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Interactions of Trace Metals with Plastic Production Pellets in the Marine 

Environment 

Luke Alexander Holmes 

Abstract 

This study investigates the interactions between dissolved trace metals and plastic 

debris under controlled laboratory conditions by using polyethylene pellets as a model 

plastic particle. Specifically, the study compared virgin pellets sourced from a local 

moulding plant with those collected from local beaches and subjected to aging, 

attrition and deposition of extraneous material.  

Pellets collected from the coastline of Southwest England were mainly 

polyethylene according to Fourier transform infra-red spectroscopy (FTIR), although 

occasional polypropylene pellets were present. Additionally, FTIR was used to identify 

the extent of degradation of pellets according to a photo-oxidation index derived from 

the relative magnitudes of specific absorbance peaks, and suggests pellet colour may 

give an indication of polymer degradation. Acid extractions of pellets collected from 

the coastline of Southwest England yielded metal concentrations ranging from low ng 

g-1 for metals such as Cd, Ni and Cr, to 7.7, 10.3 and 290 g g-1 for Cu Pb and Zn, 

respectively, while Al, Fe and Mn were present on beached pellets at concentrations of 

up to 171, 314 and 308 g g-1, respectively. Metal concentrations exhibited a high 

degree of inter- and intra-site variability. Correlation of metal concentrations with the 

photo-oxidation index indicates that pellet age is not a reliable indicator of metal 

concentrations. 

Batch experiments where metals (Cd, Co, Cr, Cu, Ni, Pb, Zn) were added to 

suspensions of pellets in seawater and estuarine water were performed in order to 

understand the extent and rates of trace metal adsorption to pellets. Langmuir 

modelling of adsorption isotherms in seawater indicated a range of maximum values 

for the accumulation of trace metals on beached pellets from 10 ng g-1 to 720 ng g-1 for 

Cd and Pb, respectively, in seawater spiked with 5 g L-1 of each trace metal. Langmuir 

constants for these relationships ranged from 0.140 (Cd) to 2.67 (Ni) mL g-1. Differences 

between trace metal affinities for pellets collected from the environment (beached) and 

those obtained directly from a plastics processing facility (virgin) were also identified. 

Adsorption maxima for virgin pellets ranged from < 1 ng g-1 (Cd) to 300 ng g-1 (Cr) with 

corresponding, respective Langmuir constants of 0.413 and 0.127 mL g-1. Adsorption of 

trace metals to beached pellets exceeds that to virgin pellets owing to the development 

of viable surface sites by photo-oxidation, biofouling and deposition of fine sediment 

particles on the former during exposure to environmental conditions. Adsorption 

kinetics were modelled successfully using a pseudo first-order reversible model. 

Chemical response times derived from kinetic constants ranged from 1.5 – 12 h for 
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beached pellets and 0.2 to 4.5 h for virgin pellets, and were generally lower in seawater 

than in river water. 

Applying a similar batch approach to a system simulating an estuarine salinity 

gradient, the controlling effects of ionic strength and pH on the adsorption of trace 

metals to pellets were identified.  Partitioning of Cd, Co and Ni exhibited inverse 

relationships with salinity, with partition coefficients (KD) decreasing from values of 

the order 101 to 10-1 or 10-2 mL g-1 (for beached pellets) as salinity is increased from < 

0.05 to 33. Chromium exhibited contrasting behaviour within the estuarine gradient, 

with partitioning increasing with salinity, while Pb appears to be independent of 

salinity within this system. Chemical modelling was used to explain the results in 

context of changes in trace metal speciation which occur through the estuarine 

gradient.   

The bioaccessibility of metals on beached pellets to avian species was 

determined using an in vitro approach. Metal bioaccessibility in a simulated avian 

gastric environment comprising 10 g L-1 pepsin, 0.1 M NaCl and HCl at pH 2.8 

indicated metals on pellets are labile (bioaccessibility ranges from < 10 % (Cr) to > 80 % 

(Mn)) and may be released readily within the digestive tract.  Dissolution kinetics were 

modelled using the Noyes-Whitney equation, from which rate constants were 

determined in the range 3.1 x10-4 (Cr) to 8.7 x10-1 %-1 h-1 (Mn).  

This study has shown, for the first time, that plastic pellets have the potential to 

accumulate and transport trace metals in the marine environment. Furthermore, metal 

accumulation on plastic pellets is controlled by estuarine master variables such that 

conditions which favour or limit adsorption can be defined. Pellets present a 

previously unreported vector for the transport of metals in the environment, and have 

the potential to convey metals to organisms upon ingestion. The findings of this thesis 

have implications for interactions between metals and plastics more generally in the 

marine environment.   
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1.1 Introduction 

Marine debris is a growing environmental concern, whose implications are not yet 

thoroughly understood despite its global importance. In recent years, the role of plastic 

as the primary component of marine debris has come to the attention of the scientific 

community, and the ubiquity and potential effects of plastic debris are now being 

disseminated to the wider public and government bodies (e.g. European Commission, 

2011). This thesis addresses an aspect of research into plastic debris which has not yet 

been considered - interactions of trace metals with plastic in the marine environment. 

The present chapter offers a summary of the relevant background on marine 

debris (Section 1.2), and introduces the common types of plastic debris, including 

plastic production pellets, providing rationale for their use as the basis of the 

experimental work presented in Chapters 3-6. Section 1.3 describes the known 

interactions between plastic debris and co-contaminants, whilst highlighting the lack of 

research into interactions between trace metals and plastics in the environment. The 

ingestion of plastic by organisms is described in Section 1.4, which also suggests why 

research into possible effects of ingestion must be carried out. Section 1.5 puts the 

subsequent research into context and identifies how it may contribute to current 

knowledge. Finally, the aims and objectives of this thesis are described in Section 1.6. 

1.2 Background on plastic debris 

1.2.1 People and plastics 

Synthetic polymers are constructed by the process of linking monomers derived from 

hydrocarbons, and are commonly known under the general term “plastics” which 

gives an indication of some of their properties - plastics are capable of being moulded, 
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blown into films or extruded in order to fulfil numerous applications (Andrady & 

Neal, 2009). Increasing demand since mass production of plastics began in earnest in 

the 1940s and 1950s has resulted in a continual growth in production (Fig. 1.1), with 

current estimates of 265 million tonnes in 2010 (Plastics Europe, 2011).  

 

 

Figure 1.1: Trends in global plastic production over the period 1950 – 2008 (Plastics 

Europe, 2009). 

Plastic production is continuing to increase at a rate of approximately 5 % per 

annum (Andrady & Neal, 2009), and now accounts for 8 % of oil consumption globally 

(Thompson et al., 2009a). Owing to the desirable properties of plastics (low cost, low 

density and high durability) they have become pervasive globally yet it is the very 

properties which make plastics so desirable which results in environmental concern 

(Derraik, 2002).  

Plastics have become globally important in a range of applications, bringing 

societal benefits such as waste minimisation within the food industry, where the use of 

durable packaging with low permeability to moisture and oxygen has extended shelf-

lives for food (Andrady, 2011). Widespread use of plastics in the manufacture of 

year 
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lightweight components for vehicles has contributed to increased efficiency and 

reduced carbon emissions within the transport industry (Andrady & Neal, 2009). 

Furthermore, advances in hygiene have arisen from the ease of cleaning of plastic 

surfaces, which has led to their widespread use within hospitals and other 

environments sensitive to cleanliness. These three examples are just a small fraction of 

the innumerable applications for plastics (Andrady & Neal, 2009), but outline the 

versatility and range of properties which have led the demand for these materials to 

increase to the current level.  

Nearly one third of plastics produced annually are used for consumer 

packaging (Andrady, 2011), constituting 10 % of municipal waste generated globally, 

which is largely deposited in landfills where it has the potential to persist for centuries 

(Barnes, et al., 2009). The remaining packaging will be either recycled or potentially 

handled irresponsibly, resulting in release to the environment. The diverse routes via 

which plastics may enter the environment give rise to challenges in estimating the 

magnitude of the issue, and make preventative measures difficult. 

 Reliable measurements of the proportion of marine debris comprised of plastic 

materials are not available. However, it is estimated that 60-80 % of marine debris is 

plastic (Gregory & Ryan 1997). Myriad sources, ranging from litter discarded on land, 

to accidental spillages during maritime shipping (Barnes et al., 2009), cause plastic 

debris to be a very difficult problem to manage, and with the level of plastic 

production continuing to increase, it is important for all possible impacts of plastic 

manufacture, use and disposal to be considered. While estimates of the global 

abundance of plastic debris are unavailable, the scale of the issue is exemplified by 

studies which indicate abundance on the shoreline may exceed 100 000 items m-2 
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(Gregory, 1978), and over 3.5 million items km-2 in the surface waters of the North 

Pacific Ocean (Yamashita & Tanimura, 2007). A comprehensive review of plastic debris 

in general is beyond the scope of this chapter, but the reader is directed to Barnes et al. 

(2009), Derraik, (2002) and Ryan et al. (2009) for a broad perspective. 

1.2.2  Macro-plastic debris 

Marine debris is composed of materials including wood, glass and metal. However, the 

most abundant and persistent type of marine debris is plastic (Derraik, 2002). Macro-

plastic is defined as a plastic item, fragment or strand whose greatest dimension is > 5 

mm (Arthur et al., 2009). Debris in this size range impacts natural systems and 

ingestion by large predatory organisms including birds (Auman et al., 1997) turtles 

(Mrosovsky et al., 2009) and marine mammals (Laist, 1997), smothering of benthic 

habitats (Goldberg, 1997), and entanglement of fish, birds and mammals (Gregory, 

2009) are well documented.  

Furthermore, the increasing presence of buoyant substrates in the marine 

environment has the potential to alter assemblages of organisms which require 

buoyant material in order to reproduce, such as the pelagic insect Halobates sericeus 

(Goldstein et al., 2012) or inhabit, as noted for hydroids, bivalves, foraminifera and 

other sessile and motile organisms (Gregory, 2009). These changes in buoyant substrate 

availability may alter population dynamics for those species which rely on such sites 

through increasing abundance, as well as allowing attached organisms to more readily 

enter distant ecosystems, becoming invasive species (Barnes 2002; Gregory, 2009). In 

addition to these direct impacts on the marine environment, macroplastic will slowly 
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degrade and break down physically, becoming one of the many sources of microplastic 

to the marine environment. 

Degradation of plastics occurs in all environments, while the rate at which this 

process occurs will be controlled by several environmental factors. The primary means 

by which plastics are degraded involves photo-oxidation which initiates upon 

exposure to ultraviolet (UV) light, and is accelerated by thermal stress (Valadez-

Gonzalez et al., 1999). As such, plastics in the marine environment will be more stable 

and persistent than those on land owing to the thermal insulation and UV attenuation 

afforded by immersion in the water column (Pegram & Andrady, 1989). Additionally, 

the development of biofilms on plastic debris will minimise the exposure of the plastic 

surface to UV potentially retarding the degradation process, while microbial activity 

may provide a means of biological degradation of the polymer (Artham et al., 2009). 

This has implications for the interactions between plastics and co-contaminants, as 

described in Section 1.3. 

1.2.3 Micro-plastic debris 

Microplastics are defined as plastic particles measuring < 5 mm in diameter (Arthur, et 

al., 2009) and may be introduced by industrial or domestic activities or can be 

generated by the degradation and fragmentation of macro-plastic as noted above. 

Fragmentation and degradation of the plastic debris currently in the environment is a 

major concern. Plastic debris has been recorded in all areas of the water column, from 

surface to the deepest oceans, as well as on coastlines globally (Ryan et al., 2009), 

rendering remediation a difficult or impossible task. Some schemes, such as Hawaii’s 

Nets to Energy project are attempting to recover large items such as discarded fishing 
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gear for use as an energy source (National Research Council, 2008), yet there remains 

an enormous stock of plastic in the environment which will, in time, be degraded into 

innumerable microplastic particles. 

To examine domestic sources of microplastic, it must be considered that these 

pathways are typically passive - the polluter is not necessarily aware that they are 

contributing to the microplastic flux to the oceans. For example, microplastics have 

been observed in the effluent from domestic washing machines, where synthetic 

clothing has been shown to lose fibres which are flushed out with grey water 

discharges (Browne et al., 2011). Discharges of this type can contribute > 1900 

individual fibres of microplastic to the environment with every wash, for a single item 

of clothing (Browne et al., 2011). Additionally, use of certain cosmetic products may 

result in inadvertent contributions of microplastic to the environment as plastics have 

begun to replace natural abrasives in cosmetics marketed as scrubs or exfoliators (Zitko 

& Hanlon, 1991; Fendall & Sewell, 2009). Plastics used in such applications are of a size 

which is not filtered out during the sewerage treatment process, resulting in discharge 

to the natural environment (Gregory, 1996). 

 Industrial practices are also known to cause microplastic particles to enter the 

marine environment owing to the accidental release of plastic raw materials such as 

powders or pellets, as well as the practices of shot blasting using plastic abrasives to 

clean machinery of paint and rust (Cole et al., 2011). Manufacture of plastic consumer 

items frequently relies on plastic production pellets, or nurdles, as a raw material, and 

it is these pellets, and their potential to act as a significant environmental contaminant 

which forms the basis for the work presented in the following chapters. 



Chapter 1: Introduction  

 

8 

 

1.2.4 Plastic production pellets 

Plastic production pellets have been described by Redford et al. (1997) as ovoid, 

cylindrical or spherical pieces of polymer, between 2 and 5 mm in diameter (Fig. 1.2), 

and it is in this form that raw plastics are transported to plastic processing facilities 

prior to forming or moulding into consumer items (Takada, 2006). 

a) 

 

b) 

 

Figure 1.2: Plastic production pellets typical of those used within the plastics industry 

obtained (a) directly from the processing facility and (b) collected from the coastline of 

Southwest England. 

Releases of pellets to the environment occur through careless handling and 

accidental spillage during transport and processing (Derraik, 2002). Following the 

polymerisation process, pellets are packed into sacks for transport to processing 

facilities, or directly pumped into cargo trains (Fig. 1.3).  However, Redford et al. (1997) 

note that where packaging is used, it is often not robust, or is specifically designed for 

ease of rupture to facilitate emptying into hoppers.  

1 cm 
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Figure 1.3: Stages in the transit of polymer pellets for production of consumer items. 

Releases of pellets may occur during transfers between stages of the process (adapted 

from Redford et al., 1997).  

Additionally, during the packaging process, where pellets are put into bags, 

there is potential for release if the seal between the packaging and load valve is not 

complete. Poor connections between rail hopper cars and trucks constitute another 

means by which releases may occur, particularly during connection and disconnection 

of transfer valves, and spillages through these routes are well documented (Redford et 

al., 1997; Shiber & Barrales-Rienda, 1991). 

Pellets are likely to be buoyant as the most abundant polymers, polyethylene 

and polypropylene, have specific gravities less than 1 (Table 1.1), therefore the majority 

of those released inland will be carried in surface water run-off, streams and rivers to 

the marine environment (Takada, 2006). 
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Table 1.1: Specific gravity of common polymers and natural waters (US EPA, 

1992); and fraction of global plastic production (FGP) (Andrady, 2011). 

Polymer Minimum Maximum FGP 

Polypropylene 0.890 0.910 24 % 

Low density polyethylene 0.890 0.940 21 % 

High density polyethylene 0.940 0.960 17 % 

Polyvinyl chloride 1.380 1.410 19 % 

Polycarbonate 1.200 1.200 < 6 % 

Polystyrene 1.040 1.040 6 % 

Polyethylene terephthalate 1.290 1.400 7 % 

Typical river water 1.000   

Typical sea water 1.025   

 Pellets may also enter the marine environment directly via drainage systems at 

coastal shipping sites (Wilber, 1987), or following cargo loss at sea due to storms. This 

has been demonstrated recently when several containers, containing a total of 

approximately 150 tonnes of pellets (Rochman, 2013), were swept from the deck of a 

cargo ship moored off the coast of Hong Kong in July 2012  during Typhoon Vicente, 

resulting in dense accumulations of pellets on the local coastline (Fig. 1.4), stimulating 

public and governmental clean-up efforts.  

Image has been removed due to Copyright 

restrictions 

Figure 1.4: Volunteers removing pellets from the 

coastline of Lamma Island, Hong Kong, August 

2012 (Siu, 2012). 
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Methods to limit the discharge of plastic pellets to the environment include 

placing screens over drains to ensure pellets do not enter drainage or storm water 

channels, as well as ensuring any spillages are promptly recovered and disposed of 

responsibly (Redford et al., 1997). These clean practices are outlined in voluntary 

initiatives such as Operation Clean Sweep, introduced in the early 1990s aimed at 

ensuring zero pellet loss to the environment (Ryan, 2008). However, there are currently 

no legal obligations to prevent pellet release.  

While the focus of this work is plastic production pellets, plastic debris exists in 

many forms, each with their own properties and characteristic effects on the 

environment to which they are introduced. However, pellets constitute one of the most 

widely studied forms of plastic debris to date, and were one of the first types of plastic 

to be identified as an environmental contaminant (Carpenter & Smith, 1972). The 

prevalence of pellets in the literature stems not only from their abundance, but also 

their relatively uniform morphology which facilitates their use in controlled 

experiments and comparative assessments. 

1.2.5 Environmental compartments for plastics 

The environmental fate of plastics can, at a simplistic level, be determined from their 

densities as compared to natural waters (Table 1.1). The most common polymers are 

polypropylene (PP), and polyethylene (PE) (Andrady & Neal, 2009), and because of 

their wide variety of applications, PE, PP, polyvinyl chloride (PVC) and polystyrene 

(PS) dominate the market, representing 85% of all consumer plastics (McCrum et al., 

1997).  
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Debris composed of positively buoyant plastics such as PE and PP can be 

expected to be highly mobile, being transported by water currents and wind, until 

deposited in a location or system from which physical processes cannot move them. In 

the marine environment, mobility may be inhibited by stranding beyond the typical 

tidal range of a particular beach during a storm event; or by the slow process of 

biofouling and subsequent density gain, which causes the plastics to settle out of 

suspension. The low density of PE and PP has resulted in accumulations in the marine 

environment globally (Thompson et al., 2004), and debris of this type is evident in 

remote locations far from industrial discharges or urban areas (Gregory, 1999; Hirai et 

al., 2011; McDermid & McMullen, 2004; Nakashima et al., 2012). 

Negatively buoyant plastics, such as PVC and polyethylene terephthalate (PET) 

are likely to be immobile if introduced to the environment as a solid piece or fragment, 

readily settling out of suspension.  However, the mobility of these plastics may be 

enhanced if the debris contains air pockets or is hollow, as seen, for example, in PVC 

fishing floats (Nakashima et al., 2012) and PET drinks bottles (Nakashima et al., 2011a).  

Despite the various mechanisms by which plastics are transported, degraded, 

fragmented, fouled or deposited, what must be considered is that they are a very 

persistent material which has not been in existence long enough for reliable estimates 

of residence times in natural systems to have been determined. Therefore, it can be 

assumed that all of the plastic released to the natural environment until the present day 

is still in existence in one form or another (Thompson et al., 2005). Sources, sinks and 

processes described throughout this introductory chapter are summarised in Figure 

1.5. 
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Figure 1.5: Known and potential sources, sinks and processes for plastic debris in the 

environment. Due to the persistence of plastic in the environment, most sinks must 

also be considered potential sources since re-suspension of sediment or decomposition 

of an organism following plastic ingestion will result in release of plastic back into the 

environment. 

1.3 Plastics and co-contaminants 

Since pellets were first identified in the natural environment in the 1970s (Carpenter & 

Smith, 1972; Gregory, 1977), it has been of concern that the plastics carry contaminants 

of toxicological importance, such as polychlorinated biphenyls (PCBs) (Carpenter et al., 

1972; Colton et al., 1974). However, owing to the use of chemicals such as PCBs as 

plasticizers, it was not clear whether pellets were sequestering PCBs from the 

surrounding water or contributing them to the marine environment (Gregory, 1978). 

As interest in plastic pellets grew, investigations focused on the abundance and 
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geographical distribution of plastic pellets (Dixon & Dixon, 1981; Morris, 1980), and it 

was discovered that the persistence and mobility of plastics had led to accumulations 

in remote locations and the ingestion of pellets by organisms, such as seabirds 

(Azzarello & Van Vleet, 1987; Harper & Fowler, 1987). Thus the focus shifted towards 

the abundance, location and ingestion of plastics, with few studies concerned with the 

co-contaminants adsorbed to and/or leaching from plastic debris. 

Work was then carried out by Mato et al. (2001) in order to ascertain whether 

concentrations of PCBs on pellets could be attributed to adsorption from the 

environment, or were pre-existent in the pellets owing to the use of PCBs during their 

manufacture. This study confirmed that due to the hydrophobic nature of the pellets, 

hydrophobic pollutants such as PCBs accumulate on their surfaces (Mato et al., 2001). 

During this study, samples of PP pellets were deployed at the sea surface within an 

industrial complex in Tokyo bay for a period of six days. In this time, PCB 

concentrations did not reach equilibrium with the surrounding waters, as suggested by 

their kinetic profiles. Nevertheless, the hydrophobic properties of pellets resulted in 

accumulations of PCBs on their surfaces comparable with those on natural sediment, 

despite the differences in specific surface area between natural sediment (~104 cm2 g-1) 

and pellets (< 102 cm2 g-1) (Mato et al., 2001).  

Further work was carried out by Endo et al. (2005), who confirmed the 

interactions between PCBs and pellets, and Rios et al. (2007), who identified 

interactions between pellets and polycyclic aromatic hydrocarbons (PAHs). Through a 

series of kinetics experiments, Karapanagioti & Klontza (2008) showed that the 

adsorption of phenanthrene to pellets was altered by degradation of the polymer in the 

environment, with pellets increasing in adsorption capacity with increasing polymer 
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weathering. The accumulation of hydrophobic contaminants by plastic pellets is of 

concern owing to the possibility of ingestion by organisms, discussed further in Section 

1.4.  

While even recent literature states that plastics may be sources or sinks for 

persistent organic pollutants  (POPs) (Moore, 2008), what seems to have been 

overlooked thus far, is the potential for metals to accumulate on pellets when present 

in the environment. It is known that polymers may contain heavy metals as impurities 

and colourants, as well as organic plasticizers which can cause metal complexation or 

adsorption (Batley, 1989), but the interactions between dissolved metal concentrations 

and pellets is yet to be examined.  

Metal loss to container surfaces has been noted by various authors in the 

context of environmental water sampling and subsequent storage (Batley, 1989; 

Pellenbarg & Church, 1978), and during experimental incubations (Fischer et al., 2007; 

Giusti et al., 1994; Li et al., 2001). While these observations have not yet prompted 

studies on plastic debris in the marine environment, it can be seen that there is 

considerable potential for accumulations of metals by such materials.  

Metals of major environmental concern today include cadmium, chromium, 

cobalt, copper, lead, manganese, mercury, nickel, silver and zinc (Bhattacharyya & 

Gupta, 2008; Turner & Millward, 2002). Adsorption of these contaminants to natural 

particulates is effective at very low concentrations (Bhattacharyya & Gupta, 2008), 

which suggests there may be potential for significant accumulation of such metals on 

surfaces of pellets, depending on the surface properties of the pellets and the speciation 

of the metals themselves.  
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The presence of any charged phases on pellet surfaces may facilitate the 

adsorption of trace metals, and the development of biofilms on hard substrates in the 

environment is well documented (Wahl, 1989). Therefore, pellets are likely to present a 

substrate on which biofilms may develop, with the consequence of providing a reactive 

surface for the adsorption of trace metals (Petrash et al., 2011). Biofilms develop over 

broad timescales, but initiate almost immediately upon immersion of a substrate in 

natural waters. Initially, biochemical conditioning and bacterial colonisation occur, 

with the deposition of proteins and extracellular polymeric substances (Munn, 2004).  

Once the initial stages of biofouling have occurred, there is further potential for the 

development of charged sites on the pellet surface. Suspended particulate matter  

(SPM) of biogenic and inorganic origins are known to become entrained in biofilms 

(Wesley & Satheesh, 2009), which will add to the surface rugosity of the pellet, as well 

as introducing localised regions of reactive sites capable of scavenging dissolved 

metals from the water column. Furthermore, Artham et al. (2009) have shown the 

effects of biofilm development on substrates to include increasing hydrophilicity of the 

substrate, which would favour immobilisation of trace metals due to the presence of 

polar groups on the surface. Additionally, biofilms are known to convey a net negative 

charge to surfaces in aqueous environments (Wahl, 1989). 

Many metals are present in the aqueous environment as divalent cations, or are 

associated with organic or inorganic ligands which will govern the charge of the 

complex. Therefore negatively charged surface sites will be conducive to the 

adsorption of aqueous ions, while sites with zero or positive charges may facilitate 

adsorption of zerovalent or anionic metal species (Du Laing et al., 2009).  
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Complexing of dissolved trace metals by organic ligands stabilises the metals in 

solution and so can lead to movement throughout the water column (Chester, 2000). As 

trace metals are actively assimilated or passively adsorbed on to reactive sites of 

plankton or other biological particles, they ordinarily will be transferred out of surface 

layers (Chester, 2000). However, when adsorbed onto buoyant pellets, the cycling of 

these trace elements will be altered, affecting the vertical distribution.  

At present, few studies have considered the presence of trace metal 

concentrations on plastics in the environment. However, recent work by Ashton et al. 

(2010) indicates that pellets may carry concentrations of mineral acid extractable metals 

ranging from < 2 ng g-1 (Cd) to 65 g g-1 (Fe), approaching concentrations present in 

associated particulate matter. These results are surprising given that compared to 

natural sediment, the specific surface area of pellets is low and potentially limited in its 

abundance of reactive sites for the accumulation of metals. However, Nakashima et al. 

(2011b) used x-ray fluorescence analysis (XRF) to determine metal concentrations in 

marine macroplastic, noting mean concentrations of trace metals orders of magnitude 

greater than those reported by Ashton et al. (2010) which implies that metal 

concentrations associated with plastics in the environment may be highly variable.  

While the surface coatings of pellets will have a major impact on sorptive 

behaviour, it must also be considered that conditions in the surrounding environment 

will dictate the behaviour of trace metals. Solution pH will impact sorption owing to 

hydrogen ions competing with metal ions for adsorption sites, while pH also 

determines the valence state of the ions and the oxide precipitation process (Quintelas 

et al., 2009). Additionally, pellets transported through estuaries will be exposed to 

varying salinities, which will affect the partitioning of trace metals through the 
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complexing and competitive effects of seawater ions on trace metals, affecting 

speciation, charge and hydrophobicity (Turner & Millward, 2002). At the present time 

there is a paucity of information on interactions between plastics and any co-

contaminants within the estuarine environment. 

1.4 Plastic ingestion 

Organisms reported to ingest plastics include invertebrates (Graham & Thompson, 

2009),  fish (Boerger, et al., 2010; Colton et al., 1974), and turtles (Müller et al., 2011). 

Plastic ingestion by seabirds  has been well documented (Avery-Gomm et al., 2012; 

Colabuono et al., 2009; Furness, 1985; Robards et al., 1997; Ryan, 2008; van Franeker, 

1985; van Franeker et al., 2011) and has provided data which suggests that the 

incidence of plastic ingestion is increasing in line with the production of plastics 

(Vlietstra & Parga, 2002) which raises concerns that the same could be occurring in 

other organisms. Data collected by Auman et al. (1997) state that 98% of 134 necropsied 

Laysan albatross chicks had plastic in their digestive tract, an increase from 74% in the 

1966, which may reflect increasing concentrations of plastic in the surface waters of the 

north central Pacific Ocean. This is not an issue limited to one species of seabird, with  

44% of all seabird species shown to ingest floating plastic while feeding on or near the 

surface (Rios et al., 2007). 

Ingestion of pellets by organisms may have varied effects. In terms of the 

physical impact of the plastic, some birds found to have plastic pellets in their gizzard 

were shown to not have fresh food in the proventriculus,  suggesting suppressed 

feeding activity. Additionally, the pellets may begin to form a blockage preventing the 

movement of food through the digestive tract (Furness, 1985).  
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Perhaps more difficult to measure than the physical impacts of ingesting plastic 

– reduced apetite and altered foraging behaviour – are the possible chemical impacts. 

Plastics have been shown to accumulate hydrophobic contaminants such as PCBs 

(Mato et al., 2001) which may become desorbed within the digestive system, making 

available significant concentrations of compounds known to impair reproductive 

efficiency of many birds (Barron et al., 1995; Chen et al., 2009). It is not only large 

vertebrates which are capable of ingesting pellets, as shown by Carpenter et al. (1972), 

who demonstrated selective feeding on PS pellets in 8 out of 14 fish species studied, 

and in recent research by Graham & Thompson (2009), where sea cucumbers were 

shown to ingest plastic fragments including PVC pellets 4 mm in size.  

In a study of planktivorous fishes in the North Pacific Central Gyre, Boerger et 

al. (2010) observed that plastic ingestion was occurring in 35 % of mesopelagic fish 

caught, ranging in frequency from 1 to 83 pieces of plastic in fish up to 7 cm in length, 

and that the most abundant type of plastic ingested were fragments in the size range 1 

– 2.8 mm. These low trophic level organisms have the potential to bio-accumulate toxic 

compounds, allowing bio-magnification within the ecosystem to which they belong 

(Graham & Thompson, 2009).  

A broad spectrum of organisms from various trophic levels have therefore 

exhibited ingestion of plastic both under controlled conditions and in their natural 

environment (See Figure 1.6). This could potentially have impacts upon entire 

ecosystems as marine invertebrates often occupy a low trophic level, and may cause a 

biomagnification effect of any contaminants associated with pellets, as well as  an 

accumulation of the pellets themselves.  
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Figure 1.6: Clockwise from top left: Typical plastics found in the stomach of the 

Northern Fulmar (Ryan et al., 2009); Plastic fragments found in a rainbow runner 

(Algalita Marine Research Institute, 2008); Albatross chick carcass decomposing to 

leave plastic stomach contents (Jordan, 2009); Green turtle stomach containing ingested 

plastic debris (Stahelin, 2012). 

Top predators such as seabirds are likely to be exposed to high dietary levels of 

POPs from prey due to biomagnification, and the possibility of exacerbating this 

problem by directly aqcuiring POPs from plastics is of concern (Colabuono et al., 2010). 

A positive correlation between mass of ingested plastic and PCB concentrations in 

Great Shearwaters, Puffinus gravis indicates this is of concern (Mato et al., 2001). 

While there has been some focus on this issue with regard to POPs there 

remains the possibility that plastics will also contribute significant metal loads to 

organisms ingesting them. It is therefore a priority to understand whether this is the 

case, particularly when some organisms have been shown to not only accidentally 

ingest, but also selectively feed on floating pellets (Mato et al., 2001). As resin pellets 

have been shown to reflect regional differences in contaminant concentrations (Ogata 
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et al., 2009) it is of particular concern where plastics are found in the vicinity of 

industrial centres or areas of high population. It is highly likely that plastics ingested 

by organisms such as birds will release surface-bound metals due to the chemical and 

physical conditions typical of an avian gizzard.  

1.5 Context of the present study 

While research has been carried out to determine the interactions between plastics and 

co-contaminants, there are still large areas for which little work has been undertaken. It 

is the purpose of the present research to address some of these areas.  

Despite experimental losses of trace metals being documented in plastic 

containers during controlled experiments and environmental sample collections, there 

has been very little research carried out on the propensity of plastic debris to interact 

with metals in the environment. This study aims to determine whether metals are 

interacting with plastics in the environment, and if so, identify what the drivers of 

these interactions are. Furthermore, it is the intention of this thesis to draw attention to 

the lack of studies concerned with the interactions between plastics and co-

contaminants in estuarine systems. Finally, the question of whether trace metal 

concentrations associated with pellets be accessible to organisms upon ingestion will 

be investigated. 

Owing to their relatively standard morphology, environmental abundance and 

recognition within the current literature with regard to interactions with co-

contaminants (Heskett et al., 2012; Mato et al., 2001; Ogata et al., 2009), plastic 

production pellets have been selected as a model plastic particle for the experiments 

which follow. However, the results have implications for plastic debris on all scales, 
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from macroplastics through to the smallest of microplastics. The accumulation of 

metals on plastics is currently not well documented, and plastics are still considered to 

be a newly emerging, and long-lasting contaminant of natural systems. Therefore the 

importance of understanding how plastic particles may alter metal cycling and 

bioaccessibility to all trophic levels remains to be seen.  

With this in mind, the focus initially will be on the interactions between plastics 

and trace metals in the marine environment – the scenario where plastic debris has 

been most widely studied. Following a characterisation of plastic pellets in terms of 

their composition and metal concentrations, a batch approach will be used to 

investigate plastic-metal interactions under marine conditions. This is followed by an 

investigation replicating the estuarine environment to elucidate how these varied and 

complex conditions may control plastic-metal interactions. This constitutes the first 

study of any co-contaminants’ interactions with plastic debris within an estuarine 

context. Finally, the bioaccessibility of metal concentrations present on pellets will be 

investigated with an in vitro investigation, mimicking the gastric conditions of avian 

species which has been widely shown to ingest plastics from the sea surface. 

1.6 Aims and Objectives 

The aims of this thesis are to elucidate interactions between plastic pellets and trace 

metals in the environment, and determine whether there is a possible threat to 

ecosystems owing to the presence of metals on plastics. Thus the objectives may be 

summarised as follows: 

1) Characterise pellets to determine predominant polymer types.  

2) Determine metal concentrations on pellets collected from various locations. 
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3) Identify the extent, rate and mechanisms of uptake from the environment to 

pellets under marine conditions using a batch approach.  

4) Consider estuarine controls on metal uptake by pellets by synthesising an 

estuarine gradient for use in further batch experiments. 

5) Quantify likely metal doses to organisms proven to ingest plastic by application 

of an in vitro model for simulating the avian digestive tract. 

The chapters which follow begin with a brief introduction to the general methods and 

approaches employed during experimental work (Chapter 2). Chapter 3 summarises 

the characteristics of the plastic pellets collected from various sources and used 

subsequently in experimental work, addressing objectives 1 and 2. Chapters 4 & 5 

outline interactions between trace metals and plastic production pellets under differing 

conditions in marine, estuarine and freshwater environments, according to the 

requirements of objectives 3 and 4. Chapter 6 examines the bioaccessibility of metals 

present on beached plastic pellets to birds, as determined using a physiologically based 

extraction test to fulfil objective 5. Finally, Chapter 7 offers a synthesis of the data 

presented in the preceding chapters and identifies future research directions. 



 

  

Chapter 2: 

 General methods & approaches 
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2.1 Introduction 

Plastic particles present as debris in the environment are a poorly studied medium 

compared to natural suspended particles, and for this reason it was necessary to 

identify suitable methods to characterise the surface properties and metal 

accumulations on plastic production pellets. It is the purpose of this chapter to outline 

the various analytical procedures and experimental approaches utilised in the 

experimental work which follows, and to give rationale for the methods and 

approaches employed throughout. Each experimental chapter includes a summary of 

methods with specific details of any alterations or additions to the standard 

procedures. 

2.2 Materials, reagents and cleaning protocols 

During all experimental work, attention was paid to maintaining high levels of 

cleanliness in order to minimise contamination within samples, standards and blanks, 

thereby generating reproducible results. Furthermore, all work was carried out within 

an ISO 9001:2008 accredited facility, assuring a high standard of monitoring and 

maintenance of equipment. 

2.2.1 Reagents 

Reagents used throughout all methodologies were of analytical grade or better. 

Specifically, nitric acid and hydrochloric acid used for acidification of samples and 

extraction procedures were of trace analysis grade. All reagents were supplied by 

Fisher Scientific (Loughborough, UK) or Sigma Aldrich (Cambridge, UK) and were 

used exclusively by the author to prevent mishandling by other workers. All reagent 

solutions prepared from salts were of analytical grade, and were dissolved in high 
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purity (18.2 MΩ) water from a Millipore Milli-Q system (MQW). Prior to any work 

involving reagents, control of substances hazardous to health (COSHH) paperwork 

was completed so any personal protective equipment requirements and specific 

handling instructions were observed. 

2.2.2 Materials and cleaning protocols 

When conducting work with any aqueous solutions, there is potential for loss of 

analytes inherent in the methodology (Batley, 1999; Hoenig, 2001). These losses can be 

controlled by careful planning, minimisation of the number of unconditioned surfaces 

encountered by analytes, and selection of appropriate materials. While sample 

preservation and storage are covered in Section 2.6.3., it is appropriate to describe 

materials selected for experimental work alongside the standard cleaning protocols. 

The selection of appropriate materials for bottles, flasks, and all other apparatus 

is vitally important when storing samples for any period of time, owing to the loss of 

analytes to various containers, as summarised for a selection of metals by Massee et al. 

(1981). Additionally, contamination can be minimised by omission of any equipment 

containing metal components, instead opting for all-plastic, or plastic coated materials. 

For sample storage and preparation, borosilicate glassware is inappropriate when 

conducting work on metals at low concentrations owing to its affinity for metal ions in 

solution, therefore all experimental work was carried out in plasticware. Polyethylene 

and Teflon (PTFE) were the predominant materials selected as they are known to have 

low affinity for metals (Batley & Gardner, 1977; Laxen & Harrison, 1981). Where PE or 

PTFE equipment was not available, polypropylene or polycarbonate (PC) equipment 
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was used. When necessary, equipment was fabricated in order to eliminate the use of 

any metal components. 

Prior to use, all equipment was carefully washed using a standard protocol to 

remove manufacturing residues, or, if equipment was being re-used, to remove 

contaminants or dust accumulated during storage. Thus, all items were rinsed thrice 

with deionised water (DIW), available to the laboratory on demand from a central 

reverse osmosis system. Items were subsequently soaked for > 24 h in a 2 % solution of 

Decon 90, a detergent with non-ionic and anionic surfactants which is widely used 

throughout analytical laboratories as a means to remove loosely adhered particles and 

organic material from surfaces; following removal from the 2 % Decon bath, apparatus 

was rinsed five times with DIW, and placed directly into a bath containing 1.2 M HCl, 

where it soaked for > 48 h. Equipment was removed from the HCl bath, rinsed five 

times with MQW, and placed in clean zip-lock polyethylene bags for transfer to a 

Bassaire S6 laminar flow cabinet to be dried for a period of 72 h. The laminar flow 

cabinet was fitted with a high efficiency particulate air (HEPA) filter to remove 

airborne particulates which may contaminate samples or apparatus. A moderate flow 

rate was maintained whenever the cabinet was in use, and when dormant, the working 

space was sealed and positive pressure maintained with a low flow rate to prevent 

accumulation of airborne particulates within the cabinet.  

2.3 Sampling procedures 

2.3.1 Water sampling and storage 

Water samples were required for incubations, and were collected in bulk from two 

locations as required, observing clean sampling techniques to ensure they represented 
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the environmental compartment from which they were collected (Kramer 1994). River 

water was collected in a 10 L high density polyethylene (HDPE) carboy from the River 

Plym (50.410°N 4.079°W), which is characterised by a granitic moorland catchment, 

and low concentrations of organic matter (Turner et al., 2004). The carboy used for 

sampling Plym river water was conditioned by rinsing numerous times in situ with 

river water before the final sample was retained for use in experiments. Gloves were 

worn throughout sampling procedures.  

Seawater was collected from station L4 of the Western Channel Observatory 

(50.250°N 4.217°W) by staff from Plymouth Marine Laboratory aboard RV Plymouth 

Quest via an inboard sampling pump which was conditioned rapidly and continuously 

by constant circulation of water.  Water collected from this location is representative of 

coastal seawater from the UK. Conditioning of the 10 L HDPE carboy used to collect 

seawater was achieved by triplicate rinsing before final sample collection. 

 All water samples were vacuum filtered immediately upon return to the 

laboratory by passing through a 0.45 m cellulose nitrate filter (Whatman) housed in a 

polysulfone vacuum filter unit (Nalgene), and subsequently stored in 1 L HDPE bottles 

in the dark at 4 °C until use. In order to maintain flow rate, minimise pore size 

alterations and prevent excessive pressure within the filter unit, filters were changed 

regularly using plastic tweezers, and the filter unit was conditioned with 

approximately 100 mL of the sample each time filters were replaced. 

2.3.2 Pellet collection and processing 

Throughout experimental work, pellets are broadly defined as “virgin” or “beached”, 

and were obtained from a plastics processing facility or collected from the natural 
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environment, respectively. About 1 kg of virgin polyethylene pellets (n = ~40,000) 

were obtained from Algram Plastics (Plymouth, UK), as they were required for 

observations of background levels of metals present immediately upon introduction of 

pellets to the natural environment, as well as adsorption experiments. Virgin pellets 

were collected in person from the processing facility, where they had been stored in a 

zip-lock bag. Upon return to the laboratory, virgin pellets were stored double-bagged 

in re-sealable bags in the dark until required for use.  

Samples of beached plastic resin pellets were collected from field locations for 

adsorption and desorption experiments as required. Several beaches across the 

southwest of England were visited (Fig. 2.1), and sites with high concentrations of 

plastic pellets became the focus of sample collections owing to the speed at which large 

numbers of pellets could be collected from these sites. The four primary sites, namely 

Saltram, Ninney Rock, Sharrow Point and Watergate Bay, may be influenced by 

different sources of pellets and environmental factors affecting local metal 

concentrations. Saltram lies within the estuary of the River Plym, which drains granitic 

moorland and is influenced by historical china-clay and metalliferous mining activities. 

This site is in close proximity to Plymouth, a city with a population of approximately 

260,000 in 2010 (Office for National Statistics, 2010), with local recreational boating and 

commercial shipping activities. Ninney Rock and Sharrow Point are located within the 

broader setting of Whitsand Bay, Cornwall. This site is well flushed by tides and local 

currents as it is exposed to the western English Channel. There is a legacy of dumping 

of dredged material from the military dockyard located on the River Tamar several 

miles offshore, an activity which has received attention for its potential to impact 

Whitsand Bay itself (CEFAS, 2005). Watergate Bay is located on the north Cornish 
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coast, and exposed to the Atlantic Ocean. The closest urban centre is Newquay, with a 

population of 27,100 as of 2010 (Office for National Statistics, 2010).  

Samples were collected using polypropylene tweezers to select individual 

pellets from the strandline of beaches, and stored in polycarbonate centrifuge tubes as 

a composite sample for transport to the laboratory.  In the laboratory, samples were 

stripped of loosely adhered debris by sieving through a 1 mm plastic sieve, which 

retained pellets but allowed extraneous material to pass through. Subsequently, 

ultrasonication for five minutes in filtered seawater was used to remove firmly 

adhered particles. Pellets were finally dried under laminar flow and stored in sealed 

pots contained in re-sealable bags. 

 

Figure 2.1: Pellet collection sites in southwest England. Sampling locations and nearby 

urban centres are indicated by ▲and □, respectively.  

  

2.4 Metals selected for study 

Metals were studied both in situ and in terms of their behaviour during adsorption 

experiments. Initially a broad suite of metals were selected for analysis, as preliminary 
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work was used for scoping. Metals were selected on the basis that they represent either 

important geochemical phases (Al, Fe and Mn), or toxicologically important trace 

metals (Cd, Co, Cr, Cu, Ni, Pb and Zn). In the context of adsorption experiments, only 

trace metals were studied. 

2.5 Analytical techniques 

A range of analytical techniques was used throughout experimental work, to 

characterise physical properties of pellets, and to analyse for metal concentrations (Fig. 

2.2). Whenever using equipment for which calibration was possible, including pipettes, 

balances and analytical instruments, this was performed immediately prior to use of 

the equipment, according to ISO 9001:2008 protocols.  

 

Figure 2.2: Summary flow chart of pellet handling and analytical techniques. 
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Pellets were analysed for surface area using the BET method of gas adsorption 

(Brunauer, et al., 1938), while pellets were examined and photographed using both 

light microscopy and scanning electron microscopy (SEM). Polymer type was 

determined using Fourier transform infra-red photo-acoustic spectroscopy (FTIR-PAS) 

as has recently been strongly recommended by Hidalgo-Ruz et al. (2012). This 

technique also served to provide a means to determine the relative age of pellets (See 

Artham et al., 2009), while metal concentrations were analysed using inductively 

coupled plasma-optical emission spectroscopy (ICP-OES) or inductively coupled 

plasma-mass spectrometry (ICP-MS).  

2.5.1 Inductively coupled plasma – mass spectrometry 

Inductively coupled plasma-mass spectrometry was used extensively for the analysis 

of trace metals in acid extractions using a Thermo X-Series II instrument (Thermo 

Elemental, Winsford, UK). Samples were introduced via a concentric glass nebuliser 

coupled with a conical spray chamber. Acquisition parameters and gas flow rates were 

constant throughout analyses (Table 2.1) with the exception of nebuliser gas flow, 

which was manipulated slightly to optimise the system for sensitivity and minimise 

interferences. Optimisation was carried out using a multi-element tune-up solution 

(Thermo Scientific) at the beginning of each data acquisition.  
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Table 2.1: Operating parameters for Thermo X-Series II ICP-MS. 

Parameter Value Gas 

RF power 1400 W n/a 

Coolant flow 13 L min-1 Argon 

Auxiliary flow 0.70 L min-1 Argon 

Nebuliser gas flow* 0.75 L min-1 Argon 

Collision cell gas flow 3.5 mL min-1 7 % H2 in He 

Dwell time 10 ms n/a 

Sweeps 50 n/a 

Replicates 3 n/a 

RF: Radio frequency; *Typical value, optimised before each acquisition; n/a: not 

applicable 

Calibration of this instrument was achieved using 5 calibration standards and a 

calibration blank, with 115In and 193Ir added to all standards, blanks and samples for 

internal standardisation to compensate for instrumental drift throughout sample runs. 

Frequent additional checks were carried out to ensure analytical accuracy by regular 

analysis of a multi-element solution prepared to a known concentration within the 

calibration range by an independent worker. 

An essential requirement of ICP-MS analysis of environmental samples, or 

solutions with high concentrations of dissolved ions is that matrix effects are 

minimised. This is achieved by matrix-matching of all calibration standards and blanks 

to the samples which rely upon them. Matrix matching involves ensuring the bulk 

solution composition is the same in standards, samples and blanks for each analysis. 

For example, if samples were composed of diluted seawater, calibration standards and 

blanks are prepared in seawater of the same dilution. This is necessary to minimise 

analytical errors pertaining to mass interferences. Additionally, the use of a collision 

cell, where 7 % H2 in helium gas is added, further reduces the likelihood of 
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inaccuracies by splitting molecules which are likely to cause spectral interferences. 

Limits of detection for ICP-MS analysis were calculated from the standard deviation of 

the calibration blank standards  

2.5.2 Inductively coupled plasma – optical emission spectroscopy 

Analysis of metals Al, Fe and Mn was achieved by ICP-OES, owing to the greater level 

of accuracy and precision possible using this technique for these elements at the 

concentrations extracted from pellets in this investigation. Analysis was carried out 

using a Varian 725 ES (Mulgrave, Australia) fitted with a V-groove nebuliser coupled 

with a Sturman-Masters spray chamber. The same method of calibration and matrix-

matching was used for ICP-OES as ICP-MS (Section 2.5.1), and similar checks were 

performed every 10 samples to ensure precision was maintained throughout analysis. 

Operating conditions for ICP-OES analysis are summarised in Table 2.2. Optimisation 

of ICP-OES, when necessary, was achieved by altering nebuliser gas flow rates 

between 0.52 and 0.72 L min-1; or by increasing viewing height by 2-3 mm to improve 

signal to background ratios. 

Table 2.2: Operating parameters for Varian 725 ES ICP-OES. 

Parameter Value Gas 

RF Power 1400 W n/a 

Plasma flow 15 L min-1 Argon 

Auxiliary flow 1.5 L min-1 Argon 

Nebuliser gas flow 0.68 L min-1 Argon 

Viewing height 8 mm ALC^ n/a 

Dwell time 1 s n/a 

Replicates 3 n/a 

RF: Radio frequency; ^ALC:  above load coil 
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Limits of detection (LODs) were calculated as 3 standard deviations of blank 

measurements. Typical limits of detection for ICP-MS and ICP-OES analyses are 

presented in Table 2.3 for the suite of metals investigated. Values presented are from 

direct measurements of sample concentrations, rather than absolute values following 

calculations to take into account pre-concentration or dilution steps. 

Table 2.3: Limits of detection for ICP-MS and ICP-OES analyses derived 

from 3 standard deviations of blank concentrations. 

 Al Cd Co Cr Cu Fe Mn Ni Pb Zn 

ICP-MS LOD,  

g L-1 
3.7 0.01 0.01 0.17 0.60 4.7 0.20 0.03 0.17 0.51 

ICP-OES LOD, 

g L-1 
19.8 8.25 15.0 6.77 7.71 13.9 1.01 80.1 37.3 9.90 

           

2.6 Statistical analysis 

A range of statistical tests were used to determine the significance of relationships and 

trends in the data. To compare sample mean values, ANOVA was carried out using 

Minitab 16. Where skewness in the data existed, the non-parametric Kruskal-Wallis test 

was used to compare median values. This test is a non-parametric alternative to 

ANOVA, and was carried out using the Statgraphics Centurion statistical package. The 

Kolmogorov-Smirnov test was performed using Minitab 16 to compare probability 

distributions – specifically pellet mass distributions. Where multivariate analysis was 

required to allow comparisons between sites for metal assemblages, multi-dimensional 

scaling and analysis of similarity (ANOSIM) was performed in Primer 6.  
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3.1 Introduction 

Prior to any investigation into the interactions between trace metals and plastic pellets, 

it was necessary to characterise pellets for pre-existent metal concentrations and 

surface properties. Additionally, it was desirable to identify suitable sources of pellets 

which could be used for further experiments. This was achieved using a number of 

techniques, which have been briefly described in Section 2.5. 

It is the purpose of this chapter to describe the key characteristics of pellets 

used throughout experimental work. As such, the primary objectives were to 

determine pellet composition (polymer type), assess the efficacy of calculation of the 

relative age of pellets, describe surface characteristics, identify the geochemical 

composition of pellets (by analysing for metals: Al, Fe, Mn), obtain baseline trace metal 

concentrations for pellets, and to determine a suitable field location to source pellets for 

further experiments. 

3.2 Materials & methods 

Materials and reagents were selected according to protocols outlined in Section 2.2, and 

involved selection of plastic apparatus and analytical grade reagents. Prior to use, all 

apparatus was cleaned according to the method described in Section 2.2. Methods 

employed to characterise pellets are summarised in Figure 2.2, and described in detail 

in the following sections.  

Statistical methods employed for the comparison of physical and chemical 

characteristics of pellets include ANOVA and Kolmogorov-Smirnov tests performed 

with Minitab 16 software. Non-parametric analyses were implemented using Kruskal-
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Wallis tests in Statgraphics Centurion, while multivariate analysis was carried out in 

Primer 6. 

3.2.1 Sample collection and treatment 

Virgin and beached pellets for characterisation were collected according to Section 2.3. 

Briefly, virgin pellets were obtained from a plastic manufacturer, while several 

locations in southwest England were selected for beached pellet collection owing to the 

abundance of pellets at these sites (Fig. 2.1). Pellets were individually collected with 

polypropylene tweezers and stored in 50 mL polypropylene centrifuge tubes, while a 

qualitative assessment of pellet abundance was achieved by recording the time taken 

to fill one centrifuge tube with pellets on each beach. Concurrently, sediment was 

collected by scooping with a plastic spatula into centrifuge tubes for analysis of metal 

concentrations. In the laboratory, sediment was transferred to petri dishes and dried 

under laminar flow at room temperature. Pellet mass was determined for pellets from 

each site by weighing 30 individual pellets selected at random from the bulk samples 

using a Salter ER-182A balance.  

3.2.2 Surface area analysis 

In order to characterise specific surface area (SSA) of pellets, the BET gas adsorption 

method was employed, based on the method developed by Brunauer, Emmet and 

Teller (1938). This method uses the mass of N2 gas adsorbed to surfaces to determine 

the porosity and surface area of a solid material. Gas adsorption experiments were 

performed on a Gemini 2360 surface area analyser (Micromeritics Instrument 

Corporation, USA), by analysing 1.11 g (n = 42) of pellets (Mettler Toledo XP 504 
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balance), which filled the sample chamber. Additionally, geometric SSA can be 

calculated by considering pellets as cylinders or spheres of measured dimensions. 

However, as the surface porosity of a particle will not be taken into account by this 

calculation, surface area will be underestimated. 

3.2.3 Microscopy 

To visually characterise pellet surfaces, a selection representative of the bulk sample of 

pellets was analysed by light microscopy (LM) and scanning electron microscopy 

(SEM).  Light microscopy was carried out using an Allied Vision Technologies Pike 

F210C camera (Stemmer Imaging, Surrey, UK) coupled with a Qioptic Optem Zoom 70 

XL lens (Göttingen, Germany), and operated using AVT Smartview software. To gain a 

greater level of detail in surface characteristic mapping, SEM was used. This was 

achieved by initially coating a dry pellet with a layer of carbon using an Emitech K 

450X high vacuum carbon-coating unit (Ashford, UK), and subsequently 

photographing pellets using a JEOL JSM-6100   (Welwyn, UK) operated at 20 kV and at 

a working distance of 15 mm. 

3.2.4 Polymer identification 

Polymers were identified by Fourier transform infra-red photoacoustic spectroscopy 

(FTIR-PAS). Fourier transform infra-red spectroscopy (FTIR) is widely used for the 

determination of solid compositions by gaining an absorbance spectrum. For many 

samples, including plastics, standard methods of FTIR – transmission or reflection – are 

not feasible, owing to the sample transmitting insufficient light. Photoacoustic spectra 

are acquired by sensing absorption induced heating of the sample upon exposure to 
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infra-red wavelengths of energy. The thermal expansion caused by this heating 

pressurises the surrounding gas environment, and is detected as an acoustic signal by a 

microphone (McClelland et al., 2002). Spectra were acquired with a Bruker IFS 66 FTIR 

spectrometer coupled with a MTEC 300 photoacoustic cell which was purged with 

helium gas, and recorded as an average of 64 scans in the range 4000 to 400 cm-1 at a 

resolution of 8 cm-1. Glassy carbon was used as a reference to give a background scan, 

and analogue-to-digital converter (ADC) counts were maintained between the range 

11,000 and 16,000 using a manually controlled signal amplifier. Once spectra had been 

obtained, they were compared to a reference library of synthetic polymer spectra for 

identification, using Bruker OPUS spectroscopic software. Pellets were characterised 

for polymer type by obtaining individual spectra for 30 randomly selected pellets from 

each location, plus 30 virgin pellets, which were then compared with a standard 

polymer spectrum library.  

3.2.5 Polymer degradation analysis 

In addition to the identification of polymers, FTIR spectroscopy allows the relative age 

of individual pellets to be identified using a photo-oxidation index. Photo-oxidation 

caused by solar radiation is the principal means by which polymers are degraded in 

the environment (Andrady, 1990), and measurement and calculation of a photo-

oxidation index has been used to determine the efficacy of polymer additives, such as 

CaCO3, in retarding the aging process (Valadez-Gonzalez et al., 1999; Yang et al., 2005), 

as well as comparing degradation of polymers under contrasting environmental 

conditions (Albertsson, et al., 1987; Valadez-González & Veleva, 2004).  
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To determine the relative age of polyethylene pellets, a photo-oxidation index 

was calculated from carbonyl and methylene peaks (wavenumbers 1715 and 1465 cm-1, 

respectively) by integrating peaks in the ranges 1729-1696 cm-1 and 1486-1448 cm-1, 

respectively. The carbonyl index was calculated by dividing the carbonyl signal 

amplitude by that of the reference methylene peak. According to Artham et al. (2009) 

and Sudhakar et al. (2007), the methylene peak is unaltered by photo-oxidative 

degradation, while the inclusion of oxygen into carbonyl groups during photo-

oxidation causes distinct peaks within the range outlined above, and can be compared 

with the methylene reference peak to obtain the index. For the purposes of aging 

assessments, five individual pellets from five groups, defined by visual degree of aging 

(yellowing), were analysed. The groups were categorised as virgin pellets (V), and four 

groups of beached pellets (white (W), yellow (Y), orange (O) and brown (Br)). Beached 

pellets were separated into these groups by matching with a reference pellet. 

3.2.6 Metal extraction 

Metals were extracted from pellet surfaces using a modified aqua regia extraction. 

Aqua regia was prepared by mixing 12 M HCl and 16 M HNO3 in a ratio of 3:1, and 

subsequently diluting to 20 % strength, as documented by Ashton et al. (2010) as this 

preparation was capable of extracting metals with efficiency close to full strength aqua 

regia. Typical protocols for aqua regia extraction of soils involve a long (up to 16 hour) 

period of cold digestion followed by heated digestion for two hours (Sastre et al., 2002). 

This approach breaks down complex matrices and releases the associated metal 

concentrations. Owing to the relatively inert composition of pellets, it was not 

necessary to heat the digestions; however a longer period was used to allow metals to 
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be removed from pellet surfaces. Individual pellets were added to a 7 mL HDPE vial, 

to which 2.5 mL of 20 % aqua regia was added. Vials were shaken at 150 rpm for 24 

hours on a Stuart SS1 orbital shaker, with vials on their sides to maximise agitation. To 

ensure precision in extraction and analysis, the same bulk preparation of 20 % aqua 

regia was used throughout extractions, and for all blanks and calibrations. 

Sediments and certified reference materials (CRMs) were digested using a 

standard procedure, based on the Laboratory of the Government Chemist (LGC) aqua 

regia soluble metals procedure. Thus, approximately 0.5 g of sediment were weighed 

directly into digestion tubes, to which 4 mL HCl and 1 mL HNO3 were added. Tubes 

were placed in a cold Tecator block and left for pre-digestion for two hours. Following 

this period of cold digestion, an additional 0.5 mL HNO3 was added to the digestion 

tubes and the contents were heated at 150 °C for two hours. Following digestion, the 

contents were allowed to cool, transferred to 25 mL glass volumetric flasks, and 

subsequently diluted 100-fold prior to analysis by ICP-MS. 

3.2.7 Metal analysis  

The metals selected for analysis and the rationale behind these selections have been 

introduced in Section 2.4. Metals were analysed using either ICP-MS or ICP-OES, 

techniques which are described in detail in Sections 2.5.1 and 2.5.2, respectively. 

3.3 Results 

3.3.1 Abundance and distribution 

Plastic pellets were present on all beaches visited. Qualitative assessment of 

distributions suggests elevated abundance at the strandline at each location, commonly 
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exceeding 100 pellets m-2, while large areas exhibited complete absence of pellets. 

According to the time required to fill a 50 mL centrifuge tube at each site, it was 

determined that the abundance of pellets at Watergate Bay was the greatest, requiring 

< 0.5 h to collect 50 mL of pellets (approximately 750 by count), as opposed to > 1.5 

hours required at Ninney Rock. At all locations pellets formed the most abundant form 

of debris by count.  

Pellet morphology could be classified as cylindrical, ovoid or oblate spheroid, 

and were typically 3-5 mm in diameter and 1-3 mm in height. Pellet colour was 

predominantly white or off-white (discoloured), however, black pellets were abundant 

(29 %) at Sharrow Point and Ninney Rock. Pellets coloured yellow, purple and blue 

were also collected but represented only small proportions (1 %, 4 % and 7 %, 

respectively) of the total number of pellets collected.  
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Figure 3.1: Mass distributions of 30 pellets from four field locations, and 30 virgin 

polyethylene pellets from Algram Plastics. 

Pellet mass varied slightly between sites, exhibiting mean masses of between 24 

and 29 mg, with differing levels of intra-site heterogeneity (relative standard deviation 

(RSD) values between 10 and 30 %). Mass distributions of virgin and beached pellets 

are shown in Figure 3.1, and it is evident that virgin pellets are more homogeneous, in 

terms of mass, than beached pellets. Comparisons of pellets from each field location 

with virgin pellets using Kolmogorov-Smirnov tests indicate mass distributions of 

pellets from each site, except Ninney Rock are significantly different to virgin pellets (P 

< 0.05). This can be attributed to the single source of virgin pellets, as compared to the 

many possible sources of beached pellets, as well as the effects of degradation and 

fouling of beached pellets during their time exposed to the marine environment.  
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3.3.2 Surface characteristics 

Figure 3.2 displays a selection of light microscope images which provide a number of 

observations. Pellets exposed to the marine environment will vary in their surface 

appearance owing to the progressive degradation of the polymer, and accretion of 

additional biogenic and inorganic material upon their surfaces. 

 

Figure 3.2: Composite light microscope image of beached pellets exhibiting different 

extents and types of fouling and degradation: (a) relatively pristine beached pellet, 

with minor surface striations; (b) pellet with minor biofouling present; (c) extensive 

biofouling; (d) deposits of inorganic material, biofouling and a moderate level of 

surface degradation, or “crazing”. 

Scanning electron microscopy allows a greater level of detail to be examined for 

virgin and beached pellets. Examples of these two types are exhibited in Figure 3.3. 

The major conclusions to be drawn from images of this type are that virgin pellets have 

slight surface roughness and imperfections (Fig. 3.3a), while beached pellets are 

degraded, exhibiting fissures and striations, and accumulate grains of natural material 

(Fig 3.3b). 

1 mm 
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Figure 3.3: SEM images of the surface of a virgin pellet (a) and a beached pellet (b).  

Surface area analysis using the BET method was inconclusive, as the pellets 

analysed had a surface area below the limits of detection for the selected method. 

Instead, the geometric surface area was calculated. The surface area of a cylinder is 

given by the formula: A = 2 π r2 + 2 π r h, where r and h are radius and height of the 

cylinder, respectively. Thus, a pellet of 3 mm in diameter and 2 mm tall would have a 

surface area of 33 mm2, and a mass of approximately 0.025 g, giving a specific surface 

area of 13.2 cm2 g-1. 

3.3.3 Composition and aging 

Determination of polymer type by FTIR-PAS confirmed that all virgin pellets were 

made of polyethylene, while beached pellets were predominantly polyethylene. A very 

low abundance of polypropylene pellets were present, representing < 1 % of the total 

number of pellets collected and analysed. Examples of spectra obtained from virgin 

and beached pellets are presented in Figure 3.4, with significant peaks, as determined 

by Bruker OPUS spectroscopy software, annotated with their corresponding 

wavenumber.  

a b 
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Figure 3.4: Example FTIR-PAS spectra for virgin (a) and beached (b) polyethylene 

pellets, with significant peaks annotated automatically by OPUS software. Thirty 

spectra were obtained for individual pellets from each field location and for virgin 

pellets..  

 C:\Program Files\Opus\MEAS\Luke Holmes\V1.0          V1          PAS 2010/05/25

2
9
2
0
.9

4

2
8
5
0
.9

7

1
4
6
6
.9

1

7
2
0
.1

7

4
8
6
.5

7
4
4
9
.8

8
4
2
6
.1

1

500100015002000250030003500

Wavenumber cm-1

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

P
h
o
to

a
c
o
u
st

ic
 U

n
it
s

 C:\Program Files\Opus\MEAS\Luke Holmes\O1.0          O1          PAS 2010/05/25

2
9
2
0
.7

6

2
8
5
0
.7

5

1
7
1
2
.5

6

1
4
6
5
.9

7

1
3
7
4
.7

9

1
0
2
3
.0

8

7
2
2
.3

2
6
1
2
.2

5
5
6
0
.0

3
5
3
9
.3

1
5
0
8
.8

1
4
8
2
.7

1
4
5
8
.7

1
4
3
5
.7

2

500100015002000250030003500

Wavenumber cm-1

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

P
h
o
to

a
c
o
u
st

ic
 U

n
it
s

a) 

b) 



Chapter 3: Pellet characteristics 

 

48 

 

Spectra obtained from pellets of polyethylene construction, when compared to 

a standard library of polymer types, exhibited the characteristic indicators - 

asymmetric and symmetric C-H stretching at 2921 and 2852 cm-1, respectively, and 

methylene scissoring and rocking vibrations at 1460 cm-1 and 722 cm-1, respectively.  

From the wavenumbers annotated on Figure 3.4, it can be seen that the beached 

pellet from which this example originates has developed carbonyl functional groups, 

indicative of photo-oxidation (indicated by the presence of a peak at 1713 cm-1). 

However, comparison to a reference peak is necessary in order to establish the extent 

of photo-oxidation. Using the photo-oxidation index calculation described in Section 

3.2.5, the degree of degradation was determined and compared to pellet colour, as it 

has been stated that the degree of “yellowing” (Endo et al., 2005) will be dependent on 

the degree of degradation. The carbonyl index for several categories of pellets is 

presented in Figure 3.5 and demonstrates how pellets are altered in appearance with 

the degree of photo-oxidation, an effect which seems to increase in the order: Virgin = 

White < Yellow < Orange < Brown. Analysis of photo-oxidation index data using 

ANOVA, however, identifies three significantly different groups (as annotated on Fig. 

3.5). Thus discolouration yields only an approximate measure of the photo-oxidation of 

pellets. 
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Figure 3.5: Carbonyl index for virgin pellets (V), and beached pellets divided into 

colour categories: white; yellow; orange, and brown (W; Y; O, and Br, respectively). 

Mean values for five replicates are presented ± 1 SD. Homogeneous groups, as 

determined by ANOVA, are annotated above each column. 

3.3.4 Metal concentrations 

Analysis of CRM highlights a reasonable degree of accuracy (Table 3.1), with all 

elements present at concentrations within the uncertainty of certified values. 

Furthermore, precision of sample processing and analysis is acceptable, with RSD 

values ranging from 2.6 % to 8.5 % (Al and Cu, respectively). 

Table 3.1: Certified and measured aqua regia extractable metals in LGC6156 

CRM (harbour sediment) determined using ICP-MS and ICP-OES (n=3). 

 
Metal concentration, g g-1 

  Al Cd Co Cr Cu Fe Mn Ni Pb Zn 

Certified 19000 

±3700 

2.9 

±0.5 

28.3 

±2.8 

111 

±15 

2400 

±122 

72000 

±5200 

553 

±27 

161 

±13 

1685 

±140 

3530 

±195 

Measured 21400 

±550 

3.0 

±0.813 

34.9 

±2.41 

117 

±6.54 

2610 

±220 

79800 

±3110 

573 

±34.5 

167 

±13.1 

1830 

±87.6 

3680 

±312 
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3.3.4.1 Sediment metal concentrations 

Values for aqua regia extractable metals from sediment collected alongside pellets are 

presented in Table 3.2, and indicate inter-site variability, with Saltram presenting the 

lowest concentrations of metals. This is not an expected result owing to the alluvial 

inputs to this sampling site from the River Plym, however as sediments were analysed 

as whole sediment, differences in particle size distributions between sites which may 

account for some disparity between results. This assertion is supported by the 

comparatively low Al concentrations at Saltram since low Al content is consistent with 

low clay content and coarse mean grain size. 

Table 3.2: Summary of concentrations of hydrogenous metals and trace metals in 

whole sediment sampled from four locations in south west England. SD represents 1 

standard deviation of three individual samples from each location. 

 

Al Cd Co Cr Cu Fe Mn Ni Pb Zn 

 

g g-1 g g-1 g g-1 g g-1 g g-1 g g-1 g g-1 g g-1 g g-1 g g-1 

Saltram 

 

          

Mean 1880 0.213a 1.01 0.856 2.69 2690 57.6 nd 11.7 14.8 

SD 111  0.365 0.138 0.551 440 3.43 nd 6.48 1.35 

Ninney Rock 

 

         

Mean 8740 1.08 8.22 17.2 4.72 19300 423 34.2 78.9 44.3 

SD 257 0.054 0.386 0.0301 0.774 640 22.3 0.240 6.29 1.80 

Sharrow Point          

Mean 8510 0.925 7.89 16.4 4.81 18300 390 30.7 65.0 43.3 

SD 428 0.139 0.438 0.968 0.326 810 18.0 0.745 7.95 2.14 

Watergate Bay          

Mean 4970 1.34 6.61 11.1 9.89 14400 402 27.8 96.4 47.0 

SD 60.8 0.091 0.326 0.145 1.48 745 13.3 1.55 5.79 1.58 

SD: Standard deviation; nd: not detected; a : value from one replicate as other replicates < LOD  

Additionally, sediment collected from Saltram was collected in the vicinity of the 

greatest concentration of plastic pellets, which was above the typical extent of tidal 
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inundation, therefore the sediment collected may have been partially derived from 

weathered rock and organic matter as opposed to deposition of alluvium.  Typical 

values for metal concentrations in the Plym more closely resemble those observed in 

the other sediment types, with Al and Fe concentrations of approximately 8,700 and 

20,000 g g-1, respectively (Turner et al., 2010). Contrastingly, Turner (2010) observes 

Al, Fe and Mn concentrations in sediment from this location to be 6200, 8500 and 140 

g g-1 respectively, indicating a degree of variability is inherent in this system. 

3.3.4.2 Plastic-associated metal concentrations 

Acid extractions of metals from pellets collected from the coast of southwest England 

provide data which contribute to baseline observations of metals associated with 

plastic pellets (See Ashton, et al., 2010; Turner & Holmes, 2011). Concentrations of Al, 

Fe and Mn on pellets from the four locations described in Section 2.3 are presented in 

Figure 3.6, while trace metal concentrations are presented in Figure 3.7. Initial 

observations prior to statistical analysis suggest intra- and inter-site variability exist for 

all metals, with some underlying trends which may be explained by the characteristics 

of the environment from which pellets have been collected.  
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Figure 3.6: Aluminium, iron and manganese concentrations extracted from beached 

pellets collected from sites in southwest England (Sa: Saltram; Nr: Ninney Rock; Sw: 

Sharrow Point; Wg: Watergate Bay). Each point indicates a single pellet extraction. 

Elevated levels of Fe, Al and Mn exist on pellets from Saltram, as compared to the 

other three sites, which generally present similar concentrations of these metals.  As 

stated in Section 2.3, Saltram is situated within a tidal estuary and is therefore likely to 

be influenced by fluvial depositions which will alter the local metal concentrations.  

Additionally, the estuary is heavily influenced by urban and industrial land-use 

(Langston et al., 2003), including a landfill site and commercial shipping activities in 

close proximity to the sampling site. Pellets collected from Saltram may have been 

influenced by the greater metal concentrations typical of the intertidal zone of 

estuaries, rather than the lower metal concentrations found at the upper shoreline 

(Table 3.2), as they were presumably deposited from the water column.   
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Trace metal concentrations (Figure 3.7) exhibit similar degrees of intra-site 

variability to Fe, Al and Mn, but inter-site comparison does not reveal the same 

elevation at Saltram for all trace metals. For Co and Ni, elevation at Saltram exists, 

while elevation of Cd, Cr, Cu, Pb and Zn is apparent at Ninney Rock and Sharrow 

Point. Generally, pellets from Watergate Bay exhibit the lowest concentrations of all 

metals. This may be attributed to the absence of industrial and urban development in 

the vicinity of the site, a greater degree flushing of the coastline exposed to the Atlantic 

Ocean, the absence of major rivers in the immediate vicinity, or a combination of these 

factors. However, this contradicts the background metal concentration data obtained 

from sediments collected alongside pellets (Table 3.2), suggesting that pellets 

accumulate metals in a manner which allows them to differ from their surrounding 

environment. Additionally, metals in sediments are subject to grain size variability, 

therefore lower values for metals on sediment may be indicative of larger grain size, 

and vice versa. 
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Figure 3.7: Metal concentrations on pellets from four sites: Saltram, Ninney Rock, 

Sharrow Point and Watergate Bay. Each point represents a single pellet extraction. 
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Table 3.3 summarises the concentrations of metals extracted from beached 

pellets. Metal concentrations on virgin pellets were below limits of detection, with the 

exception of Cu (mean Cu on virgin pellets: 20 ng g-1) and are therefore omitted from 

Table 3.6. Owing to the high degree of intra-site variability, which can be examined by 

observing mean and standard deviation values, it is valuable to use the median value 

to interpret the typical metal concentrations extracted from pellets.  Kruskal-Wallis 

tests were performed using the statistical package Statgraphics Centurion to identify 

inter-site differences. Statistical analysis shows that differences in metal distributions 

as illustrated in Figures 3.6 and 3.7 are not all significant. The greatest concentrations of 

Al, Fe and Mn, as well as Co and Ni are found on pellets from Saltram, Sharrow Point 

contains pellets with the greatest concentrations of Cu, Zn, and Pb, while Ninney Rock 

presents the location with pellets associated with the greatest concentrations of Cd.  

Overall, there exists a large degree of variability between pellets for all trace 

metals, with some metal concentrations approaching values comparable with natural 

sediment, particularly if values are normalised for surface area. This is an unexpected 

finding, as the common assumption of plastics being relatively inert towards dissolved 

metal concentrations appears to no longer be valid once plastics have been exposed to 

the natural environment. Metal concentrations were correlated with the photo-

oxidation index (Section 3.3.3) to determine whether the degree of ageing could be 

used as a predictor for metal concentrations present on pellet surfaces; however, no 

significant relationship existed between these two parameters for the pellets examined 

in this study. 
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Table 3.3: Summary of concentrations of hydrogenous metals and trace metals in pellets 

sampled from four locations in south west England (n = 30 in each case).  

 

Al Fe Mn Cu Zn Pb Cr Co Ni Cd 

 

g g-1 g g-1 g g-1 g g-1 g g-1 g g-1 ng g-1 ng g-1 ng g-1 ng g-1 

Saltram 

  

 

   

  

   
Mean 55.8 97.8 20.5 0.441 2.68 1.02 237 107 131 1.65 

SD 42.7 79.1 56.8 0.470 2.40 1.24 159 177 117 1.19 

Median 41.0 67.5 5.01 0.283 1.63 0.544 212 44.9 91.1 1.17 

Minimum  8.33 11.7 0.35 0.012 0.051 0.052 nd nd 14.9 0.208 

Maximum 171 314 308 2.38 10.0 5.85 821 787 562 4.33 

Ninney Rock 
  

 

       
Mean 22.3 41.9 1.51 1.11 21.0 1.34 751 17.7 69.8 76.7 

SD 15.7 30.5 2.68 1.90 58.5 2.39 142 15.8 40.5 134 

Median 20.8 38.3 0.760 0.265 0.818 0.269 413 14.7 62.8 14.9 

Minimum nd 6.21 0.075 nd nd 0.0232 nd nd nd nd 

Maximum 64.8 125 14.4 7.73 288 10.3 7970 71.8 157 492 

Sharrow Point 
  

 

       
Mean 23.0 64.6 1.51 1.32 23.3 1.64 430 20.7 95.1 74.4 

SD 18.2 38.9 2.39 1.80 56.7 2.40 210 19.8 59.3 143 

Median 18.4 55.8 0.669 0.652 1.99 0.74 408 13.9 81.3 9.61 

Minimum 3.77 nd 0.193 nd 0.065 0.016 nd 4.43 15.5 nd 

Maximum 71.8 159 13.0 5.76 207 8.82 935 103 242 493 

Watergate Bay 
  

 

       Mean 16.9 48.5 1.16 0.064 0.299 0.149 44.0 22.5 40.0 1.09 

SD 18.4 48.2 1.62 0.0618 0.292 0.181 39.5 47.7 40.4 1.39 

Median 7.43 34.4 0.712 0.047 0.196 0.109 42.5 13.8 29.3 0.523 

Minimum nd nd 0.079 nd nd nd nd nd nd nd 

Maximum 81.8 239 8.66 0.239 1.04 0.885 88.0 262 164 5.36 

SD: Standard deviation derived from 30 individually extracted pellets from each location; 

nd: not detected. 

Correlation of trace metals with Al, Fe and Mn across all samples (n = 120) 

indicates strong (r > 0.7) and significant relationships (P < 0.001) exist between Al, Fe, 

Mn and Co & Ni. While some relationships are strong, as is the case of Ni and Al, with 

a correlation coefficient of 0.9 (P = < 0.001), for other metals, relationships may be 

significant, yet very weak. For example the relationship between Fe and Pb has a 
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coefficient of 0.358 (P = < 0.001). Similarly, Cu has a significant correlation with Al (P = 

0.002), yet a correlation coefficient of 0.283 suggests a very weak correlation. These 

relationships may be driven or skewed by occasional very high metal concentrations. 

Zinc, Cd and Cr exhibit no correlation with Al, Fe or Mn at statistically significant 

levels. It is anticipated that trace metals will be associated with Al, Fe and Mn owing to 

their high surface area and known reactivity towards dissolved metals which facilitate 

adsorption. Where no correlation exists it may be due to heterogeneity in adsorption 

surfaces. 

Multivariate analysis was used to identify whether differences exist between 

pellets from the four sites with regard to their metal assemblages. Multidimensional 

scaling (MDS) was performed in Primer 6 and the 2-dimensional graphical output of 

this test is presented in Figure 3.8  

 

Figure 3.8: Multidimensional scaling plot to compare metal assemblages on pellets 

from the four sites. 

Site 
Sa 
Nr 
Sw 
Wg 

2D Stress: 0.1 
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The relationships shown in Figure 3.8 highlights the similarities between pellets 

from Nr and Sw, while Sa and Wg appear to form two discrete groups. To further 

analyse the relationships seen in Figure 3.8, analysis of similarity (ANOSIM) was 

employed to test whether metal assemblages on pellets from these sites were 

significantly different. This test confirms the similarity between Nr and Sw (P = < 0.2) 

while all other pairwise comparisons reflect no similarity (P = < 0.001). Results of 

pairwise comparisons are summarised in Table 3.4. 

Table 3.4:  Test statistic (R) and significance level (P) for 

pairwise ANOSIM comparisons of metal assemblages on 

pellets from four sites. 

Pairwise comparison R P 

Nr – Sw 0.012 > 0.2 

Sa – Sw 0.230 < 0.001 

Sa – Nr 0.241 < 0.001 

Nr – Wg 0.430 < 0.001 

Sw – Wg 0.479 < 0.001 

Sa – Wg 0.689 < 0.001 

 

Trace metal enrichment can be investigated by normalising to Al concentrations 

derived from sediment collected alongside pellets, to identify whether pellets are 

enriched with regard to any particular metals. The unitless enrichment factor (EF) for 

metals is calculated using the equation: 

 EF = ([Me]p/[Al]p) / ([Me]s/[Al]s) Eq. 3.1 

where [Me]p and [Me]s are metal concentrations (w/w) extracted from plastic pellets 

and sediment, respectively, and aluminium is used to normalise for particle size. 

Enrichment factors are summarised in Table 3.5. 
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Table 3.5: Metal enrichment (unitless) on pellets collected from SW England, 

normalised for Al using Eq.  3.1.  

Location Cd Co Cr Cu Fe Mn Ni Pb Zn 

Saltram           

Mean 0.0791 1.22 12.6 5.78 1.20 7.96 3.73 2.92 6.75 

SD 0.0989 1.18 11.9 2.98 0.247 12.8 1.11 2.54 4.83 

Ninney Rock          

Mean 5.22 0.400 48.5 79.0 0.918 1.25 0.852 5.57 110 

SD 8.52 0.591 171 111 0.399 2.53 1.05 6.94 261 

Sharrow Point         

Mean 5.82 0.441 16.6 134 1.53 1.66 1.61 11.0 184 

SD 11.6 0.206 16.6 193 1.15 1.76 1.35 14.1 486 

Watergate Bay         

Mean 0.0964 0.420 0.324 3.55 1.31 1.19 0.467 0.641 2.29 

SD 0.357 0.476 1.59 11.4 1.40 1.36 0.617 0.783 5.41 

SD: Standard deviation 

From the values presented in Table 3.5, it is clear that enrichment of several 

elements exists on plastic pellets. Variability is very high, as may be expected from the 

disparate metal concentrations presented in Table 3.3, particularly in the case of Cu 

and Zn. Such widely spread metal concentrations suggest the presence of a small 

number of pellets containing elevated metal concentrations alongside an abundance of 

pellets with lower metal concentrations. Following normalisation, it is possible to 

identify Watergate Bay as a site in which metals are not enriched on pellets to the same 

extent as in other locations. 

3.4 Discussion 

The various approaches aimed at characterising pellets collected from a number of 

sources have given a broad picture of the surface properties and metal concentrations 

likely to be encountered on pellets collected from beaches in the southwest of England, 
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as well as those of virgin pellets. Pellets were most abundant at the high tide line of the 

beaches where they were observed, which is in accordance with McDermid & 

McMullen (2004) who found order of magnitude differences between the high tide line 

and berm areas of the beaches which they surveyed.  

3.4.1 Physical properties 

Mass distributions of beached pellets, with the exception of those collected from 

Ninney Rock, are heterogeneous when compared to virgin pellets, which may be 

attributed to the range of sources of beached pellets as opposed to the single virgin 

pellet supplier. Additionally, pellets in the environment may lose mass owing to 

photo-degradation and/or abrasion, or gain mass through the processes of biofouling 

and inorganic accretions on the pellet surface (Artham et al., 2009).  

Analysis of FTIR spectra identifies virgin pellets as polyethylene, and while 

beached pellets were predominantly polyethylene, occasional polypropylene pellets 

were collected (< 1 % polypropylene, >99 % polyethylene). The aging of pellets, as 

determined by the carbonyl index, indicates that it is possible to compare pellets 

exhibiting differing degrees of yellowing on the basis of their levels of photo-

degradation (Fig. 3.5). Inspection of microscope images (Figures 3.2 & 3.3) indicates 

that as well as chemical changes, described by the FTIR spectra, various physical 

changes occur during a pellet’s time exposed to marine and coastal environments. 

These changes include increasing surface area through abrasion, and the adhesion of 

particulate matter onto the pellet surface. 
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3.4.2 Chemical properties 

Heterogeneity in metal concentrations was one of the important preliminary findings 

of the work presented (See Figures 3.6 and 3.7), thus wherever possible, pellets used in 

further experiments will be grouped together in an effort to attain a representative 

value of metal concentrations and interactions with aqueous-phase metals.  

Following the sample collection and characterisation procedure it was possible 

to identify a site (Watergate Bay, Cornwall) where pellet abundance was high, and 

concentrations of trace metals associated with those pellets was relatively low. This 

was an essential requirement of the adsorption experiments presented in Chapters 4 

and 5. In addition to the identification of a suitable source of pellets for further 

experiments, the metal concentrations observed on beached pellets suggest that 

heterogeneity of certain metals, notably Cu and Zn, would cause precision or 

background correction issues. Therefore, these metals have been omitted from further 

consideration in adsorption experiments. 

The high degree of variability and greater concentrations of the metals Al, Fe 

and Mn on pellets sourced from Saltram may be attributed to the presence of these 

pellets within an estuarine system. Pellets sourced from estuarine systems have not 

been analysed for associated metals or other chemicals prior to these observations and 

the relationships presented here raise important questions, particularly with regard to 

the interactions between dissolved chemicals and pellets under such conditions. 

Additionally, the proximity of Sharrow Point and Ninney Rock to the urban centre of 

Plymouth (Fig. 2.1) may be the cause of elevation of some metals, notably Cu and Zn. 
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This is particularly important when considering the historic dumping of dredged 

material from the River Tamar, a catchment which has a long history of metal mining.  

Comparison of metal concentrations on pellets from southwest England to 

those from another region may indicate the likelihood of pellets representing local 

metal concentrations. Pellets from the Island of Malta have been analysed for Fe and Al 

concentrations (Turner & Holmes, 2011), and it is evident that the degree of intra-site 

variability is substantial whether considering pellets from SW England (e.g. RSD for Al 

= 70 % – 108 %), or those from Malta (RSD for Al = 6 % – 73 %). Additionally, mean Al, 

Fe and Cu values for pellets from SW England are generally 3-7 times greater than 

those reported for pellets collected on Malta. For example, to consider Sharrow Point, 

concentrations of Al, Fe and Cu, are 23.0 g g-1, 64.6 g g-1 and 1.32 g g-1, respectively, 

while pellets from Malta exhibit metal concentrations up to 6.72 g g-1, 16.8 g g-1 and 

0.25 g g-1 for Al, Fe and Cu, respectively. However, owing to discrepancies between 

sample sizes between the two studies, these values have not been compared 

statistically. Despite this limitation, the differences between the metal concentrations 

on pellets from the two locations may be explained either by a greater environmental 

exposure period for pellets collected from England, as a longer time in the environment 

could allow for metals to have accumulated on pellets, or by the local geology, 

assuming pellets represent local metal concentrations when collected from the natural 

environment. It is known that Cornish and Devonian geology is dominated by igneous 

and metamorphic rocks including several known to contain metalliferous deposits 

(Langston et al., 2003), whereas the geology of Malta is comprised of various types of 

limestone (Pedley et al., 1976), lacking in mineral deposits. 
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Mean concentrations of metals on pellets are orders of magnitude lower than 

those determined on sediments from their sampling locations. This is expected given 

the disparity between particle size distributions of plastics and natural sediment, with 

smaller, natural particulates presenting surface areas orders of magnitude greater than 

that of pellets. If it is considered that plastic pellets are largely formed of non-porous 

material, the metal concentrations on pellets are surprisingly high and do not follow 

the metal distributions found on sediment from the site from which they are collected. 

This suggests that plastics are exposed to a range of conditions which will influence 

their metal accumulations before being deposited within a system. Additionally, 

despite intra-site variability, values reported for pellets from Saltram correspond 

closely to values reported by Ashton et al. (2010) who studied pellets collected from a 

range of sites on the south Devon coastline. 

It may be expected that the concentrations of metals on pellets will correlate 

with photo-oxidation indices for beached pellets, as the greater surface area of 

degraded plastics should facilitate metal adsorption, while the greater level of 

degradation would suggest a greater period of exposure to dissolved metals in the 

water column. However, when correlations of pellet age and metal concentrations 

were attempted, the correlations were insignificant, and may be explained by a number 

of factors. Firstly, when suspended in the water column, pellets are not as susceptible 

to heat build-up which initiates the photo-oxidation process (Andrady, 1990). 

Secondly, fouling of the polymers enhances the availability of adsorption sites on the 

pellet, and simultaneously shields it from light, retarding the degradation process. 

Finally, the adsorption of metals on the surface is unlikely to be facilitated during 

periods in which pellets are deposited on land, and it is during these periods that 
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photo-oxidation rates are likely to be greatest, owing to the mechanisms outlined 

above.  

3.5 Conclusions 

Previous studies on the presence of chemical compounds on the surface of plastic 

pellets focus on hydrophobic organic pollutants which are known to associate with 

plastics, predominantly through mechanisms of hydrophobic adsorption. The results 

in this chapter are amongst the first values available for the concentrations of metals 

associated with plastic pellets which have been collected from the natural 

environment. Of the metals determined from pellets collected from southwest England, 

several are of toxicological interest. Detectable concentrations of Cd, Co, Cr, Cu, Ni, Pb, 

and Zn exist on pellets and merit further study. The following chapters investigate the 

accumulation and release of trace metals from polyethylene pellet surfaces using a 

batch approach in order to further investigate likely mechanisms of association of these 

metals with plastic debris in the environment. 



 

  

Chapter 4: 

 Adsorption of trace metals to plastic 

resin pellets in the marine environment 

This chapter, alongside background metal concentration data from Chapter 3, forms a research 

article published in Environmental Pollution 160 (2012). 
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4.1 Introduction 

Research concerning the interactions between dissolved chemicals and plastic debris 

under environmental scenarios has primarily focused on interactions between plastics 

and hydrophobic organic pollutants in the marine environment. The most obvious 

cause of this focus is that the marine environment was the first environmental 

compartment in which pellets were observed. Additionally, the oceans represent the 

ultimate destination for many items of uncontrolled manmade debris, whether it is 

released inland or at sea (Andrady, 2011). The mobility of plastics in the marine 

environment gives cause for concern because of the abundance and diversity of 

products reported in regions remote from any urbanisation (Shiber & Barralesrienda, 

1991; Khordagui & Abuhilal, 1994; Derraik, 2002). In addition to their aesthetic impacts, 

plastics in the marine environment pose a direct threat to animals by accumulation, 

entrapment, entanglement, choking and suffocation (Ryan, 1987; Boren et al., 2006; 

Browne et al., 2008; Gregory, 2009). Indirectly, plastics can act as a source of organic 

contaminants to animals through the ingestion of material that is mistaken for food 

(Teuten et al., 2007). Contaminants include components of the plastics themselves, 

including plasticisers, and hydrophobic organic compounds, such as polychlorinated 

biphenyls and polycyclic aromatic hydrocarbons, that are sorbed onto the material 

from seawater (Mato et al., 2001; Endo et al., 2005; Rios et al., 2007). 

Empirical studies of the interactions between organic contaminants and plastics 

in the marine environment have largely focussed on resin pellets, which are 

comprehensively described in Chapters 1 and 3. The literature to date describes pellets 

as being capable of accumulating POPs at concentrations several orders of magnitude 

greater than the surrounding water (Takada, 2006), with a high degree of variability 
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between individual pellets. Until recently, interactions between metals and plastic resin 

pellets or any other polymeric debris had not been considered, presumably because 

polymers are generally considered to be relatively inert towards aqueous metal ions. 

However, loss of metal to plastic containers is a commonly reported problem during 

sample storage or in experiments involving spiking of metal standards (Giusti et al., 

1994; Li et al., 2001; Cobelo-Garcia et al., 2007; Fischer et al., 2007). Therefore, it may be 

assumed that this phenomenon will occur in the environment, although currently this 

has not received any attention in the literature. 

Analysis of composite samples of resin pellets collected from a variety of 

beaches in south west England revealed measurable trace metal concentrations (See 

Chapter 3) and, in some cases, metal enrichment relative to local sand after 

normalisation with respect to Al (Ashton et al., 2010). The precise mechanisms by 

which metals associate with pellets are unclear but likely involve adsorption of ions to 

the polymer and coatings thereon and adherence of small, metal-bearing mineral 

particles to the pellet surface. Moreover, the buoyancy of pellets ensures they are 

exposed to relatively high concentrations of metals and other contaminants in the sea 

surface microlayer (Wurl & Obbard, 2004). Trace metals associated with plastic pellets 

in the marine environment have the propensity to be transported considerable 

distances and are potentially available to animals and birds that mistake plastics for 

food (Robards et al., 1995; Tourinho et al., 2010). 

The transfer of substances from a mobile phase to a solid phase is a universal 

phenomenon governing the mobility of these substances within a system (Limousin et 

al., 2007), which can be investigated using a number of techniques.  Adsorption kinetic 

and isotherm experiments have a legacy of use within geochemistry and 
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sedimentology, where they are widely applied to assess the adsorptive capacity of 

natural sediments, (Jannasch et al., 1988; Couceiro et al., 2007), and modified-natural or 

engineered substrate compositions used in remediation (Bhattacharyya & Gupta, 2008; 

Miretzky & Cirelli, 2010). The adsorption experiments presented here exhibit elements 

of classical experimental design, with slight modifications to allow the application of 

these methods to plastic pellets.  

Adsorption kinetic investigations can help to identify mechanisms of 

association between dissolved analytes and solid phases, with rapid uptake kinetics 

indicative of surface-controlled mechanisms and slower rates suggesting diffusion of 

analytes into the solid matrix in a more recalcitrant form (Millward, 1995). Adsorption 

kinetic experiments are also a pre-requisite to any adsorption isotherm study, as 

isotherms must reach equilibrium for the isotherm to be considered. Within the context 

of the experiments presented, adsorption to PE pellets is observed over a period of one 

week, which is a typical period of time for studies of this type (Jannasch et al., 1988; 

Hatje et al., 2003). However, it must be considered that various kinetically controlled 

phenomena will occur over longer timescales on the order of years (Limousin et al., 

2007), particularly when the primary mode of association of trace metals is controlled 

by the presence and continuous accretion of substrates such as Fe, Al and Mn 

precipitates and/or biofilms. 

In the present study, the mechanisms and kinetics of trace metal uptake by 

plastic resin pellets are examined in metal-amended seawater under controlled 

laboratory conditions. Experiments use both new (virgin) pellets sourced from a 

plastics moulding facility and aged pellets collected from a local beach and whose 

chemical characteristics (e.g. polymer type, pre-existent metal content) had been 
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previously established (Chapter 3). Results of the study are discussed in terms of the 

implications of plastic-metal interactions on trace metal behaviour and cycling in the 

marine environment. 

4.2 Materials and methods 

4.2.1 Materials and reagents 

Reagents were of analytical grade or better, and all equipment was cleaned according 

to a standard protocol (see Section 2.2 for details).  

4.2.2 Sample collection 

Surface seawater of salinity 34 and pH 7.8 was collected in a 10 L high density 

polyethylene (HDPE) carboy from Station L4 in the English Channel as detailed in 

Chapter 2. In the laboratory, seawater was filtered through a 0.45 m cellulose nitrate 

filter housed in a polysulfone vacuum filtration unit and stored at 4 °C and in the dark 

until required in the experiments.  

Virgin pellets were obtained from a local plastic processing facility, while 

beached pellets were collected as described previously from Watergate Bay, UK, 

following the identification of this site as one where pellets with comparatively low 

concentrations of metals occurred (Chapter 3).  In the laboratory, pellets were 

processed as described in Chapter 2. Briefly, pellets were stripped of adherent material 

by ultrasonication for 5 minutes in native seawater, followed by drying under laminar 

flow, and stored in clean centrifuge tubes.    

4.2.3 Adsorption experiments 

Because of the relatively low metal concentrations in pellets from Watergate Bay (see 

Chapter 3), a large quantity of pellets (n ~ 2000) was collected from this location and 
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used in the adsorption experiments along with virgin pellets obtained from the 

processing facility. For the kinetic experiments, undertaken in triplicate and including 

a metal-free control, 300 pellets were weighed and added to 750 ml of filtered seawater 

(pellet mass: seawater volume = 10 g L-1) in 1 L Teflon (PTFE) bottles. After 24 hours, 5 

g L-1 of Cr, Co, Ni, Cu, Zn, Cd and Pb, prepared by serial dilution of 1000 mg L-1 

plasma emission standards in MQW, was added. Concentrations greatly exceed 

aqueous metal concentrations in open seawater but are closer to values encountered in 

contaminated inshore waters (Jonas & Millward, 2010) and in the sea surface 

microlayer where pellets reside during transport (Wurl & Obbard, 2004). The contents 

were then orbitally agitated at 150 rpm for a period of 7 d at room temperature (20 ±1 

°C), and subsamples of 50 ml and 20 pellets were abstracted using a plastic bulb pipette 

and 1 mm mesh, respectively, at time intervals of 0.25, 0.5, 2, 6, 24, 50, 120 and 168 

hours. Water samples were transferred to polypropylene centrifuge tubes and acidified 

to pH < 2 with 50 l of HNO3. Pellets were transferred to 8 ml HDPE vials and 2.5 ml of 

10% HCl added in order to extract adsorbed trace metals and minimise digestion of 

pre-existent metal present on pellet surfaces prior to adsorption experiments. 

Adsorption isotherms were undertaken in triplicate for a period of 48 h in a series of 60 

ml PTFE bottles, each containing 20 pre-weighed pellets, 50 ml of filtered seawater and 

different concentrations of metals added in combination ranging from 0 to 20 g L-1, 

under otherwise identical conditions. On completion of the experiments, metal loss to 

the PTFE container surfaces was evaluated by rinsing empty bottles with 50 ml of 10 % 

HCl for 48 h under orbital agitation. 
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4.2.4 Metal analysis 

Metals were analysed using ICP-MS, general procedures and operating conditions for 

which are given in Section 2.5. Instruments were calibrated using five matrix-matched, 

mixed standards and a blank; internal standardisation during ICP-MS analysis was 

achieved by the addition of 50 g L-1 of 115In and 193Ir to all standards and samples. 

Seawater samples resulting from the adsorption experiments were diluted tenfold in 

MQW to reduce the concentration of dissolved ions, thereby minimising mass 

interferences and instrumental damage; acid digests of the corresponding pellets and 

acid rinses of the empty containers, to evaluate container adsorption, were also 

analysed for trace metals by ICP-MS. 

4.3 Results 

4.3.1 Pellet characteristics 

As discussed in the previous chapter, pellets were predominantly white or off-white 

cylinders and ovoids, composed of polyethylene. Mean pellet mass was 26 mg, with an 

RSD of 23 %. 

4.3.2 Trace metal adsorption 

Since polymer (PTFE) bottles were employed during examination of the uptake of trace 

metals by plastic resin pellets, it was important to quantify the loss of analyte to the 

container surfaces during the incubations. Analysis of the acid rinsings of empty 

bottles at the end of the experiments showed that, on average, about 5% of Cr had 

adsorbed to the PTFE surfaces, and that < 1 % of other metals had been lost by this 

process. 
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Although trace metal loss to containers was small relative to percentages 

remaining in seawater or adsorbed to pellets, results below have been computed from 

direct measurements of the aqueous and pellet phases and do not rely on mass balance. 

Thus, kinetic results are expressed as percentage aqueous metal, calculated from 

aqueous concentration relative to aqueous plus pellet concentration (both on a w/v 

basis), while isothermic results are shown as pellet metal concentration on a w/w basis 

versus aqueous metal concentration. 

4.3.3 Adsorption kinetics 

Examples of the time-dependencies of metal uptake by virgin and beached pellets are 

shown in Figure 4.1. In most cases, profiles consisted of a period of rapid metal 

adsorption and subsequent approach to equilibrium or, in some cases, a more 

protracted period of slower adsorption, particularly in the case of Cr adsorption to 

beached pellets. Nickel adsorption to beached pellets over the time course appears to 

reach a maximum after 50 hours, with some remobilisation evident after this time. 

Owing to the high degree of variability in Cu and Zn concentrations mentioned in 

Chapter 3, Cu and Zn were omitted from adsorption studies as precise measurements 

were not possible. The extent of metal uptake was greater on beached pellets than on 

virgin pellets, presumably because of the changes to surface properties incurred while 

pellets are in the marine environment (described below).  

Rates of interaction between metal, Me, and pellet surface, X, were modelled 

with a pseudo first-order reversible reaction (Turner et al., 2006): 

 Me + X 
1

1-

 
k

k
  MeX (4.1) 
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where MeX (w/v) represents metal adsorbed to the pellet surface and k1 and k-1 are 

forward and reverse rate constants, respectively. The rate equation for this process is 

given as: 

 
t1t1 ]MeX[]Me[

]Me[
 kk

dt

d
 (4.2) 

 In each case, rate constants and an equilibrium constant (k = k1/k-1) were derived from 

the integrated form of equation 4.2 by assuming equilibrium concentrations were 

represented by the mean of the final two  aqueous percentage measurements in the 

time-course ([Me]e), to yield: 

 ([Me]t – [Me]e) = ([Me]0 – [Me]e) exp[ -(k1 + k-1)t]
 

(4.3) 

Under equilibrium conditions, d[Me]/dt = 0; therefore it is possible to define an 

equilibrium constant, k, and rewrite equation 4.2 as: 

 

[Me]

[Me][Me]

e

e0

1

1 


k

k
k  (4.4) 

Rearranging equation 4.4 for k-1 and substituting this into equation 4.3 yields: 

 




















[Me][Me]

[Me][Me]
ln

[Me]

[Me][Me]

e

e0

0

e0
1

t

tk  (4.5) 

Model fits to empirical data as calculated using equation 4.5 have been annotated on 

Figure 4.1, while rate constants are displayed in Table 4.1 
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Figure 4.1: Time-dependent adsorption of Cr, Pb Co, Cd and Ni to virgin (o) and 

beached (●) polyethylene resin pellets. Error bars represent one standard deviation 

about the mean of three determinations and lines are fits to the data based on a 

pseudo-first-order model (equations 4.1 – 4.5), whose constants are given in Table 4.1.  

Partition coefficients are widely used to compare the affinities of metals to 

different particulates, or to assess adsorption under varying conditions. KD is defined: 
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[Me]

[Me]

w

p
D K  (4.6) 

where [Me]p is the concentration of metal adsorbed to plastic pellets (w/w) and [Me]w is 

the aqueous metal concentration (w/v). For the purposes of kinetics experiments, an 

equilibrium partition coefficient, (KD)e (ml g-1), was calculated from the ratio of w/w 

pellet metal concentration at equilibrium, [MeX]*e, to aqueous metal concentration at 

equilibrium, [Me]e, and a system response time, defined as the time required for the 

reaction to reach 63% of the new equilibrium (Millward et al., 1992), was derived from 

the reciprocal of the sum of the forward and reverse rate constants: 

 

 kk
Τ

11

resp

1


  (4.7) 

Constants defining all model fits with the exception of Zn, which was a 

contaminant of the control and whose pre-existent concentrations in beached pellets 

were relatively high and variable, are given in Table 4.1.  

Table 4.1: Constants defining time-dependent profiles of trace metal adsorption to 

virgin and beached polyethylene pellets as fitted using a pseudo first-order model 

(equations 4.1 – 4.5). 

 

Virgin  Beached 

  

k1, 

h-1 

k-1, 

h-1 
r2 

Tresp, 

h 

(KD)e, 

ml g-1 

 k1, 

h-1 

k-1, 

h-1 
r2 

Tresp, 

h 

(KD)e, 

ml g-1 

Cr 0.055 0.45 0.974 1.97 10.1  0.061 0.025 0.598 11.6 221 

Co 0.010 1.18 0.974 0.84 0.661  0.089 2.04 0.552 0.47 4.03 

Ni 0.014 0.83 0.931 1.18 1.28  0.464 4.82 0.914 0.19 8.87 

Cd 0.0002 0.01 0.649 105 0.204  0.002 0.265 0.126 3.75 0.318 

Pb 0.002 0.67 0.986 1.49 0.225  0.210 0.130 0.912 2.94 149 

Goodness of fit, represented by the regression coefficient defining the 

relationship between the integrated form of equation 4.2 and time, is better for trace 

metal uptake by the virgin pellets than by the beached pellets. This is because 
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interactions between metal and the beached pellet surface did not always appear to 

attain equilibrium, an effect attributed to the greater heterogeneity and porosity of the 

coated and fouled surface of aged plastics. Assuming that equilibrium is attained, 

system response times for both pellet types are within about 100 h and, in many cases, 

are less than 1 h. With the exception of Cu, which may have been affected by 

interferences from pre-existent metal, equilibrium partition coefficients are 

considerably higher for beached pellets than for virgin pellets; with respect to Pb, the 

difference in partitioning between pellet types is almost two orders of magnitude. 

4.3.4 Adsorption isotherms 

Isotherms defining the adsorption of trace metals to virgin and beached pellets are 

shown in Figure 4.2 for the metals whose kinetic profiles were illustrated in Figure 4.1. 

The results presented in Figure 4.2 suggest order of magnitude differences between 

equilibrium concentrations of different metals on beached pellets within this 

experimental system. Chromium and Pb represent the trace metals with the greater 

affinity for beached plastic pellets, while Cd, Co and Ni display a lesser affinity for the 

plastic surface. This would be expected of trace metals for which affinities for the solid 

phase vary considerably. For all metals, virgin pellets present fewer viable sites for 

adsorption, which is reflected by the minimal associations of trace metals with virgin 

pellets through the concentration range.  

Variations among replicates were greater for the beached pellets, presumably 

due to the greater heterogeneity of the plastic surface incurred by aging. Both 

Langmuir and Freundlich models were fitted to the isothermic data. The former 

assumes monolayer adsorption to a homogeneous surface and is given as follows: 
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[Me]1

[Me][MeX]
[MeX]*

eL

eL max

e K

K


  (4.8) 

where [MeX]*e is the w/w concentration of metal adsorbed to the pellet surface, [Me]e is 

the equilibrium concentration of metal in solution, [MeX]*max is the adsorption capacity 

of the metal and KL (ml g-1) is the Langmuir isotherm constant. 

 
Figure 4.2: Isotherms defining the adsorption of Cr, Pb, Cd, Co, and Ni from seawater 

to virgin (o) and beached (●) polyethylene resin pellets. Error bars represent one 

standard deviation (n = 3), and lines represent Langmuir fits to the data according to 

equation 4 and whose constants are defined in Table 4.2.  
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The Freundlich equation assumes multilayer adsorption to heterogeneous surfaces and 

is given as follows: 

 [Me][MeX]* 1/

eFe

n
K  (4.9) 

where KF, (g1-1/ng-1) is the Freundlich constant and n is a measure of linearity. Values 

for the Langmuir and Freundlich constants, derived from linear regression analysis of 

1/[MeX]*e versus 1/[Me]e, and non-linear regression of [MeX]*e versus [Me]e, 

respectively, are shown in Table 4.2 for trace metals that were unaffected by 

interferences from pre-existent metal or by experimental contamination.  

Table 4.2. Constants defining trace metal adsorption to virgin and beached polyethylene 

pellets according to the Langmuir and Freundlich models (Equations 4.4 and 4.5, respectively). 

Note that interferences from pre-existent metal precluded fitting of beached Cu data and that 

Pb adsorption to virgin pellets was best defined by linear fitting (r2 = 0.988; (KD)e = 0.3 ml g-1). 

 Langmuir constants  Freundlich constants 

 Virgin  Beached  Virgin  Beached 

 
[MeX]*max 

g g-1 

KL 

ml g-1 

r2  [MeX]*max 

g g-1 

KL 

ml g-1 

r2  1/n KF 

g1-1/n g-1 
r2  1/n KF 

g1-1/n g-1 

r2 

Cr 0.297 0.127 0.96  0.441 0.503 0.78  0.624 0.038 0.83  0.570 0.131 0.79 

Co 0.018 0.033 0.76  0.038 0.351 0.81  0.858 0.0006 0.84  0.344 0.014 0.61 

Ni 0.008 0.047 0.80  0.070 2.67 0.82  0.671 0.0005 0.88  0.085 0.057 0.10 

Cd 0.0004 0.413 0.98  0.010 0.140 0.77  0.287 0.0002 0.46  0.576 0.002 0.83 

Pb - - -  0.716 0.439 0.91  - - -  0.047 0.214 0.90 

 
Despite the different assumptions of the two models and the different characteristics of 

the virgin and aged pellets, there are no clear or systematic differences in the goodness 

of fit (as r2) to the datasets, either between the two models or between pellet type. 

(Note that Langmuir fits have been annotated for illustrative purposes in Figure 4.2.) 

Regardless of the model fits, and consistent with the kinetic results reported above, 

adsorption to beached pellets is greater than adsorption to virgin pellets, and 
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adsorption capacities for beached pellets are greatest for Cr and Pb and lowest for Cd, 

Co and Ni.  

4.4 Discussion 

Despite the general assumption that plastics are relatively inert towards aqueous 

metals, virgin polyethylene pellets suspended in trace metal-amended seawater adsorb 

trace metals rapidly and in a Langmuir or Freundlich fashion with equilibrium 

partition coefficients (at [Me] = 5 g L-1) of up to about 12 ml g-1. Presumably, metal 

adsorption proceeds through interactions between bivalent cations (e.g. Cu2+, Cd2+, 

Pb2+) and oxyanions (e.g. Cr2O42-) with charged or polar regions of the plastic surface 

(effected by imperfections and the presence of charged contaminants and additives, for 

example), and via non-specific interactions between neutral metal-organic complexes 

and the hydrophobic surface of the bulk plastic medium. Aged, beached pellets 

accumulate trace metals to a significantly greater extent, with equilibrium partition 

coefficients ranging from about 4 ml g-1 (Co) to 220 ml g-1 (Cr). The reactivity of the 

surface of aged pellets is enhanced by both changes to the polymer itself and the 

presence of biofilms and chemical precipitates. With respect to the former, photo-

oxidative weathering generates oxygen containing groups that increase the polarity of 

the polymer (Mato et al., 2001). Regarding the latter, accumulations of biofilms and 

hydrogeneous precipitates increase the charge, roughness, porosity and hydrophilicity 

of the surface (Artham et al., 2009). 

Although these enclosed, batch experiments have revealed that interactions 

between trace metals and the surface of virgin or beached pellets are both considerable 

and relatively rapid, the equilibrium constants that have been derived are likely 
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underestimates of environmental values. Thus, metal adsorption in situ is predicted to 

be a longer term process as chemical precipitates and biofilms continuously accrue at 

the plastic surface; trace metal accumulation is also likely to be enhanced by co-

precipitation, a slow process not replicated in short-term experiments conducted 

without the addition of hydrogeneous metals. Overall, therefore, the relatively high 

concentrations of trace metals observed on beached pellets (see Chapter 3) may be 

attributed to these sorptive mechanisms acting on pellets that are exposed to aqueous 

metals in the sea surface microlayer for decadal timescales. 

The association of trace metals with plastics is likely to be a more general 

phenomenon, both in terms of other aquatic environments and with respect to different 

types and sizes of plastic. Accordingly, plastics may be considered as a vehicle for 

transport of metals in aquatic systems that has not, thus far, been acknowledged. Metal 

transport with plastics is particulate by definition but, at least with regard to small 

pieces of litter, is quasi-conservative, enabling metals to be transported considerable 

distances while buoyant. Considering the abundance of inland sources of plastic 

debris, it is critical to examine the interactions between metals and plastics under 

freshwater and estuarine conditions – an environmental compartment currently under-

represented in the field. The association of trace metals with plastics also has 

implications for the transfer of these contaminants into the foodchain. Thus, 

invertebrates, fish, birds and mammals that mistake plastics for food (Teuten et al., 

2009) have the potential to mobilise metals in their acidic, enzyme-rich digestive 

systems. Consequently, metals may be either bioaccumulated or released back into 

seawater in a more soluble and biologically available form. Clearly, these and other 

potential impacts of plastic-metal interactions in the aquatic environment merit further 
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study. With the noted presence of plastics in estuarine systems, and evidence for the 

scavenging of dissolved metals by plastics in marine systems, the first step is to 

understand metal uptake under the varied and complex conditions present within the 

estuarine environment. The following chapter begins to explore this through a series of 

controlled experiments which attempt to simulate the major physico-chemical 

gradients expected within an estuary.    



 

  

Chapter 5: 

 Adsorption of trace metals to plastic 

resin pellets under estuarine and 

freshwater conditions 
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5.1 Introduction 

Estuaries are complex and dynamic systems where biogeochemical cycling is governed 

by numerous physical, chemical and biological processes which change on various 

temporal and spatial scales (Millward, 1995). Within an estuarine system, the primary 

chemical controls over geochemical behaviour of trace metals are salinity, ionic 

strength and pH. Additionally, factors such as the concentration and composition of 

suspended particulate matter (SPM) are known to influence trace metal cycling (Money 

et al., 2011). While marine waters have relatively consistent composition globally and 

are well buffered against changes in pH, rivers and estuaries have the potential for far 

greater variability of composition.  

Inland spillage of plastic pellets, as well as tidal cycling, result in seaward and 

landward transport of plastic pellets within estuaries. Despite the abundance of plastic 

debris in riverine and estuarine systems (Browne, et al., 2011), there is currently a 

paucity of literature concerned with the chemical reactivity of plastic resin pellets 

under estuarine and freshwater conditions.  

Owing to the ubiquity, persistence and mobility of synthetic polymers in the 

environment it is important to understand the trace metal accumulation properties of 

plastic pellets in freshwater and estuarine systems. The uptake of trace metals by 

plastics has been investigated under marine conditions (Holmes et al., 2012); however, 

owing to the aforementioned variability of composition, it is important to understand 

the consequences of releases of plastics into rivers and estuarine systems. In this 

chapter the interactions between trace metals and plastic pellets were investigated as 

functions of salinity and pH, and the behaviour of trace metals is interpreted in terms 

of speciation and their likely fate within estuarine systems.  
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5.2 Materials and methods 

5.2.1 Materials and reagents 

All equipment used for sample collection, storage, preparation and experimental work 

was washed and dried prior to use according to the standard protocol as described in 

Section 2.2. Riverine and marine end-member waters used in experimental incubations 

were collected, processed and stored according to the procedures outlined in Section 

2.3. Aliquots were removed from the bulk sample and analysed for salinity with a YSI 

85-10 FT salinity/O2/temperature probe, and for pH using a calibrated Mettler Delta 340 

pH meter. 

5.2.2 Pellet sampling & characterisation 

Beached pellets from Watergate Bay were selected for use in adsorption experiments 

owing to their relatively low background concentrations of metals (see Section 3.3), and 

consistent polyethylene composition. Virgin pellets were those supplied by Algram. 

Sample treatment was carried out following the method described previously (Section 

2.3).  

5.2.3 Adsorption experiments – salinity effects 

Adsorption kinetics were studied over the period of one week in 0.45 m filtered 

riverine and marine end members, while adsorption isotherms were prepared 

according to the method described in Section 4.3.4, substituting filtered seawater for 

filtered river water. This allows direct comparison between adsorption experiments 

conducted in river and marine end-members. Additionally, a salinity gradient was 

simulated by combining end members in varying proportions to obtain a range of 

salinities typically observed in estuaries. 
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Kinetic experiments were carried out by combining pellets with filtered water 

in triplicate, in 1 litre wide-neck PTFE bottles. Approximately 7.5 g of pellets were 

accurately weighed into each reaction vessel using a Salter ER-182A balance. These 

were conditioned in experimental waters whilst being agitated on an orbital shaker for 

24 hours prior to addition of a mixed spike of trace metals. Trace metals were added as 

a mixed spike prepared from acidified calibration standards diluted with MQW to 

yield experimental concentrations of 5 g L-1. Due to the small volume of the spike 

addition, pH was not significantly altered upon addition of trace metals. A sub-sample 

of pellets (0.5 g) and two 25 mL aliquots of water were removed at designated time 

points (0.25, 0.5, 2, 6, 24, 50, 120, 168 hours) with a clean HDPE sieve and a low density 

polyethylene (LDPE) pipette, respectively. The initial 25 mL aliquot was discarded in 

order to condition the pipette, thereby minimising loss of dissolved metal analytes. 

Aliquots were acidified to pH < 2 with 25 L concentrated HNO3 and pellets were 

transferred to 7 mL HDPE vials, to be dried under laminar flow prior to extraction of 

adsorbed metals. This was achieved by addition of 2.5 mL 10 % HCl to the vials 

containing pellets, and shaking for 24 h with the vials on their sides to maximise 

contact between pellets and HCl. An aliquot of 2 mL was then removed for analysis by 

ICP-MS.  

To simulate an estuarine gradient, 0.45 m filtered end-member waters 

(salinities of 0.05 and 33 respectively) were combined in various proportions (Fig. 5.1) 

to obtain an estuarine gradient with a range of salinities (0.05, 1.7, 3.4, 5.0, 8.2, 16.4, 33) 

and a pH that ranged between 6.8 and 7.8. Prepared solutions were stored in the dark 

at 4 °C until use (< 14 days), whereupon they were allowed to equilibrate to room 

temperature (20 ± 1 °C).  
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Figure 5.1: Proportions of filtered (0.45 m) river and marine end members used to 

obtain a simulated estuarine gradient. 

Triplicate 50 mL samples at each salinity point were added to individual 60 mL 

PTFE bottles and pellets were conditioned as above, followed by spiking with trace 

metals to 5 g L-1. Samples were then shaken for 24 hours to allow aqueous and 

adsorbed metal concentrations to reach equilibrium. Separation was achieved by 

removing 2.5 mL aliquots which were transferred to 7 mL HDPE vials and acidified to 

pH < 2 with HNO3. The remaining water was discarded to leave behind the pellets, 

which were then transferred to vials and dried and extracted as above. 

5.2.4 Adsorption as a function of pH 

In order to identify the environmental scenarios most likely to promote adsorption of 

trace metals to plastic pellets, adsorption was studied as a function of pH to generate 

pH adsorption edges. This was achieved by controlling the pH of filtered river water 

by addition of 0.1 M NaOH (prepared from NaOH salts dissolved in MQW), or 0.1 M 

HNO3 to pH values of approximately 0.5 unit intervals between 4 and 10.5, 
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representative of all values likely in natural freshwaters. Seawater was not included in 

this study owing to its buffering capacity, which limits the range of pH found in 

natural waters to a narrow pH range of 7.8 – 8.2 (Pinet, 2006). Samples of each pH 

value were prepared by adding 60 mL filtered river water to 60 mL PTFE bottles, 

adding a predetermined volume of 0.1 M HNO3 (< 230 L) or NaOH (< 470 L), and 

equilibrating overnight at 150 rpm on an orbital shaker before the addition of 

approximately 0.5 g pellets. These suspensions were equilibrated for pH for 24 h before 

addition of a multi-element (Cd, Co, Cr(VI), Ni, Pb)  spike to a final concentration of 5 

g L-1. Five millilitre aliquots were removed immediately before and after spiking, and 

analysed for pH using a Mettler Delta 340 pH meter, calibrated immediately prior to 

use. The remaining 50 mL preparations were then shaken for 24 h at 150 rpm before 

separation and sample treatment as above. A final pH measurement of each sample 

was also obtained and it is this value which is presented. 

5.2.5 Metal analysis 

Prior to analysis, water samples with seawater proportions > 10 % were diluted with 

MQW to salinities of 1.7 or 3.4 to minimise mass interferences and prevent 

instrumental damage. Trace metals Cd, Co, Cr, Ni and Pb in water samples and HCl 

extractions were analysed by ICP-MS according to the protocols outlined in Section 2.5. 

These metals were chosen owing to their adsorption to pellets in seawater, as 

confirmed in Chapter 4, and lack of contamination or background variability which 

cause difficulties in blank corrections. For example, concentrations of Cu and Zn 

adsorbed to pellets were indistinguishable from background variability resulting from 

pre-existent concentrations and/or procedural contamination (see Section 3.3). Pre-
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existing metal concentrations on pellets were accounted for by blank correction by 

analysis of triplicate procedural blanks from which trace metal spikes were omitted.  

5.2.6 Speciation modelling 

Chemical speciation modelling was conducted using the Windermere Humic Aqueous 

Model, version VI (WHAM) in order to identify the likely metal species interacting 

with pellets within a simulated estuarine system. As with all geochemical models, 

WHAM is constrained by a number of assumptions, upon which speciation 

calculations are based.  

Default formation constants contained within WHAM databases were used to 

model inorganic speciation of trace metals  in experimental waters, using measured 

salinities of end-members to define the concentrations of major solutes, while estuarine 

values were calculated from conservative mixing. Typically, WHAM utilises the 

Extended Debye-Hückel equation for ionic strength corrections, however this equation 

is optimised for dilute (I < 0.1 M) solutions (Tipping et al., 1998), suffering from 

inaccuracies above this value. Therefore the Davies equation was used to correct 

stability constants for ionic strength, owing to its applicability to greater ionic 

strengths. Literature values for dissolved organic carbon (DOC) in Plym River water (2 

mg L-1) and seawater (1.5 mg L-1) were obtained from Turner et al., (2004), and the 

widely accepted 4:1 ratio of fulvic acid (FA) to humic acid (HA) was employed to 

define  FA and HA concentrations (Turner & Martino, 2006). 
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5.3 Results 

5.3.1 Adsorption kinetics 

Adsorption of Cd, Cr, Co, Ni and Pb to beached plastic pellets is expressed as a 

percentage calculated from aqueous and adsorbed concentrations, and is presented as 

a function of time in Figure 5.2. Data are presented as adsorbed percentages (calculated 

according to Section 4.3.2) owing to the requirements of the pseudo first order rate 

equation, detailed in Chapter 4, in order to obtain rate constants (presented in Table 

5.1). While virgin pellet data are omitted from plots for clarity, in summary, adsorption 

to virgin pellets in river water reaches maximum values of 0.5, 0.2, 1.8, 0.5 and 3 % for 

Cd, Co, Cr, Ni and Pb respectively, while in seawater virgin pellets exhibit minimal 

adsorption, with values of < 1 % adsorbed, with the exception of Cr (9 %). 

For all trace metals considered (Cd, Co, Cr, Ni, Pb) it is clear that the uptake 

from solution onto beached polyethylene pellet surfaces is rapid in both river water 

and seawater, reaching equilibrium within a few hours (Fig. 5.2), with little difference 

in time to equilibrium between freshwater and marine end-members (See Fig 5.1 for 

pH and salinity). However, the extent of uptake varied between metals, and for some 

metals, adsorption exhibited contrasting behaviour between riverine and marine end 

members.  
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Figure 5.2: Adsorption kinetics of trace metals onto beached polyethylene pellets from 

freshwater (●) and seawater (▲) at 21 ±1 °C. Values are presented as mean values ± one 

standard deviation (n = 3). Inset figures show in detail uptake over the initial 6 hour 

period. 

For adsorption experiments in river water, Pb reaches a maximum adsorption 

to beached pellets of 69 %, while Cd, Co, Cr, and Ni show lesser affinities for pellets, 

with adsorbed fractions reaching maximum values of 40, 16, 25, and 32 %, respectively. 

In seawater experiments, adsorbed, Cd, Co, Cr, Ni and Pb reach maximum values of 
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0.8, 5.2, 64, 10 and 65%, respectively. Despite differences in the extent of uptake onto 

pellets, the time to reach equilibrium was rapid, and remained fairly consistent 

between freshwater and seawater for each metal. Values of k1 and k-1 which are the 

forward and reverse rate constants for trace metal uptake calculated using the pseudo 

first order model described in Chapter 4 (Eqs. 4.1-4.5), are presented in Table 5.1 

Table 5.1: Forward and reverse rate constants for adsorption to beached and virgin pellets 

exposed to 5 g L-1 trace metals in seawater (Sw) and river water (Rw). 

 Beached pellets  Virgin pellets 

 Rw  Sw  Rw  Sw 

 

k1, 

h-1 

k-1, 

h-1 
r2 

 k1, 

h-1 

k-1, 

h-1 
r2 

 k1, 

h-1 

k-1, 

h-1 
r2 

 k1, 

h-1 

k-1, 

h-1 
r2 

Cd 0.085 0.224 0.64  0.002 0.265 0.13  0.010 1.46 0.48  0.003 12.2 0.90 

Co 0.041 0.256 0.46  0.089 2.04 0.55  0.002 1.08 0.88  0.010 1.18 0.97 

Cr 0.099 0.370 0.83  0.061 0.025 0.60  0.002 0.130 0.72  0.055 0.453 0.97 

Ni 0.087 0.271 0.93  0.464 4.82 0.91  0.002 0.424 0.85  0.014 0.834 0.93 

Pb 0.369 0.217 0.60  0.210 0.130 0.91  0.036 0.255 0.64  0.002 0.668 0.99 

Values of k1 and k-1 indicate adsorption is reversible, with the magnitudes of k-1 

exceeding k1 in most instances. Notably, however, adsorption of Cr to beached and 

virgin pellets in seawater is less reversible than in river water. Lead adsorption to 

beached pellets exhibits a lesser degree of reversibility than other metals, with values 

of k1 slightly exceeding those for k-1. Lead adsorption to virgin pellets, however, 

exhibits the same pattern as other metals, with k-1 exceeding k1. Where k-1 in seawater is 

greater than k1 in river water, it can be inferred that there is potential for adsorbed 

metal concentrations to be released where increasing salinity is encountered. The 

opposite may be true where k-1 in river water exceeds k1 in seawater, as in the case of Cr 

on beached and virgin pellets, suggesting mobilisation of Cr may occur if pellets are 

exposed to decreasingly saline conditions. 
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The chemical response time, Tresp, has been used to compare between metals 

and identify whether adsorption kinetics are altered by variations in salinity. The 

derivation of Tresp is described in full in Section 4.3. Briefly, Tresp is calculated from the 

reciprocal of the sum of forward and reverse rate constants, and gives an indication of 

the time required for analytes in an experimental system to reach 63 % of their 

equilibrium values. The values of Tresp, summarized in Table 5.2 illustrate the 

differences between time to equilibrium for trace metal adsorption to beached and 

virgin pellets in river and marine end members. For Cd, Co and Pb, Tresp in river water 

exceeds that in seawater for virgin and beached pellets. The same can be said for Ni 

only for beached pellets, since Tresp for virgin pellets is comparable in seawater and 

river water. For Cr the greater Tresp values are seen in seawater for beached pellets and 

river water for virgin pellets. 

Table 5.2: Mean (n = 3) chemical response times (Tresp) for trace metal interactions with 

virgin and beached pellets in river water (rw) and seawater (sw). 

 Beached pellets  Virgin pellets 

Element Tresprw, h Trespsw, h  Tresprw, h Trespsw, h 

Cd 3.23 1.63  0.681 0.167 

Co 3.38 0.843  0.928 0.843 

Cr 2.13 11.6  4.46 1.97 

Ni 2.80 1.18  2.35 2.96 

Pb 1.71 1.49  3.44 2.96 

      

5.3.2 Adsorption isotherms 

Adsorption isotherms determined in river water are presented in Figure 5.3 alongside 

observations determined in seawater (reported in Section 4.3.4) to allow direct 

comparison. Adsorption of Cd, Co, Cr, Ni and Pb to beached and virgin pellets in river 

water were modelled with Langmuir and Freundlich equations (Equations 4.4 and 4.5 
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respectively). Values for Langmuir and Freundlich constants are presented in Table 5.3, 

while results of Langmuir modelling are annotated on Figure. 5.3. 
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Figure 5.3: Comparison of adsorption isotherms for virgin and beached pellets (open 

and filled symbols, respectively) in river water and seawater (circles and triangles, 

respectively). Data points indicate the mean of three replicate incubations, with error 

bars denoting one standard deviation. Lines represent Langmuir model fits to data. 

Langmuir and Freundlich constants are presented in Table 5.3. 

Figure 5.3 shows that adsorption to beached pellets exceeds that to virgin 

pellets in river water, consistent with comparisons between virgin and beached pellets 
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in Chapter 4. Furthermore, adsorption isotherms presented in Figure 5.3 highlight 

differences between the extent of adsorption in river water and seawater, in agreement 

with Figure 5.2. Adsorption of Cr is greater in seawater than in river water, while 

adsorption of Cd, Co, Ni and Pb in river water exceeds that in seawater. For Pb, this is 

in disagreement with Fig. 5.2, which suggests that adsorption to beached pellets in 

river water and seawater should be similar.  

The constants presented in Table 5.3 indicate that generally, virgin pellets 

exhibit better fits to the Freundlich model, while beached pellets are better explained 

by Langmuir adsorption. The maximum concentrations predicted to adsorb to beached 

pellets suggest that Pb will accumulate to concentrations over one order of magnitude 

greater than Cd, Co, Cr or Ni. 

Table 5.3. Constants defining trace metal adsorption to virgin and beached polyethylene 

pellets in river water according to the Langmuir and Freundlich models (Equations 4.8 and 4.9, 

respectively). 

 

 ) respectively).  

 Langmuir constants  Freundlich constants 

 Virgin  Beached  Virgin  Beached 

 
[MeX]*max 

g g-1 

KL 

ml g-1 

r2  [MeX]*max 

g g-1 

KL 

ml g-1 

r2  1/n KF 

g1-1/n g-1 
r2 1/n KF 

g1-1/n g-1 

r2 

Cd 0.009 0.091 0.60  0.224 0.427 0.73  0.615 0.0007 0.97 0.471 0.062 0.84 

Co 0.019 0.018 0.11  0.080 1.293 0.87  0.950 0.0004 0.85 0.205 0.048 0.22 

Cr - - -  0.093 0.106 0.88  1.23 0.0006 0.81 0.380 0.018 0.34 

Ni 0.013 0.046 0.16  0.147 0.617 0.85  0.812 0.0007 0.57 0.319 0.063 0.52 

Pb 0.191 0.050 0.84  2.74 0.124 0.78  0.773 0.0107 0.78 0.820 0.316 0.85 

               

5.3.3 Adsorption in an estuarine gradient 

To examine changes in trace metal affinity for pellets through the salinity gradient, 

partition coefficients (KD) were calculated as they are widely used to compare the 

affinity of trace metals for particulates across a range of different conditions. Values are 
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plotted as a function of salinity for virgin and beached pellets in Figure 5.4, where it 

can be seen that partitioning to beached exceeds that to virgin pellets in all instances.  
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Figure 5.4: Partition coefficients, KD (mL g-1), for Cd, Co, Cr, Ni and Pb associations 

with beached (●) and virgin (o) polyethylene pellets as a function of salinity in waters 

prepared from combined river and marine end-members. Symbols denote mean values 

± one standard deviation (n = 3). 

Adsorption to virgin pellets  

As discussed in Chapter 4, virgin plastic pellets exhibit a lesser affinity for trace metals 

than do beached pellets. This is evident for all metals considered, and may be 
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attributed to the development of charged sites and accretion of reactive inorganic and 

organic coatings on the pellet’s surface as it is aged in the environment.  

While exhibiting lower KD values than beached pellets, virgin pellets are shown 

to adsorb trace metals through the salinity range typical of an estuarine system. 

Partitioning of Cr increases alongside salinity, with KD values rising from 1.53 to 29.7 

mL g-1 between riverine and marine end-members.  

Cadmium adsorption to virgin pellets is highly sensitive to increasing salinity, 

with an exponential decrease in KD, from 0.92 – 0.20 mL g-1 evident between salinities of 

< 0.05 and 5 as shown in Figure 5.4, continuing to decrease to 0.05 mL g-1 at salinity 33.  

Again, this indicates the low affinity of Cd to virgin pellets throughout the salinity 

range when compared with natural sediment, which is on the order of 104 mL g-1 (Tang, 

et al., 2002). Cobalt partitioning to virgin pellets exhibits a trend similar to Cd within 

the low salinity range, with an exponential decrease in partitioning from 0.65 – 0.23 mL 

g-1 between salinities of < 0.05 and 5. Further increases in salinity appear to have 

minimal effect on Co partitioning, with KD stabilising between 0.21 and 0.25 mL g-1. 

Nickel adsorption to virgin pellets was below detection limits at all salinities, with the 

exception of riverine end member, where KD is 0.85 mL g-1, indicating a low affinity for 

virgin pellets even in river water. The partitioning of Pb exhibits no clear systematic 

relationship with salinity. However, the marine end-member appears to retard Pb 

adsorption to virgin pellets, with KD decreasing by more than one order of magnitude 

between brackish (2.5 – 8.6 mL g-1) and marine end-member waters (0.3 mL g-1). These 

values indicate a low affinity of Pb to virgin plastics, considering KD values for 

partitioning of Pb to natural sediments is of the order 105 mL g-1 (Tang et al., 2002). 
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5.3.3.1 Adsorption to beached pellets 

To consider adsorption to beached pellets, Cr exhibits a similar trend as reported for 

virgin pellets, with a concomitant increase in KD and salinity – an approximately linear 

partitioning-salinity relationship (Fig 5.3). However, KD values for adsorption to 

beached pellets are approximately one order of magnitude greater than those for virgin 

pellets. Both Cd and Co exhibit consistent behaviour between virgin and beached 

pellets with regard to changes in partitioning through the salinity gradient, Pb 

partitioning to virgin and beached pellets does not exhibit this trend. 

As observed for virgin pellets, Cd adsorption to beached pellets exhibits a high 

degree of sensitivity, with an exponential decrease in KD with increasing salinity. The 

maximum KD value for Cd, 38.4 mL g-1, drops to 6.5 mL g-1 between the riverine end-

member and a preparation of experimental water of salinity 1.7, reaching a minimum 

KD of 0.87 mL g-1 in the marine end-member. This compares with a marine end-member 

KD of 0.05 mL g-1 for virgin pellets.  

Cobalt adsorption to beached pellets exhibits a similar trend to that of Cd, with 

KD decreasing exponentially from 25 to 4.87 mL g-1 between river and marine end-

members – remaining over one order of magnitude greater than KD for virgin pellets (≈ 

0.23 mL g-1).  Nickel is less sensitive to changing salinity than are Cd or Co, with a less 

pronounced decrease in KD with increasing salinity. However, there is an apparent 

decrease in partitioning in the upper salinity range, dropping from a river end-member 

KD of 35 mL g-1 to 10 mL g-1 in the marine end-member.  

Despite a degree of variability, the affinity of Pb for beached pellets does not 

appear to be affected by variations in salinity. This effect has been observed in the 

context of natural sediments by Schafer et al. (2009) and Gambrell et al. (1991), where 
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salinity did not significantly affect Pb mobility. However, this contrasts with Pb 

partitioning to virgin pellets, for which there was an order of magnitude difference in 

partitioning between intermediate salinity and seawater. This difference between 

virgin and beached pellets may be due to the weakly bound Pb being more readily out-

competed for surface sites on virgin pellets.  

For the two metals exhibiting an exponential decrease in KD with increasing 

salinity (S), the empirical partitioning-salinity relationship can be defined as follows 

(Turner & Millward, 1994):  

 lnKD = b[ln(S+1)] + lnKD0 Eq. 5.1 

where S is salinity; and KD0 and b are data fitted constants derived from a plot of lnKD 

versus ln(S+1). This equation suggests that that partitioning-salinity relationships will 

be similar in a wide range of estuaries, since changes in partitioning will be primarily 

controlled by the magnitude of the constants b, the sensitivity of KD to salinity; and KD0, 

the partitioning in water with a salinity of zero (Turner, 1996). Values for b and KD0 are 

presented in Table 5.4. 

Table 5.4: Empirical constants defining the KD – salinity 

relationships of Cd and Co (Eq. 5.1). 

Pellet type Metal KD0, mL g-1 b r2 P 

Beached Cd 31.6 -1.08 0.94 0.0003 

 Co 14.2 -0.438 0.62 0.035 

      

Virgin Cd 1.03 -0.657 0.80 0.006 

 Co 0.339 -0.232 0.46 0.093 

Values of KD0 indicate the hypothetical partitioning in water of salinity 0; in this 

instance the values are below empirical mean KD values in river water. Discrepancies 

between calculated KD0 values (Table 5.4) and empirical data presented in Figure 5.4 
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may be attributed to deviation from the non-linear regression used to define the 

constants. From the magnitudes of b in Table 5.5 it is clear that adsorption of Cd to 

beached pellets is more sensitive to changing salinity than is Co (constants for b of -1.08 

and -0.438, respectively). These relationships between partitioning and salinity are 

shown to be significant, with Cd and Co exhibiting P values of < 0.001 and < 0.05, 

respectively. For virgin pellets, the r2 value indicates that Co adsorption exhibits a poor 

fit to the power law which typically defines adsorption through the simulated salinity 

gradient (r2 = 0.46, P > 0.05). Cadmium adsorption to virgin pellets, however, exhibits a 

statistically significant fit (r2 = 0.8; P < 0.01) to this equation. 

5.3.4 Metal speciation modelling 

Using WHAM calculations as a tool to visualise changes in speciation which are 

developed through an estuarine gradient, it is possible to identify the predominant 

mechanisms of adsorption to the plastic particle surface. Speciation data were 

calculated using input parameters consistent with the estuarine gradient used in 

incubations. Figure 5.5 presents speciation data as a function of salinity for Cd, Co, Ni 

and Pb, for which complexation constants are available within the WHAM master 

database. Chromium is omitted from speciation calculations on the basis that Cr 

speciation in oxic waters is dominated by oxyanions. Within this experiment, Cr is 

assumed to be present as Cr(VI) owing to the addition of Cr(VI) and oxygenated 

conditions of the incubations. Turner et al. (1981) state that Cr(VI) speciation  in 

freshwater at pH 6 is HCrO4- (74 %) and CrO42- (26 %), while in seawater of pH 8.2, 

CrO42- (71 %) and NaCrO4- (28 %) are the dominant species.  
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By plotting metal speciation as a function of salinity, changes in the 

composition of the aqueous medium are shown to alter chemical behaviour within the 

experimental system used for incubations. Cadmium is evidently dominant as Cd2+ at 

very low salinities, with considerable chloro-complexation occurring as salinity 

exceeds 5, where > 90 % Cd is present as CdCl+ and CdCl2. Additionally, it is apparent 

that organic complexation plays a major role in Cd speciation in river water. However, 

this declines steeply with salinity, with < 1 % Cd associated with organic ligands at a 

salinity of 5. This corresponds with Turner et al. (2008a) who modelled Cd speciation in 

the Beaulieu estuary using measurements of hydrophobic Cd to define organic 

complexation.  
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Figure 5.5: Aqueous speciation of dissolved Cd, Co, Pb and Ni modelled using WHAM, 

at trace metal concentrations of 5 g L-1. The component denoted (Me)FA +(Me)HA refers 

to the sum of metal associated with colloidal fulvic and humic acids. 
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Cobalt speciation is dominated by the free ion throughout the estuarine 

gradient, decreasing from approximately 90 % in river water to 70 % in sea water. 

Cobalt is increasingly complexed by carbonate and chloride ions through the estuarine 

gradient, with the most pronounced changes occurring between river water and waters 

with salinity of 5. Above a salinity of 5 the relative significance of these complexes is 

approximately constant. Organically complexed Co represents 10 % of total Co in river 

water, decreasing through the salinity gradient to < 0.1 % at a salinity of 17. 

Nickel exhibits speciation behaviour very similar to Co, however, the 

importance of different inorganic complexes varies between the two metals. Despite 

differences in relative importance of different ligands, the sum of carbonate and 

chloride species of Ni is comparable to that of Co, at approximately 30 % above a 

salinity of 10, in agreement with Turner & Martino (2006), who modelled Ni speciation 

in the Tweed estuary. Complexation of Ni with FA and HA decreases as salinity 

increases (Fig. 5.5), falling from > 20 % in river water, to 0.1 % at a salinity of 26.  

According to model calculations, Pb speciation is dominated by organic 

complexation through the estuarine gradient, decreasing from 99 % in river water to 82 

% in seawater. This effect has been demonstrated in the salinity range 15 – 35 by 

Turner (2008b), where complexation by spiked humics exceeded 65 % through the 

salinity gradient. As salinity approaches that of the marine end member, PbCO3 

increases gradually to a maximum of 8 %, while Pb2+ is present at < 1 % throughout the 

salinity range.  

To further develop the mechanistic understanding of trace metal adsorption to 

pellets it is possible to compare speciation directly with partitioning behaviour. It is 

reasonable to assume that a relationship should exist between the partition coefficient 
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and the relative abundance of a metal species which is interacting with the sorbent 

surface. To take Cd as an example, there is an approximately linear relationship 

between KD and abundance of Cd2+, expressed as the free ion activity of Cd2+, 

suggesting the association of Cd2+ with the pellet surface (Fig. 5.6). This supports the 

notion that free ionic Cd2+ is the species of Cd interacting with plastic pellets. 

 

 

Figure 5.6: Partition coefficients defining Cd adsorption to plastic pellets at a range of 

salinities versus relative abundance of Cd2+ (as % of total Cd), for virgin (a) and 

beached (b) pellets. Concentrations of the free ion were calculated using WHAM 6. 

Error bars represent one standard deviation about the mean of three replicates. 

 If adsorption of Cd were entirely reliant on the free ion activity of Cd2+, then it 

would be expected that this relationship between KD and the free ion activity of Cd2+ 

would be linear, with no intercept. The linear plots expressed in Figure 5.6 suggest 

interactions between Cd2+ and pellets are important, with r2 values of 0.95 (P < 0.01) 

and 0.98 (P < 0.01) for plots for virgin and beached pellets, respectively. Cobalt also 

exhibits this relationship, although respective r2 values of 0.70 and 0.79 for virgin and 

beached pellets indicate that relationship between KD and free ion activity is weaker in 

a) b) 
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these instances. For other elements, there was no clear relationship observed between 

calculated speciation and partitioning. 

For other metals there is not such a clear relationship between the proportion of 

the metals present as divalent metal cations and partitioning, which suggests there 

may be other processes governing trace metal-pellet interactions not being taken into 

account by speciation calculations. Specifically, changes to particle surfaces effected by 

changes in salinity could cause changes in partitioning behaviour. Additionally, as the 

model outputs are is based on literature values for DOC and default parameters 

defining organic matter, it is likely that it only affords an estimate of the interactions in 

the experimental system. 

5.3.5 Influence of pH on trace metal adsorption 

To determine the environments likely to lead to metal associations with pellets, and 

further investigate the mechanisms of adsorption of trace metals to plastic pellets, 

adsorption was investigated as a function of pH. Figure 5.7 presents trace metal 

partitioning to pellets as a function of equilibrium pH in filtered river water, widely 

described as pH adsorption edges.  

Adsorption of Cd, Co and Ni to beached pellets exhibits sigmoid curves typical 

of transition metals (Hatje et al., 2003). However this may not be immediately evident 

owing to the log scale used in Figure 5.7 to present virgin and beached pellets in a 

comparable format. From these observations, plastic-bound Cd, Co and Ni speciation 

can be identified as cationic, if it is assumed that the surface charge on the plastics is 

negative, as shown for PE pellets by Fotopoulou & Karapanagioti (2012). The widely 

recognised increasing affinity of cations for SPM with increasing pH (Phillips et al., 
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2004) suggests it is the free aqueous ion which is predominantly associated with plastic 

pellets within this experiment. The observed enhanced metal uptake with increasing 

pH can be attributed to increasing affinity for deprotonated sites, as suggested for 

natural particulate surfaces by Warren & Haack, (2001).  
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Figure 5.7: Adsorption edges for pH. Beached (●) and virgin (o) polyethylene resin 

pellets exposed to trace metals Cd, Co, Cr, Ni and Pb in filtered river water for 24 h.  
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Adsorption to beached pellets increased over a range of 2 pH units between pH 

6 and 8 for Cd and Ni, and between 7 and 9 for Co. While virgin pellets exhibit 

minimal adsorption for all metals, there is a slight increase in uptake at the upper 

range of pH (Fig 5.7). Chromium exhibits a sigmoidal curve for adsorption to beached 

pellets, decreasing in affinity as pH increases, predominantly between pH 5 and 6, 

indicative of anionic speciation. Adsorption of Cr to virgin pellets shows no clear pH 

dependency.  

Affinity of Pb for pellets is greatest of the metals in this experiment. For 

example, partitioning to beached pellets increases from a KD of 75 mL g-1 at pH 4 to 

reach KD values over 450 mL g-1 as pH exceeds 6.5, however the slope for Pb suggests 

the pH range examined was not wide enough to encompass the entire adsorption edge, 

with the steepest section of the curve being terminated below pH 4. Lead adsorption to 

virgin pellets increases slightly in the mid-range of pH values, but is minimal when 

compared to the extent of adsorption to beached pellets, reaching a maximum KD of 

10.8 mL g-1 at pH 8. 

5.4 Discussion 

While trace metal adsorption from natural waters has been widely studied with regard 

to natural particulates, very little research has considered associations of trace metals 

with synthetic polymers, which are now ubiquitous in the environment (Thompson et 

al., 2004).  Furthermore, the complex conditions which define estuarine systems are yet 

to be considered for any chemical adsorption studies focusing on plastic debris, despite 

extensive research into the associations of POPs with plastics, particularly resin pellets, 

in the marine environment (Mato et al., 2001; Endo et al., 2005; Teuten et al., 2009). 
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Throughout the present study, the changing chemical conditions within an estuarine 

system have been shown to alter the characteristics of trace metal adsorption to 

polyethylene pellets considerably, while differences between virgin and beached 

pellets, noted in Chapter 4, remain present.   

5.4.1 Particulate surface properties 

It is widely accepted that for natural particulates there is a strong functional 

relationship between KD and salinity (Turner, 1996; Turner & Millward, 2002; Hartnett 

et al., 2006). This may be due to the presence of dissolved chloride or carbonate anions 

which mobilise trace cations by forming soluble complexes (Du Laing et al., 2009), and 

competition for adsorption sites from dissolved cations such as Ca2+ or Mg2+ which are 

abundant in seawater (Hatje et al., 2003; Phillips et al., 2004).  Additionally, the changes 

to surface properties which result from changing estuarine conditions have 

consequences for the affinity of dissolved metals for particle surfaces.  

Most particulates have a net negative charge when immersed in natural waters 

(Newton & Liss 1987), but become decreasingly electronegative as the salinity of the 

system increases (Hunter & Liss, 1982). Zachara et al. (1987) observe that Ca2+ 

adsorption reduces the magnitude of the net negative charge, electrostatically 

encouraging anion retention. Therefore, the increasing affinity of Cr for plastic surfaces 

with salinity may be attributed to anionic forms of chromium (CrO42- , HCrO4-) 

adsorbing to decreasingly electronegative sites on particle surfaces, as illustrated in 

Figure 5.8.  

In addition to the acute changes to particulate surfaces caused by changing 

ionic strength of the medium with tidal cycling, more long-term changes are known to 
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progressively alter a plastic surface exposed to sunlight in the aqueous environment. 

This concept was proposed in Section 4.4 and supported by evidence of photo-

oxidation in plastics in studies by Sudhakar et al. (2007) and Artham et al. (2009), and 

specifically by the photo-oxidation of plastic resin pellets as shown by Turner & 

Holmes (2011). 

 

 

Figure 5.8: The effect of increasing ionic strength (I) on suspended particle surfaces. I 

represents the approximate ionic strength of river water and seawater, and uE is the 

surface charge (10-8 m2 s-1 V-1). Trace metals (white circles) bound to surface organic 

matter or hydroxyl sites can be displaced by seawater cations (filled circles), reducing 

the magnitude of the negative charge uE, minimising repulsive forces between the 

particle surface and anionic metal species (adapted from Turner & Millward, 2002). 

At all salinities, and for all metals studied, partitioning to beached pellets 

exceeds that of virgin pellets, which reinforces this concept of changing surface 

properties which are developed as plastics are aged in the natural environment. From 

this it can be conceived that persistent plastics will become more reactive towards 

dissolved metals as they are weathered, increasing in surface area as well as in the 

number of viable sites through processes of biofouling and accretion of inorganic 
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material.  Virgin pellets therefore enter the environment as a relatively inert material 

and through the processes mentioned above, will develop a surface similar to a natural 

sediment particle over time.   

The surface charge of beached pellets has been identified as negative above pH 

6.1 by Fotoupoulou & Karapanagioti (2012), which supports observations shown in 

Figure 5.7. This suggests associations of trace metals predicted to be cationic in river 

water (Fig. 5.5), with pellet surfaces are enhanced by deprotonation of surface sites as 

pH increases.  

5.4.2 Mechanisms of adsorption 

Chemical speciation modelling has facilitated the interpretation of the mechanisms 

driving changes in partitioning behaviour through the estuarine salinity gradient as 

shown in Figure 5.4. Changes in speciation over the salinity gradient as calculated 

using WHAM are shown in Figure 5.5 and have been combined with KD values to 

interpret associations of chemical species with suspended particles – in this instance, 

plastic pellets (Fig. 5.6). These various comparisons and calculations are intended to 

elucidate the mechanisms by which trace metals are being accumulated on plastic 

pellets. The relationship between free ion activity and partitioning of Cd is quite clear, 

with the chloro-complexation driving the change in partitioning through the salinity 

gradient; however this relationship does not explain the behaviour of the other metals 

investigated. 

To consider the partitioning-salinity relationship for Co, the reduction in KD 

with increasing salinity is substantial (Fig. 5.4), however, modelled Co speciation 

indicates that complexation with dissolved anions is likely to be less extensive than Cd, 
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with > 75 % Co remaining in solution as Co2+. This decrease in KD despite the presence 

of Co2+ through the salinity gradient suggests that the predominant mechanism behind 

the limited affinity of Co for pellets with increasing salinity is competitive adsorption 

by dissolved seawater cations. This may also be the case for Ni, for which the 

partitioning in river water is greater than in seawater, despite the presence of Ni2+ in 

marine end-member waters (67 % of total Ni).  

Lead adsorption is shown to be largely independent of salinity (Figs. 5.2 & 5.4), 

as has been observed for marsh sediment (> 0.45 m) by Gambrell et al. (1991), and only 

slightly affected by changing pH (Fig. 5.7). Speciation analysis indicates that Pb has a 

high affinity for dissolved organic carbon in this system, which may be driving the 

adsorption of Pb to pellets at all salinities. Lead is also known to be highly reactive 

towards particle surfaces (Tang et al., 2002), with a high affinity for Fe oxy-hydroxides 

(Lion et al., 1982). Therefore, adsorption of Pb will be altered in the natural 

environment by changes in the concentration of dissolved organic matter, and oxides 

of Al, Fe and Mn which will continue to develop over increasing exposure times in 

natural systems. Owing to the consistent KD over the salinity range, it is likely that 

plastics may contribute a long-range transport medium for Pb as it will not be removed 

by changing water chemistry. 

Chromium displays contrasting behaviour to that of Cd, Co and Ni, exhibiting 

increased partitioning to beached and virgin polyethylene pellets with increasing 

salinity (Fig. 5.4). Chromium (VI) is present in oxygenated environments 

predominantly as dissolved oxyanions which have been shown to exist in this 

experimental system by the pH sorption edge indicative of anionic speciation (Fig. 5.7), 

where the greater adsorption in the low pH range indicates the presence of anionic Cr 
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species. This corresponds with the increasing affinity of Cr for pellet surfaces with 

increasing salinity. Enhanced adsorption of Cr in seawater when compared to 

freshwater has been reported by Hatje et al, (2003), where it was attributed to the pH 

dependence of Cr adsorption to estuarine SPM (< 63 m). Conversely, while pH 

increases alongside salinity within this investigation, the effect described above is not 

supported by the adsorption edge for Cr, where adsorption is greatest between pH of 4 

and 6 (Fig. 5.7), dropping significantly at greater pH. Therefore changes in the particle 

surface due to salinity (as described in Figure 5.8) present a more important driver of 

Cr partitioning than pH within these experiments. 

5.4.3 Environmental Implications 

While empirical and modelled data represent one specific system, many of the 

observations are likely to be more generally applicable. The present work has shown 

rates of adsorption to occur rapidly through the full range of conditions typical of a 

tidal estuary, and this must be borne in mind when considering the likely fate of 

plastic-associated trace metals within an estuarine system. If it is assumed that pellets 

remain in the water column, they present a mobile particle carried by surface water, 

and are likely to be retained within an estuary for a time approximately equal to the 

flushing time of that system (Turner et al., 1994). Timescales for this process exhibit 

inter- and intra-estuary variability as a result of differences in estuary size, tidal 

regimes and seasonal variations in river discharge (Morris, 1990). Whole estuary 

flushing times, or freshwater turnover times, are known to range from one tidal cycle 

in the smallest, to more than one year in the largest systems (Morris, 1990). Greater 

flushing times allow for chemical reactions to propagate over a longer period, yet the 
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rapid adsorption kinetics exhibited by pellets suggest it is likely that equilibrium will 

be reached in all but the smallest of estuaries.  

Trace metals will be either accumulated and/or released from the pellet surface 

as it is transported through an estuary. The spatial scale of this phenomenon will be a 

function of the sensitivity of each metal’s KD to salinity, the type of estuary (i.e. salt 

wedge/well mixed, etc.), and the length of the estuary, owing to the different spatial 

scales over which salinity can vary as illustrated in Figure 5.9. 

 

Figure 5.9: Variations in salinity encountered by a suspended during a 10 km axial 

transit through hypothetical small (a) and large (b) estuaries (adapted from Morris, 

1990). 

Owing to their steep salinity gradients (Fig. 5.9a), small size and rapid flushing 

times, smaller estuaries do not present systems in which long range transport of those 

trace metals associated with pellets, whose KD decreases with increasing salinity will 

occur. However, the less steep salinity gradients (Fig. 5.9b) and greater freshwater 

residence times of larger systems may allow longer range transport of trace metals 

bound to plastics.  

The importance of differences between partitioning in riverine- and marine-end 

members has connotations for transport of metals which are associated with plastic 
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particles. Low KD values for Cd, Co and Ni in seawater suggest they may accumulate 

on plastics above the tidal limit of a system. As they are transported seaward through 

the estuary, they are likely to release any trace metal concentrations which exist in 

exchangeable phases, owing to the combined effects of competition by seawater cations 

and complexation with seawater anions. This has been confirmed by the relative 

magnitudes of k1 and k-1 shown in Table 5.1, which indicates reversibility of the trace 

metal concentrations adsorbed to the plastic surface. Contrastingly, Cr will be 

accumulated more readily under more saline conditions, which indicates that transport 

and release of Cr by plastic pellets may be more important as plastics are transported 

up-estuary. This observation is supported by the relative magnitudes of k1 and k-1 

presented in Table 5.1 which indicate reversibility of adsorption as Cr is transported on 

a pellet surface from seawater to river water conditions.  

Assessment of Pb transport by plastic particles within estuarine systems is 

difficult to interpret, as there appears to be few environmental factors which would 

facilitate release of Pb from pellet surfaces, except perhaps in the event of significant 

input of dissolved organic material to the system. This suggests that long-range 

transport of Pb associated with buoyant plastic particles is possible. 

While the waters of the river Plym had a slightly acidic pH of 6.8, other systems 

will present different conditions, and it is valuable to understand which systems are 

most likely to promote adsorption of metals to plastics. The adsorption edges 

presented in Figure 5.7 indicate that Cr will be more readily accumulated on plastic 

surfaces in acidic, rather than basic environments, while basic conditions favour Cd, 

Co and Ni adsorption to plastics, and Pb is relatively pH independent through the 

typical range expected in river water. Therefore contaminated river waters draining 
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basic catchments present the most favourable conditions for the uptake of Cd, Co and 

Ni, while acidic river catchments will promote Cr adsorption. As salinity increases, the 

increasing abundance of dissolved ions takes precedence over pH as the main driver of 

trace metal affinity for plastics, and concentrations may then be released as the 

particles are transported through the estuarine gradient. In addition to changes in pH 

and salinity of the system, other changes to the composition of the medium may cause 

changes to trace metal affinities to plastics. Notably, the concentration and composition 

of dissolved organic matter may influence trace metal speciation and associations with 

particulate matter. 

Rapid uptake kinetics may cause plastics passing through highly contaminated 

areas to rapidly concentrate trace metals, and subsequently be transported into less 

impacted areas locally, or ingested by organisms from trophic levels ranging from 

benthic invertebrates (Graham & Thompson, 2009) to predators including seabirds 

(Furness, 1985; van Franeker, 2011), potentially conveying bioaccessible metals to the 

organism (Ryan et al., 1988; Teuten et al., 2009; Colabuono et al,. 2010). Longer-term 

trends in trace metal cycling may be controlled changes to plastic particles caused by 

exposure to natural conditions, with plastics increasing in surface area and availability 

of sites for adsorption. 

Typically, trace metals bound to natural particulates would be removed from 

the water column by processes of flocculation and settling (Chiffoleau et al., 1994), 

while trace metals associated with buoyant plastics will be mobile over greater 

distances. This may be of minor importance when plastic concentrations are low. 

However with the progressive degradation and fragmentation of plastic debris in the 

natural environment, and continued addition of microplastics to freshwater and 
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marine systems, the future potential for plastics to alter trace metal cycling must be 

considered.  

The KD values presented for adsorption of metals to plastic pellets are several 

orders of magnitude lower than those described in the literature for natural SPM (See 

Turner & Millward, 2002; Tang et al., 2002; Takata et al., 2010), suggesting that pellets 

are unlikely to concentrate metals to levels exceeding those found in sediments. 

However, the specific surface area of natural sediment is several orders of magnitude 

greater than plastic pellets, which may explain these differences. Furthermore, the 

increasing specific surface area and enhanced chemical reactivity of progressively 

degrading plastic particles will bring KD values for plastics closer to those presented by 

natural particulates. This is an important point as it has been shown in Chapter 3 that 

virgin plastics are being degraded by photo-oxidation, and are accumulating 

concentrations of metals including Fe and Mn, oxyhydroxides of which are known to 

have high geochemical reactivity. It must be considered when evaluating the potential 

impacts of plastics within natural systems that changes to the properties of plastic 

debris are occurring, and that these changes may alter the interactions between plastics 

and natural systems which have been noted above. 

5.5 Conclusions 

Plastic resin pellets have been considered an important anthropogenic contaminant of 

marine systems for decades, with recent work focusing on their chemical properties 

within marine systems. Here for the first time it has been shown that synthetic 

polymers can behave similarly to natural particulates for some metals, vis-à-vis 

adsorption characteristics under conditions of changing salinity and pH. The estuarine 
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environment is important for the cycling of trace elements, and with increasing inputs 

of plastics into such systems it is likely that trace metal cycling will be altered. This 

effect may be particularly important where microplastic inputs to estuarine systems 

make significant contributions to the particulate flux. The work presented here 

demonstrates the complex interactions between trace metals and the surfaces of plastic 

pellets in an estuarine system. These observations will stimulate further research on the 

interactions between plastics and a range of other pollutants under freshwater and 

estuarine conditions, for which there is currently a significant gap in knowledge. 
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6.1 Introduction 

As described in the preceding chapters, plastic debris is becoming increasingly 

pervasive in natural systems with many obvious consequences, such as entanglement 

of organisms, smothering of habitats and ingestion - impacts known to affect over 660 

species (Convention on Biological Diversity, 2012). The number of species with records 

of plastic ingestion exceeds 190 according to the most recent review (Convention on 

Biological Diversity, 2012) but is increasing as more research is conducted. Plastic 

ingestion is evident at all trophic levels, including invertebrates, fish, turtles, mammals, 

and seabirds (Boerger et al., 2010; Gregory, 2009; Laist, 1997; Thompson et al., 2004). 

Consequences of ingestion include choking, internal injuries, and false sensation of 

satiation, which may lead to malnourishment (Duke, 1986a; Robards et al., 1995; Ryan, 

2008). In addition to these physical impacts upon organisms following the ingestion of 

plastic debris, there is potential for co-contaminants - chemicals which are bound to the 

surface of plastic debris - to be released upon ingestion with possible toxicological 

effects (Teuten et al., 2009).   

Several workers have focussed on the presence and/or accumulation of POPs 

on plastic particles in the marine environment (Endo et al., 2005; Heskett et al., 2012; 

Hirai et al., 2011; Mato et al; 2001, Ogata et al., 2009, Teuten et al., 2007), while the work 

presented in the preceding chapters has examined the interactions of trace metals with 

plastic pellets, giving evidence for rapid uptake under a range of environmental 

scenarios. It is therefore important to investigate whether ingested plastics provide a 

direct route for exposure of potentially toxic concentrations of chemicals to organisms 

known to ingest plastic debris. This is important for organisms in higher trophic levels, 
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as they face impacts directly through ingestion of plastic, and indirectly through the 

ingestion of contaminated prey (van Franeker et al., 2011). 

Ingestion of plastic by seabirds occurs on a global scale and is known to affect 

119 species of seabirds (Convention on Biological Diversity, 2012), with some species 

exhibiting this behaviour in up to 98 % of individuals (n = 329; van Franeker et al., 

2011). Thus developing knowledge of potential impacts of plastic ingestion is vital as 

continued exposure of organisms to physical and chemical stressors may have effects 

which have not yet been considered. The need for research into the bioaccessibility of 

co-contaminants carried by plastic has been a recurrent conclusion in studies of plastic 

ingestion, as stated in policy documents (European Commission, 2011b) and most 

recently in the scientific literature by Tanaka et al. (2013). 

While bioavailability, or the fraction of a pollutant absorbed through the gastro-

intestinal tract by crossing a physiological membrane (Semple & Doick, 2004), is 

important, the measurement of bioavailability requires in vivo investigations which can 

be difficult both economically and ethically (Denys 2008), depending on the organism 

used. Instead, this study intends to estimate bioaccessibility of pollutants from plastic 

pellets using in vitro protocols. Bioaccessibility is defined as the fraction of pollutant 

extracted from the contaminated matrix by digestive fluids (Hamel et al., 1998), and 

does not directly relate to the quantity of the extracted chemical which may be 

assimilated by the organism.  

The amount of metal absorbed by an organism will be dependent on the form 

of metal associated with the ingested solid and the physical constraints of metal 

mobilisation caused by properties of the solid phase itself. Therefore the determination 

of the bioaccessibility of a metal may indicate the levels available for absorption 
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following ingestion and is important in quantifying the risk to organisms of the 

presence of plastic in the environment.  

6.1.1 Avian gastric conditions 

The process of digestion in the avian digestive system takes place in a number of 

stages. Firstly, the arrival of food in the proventriculus stimulates the secretion of 

digestive juices (Fig. 6.1a) composed of HCl and pepsin to begin chemical breakdown 

of material (Duke, 1986b). Secondly, ingested material, now combined with digestive 

fluid, is transferred from the proventriculus to the gizzard - a muscular organ which 

mechanically breaks down material. Muscular contractions in the gizzard and 

proventriculus break down and propel food within the digestive tract (Fig. 6.1b). 

Thirdly, sufficiently macerated material is transported towards the duodenum for 

assimilation or excretion, while any food which has not yet been broken down is 

retained in the gizzard and transported back towards the proventriculus (Fig. 6.1c). 

Further addition of pepsin and HCl within the proventriculus continues the chemical 

breakdown, and material is propelled towards the gizzard (Fig. 6.1d) for further 

mechanical breakdown (Klasing, 1998).  

This reflux process is repeated until all food has been broken down sufficiently 

for transfer to the duodenum while some indigestible matter, including squid beaks, 

fish otoliths and plastics (van Franeker & Meijboom, 2006), may remain in the gizzard. 

The relative importance of the proventriculus and gizzard are dependent on diet. In 

carnivorous birds, whose diet is composed primarily of meat or fish, the 

proventriculus is large while the gizzard is thin-walled and weak. Conversely, in 
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granivorous species, which feed mainly on seeds, the gizzard is very muscular 

(Klasing, 1998).  

 

Figure 6.1: A schematic of the initial stages of the avian digestive system. Solid and 

dotted black arrows indicate muscular contractions and addition of digestive fluid 

respectively, while grey arrows indicate the path of ingested material. Ingesta entering 

the proventriculus (a) stimulate secretion of gastric fluid composed primarily of HCl 

and pepsin. The muscular gizzard then mechanically breaks down solid material (b), 

allowing the transit of dissolved matter through to the duodenum while solid material 

is retained within the gizzard. Sequential contractions (c), indicated above by notation 

1-5, expel undigested food back into the proventriculus for further addition of HCl and 

pepsin. Contractions in the proventriculus return food to the gizzard (d) for repetition 

of steps b-d. 
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While the digestive tracts of bird species are optimised for the digestion of food 

specific to dietary habits, the physical and chemical conditions of the digestive system 

may facilitate the release of compounds from inorganic or anthropogenic items upon 

ingestion. 

It is the purpose of this study to estimate the bioaccessibility of metals released 

from ingested plastic within the avian digestive system. The primary objectives were to 

critically evaluate similar studies from the literature, facilitating the optimisation of 

methods to simulate the avian gizzard, with a particular focus on the Northern Fulmar, 

Fulmarus glacialis, a species for which plastic ingestion is well documented (Avery-

Gomm et al., 2012; van Franeker 1985), and to examine the kinetics and extent of metal 

release within this environment. Of particular interest was the rate of release of 

bioaccessible metals, specifically, whether it is important that plastics are retained 

within the digestive tract for extended periods, greater than typical retention times for 

food (Laist et al., 1987). Furthermore this study will address the current lack of 

protocols for the measurement of bioaccessibility of plastic co-contaminants to seabirds 

and provide the first measurements of this type, since neither metals nor POPs have 

been assessed for bioaccessibility under simulated avian gastric conditions. 

6.2 Materials and methods 

All plastic and glassware used was thoroughly cleaned and dried using the standard 

protocol defined in Section 2.2.  

6.2.1 Materials and reagents 

Wherever possible, plastic apparatus was used, as has been the case throughout 

experimental work to minimise adsorptive losses to container surfaces. The major 
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exception in this instance was the use of glass volumetric flasks for the preparation of 

synthetic digestive fluid, which preceded all stages in which metal concentrations may 

be affected by adsorptive losses to containers. 

6.2.2 Sample collection and processing 

Pellets were collected using the standard method outlined in Section 2.3. However, in 

contrast to adsorption experiments, it was desirable to obtain pellets from a site likely 

to present a sample of pellets with relatively high concentrations of metals, to ensure 

detectable concentrations of analytes. Therefore pellets were collected from Ninney 

Rock (Fig. 2.1) owing to the prior determination of this site as a location containing 

pellets with moderately high metal concentrations (see Section 3.3). While pellets have 

been handled as a composite sample, representing pellet populations for adsorption 

experiments, it is important to understand whether particular pellet types pose a 

greater threat to organisms than others. Therefore pellets were divided into type 

according to morphology and colour for metal bioaccessibility experiments. Polymer 

types were identified using FTIR using the approach described in Section 3.2.4. 

6.2.3 Physiologically based extraction test conditions 

Physiologically based extraction tests (PBETs) have been used extensively to in order to 

identify the bioaccessibility of chemical components of ingested material, particularly 

contaminated food and incidentally ingested soil (Hamel et al., 1999; Intawongse & 

Dean, 2006; Ruby et al., 1996). Typically the PBET is optimised for the human digestive 

system, however there are several papers regarding bioaccessibility in bird species. To 

investigate the bioaccessibility of metals associated with plastic pellets, PBETs have 

been conducted following a method similar to those used by Kimball & Munir (1971), 
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Furman et al., 2006 and Martinez-Haro et al., (2009). However, slight alterations were 

made in order to more closely represent the likely conditions found in the gizzard of 

Procellariiform seabirds such as F. glacialis.  

Modifications to the prescribed method were deemed necessary in order to 

more accurately replicate the digestive environment present in marine avian species, 

particularly Procellariiformes, for which plastic ingestion is well documented in the 

North Sea (van Franeker et al., 2011), South Atlantic (Colabuono et al., 2009) and North 

Pacific (Avery-Gomm et al., 2012). The major parameters which define the avian gastric 

environment and are typically controlled in PBET studies are temperature, pH and the 

concentrations of NaCl and pepsin.  A summary of conditions used to assess 

bioaccessibility to avian species is presented in Table 6.1 alongside conditions used in 

the present study. 

Table 6.1: Parameters used in previous avian PBET studies, and conditions used in the 

present study.  

Study Reaction vessel [NaCl] pH 
[pepsin], 

g L-1 

Temp. 

°C 
Duration 

Kimball & 

Munir, 1971 
Not described 1 N 2.0 10, 20, 40 42 1-2 weeks 

Levengood & 

Skowron, 2001 
Beaker 1 N 2.0 10 42 1 hour 

Furman et al., 

2006 

PP centrifuge tube, 

50 mL 
1 M 2.6 10 42 1 hour 

Martinez-Haro et 

al., 2009 

PP centrifuge tube, 

50 mL 
1 N 2.0 10 42 3 hours 

This study 
PP centrifuge tube, 

50 mL 
0.1 M 2.8 10 40 1 week 
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The temperature used for incubations in previous studies was 42 °C (Table 6.1), 

a temperature that may be relevant for waterfowl such as ducks or geese, but is 

inappropriate for marine birds, which have body temperatures ranging between 38 

and 42 °C (Warham, 1996). For this reason, 40 °C was chosen as the incubation 

temperature in the present study. The pH of gastric secretions has been measured to 

range from 2.0 – 3.5 (Klasing, 1998) and may be controlled to some extent by the pH 

and composition of ingested material. For the present study, therefore, a target pH of 

2.8 was selected as it represents the mid-point of known values. 

Marine birds spend large proportions of their lives at sea, relying on seawater 

to drink. As a result of this, they have well developed nasal salt glands which secrete 

hypersaline solutions to remove excess salts from ingested water. Consequently, it is 

unlikely that the gizzard content of seabirds will have a NaCl concentration greater 

than that of seawater, yet previous studies use a NaCl concentration of 1 M as the bulk 

medium of digestive fluid. Thus the present PBET is conducted in a NaCl 

concentration of 0.1 M to reflect the lowest concentrations of NaCl likely in the avian 

digestive tract, and to minimise instrumental damage and analytical interferences.  

Lacking data on gizzard concentrations of pepsin derived from dissection of F. 

glacialis specimens, concentrations were based on previous work by Levengood & 

Skowron, (2001) Furman et al. (2006) and Martinez-Haro et al. (2009), all of which used 

concentrations of 10 g L-1 pepsin for the gastric secretions. Piscivorous and carnivorous 

birds are known to have the highest concentrations of pepsin of all avian species 

(Klasing, 1998), hence this considerable concentration of pepsin is a realistic estimate.  

The final parameter which needed to be addressed was that of retention time of 

ingested material in the gizzard. In previous studies, typical gizzard retention times 
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were between 1 and 3 hours, with the exception of work by Kimball & Munir (1971). 

Piscivores have mean retention times ranging from 6 - 12 hours, with food items 

remaining in the proventriculus and gizzard for approximately 50 % of this time 

(Klasing, 1998).  However, ingested plastic may remain in the digestive tract for greater 

periods, with some authors suggesting retention times on the order of weeks to months 

(Avery-Gomm et al., 2012), or in excess of one year (Laist, 1987; Ryan & Jackson, 1987), 

during which time bioaccessible co-contaminants may be released. Therefore, 

desorption kinetics were chosen as a necessary observation, to determine whether 

ingested plastics will be stripped of bioaccessible metal concentrations within one 

typical digestive cycle (4 h) or whether it is important that plastics may be retained for 

longer periods.  

While the avian digestive tract is composed of various stages, each with a 

different role in the digestion of food, plastic has only been recorded within the gizzard 

and proventriculus, but not within the duodenum in studies which dissected the entire 

digestive tract of specimens (Furness, 1985; Robards et al., 1995). Therefore this work 

focuses on the mobilisation of metals from plastic under the conditions found in the 

gizzard. Metal concentrations associated with plastics are unlikely to reach the 

duodenum until mobilised, in which case the chemical conditions specific to the 

duodenum will govern metal mobility.  

6.2.4 Incubation and sampling 

Synthetic gastric fluid was prepared as a large batch for immediate use in a 1 litre 

volumetric flask. The bulk solution was prepared by adding 5.844 g NaCl and 10 g 

pepsin (Sigma Aldrich, UK) to the volumetric flask and filling up to the mark to obtain 
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a 0.1 M NaCl solution containing 10 g L-1 pepsin. Subsequently, HCl was added to 

amend pH to 2.43, which had been determined from prior investigations to yield an 

equilibrium pH between 2.76 and 2.81. This pH was chosen as it lies within the pH 

range of gastric secretions, (typically pH 2.0 - 3.5), which may be altered by the 

composition of ingested material (Klasing 1998). 

Forty millilitres of gastric fluid were added to each centrifuge tube which 

formed the reaction vessel for the PBET extraction, and equilibrated for pH and 

temperature for three hours prior to the addition of plastic. Samples of 20 pellets were 

randomly selected from six categories of pellets based on colour and morphology (See 

Table 6.2 for details). Pellets were weighed and added to the centrifuge tubes which 

contained the pH and temperature equilibrated synthetic gastric fluid. Initial 

abundances of 20 pellets (approximately 0.5 g) were used in order to obtain a 

sufficiently large sample throughout the sampling regime to compensate for potential 

variability between individual pellets, thereby obtaining results more representative of 

the population.  Furthermore, quantities of plastic ingested by F. glacialis are variable, 

but some studies have reported mean plastic abundances of 0.6 g per individual (van 

Franeker et al., 2005).   

Samples were then shaken for a period of one week in a Tecam SB16 shaking 

water bath while sample temperature was maintained at 40 °C with a Grant 

Instruments combined immersion heater & pump. Subsamples were taken at 

predetermined time points throughout the experiment by removing two 1 mL aliquots 

(1 mL removed and discarded to condition the pipette and 1 mL to be stored for 

analysis) and a single pellet, in order to maintain constant solid-solution ratios. Sample 

aliquots were immediately diluted five-fold with 2 % HNO3, to a total dissolved solids 
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concentration of 0.2 %. This allowed dilution and acidification to be achieved in one 

step which was completed under laminar flow. Pellets were rinsed briefly with a few 

mL of MQW to remove any gastric solution from the pellet surface, and pellets were 

stored as a single sample in a 7 mL vial, dried under laminar flow and extracted for 

remaining metals in order to obtain a mass balance. 

6.2.5 Complete extraction 

Metal concentrations remaining on pellets after in vitro incubations were extracted with 

aqua regia (prepared as described in Section 3.2)in order to obtain a measurement of 

total metal concentration on pellets, and calculate the fraction of metals which exist in a 

bioaccessible form on the different pellet types. This offers an approximate value for 

the total metal concentrations, but will not be an accurate measurement of total 

extractable metal owing to the different periods pellets were exposed to the simulated 

gastric secretions prior to total extraction. This approach was used due to the often 

disparate concentrations of metals on pellets. Analysis of a separate batch of pellets to 

obtain data on total metal concentrations would yield metal concentrations which were 

not representative of the conditions within the incubations used in the present study.  

Despite slight inaccuracies caused by this method, it is still possible to observe the 

kinetics of desorption within the digestive tract, and draw conclusions regarding the 

likely fate of plastic-bound metals following ingestion by marine birds. 

6.2.6 Metal analysis and data handling 

Metals were analysed using ICP-MS and ICP-OES according to the standard protocol 

adopted throughout previous chapters including matrix-matched calibration standards 

prepared with synthetic digestive fluids. The major consideration during analysis of 
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these samples however, was the concentration of dissolved solids. Due to the 

concentration of pepsin in the gizzard solution, it was necessary to dilute samples 

tenfold, which resulted in many elements approaching analytical limits of detection. 

Statistical methods employed included ANOVA and correlation analysis using Minitab 

16 software. 

6.3 Results 

6.3.1 Sample characteristics & composition 

Pellets varied slightly in mass between different categories, with black disc pellets 

forming the group with the lowest mean mass. White ridged cylinders were the pellet 

type with the greatest mass and greatest variability between replicate samples. 

However, all pellet samples were representative of the typical mass and number of 

plastic items found in the digestive tract of collected F. glacialis specimens (van 

Franeker et al., 2005). Despite differences in morphology and colour, all pellets used in 

the in vitro bioaccessibility investigation were composed of polyethylene as determined 

by FTIR analysis. Pellets divided into groups are hereafter described as white disc 

(WD), black disc (BD), White ridged cylinder (WRC), white smooth cylinder (WSC), 

black ridged cylinder (BRC), orange (degraded) (OR). 
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Table 6.2: Mean mass of plastic pellet samples by pellet type (defined above). Values 

are presented as mean values arising from three replicates of samples which were 

each comprised of 20 randomly selected pellets. 

Pellet type WD BD WRC WSC BRC OR 

Mean mass 0.5754 0.4044 0.6224 0.6186 0.5276 0.5843 

RSD, % 0.982 7.61 11.1 1.21 2.67 1.40 

Polymer PE PE PE PE PE PE 

Total metal concentrations were calculated using mass balance, and these 

values may be compared with values determined as part of the pellet characterisation 

investigations in Chapter 3. Total metal concentrations are presented in Table 6.3, and 

despite a degree of heterogeneity, are comparable with values presented in Chapter 3, 

indicating consistency with previously determined metal concentrations. 

Concentrations of most metals vary between pellet types, though there is no pellet type 

which consistently exhibits enrichment of all metals. For some metals, including Al, Cr, 

and Fe, pellet types do not exhibit significant (P < 0.05) differences in concentrations 

according to ANOVA analysis.  
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Table 6.3: Total metal concentrations extractable from plastic pellets used in PBET 

incubations, grouped by pellet type. Values are given as mean values for three replicate 

extractions of 20 pellets of each type, ± 1 S.D. 

 
WD BD WRC WSC BRC OR 

Ag, ng g-1 24.3 ± 5.14 53.5 ± 13.1 58.3 ± 12.1 20.4 ± 4.53 79.9 ± 9.07 29.3 ± 7.27 

Al, g g-1 18.9 ± 2.61 17.5 ± 1.02 22.7 ± 3.88 13.5 ± 3.69 20.2 ± 4.00 15.6 ± 2.40 

Cd, ng g-1  8.20 ± 0.505 11.0 ± 1.00 7.12 ± 1.49 7.19 ± 1.19 10.7 ± 0.393 8.19 ± 0.715 

Co, ng g-1  308 ± 9.94 743 ± 76.6 590 ± 223 287 ± 79.7 500 ± 183 293 ± 37.4 

Cr, ng g-1  108 ± 81.1 123 ± 61.5 88.8 ± 65.7 79.3 ± 45.8 95.0 ± 60.0 82.4 ± 25.7 

Cu, ng g-1  145 ± 2.32 210 ± 33.9 106 ± 25.9 117 ± 28.2 160 ± 29.0 136 ± 5.77 

Fe, g g-1  28.1 ± 3.06 29.3 ± 1.96 29.7 ± 9.98 23.2 ± 6.33 25.8 ± 2.88 31.5 ± 12.0 

Mn, g g-1  34.8 ± 10.87 57.6 ± 1.51 71.0 ± 18.3 34.7 ± 10.6 53.0 ± 20.4 33.9 ± 4.82 

Ni, ng g-1  35.6 ± 7.87 62.3 ± 22.4 57.0 ± 40.0 28.8 ± 10.1 46.7 ± 15.5 22.1 ± 37.4 

Pb, ng g-1  117 ± 3.04 140 ± 27.2 192 ± 29.3 108 ± 52.0 229 ± 89.9 130 ± 63.2 

Zn, g g-1  3.30 ± 1.33 5.01 ± 0.775 6.92 ± 0.453 2.56 ± 0.470 7.45 ± 1.12 3.73 ± 0.953 

6.3.2 Bioaccessible metal 

Quasi-equilibrium bioaccessibility, (BA)e (%), was calculated according to Equation 6.1: 

 (BA)e = (CBA)e / Ce x 100 % Eq. 6.1 

 using (w/w) total metal concentrations (Ce) as shown in Table 6.3, and bioaccessible 

metal concentrations (w/w) determined in the gizzard phase at the end of the one-week 

incubation, (CBA)e. Bioaccessibility of metals are presented in Table 6.4.  

From these values it is evident that all metals investigated during the present study are 

bioaccessible within the avian digestive system. Bioaccessibility of metals range from < 

8 % (Cr on OR pellets) to > 80 % (Pb on OR pellets), with many trace metals exhibiting 

considerable bioaccessibility, > 30 % over the incubation period.  
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Table 6.4: Bioaccessibility of metals (%) extracted from plastic pellets over a 168 

hour period calculated using Eq. 6.1. Values are presented as mean values of three 

replicates, ± 1 S.D. nd = not detected. 

 
WD BD WRC WSC BRC OR 

Ag 62.6 ± 16.8 61.4 ± 45.9 50.2 ± 27.6 46.2 ± 19.6 28.5 ± 9.20 nd 

Al 65.0 ± 9.85 43.1 ± 4.60 41.6 ± 3.56 62.4 ± 6.98 47.0 ± 8.72 56.4 ± 8.94 

Cd  nd 1.59 ± 21.2 nd nd 25.5 ± 37.1 nd 

Co  49.7 ± 9.83 20.0 ± 6.96 34.3 ± 8.75 29.6 ± 11.8 46.4 ± 14.8 50.6 ± 29.9 

Cr  38.9 ± 26.8 20.06 ± 1.14 46.8 ± 27.5 33.8 ± 18.8 10.3 ± 10.2 7.60 ± 16.1 

Cu  52.4 ± 15.5 29.0 ± 14.7 29.0 ± 13.6 42.5 ± 9.86 20.0 ± 5.94 27.9 ± 7.22 

Fe  78.5 ± 8.07 72.1 ± 7.69 60.9 ± 8.88 76.7 ± 8.24 60.0 ± 12.9 57.6 ± 3.45 

Mn  83.3 ± 2.67 70.8 ± 7.87 64.9 ± 16.5 75.4 ± 4.65 82.4 ± 4.46 82.1 ± 3.22 

Ni  51.9 ± 8.39 41.3 ± 29.3 28.5 ± 7.10 42.1 ± 29.0 38.12 ± 5.20 39.5 ± 22.1 

Pb 79.5 ± 10.3 48.4 ± 10.4 65.5 ± 6.95 56.4 ± 13.6 55.5 ± 22.2 66.5 ± 13.9 

Zn  76.5 ± 13.4 65.5 ± 22.3 45.4 ± 11.3 56.9 ± 32.5 74.7 ± 11.5 82.7 ± 11.0 

Continued release of metals from plastics is a possibility considering the 

replenishment of gastric fluid, not represented here, coupled with the aforementioned 

retention times for plastics within the digestive tract. With plastics known to be 

retained for periods greater than 168 hours, further desorption may be expected. 

However, kinetic observations are necessary to determine the importance of extended 

residence times for plastics in the digestive tract.  

For clarity of presentation, Al, Fe and Mn have been separated from trace metal 

data as they are important geochemical phases which may control the mobility of other 

elements, and at environmentally relevant levels are essential nutrients rather than 

posing a toxicological threat to organisms. Bioaccessible Al, Fe and Mn are presented in 

Figure 6.2. 
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Figure 6.2: Equilibrium bioaccessibility of Al, Fe and Mn in PBET incubations (t = 168 

h). Error bars indicate one standard deviation about the mean of three replicates. 

All pellet types contain bioaccessible concentrations of Al, Fe and Mn, and 

despite a degree of variability, bioaccessible fractions of Al are shown to differ between 

pellet classifications (ANOVA, P < 0.008). However, homogeneous groups overlap and 

Figure 6.2 is indicative of where these differences and similarities may exist. 

Bioaccessible Al is greater than expected which may be due to underestimations of 

total Al concentrations. Bioaccessible Fe exhibits slight, but significant (P = 0.04) 

differences between pellet types, with two overlapping homogeneous groups, as 

evident in Fig. 6.2, while bioaccessible Mn was shown not to vary between pellets of 

different types, with a P-value of 0.11. While the bioaccessible fractions of Al, Fe and 

Mn are shown not to vary systematically between pellet types, the relationship 

between Al, Fe and Mn within each pellet type remains consistent, decreasing in 

bioaccessibility in the order Mn ≈ Fe > Al. Figure 6.3 exhibits the equilibrium 

bioaccessibility of trace metals released from pellets within the simulated gizzard for 

the metals described in Table 6.4. 
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Figure 6.3: Mean (± 1 SD; n=3) bioaccessibility of metals from different pellet types (t = 168 

h).  

The results displayed in Figure 6.3 indicate that no single group of pellets 

consistently contains a greater or lesser bioaccessible fraction of metals than any other, 

while it does indicate that differences may exist between types of pellets.  
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Statistical analysis (ANOVA) confirms that differences in bioaccessible metal 

fractions between pellet types are not significant, with P-values exceeding 0.05 in all 

cases. Cadmium is the one exception to this, as it was not detected on any pellets 

except black discs and black ridged cylinders. This can be attributed to the collection of 

pellets which were deposited on beaches following a period of exposure to seawater, 

and as shown in Chapter 5, Cd does not have a high affinity for pellets in seawater. 

Overall mean values (t = 168 h) indicate bioaccessibility of metals decreases in the order 

Mn, Zn > Fe, Pb > Al > Cr > Co, Ni > Ag > Cu > Cd. 

6.3.1 Relationships between metals 

Metal concentrations from all pellet types were pooled to determine whether 

relationships existed between different metals for either total, or bioaccessible (t = 168 

h) concentrations. Values, expressed as g g-1, were correlated using Minitab 16 and 

indicate there are few relationships between mobilised metal concentrations (P < 0.05).  

Relationships are summarised in Table 6.5, and suggest that the associations of metals 

with pellets are varied and may be interdependent in some instances. Notably, there 

exist a number of significant relationships between total metal concentrations which 

are not evident among bioaccessible concentrations. This suggests that the mechanisms 

and/or extent of release under gastric conditions differ from those which control metal 

extraction using acid digestion alone. Furthermore, it illustrates the complexity of 

metal release within the digestive system, and indicates that the relative abundance of 

a metal cannot be used to predict bioaccessible concentrations. 
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Table 6.5: Correlation matrix for total and bioaccessible (t = 168 h) metal concentrations 

extracted from polyethylene pellets. The letters T and B indicate significant (P < 0.05; n = 18) 

relationships between metals for total or bioaccessible concentrations, respectively. 

 Ag Al Cd Co Cr Cu Fe Mn Ni Pb 

Al           

Cd T,B          

Co  T, B T        

Cr           

Cu T B T T       

Fe  T, B  T, B       

Mn  T  B  T T    

Ni  T   T T, B     

Pb T, B T, B T T, B  T T T, B T  

Zn   T, B* T       

*n = 8 

6.3.2 Kinetics of metal mobilisation 

For clarity and continuity with preceding chapters, kinetic profiles are presented only 

for the trace metals for which adsorption kinetics and isotherms have been presented 

in Chapters 4 and 5, in addition to Al, Fe and Mn, which may have important 

controlling effects on the mobilisation of trace metals. Cadmium is omitted in this case, 

as very few data for Cd were above detectable limits. 

While the data presented in Table 6.4 and Figures 6.2 & 6.3 indicate minimal 

differences in equilibrium metal bioaccessibility between pellet types, it cannot be 

assumed that the kinetics of mobilisation will also be consistent across different pellet 

types. Therefore it is valuable to determine rates of metal mobilisation over time. 

The mobilisation of metals from pellets can be interpreted either as a 

concentration of metal released into the gizzard phase on a mass to volume basis, or as 

a percentage of the total metal. Observations expressed as the former indicate a degree 

of variability between each replicate, which is anticipated owing to the heterogeneity in 
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metal concentrations reported in Chapter 3, though minimised by using many pellets 

within each replicate. Figure 6.4 shows the time-dependent mobilisations of metal from 

pellets. Replicates are presented individually as mean values may obscure trends 

within the data. All pellet types carry bioaccessible concentrations of metals, with 

biphasic mobilisation profiles evident in all instances. This indicates a rapid initial 

release of metal from the sites in immediate contact with the solution, followed by a 

more protracted mobilisation of more recalcitrant metal deposits. Time to equilibrium 

generally varies from less than 6 h to more than 24 h, while for some metals 

equilibrium is not attained in all instances. 

Aluminium mobilisation is rapid initially (Fig. 6.4a), slowing as equilibrium is 

approached after the first few hours. However, there exists a degree of variability 

between pellet types, with the mobilisation of Al from some pellet types - specifically 

White Ridged Cylinders and Orange (degraded) pellets - exhibiting a slower approach 

to equilibrium. Furthermore, white smooth cylinders and black discs do not reach 

equilibrium in the studied time period. Iron mobilisation in the simulated gizzard 

generally follows a biphasic trend. However following the initial rapid desorption 

phase, equilibrium is only attained in black ridged cylinders, white ridged cylinders 

and some replicates of orange pellets. Maximum Fe concentrations in the gizzard 

phase range from 120 to 330 g L-1 (Fig. 6.4b). Replicate samples show variability for 

some metals, notably Mn (Fig. 6.4c), with white ridged cylinders, black ridged 

cylinders and orange pellets exhibiting disparate concentrations of Mn. Nevertheless, 

equilibrium is attained following incubation periods of 24 h in all instances. 
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Figure 6.4d: Time dependent release of Pb in a simulated avian gizzard 

over a period of one week. Plots are derived from individual replicates of 

each pellet type. 

 

Trace metal mobilisation from pellets in the simulated avian gizzard generally 

exhibits less distinct kinetics than those of Al, Fe and Mn. This may be partly due to the 

challenges of analysis of low concentrations in a complex medium, which cause some 

samples to be close to or below detectable limits. Additionally the complex associations 

of trace metals with the various organic and inorganic phases present on pellet surfaces 

may govern kinetics, resulting in considerable variability between replicate samples.  

Release of trace metals appears to progress more rapidly than that of Al, Fe or 

Mn, with considerable proportions of the equilibrium concentrations released by the 
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initial sampling time of 0.25 h. This rapid release is indicative of loosely bound trace 

metals which do not diffuse from within the plastic matrix, but are likely to be present 

on the outer surface of pellets. Labile metals are likely to be associated either with 

charged sites on the polymer surface, or its accumulated coatings.  

Total metal concentrations (Ce) are not entirely indicative of the bioaccessible 

concentrations, (CBA)e, mobilised during PBET incubations. The bioaccessibility of each 

metal is reliant on several factors which may limit or enhance its mobilisation, as 

suggested by the correlation matrix in Table 6.5, and seen in Figure 6.4. Therefore, total 

concentrations of metals on plastics do not afford an accurate indication of likely metal 

doses to organisms. Knowledge of the bioaccessibility of each metal is required, in 

addition to total metal concentrations in order to predict likely doses. 

6.3.3 Kinetic modelling 

Mobilisation kinetics were modelled using a modified form of the Noyes-Whitney 

equation, which represents a pseudo first-order dissolution process driven by the 

concentration gradient between particulate and dissolved concentrations (Turner & 

Price, 2008). In vitro analysis leads to a decrease in the magnitude of this gradient, 

therefore the decrease in dissolution rate may be determined by this increase in 

dissolved concentrations. Thus in vivo bioaccessibility may be greater than those 

described by in vitro simulations, owing to the transfer of solutes into the systemic 

circulation upon dissolution. 

Kinetic models for mobilisation were calculated using values of bioaccessibility 

(BA, %), derived according to Equation 6.1 at each point in the time series. Modelling 

the mobilisation kinetics in this way allows for comparison between different metals in 
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addition to inter-sample comparisons for each metal. Dissolution kinetics were 

modelled for bioaccessible percentages of total metal, BA, vs. time, t, with a modified 

form of the modified Noyes-Whitney equation (Ruby et al., 1992): 

 1/((BA)e-BA) = 1/(BA)e+kt Eq. 6.2 

where (BA)e is a quasi-equilibrium bioaccessible fraction and k is a combined (forward 

and reverse) rate constant derived from the gradient of plots of 1/((BA)e-BA)-1/(BA)e 

versus time. The Noyes-Whitney equation is typically used to describe dissolution 

kinetics for pharmaceuticals in the gastric environment (Dokoumetzidis & Macheras, 

2006 ). As such it is applicable to the processes which are present in the avian digestive 

tract. Despite occasionally disparate concentrations of metals released from replicate 

samples (Fig. 6.4), the bioaccessible fractions exhibit more consistency. Therefore mean 

values have been used to model mobilisation kinetics, and are presented in Figure 6.5. 

Kinetic profiles suggest a biphasic release of metal from the surface of the 

pellets, initially releasing metal rapidly, followed by a period where metal is 

immobilised or the labile fraction has been completely removed. Despite the degree of 

variability which remains between replicates in some cases, general desorption trends 

can be observed in Figure 6.5, and reflect the rapid instantaneous desorption evident in 

Figure 6.4, and allow the direct comparison of release rates between pellet types and 

metals. 
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Figure 6.5d: Mobilisation kinetics of Pb in a simulated avian gizzard over a one-week 

incubation at 40 °C. Data points represent mean empirical values (n = 3) while error 

bars indicate one standard deviation about the mean. Lines describe Noyes-Whitney 

model fits to the data, while values for model fits and rate constants are presented in 

Table 6.6 

Rate constants and model fits are presented in Table 6.6 for the data shown in 

Figure 6.5. Desorption kinetics exhibit two-stage (biphasic) behaviour for all metals 

and pellet types, however the relative importance of each of the two stages (rapid 

initial release/slow protracted release) varies. To consider Al, desorption reaches 

equilibrium within 24 hours, and while orange pellets exhibit a smooth transition from 

the rapid initial stage to equilibrium, other pellet types exhibit a more distinct change 
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in rate after only a few hours. This is not, however, reflected by the rate constant which 

is comparable for all pellet types with regard to Al mobilisation, ranging between 1.3 

x10-3 and 3.6 x10-3 %-1 h-1. This contrasts with Fe mobilisation which is comparably slow, 

returning rate constants of 1.1 x10-3 and 7.9 x10-4 %-1 h-1, reaching equilibrium in > 24 

hours. 

Despite the disparities in absolute values for Mn (Fig. 6.4b), the bioaccessible 

fractions of Mn are consistent within each pellet type (see Fig. 6.5 b), ranging from 65 to 

83 % at equilibrium, as reported in Table 6.4. To compare desorption kinetics, K values 

for Mn range between 8.7 x10-1 and 9.2 x10-3 %-1 h-1, indicating desorption rates vary 

between pellet types, yet are more rapid than desorption of Al and Fe for all pellet 

types. Cobalt also approaches equilibrium rapidly, within 12 hours, and while rate 

constants suggest all pellet types are consistent, with K values ranging from 1.3 – 4.7 

x10-3 %-1 h-1. Cobalt exhibits a good fit to the Noyes-Whitney equation, with r2 ranging 

from 0.84 to 0.91 (P < 0.02 to < 0.004). Chromium exhibits a poor fit to the Noyes-

Whitney equation, with r2 values < 0.8 for all pellet types, and P-values ranging from 

0.02 to 0.6. This may be attributed to the anionic speciation of Cr described in Chapter 

5, whereby low pH may enhance the affinity of Cr for plastic surfaces. Nickel 

mobilisation is rapid, with some pellet types – specifically white disc and black ridged 

cylinders pellet types - exhibiting desorption kinetics which follow the Noyes-Whitney 

equation (r2 > 0.8, P < 0.02), and with K values of 3.24 x10-3 and 1.6 x10-3 %-1 h-1, 

respectively, are comparable to the desorption rates expressed by Co. 



Chapter 6: In vitro determination of metal bioaccessibility from resin pellets to avian species 

 

148 

 

Table 6.6: Rate constants and model fits for Noyes-Whitney equation (Eq. 6.2) used to 

model mobilisation kinetics for metals released from polyethylene pellets in a 

simulated avian gizzard. 

Pellet type WD BD WRC BRC WSC OR 

Al 

K (%-1 h-1) 1.88 x 10-3 2.77 x10-3 1.40 x10-3 2.14 x10-3 1.29 x10-3 3.60 x10-3 

r2 0.997 0.995 0.939 0.955 0.801 0.982 

P 3.6 x10-6 8.93 x10-6 1.4 x10-3 7.6 x10-4 1.6 x10-2 1.2 x10-4 

Fe 

K (%-1 h-1) 6.95 x10-4 4.71 x10-4 5.65 x10-4 7.88 x10-4 3.14 x10-4 1.08 x10-3 

r2 0.943 0.774 0.925 0.905 0.959 0.953 

P 1.2 x10-3 2.1 x10-2 8.5 x10-4 3.5 x10-3 4.7 x10-3 8.5 x10-4 

Mn 

K (%-1 h-1) 2.81 x10-3 1.10 x10-2 9.18 x10-3 6.55 x10-3 1.31 x10-2 8.66 x10-1 

r2 0.773 0.594 0.856 0.822 0.940 0.940 

P 2.1 x10-2 7.3 x10-2 8.8 x10-3 1.1 x10-2 3.1 x10-3 1.4 x10-3 

Co 

K (%-1 h-1) 2.99 x10-3 4.73 x10-3 4.51 x10-3 2.48 x10-3 1.28 x10-2 1.58 x10-3 

r2 0.891 0.891 0.905 0.866 0.864 0.842 

P 4.6 x10-3 1.6 x10-2 3.5 x10-3 7.0 x10-3 7.3 x10-3 9.9 x10-3 

Cr 

K (%-1 h-1) 2.83 x10-3 3.34 x10-4 3.31 x10-4 1.60 x10-3 3.09 x10-4 1.09 x10-2 

r2 0.563 0.151 0.443 0.655 0.733 0.788 

P 8.5 x10-2 6.1 x10-1 1.5 x10-1 9.7 x10-2 3.5 x10-1 1.8 x10-2 

Ni 

K (%-1 h-1) 3.24 x10-3 2.08 x10-3 1.30 x10-3 1.57 x10-3 9.75 x10-4 4.46 x10-3 

r2 0.809 0.575 0.054 0.859 0.247 0.791 

P 1.5 x10-2 8.0 x10-2 6.5 x10-1 7.8 x1-3 3.8 x10-1 1.8 x10-2 

Pb 

K (%-1 h-1) 2.83 x10-3 1.67 x10-2 1.99 x10-1 8.41 x10-2 2.72 x10-3 1.54 x10-2 

r2 0.708 0.171 0.865 0.917 0.961 0.983 

P 1.6 x10-1 1.2 x10-1 7.2 x10-3 2.6 x10-3 3.3 x10-3 9.1 x10-4 

Lead desorption from pellets is not well described by the Noyes-Whitney 

equation owing to extensive instantaneous desorption which brings the initial 

measurement (0.25 h) of Pb, in most cases, to a value approximately equivalent to the 
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equilibrium values used for modelling, within experimental error. This indicates that 

almost all Pb is desorbed within the initial exposure period (< 2 h).  

In some instances - for example Cr mobilisation from BD and WRC pellets - 

modelled values poorly represent empirical data; predominantly where instantaneous 

desorption is followed by immobilisation and subsequently increased mobilisation 

according to the typical release profile described by the Noyes-Whitney model. 

However, generally model fits are significant (P < 0.05) for most metals and pellet 

types, suggesting the suitability of the Noyes-Whitney model for describing the release 

of metals from pellets in the simulated digestive tract. 

6.4 Discussion 

Application of an in vitro approach for the determination of metal bioaccessibility from 

plastic pellets has indicated that trace metals are readily mobilised from plastic pellet 

surfaces in the gastric environment, and that Al, Fe and Mn are also mobilised, albeit 

more slowly. There exists little evidence that a particular pellet type would pose a 

greater risk to an organism upon ingestion, as the variability between replicates of each 

pellet type often exceed differences between pellet types for each metal. Analysis of 

equilibrium gizzard-phase concentrations of metals using ANOVA has indicated that 

generally, homogeneous groups overlap (Figures 6.2 & 6.3). However, with pellets only 

representing one form of plastic debris in the environment, it should be considered that 

other forms of plastic debris may carry greater total concentrations of metal 

(Nakashima et al., 2011b), with the potential to convey greater concentrations to 

organisms if bioaccessibility was consistent between types of plastic debris. 

Determination of the relative importance of other types of plastic would require 
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extensive further investigations, which may be crucial in our understanding of the 

issue, given that recent measurements of some metals have exhibited concentrations 

over 700 times greater than those reported here for Pb (Nakashima et al., 2012). 

6.4.1 Mobilisation mechanisms 

All pellet types exhibit a biphasic release of metals whereby a rapid rate of metal 

desorption is evident during the initial exposure to the simulated gizzard. This period 

extends from < 2 h for Pb, to > 24 h, as exhibited by Fe. The rapid release of metals 

suggests labile phases are being mobilised immediately upon immersion in the gastric 

environment. Following this initial period of metal mobilisation, a more protracted 

increase to equilibrium is observed. This protracted desorption is the result of further 

chemical processes involving slow kinetic reactions, and the release of more 

energetically bound phases from the polymer surface. Metal associations with pellet 

surfaces are reliant on system pH, as seen in Chapter 5. The low pH (2.8) of the 

simulated gastric environment will mobilise metals due to competition between 

adsorbed cations and protons.  

The bioaccessibility of metals from pellets can be compared with literature 

values for metal bioaccessibility from natural geosolids such as sediment, soils and 

dust. If metal desorption from plastics was reliant on dissolution of adhered sediment 

particles, it would be anticipated that the bioaccessibility of trace metals from pellets 

would be similar to that of sediment. The bioaccessibility of some metals suggests that 

associations of metals with plastics involves processes of precipitation and adsorption 

rather than being determined by attached sediment particles, as the bioaccessibility of 

Al, for example, from sediments and soils is minimal, on the order of  1 - 4 % total Al 
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(Shock et al., 2007), relying on the dissolution of aluminosilicate minerals. 

Contrastingly, Al bioaccessibility from pellets is in the range 42 – 65 %, suggesting 

more labile associations. The other major elements, Fe and Mn, also exhibit 

bioaccessibility from pellets (58 -79 % and 65 – 83 %, respectively) greater than would 

be expected from sediment, with some studies indicating bioaccessibility for Fe and 

Mn to be 1.3 – 12 % and 31 – 65 %, respectively (Turner & Ip, 2007).  

Some trace metals also exhibit bioaccessibility in excess of what would be 

anticipated from a natural geosolid. This is the case for Cr and Ni, for which 

bioaccessibility from pellets are in the range 7.6 – 47 % and 29 – 52 %, respectively, 

while Hamel et al. (1998) report values for Cr and Ni bioaccessibility from soil of 0.2 – 

4.2 and 11 – 14 %, respectively. Furthermore, even lower values, less than 1 %, are 

reported for Cr and Ni bioaccessibility from estuarine sediment by Turner & 

Hambling, (2012). This serves to highlight the variability in bioaccessibility for metals 

associated with different solids used in PBET experiments. Lead exhibits intermediate 

bioaccessibility from soil, as shown by Ruby et al. (1996) where Pb bioaccessibility was 

in the range 22 – 26 %. Contrastingly, bioaccessibility of Pb from pellets in this study 

lies in the range 56 – 80 %, which corresponds more closely to the value of 55 - 99 %, 

reported by Turner & Simmonds, (2006) for household dust.  

Other metals are known to present a range of bioaccessibilities from soils, dust 

and sediments in the gastric environment. Copper bioaccessibility has been reported as 

31 % for soil (Barsby et al., 2012), comparable with values presented in Table 6.4 which 

indicate a range of 20 – 52 % for Cu bioaccessibility from pellets, while Turner & 

Simmonds (2006) report greater Cu bioaccessibility (> 80 %). Cobalt bioaccessibility 

from pellets ranges from 30 – 50 %, which is comparable with mean Co bioaccessibility 
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(34 %) from soil from a mining region studied by Ettler et al. (2012). The same study 

reports Zn bioaccessibility of 45 %, which corresponds with the lower bound of Zn 

bioaccessibility from pellets (45 – 83 %). Thus generally, pellets represent the upper 

limits of bioaccessibility of trace metals when compared with values which have been 

determined from soil, and for some elements, particularly major elements Al, Fe and 

Mn, the bioaccessibility from pellets greatly exceeds that of soils and sediments. 

6.4.2 Implications for organisms’ health 

The key observation from the in vitro determination of metal bioaccessibility is that the 

kinetics of metal mobilisation from polyethylene pellets within the gizzard 

environment can exceed the residence times for natural food items, which are typically 

passed through to the duodenum in less than 3 hours (Avery-Gomm et al., 2012). 

Consequently, since plastics are retained within the gizzard for periods exceeding 

residence times of natural ingested material, it must be considered that bioaccessible 

metals will continue to be released from plastic over greater timescales than would be 

expected for material which would typically pass through to the duodenum. 

Conversely, if plastics were passed within the same timescale as natural foodstuffs, 

then it is likely that the metal loadings accessible to the organism would be less. 

Metal speciation, in addition to total concentration is of importance when 

considering toxicological perspectives or the absorption through the epithelium of 

metals associated with plastics. However, these are likely to be controlled by the 

specific conditions and dissolved constituents within the gizzard and duodenum. As 

such, accurate speciation is not available for complex matrices which exist in the 

digestive tract, and toxicological effects would require in vivo studies to determine any 
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effects. Precipitation of inorganic compounds including hydroxides and carbonates 

and re-adsorption of metal cations to deprotonated surfaces proceed simultaneously in 

the intestine as may be expected of the avian duodenum where pH increases to 5.2 - 

7.2, and bicarbonate ions, bile salts and pancreatin are abundant (Martinez-Haro et al., 

2009). This reduced accessibility in the intestine is observed in other studies (Ruby et 

al., 1996; Turner & Ip, 2007), with metal being precipitated or re-adsorbed to surfaces 

within the intestine. 

6.4.2.1 Metal dose from ingested plastic 

Despite the constraints of in vitro analysis, it does facilitate an intake calculation which 

identifies the likely metal load conveyed to a model organism by ingestion of plastic, 

and the possible implications of these metal doses. The intake of metal from plastics (Ip) 

can be calculated using the formula:  

 Ip = Wp ∙ C ∙ BA Eq. 6.3 

where Wp is the mass of ingested plastic, and C and BA are the plastic-bound metal 

concentration (w/w) and the bioaccessibility (%) of the metal,  respectively. Values of Ip 

have been determined from the maximum concentrations for each metal determined 

during the present work, recorded in Table 6.3, and bioaccessible fractions after 168 h 

are taken from Table 6.4. While it is stated in Section 6.2.4 that mean abundances of 

ingested plastic in F. glacialis have been recorded at 0.6 g, it is worth considering that 

this is highly variable, and some individuals exhibit far greater accumulations of 

plastic – with a maximum of 20.6 g recorded in one individual (van Franeker et al., 

2005).  Therefore the mean mass of ingested plastic, 0.6 g, is used in intake calculations 
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for Ipmean, while Ipmax represents the 20.6 g maximum recorded value. Values for the 

intake of metals from plastic derived from Equation 6.3 are presented in Table 6.7. 

Table 6.7: Bioaccessible metal intake calculated using Eq. 6.3, for mean (0.6 g) and 

maximum (20.6 g) plastic mass reported in the gizzard of F. glacialis (van Franeker et 

al., 2005).  

 Al Co Cr Fe Mn Ni Pb 

Ipmean, g 8.85 0.226 0.0345 14.8 35.5 0.0194 0.109 

Ipmax, g 304 7.74 1.19 509 1220 0.666 3.75 

Greater metal doses than those calculated above, and reported in Table 6.7 may 

be derived from plastics containing elevated levels of metals, such as those reported by 

Nakashima et al, (2012). This is suggested by the relatively consistent bioaccessible 

fractions derived from pellets despite disparities in metal concentrations within 

replicate samples. It may be assumed therefore that ingestion of highly contaminated 

plastic could present a pathway for the transfer of considerable concentrations of 

metals to birds upon ingestion.  In the present work, pellets were collected from the 

coastal environment following an undetermined period of time exposed to seawater 

conditions where metal concentrations are expected to be relatively low, while plastics 

in contaminated environments, such as industrialised estuaries, are likely to 

accumulate greater concentrations of metals.  

Furthermore, the metal doses stated in Table 6.7 represent values determined 

from plastic abundances within the gizzard at a given time point – upon mortality of 

dissected specimens – which may not represent the true quantity of plastic ingested by 

an organism. Plastic may be slowly broken down in the gizzard over time and 
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excreted, regurgitated, or transferred from adult birds to their young, though these 

processes are largely species-dependent.  

6.4.2.2 Toxicological considerations 

Based on toxicological data for chronic effects on avian species, (ATSDR, 2004; ATSDR, 

2005; Edens et al., 1976; Sample et al., 1996) which offer lowest observed adverse effect 

levels for metals (LOAELs), it is possible to estimate the daily intake of plastic 

necessary to present a toxicologically important dose of metals. Equation 6.4 indicates 

how the LOAEL (g kg-1 d-1) normalised to 750 g (the mean mass of F. glacialis 

specimens (Nuttall, 2005)), and the bioaccessible metal concentration, CBA (g g-1), can 

be used to calculate the mass of plastic required on a daily basis for adverse effects to 

be possible in terms of metal toxicity(Madv).  

 Madv = LOAEL/CBA Eq. 6.4 

The mass of ingested plastic necessary to cause harm to these birds, according 

to Equation 6.4 ranges from 6.1 g d-1 for Cr (if all Cr is assumed to be present in 

hexavalent form), to 26.5 kg d-1 for Ni. Lead toxicity would begin to occur only if the 

bird was to ingest 3.7 kg of plastic, while Cd and Co toxicity would require daily 

intakes of 24.5 g d-1 and 10.1 g d-1, respectively. Given that the maximum quantity of 

plastic found in a specimen of this species was 20.6 g, it is therefore highly unlikely that 

the metal concentrations present on plastics serve to cause chronic sub lethal 

toxicological effects to the individual, particularly not at levels which would not have 

already caused substantial physical harm to the bird. These calculations, however, 

make no assumptions of possible cumulative or synergistic effects arising from metal 

concentrations within an organism, as it is difficult to quantify these effects. 



Chapter 6: In vitro determination of metal bioaccessibility from resin pellets to avian species 

 

156 

 

Additionally, some elements, e.g. Ni, are known carcinogens which may not exhibit 

immediate toxic effects. 

6.4.2.3 Dietary intake of metals 

To further put the bioaccessibility of metals from plastics into context, comparisons can 

be drawn from the dietary intake of major and trace metals from pelagic fish. Medeiros 

et al. (2012) and Saei-Dahkordi & Fallah, (2011) studied fish from Brazilian and Iranian 

markets, respectively. Results from these studies are comparable and indicate that for 

pelagic fish, major and trace metal concentrations may be similar in geographically 

distant areas. Comparisons of metals determined in fish (Medeiros et al., 2012), and 

pellets (this study) have been summarised below. 

To compare the mean values documented in Medeiros et al. (2012) with mean 

values reported for pellets in Table 6.3, Cd, Pb and Zn are present on pellets (0.007 – 

0.011, 0.108 – 0.229, and 2.56 – 7.45  g g-1, respectively) at concentrations comparable to 

pelagic fish (0.001 – 0.09, 0.1 - 0.3 and 2.7 – 9.3 g g-1, respectively). This is not the case 

for all reported metals; concentrations of Co, Fe and Mn on pellets (0.290 – 0.590, 23 – 

36 and 34 – 71 mg g-1, respectively) greatly exceed Co (0.007 – 0.02 g g-1), Fe (1.6 – 7.5 

g g-1) and Mn (0.3 – 1.7 g g-1) in fish. However, some metals are less concentrated on 

pellets than in fish. For example Al in pellets ranges from 14 – 23 g g-1, compared with 

49.1 – 394 g g-1 in fish, while Cu concentrations in pellets (0.106 – 0.210 g g-1) are over 

an order of magnitude lower than in fish (1.2 – 2.9 g g-1).  

These comparisons put ingestion of plastic into context when considering the 

likely contribution of metal to avian species through dietary intake. However, 

comparisons only take into account metal concentrations determined on pellets from 
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one location. It must be considered that metal concentrations vary between pellets and 

sites, as shown in Chapter 3. Furthermore, values reported for Pb by Nakashima et al. 

(2012) are orders of magnitude greater than those presented in this thesis.   

6.4.3 Evaluation of the PBET approach  

Presently, there are several studies which identify presence of POPs in birds shown to 

have ingested plastic, yet information on the bioaccessibility of POPs from plastics is 

not yet known. Quantification of the likely bioaccessibility of POPs from ingested 

plastic could provide an estimate of the toxicological risk to organisms. Tanaka et al. 

(2013) report evidence for transfer of polybrominated diphenyl ethers (PBDEs) from 

ingested plastic to the adipose tissue of short-tailed shearwaters (Puffinus tenuirostris), 

though the authors state the need for studies which focus on release rates of chemicals 

in digestive fluids. Thus while the present study suggests that the risk of harm caused 

by bioaccessible concentrations of metals from plastic pellets is minimal, it should 

provide a baseline method for the development of desorption kinetic profiles which 

can be applied to the whole range of plastic co-contaminants.  

According to the observations of this study, the concentrations of metals 

released from pellets suggest the likelihood of a toxicological effect on seabirds is low. 

However, it does indicate that metals on plastics are bioaccessible. Thus while acute 

toxicological effects may not be observed as a consequence of metal release from 

plastic, any anthropogenic contributions of synthetic materials to the natural 

environment contribute to a new, direct pathway for avian species to ingest metals, 

and potentially other co-contaminants which may have chronic effects on individuals 

over longer timescales, for example by reducing the physical fitness.  
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While in vitro determination of bioaccessibility is a useful measure from which 

conclusions may be drawn, it is important to consider, when discussing the 

mechanisms of metal mobilisation, that the bioaccessibility of a metal is dependent not 

only on the conditions of incubation – temperature, pH, enzyme activity, 

concentrations of inorganic and organic complexing agents – but also on the nature of 

associations of metals with biogenic and mineralogical phases deposited on the plastic 

surface, as well as with the polymer surface itself. This consideration is a well-known 

aspect of bioaccessibility studies (Hamel et al., 1998). Furthermore, it is possible that 

continued secretion of digestive fluid from the proventriculus may facilitate further 

leaching of metals from plastics, as the concentration gradient between particulate and 

dissolved concentrations will be increased. 

6.5 Conclusions 

Metals on the surface of plastic pellets have demonstrated bioaccessibility within a 

simulated avian digestive tract comprising pepsin, NaCl and HCl. Bioaccessibility of 

metals from pellets grouped according to morphology and colour ranged from 7.6 % 

(Cr) to 83 % (Zn), while overall mean values decrease in the order Mn, Zn > Fe, Pb > Al 

> Cr > Co, Ni > Ag > Cu > Cd. Comparisons of pellet groups did not indicate a type of 

pellet for which bioaccessibility was consistently greater. Dissolution kinetics were 

successfully modelled (with the exception of Cr for some pellet types) using the Noyes-

Whitney equation, rate constants for which indicate dissolution of metals varies 

between pellet types, presumably due to differences in reactivity of pellet surfaces. 

Furthermore, rates of metal release are dependent on the metal in question, with times 

to equilibrium ranging from < 2 h (Pb) to over 24 h (Al). 
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On the basis of the data currently available and presented above, it is unlikely 

that the metals associated with plastics present a toxicological risk to avian species. 

However, several questions are raised by the confirmation that co-contaminants 

present on the plastic surface are bioaccessible. Firstly, additional investigations should 

attempt to determine whether polymer type affects the bioaccessibility of metals. 

Secondly, work should be carried out to identify whether POPs present on the surfaces 

of plastics are bioaccessible. Furthermore, given the likelihood that plastics which carry 

greater concentrations of metals may convey greater doses to organisms, broadening 

the scope of this study to include other forms of plastic debris, and other organism 

models from different trophic levels is essential to elucidate potential ecosystem 

effects. 
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7.1 Introduction 

This study has shown that metals are present on plastic production pellets collected 

from the intertidal zone, and is one of the first studies to identify the accumulation of 

metals on plastics in the environment. Additionally, it has been demonstrated for the 

first time that trace metals (Cd, Co, Cr, Ni, Pb) will be removed from the water column 

by adsorption to PE pellets, a process which is enhanced by the polymer’s exposure to 

environmental degradation. By examining this phenomenon under a range of 

conditions it has been possible to identify scenarios which may promote the adsorption 

of trace metals to PE debris, with the potential for transport in the environment. 

Furthermore, the work presented within this thesis indicates that metals on PE pellets 

are bioaccessible within the avian gastric environment, and may constitute an 

emerging pathway for metals to be assimilated by organisms. 

7.2 Environmental implications  

The initial objectives proposed at the beginning of this thesis were centred on the 

quantification of trace metals on pellets, and the application of a batch approach to 

identify trace metal uptake by PE pellets under different conditions. Acid extractions of 

pellets collected from four field sites indicates that metals are present on the surfaces of 

beached pellets, while inter-site dissimilarities in metal assemblages suggest that 

contaminant burdens on pellets most probably result from localised contaminant 

concentrations in the environment.  

Adsorption experiments have shown that trace metals are accumulated on the 

surface of PE pellets, and that the extent and rate of adsorption will be determined not 

only by the trace metal in question, but also by the properties of the sorbent surface. 
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Furthermore the physico-chemical properties of the aqueous medium have been 

demonstrated to exert major controls over the uptake of trace metals to pellets. While 

this study makes use of PE pellets to address the specific research questions outlined at 

the outset, the results have implications which extend beyond interactions of this 

model particle with the environment, and may represent characteristic interactions of 

PE debris with dissolved trace metals. The wider implications of the findings of this 

thesis will be discussed in the following subsections. 

7.2.1 Changes to plastics upon environmental exposure 

Comparisons between virgin and beached pellets in Chapters 3-5 have shown that 

changes which occur to pellets upon environmental exposure will cause virgin plastic 

surfaces to become more favourable for trace metal adsorption. The physical and 

chemical degradation described in Chapter 3 will increase specific surface area of 

plastic pellets, while accumulation of biofilms and oxyhydroxides of Fe and Mn will 

confer reactive sites to pellets.  

The presence of Fe and Mn on beached pellets has been confirmed in Chapters 

3 and 6, in contrast with virgin pellets for which concentrations of Fe and Mn were 

below limits of detection. This suggests that over time the surface of plastics will 

become more analogous to that of sediment, forming a mobile particle which may 

accumulate and transport trace metals in the water column. The surface of plastic 

pellets in natural waters above pH 7 is likely to be negative, particularly when 

concentrations of Fe and Mn oxyhydroxides are present, due to the deprotonation of 

these phases. The negative charge of beached pellet surfaces has been confirmed by 

Fotopoulou & Karapanagioti (2012) who determined the point of zero charge for 
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beached pellets to be pH 6.1. This is in agreement with the adsorption of trace metals to 

beached pellets in pH-controlled river water presented in Chapter 5. Under these 

conditions adsorption of Cd, Co and Ni was enhanced as pH increased above 6, while 

the opposite was observed for Cr. Furthermore, virgin pellets were shown to behave 

similarly under conditions of controlled pH. This is not an expected finding since 

Fotopoulou & Karapanagioti (2012) report virgin polyethylene to present a neutral 

surface. However, the surface charge observed in Chapter 5 for virgin pellets can be 

explained by the use of natural river waters and consequent immediate biofouling 

(Wahl, 1989) of virgin plastics in incubations. 

7.2.2 Adsorption mechanisms 

From the observations presented throughout this thesis, it is possible to summarise 

conditions whereby certain trace metals (Cd, Co, Cr, Ni, Pb) will be accumulated on, 

and transported by plastic debris.  The data pertaining to trace metal uptake, presented 

in Chapters 4 and 5 illustrate that in addition to the effects of aging and degradation of 

the plastic itself, environmental factors will have considerable controls over the 

interactions between plastics and metals.  

The major controlling variable in the coastal zone is likely to be salinity, owing 

to its effects on trace metal speciation and the surface charge of substrates. Kinetic 

modelling has also provided constants which indicate desorption is likely from pellets 

as they are exposed to increasingly (for cations) or decreasingly (in the case of anions) 

saline conditions. The experimental and modelling approaches used to understand the 

interactions between trace metals and pellets have elucidated differential behaviour 

between the elements studied, with Cd, Co, Ni exhibiting decreasing affinities for 
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plastic as salinity increases and Cr exhibiting the reverse trend. For cationic species this 

has been attributed to competitive and complexing effects of seawater cations and 

anions, respectively. Adsorption of Cr has been attributed to its anionic speciation, and 

increases with salinity due to the decreasing electronegative surface charge of particles 

as ionic strength increases. The adsorption of Pb is independent of salinity within the 

context of this study, predominantly complexing with dissolved organic matter 

according to speciation modelling using WHAM. However, Pb is known to be highly 

reactive toward particulates (Tang et al., 2002), particularly Fe and Mn oxides.  

Despite the constraining effects of increasing salinity on Cd, Co and Ni, there 

remains potential for the accumulation of these metals on plastics in the environment, 

as indicated by their presence on pellets collected from the coastline and analysed for 

pre-existent metal concentrations in Chapter 3. Currently estuarine and freshwater 

systems are under-represented in the field of contaminant uptake to plastics. However, 

the approach used in Chapter 5 has facilitated a greater understanding of the 

mechanisms of trace metal accumulation on polyethylene, and identified scenarios in 

which certain trace metals are likely to be accumulated by polyethylene particles. 

Using a similar approach for persistent organic pollutants (POPs) could identify 

potential priority environments for the control of plastic debris. 

While some of the interactions between trace metals and polyethylene are 

comparable with those which are known to occur with natural suspended particulate 

matter (SPM), the consequences of metal associations with natural SPM and buoyant 

plastic particles differ. Natural SPM tends to reduce the mobility and accessibility of 

trace metals in the environment, sequestering them from the water column and settling 

out in sediments (Teuten et al., 2009). This is not the case for buoyant plastic 
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particulates which are likely to be mobile over greater spatial and temporal scales than 

natural SPM.  

The data modelling techniques used to interpret and describe the interactions of 

trace metals with sorbent surfaces, as well as associations with other dissolved 

constituents have been pivotal in the interpretation of results. However, understanding 

the processes involved in metal interactions with pellets relies on knowledge of 

chemical kinetics in light of residence times for different particles in the system in 

question. The interactions between pellets and trace metals progress at rates high 

enough to compensate for their short residence times in estuarine systems compared to 

natural particulates, therefore chemical equilibria are likely to be achieved within these 

systems. However, the batch approach used to determine adsorption of trace metals to 

plastics does not take into account changes which take place over longer timescales. 

Changes to the surface of plastics will occur as a result of photo-oxidation, biofouling, 

accumulation of hydrogenous metals, and the entrainment of natural SPM, as 

discussed throughout this thesis. These changes will convey a progressively more 

reactive surface to plastics in the water column. 

Continued growth in the abundance of plastic debris will ensure that the 

potential for trace metal cycling to be altered will become increasingly important over 

time. Furthermore, as plastic debris changes in terms of its affinity for trace metals 

during its residence time in the water column, and is progressively degraded into 

smaller particles, the scope for interactions between plastic particles and dissolved 

metals will become greater.  
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7.2.3 Bioaccessibility to Procellariiform birds 

The final objective of this study was to examine the bioaccessibility of metals associated 

with plastic pellets to avian species using an in vitro approach. Addressing this 

objective has shown trace metals to exhibit bioaccessibility from plastic, in some cases 

(e.g. Cr, Ni) exceeding bioaccessibility of metals from natural soils or sediments. The 

high degree of bioaccessibility of elements such as Cr and Ni from pellets suggests that 

considering plastic particles to be analogous to natural sediments is not appropriate 

despite the fact that they are coated in hydrogenous phases, as sediment.  

While the results themselves are of interest, one of the key implications of this 

study is that an in vitro approach to bioaccessibility of contaminants carried by plastic 

can provide essential data on the magnitude of the impacts of plastic ingestion. This is 

a valuable contribution in the field, as at present links between plastic ingestion and 

contaminant loadings in avian species have been investigated by very few studies 

(Teuten et al., 2009). None of these studies utilise an in vitro approach to the question, 

and therefore are unable to unequivocally state that contaminants in organisms are 

derived from plastic. This thesis employs an approach which is novel to the study of 

chemical transfer from plastics to avian species and should support future work to 

determine bioaccessibility of non-metal contaminants to birds, and further work on the 

bioaccessibility of metals from other types of plastic debris.  

7.3 Future directions 

Plastics are becoming more widely recognised among the public and policy-makers for 

their environmental presence, and their potential role in uptake and transport of co-

contaminants in natural systems. This is due to the work carried out in academic 
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institutions globally, and their efforts in effective communication. Despite this, there 

remain considerable hurdles to be overcome in our understanding of the magnitude of 

the issue. This thesis has applied a number of techniques to determine the 

characteristics and trace metal interactions of plastic pellets, and forms a model 

approach on which future research into the behaviour of plastic debris in the 

environment can be developed. Based on the principles applied throughout this thesis, 

the following research could provide further insights into the fate and potential 

consequences of plastic debris in the environment.  

7.3.1 Interactions between persistent organic pollutants and plastics 

under estuarine conditions  

Chapter 5 highlighted the complex and varied interactions between metals and plastics 

in a simulated estuarine environment, and is the first study to focus on the uptake of 

contaminants to plastics under such conditions. While POPs have been proven to 

adsorb to plastics in seawater (Teuten et al., 2007), what remains to be seen is whether 

POPs are affected by changes which occur in an estuarine gradient.  

An experimental approach based on Chapter 5, with regard to the preparation 

of an estuarine gradient could elucidate the partitioning behaviour of POPs under 

these conditions. However, the approach to sample handling, extraction and analysis 

would need to be optimised for POPs. The use of glass apparatus would be a necessity 

owing to leaching of interfering compounds such as phthalates which can co-elute with 

analytes of interest during analysis. Furthermore, POPs are readily lost to plastic 

surfaces during storage due to their affinity for hydrophobic surfaces (Teuten et al., 

2009).  
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Following Teuten et al. (2007), glass reaction vessels could be charged with 

POPs dissolved in a solvent which is evaporated to dryness prior to the addition of 

plastic particles and estuarine waters. Extraction and analysis of POPs from pellets 

would require use of solvents such as hexane (Ogata et al., 2009), followed by multiple 

purification and fractionation steps using silica gel columns and selective elution for 

the separation of analytes of interest (Mato et al., 2001). Analysis of aqueous POP 

concentrations would require a technique such as solvent extraction, (e.g. liquid/liquid 

extraction) with dichloromethane (Endo et al., 2005), followed by purification and 

analysis according to the same process as pellet extractions. Depending on the degree 

of sample preparation, analysis could be conducted using gas chromatography-mass 

spectrometry (GC-MS), or preferably, comprehensive two-dimensional gas 

chromatography coupled to a time of flight mass spectrometer (GC*GC-TOFMS) 

(Focant et al., 2004). 

7.3.2 In vitro bioaccessibility of persistent organic pollutants 

The work presented in Chapter 6 has shown that concentrations of metals bound to the 

surface of plastics are bioaccessible within the avian gastric system. Owing to the low 

concentrations of metals present on the selected plastic particles, it was concluded that 

the risk to birds of metal doses delivered in this manner was low. Many studies have 

identified POPs to be present on plastic pellets at concentrations far exceeding those in 

the surrounding water column (Mato et al., 2001, Rios et al., 2007), and some studies 

have attempted to link plastic ingestion with POP concentrations in tissue samples and 

eggs of birds (Ryan et al., 1988). However, finding a link between plastic ingestion and 

POPs in tissue is analytically challenging due to the dietary intake of POPs by birds 
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contributing to variable baselines. In vivo exposure has, however, shown transfer of 

PCBs from plastics to streaked shearwater (Calonectris leucomelas) chicks (Teuten et al., 

2009). 

 To support these studies, and suggest the likely dose of POPs derived from 

ingested plastic, an in vitro method similar to the approach used in Chapter 6 could be 

used to determine the bioaccessibility of POPs to avian species. Modifications to this 

method would be necessary given the constraints of the handling and analysis of POPs. 

These have largely been addressed in Section 7.3.1, identifying the need for glass 

apparatus and solvent extraction for analysis of POPs by GC-MS or GC*GC-TOFMS. 

Application of this in vitro approach would avoid the complications and constraints of 

in vivo studies, whilst addressing the necessity of further research focusing on whether, 

and how, transfer of POPs to marine organisms occurs, as stated recently by 

Colabuono et al. (2010).  

7.3.3 Interactions between metals and other polymer types and 

morphologies 

The focus of this thesis has been on interactions between trace metals and polyethylene 

pellets, which are environmentally abundant and represent one of the most common 

polymer types in production. However, interactions between metals and other 

polymer types must be studied. Teuten et al. (2007) found that polyethylene had a 

greater affinity for phenanthrene than polypropylene and PVC, and evidence exists for 

differential affinities of dissolved trace metals for different polymer types during 

sample storage (Cobelo-Garcia et al., 2007). Batley (1999), states that polyethylene and 

Teflon both have low affinities for trace metals, which would suggest that other 

polymer types may interact more readily with trace metals in the marine environment.  
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Aside from polyethylene, which has been widely reported, records exist for the 

presence of many polymers in the environment, including PVC and polystyrene 

(Hidalgo-Ruz et al., 2012), acrylic, polyamide (nylon), polyester and polypropylene 

(Thompson et al., 2004). Study of the interactions between metals and polymers other 

than polyethylene should focus on the most commercially important, therefore most 

widely used polymers - polypropylene, PVC and polystyrene. Application of similar 

methods and approaches to those presented in Chapters 4 and 5 would allow direct 

comparison of interactions between trace metals and other polymer types with the 

interactions presented in this thesis.  
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