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Probiotic modulation of mucosal immune responses 

in an in vitro co-culture model 

Neama Y. Habil 

Abstract 

Probiotics confer health benefits through many mechanisms including modulation of the 

gut immune system. Gut mucosal macrophages play a pivotal role in driving mucosal 

immune responses. The local environment and macrophage subset determine immune 

response: tolerance, associated with an M2-like, regulatory macrophage phenotype and 

inflammatory activation with an M1-like phenotype. The aims of this study were firstly to 

investigate the immunomodulatory effects of a panel of heat-killed (HK) probiotic bacteria 

and their secreted proteins (SP) of Bifidobacterium breve (BB), Lactobacillus rhamnosus 

GG (LR), L. salivarius (LS), L. plantarum (LP), L. ferrmentum (LF), and L. casei strain 

Shirota (LcS) on cytokine production and TLR expression in monocultures of monocytes, 

macrophage subsets, and intestinal epithelial cells. Normally, mucosal gut macrophages 

resemble the M2 subset and fail to express CD14, a co-receptor for LPS signalling. 

Therefore, probiotic modulation of LPS-induced NF-kB activity and cytokine expression 

was investigated using a THP-1 monocyte-derived reporter cell line, model of CD14hi/lo M1 

and M2 macrophages. Secondly, a transwell co-culture system was developed to 

investigate probiotic modulation of macrophage-influenced epithelial barrier function. 

Parameters investigated included cytokine, TLR and hBD-2 expression, TEER and IHC 

staining of the tight junction protein, ZO-1. Probiotics selectively modulated monocyte and 

macrophage subset cytokine expression. Probiotics (HK and SP) suppress CD14lo, 

augment CD14hi M1, and differentially regulated TNF-α production in M2s. M2 

macrophage IL-6 production was suppressed by both HK and SPs, and differentially 

regulated in CD14lo and CD14hi M1s. NF-κB activation failed to parallel probiotic regulation 

of TNF-α and IL-6. Probiotics (HK-LF and HK-LcS) selectively modulated both 

endogenous and exogenous TNF-α and IL-10, as well as their induction of epithelial cell 

expression of TLR and hBD-2.  Epithelial expression of TEER, ZO-1 and the endogenous 

TLR signal regulator, Tollip, were suppressed upon co-culture with pro-inflammatory M1 

macrophages paralleled by a suppression of IL-10 and up-regulation of TNF-α and IL-8.  

In the presence of LPS, HK-LF enhanced TEER, ZO-1 and partially rescued Tollip 

expression, whereas HK-LcS had no effect on TEER and ZO-1 and displayed a weaker 

rescue effect on Tollip compared with LF. In the M2/epithelial cell co-culture, both 

probiotics enhanced TEER and ZO-1 in the presence of LPS, whilst displaying a 

differential modulation of Tollip, dependant on the format of probiotic (HK or SP). In 

conclusion, probiotic strains can differentially exert immune activatory or suppressive 

functions and immunomodulation is determined by strain, inflammatory environment, and 

mucosal macrophage effector phenotype. Future probiotic development must consider 

prophylactic use in healthy individuals or therapeutic treatment of defined pathological 

conditions, strain-specific effects, gut mucosal integrity, and immune phenotype of 

mucosal macrophages.  
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Chapter 1: General Introduction and literature Review 

1.1. Introduction 

Over a century ago, it was claimed that the intestinal microflora express an array 

of functions on human health (Iacono et al., 2011). Interactions of gut microbiota 

with gut mucosa are vital in maintaining immune homeostasis (Wells et al., 2011a). 

Commensal microbiota of the gastro-intestinal tract (GIT) show a significant role in 

governing infectious residence of enteropathic bacteria and their possible injurious 

effects to the host (MacDonald and Monteleone, 2005). Breakdown of gut 

homeostasis can lead to a loss of tolerance (Bamias et al., 2005). Owing to this 

breakdown of tolerance, Inflammatory Bowel Diseases (IBD) such as ulcerative 

colitis and Crohn's disease are becoming more prevalent (Molodecky et al., 2011).  

IBD is generally a chronic relapsing inflammatory disorder of the GIT.  

Approximately 0.1% western people suffer from IBD; the incidence is highest in 

developed countries (Goh and Xiao, 2009, Shanahan, 2001). The most generally 

accepted opinion on the pathogenesis of IBD is that it results from the irregular 

immune response to enteric bacteria, resulting in overproduction of pro-

inflammatory cytokines such as TNF-α and IL-1β, promoting tissue injury of the gut 

mucosa (Baumgart and Carding, 2007).  

Modulation of the mucosal immune response by naturally occurring substances is 

one possible approach for the prevention and therapy of IBD (Fedorak, 2008). 

Probiotic bacteria could be an effective alternative to the use of pharmacological 

substances (e.g. antibiotics) in nutrition and medicine, because synthetic 

therapeutics has numerous side effects (Bomba et al., 2002). Despite a wealth of 
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knowledge obtained, the mechanisms of probiotic bacterial actions are still poorly 

understood (Tsai et al., 2010, Walker, 2008). Since the data regarding the 

mechanisms of probiotics are often contradictory, it will be important to obtain 

additional knowledge on their mode of action, and searching for ways to improve 

probiotic bacterial efficacy in the treatment of IBD.  

1.2. Gut associated lymphoid tissue (GALT) 

GALT is structured into discrete lymphoid follicles or Peyers' Patches (PPs) 

situated underneath the epithelial cell layer along the whole length of the gut. The 

epithelium overlying the PPs is composed of cells that differ from the surrounding 

enterocytes; these cells are called micro-fold (M) cells. M cells lack microvilli, have 

no glycocalyx coating, and are designated to interact directly with antigens. They 

are indented; basolateraly, forming a pocket that contains T, B cells, dendritic cells 

(DCs), monocytes, and macrophages (Figure1.1). GALT is constantly exposed to 

foreign matter (e.g. food, drinks), and an enormous amount of commensal 

microorganisms about 1x1014 CFU/ml (Alain, 2004). The mucosal immune system 

of the gut has developed sophisticated mechanisms by which it can selectively 

sample the luminal contents in response to these microbes and the food-antigen-

rich environment.   

Antigens from the lumen are taken up by two defined ways: endocytosis (transport 

across the M cells in vesicles and release at the basolateral mucosal surfaces) 

followed by binding to DCs or macrophages; or phagocytosis by DCs (direct 

microbial sample), which is dependent on active polymerization of the actin 

cytoskeleton and independent of a clathrin based mechanism. Processing and 

presenting antigens to the T cells through MHC class II, in addition to co-
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stimulatory molecules such as CD86, is the main step in maintaining innate and 

adaptive immunity via the antigen presenting cells (APCs) such as DCs and 

macrophages. Subsequently, T cells decide on either an amplifying inflammatory 

or anergy immune response depending on the type of antigens presented by 

APCs. There is constant interplay between the host cells and the microflora that 

resident on the gut mucosa. The interaction between the epithelium and gut 

microflora could play a role in determining the fate of the subsequent immune 

responses (activation or tolerogenic mechanism) (Bibiloni and Schiffrin, 2010).  

 

 

Figure 1. 1: Gut associated lymphoid tissue (GALT). 

The GALT consists of Peyers’ Patches (PPs), which contain follicles consisting of Micro-fold 

cells (M cells), T, B cells, Dendritic cells (DCs), monocytes, and macrophages. T cells 

differentiated into Th1, Th2, Th17, and Tregs. Macrophages differentiated into either M1-pro-

inflammatory or M2-anti-inflammatory subsets. Antigens are taken up by M cells through 
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endocytosis or by DCs through phagocytosis. Antigens processing and presentation is 

performed by antigen presenting cells (APCs) such as DCs and macrophages. APCs 

presented antigens to T cells through MHC class II, recognised by T cells through the T cell 

receptor (TCR). T cells, in response to antigen presentation decide upon immune activation or 

mucosal tolerance, dependent on the type of stimuli.  

1.3. Mucosal tolerance  

Hypo-responsiveness or lack of immunity against food antigens and commensal 

microbiota is referred to as mucosal tolerance. In normal physiological conditions, 

food and commensal microbiota are tolerated, while the potential to initiate an 

immune response against invading pathogenic microorganisms is maintained. 

There are several active mechanisms of tolerance including mechanisms initiated 

by low dose antigens via Tregs, which promote tolerance by suppression of 

immune response. Alternatively, at high dose of antigens, tolerance is initiated by 

clonal deletion or anergy of effector T cells present in the inductive sites of the gut 

such as PPs (Duchmann et al., 1995). Intestinal DCs, the most potent APCs, are 

central in controlling this immunological tolerance (Bibiloni and Schiffrin, 2010). DC 

tolerance is controlled by epithelial expression of thymic stromal lymphopoietin 

(TSLP), transforming growth factor beta (TGF-β), and retinoic acid (RA), which 

results in the specific DCs phenotype (DCs CD103+) that induce gut tolerance by 

promoting proliferation and differentiation of Treg Foxp3+ (Zivny et al., 2001). 

However, macrophages acting as APCs also control the mucosal immune 

tolerance in the GIT. Elicited immune responses by macrophages are dependent 

on tissue environment and the resulting effector cell subset, where homeostatic 

macrophages resemble M2 and inflammatory macrophages resemble M1 

macrophage cells (Mosser and Edwards, 2008). IBD is induced by breaking down 

mucosal tolerance whereby the immune response is initiated against food and the 
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non-pathogenic commensal microbiota in vulnerable subjects (Silvia and Kim, 

2009). 

1.4. Gut microbiota  

Gut microbiota is composed of species within four bacterial divisions: Firmicutes, 

Bacteroidetes, Proteobacteria, and Actinobacteria (Sartor, 2008). It is well known 

that the GIT microbiota is established from birth. During the first month of life, the 

microbiota change and become more complex, reaching the composition of an 

adult by the age of one to two years (Palmer et al., 2007). The establishment of 

the gut microbiota is usually characterised by specific stages of development, 

early colonisation by facultative anaerobes such as Bifidobacterium species, 

whereas later stages of life, are associated with suppression of Bifidobacterium 

species and augmentation of Clostridia and Bacteroides species. The microbiota 

stays relatively stable over time depending on many factors such as genetic 

factors, age, diet, and antibiotic treatment (Tlaskalová-Hogenová et al., 2004, 

Zoetendal et al., 1998). The dominance of the microorganisms depends on the 

region of the GIT, e.g. Helicobacter pylori in the stomach, Streptococcus, and 

Lactobacillus in the duodenum, Lactobacillus, Gram-positive cocci in the jejunum, 

Bacteroides, Clostridium, and Bifidobacterium in the ileum, and finally 

Lactobacillus, Enterococcus, Escherichia coli, Peptostreptococcus and Clostridium 

in the colon (Sartor, 2008, Winkler et al., 2007) (see Fig.1.2). A balanced 

ecosystem of intestinal flora is essential for microbial cell survival. Changing the 

diet and antibiotic use are the main factors associated with the alteration of normal 

microbial ecosystem (Vanhoutvin et al., 2009). Indeed, one of the main factors that 

are associated with gut diseases, particularly IBD, is the alteration or dysbiosis of 

the complex microbial ecosystem (Bibiloni and Schiffrin, 2010).  
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Figure 1. 2: Relative composition of dominant microbial species in various regions of 

the gastrointestinal tract (Sartor, 2008). 

1.4.1. Main functions of the gut flora 

The population of microorganisms in the gut has more than 800 species, classified 

as normal commensal, and pathogenic microorganisms (Backhed et al., 2005). 

The beneficial role of the gut commensal microbiota can be grouped as are 

metabolic, trophic, and protective. Normally, gut microbiota ferment non-digestible 

components by two defined ways: saccharolytic pathway resulting in acetic, 

propionic and butyric acid, and proteolytic pathway resulting in nitrogenous 

metabolites such as phenols and heterocyclic amines. Short chain fatty acids 

(SCFAs) such as butyrate modulate the growth and differentiation of the intestinal 

epithelium. Epithelial cells of the caecum and colon depend on butyrate for their 
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carbon and energy (Vanhoutvin et al., 2009), facilitating epithelial cell growth, 

maintaining a healthy gut mucosa and reducing the risk of inflammation and 

cancer (Peter et al., 1992). In addition, colonic microflora participate in vitamin 

synthesis (e.g. vitamin K, B, and Biotin), and the absorption of calcium, 

magnesium, and iron (Hill, 1997).  

Commensal microbiota performs several tasks against pathogens via numerous 

mechanisms include; colonisation resistance or barrier effector mechanisms 

(competitive colonization, the ability of physical adherence, and competition for 

nutrients available in the gut) (van der Waaij et al., 1971 ). Another aspect of 

commensal microbiota against pathogens is to compete with pathogenic bacteria 

through antagonistic mechanisms. It is well reported that surface components of 

many enteric bacteria are important for their virulence, which include capsular 

polysaccharide (CPS) and lipopolysaccharide (LPS) (Moran et al., 1997). The 

Lipopolysaccharides is composed of biphosphorylated lipid (lipid A) forming the 

matrix of the outermost membrane leaflet and a hydrophobic polysaccharides, 

extending outward from the bacterium. The polysaccharides moiety consists 

generally of two distinct regions, a core oligosaccharides containing 10 to 12 

sugars and a polysaccharide chain of repeating units, the O-specific chain. The 

core oligosaccharide is covalently bound to lipid A through an acidic sugar, usually 

3-deoxy-Dmanno-oct- 2-ulopyranosonic (Kdo). Backhed et al (2003) reported that 

the hexa-acylated lipid A in the commensal bacteria performed as an antagonist of 

hypo-acylated lipid A, which is the main feature of several microflora causing 

chronic infection such as pathogenic Salmonella species (Guo et al., 1998). These 

mechanisms are one of the tolerogenic features of commensal microorganism 
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when acting as competitive inhibitors against pathogenic microorganisms 

(Weintraub et al., 1989).  

One of the protective functions of the microbiota against pathogens is by inhibition 

of inflammatory cell signalling caused by pathogenic microorganisms. Evidence 

supports that the commensal microbiota of the GIT play a significant role in 

controlling infection of enteropathogenic bacteria and their potential harmful effects 

to the host by inhibiting the transcriptional factor nuclear factor kB (NF-kB). This 

master regulator of epithelial cell function is induced and up-regulated by 

pathogens (Tien et al., 2006).   

In terms of maintaining epithelial gut barrier function, microbiota have a role in 

reinforcing the different intracellular junctions, which include tight junctions (TJs), 

adherence junctions, and desmosomes by up-regulation of Zonula occludens-1 

(ZO-1) protein expression (Aijaz et al., 2006). Gut microbiota are also maintain gut 

barrier function through the secretion of polysaccharides, facilitating the initiation 

of adhesion to epithelial cells. Shah and Lankaputhra (1997) reported that the 

colon wall provides an ecological site for bacterial attachment and proliferation.  

As a part of innate immunity of the GIT, goblet cells secrete mucus composed of 

mucin glyco-proteins. Mucous layer coated gut epithelium forming the glycocalyx, 

provides protection in the GIT from invading microorganisms. Andrew et al (1997) 

indicated that the bioactive factors including microbes, microbial products, toxins, 

cytokines, hormones and growth factors regulates the mucosal layer composition, 

positively or negatively. Deplancke et al (2000) reported that the alteration of 

mucus composition, or mucus secretion in response to intestinal microbes or host-

derived inflammatory mediators was characteristic in the majority of gut diseases, 
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particularly IBD. Additionally, gut flora have significant roles in maturation of the 

mucosal immune system (Hart et al., 2002). They can enhance the immune 

response by increasing the secretion of immunoglobulin A (IgA) (Sekirov et al., 

2010). sIgA binds to the mucus layer overlying the gut epithelium, leading to the 

neutralisation of pathogens and their toxins (Mantis and Forbes, 2010).  

1.5. Gut epithelial cells  

In addition to absorption of nutrients, electrolytes, and water, gut epithelial cells 

exhibit a protective function through specialised cells called intestinal villous or M 

cells, associated with the expression of Ulex europaeus agglutinin (UEA+)-1. Both 

intestinal villous and M cells have been observed to take up green fluorescent 

protein (GFP) expressing Salmonella, as well as gut bacterial antigens (Jang et al., 

2004). These cells have a pivotal role in scanning the gut environment for 

microbial threats, interpreting signals from luminal contents, presenting this 

information to professional immune cells in the lamina propria, and thereby 

cooperating with GALT to mount a response to certain antigenic stimuli (Bibiloni 

and Schiffrin, 2010, Wells et al., 2011a).  

The gut epithelial cells can function as antigen presenting cells (APCs), expressing 

receptors, and antigen presenting molecules (MHC class II & I) (Mayer, 1998). 

These receptors, which include pattern recognition receptors (PRRs) such as Toll 

like receptors (TLRs) and Nod like receptors (NLR), allow the epithelial cells to 

sense microbial components (Wells et al., 2011a). In addition to antigen 

presenting molecules and PRR expression, enterocytes express the adhesion 

molecules such as intercellular adhesion molecule (ICAM-1), and CD58 (Huang et 

al., 1996). However, they do not express co-stimulatory molecules (CD80, CD83, 



C
h

a
p

te
r 1

 

Chapter 1 

 

11 

 

and CD86) required for T-cell activation, suggesting that they are good candidates 

for tolerogenic APCs in vivo (Cario and Podolsky, 2005, Melmed et al., 2003).   

Presentation of antigens by enterocytes to adjacent CD4+T cells might help to 

explain local tolerance but not systemic tolerance, because naive CD4+T cells are 

rare in the Lamina propria, in addition, lamina propria T cells do not migrate out of 

the gut (MacDonald and Monteleone, 2005). Therefore, it remains possible that 

the presentation of antigens to lamina propria CD4+T cells by enterocytes could be 

involved in maintaining the survival and activity of previously primed regulatory or 

and effector T cells, thereby maintaining local tolerance to environmental antigens. 

Enterocyte tolerance induction demonstrates that the rules of the mucosal immune 

system are different from those of the systemic immune system (Cario and 

Podolsky, 2005a). Normally, commensal microbiota should not elicit an 

inflammatory response; however, some investigators have shown that a constant 

TLR stimulation and low level NF-kB activation may be necessary for intestinal 

health as a part of the surveillance system of the gut (Rakoff et al., 2004, Jijon et 

al., 2004, Rachmilewitz, 2002).  

Epithelial cells still indirectly communicate with other cells of the immune system; 

they achieve this through releasing cytokines and antimicrobial peptides (AMPs). 

Upon pathogenic activation, epithelial cells release pro-inflammatory 

cytokines/chemokines (IL-8) that recruit pro-inflammatory cells from circulation 

such as neutrophils, or release MCP-1 to recruit monocytes to the site of infection. 

In addition to secreting cytokines, they secrete AMPs, particularly human β 

defensin-2 (hBD-2) (Ganz, 2003). Basically, there are many types of AMPs, such 

as lactoferrin, cathelicidins (LL37), hepcidins, dermicidins, histamine, 

thrombocidins, and defensins (Klüver et al., 2006).  
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Defensins are an important natural innate immune defence; these peptides display 

broad-spectrum activity killing against both Gram-positive and Gram-negative 

bacteria, yeast, fungi and enveloped viruses. During the first attack, epithelial cells 

secrete AMPs particularly hBD-2, to kill pathogenic microorganisms. The main 

mechanism of defensins- mediated microbial killing is by binding the microbial cell 

membrane (which has negative charges) and disturbing the microorganism cell 

wall by forming a large hollow polymer (permeabilized microbial membrane), these 

results in lysis of bacterial cells. Defensins may also translocate across the cell 

membrane, bind directly with microbial DNA and disturbing the synthesis of DNA 

and/or protein leading to pathogen killing (Cleveland et al., 2001). Defensins are 

grouped into α and β definsin based on the connectivity of disulphide bounds 

between cysteine pairs, for example, hBD-2 has three bridges of disulphide 

bounds (cyst.1-cyst.5), (cyst.2-cyst.4) and (cyst.3-cyst.6). Paneth cells of the small 

intestine and neutrophils are the main produces of human α- defensins (3.5-4 K 

Da), whereas hBD-2 (4-6 K Da) is produced by epithelial cells (Ganz, 2003) and 

macrophages (Romano et al., 2009). They are stored in the granules in the Paneth 

cells situated beside the proliferative crypt stem cells, and secreted into the 

luminal space in response to microbial molecules e.g. LPS stimulation. The 

release of hBD-2 is controlled by pattern recognition receptors signalling 

particularly NOD-2-mediated signalling as mutation in NOD-2 is associated with 

low hBD-2 expression, resulting in deficiency of pathogenic microbial killing and 

potential dysbiosis (Grimm and Pavli, 2004). They are stored as an inactive pro-

peptide form. The activation of defensins in humans is by trypsin isozymes 

expressed in Paneth cells, which cleave the pro-peptide at the Arg55-Ala56 and 

Arg62-Thr63 sites (Ghosh et al., 2002); therefore, trypsin exhibits a significant role 

in regulation of innate immunity. Defensins are either constitutively (e.g.hBD-1) or 
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inducibly (e.g.hBD-2) expressed by epithelial cells (Vora et al., 2004). hBD-2 is 

induced by two different activation pathways: firstly, indirect endogenous stimuli 

such as pro-inflammatory cytokines (IL-1β, TNF-α, IL-22, IL-17and IL-23), which 

are predominantly produced by macrophages, DCs, and Th17 by the host in 

response to microbial stimulation. The most important cytokines controlling hBD-2 

production are IL-10 and TNF-α (Kanda et al., 2011, Marian et al., 2009). Secondly, 

direct exogenous stimuli such as microbial pathogenic associated molecular 

patterns (PAMPs) of LPS, PGN, and microbial DNA (Mondel et al., 2008, Schlee 

et al., 2008). Therefore, the expression of hBD-2 provides a first line of defence 

against potentially pathogenic gut microbes. Moreover, hBD-2 has a role in the 

regulation of immune responses and inflammation (Klüver et al., 2006). Several 

studies described the potential role of defensins in augmenting pro-inflammatory 

cytokines such as IL-8 (Chaly et al., 2000, Van Wetering et al., 1997), TNF-α and 

IL-1 at the site of microbial infection. This augmentation of pro-inflammatory 

cytokines seems likely to amplify local inflammatory responses in order to clear 

pathogens (Chaly et al., 2000). Deficiency of hBD-2 is associated with defects in 

the innate immune response to pathogens which correlate with gut diseases and 

pathogenesis of IBD, particularly Crohn’s disease (Baumgart and Carding, 2007, 

Wehkamp et al., 2005).  

1.5.1. Gut epithelial permeability  

The main factor controlling epithelial cell barrier function is the formation of 

epithelial tight junctions (TJs) which are the most apically situated cell-cell 

junctions holding epithelial cells together in a way that prevents leaking between 

cells. TJs regulate diffusion of molecules through the para-cellular pathway. They 

are composed of different types of protein including Zonula Occludens ZO-1, ZO-2, 
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and Claudins. They are responsible for the formation of tight junction strands 

connected with the actin cytoskeleton mediated by ZO-1 (Schneeberger and 

Lynch, 1992).   

ZO-1 is described as a linkage protein between trans-membrane proteins 

(Occludin and Claudine) and the actin cytoskeleton. It belongs to a family of 

membrane-associated guanylate kinases (MAGUK) involved in signal transduction 

during cell-cell contact, which depends on the phosphorylation of myosin light 

chain kinase (MLCK) (Yamamoto and Gaynor, 2001). ZO-1 plays an important role 

in stabilising the barrier of intestinal epithelial cells, functionally linking it to the 

actin-myosin cytoskeleton, and limiting permeability of the cell layer to large 

solutes (Gilmore, 2006), where the permeability to solutes is measured in terms of 

trans-epithelial electrical resistance (TEER). Furthermore, microbiota have a 

significant role in maintaining the barrier function via modulation of ZO-1 by 

modulation of heat shock proteins (Hsps), particularly Hsp70. Normally, Hsps can 

regulate intracellular signalling processes in response to cellular stress (Pratt and 

Toft, 2003). Hsp70 acts as an activator of ZO-1-associated nucleic acid-binding 

protein (ZONAB) (Tsapara et al., 2006); the domain of ZO-1 interacts with 

signalling proteins to regulate para-cellular permeability (Balda and Matter, 2000).  

Under stress conditions, up-regulation of Hsp70 leads to augmented ZO-1 

expression, thereby maintaining the epithelial cell barrier by sealing the tight 

junctions.   

A variety of both exogenous and endogenous factors can affect the permeability of 

the intestinal epithelial tight junctions. These include pathogenic bacterial toxins, 

dietary glucose, cytokines, cellular stress, and growth factors (Nusrat et al., 2000).  

Studies have shown the role of inflammation in affecting the tight junctions and 
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increasing their permeability through up-regulation of pro-inflammatory cytokines, 

such as TNF-α. Walsh et al. (2000), based on evidence from several studies, 

postulated that IFN-γ alters para-cellular permeability by several mechanisms, 

including possible direct effects on ZO-1 and/or via changes in the perijunctional 

actin cytoskeleton. In contrast, Bruewer et al. (2005) reported that TNF-α affects 

the localisation and expression of ZO-1 in T84, a human intestinal epithelial cell 

line, in addition, Schmitz et al. (1999) showed that TNF-α induced decrease in 

TEER of the intestinal epithelial cell lines HT29 and Caco-2 correlated with 

suppression of ZO-1 expression. On the other hand, anti-inflammatory cytokines 

promote the barrier function in human enterocytes (Capaldo and Nusrat, 2009).  

Mazzon et al. (2002) observed that IL-10 knockout mice, a model of spontaneous 

colitis, have augmented levels of pro-inflammatory cytokines TNF-α, IL-1, and IL-6, 

they also pointed out that IL-10 ablation correlates with miss-localisation of ZO-1 

protein tight junction.  

Although, the relationship between epithelial cell survival, their permeability and 

endogenous cytokine expression related to ZO-1 expression is not fully 

understood. Several researchers such as Yang et al. (2003) and Jin et al. (2010) 

reported that the increasing intestinal epithelial cell permeability to small molecules 

has been linked to the suppression of endogenous IL-6 expression, which leads to 

TJ ZO-1 instability. This explains the vital role of endogenous cytokine expression 

in maintaining epithelial cell integrity and homeostasis. Stuart and Nigam (1995) 

reported that TJ protein biogenesis, particularly ZO-1, is regulated by protein 

kinase C (PKC) in response to luminal bacteria and the activation of PKC via its 

substrate myristolytated alanine rich C kinase (MARCKS), which is mediated 

directly via TLR2 and its ligand (PGN) (Cario et al., 2004). Therefore, TLR2 
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expression is vital in maintaining the epithelial cell barrier through it is a role in ZO-

1 translocation to seal tight junctions. However, the molecular mechanism 

underlying ZO-1 protein expression mediated epithelial gut permeability is not fully 

clear. 

1.6. Molecular mechanism of microbial recognition by gut mucosal cells  

Induction of innate immune response by microorganisms is mediated through the 

families of pattern recognition receptors (PRRs) such as TLRs and NLRs. These 

families contain a number of soluble (collectines), surface-expressed (TLR2, 4, 5), 

endosomal (TLR9, 3, 7) and cytosolic (NOD-2) receptors that recognise pathogen 

associated molecular pattern (PAMPs). The main role of PRRs is defence against 

pathogens, on the other hand, gut epithelial PRR recognition of normal 

commensal PAMPs are converted into signals for anti-microbial peptide 

expression (hBD-2), barrier strengthening (ZO-1 re-distribution), and proliferation 

of epithelial cells (Cario and Podolsky, 2005a). Therefore, the impairment of cell 

signalling resulting from polymorphism in TLR and NLR genes is involved in many 

diseases e.g. IBD (Franchimont et al., 2004, Hedl et al., 2007).  

Until now, eleven TLRs (Takeda et al., 2003) and 20 NLRs (Inohara and Nunez, 

2003) have been identified in humans. The TLR family comprises human 

homologues of the Drosophila Toll protein. The extracellular domain of Toll 

receptors contains a leucine-rich repeats (LRR), whereas the cytoplasmic domain 

displays homology with that of interleukin-1 receptor (IL-1R), and is referred to as 

Toll/IL-R (TIR) domain. The recognition of microbes or microbial by-product by the 

external portion of TLR receptor will result in the activation of a signalling cascade 

inside the cells that culminates in the production of the inflammatory mediators. 
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However, TLRs recognise and respond to not only pathogen associated molecular 

patterns, but also bind to non-pathogenic antigens such as heat shock proteins 

(Osterloh and Breloer, 2008). Cytoplasmic NLR recognise a wide range of 

microbial ligands and toxins as well as certain damage-associated molecular 

patterns (DAMP) of the host cell. NODs and NALPs are main groups well 

characterised within NLR family (Williams et al., 2010).  

The localisation of TLRs and NLRs has a vital role in controlling inflammation and 

maintaining the normal gut mucosa. The expression of TLRs varies within cell 

types and cellular localisation. TLRs are expressed on many of the myeloid cells 

such as macrophages and DCs; and on non-myeloid cells such as epithelial cells 

and fibroblast. This expression is either extracellular such as (TLR1, TLR2, TLR4, 

TLR5, TLR6 and TLR11), intracellular (TLR3, TLR7, TLR8, TLR9), or both (TLR4, 

TLR9). The immune response occurs after microbial PAMPs are recognised via 

PRRs (interaction of the extracellular LRR domain with microbial PAMPs) followed 

by recruitment of cytoplasmic adaptor (MyD88), resulting in the activation of NF-kB 

(Takeda et al., 2003).  

A key inducer of the inflammatory response to Gram-negative bacteria is LPS. 

LPS is a large molecule consisting of O antigen, core, and lipid A. It has two types; 

smooth and rough (Moreno et al., 1979); acts as endotoxin, and elicits a strong 

immune response through the Lipid A portion (Raetz and Whitfield, 2002). In fact, 

the loss of O antigen resulting in rough LPS, which makes the bacterial cell 

membrane more permeable and easier to destroy by AMPs. LPS is mostly 

recognised through TLR4 (Beutler, 2000), particularly binding the lipid A portion of 

rough LPS in the presence of CD14 and MD-2 (Taniguchi et al., 2009), whereas 

smooth LPS binds LPS binding protein (LBP) in the presence of CD14 and MD2 
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(Wright et al., 1990). MD2 protein has been revealed to form a complex with TLR4, 

it is essential for surface expression and LPS responsiveness; therefore, MD-2 

mediates the signal between LPS and TLR4 (Shimazu et al., 1999).  

CD14 is a co-factor for LPS signalling, described as a glycosylphosphatidylinositol 

(GPI)-linked membrane protein, which is unable to initiate a trans-membrane 

signal, because of lacking the cytoplasmic domain, and therefore must interact 

with other proteins such as TLR4 to mediate signalling. CD14 expression has 

multiple functions. Jean et al. (2001) reported that LPS is cross-linked precisely to 

TLR4 and MD-2 only when co-expressed with CD14. In addition to its role in LPS 

recognition, CD14 also recognises bacterial PAMPs; PGN, mycobacterial 

lipoarabinomannan and streptococcal cell wall polysaccharides (Pugin et al., 1994, 

Soell et al., 1995, Weidemann et al., 1997, Wright et al., 1990). Thus having the 

capability to recognise and bind components of both Gram negative and Gram 

positive bacteria and serving as a co-receptor for TLR4 and TLR2. Furthermore, 

CD14 facilitates innate responses to infectious non-self-molecules as well as 

interacting with apoptotic cells, serving as a scavenger receptor in macrophage 

cells (Devitt et al., 1998, Pradhan et al., 1997). CD14 has two forms, soluble and 

membrane bound protein, expressed by many cells such as 

monocytes/macrophages and epithelial cells (Jean et al., 2001). Up to date studies 

have verified that endogenous molecules or damage-associated molecular 

patterns (DAMP) released from damaged tissues are able to activate the co- 

receptor of TLR4 and TLR2 (CD14) (Yu et al., 2011).   

TLR2 recognises microbial PAMPs for both Gram-negative and Gram-positive 

bacteria e.g. bacterial lipopolypeptides, peptidoglycan (PGN), lipoteichoic acid 

(LTA), and zymosan from yeast. It is involved in recognition of Gram-positive 
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bacterial products (PGN) coupled with CD14 (Meyenburg et al., 2004). TLR2 

expression has a significant role in maintaining gut mucosa. Recently, researchers 

showed that the induction of TLR2 by epithelial cells, in response to normal non-

pathogenic microbiota, has a role in the induction of the regulatory cytokine, IL-10, 

by macrophages and Tregs resident in the lamina propria leading to promoting gut 

tolerance (Round et al., 2011). In addition, Cario (2008), based on evidence from 

recent animal model and human studies, has reported that the deficiency of TLR2 

signalling may cause discrepancies of commensal-dependent intestinal epithelial 

barrier defences, resulting in mucosal injury. Evidence showed that the 

polymorphism of TLR2 gene is associated with severe bacterial infections such as 

Staphylococcus and Mycobacterium infection. This suggests that mutation of 

TLR2 gene could enhance the impairment of the host response to a certain range 

of microbial pathogens (Lorenz et al., 2000, Texereau et al., 2005), leading to 

initiation of intestinal injury (Candia et al., 2012, Hartmann et al., 2012).  

TLR5 recognises flagellin, the main structural protein of the flagella on Gram-

negative and Gram-positive bacteria (Oshima et al., 2010). TLR5 has a vital role in 

maintaining the gut mucosa by inducing anti-microbial peptides, particularly hBD-2 

(Schlee et al., 2007); consequently, the lack of it is associated with gut injury 

(Carvalho et al., 2011).  

TLR9 recognises unmethylated CpG bacterial DNA (Minns et al., 2006). The 

expression of TLR9 by epithelial cells has a crucial role in regulating innate 

immunity through its roles in degranulation of antimicrobial peptides such as 

defensins by Paneth cells (Rumio et al., 2004). Normally, TLR9 is expressed 

basolateraly of epithelial cells; however, it is also expressed on the apical cell 

surface in response to pathogenic microbial infection (Ewaschuk et al., 2007, 
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Takeshita et al., 2001). Apical expression of TLR9 enables the cells to recognise 

pathogenic bacterial DNA; whereas; basolateral expression recognises 

commensal non-pathogenic bacteria (O'Hara et al., 2012).  

TLR3 recognises double stranded viral RNA (Alexopoulou et al., 2001), expressed 

by mature colonic epithelium against viral infection. The activation of TLR3 

expression is followed by intracellular activation downstream of the cells 

independent of the myeloid differentiation factor 88 (MyD88) pathway, which 

differs from other TLR cell activation pathways (Yamamoto et al., 2003). 

Nucleotide Oligomerisation domains (NODs) are a family of cytosolic proteins that 

act as PRRs and trigger a signalling cascade leading to inflammatory responses. 

NOD-2, also named Caspase activating and recruiting domain (CARD15), is one 

of the NOD family and recognises intra-cytoplasmic PAMPs of muramyl dipeptide 

(MDP), the smallest bioactive components of PGN (Girardin et al., 2003a). NOD-2 

is expressed by monocytes/macrophages, dendritic and intestinal epithelial cells in 

response to intracellular microorganisms. The activation of NOD-2 by invading 

intracellular pathogenic microorganisms such as Salmonella and Shigella is 

followed by amplification of inflammation by up-regulating the production of pro-

inflammatory cytokine (Girardin et al., 2003b). However, commensal bacteria like 

Lactobacillus casei strain Shirota (LcS) is also recognised through NOD-2, but 

they exhibit beneficial effects through their suppression of inflammatory cytokines 

leading to an improved gut mucosa in the IBD model (Matsumoto et al., 2009). 

NOD-2 has a crucial role in maintaining the gut mucosa (van Heel et al., 2005); 

NOD-2 gene polymorphism causes defects in PGN signalling, when recognition of 

commensal PGN results in amplifying the immune response associated with up-

regulation of the inflammatory cytokines.  



C
h

a
p

te
r 1

 

Chapter 1 

 

21 

 

1.6.1. Toll like receptor (TLR) signalling pathways 

Recognition of microbial ligands by epithelial TLRs is considered the first step in 

controlling innate immune responses. Upon recognition of microbial ligands, TLRs 

are dimerised and trigger a signalling cascade, leading to the activation of the pro-

inflammatory cytokines. Five adaptor proteins mediate TLR signalling; MyD88, 

TIR-associated protein (TIRAP), TIR domain containing adaptor protein inducing 

IFN-β (TRIF), TRIF-related adaptor molecules (TRAM), and Sterile-alpha and 

Armadillo motif containing protein (SARM) (Belinda et al., 2008, ONeill and Bowie, 

2007, Yamamoto et al., 2002).  

Two signalling pathways are induced by microbial ligands; MyD88-dependent 

which involves the activation of (TLR 2, 4, 5, and 9) and MyD88-independent 

(TLR3 and 4) (Akira and Takeda, 2004, Muzio et al., 2000, Takeda and Akira, 

2005). Binding of TLR and MyD88 recruits IL-1 receptor-associated kinase 4 

(IRAK-4), allowing the association of IRAK-1. After phosphorylation by IRAK-4, 

IRAK-1 binds with TNF receptor activated factors 6 (TRAF-6), an event blocked by 

the negative regulator, IRAK-M (Palsson  and O'Neill, 2004). TRAF-6 activation is 

triggered, transforming growth factor-β activated kinase (TAK-1), which 

phosphorylates MAP kinases and the inhibitory kB kinase (IKK) complex leading to 

activated IKK complexes. The activation of IKK complexes will phosphorylate IkB, 

liberating NF-kB from the inhibition and allowing nuclear translocation of NF-kB to 

the nucleus, resulting in transcription of genes for inflammatory cytokines and co-

stimulatory molecules (Banerjee and Gerondakis, 2007), see Fig.1.3. Diverse 

mechanisms seem to be contributing in controlling TLR activation by the intestinal 

epithelium, because continued and extreme activation of TLRs can prime 

uncontrolled inflammation. These mechanisms contain the shared effects of 
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several negative regulators that include IRAK-M, Tollip, SIGIRR, A20, and NOD-2 

(Shibolet and Podolsky, 2007). Tollip has been described as a negative regulator 

of NF-kB signalling, triggered by different stimuli such as LPS (Burns et al., 2000). 

The main mechanism of Tollip, which is localised at the Golgi apparatus (Tao et al., 

2004), is to negatively regulate TLR signalling by suppressing the activity of IL-1 

receptor-associated kinase (IRAK). The inhibition of the activity of IRAK lead to 

suppression of inflammation associated with the up-regulation of TLR2 and TLR4 

expression (Zhang and Ghosh, 2002). In addition, studies of animal and human 

cell line models also showed that Tollip controls the magnitude of inflammatory 

cytokine production in response to IL-1β (Didierlaurent  et al., 2006). Therefore, 

keeping stable intestinal homeostasis at gut epithelial cell setting require several 

mechanisms of epithelial cell hypo-responsiveness to LPS, and expression of 

Tollip is one of these mechanisms.  

 

Figure 1. 3: TLR cell signalling at gut mucosa. 
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LPS recognised by the complex of surface expression of TLR4, CD14 and MD-2, flagellin by 

TLR5, LTA, PGN by TLR2, and dS viral DNA by TLR3. Intracellular CPG of microbial DNA is 

recognised by TLR9, MDP of Gram (+) bacteria by NOD-2 and intracellular LPS by TLR4. The 

adaptor protein MyD88 associated with TLR4, TLR2, TLR9, and TLR5. After phosphorylation 

of IRAK1 and binds with TRAF-6, this process is followed by activation the TAK-1, which 

phosphorylates MAP kinases and the inhibitory kB kinases (IKK) complex, liberating NF-kB 

from inhibition, and allowing nuclear translocation of NF-kB resulting in transcription genes for 

inflammatory cytokines, (Adapted from Takeda et al., 2003). 

1.6.2. Nuclear factor K B (NF-kB) 

NF-kB is a master regulator of innate, adaptive immunity, and inflammatory 

responses, localised in the cytoplasm and translocate to the nucleus upon 

stimulation with different stimuli after a series of phosphorylation. It is a dimer 

composed of five subunits called NF-kB1 (p50 and it is precursor p105), NF-kB2 

(p52 and it is precursor p100), c-Rel, RelA (p65), and RelB (Baeuerle and Henkel, 

1994). Phosphorylation and ubiquitin mediated degradation of inhibitory kB (IkB) 

control NF-kB activation.  

There are two main pathways for NF-kB activation; a canonical classical and 

alternatively non-canonical (Hoffmann et al., 2006). Canonical classical pathway 

involves the activation of the inhibitors of kB kinase (IkB) complex, which 

phosphorylates and enables the ubiquitin-mediated destruction of inhibitory kB, 

which masks nuclear localisation sequences on NF-kB. IKK consist of subunits: 

IKKα, IKKβ and a regulatory subunit called NEMO. The classical pathway is 

triggered in response to microbial ligands, and pro-inflammatory cytokines 

dependent on IKKβ activation. The activation of the classical pathway mostly 

results in the nuclear translocation of p50/RelA dimers, while the alternative 

pathway activates p52/RelB, which is dependent on IkBα. In fact, the alternative 

pathway has two types, one of them depends on proceeding through an IKK 
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complex that contains IKKα, and the second one is when the Ikβ-like co-activator 

Bcl-3 interacts with p50 (or p52) homodimers (BcL-3/kβ) after entering the nucleus 

and becomes a transcriptional activator by virtue of this interaction (Gilmore, 2006). 

The members of the TNF receptor (TNFR) family such as lympho-toxin β, B-cell 

activating factor (BAFF), and CD40 are involved in the alternative NF-kB activation 

pathway. In all three pathways, a variety of post-translational modifications (e.g., 

phosphorylation, acetylation, and poly-isomerization) of the NF-kB subunits may 

alter their transcriptional activity resulting in an array of inflammatory molecules. 

1.7. Antigen presenting cells (APCs) at gut mucosa  

APCs can be defined as cells able to process and present antigen complexes with 

MHC class II on their surfaces, resulting in T cell activation and initiation of 

immune responses, determined by type of antigenic stimulation. They are 

classified into two categories: professional APCs (DCs, B cells, macrophages) or 

non-professional APCs (such as fibroblast, thymic epithelial, thyroid epithelial, glial, 

pancreatic beta, and vascular endothelial cells) (Amsen et al., 2004).  

APCs are efficient in internalising antigens by several ways, such as phagocytosis, 

or endocytosis, they have diverse mechanisms of processing the antigens using 

an arsenal of weapons. Following processing of the antigens, APCs present the 

antigen by binding it to the MHC class II molecules on their surfaces, in addition to 

expressing co-stimulatory molecules facilitating T cell activation in tightly regulated 

manner. The main characteristics of professional APCs are expression of MHC 

class II and co-stimulatory molecules, whereas non-professional APCs expressed 

MCH class II but fail in the expression of co-stimulatory molecules. The main 

member of the APC family is DCs. These cells reach the gut lumen by cytoplasmic 
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cell extension through epithelial cell tight junctions without disrupting their 

assembly via the creation of tight junction-like complexes between DCs and 

epithelial cells (Rescigno et al., 2001). They directly sample microbial cells by 

phagocytosing antigens in the gut contents. After phagocytosis, antigen 

processing and presentation to the T cells through MHC class II will be the second 

task of DCs as APCs. In addition to direct microbial sampling, DCs indirectly 

perform their duties in microbial sampling through cross talk with M cells at PPs 

(Wilson and Villadangos, 2005). Normally, DCs in the gut recognise and respond 

to the potential pathogenic bacteria by presenting their broadest array of antigens 

and expression of the co-stimulatory molecules such as CD86, CD80, but do not 

respond to the beneficial commensal bacteria (Niess and Reinecker, 2006).  

Macrophages are foremost among the cells that "present" antigens, a crucial role 

in initiating an immune response. Macrophages differentiated from monocytes 

derived from bone marrow, are found in the lamina propria. They mediate innate 

immunity by direct killing of pathogen (phagocytosis), or indirect killing, via 

secreting mediators, that kill pathogens at the breakdown gut barrier, and adaptive 

immunity via secretion of cytokines that have a crucial role in the differentiation of 

T cells such as IL-4 (Th2) and IL-12 (Th1). They are professional phagocytes, kill 

pathogens, and degrade microorganism debris, and process and present antigens 

to T cells resulting in initiation of adaptive immunity. They express an array of 

molecules such as MHC MHC II and I and co-stimulatory molecules, B7-1 (CD80) 

and B7-2 (CD86), effectively directing adaptive immunity (Mosser and Edwards, 

2008). Depending on their functions, macrophages are classified as classically 

activated M1 pro-inflammatory macrophages and alternatively activated anti-

inflammatory M2 macrophages (Mantovani et al., 2007). M1 pro-inflammatory 
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macrophages promote inflammation and destructive effects on tissues, whilst 

alternatively activated M2 anti-inflammatory/regulatory macrophages promote 

constructive effects on the tissues and resolve inflammation (Mantovani et al., 

2007, Mosser and Edwards, 2008); both of the phenotypes are important in innate 

and adaptive immunity. At the early stage of infection, macrophages are recruited 

to the infected site in response to the attracting microbial signal recognised by 

macrophage TLRs; they engulf microbes or ingest neutrophils (which mediated the 

first step of inflammation). This results in the production of pro-inflammatory 

cytokines such as IL-1β, TNF-α, and IL-8 and recruitment of additional 

macrophages, and neutrophils, if needed to eliminate the pathogens. 

Macrophages can digest more than 100 bacteria before they finally die due to their 

own digestive compounds through physiological apoptosis; however, some 

bacteria, such as Mycobacterium tuberculosis, are resistant to these methods of 

digestion, and can survive inside the macrophage phagolysosome. 

Overproduction of pro-inflammatory cytokines by pro-inflammatory M1 

macrophages in response to stimulation by pathogenic microorganisms leads to 

tissue destruction. On the other hand, at the late stage of infection, the 

macrophages exhibit another phenotype (resemble regulatory anti-inflammatory 

M2 macrophages) that contributes to the resolution of inflammation and facilitates 

tissue repair through production of anti-inflammatory cytokines such as IL-10 and 

TGF-β. Therefore, macrophages exhibit a wide range of functions, which are 

determined by differentiation and activation factors dependent on the tissue 

environment. Generally, macrophages are professional in firstly, inflammation 

(producing pro-inflammatory cytokines), secondly, phagocytosis (expression of 

membrane bound scavenger receptors such as mannose receptor [MR], related to 

high capacity for endocytic clearance of mannosylated ligands represented by 
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microbes). Thirdly, tissue repair (producing anti-inflammatory cytokines and 

promoting extracellular matrix [ECM]). Fourthly, priming of adaptive immune 

responses (producing pro and anti- inflammatory cytokines), and finally, 

antimicrobial killing (production of reactive oxygen and nitrogen species, hydrolytic 

enzymes, and lysozyme to destroy the remaining of microorganisms in the 

inflammatory loci). In addition to their roles as APCs, the resident macrophages 

remove dead cell material (apoptotic cells) at strategic locations, which is 

important in chronic inflammation (Baeten et al., 2002, Mantovani et al., 2007, 

Mosser and Edwards, 2008). The diversity and plasticity of macrophages depend 

on many factors such as the stimuli presented by the tissue environment and the 

cytokines produced by other immune cells, such as T helper cells. Granulocyte 

macrophage colony stimulating factor (GM-CSF) and macrophage colony 

stimulating factor (M-CSF) have been concerned in the differentiation of M1 and 

M2-like macrophages, respectively (Verreck et al., 2004), in addition, Signal 

Transducer and Activator of Transcription (STAT) 1& 3 are involved in 

differentiation of M1 and M2 macrophage cells, respectively (Sica and Bronte, 

2007). Furthermore, Gordon and Martinez (2010) reported that the M1 

macrophage cell differentiation requires priming by IFN-γ and triggered with 

microbial LPS, or GM-CSF. These events are followed by dramatic alteration in 

the profile of the cells and the cells become the phenotype like IL-12hi , IL-23hi, IL-

10lo, TNF-αhi, CD14+, CD86+, STAT-1+ , iNOS+ (after utilization of the amino acid L. 

arginine), and professional in degrading extracellular components such as 

collagen, elastin, and fibrinogen (by producing nitric oxide and proteolytic enzymes 

including matrix metalloproteinase MMP-1,-2,-7,-9, and -12). Consequently, M1 

pro-inflammatory macrophages involved in tissue destruction. Up-regulation of 

pro-inflammatory cytokines (TNF-α) lead to enhance cell death program, resulting 
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in apoptosis of several cell types such as epithelial cells, promote chronic 

inflammation, tumour regression, autoimmune diseases, and IBD. Alternatively, 

M2 macrophage cell differentiation and activation is mediated by IL-4, IL-13, IL-10, 

TGF-β, M-CSF, vitamin D3, immune complexes, IL-1β, and TLR ligation. Recently 

Foey (2012) reviewed that M2 macrophages have subgroups listed as M2a 

induced by IL-4 and IL-13, M2b induced by combining exposure to immune 

complexes and TLRs exert immune-regulatory function, and M2c induced by IL-10 

repress immune responses and mediate tissue remodelling. In addition, Hesse et 

al. (2001) reported that M2 macrophages promote extracellular matrix construction 

and tissue repair by up-regulating the enzyme arginase-1 after utilisation of the 

amino acid L arginine resulting in production of proline and spermine (see Fig.1.4). 

Ym1 and Fizz1 are secreted proteins that have been identified in a variety of Th2-

mediated inflammatory settings. They are induced and up-regulated by M2 

macrophages in response to nematode infection prior to pathogenic clearance 

(Nair et al., 2005). Therefore, the main phenotype of M2 macrophage includes IL-

12lo, IL-23lo, IL-10hi, TNF-αlo, TGF-β+, IL-1ra, arginase-1+, MR+, CD86+, CD163+, 

SR+, STAT-3+, STAT-6+, M-CSF, and MMP+ , Ym1+, Fizz1+ (Mantovani et al., 

2007), see Fig.1.5. 

 

Figure 1. 4: Catabolism of arginine by classical M1 or alternative M2 macrophages. 
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Figure 1. 5: Functional phenotypes of macrophage cell subsets. 

Monocytes can be differentiated into different macrophage effector phenotypes by a range of 

signals: M1, pro-inflammatory macrophages are differentiated by GM-CSF, IFNγ, and LPS. M2, 

anti-inflammatory macrophages are differentiated by M-CSF, IL-4/IL-13, immune complexes 

(IC) +TLR ligation, IL-10, TGF-β and glucocorticoids. Macrophage functions determined by 

many factors such as expression of arginase (Arg), inducible nitric oxide synthase (iNOS), 

transcriptional factors (STAT-1, 3, 6), Ym-1 and FIZZ-1, scavenger receptors (SR) such as 

mannose receptors MR, MHC II, co-stimulatory ligands (CD80, CD86) and cytokines (IL-12, 

IL-23, IL-10, TGF-β), chemokines (CC-and CXC) expression. This figure is adapted from 

information presented in (Foey et al., 2002, Gordon, 2003, Mantovani et al., 2004).  
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The immune cells of innate and adaptive immunity regulate each other in 

reciprocal relationships by secreting an array of cytokines. In response to different 

stimuli, M1 macrophages release cytokines leading to differentiation of Th1 cells 

(mainly through their production of IL-12), or (IL-23 to stimulate differentiation of 

Th17).  On the other hand, M2 macrophages release IL-4 (differentiation of Th2), 

TGF-β (differentiation of T regs), and IL-6, IL-1β (differentiation of Th17), refer to 

Fig.1.6. Normally, T cells can be classified by the type of glycoprotein expressed 

on their surfaces (CD4 or CD8) (Mosmann et al., 1986), as cytotoxic cells (Tc) 

(CD8+) and T helper (CD4+) cells. Naïve CD4+ T cells differentiate into distinct cell 

phenotypes determined by the pattern of signals they receive during their initial 

interaction with antigens or in response to signals from other immune cells such as 

macrophages and DCs. They are differentiated into: Th1 in the presence of IL-12 

and transcriptional factor T bet-/ STAT-4, Th2 in the presence of IL-4 and GATA-

3/STAT-5 (Mosmann et al., 1986), Th17 in the presence of IL-1β, IL-6, IL-23, TGF-

β and RORγt /STAT-3 (Stockinger and Veldhoen, 2007) and T regs in the 

presence of TGF-β, retinoic acid, Foxp3/STAT-5 (Hori et al., 2003). In addition, the 

microbiota present in the gut has a role in Th17 cell differentiation related to the 

presence of Cytophaga-Flavobacterium-Bacteroides (CFB) phylum members 

(Ivanov et al., 2008). T cells play a central role in adaptive immunity by stimulating 

B cells to release antibodies via IL-4, inducing macrophages to develop the 

enhanced microbicidal activity via IFN-γ, recruiting neutrophils via IL-8 to the sites 

of infection and inflammation and producing TGF-β and IL-10 to induce oral 

tolerance (Zhu and Paul, 2008). Abnormal activation of Th1 is involved in the 

autoimmune diseases and Th2 cells are responsible for allergic inflammatory 

diseases and asthma. Th17 cells have been recognised recently to play a critical 

in protecting against microbial challenges (particularly extracellular bacteria and 
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fungi) (Weaver et al., 2006), however, autoimmune responses attributed to Th17 

are implicated in collagen-induced arthritis (CIA) and IBD. T helper cells play 

critical roles in orchestrating the adaptive immune response. They exert such 

functions mainly through secreting cytokines that activate and/or recruit target cells 

such as macrophages. Th1 cells secrete (IL-2, INF-γ, IL-6, IL-1β, TNF-α); Th2 (IL-

4, IL-5, IL-6, IL-13, IL-21, IL-10); Th17 (IL-17, IL-21, IL-22), and Tregs (TGF-β, IL-

10) (Romagnani, 1992, Zhu et al., 2010).   

 

Figure 1. 6: Schematic representation of mucosal immune cells intercommunication 

through cytokines 
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1.7.1. Macrophages and intestinal immune responses 

Gut mucosal macrophages are found in the lamina propria, usually nearby to the 

basal membrane of the epithelium. Because of the constant exposure of antigens 

and food borne antigens to the gut mucosa, gut macrophages are central to 

deciding immune responsiveness to luminal antigens and bacteria as an activatory 

or tolerogenic response by communicating with antigens, and at the same time 

with other immune cells found in the lamina propria.  

Under a homeostatic condition, the predominant macrophage phenotype 

resembles the M2 subset, described by less easily activated in acute inflammatory 

responses. As a function, the M2 gut macrophage subset expressed the 

scavenger receptors (CD33, CD36, and CD68) due to a high level of professional 

phagocytic clearance of mannosylated ligands. In addition, they express inducible 

nitric oxide (iNOS), reactive oxygen species (ROS), lysozyme, acidification of 

phagolysosomes, acid hydrolyses and nutrient competitors such as lactoferrin. 

Expression of these factors facilitates the phagocytic uptake and microbial killing. 

Furthermore, they do not express chemokines, fail to produce significant levels of 

pro inflammatory cytokines (such as TNF-α, IL-1β, IL-6, IL-8, IL-12, IL-18, IL-23), 

and down-regulate the expression of antigen presentation molecules such as MHC 

II and co-stimulatory molecules CD86 and CD40. The intestinal macrophages 

exhibit hypo-responsiveness to TLR ligands through lack of or low expression of 

CD14, TLR2, TLR4, TLR5, and TLR9, and/-or express distinct TLR negative 

regulators that include IRAK-M, Tollip, SIGIRR, A20, and NOD-2. In addition to 

down-regulation of the expression of MyD88, TRAF6, TRIF, IRAK1 and IRAK4 

adaptor molecules, and expression of membrane receptors (CD200R, TGF-β RI, 

and TREM-2), membrane bound ligands (IL-10, TGF-β) (Platt and Mowat, 2008, 
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Smith et al., 2001, Smythies et al., 2005, Triantafilou et al., 2001, Shibolet and 

Podolsky, 2007, Smythies et al., 2010).  

At acute inflammatory reactions, Triggering receptor expressed on myeloid cells-1 

(TREM-1) is expressed by monocytes, macrophages, and neutrophils lead to 

enhanced secretion of inflammatory cytokines and chemokines. TLR ligands of 

LPS and lipoteichoic acid (LTA) and pro-inflammatory cytokine such as TNF-α are 

the main factors involved in inducing TREM-1 expression by inflammatory immune 

cells. TREM-1 expression is suppressed in gut macrophages (Schenk et al., 2007).  

This suppression is regulated by commensal non-pathogenic microbiota through 

microbial induction of IL-10 (Ueda et al., 2010). Breakdown of gut mucosal 

tolerance is followed by alteration of macrophage phenotype to CD14hi M1 pro-

inflammatory macrophages (Segura  et al., 2002) which exhibit increased TLR 

responsiveness and expression of the pro-inflammatory cytokines such as IL-1β, 

IL-8, IL-12 and TNF-α (Platt and Mowat, 2008).  

1.8. Immunomodulatory effects of probiotic bacteria  

The first theory about gut microbial effects on human health was by Metchnikoff 

(1845-1916) who proposed his theory of longevity that ‘‘the intake of yoghurt leads 

to decreases in the toxic effect of colonic flora by inhibiting the growth of 

putrefactive bacteria in the large intestine’’. In fact, the probiotic field grew 

explosively in human and animal application therapy when Shirota and Kellogg in 

1930s and German nutritionists in 1950s used probiotics in the treatment of 

several diseases (Vasiljevic and Shah, 2008). In 2001, the FAO/WHO defined 

probiotics as ‘Live microorganisms which when administered in adequate amounts 

confer a health benefit on the host’ (FAO/WHO, 2001). The most important criteria 
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for probiotic designation include a strain of human origin, safe for human use, 

stable in acid and bile, and adherence to the intestinal mucosa (Gueimonde and 

Salminen, 2006).  

Generally, probiotic bacteria are Gram positive, lactic acid bacteria (LAB). They 

are an important group in maintaining human health, because they produce lactic 

acid through their metabolism resulting in a low pH, which inhibits the growth of 

most pathogenic microorganisms. Probiotic bacteria are different in their 

metabolism, for example, Lactobacillus fermentum can ferment glucose 

compounds into lactose with the production of lactic acid, whereas Bfidobacteria 

are efficient in the production of short chain fatty acids such as butyrate, which 

also have a crucial role in maintaining a healthy gut mucosa and essential for 

mucosal homeostasis (Vanhoutvin et al., 2009).  

Numerous investigations in animals and humans have already shown that how a 

single probiotic strain or combinations of strains may modulate gut function 

(O'Mahony et al., 2001, Gackowska et al., 2006, Malai et al., 2009). Many of these 

investigations have generated promising results concerning the use of probiotics in 

the treatment of acute gastroenteritis, Clostridium difficile-associated diarrhoea or 

colitis, irritable bowel syndrome (IBS), necrotizing enterocolitis, and others (Preidis 

and Versalovic, 2009). At the same time, other investigations have shown either 

no effect or slight effects by probiotics. Verdú et al. (2009) reported a review based 

on evidence from animal models that the intestinal content is critical in determining 

the natural gastrointestinal physiology and the modification in luminal content by 

dietary, antibiotic or probiotic manipulation can result in alterations in gut function. 

IL-10 gene-deficient mice (BALB/c) were studied to determine whether increased 

intestinal permeability occurs as a primary deficiency before the onset of mucosal 
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inflammation or is secondary to mucosal injury. Madsen et al. (1999) showed that 

an enhance in ileal and colonic permeability in the absence of any histological 

injury, was associated with increased mucosal secretion of IFN-γ and TNF-α. 

While IL-10 gene-deficient mice raised under germ-free conditions have no 

inflammation, and demonstrate normal permeability and cytokine levels, which 

suggested that the intestinal permeability defect in IL-10 gene-deficient mice 

occurs due to a dysregulated immune response to normal enteric microflora. In 

terms of probiotic bacterial role in the treatment of intestinal inflammation de 

Moreno de LeBlanc and Perdigón (2010) demonstrated, using a TNBS-induced 

murine colon cancer model, that yoghurt consumption repressed tumour growth by 

diminishing the inflammatory response via increasing IL-10-secreting cells, 

reducing IL-6, cellular apoptosis and reducing procarcinogenic enzymes. Jeon et 

al. (2012) treated BALB/c mice for three months with Lactobacillus casei and 

Bifidobacterium breve in order to test the effects of these probiotics on the 

intestinal homeostasis by investigating their effects in T cell development in the 

intestine, and they found that. B. breve, but not L. casei, induced development of 

IL-10-producing Tr1 cells that express IL-21, in addition to B. breve activates 

intestinal CD103+ DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway.  

Probiotics have been shown to influence both innate and adaptive immunity. They 

can exert their effects on a wide array of mucosal immune cells including T, B, and 

natural killer (NK) cells (Takeda and Okumura, 2007), DCs (Foligne et al., 2007), 

monocytes/macrophages and epithelial cells (Ciorba et al., 2012, Zhang et al., 

2006). This immunomodulation by probiotics is partly attributable to the mucosal 

cell type being studied, and the strain of probiotic being used. Probiotic bacteria 

have been demonstrated to exert their immunomodulatory effects through the 
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bacterial cell wall, bacterial DNA, soluble secreted proteins (Frick et al., 2007, 

Sanchez et al., 2009, Yan and Polk, 2002), and bacterial cell metabolites such as 

SCFAs (Foey, 2011, Vanhoutvin et al., 2009). Indeed, probiotic bacteria have 

been demonstrated to modulate phagocytosis by macrophage cells (stimulator to 

phagocytosis in healthy subjects, and suppressor in allergic patients) (Isolauri et 

al., 2001).  

Cytokines are messengers that regulate the fate of the immune signal decisions 

(activation or tolerance) that are made by immune cells. It is well documented the 

aptitude of probiotic bacteria to modulate the profile of cytokine production by an 

array of cell system in the human and animal models. Indeed modulation of 

cytokine expression is one of the main targets to manipulate the immune 

responses by probiotic bacteria and represents a good field in the treatment and 

prophylaxis of immunopathology. LAB, such as L. rhamnosus, have been 

documented to modulate macrophage function by both suppressing and 

enhancing IL-12 production (Foligne et al., 2007, Shida et al., 2006, Shida et al., 

2011), which will impact on Th1 development and activation. LAB has been 

described to suppress mucosal TNF-α during inflammation leading to limiting of 

inflammation (Borruel et al., 2003) and augmentation of the anti-inflammatory 

cytokine IL-10, resulting in maintaining gut mucosa (de Moreno de LeBlanc et al., 

2011, Madsen et al., 2001). The cell wall-derived component of 

polysaccharide/PGN complex in LAB was demonstrated to suppress LPS-induced 

IL-6 production by peripheral blood mononuclear cells (Matsumoto et al., 2005) or 

induced high levels of IL-6, TNF-α and IL-12 (Christensen et al., 2002). 

Lactobacillus casei strain Shirota (LcS) has been demonstrated to facilitate the 

development of Th1 cells through the induction of IL-12 (Shida et al., 2006) and 



C
h

a
p

te
r 1

 

Chapter 1 

 

37 

 

augment NK cell cytotoxicity (Takeda and Okumura, 2007). Furthermore, 

Lactobacillus and Bfidobacteria species induce expression of a wide range of 

cytokines including pro-inflammatory and anti-inflammatory cytokines refer to table 

1.1.  
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Probiotic strain Cell system Main findings References 

L. acidophilus, 

L. casei strain Shirota 

Peyer’s Patches 

(PPs) after the oral 

administration to 

BALB/c mice, 

MΦ U937 cell line 

All strains increased the number of IFN-γ and TNF-α cells, 

but not of IL-10(+) cells in the total population of PPs 

IL-10 and TNF-α ↑ in response to LTA stimulation in a dose 

dependent way. Whole probiotic bacteria activate the 

transcriptional factor NFAT and TLR9 not LTA. 

 

(Dogi et al., 2009) 

L. reuteri ATCC 6475 and 

ATCC PTA 5289 

THP-1 cell line 

(human) 

↓ LPS induced TNF-α. (Jones and Versalovic, 

2009) 

B.breve, 

B. longum, 

B. adolescentis, 

Enterococcus faecalis 

MΦ RAW264,7 

(murine) 

IL-10 mRNA levels were significantly decreased after 

exposure to E. faecalis compared with exposure to 

Bifidobacterium species, whereas IL12p40, TNF-α, and 

IL-1β were decreased by co-culture with B. breve and B. 

longum. Bifidobacterium significantly inhibited 

phosphorylation of IκB-α induced by LPS associated with 

up-regulation of SOCS1 and SOCS3 resulting in 

suppression of cytokine expression. 

(Okada et al., 2009) 

Table 1. 1: Probiotic stains differentially modulate pro-and anti-inflammatory cytokines. 

 



C
h

a
p

te
r 1

 
 
 

39 

 

L. salivarius Ls33 

L. rhamnosus Lr32 

L. casei B123 

L. acidophilus NCFM 

L. acidophilus IPL908 

L. plantarum NCIMB8826 

B. animalis, B. lactis 

PBMCs from murine 

model of acute TNBS-

induced colitis 

 

All strains TNF-α↑. 

L. salivarius Ls33, L. rhamnosus, B. animalis, B.Lactis the 

most potent inducer of IL-10. 

L. plantarum, B. animalis, L. acidophilus and B. lactis the 

most potent inducer of IL-12. 

IL-10/IL-12 ratio ↑in L. acidophilus and L. salivarius. 

(Foligne et al., 2007) 

L. paracasei 1688 PBMCs from human 

healthy individuals 

IL-12, IFN-γ ↑with single strains and their combination (Castellazzi  et al., 

2007) 

L. gasseri, L. johnsoni, L.reutri PBMCs derived 

myeloid DCs from 

human healthy 

individuals   

↑ IFN-γ and IL-12 (Mohamadzadeh et al., 

2005) 

non-pathogenic E coli,  

Lactobacillus sakei 

Caco-2 co-culture with 

PBMCs from human 

↑ TNF-α, IL-1β, IL-8, TGF-β by Caco-2 cells co-cultured 

with PBMCs 

(Haller et al., 2000b) 
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healthy individuals  

↑TNF-α, IL-1β, MCP-1 and IL-10.by PBMCs 

Gram-positive bacteria 

including Lactobacilli and 

Bifidobacteria 

PBMCs from human 

patients with grass-

pollen allergy and 

healthy subjects 

Intracellular IFN-γ/IL-4 ratio↑ in lymphocyte in allergic 

patients but not in healthy subjects 

(Rasche et al., 2007) 

L.rhamosus GG, 

L. rhamosus E509, 

L.plantarum E98, 

L.acidophilus E507 

PBMCs from human 

healthy blood donor 

subjects 

 

All strains TNF-α and IL-6 ↑ , L. rhamnosus E509, L. 

rhamosus GG, B. animalis E508, L. acidophilus E507, 

were the best inducers of TNF-α, L. rhamosus E509, L. 

rhamosus GG, B. animalis E508 were the best inducers 

of IL-6. Live bacteria induced cytokine production better 

than glutar-aldehyde-fixed bacteria 

(Miettinen et al., 1996) 

L. rhamnosus, L. casei PBMCs, Lymphocyte 

from human healthy 

individuals 

Anti-proliferative effects, IL-4↓ (Sütas et al., 1996) 

L. acidophilus, 

L. brevis, L. bulgaris, 

PBMCs from human 

healthy individuals 

All strains TNF-α↑ 

B. bifidum, B. infantis, L. casei, L. lactis the most potent 

inducers of IL-10, B. breve, ,L. rhamnosus and L. 

(Timmerman et al., 

2007) 
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L. casei, L. helveticus, 

L.paracasei, L. paracasei, 

L. plantarum, L. salivarius, 

B. bididum, B. breve, 

B.infantis, B.lactis, B.longum 

salivarius did not induce IL-10, B. breve, L. brevis and L. 

rhamnosus induced high concentrations of pro-

inflammatory cytokines 

L. acidophilus LA201, 

L. plantarum 

L. salivarius LA302, B. lactis 

LA303 and combination of 

them 

PBMCs from human 

healthy individuals 

All strains IL-12 and IL-10↑ 

L. salivarius and B. lactis IL-10/IL-12 ratio↑ 

 

(Drouault  et al., 2006) 

L. salivarius UCC118, B. 

infantis 35624, 

 

Human mononuclear 

cells and DCs from 

MLNs and PBMCs 

isolated from patients 

with active colitis 

PBMCs and PBMC-derived DCs secreted TNF-α, IL-12 in 

response to the Lactobacillus, Bfidobacteria, and 

Salmonella strains, whereas MLN cells and MLN-derived 

DCs secreted TNF-α, IL-12 only in response to 

Salmonella challenge. PBMCs secreted IL-10 in 

(O'Mahony et al., 

2006) 
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response to the Bifidobacterium strain but not in 

response to the Lactobacillus or Salmonella. MLN cells 

secreted IL-10 in response to Bfidobacteria and 

Lactobacilli but not in response to Salmonella. 

L. casei strain Shirota, L. 

rhamnosus, L.zeae, L. 

fermentum, L. johsonii 

Mouse peritoneal 

macrophages 

↑ IL-12. Phagocytosis of lactobacilli was necessary for IL-

12 induction. Only intact cell wall of LcS induced IL-12. 

(Shida et al., 2006) 

L. acidophilus, L. delbrueckii, 

L. bulgaricus LbY-27, B. 

bididum Bb12 and 

combination of them 

PBMCs from human 

healthy individuals 

All strains and combination (TNF-α and IL-10) ↑ 

L. acidophilus the strongest IFN-γ and IL-12 inducer of 

cytokine production. Bacterial combination lower inducer 

than in single strain 

(Gackowska et al., 

2006) 

B .breve Y8, B. infantis Y1, 

B .longum Y10, E. coli 

Nissle 1917, L. acidophilus 

MB443, L. rhmnosus GG, L. 

casei MB451, L. delbuecekii 

MB453, L. plantarum 

MB452, whole bacteria and 

PBMCs from human 

healthy individuals 

IL-10, IL-1β and TNF-α ↑ by Bifidobacterium and E. coli 

more than by Lactobacillus 

IL-10, IL-1β, and TNF-α ↑ by L. bulgaricus and L. 

plantarum more than by L. casei. 

(Helwig et al., 2006) 
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genomic DNAs 

Genomic DNAs of L. 

acidophilus LA14, L. 

delbueckii spp. L. bulgaricus 

LB31, B. infantis B107 

PBMCs from human 

healthy individuals  

IL-10↑by Bifidobacterium more than by Lactobacillus 

IL6 ↑by Lactobacillus more than by Bifidobacterium 

(Lammers and 

Campieri, 2003) 

L. johnsonii,  L. sakei, 

Escherichia coli 

PBMCs and 

Lymphocytes from 

human healthy 

individuals 

IL12 and IFN-γ↑. Proliferation of PBMCs and the strongest 

proliferative response was observed with L. johnsonii. 

E.coli preferentially induced IL-10. Up-regulation of CD69 

and CD25 on CD56
+
 NK cells 

(Haller et al., 2000a) 

L. rhmnosus,  

L. palantraum, 

L. paracasei 

PBMCs from human 

healthy individuals  

IL-12↑by L. paracasei more than by L. plantarum or L. 

rhamnosus. IL-10↑by L. rhamnosus more than by L. 

plantarum. 

Whole killed lactobacilli were potent stimulators of IL-12 

(Hessle et al., 1999) 

L. rhmnosus, 

L. bulgaricus 

PBMCs from healthy 

individuals 

All strain TNF-α, IL-1β, IL-6, IL-18, IL-10, IFN-γ and IL-12↑ 

by L. rhmnosus more than by L. bulgaricus (mRNA and 

protein). IL-10 and IL-4 production was induced weakly. 

(Miettinen et al., 1998) 

L. gasseri Spleen-macrophages ↑IFN-γ (mRNA and proteins) (Haruki et al., 1994) 
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(SP-M03B8) and PPs 

-adherent cells 

L. johnsonii La1 NK cells from health 

individuals   

Activation of CD3- CD16+ CD56+ NK cells, including 

expression of the activation antigen CD69 and secretion 

of IFN-γ. Phagocytosis of bacteria required for their 

stimulation. 

(Haller et al., 2002) 

L. rhamnosus Lcr35 Healthy Human 

monocyte-derived 

immature DCs 

↑ TNFα, IL-1β, IL-12p70, IL-12p40 and IL-23, and only a 

low increase in IL-10 concentration. Maturation of DCs 

via up-regulation of the membrane expression of CD86, 

CD83, HLA-DR and TLR4, associated with a down-

regulation of DC-SIGN, MR and CD14. 

(Evrard et al., 2011) 

L. plantarum Caco-2 ( human) After stimulation with LPS for 48 h, IL-23 ↑ (mRNA and 

protein level) as TLR2 dependent. Adding L. plantarum ↓ 

IL-23. Suppression of TLR2 correlated with suppression 

of IL-23 and hBD-2 

(Paolillo et al., 2009) 

L. reuteri THP-1 cell line (human) Produced histamine that suppressed TNF-α production via 

stimulation the increasing levels of cAMP, which inhibited 

downstream MEK/ERK MAPK signalling via protein 

(Thomas et al., 2012) 
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kinase A (PKA), and resulting in suppression of TNF-α 

production by transcriptional regulation 

B. lactis strain BB12, 

Bacteroides vulgatus 

Germ-free Fisher F344 

rats, mouse epithelial 

cell (IEC) line Mode-K 

↑ NF-kB (RelA ),and p38 MAPKs in native IEC resulting in 

production of IL-6 and TLR2 dependent, whereas 

Bacteroides vulgatus failed in up-regulation of IL-6 

through their failing in augmentation of p38 

(Ruiz et al., 2005) 

L.casei CRL 431, L.helveticus 

R389 

BALB/c female mice 

small intestinal 

epithelial cells 

Up-regulated IL-6 using live and heat killed probiotic 

bacteria. IL-6 is necessary for B-cell differentiation and 

IgA production 

(Vinderola et al., 2005) 

L. rhamnosus GG (L GG) L. 

plantarum 299v, 

HLA-B27 transgenic 

(TG) rats 

L.rhamnosus GG not L. plantarum prevented colitis relapse 

in antibiotic treated rats associated with suppression of 

IL-1β, TNF-α and up-regulation of IL-10. 

(Dieleman et al., 2003) 

L. rhamnosus GG Mouse colon epithelial 

cells 

L. rhamnosus secreted proteins activated Akt, inhibited 

cytokine-induced epithelial cell apoptosis and promoted 

cell growth. 

(Yan et al., 2007) 

L. casei Shirota (LcS) lamina propria 

mononuclear cells 

isolated from murine 

Inhibited LPS-induced IL-6 via suppression of STAT-3 and 

inhibition of NF-kB. 

(Matsumoto et al., 

2009) 
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IBD 

L. fermentum PBMCs from very 

young children with 

atopic dermatitis (AD) 

↑ TNF-α and IFN-γ, ↓ IL-10 and IL-13 (Prescott et al., 2005) 

L.casei Shirota (LcS) PBMCs from human 

healthy older 

volunteers 

 

↑NK cell activity, ↑ ratio of IL-10/IL-12.  (Dong et al., 2013) 

B. longum SP 07/3, 

L.rhamnosus GG (L.GG) 

and L. casei Shirota (LcS).  

PBMCs from human 

healthy older 

volunteers 

↑NK cell activity by probiotics except for L.GG, probiotics 

↑ IFN-γ and IL-6. B. infantis ↑ IL-10/IL-12 ratio. 

(You and Yaqoob, 

2012) 
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Several studies have demonstrated that immune modulatory role of the probiotics 

such as Dong et al. (2010) who reported that LcS differentially induced expression 

of CD69 and CD25 on NK cells (CD56+) and cytotoxic T cell (CD8+) subsets, 

leading to activation of these cells. This suggested that LcS could potentiate the 

destruction of infected cells in the body. Indeed, other probiotic strains such as 

Lactobacillus fermentum CECT5716 and Lactobacillus salivarius CECT5713, 

isolated from human breast milk mediated the activation status (CD69 and CD25 

expressions) of NK cells (CD56+), total T cells (CD3+), cytotoxic T cells (CD8+) 

and Th1 (CD4+) cells in addition to Tregs (CD4+CD25+Foxp3+) cells (Pérez-Cano 

et al., 2010). The immune system undergoes substantial change with age in both 

humans and animals, which is linked to alterations in both the strength and quality 

of the immune response (Hodes, 2005). Probiotic modulation and activation of 

aged NK and T cell subsets (CD8+,CD4+ and Tregs) can lead to a substantial 

enhancement of both natural and acquired immune responses (Dong et al., 2010). 

Questions have been raised about probiotic bacterial immuno-regulatory effects 

through augmentation of regulatory cytokines such as IL-10, Medina et al. (2007) 

revealed that the level of guanine cytosine (GC) in probiotic bacterial DNA has a 

significant role in inducing the regulatory cytokines such as IL-10 by PBMCs 

stimulated by B. longum strains. However, it is difficult to explain the underlying 

mechanism by which probiotic bacteria exert such multifunctional activities as 

immuno-regulatory or immuno-stimulatory. Indeed, ingested probiotic bacteria are 

considered to affect the intestinal immune system through several routes. Shida et 

al. (2009) reported that the digested LcS cell wall augmented the pathway of 

CREB, which is known for its suppression of pro-inflammatory cytokines such as 

IL-12 and up-regulation of anti-inflammatory cytokines such as IL-10. In addition, 
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TLR2 recognition of peptidoglycan and NOD2 recognition of the by-product of 

peptidoglycan (PGN) digestion, muramyl dipeptide (MDP), leads to inhibition of 

macrophages IL-12 production stimulated by different probiotic bacteria. 

Additionally, Yasuda et al. (2008) reported that polysaccharide moiety of the cell 

wall of LcS regulates cytokine production by RAW 264.7 macrophages and spleen 

cells via suppression of LPS-induced IL-6 production. On the other hand, the intact 

rigid cell wall of LcS that is resistant to intracellular digestion effectively stimulates 

macrophages to secrete a large amount of IL-12 in mouse peritoneal 

macrophages (Shida et al., 2006). It seems to be that the fate of probiotic bacterial 

immunomodulation is determined by the type of phagocytic cell, sensitivity to 

intracellular digestion by phagolysosomal enzymes (Silverstein, 1995), potential 

routes of phagolysosome escape and the end product of the cell wall digestion 

(Pitt et al., 1992). Therefore, probiotic immunomodulation can be either 

regulatory/anti-inflammatory or activatory/pro-inflammatory (Shida et al., 2011) 

dependent on the environmental pathological condition and type of immune cells 

that are stimulated by probiotics.  

An important element of probiotic bacteria for the treatment or prevention of 

disease is the organism’s ability to secrete useful concentrations of proteins and 

other metabolites that regulate intestinal homeostasis (Dotan and Rachmilewitz, 

2005). Extracellular proteins from probiotic bacteria exist in two formats: surface 

associated membrane bound and free secreted proteins. They could diffuse 

through the mucus layer that shields the intestinal mucosa, allowing interaction 

with epithelial and immune cells (Sanchez et al., 2010). Probiotic secreted proteins 

(SP) play an important role in modulation of the host immune response (Sanchez 

et al., 2010). It is well reported that probiotic SP have beneficial effects on human 
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health through their roles in modulating the immune response (Bauerl et al., 2010, 

Hoarau et al., 2008, Sanchez et al., 2009). Probiotic SP exhibit different functions 

such as inhibition of pancreatic and neutrophil elastases by Serpin secreted from 

B. longum (Ivanov et al., 2006), and growth promotion in human colon epithelial 

cell line HT-29 by p40 (homologous to gi|116493594) secreted from L. rhamnosus 

GG, via inhibition cytokine induced epithelial cell apoptosis (Yan et al., 2007). 

Secreted proteins (SP) also reduce the injuries caused by TNF-α overproduction 

after treatment with hydrogen peroxide through p75 (homologous to gi|116493849) 

secreted from L. rhamnosus GG. These SP (P40 and P75) prevented the 

disruption of tight junctions and barrier function in Caco-2 cell monolayers via 

preventing hydrogen peroxide-induced redistribution of Occludin, ZO-1, E-cadherin, 

and β-catenin by translocation of PKCβI (Seth et al., 2008). Indeed, Bauerl et al. 

(2010) reported that Lactobacillus casei/paracasei carrying two genes encoding 

homology of P40 and P75 from L rhamnosus GG, which are characteristic of 

proteins with cell-wall hydrolase activity. These proteins were secreted to the 

growth medium and were located at the bacterial cell surface. Both proteins (P40 

and P75) bound to mucin, collagen and to intestinal epithelial cells, stimulated 

epidermal growth factor receptor phosphorylation in mouse intestine ex vivo.  

Studies showed that secreted proteins such as flagellin secreted from E. coli 

Nissle 1917 has a significant role in inducing hBD-2 and IL-8 expression by Caco-

2 cells (Schlee et al., 2007). Furthermore, hBD-2 production in epithelial cells was 

induced by unidentified secreted proteins secreted from L. acidophilus, L. 

fermentum, L. paracasei (Schlee et al., 2008). Additionally, S-layer protein (ASlpA) 

secreted from L. acidophilus regulates immature DCs and T cell functions via 

inducing IL-10 (Konstantinov et al., 2008). Accumulating evidence demonstrates 
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that probiotics communicate with the host by modulating key signalling pathways, 

such as NF-κB and MAPK, via bacterial cell wall or their secreted protein to either 

enhance or suppress the activation and influence downstream pathways refer to 

table 1.2.  

Table 1. 2: Probiotic modulation of signalling pathways in intestinal epithelial cells and 

macrophages. 

Types of probiotic 

bacterial species  

Model system Signalling 

pathway 

Probiotic effects References 

L. reuteri Caco-2 and HT-29 NF-KB Prevents IκBα 

degradation 

(Ma et al., 2004) 

Bacteroides 

thetaiotaomicron 

Caco-2, HT-29 NF-kB Enhances RelA 

nuclear export via  

PPARγ 

(Kelly et al., 2004) 

Faecalibacterium 

prausnitzii DSM  

17677 

Caco-2 cells, 

epithelial cells from 

TNBS-induced colitis 

in mice, PBMCs 

NF-kB Inhibits NFκB 

activation 

associated with 

suppression of IL-

12, IL-8 and IFN-γ 

and up-regulation of 

IL-10.   

(Sokol et al., 2008) 

B. lactis Naïve epithelial cells 

from F344 rats, small 

intestine, Caco-2, HT-

29 

 

NF-kB Activates NF-κB 

RelA and p38 

MAPK 

phosphorylation 

associated with up-

regulation of IL-6 

TLR2 dependent 

(Ruiz et al., 2005) 
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L. rhamnosus GG ATCC  

53103 

PBMCs differentiated 

into macrophages by 

GM-CSF 

NF-kB, 

STAT-1/3 

Induces NFκB and 

STAT-3/1 DNA-

binding activity 

(Miettinen et al., 2000) 

L. casei Shirota THP-1 cells derived 

macrophages (M1) 

NF-kB Inhibits IκBα 

phosphorylation 

(Watanabe et al., 

2009) 

B.breve, Streptococcus 

thermophilus 

THP-1 cell line  NF-kB  ↓ NF-kB, 

decreases LPS 

binding to CD14 

(Menard et al., 2004) 

Lactobacillus fermentum 

YIT  

RAW264.7 (murine) MAPKs Activation of JNK 

associated with ↑ 

TNF-α 

(Matsuguchi et al., 

2003) 

Supernatant from 

Bifidobacterium 

PBMCs derived DCs MAPK and 

PI3K 

↑ PI3K, ↓ p38MAPK 

and GSK3 

(Hoarau et al., 2008) 

Supernatant from 

Lactobacillus rhamnosus 

GG 

Human and mouse 

intestinal epithelial 

cells 

NF-kB and 

MAPKs 

p75 and p40 

activated Akt, 

inhibited cytokine-

induced epithelial 

cell apoptosis (TNF-

α)  

(Yan et al., 2007) 

Lactobacillus plantarum Intestinal epithelial 

cell (YAMC) and 

macrophage (RAW 

264.7) and murine 

DCs 

NF-kB ↓ NF-kB (Petrof et al., 2009) 

DNA from VSL#3 HT-29 NF-kB and 

MAPKs 

↓ NF-kB, p38  (Jijon et al., 2004) 
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Gómez-Llorente et al. (2010) reported a review based on evidence that probiotics 

modulate TLR expression by epithelial cells. In addition to the probiotic cell wall 

and probiotic-secreted proteins, probiotic DNA also played a vital role in probiotic 

therapy through the TLR9 signalling pathway. DNA from probiotic bacteria has 

been shown to protect mice from experimental colitis in a TLR9 dependent manner 

(Rachmilewitz et al., 2004 ).  

The gut barrier function is one of the probiotic bacterial targets. They strengthened 

the mucosal barrier function by augmentation of TEER and ZO-1 protein 

associated with TJs (Fanning et al., 1998, Johnson et al., 2008). Epithelial cell 

survival and restitution are also influenced by probiotic bacteria. Probiotics exerted 

a significant role in the renewal of epithelial cells, and reduced epithelial cell 

apoptosis through up-regulation of endogenous cytokines associated with 

epithelial cell turnover (Banasaz et al., 2002, Resta and Barrett, 2003). Finally, a 

less exploited but very promising field is the use of probiotics or some of their 

components as adjuvants for vaccines, as well as using genetically modified 

strains for delivering regulatory molecules such as IL-10 or encoding proteins from 

pathogenic microorganisms for immunization (Nagy et al., 2005).  

1.8.1. Probiotic roles in the treatment of IBD 

IBD is defined as chronic relapsing inflammatory disorders of the GIT. The most 

common types of IBD are Ulcerative colitis and Crohn’s disease, which have 

become more prevalent diseases (Molodecky et al., 2011). Crohn’s disease is a 

type of IBD affecting anywhere along the GIT, with dense infiltration of 

lymphocytes particularly Th1, Th17 and the M1 macrophage phenotype. 

Overproduction of TNF-α and IL-1β, IL-17, IL23 is the main characteristics of the 

acute phase of Crohn’s disease (Baumgart and Carding, 2007).  
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TNF-α production and the bioavailability of its receptors on the cell surface are 

regulated by TNF-α converting enzyme (TACE), also named ADAM17 a pleiotropic 

metalloproteinase. TACE is mainly regulated by the tissue inhibitor of 

metalloproteinase 3 (TIMP3) (Blaydon et al., 2011). ADAM17 role in activating 

TNF-α is by cleavage of the trans-membrane TNF-α precursor. Crohn’s disease is 

associated with a high expression of TACE correlated with down-regulation of 

TIMP3 (Cesaro et al., 2009).  

IL-1β is primarily synthesised as a pro-IL-1β, then converted to the bioactive form, 

through protease belonging to the cysteine-dependent protease family, named IL-

1β converting enzyme (ICE or Caspase-1). Caspase-1 is the intracellular protease 

that cleaves the precursors of IL-1β, in addition to, IL-18. The role of IL-1β in 

intestinal inflammation depends on both the up-regulation of IL-1β production as 

well as the level of its naturally occurring inhibitor, the IL-1 receptor antagonist (IL-

1Ra), therefore the balance of IL-1 and IL-1Ra may affect the disease outcome 

(Burns et al., 2000).  

Ulcerative colitis (UC) is another disease belonging to IBD, where the inflammation 

affects the mucosal layer of the colon and may be extended to the rectum with 

infiltration of lymphocytes and macrophages, loss of goblet cells and the presence 

of ulceration (Bamias et al., 2005, Lennard-Jones, 1989, Strober and James, 

1986). Among infiltrative cells in the lamina propria in the case of UC are Th2 cells 

resulting in an abundance of IL-4 and IL-13 cytokine production, also there are an 

abundance of a specific macrophage phenotype which have CX3CR1+TLR2+ 

CD33+ (Candia et al., 2012).  
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IBD is described as a collection of multi-factorial diseases; mainly the hypothesis 

of IBD initiation is that it results from the unusual immune response to enteric 

bacteria in individuals with vulnerability due to polygenic defects (Bibiloni and 

Schiffrin, 2010). Evidence supporting microbial agents involving in the hypothesis 

of IBD initiation include; infection with pathogenic bacteria (e.g. Mycobacterium 

avium paratuberculosis, Listeria, in Crohn’s disease, and E.coli in UC (El-Zaatari 

et al., 1999), delicate alteration in bacterial population, function, colonization, and 

composition, especially after antibiotic therapies. Alteration in the mucosal barrier, 

(e.g. defective mucus, weakening of tight junctions, low rate of epithelial turnover 

and less epithelial cells restitution) (Silvia and Kim, 2009), mutations in genes 

(such as NOD-2 associated with Crohn’s disease) (Hedl et al., 2007), and 

defective regulation of mucosal immune responses associated with innate and 

adaptive immunity have also contributed to the initiation of IBD.  

Several studies have revealed that the administration of probiotics has a role in the 

treatment of IBD (Fedorak, 2008, Rogler and Andus, 1998, Shida et al., 2009, 

Wallace, 2009). Several studies noted that a dysbiosis and a marked reduction in 

the numbers of Firmicutes found in the GIT of patients with Crohn’s disease, 

including the beneficial commensal Faecalibacterium prausnitzii and Bifidibacteria 

(Sokol et al., 2008). Oral administration of the live bacterium of Faecalibacterium 

prausnitzii lead to reduced evidence of experimental colitis in mice (Sokol et al., 

2008). Jia et al. (2010) reported that a marked increase in IL-10 secretion and 

significant reduction in IFNγ and IL-12 production was seen in PBMCs exposed to 

Faecalibacterium prausnitzii and lead to the suggested use as a potential 

therapeutic approach in the treatment of Crohn’s disease. As UC is driven by Th2 

immunopathology, skewing of the immune response to a more tolerogenic tissue 
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environment may alleviate the damaging effects of a dysregulated inflammatory 

response. Mouse models of UC showed that Lactobacillus strains modulate the 

pro-inflammatory responses. L. plantarum 299v in IL-10 knockout mice (Schultz et 

al., 2002) as well as L. rhamnosus GG in transgenic mice (Dieleman et al., 2003) 

have been shown to decrease levels of pro-inflammatory cytokines including IL-1β, 

TNF-α, IFN-γ, IL-12, while augmenting the anti-inflammatory cytokine (IL-10). A 

model of TNBS-induced colitis in rats showed that VSL#3 remodels bacterial 

composition through enhancing species richness and diversity index (Uronis, 

2011). This study correlated with human clinical trials which showed that this 

probiotic cocktail decreased tissue inflammation, enhanced maintenance of 

remission in children with ulcerative colitis (Miele et al., 2009), and induced 

remission in patients with mild-to-moderately active ulcerative colitis in adult 

subjects (Sood et al., 2009). Furthermore, Kruis et al. (2004) reported that E coli 

Nissle 1917 maintained remission in patients with UC, whereas Malchow (1997) 

reported a similar effect on remission in Crohn’s disease. It seemed to be that the 

multifaceted immunomodulation actions exerted by probiotics have a crucial role in 

the treatment of these diseases. Generally, the type of modulation required to 

down regulate the chronic inflammation in Crohn’s disease is quite different from 

the one required for the treatment of UC. In Crohn’s disease, there is an enhanced 

Th1 response against their own microbiota, which is characterised by a high level 

of pro-inflammatory cytokines, therefore, probiotics able to increase the level of 

cytokine such as IL-10 that suppress TNF-α production, may be used as 

therapeutic supplementation for Crohn’s disease treatment. However, in UC the 

opposite may be required, since probiotics that mediate enhancement of pro-

inflammatory cytokines such as IL-12 and down-regulated regulatory cytokines 

such as Th2 cytokine production are suitable in the treatment of UC (Shida et al., 
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2011). Therefore, modulation of cytokine expression by probiotics is one of the 

possible methods of prevention and therapy for these diseases.  

Thus far, studies have focused on the role of commensal bacteria (probiotics) in 

modulation of the immune responses induced by specific inflammatory signal in 

single cell types. In contrast, the present work used a developed in vitro co-culture 

system to investigate the use of immunoregulatory probiotics (both probiotic 

bacterial cells or their secreted proteins) on modulation of macrophages and 

epithelial cell immune responses induced by a specific signal (comparing two 

statuses: normal homeostasis and chronic inflammation) in order to choose such 

probiotic strains that might be boosting mucosal tolerance. These models mimic 

the interaction of gut epithelial cells with immune cells (Caco-2/M1 to resemble a 

chronic inflammation model, and Caco-2/M2 to resemble the normal homeostatic 

model). This knowledge could highlight the important gaps, which need to be filled 

in terms of the probiotic role in driving mucosal tolerance through modulation of 

the mucosal immune response. This immunomodulation by probiotics would 

provide a therapeutic window, and potentially develop the treatment for intestinal 

inflammation, particularly IBD. 
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1.9. Aims and objectives of this study  

Although many studies have been conducted on the effects of probiotics on 

human health, there are still a lot of unanswered questions, because the 

mechanisms of these bacteria, which regulate the immune response in humans, 

are still unclear. The aims of this project were to find a suitable in vitro model to 

investigate possible immunomodulatory effects of probiotics, in order to choose 

a specific probiotic strain that might boost mucosal tolerance via modulation of 

immune responses induced by specific stimuli using THP-1 monocytes, THP-1 

derived macrophage subsets and Caco-2 epithelial cells. In this study, a cell line 

model was developed that mimics the cell-to-cell cross talk between epithelial 

cells and immune cells, that is vital to the immune fate decision in the gut 

mucosa. Tolerance (Caco-2/M2) versus activation (Caco-2/M1) was used to 

investigate the immunomodulatory effects of a panel of probiotics and their 

secreted proteins (Bifidobacterium breve, Lactobacillus salivarius, Lactobacillus 

rhamnosus, Lactobacillus casei strain Shirota, Lactobacillus fermentum, and 

Lactobacillus plantarum), refer to Fig.1.7. The specific study objectives in this 

thesis are:  

1- The immunomodulatory capacity of probiotics (heat-killed and secreted 

proteins) on monocytes, and macrophage cell subset cytokine production 

induced by enteropathic LPS as a pro-inflammatory stimulus (Chapter 3), 

Fig.1.7 line 1.   

2- The effect of a range of potentially immunoregulatory probiotics on the 

modulation of macrophage subset LPS-induced NF-κB activation and 

cytokine production, using a stably transfected NF-κB-reporter cell line 
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model of CD14lo/CD14hi mucosal resident homeostatic and infiltrating 

inflammatory macrophages (Chapter 3), Fig.1.7 line 1.  

3- Probiotic immunomodulation of cytokines, hBD-2 and TLRs by 

monocultures of epithelial cells induced by TNF-α and IL-1β (Chapter 4), 

Fig.1.7 line 2. In addition, modulation of epithelial cell functionality in 

Caco-2/M1 and Caco-2/M2 co-culture models (Chapter 5), Fig.1.7 line 3.  

4- The role of probiotics in recovering dysregulated barrier functions (TEER, 

ZO-1) induced by enteropathic LPS in Caco-2/M1 and Caco-2/M2 

(Chapter 5), Fig.1.7 line 3.  

5- Probiotic immunomodulation of PRR in the context of endogenous 

inhibitor expression (Tollip) in macrophage subsets, monocultures of 

Caco-2 and Caco-2/M1, and a Caco-2/M2 co-culture models (Chapter 3, 

4 and 5 respectively), Fig.1.7 line 1, 2 and 3.  
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Figure 1. 7: The lines of research investigations planned for the whole project 

Line3-chapter 5, line 2 –chapter 4, line 1 chapter 3. 
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Chapter 2: Materials and Methods 

2.1. Materials  

See the appendices  

2.2. Methods 

2.2.1. Microorganisms 

Bifidobacterium breve strain NCIMB 8807 (BB), Lactobacillus rhamnosus GG 

strain NCIMB 8824 (LR), Lactobacillus salivarius strain NCIMB 41606 (LS) and 

Lactobacillus plantarum strain NCIMB 41605 (LP) were obtained from National 

Collections of Industrial, Marine and Food Bacteria (NCIMB), Aberdeen, Scotland. 

Lactobacillus fermentum strain MS15 (LF) was isolated from the crop of a chicken 

(Savvidou, 2009) and obtained from internal microbiology stocks at the University 

of Plymouth. Lactobacillus casei strain Shirota (LcS) was obtained from a 

commercially available Yakult probiotic drink (Yakult, UK). These probiotic 

bacterial strains were cultured aerobically in deMan Rogosa Sharp (MRS) broth 

(Oxoid Ltd., Basingstoke, Hampshire, UK) at 37oC for 24 hr. For checking 

microorganisms’ purity, they were streaked on MRS agar media and Gram- 

stained to check identity. Subsequently a single colony was used to inoculate 

broth media. Cultures were incubated overnight with shaking (120 rpm) according 

to the optimum conditions and the growth time. For storage, volumes of cultures 

(0.5 ml) were mixed with 0.5 ml of sterile glycerol, cryo-protectant and stored at -

80ºC or in liquid nitrogen. For maintaining bacterial growth, bacteria were grown in 

MRS agar and kept at 4ºC, and sub-cultured every 10-15 days.  
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2.2.1.1. Preparation of heat-killed bacterial cells 

Heat killed (HK) bacterial cells were prepared according to the modified method 

described by (Young et al., 2004). In brief, bacterial cells were grown in MRS broth 

until stationary phase was achieved (10-14 hr at 37°C with shaking 120 rpm) as 

monitored by turbidity, measured at an absorbance 600 nm (see Fig.2.1). The 

bacterial cells were then harvested by centrifugation at 5000 g for 10 min (Rotina 

46 centrifuge, Hettich Zentrifugen, Germany) washed three times with sterile 

phosphate buffered saline solution (PBS) pH7. The bacterial numbers were 

adjusted by dilution in sterile PBS to give an OD 600 nm reading of 1.2; the 

corresponding bacterial viable count for the resulting bacterial suspension was 

determined by colony forming unit (CFU) counting on MRS agar plates, where OD 

600 nm 1.2 was found to equate to 1x1010 CFU/ml. After adjusting the bacterial 

concentration at 1x1010 CFU/ml, bacterial cells were heated for 2 hours at 90oC. 

Bacterial cell death was confirmed by plating on MRS agar and incubation for a 

minimum of 18 hr. Bacterial cell integrity was checked by Gram stain and light 

microscopy.  
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Figure 2. 1: Probiotic bacterial growth curve. 

Probiotic bacteria Lactobacillus fermentum (LF), L. plantarum (LP), L. salivarius (LS), L. casei 

strain Shirota (LcS), L. rhamnosus GG (LR), and Bifidobacterium breve (BB), were cultured 

aerobically at 37°C for 16 hr with shaking 120 rpm in MRS broth. In order to determine the 

bacterial growth phases, each bacterial strain was monitored by optical density (OD600 nm) to 

determine the bacterial cell density and streaked on MRS agar to determine the viable 

bacterial count at each time point starting from lag phase (5), exponential phase (6-10), 

stationary phase (10-14) then ended by the decline phase. Data displayed is a representative 

experiment with triplicate samples of n=3 replicate experiments. 

2.2.2. Protein analysis methods 

2.2.2.1. Preparation of secreted protein extracts by probiotic bacteria 

A single colony of fresh culture of each probiotic strain was used to inoculate 10 ml 

of MRS broth and incubated overnight at 37°C with shaking (120 rpm). The culture 

(0.5 ml) was used to inoculate 50 ml of fresh MRS medium and incubated 

overnight as before until reaching the stationary phase (10-14 hr culture) as 

monitored by absorbance at 600 nm (see Fig 2.1). According to the modified 

protocol of (Sanchez et al., 2009), stationary phase bacterial culture supernatants 

or fresh MRS broth (control) were harvested by centrifugation at 3500 g for 10 min 
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at 4ºC. The cell supernatant was filtered through nitrocellulose membranes 0.45 

µm (Fisher, UK) followed by adding 10 ml of 5%v/v sodium deoxycholate to the 

resulting filtrate to exclude salts that might exist in the bacterial cell supernatant, 

then incubated at 4oC for 30 min. After which chilled trichloroacetic acid (TCA) was 

added to a final concentration of 60 g/L and proteins were allowed to precipitate 

for 2 hr at 4ºC. Proteins were recovered by centrifugation (9300 g for 10 min at 

4ºC). Protein pellets were washed twice with 2 ml of chilled acetone and allowed to 

dry at room temperature, proteins were re-solubilised in an ultra-sonic bath 

(35kHz.frequency, Fisher brand FB 11010) for 2 min in 40 µl of Laemmli buffer for 

SDS-PAGE analysis, or in 1 ml of sterile LPS free PBS for treating the immune 

cells. Proteins were resolved by SDS-PAGE in a 12.5%w/v polyacrylamide gel and 

molecular weight determined by the retention factor (RF) (a common abbreviation 

for relative protein mobility throughout the gel, which related to the protein 

molecular mass) compared to a defined protein standard. The Bradford method 

was used to estimate the concentration of protein in each bacterial secreted 

extract (refer to section 2.2.2.2).  

2.2.2.2. Protein quantification 

The Bradford method (Bradford, 1976) modified for the micro-plate reader was 

employed for protein quantification. The Bradford method is recommended for 

general use, especially determination of protein content of cell fractions and 

secreted extractions. The main concept of this assay depends on the observation 

that the absorbance maximum for an acidic solution of Coomassie Brilliant Blue G-

250 shifts from 465 nm to 595 nm when engagement with protein occurs (Bradford, 

1976). Bovine Serum Albumin (BSA) protein standards between 7 µg/ml and 5 

mg/ml were prepared by dissolving BSA in distilled water; following that, an equal 
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volume of dye reagent (Bradford) was added and incubated for 5 min at room 

temperature (RT). The absorbance was determined in a micro-plate reader 

(Molecular Devices, Manchester, UK) at 595 nm. A standard curve was produced 

between absorbance value and protein concentrations, and the test sample was 

calculated based on comparison to the standard curve (see Fig. 2.2). 

 

Figure 2. 2: Standard calibration curve of BSA by Bradford assay. 

Bovine serum albumin (BSA) protein standard was prepared with the range of 7 µg/ml to 5 

mg/ml. The absorbance (OD) was determined in a micro-plate reader at 595 nm. Data 

displayed is a representative experiment with triplicate samples of n=3 replicate experiments.  

2.2.2.3. Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis 

(SDS–PAGE) 

SDS-PAGE is widely used as an analytical technique for resolving complex 

mixtures of proteins. It was performed using a Laemmli discontinuous buffer 

system. Glass plates (BIO-RAD, UK) were cleaned with decant detergent and 

washed with deionised water, followed by 70 %v/v ethanol and air dried before 

using. The final concentration of the resolving gel was 12.5%w/v (see appendices 
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section 1.1.3). The required resolving gel solutions were firstly mixed followed by 

adding fresh 1%w/v ammonium per sulphate (APS) and Tetramethylethylene 

diamine (TEMED) for polymerisation and immediately poured into the performed 

space between the glass plates and filled to two thirds the height of the largest 

glass plate. Two ml of 10%v/v water saturated isopropanol was added immediately 

on top of the resolving gel making a layer on top of the gel to liberate the air 

bubbles. The gel was left for at least 30 min at RT for polymerisation. After 

polymerisation of the resting gel, the isopropanol layer was removed, then the 

stacking gel 3%w/v was prepared according to the recipe mentioned in 

(appendices, section 1.1.3), APS and TEMED were added, then immediately 

poured on top of the resolving gel. In order to make wells for loading the protein 

sample, a comb was inserted directly into the stacking gel. The gel was left for at 

least 30 min for polymerisation and transferred to the electrophoresis tank. The 

electrophoresis tank was filled with running buffer, covering the top of the gel. The 

comb was removed carefully and the wells were washed with running buffer to 

clean the wells from residing stacking gel materials. A volume of 12 μl of defined 

concentration protein sample and 3 μl of loading buffer were boiled for 3 min to 

denaturation the protein, quenched on ice for 2 min, briefly vortexed, centrifuged at 

12000 rpm for 30 sec then loaded into each well of the gel. The gel was run at 100 

V for 2 hr and monitored by observing the dye marker (Hyper Page pre-stained 

protein Marker, Bio line, UK). The gel was removed from the electrophoresis 

system tank, plates were removed, and the gel was stained with Coomassie blue 

(see appendices section 1.1.4) overnight then the gel was transferred to the de-

staining buffer until the protein bands appeared.  

2.2.2.4. Western blotting (WB)  
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Western blotting (WB) is widely used for detecting specific proteins stained with 

specific antibodies in a given complex sample protein. After resolving the proteins 

by SDS-PAGE, proteins in gels were transferred to polyvinylidene fluoride (PVDF) 

membranes using an electro-blotter system (Criterion blotter, BIO-RAD, UK). After 

electrophoresis and prior to blotting, the gel was placed in 100 ml of transfer buffer 

(500mM Glycine, 50mM TrisHCl, 0.01% SDS, 20% methanol) (refer to appendices, 

section 1.1.6) for 5 min. Pieces of PVDF were cut to the same size as the gel, 

along with two pieces of What man filter papers. The PVDF blotting papers were 

soaked in methanol (100%v/v) for 15s, DW for 2 min and the transfer buffer for 5 

min. The blotting apparatus blotting system was assembled as follows: black 

plastic cassette plate at the bottom, gauze, filter papers, SDS-PAGE gel, PVDF 

blotting paper, filter papers, gauze, and red plastic cassette at the top (see Fig.2.3). 

The air bubbles were removed with a roller, and the cassette was firmly closed 

and placed in the tank with the black side towards the cathode (black electrode). 

The tank was filled with cold transfer buffer and an ice pack was placed at the 

bottom. In addition, a magnetic stirrer was placed in the bottom of the tank for 

cooling distribution, to avoid the overheating of the buffer, which might affect the 

blotting system.  

When blotting system was connected to the power, the gel was electro blotted at 

100 V for 35-45 min. After blotting, the PVDF membrane was blocked with 5%w/v 

BSA / tris buffered saline with Tween 20 (TBST) solution at RT for 1hr on the roller. 

Membranes were exposed overnight to the primary antibody in 1% BSA in TBST 

(see appendices, section 1.1.6) at 4°C on the roller. After that, the antibody was 

placed into an empty falcon tube, and the PVDF membranes were washed with 

TBST three times (5 min each at RT on the roller). After that, the membranes were 
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incubated with appropriate secondary antibodies coupled to horseradish 

peroxidase (HRP) for 2h at RT. The membranes were washed three times for 5 

min with TBST at RT on roller followed by washing once for 5 min with TBS 

(appendices, section 1.1.6) on roller to remove traces of Tween-20.   

Developing colour for protein detection was performed by using enhanced 

chemiluminescence (ECL) (GE Healthcare Life Sciences, Buckinghamshire, UK) 

to detect peroxidase activity from HRP-conjugated antibody. According to the 

manufacturer’s instructions, the solution for developing colour was prepared in a 

falcon tube protected from light. The membrane was removed after washing with 

TBS, dabbed dry on a paper towel and laid out on a plastic sheet. The developing 

solution was carefully pipetted over the entire membrane, and left for 5 min. The 

protein bands were visualized by a gel documentation system using EC3 imaging 

system (UVP ultra violet product, Ca, UK). 

 

 

 

 

 

Figure 2. 3: Western blotting apparatus assembly. 

A schematic showing the order of western blot apparatus,1) black plastic cassette plate, 2) 

gauze, 3) filter paper, 4) gel, 5) PVDF membrane, 6) filter paper, 7) gauze, 8) red plastic 

cassette plate. 
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2.2.2.5. Separation of bacterial secreted proteins by gel chromatography 
filtration  

Gel filtration is widely used to separate protein molecules based on protein size 

(molecular weight). The type of gel used were porous, where the small proteins 

can penetrate the pores and eluted slowly, in comparison with large protein 

molecules which cannot enter the beads were travelling around them and eluted 

quickly. The protein fractions were collected into a series of tubes with a fraction 

collector, where the volume in each tube is called the elution volume (Ve), and the 

fraction collected in contains the separated protein. Blue dextran dye (see 

appendices, section 1.1.7) was used to determine the void volume (Vo), which is 

the volume of the eluent collected from the beginning of the run until the blue dye 

begins to elute. Bacterial secreted protein extracts were subjected to gel 

chromatography filtration under non-denaturing conditions using Sephacryl S-200 

HR (1-80 KDa MW range (dextran), 5-250 kDa MW range (globular protein). In 

order to separate the protein mixture, the steps were performed following the 

method described by Hagel (2001). In brief, the Sephacryl S-200 HR medium was 

poured into a column (2.4×24 cm) to form packed beads, 100 ml of 0.15 M sodium 

phosphate buffer (pH 7.2) was added and left for casting at 4oC for three days. 

According to Delmas et al. (2001), the column was first calibrated with a standard 

protein marker mixture before being used for the samples. The standard protein 

marker mixture (1 ml) containing 5 mg apoferritin (443 KD), 2 mg β-amylase (200 

KD), 2.5 mg alcohol dehydrogenase (150 KD), 5 mg bovine serum albumin (BSA) 

(66 KD), and 1.5 mg Carbonic anhydrase (29 KD) was added to the column, 

followed by 100 ml of 0.15 M sodium phosphate buffer (pH 7.2) at a flow rate of 

0.5 ml/min. The protein concentration in each eluted fraction was determined by 

absorbance at 280 nm. In order to plot the standard curve to determine the 
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molecular weight of the protein sample, the optical density (OD) value of the peaks, 

which corresponded to the different proteins in the standard protein mixture, was 

divided by void volume (Vo), and plotted against the natural log molecular weight 

(Log MW) of each protein in the standard protein mixture. Calculation of molecular 

weight (MW) of the eluted protein was performed using the known protein 

standard curve (see Fig 2.4).  
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Figure 2. 4:  Calibration curve for gel permeation determination. 
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One ml of protein mixture containing of a) 5 mg apoferritin (443 kD), b) 2 mg β-amylase (200 

kD), c) 2.5 mg alcohol dehydrogenase (150 kD), d) 5 mg BSA (66 kD), and e) 1.5 mg 

Carbonic anhydrase (29 kD) were subjected to a Sephacryl S-200 column (2.4×24 cm) that 

had been washed with 100 ml of 0.15 M sodium phosphate buffer (pH 7.2) at a flow rate of 0.5 

ml/min. Dextran blue was used to determine the void volume (Vo), while (Ve) is the elution 

volume. Fraction size 0.5 ml protein concentration was determined by absorbance at 280 nm 

for each fraction that referred to elution volume (Ve). The optical density value of the peaks 

which labelled a, b, c, d, e corresponded to the different protein in the standard mixture were 

divided by void volume (Vo), plotted against the log molecular weight (Log MW) of each 

protein in a standard protein mixture. 

2.2.3. Human cell line culture methods 

2.2.3.1. THP-1 human monocytic cell line 

The human pre-monocytic cell line, THP-1, was obtained from European 

Collection of Cell Cultures (ECACC, UK), and routinely used for these studies 

between passages 7 and 35. THP-1 cells were maintained in R10 medium 

composed of Roswell park memorial institute-1640 medium (RPMI-1640) medium 

supplemented with 10%v/v foetal calf serum (FCS), 2 mM L-glutamine and 100 

U/ml penicillin/100µg/ml streptomycin, and sub-cultured every 3 days (Tsuchiya et 

al., 1980, Yea Ping et al., 2008). THP-1 Blue (CD14lo) and THP-1 Blue-CD14 

(CD14hi) (Invivogen, Calne, UK) were maintained in R10 medium in the presence 

of the selection antibiotics, 200 µg/ml zeocin or 200 µg/ml zeocin and 10µg/ml 

blastocidin (Invivogen, Calne, UK), respectively. Generally, the cells were 

maintained in R10 medium and plated out for experimentation at a final density of 

1x105cells/100µl/well in 96 flat-bottomed well tissue culture plates (Sterllin, 

Newport, UK) in a humidified atmosphere of 5% CO2 incubator set at 37ºC. For 

maintaining the cells, they were sub-cultured every 3 days at a ratio of 1:4 using 

R10 for cell dilution.  

2.2.3.2. Caco-2 intestinal epithelial cell line 
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Caco2 epithelial cells (Human colon adenocarcinoma cell line) (kind gift from Dr. 

Maria O’Connell HNR, Cambridge, UK) were maintained in D10 medium 

composed of Dulbecco’s Modified Eagles’ Medium (DMEM) supplemented with 

10%v/v FCS, 2 mM L-glutamine and 100 U/ml penicillin, 100 µg/ml streptomycin. 

Cells were plated out at a density of 5x105 cells/ml/well in 6 well plates and 

incubated in a humidified atmosphere of 5% CO2 at 37ºC for 21 days for full cell 

differentiation (Hilgers et al., 1990). For cell maintenance, they were sub-cultured 

every 3 days when a confluence reached up 70%. The sub-culturing of cells was 

performed by pouring off the old medium. Cells were washed with Dulbecco's 

Phosphate-Buffered Saline (DPBS) twice and trypsinised by adding 2-3 ml of 0.25% 

v/v versene/trypsin EDTA (TE), the excess of TE was removed and cells were 

incubated for (10-15 min) at 37ºC. The cells were monitored by light microscopy, 

and gently agitated until detached. Trypsin was deactivated by adding D10 

medium (Walgren et al., 1998). Cells re-suspended in an appropriate volume of 

D10 medium prior to seeding depending on the experimental design.  

2.2.3.3. Determination of total cell number and cell viability 

Assessment of cell viability and cell count was determined microscopically using 

vital staining with (0.2% (w/v) trypan blue in 0.9%NaCl) and counting in a 

Neubauer haemocytometer chamber.  

2.2.3.4. Storage of human cell lines  

THP-1 and Caco-2 cells were grown in appropriate media. THP-1 cells were 

centrifuged at 1200 rpm for 5 min, the supernatant was discarded and cells re-

suspended in 1 ml of storage medium refer to (appendices section 1.2), and kept 

at -80°C. Caco-2 cells were grown to 80% confluence, trypsinised, and harvested 

by centrifugation at 1200 rpm for 5 min, the supernatant was aspirated, and cell 
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pellets were re-suspended gently in 1 ml of storage medium, and then kept at -

80°C. 

2.2.3.5. Macrophage cell differentiation 

According to the protocol of Schwende et al. (1996), THP-1 human monocytic 

cells were differentiated into pro-inflammatory M1-like and anti-inflammatory M2-

like macrophage cells. Pro-inflammatory M1-like, M1-CD14hi, or M1-CD14lo 

macrophages were differentiated by 25 ng/ml Phorbol-12-myristate acetate 

(PMA) for 3 days, whereas anti-inflammatory M2-like, M2-CD14hi, or M2-CD14lo 

macrophages were differentiated by 10 nM 1,25-(OH)2-vitamin D3 for 7 days 

(refer to Fig. 2.5). 
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Figure 2. 5: M1-like and M2-like macrophage differentiation. 

This figure showed pictures comparing cells treated with 25 ng/ml PMA to differentiate THP-1 

into M1 pro-inflammatory macrophages and 10 nM 1,25-(OH)2-vitamin D3 to differentiate 

THP-1 into M2-anti-inflammatory macrophages to the control treatment THP-1 cells at different 

time points. A, B and C scanning electron microscopy (SEM) pictures are the control group 

taken after 0, 3 and 7 days respectively. D, E and F are the (THP-1 +PMA) treatment after 1, 2 

and 3 days respectively with pictures G, H and I showing the (THP-1+Vitamin D3 ) treatment 

after 1, 3 and 7 days. D shows M1 has lost the original ruffles shown in A and has begun to 

develop pseudopodia whereas when the cells are treated with vitamin D3 (picture G) the ruffles 

on M2 appear smaller. After 2 days (E) M1 appears globular and lumpy, when compared to 
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the control (B) as opposed to the vitamin D3 treatment after 3 days (H) where M2 is spindly 

with fine, small ruffles. After 3 days with PMA treatment (F) M1 has developed long, branching 

pseudopodia compared with the control (B). I shows the final stage of vitamin D3 treatment 

where M2 has spinier ruffles compared to the control treatment (C). The macrophage sample 

cells were fixed with glutaraldehyde followed by dehydration in an ethanol series then dried 

with liquid carbon dioxide in a critical point dryer. Samples were sputter coated in gold and 

examined under a Jeol JSM 6500 SEM 6500 and the total magnification is shown in each 

figure.  

2.2.3.6. Epithelial cell differentiation 

Caco-2 cells differentiated into the small intestine enterocyte-like cells were 

performed by long term culturing for 21 days (Amano and Oshima, 1999). They 

spontaneously grew reaching the maturation stage with regular homogenous 

glycocalyx brush-border despite their colonic origin (Costa de Beauregard et al., 

1995 ), see Fig.2.6. 

2.2.3.6. Scanning Electron Microscopy (SEM) 

Samples of macrophage cell subsets and epithelial cells were analysed using 

SEM by following standard protocols. The samples were washed with PBS to 

remove any associated particles of the medium, before being fixed for 1 hr in 2.5% 

glutaraldehyde (Agar Scientific, U.K. R1102) in 0.1 M sodium cacodylate buffer 

(Agar Scientific, R1012) at 4ºC. The samples were rinsed in 0.1 M sodium 

cacodylate three times for 15 minutes each. All samples were dehydrated in an 

ethanol series including 50%, 70%, 90%, and 100% for 15 minutes each with 2 

absolute ethanol changes. The samples were then dried with liquid carbon dioxide 

in a critical point dryer (Samdri-780, Tousimis, USA). Samples were sputter coated 

in gold (K550, Emitech, U.K.) and examined under a Joel JSM 6500 (University of 

Plymouth, UK) SEM operated at 15 kV.  
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Figure 2. 6: Caco-2 epithelial cell differentiation. 
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A) Monolayer of Caco-2 cells after 3 days, showing the initial stages of microvilli growth, B) 

monolayer of Caco-2 cells; microvilli begin to grow vertically after 7 days, C) monolayer of 

Caco-2 cells with regular homogenate brush border formed after 21 days. Cells were fixated 

with glutaraldehyde followed by dehydration in an ethanol series then dried with liquid carbon 

dioxide in a critical point dryer. Samples were sputter coated in gold and examined under a 

Jeol JSM 6500 SEM operated at 15KV, and the total magnification was x7, 000 for A, B and C.  

D, E and F monolayer of Caco-2 cell after 3, 7 and 21 days observed with a light microscope, 

showing increasing in cell growth associated with the number of cells and cell density. Cells 

were fixed with 70% methanol and then stained with Giemsa, the image was observed using 

light microscopy at a total magnification x1000. 

2.2.3.7. Activation of monocytes, macrophage cell subsets and epithelial 
cells 

Monocytes, and macrophage cells were stimulated with the bacterial pathogen 

associated molecular pattern (PAMP); 100 ng/ml E. coli strain K12 

lipopolysaccharides (LPS) (expressed by enteropathic Gram-negative bacteria 

and detected by TLR4) (Beutler and Poltorak, 2001). These cells were cultured 

in the presence of a stimulus for 18 hr as the optimal time for cytokine release by 

macrophages in a humidified environment at 37oC, 5% CO2. Caco-2 cells were 

stimulated with cytokines (10 ng/ml TNF-α, or 5 ng/ml IL-1β) and cultured for 18 

hr. Cell supernatants were harvested and stored at-20oC until required for assay 

by sandwich enzyme-linked immunosorbent assay (ELISA) and the cell lysate for 

detection of gene expression by quantitative polymerase chain reaction (qPCR). 

2.2.3.8. Cell viability test by MTT assay  

To confirm that the acids and other bacterial metabolites were not toxic for 

cultured immune cells, cell viability was assessed using the 3-4-5-dimethy-2.5 

thiazol-2.5 diphenyltetrazolium bromide (MTT). The main principle of the MTT 

assay is a measurement of mitochondrial function where the metabolically active 

cells reduce yellow tetrazolium MTT to the purple formazan product by 

dehydrogenase enzymes. According to the modified protocol by Schlee et al 
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(2007), Caco-2 cells, monocytes, or macrophage cells were seeded in 96-well 

plates. Treatment of cells was performed using a suspension of live bacteria or 

heat killed bacteria at cell concentrations of 3x103 , 3x106 – and 3x109 CFU / ml, 

and secreted protein at concentrations of 0.3, 3 and 30 µg/ml. Cells with medium 

alone were used as control. After 6, 12 and 24 hr post treatment, the cell 

supernatant of each time point for each treatment was replaced with D10 or R10, 

and 50 µg/ml of MTT for each well, and incubated for 4 hr at 37ºC. Living cells 

degrade MTT through mitochondrial succinate dehydrogenase, resulting in the 

production of MTT formazan. The converted dye was solubilised with acid 

isopropanol (0.04 M HCl in absolute isopropanol). Colorimetric development was 

measured spectrophotometrically by an OPTIMax tuneable micro-plate reader at 

570 nm and analysed by Softmax Pro version 2.4.1 software (Molecular Devices 

Corp., Sunnyvale, CA, USA). The MTT assay data were confirmed by counting 

treated and untreated cells using Trypan blue.  

2.2.4.1. Assessment of the probiotic bacterial role in modulating the immune 

response by monocytes, macrophage subsets and epithelial cells 

In vitro studies are useful for establishing cellular and molecular mechanisms for 

the immunomodulatory action of probiotic bacteria; however, the main limitation 

of the in vitro system is the degree to which they reflect in vivo condition. THP-1 

monocytic cell line, and THP-1 derived macrophage subsets were used as a 

suitable model for immune cells (monocytes, M1-like and M2-like macrophage 

subsets, refer to Fig.2.5), whereas Caco-2 epithelial cell line was used as a 

suitable model for intestinal epithelial cells (refer to Fig.2.6) to investigate the 

immunomodulatory effects of probiotics. 
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Two types of probiotic preparation were used; secreted proteins (SP) and heat 

killed (HK), to treat immune cells and epithelial cells. Indeed, during the last few 

years, a substantial body of scientific evidence has accumulated suggesting that 

certain extracellular components such as proteins produced by probiotic bacteria 

could be responsible for some of their mechanisms of action. Extracellular 

proteins include proteins that are actively transported to the bacterial 

surroundings through the cytoplasmic membrane, as well as those that are 

simply shed from the bacterial surface. These SP would be able to directly 

interact with the host mucosal cells leading to modulation of signal transduction 

pathways. Therefore, the current study focused on the potential 

immunomodulatory effects of SP in different cell types (immune cells and 

epithelial cells). There is no reliable evidence of the literature suggested the 

concentration of SP relative to the various parts of the GIT or relative for each 

probiotic bacterial strain, therefore, a series of optimization had been done to 

choose the concentration that induced detectable cytokine expression in various 

cell types used in this study. 

One of the main limitations in using live bacteria in cell culture technique is the 

accumulation of the lactic acid during bacterial cell growth, leading to subvert 

immune cell. In addition, lactic acid itself has a direct effect on immune cells 

(Peluso et al., 2007). Indeed, Zhang et al. (2005) reported that HK-probiotic 

bacteria are able to prevent intestinal inflammation without the potential pro-

inflammatory effect; therefore, to exclude any side effects, heat killed bacterial 

cell format was used in this study.  
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The ranges of bacterial concentrations were used according to the relative 

composition of the dominant microbial species in various regions of the GIT (see 

Fig.1.2) and based on the information from the literature (Okada et al., 2009). 

Probiotic strains used in this study were B. breve (BB), Lactobacillus rhamnosus 

(LR), L. fermentum (LF), L. casei strain Shirota (LcS), L. salivarius (LS), and L. 

plantarum (LP). Based on evidence from several studies that probiotic bacteria 

are different in their sensitivity of lysozymes digestion, Lactobacillus fermentum 

(LF) probiotic bacteria was chosen as probiotic bacteria sensitive to lysozyme 

digestion (Šimelyte et al., 2000), whereas Lactobacillus casei strain Shirota (LcS) 

bacteria are resistant with rigid cell wall (Shida et al., 2006). 

Cytokine and TLR expression are useful readout for the immunomodulation by 

probiotic bacteria. According to the modified protocol by Foey (2011), probiotic 

preparations were used to investigate a potential regulatory role of probiotics in 

modulating the immune responses induced by inflammatory signal (LPS) in 

monocytes and macrophage cell subsets. In brief, THP-1 monocytes, M1-like, 

M1-CD14hi, M1-CD14lo, M2-like, M2-CD14hi, M2-CD14lo like macrophages 

derived from THP-1 at a cell density of 1x105 cells/100µl/well cultured in 96 well 

plates were pre-treated with probiotics as a final CFU/ml equivalents of 3x108 HK 

probiotic or 3 µg/ml of SP extracts for 18 hr followed by stimulation with 100 

ng/ml K12-LPS and incubated for 18 hr in a humidified environment at 37oC, 5% 

CO2 (see Fig.1.7 line 1). 

Regarding Caco-2 cells, they cultured in 6 well plates at a cell density of 5x105 

cells/ml, pre-treated with probiotics (HK or SP) at a final CFU/ml equivalents of 

3x108 HK probiotic for 18 hr followed by stimulation with cytokines (10 ng/ml, 
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TNF-α or 5 ng/ml IL-1β) for 18 hr in a humidified environment at 37oC, 5% CO2 

(refer to Fig.1.7 line 2). The cell supernatant of monocytes, macrophage subsets, 

and Caco-2 cell were collected and stored at -20°C for cytokine detection by 

ELISA, and cell lysate for detecting mRNA level of the gene of interest using 

qPCR. 

2.2.4.2. Detection of IL-10 membrane bound protein by macrophage subsets  

Full cell differentiation of macrophage subsets at a cell density of 1x105 

cells/100µl/well cultured in 96 well plates were stimulated by 100 ng/ml K12-LPS 

in the presence or absence of 10 µg/ml purified anti-human IL-10 antibody (clone 

JES3-9D7) and incubated for 18 hr in a humidified environment at 37oC, 5% CO2. 

Macrophage cell supernatant was collected and stored at -20°C for cytokine 

detection by ELISA. 

2.2.4.3. Detection of pSTAT-3 and total STAT-3 in macrophage cells.  

Macrophage subsets at a cell density of 1x106 cells/ml cultured in 6 well plates 

were stimulated by 0.1, 1, or 100 µg/ml K12-LPS and incubated for 18 hr in a 

humidified environment at 37oC, 5% CO2. Macrophage cell supernatant was 

collected to determine the cytokine level for TNF-α, IL-6, IL-8 and IL-1β by ELISA, 

whereas macrophage cells were washed gently with PBS, then lysed using lysis 

buffer, supplemented with a protease inhibitor cocktail (1:20) and phosphate 

inhibitor cocktail (1:100) (refer to appendices, section 1.1.6). Cell lysates were 

centrifuged at 3,500 rpm at 4°C for 10 minutes to spin down the cell debris into a 

pellet. Cell supernatants were carefully removed without disturbing the pellet and 

put into new eppendrofs. Protein cell concentration was determined by the 

Bradford method. Defined protein concentration in each sample was mixed with 

5X Laemmi loading buffer, boiled for 3 min, quenched on ice for 2 min, briefly 
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vortexed, centrifuged at 12000 rpm for 30 sec then loaded into each well of the 

SDS-PAGE prior to electrophoresis, followed by the routine procedure of WB 

(refer to section 2.2.2.4). For detection of phosphorylated STAT-3 (pSTAT3) 

protein (Tyr 705) (see the appendices section 1.3), the primary antibody was 

prepared in 1:500 in 5 ml of blocking solution (5%BSA). The secondary antibody 

(anti-Rabbit HRP conjugated) solution was prepared in 1:2500 in antibody solution 

(50:50 blocking solution: TBS-Tween), refer to appendices section 1.1.6. 

In order to detect total STAT-3 protein from macrophage cells, stripping of the 

membrane was performed by incubating the membrane (which had been used for 

pSTAT-3 protein detection) in stripping off buffer (refer to appendices, section 

1.1.6) at RT on the roller for 5-10 minutes. Subsequently, the buffer was discarded 

and the membrane was incubated again with fresh stripping off buffer for 10 min at 

RT on the roller. After discarding the buffer, the membrane was incubated twice 

with PBS for 10 min, followed by incubation twice with TBST for 5 min. After 

stripping off the membrane, detection of total STAT3 protein was performed as 

follows: the PVDF membrane was incubated with the primary antibody overnight at 

4ºC on the roller (the primary antibody was prepared in 1:1000 in 5 ml of blocking 

solution). The PVDF membrane was then incubated with the secondary antibody, 

which was prepared in 1:2500 in antibody solution (50:50 blocking solution: TBS-

Tween), followed by developing colour and visualization with ECL, as in the 

pSTAT-3 detection. 

2.2.4.4. Time-dependent cytokine and hBD-2 secretion by epithelial cells 

For detecting the optimal time point for cytokine and AMPs release of epithelial 

cell over time, the cytokines TNF-α or IL-1β were used as stimuli. A 

concentration of 10 ng/ml of TNF-α was used to treat epithelial cell using the 
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pulse chase method for detecting TNF-α cytokine release by epithelial cells. The 

pulse chase method was performed by stimulating the cells with TNF-α for 6 hr, 

followed by washing the cells with fresh medium and incubating them for 24 hr, 

the cell supernatant was collected at each time point (0, 1, 2, 4, 6, 9, 12, 18, and 

24 hr) for detection TNF-α cytokine release. For detecting other cytokines such 

as IL-6, IL-8 and IL-10, cells were treated with TNF-α at (0, 1, 2, 4, 6, 9, 12, 18, 

and 24 hr), cell supernatant was collected at each time point and kept at -20°C 

until used for cytokine detection by ELISA. IL-1β at the concentration of 5 ng/ml 

was used to treat cells at each time point of (0, 1, 2, 4, 6, 9, 12, 18, and 24 hr); 

the cell supernatant was collected at each time point to detect cytokine and 

antimicrobial peptide hBD-2 release using ELISA method and cell lysate for 

detecting mRNA level of the gene of interest using qPCR. 

2.2.4.5. Assessing the role of secreted protein extract fractions on 
modulation LPS-induced macrophage subset cytokine production  

To investigate the role of secreted protein extract fractions, which were separated 

by gel chromatography on modulation of the LPS induction of cytokine production 

by macrophage cell subsets, LcS secreted protein fractions, was used to treat 

immune cells. In brief, after separation the LcS secreted protein as fractions by gel 

chromatography based on protein size, the fractions were collected in sterile 1 ml 

Eppendrof tubes. LcS protein extract fractions (100 µl) were used to treat THP-1 

derived M1-or, M2-like macrophages at a cell density of 1X105 cells/100µl/well 

cultured in 96 well plates for 18 hr followed by adding 100 ng/ml k12-LPS in the 

presence or absence of LcS secreted protein fractions and incubated for a further 

18 hr. The cell supernatant of macrophage cell subsets were collected and stored 

at -20oC until used to detect cytokine production by ELISA technique.   

a 



Chapter 2 

84 

 

2.2.4. 6. Assessing the role of probiotics in modulation of TNF-α or IL-10 
induced hBD-2 expression in Caco-2 cells  

It is well reported that cytokine produced by immune cells such as macrophages 

induce or suppress the expression of hBD-2 by Caco-2 cell as a part of innate 

immunity (Albanesi et al., 2007, Chen et al., 2006). In order to find out the probiotic 

role in the modulation of cytokine-induced hBD-2, Caco-2 cells were seeded in six 

well plates at a cell density of 5x105cells/well and cultured for 21 days. Cells were 

pre-treated with heat killed probiotic bacteria LcS, or LF at cell concentration of 

3x108CFU/ml for 18 hr, followed by stimulation with either 10 ng/ml TNF-α, or 5 

ng/ml IL-1β in the presence or absence of 10 ng/ml IL-10 and further incubated for 

18 hours. The cell supernatant was collected to detect hBD-2, IL-10, or TNF-α 

protein released by ELISA, and cell lysate for detecting mRNA level of the gene of 

interest using qPCR. 

2.2.4.7. Modulation of cytokines TNF-α or IL-1β induced hBD-2 after 
neutralisation the bioactivity of TNF-α or IL-10 by probiotic bacteria in Caco-
2 cells  

Probiotic bacterial modulation of the inflammatory signal induced cytokine and 

hBD-2 expression have been investigated in an earlier section (see 2.2.4.4). In 

order to find out whether the immune response was associated with membrane 

bound or endogenous cytokine, IL-10 or TNF-α to induce hBD-2 in Caco-2 cells 

and what the probiotic role in this situation is, neutralization of IL-10 or TNF-α 

cytokine bioactivity were performed. To achieve the task mentioned earlier, 

purified anti-human IL-10 antibody clone JES3-9D7 (Biolegend, San Diego, Ca) to 

neutralise 10 ng/ml of IL-10 (Parry et al., 1997), or chimeric anti-TNF-α monoclonal 

antibody clone cA2 (MACS Miltenyi Biotec Ltd, UK) which neutralises TNF-α in a 

number of in vitro bioassays at concentrations of 1 to 4 µg/ml (Foey et al., 1998) 

were used. According to the modified protocol of Tsutsumi et al .(2003), Caco-2 
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cells were differentiated for 21 days, and cells were pre-treated with probiotic for 

18 hr followed by stimulation with inflammatory cytokines (10 ng/ml TNF-α, or 5 

ng/ml IL-1β) in the presence or absence of 10 µg/ml of anti-IL-10 or anti-TNF-α 

antibody and incubated for a further 18 hr. The cell supernatants were collected to 

detect cytokines and hBD-2 protein and cytokine released by ELISA, and cell 

pellets to detect expression of genes of interest by qPCR.  

2.2.4.8. Epithelial cell- macrophage co-culture system  

A co-culture model was carried out to mimic the inflammatory gut pathology 

(homeostatic and inflammatory), when epithelial cells cross-talked with other 

immune cells such as macrophage subsets in the presence of probiotics (see Fig 

2.7). According to the modified protocol by Watanabe et al. (2004), the co-culture 

system was performed using Caco-2 human epithelial cells and THP-1 monocyte 

derived macrophage cell subsets M1 or M2-like macrophages. In brief, three 

groups of Caco-2 cells were seeded on transwell cell culture insert (Becton 

Dickinson, NJ USA) plates (1.0 µm pore size) at a cell density of 5x105 

cells/500µl/well and cultured in D10 medium in a humidified 5% CO2 incubator at 

37ºC for 21 days allowing for full cell differentiation. Two groups of Caco-2 cells 

grown in transwell inserts were incubated with THP-1 derived M1- or M2-like 

macrophages for 18 hr in the co-culture system, and a third group of Caco-2 cells 

was left without co-culture as a control. Epithelial cells were apically applied with 

heat- killed (HK) probiotic at a concentration of 3x108 CFU/ml, or 3 µg/ml secreted 

proteins (SP) for 18 hr. For mimicking chronic inflammatory gut pathology, the 

epithelial cells in co-culture system were basolateraly stimulated with 100 ng/ml 

K12-LPS, for 18 hr. The apical cell supernatant was collected and stored at -20oC 

for ELISA assay, total mRNA extracted from Caco-2 cells for gene expression 
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analysis, Trans epithelial electrical resistance (TEER) assay to test barrier function, 

and immunohistochemistry (IHC) staining for ZO-1 protein expression were 

performed for each treatment group (see Fig.1.7 line 3). 

 

 

Figure 2. 7: Epithelial cell- macrophage co-culture system. 

For mimicking chronic inflammatory gut pathology, Caco-2 cells were cultured in transwell 

insert, co-cultured with THP-1 derived M1-like macrophages (chronic inflammation model) or 

M2-like macrophages (normal homeostatic model), apically treated with probiotics, and 

stimulated with LPS basolateraly. 

2.2.5. Cytokine measurement 

Monocytes, macrophages and epithelial cell production of the inflammatory 

cytokines; TNF-α, IL-1β, IL-6, IL-8, and anti-inflammatory cytokine IL-10, in 

addition to, the antimicrobial peptide hBD-2 were quantified by using sandwich 

ELISA. The 96 immunoabsorbance well plates (Nunc, Fisher scientific, UK) were 

coated with commercially available capture antibodies from R&D Systems UK 

Ltd., Abingdon, UK and BD-Pharmingen, Oxford, UK, anti-TNF-α (0.5 µg/ml), 
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anti-IL-1β (1 µg/ml), anti-IL-8 (2 µg/ml), anti-IL-10 (0.5 µg/ml ), anti-IL-6 (1 µg/ml) 

or anti-hBD-2 (1 µg/ml) (PeproTech EC, UK) and incubated overnight at 4oC. 

The plates were washed twice with PBS/Tween-20 (PBS/0.05%v/vTween-20), 

before being blocked with 2%w/v BSA/ PBS for 4 hr at RT. The plates were then 

washed three times, incubated with serially diluted recombinant cytokine, and 

hBD-2 standards, test samples, and left overnight at 4oC. Plates were washed 

three times followed by incubation with biotinylated anti-TNF-α (0.5 µg/ml), anti-

IL-1β (100 ng/ml), anti-IL-8 (5 ng/ml), anti-IL-10 (1 µg/ml), anti-IL-6 (10 ng/ml), or 

anti-hBD-2 (0.5 µg/ml) for 4 hr at RT. Plates were washed with (x3 PBS/Tween-

20) and incubated with 50 µl/well biotinylated-streptavidin horseradish 

peroxidase (HRP) at 1/250 dilution in 2%w/vBSA/PBS and incubated for 1 hr at 

RT. Finally, the plates were washed with (x3 PBS/Tween-20), followed by the 

addition of a colour reagent (Tetramethylbenzidine-TMB), for 30 minutes at RT. 

The reaction was stopped with 1.8 M sulphuric acid. Colorimetric development 

was measured spectrophotometrically by an OPTIMax tuneable microplate 

reader at 450 nm and analysed by Softmax Pro version 2.4.1 software 

(Molecular Devices Corp., Sunnyvale, CA, USA). Protocols were followed 

according to manufacturer’s instructions and compared to standard curves, 

between the ranges (7 to 5000 pg/ml), using the recognised international 

standards available from (NIBSC, Potter’s Bar, UK) to determine the cytokine 

concentration. The highest level of cytokine detection was 5 ng/ml and lower 

level of detection was < 7 pg/ml.  

Inter assay % coefficient of variance (CV) is determined by (standard error mean 

[(SEM) of three replicate experiments) divided by the mean] multiply by 100, 

whereas [(intra assay %CV is SEM of three replicate of the same experiment)] 
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multiply by 100. The inter assay %CV values were not included, since the high 

variability of cytokine amplitude between experiments depended on passage 

number, concentration of stimuli, and type of stimuli, therefore, all data are 

presented as a representative experiment of replicate experiments and the intra 

assay % CV was 2.1- 5.2.    

2.2.6. NF-kB activity measurement 

NF-kB activity was measured by colorimetric reporter gene assay for secreted 

embryonic alkaline phosphatise (SEAP) under the control of an NF-kB promoter 

sequence associated with the stably-transfected reporter gene cell lines, THP-

1Blue (CD14lo) and THP-1Blue-(CD14hi). Activation of NF-kB increases the 

secretion of SEAP, which is readily detectable using QUANTI-blue (Invivogen, 

Calne, UK). Quantiblue colorimetric reagents turned purple/blue in the presence of 

SEAP, hence, is directly proportional to NF-kB activity. Briefly, 50 μl of fresh cell 

supernatant was added to 150 μl of fresh quantiblue followed by incubation for 30 

minutes at 37oC/ 5% CO2. Colorimetric development was measured by an 

OPTIMax tuneable microplate reader at 620 nm and analysed by Softmax Pro 

version 2.4.1 software (Molecular Devices Corp., Sunnyvale, CA, USA).  

 2.2.7. Molecular biology methods  

In order to find out the molecular basis of biological activity of the target gene of 

interest, several methods have been used; the polymerase chain reaction (PCR) is 

one of them. PCR is an in vitro technique established in 1983 in molecular biology 

laboratories and rapidly became one of the most reliable and sensitive tools used 

in different medical and biological studies. The main principle of the PCR is to 

generate an enormous number of copies from one single copy of the target gene 
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of interest. The amplification process of the PCR can selectively amplify a single 

copy of a desired sequence that exists in a complex mixture containing optimized 

concentrations of the DNA template, Taq polymerase enzyme, primers and 

deoxynucleotides (dNTPs). DNA polymerase will add complimentary to the DNA 

template generating a new DNA molecule. The PCR technique involved several 

steps including extraction of total RNA, CDNA synthesis followed by conventional 

PCR amplification using specific primers (see Fig.2.8). The resulting RT-PCR 

product was then subjected to agarose gel electrophoresis to check the molecular 

weight of the product, and qPCR was performed using normalisation with a 

housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which 

determined the threshold cycle (CT) value as a fold change. 
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Figure 2. 8: Main steps of the polymerase chain reaction (RT-PCR) assay. 

2.2.7.1. Total RNA extraction 

Total RNA was extracted using a Sigma GenElute mammalian total RNA 

extraction kit (RTN70, Sigma, Poole, UK) following the manufacturer’s procedure 

for each treatment of the cells. Caco-2 adherent cells were washed twice with 

sterile PBS free of Ca+2/Mg+2 to remove the excess of bacteria or secreted 

protein then detached by TE (see section 2.2.3.2). M2 cells were collected by 

centrifugation at 1200 rpm for 5 min; whereas adherent M1-macrophages were 

washed twice with PBS then harvested by sterile rubber cell scraper (Sterllin, UK). 

After washing, the cells were re-suspended in 500 µl of lysis buffer provided by the 

kit supplemented with 5 µl 0.02%v/v 2-mercaptoethanol for denaturation of 

RNases (reducing disulfide bonds and destroying the enzyme functionality of 

Cell pellets homogenization 

Isolation of total RNA 

 RNA converted to cDNA by reverse transcriptase 

Using Red Tag polymerase followed by subjecting PCR product into gel 

electrophoresis to check the molecular weight of the target gene  

qPCR to determine the relative expression of target gene using house-keeping 

gene (GAPDH) as reference gene and resting cells as a calibrator sample  
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RNases released during the lysis step of the RNA isolation). Ultrasonic cell 

disruption (MicrosonTm, PGC scientific, USA) for 10 sec at 5 watts (RMS) was used 

to help the cell lysing and liberate the cell contents. To remove potential DNA 

contamination, DNase digestion with RNase-Free DNase set was embedded in 

the protocol. It is performed by adding 10 μl of DNase and 70 μl of digestion buffer 

to exclude any contamination of DNA on the top of each filter of the column used 

for RNA isolation and the columns were incubated for 15 minutes at room 

temperature. 

2.2.7.2. RNA quantification and evaluation  

The RNA extracted from each sample was eluted in 50 µl of elution buffer provided 

with the RNA extraction kit. The RNA was quantified using spectrophotometer, 

NanoVue™ (GE Healthcare, Germany), measuring both concentration of RNA and 

purity (contamination of protein and DNA). A ratio of OD260/OD280 has to be 

between 1.8 and 2.0 to exclude any contamination in the RNA sample extracted 

(Liu et al., 2003). Purified RNA was immediately stored at -20oC until required for 

gene expression analysis. The integrity of RNA sample was checked by running 1% 

formaldehyde agarose gel according to the protocol of (Van et al., 2004). In brief, 

the formaldehyde agarose gel was prepared by mixing 87.5 ml sterile distilled 

water, 1.5 g agarose, 10 ml 10xMOPS in a flask and heated in a microwave for 2 

min to dissolve all the agarose. Subsequently, 7 µl of SAYBER safe or red gel was 

added into small gel set followed by shaking to mix all the components of agarose 

liquid then cooled to 60°C prior to adding 26 ml formaldehyde with stirring in a 

fume hood. The mixture was poured out into the BIO-RAD gel set and left for 

casting. The gel was mounted in an electrophoresis tank and overlaid with 1x 

MOPS electrophoresis buffer. For loading buffer the mixture was prepared as 
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follows (2 µl 1x MOPS, 3.5 µl formaldehyde, 10 µl formamide, 0.4%w/v 

bromophenol blue). A volume of 15.5 µl of loading buffer and 4.5 µl of sample 

were mixed together and incubated for 10 min at 65oC to control RNAase 

contamination and denaturation, quenched on ice for 10 min, followed by brief 

centrifugation and loaded into the gel well. The gels were run at 40-60 volts for 60 

min, de-stained by using deionised water for 45 min, and viewed under UV light 

using the documentary gel viewer (Gel Doc TM .XR, BIO-RAD,CA). 

2.2.7.3. Reverse Transcription (RT) of total RNA 

Total RNA was reverse transcribed to complementary DNA (cDNA) using M-MLV 

Reverse Transcriptase reaction Kit (Sigma, UK). Following a modified 

manufacturer’s protocol, 10 µl containing 1 µg/ml RNA of sample and 1 µl of 10 

mM dNTP mixture (deoxyribonucleotide triphosphates), 1 µl of random nanomer 

and topped up with nuclease free water (Applied Biosystems, Lingley House, 

Warrington, UK) to make cDNA from a template of 1 µg/ml total RNA. The mixture 

was incubated at 70oC for 10 min, after that the mixture was placed on ice for at 

least 2 min. A total of 10 µl containing 1 µl of M-MLV enzyme, 2 µl of buffer, 0.5 µl 

of RNAase inhibitor and 6.5 µl of nuclease free water were added to each sample. 

The cDNA synthesis was performed at 37oC for 50 min and reaction terminated by 

heat inactivation for 10 min at 95oC before chilling at 4oC.  

2.2.7.4. Real Time PCR (RT-PCR) 

2.2.7.4.1. Design of primers  

The full-length sequences of the genes of interest were identified using the 

National Centre of Biotechnology Institute (NCBI). Primer express software 

provided with Step one PCR machine (Applied Biosystems, Lingley House, 

Warrington, UK), was used to design the primers based on the sequence number 
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of nucleotides, and melting temperature. The following settings were used for 

primer design (Primer Tm: 60-65°C, Primer length: 20-28 bp, Amplicon size: 100-

160 bp (see table 2.1). To ensure that the primers were designed to match the 

same gene map sequenced, the primers were blasted by using NCBI blast 

software at http://blast.ncbi.nlm.nih.gov/, and the primers characteristics were 

assessed using Sigma DNA calculator website http://www.sigma-

genosys.com/calc/DNACalc.asp. The primers were synthesised by Eurofin MWG/ 

Operon (Germany). The lyophilized primers were dissolved in the appropriate 

volumes of nuclease free water to prepare 10 pmol of each primer depended on 

MWG instructions and then stored at -20°C. 

  

http://www.sigma-genosys.com/calc/DNACalc.asp
http://www.sigma-genosys.com/calc/DNACalc.asp
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Table 2. 1: Summary of primers used in this study and the product size. 
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GAPDH CTGCTCCTCCTGTTCGACAGT 21 CCGTTGACTCCGACCTTCAC 23 100 

hBD-2 CACCTGTGGTCTCCCTGGAA 20 CTCTGATGAGGGAGCCCTTTC 17 100 

IL-6 TGGCTGCAGGACATGACAAC 20 TGAGGTGCCCATGCTACATTT 20 100 

TNF-α ACATCCAACCTTCCCAAACG 20 GCCCCCAATTCTCTTTTTGAG 22 151 

IL-8 TCAGAGACAGCAGAGCACACAA 22 GGCCAGCTTGGAAGTCATGT 20 100 

IL-10 AGGAGGTGATGCCCCAAGCTGA 22 TCGATGACAGCGCCGTAGCCT 21 110 

TLR2 
GGCATGTGCTGTGCTCTGTT 20 GGAGCCAGGCCCACATC 17 100 

TLR4 
AGCCCTTCACCCCGATTC 18 TAGAAATTCAGCTCCATGCATTG 23 100 

MD-2 
TGCACATTTTCTACATTCCAAGGA 24 ATAACTTCTTTGCGCTTTGGAAGA 24 100 

CD14 
ACCCTAGCGCTCCGAGATG 19 AGCTTGGCTGGCAGTCCTTT 20 100 

TLR9 
GGACCTCTGGTACTGCTTCCA 21 AAGCTCGTTGTACACCCAGTCT 22 151 

ZO-1 
GCAATGGAGGAAACAGCTATATGG 24 TGAGGATTATCTCGTCCACCAGAT 24 104 

NOD-2 
CAGAATTTCAAACGGCCTCACTA 23 ATGAAATGGAACTGCCTCTTGTG 23 102 

Tollip 
TCTCATGCCGTTCTGGAAAAT 21 TCACATCACAAAATGCCATGAA 22 110 
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2.2.7.4.2. Conventional polymerase chain reaction (PCR)  

In general, the PCR allows in vitro synthesis of large amounts of DNA by primer 

sequence-specific polymerisation of nucleotide triphosphates (dNTPs), catalysed 

by DNA polymerase. A gene’s amplicons of interest were amplified using total 

cDNA prepared in (Section 2.2.7.3) and primers (Section 2.2.7.4.1). Following the 

modified protocol by (Sigma-Aldrich, Poole, UK), total volume of 25 µl (1 µl cDNA, 

0.75 µl of 10 pmol forward primer, 0.75 µl of 10 pmol of reverse primer, 2.5 µl PCR 

reaction buffer, 1.25 µl Red Taq DNA polymerase, 1 µl random nanomer and 17.5 

µl nuclease free water) were mixed in 200 µl nuclease free tubes for each 

treatment sample. Standard PCR reaction steps were performed using an applied 

biosystem thermo cycler under the following conditions; pre-heating for 95°C for 

10 min (stage 1), followed by (stage 2) 40 cycles start at 95°C for 30 sec, 60°C for 

1 min and 72°C at 1 min for individual cycle, and (stage 3) final elongation for 10 

min at 72oC and holding the samples at 4°C. The PCR product samples were run 

in 2%w/v agarose gels in TAE buffer (0.4 MTris, 0.04M Na acetate, 0.01M EDTA) 

(Invitrogen, UK) using SYBER safe or gel red along with a 100 bp ladder 

(Invitrogen, UK). DNA bands were visualised in a gel documentation system using 

UV light whereby images were captured. 

2.2.7.4.3. DNA agarose gel electrophoresis 

DNA agarose gel electrophoresis was used to determine the size molecular weight 

of genes interest. It is performed by dissolving 1.4 g agarose (Sigma-Aldrich, 

Poole, UK ) in 70 ml TAE buffer using a microwave oven for 2-3 min until the 

agarose completely dissolved, then 7 µl of SYBER safe or gel red (Sigma-Aldrich, 

Poole, UK ) was added to the molten agarose solution once the solution became 

cooler (40°C) and mixed well. The molten agarose was poured into a tray of 
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agarose kit (BIO-RAD, UK); followed by inserting comb in order to create wells. 

The gel was left for 30 min for casting, then placed into an electrophoresis tank 

(BIO-RAD, UK) and submerged in 350 ml of TAE buffer. After the comb was 

removed, the RT-PCR DNA samples were loaded into the wells of the gel. The gel 

was run at 100 V for 45 min, and DNA was visualised using UV light by gel 

documentation system (EC3, UVP ultra violet products, UK) whereby images were 

captured.   

2.2.7.4.4. Quantitative Polymerase Chain Reaction (qPCR) 

Using the housekeeping gene in the PCR assay relies on the assumption that their 

levels of expression remain constant in different cells, samples, and treatments. 

Therefore, they have been used to normalise the data. Following a modified 

manufacturer's protocol (Applied Bio systems, Warrington, Cheshire, UK), a total 

volume of 12 µl composed of 1 µl cDNA of each sample, 0.25 µl of 10 pmol of 

specific primers for each target (forward and reverse), 3.5 µl of Power SYBER 

Green® (Applied Biosystem, UK) and 7.0 µl of nuclease free water was plated out 

into 96-well plates (Applied Bio system, UK), and then sealed with adhesive film. 

The qPCR was performed using Step One Plus thermal cycler whereby the 

amplification of target was carried out under the following conditions; pre-heating 

at 95oC for 10 minutes, followed by 40 cycles at 95oC for 30 seconds, 60oC for 1 

minute and 72oC for 1 minute and hold the samples at 4°C (see Fig.2.9). The 

qPCR data were analysed following 2-ΔΔCt method as described by Livak et 

al.(2001) using Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as an 

endogenous control and resting cells as a reference sample. Thus, the relative 

quantity of the target transcript is described as fold change relative to the 

reference sample (resting cells) and GAPDH using the following equation: 
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ΔΔC t = ΔCt interest gene (resting cells) –ΔCt endogenous control 

Relative quantitation (RQ)= 2
– {ΔΔCT sample – ΔΔCt control ( resting cells)} 

Where CT is threshold cycle 

In this study the expression of hBD-2, TNF-α, IL-6, IL-8, IL-10, TLR2, TLR4, CD14, 

MD-2, TLR9, NOD-2, ZO-1, and Tollip gene expression were quantified using 

qPCR. 

 

 

 

 

 

 

 

Figure 2. 9: The main steps of the quantitative polymerase chain reaction (qPCR) 

protocol. 

2.2.8. Trans epithelial electrical resistance (TEER) assay 

Transepithelial electrical resistance (TEER) measurement has been routinely used 

to study the paracellular transport properties (permeability) of epithelial cells grown 

on permeable filters and barrier integrity. TEER measurement was performed 

10 min pre-heating for denaturation at 95oC. The hydrogen bonds between 

the complementary strands of the DNA will break down to generate single 

DNA strands, whereby the reaction mixture containing DNA molecules, 

polymerases, primers, and nucleotides 

 

Annealing step at 60°C: Cooling the mixture is to let primer binding to the 

complementary sequence of the DNA template.  

Extension step at 72°C: The temperature is increased to the ideal working 

degree for the polymerases to synthesises a new complementary strand from 

the template in a 5` to 3` direction. 



Chapter 2 

98 

 

according to the modified protocol by Teoh et al. (2000). In brief, Caco-2 cells 

were cultured in transwell inserts for 21 days, incubated with macrophage cells 

either with M1 or with M2-like macrophage cells. After the treatment, the cells were 

washed twice with DPBS and 0.5 ml of the DPBS was added to the inner and 1 ml 

to the outer of the transwell. The electrical resistance was calculated using EVOM 

Epithelial Voltammeter (Pharma, UK), where each well reading multiplied by the 

surface area of the transwell (0.33 cm2) to calculate the final value in Ωcm2. 

2.2.9. Detection of ZO-1 protein expression by immunohistochemistry (IHC) 

staining 

It is well documented that cell permeability increases in IBD due to the disruption 

of the tight junction, leading to a down-regulation barrier of epithelial cell. Zona 

Occulin-1 (ZO-1) is one of the main proteins found in the intracellular junction 

associated with cell barrier; therefore, IHC staining was performed to determine 

the modulatory effect of probiotic treatments on the disruption of ZO-1 induced by 

LPS at co-culture system using a fluorescent label anti-ZO-1 antibody. According 

to the modified protocols of (Montalto et al., 2004), Caco-2 cells were cultured in 

transwell insert plated at a cell density of 5X105 cells/ml. M1-like or M2-like 

macrophages were generated from THP-1 human monocytic cell line. Caco-2 cells 

were incubated either with M1 or with M2-like macrophages, apically treated with 

probiotics and basolateraly with 100 ng/ ml K12-LPS. After that, the transwell 

supernatants were collected, and epithelial monolayer in transwell inserts was 

washed apically by PBS, and then cells were fixed with 3%v/v paraformaldehyde 

in CS buffer (0.1M NaOH, 0.1M HEPES, 1mM EGTA, pH 6.8) for 20 minutes, 

followed by washing (x3 CS each wash for 5 min) and permeabilised with 0.1%v/v 

TritonX-100 (Ouwendijk et al., 1998). Cells were then blocked with 1%w/v 
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BSA/PBS for 1 hr followed by incubation with 2.5 µg/ml Rabbit polyclonal anti ZO-

1 in 1%BSA/PBS overnight at 4oC. Consequently, cells were washed three times 

by CS buffer followed by incubation with the 0.5 µg/ml secondary antibody Alexa 

flour 488-conjugated anti Rabbit IgG in 1%BSA/PBS for 1hr. Afterward all 

monolayers were washed three times by CS buffer then mounted with DPX 

(Sigma-Aldrich, Poole, UK) on slides and visualised by a Nikon Eclipse 80i 

epifluorescence microscope equipped with Qi1Mc camera using NIS-Elements 

Software (Nikon DS- (BR 3.0, Nikon, USA). 

2.2.10. Detection of Toll like Receptors (TLRs) protein expression by flow 

cytometry analysis 

Volume of 35 µl aliquots containing 1x105 cells was washed twice with sterile PBS 

and incubated for 30 min on ice with 1%w/v BSA/(Ca+2/Mg+2 free buffer PBS) for 

blocking non-specific binding of the antibodies. Cells were washed by FACS buffer 

(2%v/v FCS in a Ca+2/Mg+2 free buffer PBS) and incubated with the appropriate 

flurochrome-conjugated antibodies (PE) specified for (anti-TLR4 Clone HTA125, 

anti-TLR2 Clone TL2.1, and isotype controls) (eBioscences, UK) for 30 min at 4oC 

in the dark. The antibodies for targets and isotype controls were used at a 1:200 

dilution. The cells were washed twice with FACS buffer to remove the unbound 

antibody and re-suspended in 500 µl of FACS buffer, filtered and analysed on 

FACS calibre flow cytometry (Becton Dickinson, San Jose, CA) using BD FACS 

Diva Software v.6.0. Forward scatter (FSC) and side scatter (SSC) were adjusted 

to allow gating on live cells. Unstained samples were used as a control for auto-

fluorescence cell staining. A total of 10,000 events were routinely collected and the 

expression of the target was determined by a Mean fluorescence Intensity (MFI) 

by subtracting from the isotype control (see Fig 2.10).  
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Figure 2. 10:  Mean fluorescence Intensity (MFI) of TLR expression. 

Cells were prepared and stained with antibody against interest target such as TLR2 .A) Cells 

stained by Isotype antibody, B) cells stained with anti-TLR2 labelled antibody. FSC and SSC 

were gating on live cells (P1), and then adjusted at confidence intervals 5% of live gating cells 

(P2).  Mean Fluorescence Intensity (MFI) was determined by subtracting isotype from target 

(TLR2). 

Live gating 

Isotype control 
Target expression 
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2.2.11. Statistical analysis 

All values are presented as means and standard error. Data were analysed using 

Minitab version 16. Significant differences among treatments were evaluated by 

balanced analysis of variance, one or two-way analysis of variance (ANOVA) 

when applicable. The criterion for statistical significance was defined as P< 0.05,   

0.01, and 0.005. 
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Chapter 3: Modulation of inflammatory responses in a THP-1 cell 

model of M1 and M2 macrophages by probiotic bacteria.  

3.1. Introduction 

Mucosal tolerance is fundamental to efficient GIT function, i.e. tolerating food and 

commensal bacteria and at the same time maintaining immune responsiveness to 

pathogens (Foey, 2011). Gut microbiota are vital in maintaining immune 

homeostasis through their interactions with gut mucosal epithelial cells and also 

with underlying immune cells in the lamina propria such as macrophages (Bibiloni 

& Schiffrin, 2010). Mucosal macrophages play a pivotal role in tolerance; whereas 

in IBD dysfunctional macrophages initiate the breakdown of tolerance, whereby 

commensals perpetuate inflammation. Gut macrophages regulate immune 

homeostasis, mounting tolerogenic responses to food and commensal bacteria or 

immune inflammatory responses to pathogens. It is well documented that 

macrophages are highly plastic cells (Smith et al., 2011). Local environment and 

macrophage subset determine tolerance, associated with an M2-like phenotype, or 

inflammatory activation, associated with an M1-like phenotype. The macrophage 

subset that predominates in a healthy gut mucosa is the M2-like macrophage 

phenotype. Disruption of tissue homeostasis by pathogenic microbial infection 

leads to activation of macrophage cells, activation is associated with alterations in 

macrophage cell phenotype from M2s to M1s depending on the signals received 

from the tissue environment.  

The immune system recognises pathogen associated molecular patterns (PAMPs) 

expressed by the gut microbiota through a series of pattern recognition receptors 

(PRRs) such as TLRs and NLRs expressed by specific cells such as 
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macrophages. Normally, gut mucosal macrophages exhibit hypo-responsiveness 

in a healthy homeostatic functioning gut through low or absent expression of 

PRRs, whereas an inflammatory immune response is elicited upon pathogenic 

challenge through augmentation of the expression of PRRs (Smythies et al., 

2005). Therefore, resident macrophages (M2s) in a healthy gut mucosa are 

described by a reduction in responsiveness to microbial PAMPs (i.e. M2 

macrophages fail to express CD14 and selected TLRs). Whereas, in an 

inflammatory situation, M1 macrophages are express high levels of CD14 and 

selected TLRs (Platt & Mowat, 2008; Smythies et al., 2005). Thus, gut mucosal 

macrophages have been characterised as CD14lo/absent, TLRlo/absent M2-like 

phenotype in a healthy gut mucosa or CD14hi, TLRhi M1 phenotype in the 

inflammatory gut mucosa (Smith et al., 2001, Smythies et al., 2005, Zareie et al., 

2001). As a result, CD14 has been suggested as an indicator molecule of 

tolerogenic or inflammatory macrophage cell phenotype. Probiotic modulation of 

these functionally distinct macrophage subsets will be determined by CD14 

expression. Macrophage subset predominance will determine immunomodulatory 

effects of probiotic species.  

It is generally recognised that signal transducer and activator of transcription 3 

(STAT-3) is required to mediate the anti-inflammatory activity of IL-10 (Williams et 

al., 2004). STAT family members are phosphorylated by the receptor associated 

kinases, and then form homo- or heterodimers that translocate to the cell nucleus 

where they act as transcription activators. This transcription factor is latent in the 

cytoplasm until it is activated by extracellular signalling proteins (mainly cytokines 

and growth factors) that bind to specific cell-surface receptors. Biethahn et al. 

(1999) reported that STAT-3 has two isoforms, STAT-3a (86 kDa) and STAT-3b 
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(79 kDa). STAT-3 is activated by phosphorylation at Tyrosine705, which induces 

dimerization, and is further phosphorylation at Serine 727, followed by nuclear 

translocation and DNA binding (Darnell et al., 1994). O'Rourke and Shepherd 

(2002) demonstrated that transcriptional activation of STAT-3 was regulated by 

phosphorylation at Tyrosine 705 and Serine 727 in macrophages via the MAPKs.  

Indeed STAT-3 is involved in M2 (anti-inflammatory) macrophage cell 

differentiation (Sica and Bronte, 2007). Usually, the duration and degree of gene 

activation are strictly regulated by a series of negative acting proteins. There are 

several types of negative regulators of STAT proteins in the cell cytoplasm such as 

suppressors of cytokine signalling (SOCS proteins) which block further STAT 

activation in the cell cytoplasm (Bromberg, 2002 ). Liu et al. (2008) demonstrated 

that SOCS-3 is essential for the classical M1 macrophage function, which involves 

the suppression of the anti-inflammatory action of IL-10/IL-6, and knockout of 

SOCS-3 results in an alternative M2-like phenotype with increased expression of 

SOCS-1. Cheng et al., (2003) demonstrated that manipulation of STAT-3 

signalling in either direction (blockade or stimulation) influenced immune 

responses, explaining that STAT-3 has a role in determining immune activation 

versus immune tolerance.  

The signal pathway transcription factor, NF-kB plays a dominant role in 

inflammatory responses; it has been well established that it regulates macrophage 

inflammatory cytokine production such as TNF-α, IL-6, IL-8, and IL-1β (Bondeson 

et al., 1999, Yamamoto and Gaynor, 2001). NF-kB activation is controlled by IκB 

kinase (IKKβ) Integral to the polarised macrophage phenotypes is the expression 

and activity of NF-kB. Inhibition of NF-kB activity by overexpression of IKBα was 

demonstrated to change macrophage phenotype to an anti-inflammatory M2-like 
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effector function (Wilson et al., 2005). Fong et al. (2008) demonstrated that IKKβ 

inhibits the classically activated M1-like macrophages, and deletion of IKKβ was 

associated with increased expression of IL-12, inducible nitric oxide synthase 

(NOS2), and MHC class II by macrophages, which reverse macrophages to M1 

phenotype through STAT-1. This manipulation of macrophage functionality via 

controlling its plasticity would be of great benefit for controls of both homeostatic 

and pathological macrophages.  

Human THP-1 cells were used as a source of macrophages in the current study. 

Schwende et al. (1996), Auwerx (1991) reported that after treatment of THP-1 

cells with PMA, the cells differentiated into macrophage-like cells, which mimic 

native monocyte-derived macrophages in several respects. This provides a 

valuable model for studying the mechanisms involved in macrophage 

differentiation and regulation. Several studies have been done to characterize 

markers for macrophage subsets differentiated by PMA or Vit.D3 see table 3.1. 
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Table 3.1. 1: Markers involved in THP-1 derived macrophage subsets. 

 

Marker 

M1-like macrophages 

(+PMA) 

M2-like 

macrophages 

(+Vit.D3) 

Reference 

LPS-stimulated TNF-α 

(protein) 

↑ ↓ (Schwende et al., 1996) 

LPS stimulates IL-10 

(MRNA) 

↓ ↑ (Chanput et al., 2010) 

LPS stimulated IL-β and 

IL-8 (mRNA) 

↑ ↓ (Chanput et al., 2010) 

iNOs (mRNA) ↑ ND (Chanput et al., 2010) 

Arginase (mRNA) ND ↑ (Chanput et al., 2010) 

Morphological changes 

compared with THP-1 

cells 

Associated with 

pseudopodia 

Associated with 

fine ruffled  

(Daigneault et al., 2010) 

Phagocytic capacity High phagocytic 

capacity related to 

increased numbers 

of mitochondria and 

lysosomes in 

compared with 

THP-1 cells 

↑ however in M2 

more than in M1 

(Daigneault et al., 2010) 

Resistance to apoptosis ↓ ↑ (Daigneault et al., 2010) 



Chapter 3 

108 

 

TLR2, CD206 (mRNA) 

expression 

Yim-1, Fizz-1, MRC-1, 

Dectin-1 (mRNA) 

↓ ↑ (Chanput et al., 2013) 

IL-12p40 (mRNA) ↑ ↓ (Chanput et al., 2013) 

CD36, PPAR-γ, CD204, 

PKC delta isoform  

 ↑ in compared with 

THP-1 cells 

ND (Barilli et al., 2011) 

Note: “↑”, “↓”, “↔”and ND means up-regulation, down-regulation, no-modulation and not 

determined of the indicated target, respectively. 

Based on the variance in marker expression, it has been concluded that THP-1 

cells treated with PMA or Vit.D3, results in different macrophage subsets (M1-like 

and M2-like, respectively). This new macrophage polarizing model was used to 

compare the immunomodulatory action of probiotics associated with gut 

homeostasis (M2) or inflammatory status (M1) for the first time. The present study 

aimed to determine the effect of probiotic treatments on modulation of the immune 

responses induced by LPS in monocytes and macrophage subsets. It is well 

reported the endotoxin LPS is released after bacterial digestion by macrophages, 

followed by lipid A release via macrophage exocytosis. Lipid A then circulates into 

the blood, binds to the immune cell surface via interaction with TLR4/MD-2/CD14, 

triggering the immune responses associated with fever, diarrhoea, and septic 

shock. Indeed, LPS stimulation of macrophages results in activation of the NF-kB 

transcription factor, which orchestrates a gene expression schedule leading to the 

activation of inflammation, cell proliferation (Th1), differentiation (Th17), which are 

mediated through the release of chemokines and cytokines. Furthermore, an 

increase in the population of activated macrophages expressing LPS recognition 
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PRRs (TLR2, TLR4 and CD14) that infiltrates the intestine in IBD has been 

reported by several researchers such as Candia et al. (2012), and Mahida et al. 

(1989). Therefore, a range of probiotic bacteria were used to investigate the 

potential efficacy of probiotic treatments in modulation of LPS induced cytokine 

expression by monocytes and macrophage subsets.  

It is well documented that microbes that colonize the GIT produce diverse 

extracellular proteins, such as p40/p75 from Lactobacillus rhamnosus GG (Yan et 

al., 2007), which modulate specific host immune and physiological responses 

(Clarke and Sperandio, 2005) in epithelial cells. Unfortunately, the majority of 

these proteins have not been characterized immunologically. Thus far, no data 

exist in this area of research, therefore this study focused on the effects of both 

probiotic associated cell wall bacterial cells as heat killed (HK) and their secreted 

proteins (SP) on modulation of LPS induced cytokine production by monocytes 

and macrophage subsets.  

In this chapter, the investigations focused on determining the potency of probiotic 

modulation of LPS induced cytokine production. This was assessed in monocytes 

and macrophage subsets derived from THP-1 human monocytic cell line 

resembling either mucosal resident homeostatic macrophages (M2s), or infiltrating 

inflammatory macrophages (M1s). In addition, it investigated the roles of probiotics 

in modulation of macrophage subset NF-kB activation and their cytokine 

production induced by LPS using transfectant human monocytic THP-1 NF-κB 

reporter cell lines, THP-1Blue (CD14lo) and THP-1CD14Blue- (CD14hi) acting as 

internal controls for observations of CD14 expression responses of the 

inflammatory pathological and homeostatic macrophages. 
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The specific hypotheses tested in this investigation are: 

Hypothesis 1: Secreted proteins (SP) and heat-killed (HK) probiotic strains are 

able to induce cytokine production by monocytes and macrophage subsets (refer 

to section 3.2.1) 

Hypothesis 2: SP and HK probiotic strains modulate LPS induced cytokine 

production in monocytes and macrophage subsets (refer to section 3.2.2).  

Hypothesis 3: SP and HK probiotic strains modulate LPS induced TLR 

expression in macrophage subsets (refer to section 3.2.3).  

Hypothesis 4: SP and HK probiotic strains differentially modulate LPS induced 

cytokine production by macrophage subsets dependant on CD14 expression 

status (either high or low; refers to 3.2.4)  

Hypothesis 5: SP and HK probiotic strains differentially modulate LPS induction of 

NF-kB activity, dependant on macrophage subset and CD14 status (see 3.2.5). 

3.2. Results  

3.2.1. LPS induced different markers in M1-like and M2-like macrophages 
derived from THP-1 cells. 

THP-1 human monocytic cells were used as a source to generate macrophage cell 

subsets. In addition to available data from several studies (see table 3.1), 

validation of this model was achieved by several techniques (refer to sections 

2.2.4.2, 2.2.4.3 and 2.2.10). Firstly, cytokine production in response to stimulation 

with three concentrations of k12-LPS (0.1, 1 and 10 µg/ml) was used to determine 

the differences between these subsets. Results showed that, at the sub-optimal 

LPS concentration 1 µg/ml, M1s produced IL-1β higher than M2s, increasing by 
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17.2 fold, respectively. TNF-α was 12.10 fold increased in M1s, and IL-8 increased 

by 1.2 fold. Whereas M2s produced IL-6, more than M1s by 24 fold (Fig.3.2.1). 

Control (un-stimulated cells) routinely failed to secrete cytokines above the lower 

level detection of the ELISA (7 pg/ml).  

Based on the hypothesis that the M2 macrophage subset (anti-inflammatory) is 

resident in a healthy gut mucosa, and is able to release anti-inflammatory 

cytokines (such as IL-10), cell supernatant concentration of IL-10 was measured. 

This showed that the THP-1 derived M2-like macrophage model failed to release 

detectable levels of IL-10. This suggested that M2 cells might be expressing IL-10 

as membrane bound protein, therefore, experiments were undertaken to 

determine whether M2 produced membrane bound protein (see methodology 

section 2.2.4.2). As shown in Fig. 3.2.2, addition of neutralising anti-IL-10 antibody 

up-regulated TNF-α by 94% in resting M2-like macrophages, whereas it failed to 

cause up-regulation in M1-like macrophages. This method indirectly measures IL-

10 activity via its suppression of TNF-α production. This result suggested that M2-

like macrophages constitutively express IL-10 as a membrane bound protein. 

Adding anti-IL-10 antibody also up-regulated TNF-α by 30% in LPS stimulated M2-

like macrophages only, suggesting that M2-like macrophages also express 

inducible IL-10 membrane bound protein.  

It is well documented that pSTAT-3 mediates the anti-inflammatory activity of IL-10 

(Williams et al., 2004), therefore, the next experiment was undertaken to 

determine if macrophage subsets express pSTAT-3. Figure 3.2.3 shows that both 

macrophage subsets express total STAT-3, however, the significant evidence was 

that only M2-like macrophages express pSTAT-3 in response to LPS stimulation 

(10 µg/ml). In M2-like macrophages STAT-3 is activated by phosphorylation at 
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Tyrosine705 in response to LPS stimulation, this induces dimerization followed by 

nuclear translocation and DNA binding. Indeed, results showed that the pSTAT-3 

expression level was dependent on the macrophage cell phenotype and 

concentration of ligand (LPS), refer to Fig.3.2.3.   

Secondly, TLR expression was used to determine the differences between 

macrophage subsets in response to LPS stimulation. Results showed that M1 

TLR2 surface expression was down-regulated by LPS whereas, TLR4 highly up-

regulated; however, LPS stimulation up-regulated M2s TLR2 and TLR4 (Fig.3.2.4). 

The noteworthy observation was that the predominant TLR expression in response 

to LPS stimulation by M1-like macrophages was TLR4, whereas it was TLR2 in 

M2-like macrophages. Therefore, data from these two methods of validation 

showed that the macrophage cells generated from monocytes were differentiated 

into distinct cell phenotypes (M1s and M2s).  
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Figure 3.2. 1: LPS induction of cytokine production by macrophage cell subsets. 

A) TNF-α, B) IL-1β, C) IL-6), D) IL-8.  M1 and M2 like macrophage cell subsets were 

generated by differentiating THP-1 monocytes with either 25 ng/ml Phorbol-12-myristate-13-

acetate (PMA) for 3 days or 10 nM 1, 25-(OH)2 vitamin D3 for 7 days, followed by stimulation 

of cells with 0.1, 1 or 10 µg/ml of E.coli K12 LPS. Cytokine production is expressed as the 

mean±SE in pg/ml. Data displayed is a representative experiment with triplicate samples (n=5). 

Significant effects compared to the control (un-stimulated cells) are indicated as * P<0.05, ** 

P<0.01 and *** P<0.005. 
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Figure 3.2. 2:  M2-like macrophages express IL-10 membrane bound protein. 

Full macrophage subset differentiation A) M2-like macrophages and B) M1-like macrophages 

at a cell density of 1x10
5
 cells/ml cultured in 96 well plates were stimulated by 100 ng/ml K12 

LPS in the presence or absence of 10 µg/ml of purified anti-human IL-10 antibody clone JES3-

9D7. Cell supernatant was collected to determine the level of TNF-α by ELISA which indirectly 

measure the IL-10 bioactiviy. Data displayed is a representative experiment with triplicate 

samples of n=3 replicate experiments. Significant effects compared to stimulus control for the 

indicated macrophage subset are indicated as * P<0.05, ** P<0.01 *** P<0.005 and NS (non-

significant). 
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Figure 3. 2. 3: Only M2-like macrophages express phosphorylated STAT-3 in 

response to LPS stimulation. 

Representative western blot for phosphorylated STAT-3 Tyr (705) and total STAT-3 from full 

cell differentiated macrophage subsets following culture in the presence of 0.1, 1 or 10 µg/ml 

k12-LPS for 18 hr. Data is representative of three independent experiments. 

 

 

Figure 3.2. 4: TLR2 and TLR4 expression by macrophage subsets. 

M1- or M2-like macrophage cells stimulated with 100 ng/ml E.coli K12 LPS. Surface 

expression of TLR2 or TLR4 was assessed by flow cytometry. Data displayed is a 

representative experiment with triplicate samples from n=3 replicate experiments. TLR 
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expression is expressed as the mean±SE in MFI. Significant effects compared to the control 

(un-stimulated cells) are indicated as * P<0.05, ** P<0.01 and *** P<0.005. 

3.2.2. SP and HK probiotic strains induced cytokine production by 
monocytes and macrophage cell subsets 

Probiotic bacteria have been shown to modulate macrophage effector functions by 

a mechanism, which is not well understood. In order to test probiotic bacterial roles 

in inducing cytokines in THP-1 monocytes and macrophage cell subsets (derived 

from THP-1 cells), Lactobacillus casei strain Shirota (LcS) probiotic bacteria were 

used either live (L) or heat killed (HK) at different concentrations (3x106 to 

3x109CFU/ml). As shown in Fig.3.2.5, LcS probiotic bacterial stimulation induced 

TNF-α cytokine release by monocytes and macrophage cell subsets dependent on 

bacterial cell dose, and type of immune cells. Results showed that at 3x106 

CFU/ml of live LcS, monocytes released the highest level of TNF-α (1563 pg/ml), 

whereas TNF-α  peaked at 3x108 CFU/ml (4921 pg/ml) for M1-like macrophages 

and at 3x109 CFU/ml (201 pg/ml) for M2-like macrophages. TNF-α induced by HK 

probiotic bacteria steadily increased with bacterial cell dose in monocytes (7 to 

611pg/ml) and in M1-like macrophages (7 to 4645 pg/ml) and peaked at 3x108 

CFU/ml in M2-like macrophages (678 pg/ml). These results also showed that pro-

inflammatory macrophages (M1s) released significantly more TNF-α than anti-

inflammatory M2s.  
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Figure 3.2. 5: Lactobacillus casei strain Shirota (LcS) induction of TNF-α cytokine 

production by monocytes and macrophage cell subsets. 

A) Monocytes, B) M1-like macrophage cells, C) M2-Like macrophage cells. Monocytes, 

M1s,or M2s were co-cultured with Lactobacillus casei strain Shirota (LcS) as Live (L) or heat 

killed (HK) at cell concentration of 3x10
6
, 3X10

7
, 3X10

8
, and 3x10

9
 CFU/ml for 18 hr followed 

by detection of cytokine production by ELISA. TNF-α cytokine production is expressed as the 

mean±SE in pg/ml. Data displayed is a representative experiment with triplicate samples of 

n=5 replicate experiments. Significant effects compared to the control are indicated as * 

P<0.05, ** P<0.01 and *** P<0.005. 

In an attempt to find out the immunomodulatory effects of secreted proteins (SP) 

by probiotic lactic acid bacteria on the cytokine production by immune cells, 

bacterial growth cell medium from the stationary phase (see Fig.2.1) was used to 
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obtain proteins released by probiotics through their metabolism. Proteins were 

precipitated using TCA (see section 2.2.2.1). The precipitated proteins of each 

bacterial sample were resolved by SDS-PAGE, resulting in different profile of 

protein bands dependent on the strain of probiotic bacteria. Results showed that 

each bacterial sample displayed different protein bands with different molecular 

weight (KD) (see Fig. 3.2.6).  

 

 

Figure 3.2. 6: Resolving secreted proteins released by probiotic Lactic acid bacteria. 

Marker (M), lane 1. Lactobacillus fermentum, lane 2 L. casei strain Shirota. Both probiotic 

bacterial strains were grown at 37°C for 18 hr in MRS broth. The cell supernatant was 

collected by centrifugation, and secreted proteins of lactic acid bacteria precipitated using 

trichloroacitic acid (TCA) followed by resolving in 12.5% SDS-PAGE and stained by 

Coomassie blue. 

Following the LcS probiotic SP precipitation, the LcS-SP extract was used to 

stimulate cultures of monocytes and macrophage cell subsets in order to find out 

the potency of this extract in inducing cytokines by immune cells. As shown in Fig. 

KD 
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3.2.7, LcS-SP extract induced TNF-α in monocytes and macrophage cell subsets. 

TNF-α cytokine release was LcS-SP dose dependent. Cell viability > 90% 

suggested that LcS-SP have no effects on cell viability in the concentration used in 

this study. Data indicated that LcS-SP induced TNF-α cytokine release, this 

ranged between 7 and 36 pg/ml for monocytes, 7 to 1842 pg/ml for M1-like 

macrophages and 7 to 352 pg/ml for M2-like macrophages. As shown by 

stimulating immune cells with LcS bacteria (HK, and live), M1-like macrophages 

released significantly more TNF-α than anti-inflammatory M2s and monocytes.  

 

Figure 3.2. 7 : LcS-SP induces TNF-α in monocytes and macrophage cell subsets. 

Monocytes, M1-like macrophages, and M2-like macrophages treated with Lactobacillus 

casei strain Shirota (LcS) secreted proteins (SPs) at a concentration of 0.3, 3 or 30 µg/ml 

and incubated for 18 hr. The cell supernatants were collected and stored at -20ºC to 

determine the cytokine level by ELISA. Bacterial secreted proteins were precipitated with 

trichloro acetic acid (TCA) washed twice with acetone then re-suspended in sterile LPS free 
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phosphate buffer saline (PBS, pH 7.4). The protein concentration was determined by 

Bradford assay. Cytokine production was expressed as the mean±SE in pg/ml. Data 

displayed is a representative experiment with triplicate samples of n=4 replicate 

experiments. Significant effects compared to the control are indicated as * P<0.05, ** 

P<0.01 and *** P<0.005.  

3.2.3. SP and HK probiotic bacterial strains selectively modulate LPS-
induced cytokine production by monocytes and macrophage cell subsets  

The first set of analyses examined the impact of K12-LPS in inducing cytokine 

production by THP-1 monocytes, and THP-1 derived M1 and M2-like 

macrophages, in addition to assessing probiotic potency in inducing cytokines by 

these cells (Fig.3.2.1 & 3.2.2). These results showed that either LPS or 

probiotics induced a range of cytokines; however, these results raised questions 

as to whether probiotic treatments are able to modulate LPS induced cytokine in 

these cells. Therefore, this experiment was undertaken to establish whether HK 

or SPs extract from each of Bifidobacterium breve (BB), L.rhamnosus GG (LR), 

L.fermentum (LF), Lactobacillus casei strain Shirota (LcS), L.salivarius (LS), L. 

plantarum (LP) probiotic bacteria (in the absence of any non-specific effects of 

lactic acid produced) exerted immunomodulatory effects on cytokine expression 

induced by LPS in THP-1 monocytes, THP-1-derived M1-like or M2-like 

macrophages see (Section 2.2.4.1). Results indicated that SPs or HKs of 

probiotic strains differentially regulated LPS induction of TNF-α cytokine 

expression in monocytes, M1 and M2-like macrophage cell subsets. HK-LcS, 

HK-LP, LS-SP, and LP-SP up-regulated LPS induced monocyte TNF-α cytokine, 

whereas, all the rest of probiotic treatments suppressed LPS induced monocyte 

TNF-α cytokine production (Fig.3.2.8A). All probiotic treatments suppressed LPS 

induced M1-like macrophage TNF-α cytokine production (Fig.3.2.8B). Groups of 

HK-BB, HK-LR, HK-LS, BB-SP, LR-SP, LF-SP and LcS-SP suppressed LPS 
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induced M2-like macrophage TNF-α production, whereas other groups of HK-LF, 

HK-LcS, HK-LS, and LP-SP results in up-regulation (Fig. 3.2.8C).  

Both HK and SP of BB and LR suppressed monocyte IL-1β production whereas 

HK and SP of LF, LcS, LS, and LP up-regulated LPS induction of monocyte IL-

1β production (Fig.3.2.8D). M1-like macrophage IL-1β induced by LPS was 

selectively regulated by probiotic treatments as HK-BB suppressed LPS induced 

IL-1β, whereas all up-regulated LPS induced M1 IL-1β production (Fig 3.2.8E).  

Groups of HK-BB, HK-LR, HK-LF, HK- LcS, HK-LS, HK-LP, BB-SP, LF-SP, LcS-

SP, and LP-SP up-regulated LPS induced M2-like macrophage IL-1β production, 

whereas treatments of LR-SP and LS-SP suppressed LPS induced M2-like 

macrophage IL-1β production (Fig 3.2.8F).   

Probiotic treatments dramatically suppressed LPS induced monocyte IL-6 

cytokine production, (Fig 3.2.9A) and M2-like macrophage IL-6 production, 

(Fig.3.2.9C). M1-like macrophage IL-6 induced by LPS was selectively 

modulated by probiotic treatments, HK-BB, HK-LR, HK-LF, HK-LcS, HK-LS, BB-

SP, LR-SP, and LcS-SP suppressed LPS induced IL-6 production, whereas HK-

LP, LF-SP, LS-SP, and LP-SP up-regulated LPS induced M1 IL-6 production, 

(Fig 3.2.9B).  
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Figure 3.2. 8: Secreted proteins and heat-killed probiotic strains selectively 

modulate LPS induced monocyte and macrophage subset TNF-α and IL-1β cytokine 

production. 
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A, D) THP-1 monocytes, B, E) M1-like macrophages and, C, F) M2- like macrophages. 

Monocytes, M1, or M2-like macrophage cell subsets stimulated with 100 ng/ml E.coli K12 

LPS in the presence or absence of 3x10
8
 cfu/ml heat-killed (HK) of B.breve (BB), 

Lactobacillus rhamnosus GG (LR), L.fermentum (LF), L. casei strain Shirota (LcS), 

L.salivarius (LS), L.plantarum (LP), or 3 µg/ml secreted proteins (SP) extracted from each of 

these probiotic strains supernatant. M1 and M2 macrophages generated by differentiating 

THP-1 monocytes with either 25 ng/ml PMA for 3 days or 10 nM 1,25-(OH)2 vitamin D3 for 7 

days, respectively. Cytokine production is expressed as the mean±SE in pg/ml for TNF-α 

and IL-1β. Data displayed is a representative experiment with triplicate samples of n=5 

replicate experiments. Significant effects compared to stimulus control for the indicated 

monocytes and macrophage subset are indicated as * P<0.05, ** P<0.01 and *** P<0.005, 

NS (non-significant).  

Probiotic strains differentially regulated IL-8 cytokine expression induced by LPS 

in monocytes, M1, and M2-like macrophages. Monocyte IL-8 induced by LPS 

was up-regulated by both HK and SP probiotic treatments, Fig.3.2.9D. M1-like 

macrophage IL-8 induced by LPS was suppressed by BB and LR as HKs and 

SPs, and also by LS-SP, whereas the rest of probiotic treatments up-regulated 

LPS induced M1 IL-8 expression (as HKs and SPs) (Fig 3.2.9E). Probiotic 

treatments of HKs and SPs of BB, LR, LcS, LS, HK-LF, HK-LP exhibit significant 

suppression of LPS induced M2-like macrophage IL-8 production whereas LF-

SP and LP-SP up-regulated LPS induced M2 IL-8 production (Fig 3.2.9F). 
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Figure 3.2. 9: Secreted proteins and heat-killed probiotic strains selectively 

modulate LPS induced monocyte and macrophage subsets IL-6 and IL-8 production. 
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A, D) THP-1 monocytes, B, E) M1-like macrophages and, C, F) M2- like macrophages. 

Monocytes, M1-like, and M2-like macrophage cell subsets stimulated with 100 ng/ml E.coli 

K12 LPS in the presence or absence of 3x10
8
 cfu/ml heat-killed (HK) of B.breve (BB), 

Lactobacillus rhamnosus GG (LR), L.fermentum (LF), L. casei strain Shirota (LcS), L.salivarius 

(LS), L.plantarum (LP), or 3 µg/ml secreted proteins (SP) extracted from each of these 

probiotic strains supernatant. M1 and M2 macrophages generated by differentiating THP-1 

monocytes with either 25 ng/ml PMA for 3 days or 10 nM 1,25-(OH)2 vitamin D3 for 7 days, 

respectively. Cytokine production expressed as the mean±SE in pg/ml for IL-6 and IL-8. Data 

displayed is a representative experiment with triplicate samples of n=5 replicate experiments. 

Significant effects compared to stimulus control for the indicated monocytes and macrophage 

subset are indicated as * P<0.05, ** P<0.01 and *** P<0.005, NS (non-significant).  

The above results clearly showed that probiotic secreted proteins exhibit different 

immunomodulatory effects in modulating LPS induced cytokine production in 

immune cells. Resolving of proteins by SDS-PAGE showed that each probiotic 

strain secretes different types of proteins through their metabolism (see Fig. 3.2.6). 

These secreted proteins exhibit different modulation of LPS induced cytokine 

expression in immune cells. Therefore it is proposed that each single protein might 

have selective immunomodulatory effects in macrophage subsets. Thus, the 

separation of the LcS-SP mixture using Sephacryl S-200 HR gel chromatography 

was performed (refer to section 2.2.2.1), followed by using these protein fractions 

to regulate LPS induced cytokine production in macrophage subsets (refer to 

section 2.2.4.5). The LcS-SP were separated by fraction number dependent on 

protein size; high molecular weight proteins were separated first and small 

molecular weight proteins separated in the late fractions (see Fig.3.2.10). After 

resolving all the LcS protein fractions by SDS-PAGE, the fraction number 80, 81 

and 84 have protein bands with a molecular weight of 40,257 KD, 36,097KD, and 

26,021KD respectively (see Fig 3.2.11). Following the separation of LcS secreted 

proteins, each fraction was used to treat cultures of macrophage subsets 

previously stimulated with LPS. As shown in Fig 3.2.12, the fraction number 80 
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and 81 suppressed LPS induced M1 TNF-α, whereas fraction number 84 up-

regulated LPS induced M1 TNF-α. However, fraction number 80 and 81 up-

regulated LPS induced M2-like macrophage TNF-α, whereas fraction number 84 

suppressed LPS induced M2-TNF-α production. These findings suggested that the 

different types of LcS secreted proteins exhibit different effects on the modulation 

of LPS induced cytokine production by macrophage subsets.  
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Figure 3.2. 10: A typical elution profile for the LcS-SP chromatography. 

Lactobacillus casei strain Shirota (LcS) secreted proteins were separated using Sephacryl S-

200 HR column (2.4 × 24 cm) at a flow rate of 0.5 ml/min. The concentration of protein in each 

fraction was determined using spectrophotometer at absorbance (A: 280). Data displayed is a 

representative experiment of triplicate experiments n=3.  

 

 

Figure 3.2. 11: Resolving pattern of protein fractions by LcS-SP. 

KD 
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Lactobacillus casei strain Shirota (LcS) secreted protein separation by gel chromatography 

resulting in a series of protein fractions were subjected to SDS-PAGE; then gel stained with 

Comassie blue. Lanes 80, 81, 82, 83, and 84 labelled for each protein fraction number. 

 

 

Figure 3.2. 12 : LcS protein fractions selectively modulate LPS induced TNF-α 

macrophage subset cytokine production. 



Chapter 3 

129 

 

LcS secreted proteins were separated by gel chromatography resulting in a series of LcS 

protein fractions. M1-like or M2-like macrophages were pre-treated with LcS protein 

fractions followed by stimulation with 100 ng/ml K12-LPS. TNF-α protein is expressed as 

the mean±SE in pg/ml. Data displayed is a representative experiment with triplicate 

samples of n=3 replicate experiments. Significant effects compared to the control (+LPS) 

are indicated as * P<0.05, ** P<0.01 and *** P<0.005. 

3.2.4. Probiotic treatments selectively modulate LPS-induced TLR 
expression by macrophage subsets  

The previous data clearly demonstrated that probiotic treatments have a crucial 

role in modulating the immune responses of macrophage subsets depending on 

probiotic bacterial strain. As cell signalling controls the outcomes of the immune 

response, the immunomodulation could occur via modulation of macrophage PRR 

expression including TLRs and NLRs. Information from the literature suggests that 

probiotic bacteria have different levels of Lipoteichoic acids (LTA) and 

peptidoglycan (PGN) on their cell surface (Matsuguchi et al., 2003), and different 

sensitivities to N-acetymuramidase digestion (e.g. LcS is resistant and LF is 

sensitive) (Shida et al., 2009, Turner et al., 2004, Shida et al., 2006b, Šimelyte et 

al., 2000). Therefore LcS or LF were chosen to determine the role of probiotic 

treatments in modulation of LPS induced macrophage PRR expression (refer to 

section 2.2.4.1). Results indicated that M1-like macrophage TLR4 induced by LPS 

was up-regulated by HK-LcS, HK-LF, LcS-SP and LF-SP (Fig.3.2.13A). M2-like 

macrophage TLR4 induced by LPS was suppressed by HK-LcS, LcS-SP and LF-

SP, and up-regulated by HK-LF (Fig.3.2.13B). The clear observations were that 

TLR4 expression in M1s was elevated compared to M2s by 129-fold in cells 

stimulated with LPS, and HK-LF treatment exhibited an immune activatory role by 

the up-regulation of LPS induced TLR4 in both macrophage subsets.  
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M1-like macrophage TLR2 induction by LPS was up-regulated by HK-LcS, HK-LF, 

LcS-SP, and LF-SP (Fig.3.2.13C), whereas M2-like macrophage TLR2 induction 

by LPS was suppressed by HK-LcS, LcS-SP, and LF-SP (Fig.3.2.13D).  

 

Figure 3.2. 13: Secreted proteins and heat-killed probiotic treatments selectively 

regulate LPS induced TLR4 and TLR2 expression in macrophage subsets. 

Macrophage subsets stimulated with 100 ng/ml E.coli K12 LPS in the presence of 3x108 

cfu/ml heat-killed (HK) Lactobacillus casei strain Shirota (LcS), or L. fermentum (LF), or 3 

µg/ml secreted proteins (SP) extracted from each of these probiotic strain growth medium to 

test TLR expression by qPCR. TLR4 and TLR2 gene expression (mRNA level) is expressed 

as fold change using GAPDH as reference gene and resting cells as a calibrator sample as 

described by Livak et al. (2001) using 2
– ΔΔCt

. Data displayed is a representative experiment 

with triplicate samples of n=3 replicate experiments. Significant effects compared to stimulus 

control for the indicated macrophage subset are indicated as * P<0.05, ** P<0.01 and *** 

P<0.005, NS (non-significant). 
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CD14 (a co-receptor for LPS) induced by LPS, was suppressed by probiotic 

treatments in both macrophage subsets (Fig.3.2.14A and Fig.3.2.14B). CD14 up-

regulation in M1s was significantly higher than in M2s and probiotic treatments 

exhibit anti-inflammatory regulatory effects by suppression of LPS induced CD14 

in both macrophage subsets.  

MD-2 (a linkage of TLR4 and TLR2 receptor for LPS signalling) induced by LPS 

was up-regulated by HK-LF, LcS-SP, and LF-SP, whereas it was suppressed by 

HK-LcS in M1-like macrophages (Fig.3.2.14C). M2-like macrophage MD-2 

expression induced by LPS was up-regulated by HK-LF and LcS-SP and 

suppressed by HK-LcS and LF-SP (Fig.3.2.14D). This immunomodulation profile 

suggests that HK-LcS exhibit anti-inflammatory effects by suppression of LPS 

induced TLR4, TLR2, CD14 and MD-2 expression in M2-like macrophages, the 

opposite of HK-LF treatment.  

LPS-induced NOD-2 expression was significantly up-regulated by probiotic 

bacterial treatments for both macrophage subsets (Fig.3.2.15A and Fig.3.2.15B), 

whereas M1-like macrophage TLR9 induced by LPS was selectively modulated by 

probiotic bacterial treatments. HK-LcS, LcS-SP and LF-SP up-regulated LPS 

induced TLR9 expression and HK-LF treatment suppressed LPS induced TLR9 

(Fig.3.2.15C). In contrast, M2-like macrophage TLR9 expression was up-regulated 

by HK-LcS, HK-LF, LcS-SP and LF-SP (Fig.3.2.15D).  

It is hypothesized that the up-regulation of TLRs can lead to up-regulation of 

cytokine expression as a result of immune activation in response to different 

stimuli. Probiotic regulated cytokine production by M1s (in particular, TNF-α, IL-1β, 

and IL-8 induced by LPS) is similar to the pattern of TLR4 and TLR2 expression, 
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suggesting synergistic effects of these TLRs might be driving cytokine expression 

in M1-like macrophages. In M2-like macrophages, the up-regulation of TLR9 might 

be driving IL-1β induction; TLR2 expression might be driving IL-6 and IL-8 cytokine 

production, and TLR4 drives TNF-α. 

The adaptor protein Tollip is associated with TLR expression and plays an 

inhibitory role in TLR-mediated cell activation. Figure 3.2.16A showed that M1-like 

macrophage Tollip expression induced by LPS was suppressed by HK-LF, LcS-

SP, and LF-SP, whereas it was augmented by HK-LcS. LPS-induced M2-like 

macrophage Tollip expression was suppressed by most probiotic treatments and 

augmented only by HK-LcS (Fig.3.2.16B). Comparing profiles of TLR2, TLR4 and 

Tollip expression suggested that probiotic regulation of these TLRs (leading to 

modulated cytokine expression) is largely independent of Tollip expression 

modulation. This suggests that there is another mechanism, which might be 

mediating probiotic immunomodulation in macrophage subsets, such as regulation 

of IRAK-M expression, which need to be investigated in the future.  
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Figure 3.2. 14 : Probiotic treatments selectively regulate LPS induced CD14 and MD-

2 expression in macrophage subsets. 

Macrophage subsets stimulated with 100 ng/ml E.coli K12 LPS in the presence of 3x10
8
 cfu/ml 

heat-killed (HK) Lactobacillus casei strain Shirota (LcS), or L. fermentum (LF), or 3 µg/ml 

secreted proteins (SP) extracted from each of these probiotic strains’ growth medium to test 

the mRNA expression of CD14 and MD-2 by qPCR. CD14 and MD-2 gene expression (mRNA 

level) is expressed as fold change using GAPDH as reference gene and resting cells as a 

calibrator sample as described by Livak et al. (2001) using 2
-ΔΔCt

. Data displayed is a 

representative experiment with triplicate samples of n=3 replicate experiments. Significant 

effects compared to the control (+LPS) are indicated as * P<0.05, ** P<0.01 *** P<0.005 and 

NS (non-significant) 
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Figure 3.2. 15 : Probiotic treatments selectively regulate LPS induced NOD-2 and 

TLR9 expression in macrophage subsets. 

Macrophage subsets stimulated with 100 ng/ml E.coli K12 LPS in the presence of 3x10
8
 cfu/ml 

heat-killed (HK) of Lactobacillus casei strain Shirota (LcS), or L. fermentum (LF), or 3 µg/ml 

secreted protein (SP) extracted from each of these probiotic strains’ growth medium to test the 

mRNA expression of NOD-2 and TLR9 by qPCR. NOD-2 and TLR9 gene expression (mRNA 

level) is expressed as fold change using GAPDH as reference gene and resting cells as a 

calibrator sample as described by Livak et al. (2001) using 2
– ΔΔCt

. Data displayed is a 

representative experiment with triplicate samples of n=3 replicate experiments. Significant 

effects compared to the control (+LPS) are indicated as * P<0.05, ** P<0.01 *** P<0.005 and 

NS (non-significant). 
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Figure 3.2. 16: Probiotic treatments selectively modulate LPS induced Tollip 

expression in macrophage subsets. 

A) M1-like macrophage, B) M2-like macrophages. Macrophages stimulated with 100 ng/ml 

E.coli K12 LPS in the presence of 3x10
8
 cfu/ml heat-killed (HK) Lactobacillus casei strain 

Shirota (LcS) and L. fermentum (LF), or 3 µg/ml secreted protein (SP) extracted from each of 

these probiotic strains’ growth medium. Tollip gene expression (mRNA level) is expressed as 

fold change using GAPDH as reference gene and resting cells as a calibrator sample as 

described by Livak et al. (2001) using 2
-ΔΔCt

. Data displayed is a representative experiment 

with triplicate samples of n=3 replicate experiments. Significant effects compared to the control 

(+LPS) are indicated as * P<0.05, ** P<0.01 and *** P<0.005, NS (non-significant) 
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3.2.5. Probiotic treatments selectively modulate macrophage subset 
inflammatory mediator’s production depending on CD14-status  

Gut mucosal macrophage effector phenotypes and functions are different from 

other tissue macrophages. They are generally hypo responsive to microbial 

PAMPs (e.g. CD14lo ) when present in a homeostatic healthy gut mucosa whereas, 

under inflammatory conditions (they are CD14hi) and express inflammatory 

mediators. In an attempt to extrapolate earlier data to gut mucosal macrophages in 

inflammatory or tolerogenic conditions, CD14hi and CD14lo stable transfectant 

were driven towards M1 and M2 macrophage subsets then stimulated with LPS in 

the presence or absence of HK or SP preparations from a range of probiotic 

bacterial strains of BB, LR, LF, LcS, LS and LP (refer to section 2.2.4.1). Results 

indicated that HK- and SP-probiotic bacterial samples differentially regulated LPS-

induced M1 and M2 TNF-α production; modulation of TNF-α being dependent on 

macrophage subset, CD14 expression, and probiotic bacterial strain. The most 

obvious effect observed for CD14hi macrophages, was in CD14hi M1s 

(representative of inflammatory infiltrating macrophages) where HK probiotics up-

regulated LPS-induced TNF-α by ×4, ×3.2, ×3.6, ×3.9, ×4 and ×3.7 of the control 

(1,161±148 pg/ml) and SP by ×4, ×4.1, ×4.1, ×1.8, ×3 and ×3.5 for BB, LR, LF, 

LcS, LS and LP, respectively (Fig.3.2.17A). CD14hi M2s displayed a differential 

sensitivity to HK compared to SP (Fig.3.2.17C). HKs augmented TNF-α production 

resulting in increases of ×4.9, ×12, ×3.6, ×7-fold for LR, LF, LS and LP 

respectively (control 14±1pg/ml) whereas HK-BB or HK-LcS did not modulate LPS 

induced TNF-α. SP extracts, in comparison, only weakly modulated cytokine 

production where LS suppressed TNF-α production by 3.6% (control 14±1 pg/ml to 

9±1 pg/ml) and LP augmented it by 86% (control 14±1 pg/ml to 26±3 pg/ml). 

Generally, in the case of CD14lo macrophages, HK and SP probiotics partially 
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suppressed LPS-induced TNF-α production. In the case of CD14lo M1s, HK 

suppressed TNF-α cytokine production (control levels of 1,454±94 pg/ml) by 51% 

(709±4 pg/ml), 19% (1,184±98 pg/ml), 40% (876±175 pg/ml), 57% (628±316 

pg/ml), and 72% (396±28 pg/ml) for BB, LF, LS, LP and LcS, respectively.  SPs 

suppressed TNF-α cytokine production by 47% (770±120 pg/ml), 59% (590±6 

pg/ml) and 52% (704±119 pg/ml), 81% (264±20 pg/ml) for LR, LF, LP and LcS 

(Fig.3.2.17B). Finally, in the case of CD14lo M2 macrophages (representative of 

homeostatic healthy gut mucosal macrophages), HK suppressed TNF-α (control 

21±2 pg/ml) by 62%, 38%, 33%, 57% and 52% for BB, LR, LF, LS and LP. The 

exception was LcS which augmented TNF-α from control 21±2 pg/ml to 619±17 

pg/ml. SP extracts suppressed TNF-α cytokine production by 19%, 62%, 24% and 

67% for BB, LF, LS and LP respectively, whereas LR-SP, or LcS-SP augmented 

TNF-α by 38%, 37% respectively (Fig.3.2.17D).  
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Figure 3.2. 17: Secreted proteins and heat-killed probiotic strains selectively 

modulate macrophage subset TNF-α production. 

THP-1-derived CD14
hi
 and CD14

lo
 macrophage subsets were stimulated with 100 ng/ml 

Escherichia coli K12 LPS in the presence or absence of 3×10
8 
cfu/ml heat-killed (HK) probiotic 

bacterial strains Bifidobacterium breve (BB), Lactobacillus rhamnosus (LR), Lactobacillus 

fermentum (LF), Lactobacillus casei strain Shirota (LcS), Lactobacillus salivarius (LS) and 

Lactobacillus plantarum (LP), or 3 μg/ml secreted protein extracted from each of these 

probiotic strains. M1 and M2-like macrophages were generated by differentiating CD14
hi
 and 

CD14
lo
 THP-1- NF-κB reporter monocytes with either 25 ng/ml PMA for 3 days or 10 nM 1,25-

(OH)2 vitamin D3 for 7 days, respectively. TNF-α pro-inflammatory cytokine production is 

expressed as the mean±SE in pg/ml for (A) CD14
hi
 M1, (B) CD14

lo
M1, (C) CD14

hi
 M2, and (D) 

CD14
lo
M2 like- macrophage subsets. Data displayed is a representative experiment with 

triplicate samples of n=4 replicate experiments. Significant effects compared to stimulus 

control (Black bar) for the indicated macrophage subset are indicated as * P<0.05, ** P<0.01 

and *** P<0.005 and NS (non-significant). 
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The above data clearly demonstrates an immunomodulatory role for both HK and 

probiotic-SP with respect to the expression of the pro-inflammatory cytokine TNF-α 

by pro-inflammatory (M1) and anti-inflammatory/regulatory (M2) macrophage 

subsets. These macrophage subsets have been described to express different 

cytokine profiles, which underlie their effector function; one such differential 

cytokine, which exhibits both pro-inflammatory and anti-inflammatory properties, is 

IL-6. This experiment was undertaken to establish whether HK and SP probiotics 

exerted any selective immunomodulatory effects on IL-6 by M1 and M2 

macrophage subsets. Results indicated that HK and SP probiotic treatments 

differentially regulated IL-6 cytokine expression by M1 and M2 macrophage 

subsets. Both HK and SP preparations suppressed LPS induced IL-6 production 

by M2 macrophages, the potency of the suppression being regulated by the level 

of CD14 expression. With respect to CD14lo M2 macrophages, HKs and SPs 

suppressed IL-6 (Fig.3.2.18C). IL-6 production by CD14hi M2s was highly sensitive 

to suppression from both HKs and SPs (Fig.3.2.18D). Pro-inflammatory M1 

macrophages exhibit a different IL-6 regulatory profile upon exposure to HKs and 

SPs of the probiotics. In CD14lo M1 macrophages, HK-BB, HK-LR, HK-LcS, HK-LS 

and HK-LP augmented LPS-induced IL-6 (control 216±5 pg/ml) by ×1.3, ×2.6, 

×1.8, ×1.04, and ×2.1 respectively, whereas HK-LF suppressed IL-6 production by 

29% (Fig.3.2.18A). LR-SP, LS-SP and LP-SP suppressed LPS induction of IL-6 by 

30%, 26% and 49%, whereas, LF-SP, LcS-SP augmented LPS induction of IL-6 

production by ×1.4, ×1.02 and BB-SP failed to modulate IL-6 expression. The 

CD14hi M1 subset displayed an intriguing profile upon introduction of HK or SP 

probiotic. HK-LF, HK-LS and HK-LP suppressed LPS induction of IL-6 expression 

by 61%, 61% and 74%, respectively, whereas SP preparations from the same 

strains augmented LPS induced IL-6 production by 55%, 26% and 11%, 
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respectively. HK-LR, LR-SP, and LcS-SP were suppressed IL-6 by 17% and 11%, 

and 69% respectively, and finally, BB failed to modulate LPS-induced IL-6 in these 

pro-inflammatory macrophages in comparison to the control (62±8 pg/ml) 

(Fig.3.2.18B). Thus, CD14 is an important co-receptor for LPS signalling by 

macrophage subsets and has a crucial role in modulating the immune response 

induced by LPS. 

 

Figure 3.2. 18: Secreted proteins and heat-killed probiotic strains selectively 

modulate macrophage subset IL-6 production. 
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THP-1-derived CD14
hi
 and CD14

lo
 macrophage subsets were stimulated with 100 ng/ml 

Escherichia coli K12 LPS in the presence or absence of 3×10
8
 cfu/ml heat-killed (HK) probiotic 

bacterial strains of Bifidobacterium breve (BB), Lactobacillus rhamnosus GG (LR), 

Lactobacillus fermentum (LF), Lactobacillus casei strain Shirota (LcS), Lactobacillus salivarius 

(LS) and Lactobacillus plantarum (LP), or 3μg/ml secreted protein (SP) extracted from each of 

these probiotic strains. M1 and M2 macrophages were generated by differentiating CD14
hi
 and 

CD14
lo
 THP-1- NF-kB reporter monocytes with either 25 ng/ml PMA for 3 days or 10 nM 1, 25-

(OH) 2 vitamin D 3 for 7 days respectively. IL-6 is expressed as the mean±SE in pg/ml for (A) 

CD14
lo 

M1, (B) CD14
hi 

M1, (C) CD14
lo
 M2, and (D) CD14

hi
 M2 like-macrophage subsets. Data 

displayed is a representative experiment with triplicate samples of n=4 replicate experiments. 

Significant effects compared to stimulus control for the indicated macrophage subset are 

indicated as * P<0.05, ** P<0.01 *** P<0.005 and NS (non-significant) 

3.2.6. SP and HK probiotic strains selectively modulate macrophage subset 
NF-κB activity 

NF-kB transcription factor stands out as master regulator of innate immunity, and 

major regulator of pathogen-and inflammatory cytokine inducible gene regulation, 

therefore any regulation of pro-inflammatory cytokine expression was expected to 

be as a consequence of the modulation of NF-kB activity. Both IL-6 and TNF-α are 

pro-inflammatory cytokines induced in response to microbial infection and exhibit-

binding consensus sequences in their respective promoter regions. Any regulation 

of the expression of these inflammatory cytokines by probiotic bacteria was 

expected to be as a consequence of modulation of NF-κB activity. When 

comparing profiles between TNF-α, IL-6 and NF-κB activation, these data are 

suggestive that probiotic regulation of these pro-inflammatory cytokines are largely 

independent of NF-κB activity. One clear observations were that the probiotic-

secreted protein augmented NF-κB activation in CD14lo M1, CD14lo M2, and 

CD14hi M2 macrophages (Fig 3.2.19). Secreted protein preparation treatments 

failed or only partially suppressed NF-κB activity upon LPS stimulation of CD14hi 

M1s. Secreted proteins augmented NF-kB in CD14lo M1s (LPS control level of 

0.530±0.063 arbitrary units) by 53%, 32%, 69%, 47% and 60%, for BB-SP, LR-SP, 
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LF-SP, LS-SP, and LP-SP, respectively, whereas LcS-SP suppressed LPS 

induced NF-kB activation by 21% (fig 3.2.19A). In CD14lo M2s (LPS control 

0.427±0.009 arbitrary units) probiotic-secreted proteins (SP) up-regulated LPS 

induction of NF-KB activation by 92%, 116%, 63%, 21%, 83% and 156% 

(Fig.3.2.19C) and LPS induction of NF-kB activation in CD14hi M2s by 36%, 97%, 

138%, 48%, 58% and 144% (LPS control 0.363±0.005 arbitrary units), for BB-SP, 

LR-SP, LF-SP, LcS-SP, LS-SP, and LP-SP respectively (Fig. 3.2.19D). With the 

exception of LF-SP, where no modulation of NF-κB was observed, the probiotic 

SP only partially suppressed CD14hi M1 NF-κB (LPS control 1.198±0.084 arbitrary 

units) by 13%, 23%, 30% 20%, and 27% for BB, LR, LS LP and LcS, respectively 

(Fig.3.2.19B). The heat-killed preparations seemed to be partially suppressed M1 

NF-κB activation whereas they augmented NF-kB activation in the M2 

macrophage subset. The HK-LABs suppressed NF-kB in CD14lo M1s induced by 

LPS by 42%, 25%, 28% 31% 47% and 27% (Fig.3.2.19A) and in CD14hi M1s by 

28%, 32%, 96% 28% and 27% for LR, LF, LS, LP, and LcS, respectively 

(Fig.3.2.19B). HK-LABs generally augmented LPS-induced NF-kB activity in M2 

macrophages, however heat-killed preparation of BB failed to modulate NF-κB 

activity. HK-probiotics augmented NF-kB activity in CD14hi M2s by 29%, 65%, 

8.1%, 125% and 59% for LR, LF, LcS, LS, and LP respectively (Fig.3.2.19D). 

Finally, in the case of CD14lo M2s, HKs from LF, LS, and LP weakly modulated 

NF-κB activity, augmenting by 26%, 20%, and 33%; respectively, whereas HK-LcS 

suppressed LPS induced NF-kB by 10% (Fig.3.2.19C). The data clearly 

demonstrated that probiotics exhibit their roles in modulation of LPS induced pro-

inflammatory cytokines partially on NF-kB activation, suggesting that another 

transcriptional factor might be involved in this process such as AP-1; this might be 

worth investigating in future.  
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Figure 3.2. 19: Secreted proteins and heat-killed probiotic strains selectively 

modulate macrophage subset NF-κB activity. 

THP-1-derived CD14
hi
 and CD14

lo
 macrophage subsets were stimulated with 100 ng/ml 

Escherichia coli K12 lipopolysaccharides (LPS) in the presence or absence of 3×10
8 

cfu/ml heat-

killed (HK) probiotic bacterial strains of Bifidobacterium breve (BB), Lactobacillus rhamnosus GG 

(LR), Lactobacillus fermentum (LF), Lactobacillus casei strain Shirota (LcS), Lactobacillus 

salivarius (LS) and Lactobacillus plantarum (LP) or 3µg/ml secreted protein extracted from each of 

these probiotic strains. M1 and M2 macrophages were generated by differentiating CD14
hi
 and 

CD14
lo
 THP-1-NF-κB reporter monocytes with either 25 ng/ml PMA for 3 days or 10 nM 1, 25-(OH) 

2 vitamin D3 for 7 days, respectively. NF-KB reporter activity is expressed as the mean±SE in 

arbitrary absorbance units (A:620 nm) for (A) CD14
lo
 M1, (B) CD14

hi
 M1, (C) CD14

lo
 M2 and (D) 

CD14
hi
 M2 like- macrophage subsets. Data displayed is a representative experiment with triplicate 

samples of n=4 replicate experiments. Significant effects compared to stimulus control (Blue bar) 

for the indicated macrophage subset are indicated as * P<0.05, ** P<0.01 and *** P<0.005 and NS 

(non-significant). 
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3.2.7. Summary of chapter 3 results  

 

Table 3.2. 1: Summary of probiotic immunomodulation of cytokine production 

induced by LPS in monocytes and macrophage subsets. 

 

 BB-
HK 

LR-
HK 

LF-
HK 

LcS-
HK 

LS-
HK 

LP-
HK 

BB-
SP 

LR-
SP 

LF-
SP 

LcS-
SP 

LS-
SP 

LP-
SP 

Mono-
TNF-α 

↓ ↓ ↓ ↑ ↓ ↑ ↓ ↓ ↓ ↓ ↑ ↑ 

M1-
TNF-α 

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↔ ↔ 

M2-
TNF-α 

↓ ↓ ↑ ↑ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↑ 

Mono-
IL-1β 

↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ 

M1- 
IL-1β 

↓ ↑ ↔ ↑ ↑ ↑ ↔ ↑ ↑ ↑ ↑ ↑ 

M2- 
IL-1β 

↑ ↔ ↑ ↑ ↑ ↑ ↔ ↓ ↔ ↔ ↓ ↑ 

Mono-
IL-6 

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 

M1- 
IL-6 

↔ ↔ ↓ ↓ ↔ ↑ ↓ ↓ ↑ ↓ ↔ ↑ 

M2- 
IL-6 

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 

Mono- 
IL-8 

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

M1- 
IL-8 

↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↑ 

M2- 
IL-8 

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↔ 

Note: “↑”, “↓,”and “↔”means up-regulation, down-regulation, and no-modulation of the 

indicated target, respectively 
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Table 3.2. 2: Summary of probiotic immunomodulation of TLR expression induced by 

LPS in macrophage subsets. 

 HK-LcS HK-LF LcS-SP LF-SP 

M1-TLR4 ↑ ↑ ↑ ↑ 

M1-TLR2 ↓ ↑ ↓ ↓ 

M2-TLR2 ↔ ↑ ↑ ↑ 

M2-TLR2 ↓ ↔ ↓ ↓ 

M1-CD14 ↓ ↓ ↓ ↓ 

M2-CD14 ↓ ↓ ↓ ↓ 

M1-MD-2 ↓ ↑ ↑ ↑ 

M2-MD-2 ↔ ↑ ↑ ↓ 

M1-NOD-2 ↑ ↑ ↑ ↑ 

M2-NOD-2 ↑ ↑ ↑ ↑ 

M1-TLR9 ↑ ↔ ↑ ↔ 

M2-TLR9 ↑ ↑ ↑ ↑ 

M1-Tollip ↑ ↓ ↓ ↓ 

M2-Tollip ↑ ↔ ↓ ↓ 

Table 3.2. 3: Summary of probiotic treatments on LPS induced NF-kB activation. 

 BB-
HK 

LR-
HK 

LF-
HK 

LcS-
HK 

LS-
HK 

LP-
HK 

BB-
SP 

LR-
SP 

LF-
SP 

LcS-
SP 

LS-
SP 

LP-
SP 

M1
hi 

TNF-α  
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

M1
lo
 

TNF-α  
↓ ↔ ↓ ↓ ↓ ↓ ↔ ↓ ↓ ↓ ↓ ↓ 

M2
hi
 

TNF-α  
↔ ↑ ↑ ↔ ↑ ↑ ↔ ↔ ↓ ↔ ↓ ↑ 

M2
lo
 

TNF-α 
↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 

M1
hi
  

IL-6 
↔ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↑ ↓ ↑ ↔ 

M1
lo  

IL-6 
↑ ↑ ↓ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↓ ↓ 

M2
hi
  

IL-6 
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 

M2
-lo

  
IL-6 

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 

M1
hi 

NF kB 
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 

M1
lo 

NF-KB 
↔ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↓ ↑ ↑ 

M2
hi
 

NF-kB 
↔ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

M2
lo

 
NF-kB 

↔ ↓ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 
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3.3. Discussion  

3.3.1. THP-1 monocytes differentiation into M1-like and M2-like macrophages.  

Several studies have demonstrated that gut macrophages have at least two 

subsets classically activated pro-inflammatory M1-, and alternative anti-

inflammatory M2-macrophages (Edwards et al., 2006, Gordon, 2003, Mosser and 

Edwards, 2008). Using THP-1 human monocytic cell line to generate macrophage 

cell subsets as a model in this study resulted in the development of different 

distinct macrophage cell phenotypes representative of M1, and M2-like 

macrophages, which varied in morphological features (Fig.2.5) and functionality 

(Fig.3.2.1, Fig.3.2.2, Fig.3.2.3 and Fig.3.2.4). The cytokines IL-1β, TNF-α, IL-6 and 

IL-8 which are a major cytokines of gut pathology (Funakoshi et al., 1998, Zuo et 

al., 2010) were used as markers to distinguish between macrophage subsets in 

response to LPS (a component of the enteropathic bacterium, E. coli strain K12) 

stimulation. Indeed, cytokine readout showed that monocytes differentiated by 

PMA (M1-like) differed from monocytes differentiated by Vit.D3 (M2-like), 

expressing different cytokine levels, and profiles.  

Generally, LPS signal transduces its signal via TLR4 (Beutler, 2000) resulting in 

cytokine expression through activation of mitogen activated protein kinase (MAPK) 

and NF-kB signalling pathways (Libermann and Baltimore, 1990, Yamamoto and 

Gaynor, 2001). The significant observations here were the production of IL-1β, 

TNF-α and IL-8 after stimulation with LPS in M1s was higher than by M2s, and 

vice versa with IL-6 expression. Of particular interest was the expression of IL-6 by 

M2-like macrophages. IL-6 is a pleotropic cytokine that can exhibit pro and anti-

inflammatory effects via its ability to induce suppression of cytokine signalling 
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proteins (SOCS) expression (Xing et al., 1998). The regulation of SOCS and their 

downstream targets such as STATs play an important role in macrophage subset 

differentiation and determination of effector responses. Transcription factor STAT-

3 mediates cytokine signalling and is implicated in a variety of immune responses. 

STAT-3 is one of the selected transcriptional factors expressed by alternative 

activation of macrophages (M2s) (Gordon, 2003; Mosser & Edwards, 2008). It is 

well established that STAT-3 mediates IL-10R signalling and exerts anti-

inflammatory activity by inhibiting pro-inflammatory cytokines such as TNF-α and 

IL-1β (Bromberg, 2002 , Williams et al., 2007, Williams et al., 2004). In the 

absence of IL-10 signalling, macrophages are induced to produce pro-

inflammatory cytokines (M1) associated with up-regulation of SOCS-3. SOCS-3 is 

essential for the function of classical M1 macrophages (Liu et al., 2008), and 

suppresses anti-inflammatory effectors that result from IL-10/IL-6 activation of M2 

macrophages, thus controlling macrophage plasticity; knockout of SOCS-3 results 

in an alternative M2-like phenotype with increased expression of arginase, 

mannose receptor (MR), anti-inflammatory cytokines and SOCS-1. Accordingly, 

there is a reciprocal relationship between SOCS-3 and SOCS-1 regulation of 

STAT-3 and STAT-1 controlling the differentiation of macrophage subsets. STAT-3 

itself induces the anti-apoptotic factors bcl-2 and bcl-xL (Fukada et al., 1996, 

Kovalovich et al., 2001). Interestingly, only treatment with Vit.D3 (M2) results in 

phosphorylation of STAT-3 at Tyr 705 in response to LPS stimulation. These 

results are in agreement with Daigneault et al. (2010) when they showed that 

treatment of THP-1 cells with Vit.D3 results in macrophage cell phenotype 

resistance to apoptosis. THP-1 cells treated with Vit D3 resulted in cells expressing 

membrane bound IL-10 constitutively in resting cells and inducibly in response to 

LPS stimulation. It is possible that phosphorylation of STAT-3 in M2 cells mediates 
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the expression of membrane bound IL-10. The STAT-3 signalling pathway is 

shared by IL-6 through gp130 a common signal transducer for the IL-6 cytokine 

(Fukada et al., 1996). Yasukawa et al. (2003) demonstrated that IL-6 is produced 

after activation of STAT-3 and inhibits SOCS-3. Taken together, M2-like 

macrophages differentiated from THP-1 monocytes are like anti-inflammatory 

macrophages when expressing pSTAT-3 results in the up-regulation of IL-6 in 

response to LPS higher than by M1s. LPS induced higher levels of TNF-α and IL-

1β production in THP-1 cells treated with PMA (M1-like), which in agreement with 

Schwende et al. (1996) and Chanput et al. (2010), depended on different 

activation level of NF-kB leads to increased pro-inflammatory cytokine levels 

(Collart et al., 1990). It is well established that M1, which represent pro-

inflammatory macrophages expressing levels of CD14, TLR2, TLR4, TLR5, CD89, 

and CD16, mediate the induction of pro-inflammatory cytokines (Gordon, 2003). 

The data of this study are consistent with other research groups (Mantovani et al., 

2002) with respect to differential cytokine profiles expressed by macrophage 

subsets in response to LPS.  

Further study was performed to investigate TLR expression by macrophage 

subsets in response to LPS stimulation. Both macrophage subsets showed that 

the TLR4 surface expression was up-regulated after LPS stimulation. The findings 

of the current study are consistent with those of Mantovani et al. (2004) who found 

that TLR4 expression is predominant in M1 macrophages in response to LPS 

stimulation. This finding supports previous research into this macrophage area, 

which links TLR4 and TNF-α expression (Oshima et al., 2004); consequently, M1s 

expressed TNF-α higher than M2-like macrophages by virtue of this relationship. 

This study confirms that TLR4 expression is associated with production of pro-
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inflammatory cytokines by M1-like macrophages (TNF-α, IL-1β, and IL-8). On the 

question of TLR2 expression by macrophage subsets, this study found that the 

predominant expression is TLR2 in M2-like macrophage subset in response to 

LPS stimulation. The most interesting finding was that IL-6 expression by M2-like 

macrophages was greater than by M1-like macrophages. This finding corroborates 

the ideas of Biswas et al. (2008), who suggested that IL-6 expression is related to 

TLR2 expression. These results are consistent with those of other studies and 

suggest that the different profiles of cytokine expression by macrophage subsets 

matched with the TLR profiles (Fairweather and Cihakova, 2009). This finding has 

important implications for developing model macrophage subsets. Therefore, it 

can be assumed that the cells differentiated from THP-1 are different distinct 

macrophage subsets.  

3.3.2. SP and HK of probiotic strains induced cytokine production by 

monocytes and macrophage subsets  

The second question in this research was the probiotic bacterial role in inducing 

cytokine expression by macrophage subsets. The results of this study show 

significant increases in cytokine expression by macrophage subsets in response to 

LcS stimulation, as live and heat killed formats. Probiotic bacteria (LcS) are gram 

positive, characterised by external-facing lipoteichoic acid, polysaccharides, and 

exposed PGN. PGN has been described to induce macrophage production of 

TNF-α, IL-1β and IL-6 (Gupta et al., 1999, Weidemann et al., 1997); and all of 

these cytokines possess NF-kB, AP-1 and CREB binding sites in their promoters 

resulting in the transcription of the downstream genes of these cytokines.  

Interestingly, PGN activates AP-1 and CREB/ (ATF) in M2-like vitamin D3 

differentiated THP-1 macrophages (Gupta et al., 1999). It seems to be that LcS-
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polysaccharide induced cytokine expression by macrophage cell subsets, might be 

depending on the activation of the cAMP response element binding protein, which 

is lead to activation of the transcriptional factors CREB/ATF-1 (Foey et al., 2003), 

thus it is possible that the immunostimulatory effects of probiotic bacteria may be 

dependent on the appropriate recognition of Gram-positive Lactic acid bacterial 

cell wall of peptidoglycan-polysaccharides (PGN-PS) by macrophage cells. In 

addition to PGN, LTA has a significant role in inducing cytokine expression in a 

range of immune cells such as monocytes and macrophage subsets (Nilsen et al., 

2008, Morath et al., 2001). LTA induced differential cytokine release via activation 

of NF-κB and AP-1, depending on the differences in LTA structure (Finney et al., 

2012). Bacterial DNA also has a significant role in inducing cytokine expression, 

and level of GC determines the type of cytokine induction; high level of GC (as 

found in Bfidobacteria) tend to induce anti-inflammatory cytokines such as IL-10, 

whereas low level GC (as found in Lactobacilli) tend to induce pro-inflammatory 

cytokine such as IL-12 and TNF-α (Medina et al., 2007). Taken together, cytokine 

production by different immune cells after recognition of LcS was dependent on 

level of PGN recognition, LTA structure of the bacterial cell wall, and GC level in 

bacterial DNA. These induce different levels of TLR, differential type of PRRs that 

lead to different levels of NF-kB activation and consequent induction of different 

types and levels of cytokine production, which in turn mediate 

infection/inflammation or intestinal homeostasis (Ginsburg, 2002, Claes et al., 

2012a).  

Live probiotic bacteria can produce metabolites through their metabolism of 

carbohydrate and proteins; these bacterial metabolites include proteins and short 

chain fatty acids, which can modulate the immune responses of cells in the gut 
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mucosa (Walker, 2008). From preliminary investigation of the secreted protein 

extracts from LcS and LF, denaturation SDS-PAGE analysis showed the presence 

of protein bands which differ in molecular mass for each probiotic bacterial strain.  

This study set out with the aim of assessing the importance of secreted proteins 

on cytokine expression by monocytes and macrophage subsets. One 

unanticipated finding was that LcS-SP treatments successfully induced cytokine 

release resulting in different profiles of TNF-α augmentation in monocytes and 

macrophage subsets, explaining that these extracts contain proteins that interact 

with monocyte and macrophage PRRs resulting in augmentation of TNF-α cell 

signalling. This finding is in agreement with Yan et al. (2007) who showed that 

Lactobacillus fermentum and L. rhamnosus GG secrete immunomodulatory 

proteins which modulate signaling pathways driving pro-inflammatory cytokine 

production. There are similarities between the mechanism expressed by LcS-SP in 

this study and those described by Hoarau et al. (2008) when they showed that the 

fermentation product of a Bifidobacteria can differentially activate MAPKs, 

Glycogen synthase kinase (GSK3) and Phosphatidylinositide 3-kinases (PI3K) 

resulting in induction of cytokine expression in DCs when probiotic metabolites 

modulate cytokine expression. However, the findings of the current study 

displayed a role of other probiotic metabolites (SP) in the mediation of the 

induction of cytokine signaling in immune cells. Interestingly, this suggests that 

Lactobacillus casei stain Shirota (LcS) probiotic bacteria secrete extracellular 

proteins which interact with monocytes, M1-like and M2-like macrophages 

resulting in induction of TNF-α. Profiles of TNF-α produced by monocytes, M1-like 

and M2-like macrophages induced by LcS-SP was protein-dose-and immune cell 

type- dependent. The observed differences between immune cell TNF-α level 

expression indicate the differences in PRR expression. Future studies on the 
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current topic of the probiotic role in inducing cytokine expression as HK and SP in 

different immune cells are therefore recommended. 

3.3.3. Probiotics selectively modulated LPS induction of cytokine production 
by monocytes and macrophage subsets 

Several studies, including this study, have described that probiotics have a role in 

induction of cytokine production by immune cells such as monocytes and 

macrophages, but the reports are often contradictory; observation being 

determined by cell source, level of differentiation, bacterial strain, stimulus used 

and local environment (Gackowska et al., 2006, Ivec et al., 2007, Lin et al., 2008, 

Malai et al., 2009, Matsumoto et al., 2005, Miettinen et al., 1996, Zeuthen et al., 

2006) (see table 1.1).  

The third question in this research was focused on the probiotic bacterial role in 

the modulation of LPS induced cytokine production by monocytes, and 

macrophage subsets. It is interesting to note that in all probiotic treatments of this 

study, probiotic strains selectively modulated pro-inflammatory cytokine production 

by monocytes and macrophage subsets. In addition, the format of probiotics, 

whether heat killed (HK) whole bacteria or live and their secreted proteins (SP), 

displayed a differential modulation of cytokine expression of these effector immune 

cells. HKs and SPs of probiotic strains differentially modulated cytokine expression 

dependent on maturation degree of monocytes/macrophage cells and type of 

probiotic strains. As an example HK-LcS augmented monocyte LPS-induced TNF-

α, IL-1β and IL-8 whereas it suppressed IL-6 production. M1 IL-1β and IL-8 

production were augmented by HK-LcS whereas TNF-α was suppressed. LcS-SP 

augmented LPS-induced monocyte IL-1β and IL-8 whereas suppressed TNF-α 

and IL-6. M2 macrophages exhibit a different modulation profile by LcS-SP with 
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respect to these pro-inflammatory cytokines. LcS-SP failed to modulate TNF-α 

production, augmented IL-1β, whereas it suppressed IL-6 and IL-8 production in 

response to E. coli K12 LPS. A strong relationship between bacterial cell wall 

structure associated with intracellular digestion by monocytes/macrophages and 

modulation of cytokine expression has been reported in the literature. Šimelyte et 

al. (2000) and Turner et al. (2004) reported that L. fermentum cell wall was 

lysozyme sensitive, resulting in induction of anti-inflammatory cytokine such as IL-

10, whereas Shida et al. (2006), and Matsumoto et al. (2009) reported that LcS 

has a rigid cell wall resistant to lysozymes and intracellular digestion induced pro-

inflammatory cytokine such as IL-12. Comparing LcS and LF immunomodulation 

showed only monocyte TNF-α induced by LPS was different, when LcS up-

regulated LPS induced TNF-α whereas LF suppressed it. This suggested that 

despite the differences between these strains in their cell wall structure (sensitivity 

for lysozyme digestion), they exhibit the same trend of immunomodulation for LPS 

induced cytokine expression by monocytes and macrophage subsets because 

they are sharing the protective effects via the similarly in LTA (Setoyama et al., 

1985). Screening of probiotic immunomodulation showed that there was similarly 

between HK-BB and HK-LR immunomodulation of LPS induced cytokine 

expression and the only difference was, IL-1β production induced by LPS in 

macrophage subsets (refer to table 3.2.1). They exhibit profound anti-inflammatory 

effects via suppression of a range if LPS induced cytokines, which is in agreement 

with other research groups (Okada et al., 2009, Ciszek-Lenda et al., 2011). There 

was similar between HK-LS and HK-LP, when they suppressed LPS induced M1-

TNF-α, monocyte IL-6, M2-IL-6 and M2-IL-8, which is in agreement with Díaz-

Ropero et al. (2007) and Kim et al. (2013). Indeed, there are several possible 

explanations for the immunomodulatory action of probiotics in the current study.  
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LPS induces the pro-inflammatory cytokines by activating transcription factors 

such as NF-kB, cJun and activating transcription factor 2 (ATF) family members; 

probiotics exhibit different roles in modulating these transcriptional factors resulting 

in different profiles of cytokine production by these immune cells. Okada et al. 

(2009) demonstrated that probiotic strains inhibited LPS induced pro inflammation 

cytokines via inhibiting the phosphorylation of IκB-α induced by LPS, associated 

with up-regulation of SOCS-3. Several studies highlighted that probiotics mediated 

anti-inflammatory activity through enhancement of IL-10 expression by anti-

inflammatory macrophage subset (Steidler et al., 2000, Madsen et al., 2001, 

Galdeano and Perdigón, 2006, Shida et al., 2011).  

MAPKs have been shown to play a role in driving LPS-induced TNF-α and IL-1β 

production (Foey et al., 1998), modulation of these cytokines by probiotics may 

well target MAPKs activity. Indeed, the probiotic Lactobacillus reuteri was 

demonstrated to suppress monocyte and macrophage TNF-α production by 

inhibiting the activation of MAPK-regulated transcription factors, cJun and AP-1 

(Lin et al., 2008). Bcl-3 is one of IκB family members, which attenuates LPS 

induced inflammatory responses in macrophages (Wessells et al., 2004), 

therefore, HK-LcS down regulated LPS induction of TNF-α may be through 

induction of Bcl-3 protein, or suppressed IKK activity and inhibition of NF-κB DNA 

binding (Schottelius et al., 1999). Another possible explanation for this result is 

that probiotic modulation of LPS induction of cytokine production is by enhancing 

the anti-inflammatory cytokine production such as IL-10 leading to inhibition of pro-

inflammatory cytokine (Konstantinov et al., 2008). On the other hand, the up-

regulation of LPS induces TNF-α production by M1s as pro-inflammatory 

macrophages may be through up-regulation of the expression of TLRs such as 
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TLR4 or NLRs (such as NOD-2). This leads to increases of the NF-kB heterodimer 

p50/RelA or MAPKs phosphorylation resulting in increasing of pro-inflammatory 

cytokine production (Petrof et al., 2009).   

SP extracts selectively modulated LPS induced cytokine expression by monocytes 

and macrophage subsets. Screening of SP extract immunomodulation of cytokine 

induced by LPS in monocytes and macrophage subsets showed there was 

similarity between BB-SP and LR-SP regarding with modulation of LPS induced 

cytokines (TNF-α, IL-1β, IL-8 and IL-6) by monocytes and macrophage subsets, 

which is in agreement with Menard et al. (2004) who showed that protein extract 

from Bifidobacterium breve supernatant were suppressed LPS induced TNF-α in 

THP-1 cells, however, the differences between them was IL-1β production induced 

by LPS in macrophage subsets. BB-SP suppressed LPS induced M1-IL-1β, 

whereas LR-SP augmented it, and vice versa with M2 IL-1β induced by LPS. LcS-

SP and LF-SP also exhibited the same trend of immunomodulation of LPS 

induced cytokine expression when suppressed LPS induced TNF-α, IL-1β and IL-8 

by monocytes and macrophage subsets, except the M1-IL-6 and M2-IL-8 induced 

by LPS. Moreover, LS-SP and LP-SP were also exhibited similar effects in 

modulation of LPS induced cytokine expression except M2-TNF-α, M1-IL-1β, IL-8 

M1 and IL-8 M2-like macrophage subset. Indeed, Hoarau et al. (2008) showed 

that proteins from Bifidobacterium breve C50 supernatant were differentially 

regulated cytokines associated with modulation of transduction signaling pathways 

(NF-kB, PI3K) in a healthy human DCs and Claes et al. (2012b) reported that 

protein extract from lactobacillus rhamnosus GG promote survival and growth of 

intestinal cells shared homology with cell wall hydrolysis. Taken together, data 

suggested that the crude SP might have the same proteins that exhibit the same 
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effects in modulation of LPS induced cytokine expression by monocytes and 

macrophage subsets (Sanchez et al., 2010).   

These findings further support the idea of identifying the immunomodulatory 

effects of LcS-SP extract, fractionating single proteins of the crude LcS-SP and 

examining the effect of these secreted proteins on modulation of LPS-induced 

cytokine expression by monocytes and macrophage subsets. This investigation 

was performed by gel filtration to separate proteins based on protein molecular 

weight (MW). Regulation of the immune responses induced by LPS with LcS-SP 

fractions resulted in different profile of immunomodulation as fraction number 80 

and 81 up-regulated LPS induced M2-like macrophage TNF-α expression, 

whereas down-regulated M1-TNF-α cytokine expression, and vice versa with 

fraction number 84. This result may be explained by the fact that the specific 

protein in each fraction modulates the LPS macrophage interaction process 

resulting in modulation of TNF-α expression as the outcome of the immune 

response. However, the crude LcS-SP extract exhibit different effects, when they 

suppressed LPS induced TNF-α in macrophage subsets. Indeed there were 

several explanations of this particular result, it might be the concentration of 

specific protein needed to up-regulate LPS induced TNF-α was less than to 

suppress LPS induced TNF-α, or it might be the antagonistic effects between 

these proteins lead to suppressed LPS induced TNF-α expression by macrophage 

subsets. Fraction number 80 and 81 exhibit anti-inflammatory effects by 

suppression of TNF-α induced by LPS in M1-like macrophage, whereas fraction 84 

in M2-like macrophages may represent future therapeutic agents that could serve 

to suppress chronic inflammation associated with M1-like macrophages. Because 

of the lack of the well-defined molecular signals that are produced by probiotics, 
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the discovery of these microbial metabolites will enable the development of new 

drugs that limit inflammation. This study corroborated the findings of a great deal 

of previous work in this field e.g. Thomas et al. (2012), who showed that histamine 

derived from probiotic Lactobacillus reuteri suppresses TNF-α.  In addition, 

Sanchez et al. (2009) showed that the fractionation of a conditioned medium 

extract produced by Lactobacillus rhamnosus GG identified several protein bands 

of which a cell wall-associated hydrolase, Serpin B1, could play a significant role in 

modulating host immunity. Taken together, the macrophage cytokine profiles 

obtained upon LPS stimulation following probiotic regulation were different 

dependent on the type of probiotic strain and type of macrophage subsets. These 

results give a new insight on the fine-tuned balance between the maintenance of 

normal mucosal homeostasis to commensal bacteria and the specific inflammatory 

responses elicited by pathogenic bacterial PAMPs, such as LPS, which might be 

achieved through of modulation of macrophage cytokine production. This is an 

important issue for future research in order to identify the types of proteins 

mediating immunomodulation by immune cells using MS/MS technique followed 

by PCR cloning. 

3.3.4. Probiotic treatments selectively modulated LPS-induced TLR 
expression in macrophage subsets 

Innate immune responses exhibit the first line of defense, detect pathogenic 

microorganisms, and mount a fast defensive response through a group of proteins 

called TLRs. The main role of TLRs is detecting exogenous stimuli such as 

microbial PAMPs, and they are also able to sense endogenous signals, such as 

heat shock protein 60, fibronectin, fibrinogen, unknown factors from the injured 

tissue and necrotic cells, and facilitate antigen clearance. This mechanism 

provides a tight immune surveillance system displayed by TLRs (Abreu et al., 
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2005). Indeed, macrophage recognition of microbial PAMPs via TLRs, convert to 

the signals downstream of the cell cytoplasm, resulting in a variety of activities 

such as cytokine production.  

Among TLRs, the expression of TLR2 and TLR4 and the co-receptor CD14 and 

MD-2 are important factors in recognition of LPS in macrophage cells. The present 

study was designed to determine the effect of probiotic treatments on modulation 

of LPS induced immune responses. In this study, probiotic treatments selectively 

modulated macrophage subset immune responses induced by LPS. What is 

surprising is that the HK-LcS suppressed LPS induced TLR4, TLR2, and co-

receptor CD14, whereas, HK-LF augmented LPS induced TLR2, TLR4, and 

suppressed co-receptor CD14 expression. The present findings seem to be 

consistent with other research groups, which found differences in 

immunomodulation of TLR expression in macrophage cell subsets depending on 

the bacterial cell structure (Shibata et al., 2011). CD14 was highly expressed in 

M1s associated with pro-inflammatory cytokine production in this macrophage 

effector phenotype. This factor may explain the relatively good correlation between 

CD14 expression and ability of M1 macrophages to express high levels of pro-

inflammatory cytokines (Mosser and Edwards, 2008, Smith et al., 2011). Probiotic 

treatments suppressed LPS induced CD14 expression in macrophage subsets, 

hence, it could conceivably be hypothesised that the probiotics exhibit an anti-

inflammatory role in this setting by dampening down LPS signalling. The profiles of 

TLR expression were partially matched with cytokine expression in macrophage 

subsets. For example the profile of TLR expression induced by LPS and regulated 

by probiotics was matched with IL-6 expression but not with TNF-α in M2s, 

suggesting that the LPS signalling was achieved via a complex of TLR2/CD14 
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rather than through a complex of CD14/TLR4 (refer to table 3.2.1, and 3.2.2). 

These results are consistent with those of other studies such as Meyenburg et al. 

(2004) who suggested that TLR4 functions as the true LPS receptor, and TLR2 is 

also involved in recognition of Gram-positive bacterial products.  

Intestinal TLR signaling has a dual role, including maintaining intestinal 

homeostasis and protection from injury, as well as initiates inflammatory 

responses. It is well documented that unmethylated CpG motifs present in 

bacterial DNA stimulates a rapid and vital innate immune response. Bacterial DNA 

is recognised by TLR9 which is one of the PRRs expressed intracellularly in 

macrophages. The expression of TLR9 mediates anti-inflammatory effects through 

induction of type 1 IFN (Lee et al., 2006); however, up-regulation of TLR9 

mediates the activation of macrophages to produce significant levels of pro-

inflammatory cytokines leading to initiation of tissue injury. Both CpG-DNA and 

LPS modulate expression of cell surface receptors, transcription factors, and 

proteins related to cell differentiation suggested that TLR9 sharded homology with 

TLR4 in macrophage cells (Gao et al., 2003, Gao et al., 2002). The findings of the 

current study are consistent with those of An et al. (2002) who found that LPS 

stimulation up-regulated gene expression of TLR9 and initiated inflammation via 

NF-kB, ERK, and p38 MAPKs signal pathways. Indeed, augmentation of TLR9 

expression induced by LPS in macrophages facilitates responding to occupied 

bacteria more efficiently. The data of this study show that the genomic structure of 

LcS up-regulated LPS induced TLR9 in both macrophage cell subsets. It is 

seemed to be that the probiotic up-regulation of TLR9 induced by LPS in M1s is to 

enhance the production of pro-inflammatory cytokines, whereas enhances the 

anti-inflammatory cytokines expression in M2-like macrophages. This finding 
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corroborates the ideas of Zhang et al. (2010), who suggested that the up-

regulation of TLR9 induced by LPS is to up-regulate Arg1 and FIZZ1 mediating M2 

macrophage function. It can therefore be assumed that probiotic DNA exhibits two 

sides in modulating the immune responses in macrophage cell subsets.  

NOD-2 is one of the PRRs expressed intracellularly in macrophages and exhibits a 

surveillance system to detect microorganisms that occupy and reside in the 

cytoplasmic infected cells, such as Shigella (pathogenic bacteria) or LcS (non-

pathogenic bacteria) (Hasegawa et al., 2006). Specifically, it recognises a 

breakdown product of the bacterial cell wall component, PGN, namely muramyl 

dipeptide (MDP) (Girardin et al., 2003a). This receptor has been demonstrated to 

have both pro-inflammatory and anti-inflammatory function in response to 

microbial stimuli. NOD-2 up-regulation leads to activated defiance signaling 

pathways resulting in provoking pro-inflammatory mediators such as TNF-α (Kim 

et al., 2008). In this study, probiotic treatments were found to up-regulate LPS 

induction of NOD-2 expression in macrophage cell subsets. A possible explanation 

for this might be that probiotic treatments manipulated the adaptor RICK in 

macrophage subsets (Bernardo et al., 2012). It is possible, therefore, that 

probiotics maintain innate immunity via eliminating the pathogen bacterial 

occupation. Synergistic effects between TLR9 and NOD-2 mediate intestinal 

homeostasis (van Heel et al., 2005). One of the issues that emerges from these 

findings is the synergistic effects between TLR9 and NOD-2 when probiotics up-

regulated LPS induction of TLR9 and NOD-2 expression in macrophage subsets.  

Maintaining the immunological balance is one of the main aspects of a healthy gut 

mucosa in terms of keeping a balance between activation and tolerance to avoid 

detrimental and inappropriate inflammatory responses. The sustained activation of 
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TLR expression may prime the development of chronic inflammatory disorders and 

autoimmune diseases. Another important finding was that probiotics have a critical 

role in modulating the immune response in macrophage cell subsets through 

modulation of PRRs in context of modulation of endogenous inhibitor expression 

such as Tollip. This modulation might open a new window in the treatment of IBD 

targeting TLR expression, since the uncontrolled TLR expression have been 

implicated in several autoimmune and inflammatory gut diseases such as IBD 

(Wehkamp et al., 2004, Steenholdt et al., 2009). Various negative regulatory 

mechanisms have evolved to attenuate TLR signalling, and Tollip expression is 

one of these mechanisms. The first observation was reported that the identification 

of Tollip initially as an intermediate in IL-1 signalling. IL-1 is a pro-inflammatory 

cytokine that elicits its pleiotropic effects through activation of the transcription 

factors NF-κB and AP-1 (Sims et al., 1994). IL-1 receptor consists of two different 

chains IL-1R1, IL-1RAcP. In resting cells, Tollip forms a complex with IRAK and 

inhibits IL-1 induced signalling by blocking IRAK phosphorylation, whereby 

recruitment of Tollip-IRAK complexes to the activated receptor complex occurs 

through association of Tollip with IL-1RAcP (Burns et al., 2000). Therefore, over-

expression of Tollip results in reduced NF-κB activation and limits the inflammation 

by decreasing cytokine production. Zhang and Ghosh (2002) reported that Tollip 

associates directly with TLR2 and TLR4 and plays an inhibitory role in TLR-

mediated cell activation, explaining that the inhibition by Tollip is mediated through 

its capability to suppress the activity of IL-1 receptor-associated kinase (IRAK) 

after TLR activation. Probiotics have been demonstrated to inhibit the inflammation 

(Rautava et al., 2005, Thomas and Versalovic, 2010), but the mechanisms behind 

their effects are still poorly understood. The results of this study showed that the 

probiotic treatments selectively modulated LPS induction of Tollip expression in 



Chapter 3 

162 

 

macrophage cell subsets. The results of this study indicated that HK-LcS 

treatment augmented LPS induced Tollip expression in M1-like macrophages 

leading to inhibition further amplification of inflammation. Whereas, HK-LF 

treatment suppressed LPS induced Tollip expression; facilitating more chance to 

initiate inflammation by enhancing IRAK phosphorylation after the activation of 

TLR expression. Several reports highlighted the anti-inflammatory effects of LcS-

PS via down-regulation of pro-inflammatory cytokines in the lamina propria 

(Matsumoto et al., 2005, Matsumoto et al., 2009, Shida et al., 2009). One 

unanticipated finding was that LcS treatment augmented LPS induced Tollip 

expression. This finding has important implications for developing new tools in the 

inhibition of pro-inflammatory cytokines leading to diminishing the inflammation 

associated with overproduction of pro-inflammatory cytokines by M1-pro-

inflammatory macrophage cell subset.  

3.3.5. HK and SP probiotic bacterial strains selectively modulate M1 and M2 
macrophage subset production of inflammatory mediators: CD14-
dependency 

Resting gut mucosal macrophages are characterised by lacking CD14 expression 

in contrast with pro-inflammatory macrophages which highly express CD14, 

mediate expression of pro-inflammatory cytokines in response to stimulation with 

pathogenic bacteria and their PAMPs (Platt & Mowat, 2008). The current study 

found that pro-inflammatory cytokines, TNF-α and IL-6, expressed by 

macrophages M1, and M2 whether CD14hi or CD14lo in response to LPS 

stimulation, were differentially modulated by probiotic bacterial treatments. 

Probiotic immunomodulation was dependent on the macrophage subset; CD14 

expression and bacterial strain preparation (HK or SP), refer to table 3.2.3. 

Probiotic bacteria used in this study exhibit a strong pro-inflammatory effect on 
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CD14hi M1 macrophages which mimic infiltrating, inflammatory mucosal 

macrophages. Both HK and SP preparations augmented LPS-induced TNF-α 

production in these macrophages.  

Generally, TNF-α expression of CD14lo M1 macrophage was partially inhibited by 

these probiotic preparations with the exception of HK-LR, BB-SP and LS-SP. A 

clear observation was noticed in the contrasting data between CD14hi and CD14lo 

M1s, this indicates an important role for CD14 expression in probiotic 

immunomodulation. With regard to CD14hi, M2 macrophage TNF-α production was 

differentially modulated by HK and SP probiotics. M2 macrophages produced 

higher levels of IL-6 than M1s. Both CD14hi and CD14lo M2 macrophage IL-6 

production was suppressed by both HK- and SP probiotic treatments used in this 

study. For the first time in this study, BB demonstrated a clear immunoregulatory 

capacity, where both SP and HK extracts suppressed IL-6 in both CD14hi and 

CD14lo M2s. Thus, probiotics differentially modulate the pro-inflammatory 

cytokines TNF-α and IL-6 in LPS-stimulated M1 and M2 macrophages. 

Macrophages characterised by CD14 expression were associated with Crohn’s 

disease through vast expression of pro-inflammatory cytokines particularly TNF-α, 

IL-6 and IL-1β which participate in the gut tissue destruction (Kamada et al., 2008). 

CD14 has been defined to be both pro-inflammatory, via oligomerisation with the 

LPS receptor, TLR4 (Wright et al., 1990), and anti-inflammatory through its action 

as a scavenger receptor for apoptotic cells (Devitt et al., 1998). In fact, cytokine 

production acts as a useful readout for probiotic immunomodulation. The relative 

suppression of TNF-α in CD14lo macrophages would suggest that modulation is as 

a consequence of down-regulation of the CD14/TLR4/TLR2 pro-inflammatory 

complex rather than a downstream suppressive function of IL-10 or TGF-β induced 
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by the recognition and phagocytosis of apoptotic cells. M2 IL-6 production was 

suppressed by probiotics with a stronger suppression evident in CD14hi M2s; 

regarding the fact that IL-6 is both pro- and anti-inflammatory properties, probiotic 

suppression of this cytokine may exhibit inflammatory and tolerogenic/suppressive 

functions. Modulation of M1 IL-6 production was less clear and exhibited both 

suppressive and augmentation responses for both CD14hi and CD14lo which 

appeared to be strain selective and dependent on probiotic bacterial preparation 

(HK or SP).  

Pro-inflammatory cytokines may be modulated indirectly by probiotic bacteria 

through the production of anti-inflammatory/regulatory cytokines. Anti-inflammatory 

activity by IL-10 induces SOCS proteins, which suppress the activity and 

expression of several cytokines; one such example includes IFN-γ, which has a 

significant role in activation and differentiation of pro-inflammatory M1 

macrophages. Interestingly, like for IL-10 regulation, IL-6, when acting as an anti-

inflammatory mediator, induces SOCS-1 expression that inhibits Th1 cytokine 

expression (Diehl et al., 2000). This negative feedback mechanism may partially 

explain the contradictory probiotic regulation observed between IL-6 and TNF-α 

production for CD14hi M1 and M2 macrophages. Moreover, there is a reciprocal 

relationship between IL-6 and TNF-α, which observed in conditions whereby TNF-

α is augmented or highly expressed; IL-6 expression is low or suppressed (Ahmed 

and Ivashkiv, 2000). Therefore, probiotic bacteria are capable of both driving 

immune responses towards predominant Th1 and Th2 responses and suppressing 

such responses. This suggests probiotics can manipulate and redress 

immunopathological mechanisms; Th1-driven pathologies such as Crohn’s 

disease, may benefit from probiotics that either suppress harmful immune 
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reactions or induce type II cytokines (IL-10, IL-4, IL-13) and conversely, Th2-driven 

pathologies such as ulcerative colitis, may benefit from immunosuppressive 

probiotics or those that induce type I cytokine expression (IFN-γ, IL-12 and TNF-

α). Combinations of probiotics will allow the development of disease-group specific 

treatments (Th1 or Th2-driven) based on a thorough understanding of the 

immunopathogenic mechanisms. These data must be interpreted with caution 

because some probiotics may be inappropriate in inflammatory pathologies where 

CD14hi M1 subset predominate, since probiotic treatment may enhance 

inflammation by augmentation of TNFα production: a cautionary approach to their 

usage is recommended. On the other hand, probiotic treatment of CD14lo M2s, 

resembling homeostatic/regulatory mucosal macrophages (Platt & Mowat, 2008; 

Smith et al., 2001; Smythies et al., 2005), fails to augment inflammatory cytokines 

and may well induce expression of the regulatory cytokines, IL-10 and TGF-β, 

resulting in tolerance/immune hypo responsiveness. The present results are 

significant in at least major two respects; CD14 expression associated with 

cytokine expression in macrophage cell subsets and the differential role of 

probiotics in modulation of macrophage subset cytokine expression. Further 

research should be done to investigate the downstream cell signalling targeting 

CD14 expression in order to understand the probiotic immunomodulation at the 

cellular level.  

3.3.6. SP and HK probiotic bacterial strains selectively modulated LPS 

induced macrophage subset NF-κB activity 

It is well established that LPS induction of monocyte/macrophage pro-

inflammatory cytokine expression depends on the regulation of NF-kB activation 

(Bondeson et al., 1999). Libermann and Baltimore (1990) reported that the 
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promoter region of the IL-6 gene has a putative NF-kB-binding site. Collart et al. 

(1990) reported that the stimulation of macrophages with LPS resulting in 

increased TNF-α transcription related with an increased content of NF-kB. Thus, it 

was predicted that NF-kB activation would match probiotic regulation of TNF-α and 

IL-6 cytokine production by macrophage subsets. However, the results of this 

study showed that the only profile that partially parallels NF-kB activation is the 

regulation of IL-6 production by CD14hi M1s (refer to table 3.2.3). M2 macrophage 

NF-kB activation is partially augmented by probiotic bacteria, nevertheless, 

regulation of IL-6 resulted in the opposite effect, suppression: this suggested that 

probiotic modulation of IL-6 was NF-kB- independent. Furthermore, probiotic up-

regulation of TNF-α by pro-inflammatory CD14hi M1 macrophages were also NF-

kB-independent, as NF-kB was either partially suppressed or unaltered. Based on 

this poor level of association of NF-kB activation with cytokine production, it is 

probable that other signalling pathways are involved in probiotic regulation such as 

MAPKs and NOD-2. NOD-2 exhibits a vital role in preventing IBD (Natividad et al., 

2012), through expression of short and long splice variants can positively or 

negatively regulate NF-kB activity (Girardin et al., 2003b, Rosenstiel et al., 2006). 

Therefore, it is possible to hypothesise that the immunomodulation by probiotics 

are likely to occur via modulation of NOD-2 expression leading to modulated NF-

kB activity.  

There are, however, other possible explanations of probiotic immunomodulation 

related with NF-kB activation mediating the up-regulation or suppression of 

cytokine expression, such as induction of endotoxin tolerance to microbial PAMPs 

leading to regulated NF-kB activation. In this study, tolerance may be initiated via 

chronic LPS stimulation or cross-toleration through NOD2, TLR2, TLR-4, TNF-R, 
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and IL-1βR (Foey and Crean, 2013, Ferlito et al., 2001) signalling. In general, 

therefore, it seems that regulation/tolerance is likely to be dependent on 

environmental stimuli, macrophage lineage, and CD14 expression. Future 

research will focus on the mechanisms of probiotic modulation of endotoxin 

tolerance; facilitate a comprehensive mechanistic understanding of probiotic 

immunomodulatory functions (either as immune activatory or suppressive 

functions) leading to improved tools in the treatment of such diseases (IBD).  
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Chapter 4: Modulation of inflammatory responses by probiotic bacteria in a 

Caco-2 cell line model  

4.1. Introduction 

It is becoming increasingly difficult to ignore the role of the mucosal surface in 

aspects of microorganisms’ interaction with the gut mucosa. Gut epithelial cells 

represent the main sites at which environmental microorganisms and antigens 

interact with the host (Madara, 2004). They are one of the most important groups 

of surveillance systems; monitoring gut contents via sensing of microbial PAMPs 

through a group of PRRs leading to maintenance of the gut mucosa. Consequently, 

epithelial cells participate in or regulate both innate as well as adaptive immune 

responses (Flintoft, 2010). Epithelial cells recognise the microorganisms that are 

present in the gut lumen by a discriminatory system including TLRs and NLRs, 

which transduce signals from the gut lumen to the adjacent immune cells resident 

at the lamina propria such as the macrophages, DCs and lymphocytes (Abreu et 

al., 2005, Janssens and Beyaert, 2003, Kim et al., 2008, Takeda et al., 2003). 

They perform this task via molecules expressed on the cell surface, such as MHC 

I, MHC II, TLRs and cytokine cell receptors (Cario and Podolsky, 2000b). The 

outcome of the epithelial cell interactions with various stimuli is the release of 

many mediators such as cytokines and antimicrobial peptides (AMPs). Epithelial 

cells express a range of cytokine receptors that activate after binding with specific 

cytokines, followed by activation of specific transcriptional factors such as NF-kB, 

AP-1 and the STAT family, resulting in DNA binding and production of a range of 

cytokines (Bahrami et al., 2011b). Normally, cytokines can regulate each other; for 

example, TNF-α can induce IL-10 in monocytes (Foey et al., 1998) and IL-8 in 

epithelial cells (Eckmann et al., 1993a). Dignass and Podolsky (1993) reported 
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that mouse epithelial cells release TGF-β, promoting epithelial restitution and 

repair of tissue injury. In fact TGF-β is one of the main mediators promoting gut 

tolerance in mammalian species (Duchmann et al., 1995). Indeed, the epithelial-

mucosal barrier of the gut is integral to the maintenance of tolerance to luminal 

bacteria and food-borne antigens. The cellular interactions between epithelial cells 

and immune cells of the GALT are pivotal to this mucosal tolerance. Over the past 

century, there has been a dramatic increase in IBD as a result of losing tolerance 

to the gut flora (Molodecky et al., 2011). Recently, researchers have shown an 

increased interest in AMP expression particularly, hBD-2 because they kill 

pathogenic microorganisms, and at the same time modulate the mucosal immune 

response (Huttner and Bevins, 1999, Klüver et al., 2006). Therefore, the 

determining factors controlling the hBD-2 expression are very important in terms of 

maintaining gut mucosa associated with barrier function. Central to the entire 

discipline of hBD-2 expression is the concept of a clinical association between 

disease, especially between IBD and deficiency in hBD-2 production (Baumgart & 

Carding, 2007; Wehkamp et al., 2005). Based on the main proposed mechanisms 

of probiotic action exerted in the host which include modulation of the gut microbial 

content; maintenance of the integrity of the gut barrier (prevention of bacterial 

translocation) and modulation of the local immune response by the gut-associated 

immune system, recent developments in the field of probiotics have led to a 

renewed interest in the probiotic role in the treatments of gut diseases 

(Klaenhammer et al., 2012). Kotzampassi et al. (2012) reported that satisfactory 

evidence from randomised clinical trials (RCTs) is available to support the 

therapeutic use of probiotics in decreasing the incidence of antibiotic-associated 

diarrhoea (AAD) and Clostridium difficile infection (CDI) and acute gastroenteritis. 

Probiotic treatments shorten the duration of symptoms when administered in 
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paediatric populations with acute gastroenteritis. However, it should be highlighted 

that all analyses RCTs is considered by the type of probiotic species. Generally, 

probiotics are beneficial in the treatment and prevention of GIT diseases, for 

example, probiotics had a positive significant effect on pouchitis, infectious 

diarrhoea, irritable bowel syndrome (IBS), Helicobacter pylori, CDI, and ADD. 

Despite this, similar efficacy was not observed for traveller’s diarrhoea or 

necrotizing enterocolitis associated with the use of probiotic species L. acidophilus, 

L. plantarum, and B. infantis (Ritchie and Romanuk, 2012). Therefore, choice of 

probiotics is essential in the treatment or prevention of GIT disease; two factors 

need to be taken into consideration; type of probiotic stain and type of disease.  

Caco-2 cells were used as a model for intestinal epithelial cells in this study. Caco-

2 cells after full differentiation become enterocyte/M-like cell, and they express 

markers such as Ulex europaeus agglutinin (UEA)-1 mediated endocytosis (Gabor 

et al., 1998), CD155 mediated Poliovirus transcytosis (Ouzilou et al., 2002), and 

Salmonella pathogenicity island 1 (SP-1) mediated Salmonella translocation 

(Martinez-Argudo and Jepson, 2008). They express sophisticated responses to 

inflammatory stimuli. TNF-α and IL-1β are the main cytokines mediate gut 

pathology, leading to destruction of epithelial tissue in IBD (Cesaro et al., 2009, 

Cominelli and Pizarro, 1996). Numerous studies showed that treating Caco-2 cells 

with TNF-α induced a range of mediators including IL-8, ICAM-1, IP-10, MCP-1, 

TNF-α and MMP-1 (Sonnier et al., 2010, Treede et al., 2009), and treating cells 

with IL-1β also induced IL-2 and RANTES receptors, CCR1 (Rodr  guez-Juan et al., 

2001). Several studies showed that probiotics have a significant role in inducing 

cytokine expression in Caco-2 cells (Hosoi et al., 2003, Bahrami et al., 2011b). In 

addition, studies showed that probiotics regulate cytokine production in Caco-2 
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induced by inflammatory cytokines; probiotics, L. paracasei or L. plantarum, 

regulated IL-6 production in Caco-2 cells treated with IL-1β (Reilly et al., 2007). In 

addition to their roles in inducing cytokines, probiotics exhibit a significant role in 

inducing hBD-2 (Wehkamp et al., 2004). However, probiotic role in the regulation 

of cytokine (exogenous, membrane bound and intracellular) induced hBD-2 by 

human intestinal epithelial cells/ Caco-2 is so far not known. This study aimed to 

investigate the probiotic bacterial role in regulation of cytokines associated with 

hBD-2 expression, (refer to sections 2.2.4.1, 2.2.4.3, 2.2.4.5, 2.2.4.6), in order to 

build up a strong platform of knowledge about probiotic bacterial mechanisms in 

maintaining gut mucosa.   

The main questions addressed in this investigation are: 

Hypothesis 1: Probiotic bacterial strains are able to induce cytokine and hBD-2 

expression by intestinal epithelial cells (Caco-2 cells). 

Hypothesis 2: Probiotics regulate inflammatory signal (TNF-α and IL-1β)-induced 

cytokines and hBD-2  

Hypothesis 3: Probiotics regulate inflammatory signal (TNF-α and IL-1β)-induced 

epithelial TLR and NLR expression.   

4.2. Results  

4.2.1. Probiotic induction of IL-8 and hBD-2 production in epithelial cells 

To assess probiotic bacterial role in inducing cytokines and hBD-2 expression, LcS 

and LF probiotic bacteria whether heat killed or live bacterial cell format were used 

to treat the cultures of fully differentiated Caco-2 epithelial cells as described in 

section 2.2.4. The results, as shown in Fig.4.2.1, showed that both live and heat 
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killed probiotic bacteria induced IL-8 cytokine production. Live bacteria up-

regulated IL-8 by 714% and 285% of the control (7±0.0 pg/ml) at 12 hours, 

diminishing to 285% and 214% at 24 hours for LcS and LF respectively, at a 

density of 3x103 cfu/ml. This induction was both time-and bacterial density-

dependent, reaching maximal levels of 7500% (LcS) and 5600% (LF) at 12 hours 

for 3x109 cfu/ml and persisting at appreciable levels to 24 hours (Fig. 4.2.1A&B). 

HK cell format also induced IL-8 up to 214%, 142% at 12 hr, 285%, 814% at 24 hr 

at a density of 3X103 cfu/ml, augmenting to 685%, 342% at 12 hr, 842%, 1000% at 

24 hr at a density of 3x106 cfu/ml by LcS and LF respectively. Results showed that 

the induction of IL-8 was both time-and bacterial density-dependent, reaching 

maximal levels of 342%, 442% at 6 hr, 1371%, 1300% at 12 hr, 1928%, and 1500% 

at 24 hr at a density of 3x109cfu/ml (Fig. 4.2.1C&D). Live bacteria induced hBD-2 

up to 616% and, 533% of the control (12.1±.9 pg/ml) at a density of 3x103 cfu/ml, 

diminishing to 416% and 408% at a density of 3x106 cfu/ml, and further diminishing 

to 358% and 333% at 24 hr for LcS and LF respectively, at a density of 3x109 

cfu/ml (Fig.4.2.2A). Using HK format, hBD-2 production was augmented (from 

control, 12.1±.9 pg/ml) by 408% and 366% at a density of 3x103 cfu/ml, 

augmenting to 491% and 408% at a density of 3x106 cfu/ml, and further 

augmentation of 725% and 575% at 24 hr by LcS and LF respectively a density of 

3x109 cfu/ml (Fig.4.2.2B). 
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Figure 4.2. 1 : Probiotics induce IL-8 by Caco-2 cells. 

Caco-2 epithelial cells were treated with different concentration of Lactobacillus casei strain 

Shirota (LcS) or L.fermentum (LF) as a live cell format (A, B) or heat killed format (C, D) at a 

density of 3x10
3
, 3x10

6
, and 3x10

9
 cfu/ml for 6 hr,12 hr, and 24 hr. IL-8 cytokine production is 

expressed as mean±SE in pg/ml. Data displayed is a representative experiment with triplicate 

samples of n=4 replicate experiments. Significant effects compared to the control to the 

indicated epithelial cells are indicated as * P<0.05, ** P<0.01 and *** P<0.005, NS (non-

significant). 
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Figure 4.2. 2: Epithelial hBD-2 induction by probiotic bacteria. 

Caco-2 epithelial cells treated with different concentration of Lactobacillus casei strain Shirota 

(LcS) or L.fermentum (LF) as heat killed (HK) (B) or live bacterial cell format (A) at cell 

densities of 3x10
3
, 3x10

6
, and 3x10

9 
CFU/ml. hBD-2 production expressed as the mean±SE in 

pg/ml. Data displayed is a representative experiment with triplicate samples of n=4 replicate 

experiments. Significant effects compared to the control for the indicated probiotic treatment 

are indicated as * P<0.05, ** P<0.01 and *** P<0.005, NS (non-significant).  

4.2.2. Role of probiotic bacteria in the modulation of cytokine expression 
induced by TNF-α and IL-1β in epithelial cells 

Simple statistical analysis was used to determine the level of cytokine expression 

during TNF-α and IL-1β stimulation as a time course (please see section 2.2.4.3), 

using one way analysis of variance (ANOVA). Fig.4.2.3 shows that the stimulation 

of epithelial cells with TNF-α and IL-1β induced an array of cytokines. These 

cytokines differ in time to reach peak expression dependent on the type of stimuli. 

The peak of IL-8 cytokine production induced by TNF-α was at 12 hr (Fig.4.2.3A), 

TNF-α at 18 hr (Fig.4.2.3B), IL-10 at 9 hr (Fig.4.2.3C), IL-6 at 4 hr (Fig.4.2.3D). IL-
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8 induced by IL-1β reached its peak at 6 hr, TNF-α at 12 hr, IL-10 at 4 hr and IL-6 

at 9 hr. What is interesting in this data is that the kinetics of cytokine production by 

epithelial cells was stimulus dependent. As the epithelial cytokine release was time 

and-stimulus dependent, hBD-2 release was also timely and stimuli dependent. 

hBD-2 reached peak production at 12 hr using IL-1β, whereas it peaked at 18 hr 

using TNF-α (Fig. 4.2.4). A significant positive correlation was found between 

TNF-α (R= 0.95), IL-10 (R = 0.68) and the hBD-2 expression using TNF-α to 

stimulate epithelial cells, whereas only TNF-α (R=0.78) and hBD-2 were positively 

correlated using IL-1β as a stimulus. Interestingly, this correlation is related to the 

significant role of TNF-α in inducing hBD-2 expression whether using TNF-α or IL-

1β as stimuli.  

Uncontrolled expression of TNF-α and IL-1β are the main factors associated with 

gut pathology. Using these cytokines to induce cytokine expression in Caco-2 

epithelial cells resulted in different profiles of cytokine expression as shown earlier, 

therefore, this experiment was undertaken to establish whether heat-killed 

probiotics (in the absence of any nonspecific effects of lactic acid produced) from a 

panel of probiotic bacteria exert immunomodulatory effects on cytokine expression 

of IL-8, TNF-α, IL-6, and IL-10. In addition, hBD-2 release by epithelial cells 

induced by TNF-α or IL-1β was quantified (please refer sections 2.2.3.7 and 

2.2.4.1). It is apparent from this data that probiotic treatments selectively regulated 

cytokine expression induced by TNF-α or IL-1β in Caco-2 cells. Results showed 

that the probiotic treatments augmented TNF-α induced IL-8 mRNA levels, and 

among the probiotic treatments, LR exhibited the highest induction of TNF-α 

induced IL-8 (Fig.4.2.5A). Probiotic treatments also augmented TNF-α induced 

TNF-α mRNA levels, however, LcS exhibited the highest induction of TNF-α 
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induced TNF-α mRNA level (Fig.4.2.5B). Probiotic treatments selectively regulated 

IL-10 expression, BB, LS, LR, LcS, and LP augmented TNF-α induced IL-10 

mRNA levels, and among them BB treatment exhibited the highest induction of 

TNF-α induced IL-10. LF treatment, however, had a significant suppressive effect 

on TNF-α induced IL-10 (Fig.4.2.5C). IL-6 expression induced by TNF-α was also 

selectively modulated by probiotic bacteria - BB, LS, LR, LF or LP augmented IL-6, 

whereas LcS exhibited no effects. Among the probiotic treatments, LR exhibited 

the highest induction of TNF-α induced IL-6 (Fig.4.2.5D). Results showed that LR 

exhibited the highest induction of TNF-α induced IL-8 and IL-6, whereas, LcS 

induced the highest induction of TNF-α, and BB induced the highest induction of 

IL-10 mRNA level.   

At the protein level, IL-8 cytokine production induced by TNF-α was significantly 

augmented by probiotic treatments: LS treatment exhibited the highest induction of 

TNF-α induced IL-8 (Fig.4.2.5A1). For TNF-α, results indicated that BB, LS, LR, 

LcS down-regulated TNF-α induced TNF-α, and among them, LR treatment 

exhibited the highest suppressive effects on TNF-α (Fig.4.2.5B1). LF and LP 

treatments augmented TNF-α induced TNF-α, whereas LP treatment exhibited the 

highest induction of TNF-α (Fig.4.2.5B1). IL-10 production was up-regulated by BB, 

LS, LR or LcS, and again BB treatment exhibited the highest induction of TNF- α 

induced IL-10. LF and LP treatments suppressed TNF-α induced IL-10 

(Fig.4.2.5C1). IL-6 induced by TNF-α was up-regulated by LR more than by LS 

whereas, BB, LcS, LF or LP exhibited no effects in modulation of TNF-α induced 

IL-6 (Fig.4.2.5D1).  

Further analysis showed that probiotics selectively modulated cytokine production 

induced by IL-1β. BB, LS, LR, LcS, LF and LP augmented IL-1β induced IL-8 
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mRNA levels, and among probiotic treatments, LR exhibited the highest induction 

of IL-8 mRNA (Fig.4.2.6A). LcS treatment exhibit the highest induction of TNF-α 

mRNA level, whereas LF and LP had no effect on regulation of IL-1β induced 

TNF-α levels (Fig.4.2.6B). LF and LP had significantly augmented IL-10, whereas 

BB, LS, LR, LcS suppressed IL-1β induced IL-10 (Fig.4.2.6C). IL-6 mRNA level 

induced by IL-1β was suppressed by BB, LS and LR, and augmented by LcS and 

LF (Fig.4.2.6D). At the protein, level LF probiotic treatment exhibited the highest 

induction of IL-1β induced IL-8, whereas only LP significantly suppressed IL-1β 

induced IL-8 (Fig.4.2.6A1). TNF-α expression induced by IL-1β was suppressed by 

LR, LcS and LP, whereas BB, LS, and LF exhibited no modulatory effect on IL-1β 

induced TNF-α (Fig.4.2.6B1). IL-10 induced by IL-1β was down-regulated by BB, 

LS, LR, and LcS, whereas LF or LP augmented IL-1β induced IL-10 (Fig.4.2.6C1) 

Among probiotic treatments, LcS exhibited the highest suppressive effects on IL-

1β induced IL-10, whereas, LF treatment exhibited the highest augmentation of IL-

10. IL-6 induced by IL-1β was up-regulated by BB, LS, LR and LcS, whereas 

suppressed by LF and LP (Fig.4.2.6D1). Overall, probiotic treatments exhibit two 

faces in modulating the immune responses by Caco-2 epithelial cells in the 

presence of two types of inflammatory factors (TNF-α and IL-1β).  
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Figure 4.2. 3: TNF-α and IL-1β induce a range of epithelial cytokine production. 

Caco-2 epithelial cells were treated with 10 ng/ml of TNF-α or 5 ng IL-1β at each time point (0, 

1, 2, 4, 6, 9, 12, 18, and 24) hr. Cytokine IL-8 (A), TNF-α (B), IL-10 (C), and IL-6 (D) 

production is expressed as the mean±SE in pg/ml. Data displayed is a representative 

experiment with triplicate samples of n=4 replicate experiments. Significant effects compared 

to the control (un-stimulated cells) are indicated as * P<0.05, ** P<0.01 and *** P<0.005, NS 

(non-significant). 
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Figure 4.2. 4: Pro-inflammatory cytokines TNF-α and IL-1β induce hBD-2 in 

epithelial cells. 

Caco-2 epithelial cells treated with 10 ng/ml of TNF-α or 5 ng IL-1β at each time point (0, 1, 2, 

4, 6, 9, 12, 18, and 24) hr. hBD-2 production is expressed as the mean±SE in pg/ml. Data 

displayed is a representative experiment with triplicate samples of n=4 replicate experiments. 

Significant effects compared to the control (un-stimulated cells) are indicated as * P<0.05, ** 

P<0.01 and *** P<0.005. 
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Figure 4.2. 5 : Heat killed probiotic bacterial strains selectively modulate epithelial 

cytokine expression induced by TNF-α. 
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Caco-2 cells pre-treated with heat killed (HK) of B.breve (BB), L.salivarius (LS), L. rhamnosus 

GG (LR), L.casie strain Shirota (LcS), L.fermentum (LF), and L. plantarum (LP) at a density of 

3x10
8
 cfu/ml for 18hr, followed by stimulation with 10 ng/ml TNF-α. Cytokine production of IL-8 

(A1), TNF-α (B1), IL-10 (C1) and IL-6 (D1) are expressed as the mean±SE in pg/ml and gene 

expression (mRNA level) is expressed as fold change using GAPDH as reference gene and 

resting cells as a calibrator sample as described by Livak et al.(2001) using 2
- ΔΔCt 

(A, B, C, D). 

Data displayed is a representative experiment with triplicate samples of n=3 independent 

experiments. Significant effects compared to the control (+TNF-α) are indicated as * P<0.05, ** 

P<0.01 and *** P<0.005, NS (non-significant). 
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Figure 4.2. 6: Heat killed probiotic bacterial strains selectively modulate epithelial 

cytokine expression induced by IL-1β. 

Caco-2 cells pre-treated with heat killed (HK) of B.breve (BB), L.salivarius (LS), L. rhamnosus 

GG (LR), L.casei strain Shirota (LcS), L.fermentum (LF), and L. plantarum (LP) at a density of 

* 
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3x10
8 

cfu/ml for 18hr, followed by stimulation with 5ng/ml IL-1β. Cytokine production of IL-8 

(A1), TNF-α (B1), IL-10 (C1) and IL-6 (D1) are expressed as the mean±SE in pg/ml and gene 

expression (mRNA level) is expressed as fold change using GAPDH as reference gene and 

resting cells as a calibrator sample as described by Livak et al. (2001) using 2
– ΔΔCt

. (A, B, C, 

and D). Data displayed is a representative experiment with triplicate samples of n=3 replicate 

experiments. Significant effects compared to stimulus control (+IL-1β) for the indicated 

epithelial cells are indicated as * P<0.05, ** P<0.01 *** P<0.005 and NS (non-significant). 

4.2.3. Probiotics selectively regulated TNF-α or IL-1β induced hBD-2 in 
epithelial cells 

To assess levels of hBD-2 expression in epithelial cells induced by TNF-α or IL-1β 

in the presence of probiotic treatments, fully-differentiated Caco-2 cells pre-treated 

with HK of BB, LR, LS, LcS, LF and LP followed by stimulation with 10 ng/ml TNF-

α, (please refer section 2.2.4.1 and Fig.1.7 line 2). Results indicated that hBD-2 

mRNA expression induced by TNF-α was differentially regulated by probiotics, LF 

and LP had significant effects on the augmentation of hBD-2 expression, whereas 

BB, LS, LR or LcS suppressed TNF-α induced hBD-2. Among probiotic treatments, 

LF exhibited the highest effects in augmentation of TNF-α induced hBD-2 Fig.4.2.7. 

At the protein level, BB, LS, LR, and LcS suppressed hBD-2 expression, whereas 

LF and LP augmented TNF-α induced hBD-2 (Fig.4.2.7A1). IL-1β was used to 

induce hBD-2 expression in Caco-2 epithelial cells; results showed that probiotic 

treatments selectively modulated IL-1β induction of hBD-2. BB, LS, LR, LcS 

augmented IL-1β induced hBD-2 expression, whereas LF and LP had no 

modulating effect on IL-1β induced hBD-2 mRNA (Fig.4.2.7B). At the protein level, 

BB, LS, LR and LcS augmented IL-1β induced hBD-2; whereas LF treatment 

suppressed IL-1β, induced hBD-2 and LP had no effect (Fig.4.2.7B1). The most 

striking result to emerge from the data is that probiotic treatments exert two sides 

in modulation of stimuli that induced hBD-2 expression.  
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Figure 4.2. 7 : Heat killed probiotic bacterial strains selectively modulate epithelial 

hBD-2 expression induced by TNF-α or IL-1β. 

Caco-2 epithelial cells pre-treated with heat killed (HK) B.breve (BB), L.salivarius (LS), 

L.rhamnosus GG (LR), L. casei strain Shirota (LcS), L.fermentum (LF), and L.plantarum (LP) 

at a density of 3x10
8 
cfu/ml for 18hr, followed by stimulation with 10 ng/ml TNF-α(A) or 5 ng/ml 

IL-1β (B). hBD-2 production is expressed as the mean±SE in pg/ml (A1, B1), and gene 

expression (mRNA level) is expressed as fold change using GAPDH as reference gene and 

resting cells as a calibrator sample as described by Livak et al. (2001) using 2
– ΔΔCt

. (A, B,). 

Data displayed is a representative experiment with triplicate samples of n=3 replicate 

experiments. Significant effects compared to stimulus control (+IL-1β or +IL-1β) for the 

indicated epithelial cells are indicated as * P<0.05, ** P<0.01 *** P<0.005 and NS (non-

significant). 
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4.2.4. Probiotic bacterial strains selectively modulate IL-1β or TNF-α induced 
cytokines after neutralisation of the bioactivity of TNF-α or IL-10 in epithelial 
cells  

The first set of analyses examined the impact of probiotic bacterial treatments on 

modulation of the release of cytokines (cell associated or exogenous expression) 

induced by TNF-α and IL-1β (Fig.4.2.5& Fig.4.2.6). To assess the probiotic 

bacterial role in modulation of TNF-α or IL-1β induced epithelial cytokine 

expression after neutralisation of TNF-α or IL-10 bioactivity. The first set of 

analyses used cultures of Caco-2 cells pre-treated with probiotics in the presence 

or absence of anti-TNF-α or anti-IL-10 neutralising antibodies, and the second set 

of analyses was performed by pre-treating Caco-2 cells with probiotics followed by 

stimulation of cells with IL-1β or TNF-α in the presence of anti-TNF-α or anti-IL-10 

antibodies (please refer section 2.2.4.6 and Fig.1.7 line 2).   

In Fig.4.2.8, there is a clear trend of cytokine modulation induced by different 

stimuli in the absence of IL-10 or TNF-α. Results showed that treating resting cells 

with anti-IL-10 antibody results in up-regulation of TNF-α mRNA and protein levels 

Fig.4.2.8 A & A1. Stimulation of cells with IL-1β induced more TNF-α (mRNA and 

protein) than stimulation of cells with TNF-α. Treating cells stimulated with TNF-α 

with anti-IL-10 antibody caused up-regulation of TNF-α (mRNA and protein) 

Fig.4.2.8B & B1, whereas treating IL-1β-stimulated cells with anti-IL-10 antibody 

suppressed TNF-α (Fig.4.2.8C & C1). Determination of free cytokine TNF-α is 

indirectly determining the IL-10 bioactivity. Figure 4.2.8 showed that Caco-2 

intestinal epithelial cells exhibit different profiles of IL-10 bioactivity, which is 

stimulus dependent. Stimulating cells with IL-1β suppressed the IL-10 bioactivity, 

whereas stimulating cells with TNF-α augmented IL-10 bioactivity in epithelial cells. 
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Data from Fig.4.2.5 can be compared with the data in Fig.4.2.6 which shows that 

probiotics exhibit either pro-inflammatory or anti-inflammatory effects via 

suppression or augmentation of the exogenous TNF-α and IL-10 expression, 

therefore, LcS (as a probiotic bacteria with a rigid cell wall resistant to lysozyme 

digestion) was chosen from one group, and LF (as a probiotic bacteria sensitive to 

lysozyme digestion) was chosen from another one (refer to section 2.2.4.1) to test 

the ability of probiotics in modulation of cytokines after neutralisation of IL-10 or 

TNF-α bioactivity. Results showed that treating resting cells with LcS and LF up-

regulated TNF-α (mRNA and protein) levels. LcS suppressed TNF-α after 

neutralisation of IL-10, whereas LF treatment up-regulated it as mRNA or protein 

(Fig.4.2.9A & A1). Where cells were pre-treated with probiotics followed by 

stimulation with TNF-α in the presence of anti-IL-10 antibody, results showed that 

TNF-α mRNA and protein levels were up-regulated by LcS and LF after 

neutralisation of IL-10 bioactivity (Fig.4.2.9B & B1). In contrast, cells stimulated 

with IL-1β previously treated with probiotics in the presence of anti-IL-10 antibody, 

showed TNF-α augmented by probiotic (Fig.4.2.9C), whereas at protein level 

probiotics suppressed TNF-α induced by IL-1β after neutralisation of IL-10 

bioactivity (Fig.4.2.9C1). Figure 4.2.9 showed that probiotic treatments negatively 

regulated IL-10 bioactivity when cells were stimulated with TNF-α and positively 

regulated IL-10 bioactivity when cells were stimulated with IL-1β. For assessing IL-

10 expression after neutralisation of TNF-α bioactivity in Caco-2 cells (refer to 

section 2.2.4.6 and Fig.1.7 line 2), results indicated that neutralisation of TNF-α 

bioactivity suppressed IL-10 mRNA, and had no effect on protein level in resting 

cells. Treating resting cells with LcS or LF augmented IL-10 expression (mRNA 

and protein), suggesting that probiotics exhibited a significant role in the 

augmentation of IL-10 in the absence of TNF-α (Fig.4.2.10A & A1). Where cells 
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were pre-treated with probiotics then stimulated with TNF-α in the presence of 

anti-TNF-α antibody, IL-10 mRNA and protein levels were augmented by LcS and 

LF treatments (Fig.4.2.10B & B1). Similarly, stimulation of cells with IL-1β in the 

presence of anti-TNF-α antibody, the probiotics augmented IL-1β induced IL-10 

(Fig.4.2.10C & C1). The data demonstrated that probiotic treatments exhibited 

significant effects in up-regulation of IL-10 induced by TNF-α or IL-1β in the 

absence of TNF-α.  
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Figure 4.2. 8 : Caco-2 express membrane bond IL-10 selectively regulated by pro-

inflammatory cytokines (TNF-α and IL-1β). 

Caco-2 cells stimulated with 10 ng/ml TNF-α or 5 ng/ml IL-1β for 18hr followed by treating with 

10 µg/ml of anti-IL-10 antibody for 18hr. Cytokine production is expressed as the mean±SE in 

pg/ml (A1, B1, C1) and gene expression (mRNA level) is expressed as fold change using 

GAPDH as reference gene and resting cells as a calibrator sample as described by Livak et al. 

(2001) using 2
– ΔΔCt

 (A, B, C). Data displayed is a representative experiment with triplicate 

sample of n=5 independent experiments. Significant effects compared to the control are 

indicated as * P<0.05, ** P<0.01 and *** P<0.005 and NS (non-significant). 
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Figure 4.2. 9: Heat killed probiotic bacterial strains selectively modulate TNF-α or 

IL-β induced TNF-α after neutralisation the IL-10 bioactivity in epithelial cells. 
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Caco-2 cells treated with heat killed of Lactobacillus casei strain Shirota (LcS) or L. fermentum 

(LF) at a cell density of 3x10
8 

CFU/ml for 18hr, followed by stimulating cells with 10 ng/ml 

TNF-α or 5 ng/ml IL-1β in the presence or absence of 10 µg/ml of anti-IL-10 antibody for 18hr. 

Cytokine production is expressed as the mean±SE in pg/ml (A1, B1, C1) and gene expression 

(mRNA level) is expressed as fold change using GAPDH as reference gene and resting cells 

as a calibrator sample as described by Livak et al. (2001) using 2
– ΔΔCt 

(A, B, C). Data 

displayed is a representative experiment with triplicate sample of n=4 independent 

experiments. Significant effects compared to the control (stimulated cells) are indicated as * 

P<0.05, ** P<0.01 and *** P<0.005, NS (non-significant).  
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Figure 4.2. 10: Heat killed probiotic bacterial strains selectively modulate TNF-α or 

IL-1β induced IL-10 after neutralisation of TNF-α bioactivity in epithelial cells. 
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Caco-2 cells treated with heat killed (HK) Lactobacillus casei strain Shirota (LcS) or 

L.fermentum (LF) at a cell density of 3x10
8 

CFU/ml for 18hr followed by stimulation with 10 

ng/ml TNF-α or 5ng/ml IL-1β in the presence or absence of 10µg/ml of anti-TNF-α antibody for 

18hr. Cytokine production is expressed as the mean±SE in pg/ml (A1, B1, C1), and gene 

expression (mRNA level) is expressed as fold change using GAPDH as reference gene and 

resting cells as a calibrator sample as described by Livak et al. (2001) using 2
– ΔΔCt 

(A, B, C).  

Data displayed is a representative experiment with triplicate samples of n=4 independent 

experiments. Significant effects compared to the control (stimulated cells) are indicated as * 

P<0.05, ** P<0.01 and *** P<0.005 and NS (non-significant).  

4.2.5. Probiotic treatments selectively modulate TNF-α or IL-1β induced hBD-
2 after neutralisation of the bioactivity of IL-10 or TNF-α in epithelial cells  

Data in Fig.4.2.4 shows that cytokine (TNF-α, IL-β) treatments exhibited significant 

effects in inducing hBD-2 expression, therefore this experiment was undertaken to 

establish whether hBD-2 was regulated by TNF-α or IL-1β in the presence or 

absence of TNF-α or IL-10 (refer to section 2.2.4.6 and Fig.1.7 line 2). Results 

showed that the neutralisation of TNF-α, results in suppression of hBD-2 mRNA 

and no effect at the protein level, whereas neutralisation of the IL-10 bioactivity 

results in augmentation of hBD-2 as mRNA and protein (Fig.4.2.11A & A1). 

Stimulating cells with TNF-α followed by treating cells with anti-TNF-α antibody 

showed that hBD-2 was suppressed at mRNA and protein levels, whereas treating 

cells with anti-IL-10 antibody results in up-regulation of hBD-2 at mRNA and 

protein levels (Fig.4.2.11B & B1). The more surprising correlation is with TNF-α, in 

the absence of TNF-α there is no hBD-2 expression in epithelial cells. Similarly, 

hBD-2 suppressed at mRNA and protein levels in cells stimulated with IL-1β 

followed by treating cells with anti-TNF-α antibody. Whereas hBD-2 expression 

was augmented in cells pre-stimulated with IL-1β followed by treating cells with 

anti-IL-10 antibody at mRNA level, and suppressed at protein level (Fig.4.2.11C & 

C1).  
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Data in Fig.4.2.7 shows that probiotic bacterial treatments significantly modulated 

hBD-2 expression induced by TNF-α or IL-1β. To determine probiotic effects on 

the modulation of hBD-2 expression induced by TNF-α or IL-1β, the first set of 

analyses was performed by pre-treating Caco-2 cells with probiotics followed by 

treating them with anti-TNF-α or anti-IL-10 to assess probiotic bacterial roles in 

modulation of hBD-2. Second set of analyses was performed by pre-treating Caco-

2 cells with probiotics followed by stimulation with IL-1β or TNF-α in the presence 

or absence of anti-IL-10 or anti-TNF-α antibody to assess the probiotic bacterial 

role in modulation of IL-1β or TNF-α induced hBD-2 expression (refer to section 

2.2.4.6 and Fig.1.7 line 2). Concerning the first set of analyses, results showed 

that the presence of probiotics selectively modulated hBD-2 expression, LcS 

treatment up-regulated hBD-2 mRNA and LF treatment did not significantly 

modulate it, however, both LcS and LF non-significantly (P-value 0·59) modulated 

hBD-2 at protein levels after neutralisation of TNF-α bioactivity. In cells pre-treated 

with probiotics followed by treating with anti-IL-10 antibody, hBD-2 was up-

regulated by LcS, whereas protein was suppressed. In contrast, LF suppressed 

hBD-2 mRNA level, whereas protein was augmented (Fig.4.2.12A & B). Data 

showed that LF treatment negatively regulated IL-10 bioactivity at the protein level, 

thereby up-regulating hBD-2 expression, in contrast with LcS treatment, which 

positively regulated IL-10 bioactivity resulting in suppression of hBD-2 in epithelial 

cells.  

Referring to the second analysis set, the comparisons between different 

inflammatory scenarios where TNF-α or IL-1β is predominant, probiotic treatments 

selectively modulated hBD-2 expression (Fig.4.3.13). Results indicated that hBD-2 

mRNA expression by cells pre-treated with probiotics then stimulated with TNF-α 
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in the presence of anti-TNF-α antibody was not significantly modulated by LcS 

treatment, whereas LF treatment up-regulated hBD-2 mRNA levels suggesting 

that LF treatment augmented hBD-2 mRNA induced by TNF-α after neutralisation 

of the TNF-α bioactivity, whereas LcS treatment failed (Fig.4.2.13A). Where cells 

were pre-treated with probiotics followed by stimulation with TNF-α in the presence 

of anti-IL-10 antibody, hBD-2 mRNA was suppressed by LcS, and augmented by 

LF suggesting that LcS suppressed TNF-α induced hBD-2 mRNA, whereas LF 

treatment augmented TNF-α induced hBD-2 mRNA after neutralisation of IL-10 

bioactivity. At the protein level, probiotics failed to modulate TNF-α induced hBD-2 

after neutralisation of TNF-α bioactivity regulated hBD-2 expression, whereas LF 

treatment augmented TNF-α induced hBD-2, and LcS suppressed TNF-α induced 

hBD-2 after neutralisation of the IL-10 bioactivity (Fig.2.3.13B). Results showed 

that at the breakdown of tolerance where IL-10 bioactivity was absent, LF 

treatment exhibited significant anti-inflammatory effects via up-regulation of TNF-α 

induced hBD-2 facilitating a good chance for bacterial clearance leading to 

maintenance of the gut barrier. The more surprising correlation is with TNF-α 

regulating hBD-2 expression, when probiotics failed to induce or regulate hBD-2 

expression when TNF-α was absent after its neutralisation.  

Where cells were pre-treated with probiotics followed by stimulation with IL-1β in 

the presence of anti-TNF-α antibody, probiotics augmented IL-1β induced hBD-2 

mRNA after neutralisation of the TNF-α bioactivity. Whereas, IL-1β induced hBD-2 

selectively modulated after neutralisation of IL-10 bioactivity, LcS up-regulated IL-

1β induced hBD-2 and LF non-significantly suppressed IL-1β induced hBD-2 

mRNA. At the protein level, LcS augmented IL-1β induced hBD-2 at the 

neutralisation TNF-α bioactivity, whereas LF treatment suppressed it. Both 
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probiotic strains suppressed IL-1β induced hBD-2 at the neutralisation IL-10 

bioactivity (Fig.4.2.13B). Data showed that probiotics selectively modulated the 

inflammatory signal induced hBD-2, which depended on the background setting of 

the cells, either homeostatic status (when IL-10 was available) or inflammatory 

status when IL-10 was absent. Data showed that probiotic treatment modulated 

hBD-2 induced by either TNF-α or IL-1β via modulation of membrane bound of IL-

10 or TNF-α.    
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Figure 4.2. 11 : hBD-2 expression induced by TNF-α or IL-1β selectively modulated 

by membrane bound of TNF-α or IL-10 in epithelial cells. 

Caco-2 epithelial cells treated with 10 µg/ml of anti-TNF-α, or anti-IL-10 antibody in the 

presence or absence of 10 ng/ml TNF-α or 5 ng/ml IL-1β for 18hr. hBD-2 production is 

expressed as mean±SE in pg/ml (A1, B1, C1), and gene expression (mRNA level) is 

expressed as fold change using GAPDH as reference gene and resting cells as a calibrator 

sample as described by Livak et al. (2001) using 2
– ΔΔCt 

(A, B, C). Data displayed is a 

representative experiment with triplicate samples of n=4 independent experiments. Significant 
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effects compared to the control (stimulated cells) are indicated as * P<0.05, ** P<0.01 and *** 

P<0.005 and NS (non-significant). 

 

Figure 4.2. 12: Heat killed probiotic bacterial strains selectively modulate TNF-α or 

IL-1β induced hBD-2 after neutralisation of the TNF-α or IL-10 bioactivity in 

epithelial cells. 

Caco-2 epithelial cells treated with 10 µg/ml of anti-TNF-α or anti-IL-10 antibody in the 

presence or absence of 3x10
8 

CFU/ml of probiotic bacteria Lactobacillus casei strain Shirota 

(LcS) or L.fermentum (LF) for 18hr. hBD-2 gene expression (mRNA level) is expressed as fold 

change using GAPDH as reference gene and resting cells as a calibrator sample as described 

by Livak et al. (2001) using 2
– ΔΔCt 

(A) and protein level is expressed as the mean±SE in pg/ml 

(B). Data displayed is a representative experiment with triplicate samples of n=4 independent 
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experiments. Significant effects compared to the control (stimulated cells) are indicated as * 

P<0.05, ** P<0.01 and *** P<0.005, NS (non-significant). 

 

Figure 4.2. 13: Heat killed probiotic bacterial strains selectively modulate TNF-α or 

IL-1β induced hBD-2 after neutralisation of the TNF-α or IL-10 bioactivity in 

epithelial cells. 

Caco-2 cells treated with 10µg/ml of anti-TNF-α, or anti-IL-10 antibody in the presence or 

absence of 3x10
8
CFU/ml of probiotic bacteria Lactobacillus casei strain Shirota (LcS) or L. 

fermentum (LF) in the presence or absence of 10 ng/ml TNF-α or 5 ng/ml IL-1β for 18hr. hBD-

2 production is expressed as the mean±SE in pg/ml (A1, B1), and gene expression (mRNA 

level) is expressed as fold change using GAPDH as reference gene and resting cells as a 
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calibrator sample as described by Livak et al. (2001) using 2
– ΔΔCt 

(A, B). Data displayed is a 

representative experiment with triplicate samples of n=4 independent experiments. Significant 

effects compared to the control (stimulated cells) are indicated as * P<0.05, ** P<0.01 and *** 

P<0.005, NS (non-significant).   

4.2.6. Probiotic bacterial role in modulation of the suppressive activity of 
exogenous IL-10 regulated hBD-2 expression induced by TNF-α or IL-1β.  

Strong evidence of IL-10 bioactivity was found in controlling hBD-2 expression 

(Fig.4.2.13), therefore, further investigation was performed to determine the effect 

of exogenous IL-10 on hBD-2 expression (refer to section 2.2.4.6). Analysis of 

variance (ANOVA) was used to analyse the relationship between exogenous IL-10 

and hBD-2 expression (P-value 0·005). Interestingly, for those cells treated with 

IL-10, hBD-2 was up-regulated by 7.3 fold change (from control 1±0), while there 

was no significant effect at the protein level. Whereas, treating cells previously 

stimulated by TNF-α or IL-1β with IL-10 suppressed hBD-2 expression (mRNA and 

protein level) (Fig.4.2.14A & A1). Probiotic presence (LF and LcS) up-regulated 

hBD-2 mRNA levels. At the protein level, where cells were stimulated with IL-1β 

followed by treating with IL-10, probiotic treatments up-regulated TNF-α induced 

hBD-2 whereas, they selectively modulated IL-1β induced hBD-2; LcS treatment 

augmented IL-1β induced hBD-2 while LF treatment suppressed it (Fig.4.2.14B1).   
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Figure 4.2. 14 : Exogenous IL-10 suppressed epithelial hBD-2 expression: Probiotic 

modulation of suppressive activity. 

Caco-2 epithelial cells pre-treated with 3x10
8 

CFU/ml of probiotic bacteria LcS or LF followed 

by stimulation with 10 ng/ml TNF-α or 5 ng/ml IL-1β in the presence or absence of 10 ng/ml IL-

10 for 18r. hBD-2 production is expressed as mean±SE in pg/ml (A1, B1), and gene 

expression (mRNA level) is expressed as fold change using GAPDH as reference gene and 

resting cells as a calibrator sample as described by Livak et al. (2001) using 2
– ΔΔCt 

(A, B). 

Data displayed is a representative experiment with triplicate samples of n=4 independent 

experiments. Significant effects compared to the control (stimulated cells) are indicated as * 

P<0.05, ** P<0.01 and *** P<0.005, NS (non-significant).  
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4.2.7. Probiotic bacterial role in modulation of TLR expression induced by 
TNF-α or IL-1β after neutralisation of IL-10 or TNF-α bioactivity  

On the question of the probiotic bacterial role in the modulation of cytokine 

induced hBD-2 expression, this study found that probiotic treatments selectively 

modulated cytokine induced hBD-2 expression. One possible cause of these 

effects exerted by probiotic treatments is via modulation of TLR expression. 

Results indicated that treating cells with anti-TNF-α antibody suppressed TLR4 

expression, and probiotic presence resulted in further suppression of TLR4 under 

these conditions, whereas treating cells with anti-IL-10 antibody up-regulated 

TLR4, and probiotic presence resulting in further up-regulation of TLR4 expression 

(Fig.4.2.15A). Stimulating cells with TNF-α resulted in up-regulation of TLR4, 

whereas, treating cells previously stimulated by TNF-α with anti-TNF-α antibody 

resulted in suppression of TLR4, besides that, probiotics presence resulted in the 

further suppression of TLR4. In contrast, treating cells stimulated by TNF-α with 

anti-IL-10 antibody resulted in augmentation of TLR4, and probiotic presence 

resulted in augmentation of TLR4 (Fig.4.2.15B). Stimulating resting cells with IL-1β 

up-regulated TLR4, and treating these cells with anti-TNF-α antibody resulted in 

up-regulation of TLR4, however, probiotic presence resulted in suppression of 

TLR4. Nevertheless, treating cells previously stimulated by IL-1β with anti-IL-10 

antibody up-regulated TLR4, and with probiotic presence TLR4 was suppressed in 

these cells (Fig.4.2.15C).   

TLR2 was suppressed after treating cells with anti-TNF-α antibody whereas, 

probiotics in this setting, up-regulated it. In contrast, treating resting cells with anti-

IL-10 antibody up-regulated TLR2; probiotic presence suppressed it (Fig.4.2.15D). 

Stimulating cells with TNF-α up-regulated TLR2, whereas neutralisation of TNF-α 

bioactivity suppressed TLR2 and probiotic presence resulted in up-regulation 
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TLR2 expression. Stimulating cells with TNF-α followed by neutralisation of IL-10 

bioactivity resulted in up-regulation of TLR2 expression, and probiotic presence 

resulted in suppression of TLR2 (Fig.4.2.15E). Stimulating cells with IL-1β up-

regulated TLR2, whereas treating cells with anti-TNF-α antibody previously 

stimulated with IL-1β resulted in suppression of TLR2, and probiotic presence 

resulted in up-regulation of TLR2 expression. However, treating cells with anti-IL-

10 antibody previously stimulated with IL-1β up-regulated TLR2 expression, 

besides that, presence of probiotics suppressed TLR2 induced by IL1β 

(Fig.4.2.15F).  

Treating resting cells with anti-TNF-α antibody suppressed CD14, and probiotic 

presence resulted in the further suppression of CD14 expression. In contrast, 

treating cells with anti-IL-10 antibody up-regulated CD14 probiotic presence 

resulted in suppression of CD14 (Fig.4.2.16A). Stimulating cells with TNF-α 

resulted in up-regulation of CD14, however, treating these cells with anti-TNF-α 

antibody resulted in suppression CD14 expression, and probiotic presence in this 

setting selectively modulated TNF-α induced CD14 i.e. less suppressed IL-1β-

induced CD14 expression, whereas LF treatment up-regulated it. On the other 

hand, treating cells stimulated by TNF-α with anti-IL-10 antibody resulted in 

augmentation of CD14 and probiotics presence in this setting suppressed CD14 

expression (Fig.4.2.16B). Stimulating cells with IL-1β up-regulated CD14 

expression, whereas, treating stimulated cells with anti-TNF-α antibody resulted in 

suppression of CD14 expression, and probiotic presence resulted in the further 

suppression of CD14 expression. Nevertheless, stimulating cells with IL-1β 

followed by treating with anti-IL-10 antibody resulted in up-regulation of CD14 
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expression and probiotic presence resulted in the further suppression of CD14 

(Fig.4.2.16C).   

MD-2 expression was suppressed after neutralisation of the TNF-α bioactivity, and 

probiotic presence resulted in augmentation of it. In contrast, treating resting cells 

with anti-IL-10 antibody up-regulated MD-2 expression, and probiotic presence 

resulted in suppression of MD-2 (Fig.4.2.16D). Stimulating cells with TNF-α 

augmented MD-2, however, treating cells stimulated by TNF-α with anti-TNF-α 

antibody suppressed it, and probiotic presence at this setting resulting in 

suppression MD-2 expression. Comparing the LcS and LF treatment (where cells 

treated with anti TNF-α followed by stimulation with TNF-α), data showed that LcS 

treatment exhibited more suppression of MD-2 than LF. Similar effects were 

exhibited by LcS when cells were stimulated by TNF-α then treated with anti-IL-10 

antibody (Fig.4.2.16E). Stimulating cells with IL-1β up-regulated MD-2, whereas 

treating cells stimulated by IL-1β with anti-TNF-α antibody suppressed MD-2 and 

probiotic LcS augmented it, whereas LF failed to modulate TNF-α induced MD-2 

after neutralisation of the TNF-α bioactivity. Treating cells stimulated by IL-1β with 

anti-IL-10 antibody suppressed MD-2 expression and probiotic presence caused 

further suppression of MD-2 induced by IL-1β after neutralisation of the IL-10 

bioactivity (Fig.4.2.16F). 
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Figure 4.2. 15: Heat killed probiotic bacterial strains selectively modulate TNF-α or 

IL-1β induced TLR4 and TLR2 expression after neutralisation of TNF-α or IL-10 

bioactivity in epithelial cells. 
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Caco-2 cells pre-treated with 3x10
8 

CFU/ml of heat killed probiotic bacteria Lactobacillus 

casei strain Shirota (LcS) or L. fermentum (LF) for 18hr, followed by treating cells with 10 

µg/ml of anti-TNF-α, or anti-IL-10 antibody for 18hr (A, D). Cells pre-treated with probiotic for 

18hr, followed by stimulation with 10 ng/ml TNF-α in the presence or absence of 10 µg/ml 

anti-TNF-α or anti-IL-10 (B, E), or stimulation with 5 ng/ml IL-1β in the presence or absence 

of 10 µg/ml anti-TNF-α or anti-IL-10 (C, F) for 18hr. TLR4 or TLR2 gene expression (mRNA 

level) is expressed as fold change using GAPDH as reference gene and resting cells as a 

calibrator sample as described by Livak et al. (2001) using 2
– ΔΔCt

. Data displayed is a 

representative experiment with triplicate samples of n=3 independent experiments. 

Significant effects compared to the control are indicated as * P<0.05, ** P<0.01 and *** 

P<0.005, and NS (non-significant). 
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Figure 4.2. 16 : Heat killed probiotic bacterial strains selectively modulate TNF-α or 

IL-1β induced CD14 and MD-2 expression after neutralisation of TNF-α or IL-10 

bioactivity in epithelial cells. 
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Caco-2 cells pre-treated with 3x10
8 

CFU/ml of heat killed probiotic bacteria Lactobacillus 

casei strain Shirota (LcS) or L. fermentum (LF) for 18hr, followed by treating cells with 10 

µg/ml of anti-TNF-α, or anti-IL-10 antibody for 18hr (A, D). Cells pre-treated with probiotic for 

18hr, followed by stimulation with 10 ng/ml TNF-α in the presence or absence of 10 µg/ml 

anti-TNF-α or anti-IL-10 (B, E), or stimulation with 5 ng/ml IL-1β in the presence or absence 

of 10 µg/ml anti-TNF-α or anti-IL-10 (C, F) for 18hr. CD14 or MD-2 gene expression (mRNA 

level) is expressed as fold change using GAPDH as reference gene and resting cells as a 

calibrator sample as described by Livak et al. (2001) using 2
– ΔΔCt

. Data displayed is a 

representative experiment with triplicate samples of n=3 independent experiments. 

Significant effects compared to the control are indicated as * P<0.05, ** P<0.01 and *** 

P<0.005, and NS (non-significant). 

Treating cells with anti-TNF-α antibody augmented NOD-2 expression and 

probiotic presence resulted in suppression of it. Treating cells with anti-IL-10 

antibody also up-regulated NOD-2 expression and NOD-2 expression was 

suppressed by probiotic treatments (Fig.4.2.17A). Stimulating cells with TNF-α up-

regulated NOD-2 expression. Treating cells stimulated by TNF-α with anti-TNF-α 

antibody up-regulated NOD-2, and probiotic presence selectively modulated NOD-

2 induced by TNF-α after neutralisation of TNF-α bioactivity; LcS treatment up-

regulated NOD-2 induced by TNF-α, whereas LF treatment suppressed it. In 

contrast, treating cells stimulated by TNF-α with anti-IL-10 antibody, NOD-2 

expression was augmented, and probiotic presence resulted in suppression of 

NOD-2 after neutralisation of IL-10 bioactivity (Fig.4.2.17B). Stimulating cells with 

IL-1β up-regulated NOD-2. Treating cells stimulated by IL-1β with anti-TNF-α 

antibody up-regulated NOD-2 expression and probiotic presence selectively 

modulated NOD-2 induced by IL-1β after neutralisation of the TNF-α bioactivity, i.e. 

LcS up-regulated TNF-α induced NOD-2, whereas LF treatment suppressed TNF-

α induced NOD-2 expression at this setting. Treating cells stimulated by IL-1β with 

anti-IL-10 antibody up-regulated NOD-2 and probiotic presence suppressed NOD-

2 induced by IL-1β after neutralisation of the IL-10 bioactivity (Fig.4.2.17C).  
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Treating resting cells with anti-TNF-α antibody up-regulated TLR9, and probiotic 

presence suppressed it. Treating cells with anti-IL-10 antibody also up-regulated 

TLR9 expression and combined with probiotic presence, resulted in suppression of 

TLR9 (Fig.4.2.17D). Stimulating cells with TNF-α up-regulated TLR9 whereas, 

treating cells stimulated by TNF-α with anti-TNF-α antibody suppressed TLR9, 

besides that probiotic presence resulted in the further suppression of TLR9 

induced by TNF-α after neutralisation of the TNF-α bioactivity Treating cells 

stimulated by TNF-α with anti-IL-10 antibody resulted in up-regulation of TLR9 

expression and again probiotic presence resulted in the further suppression of 

TLR9 induced by TNF-α after neutralisation of the IL-10 bioactivity (Fig.4.2.17E).  

Stimulating cells with IL-1β up-regulated TLR9, treating cells with anti-TNF-α 

antibody up-regulated TLR9, and probiotic presence resulted in suppression of 

TLR9 induced by IL-1β after neutralisation of the TNF-α bioactivity. Similarly, 

treating cells stimulated by IL-1β with anti-IL-10 antibody up-regulated TLR9 and 

probiotic presence suppressed TLR9 induced by IL-1β after neutralisation of the 

IL-10 bioactivity (Fig.4.2.17F). Indeed probiotic treatments exhibit significant 

effects in modulation of TNF-α or IL-1β induced PRRs in epithelial cells after 

neutralisation of the bioactivity of IL-10 or TNF-α.  
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Figure 4.2. 17: Heat killed probiotic bacterial strains selectively modulate TNF-α or 

IL-1β induced NOD-2 and TLR9 expression after neutralisation of the TNF-α or IL-10 

bioactivity in epithelial cells. 
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Caco-2 cells pre-treated with 3x10
8 

CFU/ml of heat killed probiotic bacteria Lactobacillus 

casei strain Shirota (LcS) or L. fermentum (LF) for 18hr, followed by treating cells with 10 

µg/ml of anti-TNF-α, or anti-IL-10 antibody for 18hr (A, D). Cells pre-treated with probiotic for 

18hr, followed by stimulation with 10 ng/ml TNF-α in the presence or absence of 10 µg/ml 

anti-TNF-α or anti-IL-10 (B, E), or stimulation with 5 ng/ml IL-1β in the presence or absence 

of 10 µg/ml anti-TNF-α or anti-IL-10 (C, F) for 18hr. NOD-2 or TLR9 gene expression 

(mRNA level) is expressed as fold change using GAPDH as reference gene and resting cells 

as a calibrator sample as described by Livak et al. (2001) using 2
– ΔΔCt

. Data displayed is a 

representative experiment with triplicate samples of n=3 independent experiments. 

Significant effects compared to the control are indicated as * P<0.05, ** P<0.01 and *** 

P<0.005, and NS (non-significant). 

Treating resting cells with anti-TNF-α antibody up-regulated Tollip, besides that 

presence of probiotics resulted in the further suppression of it. Treating cells with 

anti-IL-10 antibody suppressed Tollip and probiotic presence resulted in 

augmentation of Tollip expression (Fig.4.2.18A). Figure 4.2.18B showed that 

stimulating cells with TNF-α suppressed Tollip, treating cells stimulated by TNF-α 

with anti-TNF-α antibody resulted in up-regulation of Tollip expression, and 

probiotic treatments selectively modulated Tollip; LcS treatment augmented 

TNF-α induced Tollip whereas LF treatment suppressed TNF-α induced Tollip 

after neutralisation of TNF-α bioactivity. Treating cells stimulating by TNF-α with 

anti-IL-10 antibody resulted in augmentation of Tollip expression, and probiotic 

presence augmented TNF-α induced Tollip after neutralisation of the IL-10 

bioactivity. Stimulating cells with IL-1β suppressed Tollip expression, besides 

that, treating cells stimulated by IL-1β with anti-TNF-α antibody resulted in up-

regulation of Tollip and probiotic treatments suppressed IL-1β induced Tollip 

after neutralisation of the TNF-α bioactivity. In addition, treating stimulated cells 

with anti-IL-10 antibody augmented Tollip and probiotic presence selectively 

modulated IL-1β induced Tollip expression, when LcS augmented IL-1β induced 
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Tollip whereas LF suppressed it after neutralisation of IL-10 bioactivity 

(Fig.4.2.18C). 

 

Figure 4.2. 18: Heat killed probiotic bacterial strains selectively modulate TNF-α or 

IL-1β induced Tollip expression after neutralisation of the TNF-α or IL-10 bioactivity 

in epithelial cells. 

Caco-2 cells pre-treated with 3x10
8 

CFU/ml of heat killed probiotic bacteria Lactobacillus 

casei strain Shirota (LcS) or L. fermentum (LF) for 18hr, followed by treating cells with 10 
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µg/ml of anti-TNF-α, or anti-IL-10 antibody for 18hr (A, D). Cells pre-treated with probiotic for 

18hr, followed by stimulation with 10 ng/ml TNF-α in the presence or absence of 10 µg/ml 

anti-TNF-α or anti-IL-10 (B, E), or stimulation with 5 ng/ml IL-1β in the presence or absence 

of 10 µg/ml anti-TNF-α or anti-IL-10 (C, F) for 18hr. Tollip gene expression (mRNA level) is 

expressed as fold change using GAPDH as reference gene and resting cells as a calibrator 

sample as described by Livak et al. (2001) using 2
– ΔΔCt

. Data displayed is a representative 

experiment with triplicate samples of n=3 independent experiments. Significant effects 

compared to the control are indicated as * P<0.05, ** P<0.01 and *** P<0.005, and NS (non-

significant).  

4.2.8. Summary of chapter 4 results  

Table 4.2. 1: Probiotic treatments selectively modulate TNF-α and IL-1β induced 

cytokines and hBD-2 expressed by Caco-2 intestinal epithelial cells. 

 

mRNA expression Protein expression (pg/ml) 

BB 

 

LS LR LcS LF LP BB LS LR LcS LF LP 

IL-8 
induced 
by TNF-α 

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↔ ↑ ↑ 

TNF-α 
induced 
by TNF-α 

↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ 

IL-10 
induced 
by TNF-α 

↑ ↑ ↑ ↑ ↔ ↑ ↑ ↑ ↑ ↑ ↓ ↓ 

IL-6 
induced 
by TNF-α 

↑ ↑ ↑ ↔ ↑ ↑ ↔ ↑ ↑ ↔ ↔ ↔ 

IL-8 
induced 
by IL-1β 

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↔ 

TNF-α 
induced 
byIL-1β 

↑ ↑ ↑ ↑ ↔ ↑ ↔ ↔ ↓ ↓ ↔ ↓ 

IL-10 
induced 
by IL-1β 

↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ 

IL-6 
induced 
by IL-1β 

↓ ↔ ↓ ↑ ↔ ↑ ↑ ↑ ↑ ↑ ↓ ↓ 

hBD-2 
induced 
by TNF-α 

↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ 

hBD-2 
induced 
by IL-1β 

↑ ↑ ↑ ↑ ↔ ↔ ↑ ↑ ↑ ↑ ↓ ↓ 
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Table 4.2. 2: Probiotic treatments of HK-LcS and HK-LF selectively modulated TNF-α or 

IL-1β induced cytokines, hBD-2 and PRRs mRNA expression after neutralisation of the 

IL-10 or TNF-α bioactivity in Caco-2 epithelial cells. 
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TNF-α ↓ ↑ ↑ ND ND ND ↑ ↑ ↑ ND ND ND 
IL-10 ND ND ND ↑ ↑ ↑ ND ND ND ↑ ↑ ↑ 
hBD-2 ↑ ↓ ↑ ↑ ↓ ↑ ↓ ↑ ↑ ↓ ↑ ↓ 
TLR4 ↑ ↑ ↓ ↔ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ 
TLR2 ↑ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↑ ↑ ↑ 
CD14 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↓ 
MD-2 ↓ ↓ ↓ ↑ ↓ ↑ ↑ ↑ ↓ ↓ ↑ ↓ 
NOD-2 ↓ ↓ ↓ ↓ ↑ ↔ ↓ ↓ ↓ ↓ ↓ ↓ 
TLR9 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 
Tollip ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↔ ↓ ↓ ↓ ↓ 

 

Table 4.2. 3: Probiotic treatments of HK-LcS and HK-LF selectively modulated TNF-α or 

IL-1β induced cytokines and hBD-2 production after neutralisation of IL-10 or TNF-α 

bioactivity in Caco-2 epithelial cells. 
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TNF-α ↓ ↑ ↓ ND ND ND ↑ ↑ ↓ ND ND ND 

IL-10 ↑ ↑ ↑ ND ND ND ↑ ↑ ↑ ND ND ND 

hBD-2 ↑ ↓ ↓ ↔ ↔ ↑ ↓ ↑ ↓ ↔ ↔ ↓ 

Note: “↑”, “↓”, “↔”and ND means up-regulation, down-regulation no-modulation and not 

determined of the indicated target, respectively. 
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4.3. Discussion 

4.3.1: Probiotic strains selectively induced cytokine and hBD-2 expression in 
Caco-2 intestinal epithelial cell model 

The majority of the information on the role of epithelial cells in immune defence at 

the gut mucosa is derived from studies on columnar epithelial cell lines from 

human intestinal tracts. Indeed, cell models are earning an increasing interest 

among the scientific research community. They are becoming more realistic and 

representative of the in vivo physiological model of human mucosa, and therefore 

offer a suitable alternative for in vivo animal model. Cell culture models can 

support enormous screening in contrast to the limited screening capacity of animal 

models.  

Since the gut is a complex system with many cooperating cell types and the 

microbiota, any models that is used to study this system should take into 

consideration as many of these factors as possible. Indeed, in vitro cell models of 

the gut should functionally resemble the in vivo situation. There are several cell 

line model of the gut such as Caco-2 and HT-29 (human epithelial cells originated 

from colon adenocarcinoma), and HIEC-6 (normal human epithelial cells 

originated from small intestine) (Cencic and Langerholc, 2010). Between these cell 

lines, Caco-2 cells are widely used as a model of human intestinal epithelial cells. 

They undergo in culture a process of spontaneous differentiation that leads to the 

formation of a monolayer of cells, expressing several morphological and functional 

characteristics of the mature enterocyte (Sambuy et al., 2005). Costa de 

Beauregard et al. (1995 ) reported that Caco-2 cells differentiated into enterocyte-

like cells with regular homogenous glycocalyx brush-border, express markers such 

as Ulex europaeus agglutinin (UEA)-1 mediated endocytosis (Gabor et al., 1998) 
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and Salmonella pathogenicity island 1 (SP-1) mediated Salmonella translocation 

(Martinez-Argudo and Jepson, 2008), which is similar to the marker of the M cells, 

after 21 days of culture. In addition, Caco-2 cells differentiate into small intestinal-

like cells after confluence (Engle et al., 1998). This cell line, because of all these 

attributes, represent a good in vitro model for human intestinal epithelial cells, 

therefore, it is used as a model in this study to investigate the immunomodulatory 

effects of probiotics. The gut epithelial cells are also actively involved in the 

defence of the gut by releasing cytokines, which orchestrate the recruitment (IL-8) 

of the immune cells into the gut mucosa. In addition other epithelial cells -derived 

cytokines appear to have important roles immunoregulation (e.g. IL-10 and TGF-β), 

and tissue repair (e.g. TGF-β) (Wells et al., 2011a). Thus, in the present study, we 

investigate the effect of probiotics on epithelial cells derived cytokines. Although 

epithelial cells release an array of cytokines in response to different stimuli, there 

are contradictory reports about the spectrum of cytokine release either during 

normal homeostasis or in inflammation (Ohkusa et al., 2009, Bahrami et al., 

2011b). Among the cytokines released by epithelial cells during normal 

homeostasis and up-regulated at inflammation is IL-8. It is well known that 

epithelial cells constitutively expressed IL-8 (Eckmann et al., 1993a); however, the 

expression of IL-8 by epithelial cells is augmented after bacterial attack (Eckmann 

et al., 1993b). This is in order to recruit immune cells such as neutrophils to the 

site of infection prior to amplifying a proper immune response mediated by the 

clearing of pathogen via direct killing by neutrophil phagocytosis, or indirect killing 

by cytokines and antibodies. However, increasing infiltrating of immune cells will 

lead to chronic inflammation and tissue destruction. 
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In this study, two strains of probiotic bacteria were used to investigate the potential 

of probiotics in inducing IL-8 by Caco-2 cells. The results of this study showed that 

both live and heat killed bacteria successfully induced IL-8 dependent on the strain 

and bacterial cell density. These findings are in agreement with Candela et al. 

(2008) when they showed that live Lactobacillus acidophilus, L. plantarum, 

Bifidobacterium longum and B. lactis induced IL-8 in monolayer Caco-2 cells, and 

Lammers et al. (2002) were also reported that live probiotic bacteria E. coli Nissle 

1917 strain induced IL-8 in a dose-dependent way in HT-29 intestinal epithelial 

cells. In addition to IL-8 production by epithelial cells, Bahrami et al. (2011a) 

reported that treating Caco-2 and HT-29 epithelial cell lines with Lactobacilli and 

Bifidobacteria obtained from healthy people results in different profiles of pro-

inflammatory (IL-1β, IL-6, IL-18 and TNFα) and anti-inflammatory cytokines (TGF-

β, IL-4 and IL-10). Indeed, Cario and Podolsky (2005a) have speculated that 

epithelial cell stimulation by bacteria and their products results in the release of an 

array of cytokines, such as IL-8, which results from the interaction between 

bacteria and epithelial cells. Hence, it could conceivably be hypothesised that the 

probiotic bacteria used in this study (live, HK) expressed PAMPs that interacted 

with pattern recognition receptors on epithelial cells results in triggering active 

immune response. The preparation of probiotic bacteria has a significant effect on 

their ability to induce cytokine expression by intestinal epithelial cells; Wong and 

Ustunol (2006) reported that five heat-killed lactic acid bacterial strains induced IL-

8 in Caco-2 cells, whereas the same irradiated strains attenuated IL-8 cytokine 

production, explaining that the same probiotic bacteria with different preparation 

used in the same cell culture could provide opposite cytokine production and 

immune modulation. However, the findings of the current study do not support this 

idea because both live and heat-killed probiotic bacteria induced IL-8 by Caco-2 
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cells, which indicated that there is a similar ligands found at both live and heat-

killed bacteria induced IL-8 by epithelial cells  

In this study, probiotic stimulation was also found to induce the hBD-2 production 

in intestinal epithelial cells (Caco-2). Data showed live as well as heat-inactivated 

probiotic bacteria successfully induced hBD-2 in the epithelial cells. The factors 

behind this stimulation effect are still a matter of debate. Some authors such as 

(Wehkamp et al., 2004) have found that E. coli Nissle 1917 have a significant role 

in inducing hBD-2 mRNA expression in Caco-2 cells and Schlee et al. (2007) 

provided evidence that E. coli Nissle 1917 exhibit their role in inducing hBD-2 

expression through flagellin protein found in bacterial flagella. However, data of 

this study showed that other factor mediated hBD-2 induction in epithelial cells. In 

fact, there are several possible explanations for these results, for example, 

bacterial cell wall, genomic bacterial DNA and bacterial cell metabolites may all 

exhibit a vital role in inducing hBD-2 expression. The findings of this study are in 

agreement with Schlee et al. (2008) when hBD-2 was induced by different 

probiotic bacteria even in the absence of flagella. Therefore, it might be suggested 

that (heat-killed/live probiotic) bacteria and their metabolites have unique 

molecular patterns responsible for inducing hBD-2 as well as IL-8 expression in 

Caco-2 intestinal epithelial cells.  

4.3.2. Probiotic treatments selectively modulate TNF-α or IL-1β induced hBD-
2 and cytokine expression in epithelial cells.  

Cytokines are the messengers that control innate, adaptive, and also epithelial cell 

functions. Uncontrolled production of cytokines TNF-α and IL-1β by immune cells, 

such as macrophages, induces gut pathology such as IBD (Strober and James, 

1986). Numerous studies used Caco-2 epithelial cells as an in vitro model to 
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investigate the characteristics of some important factors associated with 

pathophysiology of IBD, such as barrier function and microbial cell interaction 

leading to modulated immune responses associated with cytokine expression 

(Zeuthen et al., 2008, Bahrami et al., 2011a, Eckmann et al., 1993a). This study 

set out with the aim of assessing the importance of probiotic bacteria in modulation 

of the immune responses induced by TNF-α or IL-1β in epithelial cells. The results 

of this study showed that stimulation of epithelial cells with TNF-α or IL-1β resulted 

in releasing different profiles of cytokines (TNF-α, IL-6, IL-8, and IL-10), dependent 

on the type of stimuli. In fact, epithelial cells express a range of cytokine receptors 

up-regulated in response to stimulation by cytokines, leading to triggering of the 

immune response via activation of a complex of transcriptional factors (Reinecker 

and Podolsky, 1995, Jung et al., 1995). Basically, the binding of the cytokine to its 

receptor, or bacterial PAMPs with PRRs on the epithelial cells results in a 

message, which will be transferred downstream resulting in the activation of a 

multiple cell signalling such as NF-kB. Consequently, in response to stimulation 

with bacteria or cytokines, epithelial cells release cytokines and AMPs (Gilmore, 

2006, Wehkamp et al., 2005). Evidence was provided by researchers that 

epithelial cells represent APCs that can respond to stimuli through the production 

of cytokines and chemokines (Wells et al., 2011b). Cytokine networking controls 

the fates and the outcomes of the epithelial cell immune response. In this study, 

TNF-α, IL-6, IL-8, IL-10 and hBD-2 are released in different profiles (stimulus and 

time- dependent) in Caco-2 epithelial cells upon stimulation with TNF-α or IL-1β. 

Fundamentally, cytokines are always produced by specific cells in a cascade 

manner (Brennan and Feldmann, 1992), however, the interesting finding is that the 

cytokine mediated intestinal homeostasis, tissue repair and immunoregulation (IL-
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10, and IL-6) reached their production peak first whether using TNF-α, or IL-1β for 

stimulation, whereas TNF-α was relatively delayed to get it to the maximum level.  

IL-6 has a vital role in the regeneration of epithelial cells; Jin et al (2010) 

demonstrated an animal model (mice) showing that the loss of IL-6 resulted in 

augmentation of the activation of pro-apoptotic and necrotic pathways in epithelial 

cells after injury. The main properties of IL-10 as an anti-inflammatory cytokine is 

to inhibit inflammation through down-regulation of MHC class II and B7-1, B7-2 co-

stimulatory molecule expression and decrease the production of IL-1β, TNF-α, and 

IL-8 (Herfarth and Schölmerich, 2002). The decreasing of TNF-α cytokine 

production by IL-10 is performed by suppressing the activation of p38 MAPKs 

pathways (Williams et al., 2004). IL-8 cytokine expression enhances epithelial cell 

restitution and controls epithelial cell turnover (Dignass and Podolsky, 1993). The 

biological effects of TNF-α are exerted through the expression of its receptors on 

cell membranes; p55 (associated with cell apoptosis), and p75 (associated with 

cell survival) (Peschon et al., 1998). It seems that epithelial cells respond to the 

TNF-stimulation directly, via activated TNF receptor, and indirectly, via the 

sequential release of other cytokines (Janes et al., 2006). Hence, it could 

conceivably be hypothesised that the results of this study are due to the different 

roles of these cytokines in responding to immune stimulation, with the anti-

inflammatory (IL-10) and restorative (IL-6 and IL-8) cytokines expressed prior to 

the apoptotic cytokines (TNF-α). This allows for enhanced wound repair by 

monolayer epithelial cells through restitution of the cells (Dignass and Podolsky, 

1993). Foey et al.(1998) reported that TNF-α has a vital role in inducing 

macrophage IL-10 expression. Interestingly, the novel findings reported above 

show that TNF-α and IL-1β induced IL-10 expression in epithelial cells. In addition 
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to cytokine release, hBD-2 was released after stimulation of cells with TNF-α or IL-

1β. Data showed that the release kinetics of hBD-2 were the same as that of TNF-

α (after both TNF-α or IL-1β stimulation), suggesting a strong positive link between 

the expression of hBD-2 and TNF-α.  

Regarding a probiotic bacterial role in modulation of the immune responses 

induced by TNF-α or IL-1β, data showed that probiotic treatments selectively 

modulated TNF-α or IL-1β induced epithelial cytokine and hBD-2 expression 

(cytokine, and bacterial strain specific dependent), refer to table 4.2.1. A number 

of reports showed that probiotic bacteria have potential effects in the modulation of 

cytokine production induced by pro-inflammatory cytokines such as TNF-α or IL-1β 

which mediates destructive effects on the epithelial gut mucosa. Indeed, de 

Moreno de LeBlanc et al. (2011) reported a review showing that probiotic bacteria 

enhanced epithelial IL-10 cytokine production, based on evidence from human and 

animal models; L. casei reduced TLR4 and IL-1β mRNA levels and significantly 

increased mucosal IL-10 in ulcerative colitis patients (D’Incà et al., 2011), L. casei 

BL23 increased IL-10/IL-12 cytokine ratio leading to protection against colitis in 

TNBS-induced mice (Foligne et al., 2007). In addition, de Moreno de LeBlanc and 

Perdigón (2010) demonstrated that milk fermented with Lactobacillus helveticus 

R389, administered to the mouse model, attenuated the inflammation of the gut 

mucosa by decreasing IL-6 and increasing IL-10 in serum and in the mammary 

glands, therefore, it can be speculated that the consumption of fermented milks 

can modulate the immune system. In a cell line model, Resta–Lenert and Barrett 

(2006) reported that probiotic DNA of Streptococcus thermophilus and 

Lactobacillus acidophilus reversed TNF-α and IFN-γ induced epithelial dysfunction 
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(barrier function and cytokine expression) in HT-29 monolayer cells via 

suppression of the activation of SOCS-3 and STAT-1. 

Focusing on specific strains (such as LF and LcS), Matsumoto et al. (2005) 

reported that LcS exhibits an anti-inflammatory effect by suppression of pro-

inflammatory cytokine (IL-6) in LPS stimulated large intestinal lamina propria 

mononuclear cells isolated from mice with TNBS-induced colitis, and in murine 

macrophages (RAW264·7 cells) and in peripheral blood mononuclear cells 

(PBMCs) derived from patients with ulcerative colitis. LcS exhibited their roles in 

suppression of LPS induced pro-inflammatory cytokines via suppression of NF-kB 

through a polysaccharide-peptidoglycan complex (PSPG) derived from LcS, 

suggesting that LcS might be a useful probiotic for the treatment of human IBD.  

Prescott et al. (2005) reported that heat killed probiotic LF have pro inflammatory 

properties by suppressing the anti-inflammatory cytokines such as IL-10 and up-

regulate the Th1 cytokines (TNF-α and IFN-γ) in PBMCs isolated from children 

with atopic dermatitis (AD). In this study, probiotic bacteria selectively modulated 

cytokine TNF-α or IL-1β induced hBD-2 and cytokine production at mRNA and 

protein levels. Data showed that probiotics selectively modulated TNF-α or IL-1β- 

induced hBD-2 and cytokine expression. Based on their effects on the modulation 

of cytokines and hBD-2 production, probiotics are partially listed in two groups; 

group one suppressed TNF-α induced hBD-2 production, whereas group two 

augmented TNF-α induced hBD-2 production, and vice versa associated with IL-

1β induced hBD-2 regulated by probiotic treatments (refer to table 4.2.1).   

Focussing on LcS treatment on modulation of cytokines and hBD-2 at protein 

levels, it suppressed TNF-α induced TNF-α, IL-8, and hBD-2, augmented TNF-α 

induced IL-10 and exhibited no modulation on TNF-α induced IL-6. On the other 
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hand, LF treatment augmented TNF-α induced TNF-α, IL-8 and hBD-2, 

suppressed TNF-α induced IL-10, and no modulation of TNF-α induced IL-6. In 

contrast, using IL-1β to induce cytokine and hBD-2, LcS treatment augments IL-1β 

induced IL-6, IL-8 and hBD-2, whereas suppressed IL-1β induced TNF-α and IL-

10. LF treatment augmented IL-1β induced IL-8, IL-10; suppressed IL-1β induced 

TNF-α, IL-6 and hBD-2. Screening of this data suggesting that the inhibition of pro-

inflammatory cytokines such as TNF-α lead to inhibition of the expression of hBD-

2, whereas up-regulation of IL-10 lead to suppressed hBD-2 expression. Albanesi 

et al. (2007) reported that hBD-2 expression is induced by TNF-α or IFN-γ via 

activation of NF-kB and STAT-1 signalling negatively regulated by anti-

inflammatory Th2 cytokines (IL-4, IL-13) via activation of STAT-6 and induction of 

SOCS-1 and SOCS-3 in keratinocytes. Alternatively, Howell et al. (2005) reported 

that hBD-2 suppression in atopic dermatitis (AD) and psoriasis was associated 

with elevated IL-10; neutralization of the IL-10 bioactivity augmented the 

production of TNF-α, IFN-γ and hBD-2 by peripheral blood mononuclear cell from 

AD patients and in keratinocytes. Data from this study suggested that probiotic 

treatments indirectly regulated hBD-2 expression in intestinal epithelial cells via 

modulation of cytokine regulated hBD-2 expression (IL-10 and TNF-α). Taken 

together, the group of probiotic bacteria that suppressed TNF-α induced hBD-2 

expression, have a unique molecular structure to exert anti-inflammatory 

properties, whereas the other group that augmented hBD-2 expression induced by 

TNF-α have a unique molecular structure to exert pro-inflammatory properties. 

Interestingly, the pattern of TNF-α induction of cytokines modulated by probiotics 

differed from that of IL-1β induction of cytokine production. The two faces of 

probiotic immunomodulation were dependent on bacterial strain and type of 

inflammatory signal. These data are in agreement with Shida et al. (2011) which 
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showed that LcS exhibit two immunomodulation faces through induction of 

different types of cytokines; LcS can be a potent IL-12 inducer (pro-inflammatory 

properties) and also a potent IL-10 inducer (anti-inflammatory properties) leading 

to regulated hBD-2 expression. Probiotic bacteria used in this study belong to the 

lactic acid bacteria (LAB), have a thick layer of PGN coupled with LTA and a thin 

layer of LPS, presenting a G+C content in their DNA lower than 55% except BB 

which have more than 55%, vary in their sensitivity to lysozyme activity, where LF 

is sensitive (Šimelyte et al., 2000), and LcS bacteria are resistant (Shida et al., 

2006). Several studies highlighted the importance of LTA in modulation of the 

immune responses induced by different stimuli in various cell types including 

epithelial cells, DCs and macrophages (Claes et al., 2012a, Ginsburg, 2002, 

Henneke et al., 2005). Bacterial PGN also has significant effects in modulation of 

the immune responses (Xu et al., 2001, Gupta et al., 1999). The differences 

between LF and LcS on their effects on the modulation of the cytokine expression 

induced by TNF-α or IL-1β might depend on the differences on their cell wall 

structure (types of LTA, and types of peptides that formed PGN), which caused 

different effects on the modulation of cytokine production. The complex of 

polysaccharide-peptidoglycan in LcS cell wall suppressed LPS-induced pro-

inflammatory cytokine in a macrophage murine model (Matsumoto et al., 2005), 

and LTA from LF prevented atopic disease via up-regulation of the pro-

inflammatory cytokines in a randomised placebo-controlled trial (Kalliomaki et al., 

2001). Therefore, the sensitivity of LTA and/or PGN to either TNF-α or IL-1β will 

determine the fate of the immune response initiated in response to stimulation with 

cytokine and regulation of probiotic bacteria. Indeed, it seemed to be that 

cytokines and bacteria through their activation of epithelial cells appear to act 

through the same pathways, namely tyrosine kinases, p38 MAP kinases, and NF-
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kB (McDermott et al., 2003), and manipulation of these pathways by probiotic 

treatments lead to modified outcomes of the immune responses either suppress or 

augment cytokines induced-hBD-2 expression. Several possible explanations of 

probiotic immunomodulation regulating cytokine expression include modulating the 

activity of STAT-1, STAT-6, SOCS-1 and SOCS-3 signalling pathway (Albanesi et 

al., 2007) leading to modulated TNF-α or IL-10 expression in different ways 

(suppression or activation) and regulated hBD-2 expression. Focussing on TNF-α 

expression, ADAM17 expression controls TNF-α release (Cesaro et al., 2009), 

therefore, probiotics might regulate the expression of ADAM17 leading to 

regulated TNF-α expression, consequently controlled hBD-2 expression. Data 

showed that the production of hBD-2 was linked to expression of IL-10 and TNF-α 

(inducer for TNF-α or suppressor for IL-10), which was in agreement with other 

research groups (Kanda et al., 2011, Marian et al., 2009). Consequently, data of 

this study showed that hBD-2 induction in epithelial cells was bacterial strain and 

type of cytokine dependent; LF up-regulated TNF-α induced hBD-2, whereas LcS 

up-regulated IL-1β induced hBD-2.   

Enhancement of hBD-2 at the gut mucosa is not exclusively for killing pathogenic 

microorganisms, in addition, hBD-2 augments TNF-α, IL-1, and IL-8 leading to 

amplifying local immune responses prior to clearing pathogens (Van Wetering et 

al., 1997, Chaly et al., 2000, Niyonsaba et al., 2004). In addition, Niyonsaba et al. 

(2007) reported that hBD-2 is an important mediator of cytokine release, including 

release of IL-6, MIP-3α, MCP-1, and RANTES through activation of G protein and 

phospholipase C-dependent pathways, and also promote epithelial cell migration 

and proliferation, angiogenesis, chemotaxis, and wound repair in epidermal 

keratinocytes cells. One of the major roles of hBD-2 at the gut mucosa is linking 
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innate and adaptive immunity, mediating the recruitment of immature DCs and 

memory T cells via binding to the chemokine receptor CCR6 (Yang et al., 1999).  

Therefore, enhancement of defensin expression via modulation of cytokines 

induced hBD-2 by probiotic bacteria might represent a new therapeutic strategy for 

reduction of infection in human diseases associated with hBD-2 deficiency, such 

as Crohn’s disease.  

4.3.3. Probiotics selectively modulate TNF-α or IL-1β induced cytokines and 
hBD-2 expression after neutralisation of IL-10 or TNF-α bioactivity. 

Due to their central roles in the mucosal immune system and accessibility to 

luminal agents, there is a growing interest for modulating epithelial cell's activities 

in various intestinal pathological contexts. Intestinal epithelial cells are active 

participants in the mucosal immune system (Jung et al., 1995), mainly through the 

production of cytokines (Bahrami et al., 2011b). Normally, gut epithelial cells 

produced a range of cytokines include; cytokine mediated gut tolerance (TGF-β 

and IL-10), trigger the active immune response (IL-8), tissue damage (TNF-α) and 

tissue repair (IL-6) in response to different stimuli. Cytokine expression has two 

faces, endogenous (membrane bound and or intracellular) or exogenous (free 

released into the medium) (Stadnyk, 2002). In a normal physiological context, 

endogenous cytokine expression enhances epithelial cell restitution, proliferation 

and migration of the intestinal epithelial cells mediates epithelial cell turnover 

(Dignass and Podolsky, 1993). In this study, Caco-2 epithelial cells expressed 

endogenous cytokines including TNF-α and IL-10, which in agreement with other 

research groups (Jarry et al., 2008), and probiotic treatments clearly modulated 

the induction of endogenous cytokine production. In addition, probiotic treatments 

were also modulated cytokine production induced by either TNF-α or IL-1β 

dependent on the strain and type of stimulus. In reviewing the literature, no data 
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was found on the association between probiotic treatment, hBD-2, cytokine 

stimulation of TNF-α or IL-1β, and endogenous cytokine expression of IL-10 and 

TNF-α in epithelial cells. The current study demonstrated that probiotic treatments 

of LcS or LF failed to up-regulate hBD-2 expression after neutralisation of TNF-α 

bioactivity, suggesting that the crucial role of endogenous TNF-α in mediating the 

induction of hBD-2 expression. Data showed that after the neutralisation of TNF-α 

bioactivity, hBD-2 was not expressed even in the presence of probiotic bacteria. In 

contrast, upon neutralisation of IL-10 bioactivity, hBD-2 was augmented and 

probiotic treatments differentially modulated hBD-2 expression suggesting a vital 

role of IL-10 in controlling hBD-2 expression (refer to table 4.2.3). Several lines of 

evidence support both pro- and anti-inflammatory roles for hBD-2 promoting the 

release of both pro-inflammatory (IL-6, IL-18) and anti-inflammatory (IL-10) 

cytokines from epithelial cells as shown by several in vitro studies (Niyonsaba et 

al., 2005). Donnarumma et al. (2007) reported that human lung cell line A549 

expressed LPS-induced hBD-2 reduced the expression of IL-1β. Therefore, data of 

this study suggested at the breakdown of tolerance after neutralisation of the 

bioactivity of IL-10, probiotic treatments that augment hBD-2 exhibit significant 

effects in modulation of the immune responses via up-regulation of hBD-2 

expression. It was therefore proposed that probiotics play an important role in 

immunomodulation of endogenous cytokine-induced hBD-2 expression. The 

current study demonstrated that after neutralisation of IL-10 bioactivity, constitutive 

TNF-α expression would drive hBD-2 expression. Probiotics exerted differential 

roles in modulation of the immune responses induced by TNF-α or IL-1β after 

neutralization of the bioactivity of TNF-α or IL-10. Indeed the immunomodulation 

scenario driven by probiotics was strain and type of inflammatory signal dependent.  

It seemed to be that the differences in PGN level and specific polysaccharide 
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component in a LAB bacterial cell wall might be playing a crucial role in modulation 

of endogenous as well as exogenous epithelial cytokine expression (Matsumoto et 

al., 2009), and consequently in modulation of hBD-2 induction. Nevertheless, in 

vivo studies should be done to confirm the hypothesized probiotic effects in IBD 

models, such as mice suffering from chemical-induced colitis {induced with 

oxazolone, trinitrobenzen sulfonic acid, or dextran sodium sulphate or 

spontaneous colitis (e.g. IL-10 knockout mice)} (Ekstrom, 1998, Fichtner-Feigl et 

al., 2007, O'Mahony et al., 2001, Rachmilewitz, 2002).  

4.3.4. Probiotics selectively modulate TNF-α or IL-1β induced TLR 
expression after neutralisation of the IL-10 or TNF-α bioactivity  

TLRs are pattern recognition receptors which recognise microbial (Abreu, 2010) 

and non-microbial (Vabulas et al., 2001) components, that play a key role in innate 

immunity. These TLRs bind and convey the signals from the gut contents into the 

underlying immune cells. These interactions lead to the promotion of an 

appropriate immune response to the microbial events, leading to the induction of 

cytokines and AMP expression. Contradictory reports were found about the 

expression of TLR in epithelial cells (Cario and Podolsky, 2005a). Indeed, the 

upsurge of TLR expression has been reported during the course of microbial 

infections (Furrie et al., 2005), or in IBD (Cario and Podolsky, 2000a). Very little 

information was found in the literature on the question associated with probiotic 

effects, cytokine stimulation (exogenous and or endogenous), hBD-2 and epithelial 

TLR expression. It proposed that the intestinal epithelial cells hyporesponsivness 

are related to the absence or low level of TLR4 expression, which recognises LPS.  

The current study demonstrated that TLR4 expression suppressed after 

neutralisation of the TNF-α bioactivity even in the presence of probiotic bacteria, 

suggesting that probiotic bacteria might be failing to deliver the immune signal 
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through TLR4. This failing was confirmed by failing in hBD-2 expression. Whereas 

after the neutralisation of the IL-10 bioactivity, TLR4 was up-regulated and 

probiotic treatments significantly further up-regulated (refer to table 4.2.2), 

suggested that probiotic bacteria can deliver the signal of TLR4 after neutralisation 

of IL-10 bioactivity not TNF-α. Data showed that after neutralisation of IL-10 

bioactivity, LF treatment up-regulated TLR4 expression correlated with up-

regulation of hBD-2 protein expression was more than by LcS treatment, 

suggesting that the lysozyme sensitivity and cell wall structure of LF has significant 

effects in up-regulation of TLR4. Goto et al. (2008) reported that stimulation of 

epithelial cells with specific TLR4 ligands induced a range of cytokines including 

pro-inflammatory cytokines (TNFα, G-CSF, IL-1α, and IL-6) and anti-inflammatory 

cytokines such as IL-10. It seemed to be that probiotic bacterial treatments have 

significant roles in the up-regulation of epithelial TLR expression. These data are 

in agreement with Vizoso Pinto et al. (2009), who showed that stimulation of HT-

29 with L. plantarum or L. rhamnosus GG modulated epithelial TLR expression, 

which correlated with modulation of cytokine expression. The up-regulation of 

TLR4 by probiotics might be contributing in either initiation of inflammation via up-

regulation of pro-inflammatory cytokines (Niyonsaba et al., 2007), or maintaining 

the gut mucosa via inhibiting pro-inflammatory cytokines via up-regulation of anti-

inflammatory cytokines such as IL-10 (Donnarumma et al., 2007) which might be 

induced by hBD-2. Data showed that treating cells with TNF-α or IL-1β augmented 

TLR4, which is in agreement with Abreu et al. (2002), when they showed that Th1 

cytokines (TNF-α or IFN-γ) perpetuate intestinal inflammation by altering TLR 

expression and bacterial reactivity in cell lines (Caco-2, HT-29, and T84) via 

suppression of SOCS-3 expression. However, probiotic treatments selectively 

modulated TNF-α or IL-1β induced TLR4 expression after neutralisation of the IL-
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10 or TNF-α bioactivity. A number of reports showed that the up-regulation of 

TLR4 expression in gut epithelial cells mediated gut pathology (Cario, 2010, 

Guillot et al., 2004). The significant observation was the suppression of TLR4 

induced by TNF-α after neutralisation of IL-10 bioactivity by LF treatment. It 

seemed the treatment with LF exhibited significant effects in suppression of TLR4 

via up-regulation of IL-10 (Mueller et al., 2006). Probiotic treatments exhibit more 

sensitivity to TLR4 expression induced by IL-1β, as they suppressed TLR4 

expression after neutralisation of TNF-α or IL-10 bioactivity via up-regulation of IL-

10 as shown by this study. This suppression by probiotic treatments might be 

leading to suppression of the pro-inflammatory mediators associated with gut 

diseases such as Crohn’s disease, suggesting a new therapeutic strategy in the 

treatment of IBD.  

TLR2 is normally present at gut epithelial cells and has a significant role in 

stabilizing epithelial barrier function via its roles in ZO-1 translocation (Cario et al., 

2007). However, uncontrolled expression of TLR2 plays a key role in triggering gut 

inflammation mediated tissue destruction via up-regulation of pro-inflammatory 

cytokines such as TNF-α and IL-1β (Vinderola et al., 2005). Data of this study 

showed that the TLR2 expression was suppressed after neutralisation of TNF-α 

bioactivity, and up-regulated in probiotic presence. It seemed to be that LTA in LF 

or LcS was recognised by TLR at this setting, might be resulting in maintaining gut 

homeostasis through their roles in maintaining the barrier function of epithelial 

cells (Cario et al., 2004). Data showed that neutralisation of IL-10 bioactivity 

results in augmentation of TLR2 expression. However, probiotic treatments 

suppressed TLR2 after neutralisation IL-10 bioactivity. This suppression by 

probiotics was not correlated with hBD-2 expression suggesting that hBD-2 
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expression was independent of TLR2 expression and associated with TLR4, which 

is in agreement with Vora et al. (2004). TLR2 induced by TNF-α or IL-1β was 

suppressed by probiotic treatments after neutralisation of TNF-α or IL-10 

bioactivity. This suppression of TLR2 expression at the breakdown of tolerance or 

after stimulation with pro-inflammatory cytokines might be via augmentation of 

anti- inflammatory cytokines. Since the intestinal epithelium is continually exposed 

to a large variety of commensal bacteria, they constitutively express several 

members of the TLR family in vitro and in vivo (Cario et al., 2000a). Based on the 

surveillance system performed by gut mucosa, the up-regulation of TLR4 or TLR2 

in the presence of TNF-α or IL-1β are characterised as the main task achieved by 

gut epithelial cells in response to these alarm signals. Indeed, epithelial cells 

monitor of gut contents resulting in amplifying an immune response in response to 

stimulation by a variety of stimuli started from up-regulation of TLR expression. 

The presence of TNF-α or IL-1β as a pro-inflammatory cytokine in this scenario will 

send warning signals to the gut epithelial cells. Gut epithelial cells respond to 

these signals (cytokines of TNF-α and IL-1β or bacterial PMAPs) by up-regulation 

of the TLR signals, subsequently the signal will be transferred downstream of the 

cells as activatory or tolerogenic immune response (dependent on the type of 

signal). The role of probiotics in the modulation of TLR expression, particularly 

TLR2, at either normal physiological or pathological level is still a matter of debate, 

especially the immunomodulation of cytokine induced TLR expression and 

regulation by probiotics after neutralisation of the TNF-α or IL-10 bioactivity. In the 

presence of a pro-inflammatory background (TNF-α or IL-1β), TLR4 and TLR2 

expression is suppressed by probiotics, consequently, the inflammation induced 

by the up-regulation of these PRRs might be limiting leading to maintain gut 

tolerance (Murphy et al., 2009).  
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Human intestinal epithelial cells are capable not only to express CD14 but also to 

release the soluble form (Funda et al., 2001). This study and other research 

groups (Bocker et al., 2003) showed that CD14 is constitutively expressed in 

Caco-2 epithelial cells. CD14, a co-receptor for LPS signalling, is selectively 

modulated by probiotic treatments after neutralisation of the TNF-α bioactivity, 

when LcS exhibit suppression effects in contrast with augmentation by LF 

treatment. These differences in CD14 expression were strain-dependent. The up-

regulation of CD14 by LF might be increasing epithelial cell sensitivity to LPS 

facilitating more opportunity to trigger inflammation, where epithelial cells should 

exhibit hyporesponsivness as a front line of gut mucosa toward a massive 

complex community of microorganisms found in gut contents. At a background 

inflammation after neutralisation IL-10 bioactivity, CD14 was significantly up-

regulated (10 fold) in comparison with CD14 expression in resting cells; however, 

probiotic treatments suppressed CD14. This suppression by probiotic treatments 

might limit the inflammation where tolerance was broken after neutralisation of the 

IL-10 bioactivity; therefore, it was proposed that probiotic treatments might be 

maintaining gut mucosa via suppression of CD14 at this setting. One unanticipated 

finding was that TLR4 and CD14 expression disappeared after neutralisation of 

TNF-α bioactivity, even in the presence of LcS which correlated with suppression 

of TNF-α, hBD-2 and up-regulation of IL-10, suggesting that LcS suppressed TNF-

α induced hBD-2 through up-regulation of IL-10 was via suppression of 

TLR4/CD14 expression (Mueller et al., 2006). Therefore, it was proposed that LcS 

probiotic bacteria are a good candidate to use when tolerance is broken. Several 

reports highlighted that TLR expression was up-regulated by cells at gut mucosa 

such as macrophages (Hausmann et al., 2002), and epithelial cells (Cario and 

Podolsky, 2000b). CD14 induced by TNF-α and regulation by probiotics was 
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suppressed by LcS and augmented by LF in comparison with CD14 after 

neutralisation TNF-α bioactivity, which correlated with suppression of hBD-2 and 

up-regulation of IL-10. These results suggested that LcS suppressed expression of 

TLR4/CD14 at an inflammatory background {directly by suppression of pro-

inflammatory cytokines that induce TLR4/CD14 expression after adding TNF-α 

(exogenous) or indirectly by inducing factors after neutralisation of IL-10 bioactivity 

(endogenous)}. Nevertheless, probiotic treatments suppressed CD14 induced by 

IL-1β after neutralisation of the IL-10 or TNF-α bioactivity associated with up-

regulation of IL-10, suggesting that CD14 expression induced by IL-1β after 

neutralisation TNF-α or IL-10 bioactivity was more sensitive to probiotic treatments 

when suppressed at both conditions (tolerance breakdown and inflammatory 

background). In addition to LPS recognition, CD14 expresses other functions such 

as scavenging for apoptotic cells (Devitt et al., 1998, Pradhan et al., 1997). 

Evidence showed that endogenous molecules or damage-associated molecular 

patterns released from damaged tissues are able to activate CD14 expression (Yu 

et al., 2011). Therefore, the data of this study suggested that probiotic treatments 

might modulate the scavenger ability (endocytosis) by epithelial cells (Hershberg 

and Mayer, 2000).  

MD-2 protein has been revealed to be expressed as a linkage between TLR4 and 

LPS (Shimazu et al., 1999), as well as with TLR2/LPS (Dziarski and Gupta, 2000). 

One of the main tolerance mechanisms against LPS responsiveness of epithelial 

cells is the low or lack of expression of MD-2 (Abreu et al., 2002). Data of this 

study showed that neutralisation of IL-10 bioactivity had a critical role in up-

regulation of MD-2 expression, suggesting a vital role of IL-10 expression in 

maintaining gut tolerance. In this study, probiotic bacteria exhibit anti-inflammatory 
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effects of suppression of MD-2 leading to limited responsiveness to LPS by 

epithelial cells after the cell tolerance was broken (Mocellin et al., 2003). This 

suppression was correlated with suppression of TLR4/TLR2/CD14 and 

augmentation of IL-10 and confirmed the immunoregulatory role of IL-10 in 

maintaining the gut mucosa (Mueller et al., 2006). Data also showed that LcS 

augmented MD-2 after neutralisation of TNF-α bioactivity, however, this 

augmentation did not reflect the augmentation of TNF-α or hBD-2, since 

TLR4/TLR2/CD14 was suppressed, explaining the fact that MD-2 expression 

alone did nothing unless associated with augmentation of other TLRs 

(TLR2/TLR4/CD14). MD-2 as a part of PRRs was significantly augmented after 

stimulating cells with pro-inflammatory cytokines; however probiotic treatments 

selectively modulate MD-2 induced by TNF-α after neutralisation either TNF-α or 

IL-10 bioactivity, when LcS suppressed MD-2 whereas LF treatment augmented 

MD-2, which not associated with TLR4/TLR2/CD14 induced TNF-α, IL-10 or hBD-

2 suggesting other mechanisms might be involved in regulation of hBD-2, TNF-α 

or IL-10. However, the anti-inflammatory effects exhibited by probiotic treatments 

when IL-1β- induced MD-2 expression was suppressed after neutralisation of IL-10 

bioactivity. In stark comparison, probiotic treatments exhibit selective effects in 

modulation of IL-1β-induced MD-2 after neutralisation of the TNF-α bioactivity. LcS 

treatment augmented IL-1β induced MD-2 after neutralisation of the TNF-α 

bioactivity (which was not -associated with up-regulation of TLR4/TLR2/CD14), 

linked with hBD-2 expression, suggesting that hBD-2 induced by other signalling 

such as NLRs or TLR9 at these settings. Results showed that both TLR9 and 

NOD-2 expression were up-regulated after neutralisation of both IL-10 and TNF-α 

and probiotic presence suppressed their expression suggesting the anti-

inflammatory role of probiotics in driving mucosal tolerance associated with 
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expression of NOD-2 and TLR9 at inflammatory and tolerance breakdown. Indeed, 

intestinal PRR cell signalling like extracellular PRRs have a dual role involved in 

maintaining intestinal homeostasis and protection from injury, as well as initiating 

inflammation in response to warning signals. Normally, TLR9 stimulation enhances 

innate immune responses after recognition of CpG bacterial DNA, and NOD-2 

stimulation enhances innate immunity through recognition of MDP, the bioactive 

component of PGN of the bacterial cell wall. The synergy between TLR9 and 

NOD2 in enhancing the innate immune system is very important at the normal gut 

mucosa. The loss of this synergistic relationship is a factor associated with IBD, in 

particular Crohn’s disease (van Heel et al., 2005). The findings of this study clearly 

demonstrated that TNF-α or IL-10 have a critical role in TLR9 and NOD-2 

expression. It seemed that the NOD-2 expression is controlled by TNF-α which is 

in agreement with Rosenstiel et al. (2003). Indeed, the up-regulation of these 

PRRs at the scenario when TNF-α was absent represents one of the main factors 

in maintaining intestinal homeostasis (van Heel et al., 2005). However, the up-

regulation of TLR9 and NOD-2 are associated with gut diseases (Girardin et al., 

2003b, Bamias et al., 2005), therefore, probiotic suppression might be enhancing 

the mucosal tolerance leading to maintaining gut mucosa through suppression of 

amplified inflammation initiated by augmentation of these receptors. In addition, at 

the inflammatory background of TNF-α or IL-1β stimulation, probiotics also exerted 

anti-inflammatory effects by suppressing the expression of TLR9 induced by either 

TNF-α or IL-1β after neutralisation of the TNF-α or IL-10 bioactivity which is not 

associated with TNF-α, IL-10 and hBD-2 expression. Whereas, selectively 

modulated TNF-α induced NOD-2 after neutralisation of the TNF-α bioactivity, 

when LcS up-regulated TNF-α induced NOD-2, and LF suppressed it after 

neutralisation of TNF-α bioactivity. Neutralisation of TNF-α did not modulate NOD-
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2 induced by IL-1β and probiotic treatments of LcS (non-significant suppressed), 

and LF (significant suppression) exhibit anti-inflammatory effects via suppression 

of NOD-2 expression was also not associated with TNF-α, IL-10 or hBD-2 

suggesting that the intracellular PRRs are not involved in the regulation of hBD-2, 

TNF-α or IL-10. In fact, TLR signalling pathways have suggested a promising 

mechanism for boosting vaccine responses (van Duin et al., 2006). Further studies 

with more focus on probiotic bacterial role in modulation of TNF-α or IL-1β induced 

TLR expression after neutralisation of TNF-α or IL-10 bioactivity is therefore 

suggested to establish the basis for development of mucosal vaccine adjuvants.  

Tollip is one of the main proteins expressed in intestinal epithelial cells, as a 

negative regulator of TLR expression and polymorphisms in Tollip expression are 

associated with susceptibility to several gut diseases such as IBD (Abreu et al., 

2005, Shah et al., 2012). Very little was found in the literature on the question of 

the probiotic bacterial role in modulation of TNF-α or IL-1β induced Tollip 

expression after neutralisation the TNF-α or IL-10 bioactivity. The current study 

demonstrated that Tollip expression was highly up-regulated at the scenario of 

TNF-α absence, suggesting that there is a critical role for TNF-α in controlling 

Tollip expression consequently, suppression of TLR activation. These data are in 

line with Melmed et al. (2003) who showed that TLR2 suppressed in human 

intestinal epithelial cells correlated with high expression of Tollip. Data showed 

that the presence of probiotics resulted in suppression of Tollip expression even in 

the absence of TNF-α. This suppression might be via recognition of microbial 

PAMPs by epithelial PRRs, which induce production of pro-inflammatory cytokines, 

consequently, suppression of Tollip expression (autocrine effect). In addition to 

TNF-α, IL-10 also exhibited a critical role in controlling Tollip expression. Data 
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showed that neutralisation of IL-10 bioactivity resulted in suppression of Tollip 

expression, which is associated with up-regulation of pro-inflammatory cytokines. 

These data are in agreement with Didierlaurent  et al. (2006) who showed that 

Tollip suppressed pro-inflammatory responses induced by LPS and IL-1β was 

associated with suppression of NF-kB and MAPKs in animal model (mice). One 

unanticipated finding was that LcS treatment augmented Tollip expression even in 

the absence of IL-10. This enhancement by LcS might be through augmentation of 

TGF-β, the potent regulatory cytokine mediated gut homeostasis (Rautava et al., 

2005). TGF-β has a vital role in limiting inflammation by suppression of TLR 

expression (Gómez-Llorente et al., 2010). Tollip expression induced by TNF-α was 

up-regulated by LcS treatment after the neutralisation of the TNF-α bioactivity 

suggesting that LcS up-regulated Tollip might be via up-regulation of IL-10 and 

vice versa with LF (refer to table 4.2.2 & 4.2.3). These data are in agreement with 

Shimazu et al. (2012) who showed that Lactobacillus jensenii exhibit anti-

Inflammatory effects on porcine intestinal epithelial cells by modulating Tollip 

signalling pathway via down-regulating TLR4-dependent NF-kB MAPKs pro-

inflammatory activation. Taken together, the scenario of probiotic modulation of 

epithelial TLR expression induced by TNF-α at the absence of IL-10 provides a 

new insight into the mechanisms of positive regulation of Tollip by IL-10, and 

negative regulation of TNF-α. These regulations of Tollip expression will lead to 

the modulation of the dynamic balance between controlled surveillance and 

appropriate responses to mucosal challenge by luminal flora. Further research to 

investigate mechanisms is required and human trials are needed to confirm these 

immunomodulatory effects of these probiotic strains (LcS and LF) in modulation of 

endogenous cytokine expression in vivo.  
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Chapter 5: Effects of probiotics on inflammatory responses in an epithelial 

cell: macrophage co-culture model  

5.1. Introduction  

In the GIT, epithelial cells display a variety of functions including the physical 

barrier to separate the external environment of microbiota and food antigens from 

the internal environment where the cells of the lamina propria such as 

macrophages are resident. Elicited macrophage responses are dependent on 

tissue environment and the resulting cell subsets, with inflammatory macrophage 

resembling M1 subset and homeostatic macrophages resembling an M2 

macrophage subset (Mantovani et al., 2007). Uncontrolled immune responses of 

macrophages induced by different stimuli are implicated in gut diseases 

particularly, IBD which is associated with loss of gut tolerance. The precise 

aetiology of IBD is still a matter of debate. However, understanding the 

pathophysiology of IBD has advanced, and the typical features of these diseases 

shown in various studies by using in vivo and in vitro models.  

To resemble the in vivo situation of the gut physiology, in vitro cell models of the 

gut using a combination of different cell types was used to investigate the 

immunomodulation of probiotics on the barrier cell function. Expression of tight 

junction proteins is necessary for the formation of epithelial barrier, integrity, and 

polarity. Epithelial cells undergo a series of developments to form a monolayer 

with a tightly packed selectively permeable membrane with measurable trans-

epithelial resistance. Epithelial cells in combination with other cell lines to build up 

a model resembling gut physiology, should respond to environmental factors such 

as cytokines and inflammatory molecules. Of these, the most suitable model for 
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intestinal epithelial cells is Caco-2, and THP-1 human monocytic cell line for 

monocyte derived M1-like and M2-like macrophage cell subsets. Therefore these 

two cell lines were used to build up a model resembling gut physiology, where 

epithelial cells (Caco-2) interacted with M1-like macrophages to model 

inflammatory gut physiology or with M2-like macrophages as a normal 

homeostasis model. Caco-2 cells upon reaching confluence, express 

characteristics of enterocytic differentiation and functionality, with feature include; 

microvilli, large vacuolated mitochondria, smooth and rough endoplasmic reticulum 

(Lee et al., 2009). Lo et al. (2004) reported that transwell based Caco-2/Raji B cell 

culture model resulted in differentiating enterocytes into M cell-like cells. 

Comparing functional features in M-cell like Caco-2 cells to M cells in follicle-

associated epithelium (FAE) of normal Peyer’s patch tissue which include; gene 

expression of laminin β3 (a matrix metalloproteinase), a tetraspan family member, 

and C. perfringens enterotoxin receptor (CPE-R) in UEA-1+ M cells, suggested 

that M like Caco-2 cells shared features with M cells in FAE. Bacterial transport of 

Salmonella (either live or killed) was also examined using these models in order to 

confirm model functionality for investigating transcytosis and cell signalling 

pathways in M like cells (Martinez-Argudo and Jepson, 2008). However, Caco-2 

cells are polyclonal nature and this high diversity has resulted in the need for 

standardised protocols (concerning passage number, time of usage post-seeding) 

to be strictly followed. The interests of Caco-2 were also co-cultured with other cell 

types such as PBMCs and macrophages. Parlesak et al. (2004) reported that co-

culturing of Caco-2/PBMCs modulate the cytokine kinetics during challenge with 

bacteria (non-pathogenic Escherichia coli) in a compartmentalized co-culture 

model by Caco-2. Adding bacteria were applied apically to the Caco-2 cell layer, 

the production of TNF-α, IL-12, IL-1β, IL-8, IL-6, IL-10, and TGF-β was markedly 
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lower as compared to the bacterial stimulation of leucocytes beneath the Caco-2 

cells. Modulation of cytokine expression by Caco-2 cells supports the concept of 

leucocyte-epithelial cell crosstalk roles in modulating cytokine responses in the gut 

mucosa. Similar findings were found by Haller et al. (2000b) when Caco-2 co-

cultured with human blood leucocytes and profiles of TNF-α, IL-1β, IL-8, monocyte 

chemoattracting protein 1 (MCP-1), and IL-10 were modulated in response to 

stimulation Caco-2 cells with non-pathogenic (Lactobacillus sakei) and 

enteropathogenic bacteria.  

Not only cytokine expression is important at gut mucosa, AMPs such hBD-2 are 

also important mediators at gut mucosa, lead many researchers to focus on the 

main mechanisms that control their expression. Tsutsumi and Nagaoka (2003) 

established a co-culture model of A549 pulmonary epithelial cells with 

mononuclear phagocytes (Mono-Mac-6 monocytic cells) stimulated with LPS to 

investigate the modulation of hBD-2 in pulmonary epithelial cells. Presence of LPS 

was markedly up-regulated hBD-2 promoter activity, whereas A549 alone did not 

respond to LPS to activate the hBD-2 promoter. IL-1β and TNF-α in the culture 

supernatants from LPS-stimulated macrophages activated the hBD-2 promoter in 

A549 cells associated with NF-kB activation. Epithelial cell barrier function was 

also addressed by this co-culture model. Tanoue et al. (2008) established a co-

culture system of Caco-2 cells (apical side) and macrophage RAW264.7 cells 

(basolateral side) for assessing the anti-inflammatory effect of food factors. In this 

study the stimulation of RAW264.7 cells with LPS was followed by a decrease in 

trans-epithelial electrical resistance (TEER) associated with an increase in TNF-α 

production from RAW264.7 cells and IL-8 mRNA expression in Caco-2 cells. 
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Treatment with anti-TNF-α antibodies suppressed TNF-α production and IL-8 

mRNA expression.  

THP-1 cells are used in co-culture systems with different cell types, for instance, 

adipocytes, T-lymphocytes, platelets and intestinal cells. It is well reported that 

adipocytes obesity-associated inflammation enhances macrophage infiltration in 

adipose tissue by inflammatory cytokine production, such as TNF-α and IL-6 (Berg 

and Scherer, 2005). Keuper et al. (2011) established an in vitro model system for 

human adipose tissue by either incubation of SGBS adipocytes (pre-adipocyte cell 

line) with THP-1 cells in indirect incubation with conditioned medium from THP-1 

cells or direct co-culture of SBGS adipocytes with THP-1 cells. Spencer et al. 

(2010) also established co-culture system by co-culturing primary human 

adipocytes and pre-adipocytes with THP-1 cells using a transwell method to 

examine the gene expression pattern of M1, M2a, M2b, and M2c macrophages. 

Data of this study indicated that co-culture of adipocytes with either M1 or M2 

macrophages led to an overall shift of macrophage gene expression via secreting 

soluble factors from adipocytes, which promote a shifting of the M1 to the M2-

phenotype cell during co-culture. Jurkat T cells are often used to study T cell 

signalling. Fuentes et al. (2002) established an in vitro co-culture model by co-

culturing THP-1 cells with Jurkat cells to study the interaction between 

macrophages and T-cells.  

Studies using THP-1 derived macrophages co-cultured with intestinal epithelial 

cells include; study by Watanabe et al. (2004) which showed that Caco-2 cells 

barrier function could be disrupted by co-culturing with THP-1 macrophages 

differentiated by PMA due to the secretion of TNF-α by THP-1 derived 

macrophages. A similar finding was reported by Moyes et al. (2010) when Caco-2 
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cells co-cultured in a transwell system with underlying THP-1 macrophages 

differentiated by PMA, produced a lower, less organised epithelium and greater 

microparticle uptake.  

Over the past century, there has been a dramatic increase in attention on probiotic 

use in animal and human fields. Probiotic bacteria have long since displayed 

immunomodulatory properties of the gut immune system but the mechanisms are 

not well understood (Vasiljevic and Shah, 2008). From research into food factors 

with anti-inflammatory properties against intestinal inflammation {using animal 

intestinal inflammation models that are induced by administration of either dextran 

sodium sulphate (DSS) (Okayasu et al., 1990), or 2, 4, 6,-trinitrobenzene sulfonic 

acid (TNBS) (Morris et al., 1989) and IL-10 knockout mice (Kühn et al., 1993)}, the 

administration of probiotic bacteria has been shown to result in an improvement of 

mucosal appearance (Matsumoto et al., 2005). However, the modulatory effects of 

probiotic bacteria are still poorly understood at the cellular level. Because probiotic 

treatments exhibit different immunomodulation effects which depended on 

probiotic bacterial strain, probiotic cell preparation (live, heat-killed, irritated, cell 

lysate), probiotic concentrations, type of target cells (macrophage, DCs, NK cells, 

T cells, epithelial cells), type of cell model (monoculture or co-culture), type of cells 

in co-culture model, the experimental data are rather controversial, and there is no 

general agreement about the probiotic bacterial role in modulation of immune 

responses associated with epithelial cell barrier function. Therefore, a more 

precise in vitro assessment model of modulatory effects is required to elucidate 

these mechanisms by developing an in vitro co-culture system. In this chapter of 

this thesis, for the first time, a developed transwell co-culture system was 

established comparing two different status of gut physiology; inflammation (Caco-



   Chapter 5 

244 

 

2/M1) or homeostatic (Caco-2/M2) to investigate the immunomodulatory effects of 

probiotics on barrier function influenced by LPS-stimulated macrophages. 

Culturing fully differentiated Caco-2 at apical compartment and THP-1 cells 

differentiated by PMA (M1-like macrophages), or cells differentiated by Vit D3 (M2-

like macrophages at lower compartment, apically treated with probiotics, and 

basolateraly stimulated with LPS was performed to resemble gut pathology 

(inflammatory) and normal homeostasis model, respectively (refer to section 

2.2.4.8). The investigations focused on probiotic regulation of epithelial cytokine, 

hBD-2 and TLR expression, TEER (as an index of intestinal epithelial barrier 

function), (refer to section 2.2.8, section 2.2.10, section 2.2.5) and ZO-1 protein 

associated with barrier function expression tracked by gene expression (refer to 

section 2.2.7.4) and immunohistochemistry at homeostatic and chronic 

inflammation model (refer to section 2.2.9).  

The main issues addressed in this chapter were found suitable model to 

investigate:  

Hypothesis 1: SP and HK probiotic strains can modulate epithelial cytokine and 

hBD-2 expression induced by LPS in different co-culture models.  

Hypothesis 2: Probiotics can modulate epithelial barrier function (TEER, ZO-1) in 

different co-cultures models. 

Hypothesis 3: Probiotics are able to modulate epithelial TLR expression induced 

by LPS in different co-culture models.  
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5.2. Results  

5.2.1. Cytokine expression and barrier function are influenced by 
macrophage subset in epithelial cells.   

To assess probiotic bacterial role in modulation of the epithelial barrier function in 

the normal homeostasis or chronic inflammation status, developing co-culture 

models of Caco-2/ M2 (normal homeostasis), and Caco-2/ M1 (chronic 

inflammation) was used to performing this task (refer to 2.2.4.8, Fig.1.7 lines 3). 

The first readout was identifying levels of epithelial cytokine production influenced 

by macrophage subsets.   

Pro- and anti-inflammatory cytokine production was analysed in epithelial cells co-

cultured with M1-like or with M2-like macrophages. In this analysis, protein level of 

the pro-inflammatory cytokines IL-8, IL-6 and TNF-α, and of the anti-inflammatory 

cytokine IL-10 were determined. Results showed that level of IL-8 produced by 

cells co-cultured with M1 was more than cells co-cultured with M2 at 3 fold, TNF-α 

at 59 fold, IL-6 at 51 fold, and finally IL-10 at 3 fold from control level 7±0.0 pg/ml 

(un-stimulated cells) (Fig.5.2.1A). The second readout was TEER in both co-

culture models. Results showed that the TEER of resting cells (914.5±13.78) 

Ω/cm2 dropped down after culturing with macrophage subsets, however, TEER 

value of Caco-2 cells co-cultured with M2-like macrophages was more than cells 

co-cultured with M1-like macrophages at about 3 times (Fig.5.2.1B). The results 

above raised a crucial question about the sort of cytokines that might be produced 

in the lower compartment by macrophage subsets, which exhibit theses impacts 

on epithelial cell integrity. To address this question, different cytokines including 

IL-1β, TNF-α, IL-8, and IL-10 were used to treat epithelial cells basolateraly in the 

absence of macrophage subsets. The readout TEER was performed at each 
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treatment. Results showed that the cytokine treatment of the epithelial cells has a 

critical role in modulation of TEER value (Fig.5.2.2A). TEER suppressed by 87%, 

71%, and 52% for TNF-α, IL-8 and IL-1β respectively, whereas, IL-10 treatment 

up-regulated TEER value by 10.93% from control 904.5±13.7886 Ω/cm2. TEER 

value generally represents the epithelial cell barrier, which is dependent on 

epithelial cell tight junctions. Epithelial tight junction composed of proteins, and 

ZO-1 is one of the main proteins associated with epithelial cell tight junctions. 

Results showed that the pro-inflammatory cytokines selectively down-regulated 

ZO-1 expression by 95% (IL-1β), 76% (TNF-α), and 91% (IL-8), whereas IL-10 

cytokine treatment up-regulated ZO-1 cell expression by 121% from control 1±0 

fold change (Fig.5.2.2B).  

  

Figure 5.2. 1: Macrophage subsets selectively influenced cytokine production and 

epithelial cell integrity of Caco-2 cells. 
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Transwell inserts on which Caco-2 cells had been cultured were inserted into multiple plate 

well containing either M2-like macrophages, or M1-like macrophages. (A) Cytokine production 

is expressed as the mean±SE in pg/ml for IL-8, TNF-α, IL-6 and IL-10 secreted into apical 

compartment. (B) TEER measurements were performed using EVOM epithelial voltmeter for 

cells co-cultured with M2 or cells co-cultured with M1-like macrophages. Data displayed is a 

representative experiment with triplicate samples of n=3 replicate experiments. Significant 

effects compared to the control are indicated as * P<0.05, ** P<0.01 and *** P<0.005. 

 

Figure 5.2. 2: Cytokines selectively modulate epithelial cell barrier (TEER and ZO-1). 

Caco-2 cells were grown in transwell inserts for 21 days, treated with either 5ng/ml IL-1β, 

10ng/ml TNFα, 10ng/ml IL-8, or 10ng/ml IL-10. TEER measurements were performed using an 

EVOM epithelial voltmeter (A). ZO-1 gene expression (mRNA level) is expressed as fold 
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change using GAPDH as reference gene and resting cells as a calibrator sample as described 

by Livak et al. (2001) using 2
– ΔΔCt 

(B). Data displayed is a representative experiment with 

triplicate samples of n=4 replicate experiments. Significant effects compared to the control are 

indicated as * P<0.05, ** P<0.01 and *** P<0.005. 

5.2.2. Role of SP and HK probiotic strains in modulation of epithelial 
cytokine expression and barrier function in different co-culture models. 

In order to find out the role of probiotic treatments in the modulation of cytokine in 

epithelial cells co-cultured with either M1 or M2-like macrophages, HK or SP of 

LcS or LF were applied apically, then supernatant in apical compartments were 

used to determine pro-and anti-inflammatory cytokine production by ELISA (refer 

to Fig.1.7 line 3). Data presented in Fig. 5.2.3 show the effect of probiotic 

treatments on modulation epithelial cytokine production in Caco-2/M2, and Caco-

2/M1. IL-10, IL-6 and TNF-α were up-regulated by treatment with all probiotics 

tested in the Caco-2/M2 co-culture model, whereas IL-8 was down-regulated by all 

the probiotic treatments in this model. In contrast, in the Caco-2/M1 co-culture 

model IL-10 and IL-6 were markedly down-regulated by all probiotic treatments, 

TNF-α selectively modulated (up-regulated by LF-HK and LcS-SP; down-regulated 

by LF-SP, and non-significantly up-regulated by HK-LcS) and IL-8 also showed 

selective modulation by probiotics (suppressed by LcS-HK and up-regulated by all 

others). hBD-2 was analysed in Caco-2/M2 and Caco-2/M1 co-culture models. 

Data represented in figure 5.2.4 show there was a clear immunomodulation of 

hBD-2 expression by probiotic treatments in both co-culture models. In normal 

homeostatic (Caco-2/M2) model, hBD-2 selectively modulated (up-regulated by 

LcS-SP and LF-SP, suppressed by HK-LcS, and non-significantly up-regulated by 

HK-LF (Fig.5.2.4A). hBD-2 up-regulated by HK-LF, suppressed by HK-LcS, and 

LF-SP, and non-significantly up-regulated by LcS-SP in Caco-2/M1 co-culture 

model (Fig.5.2.5B).   
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Figure 5.2. 3: SP and HK probiotic strains selectively modulate epithelial cytokine 

production in Caco-2/ M2 and Caco-2/M1 co-culture models. 
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Caco-2 cells grown in transwell inserts were inserted into multiple plate well containing either 

M2-like macrophages, or M1-like macrophages. Probiotic Lactobacillus casei strain Shirota 

(LcS) or L. fermentum (LF) either heat killed (HK) at a cell density of 3x10
8
 CFU/ml or secreted 

protein (SP) extracts by them at 3.0µg/ml were added apically. Cytokine production is 

expressed as the mean±SE in pg/ml of IL-8 (A, A1), TNF-α (B, B1), IL-6 (C, C1), IL-10 (D, D1). 

Data displayed is a representative experiment with triplicate samples of n=3 replicate 

experiments. Significant effects compared to the control are indicated as * P<0.05, ** P<0.01 

and *** P<0.005, NS (non-significant). 

 

 

Figure 5.2. 4: SP and HK probiotic strains selectively modulate epithelial hBD-2 

production in Caco-2/ M2 and Caco-2/M1 co-culture models. 
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Caco-2 cells grown in transwell inserts were inserted into multiple plate well containing either 

M2-like macrophages (shaded bars), or M1-like macrophages (hatched bars). Probiotic 

Lactobacillus casei strain Shirota (LcS) or L. fermentum (LF) either heat killed (HK) at a cell 

density of 3x10
8
 CFU/ml or secreted protein (SP) extracts by them at 3.0 µg/ml were added 

apically. hBD-2 production is expressed as the mean±SE in pg/ml. Data displayed is a 

representative experiment with triplicate samples of n=3 replicate experiments. Significant 

effects compared to the control are indicated as * P<0.05, ** P<0.01 and *** P<0.005, NS 

(non-significant). 

5.2.3: Role of SP and HK probiotic strains in the modulation of cytokine and 
hBD-2 expression induced by LPS in Caco-2/M2 and Caco-2/M1 co-culture 
models  

To imitate the pathogenic bacterial invading where the epithelial cell barrier was 

broken, LPS was applied basolateraly in co-culture systems, whereas probiotics 

added apically to pretend the probiotic administration as supplements to confer the 

human health (refer to 2.2.4.8). Data in fig.5.2.5 show the immunomodulatory 

effects of probiotic treatments on LPS induced pro-& anti-inflammatory cytokine in 

Caco-2/M2 and Caco-2/M1 co-cultured models determined by ELISA. IL-8 induced 

by LPS was suppressed by treatment with all probiotics tested in the Caco-2/M2 

co-culture model and Caco-2/M1 co-culture model (Fig.5.2.5A, Fig.5.2.5A1), 

whereas IL-6 induced by LPS was augmented with the treatment of all probiotics 

tested in the Caco-2/M1 co-culture model (Fig.5.2.5C1). TNF-α induced by LPS 

was selectively modulated (suppressed by HK-LcS, augmented by HK-LF, LcS-SP, 

and non-significantly augmented by LF-SP) (Fig. 5.2.4B), IL-6 induced by LPS was 

augmented with all probiotics except LcS-SP, which suppressed LPS, induced IL-6 

(Fig.5.2.4C). IL-10 induced by LPS was also selectively modulated (augmented by 

HK-LF, suppressed by all other probiotic treatments) (Fig.5.2.4D) in the Caco-

2/M2 co-culture model. TNF-α induced by LPS was selectively modulated 

(augmented by HK-LcS, LcS-SP and LF-SP, suppressed by HK-LF) (Fig.5.2.4B1), 

IL-10 induced by LPS selectively modulated (suppressed by HK-LcS and LcS-SP, 
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non-significantly augmented by HK-LF and LF-SP) (Fig.5.2.4D1) in Caco-2/M1 co-

culture model. In response to LPS stimulation, hBD-2 was selectively modulated 

by probiotic treatments. hBD-2 induced by LPS augmented by HK-LcS and LF-SP, 

and non-significantly augmented by HK-LF and LcS-SP in Caco-2/M2 co-culture 

model (Fig.5.2.6A), whereas hBD-2 induced by LPS was augmented with all 

probiotic treatments in Caco-2/M1 co-culture model (Fig.5.2.6B). 
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Figure 5.2. 5: SP and HK probiotic strains selectively modulate LPS-induced 

epithelial cytokine production. 
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Cultures of Caco-2 cells were inserted into multiple plate well containing either M2-like 

macrophages, or M1-like macrophages, 100 ng/ml of LPS was added to the basolateraly 

compartment. Whereas, probiotic Lactobacillus casei strain Shirota (LcS) or L.fermentum (LF) 

either heat killed (HK) at a cell density of 3x10
8 

CFU/ml or secreted protein extracts (SP) by 

them in 3.0µg/ml were added apically. Cytokine production is expressed as the mean±SE in 

pg/ml of IL-8 (A, A1), TNF-α (B, B1), IL-6 (C, C1), IL-10 (D, D1). The data displayed is a 

representative experiment with triplicate samples of n=3 replicate experiments. Significant 

effects compared to the control (+LPS) are indicated as * P<0.05, ** P<0.01 and *** P<0.005 

and NS (non-significant). 

 

Figure 5.2. 6: SP and HK probiotic strains selectively modulate LPS-induced 

epithelial hBD-2 production in Caco-2/M2 and Caco-2/M1 co-culture models. 

Caco-2 cells grown in transwell inserts were inserted into multiple plate well containing either 

M2-like macrophages (A), or M1-like macrophages (B), 100 ng/ml of LPS added to the 
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basolateraly compartment. Whereas, probiotic Lactobacillus casei strain Shirota (LcS) or L. 

fermentum (LF) either heat killed (HK) at a cell density of 3x10
8
CFU/ml or secreted protein (SP) 

extracts by them at 3.0 µg/ml added apically. hBD-2 is expressed as the mean±SE in pg/ml. 

Data displayed is a representative experiment with triplicate samples of n=3 replicate 

experiments. Significant effects compared to the control are indicated as * P<0.05, ** P<0.01 

and *** P<0.005 and NS (non-significant). 

5.2.4. Role of probiotic bacteria in modulation of the epithelial barrier 
function in Caco-2/M2 and Caco-2/M1 co-culture models  

TEER measurement was used to determine the epithelial cell integrity as a part of 

the epithelial cell barrier function (refers to 2.2.8 and 2.2.4.8). Data showed that 

TEER was selectively modulated (up-regulated by HK-LcS, LcS-SP, suppressed 

by HK-LF and non-significantly modulated by HK-LF) in Caco-2/M2 co-culture 

model (Fig.5.2.7A). In Caco-2/M1 co-culture model, TEER was suppressed by all 

probiotic treatments (Fig.5.2.7B). After activation by the inflammatory stimulus, 

LPS, probiotics selectively modulated TEER in both co-culture systems. What is 

interesting is that probiotic treatments successfully recovered damage induced by 

LPS in both co-culture models. Results showed that TEER value suppressed after 

LPS stimulation by 28.3%, then augmented by all probiotic treatments (Fig.5.2.7A). 

In chronic inflammation model TEER value suppressed by 93% after LPS 

stimulation, and augmented by all probiotic treatments (Fig 5.2.7B). ZO-1 is one of 

the main proteins associated with the epithelial cell barrier function described as a 

linkage protein between trans-membrane proteins Occludin, Claudine and actin 

cytoskeleton. In this analysis, mRNA expression level of the ZO-1 gene relative to 

GAPDH was determined in Caco-2/M2 and Caco-2/M1 co-culture models by RT-

qPCR. Results indicated that ZO-1 mRNA level was augmented by probiotic 

treatments in cells of both co-culture models (Fig.5.2.7D). After LPS stimulation, 

ZO-1 induced by LPS was up-regulated with probiotic treatments in cells of both 

co-culture models (Fig.5.2.7D). The up-regulation of ZO-1 cell expression was 



   Chapter 5 

256 

 

paralleled with the up-regulation of TEER value suggested that probiotics 

mediates their roles in maintaining epithelial barrier function via up-regulation of 

ZO-1. TEER measurements and ZO-1 cell expression strongly suggested that 

cytokines produced by macrophages in co-culture system differentially affect the 

paracellular permeability of the epithelial cells. Thus, the alteration of tight junction 

associated with protein ZO-1 expression was tracked by an immunohistochemistry 

approach (refer to 2.2.9). Results showed that the untreated monolayer cells 

displayed continuous ZO-1 labelling around the cell periphery (Fig. 5.2.8A). Co-

cultured cells with M1s induced ZO-1 staining discontinuity and complete 

disorganization of ZO-1 expression (Fig.5.2.8B). Stimulation of cells with LPS 

caused marked disruption of ZO-1 expression, resulting in an absence of labelling 

of many cells crossing area and a complete destruction of a cellular network 

structure associated with ZO-1 expression (Fig. 5.2.8C). This morphological 

analysis showed that the co-cultured cells with M1-like macrophages followed by 

LPS stimulation had a pronounced effect on the barrier integrity of the Caco-2 

epithelial cells. Treatment with probiotics slightly restored ZO-1 expression, 

Fig.5.2.8D, E, F& G for HK-LcS, HK-LF, LcS-SP, and LF-SP respectively. In stark 

comparison, co-cultured cells with M2-like macrophages slightly affect ZO-1 

continuity (Fig.5.2.8B1). Stimulation of macrophages by LPS in the lower 

basolateral compartment sharply affect continuity of ZO-1 expression 

(Fig.5.2.8C1), and treatment with probiotics commendably restored the continuity 

of ZO-1 expression, Fig.5.2.8D1, E1, F1 & G1 for HK-LcS, HK-LF, LcS-SP, and 

LF-SP respectively. ZO-1 immunolabelling in the setting of cells co-cultured with 

M1s, and M2s were correlated with ZO-1 cell intensity which determined by 

Neuron J tracing tool for Image J software (Fig.5.2.8H & H1).  
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Figure 5.2. 7 : Probiotics selectively regulate TEER and ZO-1 induced by LPS in co-

culture models. 
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TEER Ώ/cm
2
 of Caco-2 epithelial cells co-cultured with M2-like macrophages (A), or cells co-

cultured with M1-like macrophages (B), ZO-1 expression of epithelial cells co-cultured with 

M2-like macrophages(C), or co-cultured with M1-like macrophages (D), 100 ng/ml of LPS 

added to the basolateraly compartment, whereas probiotic Lactobacillus casei strain Shirota 

(LcS) or L.fermentum (LF) either heat killed (HK) at cell density of 3x10
8 

CFU/ml or secreted 

protein (SP) extracts by them at 3.0 µg/ml added apically. TEER measurements were 

performed using an EVOM epithelial voltmeter. ZO-1 gene expression (mRNA level) is 

expressed as fold change using GAPDH as reference gene and resting cells as a calibrator 

sample as described by Livak et al. (2001) using 2
– ΔΔCt

. Data displayed is a representative 

experiment with triplicate samples of n=3 replicate experiments. Significant effects compared 

to stimulus control are indicated as * P<0.05, ** P<0.01 and *** P<0.005 and NS (non-

significant). 
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Figure 5.2. 8: Immunolocalization of Zonula Occluden (ZO-1) in a monolayer of 

Caco-2 epithelial cells induced by LPS in co-culture systems. 

A) Immuno-staining for ZO-1 in untreated cells showed continuous labelling around the cell 

periphery in the region of the cell-cell junctional complex. Co-cultured cells with M1-like 

H1 
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macrophages (B), and followed by stimulation by 100 ng/ml K12-LPS caused complete 

disorganization of ZO-1 (C), which repaired by treating cells with heat killed (HK) probiotic 

Lactobacillus casei strain Shirota (LcS) (D), L. fermentum (LF) (E), LcS- secreted protein (SP) 

(F), and LF-SP (G). Cells co-cultured with M2-like macrophages (B1), and followed by 

stimulation with 100 ng/ml K12-LPS caused slight disorganization of ZO-1 (C1), which 

positively repaired by treating cells with HK-LcS (D1), HK-LF. (E1), LcS-SP (F1), and LF-SP 

(G1). The immuno-staining shown is representative of three different cultures Scale bar, 50 

µm. ZO-1 cell intensity was analysed using Neuron J tracing tools for Image J software (H, H1). 

Date represented as mean±SE, n= 10. Significant effects compared to stimulus control are 

indicated as * P<0.05, ** P<0.01 and *** P<0.005 and NS (non-significant). 

5.2.5. Role of probiotics in modulation of epithelial TLR expression induced 
by LPS in Caco-2/M2 and Caco-2/M1 co-culture models  

In this analysis mRNA level of the TLR4, CD14, MD-2, TLR2, TLR9, NOD-2 and 

Tollip gene relative to GAPDH were determined in both Caco-2/M2 and Caco-

2/M1 by RT-qPCR, TLR4, and TLR2 protein surface expression were determined 

by flow cytometry (refer to 2.2.10 and 2.2.7). TLR4 was up-regulated with probiotic 

treatments in Caco-2/M2 and Caco-2/M1 co-culture model of protein and MRNA 

level. TLR4 mRNA level induced by LPS was selectively modulated (suppressed 

by HK-LcS, HK-LF, and LF-SP, and augmented by LcS-SP) in Caco-2/M2 co-

culture model (Fig.5.2.9A). TLR4 induced by LPS in Caco-2/M1 co-culture model 

was also selectively modulated (suppressed by HK-LcS, LcS-SP, and LF-SP, 

augmented by HK-LF) (Fig.5.2.9C). At the protein level, TLR4 induced by LPS was 

suppressed by all probiotic treatments except LcS-SP, which is non-significantly, 

augmented TLR4 induced by LPS in Caco-2/M2 co-culture model (Fig.5.2.9B). In 

the chronic inflammation model, probiotic treatments selectively modulated LPS 

induced TLR4 protein (suppressed by HK-LcS, LcS-SP, and LF-SP and 

augmented by HK-LF) (Fig.5.2.8D). 
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Figure 5.2. 9: Probiotics selectively regulate epithelial TLR4 expression induced by 

LPS in Caco-2/M2 and Caco-2/M1 co-culture models. 

Cultures of Caco-2 cells were inserted into multiple well plates containing either M2 

macrophages, or M1-like macrophages, 100 ng/ml of LPS added to the basolateral 

compartment, whereas probiotic Lactobacillus casei strain Shirota (LcS) or L. fermentum (LF) 

either heat killed (HK) at a cell density of 3x10
8 

CFU/ml or secreted protein (SP) extracts by 

them at 3.0 µg/ml added apically. TLR4 gene expression (mRNA level) is expressed as fold 

change using GAPDH as reference gene and resting cells as a calibrator sample as described 

by Livak et al. (2001) using 2
– ΔΔCt 

(A, B), and protein level by MFI (C, D). Data displayed is a 

representative experiment with triplicate samples of n=3 replicate experiments. Significant 

effects compared to stimulus control are indicated as * P<0.05, ** P<0.01, *** P<0.005, NS 

(non-significant). 
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TLR2 mRNA and protein were augmented by all probiotic treatments in both co-

culture models. After LPS stimulation, TLR2 mRNA level induced by LPS was 

selectively modulated (suppressed by HK-LcS, HK-LF, and LF-SP and non-

significantly augmented by LcS-SP), in Caco-2/M2 co-culture model (Fig.5.2.10A).  

In Caco-2/M1 co-culture model, TLR2 mRNA level induced by LPS was also 

selectively modulated (augmented by HK-LcS, HK-LF, suppressed by LcS-SP, 

and LF-SP) (Fig.5.2.10B). At the protein level, LPS-induced TLR2 was suppressed 

by all probiotic treatments except HK-LF, which significantly augmented LPS 

induced TLR2 in Caco-2/M2 co-culture model (Fig.5.2.10C). TLR2 protein level 

induced by LPS in cells of Caco-2/M1 co-culture model was also selectively 

modulated (suppressed by HK-LcS, HK-LF, and LcS-SP, and augmented by LcS-

SP) (Fig.5.2.10D).  

CD14 mRNA level was selectively modulated by probiotic treatments (augmented 

by HK-LF and LcS-SP, suppressed by HK-LcS, and LF-SP) in Caco-2/M2 co-

culture model, whereas all probiotic treatments augmented CD14 expression in 

Caco-2/M1 co-culture model. In LPS stimulation of the Caco-2/M2 co-culture 

model, probiotic treatments selectively modulated LPS induced CD14 (suppressed 

by HK-LcS, and HK-LF, augmented by LcS-SP and LF-SP) (Fig.5.2.11A). In the 

chronic inflammation (Caco-2/M1) model, HK-LcS suppressed LPS induced CD14; 

whereas all the rest of probiotic treatment augmented, LPS induced CD14 mRNA 

level (Fig.5.2.11B).   

Probiotic bacterial treatments deferentially regulated MD-2 expression 

(suppressed by HK-LcS and LcS-SP, augmented by HK-LF and LF-SP) in normal 

homeostatic (Caco-2/M2) model, whereas augmented by all probiotic treatments in 

Caco-2/M1 co-culture model. In LPS stimulation of the normal homeostatic model, 
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HK-LF augmented LPS induced MD-2 expression, whereas HK-LcS, LcS-SP, and 

LF-SP suppressed it (Fig.5.2.11C). However, only HK-LcS treatment suppressed 

LPS induced MD-2 expression and all the rest of probiotic treatments augmented 

LPS induced MD-2 in Caco-2/M1 co-culture model (Fig.5.2.11D).   

 

Figure 5.2. 10: Probiotics selectively regulate epithelial TLR2 expression induced by 

LPS in Caco-2/M2 and Caco-2/M1 co-culture model. 

Cultures of Caco-2 cells were inserted into multiple well plates containing either M2 

macrophages, or M1-like macrophages, 100 ng/ml of LPS added to the basolateral 

compartment, whereas probiotic Lactobacillus casei strain Shirota (LcS) or L. fermentum (LF) 
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either heat killed (HK) at a cell density of 3x10
8 

CFU/ml or secreted protein (SP) extracts by 

them at 3.0 µg/ml added apically. TLR2 gene expression (mRNA level) is expressed as fold 

change using GAPDH as reference gene and resting cells as a calibrator sample as described 

by Livak et al. (2001) using 2
– ΔΔCt

 (A, B), and protein level by MFI (C, D). Data displayed is a 

representative experiment with triplicate samples of n=3 replicate experiments. Significant 

effects compared to stimulus control are indicated as * P<0.05, ** P<0.01, *** P<0.005, NS 

(non-significant). 

 

Figure 5.2. 11: Epithelial cell CD14 and MD-2 expression induced by LPS selectively 

modulated by probiotics in Caco-2/M2 and Caco-2/M1 co-culture models. 
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Cultures of Caco-2 cells were inserted into multiple well plates containing either M2 

macrophages (A, C), or M1-like macrophages (B, D), 100 ng/ml of LPS added to the 

basolateral compartment, whereas, probiotic Lactobacillus casei strain Shirota (LcS) or 

L.fermentum (LF) either heat killed (HK) at a cell density of 3x10
8 
CFU/ml or secreted protein 

(SP) extracts by them at 3.0 µg/ml added apically. CD14 and MD-2 gene expression (mRNA 

level) is expressed as fold change using GAPDH as reference gene and resting cells as a 

calibrator sample as described by Livak et al. (2001) using 2
– ΔΔCt

. Data displayed is a 

representative experiment with triplicate samples of n=3 replicate experiments. Significant 

effects compared to stimulus control are indicated as * P<0.05, ** P<0.01, *** P<0.005 and NS 

(non-significant). 

Data showed that HK-LF probiotic treatment exhibited significant effects in up-

regulation of LPS induced MD-2, TLR4, TLR2, CD14, whereas HK-LcS 

suppressed MD-2, non-significantly suppressed CD14, suppressed TLR4, and up-

regulated TLR2 in Caco-2/M1 co-culture model. In contrast, HK-LF suppressed 

LPS induced MD-2, CD14, TLR4, TLR2, whereas HK-LcS suppressed LPS 

induced TLR4, TLR2, and CD14, augmented MD-2 expression in Caco-2/M2 co-

culture model. Secreted proteins of probiotic treatments augmented LPS induced 

CD14, suppressed MD-2, TLR4 and TLR2 in Caco-2/M1 co-culture model, 

however, secreted proteins of probiotic treatment exhibited differential effects on 

LPS induced TLR4, TLR2, augmented CD14 and MD-2 in Caco-2/M2 co-culture 

model. 

Probiotic treatments also selectively modulated intracellular PRR expression of 

TLR9 and NOD-2 in both co-culture models. Results indicated that in both Caco-

2/M2 and Caco-2/M1 co-culture models, NOD-2 was augmented with all probiotic 

treatments. After LPS stimulation of cells in the normal homeostatic (Caco-2/M2) 

co-culture model, NOD-2 induced by LPS was suppressed by all probiotic 

treatments (Fig.5.2.12A), whereas only HK-LcS augmented LPS induced NOD-2 

in the chronic inflammation (Caco-2/M1) co-culture model (Fig.5.2.12B).   
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TLR9 was augmented by all probiotic treatments in the normal homeostatic model, 

whereas selectively modulated (augmented by HK-LcS and LF-SP, suppressed by 

LcS-SP and HK-LF) in Caco-2/M1 co-culture model. After LPS stimulation of 

Caco-2/M2 co-culture model, TLR9 induced by LPS was selectively modulated 

(augmented by HK-LcS and LF-SP, suppressed by HK-LF, and non-significantly 

modulated by LcS-SP) (Fig.5.2.12C). In the chronic inflammation (Caco-2/M1) co-

culture model, TLR9 induced by LPS was also selectively modulated (suppressed 

by HK-LcS, and HK-LF, augmented by LcS-SP and LF-SP) (Fig.5.2.12D). Data in 

Fig.5.2.12 shows that probiotics selectively modulate the intracellular PRR 

expression induced by LPS which associated with hBD-2 and cytokine expression 

in both co-culture models.   

Tollip (the adaptor protein that inhibits TLR signal transduction) expression was 

selectively modulated by probiotic treatments, augmented with HK-LcS, whereas 

suppressed by HK-LF, LcS-SP, and LF-SP in Caco-2/M2 co-culture model. 

However, Tollip expression was suppressed with all probiotic treatments in the 

chronic inflammation model. After LPS stimulation of Caco-2 cells in the normal 

homeostatic model, Tollip induced by LPS was selectively modulated (non-

significantly augmented by HK-LcS, and HK-LF, suppressed by LcS-SP and LF-

SP) (Fig.5.2.13A). Whereas augmented with all probiotic treatments in cells of 

chronic inflammation model (Fig.5.2.13B). 
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Figure 5.2. 12: Epithelial cell NOD-2 and TLR9 expression induced by LPS 

selectively modulated by probiotics in Caco-2/M2 and Caco-2/M1 co-culture models. 

Cultures of Caco-2 cells were inserted into multiple well plates containing either M2 

macrophages (A, C), or M1-like macrophages (B, D), 100 ng/ml of LPS added to the 

basolateral compartment, whereas, probiotic Lactobacillus casei strain Shirota (LcS) or 

L.fermentum (LF) either heat killed (HK) at a cell density of 3x10
8 
CFU/ml or secreted protein 

(SP) extracts by them at 3.0 µg/ml added apically. NOD-2 and TLR9 gene expression (mRNA 

level) is expressed as fold change using GAPDH as reference gene and resting cells as a 

calibrator sample as described by Livak et al. (2001) using 2
– ΔΔCt

. Data displayed is a 

representative experiment with triplicate samples of n=3 replicate experiments. Significant 

effects compared to stimulus control are indicated as * P<0.05, ** P<0.01, *** P<0.005 and NS 

(non-significant). 
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Figure 5.2. 13: Tollip expression induced by LPS selectively modulated by 

probiotics in Caco-2/M2 and Caco-2/M1 co-culture models 

Cultures of Caco-2 cells were inserted into multiple well plates containing either M2 

macrophages (A), or M1-like macrophages (B), 100 ng/ml of LPS added to the basolateral 

compartment, whereas probiotic Lactobacillus casei strain Shirota (LcS) or L.fermentum (LF) 

either heat killed (HK) at a cell density of 3x10
8 

CFU/ml or secreted protein (SP) extracts by 

them at 3.0 µg/ml added apically. Tollip gene expression (mRNA level) is expressed as fold 

change using GAPDH as reference gene and resting cells as a calibrator sample as described 

by Livak et al. (2001) using 2
– ΔΔCt

. Data displayed is a representative experiment with triplicate 

samples of n=3 replicate experiments. Significant effects compared to stimulus control are 

indicated as * P<0.05, ** P<0.01, *** P<0.005 and NS (non-significant). 
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5.2.6 Summary of chapter 5 results 

 

Table 5.2. 1: Probiotic induction of cytokines (IL-8, TNF-α, IL-6, IL-10) and hBD-2 

production in Caco-2/M2 and Caco-2/M1 co-culture models. 

pg/ml 
Caco-2/M2 Caco-2/M1 

HK-LcS HK-LF LcS-SP LF-SP HK-LcS HK-LF LcS-SP LF-SP 

IL-8 ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↔ 

TNF-α ↑ ↔ ↑ ↑ ↔ ↑ ↑ ↓ 

IL-6 ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ 

IL-10 ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ 

hBD-2 ↓ ↔ ↑ ↑ ↓ ↑ ↔ ↓ 
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Table 5.2. 2: Probiotic modulation of cytokine, hBD-2 and TLR expression induced by 

LPS in Caco-2/M2 and Caco-2/M1 co-culture models. 

 Caco-2/M2 Caco-2/M1 
HK-LcS HK-LF LcS-SP LF-SP HK-LcS HK-LF LcS-SP LF-SP 

IL-8 (pg/ml) induced by 
LPS 

↓ ↓ ↓ ↓ ↓ ↓ ↔ ↓ 

TNFα (pg/ml) induced by 
LPS 

↓ ↑ ↑ ↔ ↑ ↓ ↑ ↑ 

IL-6 (pg/ml)  induced by 
LPS 

↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ 

IL-10 (pg/ml) induced by 
LPS 

↓ ↑ ↓ ↓ ↓ ↑ ↓ ↔ 

hBD-2 (pg/ml)  induced 
by LPS 

↑ ↔ ↔ ↑ ↑ ↑ ↑ ↑ 

         

TLR 4 mRNA induced by 
LPS 

↓ ↓ ↑ ↓ ↓ ↑ ↓ ↓ 

TLR4 protein induced by 
LPS 

↓ ↓ ↔ ↓ ↓ ↑ ↓ ↓ 

TLR2 mRNA induced by 
LPS 

↓ ↓ ↔ ↓ ↑ ↑ ↓ ↓ 

TLR2 protein induced by 
LPS 

↓ ↑ ↓ ↓ ↓ ↓ ↑ ↓ 

CD14 mRNA induced by 
LPS 

↓ ↓ ↑ ↑ ↔ ↑ ↑ ↑ 

MD-2 mRNA induced by 
LPS 

↓ ↑ ↓ ↓ ↓ ↑ ↑ ↑ 

NOD-2 mRNA induced by 
LPS 

↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ 

TLR9 mRNA induced by 
LPS 

↑ ↓ ↔ ↑ ↓ ↓ ↑ ↑ 

Tollip mRNA induced by 
LPS 

↔ ↔ ↓ ↓ ↑ ↑ ↑ ↑ 

 

Table 5.2. 3: Probiotic modulation of TEER and ZO-1 expression in Caco-2/M2 and 

Caco-2/M1 co-culture models. 

 Caco-2/M2 Caco-2/M1 

HK-LcS HK-LF LcS-SP LF-SP HK-LcS HK-LF LcS-SP LF-SP 

TEER ↑ ↑ ↔ ↑ ↔ ↑ ↑ ↔ 

ZO-1 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

Note: “↑”, “↓,”and “↔”means up-regulation, down-regulation, and no-modulation of the 

indicated target, respectively. 
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5.3. Discussion 

5.3.1. Probiotic bacteria and their secreted proteins selectively modulate 
LPS-induced cytokine expression in different co-culture models 

The present study was designed to determine the immunomodulation of probiotic 

bacteria on epithelial cell barrier function (hBD-2, ZO-1, cytokine production and 

TEER) induced by LPS, comparing two status; normal and chronic inflammation.  

Very little was found in the literature on the question of how probiotic bacteria 

modulate the mucosal epithelial cells in normal homeostasis and chronic 

inflammatory environments. Indeed several studies were performed to investigate 

the immunomodulatory effects of probiotics using a combination of different cell 

types (co-culture model), focussed on the immunomodulatory effects of probiotics 

into a range of gut mucosa such as DCs and epithelial cells. Yeun et al. (2012) 

reported that heat-killed probiotic bacteria, Bifidobacterium lactis AD011, 

Bifidobacterium bifidum BGN4, Lactobacillus casei IBS041 and Lactobacillus 

acidophilus AD031 modulated mouse DCs co-cultured with mouse epithelial cell 

monolayers cytokines (IL-6, TNF-α and IL-10) expression. Haller et al. (2000b) 

reported that Lactobacillus sakei modulated profiles of TNF-α, IL-1β, IL-8, 

monocyte chemoattracting protein 1 (MCP-1), and IL-10 in Caco-2 cells co-

cultures with human blood leucocytes. Regarding THP-1 derived macrophages 

using in a co-culture system as in vitro model to screen and predict the 

bioactivities from a variety of food components, Watanabe et al. (2004) 

established a co-culture model of Caco-2/M1-like macrophages to investigate the 

immunomodulatory effects of caffeine as food factors in the modulation of the 

disruption caused by macrophages into the Caco-2 cells. The macrophage 

cytokine expression of TNF-α during the incubation time has a significant effect on 

decreasing Caco-2 cell barrier function, suggested that this phenomenon (TNF-α 
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causing a decrease in barrier function) is similar to that observed with IBD. In 

Chapter 3 of this thesis, differentiation of THP-1 with PMA resulted in a 

macrophage subset expressing markers of M1-like macrophages associated with 

high production of pro-inflammatory cytokines in response to LPS stimulation. 

Whereas, using Vit.D3 to differentiate THP-1 cells resulted in macrophage subset 

with M2 markers associated with the production of anti-inflammatory cytokines and 

less production of pro-inflammatory cytokines. Basically, the interaction between 

epithelial cells as a front line of the gut mucosa with underlying macrophage 

subsets (M1 or M2) determine the fates and the outcome of the mucosal immune 

responses to the gut microbiota (probiotics); initiating an inflammatory environment 

or maintaining the gut mucosa. Therefore, two in vitro models were developed; 

one of them imitated a normal homeostatic model where Caco-2 cells co-cultured 

with M2-like macrophages, whereas the second one represented a chronic 

inflammation model where Caco-2 cells co-cultured with M1-like macrophages.  

The first question in this research of this chapter was investigating the role of 

probiotic treatments in the modulation of epithelial cytokine expression influenced 

by macrophages stimulated by LPS in different co-culture models. The results 

showed that M2 or M1 sensitised Caco-2 cells in vitro during the incubation time 

after stimulation with LPS, resulted in inducing different cytokine profiles of 

cytokine expression in these models. The data demonstrated that epithelial cells 

act as APCs respond to the signals (soluble factors) from macrophage cells in 

lower compartment resulting in releasing an array of cytokines such as IL-8, IL-6, 

IL-10, and TNF-α dependent on type of macrophage subset. A number of reports 

showed that epithelial cells act as APCs, participate in the initiation and regulation 

of the mucosal immune response to bacteria and their products. They express 
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MHC class II molecules (Hershberg et al., 1998), MHC class I (Blumberg et al., 

1991), the adhesion molecule ICAM-1 (Huang et al., 1996), complement, and 

cytokine receptors (Andoh et al., 1993, Reinecker and Podolsky, 1995). In this 

study, it seemed to be that epithelial cells acclimate themselves by changing some 

of their characterisation (cytokine and hBD-2 production) consequently to different 

stimulations in different co-culture models. Epithelial cells are distinguished 

between signals delivered by co-culturing with M2-like macrophages from signals 

co-culturing with M1-like macrophages, in addition to, distinguished signals 

delivered by LPS in cells co-cultured with M1s, from signal induced by LPS in cells 

co-cultured with M2s. These signals triggered the immune response leading to 

transducing of a discriminating signal by epithelial cells to underlying macrophage 

cell phenotypes and so on to create feedback loop stimulation between epithelial 

cells in the upper compartment and macrophage cells in lower compartment 

through soluble cytokines and their receptors. It is possible to hypothesise that 

these conditions are likely to occur in normal homeostasis and chronic 

inflammation. 

Adding probiotic bacteria to the co-culture system resulted in the induction of an 

array of cytokines by epithelial cells. Moreover, the type and level of cytokine 

produced by epithelial cells in different co-culture systems is dependent on the 

type of probiotic strain (as HK or SP) and type of macrophage subsets. Since this 

difference in cytokines has been found in different co-culture models (Haller et al., 

2000b, Yeun et al., 2012), it is probably due to the difference in probiotic bacterial 

cell wall and probiotic bacterial DNA and types of proteins in probiotic-secreted 

proteins.  
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LPS stimulation has induced different cytokines level in Caco-2 cells co-cultured 

with either M1s or M2s, and again the level of cytokine production was dependent 

on the type of macrophage subset in co-culture systems. It is well established that 

LPS stimulation induces TNF-α in macrophages (Björkbacka et al., 2004). TNF-α 

itself induces IL-8 expression in virtually all types of cells including intestinal 

epithelial cells (Baggiolini et al., 1995). Data presented here show that IL-8 

expression was up-regulated in both co-culture systems. These data are in line 

with findings of other research groups which showed the regulatory effect of TNF-α 

in inducing IL-8 by epithelial cells in a co-culture model of Caco-2/RAW264.7 cells 

(Tanoue et al., 2008), and Caco-2/leukocytes (Haller et al., 2000b). It was 

therefore proposed that TNF-α secretion in lower compartment is necessary to up-

regulate IL-8 production in Caco-2 cells in upper compartment by the virtue of this 

relationship.  

In response to stimulation with LPS, epithelial cytokines (TNF-α, IL-8, IL-10) were 

up-regulated in both co-culture models, whereas only IL-6 was suppressed in the 

chronic inflammation model. The cytokine signalling network in response to LPS is 

composed of diverse cytokines and their receptors, which regulate each other at 

the gut mucosa. Consequently, function and fate of the mucosal cells are 

determined by the outcomes of the overall function of cytokines. Understanding 

the cytokine network is complicated in part because many cytokine receptors 

generate competing, antagonistic, or synergistic signals. For example, TNF-α 

promotes cell death by inducing activation of the cysteine proteases caspase-8 

and caspase-3 through the expression of TNFR p55 (Thornberry, 1998), however, 

TNF-α also promotes cell survival by activating the NF-kB transcription factor 

through the expression of TNFR p75 (Karin and Ben, 2000). In addition, as part of 
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cytokine network, the expression of cytokine may enhance the expression of other 

cytokines such as TNF-α expression enhancing IL-10 expression (Foey et al., 

1998), and at the same time IL-10 represses TNF-α cytokine expression 

(Fiorentino et al., 1991). Indeed, the effect of TNF-α expression extended to other 

cytokines such as IL-6, which is suppressed by TNF-α through cross-regulation of 

cytokine signalling mechanisms (Radtke et al., 2010). In this study, it seemed to 

be that connection between signals and cell fate in the microenvironment of the 

co-culture model is even more complex, because cells are exposed to multiple 

cytokines that act together in synergistic or antagonistic combinations. Conflicting 

stimuli often arise when cells are exposed to paracrine cytokines from 

neighbouring cells together with autocrine cytokines secreted by the cell itself, 

therefore the complicated scenario of the epithelial cytokine production depend on 

the consideration of paracrine and autocrine cytokine effects. However, the 

scenario of epithelial cytokine production in a co-culture system will be further 

complicated in the presence of probiotics, whereby probiotics induced different 

profiles of epithelial cytokine production, and again dependent on type of 

macrophage cell phenotype and type of probiotic strain in co-culture system. 

Probiotics exhibit anti-inflammatory effect of suppressing the induction of LPS 

induced IL-8 cytokine production in cells co-cultured with M2s and cells co-culture 

with M1s. IL-8 is potent chemotactic and an activator peptide produced by 

epithelial cells, macrophages, and T lymphocytes that can induce neutrophil 

accumulation and activation at the site of production. Over production of IL-8 will 

creates a flooding with infiltrating neutrophils and pro-inflammatory cells, 

especially pro-inflammatory macrophages (Baggiolini et al., 1995). The 

accumulation of the inflammatory cells (macrophages and neutrophil) will initiate 

tissue destruction such as in IBD (Strober, 1998). Therefore, the suppression of IL-
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8 expression by probiotics will prevent the pro-inflammatory cytokine flooding 

produced by infiltrating cells. This suggests that destruction of tissues might be 

prevented through suppression of TNF-α induced IL-8. The findings of this study 

were supported by findings of Tanoue et al. (2008), when they showed that 

neutralization of TNF-α resulted in abolishing IL-8 cytokine expression in Caco-2 

cells co-cultured with RAW264.7 cells. Therefore, these data suggested that 

probiotics mediated their roles through suppression of TNF-α induced IL-8 in cells 

in co-culture systems.  

In terms of probiotic modulation of LPS induced TNF-α production in cells at co-

culture systems, they exhibited different effects in different settings. In cells co-

cultured with M2s, for example HK-LF treatment was significantly up-regulated 

LPS-induced TNF-α, whereas HK-LcS suppressed LPS-induced TNF-α in normal 

homoeostatic model. LF bacteria belong to the LAB with Gram-positive cell wall 

structured from a thick, multi-layered peptidoglycan decorated with proteins, 

teichoic acids and polysaccharides and high amount of Lipoteichoic acid (LTA), 

highly sensitive to the lysozyme digestion (Šimelyte et al., 2000, Logardt and 

Neujahr, 1975). LcS bacteria also belong to the LAB, but they have a rigid cell wall, 

resistance to the lysozyme digestion with a high amount of a complex of 

lipoteichoic acid and polysaccharide-peptidoglycan (PS-PG) (Matsumoto et al., 

2009, Shida et al., 2009, Yasuda et al., 2008). Therefore, it could be proposed that 

the differences in cell wall structure of LcS and LF are the main cause in 

modulation of epithelial cytokine production. The findings of the current study are 

consistent with those of Prescott et al. (2005) who found that administration of 

probiotics LF resulted in significant clinical improvement atopic dermatitis (AD) in 

very young children associated with up-regulation of Th1 cytokines such as TNF-α 
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and INF-γ and polysaccharide moiety of LcS suppressed LPS-induced TNF-α in 

macrophages via inducing IL-10 (Yasuda et al., 2008). Taken together, LF 

probiotic bacteria tend to be a pro-inflammatory inducer, whereas LcS bacteria are 

anti-inflammatory inducer in this specific scenario. It seemed to be that LF 

probiotic bacteria enhanced the pathways that mediated TNF-α production such as 

up-regulation of TLR4 or up-regulation of TNF-α through manipulation of ADAM17 

expression (Cario, 2005a; Cesaro et al., 2009; Eckmann, Kagnoff & Fierer, 1993) 

resulting in activation of MAPKs or NF-kB pathways. Comparing two scenarios 

(chronic inflammation and normal models), probiotics (LcS and LF) exhibited 

opposite effects. HK-LcS treatment augmented LPS-induced TNF-α in cells in a 

chronic inflammatory model, whereas LF suppressed it. In the chronic 

inflammation model, M1-like macrophages express high amounts of TNF-α in 

response to LPS stimulation. It seemed to be that level of TNF-α have an effect in 

directing probiotic immunomodulation of the immune responses, since the 

difference in this scenario is the level of TNF-α and other pro-inflammatory (IL-1β, 

IL-6, and IL-8) that induced in response to LPS stimulation. These findings 

suggest that probiotics can worsen inflammation of an inflamed tissue via further 

up-regulation of pro-inflammatory cytokines such as TNF-α. These findings are 

supported by other research groups such as Tsilingiri et al. (2012), which showed 

that Lactobacillus paracasei have an inflammatory activity in both healthy and IBD 

tissue tested in an organ culture system of human health and IBD intestinal 

mucosa developed by his group. Therefore, data of this study suggested the 

cautionary use of probiotic administration during acute inflammatory responses. 

However, up-regulation of TNF-α in the normal homeostatic environment might be 

contributing in maintaining barrier function at the gut mucosa via eliminating of 
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pathogenic bacteria. Some bacteria invade and intracellular residents such as 

Salmonella and Shigella (Bennish and Wojtyniak, 1991, Malik-Kale et al., 2012). 

Like these pathogenic bacteria, LcS probiotic bacteria resident intracellular in the 

epithelial cells; therefore, LcS probiotic bacteria might be suppressing the 

elimination of the intracellular bacteria such as Salmonella and Shigella via 

suppression of TNF-α. LcS augmented IL-6 in both co-culture systems. The data 

of this study were supported by the observation of Shida et al. (2011) and 

demonstrated that LcS can exhibit anti-inflammatory or pro-inflammatory effects 

dependent on its environmental situation. These findings are in line with findings of 

other research groups, which showed that Lactobacillus species have been shown 

to prevent colitis in IL-10 gene deficient mice (Madsen et al., 1999, Matsuzaki, 

1998) by augmentation of anti-inflammatory cytokine expression mediated 

intestinal homeostasis and maintaining barrier function. The current study 

supported the hypothesis that the cell signalling initiated by probiotic bacterial cells 

in the mucosal surface requires a network of cellular interactions. According to 

these results, sensitisation of Caco-2 cells by neighbouring immuno-competent 

cells is considered as a crucial step in probiotic bacterial cell recognition of 

epithelial cells.   

Although TNF-α is released at the start of inflammation in order to eradicate the 

pathogens, over-expression of it has been implicated in cross cytokine regulation, 

mediating the inhibition of IL-6 production induced by LPS (Ahmed and Ivashkiv, 

2000, Radtke et al., 2010) leading to dysregulated barrier function as seen by a 

decrease in TEER value in this study. These observations suggested that pro-

inflammatory cytokines such as TNF-α and pro-inflammatory mediator (LPS) in 

cells co-cultured with M1s, mediated to induce SOCS-3, the negative regulator of 
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IL-6 cytokine expression (Bode et al., 1999). Nevertheless, the data suggested 

that neither LPS nor TNF-α mediated expression of SOCS-3 in cells co-cultured 

with M2s, and LPS induced IL-6 production is independent of the expression of 

SOCS-3 (Peter et al., 2003).  

Matsumoto et al. (2010) reported that trans-signalling phenomena is caused by the 

soluble IL-6 (sIL-6R) and IL-6 receptor (gp130, IL-6Rα shedding) derived from the 

macrophages resulting in chronic inflammation in epithelial cells in mouse colitis-

associated premalignant cancer. Development of co-culture model (Caco-2/M1) in 

this study showed that epithelial cells suffered from chronic inflammation (up-

regulation of TNF-α and IL-8, and suppression of IL-6 associated with suppression 

of TEER). Probiotic treatments enhanced LPS induced IL-6 cytokine production in 

cells co-culture with M2s as well as cells co-cultured with M1s suggesting that the 

probiotic treatments modulated the trans-signalling phenomena in colonic 

epithelial cells in co-culture system. IL-6 has a dual role as anti-inflammatory and 

pro-inflammatory activity (Tilg et al., 1994). The expression of IL-6 is vital for gut 

intestinal epithelial cell homeostasis by down-regulation of apoptotic signals and 

mediates epithelial cell survival (Kovalovich et al., 2001). However, the 

overproduction of IL-6 mediated tissue damage such as in IBD (Mudter and 

Neurath, 2007). Therefore, the findings of this study suggested that probiotic 

treatments are vital in maintaining epithelial cell homeostasis by up-regulation of 

anti-inflammatory classical IL-6 pathway (IL-6/IL-6RJAK/STAT-3) and inhibit the 

pro-inflammatory (sIL-6-gp130-STAT-3) pathway (Stefan, 2012) in the chronic 

inflammation model lead to inhibit the epithelial cell apoptosis rate and enhance 

epithelial cell survival. Probiotic bacteria selectively modulated LPS induced IL-10. 

Among probiotic treatments, HK-LF treatment augmented LPS induced IL-10 in 
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cells in both co-culture systems. Up-regulation of IL-10 lead to suppress the pro-

inflammatory cytokines that cause tissue destruction (Ming and Shao, 2004), 

promote survival and activation of regulatory T cells mediating gut tolerance (Hara 

et al., 2001). Therefore, the data of this study suggested that LF probiotic bacteria 

are good candidate regarding issues required up-regulation of IL-10. In fact, these 

findings are in agreement with Lammers et al. (2003) when they showed that LF 

bacterial DNA up-regulated IL-10 in human peripheral blood mononuclear cells. 

HK-LcS treatment suppressed LPS induced IL-10 which correlated with 

augmentation of LPS induced TNF-α in the chrononic inflammation model which 

emphasises the cautionary use of probiotics. In the scenario of the chronic 

inflammation model, where M1-like macrophages are predominant, expressing 

high levels of pro-inflammatory cytokines in response to LPS stimulation, after the 

epithelial barrier failed to prevent the LPS crossing (phenomenon is similar to that 

observed with IBD), LcS treatment was augmented the inflammation via up-

regulation of LPS-induced TNF-α and suppressed LPS-induced IL-10.  

Consequently, the apoptotic rate might be increased leading to subvert epithelial 

barrier function facilities more chance to trigger more inflammatory responses, 

suggested that probiotic use might be detrimental in inflamed IBD.   

5.3.2. Probiotic treatments selectively modulate LPS-induced hBD-2 by 
epithelial cells in different co-culture models 

A strong relationship between pathogenic infection and an upsurge in hBD-2 

production by gut epithelial cells has been reported in the literature. Epithelial gut 

protection against pathogenic microorganisms is achieved through different 

mechanisms involving physical barrier such as TJs, mucus, pH, digestive enzymes, 

AMPs, sIgA, and bile acid. Once the physical barrier is pierced, the fast immune 

response will be initiated through recognition of invading microbiota as the first 
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step, resulting in augmentation of AMPs and cytokine production (Takeda et al., 

2003). In the GIT, defensins are supposed to be a critical component of both 

innate and adaptive immune responses through their roles in eradication of 

pathogens (Wehkamp et al., 2004) and modulation of immune responses 

(Oppenheim et al., 2003) via chemotactic properties involved in recruiting 

polymorphonuclear leukocytes (PMN) to the site of infection. The expression of 

hBD-2 is controlled by pro-inflammatory cytokines such as IL-1β and TNF-α and 

anti-inflammatory cytokine IL-10 as shown in (chapter 4). The second question in 

this research of this chapter was investigating the role of probiotic treatments in 

modulation of hBD-2 expression induced by LPS in different co-culture models. In 

this study, level expression of hBD-2 induced by LPS in different co-culture 

systems was dependent on the type of macrophage subset. These data in part are 

in line with findings of Tsutsumi-Ishii et al. (2003) which showed that the IL-1β and 

TNF-α produced by mononuclear phagocytes in the co-culture system are main 

inducer of hBD-2 transcription in A549 pulmonary epithelial cells. In addition, 

stimulation of epithelial cells with probiotics and their secreted proteins in co-

culture systems, resulting in different profiles of hBD-2 expression is dependent on 

the type of probiotic strain, probiotic preparation (HK or SP), and macrophage 

subset. Among the probiotic bacteria used in this study, SP of LcS and LF 

significantly enhanced hBD-2 expression in the normal homeostatic model, 

whereas HK-LF treatment enhanced hBD-2 expression in chronic inflammation 

model. These treatments of probiotics exhibit anti-inflammatory role by up-

regulation of hBD-2 expression.  

In LPS stimulation of cells in a chronic inflammation model, the hBD-2 release was 

suppressed. This suppression demonstrates of hBD-2 deficiency. Indeed, the 
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scenario of the chronic inflammation model is similar to that observed with IBD, 

when a deficiency of hBD-2 production is one of the main pathological signs 

(Wehkamp et al., 2003). In terms of probiotic treatments, they selectively 

modulated LPS induced hBD-2 in both co-culture systems. In the normal 

homeostatic model, probiotic treatments augmented LPS induced hBD-2. This 

augmentation of hBD-2 might up-regulate the barrier function against invading 

pathogenic microorganisms and maintaining gut mucosa (Yang et al., 2002). 

Focusing on HK-LcS probiotic treatment, it’s up-regulated LPS induced TNF-α 

production, which in turn up-regulated hBD-2 (Albanesi et al., 2007) in chronic 

inflammation model, whereas HK-LF probiotic treatment down-regulated LPS 

induced TNF-α, but up-regulated hBD-2 in chronic inflammation model. These 

effects of HK-LF suggested that the up-regulation of hBD-2 expression might be 

through up-regulation of LPS induced IL-1β not up-regulation of LPS induced TNF-

α (McDermott et al., 2003), or up-regulation of LPS induced IL-17 and IL-22 in 

macrophages in lower compartment that induce hBD-2 expression (Brand et al., 

2006, van Baarlen et al., 2011), which in turn up-regulated the induction of LPS 

induced hBD-2 in epithelial cells. Secreted protein of LcS or LF up-regulated the 

induction of LPS induced TNF-α and again they up-regulated the induction of LPS 

induced hBD-2 in cells co-cultured with M1s and M2s. Taken together, it is 

possible that the discriminatory responding strategies of epithelial cells in a 

complicated environmental niche in the co-culture system explain why probiotic 

bacterial treatments are may be effective in the treatment of the IBD.  

5.3.3. Probiotic bacterial treatments selectively modulated the dysregulated 
barrier function induced by LPS in co-culture models 

The third question in this research of this chapter was investigating the role of 

probiotics in modulation of dysregulated barrier function induced by LPS in 
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different co-culture models. Probiotic bacterial role in the modulation barrier 

function of the gut mucosa at normal environment compared with chronic is not 

well understood. Methods to determine the epithelial cell monolayer integrity and 

barrier function, (which is mainly influenced by TJs within the epithelium) including 

trans-epithelial electrical resistance (TEER) measurements, which determine the 

Trans-and para-cellular permeability (Schulzke et al., 2006). Disruption of tight 

junctions leads to subvert the epithelial cell integrity causing leak flux. In the 

current study, two types of co-culture settings were developed, Caco-2/M1s 

resembling of the chronic inflammation model, and Caco-2/M2 resembling of the 

normal intestinal homeostatic model. Data showed that in Caco-2 co-cultured with 

M1s, TEER value was sharply down-regulated in comparison with resting single 

monoculture cells and stimulation with LPS resulted in a further decrease of TEER.  

In Caco-2/M1 co-cultured model, M1s stimulated directly by LPS and indirectly by 

soluble factors released by Caco-2 cells during co-culturing time (paracrine 

factors). Increase macrophage stimulation resulting in increasing of pro-

inflammatory cytokine production such as TNF-α, IL-6, IL-8, and IL-1β leading to 

suppress TEER and epithelial cell integrity (Schulzke et al., 2006). It is well known 

that the increase in TNF-α production leading to increased epithelial cell apoptosis 

through the up-regulation of TNFRp55 (Grell et al., 1999). IL-6 is vital for epithelial 

cell survival and epithelial cell turnover (Grivennikov et al., 2009). Increasing in 

TNF-α production causes the suppression in IL-6 expression (Radtke et al., 2010). 

Consequently, apoptotic rate is increased causing leak flux, making cytokine-

induced apoptosis functionally far more relevant than is spontaneous apoptosis 

thereby perpetuating inflammatory responses. Indeed the model of Caco-2 cells 

co-cultured with M1s is similar to that observed with IBD, where the apoptotic rate 
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is increased leading to perpetuated inflammatory responses (Baumgart & Carding, 

2007).  

In the chronic inflammation model, TEER was decreased in comparison with cells 

in a single culture, and stimulation of cells with LPS strongly decreased TEER. 

This suppression is due to the pro-inflammatory cytokine production increasing 

during co-culturing time and stimulating macrophages with LPS. Probiotic 

treatments in chronic inflammation model failed in repairing the induced injuries by 

pro-inflammatory cytokines and LPS and full restoration of epithelial barrier. This 

data, in part, is in line with other research groups, which have documented the 

effects of pro-inflammatory cytokines on decreasing of TEER (Haller et al., 2000b, 

Parlesak et al., 2004). In fact, therapeutically, neutralising TNF-α-antibodies 

(infliximab) can restore barrier function in Crohn's disease by down-regulating 

epithelial cell apoptosis (Schulzke et al., 2006).  

TNF α induced protein 3 (TNFAIP3) is a cytosolic protein that acts in a negative 

feedback loop to regulate cell signalling induced by TLR ligands and TNF-α 

mediated the regulation of the intestinal barrier. Suppression of TNFAIP3 

increases epithelial cell permeability (Kolodziej et al., 2011). It is therefore 

proposed that the expression of TNFAIP3 was suppressed in epithelial cells in co-

culture system especially, after LPS stimulation, and probiotic treatments failed to 

up-regulate TNFAIP3 that recovered the suppression of barrier function induced 

by pro-inflammatory cytokines and LPS in cells of chronic inflammation model.   

Normally, M2-like macrophages secrete high levels of regulatory cytokines (IL-10 

and TGF-β), and low levels of TNF-α in response to LPS stimulation (Mantovani, 

Sica & Locati, 2007). In normal homeostasis (Caco-2/M2) model, it is predicted 
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that the level of pro-inflammatory cytokine was less than in cells of chronic 

inflammation (Caco-2/M1) model. Therefore, the disruption of epithelial barrier in 

this scenario (Caco2/M2) was less than in cells of Caco-2/M1 co-culture model 

even after LPS stimulation. Interestingly, probiotic treatments positively repaired 

the damaged induced by cytokines and LPS, but without full recovery. This data is 

in agreement with other research groups such as Anderson et al. (2010) who 

showed that Lactobacillus plantarum reduced the suppressive effect of pathogenic 

bacteria Escherichia coli on TEER. The findings of this study suggested that 

probiotic treatment repair of epithelial damaged might be through inducing Hsp70, 

resulting in attenuation of the effects of pro-inflammatory cytokines (Koninkx et al., 

2010) or by up-regulation of TNFAIP3 (Kolodziej et al., 2011) leading to mantained 

intestinal barrier function.   

Tight junction (TJs) assembly and permeability are regulated by a network of 

signalling pathways including protein kinase C; suppression of protein kinase C 

resulted in a decrease in TEER (Chen et al., 2002). Therefore, probiotics exerted 

their effects in modulation of epithelial barrier function might be through 

modulation of the expression and/or activity of protein kinase C. These findings 

are in agreement with Zyrek et al. (2007) when they showed that E.colli Nissle 

1917, restored the disrupted epithelial barrier via PKC in T84 epithelial cells 

induced by enteropathogenic bacteria E. coli.   

It is well known that the important factor to determine TEER value is TJs: TJs are 

composed of different types of proteins including ZO-1, ZO-2 and Claudine 

(Schneeberger & Lynch, 1992), participating in forming the epithelial cell 

monolayer tight junctions, therefore, ZO-1 tight junctional protein expression was 

tracked by fluorescent-labelled antibody. In cells co-cultured with M1s (chronic 
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inflammation model), ZO-1 showed less intensity and discontinuous labelling 

around the cell periphery indicative of a disorganization process of the tight 

junction proteins (Pyrgos et al., 2010), and this is similar to that observed with IBD, 

when tight junctional intercellular changes resulting in reorganization of tight 

junction protein structure and subsequent changes in barrier properties (Capaldo 

and Nusrat, 2009). Indeed, over expression of pro-inflammatory cytokines, leading 

to activation of the inflammatory process which is associated with suppression of 

zinc finger protein A20 (Prasad et al., 2004). Al-Sadi et al. (2010) reported that 

activation of the inflammatory process through NF-kB increased tight junction 

permeability. Chen et al. (2012) reported that phosphorylation of the myosin L 

chain kinase (MLCK) induced a contraction in actin-myosin filaments associated 

with reorganisation of ZO-1 tight junction protein. This process is thought to be 

central to losing barrier function in IBD (Shen et al., 2009). These changes in ZO-1 

structure were observed in this study by immuno-fluorescent staining and 

confirmed by ZO-1 gene expression. Disruption in ZO-1 protein expression leads 

to a complete loss of tight junction integrity associated with ZO-1, which is 

correlated with the destruction of the intercellular contacts, especially after LPS 

stimulation, when the lack of ZO-1 continuity around the cell periphery was 

predominant. The findings of the current study suggested that the cells co-cultured 

with M1s suffered from the pro-inflammatory cytokine produced by M1s. In an 

attempt to determine the type of cytokine mediating the down-regulation of ZO-1 

expression, a single culture of Caco-2 cells was treated with pro and anti-

inflammatory cytokines, resulting in suppression of ZO-1 expression in response to 

the pro-inflammatory cytokines IL-1β, TNF-α, and IL-8, whereas IL-10 treatment 

was augmented ZO-1 expression. These findings in part are in line with previous 

reports of Wang et al. (2006), who showed the decrease in TEER value after TNF-
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α stimulation of Caco-2 cells stimulated with IFN-γ or TNF-α which correlated with 

suppression of TNF-α-induced MLCK phosphorylation. Probiotic bacterial 

treatments enhanced TEER and ZO-1 expression might be via regulation of Hsp70 

(Tsapara et al., 2006). Overall, the data of this study suggested that probiotic 

bacterial treatments mediated their roles in maintaining the intestinal epithelial 

barrier through different mechanisms. 

5.3.4. Epithelial cell PRR induced by LPS selectively modulated by probiotic 
treatments in different co-culture systems  

It was hypothesized that probiotic bacteria modulated epithelial cell immune 

responses via modulation of PRR receptors. Epithelial cells are known for their 

effectiveness against invasion of luminal bacteria, and also their polarity has a 

major role in colonic homeostasis. This barrier normally does not react to 

commensal bacteria, but triggers pro-inflammatory signalling pathways in the 

presence of pathogenic bacteria or in response to pro-inflammatory cytokines 

(Cario and Podolsky, 2005a). In fact, the interaction of commercial non-pathogenic 

microbiota with intestinal epithelial cells results in inducing a program of epithelial 

cell homeostasis and repair through promoting epithelial cell proliferation, 

secretion of IgA into the gut lumen and expression of antimicrobial peptides (Cario, 

2005b). However, in IBD, the barrier fails in discrimination between commensal 

non-pathogenic- and pathogenic bacterial recognition, resulting in increasing 

epithelial cell permeability and later changing the barrier properties (Bamias et al., 

2005).  

It is known that LPS is a potent inducer of TLR4 expression (Beutler, 2000) and 

binding to its receptor (TLR4) will initiate signalling cascades leading to activated 

NF-kB resulting in triggering the inflammatory process associated with up-
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regulation of the expression of TNF-α, IL-1β, IL-8, and IL-6 (Taniguchi et al., 2009). 

TLR4 has been found to be expressed by epithelial cells in a very low level in the 

healthy intestine but highly up-regulated in IBD (Hausmann et al., 2002), whereas 

TLR2 is expressed in a healthy intestine (Cario et al., 2004) to enhance specific 

functions mediating barrier integrity of epithelial cells. TLR2 stimulation effectively 

conserves tight conjunctions associated barrier assembly against stress-induced 

injury through the promotion of PI3K/Akt-mediated cell survival via MyD88 (Cario 

et al., 2004). In addition to its roles in maintaining gut barrier function, TLR2 

exhibits a vital role in promoting gut tolerance via Tregs. Round et al. (2011) 

reported that metabolites from commensal microbiota such as polysaccharide A of 

B. fragilis trigger signals through TLR2 directly on Foxp3+ regulatory T cells to 

promote immunologic tolerance. However, over-stimulation of TLR2 mediated 

mucosal inflammation solely through its effects on epithelial cells (Cario et al., 

2007).  

Caco-2 cells constitutively express CD14, which was up-regulated after LPS 

stimulation. CD14 recognises a variety of bacterial PAMPs. It has the ability to 

recognise and bind components of both gram negative and gram positive bacteria, 

consequently, It serves as a co-receptor for TLR2 and TLR4 (Meyenburg et al., 

2004).   

MD-2 is necessary for LPS signalling of TLR4 (Abreu et al., 2002) and TLR2 

(Schröder et al., 2003). It forms a complex with TLR4 or TLR2 with CD14 (Dziarski 

et al., 2001). NOD2 is strongly expressed in colonic epithelial cells (Girardin et al., 

2003a), which identifies its ligand in the cytoplasm of the cells, and consequently 

interacts with its target molecules causing activation of the innate immune system 

through recognition of MDP (Chen et al., 2004). In a healthy intestine, activation of 
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NOD-2 results in activation of the transcription factor NF-kB followed by an 

increase in the expression of pro-inflammatory cytokines, such as TNF-α or IL-1β 

(Chen et al., 2004) and antimicrobial peptides such as hBD-2 (Voss et al., 2006), 

however, expression of NOD-2 mediates apoptosis through induction of caspase 

system (Ogura et al., 2001). Expression of the pro-inflammatory cytokines TNF-α 

or IFN-γ mediates to up-regulation of NOD-2 (Rosenstiel et al., 2003). A sensor for 

bacterial DNA in epithelial cells is TLR9 (Takeshita et al., 2001). Apical and 

basolateral surface TLR9 activation (de Kivit et al., 2011) results in activation of a 

wide range of pathways including NF-kB leading to release pro-inflammatory 

cytokines and chemokines (Gao et al., 2003, Rachmilewitz et al., 2004 ).  

Stimulation of cells with LPS in different co-culture systems were sufficient to 

increase the expression of IL-8, TNF-α, IL-6 and IL-10, and the antimicrobial 

peptide hBD-2 in Caco-2 cells. The up-regulation of IL-8, IL-6, and TNF-α 

expression after stimulation with LPS in this study was reflected in TEER, and ZO-

1 changes. Conflicting reports showed a hypo-responsiveness of Caco-2 cells to 

LPS stimulation (Bocker et al., 2003) which was described through a lack of MD-2 

expression (Shimazu et al., 1999). It was shown that the basolateral stimulation of 

epithelial cells by macrophages during co-culturing time and treating Caco-2 cells 

apically with probiotics resulting in inducing paracrine (factors from macrophages) 

and autocrine (factor from epithelial cells) effects on the Caco-2 cells.  

Consequently, a different range of epithelial cell receptor expression might lead to 

activate a series of cell signalling resulting in the production of pro- and anti-

inflammatory cytokines in addition to hBD-2. While LPS is recognised by TLR4 or 

TLR2 incorporation with CD14 and MD-2 resulting in up-regulation of cytokine 

production such as TNF-α and IL-1β and hBD-2 in lower compartment by 
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macrophages, epithelial cells on the other hand, in upper compartment recognised 

probiotic bacterial PAMPs; due to this, the fate of the immune response will be 

determined by an array of factors. In fact, the cooperation between these signals 

(upper and lower) will determine the outcomes of epithelial cell interactions with 

probiotic PAMPs, the subsequent downstream signalling pathway will be conveyed, 

which is dependent on the type and level of the signal being delivered to the cells.   

Although several cell receptors are classified in one superfamily (O'Neill and 

Bowie, 2007) and suggested to share a common pathway in the activation of 

inflammation, specific MyD88-independent and dependent pathways may exist for 

the LPS signalling cascade which leading to trigger different downstream 

signalling pathways (Baeuerle and Henkel, 1994) resulting in different profiles of 

immune cell outcomes. In the chronic inflammation model of this study, stimulation 

of cells with LPS up-regulated a panel of receptors including extracellular 

receptors of TLR4, TLR2, MD-2, and CD14 and intracellular receptors of TLR9, 

NOD-2 and intracellular TLR4-dependent and -independent MyD88 pathways 

selectively regulated by probiotics.   

In the chronic inflammation model, HK-LF probiotic treatment up-regulated LPS 

induced TLR4, CD14 and MD-2, resulting in up-regulation of IL-6, IL-10, hBD-2, 

whereas, HK-LcS probiotic treatment down-regulated LPS induced TLR4, TLR2, 

TLR9, CD14, MD-2, but up-regulated LPS induced NOD-2, resulting in up-

regulation of LPS induced TNF-α, IL-6, and hBD-2 (refer to table 5.2.2). The data 

of this study demonstrated that HK-LF treatment up-regulated IL-6, IL-10, and 

hBD-2 through up-regulation of TLR4/CD14/MD-2, suggesting that HK-

LF/TLR4/CD14/MD-2 ligation of epithelial cells drive this inflammatory response. 

These data are in agreement with de Kivit et al. (2011) who showed that apical 
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TLR4 ligation of intestinal epithelial cells drives an inflammatory response of 

epithelial cells (HT-29 and T84), that grew in trans-well inserts co-cultured with 

PBMCs resulted in enhancing the production of TNF-α associated with decrease 

numbers of Foxp3+ regulatory T cells, however, neutralisation of TSLP abrogated 

TLR4 -enhanced TNF-α secretion.  Intestinal epithelial cells are a major source of 

TSLP.  TSLP has a vital role in maintaining gut tolerance via its role in promoting 

mucosal CD103+ DC that induce Foxp3+ regulatory T cells (Wells et al., 2011a). 

Therefore, it might be proposed that epithelial cell responsiveness associated with 

up-regulation of TLR4, enhanced TNF-α production via suppression of TSLP and 

probiotic treatment of HK-LF might have a role in suppression of TSLP that lead to 

up-regulated TLR4 induced TNF-α in this system. However, HK-LF up-regulated 

LPS induced hBD-2. As mentioned earlier, hBD-2 linked innate and adaptive 

immunity, therefore, HK-LF might be a good candidate to prevent and/or treat 

disease associated with hBD-2 deficiency such as Crohn’s disease.  

HK-LcS treatment up-regulated LPS induced TNF-α and hBD-2 associated with 

up-regulation of NOD-2 expression in chronic inflammation model. These findings 

are in agreement with Hisamatsu et al. (2003) who showed that NOD-2 (mRNA 

and protein) were up-regulated by TNF-α in SW480 and Caco-2 cells, where in 

Caco-2 cells only up-regulated by S. typhimurium. Voss et al. (2006) reported that 

NOD2 mediates the induction of hBD-2 associated with activation of NF-kB and 

AP-1. Taken together, it might suggest that HK-LcS is a good candidate to 

enhance hBD-2 expression via enhancing NOD-2 in diseases associated with 

mutation in NOD-2 such as Crohn’s’ disease (Grimm and Pavli, 2004).  

Probiotic secreted proteins of LF and LcS, also exhibited a significant role in 

modulation of LPS induced cytokines, and hBD-2, associated with modulation of 
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LPS induced epithelial PRR receptors. Secreted proteins of LcS and LF up-

regulated TNF-α, IL-6, hBD-2, TLR2, CD14, MD-2, NOD-2 and TLR9, but 

suppressed IL-10 and IL-8. These data are in agreement with Frick et al. (2007), 

when they showed that LF supernatant inhibited IL-8 induced by Yersinia 

enterocolitica infection in HeLa cells associated with suppression of NF-kB and 

p38 MAPKs. 

In a homeostatic model, HK-LF probiotic treatment up-regulated LPS induced 

TNF-α, IL-6, IL-10 through up-regulation of TLR2/MD-2, whereas HK-LcS 

treatment up-regulated IL-6 and hBD-2 through up-regulation of LPS induced 

TLR9. LF-SP treatment up-regulated LPS induced IL-6 and hBD-2 through up-

regulation of LPS induced TLR9 and TLR2, whereas LcS-SP treatment up-

regulated LPS induced TNF-α, TLR4 and CD14 and failed to up-regulate LPS 

induced hBD-2. The up-regulation of LPS induced hBD-2 and failing in up-

regulation of TNF-α associated with up-regulation of TLR9 in cells of Caco-2/M2 is 

in agreement with the findings of de Kivit et al. (2011) when they showed that 

apical TLR9 augmentation of HT-29 and T84 cell lines enhanced IFN-γ and IL-10 

secretion. Regarding HK-LcS treatment, it might be HK-LcS up-regulated LPS 

induced hBD-2 via up-regulation of LPS induced IFN-γ associated with up-

regulation of TLR9 (Albanesi et al., 2007).  

Data showed that HK-LcS with rigid, resistance to lysozyme digestion of the cell 

wall, enhanced LPS induced hBD-2 and cytokine production, via enhancing 

intracellular PRRs (NOD-2 and TLR9) expression, whereas HK-LF with sensitive 

of lysozyme digestion cell wall enhanced LPS induced hBD-2 and cytokine 

production via enhancing extracellular PRRs (TLR2, TLR4, CD14 and MD-2) 

expression suggested that the chemical structure of peptidoglycan is important in 
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determining the immunomodulation of the immune response induced by LPS in 

epithelial cells. 

Continuity of TLR activation will lead to trigger more inflammatory response, and 

Tollip is one of the main adaptor proteins that mediate inhibition of TLR activation 

leading to switching off the signals being triggered in response to specific stimuli 

(Zhang and Ghosh, 2002, Shibolet and Podolsky, 2007). The inhibitory exploits of 

Tollip is mediated via repression of auto-phosphorylation and kinase activity of 

IRAK (Zhang and Ghosh, 2002). Studies showed that Tollip manages the 

magnitude of inflammatory cytokine production in response to IL-1β and LPS 

(Didierlaurent  et al., 2006). As shown earlier in this study, different responses of 

epithelial cells, which sensitised by different macrophage subset occurred in 

normal and chronic inflammation model. In LPS stimulation of the chronic 

inflammation model, Tollip expression was down-regulated, suggesting that LPS 

and pro-inflammatory cytokines such as IL-1β and TNF-α produced by 

macrophages exhibit high influences in sensitised epithelial cells in co-culture 

system, resulting in suppression of Tollip expression. One unanticipated finding 

was that Tollip expression in the normal homeostatic model was more than 1000 

times higher than cells in the chronic inflammation model due to the level of pro-

inflammatory cytokine production. These data suggested that the level of pro-

inflammatory cytokines in chronic inflammation model has significant effects in 

inhibiting Tollip cell expression. Data showed that probiotic treatments selectively 

modulated LPS-induced Tollip expression in both co-culture models. For example, 

the suppression of LPS-induced Tollip was associated with up-regulation of 

TLR4/CD14/MD-2 enhanced production of IL-6 and hBD-2 in response to 

stimulation with HK-LF in cells of Caco-2/M1 co-culture model. Moreover, among 
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the probiotic treatments in the chronic inflammation model, HK-LF and LF-SP were 

more effective that other treatments in augmentation of Tollip induced by LPS, due 

to the fact that they engaged with TLR4 or TLR2. Indeed, decreasing Tollip 

expression was associated with increasing TLR expression (Pimentel-Nunes et al., 

2012). Treatment with probiotics in the chronic inflammation model showed that 

probiotic treatments enhanced LPS induced Tollip in an attempt to limit the 

inflammation as a part of the probiotic bacterial role in maintaining gut mucosa. It 

seemed to be that titration of signalling cascades by Tollip overexpression leading 

to blockade the signals was dependent on the type of probiotic bacterial 

treatments and type of macrophage subset involved in co-culture model. Further 

research should be done to investigate the immunomodulation of probiotic bacteria 

on epithelial TLR adaptor molecules (A20, IRAK-M, and SIGIRR) lead to limit the 

inflammation in GIT using in vitro, in vivo or ex vivo studies.  
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Chapter 6: General Discussion  

Dietary habits have been associated with the aetiology and prevention of diseases 

(such as IBD) which are a serious health problem for civilization (Molodecky et al., 

2011, Singh et al., 2001). One possible factor, which contributes to initiate IBD, is 

the disruption of microbial sensing by the gut mucosal immune system leading to 

miscommunication between gut microbiota and intestinal cells (Sartor, 2008). This 

process results in the over-production of pro-inflammatory cytokines such as TNF-

α and IL-1β, which contribute to tissue damage of the gut mucosa.  

Macrophage cells are implicated in the initiation of IBD through their dysregulated 

production of pro- and anti-inflammatory cytokines as a result of activation of an 

array of endogenous and exogenous stimuli (microbial PAMPs and cytokines) 

(Butcher et al., 2005, Pull et al., 2005, Smith et al., 2011). Modulation of the 

mucosal immune response is one of the possible methods of prevention and 

therapy for IBD using substances of natural origin (Fedorak, 2008).  

6.1. THP-1 cell line: a reliable cell model? 

Owing to either financial or ethical constraints related to animal or human in vivo 

studies, ex vivo or in vitro studies become more applicable to the improvement of 

specific applications. Ex vivo systems have the benefit of their natural origin; 

however, the high individual variation among donors can make analyses and 

understanding of the results more complex. Human cell lines are valuable in vitro 

tools to investigate the cellular functions, mechanisms and responses, as well as 

signalling pathways, nutrient and drug transport/absorption. A disadvantage in the 

use of cell lines is that the malignant background and the cultivation of cells under 

controlled conditions (outside their usual environment) might, perhaps result in 
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different sensitivity and responses compared with standard cells in the body. 

Likewise, possibly relevant interactions between the target cells and neighbouring 

cells, as in normal tissues, cannot be simply mimicked. However, the correlation 

between in vitro results and predicted in vivo responses has been described e.g. 

evaluation of probiotics. Foligne et al. (2007) investigated the correlation between 

in vitro (human peripheral blood mononuclear cells) and in vivo (a murine model of 

acute TNBS-induced colitis) immunomodulation potential of the probiotic strain 

and its ability to prevent experimental colitis in mice. Dai et al. (2012) examined 

the effects of VSL#3 probiotics on colonic epithelium permeability in vivo (acute 

colitis induced by dextran sodium sulphate) and in vitro (HT-29 cell line). An extra 

benefit of using human cell lines for the in vitro investigations is that the outcomes 

can be used to investigate the cell signalling which can support the definite in vivo 

proven health promoting effectiveness of selected compounds for human intake.   

The THP-1 cell line is isolated from the peripheral blood of patient suffering from 

acute monocytic leukemia; they are non-adherent cells, express Fc and C3b 

receptors (Tsuchiya et al., 1980 ). The THP-1 cell line has been widely used to 

investigate the immune responses not only while cells are in the monocytice state 

but also in the macrophage-like state, because of their ability to differentiate into a 

macrophage-like phenotype after exposure to PMA or to Vit.D3 (Auwerx, 1991, 

Chanput et al., 2010, Schwende et al., 1996). Technically, based on the 

homogeneous genetic background minimizes the degree of variability in the cell 

phenotype, which facilitates reproducibility of findings, THP-1 cells have some 

advantages over freshly isolated PBMCs from both animal and human (ex vivo) 

(Rogers et al., 2003). However, it is important to understand that THP-1 

monocytes and differentiated THP-1 macrophages are differing from those derived 
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from PBMCs, such as the regulation of apoptosis. THP-1 is an immortalized cell 

line that can cultivate and divide forever in vitro under appropriate culture 

conditions, while human PBMCs monocytes need inflammatory mediators, for 

instance, IL-1β, TNF-α or LPS, to function as survival factors to avoid apoptosis 

(Mangan and Wahl, 1991). A number of publications have compared the 

similarities between THP-1 derived macrophages and human PBMCs derived 

macrophages with respect to various aspects such as the expression of 

macrophage receptors (CD11b, CD14 and CD36) (Schwende et al., 1996, 

Daigneault et al., 2010) polarizing ability (plasticity), macrophage morphology and 

adherence (Tsuchiya et al., 1982) macrophage function (phagocytosis, 

accumulation of lipids and antigen presentation) (Gupta et al., 2005). Sharif et al. 

(2007) concluded that THP-1 cells provide an accurate and valid cell model 

system for evaluating the LPS response in macrophages. Data in chapter 3 and 5 

indicated that THP-1 derived macrophage subsets are useful tools for drug and 

compound screening purposes such as immunomodulation by probiotics. Taken 

together with the results of chapter 3 and 5, and from the literature studies, it can 

be concluded that THP-1 and THP-1 derived macrophage subsets cells appear to 

represent a simplified, suitable, and reliable model to investigate monocytes and 

macrophages functions/responses, macrophage differentiation and possible 

immunomodulatory effects of probiotics.  

6.2. Caco-2 cell line represent gut intestinal epithelial cells? 

Intestinal epithelial cells separate the mucosal immune system from the external 

milieu. The intestinal epithelium shows a key role in maintaining gut tolerance via 

its roles in interacting with the mucosal cells resident in the lamina propria (such 

as macrophages) and in the same time interacting with microbiota and food born 
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antigen in gut luminal contents, the mechanisms behind this crosstalk are largely 

unknown. In fact, the differentiation process of intestinal cells, pathologies related 

to inflammatory conditions in the intestine, and also the adaptation of intestinal 

cells to firm nutritional conditions are often investigated by an in vitro method using 

intestinal epithelial cell models (Hodin et al., 1997). Caco-2 cell line is a commonly 

used model, representing features of the human intestinal epithelium, they were 

derived from a human colon adenocarcinoma, differentiated spontaneously in vitro 

under proper culture conditions, thereby exhibiting enterocyte-like structural and 

functional characteristics (Lenaerts et al., 2007). After differentiation, they mimic 

typical characteristics of the human small intestinal epithelium, with well-developed 

brush border as seen in Fig.2.6. They express TLRs as shown in chapter 4 and 5, 

and also by other studies (Cario et al., 2000b), produce IL-8, IL-6, TNF-α, IL-10 

and hBD-2 (chapter 4), TGF-β and TSLP in response to Gram-positive and Gram-

negative bacteria (Zeuthen et al., 2008) and also in response to stimulation with 

pro-inflammatory cytokines such as TNF-α or IL-1β as shown by this study either 

as monoculture or as co-culture with macrophage subsets. Caco-2 cells modify 

themselves depending on the type of macrophage subsets in a co - culture model 

by changing their profiles of cytokine, hBD-2, and TLR expression (macrophage 

cell subset co-cultured dependent). Data in chapter 5 indicated that Caco-2 cells 

can discriminate between signals either from a co-culture with M1 (Caco-2/M1) or 

from M2 (Caco-2/M2). Therefore, it can be concluded that Caco-2 cells appear to 

represent a suitable and reliable model to study the interaction of epithelial cells 

with macrophage subsets representing normal or chronic inflammation model, and 

possible immunomodulatory effects of probiotics in both co-culture models. 
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6.3. Screening tool for probiotic immunomodulation  

Regarding potentially protective foods, increasing attention has been paid to 

probiotics (Fuller, 1991, Vasiljevic and Shah, 2008). Probiotic bacteria and their 

products represent a novel therapeutic or preventive treatment option of IBD in 

humans (Bomba et al., 2006), because synthetic therapeutics have numerous side 

effects unfavourably influencing human health and at the same time inducing new 

problems. This study was designed to look for and identify a number of possible 

modulations of mucosal immune responses by probiotic bacteria induced by 

specific stimuli using a combination of THP-1 derived macrophage subsets, and 

Caco-2 intestinal epithelial cells to develop co-culture model of normal 

homeostasis (Caco-2/M2) or chronic inflammation model (Caco-2/M1). Three lines 

of investigations were designed (monoculture of macrophage subsets, 

monoculture of Caco-2 epithelial cells, and co-culture models of Caco-2/M1 or 

Caco-2/M1, refer to Fig.1.7) to build up a good platform of knowledge looking at 

the probiotic bacterial role in modulation of the immune response induced by 

specific stimuli in specific model. Firstly, the role of a panel of probiotic strains 

(Bifidobacterium breve, Lactobacillus rhamnosus, L. salivarius, L. plantarum, L. 

fermentum, and L. casei strain Shirota ) as heat killed (HK) and secreted protein 

(SP) was identified in the modulation of monocyte and macrophage cell subset 

cytokine production induced by LPS as a pathogenic inflammatory signal. This 

immunomodulation by probiotic strains occurs by either suppression of pro-

inflammatory cytokines, leading to limitation of inflammation, or by up-regulation of 

anti-inflammatory cytokines, leading to maintenance of the gut mucosa. This 

information allows the selection of appropriate probiotic bacteria for the treatment 

of conditions such as IBD. In addition, a stably transfected NF-κB-reporter cell line 
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model of CD14lo/CD14hi mucosal resident homeostatic and infiltrating 

inflammatory macrophages was used to investigate the relationship between a 

range of potentially immunoregulatory probiotics (both bacterial cell and secreted 

protein preparations) and their effects on macrophage subset NF-κB activation. 

Moreover, the immunomodulation of probiotics on corresponding cytokine effector 

phenotype (CD14hi/lo) was determined, of relevance to mucosal macrophages 

found in the GIT.  

The overproduction of TNF-α and IL-1β by uncontrolled macrophage stimulation 

contributes to initiation of tissue damage in IBD (Strober and Fuss, 2011). 

Therefore, the second aim was to determine the role of probiotics in modulation of 

epithelial cell cytokine and hBD-2 expression induced by TNF-α and IL-1β. Thirdly, 

the probiotic bacterial role in modulation of epithelial cytokine, hBD-2 production, 

and the epithelial cell barrier, during either normal homeostasis or chronic 

inflammation, was identified using a developed in vitro co-culture system, which 

mimics the interaction of gut epithelial cells with immune cells (M2-like or M1-like 

macrophages). Investigation of the epithelial cell barrier was focused on 

determining TEER and ZO-1 cell expression associated with dysregulated 

epithelial cell integrity induced by LPS in co-culture models. Each line of research 

in this study provides productive and fruitful knowledge about the role of probiotic 

bacteria in modulation of the mucosal immune response.  

6.4. Is probiotic administration always beneficial for human health? 

The difference between monocytes and macrophages is monocytes are blood-

circulating cells, whereas macrophages can be found only at the site of 

inflammation, therefore called inflammatory-monocyte derived macrophages or 
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resident in tissue such as lamina propria, and called tissue-resident macrophages.  

Therefore, THP-1 monocytes were differentiated into M1 or M2-like macrophages 

in order to use them for screening possible immunomodulation by probiotics either 

macrophage monoculture or using them to influence epithelial cells in co-culture 

models. Normally, mucosal gut macrophages resemble the M2 subset and fail to 

express CD14, a co-receptor for LPS signalling. Thus, probiotic modulation of 

LPS-induced NF-kB activity and cytokine expression was investigated using a 

THP-1 monocyte-derived reporter cell line, model of CD14hi/lo M1 and M2 

macrophages. Inducing an inflammation, LPS acts via extracellular receptors of 

TLR4 or TLR2 coupled with CD14 and MD-2 as the main suggestive pathway to 

amplify the immune response. Accordingly, production of pro-inflammatory 

cytokines such as TNF-α, IL-8, IL-6, and IL-1β are amplified, which can 

consequently be used as markers to measure the inflammatory reaction (Backhed 

et al., 2003). Both HK-LcS and LcS-SP suppressed IL-6 and differentially 

regulated TNF-α and IL-8 expression dependent on macrophage subset. HKs and 

SPs of BB, LF and LR suppressed monocyte TNF-α expression induced by LPS, 

and both HK-BB and BB-SP suppressed LPS induced IL-1β expression in 

monocytes, M1, and M2-like macrophages. It seemed to be that the signals 

induced by probiotics whether HK or SP differentially regulate LPS induction in 

monocytes and macrophage cell subsets, leading to modulated cytokine 

production of TNFα, IL-1β, IL-6 and IL-8. HK probiotics suppressed CD14lo and 

augmented CD14hi M1 TNF-α production whereas SPs augmented CD14hi M1 

TNF-α production. M2 macrophage IL-6 production was suppressed by both HK 

and SPs, and was differentially regulated in CD14lo and CD14hi M1s. HK-LcS 

augmented LPS induced epithelial TNF-α expression in Caco-2/M2 model, 

whereas non-significantly augmented LPS induced TNF-α in Caco-2/M1 co-culture 
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model, up-regulated LPS induced TNF-α in M1hi, suppressed TNF-α in M1lo, non-

significantly augmented TNF-α in M2hi, and up-regulated TNF-α in M2lo, 

augmented TNF-α in monocytes and M2-like macrophages, whereas suppressed 

TNF-α in M1-like macrophages. In contrast, HK-LF augmented LPS induced TNF-

α in Caco-2/M2, suppressed LPS induced TNF-α in Caco-2/M1, up-regulated TNF-

α in M1hi, suppressed TNF-α in M1lo, up-regulated TNF-α in M2hi, and suppressed 

TNF-α in M2lo, suppressed TNF-α in monocytes and M1s and augmented TNF-α 

in M2-like macrophages. Comparison between these two probiotics in modulation 

of LPS induced TNF-α (as the principal cytokine that mediates regulation of 

infectious, inflammatory and autoimmune phenomena) (Pasparakis et al., 1996) in 

different types of cell lines showed that the probiotic immunomodulation was CD14 

expression level, type of macrophage subset, and type of co-culture model (Caco-

2/M2 or Caco-2/M1)-dependent. In spite of the differences between LcS and LF 

probiotic bacterial strains regarding sensitivity to lysozyme digestion and cell wall 

structure, they exhibited quite similar effects in modulation of LPS induced TNF-α 

in macrophage subsets, however, the differences were found only in modulation of 

LPS induced TNF-α in epithelial cell in co-culture models.   

This work showed that HK and SP probiotic bacteria differentially regulated 

cytokine and NF-kB activation in a subset-dependent manner and suggested a 

cautionary approach to probiotic treatment of mucosal inflammation through the 

up-regulation of M1s CD14hi TNF-α macrophage cell expression, which leads to 

amplified inflammation resulting in tissue injury. High CD14 expression is one of 

the main pathological signs in IBD associated with pathophysiology in 

macrophages resident in the lamina propria (Kamada et al., 2008), and up-

regulation of TNF-α in these subsets will worsen the inflammation; suggesting that 
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probiotics are not always beneficial and can also be detrimental in inflamed IBD. 

Up-regulation of LPS induced IL-1β and IL-6 by probiotic bacteria might enhance 

the proliferation and differentiation of Th17 subset, which is one of the main cells 

involved in IBD (Brand, 2009), therefore probiotic treatments might again increase 

the inflammation of the gut mucosa. Using HK-LcS; augmented LPS induced TNF-

α and suppressed LPS induced IL-10 in Caco-2/M1 co-culture model (refer to table 

5.2.2). During chronic inflammation, the up-regulation of TNF-α will increase 

epithelial cell apoptosis and suppress epithelial cell barrier. Taken together, 

probiotics can have inflammatory activities of both macrophages and epithelial 

cells (Tsilingiri et al., 2012).  

Evidence suggests that macrophages play a central role in both innate and 

adaptive immune responses. In aged subjects the innate and adaptive arms of the 

immune system undergo changes associated with alterations in both the strength 

and quality of the immune response. Reduced TNF-α level in aging is associated 

with reduction in macrophage phagocytosis (Renshaw et al., 2002). MHC class II, 

TLR4, TLR2, p38, and ERK MAPKs signalling, JAK/STAT signalling and 

production of cytokines are also suppressed during aging (Gomez et al., 2005), 

resulting in a breakdown of the epithelial barriers of the skin, lung and GIT, which 

enables invasion of delicate mucosal tissues by pathogenic organisms. In vivo 

evidence showed that an abundance of pro-inflammatory cytokines associated 

with healthy young subjects (Franceschi et al., 2000), whereas dysregulation of 

the immune system referred to as immunosenescence is related to aging subjects 

(Hansen et al., 2013). Therefore, probiotic strains associated with immune 

activation may be appropriate for the aging stage, whereas probiotic strains 
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associated with immune regulation may be appropriate for young adulthood 

dependent on environmental tissue status.  

6.5. Probiotic immunomodulation of cytokine (TNF-α or IL-1β) induction of 

epithelial cytokines and hBD-2 production  

Epithelial cells represent a first line of defence; perform the first step in antigen 

processing and presentation by expressing a range of receptors in response to 

different stimuli to the other cells resident at the gut mucosa, such as macrophage 

cell subsets. They respond to the external and internal signals by releasing 

cytokine and antimicrobial peptides (AMPs) such as hBD-2. It is hypothesised that 

epithelial cells exhibit hypo-responsiveness toward gut microflora through 

suppression or absence of PRR expression. However, epithelial cells express a 

range of PRRs at the physiological level to keep normal homeostasis throughout 

their role in the surveillance and monitoring of gut contents (Cario, 2002). Probiotic 

strains used in this study are Gram-positive bacteria with cell wall enriched with 

muraemic acid, LTA, polysaccharides (PS) and PGN. It seemed to be that the 

differences in LTA and PGN structure between these strains might mediate the 

differences in the modulation of IL-1β or TNF-α induced hBD-2 and cytokine 

production. hBD-2 is an important antimicrobial peptide that links innate and 

adaptive immunity and functions as one of the main factors involved in maintaining 

the gut barrier.   

TNF-α and IL-10 are the master cytokines regulating infection, inflammation and 

autoimmunity. In fact, there is a reciprocal relationship between them, up-

regulation of IL-10 results in suppression of TNF-α, and vice versa, in addition, 

TNF-α play a significant role in inducing IL-10 produced by monocyte derived 
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macrophages (Foey et al., 1998). Data showed that treating epithelial cells with 

TNF-α or IL-1β induced IL-10, TNF-α, IL-6, IL-8, and hBD-2 (time and type of 

stimuli dependent). It will be useful to draw a link between extracellular and or 

(membrane bound or intracellular) cytokine expression of TNF-α and IL-10 

associated with hBD-2 expression at each treatment using anti-TNF-α or anti-IL-10 

antibody. Indeed, neutralising the TNF-α bioactivity leads to inhibition of hBD-2 

expression, whereas neutralising the IL-10 bioactivity leads to up-regulation of 

hBD-2 expression. This confirmed the fact that hBD-2 expression is controlled by 

the expression of cytokines (TNF-α and IL-10). However, probiotic treatments 

modulated the cytokine induced hBD-2 (TNF-α or IL-1β), TNF-α and IL-10 after 

neutralisation of IL-10 or TNF-α. This immunomodulation by probiotics in hBD-2 

production might lead to modulated DC maturation via modulation of CCR7 

expression. Moreover, probiotic treatments modulated membrane bound and 

secretable IL-10 which might lead to the modulation of adaptive immunity via B cell 

activation. To identify the molecular mechanisms controlling cytokine and hBD-2 

expression during the absence of TNF-α or IL-10, the expression of selected TLRs 

and NLRs in the presence or absence of the anti-TNF-α and anti-IL-10 antibody 

was studied. TLR4, TLR2, and CD14 were down-regulated after treating cells with 

anti-TNF-α antibody, suggesting that there is a crucial role of TNF-α expression in 

the regulation of expression of these PRRs. Probiotic bacteria exhibit a significant 

role in modulating TLR expression after treating cells with anti-TNF-α or anti-IL-10 

antibody via direct (bacterial PAMPs) or indirect effects (inducing cytokines which 

modulate TLRs). TNF-α treatment up-regulated the expression of NOD2 in the 

intestinal epithelial cells, which might lead to increasing epithelial cell LPS 

susceptibility (Rosenstiel et al., 2003), and possibly to disruption of mucosal 

barrier function as it is observed in IBD, therefore, probiotic treatments exhibit anti-
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inflammatory effects by suppression of TNF-α induced NOD-2 expression. The up-

regulation of IL-1β is one of the clinical observations associated with IBD 

pathophysiology. Current investigations showed that only TLR4 expression was 

up-regulated upon treating cells with IL-1β in the presence of anti-TNF-α antibody, 

whereas both TLR2 and CD14 expression were down-regulated at this scenario.  

What is surprising is that the up-regulation of TLR4 expression alone, without 

engagement with CD14 and MD-2 expression, was not enough to trigger the 

successful immune response resulting in the up-regulation of either pro-

inflammatory cytokines such as TNF-α or anti-inflammatory such as IL-10 by 

epithelial cells. However, treating cells with anti-IL-10 antibody induced the up-

regulation of TLR expression triggering an active immune response. This explains 

that the absence of IL-10 will result in a breakdown of tolerance. Expression of 

Tollip by epithelial cells is one of the main mechanisms of epithelial cell hypo-

responsiveness toward the continuous exposure to gut microbiota (Abreu, 2010, 

Didierlaurent  et al., 2006). It has been hypothesised that the up-regulation of TLR 

expression in response to specific signals resulting in up-regulation of cytokines 

and hBD-2 is associated with the down-regulation of Tollip expression. This 

current study showed the crucial roles of TNF-α and IL-10 in Tollip expression, i.e. 

Tollip is up-regulated in the absence of TNF-α and suppressed at the absence of 

IL-10. Modulation of the IL-10 and TNF-α expression by probiotics resulted in 

different profiles of Tollip expression. Targeting molecules that mediate the 

tolerogenic mechanisms (suppression of TLR activation) might open a new 

window to the treatment of IBD. In future, PCR cloning is one of the suggested 

approaches for identifying the bioactive components of probiotic bacteria and their 

secreted proteins mediating the suppression of PRRs expression and limiting 

inflammation at gut mucosa.  
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6.7. Why co-culture model? 

The monoculture of Caco-2 cells represents the normal mucosa with intact tight 

junctions and strong barrier properties. However, such a test system does not 

imitate the pathophysiological alterations happening in an inflamed region of IBD. 

Moreover, a single cell line can never represent the complex interplay of different 

cell types during an inflammatory process. Therefore, the developed in vitro co-

culture systems, which mimics the interaction of gut epithelial cells with immune 

cells of the GALT, allows us to elucidate the role of commensal bacteria in driving 

mucosal tolerance and how it can be boosted by the use of immunoregulatory 

probiotics.   

Based on the concept that the intestinal epithelium performed as an essential 

barrier between the gut lumen and the lamina propria, Caco-2 epithelial cells were 

used as the first layer exposed to the probiotics in this model of this study. Gut 

mucosal macrophages represented a large pool of APCs, playing a pivotal role in 

driving mucosal immune responses, resulting in either activation of inflammatory 

immune responses to pathogenic challenge or tolerance to beneficial luminal 

contents. Elicited macrophage responses are dependent on tissue environment 

and the resulting macrophage cell subsets, where homeostatic macrophages 

resemble the M2 macrophage subset and inflammatory macrophages resemble 

M1s.  

6.8. Do probiotics modulate epithelial barrier function in chronic and normal 

homeostasis model?  

It is difficult to find suitable cell lines fit to represent normal homeostasis and 

chronic inflammation status. However, the models that have been developed by 
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co-culturing Caco-2 cells at the upper compartment and M2- or M1- like 

macrophage cells at the lower, apically treated with probiotic bacterial treatments 

such as HK or SP, and then basolateraly stimulated with LPS to represent a 

normal homeostatic or chronic inflammation model. Application of this system 

might help the understanding of the cellular mechanisms of the interaction 

between macrophage subsets and epithelia cells at different environment.  

This study was designed to look for the direct interaction between probiotic 

bacteria and their secreted proteins with epithelial cells in different co-culture 

models. Gut intestinal epithelium is known for its effectiveness against the invasion 

of luminal microorganisms, which may be present at concentrations of more than 

1014CFU/ml (Gigante et al., 2011). This barrier does not normally react to 

commensal bacteria, but triggers the pro-inflammatory signalling pathway only in 

the presence of pathogenic microorganisms (Sartor and Mazmanian, 2012). 

Triggering of the immune response by epithelial cells needs the activation of TLRs.  

Although TLR4 has been found at low levels in a healthy intestine (Cario, 2010), 

however, it is highly up-regulated in IBD (Abreu et al., 2005). Contrasting reports 

show the weakness of immune response results from LPS stimulation in Caco-2 

epithelial cells, which was described as having a lack of MD-2 cell expression, a 

partner molecule for TLR4 signalling complex (Dziarski et al., 2001). This study 

and other research groups (Taniguchi et al., 2009) shown that TLR4 induced by 

LPS was expressed by epithelial cells at different inflammation status and is 

selectively modulated by probiotic treatments.  

In a chronic inflammation model, TLR4/CD14/MD-2 expression was up-regulated 

by HK-LF, whereas these bacteria failed to up-regulate these TLR-related 

molecules by cells in the normal homeostatic model (refer to table 5.2.2). It 
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seemed to be that the inflammatory cytokines produced by stimulated M1s upon 

co-culture with epithelial cells enhanced epithelial cell TLR expression. The up-

regulation of TLR4/CD14/MD2 expression correlated with a decrease in the 

epithelial cell barrier (TEER). In fact, TEER, a measurement of epithelial cell 

integrity, was sharply reduced in the chronic inflammation model.  

For monitoring epithelial cell integrity, ZO-1 protein associated with epithelial cell 

integrity was tracked as mRNA by qPCR and as protein by immunohistochemistry 

studies. The localisation of ZO-1 in epithelial cells in the chronic inflammation 

model was remarkably different from cells in the normal homeostatic model, where 

the expression of ZO-1 in the first case was highly suppressed in comparison with 

the second case. TEER, ZO-1, and Tollip expression by epithelial cells in the 

chronic inflammation model were highly suppressed and treating cells with 

probiotic bacteria, whether HK or SP, only slightly recovered this suppression of 

intestinal epithelial cell integrity. However, in cells of the normal homeostatic 

model TEER, ZO-1, and Tollip expression induced by LPS were up-regulated by 

probiotic treatments. This confirmed the vital role of probiotic bacterial treatments 

in maintaining epithelial cell integrity, especially in Caco-2/M2 co-culture model 

though their roles in recovering the dysregulated barrier function induced by LPS 

via up-regulation of TEER and ZO-1 (refer to table 5.2.3). Damage induced by an 

array of factors including cytokines has been produced during co-culturing with 

macrophage subsets in addition to LPS stimulation. Several mechanisms have 

been postulated for the roles probiotic bacteria exert in recovering the gut 

epithelial barrier. These include the up-regulation of heat shock protein (hsps) 

such as hsp70 resulting in attenuating the effects of pro-inflammatory cytokines 

(Koninkx et al., 2010) or the up-regulation of TNFAIP3 (Kolodziej et al., 2011) 
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leading to enhanced barrier function. In addition, probiotic treatments might up-

regulate the anti-inflammatory cytokines such as IL-10 and TGF-β leading to 

suppressed pro-inflammatory mediator expression induced dysregulated barrier 

function. Indeed, selective roles were performed by probiotics in modulation of 

mucosal immune response in the co-culture models, dependent on probiotic 

bacterial strain. HK-LF modulated the extracellular molecular mechanism induced 

by LPS. Modulation of TLR4/CD14/MD-2 leads to enhanced expression of IL-10 

and hBD-2 and suppressed TNF-α in the chronic inflammation model; whereas 

TLR2/CD14 modulation in the normal homeostatic model resulted in up-regulation 

of IL-10, subsequently enhanced epithelial cell integrity. TNF-α and IL-1β enhance 

TJ permeability by stimulating MLCK gene expression via NF-κB in Caco-2 (Al-

Sadi et al., 2011). In chronic inflammation model HK-LF, suppressed LPS induced 

TNF-α. This suppression performed by these bacteria might be via suppression of 

the MLCK phosphorylation leading to decrease cell permeability by decreasing of 

reorganisation of tight junction induced by TNF-α (Yu et al., 2010). HK-LcS failed 

to up-regulate LPS induced TLR4/CD14/MD-2 in both co-culture models, whereas 

it up-regulated NOD-2 expression in the chronic inflammation model and TLR9 

expression in the normal homeostatic model, resulting in augmentation of TNF-α 

and hBD-2 release. Overproduction of TNF-α might be leading to up-regulated 

NOD-2 expression (Rosenstiel et al., 2003) via an autocrine effect, resulting in 

increasing mucosal permeability (D'IncÀ et al., 2006). LcS probiotic bacteria can 

be intracellular in addition to its extracellular resident mode in epithelial cells 

(Shida et al., 2006, Tien et al., 2006). This leads to enhanced intracellular PRRs, 

which results in up-regulation of the expression of cytokines and hBD-2. Probiotic 

bacteria secrete a range of extracellular metabolites through their metabolism. 

Probiotic extracellular proteins could diffuse through the mucus layer that covers 
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the intestinal mucosa, enabling the interaction with epithelial and immune cells at 

the gut mucosa. Probiotic secreted proteins exhibited significant effects in up-

regulation of LPS induced Tollip associated with up-regulation of LPS induced ZO-

1 and TEER in both co-culture systems which might be a promising approach 

leading to limit the inflammation induced by LPS at gut mucosa.   
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Chapter 7: Conclusions and Future Work 

The studies described in this thesis investigated the possible immunomodulatory 

effects of a panel of probiotic bacterial strains B. breve (BB), L.rhanonosus (LR), L. 

salivarius (LS), L.casei strain Shirota (LcS), L.fermentum (LF), L. plantarum (LP) 

as heat killed (HK) and secreted proteins (SP) on the immune responses of 

monocytes, M1-like, M2-like macrophages and epithelial cells induced by different 

stimuli (microbial PAMPs and cytokines) using THP-1 monocytes, THP-1 

monocyte derived M1, M2-like macrophages and Caco-2 epithelial cells. In 

addition, probiotic modulation of LPS-induced NF-kB activity and cytokine 

expression was investigated using a THP-1 monocyte-derived reporter cell line, 

model of CD14hi/lo M1 and M2 macrophages. Furthermore, these cells were used 

to develop in vitro co-culture models whereby Caco-2 epithelial cells were co-

cultured with M1-like macrophages, resembling a chronic inflammation model, and 

Caco-2 co-cultured with M2-like macrophages, resembling a model of normal gut 

homeostasis, were used to investigate probiotic modulation of macrophage-

influenced epithelial barrier function.  The key findings are summarized below: 

1- Probiotics selectively modulated monocyte and macrophage subset 

cytokine expression based on the ability of monocytes/macrophages to 

recognise and digest probiotics. They suppressed LPS induced monocyte 

IL-6, M1 TNF-α and M2 (IL-6, IL-8) expression, whereas selectively 

modulated monocyte (IL-8, IL-1β, TNF-α), M1 (IL-1β, IL-8, IL-6), M2 (TNF-

α, IL-1β) cytokine expression, which might be lead to manipulated Th17 

proliferation and differentiation via modulation of IL-1β and IL-6 expression 

(chapter 3).  
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2- Probiotic preparations (HK and SP) suppress CD14lo, augment CD14hi M1 

TNF-α, and differentially regulated M2 TNF-α production, suggestive of 

need for a cautionary approach to the use of probiotic in inflammatory 

pathology (chapter 3).  

3- M2-like macrophage IL-6 production was suppressed by both HK and SPs, 

and differentially regulated in CD14lo and CD14hi M1s, which might lead to 

inhibit Th1 differentiation by elevating SOCS-1 that disrupt the IFN-γ 

signalling and development of Th1 (chapter 3).  

4-  NF-κB activation failed to parallel probiotic regulation of TNF-α and IL-6 

(chapter 3). 

5- Caco-2 epithelial cells express membrane bound (endogenous) as well as 

a secretable form (exogenous) of IL-10 and TNF-α (chapter 4).  

6- hBD-2 expression positively regulated by TNF-α and negatively by IL-10 

(chapter 4). 

7- Probiotics (HK-LF and HK-LcS) selectively modulated both membrane 

bound or extracellular expression of TNF-α- and IL-10-induced hBD-2, as 

well as epithelial TLR expression, which might be lead to modulation of 

DCs maturation (up-regulation of CCR7) via modulation of hBD-2 

expression and B cell activation via modulation of IL-10 (chapter 4).  

8- Epithelial expression of TEER, ZO-1 and the endogenous TLR signal 

regulator (Tollip) were suppressed upon co-culture with pro-inflammatory 

M1-like macrophages paralleled by a suppression of IL-10, IL-6 and up-

regulation of TNF-α and IL-8 (chapter5).  

9-  In the presence of LPS, HK-LF enhanced TEER, ZO-1 and partially 

rescued Tollip expression, whereas HK-LcS had no effect on TEER and 
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ZO-1 and displayed a weaker rescue effect on Tollip compared with LF in 

epithelial cells at co-culture models (chapter5). 

In conclusion, probiotic strains differentially exert immune activatory or 

suppressive functions in monocytes, macrophage subsets, and epithelial cells.  

The immunomodulation by probiotics was determined by the probiotic bacterial 

strain, inflammatory environment, and mucosal macrophage effector phenotype. 

The studies described in this thesis demonstrate that probiotic has marked 

impact on the modulation of the immune responses in monocytes/ 

macrophages and epithelial cells for example; augment monocyte IL-1β, 

monocyte IL-8, M1 IL-1β, M2 IL-1β, and suppress M1 TNF-α and M2 IL-8, M2 

IL-6 induced by LPS.  

Probiotics are not always beneficial, especially in the case of probiotics 

augmentation of M1 CD14hi/lo TNF-α production with either HK or SP, and TNF-

α induced by LPS in Caco-2/M1 co-culture model, therefore, further studies are 

required before taking any probiotics into the clinic. However, probiotics could 

be an alternative for the treatment of the inflammatory conditions when HK-LF 

up-regulated LPS induced IL-10 and hBD-2 which is correlated with up-

regulation of TEER and ZO-1 expression in Caco-2/M1 co-culture model and 

treatments of BB and LR as HK and SP suppressed LPS induced monocytes 

TNF-α, M1TNF-α, M2TNF-α, monocyte IL-1β and suppression of M1hi NF-kB 

activation.  

Since the current study reported that SP and HK probiotics differentially 

regulated LPS induced cytokine expression largely independent of NF-kB 

activation, future work is required to investigate other pathways which might be 

regulated by probiotics such as STAT-3/SOCS-3/SOCS-1, PI3K/AKT, PPAR-γ, 

and MAPKs.  
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It is clear that macrophages can be programmed via differentiation into specific 

subsets (M1 and M2 macrophages) in response to specific differentiation factor 

GM-CSF/PMA/IFNγ or M-CSF/Vit.D3/IL-4 respectively, the reversion of 

macrophage differentiation may represent a suitable macrophage cell based 

therapy, it is of interest to investigate the probiotic bacterial role in modulation of 

LPS induced iNOS, Arg, FIZZ-1, Ym-1, SR (CD33, CD36, CD68, CD163), FCR 

(CD16, CD32, CD64, CD89), CR (CR3, CR4) MR (CD206, CD204), and TREM-

1. 

Negative regulation of specific macrophage subsets and effector phenotype will 

allow manipulation of pro-inflammatory macrophages via manipulation of both 

surface bound negative regulator receptors (CD200R, TREM-2), and 

cytoplasmic molecules (MyD88s, IRAK-M) which suppress macrophage 

inflammatory cytokine production and SIGIRR which suppresses TLR 

expression, therefore, may be worth investigating probiotic bacterial role in 

modulation of the expression of these molecules induced by PAMPs or 

cytokines.  

In the topic of immunomodulation, future work could also be directed at 

characterising the underlying signalling pathways when cell-cell interactions, for 

example, how probiotics modulate the expression of co-stimulatory molecules 

(CD86, CD80, CD40), antigen presenting molecules (MHC class I & II) and 

adhesion molecules (CD58, ICAM-1) in macrophage subsets, epithelial cells 

and T cells (CD28/CTLA-4) at cross talk between different cell types comparing 

chronic and homeostasis status.   

In the current study, M1-like macrophage subset express high levels of pro-

inflammatory cytokines (TNF-α, IL-8, IL-1β) that have an impact on proliferation, 

differentiation and apoptosis of other cells such as epithelial cells (survival via 
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TNF-α p75, and apoptosis via TNF-α p40). What's more, it will be useful to 

investigate the expression of other pro-inflammatory cytokines such as IL-12, 

that drive Th1 cell differentiation and NK cell activity (secretion of IFN-γ and 

CD69 expression) by M1-like macrophages. On the other hand, it would also be 

useful to investigate IL-4 and TGF-β expression by M2-like macrophages that 

drive Th2, and Tregs differentiation and proliferation, and determine if they are 

modulated by probiotics (HK or SP)?  

Since the current study showed that epithelial cells expressed membrane bound 

IL-10 and TNF-α, it is of interest to investigate the factors that mediate cleavage 

of these membrane bound proteins such as ADAM17/TIPM3 or MMPs.  

The main pathological signs of IBD vary with specific disease states, i.e. up-

regulation of anti-inflammatory cytokines and suppression of hBD-2 in ulcerative 

colitis, in contrast to up-regulation of pro-inflammatory cytokines and 

suppression of hBD-2 in Crohn’s disease (Kucharzik et al., 1995, Aldhous et al., 

2009). Bearing this in mind, the data in this study suggest that HK-LcS is a good 

candidate in the treatment of UC, and HK-LF in the treatment of Crohn’s 

diseases, and therefore it is important to confirm their effects using animal and 

ex vivo models.  

LcS and LF differentially regulated cytokine and hBD-2 induced by LPS in 

epithelial cells in a co - culture model, it is of importance to investigate their role 

in modulating TGF-β, TSLP, APRIL, BAFF and RA that drive tolerance of 

CD103+ DCs-class switching from IgM to IgA (humoral immunity), differentiation 

of T regs (Foxp3+) (immune regulation), that mediate the maintaining of gut 

mucosal function comparing normal homeostasis versus chronic inflammation 

models.  



Chapter 7 

320 

 

In both the chronic inflammation and normal homeostatic models, LF-SP, and 

LcS-SP differentially regulated LPS induction of cytokines, hBD-2, and PRR 

expression. Therefore, it would be useful to determine the types of proteins 

released by probiotic bacteria using 2D gels following by running MS/MS for 

protein identification. The study looking for secreted protein immunomodulation 

requires further biochemistry research studies for protein separation and 

purification by high-performance liquid chromatography (HPLC) in order to 

determine each single protein’s immunomodulation. 
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Appendices 

1. Materials  

1.1. Protein analysis  

1.1.1. Protein extraction 

5% w/v sodium deoxycholate 

60 g/L w/v/Trichloroacetic acid  

Acetone  

1.1.2. Protein separation  

Sephacryl S-200 HR (1-80 KDa MW range (dextran), 5-250 kDa MW range 
(globular proteins)  

0.15 M sodium phosphate buffer (pH 7.4) 

1.1.3. Protein quantification 

Bradford reagent  

Coommassie Brilliant Blue G-250      100 mg 

95% v/v ethanol                                   50 ml 

85% v/v phosphoric acid                    100 ml 

Dissolved and top up to 1Liter with distilled water (DW) 

1.1.4. Protein resolving  

SDS-PAGE reagents 

Acrylamide, electrophoresis grade  

Bis- acryl amide (N.N –methylenebisacrylamide) 

Tris (2-hydroxymethyl-2-methyl-1, 3-propanediol) 

SDS (sodium dodecyl sulphate or sodium lauryl sulphate) 

TEMED (N, N, N, N,-tertamethylene-ethylenediamine) 

APS (Ammonium per sulphate) 

2-mercaptoethanol  
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Glycerol 

Bromophenol blue 

Glycine 

HCl (Hydrochloric acid) 

Solution A (separating gel buffer) 

Acrylamide Stock Solution, 100 ml 30% (w/v) acrylamide (w/v) bis- acrylamide 

Solution B (separating gel buffer): 

1.125 M Tris base        68.14 g per 500 ml 

0.3%w/v SDS               1.5 g per 500 ml 

Dissolved in DW to 450 ml adjusted to pH 8.8 with HCl. Top up to 500 ml with DW. 

Solution C (Stacking buffer) 

140 mM Tris             8.42 g per 500 ml 

0.11%w/v SDS           0.55 g per 500 ml 

Dissolve in DW to 450 ml. Adjust to pH 6.8 with concentrated HCl 100%. Top up to 
500 ml with DW  

10%w/v APS (0.1g APS dissolved into 1ml DW) 

Electrophoresis buffer (Running buffer) 

Tris                 3 g 

Glycine          14.4 g 

SDS               1 g 

Dissolved in DW 1L, pH 8.3  

5X Laemmli loading buffer (Reducing/ Denaturing) 

1 M Tris –HCl (pH 6.8)         0.6 ml 

50% v/v glycerol                   5 ml 

10% w/v SDS                       2 ml 

2-mercaptoethanol               0.5 ml 
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1% w/v Bromophenol blue    1 ml 

0.9 ml DW 

                                               10 ml  

Running gel (for semi-midi- gel) 

6.3 ml (solution A) 

8.6 ml (solution B) 

70 µl (10%w/v APS) 

7.5 µl TEMED 

Staking gel 

2.3 ml DW 

0.67 ml solution A 

1.0 ml solution C 

30 µl 10% w/v APS 

5 µl TEMED 

Coomassie Gel stains (1L.) 

Coomassie blue R-250     1.0 g 

100%Methanol                  450 ml 

DW                                  450 ml 

100 ml 100 % glacial acetic acid 

De-staining Coomassie Gel stain solution (1L.) 

Methanol 100%                       100 ml 

Glacial acetic acid 100%         100 ml 

DW                                        800 ml 

Protein Ladder (Hyper Page pre-stained protein Marker, Bio line, UK) 

1.1.5. Western Blotting 

Lysis Buffer 
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150 mM  Nacl                   0.87 g 

1% v/v Triton X                       1ml 

50mM Tris                              2.5ml         Dissolved in DW, pH 8.0 top up to 100ml 
with DW. 

Inhibitors 

Add to lysis 
buffer before 
use 

Protease Inhibitor Cocktail  1:20 = for 200μl lysis buffer add 
10μl 

 Phosphatase Inhibitor 
Cocktail   

1:100 = for 200μl lysis buffer add 
2μl 

Transfer buffer stock (10X Exc. Methanol) 

Tris base                               30.3g 

Glycine                                   144g 

DW                                          1L. 

Transfer buffer working solution  

10X transfer buffer                           100 ml 

Methanol                                          200 ml 

DW                                                     700 ml  

Washing solution tris buffered saline with tween 20 (TBST)  

TBS-Tween-20 (0.1% v/v)/TBS 

10xTBS ( tris buffered saline) 

NaCl                                      80g 

Tris                                        24.4g 

DW                                         Mix in 800ml of DW, adjust to pH 7.6, and make up 
to 1L with DW   

TBS-Tween-20 (TBST) 

10x TBS                        40ml 

DW                                959ml 

Tween-20                     1ml 
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Blocking solution  

TBST                               100 ml 

5% w/v BSA                            5g 

Polyvinylidene fluoride (PVDF) 

Whatman filter Filter papers  

Stripping buffer 

Mild stripping  

15 g glycine 

1 g SDS 

10 ml Tween 20  

Adjust pH to 2.2                      Top up to 1 L with DW 

1.2. Tissue culture  

Media and supplementation materials  

All reagents and media were obtained from (Lonza, Wokingham, UK) 

Roswell Park Memorial Institute medium (RPMI-1640)  

Dulbecco’s Modified Eagles’ Medium (DMEM) 

Penicillin, Streptomycin  

L-glutamine 

Foetal calf serum (Bio sera, UK) 

Zeocin, Blastocidin (Invivogen, Calne, UK) 

Subculture materials 

Dulbecco's Phosphate-Buffered Saline (DPBS) (Sigma –Aldrich, Pool UK) 

0.25% v/v versene/ trypsin EDTA (TE) (Sigma –Aldrich, Pool UK) 

Storage materials 

20%v/v FBS/10% v/v dimethyl sulfoxide (DMSO)/ MDEM or RPMI 
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Differentiation of cell materials 

All materials were obtained from (Sigma-Aldrich, Poole, UK) 

Phorbol 12-myristate 13-acetate (PMA)  

1, 25-(OH) 2-vitamin D3  

Activation of immune cells 

K12-LPS (monocytes, macrophage subsets) 

TNF-α and IL-1β (Caco-2 epithelial cells) 

1.2.5. Cell viability  

3-4-5-dimethy-2.5 thiazol-2.5 diphenyltetrazolium bromide (MTT) (Sigma-Aldrich, 
Poole, UK) 

1.3. Antibodies 
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Table 1: Summary of all antibodies used in this study 

Specificity  Clone Function Source 

Anti-IL-10  
 

Clone JES3-9D7 Neutralization the bioactivity 
of IL-10 cytokine protein 

(Biolegend, San Diego,Ca, 
USA ) 

Anti-TNF-α  
 

Clone cA2 (MACS Neutralization the bioactivity 
of TNF-α cytokine protein 

Miltenyi Biotec Ltd, UK) 

Mu anti-human TNF- 
α Mab I IgGI  

Mab1 ELISA capture antibody for 
TNF-α protein 

R&D Systems UK Ltd., 
Abingdon, UK and BD-
Pharmingen, Oxford, UK) 

Biotinylated  mouse 
anti-Human TNF-α 
antibody 

Mab11 ELISA detect antibody for 
TNF-α 

R&D Systems UK Ltd., 
Abingdon, UK and BD-
Pharmingen, Oxford, UK) 

Rat anti-human IL-6 
Mab MQ2-13A5 IgGI 

MQ2-13A5 ELISA capture antibody for 
IL-6 

R&D Systems UK Ltd., 
Abingdon, UK and BD-
Pharmingen, Oxford, UK) 

Biotinylated Rat anti-
HulIL-6  

Mab MQ2-
39C3IgG2a 

ELISA detect antibody for IL-
6 

R&D Systems UK Ltd., 
Abingdon, UK and BD-
Pharmingen, Oxford, UK) 

Murine anti-IL-1β  Mab1 IgG 2805 ELISA capture antibody for 
IL-1β 

R&D Systems UK Ltd., 
Abingdon, UK and BD-
Pharmingen, Oxford, UK) 

Biotinylated Goat 
anti-Hu lL-1β 

 ELISA detect antibody for IL-
β 

R&D Systems UK Ltd., 
Abingdon, UK and BD-
Pharmingen, Oxford, UK) 

Mu anti-human IL-8  Mab G 265-5 
IgG2b 

ELISA capture antibody for 
IL-8 

R&D Systems UK Ltd., 
Abingdon, UK and BD-
Pharmingen, Oxford, UK) 

Biotinylated Mu anti-
HulL8  

Mab G256-
8IgG2b 

ELISA detect antibody for IL-
8 

R&D Systems UK Ltd., 
Abingdon, UK and BD-
Pharmingen, Oxford, UK) 

Rat anti-IL-10  Mab 1 IgGI JES3-
9D7 

ELISA capture antibody for 
IL-10 

R&D Systems UK Ltd., 
Abingdon, UK and BD-
Pharmingen, Oxford, UK 

Biotinylated Mu anti-
HuIL-10  

JES3-12G8 ELISA detect antibody for IL-
10  

R&D Systems UK Ltd., 
Abingdon, UK and BD-
Pharmingen, Oxford, UK 

Purified polyclonal 
antibody Goat anti-
human BD-2 

 ELISA capture antibody 
forhBD-2 

PeproTech EC, UK 

Biotinylated Goat 
anti-Human BD-2 

 ELISA detect antibody for 
hBD-2 

PeproTech EC, UK 

Biotinylated -
streptavidin 
horseradish 
peroxidase 

 ELISA  Sigma-Aldrich, Poole, UK 

Rabbit polyclonal anti 
ZO-1 

 IHC Invitrogen, UK 

Alexa flour 488-
conjugated anti 
Rabbit IgG 

 IHC Invitrogen, UK 

Anti-TLR4  Clone HTA125 Flow cytometry eBioscences, UK 

Anti-TLR2  Clone TL2.1 Flow cytometry eBioscences, UK 

Isotype antibody  Mouse IgG2a, κ Flow cytometry eBiosciences, UK 

pSTAT-3  WB New England Biolabs Ltd, 
(UK)  

Total STAT-3  WB New England Biolabs Ltd, 
(UK)  

Anti-Rabbit HRP 
conjugated 
secondary antibody 

 WB New England Biolabs Ltd, 
(UK) 
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2. Copies of the published papers associated with this thesis  

 Habil, N., W. Al-Murrani, J. Beal and A.D. Foey: (2011): Probiotic bacterial 

strains differentially modulate macrophage cytokine production in a strain-

dependent and cell subset-specific manner. Beneficial Microbes 2(4):283-

293. 

 Habil, N., Beal, J. and Foey, A.D. (2012):  Lactobacillus casei strain Shirota 
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4. Membership 

 Society for Applied Microbiology (SFAM) 

 British society for Immunology (BSI) 

5. Postgraduate Skills Training  

 English language support for international students (ELSIS) feature of academic 
style 12-26th October 2009. 

 Postgraduate Research Skills and method coursework (BioL5124), 2nd October 
2009- 1st December 2009. 

 General Teaching Associates Course (GTA) 1st October 2009- 1st December 2009. 

 Env (demonstrating) 1st October – 1st December 2009. 

 Greating basic web pages with Microsoft office share point designer 2007 (20th 
October 2009). 

 Excel 2007/ Lookup tables and pivotal table reports (11th November 2009). 

 Working with literature: electronic resources and advanced searching (16th 
November 2009). 

 Introduction to endnote- for the science, technology, medical, and health 
disciplines (1st December 2009). 

 Creating graphics using paint shop pro photo X2 (4th November 2009). 

 Getting started in office 2007 (3rd October 2009). 

 Research ethics (20th October 2009). 

 Excel 2007- Database and filtering (21st October 2009). 

 Methodology in science (23rd October 2009). 

 PowerPoint 2007: Enhancing your presentation (27th October 2009). 

 Safety and risk assessment field work (27th October 2009). 

 Introduction to pebble pad (28th October 2009). 

 Excel 2007 Introduction to essential features (29th October 2009). 

 Safety and risk assessment laboratory (30th October 2009). 

 Preparing for your viva (2nd November 2009).  

 Scientific writing (3rd November 2009). 

 Publication strategies (3rd November 2009). 

 Critical review of writing (5th November 2009). 

 Latex introduction (12th November 2009). 

 Biostatistics 1 (24th November 2009). 

 Biostatistics 2 (27th November 2009). 

 The transfer process (27th November 2009). 

 Careers in Biology (4th December 2009). 

 Biostatistics 3 (8th December 2009). 

 A stress management workshop for research student (23rd October 2009).  

 Oral presentation (15th December 2009). 

 Public communication of science (18th December 2009). 

 Microsoft PowerPoint 2007 Enhancing your Presentation (23rd march 2010). 

 A stress management workshop for research students (19th November 2010). 

 Introduction to qualitative research (15th January 2010). 

 Introduction to Spss part 1 (22nd January 2010). 

 Essential tools for the viva: debating skills (26th January 2010). 

 Introduction to Qualitative Research Methods 15th January 2010. 
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 Developing Professional Writing Skills (3rd February 2010). 

 Power point-creating a presentation (10th February 2010). 

 Endnote under clinic (18th February 2010). 

 Going Global (19th February 2010). 

 Developing Professional Writing Skills (24th march 2010). 

 SPSS part 2 (27th April 2010) 

 Impact factor (30th April 2010 

 Effective reading (10th November 2010). 

 Introduction to Endnot X3 (30th November 2010). 

 Microsoft excel 2007 conditional formatting & charts (10th June 2010). 

 Creating Graphics for paint shop pro (3rd December 2010). 

 Words: creating form (10th December 2010). 

 Presenting to an Audience (part 1) (9th March 2011). 

 Professional writing skill (6th April 2011). 

 Microsoft excel conditional formatting and charts (2nd February 2011). 

 Plymouth consortium Student Associate Scheme (SAS), 5th June -17th 2011 

 Ettan 2-D DIGE Course arranged by GE healthcare /Davy 211, 212 6th -8th March 
2012  

 Practical Technique in molecular biology workshop 16th -19th July 2012. 

 Multiplexing & Luminex Technology /One day workshop, 14th September 2012 

 Bioinformatics Work Shop- 16S rRNA gene Analysis 7th November 2012. 
 
 


