-erasure decoding
ELSE IF f<2 or two-erasure decoding f a i l s

THEN

assign erasure f l a g s t o a l l symbols of the received word

Table 2.2: Algorithmic view of decoder strategy' I I .

2.5 Measuring Error Distributions 22

2.5 Measuring Error Distributions

Compact discs are not free from errors. The characteristics of a compact disc in terms

of present impurities and blemishes can be shown by evaluating an error distribution

function. The distribution function showing the probability of occurrence of errors

with a certain length of symbols is called error-burst statistic^ the distribution for the

intervening gaps between errors is called good-data gap statistics.

Introducing additional information means adding an error distribution function on

top of the error distribution already present on a disc. Therefore a simulation has to

know about the distribution function.

There are several publications dealing with this task. In this work published error

distributions for surface defects have been employed. In [31, 32] measurement hardware

is used to generate error statistics. The custom-designed, PC-based analysis tool,

presented in [32], examines the serial data at the input of a CD player's C I R C block

decoder prior to any E C decoding.

2.6 Performance of Compact Disc Player's Decoder

Strategies

Part of the author's work deals with performance issues of certain decoder algorithms.

Performance assessments of the decoding process have been published in several

articles. Early work [1] assumes a memoryless channel and decoding strategies, which

were available at the time. Interpolation and click probabilities Pinter potation, ^cUck

their functional dependence to the input error rate r were derived using a mathematical

probability model of the decoding strategies. The bursty nature of the input is not

2.6 Performance of Compact Disc Player's Decoder Strategies 23

considered as it is with the output of the interleaver in-between the two decoder stages.

In order to obtain measured error-burst and good data-gap statistics on compact

discs, hardware has been developed in [31] as previously noted. The next step is to

evaluate F (n , r) , the probability of having r erroneous bytes in a block (i.e. codeword)

of length n bytes at the input of the C l decoder. This was done in [2]. A state model,

based on a Markov chain with a finite number of states, was proposed, characterizing

the compact disc channel. Calculations based on this model lead to a recursive formula

to calculate P(n, r) from state transition probabilities derived from measured burst and

gap statistics.

The distribution P(n, r) represents the occurrence of burst errors. Based on this

more realistic assumption calculations in [29] have been done to estimate the statistical

probabilities that characterise the data symbols at the output of the C I R C decoder.

Assessment and comparison of five different decoding strategies have been done in [29

by deriving analytical expressions for the following terms:

Poo- The probabilitity of encountering a correct byte with no attached flag (a good

byte; not erased).

PQI: The probability of encountering a correct byte that is flagged (a good byte;

erased).

PiQi The probability of encountering an erroneous byte with no flag (an error; not

erased).

Pu'- The probability of encountering an erroneous byte that is flagged (an error;

erased).

Evaluating these expressions, interpolation and click probabilities (P,n(erpo/ation)

2.6 Performance of Compact Disc Player's Decoder Strategies 24

Pciick) for a bursty channel are also obtained, leading to a performance comparison
of different decoding strategies. This work will continue to use Eiforementioned expres­
sions for the error probabilities.

Another analysis of error decoder behaviour is done in [33]. Three simple error-

correction strategies used by compact disc players have been compared with respect

to random burst errors of specific length. For simplicity the authors assume that

the number of byte errors in the input codeword is always a multiple of /, a positive

integer. By varying / from 1 to 32 the random to burst error performance of the various

strategies is obtained.

The author's work makes a more realistic assumption on the input errors. Input

errors obey a certain probability function, measured and published in previous works.

Furthermore all interleaving and scrambling stages during signal decoding are consid­

ered, which apart from [27], none of the former published work does. The author's work

also distinguishes between erasure interpolation situations in the output and divides

the result in certain error conditions, as described earlier in this Chapter.

It should be noted that in the above mentioned publications only probabilities of the

occurrence of errors at the input of the C l decoder are considered. As the author's work

deals with certain positions of artificially introduced errors, probability calculations are

not sufficient and call for a different approach, which will be presented in this work.

Also the fact that all three stages of interleaving and scrambling in the decoding

process are not treated elsewhere, gives rise to the idea of using computer simulations

to model all steps involved in decoding the data from compact discs.

An accurate computer simulation including the most detail as possible is crucial

for obtaining reasonable results for the analysis of watermarking schemes. Section 3.2

2.6 Performance of Compact Disc Player's Decoder Strategies 25

introduces the computer simulation of the channel model and Chapter 5 discusses the

findings along with the applicability to watermarks.

Chapter 3

Experimental Apparatus and

Techniques

3.1 A CD-based Image Capture System

3.1.1 Introduction

A novel system for image capturing using a common compact disc player has been

conceived and built. Special software and a few additional hardware components make

it possible to search for any kind of defects on compact discs, to scan the surface of

a compact disc and generate two-dimensional images of scratches and possible water-

markings. The system is low-cost and gives a resolution comparable to an electron

microscope and enables a secure way of copy protecting CDs.

The experimental setup comprises an IBM compatible P C (Pentium II, 350MHz)

equipped with an internal data acquisition card (PCX 312) and an external CD-ROM

device (Toshiba XM3301, XM4101), connected via SCSI interface to the PC. Control

and evaluation software written in "C" was used to drive the acquisition card as well as

26

3.1 A CD-based Image Capture System 27

the CD-ROM device. This software writes the recorded data to files on the computer's

hard drive. These are processed by a second set of software programs. The computer

runs the Linux [34] operating system, which simplifies programming and real-time data

acquisition.

PC •
SCSI-interface for control

CD Player PC •

analog readout signal
input

CD Player

ADC trigger signal to digita input Trigger

Figure 3.1: Structure of the experimental setup

3.1.2 Basic Construction of a Compact Disc Player

For a clear understanding of the new technique the basic construction of a CD player

will be explained in the following.

The read-out process adopted in optical disc systems is that of a scanning micro­

scope. Under the readout head the compact disc spins with constant linear velocity

(CLV). The speed varies from 1.2y — 1.4y. depending on the compact disc.

There are several types of readout heads, generally they host the laser-diode, photo

detector, the optical system, consisting of objective lens, beam splitter, diffraction

grating and a magnet with a two-aixes device for focus control.

The compact disc is scanned along the tracks by a focused semiconductor laser

beam. The focal point lies on the reflective layer of the C D and is about l.lfim in

diameter. The surface spot is O.Smm in diameter.

The laser beam is split up by a diffraction grating, generating two side beams, one

a bit further ahead on the track, the other one following.

3.1 A CD-based Image Capture System 28

Six photodiodes detect the reflected laser beam. Two of them detect the side beams

and the remaining four detect each a quarter of the main spot. This construction is

utilised by servo circuits, which are responsible for keeping the readout head on focus

and on track. Four servo circuits are used (Figure 3.2).

optical pickup

Focus Servo

Tracking Ser\'o

2-axes device
for laser control

Sled Servo Sled Motor.

Disc Motor Servo Disc Motor

Figure 3.2: Servo circuits in a compact disc player

The tracking servo and the sled servo are controlled by the side beam photo detec­

tors, the focus servo is controlled by a combination of the four main spot detectors.

The servo units are of importance, because they have a limiting character on the

scanning process. On some occasions it can happen that the scanning is interrupted

because one of the servos loses the track. This happens mainly when the reflection of

the laser signal is deteriorated enough to cause the servo electronic to fail.

3.1.3 Presentation of the Novel Capture System

An image capture system has been built and is presented here. Results are presented

in the next Chapter. It demonstrates all the functionality needed to reproduce exact

3.1 A CD-based Image Capture System 29

visual images of compact discs and for watermarking applications.

There are two main causes of errors in the read-out process: defects in the reflective

layer and disc surface blemishes. The latter comprise surface scratches and/or surface

deposits such as dust or inadvertent fingerprints. Defects in the encoded layer are

usually caused during the stamping of the disc and are literally holes in the layer.

These commonly vary in size from about lO^m to 50yxm and are often visible to the

naked eye by holding the disc in front of a bright light. Each disc's distribution of

these defects is unique thus forming a watermark.

Defects result in the loss of encoded bits. Whatever the source of error, provided the

latter are not too excessive, a Cross Interleaved Reed-Solomon Error-Correction Code

(CIRC) employed in the CD system, corrects them and the "missing" data are recovered

35]. When the laser-beam scans a defect the reflected signal degrades. Additionally,

if an error in the data stream is detected, the error-correction procedure is invoked.

Software has been developed which interprets both the degradation of the reflected

laser signal and the operation of the error-correction code as a measure of the shape

and size of the defect thus permitting this information to be captured. Not only can

this technique be used to capture natural defects but also "features" which have been

purposely introduced may be captured. These include information introduced on the

surface of the disc, such as intentional finger prints and characters plus those introduced

when the disc is stamped at manufacture, i.e. coded information in the form of holes

placed in the encoded layer at certain points.

The software is supported by a compact disc drive, which has been slightly mod­

ified. The additional requirements are minimal: a standard compact disc drive with

SCSI interface and an analog-to-digital converter (ADC) card for the PC. The only

3.1 A CD-based Image Capture System 30

customised hardware needed is that to index the P C software to the data on the disc.

This comprises a photo-cell device which provides a trigger pulse to the P C once every

revolution of the disc (Figure 3.1).

The analog signal of the reflected laser is taken straight from the PCB on the CD

device. It carries the amplified output of the player's photo-detector. It is fed into

the analog input line of the ADC. The trigger pulse is fed into the digital input line of

the ADC. This setup structure is sufficient for the software to successfully sample and

evaluate the incoming data.

The developed software package consists of two components: the data-acquisition

software and the data and image processing software. The data-acquisition software

takes control of the device by sending SCSI commands via the SCSI-interface. Certain

music tracks or sectors on the CD can be selected.

Simultaneously, the ADC is polled and the occurrence of a trigger pulse, which

determines the beginning and the end of a revolution is checked. The sample values

are taken at regular time intervals.

The operating system, a Linux system, is configured to support real-time data

acquisition. A minimum selectable time interval of 12^5 is achieved leading to a spatial

distance of the sample points of Ibfirti along the track. This depends on the computer

speed used and the conversion time of the ADC. A faster P C and ADC will give a

higher resolution. In order to check if the CD is played correctly, even in the presence

of surface defects, status messages reported back from the SCSI device are logged by

the software.

After accumulating the raw data specially written image-processing software is ap­

plied to generate scalable pseudo-colour images for storing in common picture-file for-

3.1 A CD-based Image Capture System .',1

mats.

A i)hotograph of the experimental image capture system is displayed in Figure 3.3.

Figure 3.3: Structure of the image capture system. The photo shows the opened
compact disc player and the trigger circuitry.

3.1.4 Necessary Hardware Alterations to the Standard CD-

Device

Compact Disc Player Models Employed

Two different CD-ROMs have been used. Both are manufactured by Toshiba, model

XM3301 and XM410L The latter is the successor of the first one. Using two different

models was necessary to verify the deviations among different devices. Both of them

have got similar circuitry. They differ in the construction of the optical head as well

3.1 A CD-based Image Capture System 32

as in the way they are mounted together. Both of them are external drives and run on

single speed with 150 kbyte/s data transfer rate connected via SCSI to the computer.

"Once-around" Trigger

In order to match the digitised data from the compact disc device to an actual location

on the disc, a "once-around" trigger has been added. It comprises a LED-detector

combination providing a signal pulse each time the compact disc spins around. The

structure is fitted on top of the player next to the disc. A paper stripe stuck on the C D

and passing through it, generates a trigger pulse, which provides spatial information

to the sample data. The paper stripe is about bmm wide, which means a sector area

of about 5° is not captured, although experiments show that this can be reduced to

2mm, with the risk of losing some trigger signals, if necessary.

The LED/photodiode combination is part of circuitry, which hosts an amplifier

to interface the output signal of the photodiode to the digital input line of the data

acquisition card. The schematics is shown in Figure 3.4.

Data Acquisition Card

The data acquisition card, P C X 312, is a high performance multifunction internal

AT-slot card, manufactured by MA Instruments. Its features, relevant for this work.

are:

• 12 bit ADC with 3/i5 conversion time

• 16 single ended analog inputs

• programmable input gain

• triggering of AD conversion from software and external clock source

3.1 A CD-based Image Capture System 33

+5V

360Q

L E D

22kQ.
22kQ

IN916 10k^

BC184C

0-200kn

BC184C

Vout

-5V

Figure 3.4: Schematic diagram of the interface trigger to ADC.

• 16 bits of digital input provided by HCTMOS device

The digital input line of the ADC is fed with the signal coming from the once-

around setup. The analog readout signal coming from the CD device is inputted to the

analog input line of the ADC. The P C X 312 does not have an on-board memory, so the

computer processor needs to read out the digital value immediately and in equidistant

time intervals after conversion.

3.1.5 Control and Data Acquisition Software of the Capture

System

The software application for data acquisition and controlling the measurement is writ­

ten in C and compiled with the GNU C-compiler [36]. The program is command-line

driven and performs the following basic tasks:

3.1 A CD-based Image Capture System 34

• driving SCSI and I D E CD-ROM devices

• playing CD-DA and CD-ROM

• controlling the ADC

• SCSI-error logging

• soft real-time data acquisition with timing information

The ADC's control functions and the digitised data are accessed by inline assembly

port-commands.

The SCSI-device is controlled over a generic SCSI-interface. It provides user-level

programs with access to the SCSI-device, thus enabling full control of the devices by

sending SCSI-commands. An SCSI generic packet device driver device is accessed by

writeO'ing SCSI commands plus any associated outgoing data to it; the resulting status

codes and any incoming data are then obtained by a read() call.

SCSI-commands with parameters [37] used include:

P L A Y A U D I O (1 2) : The P L A Y AUDI0(12) command requests the target to begin

an audio playback operation. The logical block address parameter specifies the

logical block at which the audio playback operation shall begin. The transfer

length parameter specifies the number of contiguous logical blocks that shall be

played

R E A D (I O) : The READ(IO) command requests that the target transfer data to the

initiator. The most recent data value written in the addressed logical block shall

be returned. The logical block address parameter specifies the logical block at

which the read operation shall begin.The transfer length parameter specifies the

number of contiguous logical blocks of data that shall be transferred.

3.1 A CD-based Image Capture System 35

S T A R T S T O P UNIT: The START STOP UNIT command requests that the target

enable or disable the logical unit for media access operations.

Commands having no output data or commands completing with a C H E C K CON­

DITION status report status information back through the sense-buffer. This buffer

provides the user-application with information about the cause of a SCSI-command

failure. Particularly useful is the additional sense code (ASC) and the additional sense

code qualifier (ASCQ). These combinations, about 140 altogether, give an exact state­

ment about the internal problems of the device. Some of the more relevant error

conditions for this work are listed here.

ASC ASCQ description

09 00 T R A C K FOLLOWING E R R O R

09 01 T R A C K I N G SERVO F A I L U R E

09 02 FOCUS SERVO F A I L U R E

09 03 SPINDLE SERVO F A I L U R E

11 00 U N R E C O V E R E D R E A D E R R O R

11 05 L - E C U N C O R R E C T A B L E E R R O R

11 06 C I R C U N R E C O V E R E D E R R O R

15 00 RANDOM POSITIONING E R R O R

Table 3.1: A choice of possible error conditions during reading of a CD-ROM/CD-DA
(taken from the SCSI-2 specification).

The author's software logs time, location and error condition into a separate file in

case a C H E C K CONDITION has occurred. Since the SCSI-commands address sectors

(98 small frames) as the smallest data unit, the error conditions refer to sectors 3.2.2.

By means of this logging facility it is possible to find the locations of occurring

errors due to severe defects causing the error correction system to jump in without

having to capture all digitised data.

3.1 A CD-based Image Capture System 36

This logging facility is of importance when it comes to determine the error locations
for evaluation.

Due to the lack of an on-board memory on the ADC, it is necessary to maintain an

accurate timer clock. Polling the ADC is done at equidistant intervals of I2fxs.

The ADC returns two 8-bit sample values for each conversion, whereby only the

lower 12 bits are relevant, due to the 12 bit conversion in the ADC. The sample data

are stored into an array and written after each revolution of the C D to a file on the

hard drive.

In order to ensure correct timing, the control software is associated a soft real-time

scheduling algorithm of the operating system (Round Robin Scheduling). This means

whenever this process becomes runnable, it is granted a pre-emptive right to suspend

other processes. For the time the software runs, it is necessary to have a command

shell available, which runs at a higher static priority, in order to keep control over

the computer. The interval the software is accessing the ADC is controlled by the

nanosleep(2)''^unct\on, which performs busy waits with microsecond precision if the

program is scheduled under a real-time policy.

Furthermore the OS runs under single-user mode without network services to ensure

that there are as few interruptions to the sampling process as possible.

Simultaneously to playing the CD and receiving the sampled data, the occurrence

of the once-around trigger signal is checked. The software checks if one or more trigger

signals have been lost. In this case, the sampled data are split up into equal lengths

before writing it to the hard drive, simulating the occurrence of the trigger.

The number of the sample values varies from revolution to revolution because of

speed variations in the read out loop and variations in the arrival of the trigger signal.

3.1 A CD-based Image Capture System 37

3.1.6 Capabilities of Capture System

A polling time of = I2.1fis is achieved. This leads to a sampling frequency of

fs = S2.6kHz. The polling time is derived from the measured time for one revolution

(excluding paper stripe) divided by the number of counts; each count executes one 16-

bit ADC poll. Stopping the time is done by a call to the OS function gettimeofdarj(2). It

queries the internal system time (clock ticks) plus the hardware counter. The hardware

counter is driven by a quartz oscillator. The internal system time is set every time the

counter reaches the value of a programmable latch. Then an interrupt is generated,

the counter is reset and the clock ticks are increased by one.

The duration between consecutive polls is determined by the speed of the computer

and the implementation of the polling loop. Since the implementation is done in

C, optimisation could be possible if using assembly code. The faster the computer

(depending on type of processor and clock rate), the shorter the polling time is.

Improving the sampling period is also possible by using an A D C with on-board

memory, the sampling rate would only be depending on the conversion time of the

converter. This could improve the results by about ten times.

Every = 12.1^2 a sample value is taken. Consecutively the spatial distance on

the CD along the track between two samples can be calculated as Lpoiung = Vdisc * T3 =

14.5/im.

The whole measuring process is based, and depends on, an accurate timer clock.

In order to know the relative timer error, the time needed for playing 30 revolutions of

three different tracks of one CD has been timed. The standard deviation amounts in

all three cases to GT = 1.1 • 10"^s. With the time stopped being around T = 0.155 the

relative time error for one revolution amounts to ^ = 7.3 • 10"*". which is about the

3.2 Modelling the Error Recovery Process 38

accuracy of a quartz clock.

3.2 Modelling the Error Recovery Process

3.2.1 Experimental Apparatus versus Simulation Techniques

Not only are natural random defects of importance for this image capture system. But

one important application lies in the ability to detect defects introduced on purpose.

This for example can serve for watermarking purposes where a second information layer

is introduced artificially in certain points or locations.

The effects of this kind of introduction has not previously been investigated. It

is not known if and how the error correction system reacts to special code patterns

serving as additional watermarks.

In order to be able to predict the reactions of the compact disc player in terms of

error correctibility to artificial labeling (watermarking) information, the error intro­

duction process and the compact disc player's channel model have been simulated by

the author's software. The software was written with a full simulation of the compact

disc's channel coding in mind. This simulation enables a reproducible examination of

the experimental technique and reliable results.

The following Section gives an understanding of the principles of the channel coding

for compact disc players, which in a later Section is used to model the error recovery

process including all necessary steps of the channel model.

3.2 Modelling the Error Recovery Process 39

3.2.2 Basics about the Channel Coding for Compact Discs

It is obvious that the digitised music signal cannot be stored directly onto the optical

medium. Physical and electronic properties of the recording and playback system

determine the requirements for the optical channel.

Both stereo channels of the music are sampled simultaneously at 44.1 kHz. The

audio samples are linear encoded in a 16-bit 2's complement format. After adding

error correction symbols and control words to the data stream, a run-length-limited

code, called eight-to-fourteen modulation (EFM) is used to meet the requirements of

the channel, which are

Clock Content: It must be possible to regenerated the bit clock from the readout

signal itself by detecting the pit edges. Therefore the maximum run length must

be as small as possible.

Low-Frequency Contents: Low frequency disturbances of the readout signal, caused

by dirt and fingerprints, can be filtered out, provided that the signal's low-

frequency content is zero. Therefore the longer the minimum runlength is, the

better it is.

Error Propagation: Error propagation of the modulation system must match the

C I R C E C system in order to be as small as possible.

E F M is a modulation method based on a 8-to-14-bit conversion. With E F M an

8-data bit symbol is mapped onto 14 channel bits. Accordingly the error propagation

of E F M is also limited to 8 data bits, thus satisfying the requirement that it should be

as small as possible and matching the C I R C E C system. The code is generated in such

a way that the minimum distance T ^ m is 3 channel bits and the maximum distance

3.2 Modelling the Error Recovery Process | 40

is 11 channel bits. It therefore produces (2,10) run-length-limited (R L L) channel-bit

sequences [38, 39]. The conversion is done by a table lookup.

It is also necessary to add at least 2 channel bits for connecting these patterns

without violating the Tmin constraint. In order to increase flexibility, E F M has 3

selectable channel bits for merging consequent symbols, enabling the suppression of

low-frequency content of the frequency spectrum (Figure 3.5).

Finally each positive-going pulse is converted into a single transition, which gives

the resulting signal the minimum and maximum length of 3 clock periods {Tmin = 3T)

to 11 clock periods {Tmax = H ^) respectively (NRZ to NRZI (non-return to zero

inverted) conversion).

I I I 1 6 siCTCo-samplcs

I I I ITMTI I I I ITMTI I M I I I I 24 symbol

inicrlcaving and scrambling

I M I M I I I I I t M 11 I I I I I I M I I 1 I I I I I I I 33 d n . .y^^H

EC symbols conirol uord

l O l l l l O l I l O O O O I I l J

EFM (8 10 14 modulaiion) / . . \
I oooomiiioooi I no I ooinoooiii i iol

3 merging bits

I] 5B8 channel bits

|iiiiiimiiooooooooocx)n |

27 sync bils

* • T = 136.05 u s d framet

Figure 3.5: Bitstream of the encoding system of the Compact Disc.

According to the standard [6] 24 bytes of music data make up one small frame

containing 588 channel bits. Each small frame accommodate 4 bytes of E C symbols, 1

byte for additional information, called control word and 24 channel bits synchronisation

3.2 Modelling the Error Recovery Process 41

pattern at the beginning (Fig 3.5). In the following "small frame" is called "frame".

Due to a sampling frequency of fs = 44.1kHz with 6 16-bit stereo samples of

music per frame, it takes 136.05;xs to play one frame with a final channel bit rate of

4.3218 10^^.

98 frames build up one sector. The subcode of one sector constitutes a complete

unit and supplies amongst others timing information to the C D player. CD-ROMs

make use of sectors as a higher-ranking data unit by adding a second layer decoding

structure.

The Interleaver

Applying only error correction algorithms to the digital data is not enough. In order

to cope with large burst errors caused by macroscopic surface impurities, spreading

the original sequence of data during recording over multiple frames into a different

sequence improves the error recovery process. This is called interleaving. The reverse

process during playback is called deinterleaving. Error correction and interleaving on

the CD system are alternatingly applied. This bonding makes it a complicated process

with powerful properties.

The core is a (28,112) cross interleaver between the two stages of Reed-Solomon

encoders. This cross interleaver falls into the class of product codes but features a vari­

able interleaving delay for each symbol. The resulting convolutional structure usually

performs better than a conventional product code. The structure is shown in Figure

3.6.

The interleaving, together with the scrambling process, distributes the data in a

defined way. Likewise the burst errors on the surface are broken up into smaller parts.

3.3 Software Implementation of the Channel Coding and Decoding 42

Debyof
I frame

Dcby lines
of unequal
length

Delay of
2 fraincs

D=4 fnimcs

Figure 3.6: C I R C decoder structure

so chances are higher that the number of errors in an error correction block doesn't

exceed the limit for correctibility.

3.3 Software Implementation of the Channel Cod­

ing and Decoding

3.3.1 Introduction

This Section presents and discusses the counterpart of the experimental apparatus

which simulates natural and artificial errors. It implements in software all the steps

of the compact disc channel coding system, including Reed-Solomon codec, E F M -

modulation, interleaving and scrambling. Additionally functions for control and veri­

fication of the software have been added.

3.3 Software Implementation of the Channel Coding and Decoding 43

The software is completely written in C+-i- which gives the necessary performance
to execute a large number of iterations compared to interpreted languages. The
object-oriented approach leads to a more structured source code. For every major
en-/decoding task a class was created to provide the necessary functionality and data
structure.

Care has been taken to make the source code as portable as possible. The software

has been running simultaneously on a HP machine running HP-UX and a Intel machine

running Linux.

3.3.2 Implementation of EFM-Modulation

EFM-modulation and demodulation and NRZI conversion is done in a separate class.

The translation tables are generated in the class constructor. An algorithm was devel­

oped to generate an own table according to the requirements of a run-length-limited

code outlined in [38, 40, 41, 42]. Secondly the official table found in [6] can be used

and has been employed throughout the work.

Comparing error rates from both tables a difference of 0.2% is revealed in favour of

the oflFicial one. This difference is not of importance and can be attributed to natural

local variations in the random number sequence. The use of the correct E F M table

comes into use when dealing with non-random error values.

During encoding merging bits have to be chosen in order to separate the E F M code

words and satisfy the code constraints. Three bits allow for a free choice of one bit in

most cases, which is used for minimizing the power at low frequencies (DC control).

An algorithm based on [38, 42] has been implemented. This algorithm generates a

sequence of three merging bits considering the maximum and minimum run-length of

3.3 Software Implementation of the Channel Coding and Decoding 44

the neighbouring E F M symbols and suppression of DC content. Since the merging bits
do not contain any information they are skipped by the software's demodulation stage.

The decoding task encompasses conversion from NRZI to NRZ, skipping merging

bits and converting the E F M symbols back to 8bit symbols. If an illegal 14bit E F M

symbol is encountered, the function sets appropriate erasure flags to help error decod­

ing.

The encoded frame format consists of 32 symbols. One symbol comprises merging

bits and the EFM-code symbol. The 24 synchronisation bits at the beginning of the

frame and the control word (CVV) (Figure 3.5) have not been implemented to the full

extent or employed, but the software possesses the necessary framework for it.

3.3.3 Implementation of the Interleaver

The software implementation is done according to Figure 3.6. All scrambling and

convolutional interleaving is done in a separate class Decode/Encode. Scrambling and

descrambling as well as interleaving has been tested to produce the same original data.

For test and research purposes both functions can be switched off, so that the channel

coding can be simulated without the scrambler and interleaver. This class encompasses

the calls to the Reed-Solomon codec; additional erasure flags are always carried with

the data throughout the decoder.

3.3.4 Cross Interleave Reed-Solomon Decoder Schemes

The algebra for decoding Reed-Solomon codes is based on Galois field arithmetic. All

necessary operations on Galois field elements have been implemented. The author im­

plemented his own version of a general Reed-Solomon decoder. Details of the algorithm

3.3 Software Implementation of the Channel Coding and Decoding 45

including the theoretical aspects are outlined in Appendix A.

The complete compact disc decoder encompasses two Reed-Solomon codes, C\ and

C2, combined with three interleaver units (refer to 3.6). The Reed-Solomon codes are

(32,28) and (28,24) decoders over G'F(2^), respectively. Thus each of them is able to

do two-symbol error correction as well as four-symbol erasure correction.

Generally, the first stage C\ of the combination aims at correcting single random

errors and detecting burst errors. Detected errors are passed on via erasure flags to

the second stage C2. If the first stage Ci detects more than 1 single error, it usually

outputs 28 erasure flags. Thus there is a choice in what shall be corrected by the

first stage and what shall be done by the second error correction stage. The compact

disc standard does not impose any particular decoder algorithms, that is why each

manufacturer implements his own decoder strategy.

Error decoding schemes implemented in software and used for simulations are out­

lined in Section 2.4 in Table 2.1 and 2.2.

3.3.5 Sub-code Channel and Synchronisation Patterns

The encoded data format handled by the software does not include the control words at

the beginning of the frame (Figure 3.6) nor does it contain the 24 frame synchronisation

bits. The control words are not part of the error correction process, thus they are

stripped oflf after EFM-demodulation and before error correction takes place. Storing

information using control words is not discussed here.

Synchronisation bits at the beginning of each frame serve as mark for the electronics

to recognise the start of a new frame. Destroying this information means the frame

synchronisation is lost and, depending on the electronics, the whole frame is lost for

3.3 Software Implementation of the Channel Coding and Decoding 46

data recovery. This case is discussed as a burst error of one frame length.

3.3.6 Random Number Generator

Since many parts of the simulation involve using random numbers, a reasonable random

number generator has been implemented.

Following the discussion in Numerical Recipes [43], it is not advisable to rely on the

system-supplied library routine rand(). Instead the ranlQ function, presented in [43]

has been employed, unless stated otherwise. It is known to pass all statistical tests,

unless the number of calls exceed, say 10̂ (which is not the case in this work).

Transformation methods are used to obtain exponential and Gaussian deviates ac­

cording to [43]. The necessary functions are included in Random.cc and further expla­

nation is given in Chapter 5.4.

3.3.7 Control of the Software

Apart from only providing an encoding and decoding machine, the software uses these

core modules to evaluate certain test conditions. Control over these modules is granted

through command line switches; the software program does not employ a graphical

interface.

Subsequent Encoding and Decoding A stream of data is processed so that the

output is channel encoded data according to the Standards. The encoded output is

written to a file.

The corresponding decoding function uses the data stored in this file and decodes

them back to the original data. Error introducing function can be operated on the file.

3.3 Software Implementation of the Channel Coding and Decoding 47

As an alternative, both encoding and decoding, can be executed subsequently in

the same program execution. Error introducing is done in-between the encoding and

decoding stages. Depending on the mode chosen, specific error patterns are generated

and applied. Error patterns can be classified as systematic errors, random errors, bursts

errors, etc. Each decoded frame is checked for the number of specific error conditions,

as presented in 5.1.2. Error numbers are summed up and printed at the end of the

simulation run for further evaluation. This method is used in Chapter 5 to investigate

certain distributions of introduced errors.

Maximum Burst Length The maximal correctable burst length, as often listed

in performance comparisons, can be evaluated for different decoder algorithms. The

maximum correctable burst length for decoder I I amounts to 12 frames. This is in

accordance with published results [27], although this publication does not name the

particular algorithm used. Older publications [44] give lower values (10 frames), which

might be due to a non-optimum decoder algorithm.

Additionally one can define burst errors as a sequence of frames having wrong data

only every second or third symbol in a frame and so forth or even showing certain

wrong symbol patterns. For these kind of bursts, statistics can be generated as well.

Testing B a d Frame Patterns If subsequent frames are marked entirely bad, it is

called a burst error. Such burst errors can be separated by a number of "good" frames.

If bad and good sequences of frames are alternately ordered, a bar code-like pattern is

obtained. The software is able to test the ability to correct such patterns.

A d j u s t a b l e E r r o r Rates A variety of other parameters can be passed onto the

program. The error rate for introduced random errors must be specified when using

3.3 Software Implementation of the Channel Coding and Decoding 48

certain modes.

The form of the probability density function for burst errors is hard-coded into the

program. Variations of error rates are possible through stretching the spectrum of the

intermediate gaps by multiplying obtained length with a constant factor provided by

a command line switch.

3.3.8 Computing Environment and Tests

The core of the program is the implementation of the Reed-Solomon decoder. It is

crucial to test its correct working. A stand-alone version of the encoder and decoder

was used to run a test of encoding and decoding procedures. The input data were

random numbers. After decoding no difference was found between corresponding input

and output data. As the decoder receives erasure flags at its input as well, one per

symbol, combination of errors, correct symbols, erasure flags and no erasure flags were

also tested. The decoder works correctly given the limits of the algebra Reed-Solomon

decoding.

The same procedure was repeated for the whole channel encoding/decoding engine,

including scrambling, interleaving, E F M - and N R Z I conversion. T h e resulting out­

put data stream revealed no differences from the input stream, which shows that the

implementation of the decoding operations is the exact counterpart of the encoding

operations.

Additionally separate tests for E F M conversion and N R Z I conversion were carried

out. Parts of the software like E F M , interleaving,... can be disabled, giving an easy

method of running the test separately.

The software was run on two machines:

3.3 Software Implementation of the Channel Coding and Decoding 49

• A Pentium I I based linux system with recent software packages. Two compilers
were available here: The standard G N U Project C compiler (version 2.95) and
the optimizing Intel(R) C + + Compiler for IA-32-based applications. The latter
achieved a performance gain of 30%.

• A H P 9000/715 machine running H P - U X with HP's a C C + + compiler.

The implementation conformed to strict A N S I C H - + . The complete software listings

are found in Appendix B.

Chapter 4

Results of Graphical Capture

System

4.1 Methodology

The optical readout head hosts an array of four photo detectors, which pick up the

main spot signal from the compact disc. This radio frequency (R F) signal is a weak

signal consisting of the summed output of the four photodiodes (Figure 3.2) and is

amplified by the player's circuitry. The compact disc player attempts to extract only

the actual data content of the signal and discards all other modulations and distortions

by using waveform shaping, extracting clock information and signal demodulation.

Surface contamination, local variations in the substrate and variations in the layer

reflectivity stamp an additional modulation onto the signal. Thus the unprocessed

signal carries a lot more information about the compact disc than is actually used by

the C D player. Scratches can give an extra amount of reflection into the photodiodes,

even increasing the signals amplitude.

50

4.1 Methodology 51

Before the signal enters the waveshaping circuit, it is tapped off and digitally anal­

ysed by the author's software. The signal is digitised and stored in raw binary form

onto the computer's hard drive, described in Section 3.1.5. Starting from here the data

are processed using techniques adapted from image processing.

Sampling is performed as the compact disc spins under the readout head. The

analog signal is thus continuously recorded and digitised for each revolution every Tg

seconds. The resulting array will be called sampling matrix. T h e sampling matrix

is built up of sampling points. Sampling points have a typical spatial distance of

14.6^m X l.6fj,m on the surface of the disc. The reflected energy E(x, y) into the photo

detectors, where X j y denotes the position on the reflective layer, can be expressed as

E(x, y) oc r{x,, y)tv[x, y) I{x\ y'Mx, y')dx'dy'.

I{x, y) is the intensity of the laser beam on the surface and is modulated by a trans­

mission function £s(x,7/). The transmission on the surface depends on the absorbency

of light by local surface imperfections and dirt.

r{x,y) is a general expression for the reflectivity of the information (reflective)

layer. More precisely r{x,y) must be calculated considering the diffractive nature of

the grooves ([35]). As the dimensions of the structures on the reflective layer to be

resolved are not smaller than the spot size, it is not necessary to integrate over the

spot, but leave it as a constant expression. Apart from that, structures which reside

on the surface are much larger and need to be treated as integral.

tv is an accumulated transmission coefficient for the absorbeacy of the substrate.

Due to the fact that the substrate has a high transmission and local variations are

small, this factor is not of interest for any further consideration.

4.2 Properties of the System 52

Of importance therefore, is the integral over the surface spot area A. Because the

area A for adjacent points (x, y) is overlapping, blurring occurs in the scanned image.

The area A covers O-dmrn^. Considering the distance between sampling points, one

single spot on the surface goes into about 22000 sampling points. T h e light amplitude

distribution of the surface spot though is not constant but obeys a Gaussian curve,

that is, the blurring is done with a Gaussian blurring operator.

Knowing the blurring operator a technique called deblurring can be applied to

enhance image quality. Algorithms are readily available in the public domain, although

the captured images in this work have not been processed in this regard.

When considering the resolution of the imaging system, two different situations

must be distinguished: resolving structures on the surface of the disc and resolving

structures on the reflective information layer. Due to the focusing of the laser beam,

the resolution on the surface is much lower than on the reflective layer. Examples are

given in Section 4.4.3.

4.2 Properties of the System

4.2.1 Resolution of the Scanning Process

1!
\
1:
v.

1 •
J l
W

!1

|(

1

>.

>.
L 1'

2 m m

Figure 4.1: Photograph of radial scratches on compact disc.

4.2 Properties of the System 53

It is obvious that there is a limit to resolve very fine structures on the surface. Fine

structures are represented by very narrow lines or scratches. By assessing the signal

response of the photodiode detecting the reflected laser, it is possible to get information

about the real resolution of the system. Information about the signal deterioration can

also be gained. Five radial scratches with a distance of 1.5mm have been placed on a

C D . The scratches are not more than 20/i7n wide. Being made by a needle, they are

still transparent and scatter the laser light. Figure 4.2 shows the signal response.

[rmi]

Figure 4.2: Laser-signal response to five radial scratches in compact disc.

As discussed in 3.1.2 the spot of the laser beam on the laser side has a diameter

of 0.8mm [45]. The scratches placed on the laser side, as shown in the photograph in

Figure 4.1, affect the laser beam only partly because of the non-focussed laser beam.

The response signal shows that the scratches are widened to 1mm on the length scale

on the surface of the disc.

In the following, resolution is defined to be the distance where two neighboured

points can be resolved separately. The response signal suggests a resolution of 0.8mm,

based on the fact that the scratches can be moved closer to a distance of 0.8mm

without not being able to separate them. This agrees with a spot size of the laser

4.2 Properties of the System 54

beam of 0.8mm and is applicable to both directions.

It should be noted though that single points on the read-out side of much smaller

dimensions can be detected, since they cause a distortion in the signal. It was observed

that scratches and defects up to a few tens of a micrometer wide degrade the signal,

which in turn can be evaluated by the software.

4.2.2 Signal-to-Noise Ratio of the Read-Out Signal

black stripe

20 40 60 80
time [ms]

100 120

Figure 4.3: Voltage drop due to a black stripe on surface. The other peaks signify
surface scratches.

The signal-to-noise (SNR) ratio is influenced by many factors. It is dependent on

the type of CD-device, the A D C and the general experimental setup. The A D C is a

12 bit converter resulting in 4096 discrete voltage levels with a programmable input

gain, adjusted to ±2.bV for this application. Assuming a voltage of about 1.2V in the

non-reflective case (black stripe) and a maximum of 2.5V with a high frequency noise

4.2 Properties of the System 55

level of about O.OIV, the effective number of grey levels calculates to 106.

The original data channel of the signal is hidden in the high frequency noise, which

is not considered as valuable information, since caused by the reflection of the pits and

lands, the spatial resolution capacity of the system is not high enough to match this

noise with any location on the surface.

Figure 4.3 gives the signal of one revolution. The drop is caused by a non-reflective

black paper stripe. The minimum voltage is 1.2V. The peak-to-peak signal-to-noise

ratio of the capturing system is around 30dB.

Remarkable is a short raise of the signal after the drop. It is caused by the servo

focus control, which tries to recalibrate to the reflective layer. This effect can be seen

in many surface captures, if the blemish is big enough to cause the servo control to

lose the focus. In captured images it appears as a shadow after the surface distortion

in the read-out direction.

4.2.3 Using Different Compact Disc Players

a) b)

Figure 4.4: Signal response of two diff'erent players to scratches on the compact disc,
a) Toshiba XM3301B, b) Toshiba XM4101B

4.2 Properties of the System 56

8000

7000

6000

5000

4000

3000

2000

1000 i : : I

i i i i 1 !

2000 4000 6000 8000
frequency (Hz)

10000 12000 14000

Figure 4.5: Fourier transform of data in Figure 4.4a (XM3301B).

8000

7000

6000

5000

4000

3000

2000

1000

2000 4000 6000 8000
frequency [Hz]

10000 12000 14000

Figure 4.6: Fourier transform of data in Figure 4.4b (XM4101B),

4.3 Data and Image Processing Software 57

The tests were carried out using two different C D players. This was because the

author wanted to ensure the technique to be independent of the players used.

The two compact disc player have been compared in their signal response and

signal-to-noise ratio. Both devices (Toshiba XM3301B, XM4101B) do not reveal any

major differences neither in the signal response nor in the signal-to-noise ratio.

The signal response to above mentioned scratches (paragraph 4.2.1) are shown in

Figure 4.4a and 4.4b. The signal is basically the same except that 4.4b shows more

noise in it.

The respective Fourier transform of 4.4 is calculated in Figure 4.5 and 4.6, which

shows the correspondence of both compact disc players in terms of noise and signal

behaviour.

To conclude it can be said that despite their differences in the electronic circuitry

and read-out head, the two compact disc players show the same characteristics. It can

be generalised that the image capturing technique is practicable with all compact disc

players.

4.3 Data and Image Processing Software

Raw image data, captured by the data acquisition software (Section 3.1.5), is stored

in binary format. For each sampling point two bytes are allocated, since the A D C

digitises into 12 bit values.

In order to further evaluate the raw data, an additional software program convert

these data into picture file formats. This is carried out by scaling down the raw image

data, so that it can be shown as an image. A zooming function is included to extract

features of interest from the image. The zooming can be done successively, at each

4.3 Data and Image Processing Software 58

stage the data can be converted to a picture file format and saved onto the hard disc.
The file format used for saving these pictures is the portable pixmap file format (ppm).

Obtaining scaled-down versions of the raw data is desirable, because a captured

surface image require up to several hundred megabytes of information. Normal image

processing programs are not able to handle this, the author's program handle raw

image data files of arbitrary size.

The software first calculates the scaling factor needed to visualise the image on the

screen. Down-scaling is done by averaging over rectangular blocks of pixels. Colours

are allocated by defining a colour map. The raw data values serve as an index to this

colour map. Different colour maps can be applied to increase the visibility of interesting

features. Colour mapping is not essential, because a grey level image is sufficient, but

it poses a better visibility to the viewer.

A zoom function is incorporated into the software. Zooming can be done in batch

mode, given a rectangular area to zoom in or interactively by using the mouse cursor.

With the cursor a rectangular area of interest is defined and zoomed into.

At each stage the image can be saved as a ppm-file with scaling factor, thus allowing

additional image processing software and filters to be used.

Batch mode allows extraction of horizontal lines as a graph, showing the deteriora­

tion of the captured signal in each track.

The compact disc's polar coordinates are remapped into rectangular coordinates.

Each track of the compact disc is displayed horizontally, the y-coordinate denotes the

number of the track. Thus a rectangular picture of the circular surface is formed.

Additionally the software is able to generate circular representations of the surface

by displaying each track as a circle using polar coordinates. In this case interpolation

4.3 Data and Image Processing Software 59

between points is carried out to fill the spaces between the sampling points, which leads

to a slightly blurred appearance. In Figure 4.7 an overview picture of half of a compact

disc's surface, taken with this method, is shown. Random scratches appear and are

blurred out because of the mapping to polar coordinates. About 10000 revolutions of

the disc have been recorded.

The program is command-line driven and uses the X-Window system for user in­

teraction and visualisation of the data.

Figure 4.7: Captured overview of a disc surface with random scratches.

4.4 Interpretation of Results 60

4.4 Interpretation of Results

4.4.1 Detecting Handwriting on the CD Surface

The surface of a compact disc is supposed to be clear and shiny without any distor­

tions. The well-engineered C D system though allows a trade off of a certain amount of

error correction ability for additional purposes. A first impression of the sensitivity of

detecting watermarks on the surface is obtained by resolving hand-writing on a CD's

surface.

For demonstration purposes the letters " K A Y " (author's name) and " C R I S T "

(name of research group) has been written with a ball-pen. Figure 4.8 shows the

captured image after image processing to enhance quality together with a scale bar.

No adverse effect on the playability is noticed; C I R C errors are corrected according to

the S C S I

The lines are displayed thicker than the original ones on the surface. This is due to

the l)lurring effect of the unfocused laser spot on the surface even though the contrast

is high enough to utilise optical character recognition (O C R) software to automatically

identify the text.

Figure 4.8: Image capture of the words " K A Y " and " C R I S T " written on the surface
of a coinpact disc with a hall-point pen.

4.4 Interpretation of Results 61_

4.4.2 Fingerprints on Compact Discs

Fingerprints on user-handled compact discs are normal. The C D system is engineered

to reproduce the music (or data) without loss of quality. Even if a degradation of the

read-out signal is caused, the bit-content can still be restored in certain limits. If this

is not possible, the error correction jumps in to rectify syml)ols detected as wrong.

Fingerprints act as a test bed for embedding watermarks on the surface. Finger­

prints possess a very fine structure, are transparent so that the underlying data can

be read, and are unique in their appearance. Due to their light absorbing nature the

laser signal's intensity is reduced. The same effect can be obtained by modulating the

transparency of the substrate, thus impressing transparent watermarks. Because the

technical possibilities were limited this couldn't be achieved. Instead the author cap­

tured transparent fingeri)rints, almost invisible to the naked eye, on a compact disc's

surface with this method. The fingerprints are impressed using very little red coloured

ink, so that the fingerprint consists mainly of grease and a little ink. The software was

optimised for this special task.

Figure 4.9: Captured fingerprint on the surface of a disc. The image was processed
using an emboss filter.

The evaluation of the captured data shows clearly the ability to visualise faint

4.4 Interpretation of Results 62

fingerprints on compact discs with great detail. It illustrates how small artefacts on
the surface can be captured. An examination on the signal shows that an average 5%
- 691 signal intensity is lost.

Disadvantageous is the occurrence of blurring because of a large surface laser spot.

Structures of the fingerprint are smeared out so that special recognition software would

be needed to identify them. This is a problem common to all surface capturing appli­

cations and can be refined by using image deblurring techniques.

Figure 4.9 gives an enhanced capture of a thumb print. Several image filter op­

erations, including colour transformations, embossing, blurring were used to elevate

important details.

The fingerprints must be faint enough to allow an error-free read-out of the com­

pact disc. Evaluation of the S C S I error logs show that C I R C errors in this test were

corrected. Problems were due to servo failure which is more likely to interrupt the

playing. The control software handled this by rereading the specific sector again.

Figure 4.10: A second captured fingerprint with different filter operations applied (con­
trast stretching).

Reproducible results can be achieved as seen in Figure 4.10. A second fingerprint

is captured, this time using diff'erent filter operations. Further image enhancing can be

4.4 Interpretation of Results 63

obtained with specialised algorithms for fingerprint recognition. Filters applied include
a non-linear filter, colourmap distortion, grej'scale-converting, brightness and contrast
adjustments.

4.4.3 Watermarks and their Capturing on Compact Discs

Future versions of D R M systems will involve watermarked content and medium along

with redesigned devices which look for the watermark [46]. Control over digital content

is ensured.

The compact disc medium possesses a number of possibilities in order to watermark

it. As it was discussed in the previous paragraph modulating the intensity of the

detected laser signal is one way. This can be achieved by local reflectivity variations of

the reflected layer as well through absorbency variations of the compact disc's substrate

and surface.

As long as the variations in the laser's intensity are small enough, the digital content

will be finely reproduced. Even if it leads to short disruptions in the laser signal, the er­

ror correction would restore the original data (although with a loss of data redundancy

for further error correction capability).

Watermarking of a compact disc in this sense is discussed in this Chapter. The

process of impressing watermarks and the detection of them is successfully carried out.

Watermarking is implemented by mechanically puncturing either the surface or the

reflective layer. This results in degraded laser signals due to modulated changes in

reflectivity of the reflective information layer or due to additional laser light scattering

on the surface, which the detection system (capture system) is able to process and to

evaluate.

4.4 Interpretation of Results 64

Both methods, the surface puncturing and the information layer puncturing, were

found to work. Each one has their own characteristics. On the surface the resolution

is lower than on the reflective information layer. This in turn has effects on the max­

imum density of watermark information. Furthermore the read-out technique has to

be optimised for either method, even if both could be employed together.

The mechanical markings are about bOfim - lOOfxm in diameter and almost of

round shape. Other introduction methods are feasible, an obvious method is by means

of a strong laser burning deformations in particular positions. Single points can form

symbols or code patterns which represents machine-readable information (Graphically

Punctured Code).

Symbols on the Read-out Side

The front side surface was marked utilising a needle. A combination of up to 10 dot

marks were placed on a square area of about 0.5mm x 0.5mm. It is found that the

transparent marks have no adverse effect on playability, error correction is carried out

successfully. No track loss appears either.

Since the blurring efl'ect on the read-out side is very distinctive, the sharp dots are

washed out and enlarged. This causes overlapping between adjacent dots and small

structures cannot be resolved. In Figure 4.11 a three dot structure is shown. Each

of these points are about lOO^m in diameter on the surface. On the picture they are

enlarged by a factor of 10.

Detecting is thus not a problem, the contrast is high enough to reproducibly obtain

the coordinates of these points.

4.4 Interpretation of Results 65

(1.5mm

Figure 4.11: Captured surface image of three i)unctured distortions, compact disc plays
without errors. The true size of the distortions is about ten times smaller.

Symbols on the Reflective Layer

The reflective inner layer is covered only by a very thin protective layer towards the

label side. This makes it possible to puncture the reflective layer with a fine needle on

the under side of the compact disc. Small deformations in the size of 50/im covering

about 30 tracks on the disc are then obtained. The defects are imaged in the highest

possible resolution due to a sharp focussed laser spot. The image is composed of points

in the sampling matrix (14.6/im x 1.6/im) with a size of 1.7/im. No blurring occurs,

because adjacent points do not overlap.

Figure 4.12 shows a group of four punctured dots imaged by the image capturing

technique. The differences in colour intensity denotes the power of the reflected laser

as received by the photodiodes. The image is not free of artefacts. While trying to

4.4 Interpretation of Results 66

recalibrate, the focus control ser\̂ o causes "shadows" after the blemish. Compared to
punctured defects on the read-out side, these defects cause much more harm to the
servo systems. By extending the size of the defects by only a few more microns, the
C D is rendered unplayable. Thus the size of the deformations has to be as small as
possible.

Figure 4.12: Four punctured distortions in the reflective layer, imaged by the author's
capturing technique. The size of the small dot is about lOO^m.

Additionally photographs were taken with a scanning electron microscope (SEM)

and an optical microscope. Figure 4.14 shows the scanning electron microscope picture

and Figure 4.13 the optical microscope picture. Comparing the three methods the

author's image capture technique is verified. Even the small reflective layer distortions

around the main points as seen in the optical picture show up as artefacts on the

image capture picture. Compared to the optical microscope picture the image capture

technique reveals more three dimensional information. It must be noted that the

electron microscope pictures the distortion from the under side (label side) of the

compact disc, whereas with the other two methods the photographs are taken from the

read-out side.

4.4 Interpretation of Results 67

Figure 4.13: Photograph of this distortions taken by an optical microscope. Compare
to Figure 4.12.

Figure 4.14: Photograph of the same four distortions taken by a scanning electron
mic roscope. Compare to Figure 4.12.

4.4 Interpretation of Results 68

To conclude it can be said that the author's image capture system of the reflective
layer is comparatively equal to that of other methods in terms of spatial resolution.
Applications like quality assurance of compact disc production come quickly into mind.
The cost of this system is by far lower than all other methods. Image capturing for
watermarking purposes will be discussed in the next paragraph.

0.5mm

Figure 4.15: A group of punctured holes in the reflective layer, captured during the
playing of the compact disc.

Finally Figure 4.15 shows a group of punctured holes in the information layer. The

playback of the compact disc is not interrupted during playing over these blemishes.

Figure 4.16 shows one of these distortions in the maximum possible resolution. A

4.5 Further Applications 69

Figure 4.16: One punctured hole in the reflective layer, captured with maximum reso­
lution during the playback of the compact disc.

scale bar is included. The shadow in x-direction caused by refocusing is clearly visible.

Different colours mark a different depth. The resolution, being in the micrometer scale,

is surprising, considering the low-cost mechanism of this system.

4.5 Further Applications

4.5.1 Random User-Handling and Dirt

User-handling of the C D leaves fingerprints, scratches, and other dirt on the surface.

These natural bleniishcs arc detected and well visualised by the proposed image capture

technique.

The surface of a heavily scratched C D cleaned with white spirit is shown in Figure

4.17a). The darker the colour, the more the signal is deteriorated. In comparison in

Figure 4.17b) the surface is captured after exposure to extensive user-handling. Even if

the signal loss is about 25 % compared to the lowest signal gained with a black stripe,

the C D device plays the music without any audible errors. The capturing was done

with 4000 rotations of the C D starting 4 minutes after the beginning of the C D and

took 9 minutes.

4.5 Further Applications 70

a) b)

Figure 4.17: Two captures of the same disc, a) cleaned disc b) after touching. The
shaded areas mark lower reflection caused by grease and dust.

4.5.2 Moire-Pattern

The captured image of one of the compact disc examined reveals a moire-like pattern.

T\w disc is badly manufactured; the same disc shows defects in the reflective layer like

those discussed in paragraph 4.5.3.

Figure 4.18a shows this moire pattern together with perpendicular stripes and

scratches which are actually remains after cleaning ink off" the C D . It is believed that

the structures are related to an inhomogeneous polysubstrate layer. Figure 4.18b shows

an image of a disc without manufacturing artefacts.

Figure 4.19 shows a demonstration of an injection fault during the disc production.

This photograph is taken by a commercial compact disc manufacturing monitoring

device, marketed by Easier A G , Germany. The similarity of both images suggests the

same cause.

The moire pattern repeats about 40 times over the surface, while the period remains

4.5 Further Applications 71

0 . Sroin

0 . Smm

a) 1)1

Figure 4.18: a) Moire-pattern in the substrate detected on a badly manufactured disc
b) a clean, good disc without moire-pattern

Figure 4.19: Demonstrative example of an injection artefact in badly manufactured
compact discs (Easier A G , Germany).

4.5 Further Applications 72

almost constant. There is only a small diff'erence in the period between the inner parts
and the outer parts of the surface of less than 5%.

The same figure gives another interesting feature of the capturing process. A

rounded, irregular line in the bottom part of the image can be seen. This is caused by

a dried stain of white spirit mixed with ink from a former cleaning process. Despite

all these variations in the laser signal intensity the disc plays well without causing any

audible error.

4.5.3 Detecting Manufacturing Defects during Read-out

Optical media manufacture consists of various production steps such as injection mold­

ing, sputtering, protective coating and so on. These process steps imply possible defect

sources which can compromise the playability of the medium.

While using and examining a number of compact discs, one has been found to have

substantial defects in the reflective layer. With a strong backlight these appear as tiny

little holes. The diameter of these varies typically from lO^m to bOjim. There are

tens of them per square inch dependent on the region. The cause is obviously a bad

production lot, because the same disc shows a moire-pattern as w êll as discussed in

4.5.2.

As shown in the previous Chapter the capturing system maps the reflective layer

of a compact disc accurately. Applying this method to a badly manufactured compact

disc, the result shows these artefacts as w^ell. An image was captured of this disc; the

overview is presented in Figure 4.20. This picture shows all artefacts well, a software

emboss filter was used to enhance small details.

The read-out is done in the x-direction. Perpendicular stripes are remains from

4.5 Further Applications 73

wiping the surface in the polar direction. The small spots represent the defects in
the reflective layer. A moire-pattern is visible, it is believed that these are structural
artefacts of the polysubstrate layer, since it is only discovered on this disc. The image
shows the increasing length of the tracks in the y-direction.

\ . Icm

\

1
\

\

\

\
Figure 4.20: A captured overview picture of a badly manufactured disc with lots of
i l r f r c l N s (M ' i i s m a l l d o t s .

The compact discs plays without C I R C errors being observed.

Pictures have been taken with an optical microscope to prove the existence of said

l)leniishes in the reflective layer. Figure 4.22 shows a part of the read-out surface, the

black spots being the defects in the reflective layer. The wide stripe is drawn by a ball

4.5 Further Api)lications 74

Figure 4.21: A zoomed-in version of 4.20, showing distinctively the defects, moire-
pattern and a part of the boundary.

4.5 Further Applications 75

Figure 4.22: A photograph of the surface taken by a conventional optical microscope.

pen to mark the boundary of a region.

Figure 4.23 shows a captured image of a region surrounded by a ball pen line. This

region is populated densely by reflective layer defects. Figure 4.22 shows a part of this

region photographed by a conventional optical microscope.

Comparing the two figures 4.22 and 4.23 the difference between both methods

becomes obvious. Whereas the microscopic image shows the details more accurately.

Figure 4.23 reveals more details in general like moire-pattern and l)h'inishes on the

surface.

It must be noted that the captured images are shrunken versions of the original

captured image. The resolution is, as discussed in paragraph 4.4.3, 14.6/xm x 1.6/im.

A badly produced compact disc with such defects has actually its own watermarks

stamped in the reflective layer. Although the watermarks obviously have not been

4.5 Further Applications 76

Figure 4.23: Image capture of the disc with a circular boundary drawn by a ball-pen
around reflective layer defects.

placed there on purpose, this sj)ecific damaged compact disc is possibly the only one

having this characteristic clusters of defective spots in the information layer. Because

it is believed that during manufacturing these spots have been generated randomly, the

disc is identifiable uniquely even amongst other compact discs of the same production

lot.

Thus we might say this compact disc is fingerprinted by the manufacturer. De­

tection and evaluation of the digital fingerprint has been done in this Chapter. The

playability is not adversely aff"ected, because the missing or destroyed data are restored

by the error correction system. A small amount of the error correction's capacity is

used up though.

Detecting digital fingerprints in this way can take too much time, because the whole

disc must be scanned to get all information. It is therefore convenient to distribute them

along a few tracks, as discussed in paragraph 4.4.3. Because errors in the digital data

content caused by the introduction of such watermarks must not only be correctable

but also present the best correctibility, regarding also the natural background noise

4.6 Conclusions and Applicability for Watermarking 77

(dirt, fingerprints), to the error correction system, a thorough investigation about the
possible locationSj regarding their positions relative to the respective frame beginning,
must be carried out.

The next Chapter raises this point and continues the discussion by the investigation

and evaluation of watermark introduction, backed up by computer simulations.

4.6 Conclusions and Applicability for Watermark­

ing

The image capture technique works well for getting high quality images of a compact

disc's surface or the underlying reflective layer. Apart from this it off'ers a reliable way of

examining the compact disc for imprinted mechanical watermarks, both on the read-out

surface and on the reflective layer. This Chapter focussed on imprinting, detection and

evaluation of introduced blemishes which can serve as a digital fingerprint of a single

compact disc. The control software was able to read back the positions of introduced

blemishes. The efi'ect on the error correction was checked by evaluating S C S I error

logs, which give a reasonable statement about the occurrence of C I R C errors. The

blemishes were introduced in such a way not to jeopardise the playing of the compact

disc, although the reasons for choosing the exact positions are not comprehensible at

this point. A discussion about optimal locations will be given in Chapter 5.

The interleaving and error correction system gives rise to the assumption, that

certain positions and certain patterns are more correctable than others, thus it is

possible to optimise the information-to-output ratio for watermarks.

Simulating the channel coding for compact disc will help to judge error patterns

4.6 Conclusions and Applicability for Watermarking 78

and certain positions within a frame or successive frames on their correctibility. The
experimental trials are replaced by a more scientific and reliable approach. The aim
is to achieve the highest information-to-output-error-rate ratio. Also, a requirement is
that possible watermarks are read out as quickly as possible. This means they must be
arranged in such a way that during one or two revolutions of the disc, all watermarking
information has been read. Thus a two dimensional code must be considered. It was
shown that mechanically puncturing the reflective layer is enough to obtain reasonable
sized and detectable watermarks. Instead of using a mechanical device, a strong laser
would be more capable of precisely marking positions. By arranging the markings in
a defined way, a code can be formed. This proposed Graphically Punctured Code will
be derived in Chapter 5.

Chapter 5

Watermarking and Punctured Code

Simulations

5.1 Definitions and Background

5.1.1 Error Concealment

When the capability of the error corrector is exceeded but errors are detected, the

uncorrected but flagged samples should be concealed if audio data are processed. Con­

cealment reduces the noise resulting from uncorrected samples. Various techniques are

available and are actually implemented in compact disc players.

muting: The value of the erroneous sample is set to zero.

previous value-holding: Zero order interpolation.

first order interpolation: Mean-value interpolation. The erroneous sample is re­

placed by a level midway between the previous sample and the following sample.

n-th order interpolation: Uses a polynomial approximation of n-th order.

79

5.1 Definitions and Background 80

According to the data sheet of a modern single chip decoder (Philips SAA7325)
5]j concealment with more than one consecutive non-correctabie sample is achieved by
holding the last good sample and performing a one-sample linear interpolation before
the next good sample. In general all CD players use two independent interpolators for
the left and right channel.

Many publications ([1, 47, 28, 45]) use the probability of encountering an interpo­

lated sample Pip or the probability for audible clicks Pciuk in order to give a rough

impression of the capabilities of a certain error correction system depending on the

input symbol error rate Psymboi-

This convention is convenientj since these terms address the issues of the listener.

Error rates in this work are calculated in terms of P,p and Pdick amongst others.

Additionally one can consult the definitions for P Q O , P Q I) -^IOJ given in Chapter 2.6.

These are also computed by the software and used in some cases. They relate to

previously mentioned ones in the following way [1]:

Pip Pinterpolation = (Pll + PQI) ' (2 — -Pu — PQI)

Pciick = Pio • (2 - Pio)

These equations take into account that each mono-audio-sample consists of two

symbols. The click rate basically expresses the probability of a misdecoding plus a not-

detected error. When encountering such a situation, the C D player generates an audible

click in the loudspeakers, which should be avoided by any means. The interpolation

rate refers to a first order interpolation of two erased symbols (mono-audio-sample).

5.1 Definitions and Background 81

5.1.2 Definitions of Error Rates

Performance of error correction systems can be expressed in an objective manner by

specifying the click rate, the symbol error rate or the interpolation rate of the decoder

strategy in its functional dependence on the input error rate. In general, error rates

are measured in erroneous bits over total bits. This equivalents to the probability of

encountering an erroneous bit and therefore the units are omitted in the following.

Due to some confusion in other publications in defining these terms, an exact defi­

nition of output error rates, as assumed by the software, is given in the following.

interpolation rate Pipi An event is counted as "interpolation" if one or two symbols

of the 16-bit one channel mono-audio-sample are marked as an erasure, indepen­

dent if it is an error or not and surrounded by not erased symbols.

symbol error rate Psym- Every symbol is compared with its original value. The not-

matching symbols are counted to the symbol error rate, not considering if the

symbols are erased or not.

sequence error rate Pscq- Sequences of wrong symbols preceded and followed by not

erroneous symbols are counted.

click rate Pdick' An event is counted as "click" if there are one or more symbols not

erased but erroneous between either not erased symbols or not erroneous symbols.

This is a measure for mis-detection and mis-correction by the C D player.

5.1.3 Limits of Computer Simulation

It should be noted that the resulting probability values can only be an approximation

to the "real" values. The approximation will be better as the number of iterations

5.1 Definitions and Background 82

increases. This in turn means that for events with a relatively low probability, more

iterations are necessary. Otherwise large measurement errors in terms of standard

deviation have to be accepted.

Number of detected errors 1 10 40

deviation error with ± 1 error 100% 10% 2.5%

Probability Psymboi 1.66 - 10-9 1.66-10-^ 6.7 •10-^

Table 5.1: Lowest error probability to detect when decoding 2.5 • 10^ frames with 1,10
or 40 symbol errors occurring. One additional symbol error leads to the resulting
standard error.

Decoding 25 million frames (1.66 • 10̂ symbols), the lowest symbol error rate to

detect is r = 1.66 - 10" .̂ If 10 errors are to be expected, the lowest rate amounts to

r = 1.66 • 10" .̂ Assuming an error deviation of one symbol error per measurement,

measuring an error rate of r = 1.66 • 10~® (one symbol error) means a measurement

error of 100%. Table 5.1 gives an overview.

Assuming a reasonable value for the deviation to be 2.5%, a minimum number of 40

symbol errors at least must be expected. Accepting no less than 40 errors is common

practice.

In this work the highest number of frames iterated was 25 million. Consequently a

minimum error rate of Psymboi = 6.7 • 10~® could be detected at best, when accepting

no less than 40 errors. The results were scanned for error counts less than 40, which

were rejected. In some rare cases error counts of above 20 have been accepted which

equals an uncertainty error of 5% maximum.

The wide range over several orders of magnitude of the error rates requires the same

range in computing time. Comparing the output error rates of P = 10"^ and P = 10"*",

the latter one takes a thousand times longer to compute. Thus computer simulations

in this area are always supposed to have a bottom-limit due to the computing time

5.2 Conformance of Computer Simulation and Statistical Analysis 83

available. The software was optimised for speed therefore.

5.2 Conformance of Computer Simulation and Sta­

tistical Analysis

Results of the author's computer simulation have been matched against published error

rates, obtained from statistical analysis of decoder strategies. In [1] such a calculation

is presented. A memoryless channel is assumed and the interpolation rate is calculated

using a statistical approach. The decoder algorithm used is number I.

A memoryless channel model describes the errors as occurring statistically inde­

pendent from each other. It is a first approximation to a real channel, where the error

distribution shows bursts of errors.

The author's software implements decoder I, along with a modern version, decoder

II. In Figure 5.1 the straight line represents the interpolation rate calculated in [1 .

Compared to the interpolation rate, obtained from the author's software, conformance

is found.

5.3 Decoder Algorithms applied to Memoryless -

Channels

Two decoder algorithms have been implemented. In order to find out which one per­

forms better, they are both applied first to a non-bursty (memoryless) channel and in

the next Section to a bursty channel.

Computer simulations leading to Pxx values and error rates as listed in Section 5.1.2

5.3 Decoder Algorithms applied to Memoryless Channels 84

1 h

0.01

Q.

S 0.0001
£5

8 le-06

1e-08

1e-10

calculated interpolation rate
simulated symbol error rate +
simulated interpolation rate x

0.1 0.01
Input error rate r

0.001

Figure 5.1: Diagram showing interpolation and symbol error rate (crosses) as obtained
by the author's software. The straight line represents the interpolation rate, published
in [1] as a result of statistical calculations.

5.3 Decoder Algorithms applied to Memoryless Channels 85

for these two decoders have not been carried out before to the knowledge of the author.

decoder I: P01
decoder I: P10
decoder I: P11

decoder It: P01 —Q
decoder II: PIO
decoder II: P11

Z 0.0001

ie-05

ie-OB

le-07

ie-08

1e-09
0.01

input error rate r
0.001

Figure 5.2: Decoder I and II compared in terms of values on a non-bursty channel.
Decoder II shows better performance.

The results are shown in Figure 5.2, which shows the output error probabilities Pxx,

and Figure 5.3, which shows the other error rates. Each diagram compares decoder 1

and II as presented in Table 2.1,2.2.

Only results with a number of errors greater than 20 have been considered. That

means one error more or less in the output cause an error of maximal 5% in the output

error rates.

It becomes clear that the author's implementation of decoder I I has a higher per­

formance in terms of error correction rate. At an input error rate of r = 0.04 the

difference in P^x is about one order of magnitude.

The next Section applies these two decoder algorithms additionally to a bursty

5.4 Decoding Burst Errors 86

channel. The decoder with better correction capacity will be chosen for simulation of

watermark sequences.

decoder i: symbol error rate
decoder I: interpolation rate

decoder I: click rate
decoder II: symbol error rate
decoder II: interpolation rate

decoder II: click rate —o

2 0.0001

1e-06

le-08

1e-10
0.01

input error rate r
0.001

Figure 5.3: Decoder 1 and II compared in terms of interpolation, click and symbol error
rate on a non-bursty channel. Decoder II shows better performance.

5.4 Decoding Burst Errors

5.4.1 Introduction

Optical storage media show not only random errors, but burst errors. Burst errors are

defined as groups of erroneous symbols. The distribution of burst errors is obtained

by error measurement equipment [32]. Burst errors result from heavily damaged discs,

where the scrambling mechanism is not able to spread them apart. It can also be

generated by introducing very few errors but at certain known positions. Burst errors

5.4 Decoding Burst Errors 87

show different requirements for the decoding strategy. The decoding process must be
able to cope in particular with these errors, because they are characteristic to the
compact disc's readout process.

5.4.2 Reproduction of Error Burst Probabilities and Good

Data Gap Probabilities in a Bursty Channel

It was the aim of this work to incorporate the presence of a certain probability distri­

bution of burst errors in order to present a model close to realit3^ As it will be shown

later, the characteristics of the background noise, in the form of a probability density

function, influences the ability to correct certain types of error characteristically.

Various publications deal with the reproduction of error distributions in bursty

channels. For the characterisation of the real communication channels there are several

channel models available. One such model is the well-known Gilbert model [48]. It

comprises only two states: the bad state " B" and the good s t a t e G " with the respective

probabilities to change or keep the state (Figure 5.4).

1 - a

1 -6

Figure 5.4: Gilbert model

However this model is proved not to reproduce measured error distributions exactly.

A more precise model was proposed in [49]. Since a characterisation of the compact

disc channel is not needed here, only the resulting probability distribution is important

5.4 Decoding Burst Errors 88

in this work.

The author's simulation of bursty background errors is based on an error distribu­

tion published in [2] and experimentally determined in [31, 32 .

This error distribution is emulated by a combination of random number deviates.

The output of these represents the probability of the occurring of burst errors and

matches the graph in [2]. Figure 5.5 plots the burst relative frequency / in a half-

logarithmic scale against the burst length. The relative frequency of the error bursts

Is obtained by dividing the number of bursts of a given length by the total number of

burst events. Thus the area under the curve is standardised to one.

Curve b is the same as presented in [2], emulated by specific random number gen­

erators. The generator is composed of three different deviates, namely one exponential

for the steep slope at the beginning, one Gaussian for the peak at about burst length

30, and one last exponential for the low probability of encountering longer burst er­

rors. They combine with different probability, so that they can give this characteristic

curve. This describes the background errors of a "clean", not subjected to extensive

user-handling, compact disc.

Simulations in this Chapter are done using curve c, which has a higher probability

for bursts with a typical length of around 30 symbols. It is believed that this gives

the typical characteristic of a user-handled disc with scratches on the surface. The

probability of encountering a burst here is ten times higher than on the "clean" case.

For comparison curve a is the one given by simulating a memoryless channel, where

no burst errors occur. The complete different shape is resulting in different error

correction rates, even if the symbol error rate before correction is the same.

.All three curves are standardised to their respective area. In order to get the ap-

5.4 Decoding Burst Errors 89

r 0.01

0.001

0.0001

1e-05

1e-06
40 60
burst length in symbols

100

Figure 5.5: Different probability density functions used for simulations of bursts (area
under slope standardised to one), a) bursts caused by a memory less, non-bursty chan­
nel, b) bursts emulating measured distribution in [2] on a clean disc, c) bursts with a
ten times higher probability assuming a scratched disc. Curve b aiid c is reproduced
using a combination of random number deviates.

5.4 Decoding Burst Errors 90

propriate error rates resulting from these error statistics, the good-data gap statistics

in-between the error sequences have to be emulated. A similar procedure for reproduc­

ing gap statistics is carried out.

The gap statistics basically consists of a part of high probability short gaps and a

bulk of gap lengths, having a constant, ten times lower probability relative to the short

length gaps. The longest gap length is 10000 symbols.

Varying the input error rate with these two independent probability functions is

done by scaling the gap distribution by a stretch factor n. The lower the input error

rate is supposed to be, the higher the average gap length, obtained from the gap

distribution, must be. It is believed that the characteristic of the error statistics does

not change when dealing with a more heavily scratched disc, i.e. the slope of the burst

density curve remains the same. Instead the intermediate gaps vary in their average

length. This manifests in a stretching of the gap statistics in order to achieve different

error rates.

Input symbol error rates ranging from r = 0.0001 to r ^ 0.8 have been obtained

in this way. The relation between stretch factor n and obtained input error rate r is

shown in Figure 5.6.

The following simulations have been carried out using the error distribution of

Figure 5.5c. It is believed that this results in quantitatively and qualitatively more

accurate results which come closer to real-world applications.

5.4.3 Decoder Algorithms Applied to Bursty Channels

Figure 5.7 presents the error correction capacity in terms of symbol error rate and

interpolation rate for both decoding strategies I and II. It is evident that both of them

5.4 Decoding Burst Errors 91

0.1

E
I
3
C

0.01

0.001

0.0001

1
1 —' ' 1

>

0.1 0.01
stretch factor n

0.001 0.0001

Figure 5.6: Relation between stretch factor of gap lengths n to obtained error rate r.
The error distribution is constant while scaling the gap distribution with factor n to
achieve different input symbol error rates.

5.4 Decoding Burst Errors 92

can vary up to one order of magnitude from each other.

0.1

0.01

I 0.001

2

% 0.0001

1e-05

1e-06

1e-07
0.1

decoder I: symbol error rate — ^
decoder I: interpolation rate —x-

decoder II: symbol error rate —
decoder II: interpolation rate — B -

0.01
input error rate r

0.001

Figure 5.7: Decoder I and II compared in terms of symbol error rate and interpolation
rate on a bursty channel. Decoder II shows the better correction performance.

An interesting feature can be observed at very high input error rates r 0.2.

The interpolation rate decreases substantially for decoder I. This might be due to

very long sequences of erased symbols which actually do not count as interpolated

sequences anymore (according to the author's definition) because long erased sequences

are muted.

The parameters P n have been calculated as well. Due to a low number of Pio

events, it was reasonable not to choose them for a comparison.

Interpolating to an input error rate of r = 0.001, the output symbol error rate

becomes approximately PsymbMrsty ^ 10~^ calculated for a bursty channel model. The

5.4 Decoding Burst Errors 93

non-bursty channel, discussed in the previous Chapter, achieves an output symbol error

rate of Psymb,non-bursty ^ 10" *̂. This meaus correction rates can vary up to 4 orders of

magnitude depending on the characteristics of the channel errors.

The decoder choice influences the results by about one order of magnitude in favour

of the more modern one, decoder 11. The same result was found for a non-bursty

channel. In the following decoder II will be used only.

5.4.4 Error Correction Capacity on a Bursty Channel and

Memoryless Channel

To summarise, symbol error-correction rate of both non-bursty and bursty channel, as

introduced in paragraph 5.4.2, are presented in Figure 5.8. The graph shows interpo­

lation rate and symbol error rate of both channel models corrected by decoder II. The

author's computer simulation proves a weakened correction ability of a bursty channel

compared to a memoryless channel, as expected.

The diagram suggests that towards lower input error rates the error correction is

worsened compared to non-bursty errors. Blocks of erroneous symbols cause more

problems for the error correction system than randomly distributed errors. Input error

rates above r = 0.1 lead to the same correction rates. Above this level erroneous

symbols form enough accumulations to cause the error correction to fail like on a

bursty channel.

5.4.5 Discussion

It can be seen that the character of error distribution - either using a memoryless

channel model or a bursty channel model - influences the capacity of the error correction

5.4 Decoding Burst Errors 94

symbol error rate (bursty channel)
symbol error rate (non-bursty)

interpolation rate (bursty)
interpolation rate (non-bursty) — B

0.001

1e-06

1e-07

To 0.0001

i
% 1e-05
3
o

0.01
input error rate r

0.001

Figure 5.8: Decoder II applied to a non-bursty channel model and one with the distri­
bution presented in paragraph 5.4.2. Towards lower input error rates the difference is
evident and can be extrapolated to the deviation of several magnitudes.

5.4 Decoding Burst Errors 95

decoder massively. Two decoding strategies were checked against a memoryless channel
and a bursty channel. Both of them reveal differences in error correction capacity.

In this Chapter an analysis has been done for bursty channels. The result shows

that random, statistically independent erroneous symbols in the input stream cause

much less trouble to the error correction system than sequences of errors.

The simulations of the bursty channel were based on a special error distribution.

Applying decoder II to these real-world distribution resulted in different types of error

rates. Investigations in this area have not yet been published. The motivation for

emulating experimentally measured error distributions as opposed to either random

errors or simple random burst errors [33] was to evaluate watermarking schemes as

closely as possible to a real-world scenario. The idea of simulating error distributions

in this way is new though and has brought quantitative results. The next Section

focuses on testing of certain watermarking schemes, considering a normal user-handled

disc.

5.5 Performance of Watermark Sequences 96

5.5 Performance of Watermark Sequences
5.5.1 Introduction

Any new information added to the data stream must be placed in known positions

in order to allow this data to be recovered. This recovery should take place before

the error correction is invoked. Ideally the error correction system fully corrects the

original information, though weakening further error correction capacity for random,

naturally occurring errors.

The allocation of certain symbols in a frame for watermarking purposes has effects

on the error-correction rate. Choosing different patterns and places for the introduced

symbols might result in a better performance of the error correction system.

Introduced error patterns are characterised by their generation function and the

introduced symbol error rate (rintro) denoting the error rate of the intentionally intro­

duced error symbols. The capability of the error correction can be expressed by either

the distinct terms: PQO , ^oi: ^ l O : ^ii or additionally one can consult the rates discussed

in paragraph 5.1.2 The one to choose depends on the purpose and interest of the in­

vestigation. In this work two parameters deserve a closer look: The symbol error rate

and the interpolation rate.

The symbol error rate Psym equals the sum of Pio + Pn and counts the number of

uncorrected symbols plus the number of miscorrected symbols. The higher this value,

the less a certain pattern is correctable.

The interpolation rate P,p expresses how often the interpolation of audio samples is

invoked. In the case of a CD-audio player it means that the qualitj' of the reproduced

sound is deteriorated if this value is high.

5.5 Performance of Watermark Sequences 97

For other parameters, such as Pio, not enough symbol errors (less than 40) are
generated to get reasonable reproducible results in 250000 iterations. To compensate
for this, more iterations are necessary, which would multiply the computing time.

It is also of interest which effect the used probability density function of the back­

ground noise has on the overall error correction rate. This will be discussed in the next

Section 5.5.2. Since the aim is to find a pattern the least prone to errors and to predict

quantitatively the influence, the most realistic case is assumed. Therefore the error

distribution function of Figure 5.5 is employed modelling a user-handled compact disc.

The rate of introduced additional error symbols typically varies from rin(ro = 0.005

to Untro = 0.3, which is less than one wrong symbol per frame to a third of a frame

rendered bad. Apart from generating intentional errors, a second process is responsible

for generating the erroneous symbols simulating the background noise. These two

processes work independently of each other.

A number of different error pattern generators has been tested against a bursty

background noise distribution, presented in Section 5.4.2 (Figure 5.5c). In the following

each of them is presented with its results in terms of resistance against error correction.

For each different combination of parameters, 250000 frames (iterations) have been

simulated. This establishes a compromise between computing time and a reasonable

accuracy.

The x-axes of the diagrams (introduced error rate r) denotes the input symbol error

rate for introduced erroneous symbols.

The y-axes (relative error frequency /) denotes the ratio betw êen overall output

error rate for introduced error patterns plus background noise and output error rate

for background noise only. The overall output error rates are thus expressed as a

5.5 Performance of Watermark Sequences 98

introduced error rate ^intro 0.005 0.02

bursty noise: output error rate Psym,bursts 5.45 • IQ-^ 1.75 - 10-^

random noise: output error rate Psymjandom 1.15 - 10-^ 8.15 - 10-^

ratio X = p"̂ "̂ -̂ ""̂ '* 473-9 21.5

Table 5.2: Output symbol error rates P3ym,random/bursts of non-bursty, random back­
ground errors and bursty background errors, combined with systematically induced
symbol errors of two different error rates rimro- The ratio shows that random and
bursty noise have different correction rates Psym, as expected, but also that the ratio
of correctibility is depending on the rate of induced errors.

multiple of the error rate of background noise only.

5.5,2 Motivation for Considering Background Noise

Bursty noise, as it is present in user-handled discs, has a lower error correction rate

than random noise. Table 5.2 lists values for the output error rates Psym of an error

distribution composed of background noise and introduced symbol errors. Due to the

better correctibility of random noise, the ratio is x / 1. In addition, x is depending

on the introduced error rate Vintro- This is explained by the fact that with higher

introduced error rates this part of the overall input error distribution overweighs the

background error distribution.

It is believed that the ability to correct introduced errors on a noisy channel de­

pends on the type of background noise. Thinking of an introduced double error each

frame, it is possible that the underlying noise probability function gives rise to different

correction rates for that introduced error.

In order to illustrate this behaviour, combinations of bursty background noise, non-

bursty background noise and systematically induced two-symbol error patterns have

been simulated. Table 5.3 lists the number of symbol errors after decoding 250000

5.5 Performance of Watermark Sequences 99

frames.

characteristic errors present bursty background plus induced two-symbol error

resulting symbol errors n 10824 79816

characteristic errors present random background plus induced two-symbol error

resulting symbol errors n 2400 68777

Table 5.3: After decoding 250000 frames the number of symbol errors n varies depend­
ing on the form of noise present. The induced error rate is r,ntro = 0 0625, which is a
two-symbol error per frame.

Based on Table 5.3 the ratio between correction rate of background noise only and

background noise plus additional, intended symbol errors, for the two types of noise,

has been compared in Table 5.4.

^bursty+indueed 7.37

^ranrfom+tnduced
Tlrnnrfom

28.66

Table 5.4: Considering the values derived from Table 5.3 it becomes evident that
introducing a two-symbol error per frame does not have the same effects on the output
correction rate on bursty and non-bursty background noise.

It becomes evident that introducing two-symbol errors on a bursty background has

less effect on the output error rate than introducing errors on a random background

noise. Actually the output error rate increases thereby by a factor of 28, whereas the

output error rate on a bursty channel increases only by factor 7. This is a four times

difference of the increase of error rates when inducing additional errors due to the type

of background errors.

It is therefore important to consider background noise in general, and in particular

to precisely model the error distribution. Introduced errors form a particular error

distribution, too, even though the distribution is discrete. The superposition of a

specific background error distribution and introduced error distribution is therefore

crucial for the error correction rates. Effects of introducing erroneous symbols in terms

5.5 Performance of Watermark Sequences 100

of the overall output error correction rate thus depend on the type of background noise

present. These variations of output error rates in turn are specific for different patterns

of intentional errors.

Therefore the calculations for the next chapters are based on the presence of back­

ground noise, as specified in Figure 5.5.

5.5.3 Using Intentional Errors as Watermarks

Equidistant Symbols Pattern (EQU)

100000

10000

1000

100

10

T • • 1 1 .
symbol error rate -
interpolation rate -

1 • •
- - X - - -

/ •/ \ /
f- / ^ /' V •

^^^^^^

1 . "

0.01 0.1 1
introduced error rate r

Figure 5.9: Correctibility of equidistant error symbols (EQU) together with background
noise. The relative error frequency / is based on the correction rates for background
noise only.

Every n symbols one wrong symbol is entered. The minimum distance between two

5.5 Performance of Watermark Sequences 101

consecutive n is 2, the maximum is n = 200. The minimum input symbol error rate is

f'intro = 0.005 for n = 200 , the maximum is Vintro = 0.3.

This scheme is one of the most simple to apply. The correctibility in terms of single

errors and sequence interpolation rate is shown in Figure 5.9.

Some error rates show high peaks in the output error rate. In these cases patterns

are created for which the error correction process cannot cope as intended. The opposite

can happen, too. The distance n = 16 and n = 32 marks a relatively good correctibility

probably due to n = 15 separating each frame into two equal parts. Distances of

n = 30,31,35 {rintro = 0.029.. .0.033) result in low symbol error rates (single peaks),

whereas n = 42 {vintro = 0.024) results in a ten times higher overall error rate (one

peak).

Sequences of Wrong Symbols Pattern (E S E)

One sequence of wrong symbols is introduced at the beginning of each frame. The

length of the erroneous sequence varies from 1 to 16 symbols in each frame giving an

error rate of r = 0.031... 0.5. Results can be viewed in Figure 5.10.

Sequences of Shifted Wrong Symbols Pattern (ESS)

A variation of the above mentioned method is shifting the error sequence by one symbol

each new frame. This distributes the error sequences more uniformly in the data stream

(see Figure 5.11). Minimum is again one symbol per frame, maximum is 16 introduced

symbols per frame. Figure 5.12 shows the result. The relative error frequency is above

r = 10, conclusively the error correction ability for this pattern is worse than without

shifting.

5.5 Performance of Watermark Sequences 102

100000

10000

1000

100

10

symbol error rale —
interpolation rate

0.01

- - - X- -X -X - s X y-.

0.1
introduced error rate r

Figure 5.10: Correctibility of a sequence of errors with varying length at the beginning
of each frame (ESE) plus background noise based on error rates of background noise
only.

a)

b)

c)

X
one frame intentionally erroneous symbols

Figure 5.11: Schematic illustration of a shifted sequenced error pattern (ESS) (refer to
Figure 5.12).

5.5 Performance of Watermark Sequences 103

100000

10000

1000

100

10

1 h

symbol error rate
interpolation rate

><• V - X ' \

0.01 0.1
introduced error rate r

Figure 5.12: Correctibility of a pattern with shifted sequences of erroneous symbols
each frame (ESS) plus background noise. The relative error frequency is / > 10
pointing to a lower correctibility than without shifting (compare to Figure 5.10).

5.5 Performance of Watermark Sequences 104

Errors Grouped in Small Units (E G R)

In order to achieve a more uniform distribution of introduced errors over a frame,

groups of two erroneous symbols are formed and allocated in equidistant places over

a frame. The frame layout can be seen in Figure 5.13. This pattern performs well at

low error rates, since for n = 1,2 symbols it is the same as discussed two paragraphs

previously. The correctibility of said pattern decreases rapidly at error rates of above

r = 0.07.

a)

b)

c)

one frame intentionally erroneous symbols

Figure 5.13: Schematic view of error groups distributed over a frame (EGR)
a) 2 symbols per frame, b) 5 symbols per frame, c) 12 symbols per frame.

Equidistant Erroneous Frames (E Q F l / 2 / 3)

Another way to allocate storage is in using up all symbols of one frame and interleaving

these marked frames by a number of good frames. A schematic diagram of the layout

is shown in Figure 5.16. It is expected that the error-correction ability is less than

in all other cases, because long sequences of errors impose high requirements on the

interleaving and scrambling system. Figure 5.15 shows the resulting error probabilities.

The curve shows big variations around a relative error frequency of / = 100 for r > 0.03.

The lowest error rate introduced by a gap of 200 good frames between one bad frame

5.5 Performance of Watermark Sequences 105

100000

10000

1000

100

10

symbol error rate — t -
Interpolation rate -

0.01 0.1
introduced error rate r

Figure 5.14: Correctibility of groups of error symbols (E G R) plus background noise.
For low error rates r < 0.07 the pattern is identical to the one used in Figure 5.10.

5.5 Performance of Watermark Sequences 106

is r = 0.005.

It becomes evident that the scrambling function cannot spread the erroneous sym­

bols well enough to achieve the low corrected error rates obtained with previous pat­

terns.

100000

10000

1000

100

10

symbol error rate —+-
interpolation rate

0.01 0.1
introduced error rate r

Figure 5.15: Correctibility of a pattern with alternating error-free and erroneous frames
(E Q F l) plus background noise.

The discussed pattern can be further thinned by allocating every second symbol in

one frame to an error. A variable number of intermediate frames are error-free. The

layout is shown in Figure 5.18. The obtained error rates match the previous case and

are not favourable in terms of correctibility.

By allocating every third symbol to an error, the layout in Figure 5.20 is obtained.

Figure 5.19 shows the resulting correction capacity. Like with the other frame patterns

5.5 Performance of Watermark Sequences 107

a)

b)

one frame intentionally erroneous symbols

Figure 5.16: Equidistant erroneous frames, the intermediate gap length is variable,
a) one frame distance between one erroneous frame, b) two frames distance between
one erroneous frame.

100000

10000

1000

100

10

1 V

symbol error rate —f-
interpolation rate - -

0.01 0.1
introduced error rate r

Figure 5.17: Correctibility of a pattern of alternating error-free and erroneous frames
plus background noise. The erroneous frames are filled with alternating error and
non-error symbols (EQF2).

5.5 Performance of Watermark Sequences 108

a)

b)

one frame intentionally erroneous symbols

Figure 5.18: Equidistant erroneous frames, the intermediate gap length is variable.
The erroneous frames are filled with alternating error and non-error symbols,
a) one error-free frame distance between one erroneous frame, b) two frames distance
between one erroneous frame.

100000

10000

1000

100

10

symbol error rate — i -
interpolation rale

0.01 0.1
introduced error rate r

Figure 5.19: Correctibility of a pattern of alternating error-free and erroneous frames
plus background noise. The erroneous frames are filled alternatingly with one error
and two non-error symbols (EQF3).

5.5 Performance of Watermark Sequences 109

a)

b)

one frame intentionally erroneous symbols

Figure 5.20: Equidistant erroneous frames, the intermediate gap length is variable.
The erroneous frames are filled with alternating one error and two non-error symbols,
a) one error-free frame distance between one erroneous frame, b) two frames distance
between one erroneous frame.

the output error rate can vary by about one order of magnitude in consecutively steps,

though the overall performance is bad.

Randomised Intervals of Erroneous Symbols (R E S)

Motivated by the fact that non-bursty, random background noise on a channel is more

correctable than bursty background noise, a pattern of randomly distributed wrong

symbols has been investigated. A pseudo-random number generator therefore pro­

duces a sequence of random numbers which represents the distances between the wrong

symbols.

The random number sequence can be reproduced by feeding the random number

generator with the same seed. The generation routine is taken from [43] and outlined

in Figure 5.5. The algorithm is easy to use and very fast, producing sufficiently good

random numbers.

Figure 5.21 shows the result. The curve shows a typical behaviour due to the ran­

domness of the symbol allocation. This type performs worse than expected. Comparing

Figure 5.9 and results from this paragraph, a conformance is obvious. Equidistant er-

5.5 Performance of Watermark Sequences 110

f l o a t rand;
unsigned long idum, itemp;
s t a t i c unsigned long j f l o n e = OxSf800000;
s t a t i c unsigned long jflmsk = 0 x 0 0 7 f f f f f ;
idum = 1664525L * idum + 1013904223L;
itemp = j f l o n e I (jflmsk & idum);
rand = (* (f l o a t *)&itemp)-l.0;
retur n rand;

Table 5.5: Fast random number generator for distributing erroneous symbols.

ror symbols are a special case of a random distribution. Therefore the relative error

frequency match each other, even if there are peaks in the previous one resulting from

certain sequences which the interleaver accumulates in a way that is hard to correct.

Comparison and Discussion

Figure 5.22 and 5.23 summarises all eight curves. There are three cases to distinguish.

Each of them shows its own characteristic slope and the extrapolation of each of them

approaches the same limit. The first case includes patterns with whole erroneous frames

(E Q F l / 2 / 3) . The second group encompasses equidistant (EQU) and random symbol

patterns (RES) and the third group patterns with symbol errors in the same place

relative to the frame beginning (E S E / E G R) . Shifted patterns (ESS) are a special case

of the third which perform a lot worse.

It is found that using the same locations within all frames for inducing errors is the

best to correct. The relative error frequency / = 0.03 performs comparably well when

using the same positions within a frame. Other patterns perform about three orders

of magnitude worse at the same introduced error rate r, which is remarkable.

Despite this it must be noted that when marking one symbol in a frame erroneous

the output error rate depends on the position within the frame. The error rates shown

5.5 Performance of Watermark Sequences 111

100000

10000

1000

100

10

symbol error rate — H -
interpolation rate ---v-

0.01 0.1
introduced error rate r

Figure 5.21: Correctibility of randomly distributed one-symbol errors (RES) approxi­
mating the lower l imit of / = 1 very slowly.

5.5 Performance of Watermark Sequences 112

-a
s
3
O

O
d

o o o o o

o o o o

o o o
o o

Figure 5.22: Summarised overview of four error patterns. The notation ' 'PDF" means
bursty background noise is added. The other notations refer to the type of pattern
used. Three different groups are recognisable with different types of approximation.
The next four patterns are shown in the next diagram, Figure 5.23.

5.5 Performance of Watermark Sequences 113

CM CO LU C/)

OOiiJUJ
L U L U + +
+ + I J - L 1 _

L I - U - Q Q
Q Q C L O .
Q . Q -

O
O
O
O
O

o o o o
o o o

o o

•D CD O

E

O
d

Figure 5.23: Set of the next four error patterns (continued from Figure 5.22)

5.5 Performance of Watermark Sequences 114

are valid only for introducing a symbol error at the beginning of each frame. Further
simulations prove that according to the position within a frame the error rates vary
slightly.

I t was assumed that the background error rate is Ti^ackgrmmd = 0.01, which is about

a hundred times higher than error rates found on real discs [47]. This assumption was

necessary to run the simulation in a reasonable time. I t is believed that the introduced

error rates r ^n t ro must be changed accordingly to lower values in order to get the same

relative error frequency / . Al l patterns approximate / = 1; the better the correctibility,

the faster is the approximation.

The minimum of the ratio relative error frequency / to introduced error rate r ^

identifies the point where i t is most economical to introduce an error pattern. Differ­

ences of more than three orders of magnitude between certain patterns on their lowest

ratio points out again the fact that an optimised way for introducing watermarking

data exists. Figure 5.24 and 5.25 presents the results.

To summarise i t can be postulated that putting data as part of watermarking

information in the same location in each frame is the most promising way. Some

locations though are better suited compared to others. By interleaving this pattern with

good frames, lower error rates can be achieved, still performing better than other types

of patterns. Accumulating erroneous symbols in more than two successive symbols lets

the correction rate drop.

5.5.4 Choosing non EFM-Words as Error Symbols

The basic principle of this watermarking scheme using error correction is data hiding

in certain locations rendering the specific symbol erroneous.

5.5 Performance of Watermark Sequences 115

* * m

1
P

O
d

to o + 0
o o o o o

o o o o

o o o
o o

J e i B j jojja peonpojiui/i Aouanbaĵ jojje OAiieiej

Figure 5.24: The relative error frequency / is standardised to the introduced symbol
error rate r. The minimum signifies a good ratio of correctibility to information content.
Four error patterns are shown here, the next four in the next diagram, Figure 5.25.

5.5 Performance of Watermark Sequences 116

0
•o
0)
o
3 •D O

O
d

O O u j u j muj + +
+ +IJLU-

Q Q Q - Q-
P - C L

CO O + 0)

o o o o o

o o o o

o o o
o o

J aiej jojja pdonpoj}U!/| Aouanbajj JOJja aAi^eiaj

Figure 5.25: Set of the next four patterns, relative error frequency' / standardised to
the introduced error rate r (continued from Figure 5.24).

5.5 Performance of Watermark Sequences 117

I t is questionable whether the error values should be restricted to valid EFM-

symbols only or whether they can include non-EFM words as well. Allowing non-EFM

symbols certainly increase the probability of failure to read a track successfully, espe­

cially in the case of a high watermark information content, due to the disruption of

the run-length-limited code. But based on the fact that the goal is to achieve only a

moderate watermark information content, i t is feasible to allow for non-EFM symbols

as errors. Assuming the watermark content is detected before the EFM-conversion to

8bit symbols, the information content of one erroneous symbol is 14bits (without 3

merging bits).

A variation in correction rates is possible by carefully choosing the error symbols.

If error symbols are chosen not to be EFM-codewords, the EFM-converter reports a

possible error on this location to the error correction system by flagging this symbol

as an erasure. This increases the capability to correct this one symbol.

Choosing the error values out of all possible variations reporting valid EFM code­

words becomes unlikely. Since there are 256 valid EFM-codewords out of 16384 (2''*)

the difference is about 1.5% and can be neglected. The author's opinion is, therefore,

that i t is not of importance to restrict error values to non-EFM symbols.

5,5,5 Changes to the Overall Error Rate when Introducing

Watermarks

Considering an underlying noise level, the question is how much error correction capac­

ity a typical watermark pattern uses up. Therefore the author computed the output

error rates of bursty background noise only over a range of an input error rate of

'"'PDF ~ 0.002.. .0.02 (similar to Figure 5.8 with a higher number of frames decoded

5.5 Performance of Watermark Sequences 118

0.1

0.01

0.001

0.0001

le-05

1e-06

1 1 - -
symbol error rate a) — > —
symbol error rate b)

%, \
i i .

0.1 0.01
Input error rate r (background errors only)

0.001

Figure 5.26: Output error rates of background noise with varying input error rates r if
a) a regular watermark pattern is present and b) only background noise is to correct.

5.5 Performance of Watermark Sequences 119

(one million frames)). Secondly output error rates have been calculated but with an ad­

ditional one symbol error each frame. This obviously lowers the output error correction

rate. Figure 5.26 presents the result.

The output error rates ranging from r = 0.002.. .0.02 continuously are about one

order of magnitude lower for background noise only. I t is important to bring to mind

that this holds true only for the characteristic burst distribution used to model the

background noise. According to Section 5.5.2 a different noise distribution would give

a different result.

The second aspect of this outcome is how much the background noise level must be

reduced in presence of a special watermark pattern in order to obtain the same output

error correction rate. I t can be seen from the diagram that lowering the noise level by

about 60%, the same output error rate is achieved.

5.5.6 Conclusions

This Chapter focussed on adding data deliberately in certain locations in the encoded

data stream in order to extract them at a later point of time before the error correction

takes place. The error-correction algorithm wil l then recover the original data. There

are a number of conclusions that can be drawn from this research.

First i t is to be stated that the generator function for the locations matters to

a great extent. Different ways of allocating places for additional data vary in their

performance in terms of the output error rate over a range of almost three orders of

magnitude. This is unexpected, because i t leads to the conclusion that terms like

"block error rate" or simply "error rate" on its own are not meaningful. Instead the

systematic distribution and characteristics of the errors have to be considered.

5.5 Performance of Watermark Sequences 120

Indeed these error patterns can be generated naturally by a faulty compact disc
drive. A possible scenario would be that ageing hardware components generate sys­
tematic errors. One option is that the synchronisation of frames are lost sometimes
resulting in whole frames not read correctly. The other option causes some symbol data
to be wrongly restored from the signal by the electronic circuitry, which appears to be
a random process. Clearly i t can be proved that the latter would cause less trouble for
the error correction system to cope with.

Every compact disc drive makes errors in recovering the original data from the

laser signal. The effects on the error correction performance depends, according to

this work, on the type of these errors, whether they are randomly distributed or have

a more systematic nature. Errors with a very systematic behaviour (i.e. always the

first symbols in one frame are not read correctly) are therefore up to ten times more

correctable than random errors.

Naturally occurring scratches and dust on the surface of a compact disc obey a

certain density distribution. They characterise the disc in a certain way, so that the

density distribution can mean a diflference to the applied watermarking patterns.

Assuming a process is supposed to introduce mostly radial scratches (wiping the

surface from the inside outwards), i t becomes apparent from the results that these

scratches are not troubling the error correction as much as tangential scratches. Tan­

gential scratches are more likely to contain a higher quantity of frame errors, which

have been simulated as whole frames being erroneous, for which the error correction

system performs up to three orders of magnitude worse.

Information, encoded in surface markings, shall be unique to a compact disc, making

digital fingerprinting possible. As shown in Chapters 4.4.2 and 4.4.3 i t is feasible to use

5.5 Performance of Watermark Sequences 121

two dimensional, macroscopic patterns on the disc's surface or on the disc's reflective

layer. I t is required that the markings have the property to cause the least possible

overhead for the error correction system. Based on the simulation done in this Chapter,

an evaluation of employed patterns is possible.

The software implementation of the compact disc encoding, done in this work,

represent the basics for further research in this area. An assessment of different two

dimensional structures is possible, considering the relative frequency of basic erroneous

symbol patterns.

One of the original goals of this work focussed on creating a second embedded

data channel hidden in the error correction information. This is a desired application,

since secure physical media identifiers can be implemented in this way. Moreover this

secure channel is inaccessible to the user and thus is perfectly suitable for applications

in a DRM framework [11], like watermarking or implementation of tickets for copy-

generation management. The possibilities are numerous and open new applications in

the field of watermarking and copy protection measurements.

Chapter 6

Conclusions and Discussions

6.1 Conclusions

This work deals with compact disc technology. Due to its wide employment and up­

coming requirements in the copy protection area, the aim was to investigate the in­

troduction of techniques for ensuring the use of this technology according to copyright

standards. The basic method hereby used was the modulation of the optical laser sig­

nal due to already existing or purposely introduced variations in the reflective layer,

the surface of the compact disc or the transparent substrate.

The general idea was to increase storage capacity of a conventional compact disc

by some amount, depending on the technique, in order to be able to use this additional

space for security purposes. These can be digital watermarks, secure media identifiers

or biometrical information. I t is based on the fact that the compact disc with its built-

in error-correction capability has capacity to correct also for intentional errors. About

23% of the compact disc's raw storage capacity is reserved for error-correction data

(eight 8bit symbols over 588 channel bits). A part of this amount is then used to carry

122

6.1 Conclusions 123

additional user-data.

The author therefore conceived a technique by which modulations of the laser sig­

nal get mapped onto a rectangular grid, enabling further processing of the data like

searching for existent watermarks, thus identifying a compact disc uniquely.

This technique is supported by specially written software which controls the ac­

quiring of the data in an optimised way and evaluates the data with regard to stegano-

graphic information.

In a first trial an oscilloscope was employed tapping off the preamplified signal of

the laser photo detectors. I t was found that even i f playing the compact disc normally

without interruptions, the signal showed a lot more information in the form of signal

modulations. These signal modulations seemed to be caused by variations in the reflec­

tion and absorbency of the compact disc. This was proved by purposely introducing

distinct blemishes and covering the compact disc with small patches of opaque mate­

rial, which was successfully matched on the oscilloscope to locations on the surface of

the disc, while playing the compact disc without noticeable flaws.

In order to achieve higher resolution and to obtain an automated two-dimensional

readout of the surface of a compact disc, an apparatus was built using a conventional

compact disc reader device. The aim was to investigate compact discs for certain

existing defects and to use this knowledge for an electronic characterisation of this

disc.

During the testing phase it became apparent that each disc has its own surface

map. This is caused mainly by the existence of stationary dirt and fingerprints on the

surface of a user-handled disc. The readout system encompasses an electronic trigger

with integrated amplifier to map positions on a disc and the ADC to convert the signal

6.1 Conclusions 124

to its digital form and store it on the computer's hard drive. The associated control
software makes a fast and accurate read-out possible. This was achieved by using
an accurate, high resolution software timer clock; the read-out task was running in a
high priority state within the operating system. Specific sector or track read-out was
established by using generic SCSI commands sent to the read-out device. Reports of
possible read-out errors like track loss or CIRC errors had been reported back to the
host computer.

The modulations of the reflected laser signal have been two-dimensionally imaged.

It was found that apart from dirt on the surface a whole lot more data about the quality

and consistency of the compact disc could be collected. The images revealed defects in

the reflective layer during disc production as well as textures in the polysubstrate layer.

The results were verified by using an optical and a scanning electron microscope. Al l

three images could be matched against each other. The resolution of the author's image

capture system was determined to be in the micrometer area (l o ^ m x 1.6^m). The

number of greyscale levels depends on the ADC and the properties of the image capture

system. Since there is a lot of high-frequency signal noise due to the laser reflection on

the pits and lands, which cannot be matched accurately to any position on the disc,

the number of grey levels amounts to about 100. In comparison, a computer monitor

is able to display 100 grey levels. On the other hand, this method visualises accurately

minuscule changes in the reflection coefficient of the reflective layer. Photographs taken

with the optical microscope do not reveal details of a third dimension.

In [22] the authors introduce a similar technique to visualise surfaces with compact

disc optics, although they do not rely on the laser tracking method applied in compact

disc players. The resolution gained is similar to the author's system (4^7n x Afim). The

6.1 Conclusions 125

captured pictures show similar properties. The need for a customised extra scanning

mechanism makes this method less prone to track loss errors, but increases the costs

for building.

Problems with the image capture include track loss and out of focus events. Al l

naturally occurring blemishes like human fingerprints or manufacturing errors as long as

they are reasonably distributed did not cause any problems. The image capture solution

proved to be reliable, cost-effective and easy to implement in a common compact disc

player due to few modifications necessary.

Commercial applications of a high-resolution, cost-effective apparatus to scan sur­

faces are possible. Since this technique relies on the existence of optical tracks to guide

the read-out laser, only transparent samples can be visualised. This was demonstrated

with fingerprints and surface scratches. Despite these shortcomings, the ease-of-use of

the system makes i t useful for certain niche applications.

Identifying compact discs by secure physical media identifiers is a lively topic dis­

cussed with respect to copy protection enforcement measurements [11, 4]. I t is the aim

of this work to suggest and evaluate watermarking and digital fingerprinting schemes

for compact discs.

A provisional implementation of watermarking a compact disc has been presented.

Two ways have been considered. Marking the surface of a compact disc with transpar­

ent blemishes modulates the surface reflectivity such that variations of the laser signal

can be recognised and processed, making detection of watermarks possible. The other

method involves puncturing the reflective laj^er, thus introducing accurate microscopic

blemishes. An evaluation of the effects on the player's servo system showed that the

blemishes should be less than lOO^m in diameter in order not to cause damage to the

6.1 Conclusions 126

player's functioning. Defects down to lO^m have been resolved by the author's image
capture system - the software was able to detect these blemishes. No work in this area
has previously been published.

Detecting reflective-layer manufacturing defects, as stated earlier, provides a means

to uniquely identify a certain compact disc. The detection of manufacturing blemishes

with the author's system was backed up by optical microscope photographs of the same

region. The research carried out in this work proves the feasibility of this technique

in terms of hardware and software solutions for future copyright management systems

[11].

Due to the fact that no crucial changes in the player's hardware took place (same

read-out head, no additional amplifier for the reflected laser signal) i t is the author's

opinion that such a system can easily be implemented in today's compact disc and

DVD players. Basically all the components are already present or can be added (AD

converter, trigger).

When introducing watermarks, i t has to be considered that a part of the error-

correction capability is lost for restoring the original values in case of an error. Inducing

digital watermarks can be done either by mechanically puncturing the physical media

or by introducing wrong symbols in certain locations on purpose as a second data layer

of watermark information. Both methods mean lowering the ability to correct errors.

I t is questionable if such watermarked discs still are in accordance with the Red

Book Standard (or other standards). Unless the artificially introduced error rate does

not exceed the l imit given by a standard, such a compact disc still can be called "CD".

This work evaluates the influence on the error correction system by executing com­

puter simulations of the compact disc encoding and decoding procedure. Possible wa-

6.1 Conclusions 127

termark patterns have been conceived and compared with regard to their correctibility

in terms of the output symbol error rate and the interpolation rate after correcting

these schemes in the presence of a characteristic background noise distribution, mod­

elling a typical user-handled disc. Optimal patterns were found and their correctibility

quantitatively determined and compared to pure background noise.

Software simulations of the compact disc encoding process give a powerful means

of assessing the behaviour of the error correction system. This work can easily be

adapted to DVD encoding. Previously published research is based on statistical eval­

uation of the compact disc's decoding algorithm. That approach does not take fully

into account the possibly bursty nature at the input of the C2 decoder [29]. Due to

the systematic nature of additional watermarking information, either embedded in cer­

tain audio samples (symbols) or as purposefully induced defects on the actual media,

an analytical statistical evaluation is not adequate. Watermarks normally consist of

regular patterns.

A variety of possible patterns for watermarking a data stream by inducing pur­

posely wrong symbols have been simulated. It was found that they differ in their error

correctibility. Good patterns consist of repeating groups of maximal two symbols each

new frame. It proved disadvantageous if the symbols within each frame change their

position by either having random distances or by being shifted over a frame.

Error rates increase by a factor of ten if regular one-symbol errors per frame are

introduced - other patterns further increase the overall error rates. In particular,

randomly distributed one-symbol errors weaken the error correction almost ten times

more. This is due to the likely event that two or more consecutive errors can be grouped

together by the random process. Thus, it is advantageous for induced symbol errors

6.1 Conclusions 128

to be the longest distance from each other. Then the error correction (interleaving,
scrambling. CIRC) is most effective. This pattern can be thinned out by placing
good intermediate frames in-between frames with errors. It reduces the introduced
error rate, but still imposes a minimum of burden on the error correction system
compared to other more irregular patterns. It should be noted though, that due to the
approximation of all patterns to / = 1, the differences in error rates decrease when
being thinned out. Three groups of patterns can be distinguished by their speed of
approximating the limit / = 1 (Figure 5.22, 5.23). Patterns with whole frames in
error are hard to correct (E Q F l / 2 / 3) . Randomly distributed symbols and equidistant
symbols (RES,EQU) approach / = 1 faster. The optimum is achieved by regular
one-symbol errors. Research in this area has not been previously published. The
performance of the error correction system has only been assessed previously in the
case of a random error generation.

Inducing one symbol error per frame increases the output symbol error rate by a

factor of ten, as aforementioned. Since in each frame 8 symbols comprise the error

correction data, using up one symbol per frame intentionally takes 12.5% of the error

correction data and adds about 3% to the overall data capacity (user data -f- intentional

watermark symbols). Thus, in the optimal case of a regular pattern, the space used

for error correction data is only 20% (23% full error correction), but the error rates

increase by a factor of ten, assuming a typical user-handled disc. This result shows the

high capacity of the error correction system. In practice, a watermark pattern does

not need that much space; using every tenth frame for one intentional symbol error is

enough and would increase error rates by only approximately 1%.

Results show that the additional load on the error correction system by this optimal

6.1 Conclusions 129

pattern can be balanced by reducing the background signal noise rate by about 6%.
This means in order to get the same overall error-correction rate, the limit for the
maximal background noise to be allowed for (i.e. by a standard) must be reduced by 6%.
This result was derived in Section 5.5.5 for input error rates of about r = 0.02 . . . 0.002.
The constant log-linear behaviour of both symbol error rates in Figure 5.26 suggests
that it can be extrapolated to lower introduced error rates.

For the computer simulations the author assumed a characteristic distribution of

background errors. The bursty nature of these background errors becomes obvious

if one considers the probability density function for burst errors aiid the intermedi­

ate good-data gap statistics. The software incorporates this fact by emulating burst

probability functions, previously published in [2], by software.

The need for considering a special type of burst distribution became obvious when

comparing error-correction rates of a two-symbol error in each frame in presence of

two different types of underlying noise distributions. Even with the same introduction

error rate r (and the same background error rate), a two-symbol error causes different

decreases of the overall error-correction rates for random noise compared to bursty

noise (refer to 5.5.2). That means, in order to get reasonable results for the loss of

correctibility due to watermarking, it makes sense to weight not only the error rate but

also the type of background noise.

The watermark patterns presented and investigated here are only a small subset of

what is possible. Especially thinning the patterns to lower the information density of a

possible watermark would be practical. This in turn would increase the computing time

needed to detect a reasonable number of errors. The background noise is also assumed

to be relatively high in order to decrease the computing time. It is the author's belief.

6.1 Conclusions 130

though, that decreasing both, the level of background noise and the information density
of watermarks, does not have an effect on the relative error frequency / in the end (refer
to Section 5.5.1). That is, the diagram in Figure 5.22, 5.23 is valid for lower introduced
error rates, if the background noise is reduced by the same amount.

The disadvantage of computer simulations is the extensive time needed to detect

at least some errors (about 40 minimum) when the output error rate is low. Some

simulation jobs were encoding and decoding 25 million frames, which give a minimum

output error rate to reliably detect of about P = 7-10"®. Using faster computers, more

time, and possibly faster algorithms this limit could be extended by at least factor 10.

This work includes also a discussion about certain error correctioa strategies applied

in compact disc players. The author implemented two different decoders to evaluate

their performance with regard to the special burst distribution mentioned earlier. One

of them showed an inferior performance on both, a bursty channel and a non-bursty

model.

Assessing the performance of decoder strategies with respect to a specially con­

structed error distribution has not been published previously. It is obvious that dif­

ferent kinds of error distributions cause different error-correction rates, even when the

error distributions possess the same symbol error rate. It is the form and characteristic

of the burst probability function that controls the performance of the error decoder.

The author's work is different from other publications by incorporating the char­

acteristic error distribution of user-handled discs. Computer simulations in order to

assess the performance of C I R C decoders in this case have been published only in [29].

The authors in [29] make use of a similar error distribution, though assuming lower

error rates. Such low error rates are not practicably carried out by computer Simula-

6.1 Conclusions 131

tions, therefore the author's simulations lead to significantly higher output error rates
(about four orders of magnitude). This work, in particular and opposed to previous
work, shows over a wide range of input error rates the difference in presupposing bursty
errors of one length only [33] compared to a characteristic error distribution. The fur­
ther advantage of computer simulation is the accurate modelling of the interleaver and
scrambler. [29] assumes error at the input of the C2 decoder to be of a non-bursty,
memoryless channel, which is a simplification, especially when dealing with regular
introduced errors. Comparing the characteristic error distribution used in this work to
memoryless channel errors, the output symbol error rates in the latter case amount to
only 1% of the previous. Several publications assess only the non-bursty case [1, 28],
therefore it was crucial to carry out further research with regard to bursts of errors.

This work dealt with computer simulations to generate characteristic error distri­

butions and simulating the correction of them, using previously published algorithms

for compact disc decoding. It was necessary to carry out this research in order to

evaluate the behaviour of the error correction system in case of an introduction of

watermarking schemes for compact discs. Watermarking and digital fingerprinting in

general can help preventing copyright violations and help to take the control of the

digital data content of a compact disc back to the publisher. It was found that digital

fingerprinting methods can be implemented using either mechanical distortions in the

reflective layer (secure media identifier) or marking the data stream with intentionally

wrong symbols. Both methods worsen the overall error-correction capability and thus

it is necessary to investigate their effects. Through computer simulations carried out

in this work a quantitative evaluation was done.

It must be clarified that all watermarking technologies can only be built on a com-

6.2 Future Work 132

plete DRM framework. Applying these techniques randomly and on its own, attacks
become feasible. The success of said techniques depend also on implementing the legal
necessities. Hardware manufacturers must be forced to be compliant with next gener­
ation's watermarking standards. If they do not comply, they will not be able to take
part in this business.

6.2 Future Work

There are a number of issues that have not been thoroughly or not at all addressed in

this work.

Digital watermarking can be applied in far more elaborate ways. It is conceivable to

hide information in the control structures of the compact disc's frame layout. Control

words or merging bits are only two ideas. These are usually not copyable although

they could be detected easily. These measurements, as aforementioned, must all be

part of a complete DRM framework.

Other watermarking schemes to evaluate encompass altering certain audio samples

in the data stream in such a way that the audio compact disc player interpolates these

audio samples. During copying the compact disc recorder carries out interpolation and

thus introduces typical audio interpolation sequences. These sequences will stay in the

data stream, even if the disc is copied many times. By searching for certain interpo­

lated audio sequences, a compact disc player is able to detect whether a watermark is

present or not. Effects comprise a decrease in sound quality. Hi-fi enthusiasts will not

agree with this. Nevertheless, all watermarking techniques based on packing additional

information on top of the conventional data stream lower somehow the quality of the

underlying data, as shown in this work.

6.2 Future Work 133

It is possible with the author's software to predict effects on the sound quality.
Macrovision [50] uses a similar system to defy copying a compact disc by using a
modified compact disc encoder, deliberately introducing potentially bad samples in
certain positions, which produces spoiled audio tracks after copying [50].

Surface images captured by the author's experimental system can be processed

by a technique, so-called deblurring. The deblurring algorithm takes into account

the overlap of the surface laser spot when sampling adjacent points. Applying this

technique, a gain in captured image quality can be expected.

Appendix A

Theory of Reed-Solomon Encoding

and Decoding for Compact Discs

A . l Galois-field Arithmetic and Basics of E C C

The mathematical properties of linear block codes and in particular BCH codes can

be best understood by describing codewords with polynomials. The coefficients of the

polynomials are drawn from a special set of elements, the Galois field.

Briefly, a Galois field GF is defined to have multiplication and addition form a

commutative group; multiplication is distributive over addition and there are a finite

number of elements in that field. Elements of a Galois field can be represented in

polynomial form or in power representation.

The computation of codes therefore has to be executed using Galois field arithmetic,

which the software has implemented.

Since 8-bit symbols are employed as smallest unit in the en-/decoding process, the

coefficients of the polynomials are drawn from the extension field GF(2^) of GF(2).

134

A.l Galois-field Arithmetic and Basics of E C C 135

Elements are represented by their power form in unsigned char.

Multiplication is implemented in a function by using the power representation, ad­

dition needs the elements to be converted to polynomial representation and back. In

order to save computer cycles during addition, an alternative, known as Zech loga­

rithms, is employed. Defining

a^(")=a"-M (A.l)

the sum of two elements in power representation can be written as:

a" + ft"* = a"*(a"-'" + 1) = = a^i--"^)-^"" (A.2)

Adding two elements is done by means of the Zech table Z(n), which the constructor

of the RS class generates beforehand. In order to fill the Zech table, both forms, the

polynomial and the power representation, must be hold in lookup tables. The primitive

polynomial

p{x) = H- x** H- 2:^ -1- 1 (A.3)

with coefficients from the ground field GF(2) is used to generate the extension field

GF(2®) in polynomial form according to the Standard [6 .

The generator polynomial g{x) of a primitive i-error correcting Reed-Solomon code

of length 2"* - 1 can be written as;

g{x) = (x + a)(x -h a^). . • (x -h â)̂ (A.4)

with a being a primitive element in GF{2^).

A.2 Cyclic Code Encoding 136

The generator polynomial g{x) is formed by the constructor of the RS class by a
fast implementation with a minimum of multiplication using Galois field arithmetic.

A.2 Cyclic Code Encoding

Reed-Solomon codes form an important subclass of cyclic codes. Encoding of cyclic

codes can implemented easily by employing shift registers with feedback connections.

The encoding of cyclic codes in systematic form is based on the following equation:

v(.Y) = X"-'^u(X) -h h{X) (A.5)

with: v(X) : code polynomial

u(X) : message polynomial

b(X) : remainder of '̂"gg '̂>

g(X) : generator polynomial

It yields to an (n, k) cyclic-code vector in systematic form consisting of n—k parity check

digits {bojb\,... ,6n-jt-i) followed by k unaltered information digits (wo,Ui,. . . ,ujt_i).

The encoding is implemented as a division circuit, which is a linear shift register

with feedback connections based on the generator polynomial g(x) [51].

Two Reed-Solomon encoding stages, using the same set of parametrised functions,

are employed, separated by a cross-interleaver in-between them. The outer decoder

is a (28,24) double-error-correcting shortened Reed-Solomon Code of dmin = ^ and

the inner decoder is a (32,28) double-error-correcting shortened Reed-Solomon Code

of dmin = 5, both over GF(2^) (refer to Figure 3.6).

A.3 Reed-Solomon Syndrome Decoding 137

A.3 Reed-Solomon Syndrome Decoding

This Section outlines the decoding schema employed for a Reed-Solomon Code.

The aim in decoding an error correction code is to find the most likely error pattern

for a given received code word. The procedure used here can be described as syndrome

decoding and is summarised for the nonbinary case as follows:

1. Calculate the syndrome values Sjt, = 0 , . . . , 2t.

2. Determine the error-locator polynomial A(x) from the syndrome values, using

the Berlekamp-Massey algorithm [52, 53], modified for erasures.

3. Solve for roots of A(x), which are the error locators, using the Chien search

algorithm [54],

4. Given the error locators, calculate the error values, using the Fourney-algorithm

[55].

The syndromes Sk are calculated first by evaluating the received code pattern r(a:) =

c(a;) -I- e{x) at the roots of the generator polynomial g(x), with e(x) being the error

pattern and c{x) the original code word:

Sk = r{a') = e{a*'), k = 0,...,2t (A.6)

The implementation uses a convenient way to evaluate 5̂ -:

Sfc = {- - • [{vn-xa' + rn-2)a' + r^^aja'^ + "-}a'-\- ro (A.7)

Introducing error magnitudes V] = e,-, and the error location numbers Xi = a*'.

A.3 Reed-Solomon Syndrome Decoding 138

where ii is the actual location of the Ith error (/ = 1.. . i/, z/: number of errors), a set
of 24 simultaneous equations for the syndromes can be written down:

S, = YiX^ + + • • • + K A ' ^ A; = 1,. . . , 2£ (A.8)

This nonlinear set of equations is solved with the help of a error-location polynomial

A(x) which is defined as a polynomial having the roots at the inverse error locations

Â "̂'. It leads to the following set of equations, which can be solved for the coefficients

A i , A 2 , . . . , A y .

AiSj+u-i + A2Sj+u-2 + • • • + USj = -Sj^^, j 1, . . . , i/. (A.9)

In order to solve above equation avoiding matrix inversion, which is computationally

inefficient, an algorithm, conceived independently by Berlekamp and Massey [52, 53],

is employed. The algorithm attempts to build-up a linear feedback shift register with

a lowest degree connection polynomial that generates the syndrome Sjt- The algorithm

is described in [56, 57] and implemented in the RSDecoder class with the function

berlekampO.

It is a slightly modified version to embrace the erasure words at the input of the

decoder, giving known error locations beforehand. The theory behind it was suggested

by Fourney [55]. It is based on defining an erasure-locator polynomial ^ ' (2) , which

leads to modified syndrome values. The computation is done in the first loop of the

revised berlekamp algorithm, according to [57 .

Having found the coefficients of the locator polynomial A(x), a method suggested

by Chien [54 is applied in order to find the roots of the polynomial which give the

A.3 Reed-Solomon Syndrome Decoding 139

error location numbers Xi ([51]). The implementation is done in chien.search().

Solving equation A.8 for the error magnitudes Yij a second matrix inversion is

avoided by using Fourney's algorithm [55]. The function correct^vjith.Joumey() does

exactly this with additionally correcting the received code vector r(x) at the know error

locators Xi.

Appendix B

Software Listings

B . l Control Software for the Experimental Appa

ratus

/ »
* adget.c
* Copyright Kay Rydyger
•

* control program for SCSI player and data acquisition.

•/
Sinclude <stdio.h>
Oincludfi <8tdlib.b>
ainclude <unistd.b>
Cinclude <temio3.h>
tinclude < s y s / t i n e ' h >
Sinclude <ays/uait.h>
Sinclude <3ys/types.b>
Sinclude < o y s / s t a t . h >
Sinclude <sched.h>
Sinclude <Gignal.h>
Sinclude <Bys/types.h>
Sincludo <sys/8tat.h>
Sinclude < f c n t l . h >
Sinclude <Btring.h>
Sincludo <ermo.h>
Sinclude <stdarg.h>
Sinclude < s c s i / s g . h >
S include <1inux/cdron.h>
Sinclude <nalloc.h>

/•
conpile v i t h
gcc -Q2 adget.c . ./scsi/readinc.c .-/scsi/sg_err.c -o adget

•/

Sdefine BLQCK.SIZE 2048

140

B.l Control Software for the Experimental Apparatus 141

•define BLOCKS 1
aifdef SC.CET.RESERVED.SIZE
•define BLOCKS.PER.WBUFF 32 /• thio implies 64 KByte working buffer */
Seise
•define BLOCKS.PER.WBUFF (SG.BIC.BUFF / BLOCK.SIZE) /• probably 32KB •/
•endif

// •define SG.DEBUG

•define SG.DD.HAX.RETRIES 4

•define SC.HEAD.SZ oizeof(struct sg.header)
•define SCSI.CHDIO.LEN 10
•define READ.CAP.DATA.LEN 8

•define PCXBASE 0x210
•define ADLOWBYTE PCXBASE+4
•define ADHIGHBYTE PCXBASE+5
•define DIGIIN PCXBASE+6
•define GAIN PCXBASE+9
•define CHANNEL PCXBASE+10
•define TRIGGERHGDE PCXBASE+ll
•define TRIGGER PCXBASE+i2

•define K A X P T S 1000000
•define HAXLOOPS CHAXPTS«l)

•define BIO (1«0)
•define B I l (l«l)
•define BI2 (1«2)
•define BIS (1«3)
•define BI4 (1«4)
•define BIS (1«5)
•define BIG (1«6)
•define BI7 (1«7)
•define BIS (1«8)
•define BI9 (1«9)
•define BIlO (1«10>
•define B i l l (1«11)
•define BI12 (1«12)
•define BI13 (1«13)
•define BI14 (1«14)
•define BUS (1«15)

//•define DEBUG (BI3|BI4|BI6IBI9|BI12)

•define LOGCloglevel,a) i f (loglevel & debuglevel) i f (tinestamps) { p r i n t f (" X l f : ",get_us()/le6): p r i n t f a; f

s t a t i c i n t pid,status,fdbin;
s t a t i c i n t endiiark=l23456789. tracks, interval^Q; // 2 microseconds
s t a t i c char digiC H A X L O O P S], accuDataCHAXLOOPS]:
sta t i c FILE •fp;
s t a t i c struct tinespec time.to.sleep;
s t a t i c realtime_sched=0. usescsiccidsO, audiocdcO, revolutionss20000;
s t a t i c i n t starting_track=l,ending.track=l, t ine3ta=ip3=0,debuglevel=8191;
s t a t i c i n t dontGtartshell=0;
FILE •fpEClog;
i n t fdlog:
extern char ••environ;
double get_us(void)
{

struct t i n e v a l t v ;
struct tinezone t z ;
tz.tz_ninutesue9t=5;
getticeofdayCfttv,fttz):
return (double)tv.tv.sec • le6 + tv.tv.usec;

}

s t a t i c i n l i n e void outb(8hort port, char val)

B.l Control Software for the Experimental Apparatus 142

iopermCport, 1. 1);
.-aBa__ v o l a t i l e ("outXBO XO.Xl" : :"a" (v a l) , "d" (p o r t)) ;

>

s t a t i c i n l i n e unsigned char inbCsbort port)
{

unsigned i n t r e t ;
iopem(port, 1, 1);
-_asm_. v o l a t i l e ("inXBO Xl.XO" : "=a" (r e t) : "d" (p o r t)) ;
return r e t ;

}

void init.AD(void)

outb(TRICGERMODE, 1); /• enable software t r i g g e r •/
Qutb(GAIN. 2) ; /• 2: set gain to +/-2.5V kein 1.25V! durch Ausprobieren gefunden •/
outb(CHAHHEL, 0) ; /• set channel to 0 •/

>

/•
void 8 g _ 8 t a r t _ u n i t (i n t fd)
{ }
•/
void w a i t _ f o r _ t r i g g e r (v o i d)
{

in t h;
while ((h=inb(DIGIIH)&(char)l) == 1);
while ((h=inb(DIGIIH) f t l) == 0);

}

i n t start_accunulation(double *ticie)
{

i n t counter,h, sectors;
char * d i g i p t r ^ d i g i ;
double time.used.us, s t a r t l . stopl, used_us_per_count;

counter=0;
s t a r t l = get.usO ;
LQG(BI3.("- s t a r t i n g capturing - revolutions: Xd\n".tracks));
while (counter < KAXPTS)
{

counter++;
h = inb(DIGIIN):
i f ((hft(char)l) == 0) break;
outbCrniGGER.O);

/*
LOW byte f i r s t i f we use perl's "unpack s..."
define SWAP.BYTES in X.c, for t h i s case

*/
•digiptr++ = inb(ADLOWBYTE);
•digiptr++ = inbCADHIGHBYTE);

/•
h = inb(DIGIIN);
i f ((hft(char)l) == 0) break;

•/
i f (realtime.sched)

nano9leep(fttine_to_8leep,KULL);
}
stopl = get.usO ;
time_used_us = (stopl - s t a r t l) ;
L0G(BI3, (" stopped capturing - time Xlf s, nunber of aanples Xd\n",

tine_used_us/le6, counter));
i f (counter >= MAXPTS)
{

L0C(BI6,("CD stopped!\n"));
write(fdbin, ftendriark, s i z e o f (i n t)) ;
e x i t (2) ;

}
i f (counter != 0)

U3ed_us_per.count = tine_used_us / counter;
else {

used_us_per_count=0;

B.l Control Software for the Experimental Apparatus 143

tine_U8ed_us=0;
}
L0G(BI3. ("average time per sanple i n t e r v a l ' / I f U8\n" ,usod_us_per_count));
sectors = tice_used_us • 75 / l e 6 ;
LQG(BI5,("Sectors : X d \ n " . s e c t o r s)) ;

// f f l u B h (s t d o u t) ;
• t i n e = time.used.us;
r e t u r n c o t m t e r < c i ;

/• r e t u r n number of bytes •/
}

v o i d b i n a r y _ 8 a v e (c b a r *begin_buf, i n t count)
{

w r i t e (f d b i n , f t c o u n t , s i z e o f (i n t)) ;
w r i t e (f d b i n , b e g i n _ b u f . c o u n t) ;

>

double average(double med, double neu)
{

s t a t i c i n t H=0. N l = l ;
N++;IU++;
r e t u r n N / (f l o a t) N l • ned * l / (f l o a t) I I l • new;

}

i n t m a i n _ a c q u i B i t i o n _ l o o p (i n t revo)
{

i n t c, r e v . l o s t ;
double med_time_UBed, time_ges=0, time.used;
w h i l e (tracks++ < revs)
<

w a i t . f o r . t r i g g e r O ;
c = s t a r t _ a c c u a u l a t i o n (f t t i i n e _ u s e d) ;

i f (time used !- 0)
{

i f (t r a c k s = = l) med.time.used = t i n e . u s e d ;
i f (tine.used > ned_tine_used • 1.7)
{

i n t i ;
r e v _ l o B t = (i n t) (t i Q e _ u 8 e d / n e d _ t i n e _ u s e d +.5);
L0C(BI9,("3ync l o s t %d t i c e s V n " . r e v . l o s t)) :
t r a c k s += (r e v . l o s t - l) ;
f o r (i = 0 ; i < r e v . l o s t ; i + +)

b i n a r y _ s a v e (d i g i + c / r e v . l o s t * i , c / r e v . l o s t) ;
// binary_save(digi+(c»l) , c » l) ;

>
e l s e
{

med.time.used'average (med. time .used, time.used) ;
b i n a r y . s a v e (d i g i , c) ;

>
t i c e . g e s += t i c e . u s e d ;

}

e l s e t r a c k s - - ;

// LOG(813.("average t i r i o : %lt 8\n".ned_tine_used/le6)) ;

}
r e t u r n t i n e _ g e s ;

}
v o i d s a v e _ d a t a (i n t c)
{

i n t i = 0 , v a l u e ;
LQG(BI3,("..saving d a t a \ n ")) ;
w h i l e (i < c)
{

value = d i g i C i) ; i + + ;
value += (digi[i3«8); i++;

B.l Control Software for the Experimental Apparatus 144

f p r i n t f Cfp."Xd\n".value);
}

}

v o i d i n t e r n i p t _ h a n d l e r (i n t s i g)
i

L 0 G (B I 9 , (" \ n I n t e r r u p t S i g n a l caught a t t r a c k Xd .. e x i t i n g ! \ n \ n " , t r a c k s)) ;
u r i t e C f d b i n , ftendnnrk. s i z e o f (i n t)) ;

k i l l (p i d . 9) : /• d i e , son ! •/
v a i t < f t s t a t u Q) ;
f c l o a o C f p) :
c l o s e (f d b i n) ;

// e x i t (0) :
}

v o i d s i g c h i l d _ h a n d l e r (i n t s i g)
{

L0C{BI9,("pid: %d, c h i l d d i e d !\n\n e x i t i n g a t t r a c k X d \ n " . p i d , t r a c k s)) ;
writeC f d b i n , ftendmark, sizeo£(int)) ;

u a i t C f t s t a t u s) ;
f c l o s e (f p) ;
c l o s e C f d b i n) ;
e x i t CO);

}

v o i d d i s p l a y _ u s a g e (v o i d)
{

p r i n t f (" a d g e t [-o o u t p u t f i l e I -b 8 I -a I - r | -a I -v « | - 1 l o g f i l e I -p « i - t « «! -D device I -L
p r i n t f C " -a : s c s i commands, - r : r e a l t i m e s c h e d u l i n g , -a : audio CD, -b : begin.block, -v : r e v o l u t i o n
p r i n t f C " d e f a u l t : -o adbin.dat -v 20000 -p 2 - t 1 1 - 1 logAD.txt -D /dev/sgO -b 0 -L 8192\n");

}

i n t o a i n C i n t argc, char ••argv)
{

i n t i , i n t e r v a l . s e t = 0 , s t a r t i n g _ 3 e t = 0 ;
i n t begin_block=0;
double t i a e . g e s , p r o g r a i a _ 3 t a r t _ t i m e , p r o g r a n . s t o p . t i n e ;
s t r u c t sched.paran sched;
char O u t p u t f [3 2] = " a d b i n . d a t " . l o g f i l e [3 2] = " l o g A D . t x t " ;
char Device[32]="/dev/sg0";
s t r u c t S t a t s t a t b u f ;

f o r (i = l ; i < a r g c ; i + +)
i

i f (argv[i3E0]=3'-*)
{

s w i t c h C a r g v [i] [l]) {
case »D':

i f (++i<argc)
strncpyCDevice, a r g v C i] , 3 2) ;

e l s e
<

p r i n t f (" w r o n g argument near \"-D\"\a\n");
e x i t (l) ;

>
break;

case 'o*:
i f (++i<argc)

s t m c p y (O u t p u t f , a r g v [i] , 3 2) :
e l s e
<

p r i n t f (" w r o n g argument near \"-o\"\n\n");
o x i t (l) ;

}
break:

case ' l ' :
i f (+ + i < a r g c)

s t m c p y C l o g f i l e , a r g v [i] , 3 2) ;
e l s e
{

p r i n t f (" w r o n g argunent near \ " - l \ " \ n \ n ") ;

B. l Control Software for the Experimental Apparatus 145

e x i t (l) ;

break;
case 's ': usescsicnd=l;

break;
case •a ': aud i o c d = l ;

break;
case • r ' ': r e a l t i m e . s c h e d = l ;

break;
case .J. ': tii s e s t a i n p s = l ;

break;
case 'n' ': d o n t s t a r t s h e l l = l ;

break;
case •h ': d i s p l a y _ u s a g e () ;

e x i t (O) :
case

i f {++i<argc)
{

i n t e r v a l = a t o i (a r g v [i]) ;
i n t e r v a l _ s e t = l ;

>

e l s e
{

p r i n t f ("wrong arguiaent near \"-p\"\n\n")
e x i t (l) ;

}
break;

case 'b':
i f <++i<argc)

begin.block = a t o i C a r g v C i]) :
e l s e

}
break:

p r i n t f (" w r o n g argunent near \"-b\"\n\n")
e x i t (l) ;

case 'V
i f (++i<argc)

r e v o l u t i o n s = a t o i (a r g v [i 3) ;
e l s e
{

p r i n t f (" w r o n g argument near \"-v\"\n\n")
e x i t C l) ;

>
break;

case ' t ' :
i f (+ + i < a r g c - l &ft a r g v [i + l] [0] ! = • - ')
{

s t a r t i n g _ s e t = l ;
s t a r t i n g _ t r a c k = a t o i { a r g v [i]) ;
e n d i n g . t r a c k = a t o i (a r g v [+ + i]) ;

}
e l s e
{

p r i n t f (" w r o n g argunent near \ " - t \ " \ n \ n ")
e x i t (l) ;

}
break;

case 'L*:
i f (++i<argc)

debuglevel = a t o i (a r g v [i]) ;
e l s e
{

p r i n t f (" w r o n g argunent near \"-L\"\n\n")
e x i t (l) ;

}
break;

d e f a u l t : p r i n t f ("wrong argunent near y.s\n\n" , a r g v [i]) ;
e i i t (l) ;

>

} else {

B. l Control Software for the Experimental Apparatus 146

p r i n t f (" v r o n g argunent near X 3 \ n \ n " , a r g v [i])

>

i f (i n t e r v a l . s e t ftft I r e a ltime.schad)
{

p r i n t f (" s e t t i n g i n t e r v a l w i t h o u t r e a l t i c o s c h e d u l i n g doesn't make sense!\n\D")
e x i t (l) :

}

i f (s t a r t i n g . s e t kt laudiocd lusescsicisd)
{

p r i n t f (" s e t t i n g s t a r t i n g and end t r a c k r e q u i r e s e i t h e r -a or -s\n") ;
e x i t (l) :

>

i f <(fp=fopen("ad.dat"."w")) = IIULL) {
p e r r o r (" f o p e n ") ;
e x i t (l) ;

}

i f ((f d b i n = croat (O u t p u t f , 0 7 7 7)) == -1)
{

p e r r o r C ' c r e a t ") ;
e x i t (l) ;

}

// fchovn(fd,1000.1000);
s i g n a K S I G I H T . i n t e r r u p t . h a n d l e r) ;
signal(SIGCHLD, s i g c h i l d . h a n d l e r) ;

i n i t . A D O ;

i f (realtime.sched)
<

t i n e _ t o _ a l e e p . t v _ s e c = 0 ;
time_to,sleep.tv_ns6c=interval»1000;
s c h e d , s c h e d _ p r i o r i t y = 30;
9ched_sotscheduler(0, SCHED.RR, ftsched);
L0C(BI6,("\nruniiing process changed t o SCHED.RR sc h e d u l i n g ! \ n \ n ")) ;
i f (I d o n t s t a r t s h e l l) {

i f ((p i d = f o r k O) < 0)
{

p e r r o r (" f o r k ") ;
e x i t (l) ;

>
i f (pid==0) // Sohn!
{

char • a r g v [4] ;
p r i n t f (" s t a r t i n g s h e l l \ n \ n ") ;
s c h e d . s c h e d . p r i o r i t y = 95;
8c h e d _ s e t 8 C h e d u l e r (0 , SCHED.RR. ftsched);
s y a t e a C / b i n / b a s h ") :
e x i t (O) ;

>
}
f d l o g = o p e n d o g l i l e . 0_HDWR 1 0,CREA7 1 O.TRUNC);
i f (f d l o g < 0) LGG(BIX2,("error opening l o g f i l o X s , X d \ n " . l o g f i l e , f d l o g)) ;
i f (d u p 2 (f d l o g , l) < 0) L0G{BI12, (" e r r o r d u p l i c a t i n g f d %d t o l \ n " . f d l o g)) ;
i f C d u p 2 (f d l o g . 2) < 0) L0G(BI12, (" e r r o r d u p l i c a t i n g f d Xd t o 2\n" . f d l o g)) ;
i f (c l o s o (f d l o g) < 0)

L0C(BI12,("error c l o s i n g l o g l i l e Xs.fd X d \ n " , l o g f i l e . f d l o g)) ;

t r acks=0;
i f (laudiocd)

i f ((p i d - f o r k O) < 0)
<

p e r r o r (" f o r k ") :
e x i t (l) ;

B. l Control Software for the Experimental Apparatus 147

i f (laudiocd &ft pid==0) /* Sohn •/ // Data CD s e c t i o n
{

i f (usescsicnd }
<

i n t f d . n . r e t ;

char EClogf[32]="EClog.dat";

unsigned char •wrkBuff= oalloc<SC_HEAD_SZ + SCSI.CMDIO.LEN
(BLOCK.SIZE * BLOCKS));

f d a open(Device, D.RDWR);
i f (f d < 0)
{

perrorC'open") ;
e x i t (l) ;

>
fpEClog = fopenCEClogf."w");
i f (fpEClog == NULL)
{

L0G(BI12,("error i n fopen y.s\n" , a r g v [2])) ;
p e r r o r C f o p e n ") ;
e x i t (l) :

}

i f CO == wrkBuff) {
L0CCBU2, ("can't a l l o c men f o r wrkBuf \ n ")) ;
p e r r o r (" n a l l o c ") ;
e x i t (l) ;

}

f o r (n=begin_block::n+=BLOCKS)
<

L0G(Br4.<" — accessing s e c t o r Xd\n",n));
// f f l u s h (f p E C l o g) ; f f l u s h (s t d o u t) :

r a t = sg.read(fd.wrkBuff.BLOCKS.n);

}
f c l o s e (f p E C l o g) ;
e x i t (2) ;

>

e l s e {

/• no SCSI read •/
char buf[20483;
i n t f d . r e t , s e c t o r ;
i f ((f d = openC Device, O.RDOIILY I O.NONBLOCK)) < 0) {

p o r r o r (" s c B i _ o p e n ") ;
e x i t C l) ;

>
// IseekC f d , 1100000. SEEK.SET) ;

f o r (sector=0;;sector++) {
r e t = r e a d (f d , b u f . s i z e o f (b u f)) ;
i f (r e t < 0) i

L0C(BIl2,("read e r r o r y.s\nskipping.. An",
s t r e r r o r (e r m o))) ;

lseek(fd.204B»200,SEEK_CUR);
}

}
i f (audiocd) // Audio CD s e c t i o n
{

i n t f d . r e t :

B.l Control Software for the Experimental Apparatus 148

char EClogfC32]="EClog.dat";

unsigned char •wrkBuff= malloc(SC.HEAD_SZ + SCS1.(M)10.LEH +
(BLOCK.SIZE • BLOCKS));

f d = openCDevice. O.RDWR);
i f (f d < 0)
<

p e r r o r C o p e n ") ;
e x i t (l) ;

}

fpEClog = fopen(EClogf,"w");
i f (fpEClog a= HULL)
{

L0C(Bn2, (" e r r o r i n fopen X s \ n " . a r g v [2])) ;
pe r r o r C ' f open");
e x i t (l) ;

}

i f (0 == w r k B u f f) {
L0G(8I12.("can't a l l o c men f o r w r k B u f \ n ")) ;
p e r r o r (" n a l l o c ") ;
r e t u r n 1;

}

i f (usescoicnd)
<

// s g . s t a r t . u n i t C f d . w r k B u f f) ;
r e t - Bg_play_audio(fd.wrkBuff , s t a r t i n g _ t r a c k , o n d i n g _ t r a c k) ;

else
<

LGC(BI9.("warning: not usi n g s c s i commands, CD p l a y e r c u s t be s t a r t e d w i t h independant

>

p r o g r a n . s t a r t . t i m e = ge t . u s O ;

t i c e . g e s = n a i n . a c q u i s i t i o n . l o o p C r o v o l u t i o n s) ;
writeC f d b i n , &endnark. 8 i z e o f < i n t)) ;

program.otop.time = get . u s O ;

LQC(BI3, ("average time per count: y,i s\n" . t i n e . g e s / t r a c k s / l e 6))
L 0 G (B I 3 . (" t o t a l t i n e used: %t s\n\n".

(p r o g r a m _ a t o p _ t i m o - p r o g r a n _ B t a r t . t i n e > / l o 6 >) ;

c l o s e (f d b i n) ;
f c l o s e (f p) ;

i f (k i l l (p i d , 9) < 0)
<

L 0 C (B I 1 2 , (" k i l l e r r o r p i d WNn" . p i d)) ;
p e r r o r (" k i l l ") ;

}
/* not reached ! •/

e x i t (O) ;

B.2 Simulation Software for Compact Disc Channel Modelling 149

B.2 Simulation Software for Compact Disc Channel
Modelling

B.2.1 Flowchart of the Encoder and Decoder Program

Figure B . l and B.2 show a schematic view of the workflow of both the encoder and

decoder. The main methods for each class, as well as each class is listed and classified

by where the functions are called from and whether they are public or protected class

members. Inheritance between classes is shown as well. A short description about every

class is included. All classes and functions can be found in the following listing (B.2.2).

Further information, in particular about Reed-Solomon encoding and decoding, is given

in Appendix A, in Section 3.3 the software implementation is discussed.

B.2.2 Program listing

/*
• nain.cc
• Copyright Kay Rydyger
*
• main program f o r channel s i m u l a t i o n
•/

«include "defs.h"
flinclude "classes.h"

^ i n c l u d e <uniBtd.h>
«include <time.h>

s t a t i c char c v s i d C] = " $ I d : l i s t i n g s . t e x . v 1.4 2002/05/19 11:58:11 kay Exp $";

Sdefine HIHBURSTFR 13
Sdefine HAXBUR5TFR 250
•i n c l u d e " p a t t e r n s . h "

i n t frame, HaxFrame=3000;
s t a t i c i n t gap3=0, burst3=0, gap_GPC.uide=3, bur8t_GPC_wido=3;
s t a t i c i n t frame_off8et=0;
s t a t i c v o i d oakeFramebadCint*, i n t *) ;
s t a t i c i n t orgFrameCFClSZBCW];
s t a t i c i n t f r p a t C l O O] ;
s t a t i c i n t modified_syi:ibols=0, not.modified_8ynbols=0;
s t a t i c i n t modified_syiabols_PDF=0, not.codified_8ynbols_PDF=0;
s t a t i c i n t in t r o _ s y n i b o l s = 0 , ok_synbols=0;
s t a t i c i n t o v e r a l l _ e r r o r s = 0 , o v e r a l l _ n o t _ e r r o r s = 0 ;
s t a t i c f l o a t BER=0.00l, t h i n n i n g = l ; // d e f a u l t BER, t h i n n i n g
s t a t i c t i m e . t s t a r t t i m e ;

v o i d introducePDFBurstsCint *Frame, Random •md, f l o a t t h i n n i n g)

3

&5

O
tr

3
3

o

O

fD

3

O
D

a-

EFM c l a s s
r o u t i n e s f o r EFW-
en/dccoding, incl.BFM coble

-> T r o f o T o E F M O : p u b l i c
--> t O _ N R 2 I {) : p r o C
--> o d d _ m e r g . . _ b i t 3 (J : p r o c
--> c o l c _ D S V () : p r o t

MAIN program
concroJ program

•> tnainO

ENCODE c l a s s
main encoding procedures i n c i
s c r a m b l i n g and i n t e r l e a v i n g

-> o n e F r a m e O : p u b l i c

base c l a s s o f c l a s s p o i n t e d t o
c a l l s methods f r o m c l a s s p o i n t e d t o

•> methods c a l l e d f r o m o t h e r c l a s s
•-> methods used by t h i s c l a s s

RSENCODE c l a s s
g e n e r a l r o u t i n e s f o r
RS encoding

-> RSEncodeO : p u b l i c
--> do_encoden :proc

RS c l a s s
Galois-field arithmetic
functions

-> Gmul () , GaddO : p r o t
--> i n i t _ l o o k u p . . () : p r o t
--> g e n . . _ p o l y . . () : p r o t

CD

to

3

o
3

o
r
"-1
o

<-s

o
o
5
o

g
co'
o

o
3"
P
3
3
CD

O
Q-

3
lOq

a t
o

2 cm' (—

CO
jo

o =r
en-
O

c-t-
a>
n
=r
P

£L

n o a-
fD

3

O
D

RANDOM class
random nujnber g e n e r a t o r s

-> b u r c t _ l c n g t h 4 () : p u b l i c
-> g a p _ l c n g t h () : p u b l i c
-> r n d _ r a n d () : p u b l i c

MAIN program
c o n c r o i progroin: c a i i s
en/decoding p r o c e d u r e s .

i n t r o d u c e s e r r o r s

-> mainO
--> introduce. . e r r o r a O

EFM class DECODE class
r o u t i n e s f o r EFM- inain decoding p r o c e d u r e s i n c l .
en/docoding,incl.EFM table s c r a m b i i n g and d e i n c e r i e a v i n g

-> TroEoFromEFM():public -> o n c F r a m c l) [p u b l i c
--> frora_NRZIO :proc

CI class
Rood-Solo.-non CJ (inner) decoder

-> ClOccodoO : p u b l i c
--> do_decodo_£3trat2(J :prot
--> do_dQcodo_otroc4(>;prot
--> chien_oeQrch{):prot
--> corrocc_with_fournQy(|:prot

b ase c l a s s o f c l a s s p o i n t e d to
c a l l s methods from c l a s s p o i n t e d to

-> methods c a l l e d froin o t h e r c l a s s
methods used by t h i s c l a s s

RSDECODE class
g e n e r a l r o u t i n e s f o r
RS decoding

-> got_syndroiaesl_2t() :prot
-> borlokampo :prot

RS class
Galoi3~£icld a r i t h m e t i c
f u n c t i o n s

-> Goddd , Gnul (I :proc
-> c d i v O , Gpo-rfOiprot
— > i n l t _ l o o k u p . . () : p r o t
--> flcn.._poly..0:prot

C2 class
Reed-Solomon C2 (outer) decoder

-> C2Dccodo(»:public
--> do_dccodQ_otrQC2():proc
--> do_docodo_ocroc4():prot
— > c h i e n _ B c a r c h {) ; p r o t
--> c o r r c e t _ w i t h _ f o u r n o y () : p r o t

to

3

%
$

9
3
O

a

^' o

o

Oq

B.2 Simulation Software for Compact Disc Channel Modelling 152

i

i n t i ;
s t a t i c i n t gap.cnt = m d - > g a p . r n d _ l e n g t h (t h i n n i n g) , b u r s t . c n t = 0;
s t a t i c i n t b u r s t = 0. gap = 1;

f o r (i=0:i<FClSZBCW;i++)
/•

s y n c b i t s n ot ch o s e n !
CW c o u n t e d b e c a u s e p o s s i b l e s c r a t c h e s have e f f e c t on CH, too
3X d i f f e r e n c e

•/
{

i f (b u r s t)
{

nodified.symbols_PDF++;
b u r s t . c n t — ;
Frame [i] = m d - > r n d _ r a n d (m a i f t l 4) ;
i f (I b u r s t . c n t)

{
gap.cnt = r n d - > g a p _ r n d . l e n g t h 3 (t h i n n i n g) ;
gap3++; gap=l; burBt=0;

}
>

e l s e i f (gap)
{

not.nodified.synbols_PDF++;
g a p . c n t — ;
i f (t g a p . c n t)

{
b u r s t . c n t = m d - > b u r 8 t . m d _ l e n g t h 4 () ;
b u r s t = l ; gap=0; burstB++;

>

v o i d introduceEquidistantErrors(Random *md. Decode *de. i n t d i s t a n c e)
{

/• c o n t r o l l e d by o p t i o n -g (gap_GPC.wide) <-> do not use w i t h introduceCPCErrorsO •/
i n t i ;
s t a t i c i n t z=0;

i f (frane>120)
l o r (i=l:i<FClSZBCW;i++,z++)

i f (z X d i s t a n c e == 0)
{

d e - > i n p u t F r a n e [i] = 0;
intro.Bynbols++;
z=0;

>
e l s e ok symbolB++;

}

v o i d introduceErrorSequence(Random 'rnd,Decode *de. i n t many, i n t f r . o f f)
{

/• c o n t r o l l e d by o p t i o n -g (gap.CPC.uide) <-> do not use w i t h introduceGPCErrorsO •/
i n t i ;
i f (framc>l20)

f o r (i=l;i<FClSZBCH;i++)
i f (i >= f r _ o f f + l ftft i < f r _ o f f + n a n y + l)

{
de->inputFrane[i3 = 0;
i n t r o . s y n b o l s + + ;

>
e l s e ok_syi3bols++;

v o i d introduceErrorSequenceShifted(Random •rnd,Decode 'de, i n t many)

/• c o n t r o l l e d by o p t i o n -g (gap.GPC.wide) <-> do not use w i t h introduceGPCErrorsO •/
s t a t i c i n t s h i f t = 0 ;
i n t i ;

B.2 Simulation Software for Compact Disc Channel Modelling 153

i f (frane>120)
• {

i f (s h i f t X F C l S Z B - n a n y)) B h i f t = 0 ;
f o r (i=l;i<FClSZBCW;i++)

i f (i >= s h i f t fcft i < s h i f t + n a n y)
{

d e - > i n p u t F r a n e [i] = 0;
intro_sjnnbols++;

}
e l s e ok_synbols++;

s h i f t + + ;
}

}

v o i d introduceErrorGroups(Random *rnd,Decode •do. i n t ciany)
{

/• c o n t r o l l e d by o p t i o n -g (gap.GPC.uide) <-> do not use w i t h introduceGPCErrorsO •/
i n t 2=0. i , v = 3 0 / (i n t) ((n a n y - 2) / (f l o a t) 2 + 1 . 5) + l ;

i f (f r a E e > l 2 0)
{

f o r (i=l:i<FClSZBCW;i++)
i f ((iy.v==0 I I iXv==l) ftft z<nany)
{

de->inputFrame[i] = 0;
intro_syiabols++;
2++;

}
e l s e ok_sycibols++;

v o i d introduceRandomErrorSyrabols (Random *md. Decode •de, i n t w i d t h)
<

i n t i ;
s t a t i c i n t gap_cnt=0;
i f (frane>120)
{

f o r (i=0;i<FClS2B;i++)
<

i f (I g a p . c n t —)
{

d e - > i n p u t F r a n e [i] = 0;
intro_synibols++;
gap.cnt = md->md_randfast (w i d t h) ;

>
e l s e ok_syinbols++;

}

v o i d introduceGPCErrorsCint •Frane, CPC 'gpc, Random ^md)
{

i n t i , wide=2;
s t a t i c i n t gap.cnt = gpc->gap_gpc_length(md,gap_CPC_wide), b u r s t _ c n t = 0;
s t a t i c i n t b i i r s t = 0. gap = 1;

f o r (i=0;i<FClSZBCW;i++) // sync b i t s not chosen!
<

i f (b u r s t)
{

codified_synbol6++;
b u r s t . c n t - - ;
F r a m e [i] - = 3 ;
i f (I b u r s t c n t)
{

gap.cnt = gpc->gap_gpc_length(md,gap_GPC_wide);
i f (gap_cnt==0) gap_cnt-M-;
gap=l; burst=0;
p r i n t f ("CPC: frame ltd gap l e n g t h Xd n r of frames Xd\n".

frace,gap_cnt,ga p _ cnt/33+l);
c o n t i n u e ;

>

B.2 Simulation Software for Compact Disc Channel Modelling 154

>
i f (gap)

{
not_modified_3ymbols++;
g a p . c n t — ;
i f (!gap_cnt)
{

b u r s t . c n t = gpc->burst_gpc_length(md,burst_CPC_wide) ;
b u r s t = l ; gap=0;
p r i n t f ("CPC:frame W b u r s t l e n g t h '/,d n r of f r a n o s Xd\n",

f r a m e , b u r s t . c n t , b u r s t _ c n t / 3 3 + l) ;
}

v o i d introduceRandomErrors(Random -rnd. Decode *de, i n t random.part)
{

i n t i . z u f a l l ;

i f (frame>120)
f o r (i=0:i<FClSZB;i++)

i f (md->rnd_rand(BERFACTOR) < random_part) {
de->inputFrame[i] = 0;
modif ied_synbols-t"f;

}
e l s e not_modified_symbols++;

}

v o i d introduceDoubleRandomErrorsCRandom *rnd. Decode *de, i n t random p a r t)
{

i n t i ;
i f (frame>120)

f o r (i=0:i<FClSZB:i++)
i f (md->md_rand(BERFACTOR) < random.part) {

de->inputFraneCi] = md->rnd_rand(maxf t l 4) ;
modified_symbols++;
i f (KFClSZB-1) {

de->inputFrame[++i] = rnd->md_rand(maxf t l 4) ;
modified_synbols++;

}
}
e l s e not.modified_3ymbols++;

v o i d introduceTripleRandomErrors(Random *rnd. Decode *de, i n t random p a r t)
{

i n t i ;
i f (frame>120)

f o r (i=0:i<FClSZB:i++)
i f (md->rnd_rand(BERFACTOR) < randoa.part) i

d e - > i n p u t F r a n e [i] = md->md.rand(maxf t l 4) ;
modified_symbol3++;
i f (i<FClSZB-l) <
do->inputFrame[-»-*-i] = rnd->md_rand(ma3tftl4) ;
modified_symbols++;

}
i f (i<FClSZB-l) {

de->inputFrane[++i3 = rnd->md.rand(maxf t l 4) ;
modified_3ymbols++;

}
>
e l s e n o t . m o d i f i e d _ 3 y n b o l s + + ;

v o i d introduceFrame£rror(int 'Frame,int *pat, i n t d i s t a n c e)
{

i n t i ;
i f (f r a m e % (d i s t a n c e + l) = = 0)

{
f o r (i=0;i<FClSZBCW:i++)

i f (p a t [i])
{

B.2 Simulation Software for Compact Disc Channel Modelling 155

Frano[i]=-FILLByTE;
intro.symbols++;

}
e l s e ok syiabols-^-*-;

}
else ok.8ymbols+=FClS2BCH:

}

v o i d a c c u i n u l a t e _ o v e r a l l _ e r r o r s (i n t *copy,int ' o r i g)
<

i n t i ;
i f (frame>120)

f o r (i=0:i<FClSZB;i++)
i f C c o p y C i] ! = o r i g [i])

o v e r a l l _ a r r o r s + + ;
e l s e

o v e r a l l _ n o t _ e r r o r s + + ;
}

v o i d oakeFranebad(int * F r a a e , i n t ^ pat)
{

i n t i ;
f o r (i=0;i<FClSZBCW;i++)

i f (p a t C i])
{

Frame[i]=-FILLBYTE;
intro_syinbols++;

}
else ok_symbols++;

}
v o i d introduceOneBurst£rror(int *Frane. i n t f r a m e s t a r t . i n t frameend. i n t *pat)
{

i f (frame >= f r a m e s t a r t tk frame < frameend}
makeFramebadCFrame.pat);

v o i d setFramecontents(union Frame •in,char f i l l)
{

i n t j :
f o r (3=0; j O i z e o f (' i n) ; j + +)

i n - > b y t e [j] = f i l l ;
}

v o i d t e s t m a x B u r s t d n t pnu, i n t s t r a t)
{

i n t b u r stframes;
Decode -De;

f o r Cburstframos=HIHBURSTFR; burstframes<MAXBURSTFR; b u r s t f r a n e s + +)
{

I H F 0 (4 , (" t e s t i n g b u r s t of Xd framesXn".burstframes)) ;
De = new D e c o d e (s t r a t) ;
f o r (frane=0; frame<MaxFrame; frame++)
<

memcpy(De->inputFrane,orgFrame,FClSZBCH*sizeof (i n t)) ;
introduceOneBurstError(De->inputFrame. 200, 200-<-burstf ranes , patternCpnu}) ;
De->oneFrame();
i f C frane>l09 tk De->modified())
{

p r i n t f (" t e s t m a x B u r s t : e r r o r d e t e c t e d i n frame Xd: max. b u r s t l e n g t h = Xd frames i n
r e t u r n ;

>
}
d e l e t e De;

}
i f (burstframes == HAXBURSTFR) p r i n t f (" b u r s t f r a m e s = X d ! n i g h t be longer.An".MAXBURSTFR);

>

v o i d t e f i t F r a n e p a t t e r n (i n t e t r a t)
{

i n t b u r s t f r = 0 , i = 0 ;
Decode *De;

B.2 Simulation Software for Compact Disc Channel Modelling 156

De =: new Dec o d e (s t r a t) ;

f o r (frame=0; frame<HaxFrame; fraae++)
{

c:emcpy(De->inputFrame,orgFrane,FClSZBCW*sizeof (i n t)) ;
I f (frame >= 115)
{

i f (b u r s t f r == f r p a t [i])
{

i++; bux8tfr=0;
}
b u r s t f r + + ;
i f (iX2==0 Wt f r p a t [i] ! = 0)

makeFraniebad(De->inputFrame .patternCO]) ;
>
De->oneFrame();
i f (frame >= 115 ft& De->nodifiedO)
{

p r i n t f ("testFramepattem: e r r o r d e t e c t e d i n frame Xd. i=Xd, b a r s t f r = X d \ n " .frame, i . b u r s t f r)
r e t u r n ;

}
}
d e l e t e De;

}

v o i d check_decoding_frame_result(BYTE* framebytes,
BYTE* erabytes,
s t r u c t E r r o r . k i n d s • e r r s)

{
i n t i . l e f t ;
s t a t i c i n t symb_counter_dec=240;
s t a t i c i n t eras_in_seqC2]={0.0>. e r r s _ n o t _ e r a s _ i n _ s e q [2] = { 0 . 0 } ,

e i T 3 _ i n _ s e q [2] = { 0 . 0 } ;

i f (frame>120)
f o r (i=0;i<FSZB;i++,8ymb_counter_dec++)
{

l e f t = i X 2 ;
errs->bytes_checked++;
i f (e r a b y t e s [i]) <

e r a s . i n . s e q [l e f t] + + ;
i f (f ramebytesCi] != (unsigned char) symb.counter.dec) e r r 3 - > P l l + + ;
e l s e errs->P01++;

>
e l s e <

i f (e r a s _ i n _ s e q C l e f t] = l l l e r a s _ i n _ s e q [l e f t] = = 2) i
e r r s - > i n t e r p o l a t e d _ e r a s + + ;

}
e r a s . i n _ s e q [l e f t] = 0 ;
i f (f ramebytesCi] != (unsigned char) symb.counter.dec) errs->P10++;
els e errs->POO++;

>
i f (f r a m e b y t e s [i] != (unsigned char) symb.counter.dec) i

INFOd.C'byte Xd m o d i f i e d i n frame Xd\n" , i .frame)) ;
e r r s - > s i n g l e _ e r r o r s + + ;
e r r s . i n . s e q C l e f t] + + ;

}
e l s e

i f (e r r s . i n . s e q C l e f t]) {
e r r s - > e r r o r _ c l i c k s + + ;
e r r s _ i n _ E e q [l e f t] = 0 ;

}
i f (framebytesCi] != (unsigned char) symb.counter.dec

! e r a b y t e s [i]) // n i s c o r r o c t i o n ??
e r r s _ n o t _ e r a s _ i n . s e q [l e f t] + + ;

e l s e
i f (e r r s _ n o t . e r a s . i n _ s e q [l e f t]) {

er r s - > e r r s . n o t _ e r a s + + ;
e r r s . n o t . e r a s . i n . s e q [l e f t] = 0 ;

>
}

B.2 Simulation Software for Compact Disc Channel Modelling 157

t i m e . t p r i n t . c u r r e n t . t i m e C c h a r * message, t i n e . t s t a r t t i n e)
<

t i m e . t t i n e p ;
t i n e p = time(MULL);
p r i n t f ("Process ID Xd Xs Xs" .getpidO .message,cticie(&tinep)) ;
i f (s t a r t t i n e) p r i n t f (" P r o c e s s ID Xd used t i n e i s : Xd n i n Xd s\n".

g e t p i d O , (t i n e p - s t a r t t i m e) / 6 0 , (t i n e p - s t a r t t i n Q) X 6 0) ;
f f l u s h (8 t d o u t) ;
r e t u r n t i n e p ;

}
v o i d p r i n t . p a r a m e t e r s (c h a r •*argv)
{

i n t i ;
p r i n t f (" c a l l e d w i t h : ") ;
f o r (i = 0 ; a r g v [i] ! = N U L L ; i + +)

p r i n t f (" X s " . a r g v C i]) ;
p u t c h a r (' \ n ') ;

}
v o i d p r i n t _ m o d e (i n t Mode)
{

i f (Hodeftl)
{

p r i n t f (" M o d e RAN chosen\n");
p r i n t f (" B E R i s Xf (o p t i o n -B)\n",BER);

}
i f (Modeft2)

<
p r i n t f (" M o d e PDF chosenXn");
p r i n t f (" t h i n n i n g i s Xf (o p t i o n - n) \ n " . t h i n n i n g) ;

}
i f (Modeft4)

{
p r i n t f (" M o d e GPC chosen\n");
p r i n t f (" d i s t a n c e i s Xd synbols (o p t i o n -g. gap.GPC_«ide)\n".gap.GPC.uide);

>
i f (ModeftS)

<
p r i n t f (" M o d e DRN chosen\n");
p r i n t f (" B E R i s Xf (o p t i o n -B)\n",BER);

}
i f (Hodeftie)

{
p r i n t f (" M o d e TRN chosen\n");
p r i n t f (" B E R i s Xf (o p t i o n -B)\n".BER);

>
i f (Kode&32)

{
p r i n t f (" M o d e EQU chosen. ") ;
p r i n t f (" d i s t a n c e i s Xd symbols (o p t i o n -g. gap_GPC.wide)\n".gap.GPC.uide);

}
i f (Modea64)

{
p r i n t f (" M o d e ESE chosen. ") ;
p r i n t f (" s e q u e n c e of Xd synbols (o p t i o n -g, gap.CPC.wido), f r a n o . o f f s e t i s Xd 3ynbols\n",gap.GPC_wide,fran

}
i f (Modeftl28)

{
p r i n t l (" H o d e EQFl chosen, ") ;
p r i n t f (" d i s t a n c e i s Xd frames (o p t i o n -g, gap.GPC.wide)\n",gap.GPC_wide) ;

}
i f (Kodeft256)

{
p r i n t f (" M o d e E0F2 chosen. ") ;
p r i n t f (" d i s t a n c e i s Xd frames (o p t i o n -g, gap.CPC_wide)\n".gap.GPC.wide);

>
i f (Hode&Sl2)

{
p r i n t f (" M o d e ESS chosen. ") ;
p r i n t f (" s e q u e n c e of Xd synbols (o p t i o n -g. gap.CPC_wide)\n".gap.GPC.wide);

}

B.2 Simulation Software for Compact Disc Channel Modelling 158

i f (Hodeftl024)

p r i n t f (" M o d e EGR chosen, ") ;

p r i n t f (" X d symbols per frame (o p t i o n -g, gap_CPC_uide)\n",gap_CPC_wide) ;

i f (Modeft2048)

p r i n t f (" M o d e EQF3 chosen, ") ;

p r i n t f (" d i s t a n c e i s Xd frames (o p t i o n -g. gap_GPC_wide)\n".gap_GPC_wide);

i f (Modeft4096)

p r i n t f (" M o d e RES chosen, ") ;
p r i n t f (" w i d t h i s Xd symbols (o p t i o n -g. gap_GPC_uide)\n",gap_GPC_uide);

v o i d i n i t _ l o g (F I L E «»flog)
{

char l o g f i l e C 3 2] ;
3 p r i n t f (l o g f i l e , " r u n - X d . l o g " , g e t p i d ()) :
i f (c h d i r (" . / l o g ") ! = 0)

{
p e r r o r (" n o l o g d i r ! ") ;
e x i t (l) ;

}
* f l o g = f o p e n (l o g f i l e , " w + ") ;
i f (•flog==HULL)

{
p e r r o r (" r u n i n logframesO : ") ;
e i i t (l) ;

>
}

v o i d print_encoded_frame(Decode 'de, i n t * framebyteo)
{

i n t i ;
i f (frame<=120) r e t u r n ;
f o r (i=0:i<FClSZB;i++)

p r i n t f { " X2X".de->Efm->TrafoFromEFM(framebytesCi3)):
p r i n t f (" \ n ") ;

}

i n t m a i n (i n t argc, char ••argv)
{

unsigned j ;
i n t i=:0, pnu, optburst=0,optframe=0,optspread=0;
i n t encodeonly=0, decodeonly^O, maxfraces=1000, encode_decode=0; // maxframes^lOOO
i n t langth=200, logframes=0; // d e f a u l t length=200
i n t Strategy_nu=4, Hode=0. di5tro=0;
FILE - f l o g ;
char filename[2553;

Encode *En;
Decode *De;
Random *Rnd;
GPC 'Cpc;

i f (argc<2)

e x i t (l)
}

[Till n îi iiiii!, H i H Sii - 1 . o i ^ i T i M H ^ - j P i i i i i . t i . . ^ » n». •iiit.n^\i

for(i=l:i<argc:i++)
{

i f (argv[i3[0]=='-')
i

switch (a r g v C i] [1]) {
case ' t * : encode_decode=i;

i f (++i>=argcl Umaxframes = atoi(argvCi]))==0)
{

printf("wrong argument near \"-t\"\n\n");

B.2 Simulation Software for Compact Disc Channel Modelling 159

e x i t (l) ;
>

break;
case 'b': optbxurst=l:

break;
case *e*: encodeonly=l;

i f (++i>=argc)
<

printf("wrong argument near \"-e\"\n\n");
e x i t C l) ;

}
else stmcpy(f ilenane^argvCi] ,255) ;
break;

case 'd': decodeonly=l;
i f (++i>=argc)
{

printf("wrong argument near \"-d\"\n\n");
e x i t (l) ;

}
else stmcpy(f ilenace,argv[i] ,255) ;
break;

case ' f : optframe=l;
forCj=i+l;j<argcttftargvCj]CO]!=»-';j++)

f r p a t [j - i - l] = a t o i (a r g v [j]) ;
frpat [j - i - O = 0 ; i = j - l ;
i f (frpat[0]==0) {

printf("wrong argunent near \"-f\"\n\n");
e x i t d) ;

}
break;

case 's': opt8pread=l;
i f (++i>=argc| Klength = atoi(argvCi]))==0)
{

printf("wrong argmnent near \"-s\"\n\n");
e x i t (l) ;

}
break;

case 'n':
i f (++i>=argcI I(thinning = atof(argvCi]))==0)
{

printf("wrong argunent near \"-n\"\n\n");
e x i t (l) ; •

}
break:

case 'n*:
i f (++i>=argc| I (HajcFrane=atoi(argvCi]))==0)
<

printf("wrong argument near \"-n\"\n\n");
e i i t (l) ;

}
break;

case 'B':
i f (++i>=argc| I (BER=atof (a r g v [i])) " 0)
{

printf("wrong arguaent near \"-B\"\n\n");
e i i t (l) ;

}
break;

case 'g':
i f (++i>=argc)
{

printf("wrong argunent near \"-g\"\n\n");
e x i t (l) :

>
else gap_CPC_wido = a t o i (a r g v [i]) ;
break;

case 'w':
i f (++i>=argclI(burst_GPC_wide = atoi(a r g v [i])) = = 0)
{

printf("wrong argunent near \"-w\"\n\n");
e x i t (l) ;

>
break:

B.2 Simulation Software for Compact Disc Channel Modelling 160

case 'L': logfranes=l;
break;

case 'v': d i e t r o = l ;
break;

case 'S*:
i f (++i>=argcl|(Strategy_nu = ato i (a r g v [i])) = = 0)
{

printf("wrong argument near \"-S\"\n\n");
o x i t (l) ;

}
break;

case 'M*:
i f C++i>=argc)
{

printf("wrong argument near \"-M\"\n\n");
e x i t C l) ;

}
Mode = a t o i (a r g v [i]) ;
break;

case 'o':
i f (++i>=argc)
{

printf("wrong argunent near \"-o\"\n\n");
e x i t (l) ;

}
f raroe.off set = a t o i (a r g v [i]) ;
break;

default: p r i n t f ("wrong argucent near y.s\n\n" .argvCi]) ;
e i i t (l) ;

}
} else <

printf("wrong argument near Xa\n\n",argv[i]);

}
}

i f (Strategy_nu!=2&ftStrategy_nu!=4) {
p r i n t f (" o n l y decoder strategies 2 and 4 allowed.\n\n");
e x i t d) :

}

i f (!(Modeftl28|lModeft256||Hodea2048) tk gap_CPC_wide==0) {
printf("gap_GPC_wide=0 chosen i n Mode other than EQFl,EQF2,EQF3, e x c i t i n g . A n ") ;
o x i t (l) :

}

i f (d i s t r o ftft !encode.decode)
p r i n t f (" \ n * * wcurning: option d i s t r o (-v) only v a l i d with encodo.decode (-t)\n\n");

i f (encode.decode !Mode)
{

p r i n t f (" \ n * * uaming: Mode not chosen i n encode.decode (-t)\n\n");
e x i t (l) ;

>
i f (Mode bt !encode_decode)

p r i n t f (" \ n * * warning: Mode chosen (-H) but not with encode.decode (- t) , Mode not conaidered\n\n");

En = new Encode;
Rnd = new RandomO;
Gpc = new GPC;

print_parametors(argv);

print_ciode(Mode) ;

starttime = p r i n t _ c u r r e n t _ t i n e (" s t a r t tine i s : " , 0) ;

i f (logframes) i n i t _ l o g (K f l o g) ;

i f (optspread)

B.2 Simulation Software for Compact Disc Channel Modelling 161

get the spreading length for a biirst of length sectors
via the Encoder

•/
<

i n t frameend,franebeg=0;
for(frame=0; frane<HaxFrane; frane++)
{

i f (frame < 200 I I frane >= 200+length)
oetFranecontontfl(fcEn->inputFrojae.FILLBYTE) ;

else setFrainBcoatentB(ftEn->inputFrano,FILLBlfTE-l) ;
En->oneFranie() ;
i f (frame > 115 En->otherfillO)
{

ItfFQ(4, ("frame « Xd contains symbols other than FILLBYTEJW .frame));
i f (Iframebeg) framebeg=frame;
fraceend=frane;

>
}

p r i n t f (" f i r s t occurence of modified frame: Xd. l a s t : y,d, d i f f : y.d\n" ,f ranebeg.f romeend, f rameend-f ramebeg
>

i f (optframe I I optburst)
{

for(frame=0; frame<12C; frame++)
<

setFramecontents(ftEn->inputFrame,FILLBYTE);
En->oneFrame();

}
nemcpy(orgFrame,En->outputFrane,FClSZBCW*s i z e o f (i n t)) ;

}

i f (optframe)
{
INFOd , ("\ntest of frame patterns mnning. . An")) ;
testFramepattem(Strategy_nu);

}

i f (optburst)
{
INFOd , ("\nBurst testing of d i f f e r e n t patterns running. . An")) ;
fo r (pnu=0;pnu<sizeof(pattern)/sizeof(int)/FClSZBCW:pnu+-*-)
{

INF0(4. ("burst testing pattern S y,d\n" .pnu)) ;
testmaxBurst(pnu,Strategy_nu);

}
}

i f (encode.decode)
{

i n t j ;
i n t &ymbcntenc=0;
i n t rondoo.part = BER»BERFACTOR;
struct Error.kinds errs={0.0,0,0,0,0,0,0,0};
i n t encoded.copyCFClSZB];

De = new Decode(Stretegy_nu);

for (frame=0; frace<maxframes; frane++) {

i f (l o g f races)
{

fprintf(flog."Xd\n".frame):
r e v i n d (f l o g) ;

}
i f (d i s t r o)
{

fo r (j=0;j<FSZB;j++)
i f (j>2Wtj<S) En->inputFrame.byteCj] = frane;//synbcntenc++;
else En->inputFrane.bytetj3 = 0;

>
else

for (j=0;j<FSZB;j++,synbcntenc++)
En->inputFra3e.byteCj] - (unsigned char) synbcntenc;

B.2 Simulation Software for Compact Disc Channel Modelling 162

// 9etFrainecontents(&En->inputFrane .FILLBYTE) ;

En->oneFrano();

i f Cdistro) print_encoded_frane(De,En->outputFrane);

i f (d i s t r o) continue;

neacpy(De->inputFra2ie,En->outputFraQe ,FClSZBCW*sizeof (i n t)) ;
nemcpy(encoded_copy ,En->outputFraz:o,FClS2BCW*sizeof (i n t)) ;

i f (Hode&l) introduceRandoa£rrors(Rnd, Do, random.part);
i f (Hode&2) introducePDFBursts(De->inputFrane, Rnd, thi n n i n g) :
i f (Hodefc4) introduceGPCErrors<De->inputFrane, Gpc, Rod);
i f (HodeftS) introduceDoubleRaudooErrorsCRnd, De, randon.part);
i f (Hode&16) introduceTripleRandonErrorsCElnd, De, random.part);
i f (HodQ&32) introduceEquidistantErrorsCRnd. De, gap.GPC.vide);
i f (MQdeft64) introduceErrorSequenceCRnd.De ,gap_GPC_wide , f rane.of f set) ;
i f (Hodebl28} introduceFrameErroT(De->inputFrane,patteni[0] ,gap.CPC_ujde) ;
i f CHode&256) introduceFrane£rror(DB->inputFrane,pattem[l] ,gap_GPC.vide) ;
i f <Hode&512) introduceELrrorSequenceShif tedCRnd ,De ,gap_GPC_uide) ;
i f (Mode&1024) iatroduce£rrorGroups<Rnd,De,gap_GPC_uide);
i f (Hodeft2048) iatroduceFrane£rror(De->inputFrane,pattern[2] .gap.GPC.uide) ;
i f (Mode&4096) introduceRQndon£rrorS/iabols(Rnd,De,gap_GPC_uide);

accuinulate_overall_errors(encoded_copy,De->inputFrane) ;

De->oneFrai5e() ;

check_decoding_frame_reaultCDe->outputFrane.byte,
De->outerasFrame.byte,
fterrs);

>

}

print_current_tine("atop time i s : " . s t a r t t i n e) ;

modif ied.9ymbols_PDF,not_modif iod_synibol5_PDF,not_modif ied_syinbol9.PDF+modif ied.synbols.PDF,
modif ied.symbols.PDF/(double) (not .modified.symbola.PDF+tnodifiod.symbols.PDF) ,
intro.synbola, ok.syiabols , intro.synbola+ok.synibols,
intro.aymbola/(double) (intro_syinbols+ok_synbols) ,
modified.aynbols,not_nodified_symbols ,not_Dodif ied.symbols+modif ied.synbols ,
modified.aynbols/(double) (not.oodif ied.syTsbols-tinodif ied.symbols) ,
overall.errora/(float)(overall_errorB + o v B r a l l_not.errors) ,
erra.single.errora,
errs.bytes.checked, erra.single.errors/(double)(errs.bytes.checked) ,
errs.bytea.checked/FSZB,
errs.interpolated.eras, errs.interpolated.eraa/(double)(errs.bytes.checked),
er r s . e r r o r . c l i c k s , errs.error.clicks/(double)(errs.bytes.checked),
errs.errs.not.eras, errs.errs.not.eras/(double)(errs.bytes.checked).
errs.POO, errs.POl, errs.PlO, e r r s . P l l ,
errs. POO/(double) (errs, by tea.checked) , errs. POl/(double) (errs.bytes.checked) ,
errs.PlO/(double) (e r r s , bytes.checked) , errs .PI 1/(double) (errs .bytes.checked)) ;

i f (bursts)
p r i n t f C bursts Xd\n gaps Xd\n=>average burst length: Xf\n=>average gap length; '/,f\n\n",

bursts, gaps,

codified.symbols/(float)bursts. aot.codified.aymbol9/(float)gaps) ;

if(lo g f r a n e s) f c l o 3 e (f l o g) ;

i f (encodeonly)
{

i n t j,3yi:ib=0,fd;
i f ((fd=open(filenacie.O_WROHLY|O.CREAT,S.IREAD|S_IWRITE)) < 0)
{

perrorC'encodeonly:open");
e x i t (l) :

}
for (frace^O; frac:e<HaxFrane; frane++) {

fo r (j=0;j<FSZB;j++,8ynb++)
En->inputFrame.byteCj] - (unsigned char) symb;

B.2 Simulation Software for Compact Disc Channel Modelling 163

En->oneFrane();
write(fd.En->outputFrane.FClS2B(n**sizeof (i n t)) ;

}
}

if(decodeonly)
{

struct Error.kinds errB={0,0,0,0,0,0,0,0,0};
i n t f d ;

i f ((fd=open(filenane,O.RDOHLY)) < 0)
•t

perror("decodeonly:open");
e x i t (l) ;

>
De = new Decode(Strategy_nu);
for (frame=0; fraine<MaxFraine; fraiae++)

i
if(logframes)

<
fprintf(flog."Xd\n",frane);
rewind(flog);

}

read(fd,De->inputFrane,FClSZBCW*sizeof(int));

De->oneFrane();
for(i=0:i<FS2B:i++)

p r i n t f ("Xd " ,De->outputFra=ie.byte[i]) ;
check_decoding_f rame_result{De->outputFranie.byte,

De->outerasFrane.byte,
fterrs);

}
print_current_tine("stop t i n e i s : " , s t a r t t i n e) ;

| i i i i i i . f f " i . i M i i i r i . i i M y . i i i M . i n f M n . nuWu^ n n p . M . i j i MIII [i n i l i r i fnng

nodified_Bymbols_PDF,not_nodif ied_synbolB_PDF,not_modif ied_synbols_PDF+nodif ied_synbols_PDF,
nodif ied_synbol8_PDF/(double)(not_nodified_aynbols_PDF+ciodified_3ynbols_PDF) ,
intro.synbols, ok.synbols, intro_synbols-fok_synbols,
intro_synbols/(double)(intro.synbols+ok_synbols),
errs.s ingle.errors,
errs .bytes.chocked, errs.single.errors/(double) (errs.bytes_checked),
errs.bytes_checked/FSZB,
errs.interpolated.eras, errs . interpolated_eras/(double)(errs.bytes.checked),
errs .error.clicks. errs .error.clicks/(double) (errs .bytes.checked) ,
errs.errs_not_eras, errs.orrs_not_eras/(double) (errs .bytes.checked) .
errs.POO, errs.POl, errs.PlO, e r r s . P l l ,
errs. POO/(double) (errs, by tes.checked) , errs.POl/(double) (errs .bytes.checked) ,
errs. PI 0/(double) (errs, by tes.checked) , errs.Pll/(double) (e r r s , bytes .checked)) ;

i f (bursts)
p r i n t f (" bursts y.d\n gaps Xd\n=>average burst length: Xf\n=>average gap length: %f\n\n",

bursts, gaps,
nodified_synbols/(float)bursts. not_nodified_synbols/(float)gap3);

if(logframes) f c l o s e (f l o g) ;
}

}

/•
• Encode.cc
• Copyright Kay Rydyger
*
• Encoding class
•/

Sinclude "defs.h"
Sinclude "classes.h"

stati c char cvsid[]="$Id: l i s t i n g s . t e x , v 1.4 2002/05/19 11:58:11 kay Exp $"

Encode::Encode()

B.2 Simulation Software for Compact Disc Channel Modelling 164

Efn = new EFH();
RsEncoder = new RSEncoderO;

Posl=0; Pos2=2;
Pos=0; PoeBuf=0; Pos3=l;

puffer = (union ClFrame*) calloc(112,8izeof(union ClFrame))
input - (union C2Frame*) calloc(3,sizeof(union C2Frame));
output = (union ClFrame*) calloc(2,sizeof(union ClFrame));
outputFrame = (int») calloc(FClSZBCW,si2eof(int));

nenset(puffer,0,112*3izeof(union ClFrane));
aemset(input,0,3*8izeof(union C2Frace));
[3emset(output,0,2*sizeof (union ClFrame});
nemset(ftinputFrame,0,sizeof(inputFrame));
mem9et(outputFrane,0,FClSZBCW»sizeof (a i z e o f d n t)))
for (i=0;i<FSZB;i++) inputFraae.byte[i]=0:

Encode::~Encode()
<

fre e (p u f f e r) ;
f r e e (i n p u t) ;
free(output);
free(outputFrame>;
delete Efm;
delete AsEncoder;

flifndef SCRAHBLEOFF
void Encode::oneFrame()
<

union ClFrame * c l ;
c l = ScrambleFrameO;
EFMencodeFrane(cl);

}

Seise
void Encode: loneFrameO
{

in t i ;
union ClFrane c l ;
union C2Frame c2;
for (i=0;i<6;i++)

c2.word[i] = inputFrace.vordCi];
for (i=6:i<FSZW;i++)

c2.wordCi+2] - inputPrane.vordCi];
RSEHC0DE(ftc2);
for (i=0;i<FC2SZW:i++)

cl.wordCi] = c2.word[i];
RSENCODE(ftcl);
for (i=0; i<FClSZB: i++)

outputFrameCi] = TRAFOTaEFM(cl.byteCi])
}
Sendif

union ClFrame -Encode::ScrambleFrane()
{

unsigned i.x.y;
union ClFrame •clframe;

input[Po82].wordCO] = inputFrace.word[0]
input[Pos2].wordC3] = inputFrane.wordCl]
input[P08l].word[8] = inputFrama.wordt23
i n p u t [P o s l] . v o r d [l l] = inputFrame.word[3]
input[Pos2].wordCl] = inputFra3e.word[4]
input[Pos2].uord[4] = inputFrase.wordCS]
inputCPosl] .wordCO] = inputFra::e.wordC6}

B.2 Simulation Software for Compact Disc Channel Modelling 165

inputCPosl].uord[l2] = inputFra=e.wordC7]
input[Pos2}.word[2] = inputFra=e.tford[8]
input[Pos2].word[5] = inputFraxe.vordC9]
input[Posl].vord[10] = inputFraze.vordClO];
inputCPosO .word[133 = inputFra=ie.uord[ll] ;

RSEKCODE(ftinput[Posl]);

IKClR3(Posl);
IHClR3(Pos2);

for (x=0,y=PosBuf; x<28: x++) {
pufferCy].byteCx] = input[Pos].byte[x];
IHC4R109(y):

>

clframe = ftpufferCPosBuf]:

RSEHCODE(ftpuffer[PosBuf]);

IIIC1R3(P05) :
INClR109(PosBuf);

i f (Pos3==0) l o r (i=0; i<FClSZB; i++)
outputCi7.2] .byte[i] = clframe->byte[i] ;

else f o r (i=0: i<FClSZB; i++)
outputCl-iX2].byteCi] = clframe->byteCi];

INClR2(Pos3);

return ftoutput[PosS];

void Encode::EFHencodeFrane(union ClFrame *cl}
i

unsigned i ;
i n t *out = outputFrame;
•out++ = TRAFOTOEFM(O); // add one control word per frame
for (i=0: i<FClSZB: i++)

•out++ = TRAFOTOEFH(cl->byte[i]);
}
void Encode::setChnbit(int i)
{

i f (i>560ftfti<5B8) // t h i s hides the sync pattern i n t o the unused b i t s of frame.
< // decoding i s currently done by discarding them.

outputFrane[i-561] 1= {1«17);
return;

}
i f (i<=560ftfti>=0)
i

outputFraneCi/17D |= (l«(i%17)):
return;

}
printf("Encode:;setChnbit: wrong channel b i t number, i=W ! ' \ n " , i) ;

}

void Encode::toggleChnbit(int i)
{

i f (i>560&fti<588)
{

outputFraBe[i-561] ~= (1«17);
return;

>
i f (i<=560ftfti>=0)
<

outputFrane[i/17] "= (l«(iXl7));
return;

}
printf("Encode::toggleChnbit: wrong channel b i t number, i=Xd ! ! \ n " , i) ;

}

i n t Encode::getChnbit(int i)

B.2 Simulation Software for Compact Disc Channel Modelling 166

i f (i>560&ai<588)
return (outputFrame[i-56l]ft(l«17))?l :0:

i f (i<=560a&i>=:0)
return ((l«(iXl7))ftoutputFrame Ci/17]) ? l :0;

printf("Encode::getChnbit: wrong channel b i t number. i=Xd ! ! \ n " , i) ;
return 0;

i n t Encode::otherfill()
{

i n t i ;

f o r (i=l;i<13;i++) // nunber zero is CW !
i f (TRAFOFROMEFM(outputFramo[i])!=FILLBYTE)

return 1;
for (i=17:i<29;i++)

i f (TRAFOFROMEFM(outputFrane[i])!=FILLBYTE)
return 1;

return 0;
>

• Decode.c
• Copyright Kay Rydyger
•
• Decode class
*

Sinclude "defs.h"
^include "classes.h"

s t a t i c char cvoid[]="$Id: l i s t i n g s . t e x . v 1.4 2002/05/19 11:58:11 kay Exp $";

union C2Frame Decode::eradumm:

Decode::Decode(int decoder.strat)

Efm = new EFM();

Cl = new ClDecoder(decoder_8trat);
C2 = new C2Decoder(decoder_strat);

Pos=0;
Posl=l;
Pos2=0;
Po8Buf=0;

puffer = (union C2Frame*) calloc(ll2.sizeof(union C2Frame)>;
erapuf = (union C2Frame*) calloc(ll2,sizeof(union C2Framo));
input = (union ClFrame*) calloc(2,sizeof(union ClFrane));
inputera= (union ClFrane*) calloc(2.si2eof(union ClFrame)):
output = (union Frame*) calloc(3,8izeof(union Frame));
outputera - (union Frame*) calloc(3,8izeof(iinion Frame));
inputFrane = (i n t *) calloc(FClSZBCW,8izeof(int));

nemset(puffer,0,112*8izeof(union C2Framo))
nemset(erapuf,0,112*8izeof(union C2Frame))
nemset(input,0,2*sizeof(union ClFrane));
nenaet(inputera,0,2*8i2eof(union ClFrane))
nemsot(output,0,3*sizeof(union Frane));
nemset(outputera,0,3*sizeof(union Frame));
nenset(inputFrane.0.FClSZBCW-sizeof(int));
cemset(ftoutputFrane,0,sizeof(outputFrane))
nemset(fteradunn,0,s izeof(eradumm));

Decode::~Decode()

B.2 Simulation Software for Compact Disc Channel Modelling 167

f r e e (p u f f e r) ;
free(erapuf);
f r e e (i n p u t) ;
free(inputera);
froe(output);
f ree(inputFraine) ;
f f l u s h (s t d o u t) ;

delete Efo;
delete CI;
delete C2;

Sifndef SCRAHBLEOFF
void Decode::oneFrane()
{

union ClFrane ' c l ;
c l = EFMdecodeFraneO;
DescranbleFrane(cl);

}

Seloe

void Decode::oneFrane()
{

union ClFrane c l ;
union C2Frane c2;
union ClFrane clera;

i n t i , r o t ;
for (i=0;i<FClSZB;i++)
{

ret = TRAFGFR0MEFM(inputFrane[i+l3); // because number zero i s CW !
cl.byteCi] = (BYTE) r e t ;
i f (r e t == HROHGEFM) clera.byte[i] = 1;
else clora.byteCi] = 0;

}

ClDECODE(ftcl,feclera);
for (i=0; KFC2SZB; i++)
{

c 2 . b y t e [i] - c l . b y t a [i] ;
eradunm.byteCi] = Cl->geterasure(i);

>

C2DEC0DE(tc2.fteraduna);
for (i=0; i<6; i++)

outputFrane.wordCi] = c2.word[i];
for (i=8; i<FC2SZW: i++)

outputFrame.wordti-23 = c2.word[i];
>

«endif

union ClFrane ^Decode::EFHdecodeFrane()
i

unsigned i n t i , oldPos. r e t ;
i f (Pos==0)

for (i=0; i<FClSZB; i++)
<

ret = TRAFOFRQMEFM(inputFrane[i+l]); // because number zero is CW !
input[iX2].byteCi) = r e t ;
i f (ret == WRONGEFH) inputera[iX2].byte[i] = 1;
else inputera[iX2].byte[i] =0;

>
else

for (i=:0; i<FClSZB; i++)
{

ret = TRAFOFROMEFM(inputFrane[i+l]);
i n p u t [l - (i X 2)] . b y t e [i] = r e t ;
i f (r e t == WRONCEFM) inputeraCl-(iX2)].byteCi] = 1;
else inputera[l-(i7.2)] .byteCi] =0;

B.2 Simulation Software for Compact Disc Channel Modelling 168

INF0(2,("\n\n\n"========== FRAME NR.: Xd = = =
SHOWPUFFERCl(l«9. "Decode : input-puffer\n" . input) ;
SHDWPUFFERCKKO. "Decode : erasure-puff er\n" , inputera) ;

==========\n".frame))

INFa(2,("Decode: CI decoding l i n e Xd i n input-puffer\n\n",Pos))

ClDECODE(&input[Pos],tinputera[PosD);

oldPos = POB;
INClR2(Pos);

return ftinput[oldPos];

void Decode::DescraableFrane(union ClFrane •input)
{

union C2Fraiiie •c2fraiae, •c2eras:
i n t x . y . i . j ;

for (x=0.y=PosBuf;x<FC2SZB; x++) <

puffar[y].byteCx] = input->byte[x3:
erapufCy]-byteCx] = Cl->geterasure(x);

DEC4R109(y);

SHDWPUFFERC2(l«ll. "Decode: erapuf \n" .erapuf) ;
SH0WPUFFERC2(l«9, "Decode: puffer\n" .puffer) ;

INC4R109(y);

INF0(2.("Decode: C2 decoding l i n e Xd in puff e r \ n " . y)) ;

C2DEC0DE(&puffcr[y].fterapuf t y]) ;

SH0WPirFFERC2(l«ll."Decode: after decode: erapuf \n" .erapuf)
SH0WPUFFERC2(1«9."Decode: a f t e r decode: puf fer\n" .puf f er) ;

IHClR109{PosBuf);

c2fraine = &puffer[y] ;
c2eras = fterapufCy];

output
output
output
output
output
output
output
output
output
output
output
output

[Posl]
[Posl]
[PosX]
[Posl]
[Posl]
[Posl]
[P082]
[Pos2]
[POB2]
[Pos2]
[Pos2]
[P052]

word[0]
uord[4]
uord[8]
uo r d [l]
vord[5]
word[9]
word[2]
vord[6]
word[10]
word[3]
word[7]
word [11]

// scramble erasures as
outputera[Posl].vord[0]
outputera[Posl].uord[4]
outputera[Posl].word[8]
outputera[Posl].vord[l]
outputera[Poal].uord[5]
outputeraCPoal].uord[9]
outputera[Po32].word[2]
outputera[Pos2].vord[6]
outputera[Pos2].word[l0]
outputera[Pos2].word[3]
outputera[Po82].word[7]
outputera[Pos2].word[ll]

c2fra=e-
c2fra=:e-
c2fraae-
c2fra2ie-
c2franie-
c2f ran:e-
c2f rame-
c2f rane-
c2f raae-
c2f raae-
c2fra=e-
c2fra=e-

v e l l

>word[0] ;
>word[l] ;
>word[2] ;
>vord[3] ;
>vord[4] ;
>word[S] :
>word[8] ;
>word[9] ;
>word[10];
>word[ll] ;
>word[l2] ;
>word[l3] ;

= c2era8-•>wordtO]:
= c2era8-•>wordtl] ;
= c2era8-->word[2] ;
= cZeras-•>word[3]:
= c2eras-->wordC4] ;
- c2eras-->word[5] .
= c2eras-->word[8] ;
= c2era3-->word[9] ;
= c2eras ->word[10;
= c2eras-->word[li:
•= c2eras ->wordCl2;
= c2eras-->word[13:

B.2 Simulation Software for Compact Disc Channel Modelling 169

SH0WPUFFER.FC2SZB(1«9."Decode; c2f rame-puff er\n" ,c2f rame) ;
memcpy(&outputFrame,&output[Posl3,FSZB);
cemcpy(ftoutera3Frame,&outputeraCPosl],FSZB);
SH0W?UFFER_FSZB(1«9."Decode: output-puffer\n" .output) ;

SHDWPUFFER_FC2SZB(l«ll, "Decode: c2eras-puf f er\n" , c2eras) ;
SHOWPUFFER_FSZB(1«11. "Decode: outputera-puf f er\n" , outputera) ;

INClR3(Posl);
IHClR3(Pos2);

}

void Decode::setChnbit(int i)
{

i f (i>560aai<588)
{

inputFrame[i-56l3 |= (1«17);
return;

}
i f (i<=560ft&i>=0)
{

inputFrane[i/173 1= (l«(iV.17)):
return;

}
printf("Decode::setChnbit: wrong channel b i t number, i=Xd !!\n",i)

void Decode::toggleChnbit(int i)
{

i f (i>560Wti<588)

inputFrame[i-561] "= (1«17);
return;

i f (i<=560&fti>=0)

inputFraneCi/17] *= (l«(ilil7));
return;

p r i n t f ("Decode: :toggleChnbit: wrong channel b i t number, i=y,d ! ! \ n " , i) ;

i n t Decode::getChnbit(int i)
{

i f (i>560ftfti<B88)
return (inputFrame[i-56l]ft(l«l7))?1:0;

i f (i<=560t&i>=0)
return ((l«(iXl7))ftinputFraae[i/17])?1:0;

p r i n t f ("Decode: :getChnbit: wrong channel b i t number, i=y,d ! ! \ n " , i) ;
return 0;

}

i n t Decode: :ciodified(void)
{

i n t i ;
for (i=0;i<FSZB:i++)

i f (outputFrane.byteCi]!=FILLBYTE) return 1;
return 0;

}

• EFM.c
• Copyright Kay Rydyger

• EFM modulation and demodulation
*
*/

•include "defs.h"
•include "classes.h"

B.2 Simulation Software for Compact Disc Channel Modelling 170

«include "EFMTable.h"

sta t i c char cvsid[]="$rd: l i s t i n g s . t e x , v 1.4 2002/05/19 11:58:11 kay Exp S";

sta t i c i n t uaeofficialEFMTable=l;

int naxHonEFMWords;

EFM::EFH()
{

i f (useofficialEFMTable)
CreateOf f icialEFHTableO:

else
CreateMyEFHTableO;

naxHonEFMWords = CreateHonEFMWordsO ;
D5V = 0;

}

i n t EFH::TraioToEFM(BYTE word)
{

unsigned i n t efnword;
efnword = EFHTable[word];
(void) add_nerging_bit3(ftefQword);
return TQ_NRZI(efmword);

}

i n t EFM::TrafoFromEFM(int word)
{

unsigned i n t r e t , f r o n n r z i ;
fromnrzi = FROM.NRZKword);
ret = EFHrevTable[fronnrzitnaskl4];
i f (ret==aaskl4)
{

I(IF0(l«4,("TrafoFromEFM: wrong EFH code ! EFMrevTable[Xd3=y.d. word=Xd\n",
fromnrziftnaskl4,ret,word));

return WRONGEFH; // for setting erasures !
}
return r e t ;

}

void EFM::printEFHTable()

i n t i , byte;
f o r (i = 0 ; i<256; i++)
{

byte = EFHTableCil;
printf("EFMtableC Xd] = XdXdXdXdXdXdXdXdXdXdXdXdXdXd Xd\n".i.

(byto»13)ftl, (byto»12)ftl, (byte»ll)ftl, (byte»10)&l, (byte»9)&l,
(byte»8)ftl, (byte»7)ftl. (byte»6)ftl, (byte»5)ftl, (byte»4)ftl. (byte»3)&l,
(byte»2)ftl, (byte»l)ftl, (byte»0)ftl, byte) ;

}
f o r (i = 0 ; i<=9400; i++) // !!! nax value i s 9362 for EFHTable !!!
{

byte = EFMrevTableCi];
i f (byte != naskU)

printf("EFMrovTablo[Xd XdXdXdXdXdXdXdXdXdXdXdXdXdXd] = Xd\n".i,
(i»13)&l.(i»l2)ftl.(i»ll)ftl,(i»10)ftl.(i»9)J[l.
(i»8)&l,(i»7)ftl.(i»6)fcl,(i»5)&l,(i»4)ftl.(i»3)ftl.
(i»2)ftl,(i»l)&l.(i»0)ftl, byte);

}
p r i n t f (" • \ n ") ;
for (i=0;i<256;i++)
i

byte = EFMTableCi];
printf("Xd\tXdXdXdXdXdXdXdXdXdXdXdXdXdXd\n",i.

(byte»13)&l, (byte»12)ftl. (byte»ll)ftl, (byte»10)&l, (byte»9)&l.
(byte»8)ftl, (byte»7)&l, (byte»6)&l, (byte»5)ftl, (byte»4)ftl, (byte»3)ftl,
(byte»2)ftl, (byte»l)ftl, (byte»0)ftl) ;

B.2 Simulation Software for Compact Disc Channel Modelling 171

p r i n t f (" \n"):
f o r (i = 0 ; i<=9400; i*+)
{

byte = EFMrevTable[i];
i f (byte != na8kl4)

printf("XdVtXdXdXdXdXdXdXdXdXdXdXdXdXdXdVn",byte,
(i»l3)fcl,(i»12)&l.(i»ll)ftl,(i»10)ftl.(i»9)&l.
(i»8)ftl,(i»7)ftl.(i»6)ftl.(i»5)ftl.(i»4)ikl,(i»3)ftl.
(i»2)ftl.(i»l)ftl.(i»0)&l);

ffl u s h (s t d o u t) ;

i n t EFM::getNonEFMWords(int i)

return HonEFMHordsTable[i];

* protected member functions •/

nt EFM::HB[43 = { 0,1«14,1«15,1«16 >;

void EFM: :CreateOff icialEFHTableO

i n t i . n r . j ;
char efn_input_str[163;
f o r (i=0; i<na3[ftl4; i++) EFMrevTableCi] = naskl4;
for (i=0;i<256;i++)
{

sscanf(EFMTable.incCi],"Xd Xs",&nr.efn_input_str);
EFMTable[nr3=0;
for(j=0:j<l4;j++)

EFMTable[nr3l = (efn_input.atr[l3-j3=='l')?l«j:0:
EFMrevTableCEFHTableCnr]] = nr;

}

i n t EFM::CreateHonEFMWords(void)

i n t i , j :
for (i=0.j=0;i<maxftl4; i++)
{

i f (EFMrevTablo[i]==maskl4)
HonEFMHordsTable[j++3 =to_NRZI(i);

>
return j ;

}

i n t EFM::te3t.constraints(int code)
{

i n t i . b i t ;
i n t nullen^O, einsen=0, 8 t a r t = l ;

f o r (i = 0 ; i < f t ; i + +)
<

b i t = ((code»i)ftl);
i f C.bit)
<

nullen++;
einsen=0;

>
i f (nullen >= kkk) return 0; /• k-constraint */
i f (b i t)

i f (nullen < ddd-1 tk nullen > 0 ftft I s t a r t) return 0;
/ •

d-constraint •/
3tart = 0 ;
nullen=0;
eiasen++;
i f (einsen > 1) return 0:

B.2 Simulation Software for Compact Disc Channel Modelling 172

}
>
return 1;

}

void EFH::CreateMyEFHTable(void)
{

i n t i , code. z=0;

fo r (i=0; i<maxftl4; i++> EFMrevTableCi] = naskl4;
for (code=0: code<maiftl4; code++)
<

i f (!test_constraints(code)) continue;
i f { calc_aHulls(code) >= 8 I I code == 9362 I I code == 9361) continue;

/• these patterns (f i r s t term) are excluded because of possible
generation of sync patterns when connected to the r i g h t successor

*/
EFMTable[z3 = code;
EFMrevTable[code3 = z;
Z++;

}
// return z;
}

i n t EFH::to_HR2I(un3igned i n t EfmMb)
{

s t a t i c i n t updown = 0;
i n t i , nrzi=0;

f o r (i = s v t e e n - l ; i > = 0 ; i —)
{

i f (((EfmMb»i)ftl) == 1) updown = 1 - updown;
i f (updown) my_Betbit(nrzi,i);

}
return n r z i ;

>

i n t EFH::from_NRZI(int n r z i)
{

s t a t i c i n t old = 0 ;
in t i , n«, efimb=0;

for (i=svteen-l: i>=0; i —)
{

nw = (nrzi»i)ftl:
i f (nw != old) my_setbit(efmmb,i);
old = nw;

>
return efmmb;

}

i n t EFH::calcDSV(unsigned i n t efnword, i n t •d)
{

i n t i , dsv=0. dflag = UP;
f o r (i a f t - l ; i > = 0 ; i —)
i

i f (((efnword»i)ftl) = 0) dsv += dflag;
else dflag = -dflag;

}
•d = df l a g ;
return dsv;

in t EFH: :calc_allulls(un8igned efmword)
{

i n t i ;
for(i=0;i<ft;i-M-) i f ((efmword»i)ftl) breai;
return i ;

}

i n t EFH:;calc btlulls(unsigned efauord)
{

B.2 Simulation Software for Compact Disc Channel Modelling 173

i n t i ;
f o r (i = f t - l ; i > = 0 ; i —) i f (ny.getbit(efnvord.i)) break;
return f t - i - 1 ;

}
i n t EFM::add_merging_bita(un9igned i n t •efnvord)
{

s t a t i c unsigned i n t last.word = 9360; /• i.e. lOOlOOlOOlOOOO •/
st a t i c i n t dflag = UP;
in t predDSV = LOKC.MAX. neuDSV, dflagtnp = dflag;
i n t anulls. bnulls, KBcoBb=9999. predDSVtnp;

INF0(l«3.("\nadd KB: word Xd. last Xd\n".*efmword. last.word));

auulls = calc.aUulls(last.word);
bnulls = calc.bHull8(*efmword);

newDSV = calcDSV(*efmword.&dflagtnp);

INFG(l«3, ("anulls Xd bnulla Xd newDSV Xd dflagtnp Xd\n".anulls.bnulls.neuDSV.dflagtnp)) ;

i f (anulls <= 7 ftft bnulls <= 7-anull3)
{

/* !!! AES p.121: EFMtable[119] = OlOOOOOOOOOOlO 4098 + OOO:
might generate sync pattern !!!

*/

predDSV = DSV + dflag • (3 + newDSV);
MBcomb = 0;
INF0(1«3.(" in MBcoEib=0. predDSV Xd\n" .predDSV)) ;

i f (anulls <= 8 ftfc bnulls <= 10 ftft bnulls > 1)
{

/• second term (anulls != 8 11 bnulls != 10) is to avoid sync
patterns, hope t h i s i s a l l ! look f o r sync patt between words ? !
las t terta for ninimum constraint length

*/
predDSVtmp = DSV + dflag • (2 - nevDSV);

INF0(1«3,(" i n MBcomb=l, predDSVtmp Xd\n" .predDSVtmp)) ;
i f ((abs(predDSVtmp) <= abs(predDSV)) I I NDSUPPR)
{

/• AES.p.250: must be "<=" and t h i s order,
because KB with a t r a n s i t i o n are preferred.

*/

predDSV = predDSVtnp;
MBconb = I ;
dflag = -dflag;
IHF0(l«3.("aet HBcomb=l! \n")) ;

i f (anulls <= 9 ftft bnulla <= 9 ftft anulls > 0 ft& bnulls > 0)
<

predDSVtnp = DSV + dflag • (0 - newDSV);

INF0(1«3,(" i n HBconb=2. predDSVtnp Xd\n" .predDSVtmp))
i f ((abs(predDSVtmp) <= abs(predDSV)) I I KOSUPPR)
{

predDSV = predDSVtop;
KBcoab = 2;
dflag = -dflag;
IHF0(l«3,("set MBconb=2!\n"));

}
>

i f (anulls <= 10 &ft hnulls <= 8 Wt anulls > 1)
{

predDSVtmp = DSV + dflag • (0 - newDSV - 2);

B.2 Simulation Software for Compact Disc Channel Modelling 174

INF0(1«3,(" i n MBconb=3. predDSVtmp Xd\n" .predDSVtnp)) ;
i f ((abs(predDSVtnp) <= ab8(predDSV)) I I IIOSUPPR)
<

predDSV = predDSVtnp;
MBcomb = 3;
dflag = -dflag;
IHF0(l«3.("set HBconb=3!\n"));

>
>
i f (MBconb==9999)
<

printf("EFM::add_merging_bits: internal error: •** no decision taken •••\n"):
p r i n t f (" a n u l l 3 = X d . bnulls=Xd\n".anulls.bnulls);
e x i t (l) ;

}
last_word = •afmword;
dflag •= dflagtnp;
DSV = predDSV;
*efmword |= MBCHBcomb];
return •efnword;

}

/•
* Cl.c
* Copyright Kay Rydyger
*
* Cl decoder
*
*/

•include "defs.h"
•include "classes.h"

static char cvsid[]="$Id: l i s t i n g s . t e x . v 1.4 2002/05/19 11:58:11 kay Exp $";

ClDeceder::ClDecoder(int decoder.strat)
{

i n t i ;
f o r (i=0; i<nn; i++) {

rCi] = ZERO;
eraflagsCi} 0;
B i g n a j i t i] [0 3 = 0;

}
i f (decoder_strat==2) do_decode=ftClDecoder::do_decode_strat2;
i f (decoder_strat==4) do.decode=ftClDecoder: :do_decode_8trat4;

}

void ClDecoder::ClDecode(union ClFrane • c l , union ClFrame *clera)
<

i n t i ;
f o r (i=0; i<FClSZB-(nn-kk); i++)
{

r[i+nn-kk] = c l - > b y t e [i] ;
eraflags[i-t-nn-kk3 = clera->byte[i] ;

}
for (i=FClSZB-(nn-kk); i<FClSZB; i++)
{

r[i-FClSZB+nn-kk3 = cl - > b y t e [i 3 ;
eraflags[i-FClSZB+nn-kk3 = clera->byte[i3;

}

INF0(2,("C1 decoding Frane «:Xd\n",frane));
PSH0W(1«7. "Cl: erasures" ,eraf lags);
PSH0W(1«7."decode C l : " . r) ;

(thi3->*do_decode)();
PSH0W(1«7,"..decode Cl c o r r . v c o r r) ;
for (i=0; i<FClSZB-(nn-kk); i++)

cl->bytoCi3 = vcorr[i+nn-kk];
}

// protected member functions

B.2 Simulation Software for Compact Disc Channel Modelling 175

void ClDecoder::do_decode_strat2<) {

GalEl E[nn+1]; // error correcting polynoaial in frequency domain
G a l E l L[mi3: // error l o c a t i n g polynoaial
G a l E l Y, XCnn], l o c [n n] ;
int r e t , i , nu;

ret = get _ a y n d r o 3 e s l _ 2 t { r , E) ; // zero error syndroae
i f C r e t == 0)

<
IHF0(2.("Cl:2Qro error syndrone \ n ")) ;
nencpyCvcorr,r.nn);
setoutputeraflags(O);
return;

}
berlekacip(E,L,noeraf l a g s) ;
PSHGW(l«6."Cl:error locator polynoaial L : " , L) ;
nu = chien.search(L,X);

i f (nu == I) // s i n g l e error syndroae
<

I [I F 0 (2 , (" C l : 9 i n g l e error syndroae nu=l\n"));
Y = G d i v (C n u l (a i g n a j i [l] [0 3 . E [O) . G a u l (a i g n a j i [l] C 0] , X C l])) :
neiiicpy(vcorr,r,nj));
v c o r r [X [l]] = GaddCr [X [l]] , Y) ;
setoutputeraflags(O);
return;

}
IIIF0C2, ("CI : n u l t i p l e error syndroae nu=y.d, assigning erasures. .\n'* ,nu))
aencpy(vcorr,r,nn);
setoutputeraf l a g s C U ; // war: correct_with_foumeyCE,L,r) ;

>

// Superstategy

void ClDecoder::do.decode_strat5() {

GalE l E[nn+1}; // error correcting polynonial in frequency domain
Gal E l L[nn]; // error locating polynoaial
G a l E l Y. XCnn] . locCnn] ;
int r e t , i . nu;

r e t = got_Eyndronesl_2t(r,E); // zero error syndrome
i f (r e t == 0)

{
IHF0(2.("Cl:zero error syndroae \ n ")) :
aemcpyCvcorr,r,nn);
setoutputeraflags(O);
return;

}
berlekanpCE.L.noeraflags);
PSH0W(l«6,"Cl:error locator polynoaial L : " . L) ;
nu = chien_8earch(L,X);

// PSH0W("C1:locator polynoaial l o c : " . l o c) ;
// lor(i=0,nu=l;i<nn;i++) i f (loc C i J == ZERO) Xtnu++] = i ;
// nu--;

i f (nu == 1) // sin g l e error syndrome
{

INF0(2,("Cl:single error syndroae nu=l\n"));
Y = G d i v (C a u l (3 i g m a j i [l] C 0 3 . E [l]) . G a u l (s i g m a j i C l] [0] . X [l])) :
ne3cpy<vcorr,r,nn);
v c o r r U t l]] = C a d d (r t X [l]] , Y) ;
setoutputeraflags(O);
return;

}
i f (nu == 2) // double error syndroae

{
INF0(2, ("CI :double error eyndroae n\i-7, t r y i n g to decode and assigning erasures.. \D")) ,

B.2 Simulation Software for Compact Disc Channel Modelling 176

berlekampCE.L.eraflags);
nu = chiea.searchCL.X);
// PSHOWC'Cl:locator polynoaial l o c i ' M o c) ;
// for(i=0.nu=l;i<mi;i++) i f (l o c [i] = ZERO) X[nu++] = i ;
// n u — ;
correct_uith_fourney(E,L,X,nu);
s e t o u t p u t e r a f l a g a (l) ;
return;

}
INF0(2,("CI:nultiple (more than two) error oyndrone nu=Xd, assigning erasures..\n",nu));
tnencpyCvcorr.r.nn);
s e t o u t p u t e r a f l a g s (l) ;

}

// ««*..,*«*,,*,STAFITEGY 4»**»***«»-*»*

void ClDecoder::do.decode_strat4() {

G a l E l E[nn+l]; // error correcting polynomial i n frequency donain
Ga l E l L[nn]; // error l o c a t i n g polynoaial
G a l E l Y, X[nn], loc[nn3:
int r e t , i , nu, nuoferas;

r e t = get_syndronesl_2t(r,E); // zero e r r o r syndrone
i f (rot == 0)

{
IHF0(2.("Cl:zero error ayndroma \ n ")) :
cemcpyCvcorr,r,nn);
setoutputeraflags(O);
return;

>
berlekanip(E.L,noeraf lags) ;
PSH0W(l«6."Cl:orror locator polynonial L : " , L) ;
nu = chien_search(L.X);

i f (nu == I) // s i n g l e e r r o r syndroae
{

INFG(2,("Cl:8ingle error syndroae nu=l\n"));
Y = Gdiv(CmulCsignajiCl3CO].E[l]),GmulCsigfflaji[lHO],Xtl3));
ceacpy(vcorr,r,nn);
vcorrtXCl]] = C a d d (r [X [l]] . Y) ;
setoutputeraflags(O);
return;

}
nuoferas^O;
for Ci=0;i<nn;i++) i f (e r a f l a g s [i]) nuoferas++;

i f (nuoferas > 2)
<

// copy output C l erasure flags f r o a input CI erasure f l a g s
// done: Cl::geterBsure uses eraflagsC] again.
// printf("Cl:nunber of input erasures > 2 (nuoferas=Xd)\n".nuoferas);
INF0(2,("Cl:number of input erasures > 2 (nuoferas=j(d)\n",nuoferas)) ;
niencpy(vcorr,r,nn);
r e t i i m ;

}
i f (nuoferas == 2) //&& nu == 1) ??

{

IHF0(2,("Cl:nuaber of input erasures = 2, t r y i n g two erasure decoding\n",naoferas));
r e t = berlekanp(E,L,eraflags);
nu = chien_search(L,X);
// PSH0W("C1:locator polynoaial l o c : " , l o c) ;
// for(i=0,nu=l:i<nn;i++) i f (l o c [i] == ZERO) XCnu++] = i ;
// nu--:
i f (!ret ftfc !correct_with_foumey(E,L,X,nu))

{
INF0(2,("Ci: nuoferas=2 and berlekanp and foumey correct < erasures deleted\n"))
setoutputeraflags(0);
return;

}
}

B.2 Simulation Software for Compact Disc Channel Modelling 177

INF0(2,("C1: nuaber of input erasures < 2 Cnuoferas=Xd) || (nuoferas==2 ftft (fourney or berlkamp f a i l e d)) , ass
mencpyCvcorr.r.nn);
setoutputeraflags(l);

}

//•*** ••strategy 4 END***«**»«**'******»-**»****** — *

void ClDecoder::do_decode_stratny() {

GalE l E[nn-*-l] ; // error correcting polynonial in frequency domain
Gal E l L[nn]; // error locating polynomial
Ga l E l Y, X[nn];
i n t r e t , nu;

ret = get_syndromesl_2t(r,E); // zero error syndrome
i f (r e t 0)

{
INF0(2.("Cl:zero error syndrome \ n ")) ;
memcpy(vcorr,r,nn);
setoutputeraflags(O);
return;

>
berlekanp(E,L,noeraflags);
PSH0H(l«6."Cl:error locator polynomial L : " . L) ;
au = chien_search(L,X):
PSH0W(1«6,"C1: X",X);

i f (nu == 1) // single error syndrome

I[I F 0 (2 , (" C l : s i n g l e error syndrome nu=l\n"));
Y = Gd i v (G m u l (s i g m a j i C l] C 0] . E [l]) , G n u l (a i g m a j i [l] [0 3 ,] t [l])) ;
memcpy{vcorr,r,nn);
v c o r r [X [l 3] « G a d d (r . Y);
/*

it C get_8yndromesl_2t(vcorr,E))
{

IHF0(2.C"Cl: wrong correction, assigning erasures and d i s c a r d c o r r e c t i o n X n ")) ;
s e t o u t p u t e r a f l a g s (l) ;
memcpy(vcorr,r,nn);
return;
}

•/
setoutputeraflags(O);
return;

>
i f (nu = 2) // double error syndrome

<
INF0(2,("Cl:double error syndrome nu=2, t r y i n g to decode and assigning e r a s u r e s . A n ")) ;
r e t = berlekamp(E,L,eraflags);
nu = chien.searchCL.X):

i f (ret I I correct_vith,foumey(E,L.X,nu))
{

IKFQ(2,("C1: according to berlekamp or foumey: word i s imdecodable, no correction made
nemcpy Cvcorr,r,nn);

)
se t o u t p u t e r a f l e g s (l) ;
return;

}
IKF0(2,C"Cl:multiple (more than two) error syndrome nu=Xd, assigning erasures..\n",nu));
memcpyCvcorr,r,nn);
s e t o u t p u t e r a f l a g s (l) ;

int ClDocoder::chien_search(GalEl •FTin. G a l E l •X)
{

Gal E l sun;
in t i,k,nu;

B.2 Simulation Software For Compact Disc Channel Modelling 178

Gim = FTi n [i m - l] ;
nu = I ;
for(k=im-2; k>=0; k —) oim = Cadd(smD,FTin[k]);
i f C sun == ZERO) X[nu++] = 0;

//out[0] = sun; // since inv(aO) = aO
forC i = l ; i<nn; i++)
{

Sim = F T i n [n n - l] ;
forC k=mi-2; k>=0; k —) sun = CaddCGauKsua.ZERO-i) ,FTin[k]) ;
i f (sun == ZERO) X[nu++] = i ;

//outCi] = sun;
>
n u — ;
return nu;

int ClDecoder::correct_with_fourney(GalEl *E, Ga l E l 'L, G a l E l •X, i n t nu)
{

/• according to Peterson, Weldon: "Error c o r r e c t i n g codes" p.297
•/

i n t i . j . l ;
G a l E l ouml, a i i E L 2 ;
C a l E l Y;

i f (nu >= dd)
<

// vord i s undecodable !
return 1;

}
PSH0WCI«6."C1: X",X);
for (j = l ; j<=nu;

for (i = l ; i<nu; i++)
s i g n i a j i [j] [i] = Cadd(LCi].Gmul(XCj].sigmaji[j]Ci-l]));

mencpy(vcorr,r,nn);
l o r (j = l ; j<=nu;

sunl = sura2 = ZERO;
for (1=0; Knu; 1++) sunl = Cadd(sunl .CnuKsignaj i [j] [13 ,ECnu-l])) ;
for (1=0; Knu; 1++)

sum2 = GaddCsun2,Gnul(3ignaji[j][l3,Gpoy(X[j],nu-l)));
Y = Gdiv(sunl, 8un2);
vcorrCXCj]] = GaddCrCXCj]] . Y) ;

>
return 0;

void ClDecoder::setoutputeraflagsCint i)

ceDset(eraflags.i.FC2SZB};

int ClDecoder::geterasure(int i)

return e r a l l a g s [i + n n - k k] ;

• Cl.c
• Copyright Kay Rydyger
*
• C l decoder

^include "defg.h"
ffinclude " c l a s s e s . h "

s t a t i c char cvsid[]="$Id: l i s t i n g s . t e x . v 1.4 2002/05/19 11:58:11 kay Exp $";

ClDecoder::ClDocoder(int decoder_strat)
{

B.2 Simulation Software for Compact Disc Channel Modelling 179

i n t i ;
for (i=0; i<nn; i++) {

r [i] = ZERO;
er a f l a g s C i] = 0;
o i g Q a j i [i] [0 3 = 0;

}
i f (decoder.strat==2) do_decode=ftClDecodor::do_decode_strat2;
i f (decoder_3trat==4> do_decode=ftClDecoder::do_decode_8trat4;

}

void ClDecoder::ClDecode(union ClFrane * c l , union ClFrane * c l e r a)
<

int i :
for (i=0: i<FClSZB-(nn-kk); i++)

{
r[i+nn-kk] = c l - > b y t o [i] ;
eraflagsCi+nn-kk] = c l e r a - > b y t e [i] ;

}
for (i=FClSZB-(nn-kk); i<FClSZB; i++)

{
r[i-FClSZB+nn-kk] = cl->byteCi]:
eraflagsCi-FClSZB+nn-kk] = clora->byteCi3;

>

INF0(2,("C1 decoding Frane S:)id\n" ,frane)) ;
PSHGW{1«7. " C l : erasures" ,eraf lags) :
PSH0W(1«7."decode C l : " , r) ;

(this->»do.decode)();
PSH0W(1«7,". .decode C l corr:" .vcorr) ;
for (i=0; i<FClSZB-(nn-kk); i++)

cl- > b y t e [i] = vcorr [i+nn-kk];
}
// protected member functions

void ClDecoder: :do_decode_3trat2() •{

GalEl E[nn+l]; // error correcting polynomial in frequency donain
GalEl LCnn]; // error locating polynosial
G a l E l Y, XCnn] . locCnnl ;
int rot, i , nu;

ret = get_syndronesl_2t(r,E); // zero error syndrome
i f C r e t == 0)

{
lNF0(2.("Cl:zero error syndro=e \ n ")) :
Eencpy(vcorr,r,nn);
setoutputeraflags(O);
return;

}
berlekanp(E,L,noerallags);
PSH0M(l«6,"Cl:error locator polynoaial L : " . L) ;
nu = chien_search(L,X);

i f (nu == I) // sin g l e error syndrome
{

IHF0(2,("Cl:single error syndrono nu=l\n"));
Y = G d i v (G n u l (s i g n a j i [l] [0] . E [l]) . G n u l (s i g n a j i [l] [0] , X C l])) ;
mencpy(vcorr.r,nn);
vcorrCXCl]] = C a d d (r [X [l]] , Y);
setoutputeraflags(0);
return;

}
I i r F 0 (2 , ("Cl : n u l t i p l e error syndrome nu=y,d, assigning erasures. An" ,nu)) ;
nencpy(vcorr,r,nn);
s e t o u t p u t e r a f l a g s d) ; // «ar: correct.with.foumoyCE.L.r) ;

>

// Superstategy

B.2 Simulation SoFtware for Compact Disc Channel Modelling 180

void ClDecoder::do_decode_strat&() i

G a l E l E[nn+1]; // error correcting polynoaial in frequency domain
G a l E l LCnn3; // error l o c a t i n g polynoaial
C a l E l Y. X[nn], l o c [n n] ;
int r e t , i , nu;

ret = get_syndroBesl_2t(r,E); // zero error syndroae
i f (ret == 0)

{
IHF0(2,("Cl:2ero error syndroae \ n ")) ;
Eencpy(vcorr,r,lin) ;
setoutputeraflags(O);
return;

}
berlekaapCE.L.noeraflags);
PSHGH(l«6."Cl:error locator polynoaial L : " . L) ;
nu B cbien_search(L,X);

// PSHOH("Cl:locator polynonial loc:'Moc);
// for(i=0,nu=l;i<iin;i-t-+) i f (locC i } == ZERO) X[nu++3 = i ;
// n u — ;

i f (nu 1) // si n g l e error syndroae
<

INF0(2,("Cl:Bingle error syndroae nu=l\n"));
Y = G d i v (C a u l (5 i g n a j i [l 3 [0 3 , E [l }) , G a u l (s i g a a j i [l 3 t O] . X [l])) :
aeacpy(vcorr,r.on);
vcorr[XCl3] = Cadd(r[X[l3] . Y);
setoutputeraflags(0);
return;

}
i f (nu == 2) // double error syndrone
{

INF0(2,("Cl;doublo error syndrone nu=2, t r y i n g to decode and assigning e r a s u r e s . A n ")) ;
berlekampCE.L.eraflags);
nu = chien_soarch(L,X);
// PSHOHCXl-.locator polynomial l o c : " , l o c) ;
// for(i=0,nu=l:i<nn:i++) i f (l o c [i 3 == ZERO) X[nu++3 = i ;
// n u - :
correct_vith_fourney(E.L,X,nu);
setoutputeraflagsCl);
return;

>
INFD(2.("Cl:aultiple (more than tvo) error syndrome nu^Xd, assigning erasures..\n",nu});
meacpyCvcorr,r,nn);
s e t o u t p u t e r a f l a g s (l) ;

}

void ClDecoder::do_decode_strat4() {

Gal E l E[nn+l3; // error correcting polynomial i n frequency domain
GalEl LCnn]; // error l o c a t i n g polynoaial
GalEl Y, XCnn], locCnn];
int r e t , i , nu, nuoferas;

ret = get_syndroaeal_2t(r,E); // zero error syndrome
i f (r e t == 0)
i

INF0(2,("Cl:zero error syndrome \ n ")) ;
mencpy(vcorr,r,nn);
setoutputeraflags(O);
return;

}
berlekamp(E,L,noeraflags);
PSH0W(l«6,"Cl-.error locator polynomial L : " , L) ;
nu = chien_search(L,X);

i f (nu == I) // s i n g l e error syndroae

B.2 Simulation Software for Compact Disc Channel Modelling 181

IHF0C2,C"Cl:single error syndrome nu=l\n"));
Y = G d i v (G n u l < s i g m a j i C l] [0] . E C l]) , C n u l (a i g n a j i C l] [0] . X C l])) :
memcpytvcorr,r,nn);
vcorrCXCl]] = C a d d (r [X [l]] . Y) ;
setoutputeraflags(0);
return;

>
nuoferas=0;
for Ci=0;i<nn;i++) i f (e r a f l a g s [i]) nuoferas++;

i f C nuoferas > 2)
{

// copy output CI erasure flags from input CI erasure f l a g s
// done: CI: :geterasure uses eraflagsQ again.
// p r i n t f ("Clrnumber of input erasures > 2 (nuoferas=!(d)\n" .nuoferas) ;
IKF0(2.("Clrnumber of input erasures > 2 (nuaferas=Xd)\n",nuoferas));
nemcpy(vcorr,r,nn);
return;

}
i f (nuoferas == 2) //ftft nu == 1) ??

{

INF0(2,("Cl:nuinber of input erasures == 2, t r y i n g two erasure decoding\n".nuoferas));
re t = berlekampCE,L,eraflags);
nu = chien_search(L,X);
// PSHGHC'Cl:locator polynomial l o c : " . l o c) ;
// for(i=0,nu=l;i<nn;i++) i f (l o c C i] == ZERO) XCnu++l = i ;
// nu--;
i f (!ret ftft (correct.uith.fourneyCE.L.X.nu))

{
INFD(2,("C1: nuofera8=2 and berlekajap and foumey correct ! erasures deleted\n"));
setoutputeraflaga(O);
return;

}
}

INF0(2.("C1: number of input erasures < 2 (nuoferas-Xd) || (n u o f e r a s ~ 2 ECft (foumey or berlkamp f a i l e d)) ,
memcpy(vcorr,r,nn);
setoutputeraflags(1);

}

//•••»••.,•«»**•••.•****»•,^strategy 4 END̂

void ClDecoder::do_decode_atratmy() {

C a l E l E[nn+1]; // error correcting polynomial i n frequency domain
GalEl L[nn]; // error locating polynomial
GalEl Y. X[nn];
int r e t . nu;

ret = get_syndromesl_2t(r,E); // zero error syndrome
i f C ret == 0)

{
INF0(2.("Cl:zero error syndrome \ n ")) ;
memcpy(vcorr,r,nn):
setoutputeraflags(0);
return;

>
berlekampCE.L.noeraflags);
PSH0W(l«6,"Cl:error locator polynomial L : " , L) ;
iiu = chien_search(L,X);
PSH0W(l«6,"Cl: X",X);

i f (nu == I) // s i n g l e error syndrome
{

IHF0C2,("Cl:single error syndrome nu=l\n"));
Y = C d i v (G m u l (s i g n a j i C l] C O] . E C l]) . C n u l (a i g m a j i [l H O] . X [l])) ;
memcpy(vcorr,r,nn);
vco r r [X [l] 3 = Gadd(r[X[l33 , Y) ;
setoutputeraflags(O);
return;

>

B.2 Simulation Software for Compact Disc Channel Modelling 182

i f (nu == 2) // double error syndroae
{

IHF0(2,("Cl:double error syndroae nu=2, t r y i n g to decode and assigning e r a s u r e s . . \ n ")) ;
r e t = berlekanp(E,L.eraflags);
nu = cbien_search(L,X);

i f (r e t I I correct_with.foumey<E,L,X.nu))
{

INF0(2,("C1: according to berlekamp or foumey: uord i s undecodable, no correction made and assigning
neacpy(vcorr,r,nn);

>
a e t o u t p u t e r a f l a g s (l) ;
return;

>
INF0(2,("Cl:nultiple (more than two) error syndrome nu=iid, assigning erasures. An" ,nu));
neacpy(vcorr,r,nn);
s e t o u t p u t e r a f l a g a d) ;

}

int ClDecoder::chien,search(GalEl •FTin. C a l E l *X)
{

GalEl sum;
int i.k.nu;

sun = F T i n [n n - l] ;
nu = 1;
for(k=nn-2; k>=0; k —) sun = Gadd(suD,FTinCk]);
i f (sun ZERO) XCnu++] = 0;
//outCO] a sum; // since inv(aO) B aO
for (i = l ; i<nn; i++)

{
sum = F T i n [n n - l] ;
f o r (k=nn-2; k>=0; k —) sum = Gadd(Gnul(sun,ZERO-i) , F T i n [k]) ;
i f (sun ~ ZERO) X[nu++] = i ;
//out[i3 = sun;

>
n u — ;
return nu;

>

i n t ClDecoder: :correct_with_foumoy(GalEl *E, G a l E l •L, GalEl •X, i n t nu)
{

/• according to Peterson, Woldon: "Error correcting codes" p.297
•/

int i . j . l ;
G a l E l sunl, 8um2;
GalE l Y;

i f (nu >= dd)
{

// word i s undecodable !
return 1;

}

PSH0M(1«6."C1: X".X);
for (j = l ; j<=nu; j++)

for (i = l ; i<nu; i++)
s i g n a j i [j 3 C i 3 = Cadd(L[i3 .Gsul(XCj3 .signaj i [j3 [i - l 3)) ;

nencpy(vcorr,r,nn);
for (j = l ; j<=nu; j++)

{
sunl = sun2 = ZERO;
for (1=0; Knu; 1++) sunl = Gadd(sunl ,G n u l (s i g n a j i [j 3 t l] .ECnu-l3)) ;
for (1=0; Knu; 1++)

sun2 = Gadd(sun2,Cnul(signajiCj][l3,Cpow(X[j3.nu-l)));
Y = Cdiv(sunl, sun2);
vcorrtXCj33 = Cadd(rUCj33 . Y);

}
return 0;

}

B.2 Simulation Software for Compact Disc Channel Modelling 183

void ClDecoder::setoutputeraflags(int i)
{

mem3et(eraflags.i.FC2SZB);
}

int ClDecoder::geterasure(int i)
{

return eraf lags[i+mi-kk] ;
}

/*
* C2.C
* Copyright Kay Rydyger
•

* C2 decoder

•/
ftinclude "defs.h"
•include " c l a s s e s . h "

s t a t i c char cvsid[3="$Id: l i s t i n g s . t e x . v 1.4 2002/05/19 11:58:11 kay Exp $"

C2Decoder::C2Decoder(int decoder.strat)
{

int i ;
for (i=0; i<nn; i++) {

r [i] = ZERO;
eraflagsCi] = 0;
s i g D a j i [i] [0] = 0;

>
i f (decoder.Btrat==2) do_decode=&C2Decoder::do_decode_Btrat2;
i f (decoder_8trat==4) do_decode=ftC2Decoder::do.decode_strat4;

}

void C2Decoder::C2Decode(union C2Frane *c2, union C2Fraine •erafrane)
{

i n t i ;
for (i=12;i<l6;i++)

<
e r a f l a g s [i - 1 2] = erafrane->byte[i];
r [i - 1 2] = c2->byte[i]; // P a r i t y b i t s copied

}
for (i=0; i<12; i++)

{
eraflags[i+nn-kk] = eraframe->byteCi];
rCi+nn-kk] = c2->byte[i];

}
for {i=16; i<FC2SZB; i++)

<
eraflagsCi] = eraframe->byteCi] ;
r [i] = c2->byteCi];

}
INF0(2.("C2 decoding Frane *:Xd\n".frame));
PSH0W(1«11 ,"C2: erasures" , eraf lags) ;
PSH0H(1«7."decode C2:",r);
(this->*do_decode)C);
PSH0W(1«7.". .decode C2 corr:" .vcorr) ;
for (i=0; i<12; i++)

<
erafrane->byte[i] = eraflags[i+nn-kk];
c2->byte[i] = vcorr[i+nn-kk];

}
for (i = l 2 ; i<FC2SZB-(nn-kk); i++)

{
erafrane->byte[i+nn-kk] = eraflags[i+nn-kk];
c2->byte[i+nn-kk] = vcorr[i+nn-kk];

}
PSH0W(1«11."C2: a f t e r decoding erasures",eraf lags) ;

}

B.2 Simulation Software for Compact Disc Channel Modelling 184

// protected member functions

these s t r a t e g i e s found in "Tehranchi: R e l i a b i l i t y estimates for data recovered
from compact d i s c s " and
"The fourth i n t e r n a t i o n a l conference on video and data recording. Southampton"

•/

void C2Decoder::do_decode_atrat2() {

GalE l E[nn+1]; // error correcting polynomial i n frequency domain
Gal E l LCnn3; // error locating polynomial
C a l E l Y, XCnn3 . loc[nn] ;
i n t r e t , i . nu, nuoferas;

re t = get_syndromesl_2t(r,E);
i f (r e t == 0) // zero error syndrome

{
I(IF0(2.("C2:zero error ayndrome\n")) ;
memcpy(vcorr.r,nn);
setoutputeraflags(O);
return;

}
berlekampCE,L.noeraflags);
PSH0W(l«6,"C2:error locator polynomial L : " . L) :
c h i e n _ s e a r c h (L . l o c) ;
forCi=0,nu=l;i<nn;i++) i f C l o c [i 3 = ZERO) X[nu++] = i ;
n u — ;

i f C nu == 1) // single error syndrome
{

INF0C2,("C2:3ingle error syndrome nu=l\n"));
Y = GdivCCmul(sigmaji[l]C03,ECl3).GmulCsigmaji[l][03.XCl3));
memcpyCvcorr,r,nn);
vcorrCX[l33 = GaddCr[X[l33 . Y) ;
setoutputeraflags(O);
return;

}
e l s e

<
INF0C2,C"C2:nultiple error syndrome nu>l (nu=Xd)\n",nu));
nuoferas=0;
PSH0WC1«6, "eraf lags",eraf l a g s) :
for (i=0;i<nn;i++) i f (eraflagsCi3) nuofera3++;
i f (nuoferas > 2)

<
IIIF0(2, C"C2:number of eraaurea > 2 Cnuof eras^^Xd) , not co r r e c t i n g ! \n" .nuof e r a s)) ;
// copy output erasures from input erasures !
// done, eraflags are used a f t e r return.
memcpyCvcorr.r,nn);
return;

>
i f (nuoferas " 2) // t r y two erasure decoding

{
INF0C2,C"C2:trying two eraaure decoding, nuoferas=2\n"));
re t = berlekampCE.L,eraflags);
i f C !ret ftft !correct_with_fourneyCE.L))

{
setoutputeraflagsCO);
INF0C2.C"C2: corrected, no output e r a s u r e s ! \ n ")) ;
return;

}
>

IKF0(2,C"C2: number of erasures < 2 I I (nuofera6==2 (berlekanp or fourney:uncorrectable)), nuoferas^Xd
// aaaign output erasures to a l l symbols!
setoutputeraflagsCl);
memcpyCvcorr,r,nn);
return;

>
}

B.2 Simulation Software for Compact Disc Channel Modelling 185

void C2Decoder::do_decode_strat2old() {

GalEl ECan+l3; // error correcting polynomial i n frequency domain
Gal E l L[nn3; // error locating polynomial
GalEl Y, XCnn3, locCnn];
int r e t . i , nu, nuoferas:

ret = get_5yndromesl_2t(r.E);
i f (r e t == 0) // zero error syndroae

<
IHF0(2,("C2:zero error syndroae\n"));
memcpy(vcorr,r,nn);
return;

}
berlekamp(E,L,noeraflags);
/*

i n general: f i r s t l y do berlekamp without input erasures!
because: Codeword might be right

•/
PSH0W(l«6,"C2:error locator polynoaial L : " , L) ;
c h i e n _ s e a r c h (L , l o c) ;
for(i=0,nu=l;i<nn;i++) i f (l o c [i] = ZERO) XCnu++] = i ;
n u — ;

i f (nu == 1) // si n g l e error syndroae
{

INFD(2,C"C2:single error syndroae nu=l\n"));
Y = C d i v (G a u l (s i g a a j i [l] C O] , E [l]) , C n u l (s i g m a j i C l 3 [0 3 . X [l])) ;
aeacpy(vcorr,r,nn);
vcorr[X[l33 = Gadd(rCX[l3] , Y);
return;

}
e l s e

<
INF0(2,("C2:aultiple error syndroae nu>l (nu=y.d)\n" ,nu)) ;
nuoferas=0;
PSHOW(1«6, "eraf lags" , oraf lags) :
for (i=0:i<nn;i++) i f (eraflagaCiJ) nuoferaE++;
i f (nuoferas == 2) // t r y two erasure decoding

{
IlIF0(2,("C2:trying two erasure decoding, nuoferas=2\n")) ;
berlekamp(E,L,eraflags);
correct_with_fourney(E,L);
return;

>
IHF0(2,("C2: found more than two erasures, nuoferas=Xd\n".nuoferas));
meacpy(vcorr,r,nn);

}

}

// Superstrategy

void C2Decoder::do_decode_strat5() {

Gal E l ECnn+n: // error correcting polynomial i n frequency domain
Gal E l L[nn3; // error locating polynoaial
G a l E l Y. X[nn], l o c [n n] ;
int r e t , i , nu, nuoferas, eraAerr;
re t = g e t _ s y n d r o 3 e s l . 2 t (r , E) ;
i f (ret == 0) // zero error syndroae
{

IHFa(2,("C2:2ero error syndromeXn")):
aeacpy(vcorr,r,nn);
return;

}
berlekamp(E,L,noeraflags);
PSH0W(l«6,"C2:error locator polynomial L : " , L) ;
chien_aearch(L,loc);
for(i=0.nu=l;i<nn;i++) i f (l o c [i] == ZERO) X[nu++3 = i ;
PSH0W(1«6."C2:X",X);
n u — ;

B.2 Simulation Software for Compact Disc Channel Modelling 186

i f (nu == 1) // single error syndrone
{

IHF0(2,("C2:single error syndrone nu=l\n"));
Y = Gdiv(Gnul(8ignaji[l3C03.ECl3).Gnul(signajiCl3[03,XCl3)):
memcpy(vcorr,r,nn);
vcorr[X[l33 = Gadd(r[X[l33. Y) ;
return;

>

nuoferas=0;
for Ci=0;i<nn;i++) i f (eraflagsCi3) nuoferas+-t-;
IHF0(2,C"C2: multiple error syndrone nu>l (nu=y.d)\n" ,nu));
i f (nuoferas <=4)

{
IKF0(2,("C2: number of erased aynbols <= 4 (nuoforas=)ld)\n",nuoferas))
eraAerr=0;
PSH0W(1«6,"eraf lags" ,eraf l a g s) ;
for (i=l;i<=nu;i++) i f (eraflags[X[i33 «= 1) eraAerr++;

i f (nu == 2 ftfc eraAerr == 2)
{

INF0(2,("C2:double error syndrone and V = 2\n"));
IHF0(2.\

("C2:trying two erasure decoding (modify two 3ymbol3)\n"));
berlekanp(E,L,eraflags);
correct_with_fourney(E,L);
return;

}
e l s e {

INF0(2,("C2: not double error syndrom ftft V o 2 (nu=7.d , V=7.d)\n",\
nu,eraAerr));

i f ((nu == 2 ftft ((eraAerr = 1 Wt nuoferas <= 3) I I
(eraAerr == 0 ftft nuoferas<= 2))) I I

(nuoferas <= 2 ft& nu != 2))
{

// assign erasure f l a g s
// to a l l symbols of the received word
INF0(2.("C2: assign erasure flags to a l l synbols\n"));

}
else

{
// copy C2 erasure f l a g s from Cl erasure f l a g s
IHF0(2,("C2: copy C2 erasure f l a g s to C l \ n ")) ;

>
}

}
else

<

IIIF0(2.("C2: number of erased symbols > 4\n"));
// copy C2 erasure f l a g s f r o a C l erasure flags

}
nencpy(vcorr.r,nn);

}
// * ••.•••••••••••••STARTECY 4*«*»*******»***»******

// sane as STRATEGYl
void C2Decoder::do_decode_strat4() {

Ga l E l E[nn+l]; // error correcting polynomial in frequency donain
Ga l E l L[nn3; // error locating polynonial
G a l E l Y, X[nn3, loc[nn3;
int r e t , i , nu, nuoferas;

ret = get_6yndronesl_2t(r,E);
i f (ret == 0) // zero error syndrome

i
iriF0(2.("C2:zero error syndroaeNn"));
nencpy(vcorr,r,nn);
setoutputeraflags(O);
return;

}

B.2 Simulation Software for Compact Disc Channel Modelling 187

berlekanp(£,L.noeraflags);
PSH0W(l«6,"C2:error locator polynomial L : " , L) ;
chien_search(L,loc);
for(i=0.nu=l:i<nn;i++) i f (l o c [i] == ZERO) X[nu++] = i ;
n u ~ :
i f (nu == 1) // single error syndrom©

{
INF0(2.("C2:8ingle e r r o r syndrome nu=l\n"));
Y = G d i v (C n u l (B i g n a j i [l] [0] . E [l]) . C B u l (s i g m a j i [l] [0] . X C l])) ;
nemcpy(vcorr,r,nn);
v c o r r [X [l]] = Gadd(r[XCl]] . Y) ;
setoutputeraflaga(O);
return;

}
else

<
INF0(2.("C2:multiple error syndrome nu>l (nu=Xd)\n",nu)):
nuoferas^O;
PSHQW(l«6, "eraf lags" .eraf lags) ;
for (i=0;i<nn;i++) i f (e r a f l a g s [i]) nuoferas++;
i f (nuoforas > 2)

<
IHF0(2.("C2:nunber of erasures > 2 (nuof eras=',<d) . not co r r e c t i n g ! \n" .nuof eras)) ;
// copy output erasures from input erasures •
// done, eraflags are used a f t e r return.
memcpy(vcorr,r,nn);
return;

}
i f (nuoferas 2) // t r y two erasure decoding

{
INF0(2,("C2:trying two erasure decoding, nuoferas=2\n"));
re t = berlekafflp(£,L.eraflags);
i f (!ret Aft !correct_with_fourney(E,L))

{
setoutputeraflags(0);
IHF0(2.("C2: corrected, no output eracuroslXn"));
return;

>
INF0(2,("C2: number of erasures < 2 I((nuofora3==2 &t (berlekamp or fourney:uncorroctable)), nuoferaa=5Jd
// assign output erasures to a l l symbols!
setoutputeraflagsCl);
nemcpy(vcorr,r,nn);
return;

}
//••••••••••••••••••••••••••••startegy 4 END

void C2Decoder::chien_search(GalEl •FTin. G a l E l 'out)
{

G a l E l sun;
int i,k;

sun = F T i n [n n - l] ;
f o r (k=nn-2; k>=0; k —) sun = Gadd(sun,FTin[k3);
out CO] = sun; // since inv(aO) = aO ! (and not a7 l i k e below !)
forC i = l ; i<nn; i++)

sun = FTinCnn-1];
for(k=nn-2: k>=0: k —) sun = Gadd(G3Ul(8un.ZER0-i).FTinCk]);
o u t [i] = gun;

>
PSH0W(l«6."chien: loc " , o u t) ;

}

int C2Decoder: :correct_with.foumey(GalEl C a l E l -L)
{

/* according to Peterson, Weldon: "Error correcting codes" p.297
•/

int i . j , l . n u = l ;

B-2 Simulation Software for Compact Disc Channel Modelling 188

G a l E l suml, 8un2;
GalEl y, XCnn3, loc[nn3:

chien_soarch(L,loc);
PSH0W(l«6,"C2:locator polynonial l o c : " , l o c) ;
/•

zeros at 1 give the positions of the errors !!!
•/
for (j=0,nu=l; j<nn; j++) i f (locCj3==ZER0) XCnu++3 = j ;
nu--;
i f (nu >= dd)

{
return 1;

}

PSH0W(1«6,"C2:X".X);
for (j = l : j<=nu; j++)

for (i = l ; i<nu; i++)
s i g m a j i [j 3 [i 3 = G a d d (L [i 3 . G n u l (X [j 3 , s i g n a j i [j 3 [i - l 3)) ;

nencpy(vcorr,r,nn);
for (j = l ; j<=nu; j++)
{

sunl = 8um2 = ZERO;
fo r (1=0; Knu; 1++) sunl = Gadd(3unl .CauKaigmaj i Cj3 Cl3 ,E(:nu-l3)) ;
for (1=0; Knu; 1++)

Bun2 = Cadd(sum2,Gnul(8ignaji[j3[l3,Gpou(X[j3,nu - l))) ;
Y = Gdiv(suml, 8ua2);
vcorr[X[j33 = Gadd(r[X[j3] . Y) ;

}
return 0;

}

void C2Decoder::do_decode_stratny() {

Gal E l ECnn+l3; // error correcting polynonial i n frequency donain
G a l E l L[nn3; // error l o c a t i n g polynonial
G a l E l Y. X[nn3. loc[nn3;
int r e t , i , nu, nuoferaa, er&Aerr;
ret = got_ayndroaesl.2t(r,E);
i f (r e t == 0) // zero error syndrone
{

INF0C2,("C2:zero error syndroneNn"));
nencpy(vcorr,r,nn);
return;

>

i f (berlekanp(E,L.noeraflags))
{

IHF0(2,("C2: according to f i r s t berlekanp without erasures : word i s \uidecQdable\n"));
}

PSH0W(l«6."C2:crror locator polynoaial L : " , L) ;
c h i e n _ s e a r c h (L . l o c) ;

for(i=0,nu=l;i<nn;i++)
i f (l o c t i 3 == ZERO) X[nu++3 = i ;

PSH0W(1<<6,"C2:X".X);
n u — ;

i f (nu == 1) // s i n g l e e r r o r syndrone
i

INF0(2,("C2:single error syndrone nuslVn"));
Y = Gd i v (G n u l (s i g n a j i C l 3 [0 3 , E [l 3) . G n u l (s i g n a j i [l 3 [0 3 , X [l 3)) ;
neacpy(vcorr,r,nn);
vcorr[XCl33 = Gadd(r[X[l33 , Y) ;
return;

}
nuoferas=0;
for (i=0;i<nn;i++) i f (e r a f l a g s C i]) nuoferas-M-;
IHF0(2,("C2: multiple error syndrome nu != 1 (nu=Xd)\n",nu));

B.2 Simulation Software for Compact Disc Channel Modelling 189

i f C nuoferas <=4)
{

IUF0C2,C"C2: number of erased symbols <= 4 Cnuoferas=Xd)\n",nuoferas));
eraAerr=0;
PSHOWC 1«6. " e r a f l a g s " ,eraf lags) ;
for (i=l;i<=nu:i++) i f C e r a f l a g s d C i] } — 1) eraAerr++;

i f C nu == 2 &ft eraAerr == 2)
{

IUF0C2,C"C2:double error syndrome and V = 2\ n ")) ;
INF0C2.\

C"C2:trying two eraaure decoding Cmodify two aymbola)\n"));
i f C berlckamp(E,L,eraflags) I I correct_with_foumeytE,L))

{

INF0C2,C"C2: according to berlekamp or foumey: word i s undecodable, no correction made \ n ")) ;

memcpyCvcorr,r,nn);
>

return;
}

e l s e
{

INF0C2,C"C2: not double error syndrom && V = 2 Cnu=7.d , V=Xd) , t r y i n g erasure decoding!\n" .nu.eraAerr

i f C berlekampCE,L.eraflaga) I I correct.with_foumeyCE,L))
t h i s step i s a d d i t i o n a l to SUPERSTRATEGY and g i v e s EC a t r y ,
because the case nu=4 i a not covered by the previoue condition
and can be corrected with the help of eraaures though

•/
{

INF0C2,("C2: according to berlekamp or foumey: word i a undecodable, no correction made \ n ")) ;

memcpyCvcorr.r,nn);
}

1NF0C2,C"C2: not double error ayndrom ftft V = 2 Cnu=Xd , V=W)\n",\
nu,eraAerr));

i f C C nu == 2 C(eraAerr == 1 ft& nuoferaa <= 3) I I
(eraAerr « 0 ft& nuoferas <= 2))) 11

C nuoferas <= 2 ft& nu != 2))
{

/*
assign erasure f l a g s
to a l l symbols of the received word

•/
I!/F0C2,C"C2: assign erasure f l a g s to a l l syrabolaVn"));

}
e l s e

{
// copy C2 erasure f l a g s from CI erasure f l a g s
IIIF0C2,C"C2: copy C2 erasure f l a g s to C l \ n ")) ;

}
}

>
e l s e

<
INF0C2,C"C2: number of erased symbols > 4 C=Xd, frame=Xd)\n", nuoferas.frame));
// copy C2 erasure flags from CI eraaure f l a g s
memcpyCvcorr,r,nn);

)
// memcpyCvcorr,r,nn);

void C2Decoder::setoutputeraflagsCint i)
<

memset(eraflags,i,FC2SZB);
>

B.2 Simulation Software for Compact Disc Channel Modelling 190

• RSDecodor.c
. Copyright Kay Rydyger
•
• basic routines for RS decoder

Cinclude "defa.h"
•include " c l a s s e s . h "

s t a t i c char cvsid[3="$Id: l i s t i n g s . t e i . w 1.4 2002/05/19 11:58:11 kay Exp $";

Gal E l RSDecoder:rnoeraflagstnn];

RSDecoder::R5Decoder()
<

i n t i ;
f o r (i=0; i<nn; i++) noerafIag3[i3=0;

>

int RSDecoder::get_syndromeBl_2t(GalEl • r , G a l E l •E) {
/•

s l i g h t l y f a s t e r f o r (255,223) g++ -06 than
routine below (Iml6<>lml2).

*/

G a l E l sum;
in t i,k, decode^O;

PSHOW(1 « 6 . "get.syndroaes: r " , r) ;

for(k=l; k<=2*tt; k++)

sum = r[nn-l3 ;
f o r (i=nn-2; i>=0; i —) sum = Gadd(Cmul(Bum,k) , r [i 3) ;
E[k3 = sum:
i f (sua != ZERO) decode++:

}
PSH0H(1«6,"get.syndromes: E { 1 . . 2 t) " . E) ;
return decode;

>

int RSDecoder::berlekamp(GalEl *S, GalEl 'L, G a l E l * e r a f l a g s) <
/•

according to "error-control techniques f o r d i g i t a l communications'
with computing of erasure polynomial i n f i r s t loop (Blahut)

•/

i n t i , 1=0, n=l, degT=0, ss=0:

Ga l E l d e l t a ;
C a l E l D[nn3;
G a l E l T[nn3;
G a l E l U[nn3:
PSH0H(1«6,"erasures in berlekaap:",eraf l a g s) ;

3s=0:
for (i=0:i<nn;i++)

{
i f (e r a f l a g s [i 3) U[++ss3=i:
Dti3 = ZERO; L[i3 = ZERO;

}
i f (ss > dd-1)

// ^ f p r i n t f (s t d e r r . " ss=y.d dd=-W berlekamp: word i s undecodable (s>d-l) .An".ss.dd)
return 1;

}

D[03=0: LE03=0;

B.2 Simulation Software for Compact Disc Channel Modelling 191

while (n <= aa)
{

for (i=im- l ; i>0; i —)
D [i] = L [i] = Gadd(L [i] , C=iul(L[i-l] ,U[1])) ;

D[OD = L [0] :
n++;

>
while C n < dd) -C

delta = ZERO;
for { i = l ; i < = l ; i++) delta = CaddC delta. Gaul(L t i) , SCn-i]));
delta = GaddCdelta. SCn]);
Piiiulz(D);
i f (delta != ZERO)
{

for (i=0: i<an; i++)
{

T[i3 = Cadd(Cmil(D[i3.delta),LCi3);
i f (TCi] != ZERO) degT = i ;

>
i f (Cl«l) < n + sa)
{

1 = n - 1 + 3 3 ;
i f (dolta==0)

•encpy(D,L,nn*8izeof(GalEl)):
>
else for(i=0;i<iiii;i++)

D[i] = GnuKLCi] .ZERO-delta):

memcpy(L,T,im*9izeof (GalED) ;
>
n++;

return 0;

• RSEncoder.c
• Copyright Kay Rydyger

• baaic routines for RS encoder
*

©include "defa.h"
^include "clasaes.h"

st a t i c char cvsid[]="$Id: li s t i n g s . t e x . v 1.4 2002/05/19 11:58:11 kay Exp

RSEncoder::RSEncoder()
{

i n t i ;
f o r (i=0; i<nn; i++) i

vClCi] = ZERO;
vC2Ci] = ZERO:

}
>

void RSEncoder: :RSEncodo(\inion C2Frane •c2)
<

i n t i ;
GalEl 'data;
data = vC2+nn-kk;
fo r (i=0; i<nn-kk; vC2[i] = ZERO ;
for (i=0; i < l 2 ; i++) dat a [i] = c2->bytetiO:
for (i=16: KFC2SZB; i++) data[i-nn+kk] = c2->byteCi] :
PSH0WC1«8."RSEHC0DE C2: ",vC2);
do_encode(vC2,data);
f o r (i = 0 : i<nn-kk: i++) c2->byte[i+12] = vC2Ci]:

B.2 Simulation Software for Compact Disc Channel Modelling 192

PSH0H(1«8,"RSENC0DE C2 + pa r i t y : ",vC2);

void RSEncoder::RSEncode(union ClFraae ' c l)
{

i n t i ;
CalEl •data;
data = vCl+nn-kli;
for (i=0; i<nn-kk: i++) vCl[i3 = ZERO ;
for (i=0; i<FC2SZB: i++) d a t a [i] = c l - > b y t o [i] :
PSH0W(1«8."RSEKC0DE Cl; ".vCD;
do_encode(vCl,data);
f o r (i = 0 ; i<nn-kk; cl->byteCi+28] = v C l t i] ;
PSH0H(1«8."RSENC0DE Cl + par i t y : ".vCl);

}
// protected nenbers

void RSEncoder::do_encode(GalEl -v, GalEl 'data)
{
/•

encoding according to Lin/Costello p.91.
pari t y b i t s into f i r s t nn-kk bytes of codeuord v,
data is written into l a s t kk bytes of v

•/
i n t i , j ;
GalEl feedback;

for Ci=kk-1; i>=0; i —)
{

feedback = CaddCdataCi],v[nn-kk-l]) ;
for (j=nn-kk-l; j>0: j —)

v [j] = Cadd(v[j-1].GnulCgenCj].feedback)) ;
v[0] = GmuKfeedback.genCO]);

>
}

/ •
• as.c
• Copyright Kay Rydyger
*
• basic routines for Galois-field a r i t h n e t i c

Sinclude "defs.h"
Sinclude "classes.h"

st a t i c char cvsid[0="$ld: li s t i n g s . t e x . v 1.4 2002/05/19 11:58:11 kay Exp $";

RS::RS()
{

init.lookuptablesO;
generator.polynosialO;

}

protected cienbers only

GalEl RS::lookpolyCqq], RS::lookzBch[qq], RS::lookpowerCqq], RS::genCnn-kk+l];
unsigned int RS::polynon = 361;//285; // 100011101(d285) => X8+X4+X3+)12+1 451(X8+X7+X6+X+1)

void RS::init_lookuptables(void) {

unsigned int negnask = "ZERO, oldvec;
unsigned int poly = polynoa ft ZERO;
int i ;

lookpoly Cnask]=0;
lookpoly[cm]=poly;

oldvec = poly<<l;

B.2 Simulation Software for Compact Disc Channel Modelling 193

for (i=0; i<i=i; i++) lookpoly[i]=l«i;
for < i<iin; oXdvoc=(lookpoly[i3«l), i++)

lookpolyCi] = (oldvec & negnask)? (oldvec " poly) & mask: oldvec;

f o r (i=0; i<rm; i++) lookpower[lookpolyti]] = i ;
lookpovor[03 = mask;

for C i<rm; i++) lookzechCi] = lookpowerClookpoly[i] * 1];
}

void RS;:generator_polynonial(void) {

in t i . j :
geii[0]=l; gen[l3=0:
f o r (i=2; i<=an-kk; i++) {

genCi] = 0;
for (j = i - l ; j>0; j —) gen[j] = GaddCgen[j-l] ,GaiulCgen[j] , i)) ;
genCO] = Cnul(gen[0],i);

}
}
GalEl RS::Gdiv(GalEl a.GalEl b)
{

i f C b == 0) return a;
i f (b == ZERO) {

printf("RS::Gdiv: internal error: d i v i s i o n by ZERO •••\n ") ;
return ZERO; // wrong value returned !

}
return Gmul(a,2ER0-b);

}

GalEl RS::Gnul(GalEl a. GalEl b) {
i f (a==2ER0 I I b==ZERO) return ZERO;
return Ca+b)*/tnn;

}

GalEl RS::Cadd(GalEl a. GalEl b) {
i n t r e t ;
i f (a — b) return ZERO;
i f (a==ZERO) return b;
i f (b==inask) return a;

i f (b<a) r e t = look2ech[a-b] + b;
else ret = lookzechCnn-b+a] + b;

return retXnn;
>

GalEl RS::GpovCGalEl a, i n t b) {
i f (a==ZERO) return ZERO;
return ((a*b)Xnn):

}
void RSr.PinulzCCalEl TOS) {

i n t i ;
f o r C i=nn-l; i>0; i —) r e s [i] = r e s C i - l) ;
res[03=ZER0;

>

void RS::P3hou(char -s, GalEl •a) {

i n t i ;
p r i n t f (" \ n P o l y n o 3 i a l : Xs " . s) ;
for (i«0; i<nn; i++) printf("X02XC%02X). " . a [i] . i) ;
puts("\n"):

>

/•
• GPC.cc
* Copyright Kay Rydyger

B.2 Simulation Software for Compact Disc Channel Modelling ^̂ "̂

• routines f o r eiiaulating scratches etc.

Sinclude "defs.h"
•include "classes.h"

st a t i c char cv8id[]="5Id: l i s t i n g s . t e x . v 1.4 2002/05/19 11:58:11 kay Exp S";

CPC::GPC(void)
{}

GPC::-CPC(void)
{}

i n t GPC::radial_error(int symbcnt)
{

st a t i c i n t ges.circum = 660; //=iiiin_circuin
s t a t i c i n t add.circus=33;
s t a t i c i n t length_in_trs=10000;
s t a t i c i n t act.circum = 660; // =nin_circuia
s t a t i c i n t tr=0;

i f (symbcnt X ges^circum == 0 ftft tr++ < length.in.trs)
i

act.circua += add.circun;
gos.circum += act_circuin;
return 1; // "scratch" encountered !

>
return 0;

>

i n t CPC::tangential_error(int synbcnt)
{

return 0;
}

i n t GPC::iQ_bad(int synbcnt)
{

i f (radial_error<synbcnt)) return I ;
i f (tangential_error(synbcnt)) return 1;
return 0;

}
i n t GPC::bur3t_gpc_length(Rand0Q *rnd, i n t vide)
/* return burst length between 1 and vide-1 inclusive */

{
i n t z u f a l l ;
// while (Czufall = rnd->md_rand(uide)) == 0) ;
return wide;//zufall;

}

i n t GPC::gap_gpc_length(Randon •rnd, i n t thinning)
{

sta t i c i n t a=l;
s t a t i c i n t d i s t = 33; // war 20
i f (++a7.2==0) return thinning;
else return d i s t - t h i n n i n g ;

}

/*
* Randon.cc
* Copyright Kay Rydyger
*

* routines for randoa nuabers and error d i s t r i b u t i o n s

•/
•include "dofs.h"
•include "classes.h"

B.2 Simulation Software for Compact Disc Channel Modelling 195

s t a t i c char cvsid[3="$Id: li s t i n g s . t e x . v 1.4 2002/05/19 11:58:11 kay Exp $";

//•define LINUX

Randoa: :Randoi3()
{

idun=-l;
r a n l O ;

• i f d e f LIHUX
idUD = get_md_int<) ;

•else
iduci=2;

•endif
iduiiifast=0;

}

Random:: 'RandoaO
O

•i f d e f LIHUX

unsigned i n t Random::get_rnd_int()

i n t fd,count,ran;

f d = openCRAHDOM.DEVICE.O.RDQNLY);
i f (fd === 0) <

p r i n t f ("get_md_int():error opening XsVn" .RAIIDOM.DEVICE) :
e i i t (l) ;

}
do
{

count = read(fd,&ran,4);
} while (count !» 4);
i f (close(fd) < 0) p r i n t f ("get_md_int():error closing '/sNn" .RAHDOH.DEVICE) ;
return ran;

}
•endif
f l o a t Random::ranl(void)
<

/•
return a uniform deviate between 0.0 and 1.0 (exclusive of the endpoint value)

•/
i n t j ;
long k;
st a t i c long iy=0;
s t a t i c long iv[NTAB];
f l o a t tenp;

i f (idum <= 0 I I !iy)

i f (-(idun) < 1) iduia=l:
else idun = -(idun);
for (j=NTAB+7; j>=0: j —)
{

k = (idun)/IO;
idum = lA • (idun - k*IQ) - IR*k;
i f (idun < 0) idun += IM;
i f (j < HTAB) ivCj] = idun;

}
iy = ivCOl;

}

k=(iduin)/IQ:
idun = lA • (idua-ls*IQ)-IR-k;
i f (idun < 0) idun += IM;
j = iy/NDIV;
i y = i v f j } ;
ivCj] = idun;
i f ((tenp=AH*iy) > RHHX) return RHHX;

B.2 Simulation Software for Compact Disc Channel Modelling 196

else return temp;

f l o a t Randon::ranfaat(void)
{

unaigned long idua.itenp;
f l o a t rand;
s t a t i c unaigned long j f l o n e - Ox3f800000;
s t a t i c unsigned long j f l n s k = OxOOTfffff;
idumfast = 166452SL • idunfaat + 1013904223L
itemp = j f l o n e | (jfljnsk ft idmaf ast) ;
rand = (' (f l o a t •)Aiteap>-l.0:
return rand;

// fidefine rani ranfast //1.3 times faster

f l o a t Random:texpdevCvoid)
{

f l o a t dum;
do

dum = ranlO
while (dum==0.0);
return -log(dua):

}

f l o a t Random::gasdev(void)

s t a t i c i n t isot=0;
s t a t i c f l o a t gaet;
f l o a t fac,raq,vl.v2;

i f (i8et==0)

do
i

v l = 2.0»ranl()-1.0;
v2 = 2.0*ranl<)-1.0;
rsq = vl*vl+v2*v2;

} while (rsq >= l.O I I rsq 0.0)
fac = oqrt(-2.0*log(rsq)/rsq);

gset = vl»fac;
i s e t = l ;
return v2*fac;

>
else {

iset = 0;
return gset;

i n t Random::rnd.gauas(float l i m i t l , f l o a t l i m i t 2 . f l o a t spread, i n t s h i f t)
{

f l o a t random;
i n t ran;
do ran = (i n t) (gasdevO * spread + s h i f t) ;
while (ran l i m i t l 11 ran > l i m i t 2) ;
return ran;

i n t Random: :md_exp(void)
{

i n t ran;
do ran = (i n t) (expdev()»16);
while (ran == 0) ;
return ran;

}

i n t Random: : m d _ f l a t (i n t width)
<

B.2 Simulation Software for Compact Disc Channel Modelling 197

i n t ran;
do ran = (i n t) Cranl()*uidth);
while (ran==0);
ret\irn ran;

}

i n t Random::rnd_rand(int width)
{

return (i n t) (r a n i () * w i d t h) :
}

i n t Random::rnd_randfast(int width)
{

return (i n t) (ranfastO'width) ;
}

i n t Random::gap_rnd_length(float thinning)
{

i n t zz;
sta t i c i n t j=0;
do {

i f (j++%35"0) zz = (i n t) (md_oxp()•thinning);
else z2 = (i n t) (rnd.flat(10000)*thinning);

> while (zz==0);
return zz;

>

i n t Random:: bur St _md length(void)
i

i n t zz;
static i n t j=0;
do {

i f (j*/:i3==0) zz = (i n t) rnd_gauss(10.50.2.30);
else i f (jy.l000==0) zz = (i n t) md_f lat(300);
else zz = (i n t) rnd_gauss(0.100,10,0);

> while (zz==0);
return zz;

>

i n t Random::gap_rnd_length3(float thinning)
{

i n t zz;
static i n t j=0;
do {

i f (ranlCXO.008) zz = (i n t) (expdevOO);
else zz = (i n t) (rnd.flat(10000)»thinning);

} while (zz==0);
return zz;

}

// s t a t i s t i c s from channelnodell
i n t Random: :burst_md_length3(void)
{

i n t zz;
static i n t j=0;
do {

zz = (i n t) (e x p d e v () * l . l) :
i f (jy.l000==0) zz = (i n t) md.gau33(10.SO,2,30);
i f (jm00==0) zz = (i n t) (expdev()*20);

} while (zz==0):
return zz;

>

// s t a t i s t i c s from channelcodell with a 10 times higher burst p r o b a b i l i t y
in t Random::burst_rnd length4(void)
{

i n t zz;
sta t i c i n t j=0;
do <

B.2 Simulation Software for Compact Disc Channel Modelling 198

zz = (i n t) (expdev()*l.1) ;
i f (jy.80"0) zz = (i n t) rnd.gau3s(l0.50,2.30);
i f (jX7000==0) zz = (i n t) (expdev()*20);

} while Czz==0);
return zz;

}
i n t RandoQ::gilbert(void)
{

st a t i c i n t state=l;
f l o a t heta=0.8. alpha=0.1:
i f (state==l) {

i f (ranUXbeta)
{

return 1;
}

else {
state=0;
return 0;

}
}
i f (3tate==0) {

i f Cranl()<alpha) return 0;
else {

state=l;
return 1;

>
}
return 0;

>

• defs.h
• Copyright Kay Rydyger
•
• defintions
«

// $Id: lis t i n g s . t e x . v 1.4 2002/05/19 11:58:11 kay Exp $

/• includes */
•include <iostrean.h>
ftinclude <stdio.h>
Sincludo <stdlib.h>
•include <nath.h>
•include <string.h>
•include <linits.h>
•include <unistd.fa>
•include <sys/types.h>
•include <sys/stat.h>
•include <fcntl.h>

/• general •/
•define DEBUG 0 / / ((l) I (2)) / / | (1«11) I (1«9) |(1«6))

//•define EFKOFF
//•define HRZIOFF
//•define SCRAHBLEOFF // not working !
//•define RSOFF
•define FILLBYTE lO
•define BERFACTOR lOOOOO

extern i n t frame;
extern i n t naxHonEFMWorda;

•ifd e f DEBUG
•define INFO(vhich,a) i f (vhichftDEBUG) p r i n t f a;
•define PSHOW(wbich,a,b) i f (/*frane<115 ttt •/whichftDEBUG) Pshow(a.b)

B.2 Simulation Software for Compact Disc Channel Modelling 199

Mefine SHDHPUFFERCl(which.a.b) i f (/'frame < 115 ftft*/ whichftDEBUC) {\
int i , j ; \

p r i n t f (a) ; \
f o r(j=0;j<2;j*+) i\
for(i=0;i<FClSZB;i++)\

p r i n t f (•"/.02X " , b [j] .byte [i]) ;\
cout « endl;}\
>
«define SHOWPUFFER_FSZB(which.n,b) i f (/-frame < 115 tit*/ whichftDEBUC) {\
int i . j ; \

p r i n t f (a) ; \
for(j=0:j<3;j++) <\
for(i=0;i<FS2B;i++)\

p r i n t f (n02X ".bCj] .bytoCi]) ;\
cout « endl;>\
>
Sdefine SH0WPUFFER_FC2SZB(uhich.a,b) i f (/'frame < 115 fti*/ which&DEBUG) i\
int i ; \
p r i a t f (a) ; \
for(i=0:i<FC2S2B;i++)\
printf(n02X " ,b->byte[i3) : \
cout << endl;\
>
Sdefine SHOWPUFFER_FSZBl(which.a.b) i f (/'frame < 115 &&•/ whichftDEBUG) <\
in t i ; \
p r i n t f (a) ; \
for(i=0:i<FSZB;i++)\
p r i n t f (•7.02X " .b.byteCi]) ;\
cout << endl;\
}
adefine SH0WPUFFERC2(which.a,b) i f (/'frame <115 && '/uhichftDEBUG) i\

p r i n c f (a) ; \
f o r (j = 0 ; j < l l 2 ; j + +) { \
printf("XOSd: " . j) ; \
for(i=0:i<FC2SZB;i++) \
printf("X02X " , b [j] . b y t e [i]) ; \
cout << endl; \
>\
}

Seise
Sdefine INFO(which,a) ;
•define PSHDW(wbich.a,b) ;
Sdefine SHOWPUFFERCl(which,a,b) ;
Sdefino SHQWPUFFERC2(which,a,b) ;
Sendif

Sdefine FSZB (sizeof(Frame)/sizeof(BYTE))
Sdefina FSZW (sizeof(Framej/sizeof(WORD))
Sdefine FClSZB (aizeof(ClFrame)/aizeof(BYTE))
Sdefine FCISZW (sizeof(ClFrame)/Bizeof(WORD))
Sdefine FC2SZB (sizeof(C2Frame)/8izeof(BYTE))
Sdefine FC2SZW (sizeof(C2Frame)/Bizeof(WORD))
Sdefino FCISZBCW (FClSZB+l)

/' EFH •/

Sifdef EFMDFF
Sdefino TRAFGTOEFM
Sdefina TRAFOFROHEFM
Seise
Sdefine TRAFOFROHEFH Efm->TrafoFromEFM
Sdefine TRAFOTOEFH Efm->TrafoToEFM
Sendif

Sifdef IJRZIOFF
Sdefine TD.HRZI
Sdefine FROM.NRZI
Seise
Sdefine TO.NRZI to.KRZI

B.2 Simulation Software for Compact Disc Channel Modelling 200

•define FROM.HRZI from.IIRZI
•endif

•define WRONGEFH 7
•define f t 14
•define ciaxftl4 (l«ft)
•define svteen ft+3

•define ddd 3
•define kkk 11
•define naskl4 ((l«ft)-l)
•define ny_getbit(a,b) (a&(l«b))
•define ny.setbit(a,b) (a| = (l«b))
•define UP 1
•define DOWII - I
•define IIOSUPPR 0
•define EFMTABLEFILE "./EFHTable"

/• Scranbler •/

typedef unsigned char BYTE;
typedef unsigned short i n t WORD;

•define INClR3(x) i f (x<2) x++;else i=0;
•define INClR2(x) if(X"0)x++;elao x=0;

•define lNC4R109(x) i f (x<108) x+=4;el3e x-=108;
•define DEC4R109(y) if(y>3)y-=4;olse y+=108;

•define INClR109(x) i f (x < l l l) x*+;else x=0;
•define DEClR109(y) i f (y==0)y=lU;el5e y — ;

Cifdef RSOFF
•define RSENCODE(a) ;
•define ClDEC0D£(a,b) ;
•define C2DEC0DE(a.b) ;
•else
•define RSENCODE(a) RsEncoder->RSEncode(a)
•define ClDECODE(a,b) Cl->ClDecode(a.b)
•define C2DECGDE(a,b) C2->C2Decode(a.b)
•endif

/• RS encoder/decoder •/

typedef unsigned char GalEl;
/• (255.251) RS Code ok. •/

•define cn 8
•define nn 255 // nn « 2"cn-l
•define t t 2
•define kk (nn - (tt«l))
•define dd (2 * t t + I)
•define qq (l«cm)
•define nask (qq-1)
•define ZERO mask

/* Randomizer •/

•define lA 16807
•define IH 2147483647
•define AM (1.0/IM)
•define 10 1277773
•define IR 2836
•define NTAB 32
•define NDIV (l+(IM-l)/NTAB)
•define EPS 1.2e-7
•define RIIMX (l.O-EPS)
•define RAHDGM_DEVICE "/dev/randoa"
•define MAX.CAP.LENGTH 999999999

B.2 Simulation Software for Compact Disc Channel Modelling 201

* classes.h
* Copyright Kay Rydyger

* class declarations
*
•/

// $Id: l i s t i n g s . t e x , v 1.4 2002/05/19 11:58:11 kay Exp $

template <class a r r c l a B S > class Arr
{

public:
A r r d n t sz) i

i n t i ;
array = new arrclass(3z);
f o r {i=0;i<sz;i++) array[i3=ZER0:
siz6=Bz;
>;

arrclass boperatorC](int i) ;
protected:

arrclass •array;
i n t size;

} ;

template <class arrclass> arrclass &Arr<arrclass>::operator[](int i)
<

i f (i < 0 l l i > = s i z e) {
printf("template arrclass: i n t e r n a l error: •** range checking error •••\n")
p r i n t f (" i = X d . size^Xd • • • \ n " . i . s i z e) ;
return ZERO;

}
return a r r a y [i] ;

}

struct Error.kinds {
i n t single.errors;
i n t interpolated.eras;
i n t e r r o r . c l i c k s ;
i n t errs^not.eras;
i n t POO.P01,PlO.Pll:
i n t bytes.checked;

>:

union Sample {
BYTE byte[4D;
WORD word[2];

} ;
union Frame {

union Saaple sazapletG];
BYTE byte[24];
WORD word[12];

>;
union C2Frame {

union Sample sample[7];
BYTE byte[28];
WORD word[14];

>;
union ClFrame {

union Sanple sample[8];
BYTE byte[32];
WORD word[16];

>:

class Decode
<

public:
Decode(int);
-DecodeO:
void oneFrameO;
i n t modified(void);
i n t getChnbit(int);

B.2 Simulation Software for Compact Disc Channel Modelling 202

void setChnbit(int);
void toggleCbnbit(int);
i n t •inputFrame;//[FClSZBCW];
union Frame outputFrame;
union Frame outerasFrane;
class EFM *Efm;

protected:
class ClDecoder *C1;
class C2Decoder *C2;
union ClFrame *EFMdecodeFrame();
void DescrambleFrame(union ClFrame *input);

union ClFrane • i n p u t ; / / [2] ;
union ClFrane *inputera; //C2l;
union Frame •output;//[3];
union Frame •outputera;//[3];
union C2Frame *puffer;//Cl09];
union C2Frane *erapuf; //[112];
s t a t i c union C2Frame eradunm;
i n t Pos, Posl, Pos2, PosBuf;

class Encode
{

public:
EncodeO;
"EncodeO ;
void oneFrameO ;
i n t otherf i l l O ;
i n t getChnbit(int);
void 8 e t C h n b i t (i n t) ;
void toggleChnbit(int);
union Frame inputFrame;
i n t •outputFrane;//[FClSZB];
class EFH •Efm;
class RSEncoder •RsEncoder;

protected:

void EFKencodeFrame(union ClFrame*);
union ClFrane •ScranbleFraneO;

union C2Frame ' i n p u t ; / / [3] ;
union ClFrame *output;//[2];
union ClFrame •puffer;//[112];
i n t Posl, Pos2, Pos, PosBuf, PosS;

class EFM
{

public:
EFMO;
in t TrafoToEFH(BYTE):
i n t TrafoFromEFH(int);
void printEFHTable(void);
i n t getNonEFHWords(int i) ;

protected:
i n t EFHTableC256]. EFMrevTable[oaxftl4] ;
i n t NonEFHWordsTable[maxftl4];
unsigned DSV;
s t a t i c i n t MB[4];

void CroateOfficialEFHTableO;
void CreateHyEFHTable(void):
i n t CreateWonEFMWords(void);
i n t t e s t _ c o n 5 t r a i n t s (i n t code);
i n t to.HRZKunsigned i n t EfcHb);
i n t froa.HRZI(int);
i n t calcDSV(unsigned i n t efnword, i n t •d);
i n t calc_aNulls(unsigned efmword);
i n t calc_bNulls(unsigned efmword);
i n t add_merging_bits(unsigned i n t •efmword);

B.2 Simulation Software for Compact Disc Channel Modelling 203

} ;

class RS
{

public:
RSO:

protected:
s t a t i c GalEl lookpoly[qq], lookzechCqq], lookpoverCqq], gen[nn-kk+l];
s t a t i c unsigned i n t polynon;

void init_lookuptables(void);
void generator_polynomial(void);
GalEl Gdiv(GalEl. GalEl);
GalEl GnuKGalEl, GalEl):
GalEl Gadd(GalEl, GalEl);
CalEl Gpow(GalEl, i n t) ;
void Pmulz(GalEl*);
void Pshou(char •s, GalEl •a);

} ;

class RSEncoder : public RS
{

public:
RSEncoderO;
void RSEncode(union C2Frane»);
void RSEncode(union ClFrame*);

protected:
GalEl vClCnn],vC2[nn];
void do_encodo(GalEl*, GalEl*);

}:
class RSDecoder : public RS
{

public:
RSDecoderO:

protected:
s t a t i c GalEl noeraflags[nn];
i n t got_syndromosl_2t(GalEl«, GalEl*);
i n t berlekamp(GalEl*. GalEl*, GalEl*);

} ;

class ClDecoder : public RSDecoder
{

public:
ClDecoder(int);
void ClDecode(union ClFrane*.union ClFrane*);
void setoutputeraflags(int);
i n t g e t e r a 3 u r e (i n t) ;
i n t assign.erasures;

protected:
GalEl eraflagsCnn];
GalEl signajiCnn+l][nn] ;
GalEl rCnn] , vcorrCnn];
void (ClDecoder::*do_decode)(void);
void do_decode_strat2();
void do_decode_strat5();
void do_decode_strat4();
void do_decode_stratny();
i n t chien_search(GalEl*, GalEl*);
i n t correct_uith_fourney(CalEl*, GalEl*, GalEl*, i n t) ;

} ;

class C2Decoder : public RSDecoder
{

public;
C2Decoder(int);
void C2Decode(union C2Fra=e*, union C2Frane*);

protected:
GalEl eraflagsCnn];
GalEl signaji[nn+l]Cnn]:
GalEl rCnn], vcorr[nn];
void (C2Decoder::*do.decode)(void);

B.2 Simulation Software for Compact Disc Channel Modelling 204

void do_decode_strat2()
void do_decode_strat5()
void do_decode_strat4()
void do_decode_stratmy();
void do_decode.8trat2old();
void chien_search(GalEl*, GalEl*);
i n t correct_with_f oumey(GalEl', GalEl')
void setoutputeraf l a g a d n t) ;

class Random
{

public:
Random(void);
~Random(void);
i n t burat_md_length(void);
i n t burat_md_length2(void);
i n t burst_md_length3(void);
i n t burst_md_length4(void);
i n t gap_rnd_length(float);
i n t gap_md_length3(f loat) ;
f l o a t ranfaet(void);
i n t md_rand(int);
i n t rnd.remdfastdnt);
i n t g i l b e r t (v o i d) ;

protected:
unaigned i n t get_rnd_int(void);
f l o a t r a n i (v o i d) ;
f l o a t expdev(void);
f l o a t gasdev(void);
i n t md.gausa (f l o a t . f l o a t . f l o a t , i n t) ;
i n t m d . f l a t (i n t) ;
i n t md_exp(void) ;
long idum;
unsigned long idumfast;

class GPC
{

public:
CPC(void);
-GPC(void);
i n t ia_bad(int);
i n t gap_gpc_length(Random',int);
i n t bur8t_gpc_length(Random*,int);

protected:
i n t r a d i a l _ e r r o r (i n t symbcnt);
i n t t a n g e n t i a l _ e r r o r (i n t symbcnt);

} ;

/*
' EFHTable.h
• Copyright Kay Rydyger
•
' o f f i c i a l EFH table
•
•/

// Sid: listinga.tex.v 1.4 2002/05/19 11:58:11 kay Exp S

char EFMTable_inc[] [32] =
{
"0 01001000100000",
"1 10000100000000",
"2 10010000100000".
"3 10001000100000".
"4 01000100000000".
"5 00000100010000",
"6 00010000100000".

B.2 Simulation Software for Compact Disc Channel Modelling 205

"7 00100100000000",
"8 OlOOlOOlOOOOOO".
"9 10000001000000",
"10 10010001000000".
"11 lOOOlOOlOOOOOO",
"12 01000001000000".
"13 00000001000000",
"14 00010001000000",
"15 00100001000000".
"16 10000000100000".
"17 10000010000000",
"18 lOOlOOlOOOOOOO".
"19 00100000100000".
"20 01000010000000".
"21 00000010000000".
"22 00010010000000",
"23 00100010000000",
"24 OlOOlOOOOlOOOO",
"25 10000000010000",
"26 10010000010000".
"27 10001000010000".
"28 01000000010000",
"29 00001000010000",
"30 00010000010000".
"31 00100000010000",
"32 00000000100000",
"33 10000100001000",
"34 00001000100000",
"35 00100100100000",
"36 01000100001000".
"37 00000100001000",
"38 01000000100000",
"39 00100100001000",
"40 01001001001000",
"41 lOOOOOOlOOlOOO".
"42 10010001001000".
"43 10001001001000".
"44 01000001001000",
"45 00000001001000",
"46 00010001001000",
"47 00100001001000".
"48 00000100000000",
"49 10000010001000".
"50 10010010001000".
"51 10000100010000".
"52 01000010001000",
"53 00000010001000",
"54 00010010001000",
"55 OOlOOOlOOOlOOO".
"56 01001000001000".
"57 10000000001000".
"58 10010000001000",
"59 10001000001000",
"60 OlOOOOOOOOlOOO",
"61 00001000001000".
"62 00010000001000".
"63 00100000001000".
"64 01001000100100",
"65 10000100100100",
"66 lOOlOOOOlOOlOO".
"67 10001000100100".
"68 01000100100100",
"69 00000000100100",
"70 00010000100100".
"71 00100100100100".
"72 01001001000100",
"73 lOOOOOOlOOOlOO",
"74 lOOlOOOlOOOlOO".
"75 10001001000100",
"76 01000001000100",
"77 00000001000100",
"78 OOOlOOOlOOOlOO",
"79 00100001000100",

B.2 Simulation Software for Compact Disc Channel Modelling 206

"80 10000000100100",
"81 10000010000100".
"82 lOOlOOlOOOOlOO",
"83 00100000100100".
"84 01000010000100".
"85 00000010000100".
"86 00010010000100".
"87 00100010000100",
"88 01001000000100".
"89 lOOOOOOOOOOlOO".
"90 10010000000100",
"91 10001000000100".
"92 01000000000100",
"93 OOOOlOOOOOOlOO",
"94 00010000000100".
"95 00100000000100".
"96 OlOOlOOOlOOOlO",
"97 lOOOOlOOlOOOlO".
"98 lOOlOOOOiOOOlO".
"99 10001000100010",
"100 OlOOOlOOlOOOlO",
"101 OOOOOOOOlOOOlO",
"102 01000000100100",
"103 OOlOOlOOlOOOlO",
"104 OlOOlOOlOOOOlO",
"105 lOOOOOOlOOOOlO".
"106 lOOlOOOlOOOOlO",
"107 10001001000010".
"108 OlOOOOOlOOOOlO".
"109 OOOOOOOlOOOOlO".
"110 OOOlOOOlOOOOlO",
"111 00100001000010".
"112 10000000100010".
"113 lOOOOOlOOOOOlO".
"114 10010010000010",
"US 00100000100010",
"116 OlOOOOlOOOOOlO",
"117 00000010000010".
"118 OOOlOOlOOOOOlO",
"119 00100010000010",
"120 01001000000010",
"121 00001001001000",
"122 10010000000010".
"123 10001000000010".
"124 OlOOOOOOOOOOlO".
"125 OOOOlOOOOOOOlO".
"126 00010000000010",
"127 00100000000010",
"128 01001000100001",
"129 lOOOOlOOlOOOOl".
"130 10010000100001".
"131 10001000100001",
"132 01000100100001",
"133 00000000100001".
"134 OOOlOOOOlOOOOl",
"135 00100100100001".
"136 OlOOlOOlOOOOOl",
"137 lOOOOOOa000001",
"138 10010001000001".
"139 10001001000001",
"140 OlOOOOOlOOOOOl",
"141 00000001000001",
"142 00010001000001",
"143 00100001000001".
"144 10000000100001",
"145 10000010000001".
"146 10010010000001",
"147 00100000100001".
"148 OlOOOOlOOOOOOl",
"149 00000010000001",
"ISO 00010010000001".
" I S l 00100010000001",
"152 OlOOlOOOOOOOOl".

B.2 Simulation Software for Compact Disc Channel Modelling 207

"153 lOOOOOlOOlOOOO".
"154 10010000000001",
"155 10001000000001",
"156 01000010010000".
"157 00001000000001".
"158 00010000000001",
"159 00100010010000".
"160 00001000100001",
"161 lOOOOlOOOOlOOl",
"162 01000100010000".
"163 00000100100001",
"164 01000100001001".
"165 00000100001001",
"166 01000000100001",
"167 00100100001001".
"168 01001001001001",
"169 10000001001001",
"170 10010001001001".
"171 10001001001001",
"172 01000001001001",
"173 00000001001001",
"174 00010001001001".
"175 00100001001001".
"176 00000100100000",
"177 10000010001001".
"178 10010010001001".
"179 00100100010000".
"180 01000010001001".
"181 OOOOOOlOOOlOOl".
"182 00010010001001".
"183 00100010001001".
"184 01001000001001".
"185 10000000001001".
"186 lOOlOOOOOOlOOl",
"187 lOOOlOOOOOlOOl".
"188 01000000001001".
"189 OOOOlOOOOOlOOl",
"190 OOOlOOOOOOlOOl",
"191 00100000001001".
"192 OlOOOlOOlOOOOO",
"193 lOOOOlOOOlOOOl",
"194 10010010010000",
"195 00001000100100",
"196 01000100010001",
"197 00000100010001",
"198 00010010010000".
"199 00100100010001",
"200 00001001000001",
"201 10000100000001",
"202 00001001000100".
"203 00001001000000",
"204 01000100000001",
"205 00000100000001",
"206 00000010010000",
"207 00100100000001",
"208 00000100100100",
"209 10000010010001",
"210 10010010010001",
"211 10000100100000",
"212 01000010010001",
"213 00000010010001",
"214 00010010010001".
"215 00100010010001",
"216 01001000010001",
"217 10000000010001",
"218 10010000010001",
"219 10001000010001",
"220 01000000010001",
"221 00001000010001",
"222 00010000010001",
"223 00100000010001",
"224 01000100000010",
"225 00000100000010",

B.2 Simulation Software for Compact Disc Channel Modelling 208

"226 lOOOOlOOOlOOlO".
"227 00100100000010".
"228 OlOOOlOOOlOOlO",
"229 00000100010010",
"230 01000000100010",
"231 00100100010010",
"232 10000100000010".
"233 10000100000100".
"234 00001001001001",
"235 00001001000010",
"236 01000100000100",
"237 00000100000100".
"238 00010000100010".
"239 OOlOOlOOOOOlOO".
"240 00000100100010".
"241 lOOOOOlOOlOOlO".
"242 10010010010010",
"243 00001000100010",
"244 01000010010010",
"245 OOOOOOlOOlOOlO",
"246 00010010010010",
"247 00100010010010",
"248 OlOOlOOOOlOOlO".
"249 10000000010010",
"250 10010000010010".
"251 lOOOlOOOOlOOlO".
"252 01000000010010",
"253 00001000010010".
"254 OOOlOOOOOlOOlO",
"255 OOlOOOOOOlOOlO"

} ;

References

1] L . M. H. E . Driessen and L . B. Vries. eds., Performance calculations of the Compact

Disk error correction code on a memoryless channel, Proceedings of the Fourth

International Conference on Video and Data Recording, (Southhampton), Univer­

sity of Southhampton, 20-23 April 1982.

2] B. Tehranchi and D. G. Howe, "A channel model for characterization of the er­

ror data recovered from compact discs," IEEE Transactions on Communications,

vol. 46, pp. 841-845, July 1998.

3] 2002 Reuters Limited, "CD-Erfinder Philips sieht keine Zukunft fiir Kopierschutz,

Financial Times Deutschland, January, 9th 2002.

4] R. lannella, "Digital Rights Management (DRM) Architectures," D-Lib Maga­

zine, vol. 7, June 2001.

5] Philips Semiconductors, Data sheet, SAA 7325 Digital servo processor and compact

disc decoder with integrated DAC(CDIO), June 17 1999.

6] "The compact disc digital audio system," in British Standard 7064, London:

British Standard Institution, 1989.

209

R E F E R E N C E S 210

[7] M. G. Carasso, J . B. H. Peek, and J . R Sinjou, "The compact disc digital audio
system," Philips Tech. Rev., no. 40, pp. 151-155, 1982.

8] Y . Sake and T. Sii/Aiki, "Data structure of the compact disk-read-only memory

system," Applied Optics, vol. 25, pp. 3996-4000, 15 Nov 1986.

9] Y . Mitsuhashi, "Standardization activities for optical disks in japan," Applied

Optics, vol. 25, pp. 4013-4016, 15 Nov 1986.

10] F . A. Stevenson, "Cryptanalysis of contents scrambling system." November 1999.

[11] J . A. Bloom, I. J . Cox, T. Kalker, J . -R M. G. Linnartz, M. L . Miller, and

C. B. S- Traw, "Copy Protection for DVD Video," Proceedings of the IEEE,

vol. 87, pp. 1267-1276, July 1999.

12] O. Kastl, "CloneCD." http://www.elby.de/.

13] S. Katzenbeisser and F . A. P. Petitcolas, eds., Information hiding techniques for

steganography and digital watermarking. Artech House, 2000.

14] R. J . Anderson and F . A. R Petitcolas, "On the limits of steganography," IEEE

Journal of Selected Areas in Communications, vol. 16, pp. 474-481, May 1998.

[15] J . Fridrich, "Image watermarking for tamper detection," PROC. of IEEE Int.

Conf. Image Processing, 1998.

16] M. \V. Yeung and F . C. Mintzer, "Invisible watermarking for image verification,"

Journal of Electronic Imaging, vol. 7, no. 3, pp. 578-591, 1998.

17] B. Schneier, Applied Cryptography. John Wiley & Sons, 1996.

R E F E R E N C E S 211

[18] J . Lee and C. S. Won, "A watermarking sequence using parities of error control

coding for image authentication and correction," IEEE Transactions on Consumer

Electronics, vol. 46, pp. 313-317, May 2000.

[19] M. Y . Rhee, Cryptography and Secure Communications. McGraw-Hill, 1994.

20] Basler AG Ahrensburg, CD-Scanner, sales brochure.

[21] ESP Laser Matrix, ESP Inc., 2002. www.esp-cd.com.

22] J . Benshop and G. van Rosmalen, "Confocal compact scanning optical microscope

based on compact disc fccchnologj'," Applied Optics, vol. 30, pp. 1179-1184, Apr

1991.

[23] "Volume and file structure of cdrom for information interchange," in ECMA-llO,

ECMA - Standardizing Information and Communication Systems, 2nd ed., De­

cember 1987.

24] "Data interchange on read-only 120mm optical data disks (cd-rom)," in

ECMA-130, ECMA - Standardizing Information and Communication Systems,

2nd ed., June 1996.

25] "Audio recording - compact disc digital audio system," in lEC 60908, Interna­

tional Electrotechnical Commission, 2.0 ed., February 1999.

26] Y . Sako and T. Suzuki, "Data structure of the compact disk-read-only memory

system," Applied Optics, vol. 25, pp. 3996-4000, November 1986.

27] J . D. Roberts, A. Ryley, D. M. Jones, and D. Burke, "Analysis of error correction

constraints in an optical disk," Applied Optics, vol. 35, pp. 3915-3924, July 1996.

R E F E R E N C E S 212

[28] L . B. Vries and K. Odaka, "CIRC-the error correcting code for the compact disc

digital audio system," in Collected papers from the AES Digital Audio Premier

Conference, pp. 178-186, Audio Engineering Society, 1982.

[29] B. Tehranchi and D. G. Howe, "Reliability estimates for data recovered from

compact discs," Applied Optics, vol. 37, no. 2, 1998.

30] Z. Yang, "Statistical reliability analysis of data recovered from compact discs,"

Master's thesis, Department of Electrical and computer engineering. University of

Arizona, Tucson, Ariz., 1995.

31] B. Tehranchi and D. G. Howe, "Error characteristics of read-only-memory ver­

sus write-once-read-many compact discs: CD-ROM versus CD-WORM," Applied

Optics, vol. 35, no. 29, 1996.

32] D. P. Casasent and A. G. Tescher, eds., Real-Time Resolution, PC-Based System

for Measurement or Errors on Compact Discs, SPIE, 1994.

[33] C. C. Ko and T. T . Tjhung, "Comparison of simple cross-interleaved reed-solomon

decoding strategies for compact disc players," in Proceedings of the tenth interna­

tional conference and industrial electronics and application TENCON 87, pp. 378-

382, 1987.

34] E . Siever, S. Spainhour, J . P. Hekman, and S. Figgins. Linux in a Nutshell.

O'Reilly, 3rd ed., 2000.

35] Principles of optical disc systems. Adam Hilger Ltd., 1986.

36] GNU Compiler Collection, http://www.gnu.org/software/gcc/gcc.html.

R E F E R E N C E S 213

37] American National Standard of Accredited Standards Committee X3, SMALL
C O M P U T E R S Y S T E M I N T E R F A C E - 2 (SCSI-2) (draft), 9 March 1990.

[38] H. Ogawa and K. A. I. Schouhamer, " E F M - the modulation for the compact

digital audio disc," in Proc. AES Premier Conf., Ryetown, pp. 117-124, New

York: Audio Engineering Society, 1982.

39] L . Baert, L. Theunissen, and G. Vergult, eds., Digital Audio and Compact Disc

Technology. Newnes, 1992.

40] L. B. Vries, K. A. I. Schouhamer, J.G.Nijboer, H. Hoeve, J . Timmermans, L. M.

Driessen, T . Doi, K. Odaka, S. Furukawa, I. K. Iwamoto, Y. Sako, H, Ogawa, and

T. Itoh, "The digital compact disc - modulation and error correction," in J. Audio

Eng. Soc. (Abstracts), vol. 28, 67th convention of the audio engineering society,

Dec. 1980.

41] Immink and et al.. Method of coding binary data. United States Patent 4501000,

19. February 1985.

[42] K. A. I. Schouhamer and U. Gross, On low frequence properties of EFM modula­

tion. Philips Research Laboratories Eindhoven - The Netherlands, 1982.

43] VV. H. Press, S. A. Teukolsky, W. T . Vetterling, and B. P. Flannery, Numerical

Recipes in C. Cambridge University Press, 1996.

[44] Lodewijk, B. Vries, K. A. Immink, J . G. Nijboer, and H. Hoeve, "The compact disc

digital audio system: modulation and error-correction," in 67th Audio Engineering

Society Convention, no. 1674, (New York), 1981.

[45] H. Nakajima and H. Ogawa, Compact Disc Technology. Ohmsha Ltd., 1996.

R E F E R E N C E S 214

46] M. Godwin, "A Cop in Every Computer," http://www.law.com, 16. January 2002.

47] T. T . Doi, "Error correction for digital audio recordings," in Collected papers

from the AES Digital Audio Premier Conference, pp. 147-177, Audio Engineering

Society, 1982.

[48] E . N. Gilbert, "Capacity of a burst-noise channel," Bell Sys. Tech. J,, vol. 39,

pp. 1253-1263, 1960.

49] T. T . Doi, Y . Tsuchiya, and A. Iga, "On several standards for converting pcm

signals into video signals," Journal of the Audio Eng. Soc. (Engineering Reports),

vol. 26, pp. 641-649, 1978.

50] Macrovision, Safe Audio Product Overview, 2002.

[51] S. Lin and J . Daniel J . Costello, Error control coding: Fundamentals and applica­

tions. Prentice Hall, 1983.

52] E . R. Berlekamp, Algebraic coding theory. McGraw-Hill, 1968. New York.

[53] J . L . Massey, "Step-by-step decoding of the bose-chaudhuri-hocqiienghem codes,"

IEEE Trans. Inf. Theory, vol. IT-11, pp. 580-585, October 1965.

54] R. T. Chien, "Cyclic decoding procedure for the bose-chaudhuri-hocquenghem

codes," IEEE Trans. Inf. Theory, vol. IT-10, pp. 357-363, October 1964.

55] G. D. Fourney, '=0n decoding binary BCH codes," IEEE Trans. Inf. Theory,

vol. IT-11, October 1965.

[56] A. M. Michelson and A. H. Levesque, Error-control techniques for digital commu­

nication. John Wiley & Sons, 1985.

R E F E R E N C E S 215

57] R. E . Blahut, Theory and practice of error control codes. Addison-Wesley Pub­

lishing Company, 1983.

