DIGITAL WATERMARKING FOR COMPACT
DISCS AND THEIR EFFECT ON THE ERROR
CORRECTION SYSTEM

KAY RYDYGER

A thesis submitted to the University of Plymouth

in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

Centre for Research in Information Storage Technology
Department of Communication and Electronic Engineering

Faculty of Technology

February 2002

0 0508783 1

Ay

8
UNIVERS!TY OF PLYMOUTH
tembo- | 00503733

Date 30 MAY 2002

Class No.| Tl oo5-¥ rMp

cont. No.f ¥ O Lu2bdd X
P o LIBRARY

RPN, ONIY

LIBRARY STORE

Digital Watermarking for Compact Discs and their
Effect on the Error Correction System

by
Kay Rydyger

A new technique, based on current compact disc technology, to image the transpar-
ent surface of a compact disc, or additionally the reflective information layer, has been
designed, implemented and evaluated. This technique (image capture technique) has
been tested and successfully applied to the detection of mechanically introduced com-
pact disc watermarks and biometrical information with a resolution of 1.6um x 14um.

Software has been written which, when used with the image capture technique,
recognises a compact disc based on its error distribution. The software detects dig-
ital watermarks which cause either laser signal distortions or decoding error events.
Watermarks serve as secure media identifiers.

The complete channel coding of a Compact Disc Audio system including EFM
modulation, error-correction and interleaving have been implemented in software. The
performance of the error correction system of the compact disc has been assessed using
this simulation model. An embedded data channel holding watermark data has been
investigated. The covert channel is implemented by means of the error-correction
ability of the Compact Disc system and was realised by aforementioned techniques like
engraving the reflective layer or the polysubstrate layer. Computer simulations show
that watermarking schemes, composed of regularly distributed single errors, impose a
minimum effect on the error correction system.

Error rates increase by a factor of ten if regular single-symbol errors per frame are
introduced - all other patterns further increase the overall error rates. Results show
that background signal noise has to be reduced by a factor of 60% to account for the
additional burden of this optimal watermark pattern.

Two decoding strategies, usually employed in modern CD decoders, have been
examined. Simulations take emulated bursty background noise as it appears in user-
handled discs into account. Variations in output error rates, depending on the decoder
and the type of background noise became apparant. At low error rates (r < 0.003)
the output symbol error rate for a bursty background differs by 20% depending on the

decoder. Differences between a typical burst error distribution caused by user-handling

and a non-burst error distribution has been found to be approximately 1% with the
higher performing decoder.

Simulation results show that the drop of the error-correction rates due to the pres-
ence of a watermark pattern quantitatively depends on the characteristic type of the
background noise. A four times smaller change to the overall error rate was observed
when adding a regular watermark pattern to a characteristic background noise, as

caused by user-handling, compared to a non-bursty background.

Contents

1 Introduction

1.1 The Compact Disc,

1.2 The Compact Disc’s Vulnerability to Errors

1.2.1

1.2.2
1.2.3

1.2.4

...............

Coping with Errors on Compact Discs
Manufacturing Errors on Compact Dises

Blemishes resulting from User-handling

Definitions e

1.3 Compact Disc Standards

1.4 Contribution to Knowledge

1.5 Organisation of the Thesis

2.1 The Compact Disc System - Benefits and Problems

2.2 Watermarking and Steganography on Compact Discs
2.3 Scanning Microscopy
2.4 Error Correction Simulations
2.5 Measuring Error Distributions

2.6 Performance of Compact Disc Player’s Decoder Strategies

3.1 A CD-based Image Capture System

3.1.1
3.1.2
3.13
3.1.4

Background to the Investigation

..........

.......................

Experimental Apparatus and Techniques

Introduction

Basic Construction of a Compact Disc Player
Presentation of the Novel Capture System

Necessary Hardware Alterations to the Standard CD-Device

[

oG ~N o

10
11

12
12
13
18
19
22
22

26
26
26
27
28
31

CONTENTS 1ii

3.1.5 Control and Data Acquisition Software of the Capture System . 33

3.1.6 Capabilities of Capture System 37

3.2 Modelling the Error Recovery Process 38
3.2.1 Experimental Apparatus versus Simulation Techniques 38
3.2.2 Basics about the Channel Coding for Compact Discs 39

3.3 Software Implementation of the Channel Coding and Decoding 42
3.3.1 Introduction 42
3.3.2 Implementation of EFM-Modulation 43
3.3.3 Implementation of the Interleaver 44
3.3.4 Cross Interleave Reed-Solomon Decoder Schemes 44
3.3.5 Sub-code Channel and Synchronisation Patterns 45
3.3.6 Random Number Generator 46
3.3.7 Control of the Software 46
3.3.8 Computing Environment and Tests 48

4 Results of Graphical Capture System 50
4.1 Methodology 50
4.2 Properties of the System L. 52
4.2.1 Resolution of the Scanning Process 52
4.2.2 Signal-to-Noise Ratio of the Read-Out Signal 54
4.2.3 Using Different Compact Disc Players 55

4.3 Data and Image Processing Software 57
4.4 Interpretation of Results 60
4.4.1 Detecting Handwriting on the CD Surface 60
4.4.2 Fingerprints on Compact Discs 61
4.4.3 Watermarks and their Capturing on Compact Discs 63

4.5 Further Applications o 69
4.5.1 Random User-Handlingand Dirt 69
4.5.2 Moiré-Patterno o 70
4.5.3 Detecting Manufacturing Defects during Read-out 72

4.6 Conclusions and Applicability for Watermarking 77

CONTENTS iv

5 Watermarking and Punctured Code Simulations 79
5.1 Definitions and Background 79
5.1.1 Error Conceatlment 79

5.1.2 Definitionsof Error Rates 81

5.1.3 Limits of Computer Simulation 81

5.2 Conformance of Computer Simulation and Statistical Analysis 83
5.3 Decoder Algorithms applied to Memoryless Channels 83
5.4 Decoding Burst Errors Lo 0oL 86
54.1 Introduction Lo 86

5.4.2 Reproduction of Error Burst Probabilities and Good Data Gap

Probabilities in a Bursty Channel 87

5.4.3 Decoder Algorithms Applied to Bursty Channels. 90
5.4.4 Error Correction Capacity on a Bursty Channel and Memoryless

Channel 93

545 Discussion e 93

5.5 Performance of Watermark Sequences 96

5.5.1 Introduction 96

5.5.2 Motivation for Considering Background Noise 08

5.5.3 Using Intentional Errors as Watermarks 100

5.54 Choosing non EFM-Words as Error Symbols 114

5.5.5 Changes to the Overall Error Rate when Introducing Watermarks 117

556 Conclusions o 119

6 Conclusions and Discussions 122

6.1 Conclusions e 122

6.2 Future Work 132

A Theory of Reed-Solomon Encoding and Decoding for Compact Discs134

A1 Galois-field Arithmetic and Basicsof ECC 134
A.2 Cyclic Code Encoding 136
A.3 Reed-Solomon Syndrome Decoding 137
B Software Listings 140

B.1 Control Software for the Experimental Apparatus 140

CONTENTS

v

B.2 Simulation Software for Compact Disc Channel Modelling 149
B.2.1 Flowchart of the Encoder and Decoder Program 149
B.2.2 Programlisting oL 149

List of Abbreviations

ADC
CD
CD-DA
CD-R
CD-ROM
CD-RW
CIRC
CLV
codec
CRC
DRM
DVD
ECC
EC
EFM
GF

HP
LSB
NRZI
NRZ
PCB
PC

Analog-to-Digital Converter
Compact Disc

Compact Disc Digital Audio
Compact Disc Recordable
Compact Disc Read Only Memory
Compact Disc Rewritable
Cross-Interleave-Reed-Solomon-Code
constant linear velocity
Coder/Decoder

Cyclic Redundancy Check
Digital Rights Management
Digital Versatile Disc

Error Control Code

Error correction
Eight-To-Fourteen Modulation
Galois Field

Hewlett Packard

least significant bit

non-return to zero inverted
non-return to zero

Printed Circuit Board

Personal Computer

vi

PDF
PPM
RF
RLL
rpm
SCSI
SNR.

probability density function
Portable Pixmap file format
Radio Frequency
run-length-limited

rounds per minute

Small Computer System Interface

Signal to Noise Ratio

vil

List of Figures

1.1 Schematic view of defect classification in a Compact Disc. 6
3.1 Structure of the experimental setup 27
3.2 Servo circuits in a compact disc player 28

3.3 Structure of the image capture system. The photo shows the opened

compact disc player and the trigger circuitry. 31
3.4 Schematic diagram of the interface trigger to ADC. 33
3.5 Bitstream of the encoding system of the Compact Disc. 40
3.6 CIRC decoder structure 42
4.1 Photograph of radial scratches on compact disec. 52
4.2 Laser-signal response to five radial scratches in compact disc. 53
4.3 Voltage drop due to a black stripe on surface. The other peaks signify

surface scratches.o 54
4.4 Signal response of two different players to scratches on the compact disc.

a) Toshiba XM3301B, b) Toshiba XM4101B 55
4.5 Fourier transform of data in Figure 4.4a (XM3301B). 56
4.6 Fourier transform of data in Figure 4.4b (XM4101B). 56
4.7 Capturéd overview of a disc surface with random scratches. 59
4.8 Image capture of the words "KAY” and * CRIST” written on the surface

of a compact disc with a ball-point pen. 60
4.9 Captured fingerprint on the surface of a disc. The image was processed

using an emboss filter. oo 00000 61
4.10 A second captured fingerprint with different filter operations applied

(contrast stretching). L L 62

viii

LIST OF FIGURES ix

4.11 Captured surface image of three punctured distortions, compact disc
plays without errors. The true size of the distortions is about ten times
smaller. 65

4.12 Four punctured distortions in the reflective layer, imaged by the author’s
capturing technique. The size of the small dot is about 100pm. 66

4.13 Photograph of this distortions taken by an optical microscope. Compare
toFigure4.12..o 67

4.14 Photograph of the same four distortions taken by a scanning electron
microscope. Compare to Figure 4.12. 67

4.15 A group of punctured holes in the reflective layer, captured during the
playing of the compact disc. 68

4.16 One punctured hole in the reflective layer, captured with maximum res-
olution during the playback of the compact disc. 69

4.17 Two captures of the same disc. a) cleaned disc b) after touching. The
shaded areas mark lower reflection caused by grease and dust. 70

4.18 a) Moiré-pattern in the substrate detected on a badly manufactured disc
b) a clean, good disc without moiré-pattern 71

4.19 Demonstrative example of an injection artefact in badly manufactured
compact discs (Basler AG, Germany). 71

4.20 A captured overview picture of a badly manufactured disc with lots of
defects seen assmalldots. 73

4.21 A zoomed-in version of 4.20, showing distinctively the defects, moiré-
pattern and a part of the boundary. oL 74

4.22 A photograph of the surface taken by a conventional optical microscope. 75

4.23 Image capture of the disc with a circular boundary drawn by a ball-pen

around reflective layer defects. 76

5.1 Diagram showing interpolation and symbol error rate {crosses) as ob-
tained by the author’s software. The straight line represents the inter-
polation rate, published in [1} as a result of statistical calculations. . . . 84

5.2 Decoder I and II compared in terms of P, values on a non-bursty chan-

nel. Decoder Il shows better performance. 85

LIST OF FIGURES

2.3

(1]
W=

o
3

5.6

5.10

5.11

Decoder I and II compared in terms of interpolation, click and symbol

error rate on a non-bursty channel. Decoder II shows better performance. 86

Gilbert model e
Different probability density functions used for simulations of bursts
(area under slope standardised to one). a) bursts caused by a memory-
less, non-bursty channel, b) bursts emulating measured distribution in
[2] on a clean disc, ¢) bursts with a ten times higher probability assum-
ing a scratched disc. Curve b and c is reproduced using a combination
of random number deviates.o L.
Relation between stretch factor of gap lengths n to obtained error rate
r. The error distribution is constant while scaling the gap distribution
with factor n to achieve different input symbol error rates.
Decoder I and II compared in terms of symbol error rate and interpo-
lation rate on a bursty channel. Decoder II shows the better correction
performance. Lo
Decoder II applied to a non-bursty channel model and one with the
distribution presented in paragraph 5.4.2. Towards lower input error
rates the difference is evident and can be extrapolated to the deviation
of several magnitudes.o
Correctibility of equidistant error symbols (EQU) together with back-
ground noise. The relative error frequency f is based on the correction
rates for background noiseonly.
Correctibility of a sequence of errors with varying length at the begin-
ning of each frame (ESE) plus background noise based on error rates of
background noiseonly.o Lo
Schematic illustration of a shifted sequenced error pattern (ESS) (refer
to Figure 5.12).
Correctibility of a pattern with shifted sequences of erroneous symbols
each frame (ESS) plus background noise. The relative error frequency is
f > 10 pointing to a lower correctibility than without shifting (compare

to Figure 5.10).

87

100

102

LIST OF FIGURES xi

5.13

5.14

[]]
o
(o]

5.20

Schematic view of error groups distributed over a frame (EGR).

a) 2 symbols per frame. b) 5 symbols per frame. c¢) 12 symbols per frame.104
Correctibility of groups of error symbols (EGR) plus background noise.

For low error rates r < 0.07 the pattern is identical to the one used in
Figure 5.10. L Lo 105
Correctibility of a pattern with alternating error-free and erroneous
frames (EQF1) plus background noise. 106
Equidistant erroneous frames, the intermediate gap length is variable.

a) one frame distance between one erroneous frame. b) two frames
distance between one erroneous frame. 107
Correctibility of a pattern of alternating error-free and erroneous frames

plus background noise. The erroneous frames are filled with alternating

error and non-error symbols (EQF2). 107
Equidistant erroneous frames, the intermediate gap length is variable.

The erroneous frames are filled with alternating error and non-error
symbols.

a) one error-free frame distance between one erroneous frame. b) two

frames distance between one erroneous frame. 108
Correctibility of a pattern of alternating error-free and erroneous frames

plus background noise. The erroneous frames are filled alternatingly

with one error and two non-error symbols (EQF3). 108
Equidistant erroneous frames, the intermediate gap length is variable.

The erroneous frames are filled with alternating one error and two non-

error symbols.

a) one error-free frame distance between one erroneous frame. b) two
frames distance between one erroneous frame. 109

Correctibility of randomly distributed one-symbol errors (RES) approx-

imating the lower limitof f =1 veryslowly. 111

LIST OF FIGURES

xii
5.22 Summarised overview of four error patterns. The notation * PDF” means
bursty background noise is added. The other notations refer to the type
of pattern used. Three different groups are recognisable with different
types of approximation. The next four patterns are shown in the next
diagram, Figure 5.23. oo oo Lo 112
5.23 Set of the next four error patterns (continued from Figure 5.22). 113
5.24 The relative error frequency f is standardised to the introduced symbol
error rate r. The minimum signifies a good ratio of correctibility to
information content. Four error patterns are shown here, the next four
in the next diagram, Figure 5.25. 115
5.25 Set of the next four patterns, relative error frequency f standardised to
the introduced error rate r (continued from Figure 5.24). 116
5.26 Output error rates of background noise with varying input error rates
r if a) a regular watermark pattern is present and b) only background
noise is Lo Correct. L. Lo e 118
B.1 Flowchart of the channel! encoder implementation for CD audio. 150
B.2 Flowchart of the channel decoder implementation for CD audio. 151

List of Tables

1.

2.

3.

5.

9.

WD

1

2

1

1

2

[o]]

Standards defining "Compact Dises”.

Algorithmic view of decoder strategy 1. f denotes the number of erased
symbols in a code word. C1 is the inner Reed-Solomon decoder, C2 the
outerdecoder. L L

Algorithmic view of decoder strategy II.

A choice of possible error conditions during reading of a CD-ROM/CD-
DA (taken from the SCSI-2 specification).

Lowest error probability to detect when decoding 2.5 - 107 frames with
1,10 or 40 symbol errors occurring. One additional symbol error leads
to the resulting standard error.o oo
Output symbol error rates Py random/sursts ©f non-bursty, random back-
ground errors and bursty background errors, combined with systemati-
cally induced symbol errors of two different error rates 7insr,. The ratio
shows that random and bursty noise have different correction rates Py,
as expected, but also that the ratio of correctibility is depending on the
rate of induced errors. Lo L.
After decoding 250000 frames the number of symbol errors n varies
depending on the form of noise present. The induced error rate is
Tintro = 0.0625, which is a two-symbol error per frame.

Considering the values derived from Table 5.3 it becomes evident that

introducing a two-symbol error per frame does not have the same effects

on the output correction rate on bursty and non-bursty background noise. 99

Fast random number generator for distributing erroneous symbols. .

Xiil

110

Acknowledgement

I would like to express my gratitude to all the people who supported me during my

time in Plymouth.

Thanks go to my supervisors Dr. T. Donnelly and Dr. P. J. Davey for their informal

and friendly support and the University of Plymouth for giving me this opportunity.

Last, not least of all, T would like to thank all those friends in Plymouth who befriended
and supported me during my brief stay in Plymouth and influenced me in their own

way.

xiv

Author’s declaration

At no time during the registration for the degree of Doctor of Philosophy has the author

been registered for any other University award.

This study was financed by a University of Plymouth studentship.

During the research programme I undertook a course of advanced studies. These in-
clude the extensive reading of literature relevant to the research project, and attendance
of seminars on signal processing, coding and computing. The work has been regularly

presented at research seminars.

Date 20’0 . /3‘ 200?—

Xv

Chapter 1

Introduction

1.1 The Compact Disc

The compact disc {CD) is nowadays a very important medium for permanently storing
information. It was introduced in 1980 by Philips and Sony as the next generation
successor of the vinyl record. The convenience of use and the immense data capacity
predestined it for further development and exploitation.

Soon after its introduction it was employed for other uses such as storing raw digital
data. The basic technology behind it proved to be reliable, easy-to-use, inexpensive and
extendable. Today CDs and their writable relatives CD-RW, CD-R are everywhere;
they are used for distributing and conserving music, for multimedia applications, as
a storage medium for computers and as backup medium. Simply speaking, the user
is free to duplicate digital data and store it without quality loss on this inexpensive
medium.

The successor of the CD, the Digital Versatile Disc (DVD), based on a similar

technology with an increased storage capacity, is now gaining commercial momentum

1.1 The Compact Disc ' 2

and shows an even greater commercial potential than its predecessor.

There are still certain important issues to be addressed though. The uncontrollable,
lossless duplication of digital data, which is in most cases protected by copyright laws,
is a worry to the music industry and many software manufacturers.

Protecting digital data from being copied is a controversial topic. Even Philips,
the inventor of the compact disc, states in a recent interview [3] that today’s copy
protection measures for audio compact discs are a nuisance for the consumers and
technically not feasible.

The traditional argument for copy-protecting solutions goes as follows. The digital
data representing music, program code or other forms of data belongs to the rightful
owner who has the copyright of these data. By buying a CD or software (this does not
apply to so-called Freeware), the consumer acquires the right to use the data. The use
of the data by the consumer is though bound to the license restrictions that apply and
does not include free copying.

Being technically in the situation to have the data at his free disposal, the user
is able to make copies and redistribute these without technical restrictions. This is
certainly not the intent of the copyright holders, thus technical solutions hand in hand
with legal regulations try to circumvent this.

The technical side of circumvention of unauthorised copying of audio compact discs
consists mainly of simple ideas that violate the compact disc standard. None of the
measurements against software piracy are successful either. The latest advances in
copy protecting audio compact discs are based on differences of the capabilities of
CD rewriter devices to normal audio CD devices. CD rewriters are confused by non-

standard manufactured discs. Sooner or later the manufacturers of CD rewriters will

1.1 The Compact Disc 3

allow for copying of these specially protected, wrong discs as a sales argument.

The broader and more promising picture shows so-called Digital Rights Manage-
ment (DRM) systems coming up [4). They are focussed towards locking the digital
content away by encrypting it and limiting therefore its distribution to only those who
pay. The architecture is still being developed and the further development extends its
use to description, identification, trading, protection, monitoring and tracking of all
forms of rights usages over both tangible and intangible assets.

Only by taking this global approach, can control over digital contents and rights
be ensured. A crucial part is to be played by so-called watermarking and labelling
techniques.

Because of their high abstraction level, digital data themselves are perfectly copy-
able in an infinitive number without the possibility to track them. Distribution of
digital data defies control therefore. Obviously it is not possible to imprint additional
data, like ownership certificates, instruction for distribution or tracking information on
them.

The technique of watermarking gives a means to do exactly this. In general extra
information is added in such a way that it does not degrade the quality of the data nor
extends the volume of the data unreasonably. This information is hidden to the user
and it must be ensured that removing it is a highly difficult procedure. It encompasses,
for example, copyright messages, serial numbers or instructions for the use of the data.
Copyright notes can help to prosecute the copyright violator, whereas serial numbers
serve to identify them.

Adding hidden watermarking data can be targeted at several goals. One also must

consider the specific storage medium the data resides on. Watermarking the hardware

O

1.2 The Compact Disc’s Vulnerability to Errors 4

medium has similar applications like watermarking the pure data stream. An approach
which combines both, hardware and abstract data seems to be most promising.

In this work new ways of watermarking techniques are presented and investigated.
The mediurﬁ is, as mentioned before, the compact disc digital audio, which is the basic
format for all other compact disc deviates. The DVD is covered as well, since it employs
the same, but a more optimised technology. This work investigates the use of the CD
device as a low-cost image scanning (capturing) system, which has been devised and
implemented by the author and which primarily makes new watermarking techniques
specific to this device possible.

Adding extra data is especially considered with regard to the error correction ability
of these devices. By using error correction it is feasible to superimpose data in the form
of errors without loss of the user-data. Different methods, ranging from mechanically
puncturing compact discs to directly altering the digital data, are investigated.

In this regard the employment of the CD image scanning device as a low cost scan-
ning system is demonstrated. The author compares the image scanning system with
electron scanning microscopes, which are much more expensive. The high resolution
gained with this cost-effective system opens a variety of new applications, only one of

them being secure watermarking.

1.2 The Compact Disc’s Vulnerability to Errors

1.2.1 Coping with Errors on Compact Discs

Being manufactured in mass production and having a bit density in the sub-micron

range, imperfections, inherent and introduced, of the compact disc make it almost

1.2 The Compact Disc’s Vulnerability to Errors 5

impossible to store and read information without errors. The advantage of using digital
encoding is that error-correction algorithms can be applied to cope with almost any
deterioration of the signal. Besides imperfections caused by non-optimum compact disc
players, causing mis-tracking or mis-focusing, the need for an error correction system
derives mainly from non-optimal production methods and mis-handling of compact
discs.

The Compact Discs Standard, as proposed by Philips [5} and specified amongst
others by the British Standard (and European Standard) BS EN 60908 [6], takes this
into account by specifying the limits under which a compact disc is expected to oper-
ate. Due to the need for accepting a non-optimal environment, a sophisticated coding
scheme for storing digital data has been conceived which accepts the presence of errors
in certain limits as laid down in this standard.

Two types of errors occur: random errors and burst errors. Random symbol errors
have no correlation with other errors; when errors occur in a group of symbols they are

called burst errors.

1.2.2 Manufacturing Errors on Compact Discs

Optical media manufacture consists of various production steps such as injection mould-
ing, sputtering, protective coating or bonding. These process steps imply possible de-
fect sources which compromise the playability of the media. Most common defects in

the production process are:

bubbles: Air-filled holes in the substrate.
black spots: Dirt in the substrate.

bump: Distortion of the reflective layer.

O

1.2 The Compact Disc’s Vulnerability to Errors 6

pinholes: Holes in reflective layer.
oil stains: Qily remains on the reflective layer.

lacquer splashes: Remains of lacquer on the surface.

metal-layer scratches: Scratch on the reflective layer.

metal-layer scratch
pinhole o0il stain bump

metal layer

coating

polycarbonate

substrate bubble

black spot

surface scratch
laquer splashes

Figure 1.1: Schematic view of defect classification in a Compact Disc.

The various types of defects occurring on a compact disc are shown in Figure 1.1.
The maximum dimensions for bubbles and black spots are 100pm and 300um re-
spectively according to the standard {6]. The minimum distance, measured between
adjacent defects (of maximum diameter) along the track, must be at least 20mm. Con-
forming with the standard burst errors due to local defects on the manufactured disc

shall not induce audible effects for any error decoding strategy.

1.2.3 Blemishes resulting from User-handling

Blemishes which are introduced during use, are attributed to the following:

1.2 The Compact Disc’s Vulnerability to Errors 7

scratches on the protective layer side: these are permanent damage to the sur-
face. They result usually from careless user handling, but can be cured with
commercial CD repair kits. Usually they appear as very thin lines and a number

of them grouped together pose problems to the error correction system.

dust, dirt: these are temporary stainings on the surface that can be wiped away quite

easily with soap or white spirit.

fingerprints: grease from fingers sticking on the surface of a CD.

1.2.4 Definitions

For a clear understanding of the following chapters, a definition of commonly used

terms is given here. Other publications might use slightly different definitions.

sample: The digital signal recorded on a compact disc is sampled in two channels (for
stereo reproduction) at a frequency of 44100 Hz with 16bit quantisation. Each

32bit sample value (audio-semple) consists of two mono-audio-samples each of

them 16bit long.

symbol: Each mono-audio-sample is made up of two 8bit symbols. A symbol is the

smallest addressable unit in the en/de-coding process.

frame: A frameis the smallest logical unit in the en/de-coding process. One frame at a
time serves as input for the error correction system. It contains 6 audio-samples;
in the encoded case 8 error correction symbols are added, which amounts to 588

bits including synchronisation bits, EC bits, merging bits (Figure 3.5).

error: The term error denotes a not-intended, wrong value stored in a symbol. It can

refer to samples or bigger units as well if explicitly mentioned.

1.3 Compact Disc Standards 8

erased, flagged symbol: The Reed-Solomon error correction system receives at its
input erasure flags (appendix A), one per symbol. They notify the decoder of a
possible error on this symbol. Knowing the position improves the error correction

ability.

left, right channel: Recordings are done independently on two channels to give the
listener a spatial (stereo) impression. Both left and right channels are recorded

on the compact disc.

input symbol error rate r: Wrong symbols per second before the error correction

process took place.

output symbol error rate P,;: Wrong symbols per second after error correction

process took place.

concealment: Detected wrong samples are not played back, but concealed or muted,
depending on the method used by the CD-player. Concealment only applies to

compact disc audio players.

click: An audible noise in the loudspeaker as a result of a miscorrection or an unde-

tected, not concealed error.

1.3 Compact Disc Standards

Nowadays the term compact disc denotes not only one kind of optical storage medium,
but a variety of different standards and specifications. Starting from the standard
developed by Philips and Sony [7], described in the Red Book, the original specification

was extended in many ways to satisfy increasing customer needs. To each of the new

1.3 Compact Disc Standards 9

standards a new "coloured book” was dedicated, describing the logical and physical

structure of the data and the medium.

Red Book
Yellow Book
Orange Book

Green Book
Part 1

Part 11

Part 111
Blue Book
White Book
CD-ROM/XA
CD Extra
FORM-1
FORM-2
MODE-1
MODE-2
Rock Ridge
1SO-9660

CD-UDF

CD-RFS
CD-Text

physical format for audio CDs (a/k/a CD-DA)

physical format for data CDs (a/k/a CD-ROM)

physical format for recordable CDs

physical format for CD-i

CD-MO (Magneto-Optical)

CD-WO (Write-Once; includes ”hybrid” spec for PhotoCD)
CD-RW (ReWritable)

CD Extra (occasionally used to refer to LaserDisc format)
format for VideoCD

eXtended Architecture, a bridge between Yellow Book and CD-i
a two-session CD, 1st is CD-DA, 2nd is data (a/k/a CD Plus)
2048 bytes of data, with error correction, for data

2324 bytes of data, no ecc, for audio/video

standard Yellow Book sectors

may be of form-1 or form-2

extensions allowing long filenames and UNIX-style symlinks

file layout standard (evolved from High Sierra format)
industry-standard incremental packet-writing file system

Sony’s incremental packet-writing file system

Philips’ standard for encoding disc and track data on audio CDs

Table 1.1: Standards defining ” Compact Discs”.

Table 1.1 gives a short overview of these standards. Indeed all these formats can
be called compact discs, since the design of the physical medium is the same. The
specifications laid out in the Red Book standard (CD-DA, compact disc digital audio)
form the basis for all other compact disc formats. It describes the physical properties of
the medium and goes on to specify the coding of the user data, the basic error correction
scheme, EFM-modulation, frame format and sector layout. These are common to all
other standards, differences evolve at upper layers, i.e. further error correction is added,
certain sector contents have different use and the file system structure is changed or
newly designed [8, 9].

Without restricting generality this work only deals with the least common denom-

1.4 Contribution to Knowledge 10

inator, the CD digital audio. The format layout explained in the following chapters

refers to CD-DA and is common to other CD formats as well.

1.4 Contribution to Knowledge

This work presents a new technique based on current compact disc technology to im-
age the transparent surface of a compact disc or additionally the reflective information
layer. This technique (image capture technique) has been tested and successfully ap-
plied to the detection of compact disc watermarks and biometrical information.

The capture system comprises specialised hard- and software utilising the compact
disc technology. Images of human fingerprints on a disc’s surface have been captured
in high quality.

The author’s work also introduces a new idea of watermarking the compact disc
medium as part of a future DRM system. It has been shown by the author that wa-
termarked discs can be identified on their digital fingerprints using the novel author’s
capture system, whilst playing the compact disc normally. Two different ways of imple-
menting mechanical watermarks have been investigated and successfully demonstrated.

Watermark sequences have been tested against their influence on the compact disc’s
error correction system. Quantitative results regarding the effect of certain watermark
patterns are presented. Optimal sequences have been found.

Special error distributions, composed of random and burst errors, as present in user-
handled discs were investigated on their correctibility by two error strategies through
computer simulation. Conformance with published results in the case of a memoryless
channel were found, the work extends the results on error correction to special error

distribution functions. These results were used as a basis for predicting effects of

1.5 Organisation of the Thesis 11

proposed watermarking schemes on the compact disc system.

1.5 Organisation of the Thesis

Chapter 2 gives an overview of the issues, dealt with in this thesis. It presents the
necessary background to put it into an historical, scientific context. Work done by
other authors tangent to the various fields presented in this work is critically discussed

with regard to the author’s own work.

In Chapter 3 the experimental apparatus and the respective control software along
with the author’s own simulating system to backup experimental results is described.
The experimental system served as a working demonstration of the capabilities.

The basics to compact disc technology are briefly treated, followed by a discussion
of both the experimental and the theoretical system. The software implementation is

presented with all its components.

Chapter 4 presents experimental results achieved with the apparatus. Discussions of
said results are included in their respective context. Comparison with other common
image capture systems are shown, the relevance of these results to the initial issue

watermarking and further possible exploration is also demonstrated.

Chapter 5 finally deals with simulation of the experimental technique in order to
obtain new insights to the error-correction process and the relevance to new techniques

of watermarking,.

The thesis is concluded with Chapter 6, reviewing the author’s work and discussing

it in detail. A paragraph is devoted to future areas of interest.

Chapter 2

Background to the Investigation

2.1 The Compact Disc System - Benefits and Prob-
lems

This work incorporates research in more than one area. It is positioned between copy
protection research, copyright management, implementing these issues into current
hardware of compact disc players and discussing the capability of the new technique.

It has long been an issue for software makers and record labels to restrict the
capabilities of the compact discs system to a more controllable medium. Engineering
the compact disc has been done without paying much attention to the fact that the data
stored on it is perfectly duplicable. But it must be considered that none counted on
the wide availability of CD recorders for home consumer use nor has anyone taken into
account the falling prices for storage media like hard magnetic discs or the availability
of compression formats like MPEG Audio Layer-3 (mp3).

Even the DVD has, according to the opinion of some experts, only rudimentary

copy protection standards built in (10, 11].

12

2.2 Watermarking and Steganography on Compact Discs 13

It is therefore of interest to propose and investigate new approaches for the compact
disc system. Due to the number of technologies involved, the system possesses a high
extensibility.

As the compact disc system employs a variety of technologies, the author’s work
also covers many areas, including error correction, watermarking, scanning microscopy,
error distributions on compact disc, error correction algorithms and computer simula-

tions.

2.2 Watermarking and Steganography on Compact
Discs

As the discussion about copyrights on music, software etc. goes on, ways are needed
to enforce related legal issues. Simple copy protection is not always suitable, because
copy protection schemes are likely to be broken by hackers. The more widespread and
desirable the information content is, the quicker ways are found to circumvent anti-
piracy measures [12]. Furthermore the consumer is annoyed by being deprived of his
right to make legal back-up copies.

Watermarking and steganography both aim at hiding information [13]. Classical
steganography deals with embedding a secret message in a cover message. There are no
requirements about the resilience against attempts for removal {14]. Usually, once the
covert channel is uncovered, the means for exchanging information through this channel
is void. This is opposed to watermarking techniques, where secret information is also
hidden, but a possible attack to make the watermark undetectable or even to remove

it completely is hindered by certain methods. The existence of a watermark can even

2.2 Watermarking and Steganography on Compact Discs 14

be known to the attacker, but the importance lies in their robustness against attempts
to remove it. This is why watermarking techniques are valuable means for hiding
information, whenever the cover-data is available to third-parties and the existence of
a watermark is known. The information hidden by a watermark is always associated
to the digital object to be protected, whereas steganographic methods just hide any
information.

If we cannot protect binary data against illegal copying we introduce watermarks
to prove the ownership of the data. These copyright messages can serve to prove
the ownership of the data before a court, if legal infringements have happened. Data
content protected this way are therefore not anonymous anymore, they have a copyright
owner and possibly an authorised owner, who, for example, paid for them.

Apart from protecting the ownership by hiding a copyright notice in the data,
watermarking can serve two other functions.

The second function is called fingerprinting and is used to track illegal distribution
of data. For this purpose different watermarks specific to the recipient of the data
are generated and embedded in the data content. The recipient distributing the data
illegally can be found by looking up the watermark listed for this recipient. Then it is
known that it was him, who gave the copyrighted data away. Here the watermark has
to be robust against attacks like in the previous case.

The third function implements a sender identification and authentification and con-
tent verification {15, 16]. Two powerful aspects of information can be included in wa-
termarks. The first is error control code (ECC) information, which enables the receiver
to make use of error detection and correction systems on the watermarked object. The

second combines the possibilities of public key cryptography [17] with watermarking.

2.2 Watermarking and Steganography on Compact Discs 15

In fact sender authentification methods with watermarking can easily be conceived
using public key systems.

J. Lee and C.S. Won [18] propose in their work an image authentication and cor-
rection system. Briefly speaking watermarks are added to an image in place of the
LSB (least significant bit). These watermarks contain the ECC information, which
makes it possible to correct the image after alteration. The watermarks though can
only be retrieved if the right key is known to the recipient (and thus correction of the
watermarked image). The possession of the right key is ensured by the sender encod-
ing the watermarking key with his private key and then by the recipient decoding the
watermarking key with the public key of the sender [19].

There are other useful areas where watermarking techniques can be employed. Copy
protection systems can be implemented as well. Therefore the copy device must check
for the presence of watermarks to decide whether it is allowed to make a copy (or how
many) and not.

How are steganographic techniques related to compact disc technology? Since these
techniques provide a powerful means for many copyright issues, it is desirable to include
them in actual CD technology.

Redundancy of data, which is a prerequisite of hidden data channels, can be found
in many places in compact discs. The compact disc system is engineered with a redun-
dancy of stored data of up to 30%. This serves mainly for the detection and correction
of symbol errors, for which a highly-optimised storage medium, like the compact disc, is
particular vulnerable. Part of this redundancy however can be used for other purposes.

To the author’s knowledge there are no publications of specific watermarking tech-

niques for compact disc systems. Since the compact disc system has its own way of

2.2 Watermarking and Steganography on Compact Discs 16

encoding and decoding along with special physical properties and limits, it is therefore
of general interest to analyse the compact disc system with regard to this technology.

This work tackles the problem from two different points of view. First symbols of
the data stream can be altered to make space for watermarking information. This is
done without changing the error correction information accordingly. Thus watermarks
are present on the compact disc but do not degrade the real information content due
to the error correction ability of the CD device. In this case care must be taken not to
exceed the maximum error correction capability. Also locations must be determined
where it is the least severe to the error correction to introduce these watermarks. As
it is commonly known, bursts (long sequences) of symbol errors can weaken the error
correction system much more than randomly distributed symbols. The question there-
fore is, how a systematic allocation of symbols performs in terms of error correction
capacity. This work will suggest some symbol error allocation algorithms which show
a good performance. The tool to accomplish this task is a simulation of the channel
encoding and decoding process as it is done in real compact disc players. Information
hiding is thus simulated while considering a real-world scenario, where the error cor-
rection information is partly used up for correcting natural blemishes on the compact
disc, as caused by user-handling or failures in the manufacturing process.

Secondly an apparatus for detecting physical watermarks will be proposed in this
work.

For generating digital watermarks one does not necessarily rely on modifying the
pure data content alone. Other introduction processes are conceivable. Considering the
structure of a compact disc, there are many ways which allow the watermarking of the

actual physical medium. The benefits can be comparable to watermarking digital data,

2.2 Watermarking and Steganography on Compact Discs 17

as discussed earlier, though with other characteristics. The real advantage evolves when
both, watermarks on the digital data and watermarks on the actual physical medium,
are combined. As it will be shown watermarking the physical medium is not without
effect on the digital data. Both go hand in hand and the error correction process
further improves the number of possible applications.

In this sense introducing watermarks means damaging or puncturing the physical
medium. If it is don(_e in-between the limits of the error correction capability, it is
without effect on the restored (audio) signal. In order to detect such watermarks, the
compact disc player must be enabled to process these artificial blemishes.

The advantages of this are numerous. Due to the connection between errors in
the digital data content and errors in the actual physical medium the two of them are
bound together. Thus it is ensured that the digital data belong to its storage medium.
This feature can be part of a DRM system, although it must be ensured that compact
disc players have this capability built in.

In general the fingerprinting feature permits the marking of compact discs individ-
ually and uniquely; applicable solutions depend on the way it is implemented.

Implementing it into actual CD technology is not hard at all. The following chapters
will give a thorough investigation and discussion. The technique for detecting addi-
tional watermarks on the medium itself relies on the principle of a scanning microscope
for which the CD player is used. It will be shown that besides detecting watermarks
or other distinctions, the technique is able to scan compact discs with high resolution
thus making it possible to increase data capacity by adding graphical information on

"top” of the digitally-encoded data.

2.3 Scanning Microscopy 18

2.3 Scanning Microscopy

Apparatus for scanning discs are commonly used in the quality-checking process in
compact-disc manufacturing. The scanners are part of the production line and provide
process information for quality optimisation. Being specialised for CD-ROM, DVD,CD-
R, CD/DVD-RW/RAM, they detect all kinds of manufacturing errors, such as defects
on surface, reflection layer and substrate, tilt irregularities and resin thickness [20].

Commercially available basic systems cost about £3000 sterling. These systems
use customised hardware, different from a common CD-device. The CD is spun up to
1000rpm, line scanning it with a matrix camera, photodiode or interferometer. Mea-
surement, time extends to 10s maximum. A maximum spatial resolution for defects
of 11um is achieved (specifications according to [20]). Additionally, bundled software
characterises the type of defects and gives information in order to optimise the pro-
duction process. Various other commercial systems are also available [21].

The author’s work however employs an unmodified readout head, reducing the costs
substantially. The drawback is a slower scanning time, which depends on the reading
speed of the CD device. Using modern CD-devices the scanning process can be speeded
up by 52 times compared to early single speed (data transfer rate 150 kB/s) devices,
i.e a 65min CD is scanned in 1.4 minutes. The resolution across tracks though is better
(1.742m), since each adjacent track is scanned individually. The resolution along tracks
is dependent on the hardware used, in particular on the analog-digital converter and
on the speed of the CD device, which in this case limits the resolution to about 15um.

In [22] a scanning optical microscope is presented. The setup uses a conventional
CD reading head, where the laser is replaced by the end face of a single-mode fiber.

Employing automatic focus control the microscope is able to scan over curved objects

2.4 Error Correction Simulations 19

having a spatial cut off frequency of 1.1 line pairs/pum. This system uses self-built
scanning mechanics which enables it to keep track even without the existence of pits
on a CD.

For the author’s application using the built-in tracking control into the CD device
was more appropriate, since the interest lies specifically in the readout-signal, which
the CD-player processes. The low-cost factor and the fact that very few modifications
are necessary in order to add new functionality to CD devices, makes this technique
attractive for a future element in copy protection and copyright protection systems.

The scanning system’s setup will be presented in Chapter 3. A discussion of the
possibilities under special consideration of watermarking purposes {different finger-
printing techniques) and comparison to other image capture systems will be presented

in Chapter 4.

2.4 Error Correction Simulations

Format and encoding procedures for compact discs are defined in various standards
[6, 23, 24, 25]. Computer simulations can give information about behaviour and limits
of the coding process. As mentioned before (1.3), CD-DA and CD-ROM channel
coding are different. CD-ROMs employ additional coding in order to meet the more
strict requirements for data storage, where interpolation and muting of unrecovered
errors from CIRC cannot be tolerated. The additional coding comprises a second layer
EC system (CRC) and another step of scrambling for data whitening [26].

To the author’s knowledge computer simulations of the compact disc channel have
been published in only one other article. In this work J.D. Roberts et al [27] simulate

the channel coding of a CD-ROM system. Information about the correctibility of burst

O

2.4 Error Correction Simulations 20

errors according to their position relative to the CD-ROM sector boundaries have been
obtained. Their research shows clearly that burst errors (i.e. scratches on the surface)
achieve a higher correctibility if they lie near the centre of a CD-ROM sector compared
to the edges of a sector.

The author’s work extends the work of [27] by applying the simulation to special
error patterns in conjunction with watermarking purposes. It investigates not only
one symbol error burst but concentrates on predicting the effects of complex error
structures. Errors, like defects in the substrate or dirt on the surface, are handled by
considering certain error distribution already present. These error distributions have
been measured in publications of other authors and are used in this work. Additionally
different error decoder strategies have been considered as there are different algorithms
used in compact disc players nowadays.

The encoding procedure complies in the main parts with [6] (For differences see
Section 3.3). Decoding is not a subject of standardisation. Published algorithms for
error decoding strategies [1, 28, 29] have been used along with developed algorithms
for interleaving and eight-to-fourteen (EFM} decoding.

A number of different decoding strategies are presented in [29, 28]. The author’s
software implements four of them. One of these four has been chosen to be employed
in any simulation run. It was first introduced in 1995 in [30], thus being a relatively
modern algorithm. The schema is outlined in Table 2.2 and in the following named
"strategy 1I”. A slightly more simple one, first published in 1982 in [1}, has been tested
as well, mainly to make a comparison between both of them. This algorithm, referred

in the following by "strategy I”, is outlined in Table 2.1.

2.4 Error Correction Simulations 21

C, Decoder

IF single-error or zero-error syndrome
THEN modify at most one symbol accordingly
ELSE assign erasure flags to all symbols of the received word.

C, Decoder

IF single-error or zero-error syndrome
THEN modify at most one symbol accordingly
ELSE IF £>2
THEN copy C2 erasure flags from Cl erasure flags
ELSE IF f=2
THEN try two-erasure decoding
ELSE IF £<2 or two-erasure decoding fails
THEN

assign erasure flags to all symbols of the received word.

Table 2.1: Algorithmic view of decoder strategy I. f denotes the number of erased
symbols in a code word. C1 is the inner Reed-Solomon decoder, C2 the outer decoder.

C, Decoder

IF single-error or zero-error syndrome
THEN modify at most one symbol accordingly
ELSE IF £>2
THEN copy output Cl1 erasure flags from input C1 erasure flags
ELSE IF f=2
THEN try two-erasure decoding
ELSE IF f<2 or two-erasure decoding fails
THEN

assign erasure flags to all symbols of the received word.

C,; Decoder

IF single-error or zero-error syndrome
THEN modify at most one symbol accordingly
ELSE IF f>2
THEN copy C2 erasure flags from Ci erasure flags
ELSE IF £=2
THEN try two-erasure decoding
ELSE IF f<2 or two-erasure decoding fails
THEN
assign erasure flags to all symbols of the received word.

Table 2.2: Algorithmic view of decoder strategy II.

2.5 Measuring Error Distributions 22

2.5 Measuring Error Distributions

Compact discs are not free from errors. The characteristics of a compact disc in terms
of present impurities and blemishes can be shown by evaluating an error distribution
function. The distribution function showing the probability of o-ccurrence of errors
with a certain length of symbols is called error-burst statistic, the distribution for the
intervening gaps between errors is called good-data gap statistics.

Introducing additional information means adding an error distribution function on
top of the error distribution already present on a disc. Therefore a simulation has to
know about the distribution function.

There are several publications dealing with this task. In this work published error
distributions for surface defects have been employed. In [31, 32] measurement hardware
is used to generate error statistics. The custom-designed, PC-based analysis tool,
presented in [32], examines the serial data at the input of a CD player's CIRC block

decoder prior to any EC decoding.

2.6 Performance of Compact Disc Player’s Decoder
Strategies

Part of the author’s work deals with performance issues of certain decoder algorithms.

Performance assessments of the decoding process have been published in several
articles. Early work [1] assumes a memoryless channel and decoding strategies, which
were available at the time. Interpolation and click probabilities Piyjerpotations Petick in
their functional dependence to the input error rate r were derived using a mathematical

probability model of the decoding strategies. The bursty nature of the input is not

2.6 Performance of Compact Disc Player’s Decoder Strategies 23

considered as it is with the output of the interleaver in-between the two decoder stages.

In order to obtain measured error-burst and good data-gap statistics on compact
discs, hardware has been developed in [31] as previously noted. The next step is to
evaluate P(n,), the probability of having r erroneous bytes in a block (i.e. codeword)
of length n bytes at the input of the C1 decoder. This was done in [2]. A state model,
based on a Markov chain with a finite number of states, was proposed, characterizing
the compact disc channel. Calculations based on this model lead to a recursive formula
to calculate P(n, r) from state transition probabilities derived from measured burst and
gap statistics.

The distribution P{n,r) represents the occurrence of burst errors. Based on this
more realistic assumption calculations in [29] have been done to estimate the statistical
probabilities that characterise the data symbols at the output of the CIRC decoder.
Assessment and comparison of five different decoding strategies have been done in [29]

by deriving analytical expressions for the following terms:

Pgo: The probabilitity of encountering a correct byte with no attached flag (a good

byte; not erased).

Py1: The probability of encountering a correct byte that is flagged (a good byte;

erased).

Pio: The probability of encountering an erroneous byte with no flag (an error; not

erased).

P, The probability of encountering an erroneous byte that is flagged (an error;

erased).

Evaluating these expressions, interpolation and click probabilities (Pinierpotation,

2.6 Performance of Compact Disc Player’s Decoder Strategies 24

P.;) for a bursty channel are also obtained, leading to a performance comparison
of different decoding strategies. This work will continue to use aforementioned expres-
sions for the error probabilities.

Another analysis of error decoder behaviour is done in (33]. Three simple error-
correction strategies used by compact disc players have been compared with respect
to random burst errors of specific length. For simplicity the authors assume that
the number of byte errors in the input codeword is always a multiple of [, a positive
integer. By varying [from 1 to 32 the random to burst error performance of the various
strategies is obtained.

The author’s work makes a more realistic assumption on the input errors. Input
errors obey a certain probability function, measured and published in previous works.
Furthermore all interleaving and scrambling stages during signal decoding are consid-
ered, which apart from [27], none of the former published work does. The author’s work
also distinguishes between erasure interpolation situations in the output and divides
the result in certain error conditions, as described earlier in this Chapter.

It should be noted that in the above mentioned publications only probabilities of the
occurrence of errors at the input of the C1 decoder are considered. As the author’s work
deals with certain positions of artificially introduced errors, probability calculations are
not sufficient and call for a different approach, which will be presented in this work.

Also the fact that all three stages of interleaving and scrambling in the decoding
process are not treated elsewhere, gives rise to the idea of using computer simulations
to model all steps involved in decoding the data from compact discs.

An accurate computer simulation including the most detail as possible is crucial

for obtaining reasonable results for the analysis of watermarking schemes. Section 3.2

2.6 Performance of Compact Disc Player's Decoder Strategies 25

introduces the computer simulation of the channel model and Chapter 5 discusses the

findings along with the applicability to watermarks.

Chapter 3

Experimental Apparatus and

Techniques

3.1 A CD-based Image Capture System

3.1.1 Introduction

A novel system for image capturing using a common compact disc player has been
conceived and built. Special software and a few additional hardware components make
it possible to search for any kind of defects on compact discs, to scan the surface of
a compact disc and generate two-dimensional images of scratches and possible water-
markings. The system is low-cost and gives a resolution comparable to an electron
microscope and enables a secure way of copy protecting CDs.

The experimental setup comprises an IBM compatible PC (Pentium II, 350MHz)
equipped with an internal data acquisition card (PCX 312) and an external CD-ROM
device (Toshiba XM3301, XM4101), connected via SCSI interface to the PC. Control

and evaluation software written in ”C” was used to drive the acquisition card as well as

26

3.1 A CD-based Image Capture System 27

the CD-ROM device. This software writes the recorded data to files on the computer’s
hard drive. These are processed by a second set of software programs. The computer
runs the Linux [34] operating system, which simplifies programming and real-time data

acquisition.

S SCSI-interface for control . _ s
PC N CD Player-
analog readout signal
ADC trigger signal to digital input | Trigger -

Figure 3.1: Structure of the experimental setup

3.1.2 Basic Construction of a Compact Disc Player

For a clear understanding of the new technique the basic construction of a CD player
will be explained in the following.

The read-out process adopted in optical disc systems is that of a scanning micro-
scope. Under the readout head the compact disc spins with constant linear velocity
(CLV). The speed varies from 1.22 — 1.4%, depending on the compact disc.

There are several types of readout heads, generally they host the laser-diode, photo
detector, the optical system, consisting of objective lens, beam splitter, diffraction
grating and a magnet with a two-axes device for focus control.

The compact disc is scanned along the tracks by a focused semiconductor laser
beam. The focal point lies on the reflective layer of the CD and is about 1.7um in
diameter. The surface spot is 0.8mm in diameter.

The laser beam is split up by a diffraction grating, generating two side beams, one

a bit further ahead on the track, the other one following.

o

3.1 A CD-based Image Capture System 28

Six photodiodes detect the reflected laser beam. Two of them detect the side beams
and the remaining four detect each a quarter of the main spot. This construction is
utilised by servo circuits, which are responsible for keeping the readout head on focus

and on track. Four servo circuits are used (Figure 3.2).

' ™\ r— 'W
— Focus Servo
| J _
_ 2—axes device
- _) © 9 . forlasercontrol.
— . Tracking Servo — fm\‘{
- v e L — i A L.: - _ . J
- optical pickup
— Sled Servo ' " Sled Moior. -
s Y 4 A
L " Disc Motor Servo - Disc Motor
. J \.) -)

Figure 3.2: Servo circuits in a compact disc player

The tracking servo and the sled servo are controlled by the side beam photo detec-
tors, the focus servo is controlled by a combination of the four main spot detectors.

The servo units are of importance, because they have a limiting character on the
scanning process. On some occasions it can happen that the scanning is interrupted
because one of the servos loses the track. This happens mainly when the reflection of

the laser signal is deteriorated enough to cause the servo electronic to fail.

3.1.3 Presentation of the Novel Capture System

An image capture system has been built and is presented here. Results are presented

in the next Chapter. It demonstrates all the functionality needed to reproduce exact

3.1 A CD-based Image Capture System 29

visual images of compact discs and for watermarking applications.

There are two main causes of errors in the read-out process: defects in the reflective
layer and disc surface blemishes. The latter comprise surface scratches and/or surface
deposits such as dust or inadvertent fingerprints. Defects in the encoded layer are
usually caused during the stamping of the disc and are literally holes in the layer.
These commonly vary in size from about 10pum to 50pum and are often visible to the
naked eye by holding the disc in front of a bright light. Each disc’s distribution of
these defects is unique thus forming a watermark.

Defects result in the loss of encoded bits. Whatever the source of error, provided the
latter are not too excessive, a Cross Interleaved Reed-Solomon Error-Correction Code
(CIRC) employed in the CD system, corrects them and the "missing” data are recovered
[35). When the laser-beam scans a defect the reflected signal degrades. Additionally,
if an error in the data stream is detected, the error-correction procedure is invoked.

Software has been developed which interprets both the degradation of the reflected
laser signal and the operation of the error-correction code as a measure of the shape
and size of the defect thus permitting this information to be captured. Not only can
this technique be used to capture natural defects but also ”features” which have been
purposely introduced may be captured. These include information introduced on the
surface of the disc, such as intentional finger prints and characters plus those introduced
when the disc is stamped at manufacture, i.e. coded information in the form of holes
placed in the encoded layer at certain points.

The software is supported by a compact disc drive, which has been slightly mod-
ified. The additional requirements are minimal: a standard compact disc drive with

SCSI interface and an analog-to-digital converter (ADC) card for the PC. The only

3.1 A CD-based Image Capture System 30

customised hardware needed is that to index the PC software to the data on the disc.
This comprises a photo-cell device which provides a trigger pulse to the PC once every
revolution of the disc (Figure 3.1).

The analog signal of the reflected laser is taken straight from the PCB on the CD
device. It carries the amplified output of the player’s photo-detector. It is fed into
the analog input line of the ADC. The trigger pulse is fed into the digital input line of
the ADC. This setup structure is sufficient for the software to successfully sample and
evaluate the incoming data.

The developed software package consists of two components: the data-acquisition
software and the data and image processing software. The data-acquisition software
takes control of the device by sending SCSI commands via the SCSI-interface. Certain
music tracks or sectors on the CD can be selected.

Simultaneously, the ADC is polled and the occurrence of a trigger pulse, which
determines the beginning and the end of a revolution is checked. The sample values
are taken at regular time intervals.

The operating system, a Linux system, is configured to support real-time data
acquisition. A minimum selectable time interval of 12us is achieved leading to a spatial
distance of the sample points of 15um along the track. This depends on the computer
speed used and the conversion time of the ADC. A faster PC and ADC will give a
higher resolution. In order to check if the CD is played correctly, even in the presence
of surface defects, status messages reported back from the SCSI device are logged by
the software.

After accumulating the raw data specially written image-processing software is ap-

plied to generate scalable pseudo-colour images for storing in common picture-file for-

3.1 A CD-based Image Capture System 32

as in the way they are mounted together. Both of them are external drives and run on

single speed with 150 kbyte/s data transfer rate connected via SCSI to the computer.

”Once-around” Trigger

In order to match the digitised data from the compact disc device to an actual location
on the disc, a "once-around” trigger has been added. It comprises a LED-detector
combination providing a signal pulse each time the compact disc spins around. The
structure is fitted on top of the player next to the disc. A paper stripe stuck on the CD
and passing through it, generates a trigger pulse, which provides spatial information
to the sample data. The paper stripe is about 5mm wide, which means a sector area
of about 5° is not captured, although experiments show that this can be reduced to
2mm, with the risk of losing some trigger signals, if necessary.

The LED/photodiode combination is part of circuitry, which hosts an amplifier
to interface the output signal of the photodiode to the digital input line of the data

acquisition card. The schematics is shown in Figure 3.4.

Data Acquisition Card

The data acquisition card, PCX 312, is a high performance multifunction internal
AT-slot card, manufactured by MA Instruments. Its features, relevant for this work,

are:

12 bit ADC with 3us conversion time

16 single ended analog inputs

programmable input gain

e triggering of AD conversion from software and external clock source

3.1 A CD-based Image Capture System 33

+5V
T
22kQ]
3600 | 22k BC184C
IN916 10kQ BC184C
> —
___________ i 0-200k Vaut
L? E| i [P 1.BKQL]
0V, |
-5V

Figure 3.4: Schematic diagram of the interface trigger to ADC.

» 16 bits of digital input provided by HCTMOS device

The digital input line of the ADC is fed with the signal coming from the once-
around setup. The analog readout signal coming from the CD device is inputted to the
analog input line of the ADC. The PCX 312 does not have an on-board memory, so the

computer processor needs to read out the digital value immediately and in equidistant

time intervals after conversion.

3.1.5 Control and Data Acquisition Software of the Capture
System
The software application for data acquisition and controlling the measurement is writ-

ten in C and compiled with the GNU C-compiler {36). The program is command-line

driven and performs the following basic tasks:

3.1 A CD-based Image Capture System 34

e driving SCSI and IDE CD-ROM devices

playing CD-DA and CD-ROM

controlling the ADC

SCSl-error logging

soft real-time data acquisition with timing information

The ADC’s control functions and the digitised data are accessed by inline assembly
port-commands.

The SCSI-device is controlled over a generic SCSI-interface. It provides user-level
programs with access to the SCSI-device, thus enabling full control of the devices by
sending SCSI-commands. An SCSI generic packet device driver device is accessed by
write()ing SCSI commands plus any associated outgoing data to it; the resulting status
codes and any incoming data are then obtained by a read() call.

SCSI-commands with parameters [37] used include:

PLAY AUDIO(12): The PLAY AUDIO(12) command requests the target to begin
an audio playback operation. The logical block address parameter specifies the
logical block at which the audio playback operation shall begin. The transfer
length parameter specifies the number of contiguous logical blocks that shall be

played

READ(10): The READ(10) command requests that the target transfer data to the
initiator. The most recent data value written in the addressed logical block shall
be returned. The logical block address parameter specifies the logical block at
which the read operation shall begin.The transfer length parameter specifies the

number of contiguous logical blocks of data that shall be transferred.

3.1 A CD-based Image Capture System 35

START STOP UNIT: The START STOP UNIT command requests that the target

enable or disable the logical unit for media access operations.

Commands having no output data or commands completing with a CHECK CON-
DITION status report status information back through the sense-buffer. This buffer
provides the user-application with information about the cause of a SCSI-command
failure. Particularly useful is the additional sense code (ASC) and the additional sense
code qualifier (ASCQ). These combinations, about 140 altogether, give an exact state-
ment about the internal problems of the device. Some of the more relevant error

conditions for this work are listed here.

ASC ASCQ description

09 00 TRACK FOLLOWING ERROR

09 01 TRACKING SERVO FAILURE

09 02 FOCUS SERVO FAILURE

09 03 SPINDLE SERVO FAILURE

11 00 UNRECOVERED READ ERROR
11 05 L-EC UNCORRECTABLE ERROR
11 06 CIRC UNRECOVERED ERROR
15 00 RANDOM POSITIONING ERROR

Table 3.1: A choice of possible error conditions during reading of a CD-ROM/CD-DA
(taken from the SCSI-2 specification).

The author’s software logs time, location and error condition into a separate file in
case a CHECK CONDITION has occurred. Since the SCSI-commands address sectors
(98 small frames) as the smallest data unit, the error conditions refer to sectors 3.2.2.

By means of this logging facility it is possible to find the locations of occurring
errors due to severe defects causing the error correction system to jump in without

having to capture all digitised data.

3.1 A CD-based Image Capture System 36

This logging facility is of importance when it comes to determine the error locations
for evaluation.

Due to the lack of an on-board memory on the ADC, it is necessary to maintain an
accurate timer clock. Polling the ADC is done at equidistant intervals of 12ps.

The ADC returns two 8-bit sample values for each conversion, whereby only the
lower 12 bits are relevant, due to the 12 bit conversion in the ADC. The sample data
are stored into an array and written after each revolution of the CD to a file on the
hard drive.

In order to ensure correct timing, the control software is associated a soft real-time
scheduling algorithm of the operating system (Round Robin Scheduling). This means
whenever this process becomes runnable, it is granted a pre-emptive right to suspend
other processes. For the time the software runs, it is necessary to have a command
shell available, which runs at a higher static priority, in order to keep control over
the computer. The interval the software is accessing the ADC is controlled by the
nanosleep(2)-function, which performs busy waits with microsecond precision if the
program is scheduled under a real-time policy.

Furthermore the OS runs under single-user mode without network services to ensure
that there are as few interruptions to the sampling process as possible.

Simultaneously to playing the CD and receiving the sampled data, the occurrence
of the once-around trigger signal is checked. The software checks if one or more trigger
signals have been lost. In this case, the sampled data are split up into equal lengths
before writing it to the hard drive, simulating the occurrence of the trigger.

The number of the sample values varies from revolution to revolution because of

speed variations in the read out loop and variations in the arrival of the trigger signal.

3.1 A CD-based Image Capture System 37

3.1.6 Capabilities of Capture System

A polling time of Ty = 12.1ps is achieved. This leads to a sampling frequency of
fs = 82.6kH 2. The polling time is derived from the measured time for one revolution
{excluding paper stripe) divided by the number of counts; each count executes one 16-
bit ADC poll. Stopping the time is done by a call to the OS function gettimeofday(2). It
queries the internal system time (clock ticks) plus the hardware counter. The hardware
counter is driven by a quartz oscillator. The internal system time is set every time the
counter reaches the value of a programmable latch. Then an interrupt is generated,
the counter is reset and the clock ticks are increased by one.

The duration between consecutive polls is determined by the speed of the computer
and the implementation of the polling loop. Since the implementation is done in
C, optimisation could be possible if using assembly code. The faster the computer
(depending on type of processor and clock rate), the shorter the polling time is.

Improving the sampling period is also possible by using an ADC with on-board
memory, the sampling rate would only be depending on the conversion time of the
converter. This could improve the results by about ten times.

Every T, = 12.1u2 a sample value is taken. Consecutively the spatial distance on
the CD along the track between two samples can be calculated as Lyging = Udise - Ts =
14.5um.

The whole measuring process is based, and depends on, an accurate timer clock.
In order to know the relative timer error, the time needed for playing 30 revolutions of
three different tracks of one CD has been timed. The standard deviation amounts in
all three cases to o = 1.1-107%s. With the time stopped being around T = 0.15s the

relative time error for one revolution amounts to % = 7.3 - 107°, which is about the

3.2 Modelling the Error Recovery Process 38

accuracy of a quartz clock.

3.2 Modelling the Error Recovery Process

3.2.1 Experimental Apparatus versus Simulation Techniques

Not only are natural random defects of iniportance for this image capture system. But
one important application lies in the ability to detect defects introduced on purpose.
This for example can serve for watermarking purposes where a second information layer
is introduced artificially in certain points or locations.

The effects of this kind of introduction has not previously been investigated. It
is not known if and how the error correction system reacts to special code patterns
serving as additional watermarks.

In order to be able to predict the reactions of the compact disc player in terms of
error correctibility to artificial labeling (watermarking) information, the error intro-
duction process and the compact disc player’s channel model have been simulated by
the author’s software. The software was written with a full simulation of the compact
disc’s channel coding in mind. This simulation enables a reproducible examination of
the experimental technique and reliable results.

The following Section gives an understanding of the principles of the channel coding
for compact disc players, which in a later Section is used to model the error recovery

process including all necessary steps of the channel model.

3.2 Modelling the Error Recovery Process 39

3.2.2 Basics about the Channel Coding for Compact Discs

It is obvious that the digitised music signal cannot be stored directly onto the optical
medium. Physical and electronic properties of the recording and playback system
determine the requirements for the optical channel.

Both stereo channels of the music are sampled simultaneously at 44.1 kHz. The
audio samples are linear encoded in a 16-bit 2’s complement format. After adding
error correction symbols and control words to the data stream, a run-length-limited
code, called eight-to-fourteen modulation (EFM) is used to meet the requirements of

the channel, which are

Clock Content: It must be possible to regenerated the bit clock from the readout
signal itself by detecting the pit edges. Therefore the maximum run length must

be as small as possible.

Low-Frequency Contents: Low frequency disturbances of the readout signal, caused
by dirt and fingerprints, can be filtered out, provided that the signal’s low-
frequency content is zero. Therefore the longer the minimum runlength is, the

better it is.

Error Propagation: Error propagation of the modulation system must match the

CIRC EC system in order to be as small as possible.

EFM is a modulation method based on a 8-to-14-bit conversion. With EFM an
8-data bit symbol is mapped onto 14 channel bits. Accordingly the error propagation
of EFM is also limited to 8 data bits, thus satisfying the requirement that it should be
as small as possible and matching the CIRC EC system. The code is generated in such

a way that the minimum distance Ty, is 3 channel bits and the maximum distance

3.2 Modelling the Error Recovery Process | 40

is 11 channel bits. It therefore produces (2,10) run-length-limited (RLL) channel-bit
sequences {38, 39]. The conversion is done by a table lookup.

It is also necessary to add at least 2 channel bits for connecting these patterns
without violating the T, constraint. In order to increase flexibility, EFM has 3
selectable channel bits for merging consequent symbols, enabling the suppression of
low-frequency content of the frequency spectrum (Figure 3.5).

Finally each positive-going pulse is converted into a single transition, which gives
the resulting signal the minimum and maximum length of 3 clock periods (T, = 3T)
to 11 clock periods (T = 117T) respectively (NRZ to NRZI (non-return to zero

inverted) conversion).

l I/l I\I |] 6 siereo—-samples
[Crottoon] 1o1it100] 10101001] 1e110000]
AT rf eI rr v et irirret el 24 symbots
>< >< intcrleaving and scrambling
S N N N I O Y O I T O e
/ ~
EC symbols control word
[Totrtiel | 1o0eoi |

/ \ EFM (8 1o 14 modulation)

[oooorn oot | 110 T ootitoonisisio |

I T I T T T T I I T T v PE T o]l] 588 channel bits
frr1n11111110000000000011 |
27 sync bits

* T=136.05 us (1 frome)

Figure 3.5: Bitstream of the encoding system of the Compact Disc.

According to the standard [6] 24 bytes of music data make up one small frame
containing 588 channel bits. Each small frame accommodate 4 bytes of EC symbols, 1

byte for additional information, called control word and 24 channel bits synchronisation

3.2 Modelling the Error Recovery Process 41

pattern at the beginning (Fig 3.5). In the following "small frame” is called "frame”.
Due to a sampling frequency of f, = 44.1kHz with 6 16-bit stereo samples of
music per frame, it takes 136.05us to play one frame with a final channel bit rate of
4.3218 - 1052,
98 frames build up one sector. The subcode of one sector constitutes a complete
unit and supplies amongst others timing information to the CD player. CD-ROMs
make use of sectors as a higher-ranking data unit by adding a second layer decoding

structure.

The Interleaver

Applying only error correction algorithms to the digital data is not enough. In order
to cope with large burst errors caused by macroscopic surface impurities, spreading
the original sequence of data during recording over multiple frames into a different
sequence improves the error recovery process. This is called interleaving. The reverse
process during playback is called deinterleaving. Error correction and interleaving on
the CD system are alternatingly applied. This bonding makes it a complicated process
with powerful properties.

The core is a (28,112) cross interleaver between the two stages of Reed-Solomon
encoders. This cross interleaver falls into the class of product codes but features a vari-
able interleaving delay for each symbol. The resulting convolutional structure usually
performs better than a conventional product code. The structure is shown in Figure
3.6.

The interleaving, together with the scrambling process, distributes the data in a

defined way. Likewise the burst errors on the surface are broken up into smaller parts,

3.3 Software Implementation of the Channel Coding and Decoding 42

Delay of Delay lincs Delay of
| frame of unequal 2 (rames
length
: - —ooy— —
— ; H}u.o
- . —{ 23D
1) L {35 -
- - L {50)
—_ L = 18D)
. —{ 4D
G o j;)zm)((.
- : —(19D }—
5 ——C—]
= - - {170
3 — (O : H)wo: E
E - - - —(15D - <€
¥ —C— 3 f)__.{)lm) 8 T
€ : : B T 3 2
& iy g (e g g
FR L =2 i & c
2 : - o e 11D o =
= =] P g i o
k- - : - L {95} o
P i gupy W Q ; 569 &}
- i ! 50y
E —CO— (6D
- - —{ 3D
b L= i)
il 2=
P ——— f i
H \—--JI z 1 — H
O~
i)

Figure 3.6: CIRC decoder structure

so chances are higher that the number of errors in an error correcéion block doesn’t

exceed the limit for correctibility.

3.3 Software Implementation of the Channel Cod-

ing and Decoding

3.3.1 Introduction

This Section presents and discusses the counterpart of the experimental apparatus
which simulates natural and artificial errors. It implements in software all the steps
of the compact disc channel coding system, including Reed-Solomon codec, EFM-
modulation, interleaving and scrambling. Additionally functions for control and veri-

fication of the software have been added.

3.3 Software Implementation of the Channel Coding and Decoding 43

The software is completely written in C++ which gives the necessary performance
to execute a large number of iterations compared to interpreted languages. The
object-oriented approach leads to a more structured source code. For every major
en-/decoding task a class was created to provide the necessary functionality and data
structure.

Care has been taken to make the source code as portable as possible. The software
has been running simultaneously on a HP machine running HP-UX and a Intel machine

running Linux.

3.3.2 Implementation of EFM-Modulation

EFM-modulation and demodulation and NRZ! conversion is done in a separate class.
The translation tables are generated in the class constructor. An algorithm was devel-
oped to generate an own table according to the requirements of a run-length-limited
code outlined in [38, 40, 41, 42]. Secondly the official table found in [6] can be used
and has been employed throughout the work.

Comparing error rates from both tables a difference of 0.2% is revealed in favour of
the official one. This difference is not of importance and can be attributed to natural
local variations in the random number sequence. The use of the correct EFM table
comes into use when dealing with non-random error values.

During encoding merging bits have to be chosen in order to separate the EFM code
words and satisfy the code constraints. Three bits allow for a free choice of one bit in
most cases, which is used for minimizing the power at low frequencies (DC control).
An algorithm based on [38, 42] has been implemented. This algorithm generates a

sequence of three merging bits considering the maximum and minimum run-length of

3.3 Software Implementation of the Channel Coding and Decoding 44

the neighbouring EFM symbols and suppression of DC content. Since the merging bits
do not contain any information they are skipped by the software’s demodulation stage.

The decoding task encompasses conversion from NRZI to NRZ, skipping merging
bits and converting the EFM symbols back to 8bit symbols. If an illegal 14bit EFM
symbol is encountered, the function sets appropriate erasure flags to help error decod-
ing.

The encoded frame format consists of 32 symbols. One symbol comprises merging
bits and the EFM-code symbol. The 24 synchronisation bits at the beginning of the
frame and the control word (CW) (Figure 3.5) have not been implemented to the full

extent or employed, but the software possesses the necessary framework for it.

3.3.3 Implementation of the Interleaver

The software implementation is done according to Figure 3.6. All scrambling and
convolutional interleaving is done in a separate class Decode/Fncode. Scrambling and
descrambling as well as interleaving has been tested to produce the same original data.
For test and research purposes both functions can be switched off, so that the channel
coding can be simulated without the scrambler and interleaver. This class encompasses
the calls to the Reed-Solomon codec; additional erasure flags are always carried with

the data throughout the decoder.

3.3.4 Cross Interleave Reed-Solomon Decoder Schemes

The algebra for decoding Reed-Solomon codes is based on Galois field arithmetic. All
necessary operations on Galois field elements have been implemented. The author im-

plemented his own version of a general Reed-Solomon decoder. Details of the algorithm

3.3 Software Implementation of the Channel Coding and Decoding 45

including the theoretical aspects are outlined in Appendix A.

The complete compact disc decoder encompasses two Reed-Solomon codes, C; and
C,, combined with three interleaver units (refer to 3.6). The Reed-Solomon codes are
(32,28) and (28,24) decoders over GF(28), respectively. Thus each of them is able to
do two-symbol error correction as well as four-symbol erasure correction.

Generally, the first stage C; of the combination aims at correcting single random
errors and detecting burst errors. Detected errors are passed on via erasure flags to
the second stage Cy. If the first stage C, detects more than 1 single error, it usually
outputs 28 erasure flags. Thus there is a choice in what shall be corrected by the
first stage and what shall be done by the second error correction stage. The compact
disc standard does not impose any particular decoder algorithms, that is why each
manufacturer implements his own decoder strategy.

Error decoding schemes implemented in software and used for simulations are out-

lined in Section 2.4 in Table 2.1 and 2.2.

3.3.5 Sub-code Channel and Synchronisation Patterns

The encoded data format handled by the software does not include the control words at
the beginning of the frame (Figure 3.6) nor does it contain the 24 frame synchronisation
bits. The control words are not part of the error correction process, thus they are
stripped off after EFM-demodulation and before error correction takes place. Storing
information using control words is not discussed here.

Synchronisation bits at the beginning of each frame serve as mark for the electronics
to recognise the start of a new frame. Destroying this information means the frame

synchronisation is lost and, depending on the electronics, the whole frame is lost for

3.3 Software Implementation of the Channel Coding and Decoding 46

data recovery. This case is discussed as a burst error of one frame length.

3.3.6 Random Number Generator

Since many parts of the simulation involve using random numbers, a reasonable random
number generator has been implemented.

Following the discussion in Numerical Recipes [43], it is not advisable to rely on the
system-supplied library routine rand(). Instead the rani{) function, presented in [43]
has been employed, unless stated otherwise. It is known to pass all statistical tests,
unless the number of calls exceed, say 10® (which is not the case in this work).

Transformation methods are used to obtain exponential and Gaussian deviates ac-
cording to [43]. The necessary functions are included in Random.cc and further expla-

nation is given in Chapter 5.4.

3.3.7 Control of the Software

Apart from only providing an encoding and decoding machine, the software uses these
core modules to evaluate certain test conditions. Control over these modules is granted
through command line switches; the software program does not employ a graphical

interface.

Subsequent Encoding and Decoding A stream of data is processed so that the
output is channel encoded data according to the Standards. The encoded output is
written to a file.

The corresponding decoding function uses the data stored in this file and decodes

them back to the original data. Error introducing function can be operated on the file.

3.3 Software Implementation of the Channel Coding and Decoding 47

As an alternative, both encoding and decoding, can be executed subsequently in
the same program execution. Error introducing is done in-between the encoding and
decoding stages. Depending on the mode chosen, specific error patterns are generated
and applied. Error patterns can be classified as systematic errors, random errors, bursts
errors, etc. Each decoded frame is checked for the number of specific error conditions,
as presented in 5.1.2. Error numbers are summed up and printed at the end of the
simulation run for further evaluation. This method is used in Chapter 5 to investigate

certain distributions of introduced errors.

Maximum Burst Length The maximal correctable burst length, as often listed
in performance comparisons, can be evaluated for different decoder algorithms. The
maximum correctable burst length for decoder II amounts to 12 frames. This is in
accordance with published results [27], although this publication does not name the
particular algorithm used. Older publications [44] give lower values (10 frames), which
might be due to a non-optimum decoder algorithm.

Additionally one can define burst errors as a sequence of frames having wrong data
only every second or third symbol in a frame and so forth or even showing certain

wrong symbol patterns. For these kind of bursts, statistics can be generated as well.

Testing Bad Frame Patterns If subsequent frames are marked entirely bad, it is
called a burst error. Such burst errors can be separated by a number of "good” frames.
If bad and good sequences of frames are alternately ordered, a bar code-like pattern is

obtained. The software is able to test the ability to correct such patterns.

Adjustable Error Rates A variety of other parameters can be passed onto the

program. The error rate for introduced random errors must be specified when using

3.3 Software Implementation of the Channel Coding and Decoding 48

certain modes.

The form of the probability density function for burst errors is hard-coded into the
program. Variations of error rates are possible through stretching the spectrum of the
intermediate gaps by multiplying obtained length with a constant factor provided by

a command line switch.

3.3.8 Computing Environment and Tests

The core of the program is the implementation of the Reed-Solomon decoder. It is
crucial to test its correct working. A stand-alone version of the encoder and decoder
was used to run a test of encoding and decoding procedures. The input data were
random numbers. After decoding no difference was found between corresponding input
and output data. As the decoder receives erasure flags at its input as well, one per
symbol, combination of errors, correct symbols, erasure flags and no crasure flags were
also tested. The decoder works correctly given the limits of the algebra Reed-Solomon
decoding,.

The same procedure was repeated for the whole channel encoding/decoding engine,
including scrambling, interleaving, EFM- and NRZI conversion. The resulting out-
put data stream revealed no differences from the input stream, which shows that the
implementation of the decoding operations is the exact counterpart of the encoding
operations.

Additionally separate tests for EFM conversion and NRZI conversion were carried
out. Parts of the software like EFM, interleaving,... can be disabled, giving an easy
method of running the test separately.

The software was run on two machines:

3.3 Software Implementation of the Channel Coding and Decoding 49

e A Pentium II based linux system with recent software packages. Two compilers
were available here: The standard GNU Project C compiler (version 2.95) and
the optimizing Intel(R) C++ Compiler for IA-32-based applications. The latter

achieved a performance gain of 30%.
e A HP 9000/715 machine running HP-UX with HP’s aCC++ compiler.

The implementation conformed to strict ANSI C++. The complete software listings

are found in Appendix B.

Chapter 4

Results of Graphical Capture

System

4.1 Methodology

The optical readout head hosts an array of four photo detectors, which pick up the
main spot signal from the compact disc. This radio frequency (RF) signal is a weak
signal consisting of the summed output of the four photodiodes (Figure 3.2) and is
amplified by the player’s circuitry. The compact disc player attempts to extract only
the actual data content of the signal and discards all other modulations and distortions
by using waveform shaping, extracting clock information and signal demodulation.
Surface contamination, local variations in the substrate and variations in the layer
reflectivity stamp an additional modulation onto the signal. Thus the unprocessed
signal carries a lot more information about the compact disc than is actually used by
the CD player. Scratches can give an extra amount of reflection into the photodiodes,

even increasing the signals amplitude.

50

4.1 Methodology 51

Before the signal enters the waveshaping circuit, it is tapped off and digitally anal-
ysed by the author’s software. The signal is digitised and stored in raw binary form
onto the computer’s hard drive, described in Section 3.1.5. Starting from here the data
are processed using techniques adapted from image processing.

Sampling is performed as the compact disc spins under the readout head. The
analog signal is thus continuously recorded and digitised for each revolution every T,
seconds. The resulting array will be called sampling matrix. The sampling matrix
is built up of sampling points. Sampling points have a typical spatial distance of
14.6pm x 1.64m on the surface of the disc. The reflected energy E(z,y) into the photo

detectors, where x,y denotes the position on the reflective layer, can be expressed as

E(z,y) « r{z, y)tv(z,y) /; I(z', y')ts(z', ¢)dx' dy'.

I{x,y) is the intensity of the laser beam on the surface and is modulated by a trans-
mission function t;(x,¥y). The transmission on the surface depends on the absorbency
of light by local surface imperfections and dirt.

r(z,y) is a general expression for the reflectivity of the information (reflective)
layer. More precisely r(z,y) must be calculated considering the diffractive nature of
the grooves ([35]). As the dimensions of the structures on the reflective layer to be
resolved are not smaller than the spot size, it is not necessary to integrate over the
spot, but leave it as a constant, expression. Apart from that, structures which reside
on the surface are much larger and need to be treated as integral.

ty is an accumulated transmission coefficient for the absorbency of the substrate.
Due to the fact that the substrate has a high transmission and local variations are

small, this factor is not of interest for any further consideration.

4.2 Properties of the System 52

Of importance therefore, is the integral over the surface spot area A. Because the
area A for adjacent points (z,y) is overlapping, blurring occurs in the scanned image.

The area A covers 0.5mm?2

. Considering the distance between sampling points, one
single spot on the surface goes into about 22000 sampling points. The light amplitude
distribution of the surface spot though is not constant but obeys a Gaussian curve,
that is, the blurring is done with a Gaussian blurring operator.

Knowing the blurring operator a technique called deblurring can be applied to
enhance image quality. Algorithms are readily available in the public domain, although
the captured images in this work have not been processed in this regard.

When considering the resolution of the imaging system, two different situations
must be distinguished: resolving structures on the surface of the disc and resolving
structures on the reflective information layer. Due to the focusing of the laser beam,

the resolution on the surface is much lower than on the reflective layer. Examples are

given in Section 4.4.3.

4.2 Properties of the System

4.2.1 Resolution of the Scanning Process

el e Y. S

e e — m

2mm

S e TR

Figure 4.1: Photograph of radial scratches on compact disc.

4.2 Properties of the System 53

It is obvious that there is a limit to resolve very fine structures on the surface. Fine
structures are represented by very narrow lines or scratches. By assessing the signal
response of the photodiode detecting the reflected laser, it is possible to get information
about the real resolution of the system. Information about the signal deterioration can
also be gained. Five radial scratches with a distance of 1.5mm have been placed on a
CD. The scratches are not more than 20um wide. Being made by a needle, they are

still transparent and scatter the laser light. Figure 4.2 shows the signal response.

L X 1 N N L 2
2 4 [} 8 10 12 14 8

Figure 4.2: Laser-signal response to five radial scratches in compact disc.

As discussed in 3.1.2 the spot of the laser beam on the laser side has a diameter
of 0.8mm [45]. The scratches placed on the laser side, as shown in the photograph in
Figure 4.1, aflect the laser beam only partly because of the non-focussed laser beam.
The response signal shows that the scratches are widened to 1mm on the length scale
on the surface of the disc.

In the following, resolution is defined to be the distance where two neighboured
points can be resolved separately. The response signal suggests a resolution of 0.8mm,
based on the fact that the scratches can be moved closer to a distance of 0.8mm

without not being able to separate them. This agrees with a spot size of the laser

4.2 Properties of the System 54

beam of 0.8mm and is applicable to both directions.

It should be noted though that single points on the read-out side of much smaller
dimensions can be detected, since they cause a distortion in the signal. It was observed
that scratches and defects up to a few tens of a micrometer wide degrade the signal,

which in turn can be evaluated by the software.

4.2.2 Signal-to-Noise Ratio of the Read-Out Signal

i

15

voitage [V]

1.4 e

13 g

Y S ————— black stripe)

1 .1 1] 1 1 1 1
0 20 40 60 80 100 120
time {ms)

Figure 4.3: Voltage drop due to a black stripe on surface. The other peaks signily
surface scratches.

The signal-to-noise (SNR) ratio is influenced by many factors. It is dependent on
the type of CD-device, the ADC and the general experimental setup. The ADC is a
12 bit converter resulting in 4096 discrete voltage levels with a programmable input
gain, adjusted to 2.5V for this application. Assuming a voltage of about 1.2V in the

non-reflective case (black stripe) and a maximum of 2.5V with a high frequency noise

4.2 Properties of the System 55

level of about 0.01V, the effective number of grey levels calculates to 106.

The original data channel of the signal is hidden in the high frequency noise, which
is not considered as valuable information, since caused by the reflection of the pits and
lands, the spatial resolution capacity of the system is not high enough to match this
noise with any location on the surface.

Figure 4.3 gives the signal of one revolution. The drop is caused by a non-reflective
black paper stripe. The minimum voltage is 1.2V. The peak-to-peak signal-to-noise
ratio of the capturing system is around 30dB.

Remarkable is a short raise of the signal after the drop. It is caused by the servo
focus control, which tries to recalibrate to the reflective layer. This effect can be seen
in many surface captures, if the blemish is big enough to cause the servo control to
lose the focus. In captured images it appears as a shadow after the surface distortion

in the read-out direction.

4.2.3 Using Different Compact Disc Players

02 u- '\J

153 160 -] 104 168] 4 [[190 w 1
Ctariy o) diazaecs fomod

a) b)

Figure 4.4: Signal response of two different players to scratches on the compact disc.
a) Toshiba XM3301B, b) Toshiba XM4101B

4.2 Properties of the System

56

8000 ¢
7000 '
6000
5000

4000

power [a.u]

3000

2000 K

1000

0 2000 4000 6000 8000 10000 12000 14000
frequency [Hz]

Figure 4.5: Fourier transform of data in Figure 4.4a (XM3301B).

8000

7000

6000

5000

4000

power [a.u}

3000

2000 [

1000 -

6000 8000 10000 12000 14000
frequency (Hz]

Figure 4.6: Fourier transform of data in Figure 4.4b (XM4101B).

4.3 Data and Image Processing Software o7

The tests were carried out using two different CD players. This was because the
author wanted to ensure the technique to be independent of the players used.

The two compact disc player have been compared in their signal response and
signal-to-noise ratio. Both devices (Toshiba XM3301B, XM4101B) do not reveal any
major differences neither in the signal response nor in the signal-to-noise ratio.

The signal response to above mentioned scratches (paragraph 4.2.1) are shown in
Figure 4.4a and 4.4b. The signal is basically the same except that 4.4b shows more
noise in it.

The respective Fourier transform of 4.4 is calculated in Figure 4.5 and 4.6, which
shows the correspondence of both compact disc players in terms of noise and signal
behaviour.

To conclude it can be said that despite their differences in the electronic circuitry
and read-out head, the two compact disc players show the same characteristics. It can

be generalised that the image capturing technique is practicable with all compact disc

players.

4.3 Data and Image Processing Software

Raw image data, captured by the data acquisition software {Section 3.1.5), is stored
in binary format. For each sampling point two bytes are allocated, since the ADC
digitises into 12 bit values.

In order to further evaluate the raw data, an additional software program convert
these data into picture file formats. This is carried out by scaling down the raw image
data, so that it can be shown as an image. A zooming function is included to extract

features of interest from the image. The zooming can be done successively, at each

4.3 Data and Image Processing Software 58

stage the data can be converted to a picture file format and saved onto the hard disc.
The file format used for saving these pictures is the portable pizmap file format (ppm).

Obtaining scaled-down versions of the raw data is desirable, because a captured
surface image require up to several hundred megabytes of information. Normal image
processing programs are not able to handle this, the author’s program handle raw
image data files of arbitrary size.

The software first calculates the scaling factor needed to visualise the image on the
screen. Down-scaling is done by averaging over rectangular blocks of pixels. Colours
are allocated by defining a colour map. The raw data values serve as an index to this
colour map. Different colour maps can be applied to increase the visibility of interesting
features. Colour mapping is not essential, because a grey level image is sufficient, but
it poses a better visibility to the viewer.

A zoom function is incorporated into the software. Zooming can be done in batch
mode, given a rectangular area to zoom in or interactively by using the mouse cursor.
With the cursor a rectangular area of interest is defined and zoomed into.

At each stage the image can be saved as a ppm-file with scaling factor, thus allowing
additional image proc_essing software and filters to be used.

Batch mode allows extraction of horizontal lines as a graph, showing the deteriora-
tion of the captured signal in each track.

The compact disc’s polar coordinates are remapped into rectangular coordinates.
Each track of the compact disc is displayed horizontally, the y-coordinate denotes the
number of the track. Thus a rectangular picture of the circular surface is formed.

Additionally the software is able to generate circular representations of the surface

by displaying each track as a circle using polar coordinates. In this case interpolation

4.4 Interpretation of Results 63

obtained with specialised algorithms for fingerprint recognition. Filters applied include
a non-linear filter, colourmap distortion, greyscale-converting, brightness and contrast

adjustments.

4.4.3 Watermarks and their Capturing on Compact Discs

Future versions of DRM systems will involve watermarked content and medium along
with redesigned devices which look for the watermark [46]. Control over digital content
is ensured.

The compact disc medium possesses a number of possibilities in order to watermark
it. As it was discussed in the previous paragraph modulating the intensity of the
detected laser signal is one way. This can be achieved by local reflectivity variations of
the reflected layer as well through absorbency variations of the compact disc’s substrate
and surface.

As long as the variations in the laser’s intensity are small enough, the digital content
will be finely reproduced. Even if it leads to short disruptions in the laser signal, the er-
ror correction would restore the original data (although with a loss of data redundancy
for further error correction capability).

Watermarking of a compact disc in this sense is discussed in this Chapter. The
process of impressing watermarks and the detection of them is successfully carried out.

Watermarking is implemented by mechanically puncturing either the surface or the
reflective layer. This results in degraded laser signals due to modulated changes in
reflectivity of the reflective information layer or due to additional laser light scattering
on the surface, which the detection system (capture system) is able to process and to

evaluate.

4.4 Interpretation of Results . 64

Both methods, the surface puncturing and the information layer puncturing, were
found to work. Each one has their own characteristics. On the surface the resolution
is lower than on the reflective information layer. This in turn has effects on the max-
imum density of watermark information. Furthermore the read-out technique has to
be optimised for either method, even if both could be employed together.

The mechanical markings are about 50um — 100wm in diameter and almost of
round shape. Other introduction m.et,hods are feasible, an obvious method is by means
of a strong laser burning deformations in particular positions. Single points can form
symbols or code patterns which represents machine-readable information (Graphically

Punctured Code).

Symbols on the Read-out Side

The front side surface was marked utilising a needle. A combination of up to 10 dot
marks were placed on a square area of about 0.5mm x 0.5mm. It is found that the
transparent marks have no adverse effect on playability, error correction is carried out
successfully. No track loss appears either.

Since the blurring effect on the read-out side is very distinctive, the sharp dots are
washed out and enlarged. This causes overlapping between adjacent dots and small
structures cannot be resolved. In Figure 4.11 a three dot structure is shown. Each
of these points are about 100um in diameter on the surface. On the picture they are
enlarged by a factor of 10.

Detecting is thus not a problem, the contrast is high enough to reproducibly obtain

the coordinates of these points.

4.4 Interpretation of Results 66

recalibrate, the focus control servo causes shadows” after the blemish. Compared to
punctured defects on the read-out side, these defects cause much more harm to the
servo systems. By extending the size of the defects by only a few more microns, the
CD is rendered unplayable. Thus the size of the deformations has to be as small as

possible.

Figure 4.12: Four punctured distortions in the reflective layer, imaged by the author’s
capturing technique. The size of the small dot is about 100um.

Additionally photographs were taken with a scanning electron microscope (SEM)
and an optical microscope. Figure 4.14 shows the scanning electron microscope picture
and Figure 4.13 the optical microscope picture. Comparing the three methods the
author’s image capture technique is verified. Even the small reflective layer distortions
around the main points as seen in the optical picture show up as artefacts on the
image capture picture. Compared to the optical microscope picture the image capture
technique reveals more three dimensional information. It must be noted that the
electron microscope pictures the distortion from the under side (label side) of the
compact disc, whereas with the other two methods the photographs are taken from the

read-out side.

4.4 Interpretation of Results 68

To conclude it can be said that the author’s image capture system of the reflective
layer is comparatively equal to that of other methods in terms of spatial resolution.
Applications like quality assurance of compact disc production come quickly into mind.
The cost of this system is by far lower than all other methods. Image capturing for

watermarking purposes will be discussed in the next paragraph.

0.5mm

Figure 4.15: A group of punctured holes in the reflective layer, captured during the
playing of the compact disc.

Finally Figure 4.15 shows a group of punctured holes in the information layer. The
playback of the compact disc is not interrupted during playing over these blemishes.

Figure 4.16 shows one of these distortions in the maximum possible resolution. A

4.5 Further Applications 72

almost constant. There is only a small difference in the period between the inner parts
and the outer parts of the surface of less than 5%.

The same figure gives another interesting feature of the capturing process. A
rounded, irregular line in the bottom part of the image can be seen. This is caused by
a dried stain of white spirit mixed with ink from a former cleaning process. Despite
all these variations in the laser signal intensity the disc plays well without causing any

audible error.

4.5.3 Detecting Manufacturing Defects during Read-out

Optical media manufacture consists of various production steps such as injection mold-
ing, sputtering, protective coating and so on. These process steps imply possible defect
sources which can compromise the playability of the medium.

While using and examining a number of compact discs, one has been found to have
substantial defects in the reflective layer. With a strong backlight these appear as tiny
little holes. The diameter of these varies typically from 10pum to 50um. There are
tens of them per square inch dependent on the region. The cause is obviously a bad
production lot, because the same disc shows a moiré-pattern as well as discussed in
4.5.2.

As shown in the previous Chapter the capturing system maps the reflective layer
of a compact disc accurately. Applying this method to a badly manufactured compact
disc, the result shows these artefacts as well. An image was captured of this disc; the
overview is presented in Figure 4.20. This picture shows all artefacts well, a software
emboss filter was used to enhance small details.

The read-out is done in the x-direction. Perpendicular stripes are remains from

4.6 Conclusions and Applicability for Watermarking 77

(dirt, fingerprints), to the error correction system, a thorough investigation about the
possible locations, regarding their positions relative to the respective frame beginning,
must be carried out.

The next Chapter raises this point and continues the discussion by the investigation

and evaluation of watermark introduction, backed up by computer simulations.

4.6 Conclusions and Applicability for Watermark-

ing

The image capture technique works well for getting high quality images of a compact
disc’s surface or the underlying reflective layer. Apart from this it offers a reliable way of
examining the compact disc for imprinted mechanical watermarks, both on the read-out
surface and on the reflective layer. This Chapter focussed on imprinting, detection and
evaluation of introduced blemishes which can serve as a digital fingerprint of a single
compact disc. The control software was able to read back the positions of introduced
blemishes. The effect on the error correction was checked by evaluating SCSI error
logs, which give a reasonable statement about the occurrence of CIRC errors. The
blemishes were introduced in such a way not to jeopardise the playing of the compact
disc, although the reasons for choosing the exact positions are not comprehensible at,
this point. A discussion about optimal locations will be given in Chapter 5.

The interleaving and error correction system gives rise to the assumption, that
certain positions and certain patterns are more correctable than others, thus it is
possible to optimise the information-to-output ratio for watermarks.

Simulating the channel coding for compact disc will help to judge error patterns

4.6 Conclusions and Applicability for Watermarking 78

and certain positions within a frame or successive frames on their correctibility. The
experimental trials are replaced by a more scientific and reliable approach. The aim
is to achieve the highest information-to-output-error-rate ratio. Also, a requirement is
that possible watermarks are read out as quickly as possible. This means they must be
arranged in such a way that during one or two revolutions of the disc, all watermarking
information has been read. Thus a two dimensional code must be considered. It was
shown that mechanically puncturing the reflective layer is enough to obtain reasonable
sized and detectable watermarks. Instead of using a mechanical device, a strong laser
would be more capable of precisely marking positions. By arranging the markings in
a defined way, a code can be formed. This proposed Graphically Punctured Code will

be derived in Chapter 5.

Chapter 5

Watermarking and Punctured Code

Simulations

5.1 Definitions and Background

5.1.1 Error Concealment

When the capability of the error corrector is exceeded but errors are detected, the
uncorrected but flagged samples should be concealed if audio data are processed. Con-
cealment reduces the noise resulting from uncorrected samples. Various techniques are

available and are actually implemented in compact disc players.
muting: The value of the erroneous sample is set to zero.
previous value-holding: Zero order interpolation.

first order interpolation: Mean-value interpolation. The erroneous sample is re-

placed by a level midway between the previous sample and the following sample.

n-th order interpolation: Uses a polynomial approximation of n-th order.

79

5.1 Definitions and Background 80

According to the data sheet of a modern single chip decoder (Philips SAA7325)
[5], concealment with more than one consecutive non-correctable sample is achieved by
holding the last good sample and performing a one-sample linear interpolation before
the next good sample. In general all CD players use two independent interpolators for
the left and right channel.

Many publications ([1, 47, 28, 45]) use the probability of encountering an interpo-
lated sample P, or the probability for audible clicks Py in order to give a rough
impression of the capabilities of a certain error correction system depending on the
input symbol error rate Psympor.

This convention is convenient, since these terms address the issues of the listener.
Error rates in this work are calculated in terms of P, and Fyix amongst others.
Additionally one can consult the definitions for Pgg, Po), Pro, P11 given in Chapter 2.6.
These are also computed by the software and used in some cases. They relate to

previously mentioned ones in the following way [1]:

-Pip ‘= ILinterpolation = (Pll + POI)) (2 - Pl] - POI)

Paick = Pio+ (2 — Pyo)

These equations take into account that each mono-audio-sample consists of two
symbols. The click rate basically expresses the probability of a misdecoding plus a not-
detected error. When encountering such a situation, the CD player generates an audible
click in the loudspeakers, which should be avoided by any means. The interpolation

rate refers to a first order interpolation of two erased symbols (monoc-audio-sample).

5.1 Definitions and Background 81

5.1.2 Definitions of Error Rates

Performance of error correction systems can be expressed in an objective manner by
specifying the click rate, the symbol error rate or the interpolation rate of the decoder
strategy in its functional dependence on the input error rate. In general, error rates
are measured in erroneous bits over total bits. This equivalents to the probability of
encountering an erroneous bit and therefore the units are omitted in the following.
Due to some confusion in other publications in defining these terms, an exact defi-

nition of output error rates, as assumed by the software, is given in the following.

interpolation rate Fj,: An event is counted as ”interpolation” if one or two symbols
of the 16-bit one channel mono-audio-sample are marked as an erasure, indepen-

dent if it is an error or not and surrounded by not erased symbols.

symbol error rate P,,: Every symbol is compared with its original value. The not-
matching symbols are counted to the symbol error rate, not considering if the

symbols are erased or not.

sequence error rate Py, Sequences of wrong symbols preceded and followed by not

erroneous symbols are counted.

click rate Fyi;: An event is counted as "click” if there are one or more symbols not
erased but erroneous between either not erased symbols or not erroneous symbols.

This is a measure for mis-detection and mis-correction by the CD player.

5.1.3 Limits of Computer Simulation

It should be noted that the resulting probability values can only be an approximation

to the "real” values. The approximation will be better as the number of iterations

5.1 Definitions and Background 82

increases. This in turn means that for events with a relatively low probability, more
iterations are necessary. Otherwise large measurement errors in terms of standard

deviation have to be accepted.

Number of detected errors 1 10 40
deviation error with +1 error | 100% 10% 2.5%
Probability Psymsol 1.66-107° | 1.66-10"% | 6.7-10°8

Table 5.1: Lowest error probability to detect when decoding 2.5 - 107 frames with 1,10
or 40 symbol errors occurring. One additional symbol error leads to the resulting
standard error.

Decoding 25 million frames (1.66 - 108 symbols), the lowest symbol error rate to
detect is 7 = 1.66 - 107°. If 10 errors are to be expected, the lowest rate amounts to
r = 1.66 - 1078 Assuming an error deviation of one symbol error per measurement,
measuring an error rate of r = 1.66 - 1078 (one symbol error) means a measurement
error of 100%. Table 5.1 gives an overview.

Assuming a reasonable value for the deviation to be 2.5%, a minimum number of 40
symbol errors at least must be expected. Accepting no less than 40 errors is common
practice.

In this work the highest number of frames iterated was 25 million. Consequently a
minimum error rate of Pyympat = 6.7 - 1078 could be detected at best, when accepting
no less than 40 errors. The results were scanned for error counts less than 40, which
were rejected. In some rare cases error counts of above 20 have been accepted which
equals an uncertainty error of 5% maximum.

The wide range over several orders of magnitude of the error rates requires the same
range in computing time. Comparing the output error rates of P = 1072 and P = 1075,
the latter one takes a thousand times longer to compute. Thus computer simulations

in this area are always supposed to have a bottom-limit due to the computing time

5.2 Conformance of Computer Simulation and Statistical Analysis 83

available. The software was optimised for speed therefore.

5.2 Conformance of Computer Simulation and Sta-

tistical Analysis

Results of the author’s computer simulation have been matched against published error
rates, obtained from statistical analysis of decoder strategies. In {1] such a calculation
is presented. A memoryless channel is assumed and the interpolation rate is calculated
using a statistical approach. The decoder algorithm used is number I.

A memoryless channel model describes the errors as occurring statistically inde-
pendent from each other. It is a first approximation to a real channel, where the error
distribution shows bursts of errors.

The author’s software implements decoder I, along with a modern version, decoder
II. In Figure 5.1 the straight line represents the interpolation rate calculated in [1].
Compared to the interpolation rate, obtained from the author’s software, conformance

is found.

5.3 Decoder Algorithms applied to Memoryless -

Channels

Two decoder algorithms have been implemented. In order to find out which one per-
forms better, they are both applied first to a non-bursty (memoryless) channel and in
the next Section to a bursty channel.

Computer simulations leading to P, values and error rates as listed in Section 5.1.2

5.3 Decoder Algorithms applied to Memoryless Channels 84
——r — r — . r
1 F : calculated interpolation rate -
simulated symbol error rate +
L x . simulated interpolation rate x
i +
-+
-+
X
+
X
+

a

2 0.0001

]

g

@

5

i3

B 1806 [

1e-08
13_10 P i " " i i l
01 c.01 0.001

input error rate r

Figure 5.1: Diagram showing interpolation and symbol error rate (crosses) as obtained
by the author’s software. The straight line represents the interpolation rate, published

in [1] as a result of statistical calculations.

5.3 Decoder Algorithms applied to Memoryless Channels

85

for these two decoders have not been carried out before to the knowledge of the author.

decoder |:
decoder I
decoder Il
decoder Il
decoder li:

PO1
P10
P11
PO1
P10
P11

0.001 .
a
[4)]
©
= 0.0001 i
g
]
B 1005 [N NG e N R NI e R
=
Q
1e-06 .
1e-07 4
1e-08 —
18'09 A A i A e i A |
0.1 0.01

input error rate r

0.001

Figure 5.2: Decoder I and Il compared in terms of P, values on a non-bursty channel.

Decoder 11 shows better performance.

The results are shown in Figure 5.2, which shows the output error probabilities P,

and Figure 5.3, which shows the other error rates. Each diagram compares decoder I

and IT as presented in Table 2.1,2.2.

Only results with a number of errors greater than 20 have been considered. That

means one error more or less in the output cause an error of maximal 5% in the output

error rates.

It becomes clear that the author’s implementation of decoder IT has a higher per-

formance in terms of error correction rate. At an input error rate of » = 0.04 the

difference in P.; is about one order of magnitude.

The next Section applies these two decoder algorithms additionally to a bursty

5.4 Decoding Burst Errors 86

channel. The decoder with better correction capacity will be chosen for simulation of

watermark sequences.

decoder i: symbol error rate —+—
decoder |: interpolation rate —»—
decoder I: click rate —=—
decoder lI: symbol error rate —8— -
decoder It interpolation rale —e—
decoder I click rate —o—

00001

output error rate P

1e-06

T
i

1e-08

18'10 PR Y " i . " A i

0.1 0.01 0.001
input error rate r

Figure 5.3: Decoder 1 and 1l compared in terms of interpolation, click and symbol error
rate on a non-bursty channel. Decoder II shows better performance.

5.4 Decoding Burst Errors

5.4.1 Introduction

Optical storage media show not only random errors, but burst errors. Burst errors are
defined as groups of erroneous symbols. The distribution of burst errors is obtained
by error measurement equipment [32]. Burst errors result from heavily damaged discs,
where the scrambling mechanism is not able to spread them apart. It can also be

enerated by introducing very few errors but at certain known positions. Burst errors
g

5.4 Decoding Burst Errors 87

show different requirements for the decoding strategy. The decoding process must be
able to cope in particular with these errors, because they are characteristic to the

compact disc’s readout process.

5.4.2 Reproduction of Error Burst Probabilities and Good
Data Gap Probabilities in a Bursty Channel

It was the aim of this work to incorporate the presence of a certain probability distri-
bution of burst errors in order to present a model close to reality. As it will be shown
later, the characteristics of the background noise, in the form of a probability density
function, influences the ability to correct certain types of error characteristically.
Various publications deal with the reproduction of error distributions in bursty
channels. For the characterisation of the real communication channels there are several
channel models available. One such model is the well-known Gilbert model [48]. It
comprises only two states: the bad state ” B” and the good state ” G” with the respective

probabilities to change or keep the state (Figure 5.4).

1-8

Figure 5.4: Gilbert model

However this model is proved not to reproduce measured error distributions exactly.
A more precise model was proposed in [49]. Since a characterisation of the compact

disc channel is not needed here, only the resulting probability distribution is important

5.4 Decoding Burst Errors 88

in this work.

The author’s simulation of bursty background errors is based on an error distribu-
tion published in [2] and experimentally determined in [31, 32].

This error distribution is emulated by a combination of random number deviates.
The output of these represents the probability of the occurring of burst errors and
matches the graph in [2]. Figure 5.5 plots the burst relative frequency f in a half-
logarithmic scale against the burst length. The relative frequency of the error bursts
is obtained by dividing the number of bursts of a given length by the total number of
burst events. Thus the area under the curve is standardised to one.

Curve b is the same as presented in (2], emulated by specific random number gen-
erators. The generator is composed of three different deviates, namely one exponential
for the steep slope at the beginning, one Gaussian for the peak at about burst length
30, and one last exponential for the low probability of encountering longer burst er-
rors. They combine with different probability, so that they can give this characteristic
curve. This describes the background errors of a “clean”, not subjected to extensive
user-handling, compact disc.

Simulations in this Chapter are done using curve ¢, which has a higher probability
for bursts with a typical length of around 30 symbols. It is believed that this gives
the typical characteristic of a user-handled disc with scratches on the surface. The
probability of encountering a burst here is ten times higher than on the "clean” case.

For comparison curve a is the one given by simulating a memoryless channel, where
no burst errors occur. The complete different shape is resulting in different error
correction rates, even if the symbol error rate before correction is the same.

All three curves are standardised to their respective area. In order to get the ap-

5.4 Decoding Burst Errors 89

T —I——IYr]

C.1

=
et

—

—r
PRI R
1

0.01

T

0.001

burst relative lrequency

0.0001

e mm——m e — b

1e-05

1e-06 i

60 80 100
burst length in symbols

Figure 5.5: Different probability density functions used for simulations of bursts (area
under slope standardised to one). a) bursts caused by a memoryless, non-bursty chan-
nel, b) bursts emulating measured distribution in [2] on a clean dise, ¢) bursts with a

ten times higher probability assuming a scratched disc. Curve b and c is reproduced
using a combination of random number deviates.

5.4 Decoding Burst Errors 90

propriate error rates resulting from these error statistics, the good-data gap statistics
in-between the error sequences have to be emulated. A similar procedure for reproduc-
ing gap statistics is carried out.

The gap statistics basically consists of a part of high probability short gaps and a
bulk of gap lengths, having a constant, ten times lower probability relative to the short
length gaps. The longest gap length is 10000 symbols.

Varying the input error rate with these two independent probability functions is
done by scaling the gap distribution by a stretch factor n. The lower the input error
rate is supposed to be, the higher the average gap length, obtained from the gap
distribution, must be. It is believed that the characteristic of the error statistics does
not change when dealing with a more heavily scratched disc, i.e. the slope of the burst
density curve remains the same. Instead the intermediate gaps vary in their average
length. This manifests in a stretching of the gap statistics in order to achieve different
error rates.

Input symbol error rates ranging from r = 0.0001 to » = 0.8 have been obtained
in this way. The relation between stretch factor n and obtained input error rate 7 is
shown in Figure 5.6.

The following simulations have been carried out using the error distribution of
Figure 5.5c. It is believed that this results in quantitatively and qualitatively more

accurate results which come closer to real-world applications.

5.4.3 Decoder Algorithms Applied to Bursty Channels

Figure 5.7 presents the error correction capacity in terms of symbol error rate and

interpolation rate for both decoding strategies I and II. It is evident that both of them

5.4 Decoding Burst Errors 91

. i

L

S

@
_8 0_01 E--"-"»--- T L TP _E,_,__,__,,____,____,_.__ﬂ_“_______..,_‘“_.___:
£

=3

w

s

(=8

=

0.0001 . SN HA . o
0.001 0.0001

1 0.1 0.01
stretch factor n

Figure 5.6: Relation between stretch factor of gap lengths n to obtained error rate r.
The error distribution is constant while scaling the gap distribution with factor n to
achieve different input symbol error rates.

5.4 Decoding Burst Errors 92

can vary up to one order of magnitude from each other.

1 T . — . —
: decoder I: symbol error rate =——t—— |

decoder |: interpolation rate —»—

, decoder lI: symbol error rate —a—
0.1 b st S€C0MeET |1 interpolation rate —8—

0.01
0.001 [

outpul ervor rate P

1e-05 |

S , I . i
0.1 0.01 0.001

input error rate r

Figure 5.7: Decoder I and II compared in terms of symbol error rate and interpolation
rate on a bursty channel. Decoder 11 shows the better correction performance.

An interesting feature can be observed at very high input error rates r =~ 0.2.
The interpolation rate decreases substantially for decoder I. This might be due to
very long sequences of erased symbols which actually do not count as interpolated
sequences anymore (according to the author’s definition) because long erased sequences
are muted.

The parameters P, have been calculated as well. Due to a low number of Pjp
events, it was reasonable not to choose them for a comparison.

Interpolating to an input error rate of » = 0.001, the output symbol error rate

becomes approximately Psyms bursty = 10~7 calculated for a bursty channel model. The

5.4 Decoding Burst Errors 93

non-bursty channel, discussed in the previous Chapter, achieves an output symbol error
rate of Piymbnon—tursty = 107!, This means correction rates can vary up to 4 orders of
magnitude depending on the characteristics of the channel errors.

The decoder choice influences the results by about one order of magnitude in favour
of the more modern one, decoder II. The same result was found for a non-bursty

channel. In the following decoder II will be used only.

5.4.4 Error Correction Capacity on a Bursty Channel and

Memoryless Channel

To summarise, symbol error-correction rate of both non-bursty and bursty channel, as
introduced in paragraph 5.4.2, are presented in Figure 5.8. The graph shows interpo-
lation rate and symbol error rate of both channel models corrected by decoder 1I. The
author’s computer simulation proves a weakened correction ability of a bursty channel
compared to a memoryless channel, as expected.

The diagram suggests that towards lower input error rates the error correction is
worsened compared to non-bursty errors. Blocks of erroneous symbols cause more
problems for the error correction system than randomly distributed errors. Input error
rates above » = 0.1 lead to the same correction rates. Above this level erroneous
symbols form enough accumulations to cause the error correction to fail like on a

bursty channel,

5.4.5 Discussion

It can be seen that the character of error distribution - either using a memoryless

channel model or a bursty channel model - influences the capacity of the error correction

5.4 Decoding Burst Errors 94

O —— : —

symbo! error rate (bursty channel) —+—
symbol error rate (non-bursty) ——

! . interpolation rate {bursty) —=—

0.01 e et e iTETPOlAtION rate (non-bursty) —8— |

output error rate P

16'08 " M i a N l A4 " M N i
0.1 0.01 0.001
input error rate r

Figure 5.8: Decoder II applied to a non-bursty channel model and one with the distri-
bution presented in paragraph 5.4.2. Towards lower input error rates the difference is
evident and can be extrapolated to the deviation of several magnitudes.

5.4 Decoding Burst Errors 95

decoder massively. Two decoding strategies were checked against a memoryless channel
and a bursty channel. Both of them reveal differences in error correction capacity.

In this Chapter an analysis has been done for bursty channels. The result shows
that random, statistically independent erroneous symbols in the input stream cause
much less trouble to the error correction system than sequences of errors.

The simulations of the bursty channel were based on a special error distribution.
Applying decoder II to these real-world distribution resulted in different types of error
rates. Investigations in this area have not yvet been published. The motivation for
emulating experimentally measured error distributions as opposed to either random
errors or simple random burst errors [33] was to evaluate watermarking schemes as
closely as possible to a real-world scenario. The idea of simulating error distributions
in this way is new though and has brought quantitative results. The next Section
focuses on testing of certain watermarking schemes, considering a normal user-handled

disc.

5.5 Performance of Watermark Sequences 96

5.5 Performance of Watermark Sequences

5.5.1 Introduction

Any new information added to the data stream must be placed in known positions
in order to allow this data to be recovered. This recovery should take place before
the error correction is invoked. Ideally the error correction system fully corrects the
original information, though weakening further error correction capacity for random,
naturally occurring errors.

The allocation of certain symbols in a frame for watermarking purposes has effects
on the error-correction rate. Choosing different patterns and places for the introduced
symbols might result in a better performance of the error correction system.

Introduced error patterns are characterised by their generation function and the
introduced symbol error rate (riniro) denoting the error rate of the intentionally intro-
duced error symbols. The capability of the error correction can be expressed by either
the distinct terms: Pog, Py, Pjo, P11 or additionally one can consult the rates discussed
in paragraph 5.1.2 The one to choose depends on the purpose and interest of the in-
vestigation. In this work two parameters deserve a closer look: The symbol error rate
and the interpolation rate.

The symbol error rate P, equals the sum of Py + P, and counts the number of
uncorrected symbols plus the number of miscorrected symbols. The higher this value,
the less a certain pattern is correctable.

The interpolation rate P, expresses how often the interpolation of audio samples is
invoked. In the case of a CD-audio player it means that the quality of the reproduced

sound is deteriorated if this value is high.

5.5 Performance of Watermark Sequences 97

For other parameters, such as Py, not enough symbol errors (less than 40) are
generated to get reasonable reproducible results in 250000 iterations. To compensate
for this, more iterations are necessary, which would multiply the computing time.

It is also of interest which effect the used probability density function of the back-
ground noise has on the overall error correction rate. This will be discussed in the next
Section 5.5.2. Since the aim is to find a pattern the least prone to errors and to predict
quantitatively the influence, the most realistic case is assumed. Therefore the error
distribution function of Figure 5.5 is employed modelling a user-handled compact disc.

The rate of introduced additional error symbols typically varies from riny, = 0.005
tO Tintro = 0.3, which is less than one wrong symbol per frame to a third of a frame
rendered bad. Apart from generating intentional errors, a second process is responsible
for generating the erroneous symbols simulating the background noise. These two
processes work independently of each other.

A number of different error pattern generators has been tested against a bursty
background noise distribution, presented in Section 5.4.2 (Figure 5.5¢). In the following
each of them is presented with its results in terms of resistance against error correction.
For each different combination of parameters, 250000 frames (iterations) have been
simulated. This establishes a compromise between computing time and a reasonable
accuracy.

The x-axes of the diagrams (introduced error rate) denotes the input symbol error
rate for introduced erroneous symbols.

The y-axes (relative error frequency f) denotes the ratio between overall output
error rate for introduced error patterns plus background noise and output error rate

for background noise only. The overall output error rates are thus expressed as a

5.5 Performance of Watermark Sequences 98

introduced error rate Tintro 0.005 0.02
bursty noise: output error rate Psym pursts 5451079 | 1.75- 1073
random noise: output error rate Psym random | 1.15- 10-7 | 8.15-107%
ratio z = %’% 473.9 21.5

Table 5.2: Output symbol error rates Piym random/oursts Of non-bursty, random back-
ground errors and bursty background errors, combined with systematically induced
symbol errors of two different error rates 7in;o. The ratio shows that random and
bursty noise have different correction rates Pj,m,, as expected, but also that the ratio
of correctibility is depending on the rate of induced errors.

multiple of the error rate of background noise only.

5.5.2 Motivation for Considering Background Noise

Bursty noise, as it is present in user-handled discs, has a lower error correction rate
than random noise. Table 5.2 lists values for the output error rates P;, of an error
distribution composed of background noise and introduced symbol errors. Due to the
better correctibility of random noise, the ratio is = # 1. In addition, z is depending
on the introduced error rate 7;,,,. This is explained by the fact that with higher
introduced error rates this part of the overall input error distribution overweighs the
background error distribution.

It is believed that the ability to correct introduced errors on a noisy channel de-
pends on the type of background noise. Thinking of an introduced double error each
frame, it is possible that the underlying noise probability function gives rise to different
correction rates for that introduced error.

In order to illustrate this behaviour, combinations of bursty background noise, non-
bursty background noise and systematically induced two-symbol error patterns have

been simulated. Table 5.3 lists the number of symbol errors after decoding 250000

5.5 Performance of Watermark Sequences 99

frames.

characteristic errors present | bursty background | plus induced two-symbol error

resulting symbol errors n 10824 79816

characteristic errors present | random background | plus induced two-symbol error

resulting symbol errors n 2400 68777

Table 5.3: After decoding 250000 frames the number of symbol errors n varies depend-
ing on the form of noise present. The induced error rate is 7o = 0.0625, which is a
two-symbol error per frame.

Based on Table 5.3 the ratio between correction rate of background noise only and
background noise plus additional, intended symbol errors, for the two types of noise,

has been compared in Table 5.4.

MNbursty+induced 7.37
Npursty)

Nrandom+induced 28.66
Nrandom)

Table 5.4: Considering the values derived from Table 5.3 it becomes evident that
introducing a two-symbol error per frame does not have the same effects on the output
correction rate on bursty and non-bursty background noise.

It becomes evident that introducing two-symbol errors on a bursty background has
less effect on the output error rate than introducing errors on a random background
noise. Actually the output error rate increases thereby by a factor of 28, whereas the
output error rate on a bursty channel increases only by factor 7. This is a four times
difference of the increase of error rates when inducing additional errors due to the type
of background errors.

It is therefore important to consider background noise in general, and in particular
to precisely model the error distribution. Introduced errors form a particular error
distribution, too, even though the distribution is discrete. The superposition of a
specific background error distribution and introduced error distribution is therefore

crucial for the error correction rates. Effects of introducing erroneous symbols in terms

5.5 Performance of Watermark Sequences 100

of the overall output error correction rate thus depend on the type of background noise
present. These variations of output error rates in turn are specific for different patterns

of intentional errors.

Therefore the calculations for the next chapters are based on the presence of back-

ground noise, as specified in Figure 5.5.

5.5.3 Using Intentional Errors as Watermarks

Equidistant Symbols Pattern (EQU)

100000

y— .
symbol error rate ——
interpolation rate ---»---

10000 |- / -
. B

St
-— % ~
a LS -/“ . .J x
v ;

3 r l‘- ¥ 4
o ! 3
@
=
2
=
[+1]
o3
2]
s
@
[

1t ot . N N N l N . N

0.01 0.1 1

introduced error rate r

Figure 5.9: Correctibility of equidistant error symbols (EQU) together with background

noise. The relative error frequency f is based on the correction rates for background
noise only.

Every n symbols one wrong symbol is entered. The minimum distance between two

5.5 Performance of Watermark Sequences 101

consecutive n is 2, the maximum is n = 200. The minimum input symbol error rate is
Tintro = 0.003 for n = 200 , the maximum is 7,4, = 0.3.

This scheme is one of the most simple to apply. The correctibility in terms of single
errors and sequence interpolation rate is shown in Figure 5.9.

Some error rates show high peaks in the output error rate. In these cases patterns
are created for which the error correction process cannot cope as intended. The opposite
can happen, too. The distance » = 16 and n = 32 marks a relatively good correctibility
probably due to n = 15 separating each frame into two equal parts. Distances of
n = 30, 31,35 (Tintro = 0.029...0.033) result in low symbol error rates (single peaks),
whereas n = 42 (7;ro = 0.024) results in a ten times higher overall error rate (one

peak).

Sequences of Wrong Symbols Pattern (ESE)

One sequence of wrong symbols is introduced at the beginning of each frame. The
length of the erroneous sequence varies from 1 to 16 symbols in each frame giving an

error rate of » = 0.031...0.5. Results can be viewed in Figure 5.10.

Sequences of Shifted Wrong Symbols Pattern (ESS)

A variation of the above mentioned method is shifting the error sequence by one symbol
each new frame. This distributes the error sequences more uniformly in the data stream
(see Figure 5.11). Minimum is again one symbol per frame, maximum is 16 introduced
symbols per frame. Figure 5.12 shows the result. The relative error frequency is above
7 = 10, conclusively the error correction ability for this pattern is worse than without

shifting.

5.5 Performance of Watermark Sequences

102

100000

10000
=
)

S 1000
S
o
1
s
@

g 1wor
=
o

10

1 -

— . . e ———r—r—r—
symbol error rate ——

interpolation rate ---~---

Y it S e W e

1 P " N PR S i

0.01 0.1
introduced error rate r

Figure 5.10: Correctibility of a sequence of errors with varying length at the beginning
of each frame (ESE) plus background noise based on error rates of background noise

only.

a)

b)

c)

AN

one frame intentionally erroneous symbols

Figure 5.11: Schematic illustration of a shifted sequenced error pattern (ESS) (refer to

Figure 5.12).

5.5 Performance of Watermark Sequences 103

100000 — v T
[symbol error rate ~——
interpolation rate - -~---
10000 :
=
g
S 1000 -
=)
o
o
2
o
g 100 | ;
©
o
x"’
10 | 4
Tt 1 i a0 1 N -

01 1
introduced error rate r

0.01

Figure 5.12: Correctibility of a pattern with shifted sequences of erroneous symbols
each frame (ESS) plus background noise. The relative error frequency is f > 10
pointing to a lower correctibility than without shifting (compare to Figure 5.10).

5.5 Performance of Watermark Sequences 104

Errors Grouped in Small Units (EGR)

In order to achieve a more uniform distribution of introduced errors over a frame,
groups of two erroneous symbols are formed and allocated in equidistant places over
a frame. The frame layout can be seen in Figure 5.13. This pattern performs well at
low error rates, since for n = 1,2 symbols it is the same as discussed two paragraphs
previously. The correctibility of said pattern decreases rapidly at error rates of above

r = 0.07.

a)

b)

c)

. N

one frame intentionally erroneous symbols

Figure 5.13: Schematic view of error groups distributed over a frame (EGR).
a) 2 symbols per frame. b) 5 symbols per frame. ¢) 12 symbols per frame.

Equidistant Erroneous Frames (EQF1/2/3)

Another way to allocate storage is in using up all symbols of one frame and interleaving
these marked frames by a number of good frames. A schematic diagram of the layout
is shown in Figure 5.16. It is expected that the error-correction ability is less than
in all other cases, because long sequences of errors impose high requirements on the
interieaving and scrambling system. Figure 5.15 shows the resulting error probabilities.
The curve shows big variations around a relative error frequency of f = 100 for » > 0.03.

The lowest error rate introduced by a gap of 200 good frames between one bad frame

5.5 Performance of Watermark Sequences

100000 —r . .
symbol error rate —+—
interpolation rate ---=---
10000 .
=
8
S 1000 | .
=]
o
2
S
]
2 100]
=]
o]
10 [~ .
1F o, . -

0.01

0.1
introduced error rate r

Figure 5.14: Correctibility of groups of error symbols (EGR) plus background noise.
For low error rates r < 0.07 the pattern is identical to the one used in Figure 5.10.

5.5 Performance of Watermark Sequences 106

is 7 = 0.005.
It becomes evident that the scrambling function cannot spread the erroneous sym-

bols well enough to achieve the low corrected error rates obtained with previous pat-

terns.
100000 —r . . T
1 symbo! error rate —+—
interpolation rate ---»---
10000 |- ; .
A
3 S0 T
e Y -
S 1000 | B - -
=2 . s
o Y
E Ve
5 .
B X
2 100 .
®
2
10 .
Ll . . PSP | . . R L =
0.01 0.1]

intfroduced error rate r

Figure 5.15: Correctibility of a pattern with alternating error-free and erroneous frames
(EQF1) plus background noise.

The discussed pattern can be further thinned by allocating every second symbol in
one frame to an error. A variable number of intermediate frames are error-free. The
layout is shown in Figure 5.18. The obtained error rates match the previous case and
are not favourable in terms of correctibility.

By allocating every third symbol to an error, the layout in Figure 5.20 is obtained.

Figure 5.19 shows the resulting correction capacity. Like with the other frame patterns

5.5 Performance of Watermark Sequences 107

a) - | B

b)

. . /

one frame intentionally erroneous symbols

Figure 5.16: Equidistant erroneous frames, the intermediate gap length is variable.
a) one frame distance between one erroneous frame. b) two frames distance between
one erroneous frame.

100000 — . e . v ———]
symbol error rate —+—
interpolation rate ------- 1
10000 - .
=
2
=
(=8
o
g
]
2 100 | .
I
e

10 {WQ]

P | N N N PP | " " NP
0.01 0.1 1
introduced error rate r

Figure 5.17: Correctibility of a pattern of alternating error-free and erroneous frames
plus background noise. The erroneous frames are filled with alternating error and
non-error symbols (EQF2).

5.5 Performance of Watermark Sequences 108

b)

. . /7

one frame intentionally erroneous symbols

Figure 5.18: Equidistant erroneous frames, the intermediate gap length is variable.
The erroneous frames are filled with alternating error and non-error symbols.

a) one error-free frame distance between one erroneous frame. b) two frames distance
between one erroneous frame.

100000 T v T
symbol error rate —+—
interpolation rate ---+---
10000 |- .
=
e
S 1000 - y
=]
o
o
3
@
2 o} :
K
o
10 5 b
LI 1 . . N s 1 . N . .

0.01 0.1 1
introduced error rate r

Figure 5.19: Correctibility of a pattern of alternating error-free and erroneous frames
plus background noise. The erroneous frames are filled alternatingly with one error
and two non-error symbols (EQF3).

5.5 Performance of Watermark Sequences 109

b)

one frame intentionally errenecus symbols

Figure 5.20: Equidistant erroneous frames, the intermediate gap length is variable.
The erroneous frames are filled with alternating one error and two non-error symbols.
a) one error-free frame distance between one erroneous frame. b) two frames distance
between one erroneous frame.

the output error rate can vary by about one order of magnitude in consecutively steps,

though the overall performance is bad.

Randomised Intervals of Erroneous Symbols (RES)

Motivated by the fact that non-bursty, random background noise on a channel is more
correctable than bursty background noise, a pattern of randomly distributed wrong
symbols has been investigated. A pseudo-random number generator therefore pro-
duces a sequence of random numbers which represents the distances between the wrong
symbols.

The random number sequence can be reproduced by feeding the random number
generator with the same seed. The generation routine is taken from [43] and outlined
in Figure 5.5. The algorithm is easy to use and very fast, producing sufficiently good
random numbers.

Figure 5.21 shows the result. The curve shows a typical behaviour due to the ran-
domness of the symbol allocation. This type performs worse than expected. Comparing

Figure 5.9 and results from this paragraph, a conformance is obvious. Equidistant er-

5.5 Performance of Watermark Sequences 110

float rand;

unsigned long idum, itemp;

static unsigned long jflone = 0x3£f800000;
static unsigned long jflmsk = OxQ007fffff;
idum = 1664525L * idum + 1013904223L;
itemp = jflone | (jflmsk & idum);

rand = (*(float *)&itemp)-1.0;

return rand;

Table 5.5: Fast random number generator for distributing erroneous symbols.

ror symbols are a special case of a random distribution. Therefore the relative error
frequency match each other, even if there are peaks in the previous one resulting from

certain sequences which the interleaver accumulates in a way that is hard to correct.

Comparison and Discussion

Figure 5.22 and 5.23 summarises all eight curves. There are three cases to distinguish.
Each of them shows its own characteristic slope and the extrapolation of each of them
approaches the same limit. The first case includes patterns with whole erroneous frames
(EQF1/2/3). The second group encompasses equidistant (EQU) and random symbol
patterns (RES) and the third group patterns with symbol errors in the same place
relative to I;!le frame beginning (ESE/EGR). Shifted patterns (ESS) are a special case
of the third which perform a lot worse.

It is found that using the same locations within all frames for inducing errors is the
best to correct. The relative error frequency f = 0.03 performs comparably well when
using the same positions within a frame. Other patterns perform about three orders
of magnitude worse at the same introduced error rate r, which is remarkable.

Despite this it must be noted that when marking one symbol in a frame erroneous

the output error rate depends on the position within the frame. The error rates shown

5.5 Performance of Watermark Sequences 111

100000 — . : .
[symbol error rale —+—
interpolation rate ---%---
10000 | .
-— —**’,-y-—x
o) o
S 1000 | / e .
2 f, o~
g X
= P
S / #
o e
2 100 ¢ ‘]
5 ”;’
e [B
10 | -
e
1 1 . M | a N .) N .
0.01 0.1 1

introduced error rate r

Figure 5.21: Correctibility of randomly distributed one-symbol errors (RES) approxi-
mating the lower limit of f = 1 very slowly.

5.5 Performance of Watermark Sequences 112
'\.' l r l Ll l L] I Ly
\
\
[\
{
i o
k-
e
©
k-
k.
o
e
o
o
®
(&)
3
©
£
g=
-J[% + + S
! o
cC—2>Ww
oL ouw
LuOuJCC
F + W+ +
(T) I TS
-ogog
ala
" q 1 1 A | 1 1
o o o o o
o S o o -
o o o -~
o = -
o ~—

} Aouanbaly Joute annejal

Figure 5.22: Summarised overview of four error patterns. The notation *PDF” means
bursty background noise is added. The other notations refer to the type of pattern
used. Three different groups are recognisable with different types of approximation.

The next four patterns are shown in the next diagram, Figure 5.23.

5.5 Performance of Watermark Sequences 113

]
B I B
o
T
2
[
| -,
| —
1 5]
=
[¢}]
©
[1}]
(&)
=]
o
o
=
k=
]
-{+++ 15
| o
oM
it 37
OC0uwuw
- Wi+ +
Sats
Ral=lun
oo . 1 1.]
o o = -
(o) o o
S o o
(] o -~—
(e] ~—
ot

} Aouanbaly Jou18 aane|al

Figure 5.23: Set of the next four error patterns (continued from Figure 5.22).

5.5 Performance of Watermark Sequences 114

are valid only for introducing a symbol error at the beginning of each frame. Further
simulations prove that according to the position within a frame the error rates vary
slightly.

It was assumed that the background error rate is 7gcrgrouna = 0.01, which is about
a hundred times higher than error rates found on real discs [47]. This assumption was
necessary to run the simulation in a reasonable time. It is believed that the introduced
error rates 7y, Mmust be changed accordingly to lower values in order to get the same
relative error frequency f. All patterns approximate f = 1; the better the correctibility,
the faster is the approximation.

The minimum of the ratio relative error frequency f to introduced error rate r £
identifies the point where it is most economical to introduce an error pattern. Differ-
ences of more than three orders of magnitude between certain patterns on their lowest
ratio points out again the fact that an optimised way for introducing watermarking
data exists. Figure 5.24 and 5.25 presents the results.

To summarise it can be postulated that putting data as part of watermarking
information in the same location in each frame is the most promising way. Some
locations though are better suited compared to others. By interleaving this pattern with
good frames, lower error rates can be achieved, still performing better than other types
of patterns. Accumulating erroneous symbols in more than two successive symbols lets

the correction rate drop.

5.5.4 Choosing non EFM-Words as Error Symbols

The basic principle of this watermarking scheme using error correction is data hiding

in certain locations rendering the specific symbol erroneous.

5.5 Performance of Watermark Sequences 115

T T T T
|]
[1]
/
]
il
11
B 4 "
o
| -
e
b ©
| -
T
b Q
=
Q
°
[13]
&
=
ke
2
| 1=
—++++ 4o
L o
FE30 -
wlma i
4+ W+ .
SI5% 0
Eal 3 1
. o . 1. 1 L. L L
[(o] o (@] o (@] o
o o o o o ~—
+ o Qo o ~—
[(}] (= o —
-~ o -
-

1 8jel Jousa paonponuy) Aouanbaly Joltae aane|a)

Figure 5.24: The relative error frequency f is standardised to the introduced symbol
error rate 7. The minimum signifies a good ratio of correctibility to information content.
Four error patterns are shown here, the next four in the next diagram, Figure 5.25.

5.5 Performance of Watermark Sequences

116

e

xt

DR EGFE

{PDF+EQF3 —x—
PDF+ESE —»—
| PDF+ESS —8—

1e+06
100000
10000
1000
100

1 9Jel Jo11d paonpoaulyy Aouanbaly 101139 aAnejal

10

0.1

0.01

introduced error rate r

Figure 5.25: Set of the next four patterns, relative error frequency f standardised to

the introduced error rate r {continved from Figure 5.24).

O

5.5 Performance of Watermark Sequences 117

It is questionable whether the error values should be restricted to valid EFM-
symbols only or whether they can include non-EFM words as well. Allowing non-EFM
symbols certainly increase the probability of failure to read a track successfully, espe-
cially in the case of a high watermark information content, due to the disruption of
the run-length-limited code. But based on the fact that the goal is to achieve only a
moderate watermark information content, it is feasible to allow for non-EFM symbols
as errors. Assuming the watermark content is detected before the EFM-conversion to
8bit symbols, the information content of one erroneous symbol is 14bits (without 3
merging bits).

A variation in correction rates is possible by carefully choosing the error symbols.
If error symbols are chosen not to be EFM-codewords, the EFM-converter reports a
possible error on this location to the error correction system by flagging this symbol
as an erasure. This increases the capability to correct this one symbol.

Choosing the error values out of all possible variations reporting valid EFM code-
words becomes unlikely. Since there are 256 valid EFM-codewords out of 16384 (2')
the difference is about 1.5% and can be neglected. The author’s opinion is, therefore,

that it is not of importance to restrict error values to non-EFM symbols.

5.5.5 Changes to the Overall Error Rate when Introducing

Watermarks

Considering an underlying noise level, the question is how much error correction capac-
ity a typical watermark pattern uses up. Therefore the author computed the output
error rates of bursty background noise only over a range of an input error rate of

rppr = 0.002...0.02 (similar to Figure 5.8 with a higher number of frames decoded

3.5 Performance of Watermark Sequences 118

symbol error rale a) —+—
symbol error rate b) ---7---

T N S

001 |-

a
2
e
5 0001 | ‘
@
=
[=R
3
0.0001 -
19_05 :.................;....................‘...._............‘......é......_.,......‘..‘

1e-06 |

1 0.1

input error rate r (background errors only)

Figure 5.26: Output error rates of background noise with varying input error rates r if
a) a regular watermark pattern is present and b) only background noise is to correct.

5.5 Performance of Watermark Sequences 119

(one million frames)). Secondly cutput error rates have been calculated but with an ad-
ditional one symbol error each frame. This obviously lowers the output error correction
rate. Figure 5.26 presents the result.

The output error rates ranging from r = 0.002...0.02 continuousty are about one
order of magnitude lower for background noise only. It is important to bring to mind
that this holds true only for the characteristic burst distribution used to model the
background noise. According to Section 5.5.2 a different noise distribution would give
a different result.

The second aspect of this outcome is how much the background noise level must be
reduced in presence of a special watermark pattern in order to obtain the same output
error correction rate. It can be seen from the diagram that lowering the noise level by

about 60%, the same output error rate is achieved.

5.5.6 Conclusions

This Chapter focussed on adding data deliberately in certain locations in the encoded
data stream in order to extract them at a later point of time before the error correction
takes place. The error-correction algorithm will then recover the original data. There
are a number of conclusions that can be drawn from this research.

First it is to be stated that the generator function for the locations matters to
a great extent. Different ways of allocating places for additional data vary in their
performance in terms of the output error rate over a range of almost three orders of
magnitude. This is unexpected, because i{ leads to the conclusion that terms like
“block error rate” or simply “error rate” on its own are not meaningful. Instead the

systematic distribution and characteristics of the errors have to be considered.

5.5 Performance of Watermark Sequences 120

Indeed these error patterns can be generated naturally by a faulty compact disc
drive. A possible scenario would be that ageing hardware components generate sys-
tematic errors. One option is that the synchronisation of frames are lost sometimes
resulting in whole frames not read correctly. The other option causes some symbol data
to be wrongly restored from the signal by the electronic circuitry, which appears to be
a random process. Clearly it can be proved that the latter would cause less trouble for
the error correction system to cope with.

Every compact disc drive makes errors in recovering the original data from the
laser signal. The effects on the error correction performance depends, according to
this work, on the type of these errors, whether they are randomly distributed or have
a more systematic nature. Errors with a very systematic behaviour (i.e. always the
first symbols in one frame are not read correctly) are therefore up to ten times more
correctable than random errors.

Naturally occurring scratches and dust on the surface of a compact disc obey a
certain density distribution. They characterise the disc in a certain way, so that the
density distribution can mean a difference to the applied watermarking patterns.

Assuming a process is supposed to introduce mostly radial scratches (wiping the
surface from the inside outwards), it becomes apparent from the results that these
scratches are not troubling the error correction as much as tangential scratches. Tan-
gential scratches are more likely to contain a higher quantity of frame errors, which
have been simulated as whole frames being erroneous, for which the error correction
system performs up to three orders of magnitude worse.

Information, encoded in surface markings, shall be unique to a compact disc, making

digital fingerprinting possible. As shown in Chapters 4.4.2 and 4.4.3 it is feasible to use

5.5 Performance of Watermark Sequences 121

two dimensional, macroscopic patterns on the disc’s surface or on the disc’s reflective
layer. It is required that the markings have the property to cause the least possible
overhead for the error correction system. Based on the simulation done in this Chapter,
an evaluation of employed patterns is possible.

The software implementation of the compact disc encoding, done in this work,
represent the basics for further research in this area. An assessment of different two
dimensional structures is possible, considering the relative frequency of basic erroneous
symbol patterns.

One of the original goals of this work focussed on creating a second embedded
data channel hidden in the error correction information. This is a desired application,
since secure physical media identifiers can be implemented in this way. Moreover this
secure channel is inaccessible to the user and thus is perfectly suitable for applications
in a DRM framework [11], like watermarking or implementation of tickets for copy-
generation management. The possibilities are numerous and open new applications in

the field of watermarking and copy protection measurements.

Chapter 6

Conclusions and Discussions

6.1 Conclusions

This work deals with compact disc technology. Due to its wide employment and up-
coming requirements in the copy protection area, the aim was to investigate the in-
troduction of techniques for ensuring the use of this technology according to copyright
standards. The basic method hereby used was the modulation of the optical laser sig-
nal due to already existing or purposely introduced variations in the reflective layer,
the surface of the compact disc or the transparent substrate.

The general idea was to increase storage capacity of a conventional compact disc
by some amount, depending on the technique, in order to be able to use this additional
space for security purposes. These can be digital watermarks, secure media identifiers
or biometrical information. It is based on the fact that the compact disc with its built-
in error-correction capability has capacity to correct also for intentional errors. About
23% of the compact disc’s raw storage capacity is reserved for error-correction data

(eight 8bit symbols over 588 channel bits). A part of this amount is then used to carry

122

6.1 Conclusions 123

additional user-data.

‘The author therefore conceived a technique by which modulations of the laser sig-
nal get mapped onto a rectangular grid, enabling further processing of the data like
searching for existent watermarks, thus identifying a compact disc uniquely.

This technique is supported by specially written software which controls the ac-
quiring of the data in an optimised way and evaluates the data with regard to stegano-
graphic information.

In a first trial an oscilloscope was employed tapping off the preamplified signal of
the laser photo detectors. It was found that even if playing the compact disc normally
without interruptions, the signal showed a lot more information in the form of signal
modulations. These signal modulations seemed to be caused by variations in the reflec-
tion and absorbency of the compact disc. This was proved by purposely introducing
distinct blemishes and covering the compact disc with small patches of opaque mate-
rial, which was successfully matched on the oscilloscope to locations on the surface of
the disc, while playing the compact disc without noticeable flaws.

In order to achieve higher resolution and to obtain an automated two-dimensional
readout of the surface of a compact disc, an apparatus was built using a conventional
compact disc reader device. The aim was to investigate compact discs for certain
existing defects and to use this knowledge for an electronic characterisation of this
disc.

During the testing phase it became apparent that each disc has its own surface
map. This is caused mainly by the existence of stationary dirt and fingerprints on the
surface of a user-handled disc. The readout system encompasses an electronic trigger

with integrated amplifier to map positions on a disc and the ADC to convert the signal

6.1 Conclusions 124

to its digital form and store it on the computer’s hard drive. The associated control
software makes a fast and accurate read-out possible. This was achieved by using
an accurate, high resolution software timer clock; the read-out task was running in a
high priority state within the operating system. Specific sector or track read-out was
established by using generic SCSI commands sent to the read-out device. Reports of
possible read-out errors like track loss or CIRC errors had been reported back to the
host computer.

The modulations of the reflected laser signal have been two-dimensionally imaged.
It was found that apart from dirt on the surface a whole lot more data about the quality
and consistency of the compact disc could be collected. The images revealed defects in
the reflective layer during disc production as well as textures in the polysubstrate layer.
The results were verified by using an optical and a scanning electron microscope. All
three images could be matched against each other. The resolution of the author’s image
capture system was determined to be in the micrometer area (15z¢m x 1.6pum). The
number of greyscale levels depends on the ADC and the properties of the image capture
system. Since there is a lot of high-frequency signal noise due to the laser refiection on
the pits and lands, which cannot be matched accurately to any position on the disc,
the number of grey levels amounts to about 100. In comparison, a computer monitor
is able to display 100 grey levels. On the other hand, this method visualises accurately
minuscule changes in the reflection coefficient of the reflective layer. Photographs taken
with the optical microscope do not reveal details of a third dimension.

In [22] the authors introduce a similar technique to visualise surfaces with compact
disc optics, although they do not rely on the laser tracking method applied in compact

disc players. The resolution gained is similar to the author’s system (4pm x 4um). The

O

6.1 Conclusions 125

captured pictures show similar properties. The need for a customised extra scanning
mechanism makes this method less prone to track loss errors, but increases the costs
for building.

Problems with the image capture include track loss and out of focus events. All
naturally occurring blemishes like human fingerprints or manufacturing errors as long as
they are reasonably distributed did not cause any problems. The image capture solution
proved to be reliable, cost-effective and easy to implement in a common compact disc
player due to few modifications necessary.

Commercial applications of a high-resolution, cost-effective apparatus to scan sur-
faces are possible. Since this technique relies on the existence of optical tracks to guide
the read-out laser, only transparent samples can be visualised. This was demonstrated
with fingerprints and surface scratches. Despite these shortcomings, the ease-of-use of
the system makes it useful for certain niche applications.

Identifying compact discs by secure physical media identifiers is a lively topic dis-
cussed with respect to copy protection enforcement measurements [11, 4]. It is the aim
of this work to suggest and evaluate watermarking and digital fingerprinting schemes
for compact discs.

A provisional implementation of watermarking a compact disc has been presented.
Two ways have been considered. Marking the surface of a compact disc with transpar-
ent blemishes modulates the surface reflectivity such that variations of the laser signal
can be recognised and processed, making detection of watermarks possible. The other
method involves puncturing the reflective layer, thus introducing accurate microscopic
blemishes. An evaluation of the effects on the player’s servo system showed that the

blemishes should be less than 100xm in diameter in order not to cause damage to the

6.1 Conclusions 126

player’s functioning. Defects down to 10um have been resolved by the author’s image
capture system - the software was able to detect these blemishes. No work in this area
has previously been published.

Detecting reflective-layer manufacturing defects, as stated earlier, provides a means
to uniquely identify a certain compact disc. The detection of manufacturing blemishes
with the author’s system was backed up by optical microscope photographs of the same
region. The research carried out in this work proves the feasibility of this technique
in terms of hardware and software solutions for future copyright management systems
[11].

Due to the fact that no crucial changes in the player’s hardware took place (same
read-out head, no additional amplifier for the reflected laser signal) it is the author’s
opinion that such a system can easily be implemented in today’s compact disc and
DVD players. Basically all the components are already present or can be added (AD
converter, trigger).

When introducing watermarks, it has to be considered that a part of the error-
correction capability is lost for restoring the original values in case of an error. Inducing
digital watermarks can be done either by mechanically puncturing the physical media
or by introducing wrong symbols in certain locations on purpose as a second data layer
of watermark information. Both methods mean lowering the ability to correct errors.

It is questionable if such watermarked discs still are in accordance with the Red
Book Standard (or other standards). Unless the artificially introduced error rate does
not exceed the limit given by a standard, such a compact disc still can be called *CD”.

This work evaluates the influence on the error correction system by executing com-

puter simulations of the compact disc encoding and decoding procedure. Possible wa-

6.1 Conclusions 127

termark patterns have been conceived and compared with regard to their correctibility
in terms of the output symbol error rate and the interpolation rate after correcting
these schemes in the presence of a characteristic background noise distribution, mod-
elling a typical user-handled disc. Optimal patterns were found and their correctibility
quantitatively determined and compared to pure background noise.

Software simulations of the compact disc encoding process give a powerful means
of assessing the behaviour of the error correction system. This work can easily be
adapted to DVD encoding. Previously published research is based on statistical eval-
uation of the compact disc’s decoding algorithm. That approach does not take fully
into account the possibly bursty nature at the input of the C2 decoder [29]. Due to
the systematic nature of additional watermarking information, either embedded in cer-
tain audio samples (symbols) or as purposefully induced defects on the actual media,
an analytical statistical evaluation is not adequate. Watermarks normally consist of
regular patterns.

A variety of possible patterns for watermarking a data streamn by inducing pur-
posely wrong symbols have been simulated. It was found that they differ in their error
correctibility. Good patterns consist of repeating groups of maximal two symbols each
new frame. It proved disadvantageous if the symbols within each frame change their
position by either having random distances or by being shifted over a frame.

Error rates increase by a factor of ten if regular one-symbol errors per frame are
introduced - other patterns further increase the overall error rates. In particular,
randomly distributed one-symbol errors weaken the error correction almost ten times
more. This is due to the likely event that two or more consecutive errors can be grouped

together by the random process. Thus, it is advantageous for induced symbol errors

6.1 Conclusions 128

to be the longest distance from each other. Then the error correction (interleaving,
scrambling, CIRC) is most effective. This pattern can be thinned out by placing
good intermediate frames in-between frames with errors. It reduces the introduced
error rate, but still imposes a minimum of burden on the error correction system
compared to other more irregular patterns. It should be noted though, that due to the
approximation of all patterns to f = 1, the differences in error rates decrease when
being thinned out. Three groups of patterns can be distinguished by their speed of
approximating the limit f = 1 (Figure 5.22, 5.23). Patterns with whole frames in
error are hard to correct (EQF1/2/3). Randomly distributed symbols and equidistant
symbols (RES,EQU) approach f = 1 faster. The optimum is achieved by regular
one-symbol errors. Research in this area has not been previously published. The
performance of the error correction system has only been assessed previously in the
case of a random error generation.

Inducing one symbol error per frame increases the output symbol error rate by a
factor of ten, as aforementioned. Since in each frame 8 symbols comprise the error
correction data, using up one symbol per frame intentionally takes 12.5% of the error
correction data and adds about 3% to the overall data capacity (user data + intentional
watermark symbols). Thus, in the optimal case of a regular pattern, the space used
for error correction data is only 20% (23% full error correction), but the error rates
increase by a factor of ten, assuming a typical user-handled disc. This result shows the
high capacity of the error correction system. In practice, a watermark pattern does
not need that much space; using every tenth frame for one intentional symbol error is
enough and would increase error rates by only approximately 1%.

Results show that the additional load on the error correction system by this optimal

6.1 Conclusions 129

pattern can be balanced by reducing the background signal noise rate by about 6%.
This means in order to get the same overall error-correction rate, the limit for the
maximal background noise to be allowed for (i.e. by a standard) must be reduced by 6%.
This result was derived in Section 5.5.5 for input error rates of about ¥ = 0.02...0.002.
The constant log-linear behaviour of both symbol error rates in Figure 5.26 suggests
that it can be extrapolated to lower introduced error rates.

For the computer simulations the author assumed a characteristic distribution of
background errors. The bursty nature of these background errors becomes obvious
if one considers the probability density function for burst errors and the intermedi-
ate good-data gap statistics. The software incorporates this fact by emulating burst
probability functions, previously published in [2], by software.

The need for considering a special type of burst distribution became obvious when
comparing error-correction rates of a two-symbol error in each frame in presence of
two different types of underlying noise distributions. Even with the same introduction
error rate r (and the same background error rate), a two-symbol error causes different
decreases of the overall error-correction rates for random noise compared to bursty
noise (refer to 5.5.2). That means, in order to get reasonable results for the loss of
correctibility due to watermarking, it makes sense to weight not only the error rate but
also the type of background noise.

The watermark patterns presented and investigated here are only a small subset of
what is possible. Especially thinning the patterns to lower the information density of a
possible watermark would be practical. This in turn would increase the computing time
needed to detect a reasonable number of errors. The background noise is also assumed

to be relatively high in order to decrease the computing time. It is the author’s belief,

6.1 Conclusions 130

though, that decreasing both, the level of background noise and the information density
of watermarks, does not have an effect on the relative error frequency f in the end (refer
to Section 5.5.1). That is, the diagram in Figure 5.22, 5.23 is valid for lower introduced
error rates, if the background noise is reduced by the same amount.

The disadvantage of computer simulations is the extensive time needed to detect
at least some errors (about 40 minimum) when the output error rate is low. Some
simulation jobs were encoding and decoding 25 million frames, which give a minimum
output error rate to reliably detect of about P = 7-1078. Using faster computers, more
time, and possibly faster algorithms this limit could be extended by at least factor 10.

This work includes also a discussion about certain error correction strategies applied
in compact disc players. The author implemented two different decoders to evaluate
their performance with regard to the special burst distribution mentioned earlier. One
of them showed an inferior performance on both, a bursty channel and a non-bursty
model.

Assessing the performance of decoder strategies with respect to a specially con-
structed error distribution has not been published previously. It is obvious that dif-
ferent kinds of error distributions cause different error-correction rates, even when the
error distributions possess the same symbol error rate. It is the form and characteristic
of the burst probability function that controls the performance of the error decoder.

The author’s work is different from other publications by incorporating the char-
acteristic error distribution of user-handled discs. Computer simulations in order to
assess the performance of CIRC decoders in this case have been published only in [29].
The authors in [29] make use of a similar error distribution, though assuming lower

error rates. Such low error rates are not practicably carried out by computer simula-

6.1 Conclusions 131

tions, therefore the author’s simulations lead to significantly higher output error rates
(about four orders of magnitude). This work, in particular and opposed to previous
work, shows over a wide range of input error rates the difference in presupposing bursty
errors of one length only [33] compared to a characteristic error distribution. The fur-
ther advantage of computer simulation is the accurate modelling of the interleaver and
scrambler. [29] assumes error at the input of the C2 decoder to be of a non-bursty,
memoryless channel, which is a simplification, especially when dealing with regular
introduced errors. Comparing the characteristic error distribution used in this work to
memoryless channel errors, the output symbol error rates in the latter case amount to
only 1% of the previous. Several publications assess only the non-bursty case (1, 28],
therefore it was crucial to carry out further research with regard to bursts of errors.

This work dealt with computer simulations to generate characteristic error distri-
butions and simulating the correction of them, using previously published algorithms
for compact disc decoding. It was necessary to carry out this research in order to
evaluate the behaviour of the error correction system in case of an introduction of
watermarking schemes for compact discs. Watermarking and digital fingerprinting in
general can help preventing copyright violations and help to take the control of the
digital data content of a compact disc back to the publisher. It was found that digital
fingerprinting methods can be implemented using either mechanical distortions in the
reflective layer (secure media identifier) or marking the data stream with intentionally
wrong symbols. Both methods worsen the overall error-correction capability and thus
it is necessary to investigate their effects. Through computer simulations carried out
in this work a quantitative evaluation was done.

It must be clarified that all watermarking technologies can only be built on a com-

6.2 Future Work 132

plete DRM framework. Applying these techniques randomly and on its own, attacks
become feasible. The success of said techniques depend also on implementing the legal
necessities. Hardware manufacturers must be forced to be compliant with next gener-
ation’s watermarking standards. If they do not comply, they will not be able to take

part in this business.

6.2 Future Work

There are a number of issues that have not been thoroughly or not at all addressed in
this work.

Digital watermarking can be applied in far more elaborate ways. It is conceivable to
hide information in the control structures of the compact disc’s frame layout. Control
words or merging bits are only two ideas. These are usually not copyable although
they could be detected easily. These measurements, as aforementioned, must all be
part of a complete DRM framework.

Other watermarking schemes to evaluate encompass altering certain audio samples
in the data stream in such a way that the audio compact disc player interpolates these
audio samples. During copying the compact disc recorder carries out interpolation and
thus introduces typical audio interpolation sequences. These sequences will stay in the
data stream, even if the disc is copied many times. By searching for certain interpo-
lated audio sequences, a compact disc player is able to detect whether a watermark is
present or not. Effects comprise a decrease in sound quality. Hi-fi enthusiasts will not
agree with this. Nevertheless, all watermarking techniques based on packing additional
information on top of the conventional data stream lower somehow the quality of the

underlying data, as shown in this work.

6.2 Future Work 133

It is possible with the author’s software to predict effects on the sound quality.
Macrovision [50] uses a similar system to defy copying a compact disc by using a
modified compact disc encoder, deliberately introducing potentially bad samples in
certain positions, which produces spoiled audio tracks after copying [30].

Surface images captured by the author’s experimental system can be processed
by a technique, so-called deblurring. The deblurring algorithm takes into account
the overlap of the surface laser spot when sampling adjacent points. Applying this

technique, a gain in captured image quality can be expected.

Appendix A

Theory of Reed-Solomon Encoding

and Decoding for Compact Discs

A.1 Galois-field Arithmetic and Basics of ECC

The mathematical properties of linear block codes and in particular BCH codes can
be best understood by describing codewords with polynomials. The coefficients of the
polynomials are drawn from a special set of elements, the Galois field.

Briefly, a Galois field GF is defined to have multiplication and addition form a
commutative group; multiplication is distributive over addition and there are a finite
number of elements in that field. Elements of a Galois field can be represented in
polynomial form or in power representation.

The computation of codes therefore has to be executed using Galois field arithmetic,
which the software has implemented.

Since 8-bit symbols are employed as smallest unit in the en-/decoding process, the

coefficients of the polynomials are drawn from the extension field GF(2%) of GF(2).

134

A.1 Galois-field Arithmetic and Basics of ECC 135

Elements are represented by their power form in unsigned char.

Multiplication is implemented in a function by using the power representation, ad-
dition needs the elements to be converted to polynomial representation and back. In
order to save computer cycles during addition, an alternative, known as Zech loga-

rithms, is employed. Defining

a?™M =" 41 (A.1)

the sum of two elements in power representation can be written as:

a+a”" =a™(a""+1) = amafin=m) = pZ(n—m)+m (A.2)

Adding two elements is done by means of the Zech table Z(n), which the constructor
of the RS class generates beforehand. In order to fill the Zech table, both forms, the
polynomial and the power representation, must be hold in lookup tables. The primitive
polynomial

plx) =28 + 2t + 2% + 22 + 1 (A.3)

with coeflicients from the ground field GF(2) is used to generate the extension field
GF(2%) in potynomial form according to the Standard [6].
The generator polynomial g(z) of a primitive t-error correcting Reed-Solomon code

of length 2™ — 1 can be written as:

gz)=(z+a)(z+a?) - (z+a%) (A.4)

with a being a primitive element in GF(2™).

A.2 Cyclic Code Encoding 136

The generator polynomial g(z) is formed by the constructor of the RS class by a

fast implementation with a minimum of multiplication using Galois field arithmetic.

A.2 Cyclic Code Encoding

Reed-Solomon codes form an important subclass of cyclic codes. Encoding of cyclic
codes can implemented easily by employing shift registers with feedback connections.

The encoding of cyclic codes in systematic form is based on the following equation:

v(X) = X" Fu(X) + b(X) (A.5)

with: v(X) : code polynomial
u(X) : message polynomial
b(X) : remainder of ’\—ng%i)

g(X) : generator polynomial

It yields to an (n, k) cyclic-code vector in systematic form consisting of n—k parity check
digits (bg, by, ..., bp—k~1) followed by k unaltered information digits (uo, u1,...,ux-1).

The encoding is implemented as a division circuit, which is a linear shift register
with feedback connections based on the generator polynomial g(z) [51].

Two Reed-Solomon encoding stages, using the same set of parametrised functions,
are employed, separated by a cross-interleaver in-between them. The outer decoder
is a (28,24) double-error-correcting shortened Reed-Solomon Code of d,;, = 5 and
the inner decoder is a (32,28) double-error-correcting shortened Reed-Solomon Code

of dpin = 5, both over GF(28) (refer to Figure 3.6).

A.3 Reed-Solomon Syndrome Decoding 137

A.3 Reed-Solomon Syndrome Decoding

This Section outlines the decoding schema employed for a Reed-Solomon Code.
The aim in decoding an error correction code is to find the most likely error pattern
for a given received code word. The procedure used here can be described as syndrome

decoding and is summarised for the nonbinary case as follows:

1. Calculate the syndrome values S,k =0,...,2¢.

2. Determine the error-locator polynomial A(z) from the syndrome values, using

the Berlekamp-Massey algorithm [52, 53], modified for erasures.

3. Solve for roots of A(z), which are the error locators, using the Chien search

algorithm [54].

4. Given the error locators, calculate the error values, using the Fourney-algorithm

[55).
The syndromes Sy, are calculated first by evaluating the received code pattern r(z) =
c(z) + e(z) at the roots o* of the generator polynomial g(x), with e(z) being the error
pattern and c(z) the original code word:

Sy =r(c*)=e(a*), k=0,... 2 (A.6)

The implementation uses a convenient way to evaluate Sj:

Sk ={-[(raci0® + Tno2)a® + Tn-—3]ak + Yo + 1 (A7)

Introducing error magnitudes ¥; = e; and the error location numbers X, = o,

A.3 Reed-Solomon Syndrome Decoding 138

where ¢; is the actual location of the Ith error ({ = 1...», v: number of errors), a set

of 2¢ simultaneous equations for the syndromes can be written down:

Se=VXF4VoXE 4wV XE k=1,....2 (A.8)

This nonlinear set of equations is solved with the help of a error-location polynomial
A(z) which is defined as a polynomial having the roots at the inverse error locations
X7'. Tt leads to the following set of equations, which can be solved for the coefficients

A], !\2, ceey 1\,,.

1\18j+,,_| + A‘ZSJ‘.{._U_Q +---4+ L,,SJ' = —Sj+,,, i1=1,...,v (Ag)

In order to solve above equation avoiding matrix inversion, which is computationally
inefficient, an algorithm, conceived independently by Berlekamp and Massey (52, 53],
is employed. The algorithm attempts to build-up a linear feedback shift register with
a lowest degree connection polynomial that generates the syndrome Si. The algorithm
is described in [56, 57] and implemented in the RSDecoder class with the function
berlekamp().

[t is a slightly modified version to embrace the erasure words at the input of the
decoder, giving known error locations beforehand. The theory behind it was suggested
by Fourney [35]. It is based on defining an erasure-locator polynomial ¢’(z), which
leads to modified syndrome values. The computation is done in the first loop of the
revised berlekamp algorithm, according to [57].

Having found the coefficients of the locator polynomial A(z), a method suggested

by Chien [54] is applied in order to find the roots of the polynomial which give the

A.3 Reed-Solomon Syndrome Decoding 139

error location numbers X; {[51)). The implementation is done in chien_search().
Solving equation A.8 for the error magnitudes ¥}, a second matrix inversion is

avoided by using Fourney’s algorithm [55). The function correct.with_fourney() does

exactly this with additionally correcting the received code vector r(z) at the know error

locators X,.

Appendix B

Software Listings

B.1 Control Software for the Experimental Appa-

ratus

adget .c
Copyright Kay Rydyger

control program for SCSI player and data acquisition.

ginclude <gtdio.h>
8include <stdlib.h>
8include <unistd.h>
8include <termios.h>
tinclude <sys/time.h>
2include <sys/vait.h>
tinclude <sys/types.h>
8include <sys/stat.h>
8include <sched.h>
8include <signal.h>
tinclude <sys/types.h>
ginclude <sys/stat.h>
Binclude <fcntl.h>
#include <string.h>
ginclude <errno.h>
#include <stdarg.h>
8include <scsi/sg.h>
#include <linux/cdrom.h>
ginclude <malloc.h>

/*

conpile with

gee -02 adget.c ../scsifreadinc.¢ ../scsi/sg_err.c -o adget
*/

8define BLOCK_SIZE 2048

140

B.1 Control Software for the Experimental Apparatus 141

g¢define BLOCKS 1

t¢ifdef SG_GET_RESERVED_SIZE

8define BLOCKS_PER_WBUFF 32 /+ this implies 64 KByte working buffer s/
Solse

8define BLOCKS_PER_WBUFF (SG_BIG_BUFF / BLOCK_SIZE)} /+ probably 32KB s/
Sendif

// 8define SG_DEBUG
8define SG_DD_MAX_RETRIES 4

8define SG_HEAD_SZ sizeof(struct sg_header)
8define SCSI_CMD10_LEN 10
8define READ_CAP_DATA_LEN 8

8define PCXBASE 0x210

8define ADLOWBYTE PCXBASE+4
8define ADHIGHBYTE PCXBASE+S
8define DIGIIN PCXBASE+6
8define GAIN PCXBASE+9

g8define CHANNEL PCXBASE+10
g8define TRIGGERMODE PCXBASE+11
8dafine TRIGGER PCXBASE+i2

8define MAXPTS 1000000
8define MAXLOOPS (MAXPTS<<1)

gdefine BIO (1<<Q)
#define BI1 (1<<1)
g8define BI2 (1<¢<2)
gdefine BI3 (1<<3)
g8define BI4 (1<<4)
#define BIS (1<<5)
8define BIS {(1<<86)
8define BI7 (1<<7)
2define BIB (1<<8)
tdefine BI9 (1¢<9)
#define BI10 (1<<10)
8define BIt1 (1<<11)
sdefine BI12 (1<<12)
#define BI13 (1<<13)
#8define BI14 (1<<14)
#define BI15 (1<<15)

//8define DEBUG (BI3|BI4|BIGIBI9|BI12)
tdefine LOG(loglevel,a) if { loglevel & debuglevel) if (timestamps) {printf("%lf: ",get_us()/1e6); printf a; £

static int pid,status,fdbin;

static int endmark=123456789, tracks, interval=2; // 2 microsaconds
static char digi[MAXLOOPS), accuData[MAXLOOPS];

static FILE =fp;

static struct timespec time_to_sleep;

static realtime_sched=0, usescsicrd=0, audiocd=0, revolutions=20000;
static int sta::ing_track=1.ending_track=1,timestamps=0,debuglevel=8191;
static int dontstartshell=0;

FILE *fpEClog;

int fdlog;

extern char =+environ;

double get_us(void)

{

struct timeval tv;

struct timezone tz;

tz.tz_pinuteswest=5;

getticeofday(&tv,btz);

return (double)tv.tv_sec * le6 + tv.tv_usec:
}

static inline void outb(short port, char val)

{

B.1 Control Software for the Experimental Apparatus 142

ioperm(port, 1, 1);

--asn__ volatile ("out%BO %0,%1" : :"a“ (val), "d“ (port));
}
static inline unsigned char inb(short port)
{
unsigned iat ret;
ioperm(port, 1, 1);
--asm__ velatile ("in¥%BO %1,%0" : "=a" (ret) : "d" (port));
return ret;
}
void init_AD(void)
{
outb(TRIGGERMODE, 1); /+ enable softvare trigger +/
outb(GAIN, 2); /+ 2: get gain to +/-2.5V kein 1.25V! durch Ausprobieren gefunden +/
outb(CHANHEL, O }; /* set channel to 0 */
}
FA
void sg_start_unit{int fd)
{}
./
void wait_for_trigger(void)
{
int h;
vhile ((h=inb{ DIGIIN)&(char)l) == 1);
vhile ((h=inb{ DIGIIN J&1) == 0);
}
int start_accumulation(double stime)
{
int counter,h, sectors;
char +digiptr = digi;
double time_used_us, startl, stopl, used_us_per_count;
counter=0;
startl = get_us();
LOG(BI3, ("~ starting capturing - revolutions: %d\n", tracks));
while (counter < MAXPTS)
{
counter++;
b = inb(DIGIIN);
if ((h&(char)l) == 0) break;
outb(TRIGGER,0);
/e

LOW byte first if we use perl's "unpack s,.."
define SWAP_BYTES in X.c, for this case

«/
*digiptr++ = inb(ADLOWBYTE);
+*digiptr++ = inb(ADHIGHBYTE);
/e

h = inb(DIGIIN);
it ((h&(char)i) == 0) break;
«/
if (realtime_sched)
nanosleep(&time_to_sleep,NULL);
}
stopl = get_us();
tice_used_us = (stopl - starti):
LOG(BI3, ("--- stopped capturing - time X1f s, number of samples ¥d\n”,
tice_used_us/lef, counter));

it (counter >= MAXPTS)

{
LOG(BI6,("CD stopped!\n™));
write(fdbin, &endmark, sizeof(int));
exit(2);
}
if (counter != Q)
used_us_per_count = tirce_used_us / counter;
else {

used_us_per_count=0;

B.1 Control Software for the Experimental Apparatus

143

time_used_us=0;

}

LOG(BI3, ("average time per sample interval %1lf us\n",used_us_per_count));

sectors = time_used_us * 75 / 1eb;
LOG(BIS, ("Sectors : %d\n",sectors)):
17 fflush(stdout);
*time = time_used_us;
return counter<<l;
/* return number of bytes =/

}

void binary_save(char *begin_buf, int count)
{
write(fdbin,&count,sizeof(int));
write(fdbin,begin_buf,count);

}
double average(double med, double new)
{
static int N=0, Ni=1;
He+ Hl++;
return N/(float)N1 = med + 1/(float)ii = new;
}

int main_acquisition_leop(int revs)

{
int ¢, rev_lest;
double med_time_used, time_ges=0, time_used;
while { tracks++ < revs)
{
wait_for_trigger();
¢ = start_accumulation(&time_used);
if (time_used !'= 0)
{
if (tracks==1) ped_time_used = time_used;
if (time_used > med_time_used ¢ 1.7)
{
int i;
rev_lost = (int) (time_used/ced_time_used +.5);
LOG(BI9,("aync lost %d times\n",rev_lost));
tracks += (rev_lost-1);
for (i=0; id<rev_lost; i++)
binary_save(digi+c/rev_lostei,c/rev_lost);
17 binary_save(digi+(c>>1),e>>1);
}
else
{
med_tire_used=average(med_time_used,time_used);
binary. save(digi,c);
}
time_ges += time_used;
}
else tracks--;
/1 LOG(BI3,("average tize: ¥1f s\n",smed_time_used/ie6));
}
return tice_ges;
}

void save_data(int c)
{
int i=0, value;
LOG(BI3,("..saving data\n"));
while (i<e)
{
value = digi(i); i+e;
value += (digi(iJ<<8); i++;

B.1 Control Software for the Experimental Apparatus 144

fprintf (fp,"%d\n",value);

}
}
void interrupt_handler(int sig)
{
LOG(BI9, ("\nInterrupt Signal caught at track %d .. exiting!\n\n",tracks));
write(fdbin, &endmark, sizeof(int) };
kill(pid,8); /+ die, son ! «/
vait{&status);
fclose(fp);
close(fdbin);
{1/ axit (0);
}
void sigchild_handler(int sig)
{
LOG{BI9,("pid: %d, child died !\n\n exiting at track %d\n",pid,tracks));
write(fdbin, &endmark, sizeof(int));
vait(&status);
fclose(fp);
close(fdbin);
; axit (0);
}
void display_usage(void)
{
printf("adget [-o outputfile | -b 8 | -8 | -r | =a | -v & | -1 logfile | -p 8 | -t & 8] -D device | -L
printf(" -s : scsi commands, -r : realtime scheduling, -a : audio CD, -b : begin_block, -v : revelution
printf(" default: -o adbin.dat -v 20000 -p 2 -t 1 1 -1 logAD.txt -D /dev/sg0 -b 0 -L 8192\n");
}

int main(int argc, char ssargv)
{
int i,interval _set=0, starting_set=0;
int begin_block=0;
double time_ges, program start_time, prograc_stop_time;
struct sched_param sched;
char Outputf[32]="adbin.dat", logfile[32]="logAD.txt";
char Devicel32]="/dev/sg0";
struct atat statbuf;

for(i=i;icarge;i++)
{

it (argv(i}[0)==’'-")

{

switch (argv[il[1]) {
case ’D’:
if (++icarge)
strncpy(Device, argv(il,32);

else
{
printf("vrong argument mnear \"-D\"\n\n");
exit(1);
}
break;
case ’o':

if (++icarge)
strocpy{Cutputf, argv(i],32);

else
{
printf("vrong argument near \"-o\"\o\n");
exit(1);
}
break;
case 'l’:

if (++i<argec)
strocpy(logfile, argv(il,32);
else

{
printf("wrong argument near \"-1\"\n\n");

B.1 Control Software for the Experimental Apparatus

} else {

}
break;

exit(1);

case 's’: usescsicmdsl;

break;

case 'a’: audiocd=1;

break;

case 'r’: realtime_sched=1;

break;

case 'T’: timestamps=1;

break;

case 'n': dontstartshell=l;

brealk;

case 'h’: display_usage();

exit(0);
case 'p’:

{

}
break;
case 'b’:

if (++i<arge)

interval = atoiargv{il);
interval_set=1;

printf("wrong argument near \"-p\"\n\n");

exit(1);

if (++i<arge)

else

{

}
break;

case 'v’':

begin_block = atoi(argv{i]);

printf(“vrong argument near \"-b\"\n\n");

exit(1);

if (++i<argec)

else

{

}
break;
case 't’:

revolutions = atoilargv(il);

printf(“vrong argument near \"-v\"\m\n");

exit(1);

if (++i<argc-1 &k argvii+i][0]}!='-’)

break:
case 'L’:

starting_setel;
starting_track = atoi(argv(il);
ending_track = atoi(argv(++il);

printf("vrong argument pear \"-t\"\o\n");

exit(1);

if (++i<argec)

else

{

}
break;

default: printf("wrong argument near %s\n\n",argv(il);

exit(1);

debuglevel = atoi(argv[il);

printf("vrong argument near \"-L\"\n\n");

exit(1);

B.1 Control Software for the Experimental Apparatus 146

printf("vrong argument near ¥s\n\n",argv[il);

exit(1);
}
}
if (interval_set &% !realtime_sched)
{
printf("setting interval without realtime scheduling doesn’t make sense!\n\n");
exit(1);
}
if (starting_set k& laudiocd &% 'usescsicmd)
{ .
printf("setting starting and end track requires either -a or -s\n");
exit{1);
}

if {(fp=fopen(“ad.dat","w")) == NULL) {
perror{“fopen");

exit(1);
}
if ((fdbin = creat(Outputf,0777)) == -1)
{
perror{"creat");
exit(1l);
}

/! fchown(fd,1000,1000);
signal (SIGINT, interrupt_handler);
s8ignal (SIGCHLD, sigchild_handler);
init_AD();

if (realtime_sched)

{
time_to_sleep.tv_sec=0;
time_to_sleep.tv_nsec=intervals1000;
sched.sched_priority = 30;
sched_setscheduler(0, SCHED_RR, Eksched);
LOG(BI6, ("\nrunning process changed to SCHED_RR scheduling!\n\a"));
if (‘dontstartshell) {
if ((pid = fork()) < 0)
{
perror(“fork");
exit(1);
}
if (pid==0) // Sohn!
{
char *argv[4];
printf("atarting shell\n\n");
ached.sched _priority = 95;
asched_setscheduler(0, SCHED_RR, &sched):
systen(”/bin/bash");
exit(0);
}
}
fdlog = open(logfile, O_RDWR | O_CREAT | O_TRUNC);
if (fdlog < 0) LOG(BI12,{"error opening logfila %s,%d\n",logfile,fdlog));
if (dup2(fdlog,1) < 0) LOG(BI12,("error duplicating fd %d to 1\n",fdlog));
if (dup2(fdlog,2) < 0) LOG(BI12,("error duplicating fd %d to 2\n",fdlog)};
if (close(fdlog) < 0)
LOG(BIt2, ("error closing logfile ¥%s,fd ¥d\n",logfile,fdlog));
}
tracks=0;

if (taudioed)
if ((pid = fork()) < 0)
{
perror("fork");
exit(1);

B.1 Control Software for the Experimental Apparatus 147

if (!audiocd && pid==0) /+ Sohn */ // Data CD section
{

if (usescaiemd)

{

int fd,n,ret;
char EClogf[32)="EClog.dat";

unsigned char ¢wrkBuff= malloc{SG_HEAD_SZ + SCSI_CMD1Q_LEN +
(BLOCK_SIZE = BLOCKS));
fd = open(Device, O_RDWR):
if (fd < Q)
{
perror{"open");
exit(1);
}

tpEClog = fopen(EClogf,"w");

it (fpEClog == NULL)

{
LOG(BI12,("error in fopen %s\n",argv(2]));
perror(“fopen");
exit(1);

}

if (0 == wrkBuff) {
LOG(BI12,("can’t alloc mem for wrkBuf\n"));
perror("malloc");
exit(1);

}

for {n=begin_block; ;n+=BLOCKS)
{
LOG(BI4, (" -- accessing sector %d\n",n));
1 fflush(fpEClog); fflush(stdout);
ret = sg_read(fd,vrkBuff,BLOCKS,n):

}
fclose(fpEClog);
exit(2);

}
else {

/* no SCSI raad */
char buf [2048);
int fd, ret,sector;
if ((£d = open{ Device, O_RDONLY | O_NONBLOCK)) < 0) {
perror("scsi_open”);
exit(1);
}
17/ lseek(fd, 1100000, SEEK_SET);

for (sector=0;;sector++) {
ret = read{fd,buf,sizeof(buf));
if (ret < 0) {
LOG(BI12,("read error ¥s\nskipping...\a",
strarror(errmo)});
lseek{fd,2048+200,SEEK_CUR);

}
}
}
}
if (audiocd) // Audio CD section

int fd,ret;

B.1 Control Software for the Experimental Apparatus 148

1/

}

program_

char EClogf[321="EClog.dat";

unsigned char surkBuff= malloc(SG_HEAD SZ + SCSI_CMDIO_LEN +
{BLOCK_SIZE = BLOCKS));
fd = open(Device, O_RDWR);

if (fd < 0)

{
perror("open");
exit(1);

}

fpEClog = fopen(EClogf,“w");
it (£pEClog == NULL)

{
LOG(BI12,("error in fopen ¥s\n",ergv[21));
perror(“"fopen");
exit(1);

}

if (0 == wurkBuff) {
LOG(BI12,("can’t alloc men for wrkBuf\n"));
perror("malloc”);

return 1;
}
if { usescsicnd)
{

sg._start_unit(fd,wrkBuff);

ret = sg_play_audio{fd,vrkBuff,starting_track,ending_track);
}
else
{

LOG(BI9, (“varning: not using s¢si commands, CD player must be started vith independant
}

start_time = get_us();

time _ges = main_acquisition_loop(revolutions);
write(fdbin, Rkendmark, sizeof{int));

program_

LOG(B13,
LOG(BI3,

stop_time = get_us();

("average time per count: %f s\n",time_ges/tracks/l1e6));
("total time used: %f s\n\n",
(pregram_stop_time-program_start_time)/1le6));

close(fdbin);
fclose(fp);

if (kill(pid,9) < 0)

{

}

LOG(BI12,("kill error pid ¥%d\a",pid));
perror{"kill");

/* not reached ! »/

exit(0);

B.2 Simulation Software for Compact Disc Channel Modelling 149

B.2 Simulation Software for Compact Disc Channel

Modelling

B.2.1 Flowchart of the Encoder and Decoder Program

Figure B.1 and B.2 show a schematic view of the workflow of both the encoder and
decoder. The main methods for each class, as well as each class is listed and classified
by where the functions are called from and whether they are public or protected class
members. Inheritance between classes is shown as well. A short description about every
class is included. All classes and functions can be found in the following listing (B.2.2).
Further information, in particular about Reed-Solomon encoding and decoding, is given

in Appendix A, in Section 3.3 the software implementation is discussed.

B.2.2 Program listing

* nain.cc
* Copyright Kay Rydyger

* main program for channel simulation
¢/

ginclude "defs.h"
8include "classes.h”

¢include <unistd.h>
2include <time.h>

static char cvsid{]}="81d: listings.tex,v 1.4 2002/05/19 11:58:11 kay Exp $";

8define MINBURSTFR 13
¢define MAXBURSTFR 250
#include "patterns.h"

int frame, MaxFrame=3000;

static int gaps=0, bursts=0, gap_GPC_wide=3, burst_GPC_vide=3;
static int frame_offset=0;

static void makeFramebad(inte, inte);

static int orgFrame(FC1SZBCW];

static int frpat[100];

static int podified_symbols=Q, not_modified_symbols=0;

static int modified_symbols _PDF=0, not_rodified_symbols_PDF=0;
static int intro_symbols=0, ok_symbols=0;

static int overall_errers=0, overall_not_errors=0;

static float BER=0.001, thinning=1; // default BER, thinning
static time_t starttine;

void introducePDFBursts(int “Frame, Random *rnd, float thinning)

‘o1pne (J0) 10} uorejuswaduw] I1opPodUI [FUURYD AY) JO MBYIMO[] :1'g 2InSt]

EFM class

routines for EFM-
en/decoding, incl.EFM table

MAIN program

contrel program

-> main()

-> TrafoTQEFM({) :public

-=-> tO_NRZI():prot

--> add_merg.._bits{) :prot
--> calc_DSV{) :prot

weende base class of class pointed to

———= calls methods from class pointed to

-2

-->

methods called from other class
methods used by this class

ENCODE class

main encoding procedures incl.

scrambling and interleaving

-> oneFrame() :public

RSENCODE class

general routines for
RS encoding

-> RSEncede() :public
--> do_encode() :prot

RS class

Galois-field arithmetic
functions

-> Gmul (), Gadd():prot
--» init_lookup.. () :prot
--> gen.._poly..{):prot

BU![[GPOW [euueyD Is1J 'JD'EleOD 10} alemljog uonyenullg z'gq

0¢t

Z ¢ amSig

pne (0 10j uoijejuawardwur 13poJap [dUURYD I} JO 1IRYIMO[]

"0l

RANDOM class

random number generators

-» burst_lengthd{}:public
-> gap_length{}:public
-> rnd_rand():public

MAIN program

control program: calls
en/deceding procedures,
introduces errors

-» maln()
--> introduce..errors()

l

Cl class

Raed-Sclomon €l (inner} decoder

-> ClDecoded{) :public

--> do_decode_atrat2 () :prot

--» do_decodo_ntratd(}:prot

--> chien_search():prot

--> correct_with_fourney() :prot

EFM class

routines for EFM-
en/decoding, incl.EFM table

-> TrafoFromEFM{) :public
--> from_NRZI():prot

DECODE class

main decoding procedures incl.

scrambling and deinterleaving

-> oneFrame(}:public

RSDECODE class

general routines. for
RS decoding

RS class

Galois-ficld aricthmetic

functions

-> get_syndromesl_2t():prot [| =-> Gadd(). Gmul():prot

-> berlekamp{) :prot [l -> Gdiv(). Gpow():prot
--> init_lookup..():prot
-=> gen, . _poly..(}):prot

* base class of class pointed to

—+ calls methods from class pointed to

-> methods called from other class

--> methods used by this class

C2 class
Reed-Solomon C2 fouter) decoder

-» C2DRecode(} :public

--> do_decode_strat2(}:prot

=-=> do_decode_atracd () :prot

-=> chien_pcarch{}:prot

--» correct_with_fourney{}:prot

Sul[jepoly [puuey) sy 19edwoy) 10j aIeMIJOS UCIIB[NWIS Z°¢

161

B.2 Simulation Software for Compact Disc Channel Modelling 152

int i;

static int gap_cnt = rnd->gep_rnd_length(thinning), burst_cat = 0;
static int burst = 0, gap = 1;

for (i=0;i<FC1SZBCW;i++)
/=
sync bits not chosen!
CH counted because possible scratches have effect on CW, too
3% difference
74
{
if (burst)
{
modified_symbola_PDF++;
burst_cnt--;
Frame[i] = rnd->rnd_rand(maxfti4);
if (!'burst_cnt)
{
gap.cnt = rnd->gap_rnd_length3(thinning};
gaps++; gap=i; burst=0;

}
elase if (gap)

not_nodified_symbols_PDF++;
gap.cnt--;
if (‘gap_cnt)
{
burst_cnt = rnd->burat_rnd. length4();
burst=1; gap=0; burstg++;

}

}

veid introduceEquidistantErrors(Random »rnd, Decode *de, int distance)

{
/* controlled by option -g (gap.GPC_uide) <-> do not use with intreduceGPCErrors() +/
int i;
static int z=0;

it (frame>120)
for (i=1;i<FC1SZBCH;i++,z++)

it (z % distance == Q)

{
de->inputFrame[i] = 0;
intro_symbols++;
z=0;

}

else ok_symbols++;
}

void introduceErrorSequence({Random »*rnd,Decode +de, int many, int fr_off)

{
/* controlled by option -g (gap_GPC_wide) <-> do not use with introduceGPCErrors() »/
int i;
if (frame>120)

for (i=1;i<FC1SZBCW;i++)
it (i >= fr_off+1 &k i < fr_off+many+1)
{
de->inputFrama(i] = 0;
intro_symbols++;
}

else ok_symbols++;

}

void introduceErrorSequenceShifted(Randoo *rnd,Decode *de, int Dany)

{

/+ controlled by option -g (gap_GPC_vide) <-> do not use with introduceGPCErrors() s/
static int shift=0;
int i;

B.2 Simulation Software for Compact Disc Channel Modelling

153

if (frame>120)
B
if (shift>(FC1SZB-many)) shift=0;
for (i=1;i<FC1SZBCW;i++)
if (i >= shift &2 i < shift+many)
{
de->inputFrane[i] = 0;
intro_symbols++;
}
else ok_symbolst+;
shift++;
}
}

veid introduceErrorGroups{Random *rnd,Decods *de, int many)

{
/% controlled by option -g (gap_GPC_wide) <-> do not use with introduceGPCErrors()
int 2=0, i, v=30/(int}({many-2)/{float)2+1.5)+1;

if (frame>120Q)
{
for (i=1;i<FC1SZBCW;i++)
if ((idv==0 || i%v==1) && z2<zmany)
{

de->inputFrame[i] = 0;
intro_symbols++;
Z++;

}

else ok_symbols++;
}

void introduceRandomErrorSymbols(Random #rnd, Decode *de, int width)
{
int i;
static int gap_cnt=0;
if (frame>120}
{
for (i=0;i<FC1SZB;i++)
{
if ('gap_cnt--)
{
de->inputFrame[i] = 0;
intro_symbols++;
gap._cnt = rad->rnd_randfast(width);

else ok_symbols++;

}
}

veid introduceGPCErrors(int »Frame, GPC =gpc, Random »rnd)

{
int i, vide=2;
static int gap_cnt = gpc—)gap_gpc_length(rnd.gap_GPC_uide), burst_cnt = 0;
static int burst = 0, gap = 1;

for (i=0;i<FC1SZBCW;i++) // sync bits not chosen!
{
if (burst)
{

redified_symbols++;

burst_cnt--;

Frame[i]-=3;

if ('burst_cot)

{
gap_cnt = gpc->gap._gpc.length(rnd,gap GPC_vide);
if (gap_cnt==0) gap_cnt++;
gap=1; burst=0;
printf("GPC:frame %d gep length id nr of frames ¥%d\n",
frame,gap_cnt,gap_cnt/33+1);

continue;

»/

B.2 Simulation Software for Compact Disc Channel Modelling 154

}
if (gap)
{

not_modified_symbols++;
gap_cnt--;
if (!gap_cnt)
{
burst_cnt = gpc->burst_gpc_length(rnd,burst_GPC_wide);
burst=1; gap=0;
printf("GPC:frame %d burst length /d nr of frames id\n",
fraze,burst_cnt,burst_cnt/33+1);

}

void introduceRandemErrors(Random »rnd, Decode *de, int random_part)
{

int i,zufall;

if (frame>120)
for (i=0;i<FC1SZB;i++)
if (rnd->rnd_rand{BERFACTOR) < random_part) {
de->inputFrame[i] = 0;
modified_symbola++;
}

else not_nodified_symbols++;

}
void introduceDoubleRandomErrors(Random *rnd, Decode ¢de, int random_part)
{

int i;

if (frame>120)
for (i=0;i<FC1SZB;i++)
if (rnd->rnd_rand(BERFACTOR) < random_part) {

de->inputFrame{i] = rand->rnd_rand(maxft14);

modified_symbols++;

if {i<FC152B-1) {
de->inputFraze[++i] = rnd->rnd_rand(maxfti4);
podified_symbols++;

}
}
e¢lse not_modified_symbols++;
}
void intreduceTripleRandomErrors(Randon +rnd, Decode *¢de, int randon_part)
{
int i;

if (frame>120)
for (i=0;i<FC1SZB;i++)
if (rnd->rnd_rand(BERFACTOR) < random_part) {
de->inputFrane[i]l = rnd->rnd_rand{maxfti4d);
nodified_symbols++;
if (i<FC15ZB-1) {
de->inputFrame[++i]
modified_symbols++;
}
if (i<FC1SZB-1) {
de->inputFrame(++i] = rnd->rnd_rand(rwaxftiq);
modified_symbols++;
}

rrd->rnd_rand(maxfti14);

}
else not_modified_symbols++;

)

void introduceFrameError(int *Frame,int *pat, int distance)
{

int i;

if (frarce¥(distance+i)==0)

{
for (i=0;i<FC1SZBCW;i++)
if (patli])
{

B.2 Simulation Software for Compact Disc Channel Modelling 155

Frame[i])="FILLBYTE;
intro_symbols++;
}
else ok_symbols++;
}
else ok_symbols+=FC1SZBCW;
}

void accumulate_overall_errors(int +copy,int sorig)
{
int i,
if (frame>120)
for (i=0;i<FC1SZB;i++)
if (copylil!=orig(il)
overall _errors++;
else
overall_not_errorg++;

}
void makeFramebad(int *Frame,int +pat)
{

int i;

for (i=0;i<FC1SZBCW;i++)
if (pat(i])

{
Frame[i]="FILLBYTE;
intro_sycbols++;
}
else ok_symbols++;
}
void introduceOneBurstError(int »Frame, int framestart, int frameend, int +pat)
{
if (frame »>= framestart && frace < frameend)
makeFranebad(Frame,pat);
}
void setFramecontents(union Frame *in,char f£ill)
{
int j;
for (j=0;j<sizeof(*in);j++)
in->byte(j] = f£ill;
}
void testmaxBurst(int pnu, int strat)
{
int burstframes;
Decode sDe;
for (burstfraces=MINBURSTFR; burstframes<MAXBURSTFR; burstframes++)
{
INFO(4,("testing burst of %d frames\n",burstframes));
De = new Decode(strat);
for (frame=0; frame<MaxFrame; frame++)
{
memcpy(De->inputFrame,orgFrame,FC15ZBCH*gizeof (int));
introduceOneBurstError(De->inputFrame, 200, 200+burstfrarces, patternfpnu});
De->oneFrace();
if (frame>109 && De->modified())
{
printf("testmaxBurst: error detected in frame %d: max. burstlength = %d frames in
return;
}
}
delete De;
}
if (burstframes == MAXBURSTFR) printf("burstframes=¥d! might be longer..\n",HMAXBURSTFR);
}

void testFramepattern(int strat)
{
int burstfr=0, i=0;
Decode »De;

B.2 Simulation Software for Compact Disc Channel Modelling 156

De = nev Decode(strat);

for (frame=0; frame<MaxFrare; fraze++)

{
rmemcpy(De->inputFraze,orgFrame,FC15ZBCHesizeof (int));
if (frame >= 115)
{
if (burstfr == frpat(i])
{
i++; burstfr=0;
}
burstfr++;
if (i%2==0 && frpat(i]!=0)
makeFrazebad (De~>inputFrame,pattarn[0]);
}
De->oneFrame();
if (frame >= 115 &% De->modified())
{
printf("testFramepattern: error detected in frame %d, i={d, burstfr=¥d\n",frame,i,burstfr);
return;
}
}
delete De;

}

void check_decoding_framwe_result{(BYTE+ framebytes,
BYTE+ erabytes,
struct Error_kinds »erzs)

int i, left;

static int symb_counter_dec=240;

static int eras_in_seq(2]={0,0}, errs_not_eras_in_seq(2]={0,0},
errs_in_seq(2]={0,0};

if (fraze>120)
for (i=0;i<FSZB;i++,symb_counter_dec++)
{

left=i%2;

errs->bytes_chacked++;

if (erabytes[i]) {
eras_in_seq[left])++;
it (framebytes([i) != (unsigned char) symb_counter_dec) errs->Pll++;
else arrs->P01++;

>

else {
it (eras_in_seq{left]l==1lleras_in_seq[left)==2) {

errs->interpolated_eras++;

}
eras_in_seq[left]=0;
if (framebytes(i) != (unsigned char) symb_counter_dec) errs->P10++;
else errs->P00++;
}
if (framebytes[i] !'= (unsigned char) symb_counter_dec) {

INFO(1,("byte %d modified in frame }d\n",i,frame));
errs->single_errors++;
errs_in_seq[left]++;
}
else
if (errs_in_seq[left]) {
errs=>error_clicks++;
errs_in_seq(left]=0;
}
if (framebytes[i] != (unsigned char) symb_counter_dec &&
terabytes[i])} // miscorrection ?7
errs_not_eras_in_seq[left]}++;
alse
if (errs_not_eras_in_seq[left]) {
errs->errs_not_eras++;
errs_not_eras_in_seqfleft]=0;

}

B.2 Simulation Software for Compact Disc Channel Modelling 157

time_t print_current_time(char* nessage, time_t starttime)
{
time_t timep;
timep = time(NULL);
printf(“Process ID %d ¥%s %s",getpid(),message,ctine(&timep));
if (starttime) printf("Process ID %d used time is: %d min %d s\n",
getpid(), (timep-starttime)/60,(timep-starttine)%60);
fflush(stdout);
return timep;

}
void print_parameters(char s+argv)
{

int i;

printf(“”called with: *);

for (i=0;argv[i)}!=NULL;i++)
printf("%s *,argv(il);

putchar(’\n’);

}

void print_mode(int Mode)
{
if (Mode&1)
{
printf("Mode RAN chosen\n");
printf(“BER is %f (optien -B)\n",BER);
}
it (Modek2)
{
printf("Mode PDF chosen\n");
printf(“thinning is %f (option -n)\n",thinning);
}
if (Modek4)
{
printf("Mode GPC chosen\n");
printf(“distance is %d symbols (option -g, gap_GPC_vide)\n",gap_GPC_vide);
}
if (Mode&8)
{
printf("Mode DRN chosen\n");
printf("BER is %f (option -B)\n",BER);
}
if (Modek16)
{
printf{“Mode TRN chosen\n");
printf(“BER is ¥f (option -B)\n",BER);
}
if (Mode&32)
{
printf("Mode EQU chosen, ");
printf("distance is jd symbols (option -g, gap_GPC_vide)\n",gap_GPC_vide);
}
if (Mode&64)
{
printf(“Mode ESE chosen, ");
printf("sequence of %d symbols (option -g, gap_GPC_vide), frame_offset is Yd symbols\n",gap_GPC_vide,fran
}
if (Modek128)
{
printf("Mode EQF1 chosen, ");
printf(“"distance is %d frazes (option -g, gap_GPC_vide}\n",gap_GPC_wide);
}
if (Modek256)
{
printf("Mode EQF2 chosen, ");
printf("distance is }d frazes (option -g, gap_GPC_wide)\n",gap_GPC_vide);
}
if (Modek512)
{
printf("Mode ESS chosen, ");
printf("sequence of %d symbols (option -g, gap.GPC_wide)\n",gap_GPC_wide);
}

B.2 Simulation Software for Compact Disc Channel Modelling

158

if (Mode&1024)
{
printf(“Hode EGR chosen, ");
printf("%d symbols per frame (option -g, gap_GPC_wvide)\n",gap_GPC_wide);
}
it (Modek2048)
{
printf("Mode EQF3 chosen, ");
printf(“"distance is }d frames (option -g, gap_GPC_vide)\n",gap_GPC_wide);
}
it (Mode24096)
{
printf{"Mode RES chosen, ");
printf{"vidth is Jd symbols (option -g, gap_GPC_vide)\n",gap_GPC_vide);
}
}

void init_log(FILE »+flog)
{
char logfile(32);
sprintf(logfile,“run-¥d.log",getpid(});
if (chdir("./log")!=0)
{
perror{("nc log dir!'");
exit(l);
}
=flog = fopen{logfile,"w+");
if (+flog==NULL)
{
perror{"run in logframes():");
exit(1);
}
}

void print_encoded_frame(Decode +de, int* framebyteo)
{
int 1i;
if (frame<=120) return;
for (i=0;i<FC1S5ZB;i++)
printf(" %2X",de->Efm->TrafoFromEFM(franebytes(i]));
priatf(“\n");
}

int main(int arge, char ssargv)
{
unsigned j;
int i=0, pnou, optburst=0,optframe=0,optspread=0;
int encedeonly=0, decodeonly=0, maxfrazes=1000, encode_decode=0; // maxframes=1000
int length=200, logframes=0; // default 1ength-200
int Strategy_nu=4, Mode=0, distre=0;
FILE »flog;
char filenaze[255];

Encode *En;
Decode #De;
Random #Rnd;
GPC =Gpc;

if (arge<2)

{

- Z L - ERY - 2
¢ 940 © 90 "R & e n:r,ﬂ, I o o O O YT ST EXIT | — e @ e T I TITE 04 A ¥ TR
T 13 T o o

3 N
St i
o

a2 iad]

exit(1);

}

for(i=1;i<carge;i++)
{
if (argv[i]) [0]=="-")
{
switch (argv{il[i}) {
case 't’: encode_decode=i;
if (++i>=argcl|(oaxframes = atoi(argv(i))})==
{
printf("urong'argu:ent near \"-t\"\n\n"};

B.2 Simulation Software for Compact Disc Channel Modelling 159

exit(1);
}
break;
case 'b’': optburst=i;
break;

case ’e’: encodeonly=1;
it (++i>=argc)
{
printf(“vrong argument near \"-e\"\n\n");
exit(l);
}
else strncpy(filename,argv[i},255);
break;
cage 'd’: decodeonly=1;
if (++i>=argc)
{
printf("wrong argument near \"-d\"\n\n");
exit(1);
}
else strncpy(filename,argv[i],255);
break;
case ’f’: optframe=l;
for(j=i+1; j<argcikargv[jl1[0]!="-";j++)
frpat[j-i-1) = atoi{argv(jl);
frpat[j-i-1}=0;i=j~-1;
it (frpat[0]==0) {
printf(“vrong argument near \"-f\"\n\n");
exit(1);
}
break;
case ’'s’: optspread=i;
it (++i>=argcl|(length = atoi(argv(i]))==0)
{
printf("wrong argument near \"-s\"\n\n");
exit(1);
}
break;
case ’'n’':
if (++i>=argcl|(thinning = atof(argv{il))==0)
{
printf("vrong argument near \"-n\"\n\n");
exit(1);
}
break:;
cagse ‘m’:
it (++i>=argc||{MaxFrame=atoi(argv{il))==0)
{
printf(“"wrong argument near \"-o\"\n\n");
exit(l);
}
break;
case 'B’':
if (++i>=argc||(BER=atof(argv[i]})==0)
{
printf("vwrong argument near \"-B\"\n\n");
exit(1);
}
break;
case 'g':
if (++id>=argc)
{
printf("vrong argucent near \“-g\"\n\a");
exit(1);
}
else gap GPC_wide = atei(argv(il);
break;
case ‘v’':
if (++i>=argcl|(burst_GPC_wide = atoilargv[il))==0)
{
printf{"vrong argument near \"-v\"\n\n"};
exit{i);

}

break;

B.2 Simulation Software for Compact Disc Channel Modelling 160

case 'L’: logframes=1;
break;
case 'v’: distro=1;
break;
case ’S’':
it (++i>=argc||(Strategy_nu = atoi(argv[i)))==0)
{
printf(“vrong argument near \"-S\"\n\n");
exit{1);
}
break;
case 'M':
if (++id>=argc)
{
printf("vrong argument near \"-M\"\n\n");
exit(1);
}
Mode = atei{argv([il);
break;
case 'o':
if (++i>=arge)
{
printf("vwrong argument near \"-o\"\n\n");
exit(1i};
}
frame_offset = atoi(argv([il);
break;

default: printf("vrong argument near %s\n\n",argv[i]);
exit(1);
}
} else {
printf("wrong argument near %s\a\n",argv[il);
exit(1);

}

if (Strategy_nu!=2kkStrategy_nu!=4) {
printf("only decoder strategies 2 and 4 alloved.\n\n");
exit(1);

}

if (!(Mode&128| |Modek2561 |Modek2048) && gap_GPC_wide==0) {
printf("gap_GPC_vide=0 chosen in Mode other than EQF1,EQF2,EQF3, exciting..\n");
oxit(1);

}

if (distro && !encode_decode)
printf("\ne* varning: option distro {-v) only valid with encode_decode (-t)\n\n");

if (encode_decode &E !'Mode)
{
printf("\n*+ wvarning: Mode not chosen in encode_decode {-t)\n\n");
exit(1);
}
if (Mode & 'encode_decode)
printf("\n*+ varning: Mode chosen (-M) but not with encode_decode (-t), Mode not considered\n\n");

En = nev Encode;
Rnd = newv Randexn();
Gpc = new GPC;

nu

print_parazeters(argv);

print_node(Mode) ;

starttime = print_current_time("start time is:",0);
it (logframes) init_log(kflog);

if (optspread)
/*

B.2 Simulation Software for Compact Disc Channel Modelling 161

get the spreading length for a burst of length sectors
via the Encoder
./
{
int frameend,framebeg=0;
for(frame=0; frame<MaxFrame; frace++}
{
if (frame < 200 || frame >= 200+length)
setFranmecontents{&En->inputFrame, FILLBYTE);
else setFramecontents(&En->inputFrame,FILLBYTE-1);
En->oneFrame();
if (frame > 115 &2 En->otherfill())
{
INFO(4,("frame # %d contains symbols other than FILLBYTE'\n",frame));
if (!framebeg) framebeg=iframe;
frameend=frape;
}
}
printf("first occurence of modified frame: Y%d, last: ¥%d, diff: %d\n",framebeg,frameend, frameend-framebeg

}

if { optframe || optburst)
¢ for(frame=0; frace<120; frame++)
¢ setFramecontents(&En->inputFrame,FILLBYTE) ;
En->oneFrame();
mechy(orgFrame.En->outputFrame,FCISZBCHasizeof(int));

if (optframe)

{
INFO(1,("\ntest of frame patterns running...\n"));
testFramepattern(Strategy_nu);
}
if (optburst)
{
INFO(1,("\nBurst testing of different patterns running...\n"));
for (pnu=0;pnu<sizeof(pattern)/sizeof(int)/FC1SZBCHW;pnu++)
{
INFO(4,("burst testing pattern # %d\n",pnu));
testmaxBurst(pnu,Strategy._nu);
}
}

if (encode_decode)
{
int j;
int symbcntenc=0;
int random_part = BER+BERFACTOR:
struct Error_kinds errs={0,0,0,0,0,0,0,0,0};
int encoded_copy[FC15ZB)] ;

De = new Decode(Strategy_nu);

for (frame=0; frace<maxframes; frame++) {

if(logfraces)
{
fprintf(flog,"%d\n",frane);
revind(flog);
}
if (distro)
{
for (j=0;j<FSZB;j++)
if (j>2B&j<5) En->inputFrame.byte{j] = frace;//symbcntenc++;
else En->inputFrame.bytelj]l = 0;
}
elae

for (j=0;j<FSZB;j++,symbcntenc++)
En->inputFraze.byte[j] = (unsigned char) symbentenc;

B.2 Simulation Software for Compact Disc Channel Modelling 162

// setFramecontents{ZEn->inputFrame,FILLBYTE);
En->oneFrame();

if (distro) print_encoded_fraze(De,En->outputFrame);
if {distre) continue;

mexcpy(De->inputFrame,En->outputFrame ,FC1S2BCWesizeof (int));
pemcpy{encoded_copy,En->outputFraze,FC1S2BCW*sizeof (int));

if (Modek1) introduceRandozErrors(Rnd, De, random_part);

if (Modek2) introducePDFBursts{De->inputFrame, Rnd, thinning);

if (Mode&4) introduceGPCErrors(De->inputFrame, Gpc, Rnd};

if (Mode&8) introduceDoubleRandozErrors{RAnd, De, randon_part) ;

if (ModeZ16) introduceTripleRandoxErrors(Rnd, De, random_part};

if (Modek32) introduceEquidistantErrors(Rand, De, gap_GPC_vide);

if (Modek64) introduceErrorSequence(Rnd,De,gap_GPC_wide,frame_offset);

if (ModeZ128) introduceFrameError(De->inputFrame,pattern[0],gap_GPC_vide);
if (Mode2256) introduceFrameError(De->inputFrame,pattern[1],gap_GPC_wide);
if (Mode&512) introduceErrorSequenceShifted(Rnd,De,gap_GPC_uide);

if (ModeZ1024) introduceErrorGroups{Rnd,De,gap_GPC_wvide);

if (Mode&2048) introduceFrameError(De->inputFrame,pattern[2],gap_GPC_vide);
if (Mode24085) introduceRandomErrorSymbols(Rnd,De,gap_GPC_uvide);

accumulate_overall_errors{encoded_copy,De->inputFrame);
De->oneFrame();

check_dacoding_frame_reault(De-)outputFrame.byCe.
De->outerasFrame.byte,
&errs);

}
print_current_time("stop time is:",starttime);

modified_symbols_PDF,not_mndified_aymbols_PDF.not_modified_symbols_PDF+modified_symbols_PDF.
modified_symbols_PDF/(double){not_modified_symbols_PDF+modified_symbols_PDF),
intro_symbols, ok_symbols, intro_symbols+ok_symbols,
intro_symbels/({double)(intro_symbols+tok_symbols),
moditied_symbols.not_modified_symbols,not_modified_symhols+moditied_symbols.
medified_symbols/(double)(not_modified_symbola+modified_symbols),

overall _errora/(float){overall_errors+overall_not_errors),

errs.single_errors,

errs.bytes_checked, errs.single_errors/(double){errs.bytes_checked),
errs.bytes_checked/FSZB,

errs.interpolated_eras, errs.interpolated_eras/(double)(errs.bytes_checked),
errs.error_clicks, errs.error_clicks/(double){erra.bytes_checked),
errs.errs_not_eras, errs.errs_not_eraa/(double)(errs.bytes_che:ked).

errs.PO0, errs.P01, errs.P10, errs.Pll,

errs.P00/(double) (errs.bytes_checked), errs.P01/{double)(errs.bytes_checked),
errs.P10/(double)(errs.bytes_checked}, errs.P11/(double) (errs.bytes_checked));

it (bursts)
printf(" bursts %d\n gaps }d\n=>average burst length: %f\n=>average gap length: %f\n\n",
bursts, gaps,
codified_symbols/(float)bursts, not_codified_symbols/(float)gaps);

if(logframes) fclose(flog);
}

if (encodeonly)
{
int j,symb=0,fd;
if {(fd=open(filenace,0_WRONLY|O_CREAT,S_IREADIS_IWRITE)) < 0)
{
porror("encodeonly:open");
exit{(1);
}
for (frame=0; frame<MaxFrame; frame++) {
for (j=0;j<FSZB;j++,synb++)
En->inputFrame.byte{j] = (unsigned char) symb;

B.2 Simulation Software for Compact Disc Channel Modelling 163

En->oneFrane() ;
write{fd,En->outputFrane,FC152BCH»sizeof (int));
}
}

if(decodeonly)
{
struct Error_kinds errs={0,0,0,0,0,0,0,0,0};
int f4;

if ((fd=open(filename,0_RDONLY)) < 0)
{
perror(“decodeonly:open");
exit(1);
}
De = new Decode(Strategy_nu);
for (frame=0; frame<MaxFrame; frame++)
{
if(logframes)
{
fprintf(flog,"%d\n",frame);
revind(flog);
}

read(fd,De->inputFraze, FC1SZBCW*sizeof (int));

De->oneFrame();
for(i=0;i<FSZB;i++)
printf("¥%d *,De->outputFraze.byte{il);
check_decoding_frame_result(De->cutputFrame.byte,
De->outerasFrame.byte,
gorrs);
}

print_current_time("stop time is:",starttime);

modified_symbols_PDF,not_modified_symbole _PDF,not_modified_symbols_PDF+modified_symbols_FDF,
modified_symbola_PDF/{double)(not_nodified_symbols PDF+modified_symbols_PDF),
intro_symbols, ok_symbols, intro_symbols+ok_symbols,
intro_symbols/(double)(intro_symbols+ok_symbols),
errs.single_errors,
errs.bytes_checked, errs.single_errors/(double)(errs.bytes_checked),
errs.bytes_checked/FSZB,
errs.interpolated_eras, errs.interpolated_eras/(double)(errs.bytes_checked),
errs.error_clicks, errs.error_clicks/{double)(errs.bytes_checkad),
errs.errs_not_eras, errs.errs_not_eras/(double)(errs.bytes_checked),
errs. P00, errs.PO1, errs.P10, errs.P11,
errs.P00/(double) (errs.bytes_checked), errs.PO1/{(double)(errs.bytes_checked),
errs.P10/(double) (errs.bytes_checked), errs.P11/(double)(errs.bytes_checked));
if (bursts)
printf(" bursts %d\n gaps }d\n=>average burst length: ¥f\n=>average gap length: ¥%f\n\n",
bursts, gaps,
modified_symbels/(float)bursts, not_ modified_symbols/(float)gaps);

if(logframes) fclose(flog);
}

* Encode.cc
* Copyright Kay Rydyger

* Encoding class
*/

#include "defs.h"
#include “classes.h"

static char cvsid[)="$Id: listings.tex,v 1.4 2002/05/19 11:58:11 kay Exp $";

Encode: :Encode()

B.2 Simulation Software for Compact Disc

Channel Modelling

164

{
int 1i;
Efm = nev EFM();
RsEncoder = nev RSEncoder();
Pos1=0; Pos2=2;
Pos=0; PosBuf=0; Pos3=1;
puffer = (union CiFrames) calloc(112,sizeof(union CiFrame));
input = (union C2Frame») calloc(3,sizeof(union C2Frace));
output = (union CiFrames) calloc(2,sizeof(union ClFrame));
outputFrame = (int*) calloc(FC1SZBCW,sizeof(int));
nemset (puffer,0,112+sizeof (union CiFrame));
memset (input,0,3*sizeof (union C2Frame));
nmemset (output,0,2¢sizeof (union CiFrame)):
pemset(&inputFrame,0,5izeof (inputFrame));
nemset (outputFrame,0,FC1SZBCHssizeof (sizeof (int)));
for (i=0;i<FSZB;i++) inputFrame.byte[i]=0;
}
Encode: : “Encode()}
{
free(puffer);
free(input);
free(output);
free(outputFrame);
delete Efm;
delete RsEncoder;
}

gifndef SCRAMBLEQFF

void Encode::oneFrame()

{
union CiFrame »ct;
¢l = ScrambleFrame();
EFMencodeFrame(cl);

}

gelse
void Encode::oneFrame()
{
int i;
union ClFrame cl;
union C2Frame ¢2;
for (i=0;i<B;i++)
c2.vord[i] = inputFraze.word{i};
for (i=6;i<FSZW;i++)
¢2.vord[i+2] = inputFrame.word[i];
RSENCODE(&c2);
for (i=0;i<FC25ZW;i++)
el.word{i] = c2.vord[i];
RSENCODE(&c1);
for (i=0; i<FCLSZB; i++)

outputFrame(i] = TRAFOTOEFM(c1.bytelil);

}

tendif

union ClFrame #Encode::ScrambleFrane()
{

unsigned i,x,y;

union ClFrame »clframe;

input [Pos2] .vord{0] = inputFrarme.word(0]:
input(Pos2] .vord(3] = inputFrame.vord(1];
input([Posl] .word[8] = inputFrams.vord(2];
input [Posi] .vord[1t] inputFraze.word[3];
input[Pos2] .vord[1] inputFrane.word([4];
input{Pos2]} .vord(4] = inputFrane.word([5];
input[Posi].word[9) = inputFra=e.word[6];

B.2 Simulation Software for Compact Disc Channel Modelling 165

}

input [Pos1] .vord[12]
input [Pos2] .word (2]
input [Pos2] .vord (5]
input [Pos1] .word[10]
input {Pos1] .word[13]

inputFraze.vord([7];
inputFraze.word(8];
inputFraze.word([9];
inputFraze.word([10];
inputFra=ze.vord[11];

nmauwn

RSENCODE(&input [Pos1]));

INC1R3(Posl);
INC1R3(Pos2);

for (x=0,y=PosBuf; x2<28; x++) {
puffer(y).byte{x] = input(Pos].bytelx];

INC4R109(y);
}

clframe = &puffer[PosBufl;
RSENCODE(&puffer [PosBuf]);

INCIR3{Pos);
INC1R109(PosBuft);

if (Pos3==0) for (i=0; i<FC1SZB; i++)

output[i%2) .byte[i] = ciframe->byte(i];
else for (i=0; i<FC1SZB; i++)

output[1-i%2] .byte[i] = cilframe->byte(i];
INCIR2(Pos3);

return &output{Pos3];

void Encode::EFMencodeFrame(union CiFrazme *c1)

{

}

unsigned i;
int sout = outputFrame;
wout++ = TRAFOTOEFM(0); // add one contrel word per frame
for (iz=0; i<FC1SZB; i++)
*out++ = TRAFOTOEFM(ci->byte[i]);

void Encode::setChabit{int i)

{

}

if (i>560k£i<588) // this hides the sync pattern inte the unused bits of frame.

{ // deceding is curreatly done by discarding them.
outputFrame[i-561] i= {1<<17);
return;

}

it (i<=5602ki>=0)

{

outputFrane[i/17] 1= (1<<(i%17));
return;
}
printf("Encode: :setChnbit: wrong channel bit number, i=%d t\n" i);

void Encode::toggleChnbit(int i)

{

}

if (i>560&&i<588)

{
cutputFrame[i-561] ~= (1<<17);
return;

}

if (i<=560&4&i>=0)

{
outputFrame[i/17] "= (1<<(i%17));
return;

}

printf{"Encode::toggleChnbit: vrong channel bit number, i=fd !¢\n",i):

int Encode::getChnbit(int i)

B.2 Simulation Software for Compact Disc Channel Modelling 166

{
if (i>560R£i<588)
return (outputFrace[i-561]2{1<<17))?1:0;
if (i<=560a&i>=0)
return ((1<<{i%17))&outputFrame(i/17])71:0;
printf("Encode::getChnbit: vrong channel bit number, i=%d !!\n",i);
return 0;
}

int Encode::otherfill()

{
int i;
for (i=1;i<13;i++) // nunber zero is CW !
if (TRAFOFROMEFM{outputFrame[i])!=FILLBYTE)
return 1;
for (i=17;i<29;i++)
if (TRAFOFROMEFM(outputFrame[i))'!=FILLBYTE)
return 1;
return 0;
}
Fil

* Decode.c
* Copyright Kay Rydyger
L]

+ Docode class
L]

./

8include “defs.h"
8include "classes.h"

static char cvaid(]="$Id: listings.tex,v 1.4 2002/05/19 11:58:11 kay Exp $";
union C2Frame Decode::eradurm;
Decode::Decode(int decoder_strat)

{
Efm = new EFM{);

C1 = nev ClDecoder(decoder_strat);

€2 = nev C2Decoder(decoder_strat);

Pos=0;

Posi=1;

Pos2=0;

PosBuf=0;

puffer = (union C2Frame+) calloc(112,sizeof(union C2Frame));
erapuf (union C2Frame*) calloc(112,sizeof(union C2Frame));

input = (union CiFrame*) calloc(2,sizecf(union ClFrame));
inputera= (union C1Frame+) calloc(2,sizeof(union CilFrame));
output = (union Frame*) calloc(3.sizeof(union Frame));
outputera = (union Frame+) calloc{3,sizeof(union Frame));
inputFrame = (int*) calloc(FC1S2BCW,sizeof(int));

menset{puffer,0,112+*sizeof (union C2Fraze));
memset{erapuf,0,112+sizeof(union C2Frane));
mezset(input,0,2¢sizeof(union ClFrame));
pemset(inputera,0,2+sizeof{union CiFrame)};
mexset(output,0,3*sizeof (union Frame));
mexset{outputera,0,3#sizeof (union Fraze));
ceaset(inputFrane,0,FC1SZBCH+aizeof (int));
cexset(koutputFrame,0,sizeof (outputFrane));
censet(feradurm,0,sizeof (eradurm));

}

Decode: : "Decode()
{

B.2 Simulation Software for Compact Disc Channel Modelling 167

free(puffer);
free(erapuf);
freae(input);
free(inputera);
free(output);
free(inputFrame);
fflush(stdout);

delete Efm;
delete C1;
delete C2;

8ifndef SCRAMBLEQFF
void Decode: ;oneFrama()

{
union ClFrame wcl;
c1 = EFMdecodeFrame();
DescrambleFrane(ci1);

}

8olse

void Decode::oneFrame{)
{
union CilFrame ci;
union C2Frame c¢2;
union CiFrame clera;

int i, ret;
for (i=0;i<FC1SZB;i++)
{

ret = TRAFOFROMEFM(inputFrame[i+1}); // because number zero is CW !
c1.byte[i]l = (BYTE) ret;

if (ret == WRONGEFM)} clera.byte[i] = 1;

else clera.byte[i] = 0;

}

CIDECODE(&c1 ,&clera);
for (i=0; i<FC2SZB; i++)
{
c2.byte[i) = cl.bytelil;
eradumm.byte[i) = Cl->geterasure(i);

}

C2DECODE(&¢2,&eraduzn);

for (i=0; i<B; i++)
outputFrame.vord([i] = ¢2.word[i];

for (i=8; i<FC25ZW; i++)
outputFrame.vord[i-2] = c¢2.vword[i];

}
fendif

union CiFrame +Decode::EFMdecodeFrame()
{
unsigned int i, oldPos, ret;
if {Pos==0)
for {(i=0; i<FCISZB; i++)
{
ret = TRAFOFROMEFM(inputFrame[i+1)); // because number zero is CHW !
input [i%2].byte{i] = ret;
if { ret == WRONGEFM) inputerali%2}.byte[i] = 1;
else inputera(i%2].bytel[i] = 0;

else
for (i=0; i<FC1SZB; i++)

ret = TRAFOFROMEFM(inputFrame[i+1]);

input[1-(i%2)] .byte[i] = ret;

if (ret == WRONGEFM) inputera{i-(i%2)].byte(i] = 1;
else inputera[1-(i%2)].byte[i] = 0;

B.2 Simulation Software for Compact Disc Channel Modelling

168

}

INFO(2, ("\n\p\n============ FRAME HKR.: %d \n",frame));
SHOWPUFFERC1(1<<9,"Decode: input-puffer\n",input);
SHOWPUFFERC1(1<<9,"Decode: erasure-puffer\n",inputera};

INFO(2,{"Decode: Cl decoding line %d in input-puffer\n\n",Pos));
CiDECODE(&input{Pos) ,kinputera{Pos]};

oldPos = Pos;
INC1R2(Pos);

return &input[oldPos];
}

void Decode::DescrambleFrame(union ClFraze *input)
{

union C2Frame *c2frame, *c2eras;

int x,y,i,j:

for {x=0,y=PosBuf;x<FC25ZB; x++) {

puffer(yl.byte(x] = input->byte(x];
erapuf(y].bytelx] = Cl->geterasure{x);

DEC4R109(y) ;
}

SHOWPUFFERC2(1<<11,"Decode: erapuf\n",erapuf);
SHOWPUFFERC2{1<<9,"Decode: puffer\n",puffer);

INC4R109(y);
INFO(2,("Decode: €2 decoding line %d in puffer\n",y));
C2DECODE(&puffer[y],&eraputlyl);

SHOWPUFFERC2(1<<11,"Decode: after decode: erapufi\n",erapuf);
SHOWPUFFERC2{1<<9,"Decode: after decode: puffer\n",puffer);

INC1R108(PosBuf);

c2frame = Bpuffer(yl;
c2eras = kerapuf(yl;

output [Posi] .vord [0]
output [Posi] .vord[4]
output [Posil.vord([8]
output [Pos1]) .word[1]
output [Posi] .vord([5]
output [Pos1] .vord[9]
output [Pos2) .vord[2]
output [Pos2] .vord[6]
output [Pos2] .vord(10]
output [Pos2] .vord (3]
output [Pos2] .vord (7]
output [Pos2] .vord[11]

¢2fra=e->vord[0];
¢2fraze->vord[1]);
¢2frame->word[2];
c2fraze->vord(3];
c2fraze->vord[4];
c2fraze->word[5);
c2fraxze->vord[8);
c¢2fraze->word([9]);
c2fraze->word[10];
c2fraze->word[11];
c2fraze->vord(12];
c2fraze->vord([13];

n oo

// scranmble erasures as well
outputera(Pos1] .vord (0]
outputera(Pos1] .vord(4]
outputera(Pos1) .vord (8]
outputera(Posi) .vord (1]
outputera(Pos1] .vord(5]
outputera(Posl] .vord([9]
outputera(Pos2] .word(2]
outputera[Pos2] .word (6]
outputera[Pos2] .word[10]
outputera[Pos2] .word([3]
outputera[Pos2] .word[7]
outputera[Pos2] .word[11]

c2eras->word{0];
c2eras->word{1];
c2eras->word(2];
c2eras->word(3];
c2eras->word(4);
c2eras->word[5];
¢2eras->vord[8];
c2eras->word{9];
c2eras->word{10);
c2eras->vord[11);
¢2eras->vord(12]);
¢2eras->word{13)];

g ounmnnunon

nonun

B.2 Simulation Software for Compact Disc Channel Modelling 169

SHOWPUFFER_FC2SZB(1<<9,"Dacode: c2frame-puffer\n",c2frame);
memcpy (BoutputFrame,&output{Posl1] ,FSZB);

zexcpy (kouterasFraxze,koutputera[Pesl] ,FSZB);
SHOWPUFFER_FSZB(1<<9,"Decode: output-puffer\n”,output);

SHOWPUFFER_FC2SZB(1<<11,"Decode: c2eras-puffer\n”,c2eras);
SHOWPUFFER_FSZB{1<<11,"Decode: outputera-puffer\n",outputera};

INC1R3(Posl);
INC1R3(Pos2);
}

void Decode::setChnbit(int i)
{
if (i>560&8i<588)
{
inputFrame[i-661] |= (1<<17);
return;
}
if (i<=5608ki>=0)
{
inputFrame[i/17} I= (1<<(i%iT));
return;
}

printf("Decode: :setChnbit: vrong channel bit nuzber, i=}d !!\n",i);

}

void Decode::toggleChnbit(int i)
{
if (i>560k2i<588)
{
inputFrame[i-561] ~= (1<<17);
return;
}
if (i<=5602&i>=0Q)
{
inputFrame[i/17] ~= (1<<(i¥%17));
return;
}

printf("Decode::toggleChnbit: wrong channel bit number, i=¥d !!\n",i):
}

int Decode::getChnbit(int i)
{
if (i>560k4i<b688)
return (inputFrame(i-561]&(1<<17))7?1:0;
if (i<=560&&i>=0)
return ((1<<(i%17))&inputFrame[i/17]))71:0;
printf("Decode::getChnbit: wrong channel bit number, i=¥d !!\n",i);
return 0;

int Decode::modified{void)
{
int 1i;
for (i=0;i<FSZB;i++)
if (outputFrame.byte[i]!=FILLBYTE) return 1;
return O;

/e
EFM.c¢
Copyright Kay Rydyger

EFM modulation and demcodulation

. * ® = ¢

¢/

8include "defs.h"
8include “classes.h”

B.2 Simulation Software for Compact Disc Channel Modelling

170

8include "EFMTable.h"

static char cvsid[]="$Id: listings.tex,v 1.4 2002/05/1¢ 11:568:11 kay Exp $";
static int useofficialEFMTable=1;

int paxNonEFMWords;

iFM::EFH()

if (useofficialEFMTable) -
Create0fficialEFMTable();

else
CreateMyEFMTable();
maxHonEFMWords = CreateNonEFMWords();
DSV = 0;
}
int EFM::TrafoToEFM(BYTE word)
{
unsigned int efmword;
efmvord = EFMTable(word];
(void) add_merging bits{&efmvord);
return TO_NRZI(efmword);
}
int EFM::TrafoFromEFM(int word)
{
unsigned int ret, froznrzi;
fromnrzi = FRGM_NRZ2I{word);
ret = EFMrevTable[fromnrzilmaski14};
if (ret==maski4)
{
INFO(1<<4, ("TrafoFromEFM: vrong EFM code ! EFMrevTable[%dl=%d, word=%d\n",
fromnrzilmask14,ret,word));
return WRONGEFM: // for setting erasures !
}
return ret;
}

void EFM::printEFMTable()
{

int i, byte;

for(i=0; i<256; i++)

{
byte = EFMTable[i];
printf ("EFMtable[%d] = %dld%d%d%d¥did%d%didYdYad%a #d\n",i,
(byte>>13)&1,(byte>>12)tl,(byte))ll)&l,(byte))lO)&l.(byta>>9)&1,
(by:e>>8)&1,(by:e>>7)&1,(byte>>6)a1.(byte>>5)&1,(byte>>4)t1.(byte>>3)&1.
(byte>>2)&1, (byte>>1)21, (byte>>0)&1, byte);
}
for{i=0; i<=9400; i++) // !!! max value is 9362 for EFMTable !!!
{
byte = EFMrevTable[i];
if (byte != maskid)
printf ("EFMrevTable(¥d %d%d¥%d¥%d%did%d%didYa%didfdYd) = %d\n",i,
(i>>13)1,(i>>12)&1, (i>>11)&1,(i>>10)81, (i>>9) &1,
(i>>8)&1, (i>>7)&1, (1>>6) k1, (i>>6)21, (i>>4) k1, (i>>3)et,
(i>>2)&1, (i>>1)&1,(i>>0)&1, byte);
}

Printf("vtott----aat-tu-n-o-cottn\n“) H
for (i=0;1i<256;i++)
{
byte = EFNTable(i];
printf("id\tidid%d%d%d%a¥a%did aYdYdLdsd\n" , i,

(byta>>13)&1,(byte>>12)&1,(byte>>11)&1.(byte>>10)&1,(byte>>9)&l,
(byte))S)&l.(byte))?)&l,(byte))ﬁ)&l,(byte))S)&l,(byte>>4)tl.(by:e>>3)&l.
(byte>>2)&1, (byte>>1) &1, (byte>>0)&1);

B.2 Simulation Software for Compact Disc Channel Modelling 171

printf(¥-------mommmmmeeas \n");
for(i=0; i<=9400; i++)
{
byte = EFMrevTable[i];
if (byte != maski4)
printi("ld\tid¥didhdhdldhd d Ld%dYd)d¥dYd\n" ,byte,
(i>>13)&1,(i>>12)&1, (i>>11)&1, (i>>10)&1, {i>>9)e1,
(i>>8)&1, (i>>7)81, (i>>6)81, (i>>5)k1, (i>>4) &1, (i>>3)&1,
(i>>2)&1, (i>>1)21, (i>>0)&1);

}

fflush(stdout);
}

int EFM::getNonEFMWords(int i)
{

return NonEFMWordsTable([i};
}

/% —mmmmme e protacted member functions =-------- */
int EFM::MB[4) = { 0.1¢<14,1¢<16,1¢<16 };

void EFM::CreateQfficialEFMTable()
{
int i,nr,j;
char efm_input_str(16];
for (i=0; i<maxft14; i++) EFMrevTable(i] = maski4;
for (i=0;1<256;i++)
{
sscanf (EFMTable_inc{i],"%d %s",&nr,efm_input_str);
EFMTable[nr]=0;
for(j=0;j<14; j++)
EFMTable [nr] |=(efm_input_str[13-j)=="1")71<<j:0;
EFMrevTable [EFMTable(nr]] = nr;

}
}
int EFM::CreateNonEFMWords{void)
{
int i,j5;
for (i=0,j=0;i<maxftid; i++)
{
if (EFMrevTable[i)==maski4)
NonEFMWordsTable[j++]=to_NRZI(i);
}
return j:
}
int EFM::test_constraints(int code)
{
int i, bit;
int nullen=0, einsen=0, start=1;
for(i=0;i<ft;i++)
{
bit = ((code>>i)l&l);
if (!bic)
{
nullen++;
einsen=0;
}
if (nullen >= kkk) return 0; /+ k-constraint »/
if (bit)
{
if (nullen < ddd-1 && nullen > 0 BZ !start) return O;
/e
d-constraint =/
start=0;
nullen=0;
einsen++;

if (einsen > 1) return O;

B.2 Simulation Software for Compact Disc Channel Modelling 172

}
} 1
returm 1;
}
void EFM::CreateMyEFMTable(void)
{
int i, code, z=0;
for (i=0; i<maxftl14; i++) EFMrevTable[i] = maski4:
for (code=0; code<maxftld; code++) .
{
if (!'test_constraints(code)) continue;
if (calc_aNulls(code) >= 8 || code == 9362 || code == 8361) continue;
/* these patterns (first term) are excluded because of possible
generation of sync patterns vhen connected to the right successor
./
EFMTable[z] = cede;
EFMrevTable[code] = z;
Z+4
}
s return z;
}
int EFM::to_NRZI(unsigned int EfmMb)
{
static int updown = 0;
int i, nrzi=0;
for (i=svteen-1;i>=0;i--)
{
if (((EfmMb>>i)&1) == 1) updown = 1 - updouvn;
if (updown) my_setbit(nrzi,i);
}
return nrzi;
}
int EFM::from_NRZI(int nrzi)
{
static int old = Q ;
int i, nv, efmmb=0;
for (i=svteen-1; i>=0; i--)
{
nv = (nrzi>>i)ki;
if (nv != old) my_setbit(efmmb,i);
old = nw;
}
return ofmzb;
}
int EFM::calcDSV(unsigned int efmword, int +d)
{
int i, dsv=0, dflag = UP;
for(izsft-1;i>»=0;i--)
{
it { ((efoword>>i)e1) == 0) dsv += dflag;
else dflag = -dflag;
}
*d = dflag;
return dsv;
}

int EFM::calc_aNulls(unsigned efamword)

{
int i;
for(i=0;i<ft;i++) if ((efmword>>i)2l1) break;
return i;

}

int EFM::calc_blulla(unsigned efnvord)
{

B.2 Simulation Software for Compact Disc Channel Modelling 173

int EFM:

int i;
for(i=ft-1;i>=0;i--) if (my_getbit(efmword,i)) break;
return ft-i-1;

radd_merging_bits{unsigned int *efoword)

static unsigned int last_word = 9360; /¢« i.e. 10010010010000 </
static int dflag = UP;

int predDSV = LONG_MAX, newDSV, dflagtop = dflag;

int anulls, bnulls, MBcomb=9999, predDSVtmp;

INFO(1<<3,("\nadd MB: word %d, last %d\n",*efmword, last_vord));

anulls = calc_aNulls(last_word);
bnulls = calc_bNulls(*efmword);

neuDSV

calcDSV(*efavord, kdflagtmp) ;
INFO(1<<3,("anulls jd bnulls %d rewDSV ¥%d dflagtmp %d\n",anulls,bnulls,newDSV,dflagtop));

if (anulls <= 7 BE bnulls <= 7-anulls)

{

/% 11! AES p.121: EFMtable[119] = 01000000000010 4098 + 000:
might generate sync pattern '!!

*/

preddSV = DSV + dflag » (3 + newDSV);

MBcomb = 0;

INFO(1<<3,(" in MBcoxb=0, predDSV %d\n",predDSV));
}
if (anulls <= 8 && bnulls <= 10 &% bnulls > 1)
{

/* second term (anulls != 8 || boulls != 10) is to avoid sync
patterns, hope this is all ! look for sync patt between words 7 !
last term for minimum constraint length

*/

predDSVtcp = DSV + dflag *+ (2 - newDSV);
INFO(1¢<3,(" in MBcomb=1, predDSVtmp %d\n",predDSVtmp));
if ((abs{predDSVimp) <= abs(predDSV))} || NOSUPPR)
{
/+ AES,p.250: must be "<=" and this order,
bacause MB with a transition are preferred.
*/
predDSV = predDSVicp;
MBcozb = 1;
dflag = -dflag;
INFO(1<<3,("set HBcomb=1!\n"));
}
}
if (anulls <= 9 && bnulls <= 9 & anulls > O && boulls > O)
{
predDSVtop = DSV + dflag * (0 - newDSV);
INFO(1<<3,(" in MBcozb=2, predDSVtop ¥d\n",predDSVtmp));
if ((abs{predDSVtzp) <= abs(predDSV)) || NOSUPPR)
{
predDSV = predDSVtop;
MBcoxob = 2;
dflag = -dflag;
INF0O(1<<3,("set MBcomb=2!\n"));
}
}

if (anulls <= 10 & bnulls <= 8 && anulls > |)
{
predDSVtmp = DSV + dflag * (0 - nevDSV - 2);

B.2 Simulation Software for Compact Disc Channel Modelling

174

INFO{1<<3,(" in MBcomb=3, predDSVtmp ¥d\n",predDSVtmp));

if ((abs(predDSVtmp) <= abs(predDSV)) || HOSUPPR)

{
predDSV = predDSVimp;
MBcoxb = 3;
dflag = -dflag;
INFO(1<<3,("set MBcomb=3!\n"));
}
}
if (MBcomb==8999)
{
printf("EFM: :add_merging_bits: internal error: +*++ no decision taken s*+\n");
printf(“anulls=%d, baulls={d\n",anulls,bnulls);
exit(1);
}

last_word = sefovord;
dflag »= dflagtmp;

D5V = predDSV;

sefmvord |= MB[MBcoaxb];
return *efmword;

Cl.c
Copyright Kay Rydyger

Cl decoder

#include "defs.h"
#include "classes.h"

static char cvsid[]}="$Id: listings.tex,v 1.4 2002/05/19 11:58:11 kay Exp $";

CiDecoder: :ClDecoder(int decoder_strat)

{
int i;
for (i=0; i<non; i++) {
r{i) = ZERO;
eraflags[i] = 0;
signajifil (0] = 0;
}
if (decoder_strat==2) do_decode=$ClDecoder: :do_decode_strat?2;
if (decoder_strat==4) do_decode=kClDecoder::do_decode_strat4;
}

void ClDecoder::CiDecode(union ClFrame *cl, union CiFrame *clera)
{
int i;
for (i=0; i<FC1S5ZB-(nn-kk); i++)
{
r(i+nn-kk) = ci->byte[i);
eraflags[i+nn-kk] = clera->byteli];

for {isFC1SZB-(nn-kk); i<FC1SZB; i++)

r[i-FCi15ZB+nn-kk] = ci->byte[i];
eraflags[i-FC15ZB+nn-kk] = clera->bytef[i];
}

INFO(2,("C1 decoding Frame £:%d\n",frame));
PSHOW(1<<7,"Cl: erasures",eraflags);
PSHOW(1<<7,"decode Ci:",r);

{(this->+do_decode)();

PSHOW(1<<7,"..decode C1 corr:",vcorr);

for (i=0; i<FC1SZB-(an-kk); i++)
ci->byte{i] = vcorr[i+nn-kk);

B.2 Simulation Software for Compact Disc Channel Modelling

175

void ClDecoder::do_decode_strat2() {

GalEl E[nn+1]; // error correcting polynomial in frequency domain
GalEl L{nn]; // error locating polynemial

GalEl Y, X(nn), lec([nn);

int ret, i, nu;

ret = get_syndrozes!_2t(r,E): // zero error syndrome
if (ret == 0)
{
INFO(2,("Ci:zaro error syndrome \n"));
nemcpy (veorr,r,nn);
setoutputeraflags(C};
return;
}
berlekamp(E,L,noeraflags);
PSHOW(1<¢«<6,"Cl:error locator polynomial L:",L);
nu = chien_search{L,X);

if (nu ==1) // single error syndrome
{
INF0(2,("Cl:single error syndroze nu=1\n"));
¥ = Gaiv(Gmul(signajil11[0],E[1]),Gaul(eignajil1] (0],X[1]));
memcpy(vcorr,r,nn);
veorr(X[1]) = Gadd(r[X[1]], Y);
setoutputeraflags(0);
return;
}
INFO(2,("Cl:multiple error syndrome nu=jd, assigning erasures..\n",nu));
mexcpy{vcorr,r,nn);
setoutputeraflags(i); // war: correct_with_fourney(E,L,r);

// Superstategy
void ClDecoder::do_decodé_stratS() {

GalEl E[nn+1}; // error correcting polynomial in frequency domain
GalEl L[nn]; // error locating polynomial

GalEl Y, X[nn), loc[mn];

int ret, i, au;

ret = get_syndromesl_2t(r,E); /! zerc error syndrome
if (ret == 0)
{
INFO(2,("Cl:zero error syndrome \n"));
memcpy{vecorr,r,nn);
setoutputeraflags(0);
return;
}
berlekanp(E,L,noeraflags);
PSHOW(1<<6,"Cl:error locator polynomial L:",L):
nu = chien_search(L,X):

/7 PSHOW("C1:locator polynomial loc:",lac);
1/ for(i=0,nu=1;i<an;i++) if { loc[i} == ZERD) X[nu++] = i;
/ nu--;

if { mu == 1) // single error syndrome
{
INFO(2,("Cl:single error syndroze nu=1\n"));
Y = Gdiv(Gaul(sigmajili)(0],E(1)),6zul(sigmajili] [0],X[1]));
mezcpy{vcorr,r,nn);
veorr[X[1]] = Gadd(r[X[1}1, Y);

setoutputeraflags(0);
return;
}
if (nu ==2) // double error syndroze
{

INFO(2,("Cl:double error syndroze nu=2, trying to decode and assigning erasures..\n"));

B.2 Simulation Software for Compact Disc Channel Modelling 176

berlekamp(E,L.eraflags);
nu = chien_search(L,X);

// PSHOW("C1:1locator polynomial loc:“,loc):

/7 for(i=0,nu=1;i<mn;i++) i? (loc(il == ZERD) X({nu++] = i;
/7 nu-~-;

correct_with_fourney(E,L,X,nu);

setoutputeraflaga(1);

return;

}
INFO(2,("Cl:multiple (more than two) error syndrome nu=Yd, assigning erasures..\n",nu));
memcpy(vcorr,r,nn);
setoutputeraflags(1);
}

1/ SrdkiesdnrssintonnnssrvansdsonsnSTARTEGY 4svsnsnsanusssnnssndsstsndtssine
void Cl1Decoder::do_decode_strat4() {

GalEl Efnn+1]; // error correcting polymomial in frequency domain
GalEl L[nn); // error locating polynomial

GalEl Y, X{nn], loc[nn};

int ret, i, nu, nuoferas;

ret = get_syndromesl_2t(r,E); // zero error syndrome
if (ret == 0)
{
INFO(2,("Cl:zero error syndrome \n"));
cemcpy(vcorr,r,nn);
setoutputeraflaga(0);
Teturn;
}
berlekamp(E,L,noeraflags);
PSHOW(1<<6,"Cl:error locator polynemial L:",L);
nu = chien_search(L,X);

if (nu == 1) // single error syndrome
{
INFO(2,("Cl:8ingle error syndroze nu=1\n"));
Y = Gdiv(Gmul(sigmaji(1]}(0],E[1]),Gmul{sigmajil1] [0],X[1]));
zexcpy(veorr,r,nn);
veorr(X[1}] = Gadd(r[(X[1]1, Y);
setoutputeraflags(0);
return;
}
nuoferas=0;
for (i=0;i<nm;i++) if (eraflags[i]) nucferas++;

if (nuoferas > 2)
{
// copy output C1 erasure flags from input C1 erasure flags
// done: C1::geterasure uses eraflags[) again.
1/ printf("Cl:nunber of input erasures > 2 (nuoferas=Y%d)\n",nuoferas);
INFO(2,("Cl:number of input srasures > 2 (nuoferas=}d)\n" ,nuoferas));
nmemcpy(veorr,r,nn);

return;
}
if (ouoferas == 2) //&k nu ==1) 7?7
{
INFO(2,("Cl:nuzber of input erasures == 2, trying two erasure decoding\n",nuoferas));

ret = berlekamp(E,L,eraflags);
nu = chien_search(L,X);

// PSHOW("C1:locator polynomial loc:“,lec);
/! for(i=0,nu=1;i<nn;i++) if (loc[i] == ZERD) Xfnu++] = i:
/! nu--;
if (!ret &% !correct_with_fourney(E,L,X,nu))
{

INFO(2,("Ci: puoferas=2 and berlekanp and fourney correct ! erasures deleted\n"));
setoutputeraflags(0);
return;

}

B.2 Simulation Software for Compact Disc Channel Modelling 177

INFO(2,("Ci: number of input erasures < 2 (nuoferas=Y%d) || (nuoferas==2 && (fourney or berlkamp failed)), ass
mencpy(veorr,r,an);
setoutputeraflags(1);

}

Sagsedandabbrsrensritrsodtgtrate L Ly P T T T YT Y]
BY

void ClDecoder::do_decode_stratmy() {

GalEl E[nn+1]; // error correcting polynomial in frequency domain
GalEl L[nn]; // error locating polynomial

GalEl Y, X[nn];

int ret, nu;

ret = get_syndromesl_2t(r,E); // zero error syndrome
it (ret == 0)
{
INFO(2,("Cl:zero error syndrome \n"));
memcpy{vcorr,r,nn);
setoutputeraflags{(0);
return;
}
berlekamp(E,L,noeraflags);
PSHOW(1<<6,"Cl:error locator polynomial L:",L);
nu = chien_search(L,X);
PSHOW(1<<6,"CLl: X" ,X);

if (nu == {) // single error syndrome
{
INFO(2,("Cl:single error syndroze nu=1\n")):
Y = Gdiv{Gmul(sigmaji[1][0],E(1]),Gaul(sigmaji(t] (0],X[1]});
memcpy{vcorr,r,nn);
veerr[X[13] = Gadd(r[X[11], Y);
/*
it (get_syndromesi_2t{vcorr,E))
{

INFO(2,("Cil: wrong correction, assigning erasures and discard correction\n"));

setoutputeraflags(1);

memcpy(vecorr,r,nn);

return;

}

./
setoutputeraflags(0);
return;
}
if (nu == 2} // double error syndrome
{
INFO(2,("Cl:double error syndrome nu=2, trying to decode and assigning erasures..\n"});
ret = berlekamp(E,L,eraflags);
nu = chien_search(L,X);
if (ret || correct_vith_fourney(E,L,X,nu))
{
INFO(2,("C1: according to berlekamp or fourney: word is undecodable, no correction made
mencpy(vcorr,r,nn);

}
setoutputeraflags(1);
return;

}

INFO(2,("Cl:oultiple (more than tve) error syndrome nu=%d, assigning erasures..\n",nu));

mencpy{vcorr,r,nn);

setoutputeraflags(1l);

}

int CiDecoder::chien_search(GalEl *FTin, GalEl +X)
{

GalEl sum;

int i,k,nu;

B.2 Simulation Software for Compact Disc Channel Modelling

178

}

sun = FTin[nn-1];
nu = 1;
for(k=nn-2; k>=0; k--) sum = Gadd(sum,FTin[k]);
if (sum == ZERQ) Xf{nu++] = 0;
//out(0) = sum; // since inv{a0) = a0
for(i=1; i<nn; i++)

{
sum = FTin(nn-1];
for(k=nn-2; k>=0; k--) sum = Gadd(Gmul(sum,ZER0-i),FTin[k]);
if (sum == ZERD) X[nu++] = i;
//out(i] = sum;
}
nu--;
return nu;

int ClDecoder::correct_with_fourney(GalEl *E, GalEl L, GalEl *X, int nu)

{

}

/» according to Peterson, Weldon: "Error correcting codes" p.297
o/
int i,j,1;
GalEl suml, sum2;
GalEl Y;

if { nu >= dd)
{

}

// vord is undecodable !
return 1;

PSHOW(1¢<6,"C1: X" ,X);
for (j=1; j<=nu; j++)
for (i=1; i<nu; i++)
signaji{jl(i] = Gadd(L[i),Gmul(X[j],sigmajilj][i-11));

memcpy(veorr,r,nn);
for (j=i; j<=nu; j++)

sunl = sum2 = ZEROQ;
for (1=0; 1<nu; 1++) sumi = Gadd(suml,Gmul(sigmaji[j]{1},E(nu-1]1));
for (1=0; l<nu; 1l++)
sum? = Gadd(sun?2,Gzul(sigmajilj}[1},Gpow(X(jJ,nu-1)));
Y = Gdiv(suml, sum2);
veorr(X(jl) = Gadd(r(X[jll, Y);
}

return 0;

void CiDecoder::setoutputeraflags(int i)

{
}

censet (eraflags,i,FC2SZB);

int ClDecoder::geterasure(int i)

{
}

/

*

* Cl.c
Copyright Kay Rydyger

L]
*
»
L]

*/

return eraflags(i+nn-kk];

C1 decoder

8include "defs.h"
#include "classes.h"

static char cvsid[]="$Id: listings.tex,v 1.4 2002/05/19 11:58:11 kay Exp $";

ClDecoder::CiDecoder(int decoder_strat)

{

B.2 Simulation Software for Compact Disc Channel Modelling

int i;
for (i=0; i<mn; i++) {
rl[i] = ZERO;

eraflags(i] = 0;
signajilil (0] = 0;

if (decoder_strat==2) do_decode=iClDecoder: :do_decods_strat2;
if (decoder_strat==4) do_decodez&ClDecoder::do_decods_stratd;

}

void ClDecoder::CiDecoda(union CiFrame #cl, union CiFrame *clera)
{

int i:

for (i=0; i<FC1SZB~(nn-kk); i++)

r[i+nn-kk] = ci->byte[i];
eraflags(i+nn-kk] = clera->byte(i];

for (i=FC1SZB-(nn-kk); i<FC1SZB; i++)

r[i-FC1SZB+nn-kk] = cl->byte{i];
oeraflags{i-FC15ZB+nn-kk] = clera->bytelil;

INFO(2,("C1 decoding Frame #:Jd\n",frace));
PSHOW(1<<7,"C1: erasures",eraflags);
PSHOW(1<<7,"decode C1:",r);

(this->*do_decode)();

PSHOW(1<<7,". .decode C1 corr:",vcorr);

for (i=0; i<FC152B-(nn-kk); i++)
c1->bytelil = vcorr[i+nn-kk];

/] e protected member functions -----------
veid ClDecoder::do_decode_strat2() {

GalEl E[nn+1]; // error correcting polynomial in frequency domain
GalEl L[nn}; // error locating polynonial

GalEl Y, X(nn), loclan];

int ret, i, nu;

ret = get_syndromesl_2t(r,E}; // zero error syndrome
if (ret == 0)
{
INFO(2,("Cl:zero error syndrome \n"));
mencpy(vcorr,r,nn);
satoutputeraflags(0);
return;
}
berlekamp(E,L,nceraflags);
PSHOW(1<<6,"Cl:error locater polynomial L:",L);
nu = chien_search{L,X);

if { nu == 1) // single error syndroze
{
INFO(2,("Cl:single error syndrome nu=1\n"));
Y = Gdiv(Gmul(signajil1] [0],E[1)),6zul(sigmajil1] [0],X{1])};
memepy(veorr,r,nn);
veorr[Xk(1]] = Gadd(r(x[131], Y);
setoutputeraflags(0);
return;
}
INFO(2,("Cl:multiple error syndrome nu=Yd, assigning erasures..\n",nu));
pemcpy(veory,r,nn);
setoutputeraflags(1); // var: correct_vith_fourney(E,L,r);

// Superstategy

B.2 Simulation Software for Compact Disc Channel Modelling 180

void ClDecoder: :do_decode_strat5() {

GalEl Ef{an+1]; /! error correcting polynomial in frequency domain
GalEl L(nn); // error locating polynozial

GalEl Y, X[nn], loclan);

int ret, i, ou;

ret = get_syndromesl_2t(r,E); // zero error syndrome
if { ret == 0)
{
INFO(2,("Ci:zero error syndroze \n"});
zencpy(vcorr,r,nn);
setoutputeraflags(0);
return;
}
berlekamp(E,L,noeraflags);
PSHOW(1<<6,"Cl:error locator polynemial L:",L);
nu = chien_search(L,X);

1/ PSHOW("Cli:locater polynomial lac:",loc);
/7 for{i=0,nu=1;i<an;i++) if (loc[i] == ZEROD) X{nu++] = i;
/7 nu--;

if (nue= 1) // single error syndraze
{
INFO(2,("Cl:single error syndrome nu=i\n"));
Y = Gdiv(Gmul(signaji[11{0),E(1]),Gzul(sigmajil1] (0],X[1]));
memcpy(vecorr,r,nn);
veorr(X[1]] = Gadd(r[X[1]], Y);

setoutputeraflags(0);
return;
}
if (mu == 2) // double error syndrome
{

INFO(2, ("C1:double error syndrome nu=2, trying to decode and assigning erasures..\n"));
berlekamp(E,L,eraflags);
nu = chien_search(L,X);

1/ PSHOW("Cl:locator polynomial loc:",loc);

1/ for(i=0,nu=1;i<nn;i++) if (loc[i) == ZERD) X[pu++] = i;
/f nu--;

correct_with_fourney(E,L,X,nu);

setoutputeraflags(1};

return;

}
INFO(2,("Cl:multiple (more than two) error syndrome nu<¥d, assigning erasures..\n",nu));
nencpy(veorr,r,nn);
setoutputeraflags(1l);
}

I/ Bed kbbb it nnssnsrt0ssae skt s o STARTEGY Adesunnasosonsrsssnbnbstsonsnsnss
void ClDecoder::do_decode_strat4() {

GalEl Elnn+1]; // error correcting polynomial in frequency domain
GalEl L(nn); // error locating polynomial

GalEl Y, X[nn)], loc({nn];

int ret, i, nu, nuoferas;

ret = get_syndroxmesl_2t(r,E); // zero error syndroze
if (ret == 0)
{
INFO(2,("Cl:zero error syndrome \n"));
memcpy(vcorr,r,nn);
setoutputeraflags(0);
return;
}
berlekanp(E,L,nceraflags);
PSHOW(1<<6,"Cl:error locator polynomial L:",L);
au = chien_search(L,X);

if (nu == 1) // single error syndrome

{

B.2 Simulation Software for Compact Disc Channel Modelling 181

INFO(2,("C1:single error syndreme nu=i\n"));
¥ = Gdiv(Goul(aigmaji(1](0].E{1]),Goul(sigmaji[1][0].X{11));
menepy (veorr,r,nn);
veorr{I[1]] = Gadd(r[X{1)1, Y);
setoutputeraflags(0);
return;
}
nuoferas=0;
for (i=0;i<nn;i++) if (eraflags(il) nuoferas++;

if (ouoteras » 2)

{
// copy output Cl erasure flags from input Cl erasure flags
// done: Ci::geterasure uses eraflags(] again.
// printf(“Cl:number of input erasures > 2 (nucferas=¥d)\n",nuoferas);
INFD(2,("Cl:number of input erasures > 2 (nuoferas=%d)\n",nuoferas));
memepy(veorr,r,nn);
return;
}
it (nuoferas == 2) //gk nu ==1) 7?2
{
INFO(2,("Cl:number of input erasures == 2, trying two erasure dacoding\n",nuoferas));
ret < berlekamp(E,L,eraflags);
nu = chien_search(L,X);
/7 PSHOW("C1:locator polynomial loc:",loc);
1/ for(i=0,nu=1;i<nn;i++) if (loc(i) == ZERO) X[nu++] = i;
// nu--;
if (!'ret &k !correct_vith_fourrey(E,L,X,nu))
{
INFO(2,("C1i: nuoferas=2 and berlekamp and fourney corract ! erasures deleted\n"));
setoutputeraflags(0);
return;
}
}
INFO(2,("C1: number of input erasures < 2 (nuoferas=%d) || (nuoferas==2 k& (fourney or berlkamp failed)), ass

mencpy{vcorr,r,nn);
setoutputeraflags(1);

}

//-tt‘0"“.!"‘0#0##t‘t#tttst:atesy & END##xsvoortstsstetbrabvsnddnsnsones

void ClDecoder::do_decode_stratmy() {

GalEl E[nn+1]; // error correcting polynomial in frequency domain
GalEl L[nn}; // error locating polynomial

GalEl Y, X[nn);

int ret, nu;

ret = get_syndromesi_2t(r,E); // zero error syndrome
if (ret == 0)
{
INFO(2,("Cl:zero error syndroze \n"));
mencpy(vecorr,r,nn);
setoutputeraflags(0);
return;
}
berlekamp(E,L,noeraflags);
PSHOW(1<<6,"Cl:error locator polynocmial L:",L);
nu = chien_search(L,X);
PSHOW{(1<<6,"C1: X" ,X);

it (mu == 1) // single error syndroxze
{

IRF0(2,("Ci:single error syndroze nu=1\n"));
Y = Gdiv(Gzoul(sigmaji(1) (0] ,E[1)),6mul(sigmaji[1]1(0],X[1]));
memcpy{vcorr,r,nn);
veorr(X(11} = Gadd(r(X[1}], Y);
setoutputeraflags(0);
return;

B.2 Simulation Software for Compact Disc Channel Modelling 182

if { nu == 2) // double error syndroze
{
INFO(2,("Ci:double error syndroze nu=2, trying to decode and assigning erasures..\n"});
ret = berlekamp(E,L,eraflags);
au = chien_search(L,X);

if (ret || correct_with_fourney(E,L,X,nu))
{
INFO(2,("Cl: according te berlekamp or fourney: word is undecodable, no correctior made and assigning
mexcpy(veorr,r,nn);
}
setoutputeraflags(1);
return;
}
INFO(2,("Cl:oultiple (more than tve) error syndrowe nu=%d, assigning erasures..\n",nu));
mezcpy{vecorr,r,nn);
setoutputeraflags(1);

}

int ClDecoder::chien_search(GalEl *FTin, GalEl *X)
{

GalEl Bum;

int i,k,nu;

sum = FTin[an-1];
nu = 1;
for(k=nn-2; k>=0; k--) sum = Gadd(sum,FTin{k]};
if (sum == ZERO } X{nu++) = 0;
//out{0] = sum; // since inv(a0) = a0
for(i=1; i<nn; i++)
{
sum = FTin[nn-1];
for(k=nn-2; k>=0; k--) sum = Gadd(Gmul(sum,ZERO-1i),FTin[k]);
if (sum == ZERO) X{nu++) = i;
//out[i) = sum;
}
nu--;
return nu;

}

int ClDecoder::correct_with_fourney(GalEl ¢E, GalEl #L, GalEl +X, int nu)
{
/* according to Peterson, Weldon: "Error correcting codes" p.297
./
int 1,j,1;
GalEl sumi, sum2;
GalEl Y;

if (nu >= dd)
{
// vord is undecodable !
return 1;

}

PSHOW(1<<6,"C1: X",X);

for (j=1; j<=nu; j++)

for (i=1; i<nu; i++)
sigmaji[jl1(i} = Gadd(L[il,Gzul{(X([j),sigmaji(jI(i-11));

meacpy(veorr,r,nn);
for (j=1; j<=nu; j++)
{
suml = sun2 = ZERO;
for (1=0; 1l<nu; 1++) sumi = Gadd{sunl,Gmul(sigmajil[jl{1],E(nu-1]1));
for (1=0; l<nu; 1++)
sun? = Gadd(sun2,Gmul(sigmaji(jl(1],Gpow{X[j},nu-1)));
Y = Gdiv(suml, sum?);
veorr(X(jl) = Gadd(r{X[jI1]., Y):
}
racturn 0;

}

B.2 Simulation Software for Compact Disc Channel Modelling 183

void CiDecoder: :setoutputeraflags{int i)
{

memnset (eraflags,i,FC252B);
}

int CiDecoder::geterasure({int i)
{
return eraflags([i+nn-kk];

}

C2.c
Copyright Kay Rydyger

C2 decoder

#include "defs.h"
#include "“classes.h"

static char cvsid[]="8$Id: listings.tex,v 1.4 2002/05/19 11:58:11 kay Exp $";

C2Decoder: :C2Decoder(int decoder_strat)
{
int i;
for (i=0; i<on; i++) {
r[i) = ZERD;
eraflags([i] = O;
sigmajifil(o] = 0;
}
if (decoder_strat==2) do_decode=&C2Decoder::do_decode_strat2;
if (decoder_strat==4) do_decode=iC2Decoder::do_decode_strat4;

}
void C2Decoder: :C2Decode(union C2Frame #c2, union C2Frame *eraframe)
{
int i;
for (i=12;i<16;i++)
{
eraflags[i-12) = eraframe->byteli);
r[i-12] = ¢2->bytelil; // Parity bits copied
}
for (i=0; i<12; i++)
{
eraflags[i+nn-kk] = eraframe->byteli);
rli+nn-kk] = ¢2->bytelil;
}
for (i=16; i<FC25ZB; i++)
{

eraflags[i] = eraframe->byte(il;
r{i} = c2->byte(i);

INFO(2,("C2 decoding Frame #:%d\n",frame));
PSHOW(1<<11,"C2: erasures",eraflags);
PSHOW(1<<7,"decode C2:",r);
(this->+do_decode)();

PSHOW(1<<7,"..decode C2 corr:",vcorr);

for (i=0; i<12; i++)

eraframe->byte[i} = eraflags[i+nn-kk];
c¢2->byte[i] = veorr([i+nn-kk];

for (i=12; i<FC2SZB-{un-kk); i++)

eraframe->byte[i+nn-kk] = eraflags([i+nn-kk];
c¢2->byte[i+nn-kk] = vcorr[i+nn-kk];

PSHOW(1<<11,"C2: after decoding erasures”,eraflags);

B.2 Simulation Software for Compact Disc Channel Modelling 184

/=
these strategies found in “"Tehranchi: Reliability estimates for data recovered
from cozpact discs" and
"The fourth international conference on video and data recording, Southampton”
/

void C2Decoder::do_decode_strat2() {

GalEl E[nn+1]); // error correcting polynomial in frequency domain
GalEl L(nn); // error locating polynomial

GalEl Y, X{nn], loclnn);

int ret, i, nu, nuoferas;

ret = get_syndromesl_2t(r,E);
if (ret ==0) /! zero error syndrome
{
INFO(2,("C2:zero error syndrome\n"});
memcpy(vcorr,r,nn);
setoutputeraflags(0);
return;
})
berlekamp(E,L,noeraflags);
PSHOW(1<<6,"C2:error locator polynomial L:",L);
chien_search(L,loc);
for(i=0,nu=1;i<nn;i++) if (loc(i] == ZERD) X([nu++] = i;
au--;

if (ou == 1)} // single error syndroze
{

INFO(2,{"C2:single error syndrome nu=1\n"));
Y = Gdiv(Goul{sigmaji(1]{0),E(1]),Cnul(sigmaji(1] [0]),X[11));
memepy(vcorr,r,nn);
veorr[X(1]) = Gadd(r[X[1]], Y};
setoutputeraflags(0);
return;

INFO(2,("C2:multiple error syndroze nu>l (nu=}%d)\n",nu));
nuoferas=0;
PSHOW(1<<6,"eraflags" ,eraflags);
for (i=0;i<nn;i++) if (eraflagsfi)) nuoferas++;
if { nuoferas > 2)
{
INFO(2,("C2:number of erasures > 2 (nuoferas=id), not correcting'!\n",nuoferas));
// copy output erasures from input erasures !
// done. eraflags are used after return.
mencpy{vcorr,r,nn);
return;
}
if (nuoferas == 2) // try two erasure decoding
{
INFO(2,("C2:trying tvo erasure decoding, nuoferas=2\n"));
ret = berlekamp(E,L,eraflags);
if (!ret && !correct_vith_fourney(E,L))

{
setoutputeraflags(0);
INFO(2,("C2: corrected, no output erasures!\n"));
return;
}
3
INFO(2,("C2: number of erasures < 2 || (nuoferas==2 && {berlekamp or fourmey:uncorrectable))}, nuoferas=id
// assign output erasures to all symbols!
setoutputeraflags(i);
cemcpy (veorr,r,nn);
return;

B.2 Simulation Software for Compact Disc Channel Modelling

void C2Decoder: :do_decode_strat2old() {

GalEl E{nn+1]; // error correcting polynomial in frequency domain
GalEl L[an]; // error locating polynomial

GalEl Y, Xiznn], loc(nn];

int ret, i, nu, nuoferas;

ret = get_syndromesi_2t(r,E);
if (ret == 0) // =zero error syndronme
{
INFO{2,{"C2:zero error syndroze\n"));
memepy(vecorr,r,nn);
return;
}
berlekamp(E,L,noeraflags};
I*
in general: firstly do berlekamp vithout input erasures!
because: Codeword might be right
-/
PSHOW(1<<6,"C2:error locator polynomial L:",L);
chien_search(L,loc);
for(i=0,nu=1;i<nn;i++) if (loc[i] == ZERD) K(nu++] = i;
nu--;

if (nu == 1) // single error syndrome
{
INFO(2,("C2:single error syndroze nu=i\n"));
Y = Gdiv(Gmul(sigrmaji{1]1(0],E[1]),Gmul(sigmaji{1][0].X[1]));
mencpy(vcorr,r,nn);
veorr[X[1]1] = Gadd(r(X[1]), Y);
return;

INFO(2,("C2:multiple error syndrome nu>l {nusid)\n",mu));
nuoferas=0;
PSHOW (1<<6, "eraflags",eraflags);
for (i=0;i<nn;i++) if (eraflags(i]) nuoferas++;
if (nuoferas == 2) // try twvo erasure decoding
{
INFO(2,("C2:trying two erasure decoding, nuoferas=2\n"));
berlekamp(E,L,eraflags);
corract_with_fourney(E,L);
return;
}
INFO(2,("C2: found more than two erasures, nuoferas=Yd\n",nuoferas));
memcpy{vcorr,r,an);

}
// Superstrategy
void C2Decoder: :do_decede_strat5() {

GalEl E[nn+1]; // error correcting polynonmial in frequency domain
GalEl L[nn]; // error locating polynomial

GalEl Y, Xfan), loc{mn];

int ret, i, nu, nuoferas, eralderr;

ret = get_syndromes}_2t(r,E);
if (ret == 0) // zero error syndrome
{
INFO(2,("C2:2er0 error syndrome\n"));
mencpy(veorr,r,nn);
return;
}
berlekamp(E,L,nceraflags);
PSHOW(1<<6,"C2:error locator polynomial L:",L):
chien_search(L,loc);
for(i=0,nu=1;i<nn;i++) if (loc[i} == ZERD) X[nu++] = i;
PSHOW(1<<6,"C2: X" X);
nu=-=;

B.2 Simulation Software for Compact Disc Channel Modelling 186

if { nu == 1) // single error syndreze
{
INF0(2,("C2:single error syndrone nu=1\n")):
Y = Gdiv{Gmul(signaji[1){0),E[1]1),Cmul(sigmaji[1](0],X[11));

memcpy(vcorr,r,nn);
veorr[%{1]1) = Gadd{(r([X(11], Y};
return;

}

nuoferas=0;
for (i=0;i<nn;i++) if (eraflags(i]) nuoferas++;
INFO(2, ("C2: multiple error syndroze nu>l (nu=¥d)\n",nu));
it (nuoferas <=4)
{
INFO(2,("C2: number of erased symbols <= 4 (nuoferas=%d)\n",nuoferas));
eralerr=0;
PSHOW(1<<6,"eraflags"” ,eraflags);
for (i=1;i<=nu;i++) if (eraflags{X[i]) == 1) eralerr++;

if (nu == 2 k& eraderr == 2)}
{
INFO(2,("C2:double error syndrome and V = 2\n"));
INFO(2,\
("C2:trying two erasure decoding (modify twe symbols)\n")};
berlekamp(E.L,eraflags);
correct_vith_fourney(E,L);
return;
}
else {
INFO(2,("C2: not double error syndrom &% V = 2 (nu={d , v=¥d)\n",\
nu,erakerr));
if ((nu == 2 && ({ eraderr
(eraderr
{ nuoferas <= 2 k& nu !

1 && nuoferas <= 3) ||
0 &k nuoferas<= 2))) ||
2))

RE

{
// assign erasure flags
// to all symbols of the received wvord
INFO{2,("C2: assign erasure flags to all symbols\n"));

else

{
// copy C2 erasure flags from Ci erasure flags
INFO(2,("C2: copy C2 erasure flags to Ci\n"));

}

else
{
INFO(2,("C2: number of erased symbola > 4\n"}));
// copy C2 erasure flags froo C1 erasure flags
}
pencpy(veorr,r,nn);

}

/7 sennbssbtasanpnnsnovennndn e sSTARTEGY deustsronsenkabdrrdnnises

// same as STRATEGY1
void C2Decoder::do_decode_stratd{) {

GalEl E[nn+1}; // error correcting polyromial in frequency domain
GalEl L{nn}; // error locating polynoaial

GalEl Y, X[nn], loclnn];

int ret, i, nu, nuoferas;

reat = get_syudromesl_Z:(r.E);
if (ret == 0) // zero error syndrome
{
INFO(2,{"C2:zero error syndroze\n"));
memcpy(veorr,r,nn);
setoutputeraflags(0);
return;

B.2 Simulation Software for Compact Disc Channel Modelling 187

berlekamp(E,L,nceraflags};

PSHOW(1<<6,"C2:error leocator polymomial L:",L);
chien_search(L,loc);

for(i=0,nu=1;ic<nn;i++) if (loc[i] == ZERD)} X[nu++] = i;
nu--;

it (nu == 1) // single error syndroze
{

INFO(2,("C2:single error syndrozme nu=1\n"});
Y = Gdiv(Gmul(sigmaji[l][O),E[l]).Gmul(sigmaji[i][0].1[1]));
memcpy{vcorr,r,nn);
veorr[X(1)] = Gadd(r[x{11], Y);
setcutputeraflags(0);
return;

INFO(2,("C2:multiple error syndrome nu>l (nu=%d)\n",nu));
nuoferas=0;
PSHOW(1<<6,"eraflags",eraflags);
for (i=0;i<nn;i++) if (eraflags[i]) nuoferas++;
if (nuoferas > 2)
{
INFO(2, ("C2:number of erasures > 2 (nuoferas=jd), not correcting!\n",nuoferas));
// copy output erasures from input erasures !
// done. eraflags are used after return.
mencpy{vcorr,r,nn);
return;
}
if { nuoferas == 2) // try tve erasure deccding
{
INFD(2,{"C2:trying twvo erasure decoding, nuoferas=2\n"));
ret = berlekamp(E,L,eraflags);
if ('ret &k 'correct_with_fourney(E,L))
{
setoutputeraflags(0);
INFO(2,("C2: corrected, no output erasures!\n"));
return;
}
}
INFO(2, ("C2: number of erasures < 2 || (nuoferas==2 && (berlekamp or fourney:uncorrectable}), nuoferaszid
// assign output erasures to all symbols!
setoutputeraflage(1);
memcpy(vcorr,r,nn);
return;

}

J/vrsnnsscenrasierrnnnsnnsesnistartegy 4 END sasanuctindinbebbrbsaanonsenssns

void C2Decoder::chien_search(GalEl *FTin, GalEl wout)

{
GalEl sum;
int i,k;
sun = FTin[nn-1];
for(ke=nn-2; k»=0; k--) sun = Gadd{sun,FTin(k});
out{0] = sum; // since inv(a0) = a0 ! (and not a7 like below !)
for(i=1; i<an; i++)
{
sun = FTin(an-1];
for(k=mn-2; k>=0; k--) sun = Gadd({Gzul(sum,ZER0-1i) ,FTin[k]);
out[i] = sum;
}
PSHOW(1<<6,"chien: loc",out);
}

int C2Decoder::correct_vith_fourney(GalEl +E, GalEl »L)
{
/* according to Peterson, Weldon: "Error correcting codes" p.287
«/

int i,j,1,0u=1;

B.2 Simulation Software for Compact Disc Channel Modelling

188

GalEl suml, sum?2;
GalEl Y, X(nn), loc[nn]);

chien_search(l,loc);
PSHOW(1<<6,"C?2:1ocater polynomial loc:",loc);
F L
zeros at 1 give the positions of the errors 1t

+/

for (j=0,nu=1; j<nn; j++) if (loc[j1==ZERD) X[nu++] = j;
nu--;
if (nu >= dd)
{
return 1;

}

PSHOW{1<<6,"C2:X",X);
for (j=1; j<=mu; j++)
for (i=1; i<nu; i++)
signajiljlli) = Gadd{L[i],Coul(X[j),.sigrajiljl[i~-11));:
cemcpy(vcorr,r,nn);
for (j=1; j<=nu; j++)

suml = sum2 = ZERQ;
for (1=0; l<nu; 1++) suml = Gadd(suml.Gmul(sigmaji[j][1],E[nu—l]));
for (1=0; 1l<nu; 1++)
sun2 = Gadd(sumZ,Gmul(Bigmaji[j][1],Gpow(x[j].nu-l))):
Y = Gdiv(suml, sum2);
veorr[X[3j]1] = Gadd(r(X[jl1], Y);
}
return 0;

}
void C2Decoder: :do_decode_stratmy() {

GalEl Elnn+1); // error correcting polynomial in frequency domain
GalEl L[nn]: // error locating polynomial

GalEl Y, X[nn), loelnn];

int ret, i, nu, nuoferas, eralerr;

ret = get_syndromesl_2t(r,E);
if (ret ==0) // zero error syndrone
{
INFO(2,{"C2:zero error syndrozme\n"));
neacpy(veorr,r,nn);

return;
}
if (berlekamp(E,L,noeraflags))
{
INFO(2,("C2: according to first berlekamp vithout erasures : wvord is undecocdable\n"));
}

PSHOW(1<¢<6,"C2:error locator polynmemial L:",L);
chien_search(iL,loc);

for(i=0,nu=1;i<nn;i++)

if (loc[i) == ZEROD) X[nu++] = i;
PSHOW(1<<6,"C2:X",X);
nu--;

if (nu == 1) // single error syndrome
{
INFO(2,("C2:single error syndroze nu=1\n"));
Y = Gaiv(Gzmul{sigmaji{11(0],E[1]},6mul(sigmnaji(1] (0] . X[11));
memcpy{vecorr,r,nn);
veorr[X(1)] = Gadd(r[X[11}, Y);
return;

}

nuoferas=0;
for (i=0:i<nn;i++) if (eraflags(i)) nuoferas++;
INFO(2,("C2: multiple error syndrome nu !=1 (nu=%d)\n",nu));

B.2 Simulation Software for Compact Disc Channel Modelling 189

if (nuoferas <=4)}
{
INFO(2,("C2: number of erased symbols <= 4 (nuoferas=¥%d)\n" ,nuoferas));
eraderr=0;
PSHOW(1<<6,"eraflngs"” ,eraflags);
for (i=1;i<snu;i++) if (eraflags[X[il) == 1) eraderr++;

if (nu == 2 2& eraderr == 2)
{
INFO(2, ("C2:double error syndroze and V = 2\n"));
INFO(2,\
("C2:trying two erasure decoding (modify two symbols)\n"));
it { berlekamp(E,L,eraflags) || correct_with_fourney(E,L))
{

INFO(2,("C2: according to berlekamp or fourney: word is undecodable, no correction made \n"));

memcpy{vcorr,r,nn);
}

return;

else
{
INFO(2,("C2: not double error syndrom && V = 2 (nu=id , V=iid), trying erasure decoding!\n",nu,eraderr

if (berlekamp(E,L,eraflags) |l correct_with_fourney(E,L))
I+
this atep is additional to SUPERSTRATEGY and gives EC a try,
because the case nu=4 is not covered by the previous condition
and can be corrected with the help of erasures though
«/
{

INFO(2,("C2: according to berlekamp or fourney: vord is undecodable, no correction made \n")};

memcpy(veorr,r,nn);

}

INFO(2,("C2: not double error syndrom && V = 2 (mu=%d , V=¥d)A\n",\
nu,eralerr));
if ((pu == 2 k& ({ eraherr == 1 k& nuoferas <= 3) |l
{ eraherr == 0 && nuoferas <= 2))) ||
(nuoferas <= 2 && nu '= 2))

I*
assign erasure flags
to all symbols of the received word
o/
INFO(2,("C2: assign erasure flags to all symbols\a"));

// copy C2 erasure flags from Cl erasure flags
INFO(2,("C2: copy C2 erasure flags to Cl\n"));

else
{
INFO(2,("C2: number of erased symbols > 4 (=id, frame=%d)\n", nuoferas,frame));
// copy €2 erasure flags froz Cl erasure flags
cexcpy{vcorr,r,nn);
3

1 memcpy(veorr,r,nn);

void C2Decoder::setoutputeraflags(int i)
{

renset(eraflags,i, FC2SZB);
}

B.2 Simulation Software for Compact Disc Channel Modelling 190

e

+ ASDecoder.c

+ Copyright Kay Rydyger

»

s basic routines for RS decoder
L]

o/

¢include "defs.h”
ginclude "clasges.h"

static char cvsid[]="$Id: listings.tex,v 1.4 2002/05/19 11:58:11 kay Exp $";

GalEl RSDecoder: :noeraflags(non];

RSDecoder: :RSDecoder()
{
int i;
for (i=0; i<nn; i++) noeraflags[il=0;

}

int RSDecoder::get_syndromesl_2t(calE1 er, GalEl *E) {
I
slightly faster for (255,223) g++ -06 than
routine belov (imi6<>1m12).
./

GalEl sum;
int i,k, decode=0;

PSHOW(1<<8,"get_syndromes: ™, r);

for(k=1; k<=2+tt; k++)

{
sum = rlnn-1];
for (i=mn-2; i>=0; i--) sum = Gadd(Gmul(sun,k),r[i}};
E(k] = sum;
if (sum !'= ZER(Q) decode++;
}

PSHOW(1<<6,"get_syndromes: E (1..2t)", E):
return decode;

}

int RSDecoder::berlekamp(GalEl *S, GalEl +L, GalEl seraflags) {
I
according to "error-control techniques for digital communications®
vith computing of erasure polynonial in first loop (Blahut)
*/

int i, 1=0, n=1, degT=0, 8s8=0;

GalEl delta;
GalEl D[on];
GalEl T[an];
GalEl U[nn};
PSHOW(1<<6,"erasures in berlekanp:“,eraflaga):

8s=0;
for (i=0;i<nn;i++)
{

if (eraflags[il) Ul++ss]=i;
p[i] = ZERO; L{i] = ZERO;

}

if { ss > dd-1)

{

/7 fprintf(stderr,” »= ss=Yd dd=%d berlekamp: word is undecodable (s>d-1) s+\n",ss,dd);

return i;

}

D{0)=0; Lf0]}=0;

B.2 Simulation Software for Compact Disc Channel Modelling 191

vhile (n <= 88)}

{
1++;
for (i=nn-1; i>0; i--)
p[i) = L[i] = Gadd(L[il, Gmul(L[i-13},0011));:
Do) = L{0];
n++;
}
while (n<dd) {
delta = ZERO;
for (i=1; i<=1l; i++) delta = Gadd(delta, Gmul(L[il, S$[n-i]));
delta = Gadd(delta, S[n});
Pmulz(D);
if (delta != ZERO)
{
for (i=0; i<on; i++)
{
T[i] = Gadd(Gmul(D[i],delta),L{i});
if (T(i) !'= ZERO) degT = i;
}
if ((1<<1) < n + 88)
{
l=n-1+s58;
if {delta==0)
{
memcpy(D,L,nn*sizeof(GaIEl));
1
else for(i=0;i<nn;i++)
B[i) = Cmul(L(il,ZERD-delta);
}
nmemcpy(L,T,nn¢sizeof (GalEl));
}
ne+;
3
return 0;
}
/e
* RSEncoder.c
+ Copyright Kay Rydyger
+ basic routines for RS encoder
L]
s/

¢include "defs.h"
g8include “classes.h”

static char cvsid[]="$Id: listings.tex,v 1.4 2002/05/19 11:58:11 kay Exp $";

RSEncoder: :RSEncoder()

{
int i;
for (i=0; i<mn; i++) {
vCi[i] = 2EROD;
vC2(i] = ZERO;
}
}

void RSEncoder::RSEncode{union C2Frame =c2)
{
int i;
GalEl »data;
data = vC2+nn-lk;
for (i=0; i<nn-kk; i++) vC2(i] = 2ERO ;
for (i=0; i<12; i++) data[i] = c2->bytelil;
for (i=16; i<FC252B; i++) datali-nn+kk]) = ¢2->byte(il;
PSHOW(1<<8,"RSENCODE C2: ",vC2);
do_encode{v(C2,data);
for(i=0; i<nn-kk; i++) c2->byteli+12] = vC2{i]):

B.2 Simulation Software for Compact Disc Channel Modelling

192

PSHOW(1<<8,"RSENCODE C2 + parity: *",v(C2);

}

void RSEncoder: :RSEncode{union ClFraze *cl)

{
int i;
GalEl »data;
data = vCl+nn-kk;
for (i=0; i<nn-kk; i++) vC1[i] = ZERO ;
for (i=0; i<FC2SZB; i++) data[i] = ci->bytel[il:
PSHOW(1<<8,"RSENCODE C1: *",vCl);
do_encode(vCl,data);
for(i=0; i<nn-kk; i++) ci->byte[i+28] = vC1[il;
PSHOW(1<<¢8,"RSENCODE ¢1 + parity: ",vCi};

}

i === protected members ---------

void RSEncoder::de_encode{GalEl sv, GalEl +data)
{
/e
encoding according to Lin/Costello p.91.
parity bits into first nn-kk bytes of cedeword v,
data is written into last kk bytes of v
e/
int i,j;
GalEl feedback;

for (i=kk-1; i»=0; i--)
{
feedback = Gadd(data{il,v{nn-kk-1]);
for (j=nn-kk-1; j>0; j--)
v[j} = Gadd(v[j-1],Goul(gen[j],feedback});
v[0] = Gmul(feedback,gen{0]);

/*
AS.c
Copyright Kay Rydyger

basic¢ routines for Galois-field arithmetic

* = = ® »

+/

ginclude "defs.h"
8include "classes.h"

static char cvsid[]J="$Id: listings.tex,v 1.4 2002/05/19 11:58:11 kay Exp $";
RS: :RS()
{

init_lookuptables(};
generator_polynomial();

[# -mmmmmmemmmmeee protected members only ----====------- o/
CalEl RS::lockpolylqql, RS::lookzechlqql, RS::leokpower(qq], RS::gen[un-kk+1];
unsigned int RS::polynom = 361;//285; // 100011101(d285) => K8+¢X4+X3+X2+1 451 (XB+XT+XE+X+1)
void RS::init_lookuptables(void) {
unsigned int negmask = “ZERQ, oldvec;
unsigned int poly = polynom & ZERD;
int i;

lookpoly (maskl=0;
lookpoly[t]) =poly;

oldvec = poly<<i;

B.2 Simulation Software for Compact Disc Channel Modelling

193

}

for (i=0; i<mm; i++) lookpoly[iJ=1¢<i;
for { i-mm+1; i<nn; oldvec=(lookpoly[i)<<1)},i++)
lookpoly(i) = (oldvec k negmask}? (oldvec " poly) & mask: oldvec;

for (i=0; i<nn; i++) lookpower[lookpelylil]l = i;
lookpover [0] = mask;

for (i=1; i<nn; i++) lookzechl[i] = lookpover[lookpely[i] ~ 1);

void RS::generator_polynonial(veid) {

}

int i,j;

gen[0]=1; gen[1]1=0;

for (is2; i<=nn-kk; i++) {
genlil = 0;

for (j=i-1; j»0; j--) gen[j] = Gadd(gen[j-1],Czul(gen(jl,i));

gen[0] = Gmul(gen[0],i);

GalEl RS::Gdiv(GalEl a,GalEl b)

{

}

if (b == 0) return a;

if (b == 2ERO) {
printf{"RS::Gdiv: internal error: »e» division by ZERD w»s+\n");
return ZERQ; // vrong value returned !

}

return Gmul(a,ZERO-b);

GalEl RS::Gmul{GelEl a, GalEl b) {

:

if (a==ZERO0 || b==ZERO) return ZERD;
return (a+b)%nn;

GalEl RS::Gadd(GalEl a, GalEl b) {

);

int ret:

if {a==b) return ZERO;
if (a==ZERQ) return b;
if (b==mask) return a;

if (b<a) ret = lookzech{a-b) + b;
else ret = lookzech(nn-b+al + b;

return ret¥nn;

GalEl RS::Gpow(GalEl a, int b) {

}

if (a==ZER0) return ZERQ;
return {(a*b)¥nn);

void RS::Pmulz(GalEl eres) {

v

/

int i;
for (i=mn-1; i>0; i--) res[i] = resli-t];
res[0)=ZERO;

oid RS::Pshow(char +s, GalEl +a) {

int i;

printf("\nPolynozial: %s ",s);

for (i=0; i<nn; i++) printf("%02X(%02X), “,alil,i);
puts{("\n");

* GPC.cc
« Copyright Kay Rydyger

-

B.2 Simulation Software for Compact Disc Channel Modelling 194

+ routines for simulating scratches etc.

o

#include "defs.h”
finclude "classes.h”

static char cvsid[]="$Id: listings.tex,v 1.4 2002/05/19 11:58:11 kay Exp "

GPC: :GPC(void)
{3

GPC: : “GPC(void)
{

int GPC::radial_error(int symbcat)

{
static int ges_circum = 660; //=min_circum
static int add_circus=33;
static int length_in_trs=10000;
static int act_circum = 660; // =min_circun
static int tr=0;

if (symbent ¥ ges_circum == 0 &k tr++ < length_in_trs)
{
act_circum += add_circum;
ges_circum += act_cireum;
return 1; // "scratch" encountered !

}
return O;

}

int GPC::tangential_error(int symbcnt)

{
return 0;

}

int GPC::is_bad{int symbcnt)

{
if (radial_error(symbcnt)) return 1;
if (tangential_error(symbcnt)) return 1;
return 0;

}

int GPC::burst_gpc_length(Random *rnd, int wide)
/* return burst length between 1 and wide-1 inclusive */
{
int zufall;
// while ((zufall = rnd->rnd_rand{vide)) == 0);
return wide;//zufall;

}

int GPC::gap_gpec_length(Randon ¢rand, int thinning)
{

static int a=1;

static int dist = 33; // wvar 20

if (++a’2==0) return thinning;

else return dist-thinning;

}
I+

+» Randonm.cc

» Copyright Kay Rydyger

*

+ routines for randoa numbers and error distributions
-

./

ginclude "defs.h"
¢include "classes.h"

B.2 Simulation Software for Compact Disc Channel Modelling

static char cvsid[J="$Id: listings.tex,v 1.4 2002/05/19 11:58:11 kay Exp $":
//8define LINUX

Randon: :Randon(}
{
idum=-1;
rani();

g8ifdef LINUX
idum = get_rnd_int();

Solse

idum=2;
gendif

idumfast=0;
}

Randem: : “Randon()}
{}

gifdef LINUX

unsigned int Randoem::get_rnd_int{)

{
int fd,count,ran;
fd = open(RANDCM_DEVICE,O0_RDONLY);
if (£d == 0) {
printf(“get_rnd_int():error opening ¥s\n", RANDOM_DEVICE);
exit(l);
}
do
{
count = read{(fd,kran,4);
} while (count != 4);
if (close(fd) < 0) printf("get_rnd_int():error closing %s\n",RAHDOM_DEVICE);
return ran;
}
gendif

float Random::ranl{void)
{
/e
return a uniform deviate betveen 0.0 and 1.0 (exclusive of the endpoint value)
4
int j;
long k;
static long iy=0:
static long ivINTAB);
float temp;

if (idum <= 0 || !iy)

{
if (-(idum) < 1) idum=1;
else idum = -(idum);
for (j=NTAB+7; j>=0; j--)
{

k = (idun)/I0;
idum = IA * (idum - k+IQ) - IRsk;
if (idun < Q) idum += IM;
if (§ < NTAB) iv[j) = idum;
}
iy = iv[0];
}

k=(idum)/1Q;

idum = IA * (idum-k+IQ)-IRek;

if (idum < 0) idum += IM;

j = iy/NDIV:

iy = iv(3j);

iv(j} = idum;

if {(temp=AM+iy) > RNHK) return RHMX;

B.2 Simulation Software for Compact Disc Channel Modelling

196

else return texp;

}

float Randonm::ranfast(veid)

{
unsigned long idum,itemp;
float rand;
static unsigned long jflone = 0x3£800000;
static unsigned long jflmsk = OxQO7{ffff;
jdunfast = 1664525L + idumfast + 1013904223L;
itemp = jflene | (jflmsk & idumfast);
rand = (»(float *)kiteap)-1.0;
return rand;

}

// 8define ranl ranfast //1.3 times faster

float Random: :expdev(void)

{
float dum;
do
dum = rani():
vhile (dum==0.0);
return -log(dum);
}

float Random::gasdev(void)

{
static int iset=0;
static float gset;
float fac,rsq,vi,v2;
if (iset==0)
{
do
{
vl = 2.0+rani{)-1.0;
v2 = 2.0+ran1{)-1.0;
rsq = visvi+v2ev2;
} while (rsq >= 1.0 1l rsq == 0.0);
fac = sqrt(-2.0+log{rsql/rsq};
gset = visfac;
iset=1;
return v2+fac;
}
else {
iset = 0;
return gset;
}
}

int Random::rnd_gauss(float limitl, float limit2, float spread, int shift}
{

float random;

int ran;
do ran = {int) (gasdev() * spread + shift);
wvhile {(ran <= linmiti |l ran > limit2);
return ran;
}
int Random::rnd_exp(veid)
{
int ran;
do ran = (int) (expdev()*16);
vhile (ran == 0);
return ran;
}

int Random::rnd_flat{int width)
{

B.2 Simulation Software for Compact Disc Channel Modelling

197

}

int ran;

do ran = (int) (rani()ewidth);
vhile (ran==0);

return ran;

int Random::rnd_rand(int width)

{
}

return (int) (rani()swidth);

int Random::rnd_rendfast(int width)

{
}

return {int) (ranfast{)+width);

int Random::gap._rnd_length(fleat thinning)

{

}

int zz;

static int j=0;

do {
if (j++%35==0) zz = (int) (rod_exp()+thinning);
else zz = (int) (rnd_£1lat(10000)+*thinning);

} vhile {zz==0);

return zz;

int Random::burst_rnd_length{void)

{

3

int zz;

static int j=0;

do {
e
if (j%13==0) zz = (int) rnd_gauss(10,50,2,30);
else if (j¥%1000==0) zz = (int) rmnd_flat(300);
else zz = (int) rnd_gauss((,100,10,0);

} vhile (zz==0);

return zz;

int Random::gap_rnd_length3(fleat thinning)

{

}

int zz;
static int j=0;
do {
e+
it {ran1()<0,008) zz = (int) (expdev()+3};
else zz = (int) (rnd_f1at(10000)+thinning);
} vwhile {(zz==0);
return zz;

// statistics from channelmodell
int Randon::burst_rrd_length3(void)

{

}

// statistics

int zz;
static int j=0;
do {
j++;
zz = (int) (expdev()*1.1);
it (§%1000==0) =zz
if (j%7000==0) zz
} vhile (z2==0);
return zz;

(int) (expdev(}e20);

int Randox::burst_rnd_length4{void)

{

int zz;
static int 3=0;
do {

j++;

(int) rnd_gauss(10,50,2,30);

from channelmedell with a 10 times higher

burst probability

B.2 Simulation Software for Compact Disc Channel Modelling

198

Zz =

(int) (expdev()*1.1):

it (j%B0==0) zz = (int) rnd_gauss{10,50,2,30);
if (j%7000==0) zz = (int) (expdev()*20);

} wvhile

(zz==0);

return zz;

}

int Random::gilbert(void)

{
static
float b
if (sta

int state=1l;
eta=0.8, alpha=0.1;
te==1) {

if (rani()<beta)

{
r
}
else
sta

eturn 1;

{

te=0;

return 0;

}
}

if (state==0) {

if (r
else
sta
ret
}
}

return

I*
+ defs.h
L]

»

« defint
-

*/

// $1d: listings.tex,v 1.4 2002/05/19 11:58:11 kay Exp $

/+* includ
ginclude
#include
ginclude
8include
#include
ginclude
#include
ginclude
tinclude
tinclude

/+* genera
8define D

//tdefine
//tdefine
//8define
//8define
fdefine F
gdefine B

an1()<alpha) return 0;
{

te=1;

urn 1;

0;

Copyright Kay Rydyger

ions

es *+/
<iostream.h>
<stdieo.h>
<stdlib.h>
<math.h>
<string.h>
<limits.h>
<unistd.h>
<sys/types.h>
<gys/stat.h>
<fcntl.h>

1 +/
EBUG 0//((1)1(2))//1(1<<11)1(1<<9) 1(1<<6))

EFMOFF

NRZIOFF

SCRAMBLEOFF // not working !
RSOFF

ILLBYTE 10

ERFACTOR 100000

extern int frame;
extern int maxNonEFHMWords;

gifdef DEBUG

8define I

8define PSHOW(which,a,b) if (/+frame<iif &k */vwhich&DEBUG}

NFO(which,a) if (which2DEBUG) printf a;

Pshow(a,b)

B.2 Simulation Software for Compact Disc Channel Modelling

199

8define SHOWPUFFERC1(which,a,b) if (/+frame < 115 g&+/ which&DEBUG) {\
int i,j:\
printf(a);\
for(j=0;j<2:j++) {\
for(i=0;i<FCISZB;i++)\
printf("%02X ",b[j].byrelil);\
cout << endl;}\
}

¢define SHOWPUFFER_FSZB(vhich,a,b) if (/eframe < 115 t#he/ uhich&DEBUG) {\
int 1,j:\
printf{a):\
for{j=0;3<3;j++) {\
for(i=0;i<FSZB;i++)\
printf("%02X ",b{j].bytelil);\
cout << endl;}\
}

gdefine SHOWPUFFER_FC2SZB(which,a,b) if (/+*frame < 115 &k&+/ which&DPEBUG) {\
int i;\

printf(a);\

for(i=0;i<FC2SZB;i++)\

printf ("%402X ",b->byteli]) ;i\

cout << endl;\

}

¢define SHOWPUFFER_FSZBi(vhich,a,b) if (/+¢frame < 115 &&+/ whichDEBUG) {\
int i;\

printf{a);\

for(i=0;i<FSZB;i++)\

printf("%02X ,b.byrelil);\

cout << endl;\

3

8define SHOWPUFFERC2{which,a,b) if (/*frame <115 k& + /uhich&DEBUG) {\
printf(a);\
for{j=0;j<112;j++) {\
printf("%03d: “,j); \
for(i=0;i<FC2S2B;i++) \
printf ("%02X ",b[j1.byteli]); \
cout << endl; \
hAN
}
felse
gdefine INFO(which,a) ;
gdefine PSHOW(vhich,a,b) ;
tdefine SHOWPUFFERC1(vhich,a,b)
#define SHOWPUFFERC2{which,a,b)
fendif

gdefine FSZB (sizeof(Frame)}/sizeof (BYTE})
fdefine FSZW (sizeof(Frame)/sizeof(WQRD))
gdefine FC1SZB (sizeof(CiFrame)/aizeof{BYTE))
#define FC15ZW (sizeof (CiFrame}/sizeof (WORD))
#define FC2SZB (sizeof(C2Frame)/sizeot(BYTE))
8define FC2SZW (sizeof(C2Frame)/sizeof(WORD))
sdefine FC1SZBCW (FC1SZB+1}

/e EFM «/

2ifdef EFMOFF

gdefine TRAFOTOEFM

gdefine TRAFOFAOMEFRM

galse

tdefine TRAFOFROMEFM Efn->TrafoFrozEFM
#define TRAFOTOEFM Efo->TrafoToEFH
8endif

8ifdef HRZIOFF

g¢define TO_NRZI

gdefine FROM_NRZI

felse

#define TO_NRZI to_NRZI

B.2 Simulation Software for Compact Disc Channel Modelling

200

gdefine FROM_NRZI from_NRZI
gendif

sdefine WRONGEFM 7
g8define ft 14

gdefine maxfrid (1<<ft}
gdefine svteen ft+3

8define ddd 3

gdefine kkk 11

sdefine maskia ({1<<ft)-1)

¢define my_getbit{a,b) (ak(1<<b))
sdefine my_setbit{a,b) {a|=(1<<b})
gdefine UP 1

gdefine DOWN -1

gdefine NOSUPPR O

gdefine EFMTABLEFILE "./EFMTable"

/+ Scrambler */

typedef unsigned char BYTE;
typedef unsigned short int WORD;

¢define INC1R3{x) if (x<2) x++;else x=0;
edefine INCIR2(x) if(x==0)x++;else x=0;

gdefine INC4AR109(x) if (x<108) x+=4;else x-=108;
sdefine DEC4R109{y} if(y>3)y-=4:olse y+=108;

gdefine INCIR109(x) if (x<111) x++;else x=0;
8define DECIR109(y) if (y==0)y=1lll;else y--;

gifdef RSOFF

#define RSENCODE{(a)} ;

tdefine C1DECODE(a,b) ;

¢define C2DECODE(a,b)

felse

#define RSENCODE(a) RsEncoder->RSEncode(a)
gdefine C1DECODE(a,b) Cl->ClDecode(a,b)
sdefine C2DECODE(a,b) C2->C2Decode(a,b)
gendif

/* RS encoder/decoder */

typedef unsigned char GalEl;
4+ (255,261) RS Code ok. */

gdefine = 8

#8define nn 256 // nn = 27m-1
gdefine tt 2

gdefine kk (an - (tt<<1)}

gdefine ad (2+tt + 1)
tdefine qq (1<<mm)
gdefine mask (qq-1)
gdefine ZERD mask

/* Randomizer e/

gdefine IA 16807

gdefine IM 2147483647

tdefine AM (1.0/IM)

gdefine IQ 1277773

gdefine IR 2836

2define NTAB 32

gdefine NDIV (1+(IM-1)/NTAB)
gdefine EPS 1.2e-7

gsdefine RNMX (1.0-EPS)

gdefine RANDOM_DEVICE "/dev/randoz”
edefine MAX_GAP_LENGTH 9999999389

/*

B.2 Simulation Software for Compact Disc Channel Modelling 201

classes.h
Copyright Kay Rydyger

L]
]
L 3
* class declarations
L]

+f
// 8Id: listings.tex,v 1.4 2002/05/19 11:58:11 kay Exp $

template <class arrclass> class Arr

{
public:
Arr(int sz) {
int i;
array = nev arrclass(sz);
for {(i=0;1i<sz:i++) array[il=ZERO;
aize=sz;
3
arrclass Zoperator[}(int i);
protected:
arrclass »array,;
int size;
I Y
template <class arrclass> arrclass &Arr<arrclass>::operator(}{int i}
{
it (i<0lli>=size) {
printf(“"template arrclass: internal error: *#¢ range checking error ses\n");
printf("i=Yd, size=id «»s\n",i,size);
return ZERD;
}
return array[il;
}

struct Error_kinds {
int single_errors;
int interpolated_eras; '
int error_clicks;
int errs_not_eras;
int P0OO,PO1,P10Q,P11;
int bytes_checked;

union Sample {
BYTE byte[4]);
WORD word[2];
h
union Frame {
union Sample sample(6];
BYTE byte{24);
WORD word{12];
}
union C2Frame {
union Sample sample(7];
BYTE byte[28];
WORD word([14];
b
union CiFrame {
union Sample sample(8);
BYTE byte(32]);
WORD word([16];
}:

class Decode
{
public:

Decode(int);
“Decode();
void oneFrame();
int modified(void);
int getChnbit(int);

B.2 Simulation Software for Compact Disc

Channel Modelling

202

void setChnbit(int);
void toggleChnbit(int);
int einputFrame;//[FC1SZBCH];
union Frame outputFrame;
union Frame outerasFrame;
class EFM »*Efnm;
protected:
class ClDeceder =«C1;
class C2Decodar «C2;
union ClFrame *EFMdecodeFrame();
void DescrambleFrame(union C1Frame *input);

union CiFrame *input;//[2];
union CiFrame *inputera; //([2);
union Frame woutput;//(3];
union Frame *outputera;//([3];
union C2Frame *puffer;//{109];
union C2Frame +erapuf; //[112);
static union C2Frame eraduem;
int Pos, Posl, Pos2, PosBuf;

};

class Encode
{
public:

Encode();
“Encode{);
void oneFrame();
int otherfill{);
int getChabit(int);
void setChnbit(int);
void toggleChnbit(int);
union Frame inputFrame;
int soutputFrame;//[FC1SZB];
class EFM *Efm;
class RSEncoder +RsEncoder;

protected:

void EFMencodeFrame(union CiFrame=);
union C1Frame *ScrambleFrare();

union C2Frame +input://[3];

union C1Frame *output;//[2];

union CiFrame spuffer;//[112]);

int Posi, Pos2, Pos, PosBuf, Pos3;
}:

class EFM
{
public:
EFM();
int TrafoToEFH(BYTE);
int TrafoFromEFM(int);
void printEFMTable(veid);
int getNonEFMWords(int i);
protected:
int EFMTable(258], EFMrevTable[maxftid];
int NonEFMWordsTable[maxfti14];
unsigned DSV;
static int MB[4];

void CreateOfficialEFMTable();

void CreateMyEFHTable{void);

int CreateNonEFMWords{void);

int test_constraints(int code);

int to_HRZI(unsigned int EfcMb);

int from_NRZI(int):

int cnchSV(unsigned int efoword, int «d);
int calc_aNulls(unsigned efmword);

int calc_bliulls(unsigned efcword);

int add_merging_bits(unsigned int +efmvord);

B.2 Simulation Software for Compact Disc Channel Modelling 203

};
class RS
{
public:
RSO ;
protected:
static GalEl lookpoly[qql, lookzechlqq), lookpower(qql, gen[nn-kk+1];
static unsigned int polynom;
void init_lockuptables(void);
void generator_polynomial({veid);
GalEl Gdiv(GalEl, GalEl);
GalEl Gmul{GalEl, GalEl};
GalEl Gadd{GalEl, GalEl};
GalEl Gpow{GalEl, int);
void Pmulz(GalEls);
void Pshow(char *s, GalEl *a);
};
c¢lass RSEnceder : public RS
{
public:
RSEncoder();
void RSEncode(union C2Frames);
void RSEncode(union CiFrame+);
protected:
GalEl vC1([nn],vC2([nn];
void do_encoda{GalEl«, GalEls);
};
class RSDecoder : public RS
{
public:
RSDecoder();
protected:
static GalEl noeraflags[nn};
int get_syndromesi_2t(GalEle, GalEls);
int berlekamp(GalEle, GalEle, GalElse);
I H
class CilDeceder : public RSDecoder
{
public:

CiDecoder(int);
void ClDecode(union CiFrame»,union ClFrames);
void setoutputeraflags{int);
int geterasure(int);
int assign_erasures;
protected:
GalEl eraflags([nn);
GalEl sigmajilnn+1){nn];
GalEl r{on]), vcorr(an];
void (CiDecoder: :*do_decode)(void);
void do_decode_strat2();
void do_decode_strat5();
void do_decode_stratd();
void do_decode_stratoy();
int chien_search(GalEl+x, GalEle);
int correct_vith_fourney(GalEls, GalEl+, GalEle, int);
};

class C2Decoder : public RSDecoder
{
public:
C2Decoder(int) ;
void C2Decode(union C2Frame#, union C2Frame*);
protected:
GalEl eraflags(nn];
GalEl sigmajilnn+1]{nnl;
GalEl r{nn], vcorrfnn];
void (C2Decoder::+*do_decode)(void);

B.2 Simulation Software for Compact Disc Channel Modelling

204

}.

void do_decode_strat2{);

void do_decode_strat5{);

void do_decode_stratd{);

void do_decode_stratmy();

void do_decode_strat2old();

void chien_search(GalEl+, GalEles);

int correct_vith_fourney{GalEls, GalEle);
void setoutputeraflags(int);

class Randonm

{

),.

public:

Random(void);

“Randon(void);

int burst_rnd_leagth(veid);
int burst_rnd_length2(veid);
int burst_rnd_length3(void);
int burst_rnd_lengthd(veid);
int gap_rnd_length(float);
int gap_rnd_length3(float);
float ranfast{void);

int rnd_rand(int);

int rnd_randfest{int);

int gilbert(veid);

protected:

unsigned int get_rad_int(veid);

float rani(void);

float expdev(veid);

float gasdev(void);

int rnd_gauss(float,float,float,int);
int rnd_flat(int);

int rnd_exp{void);

long idum;

unsigned long idumfast;

class GPC

{

// $1d: listings.tex,v 1

public:

GPC(void);

“GPC(void);

int is_bad{int};

int gap_gpc_length(Randoms,int);
int burst_gpec_length{Randome,int);

protected:

int radial_error(int symbent);
int tangential_error(int symbent);

EFMTable.h
Copyright Kay Rydyger

official EFM table

char EFMTable_inc([][32]=

{

"0
"1
"2
"3
"g
"5
"6

01001000100000",
10000100000000",
10010000100000",
10001000100000",
01000100000000",
00000100010000",
00010000100000",

.4 2002/05/19 11:58:11 kay Exp $

B.2 Simulation Software for Compact Disc Channel Modelling

"7 00100100000000",
"8 01001001000000",
"9 10000001000000",
10 10010001000000",
"11 10001001000000",
"12 01000001000000",
"t3 00000001000000",
"14 00010001000000",
*15 00100001000000",
"16 10000000100000",
17 10000010000000",
18 10010010000000",
"*19 00100000100000",
"20 01000010000000",
“21 00000010000000",
“22 00010010000000",
23 00100010000000",
"24 01001000010000",
"25 10000000010000",
"26 10010000010000",
"27 10001000010000",
"28 01000000010000",
"29 00001000010000",
“30 00010000010000",
"31 00100000010000*,
%32 00000000100000",
"“33 10000100001000",
“34 00001000100000",
"35 00100100100000",
"36 01000100001000",
"37 00000100001000",
"38 0:1000000100000",
"39 00100100001000",
“"40 01001001001000",
"g1 10000001001000",
"42 10010001001000",
"43 1000100:001000",
"44 01000001001000",
"45 00000001001000",
"46 00010001001000",
"47 00100001001000",
“48 00000100000000",
"49 10000010001000",
50 10010010001000",
"51 10000100010000",
52 01000010001000",
"53 00000010001000",
"54 00010010001000",
"85 00100010001000",
56 01001000001000",
"67 10000000001000",
"58 10010000001000",
"898 10001000001000",
"60 01000000001000",
"61 00001000001000",
"62 00010000001000",
"63 00100000001000",
"64 01001000100100",
"65 10000100100100",
"66 10010000100100",
“87 10001000100100",
"68 01000100100100",
"69 00000000100100",
“70 00010000100100",
71 00100100100100",
"72 0100:001000100",
"73 10000001000100",
"74 10010001000100",
"75 10001001000100",
"76 01000001000100",
"77 00000001000100",
"78 00010001000100",
“79 00100001000100",

B.2 Simulation Software for Compact Disc Channel Modelling 206

“80 10000000100100",
"“81 10000010000100",
"2 10010010000100",
»"g3 00100000100100",
“84 01000010000100",
"85 00000010000100",
86 00010010000100",
“87 00100010000100",
“g8 01001000000100",
»g89 1000000000C100",
"90 10010000000100",
"91 10001000000100",
"92 01000000000100",
g3 000010000001C0",
"94 00010000000100",
95 00100000000100",
*9¢ 01001000100010",
o7 10000100100010",
"gg8 10010000100010",
"gg 10001000100010",
"100 01000100100010",
"101 00000000100010",
102 01000000100100",
»103 00100100100010",
"104 01001001000010",
"105 10000001000010",
"106 10010001000010",
"107 10001001000010",
"108 01000001000010",
"109 00000001000010",
110 00010001000010",
"111 00100001000010",
"112 10000000100010",
“113 10000010000010",
"114 10010010000010",
"115 00100000100010",
"116 01000010000010",
"{17 00000010000010",
"118 00010010000010",
"{19 00100010000010",
“120 01001000000010",
121 00001001001000",
122 10010000000010",
"123 10001000000010",
"124 01000000000010",
“125 00001000000010",
"126 00010000000010",
"127 00100000000010",
128 01001000100001",
»120 10000100100001",
"130 10010000100001",
131 10001000100001",
"132 01000100100001",
"133 00000000100001",
"134 00010000100001",
"135 00100100100001",
"136 0100i001000001",
"137 10000001000001",
"138 10010001000001",
"139 10001001000001",
"140 01000001000001",
"“141 00000001000001",
"142 00010001000001",
143 00100001000001",
"144 10000000100001",
"145 10000010000001",
"146 10010010000001%,
"147 00100000100001",
»148 01000010000001",
"149 00000010000001",
150 00010010000001",
"161 ©00100010000001",
"152 01001000000001",

B.2 Simulation Software for Compact Disc Channel Modelling 207

"1563 10000010010000",
"154 10010000000001",
"165 10001000000001",
“166 01000010010000",
"i57 00001000000001",
158 00010000000001",
159 00100010010000",
“160 00001000100001",
"161 10000100001001",
"162 01000100010000",
"163 00000100100001",
"164 01000100001001",
"165 00000100001001",
"166 01000000100001",
“167 00100:00001001",
"168 01001001001001",
"169 10000001001001",
170 10010001001001",
171 10001001001001",
"172 01000001001001",
173 00000001001001",
"174 00010001001001",
"175 00100001001001",
"176 00000100100000",
"177 10000010001001",
"178 10010010001001",
"179 00100100010000",
"180 01000010001001",
"181 00000010001001",
"182 00010010001001",
*183 00100010001001",
“184 01001000001001",
185 10000000001001",
'"186 10010000001001",
"187 10001000001001",
“188 01000000001001",
"189 00001000001001",
"180 0001000000100%",
"1g1 00100000001001",
"192 01000100100000",
"193 10000100010001",
"194 10010010010000",
“195 00001000100100",
"186 ©1000100010001",
197 0000010001000t",
198 ©00010010010000",
199 00100100010001",
“200 00001001000001",
201 10000100000001",
"202 00001001000100",
"203 0000:001000000",
"204 01000100000001",
"205 00000100000001",
"206 00000010010000",
"207 00:00100000001",
“208 00000100100100",
"208 10000010010001",
210 10010010010001",
"211 10000100100000",
v212 01000010010001",
213 00000010010001",
"214 000100:0010001",
"216 00100010010001",
“218 01001000010001",
"217 10000000010001",
"218 10010000010001",
“219 10001000010001",
©220 01000000010001",
"221 00001000010001",
"222 00010000010001",
223 00100000010001",
"224 01000100000010",
"225 00000100000010",

B.2 Simulation Software for Compact Disc Channel Modelling

208

e e p— =

"226
“227
"228
"228
"230
"231
"232
233
"234
235
"236
"237
238
n239
"240
"241
"242
"243
"244
"245
"246
1247
"248
"249
»250
"251
"252
253
"254
"265

10000100010010",
00100100000010",
01000100010010",
0000100010010,
1000000100010,
00100100010010",
10000100000010",
10000100000100",
00001001001001",
00001001000010",
01000100000100",
00000100000100",
00010000100010",
00100100000100",
00000100100010",
10000010010010",
10010010010010",
00001000100010",
01000010010010",
00000010010010",
00010010010010",
00100010010010,
01001000010010",
10000000010010",
10010000010010",
10001000010010,
01000000010010",
00001000010010",
00010000010010",
00100000010010"

References

1]

[2]

13}

[4]

[6]

L. M. H. E. Driessen and L. B. Vries, eds., Performance calculations of the Compact
Disk error correction code on a memoryless channel, Proceedings of the Fourth
International Conference on Video and Data Recording, (Southhampton), Univer-

sity of Southhampton, 20-23 April 1982.

B. Tehranchi and D. G. Howe, “A channel model for characterization of the er-
ror data recovered from compact discs,” IEEE Transactions on Communications,

vol. 46, pp. 841-845, July 1998.

2002 Reuters Limited, “CD-Erfinder Philips sieht keine Zukunft fiir Kopierschutz,”

Financial Times Deutschland, January, 9th 2002.

R. Iannella, “Digital Rights Management (DRM) Architectures,” D-Lib Maga-

zine, vol. 7, June 2001.

Philips Semiconductors, Data sheet, SAA7825 Digital servo processor and compact

disc decoder with integrated DAC(CD10), June 17 1999.

“The compact disc digital audio system,” in British Standard 7064, London:

British Standard Institution, 1989.

209

REFERENCES 210

[7] M. G. Carasso, J. B. H. Peek, and J. P. Sinjou, “The compact disc digital audio

system,” Philips Tech. Rev., no. 40, pp. 151-155, 1982.

(8] Y. Sako and T. Suzuki, “Data structure of the compact disk-read-only memory

system,” Applied Optics, vol. 25, pp. 3996-4000, 15 Nov 1986.

[9] Y. Mitsuhashi, “Standardization activities for optical disks in japan,” Applied

Optics, vol. 25, pp. 4013-4016, 15 Nov 1986.
[10] F. A. Stevenson, “Cryptanalysis of contents scrambling system.” November 1999.

[11) J. A. Bloom, I. J. Cox, T. Kalker, J.-P. M. G. Linnartz, M. L. Miller, and
C. B. S. Traw, “Copy Protection for DVD Video,” Proceedings of the IEEE,

vol. 87, pp. 1267-1276, July 1999.
[12] O. Kastl, “CloneCD.” http://www.elby.de/.

[13] S. Katzenbeisser and F. A. P. Petitcolas, eds., Information hiding techniques for

steganography and digital watermarking. Artech House, 2000.

[14] R. J. Anderson and F. A. P. Petitcolas, “On the limits of steganography,” IEEE

Journal of Selected Areas in Communications, vol. 16, pp. 474-481, May 1998.

[15] J. Fridrich, “Image watermarking for tamper detection,” PROC. of IEEE Int.

Conf. Image Processing, 1998.

[16] M. W. Yeung and F. C. Mintzer, “Invisible watermarking for image verification,”

Journal of Electronic Imaging, vol. 7, no. 3, pp. 578-591, 1998.

[17] B. Schneier, Applied Cryptography. John Wiley & Sons, 1996.

REFERENCES 211

(18] J. Lee and C. S. Won, “A watermarking sequence using parities of error control
coding for image authentication and correction,” IEEE Transactions on Consumer

FElectronics, vol. 46, pp. 313-317, May 2000.
[19] M. Y. Rhee, Cryptography and Secure Communications. McGraw-Hill, 1994.
[20] Basler AG Ahrensburg, CD-Scanner. sales brochure.

[21] ESP Laser Matrix, ESP Inc., 2002. www.esp-cd.com.

[22] J. Benshop and G. van Rosmalen, “Confocal compact scanning optical microscope

based on compact disc technology,” Applied Optics, vol. 30, pp. 1179-1184, Apr

1991.

[23] “Volume and file structure of cdrom for information interchange,” in ECMA-119,
ECMA - Standardizing Information and Communication Systems, 2nd ed., De-

cember 1987.

[24] “Data interchange on read-only 120mm optical data disks (cd-rom),” in
ECMA-13%0, ECMA - Standardizing Information and Communication Systems,

2nd ed., June 1996.

[25] “Audio recording - compact disc digital audio system,” in IEC 60908, Interna-

tional Electrotechnical Commission, 2.0 ed., February 1999.

[26] Y. Sako and T. Suzuki, “Data structure of the compact disk-read-only memory

system,” Applied Optics, vol. 25, pp. 3996-4000, November 1986.

[27] J. D. Roberts, A. Ryley, D. M. Jones, and D. Burke, “Analysis of error correction

constraints in an optical disk,” Applied Optics, vol. 35, pp. 3915-3924, July 1996.

REFERENCES 212

[28] L. B. Vries and K. Odaka, “CIRC-the error correcting code for the compact disc

[29]

[30)

(31

[32]

[33]

[34]

[35]

[36]

digital audio system,” in Collected papers from the AES Digital Audio Premier

Conference, pp. 178-186, Audio Engineering Society, 1982.

B. Tehranchi and D. G. Howe, “Reliability estimates for data recovered from

compact discs,” Applied Optics, vol. 37, no. 2, 1998.

Z. Yang, “Statistical reliability analysis of data recovered from compact discs,”
Master’s thesis, Department of Electrical and computer engineering, University of

Arizona, Tucson, Ariz., 1995.

B. Tehranchi and D. G. Howe, “Error characteristics of read-only-memory ver-
sus write-once-read-many compact discs: CD-ROM versus CD-WORM,” Applied

Optics, vol. 35, no. 29, 1996.

D. P. Casasent and A. G. Tescher, eds., Real-Time Resolution, PC-Based System

for Measurement or Errors on Compact Discs, SP1E, 1994.

C. C. Ko and T. T. Tjhung, “Comparison of simple cross-interleaved reed-solomon
decoding strategies for compact disc players,” in Proceedings of the tenth interna-

tional conference and industrial electronics and application TENCON 87, pp. 378-

382, 1987.

E. Siever, S. Spainhour, J. P. Hekman, and S. Figgins, Linuz in a Nutshell

O’Reilly, 3rd ed., 2000.
Principles of optical disc systems. Adam Hilger Ltd., 1986.

GNU Compiler Collection. http://www.gnu.org/software/gcec/gee.html.

REFERENCES 213

[37] American National Standard of Accredited Standards Committee X3, SMALL

COMPUTER SYSTEM INTERFACE - 2 (SCSI-2) (draft), 9 March 1990.

[38] H. Ogawa and K. A. I. Schouhamer, “EFM - the modulation for the compact
digital audio disc,” in Proc. AES Premier Conf., Ryetown, pp. 117-124, New

York: Audio Engineering Society, 1982.

[39] L. Baert, L. Theunissen, and G. Vergult, eds., Digital Audio end Compact Disc

Technology. Newnes, 1992.

[40] L. B. Vries, K. A. I. Schouhamer, J.G.Nijboer, H. Hoeve, J. Timmermans, L. M.
Driessen, T. Doi, K. Odaka, S. Furukawa, . K. Iwamoto, Y. Sako, H. Ogawa, and
T. Itoh, “The digital compact disc — modulation and error correction,” in J. Audio

Eng. Soc. (Abstracts), vol. 28, 67th convention of the audio engineering society,

Dec. 1980.

[41] Immink and et al., Method of coding binary deta. United States Patent 4501000,

19. February 1985.

[42] K. A. L. Schouhamer and U. Gross, On low frequence properties of EFM modula-

tion. Philips Research Laboratories Eindhoven - The Netherlands, 1982.

[43] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical

Recipes in C. Cambridge University Press, 1996.

[44] Lodewijk, B. Vries, K. A. Immink, J. G. Nijboer, and H. Hoeve, “The compact disc
digital audio system: modulation and error-correction,” in 67th Audio Engineering

Society Convention, no. 1674, (New York), 1981.

[45] H. Nakajima and H. Ogawa, Compact Disc Technology. Ohmsha Ltd., 1996.

REFERENCES 214

[46] M. Godwin, “A Cop in Every Computer,” http://www.law.com, 16. January 2002.

[47] T. T. Doi, “Error correction for digital audio recordings,” in Collected papers
from the AES Digital Audio Premier Conference, pp. 147-177, Audio Engineering

Society, 1982.

(48] E. N. Gilbert, “Capacity of a burst-noise channel,” Bell Sys. Tech. J., vol. 39,

pp. 1253-1263, 1960.

[49] T. T. Doi, Y. Tsuchiya, and A. Iga, “On several standards for converting pcm
signals into video signals,” Journal of the Audio Eng. Soc. (Engincering Reports),

vol. 26, pp. 641-649, 1978.
[50] Macrovision, Safe Audio Product Ouverview, 2002.

[51] S. Lin and J. Daniel J. Costello, Error control coding: Fundamentals and applica-

tions. Prentice Hall, 1983.
[52] E. R. Berlekamp, Algebraic coding theory. McGraw-Hill, 1968. New York.

[53] J. L. Massey, “Step-by-step decoding of the bose-chaudhuri-hocquenghem codes,”

IEEE Trans. Inf. Theory, vol. IT-11, pp. 580-585, October 1965.

[54] R. T. Chien, “Cyclic decoding procedure for the bose-chaudhuri-hocquenghem

codes,” IEEE Trans. Inf. Theory, vol. IT-10, pp. 357-363, october 1964.

[55] G. D. Fourney, “On decoding binary BCH codes,” IEEE Trans. Inf. Theory,

vol. IT-11, october 1965.

[56] A. M. Michelson and A. H. Levesque, Error-control techniques for digital commu-

nicalion. John Wiley & Sons, 1985.

REFERENCES 215

[57] R. E. Blahut, Theory and practice of error control codes. Addison-Wesley Pub-

lishing Company, 1983.

