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Abstract 

An understanding of the spatio-temporal dynamics of marine predator populations is 

essential for the sustainable management of marine resources. Tagging studies are 

providing ever more information about the movements and migrations of marine 

predators and much has been learned about where these predators spend their time. 

However little is known about their underlying motivations, making it difficult to make 

predictions about how apex predators will respond to changing environments. While 

much progress has been made in behavioural ecology through the use of optimality 

models, in the marine environment the necessary costs and benefits are difficult to 

quantify making this approach less successful than with terrestrial studies. One aspect 

of foraging behaviour that has proved tractable however is the optimisation of random 

searches. Work by statistical physicists has shown that a specialised movement, known 

as Lévy flight, can optimise the rate of new prey patch encounters when new prey 

patches are beyond sensory range. The resulting Lévy flight foraging (LFF) hypothesis 

makes testable predictions about marine predator search behaviour that can be 

addressed with the theoretical and empirical studies that form the basis of this thesis. 



 

 

Results presented here resolve the controversy surrounding the hypothesis, 

demonstrating the optimality of Lévy searches under a broader set of conditions than 

previously considered, including whether observed Lévy patterns are innate or 

emergent. Empirical studies provide robust evidence for the prevalence of Lévy search 

patterns in the movements of diverse marine pelagic predators such as sharks, tunas 

and billfish as well as in the foraging patterns of albatrosses, overturning a previous 

study. Predictions from the LFF hypothesis concerning fast moving prey are confirmed 

leading to simulation studies of ambush predator’s activity patterns. Movement 

analysis is then applied to the assessment of by-catch mitigation efforts involving VMS 

data from long-liners and simulated sharks. 
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1 Introduction 

The pressing concerns of over-fishing (Garstang 1900, Thurstan et al. 2010) and climate 

change (Brander 2010, Genner et al. 2010, Jennings and Brander 2010, Perry et al. 

2010, Spencer et al. 2010) make careful management of the exploitation of marine 

predator populations increasingly important. Natural fish populations are typically 

managed as ‘stocks’, the implication being that stocks form independent manageable 

units; however fish are known to exhibit complex spatio-temporal dynamics (Block et 

al. 2011) which are likely to blur the boundaries imposed by human social and political 

institutions (Bailey 1997). For example thornback rays (Raja clavata) have been shown 

to perform seasonal migrations between the Southern North Sea and the Thames 

estuary, with rays moving into the estuary between March and April to spawn (Hunter 

et al. 2006). Similarly Atlantic cod (Gadus morhua) and plaice (Pleuronectes platessa) 

have also been shown to perform long distance seasonal migrations (Hunter et al. 

2003, Righton et al. 2007). Evidence from long-line fisheries has identified sexual 

segregation of short fin mako sharks (Isurus oxyrinchus) at the large-scale in the South 

Pacific (Mucientes et al. 2009), whereas some animals, such as common skate (Dipturis 

batis), exhibit site fidelity to local areas (Wearmouth and Sims 2009). Complex 

movement dynamics such as these suggest that stocks are far from the independent 

units that management regimes assume them to be (Sumaila and Huang 2012) and 

therefore an understanding of the processes that structure natural fish populations is 

essential both to their sustainable management (Bailey 1997) and for the design of 

conservation efforts such as marine protected areas (Hyrenbach et al. 2000). 
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 In the marine environment, and especially in the open ocean, however, it is difficult to 

observe individuals or even populations directly with any degree of spatial and 

temporal accuracy. Consequently much of what has been learnt regarding the large-

scale movement of marine predators has been inferred from mark-recapture studies 

(Stevens 1976, 1990, Queiroz et al. 2005). Such studies can only provide information 

regarding the release and recapture locations and, because the recapture normally 

occurs via commercial fisheries, these data are known to be prone to significant biases 

(Bolle et al. 2005), furthermore if the fish move beyond the areas being regularly 

fished then they simply disappear from the study and nothing can be determined or 

inferred about their movements or distributions. Therefore only superficial knowledge 

exists concerning the spatio-temporal dynamics of the populations forming managed 

fish stocks. In addition mark-recapture studies cannot provide any information on the 

fine-scale movements in which animals are engaged during various behavioural 

activities such as foraging or diel changes in depth, or about habitat and thermal 

preferences and so provide little insight into their behavioural ecology. Important 

questions that have occupied terrestrial ecologists, such as site fidelity, habitat use or 

optimal foraging strategies have therefore proved much more difficult to study in the 

marine environment. These studies are further hampered by the dynamic nature of 

the marine environment which can lead to a patchy and often unpredictable 

distribution of resources (Zimmerman and Biggs 1999, Seki et al. 2001, Zainuddin et al. 

2006). The first step in gaining a better understanding of how animals respond to this 

dynamic heterogeneous resource landscape is to gather more detailed information 

about their movements at all scales by using electronic tags, which now constitutes a 

thriving research field in itself known as animal biotelemetry or bio-logging (Sims 

2010). 

1.1 Electronic tags  

Recent advances in electronics and miniaturisation of devices have made it possible to 

produce tags that can be attached to marine fish to measure and record 

environmental factors such as swimming depth, water temperature and ambient light 

over extended periods of time. Sea water, being conductive to electricity, makes radio-

frequency (RF) transmission impossible over long distances. Therefore in the marine 

environment three categories of tag can be used: data logging/storage (or archival), 
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satellite transmitter or acoustic transmitter or transponder. Some examples are shown 

in Figure 1. 

Data storage tags (DSTs) are relatively small, typically 20-30mm in length, and weigh 

only 1-2g in water. Some of the smallest tags record only pressure (swimming depth) 

and water temperature, whereas other tags can record depth, temperature and light 

with more advanced tags also having sensors for measuring magnetic field parameters 

or 3-axis accelerometers. Data are stored in non-volatile Flash memory until the tag is 

recovered at which point the data can be downloaded, even if the battery is 

exhausted. As long as the tag can be recovered then very large data sets of high 

resolution depth, temperature and light level measurements can be returned. Tags can 

be attached externally in a variety of ways, depending on the species (or size of the 

animal) or can be surgically inserted into a fish’s peritoneal cavity, for example. 

Satellite transmitter tags have the advantage that data can be returned without the 

need to recover the tag, but have the disadvantage that they only transmit in air, such 

as when the animal surfaces or when the tag is detached and floats at the surface. This 

type of tag is generally larger in size than the DSTs and they provide, in general, only 

low resolution or summary data transmitted via Argos polar-orbiting satellites, they 

are becoming smaller in size such that a wider range of species can now be tagged. 

However, these characteristics make them ideal for studying larger pelagic open ocean 

predators such as sharks and tunas. Satellite tags can be divided into two basic 

categories; tags that transmit continuously (when at the surface) to the Argos data 

collection system of satellites are known as Argos satellite transmitters or platform 

transmitter terminals (PTTs), e.g. SPOT (Smart Position-Only Transmitting) tags; and 

pop-off satellite-linked archival transmitters (PSATs) that record data for a pre-

determined time and then pop-off, rise to the surface and transmit data via the Argos 

system, e.g. PAT (Pop-up Archival Transmitting) tags by Wildlife Computers. PSAT tags 

typically record summarised data which are then transmitted on surfacing, however 

the transmission depends on the serendipitous location of the polar-orbiting satellite 

and the length, strength and stability of the transmitted message and data are 

frequently incomplete as a consequence. If a PSAT tag is recovered then the archived 

data is available for download.   
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Acoustic transmitter tags produce sound energy that is received via a hydrophone to a 

decoding receiver. Tags can be tracked in the sea actively by a hydrophone on a ship, 

or passively by a fixed array of receivers, from which the data are later recovered. Tags 

(pingers) that generate an acoustic signal (or ping) can be attached to, or be surgically 

implanted, in fish and enable a receiver to identify the tag/fish and record the time of 

the ping. Typically an array of receivers is deployed on the surface (in the case of 

triangulating receivers) or the sea bed (for archival logging devices) to allow research 

into longer-term patterns of behaviour such as sexual segregation, social networks, 

migration or site fidelity (Sims et al. 2001, Simpfendorfer et al. 2002, Sims et al. 2006a, 

Jacoby et al. 2010).   

A comprehensive review of tags and tagging techniques has been provided by Sims 

(Sims 2010, Chapter 8, p 351) and of shark tagging studies by Hammerschlag et al. 

(2011). 

 

 
Figure 1: Example tag designs from Wildlife Computers 

Top left Spot5; top right PAT MK-10; bottom TDR-Mk9. 

1.1.1 Horizontal (geographic) data 

It is evident that the types of data measured by tags are dependent on the tag type 

and that this logistical constraint influences the sorts of biological questions that can 
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be levelled, and the analyses that can be reliably supported, using such data. In the 

case of horizontal (geographic) data, the geographic location of a satellite tag using the 

Argos system is calculated from the Doppler shift in transmission carrier frequency 

observed by the satellite when the message is received from the transmitter on the 

tag. The system provides a location class code with each location estimate that 

indicates the size of the error field, which can range from 500-1500m radius for the 

lowest class (1) to < 250m for the best class (3). Tags equipped with Positioning System 

(GPS) receivers are able to encode GPS location data in the Argos message to give a G 

class message with positional error that can be < 50m depending on how many 

satellites can be acquired (Hazel 2009). Because locations can only be determined 

when a satellite passes within range of a transmitter, the number of locations per day 

is dependent on the satellite coverage, which is itself dependant on latitude. The polar 

orbiting satellites in the Argos constellation (which are usually satellites with other 

primary functions, such as the NOAA satellites but which are equipped with the Argos 

receivers) have best coverage at the poles and worst at the equator and any given 

satellite can be expected to pass the poles about 14 times per day. The low number of 

locations per day and the large error fields means that while such data are useful for 

knowing roughly where the tagged animal was on any given day it is not good enough 

to allow any investigation into short term behaviour or very fine-scale movements 

(Bradshaw et al. 2007). Even with high resolution location data problems can arise in 

the detailed analysis of the animal’s movements. All recorded location data comprises 

a series of observed coordinates which approximate the animal’s true movement path 

and the accuracy of a reconstructed (i.e. plotted) path will depend on the sampling 

frequency, with low sampling rates resulting in simpler paths where more complex 

behaviour (such as area restricted search) will be poorly represented. In many more 

recent studies it has become popular to use state-space models and Kalman filters to 

interpolate what are considered to be the most likely intermediate points along the 

path (e.g. Royer et al. 2005, Tremblay et al. 2006). The resulting, smoothed path might 

appear realistic, however it must be remembered that the interpolated points are 

simply best guesses and are subject to the parameters used in the state-space model. 

Consequently these reconstructed paths should, perhaps, be treated with caution.   
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1.1.2 Vertical (dive) data 

DSTs and some satellite tags can store archival data which record a time series of 

measurements such as depth, light or temperature which are typically made at 

intervals of between 1 second and 1 hour. Satellite tags usually summarise the data 

into a series of histograms. While depth is usually recorded at the highest temporal 

resolution the other metrics, such as temperature, are often recorded at longer 

intervals (e.g. 5 minutes). Many tags can be configured to record high temporal 

resolution data for a specified length of time and then a lower rate subsequently, to 

maximise the overall data recorded by the tag. For instance, although the prime 

interest might require a few months of high resolution data, if the tag remains 

attached and the animal active, it is clearly very useful to obtain some lower resolution 

information over a longer time scale. Tags can usually be configured for different 

depth ranges, with deeper depths usually requiring some sacrifice of resolution; 

therefore a tag configured for high resolution (e.g. 4cm depth) will only record to 

120m depth, while tags configured to record depths down to 1km or more typically 

have resolutions of around 0.5m. This is simply a consequence of the number of bits 

available to store each measurement and the scaling factor used to encode the 

measured depth value. There is a natural tendency to prefer data with high temporal 

and spatial resolution. However, very high temporal resolution data (i.e. of the order 

of 1 second) not only consumes much more of the tag’s memory but can result in 

problems in analysis that are only solved by under-sampling the data (described 

further in Chapter 2). In fact in many studies comparatively low temporal resolution 

data is perfectly adequate, as illustrated in Figure 2, where little difference is 

discernible between data at 5 seconds or 15 minutes, despite the higher resolution 

requiring 180 times the data. 

Although a dive time series is essentially a recording of one dimensional movement, a 

great deal of useful behavioural information can be obtained from the data using quite 

straightforward analysis. For example, habitat use, in terms of the water column, can 

be determined from a time-at-depth analysis. Figure 3 shows a simple histogram of 

binned depth data that reveals a pattern of habitat use where the animal, a blue shark 

(Prionace glauca), can be seen to spend the majority of its time either at, or just below 

the surface, or at deeper depths, around 570m. A daily profile of depth use for the 

same animal reveals diel vertical movements sometimes termed ‘migrations’ (DVM) 
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with daytime hours being spent at depth and night time spent near the surface. A daily 

profile of activity however shows that the animal is generally equally active (in terms 

of summed vertical displacements per hour) over the whole of the day (Figure 4).   

While clearly very valuable, analyses such as these only provide a descriptive 

representation of some aspects of an animal’s behaviour; they provide information on 

where and when the animal was, but not on what it is doing. In other words, while we 

might discover that a blue shark spends the daylight hours at depth, we do not know 

from the dive time series data what behaviour the shark is engaged in, whether it is 

searching for food (although this is likely), hiding from predators (less likely) or fulfilling 

some other function such as thermoregulation or searching for mates (see Queiroz et 

al. 2010). The problem of understanding the function or survival value of decisions 

leading to an observed behaviour has been approached in behavioural ecology 

through the use of optimality models (Stephens and Krebs 1987). These models are 

usually defined in terms of currencies, such as time or energy, which are then either 

maximised or minimised through decisions such as when to leave a prey patch. 

Typically these decisions are constrained by factors such as the prey handling time, the 

nutritional content of the prey or even, in some cases, the toxicity of the prey (Barnett 

et al. 2012). Bumblebees, for example, have been shown to adapt how many flowers 

they visit on a given plant depending on both local nectar availability and the 

profitability of the individual plant, in a manner that can be modelled well using the 

marginal value theorem (Dreisig 2012). However it is very difficult to know what 

currency an animal might be maximising (or minimising), and indeed these currencies 

and constraints are very difficult to define in the marine environment, even with 

telemetry devices. Hence, this reduces considerably the applicability of this conceptual 

framework to free-ranging animals such as marine vertebrates. One recent 

development in traditional optimal foraging theory that appears more tractable for 

studying in free-ranging animal behaviour, however, is that of random search 

strategies, which have been found to be optimal in certain situations. Theoretical and 

methodological developments in this area have led to an intriguing concept in ecology, 

the so-called Lévy flight foraging hypothesis. 
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Figure 2: Depth time series from a blue shark 

Upper panel shows data at a 5 second resolution, lower panel at 15 minutes. Despite the much lower 
resolution very little of the behavioural information has been lost, with changes in diel vertical migration 
and habitat use of the water column being clear.  

 
Figure 3: A time at depth analysis 

Time at depth for a blue shark represented as a percentage of time spent at depths binned at 5m. The 
animal spends much of the time at, or just below, the surface and the remainder either at a depth of 
around 470m or commuting between the two. 
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Figure 4: Depth and activity profiles 

Time depth and time activity profiles for a blue shark showing that while there is a clear movement to 
deeper water during the day there is less change in the level of activity (as measured as the sum of move 
step-lengths i.e. total distance travelled per hour).  

1.2 The Lévy flight foraging hypothesis 

To find fresh resources all mobile animals must search new geographic locations if the 

precise location of those resources is unknown to the searcher. For example, a blue 

shark in the open ocean faces a significant search problem: new prey patches are 

sparsely distributed at distances well beyond sensory range, so in what direction and 

for how long should the shark swim to increase its chances of finding a new patch of 

prey? As biologists wishing to understand how such searches might be performed and 

optimised, we too face a significant challenge in putting the movement data obtained 

from electronic tags into a behavioural context. Recent work by statistical physicists on 

anomalous diffusion in a range of physical systems and latterly in biological systems by 

physicists and ecologists has provided a useful theoretical framework in the form of 

the Lévy flight foraging (LFF) hypothesis which seeks to gain some insight into what 

free-ranging animals are doing and why they might be doing it at specific times and 

places. 

Early work by Shlesinger, Klafter et al. (e.g. 1990, 1993, 1993) demonstrated that a 

specialised random walk, known as a Lévy walk (or flight) had super-diffusive 

characteristics which results in particles diffusing further per unit time then would be 

expected if the particles moved with simple Brownian motion. Lévy flights describe a 

movement pattern characterised by many small steps connected by longer relocations, 
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with this pattern repeating at all scales, with step-lengths being drawn from a power-

law distribution such that P(l) ~ l-, with 1 <   ≤  3 where l is the move step-length, and 

 the power-law exponent. In other words, the probability of a step of given length is 

inversely proportional to its length, making short steps much more likely than long 

ones. This early theoretical work gained tentative empirical support in studies such as 

Coughlin et al. (1992) where fractal movement patterns were identified in the larvae of 

pink clown fish (Amphiprion perideraion) using novel computerised tracking cameras. 

Work by Cole (1995) investigated the fractal nature of the timing of movement in the 

fruit fly (Drosophila melanogaster) and presented the first simulated analysis of the 

optimality of a Lévy search compared to a Brownian random walk. However, the study 

focussed not on the effect of changing the exponent (μ), which was kept at the 

observed value of 1.37, but on the resilience of the advantage of Lévy movement 

under changing detection radii. The observation was clearly made, however, that Lévy 

movement increased the area explored compared to Brownian motion and so 

increased the rate of new prey patch encounters. The difference in area explored is 

illustrated in Figure 5 which compares a Brownian (exponential) forager with a Lévy 

forager, both of which have paths limited in length to 500 units. The tendency for the 

path of the Brownian forager to revisit the same areas greatly reduces the exploration 

of novel areas whereas the weak oversampling characteristics of the Lévy path 

increases the number of novel locations explored.  
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Figure 5: Swept area searched by a Brownian and a Lévy forager 

Two simulated foraging paths each limited to a maximum length of 20000 units. Grey plot is Brownian 
(exponential, xmin = 1, λ = 0.148), black is Lévy (truncated Pareto, xmin = 1, µ = 2, xmax = 600. The area 
explored by the Lévy forager is more extensive than the Brownian forager, where the path can be seen to 
oversample previously visited areas.  

The presence of Lévy flight search patterns in empirical data was brought to 

prominence by Viswanathan et aI. (1996) in a study of wandering albatross (Diomedea 

exulans) foraging movements, where data recorded by wet-dry loggers attached to 

one of the bird’s legs were used to calculate the number of 9s intervals per hour where 

the bird was considered to be in flight. Support for a Lévy flight pattern was provided 

by both logarithmic binning of the data as well as from calculation of the root mean 

square fluctuation, both of which suggested super-diffusive movements. In this case 

the result (i.e. the temporal scale invariance) was explained as arising from a scale 

invariant distribution of prey items at the surface of the ocean. This early work on Lévy 

searching led Viswanathan et al. to propose an early form of the Lévy flight foraging 

hypothesis (1999) where both mathematical analysis and numerical simulations were 

used to determine the efficiency of an idealised foraging model. In this model an 

animal has no prior knowledge of resource distribution, is able to revisit randomly 

distributed, stationary patches and is able to locate prey patches within a limited 

detection radius. This represents quite a realistic model of a foraging animal searching 

for sparse resources and has the advantage that it can be approximately solved 

Brownian vs Lévy search
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analytically, as well as allowing simulations. Both the analysis and the simulations 

showed foraging efficiency (i.e. targets visited per unit distance travelled) to be 

maximised when the step-lengths of the random walk followed an inverse power-law 

distribution (i.e. a Lévy distribution) with an exponent equal to -2.0, albeit only when 

prey targets were sparse. If prey was abundant then there was no effect on foraging 

efficiency by changing the exponent (µ) because the long step-lengths associated with 

Lévy walks do not arise when prey is more frequently encountered, truncating the 

step.  

The proportion of longer relocations is dependent on the exponent (μ) with low values 

generating more long relocations and higher values more short steps such that a family 

of distributions arises ranging from almost ballistic (μ1) to Brownian in nature (μ3) 

(Figure 6). Lévy walks therefore have a scale invariant or fractal character and are 

linked to fractal geometry and anomalous diffusion phenomena (Shlesinger and Klafter 

1986). Given the fractal nature of the natural world (Stanley 1992) it is perhaps 

unsurprising that animal movements should also be fractal in nature, and in fact this 

connection has been studied in many contexts (Dicke and Burrough 1988, Crist et al. 

1992, Russell et al. 1992, Ritchie 1998). These early studies generally concentrate on 

the fractal dimension of the landscape (or environment) and the corresponding fractal 

nature of the animal movement path rather than specifically analysing the movement 

for Lévy distributed move step-lengths. However studies such as Russell et al. (1992) 

serve to highlight the fractal nature of prey distribution in the marine environment, 

where scale-free turbulent eddies were suggested to play an import role in the 

structuring of prey fields, e.g. calanoid copepods, which are the principal prey of the 

least auklet (Aethia pusilla) and the movement patterns of the predator were found to 

have a fractal dimension correlated with the prey. Many of the more recent studies 

also focus on characteristics such as tortuosity (or area restricted search, analysed 

using first passage time) rather than explicitly testing for movements that are 

approximated by an idealised Lévy walks (e.g. Fauchald and Tveraa 2003, Fritz et al. 

2003, Pinaud and Weimerskirch 2005). 
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Figure 6: Example Lévy walks of 5000 steps from a truncated Pareto distribution 

The characteristic pattern of clusters of small steps connected by longer relocations is clear, with the 
number of long steps reducing as the exponent (μ) increases. a) μ = 1.5; b) μ = 2.0; c) μ = 2.5; 

A review and two further papers by Viswanathan (2000, 2001, 2002) and others such 

as da Luz (2001) extended the earlier work and further generalised the applicability of 

the LFF hypothesis to foraging situations in nature. Importantly it was shown that Lévy 

flight movement with µ = 2 is an optimum strategy in 1, 2 and 3 dimensions and is 

unaffected by short range correlations (Viswanathan et al. 2001). The latter is 

important because animals rarely perform 180° turns and therefore many recorded 

animal tracks naturally contain some degree of correlation.  

The case of moving foragers and moving targets was also considered (Viswanathan et 

al. 2002). It was shown that Lévy movement is only advantageous when the target 

moves more slowly than the forager and is in effect stationary relative to the forager. 

With fast moving targets, or slow predators, Brownian movement is more efficient 

leading to the conclusion that:  

“For such targets, the most efficient search strategy is not to move at 
all, because the preys will come by themselves! Hence, emerges the 
ambushing strategy” [sic].  

Therefore, the Lévy flight foraging hypothesis is only expected to hold true for 

relatively fast moving predators searching in resource sparse environments. The 

theoretical advantage of a Lévy flight pattern of movement in finding new prey 

patches, together with the early empirical support, has resulted in the LFF hypothesis 

being cast in an evolutionary context, which can be stated as: Since Lévy flights and 

walks can optimize search efficiencies; therefore natural selection should have led to 

adaptations for Lévy flight foraging. 

This apparent new concept in behavioural ecology has, however, generated a great 

deal of controversy, with criticism being aimed at several aspects of the early empirical 

work. Firstly the original work on wandering albatross (Viswanathan et al. 1996) was 

a b c
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found by Edwards et al. (2007) to have methodological errors in the recording of the 

flight times of the birds (by the ecologists collecting the data), resulting in time spent 

resting on the nest being erroneously included as long flight times (by the physicists 

analysing these data). With these erroneous long steps removed Edwards et al. found 

that the data no longer fitted a power-law distribution and did not therefore represent 

Lévy flight. The statistical methodology used to identify power-law distributed step-

lengths has also been criticised (Edwards et al. 2007, Sims et al. 2007, Edwards 2008). 

Studies, such as Viswanathan et al. (1996) and  Sims et al. (2008a) relied principally 

upon a graphical technique, known as normalised logarithmic binning (LBN), to 

estimate the power-law exponent. In this method step-lengths are first binned into 

bins of width 2k, the resulting frequencies are then divided by the bin width and total 

frequency in order to normalise them. The normalised frequencies and bin widths are 

then plotted on a log-log plot (Figure 7). The presence of a straight line identifies a 

power-law distribution and the slope, derived through least squares linear regression, 

estimates the exponent µ. Although this method had been shown to be easy to use, 

robust to noise and reasonably accurate (Sims et al. 2007) later studies have concluded 

that maximum likelihood estimation (MLE) should be the preferred method to 

estimate the exponent (Edwards 2008, White et al. 2008, Clauset et al. 2009). One 

advantage of MLE (which does not involve the binning of step-lengths) over LBN is that 

fewer step-lengths are required as all the observations are used, whereas with the LBN 

method sparse data can lead to empty bins resulting in inaccurate estimates and 

incorrect interpretation of results. Nevertheless, one disadvantage of the MLE method 

is that it only provides an estimate of the exponent’s value and does not offer an 

indication of the goodness of fit, unlike LBN where the linear regression can provide 

both the r2 and p values. However, MLE has the further advantage over LBN in that it 

can be used with distributions other than a pure power-law, such as truncated power-

laws (e.g. truncated Pareto distribution) or exponential distributions (Figure 8), which 

then allows model comparison tests to be employed, such as log-likelihood ratios and 

Akaike Information Criteria (AIC) weights. 
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Figure 7: Normalised logarithmic binning plot of a blue shark track section 

Black circles are binned frequencies; red line is least squares regression. The slope estimates the 
exponent, in this case 2.25, and r

2
 gives some indication of how well the observations fit the distribution. 

In this case the data show a very good fit to a pure power-law. 

 
Figure 8: Example MLE plots 

Left showing power-law (red) and exponential (dashed blue) fits to observed step-lengths (black circles), 
for archival data from a tracked blue shark, and right showing truncated Pareto (red) and exponential 
(dashed blue) fits to GPS-tracked movements of a black-browed albatross. 

Other work has further questioned the statistical methods used, suggesting that Lévy 

distributions could be an artefact of the sampling rate employed (Plank and Codling 

2009). These criticisms are levelled at the analysis of horizontal tracks, as recorded by 

GPS or Argos, and highlight a significant problem in the analysis of these data. The 

analysis of step-length distributions clearly requires the movement path to be divided 

into steps, where each step represents the distance between turning points. When 

originally recorded by, for example, a GPS device, the track will comprise a time series 

of locations spaced along the animal’s true path at intervals dependent on the 

recording device. In the case of a GPS transmitter the interval might be between 1 and 

10 seconds (Weimerskirch et al. 2007) and the resulting path will comprise many small 

correlated steps as the sampling frequency is much greater than the rate at which the 

animal actually changes direction. Furthermore, an animal such as an albatross does 

not perform movements that comprise straight-line relocations connected by turning 

points, but a complex curved swooping flight which does not submit to a simple 

turning point deconstruction (Richardson 2011). Any method used to determine steps 

and turning points from such a path is sensitive to the parameters used to identify a 
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turn (or path deviation)(Turchin 1998), leaving the resultant analysis open to the 

criticisms levelled by Plank and Codling (2009).  

The controversy surrounding biological Lévy flights has tended to polarise the field 

with many studies falling into either a pro- or anti-Lévy camp. Since the original study 

by Viswanathan et al. (1996) there have been many empirical studies purporting to 

identify Lévy flight foraging behaviour in the movement patterns of many animals, 

including humans (Ramos-Fernandez et al. 2004, Brown et al. 2007, Sims et al. 2008a, 

Reynolds et al. 2009), and theoretical work seeking alternative explanations for the 

observed move step-length distributions (e.g. Benhamou 2007, Plank and James 2008). 

These alternative scenarios generally involve some form of correlated random walk 

with, in the study by Benichou et al. (2005), behavioural switching between searching 

and travelling. In this model a saltatory search is considered, with an animal exhibiting 

two phases of movement when searching: (i) a search phase with slow diffusive (i.e. 

Brownian) movement when the animal can detect targets and (ii) a fast, ballistic phase 

during which targets cannot be detected. Benichou et al. (2005) calculate that this 

model can be more efficient than Lévy flight models. However this seems intuitively to 

be a less realistic foraging model than that proposed by Viswanathan et al. (1999) since 

even ambush predators can detect targets while moving; furthermore, Benichou et al. 

(2005) presented no empirical evidence in support of their theoretical argument.  

By contrast the Lévy flight model allows a range of movement patterns, simply by 

varying the exponent as described above (Figure 6). Another alternative, composite 

Brownian walks, have also been investigated by Benhamou (2007). In this scenario the 

searcher performs long runs when in sparse patches and shorter runs when in rich 

patches; the resulting path has a form very like that of a Lévy walk and again is 

reported as being more efficient. However it has been observed by Matthaus et al. 

(2011) that the switching requires the forager to be aware of whether the currently 

occupied patch is rich or sparse. Clearly the more information a searcher has about the 

environment the more a search can be optimised and the less like a random search it 

becomes. In addition the composite Brownian walk is simply another, albeit more 

complex, way to produce the same distribution of move step-lengths as a Lévy 

distribution and, consequently, a similar overall pattern.   
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Other studies have suggested that Lévy patterns appear through interactions with a 

fractal environment (Boyer et al. 2006, Miramontes et al. 2012) or even with simple, 

non-fractal environmental cues (Reynolds and Frye 2007, Guy et al. 2008, Reynolds 

2008). However, empirical studies involving complex structured environments, such as 

rainforests, where resource availability is to some extent predictable, might be 

inappropriate for investigating Lévy searching, where the unpredictable location of 

sparse resources is a prerequisite. The lack of such complex environmental structuring 

and the dynamic nature of resource availability make the marine environment, in some 

respects, a much less contentious location for investigating the presence of 

movements similar to Lévy searching (Sims et al. 2008a). Therefore, given the apparent 

controversy surrounding the theoretical and empirical evidence for biological Lévy 

flights, it is necessary for a comprehensive study of the reliability and applicability of 

Lévy foraging models, and for new empirical results from in-depth analyses of the large 

datasets recorded by novel tag technologies attached to marine vertebrates including 

fish.  

1.3 Objectives 

The Lévy flight foraging hypothesis makes a number of predictions concerning the 

movements of marine predators that can be tested using the data obtained from 

electronic tags. Given the theoretical controversy, which could undermine the 

hypothesis altogether, the objectives will be as follows: 

(1) To explore thoroughly the efficiency of Lévy foragers under a broader range of 

conditions than have been tested so far in the literature. Simulations with both 

stationary and moving prey will be considered as well as testing the predictions 

regarding ambush predation. 

(2) The empirical evidence for the presence of Lévy movement patterns in marine 

pelagic predators will be tested using the largest database of animal movements so far 

collated for this purpose in conjunction with the use of robust statistical methods. The 

further prediction suggesting that Lévy flight is likely to be linked only to sparse prey 

fields will also be thoroughly examined. The same methods will be applied to the issue 

of whether albatrosses perform movements consistent with Lévy flights, which will be 
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reconsidered using high resolution GPS data, together with stomach temperature 

recorders for measuring prey capture and biomass. 

(3) Finally, some of the problems associated with fisheries management and control of 

targeted and by-catch of large pelagic fish will be explored in a new analysis using 

vessel monitoring data from long-line fishing vessels; the potential impact of the 

fishing fleet under various by-catch mitigation measures will be assessed using a 

simulated prey field informed from the satellite-tracked movements of sharks. It is 

reasonable to assume that if large pelagic predators do exhibit complex spatial 

dynamics characterised by movement patterns consistent with optimal models, it will 

be necessary to explore management measures that can incorporate the type and 

scales of behaviour observed. 
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2 General methods 

2.1 Maximum Likelihood Estimation and model selection 

It is important to recognise that regardless of the computations performed to 

determine the best fitting distribution, it is essential to select candidate distributions 

that are meaningful in terms of the hypothesis being tested. In this study, the 

hypothesis being tested is the Lévy flight foraging hypothesis (LFF), where three 

distributions are relevant: power-law, exponential and truncated power-law. 

Exponential distributions produce move step-lengths with normal diffusion (i.e. 

Brownian movements), whereas power-laws produce super-diffusive movements, 

which have been shown previously to optimise encounter rates under conditions of 

sparse prey availability (Bartumeus et al. 2002). Because natural movement data is 

inevitably bounded, pure power-law fits are rare and therefore, in the first instance, 

only truncated power-law and exponential distributions were of interest. Other 

distributions may well exist that provide better fits to the data, but these would not be 

meaningful in terms of the hypothesis being tested and are therefore not considered 

further in this study. 

2.1.1 Using MLE to estimate distribution parameters 

The Maximum Likelihood Estimation (MLE) methodology employed was based on that 

described by Clauset et al. (2009) with, in most cases, truncated Pareto-Lévy 

(truncated power-law) and exponential distributions being tested. If the truncated 

power-law was found to be a particularly good fit then there is a case for also testing 
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the power-law, although this was found to be rare in biological data. The general 

methodology was to use the MLE equations to estimate the exponent from the dataset 

and to use an iterative technique to refine estimates of xmin and, in the case of the 

truncated Pareto distribution, xmax. First, the appropriate MLE equation was used to 

derive an exponent with the initial xmin parameter set to the minimum value found in 

the dataset. A best fit dataset was then generated using the estimated parameters and 

a Kolmogorov-Smirnov (KS) test was used to determine the goodness of fit (the KS D 

statistic) between the estimated distribution and the empirical data. To determine the 

best fit value for the xmin parameter the calculation was repeated with increasing 

values for xmin drawn from the dataset and with the data set subsequently reduced by 

the removal of all values < xmin. The value (and dataset) that resulted in the best 

(lowest) KS-D statistic was retained as the best fit value. When fitting a truncated 

Pareto distribution the method was repeated to derive a best fit value for the xmax 

parameter, so for the truncated Pareto distribution both the xmin and xmax parameters 

were fitted in the same way. There were two departures from the method as 

implemented in the program code given in Clauset et al. (2009). Firstly, once values for 

xmin and xmax had been derived, the dataset was reduced to include only values 

between those lower and upper bounds. The resulting dataset therefore contained 

only the step-lengths fitting the proposed distribution and it was this that was used to 

produce plots of log10 rank vs log10 step-length that were used to assess visually the 

goodness of fit; however, for purposes of clarity, the fitted distributions were plotted 

against the full set of observations so that the extent of the fit was evident. Secondly, 

rather than test all values in the dataset as possible candidates for xmin or xmax, the 

iterative search routine was halted once five consecutive worse fits had been found to 

avoid the problem of fitting to a very small sub-set of the data; a problem exacerbated 

by complex biological data and exponent estimation. The aim of fitting the lower and 

upper bounds was to find the distribution that best fit most of the data, rather than 

select a small sub-set of the data that was a very good fit to a particular distribution. 

The MLE analysis requires two equations for each distribution to be tested. One is the 

MLE equation for the distribution and is used to estimate the exponent. The other is a 

random number generator (RNG) and is used to generate best-fit datasets. Table 1 

gives the equations that were used for each distribution. The power-law MLE and the 

power-law and exponential RNG equations were obtained from Clauset et al. (2009), 
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the truncated Pareto MLE equation was from White et al. (2008) and the truncated 

Pareto RNG was from Kagan (2002). The MLE equation for the truncated Pareto 

distribution has no closed form solution and is therefore solved numerically by finding 

the value for â that minimises y in the equation: 

 
Eqn 1 

Table 1: The MLE and RNG equations used in the analysis 
In these equations а and λ are the exponents; n is the number of step-lengths; xi an individual step-length.   

 MLE equations 

Power-law 

 

Exponential 

 

Truncated Pareto 

 

 

Note: This MLE equation has no closed form solution (White et al. 2008) 
and must therefore be solved numerically (see text). 

 
Random number equations (in all cases r represents a uniform 

random number in the interval [0,1] 

Power-law 
 

Exponential 
 

Truncated Pareto 
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â+1
ln xmin)

(xmaxâ+ 1
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In some cases data storage tags convert integer pressure readings to real depth 

measurements by multiplying by 5.379, resulting in depths, and consequently step-

lengths, that are multiples of 5.379. Therefore, discrete approximation was used as 

described by Clauset et al. (2009), but using the observed step-length multiple (e.g. 

5.379) so that the best fit datasets used in Kolmogorov-Smirnov tests had a similar 

structure to the observed distribution. However, when generating the rank step-length 

plots, the best fit distribution parameters were used to generate points from a 

continuous distribution as the resulting plots are easier to interpret, and doing so 

provides good confirmation of the accuracy of the approximations. 

2.1.2 MLE model selection 

The methodology used to estimate the exponents and parameters of the exponential 

and truncated Pareto distributions frequently results in different xmin and xmax values, 

thus resulting in fitting the two distributions to different ranges of the original data. 

Consequently, it is not possible to compute separately comparable log-likelihoods 

(LLHs) from the two fitted distributions. Here we dealt with this by splitting the 

analysis into two sections, whereby LLHs and Akaike weights for both distributions are 

computed from each fitted dataset. First, we compute an LLH for the fitted TP 

distribution and using the same dataset (defined by the xmin and xmax parameters) 

compute the LLH for the competing exponential distribution using Eqn 2 and Eqn 3:  

 

 
Eqn 2 

 
Eqn 3 

From these LLHs we can compute wAIC using Eqn 4 and Eqn 5, 

  
Eqn 4  

(where K is the number of parameters in the model) 

llhE= n(ln⋅ λ+ λ⋅ xmin)− (λ⋅∑ (x))

llhTP= n ln( μ− 1

(xmin
1−μ

)− (xmax
1− μ

))− μ⋅∑ ln x

AIC=− 2(loglikelihood )+ 2K
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Eqn 5 

which can be compared in the usual way to perform the first step in model selection 

(Burnham and Anderson 2004). The result of this first step might be that the TP 

distribution is favoured over the competing exponential distribution for that range of 

the data. The second step tests this more completely by repeating the calculations 

using the fitted exponential, and then proceeding to fit the competing TP distribution 

to that data range. This provides a second comparison of wAIC that can be used 

confidently to rule out the exponential distribution if it was not selected during the 

first or second steps. Using this two-step method therefore, we only consider a dataset 

to be fitted by the TP distribution if wAIC favours the fitted TP over the competing 

exponential (step 1), and favours the competing TP over the fitted exponential (step 

2).  

 

This method suffices when the results of the wAIC analysis are unambiguous for steps 

1 and 2. However, because the distributions can be fitted to different ranges of the 

data it is possible for the wAIC results to be conflicted, whereby the TP fitting favours 

the competing exponential and vice versa or for one of the distributions to fit a  much 

smaller range of the data (Figure 9). To resolve these conflicts we use the goodness of 

fit of the two fitted distributions, which in this case is the Kolmogorov-Smirnov D 

statistic which has already been computed as part of the fitting process (Clauset et al. 

2009). There is a requirement to select the distribution that not only fits the 

observations closely, but also which fits as much of the data set as possible. For 

example, a distribution that is a very good fit but to only 10% of the data set (and 

might as a consequence have a low D-statistic) should be rejected in favour of a 

distribution with a slightly worse D statistic (i.e. higher), but which fits significantly 

more of the dataset (see Figure 9). Therefore, in this study, the GOF was adjusted to 

account for how much of the original dataset was fitted by the distribution, using the 

equation: 

w i=
exp(− Δi/ 2)

∑
r= 1

R

exp(− Δ r /2)

whereΔi= AIC i− AIC min
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Eqn 6 

where D is the KS-D statistic. Taking the log of total and fitted steps serves to reduce 

the impact of a difference of just a few points. If the fit is to the entire dataset then the 

result is D; hence, the less of the data fitted by the best fit distribution the poorer 

(larger) the resulting GOF value becomes. Adjusting the D statistic in this way allows a 

better comparison between distributions fitted to different ranges of the dataset.  

 
Figure 9: A ranked step-length plot showing a partial exponential fit 

Both the TP distribution (red line) and the exponential distribution (blue dashed line) are good fits to the 
data (black circles) but the exponential fit is to a smaller subset of the data. The adjusted GOF value 
compensates for this.  

The decision process used in this study is summarised in Table 2. For datasets where 

the wAIC decision is to be classed as a best fit TP, there are the additional 

requirements that the estimated exponent µ falls within the Lévy range (1 < µ ≤ 3), and 

that the range of data fitted (i.e. xmax – xmin) should span at least 1.5 orders of 

magnitude. Candidate TP datasets that fail these requirements are assigned to the 

Mixed-model category since it is assumed that such data may represent more complex 

behaviour patterns, e.g. a mixture of Lévy and Brownian strategies, or other 

movement patterns entirely. 

Table 2: The simple ‘truth-table’ used to perform model selection.  

TP denotes the truncated Pareto distribution. 

                wAIC values 
 

Fitted TP Competing exponential Fitted exponential Competing TP Result 

1 0 0 1 TP 

0 1 1 0 Exponential 

1 0 1 0 Resolve using GOF 

0 1 0 1 Mixed-model 

 

 

Dadj= D⋅ log(Total Steps)/ log(Fitted Steps)
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The decision process used for model selection is given in detail in Figure 10 below, and 

the decisions are further explained as follows: 

A. Does AIC support the fitted TP over the alternate exponential? 

B. Does AIC support the fitted exponential over the alternate TP? 

C. Does the adjusted GOF support exponential over TP? 

D. Does AIC reject the fitted exponential in favour of the alternate TP? 

E. Does the adjusted GOF reject exponential in favour of TP? 

F. Is the TP exponent in the range 1.0 to 3.0? 

G. Does the fitted TP range (i.e. xmin to xmax) span at least 1.5 orders of magnitude? 

 

 

Figure 10: The decision process used for model selection 
The process begins at question (A) with green lines being followed for positive responses and red dashed 
lines for negative responses. A truncated power-law (TP) fit is only concluded when there is considerable 
certainty that it is the correct conclusion. OOM is orders of magnitude. 

  

(A) 
TP_AIC > 

TP_Alt_AIC 

(D) 
E_AIC < 

E_Alt_AIC 

 

(F) 
1 < μ ≤ 3 

(E) 
E_GOF > 
TP_GOF 

(G) 
OOM > 1.5 

(B) 
E_AIC > 

E_Alt_AIC 
 

(C) 
E_GOF < 
TP_GOF 

 

TP 

Exponential 

’Mixed’ 
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An alternative description of the process, perhaps more familiar to a biologist, would 

be a dichotomous key as follows: 

A. Does AIC support TP over the alternate exponential?  Yes → D  

No  → B 

 

B. Does AIC support exponential over the alternate TP?  Yes → Exponential  

No  → (C) 

 

C. Does the adjusted GOF support exponential over TP?  Yes → Exponential  

No  → Mixed 

 

D. Does AIC reject exponential in favour of TP?   Yes → (F) 

No  → (E) 

 

E. Does the adjusted GOF reject exponential in favour of TP? Yes → (F) 

No  → Mixed 

 

F. Is the TP exponent in the Lévy range of 1.0 to 3.0?  Yes → (G)  

No  → Mixed 

 

G. Does the fitted TP range cover > 1.5 orders of magnitude? Yes → TP  

No  → Mixed  

The outcome from this model selection process was the categorisation of each dataset 

into one of the three categories (TP, exponential or mixed), based on Akaike weights, a 

valid Lévy exponent and a sufficient range of fit in terms of the orders of magnitude 

over which data were fitted. Thus, all the criteria must be met and there must be 

unequivocal support from AIC weights or GOF for an individual dataset to be placed in 

the TP category. This methodology is appropriately robust because model selection is 

strict and entirely objective. Nevertheless, this process did not remove the need to 

perform a final check by visually scrutinising the model fit to the data on ranked step-

length plots (e.g. Figure 11). This final visual check is important because Akaike weights 

do not confirm the goodness of fit, but merely help decide which of the competing 

distributions is least bad (Burnham and Anderson 2004). Therefore, it is entirely 

feasible for both distributions to have very poor fits to the underlying observations but 

AIC will still select one poor model fit over another equally poor fit. The model fitting 

and selection methodology described here can be applied to any appropriate data, 

with any suitably relevant distributions, and could therefore find wide applicability, 
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particularly in the study of movement data where a conceptual framework already 

exists in terms of the LFF hypothesis and other movement models (Bartumeus 2007, 

Viswanathan et al. 2008). 

 
Figure 11: A ranked step-length plot showing a poor fit for both models 

This plot (comprising synthetic data) shows observations (black circles), the fitted TP distribution (red line) 
and the fitted exponential distribution (dashed blue line). It is clear that, although AIC supports the TP 
distribution, neither distribution can be considered to be a good fit to the data. 

2.1.3 Model selection validation 

The model selection methodology described above was validated using simulations to 

determine whether the method was sufficiently accurate in assigning known move 

step-length distributions to their correct category. Simulated datasets were generated 

comprising 50 truncated Pareto distribution (TP) move steps, 50 exponential move 

steps or 100 steps comprising a 50:50 mixture of both, with 100 data sets being 

generated in each case, giving 300 datasets for analysis. It should be noted that small 

datasets were used as it is known that reducing the size of the dataset reduces the 

accuracy of exponent estimation (Sims et al. 2007) and will therefore be a stronger test 

of the methodology. The results of the analysis are shown in Table 3. It is evident from 

this analysis that none of the pure TP datasets were wrongly assigned as exponential, 

and none of the pure exponential datasets were wrongly assigned as TP. Although a 

large percentage of both the TP and exponential datasets were classified as mixed 

(59% and 65% respectively); we consider it to be more important to reduce the 

number of misclassifications at the cost of losing some datasets from further analysis. 

The majority of the mixed datasets were correctly classified as mixed model (81%), as 

expected, with 18 datasets being classified as TP and only one as exponential. With the 

mixed data it is probable that in some cases the TP steps will be the predominant 

feature and in others the exponential. However, the presence of some longer steps in 

the TP distributions tends to rule out their classification as exponential.      
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The relatively low number of unambiguous classifications was attributed to the low 

number of steps in these datasets which is known to reduce the accuracy of the 

analysis as described above. To confirm whether this was the case the validation was 

repeated using datasets with 250 steps, the results of which are given in Table 4. It is 

clear from this analysis that with more steps the percentage of correct assignments 

increases, hence the accuracy becomes greater. It was confirmed therefore that as 

before there were no incorrect identifications of either TP or exponential datasets and 

now 92% of the TP and 80% of the exponential datasets were correctly identified. 

Table 3: Results of the model selection validation tests with 50 steps. 

 
Resulting category 

Input Data TP Exponential Mixed 

TP 41% 0% 59% 

Exponential 0% 35% 65% 

Mixed 18% 1% 81% 

 

Table 4: Results of the model selection validation tests with 250 steps. 

 
Resulting category 

Input Data TP Exponential Mixed 

TP 92% 0% 8% 

Exponential 0% 80% 20% 

Mixed 14% 0% 86% 

 

2.1.4 Sensitivity of MLE analysis to behavioural complexity 

Track sections are sometimes poorly fitted by either power-law, truncated Pareto or 

exponential distributions. It was hypothesised that some of the poor fits might be 

caused by behavioural complexities in the movement time-series arising from the 

inclusion of simple Brownian motion in addition to Lévy motion. Theoretical studies 

(Viswanathan et al. 2002) have shown that when prey is relatively abundant Brownian 

motion is an optimum search strategy, which would explain the presence of 

exponentially distributed step-lengths. To test this hypothesis, simulated time series 

were generated using steps from a truncated Pareto (power-law) distribution with 5, 

15 or 25% of steps being drawn from an exponential distribution. The parameters for 

the exponential distribution were derived by using MLE to fit an exponential 

distribution to the synthetic truncated Pareto distribution dataset. Fitting in this way 

ensured that the exponential step-lengths covered a similar range to the truncated 
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Pareto step-lengths and could in principle, therefore, have been generated by the 

same animal. As hypothesised, the MLE analysis (Figure 12a-c) reveals that increasing 

proportions of exponential move steps results in increasingly poorer fits. Interestingly, 

comparison of the synthetic data and model fits to empirical examples (basking shark, 

bigeye and yellowfin tunas) (Figure 12d-f) shows distinct similarities in form, 

supporting the hypothesis that poorer fits to the truncated Pareto distribution in some 

individuals may well be the result of behavioural switches in response to changes in 

prey field density. Behavioural complexity such as this could explain why Lévy 

behaviour can be difficult to detect in longer time-series where the likelihood of 

recording different movement behaviours is increased (Sims et al. 2008a). It seems 

likely that good fits to power-law or truncated power-law distributions will only be 

found when Lévy behaviour is adopted by foragers for the majority of the period 

within a time series section being analysed, even if a statistical technique such as split-

moving window is used to identify discontinuities. 

Given the effect of complex biological data on the form of rank-frequency plots (e.g. 

Figure 12) visual inspection of plots can be useful to help assess whether any particular 

distribution is a good fit when testing for the presence of power-laws or truncated 

power-laws to infer Lévy behaviour. This may be particularly relevant in the context of 

testing for the presence of biological Lévy flights because it is the heavy (fat) tail of the 

move step-length frequency distribution that should be reasonably accounted for by 

any candidate best fit model for the identification of Lévy behaviour to be reliably 

detected. The frequency of longer move steps that make up the heavy tail of a 

distribution (the right-hand side of the distribution) is low compared with the more 

frequent smaller steps making up the left hand side. Importantly in this context, MLE 

model fitting to empirical data plotted as a rank-frequency plot gives equal weight to 

all points even though the vast majority of points are clustered on the left hand side. 

This may be a potential problem for model selection in some cases because strong 

support for a model using Akaike weight values (e.g. wAIC = 1.0; strongest support) 

may be based on a good fit to the left hand side of the distribution rather than to the 

heavy tail also. 
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Figure 12: Analysis of complex synthetic data.  

Black circles represent synthetic or empirical observations; red lines represent MLE best fit truncated 
Pareto distributions. (a-c) Synthetic truncated Pareto distribution datasets including 5, 15 and 25% move 
steps derived from an exponential distribution; (d) basking shark Cetorhinus maximus 2, section 2; (e) 
bigeye tuna Thunnus obesus 3, section 4; (f) yellowfin tuna Thunnus albacares 1, section 5, showing 
visually similar patterns to synthetic Lévy-Brownian (exponential) datasets. Arrows indicate departures 
from a good fit to the truncated Pareto distribution. 

2.1.5 Problems with testing GOF I: KS-Test and Akaike weights 

When determining the best fit values for the xmin and xmax parameters it is necessary to 

compare the proposed theoretical distribution with the empirical data using a test that 

provides some measure of the goodness of fit. Several statistical methods can be 

employed, such as the Cramér-von-Mises criterion, the Anderson–Darling test, the 

Wald–Wolfowitz runs test or the Kolmogorov-Smirnov (KS) test. Clauset et al. (2009) 

recommends the KS test as this is the commonest test for non-parametric data and is 

particularly sensitive to right-skewed data typical of power-law distributions. In some 

cases, despite reasonable visual fits to empirical data, both the GOF values and the 

Akaike weights were found to favour the alternative distribution and consequently 

some of these ambiguous sections were marked as not fitting any distribution well. 

However, with some other ambiguous sections the model fitting plots often showed 

strong support such that the statistical results could be considered unreliable or at 

least biased. These ambiguities in both the KS-D statistic and in Akaike weights 

highlight the importance of inspecting the fits graphically before concluding that any 

particular distribution is a good fit. This is especially important when testing for the 

presence of power-laws or truncated power-laws to infer Lévy behaviour because it is 
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the heavy (fat) tail of the move step-length frequency distribution that must be 

reasonably accounted for by any candidate best fit model (see previous section). 

Therefore it is better to rely not solely on the model comparison values but to inspect 

plots of model fits to the empirical data visually. Figure 13 shows some examples of 

where visual inspection of model fits to data conflict with the statistical analysis. It is 

interesting that Akaike weights seem to become unreliable when exponent values for 

the truncated Pareto distribution approach 3; for example, as with silky sharks 2 and 3 

in Figure 13 (a and b) where silky shark 2 has an exponent of 2.99 and silky shark 3 an 

exponent of 2.03. Despite both being good visual fits to a truncated Pareto (red line), 

and clearly not being a good fit to the exponential (blue line), silky shark 2 has an 

Akaike weight that favours the exponential distribution.  

 
Figure 13: Good visual model fits with conflicting model comparison statistical results.  

Black circles represent empirical observations. (a) Silky shark 2 shows a good fit to a truncated Pareto 
distribution (red line) despite having both GOF values and Akaike weights that favour the exponential 
(blue line) (TP GOF 0.210, AICw 0.0, exponential GOF 0.146 AICw 1.0). (b) Silky shark 3 shows a good fit to 
a truncated Pareto (power-law) distribution (red) despite GOF values that favour the exponential (blue) 
(TP GOF 0.181, exponential GOF 0.102).  (c) Black marlin 1 section 2 is a better fit to the exponential (Red) 
than the truncated Pareto (power-law) model fit (blue), but has both GOF and AICw values that favour the 
truncated power-law (Exp GOF 0.181, AICw 0.02; TP GOF 0.178, AICw 0.98). (d) Yellowfin tuna 2 section 2 
is a better fit to the truncated power-law (red) than exponential (blue) but has Akaike weights in favour of 
the exponential model fit (TP AICw  0, exponential AICw 1) despite being one of the few sections to have a 
significant p-value of 0.340 in favour of the truncated Pareto (power-law) distribution. 

2.1.6 Problems with testing GOF II: p-values 

Increasing complexity in the synthetic movement time-series has a marked effect on p-

values calculated to determine the statistical significance of the fitted relationship. 

Figure 14a-c shows a sharp decline in the significance of the truncated Pareto best fits 

to the simulated data with an increase in introduced exponential move steps (note 
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that, as described above, higher p-values represent better fits). The pattern of 

decreasing p-values was also evident in empirical data, where the deviations between 

data points and the fitted line in each plot were similar. What is evident from this 

analysis is that time-series of free-ranging animal movements are often naturally 

complex and consequently non-significant p-values found with this method (p < 0.1) 

may not necessarily mean that Lévy behaviour is not exhibited, or indeed, dominant. 

The inconsistencies arising in p-values generated from complex biological data 

represents clear evidence that numerical methods should not be relied upon solely, 

but rather that ranked-step-length plots with MLE best fits should be examined visually 

to determine the goodness of fit (Aban et al. 2006).  

 
Figure 14: Comparison of p-values from MLE calculations. 

Track sections showing good visual fits to a truncated Pareto distribution but with anomalous p-values 
and K-S GOF values: (a) bigeye thresher 1 entire track, GOF 0.142, no significant p-value; (b) bigeye tuna 
4019 section 5, GOF 0.031, significant p-value (0.514); (c) basking shark 2 section 2, GOF 0.063, significant 
p-value (0.624); Blue shark 10 section 2, GOF 0.038, no significant p-value. 

2.2 Movement of virtual foragers & predators 

All the simulations written for and used in this study involve virtual organisms 

(foragers, predators or prey) that require movement patterns based on specified move 

step-length distributions. All the individual move steps can be generated using the 

random number generators described above in Table 1, with the computer language’s 

built-in uniform random number generator used for the uniform distribution.  
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2.2.1 Move steps 

The foragers or predators are always located and moved within continuous space with 

real coordinates and all move steps are therefore continuous rather than discrete 

values. Each step is computed as a vector (distance), drawn from the specified 

distribution, and a turn angle which is uniform random on the interval [0,2π] radians. 

Further, all the organisms require each move step to be interpolated, either to check 

the contents of grid cells over which it is moving, for the foraging lab and predator 

prey simulations, or to check for contact with land, in the case of the shark simulator.  

2.2.2 Interpolation of move steps 

To perform a single, interpolated, move step values of ΔX and ΔY, are first computed 

from the turn angle and move step-length. The move is always interpolated as a move 

of approximately one unit in either x or y and a fractional move in the other 

dimension. Therefore, if ΔX > ΔY, interpolated steps are computed where ΔX’ = 1.0 and 

ΔY’ = ΔX/ΔY; this is essentially Bresenham’s algorithm (Bresenham 1965). The 

interpolated deltas are added to the X and Y coordinates in continuous space and after 

each interpolated step the grid cell in which the forager is found is calculated by simply 

taking the integer value of the continuous X and Y variables. Note that this simple 

algorithm leads to discontinuities in step-lengths between 1.414 and 2.0 and 2.828 and 

3.0 because each move step is performed as an integral number of interpolated move 

steps. The smallest step that can be performed will have one delta set to 1.0 and the 

other set to zero, giving a step of 1.0. The largest vector that can be moved as a single 

step will have both deltas set to 1.0, giving a step-length of 1.414 (√2). If the vector is 

slightly larger, then two moves are required which will result, as a minimum, in one 

delta being the sum of two 1.0 deltas and the other a value of zero resulting a move 

step of 2.0 (√4). Given that the maximum step-length is generally > 500 this 

discontinuity is not considered to be important, however it is noticeable (and 

accentuated) by rank frequency plots that plot the log of the step-length.  
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3 An exploration of Lévy flight as a foraging strategy 

3.1 Introduction 

Empirical tests of the Lévy flight foraging hypothesis (LFF) are very difficult to perform 

for a variety of reasons. Field tests require free-ranging animals to be tagged to record 

their movements which can result in understandably limited information (i.e. often just 

a time series of depth and temperature). In addition, there can be no control over prey 

field densities and no direct evidence concerning the activities the animal is actually 

engaged in at any point in time. Under controlled conditions in the laboratory there 

are logistical constraints: enclosures or aquaria are generally not large enough for 

spatial movements spanning a broad range of scales, hence these restrict the animal’s 

movements to a large degree. Therefore field studies are limited to natural 

experiments which are inevitably time consuming and expensive (e.g. Priede 1984, 

Sims and Merrett 1997, Kohler and Turner 2001), while laboratory studies are limited 

to smaller organisms (e.g. Bartumeus et al. 2003, Reynolds and Frye 2007) with 

necessarily much simpler behaviour. Consequently, as foraging models in more than 

one dimension are analytically intractable (Hartig et al. 2011), computer simulation 

studies have been used extensively to test many different aspects of the LFF 

hypothesis (e.g. Viswanathan et al. 1999, Viswanathan et al. 2000, Bartumeus et al. 

2002, Reynolds and Bartumeus 2009). In this chapter a computer simulation was 

developed to explore the consequences of virtual foragers employing different search 

strategies in differing prey fields, resulting in a thorough and robust independent test 

of the Lévy flight foraging hypothesis.  
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There is a distinct need for a thorough test of the theoretical results because most of 

them have come from experiments undertaken by collaborating researchers (e.g. 

Viswanathan et al. 2011) using what appears to be the same testing framework and 

simulation code. Other less comprehensive simulations have been undertaken that 

confirm the results of Viswanathan and co-workers, however, there are other 

researchers who have not found the same results with a different, albeit less 

comprehensive simulation, that set out to test the same general ideas. Hence some 

doubts have been expressed about whether a Lévy flight search does indeed confer 

the advantages proposed in earlier studies. For example, in a recent paper James et al. 

(2011) replicated the simulation study performed as part of an influential empirical 

study by Sims et al. (2008a) in which it was demonstrated that, for a ‘blind’ forager in a 

sparse environment, Lévy movements conferred an advantage over simple, uniform, 

random movement approximating normal, Brownian, diffusion. The advantage was 

found to be greatest when the prey field had a Lévy, rather than a uniform 

distribution. The results obtained by James et al. appears to be at odds with those 

found by Sims et al., concluding instead that foraging efficiency (which they define as 

the proportion of available biomass consumed per unit area searched) converges to a 

constant value regardless of the movement pattern employed by the forager. The 

convergence is described as slow, suggesting it took many simulation runs for the 

convergence to become evident. However, James et al. performed only 104 foraging 

runs, compared to the 105 runs performed for each test by Sims et al. The results are 

summarised in their figure 4 (James et al. 2011), which presents a running mean for 

each of the four simulation scenarios studied; nevertheless, no table of results was 

provided, so actual simulation outcomes cannot be accurately compared. From the 

prey density figures presented in their Appendix A the total biomass in the simulation 

is described as being set at 106 units, but exactly how this biomass is distributed 

throughout the simulation arena was not made clear. For example, the paper does not 

state how many of the 2500x5000 cells have > 0 biomass or what the size or 

distribution of prey patches was. Consequently, it is not clear whether the prey field 

experienced by the virtual foragers is sparse and heterogenic, or relatively 

homogeneous. 

Given the apparent controversy over the Lévy flight foraging hypothesis (Buchanan 

2008) and the contradictory papers publishing both mathematical analysis and 
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simulation results as discussed in Chapter 1 (e.g. Raposo et al. 2003, Benhamou 2007, 

Plank and James 2008, Oshanin et al. 2009, Plank and Codling 2009, Reynolds and 

Bartumeus 2009, Reynolds and Rhodes 2009), together with the discrepancy between 

the results obtained by Sims et al. (2008a) and by James et al. (2011), it seems 

appropriate to present a thorough exploration of Lévy flight as a foraging strategy; 

particularly as many of the previous simulation studies have used a somewhat 

impoverished set of simulations and scenarios. Therefore, this chapter will present 

results from a robust and straightforward simulation model that allows different 

foraging styles (e.g. Lévy, uniform, exponential) in the form of random walks, to be 

compared for both foraging efficiency and encounter rates under varying scenarios of 

prey field distribution and foraging strategy. The program is entirely independent from 

and different to that employed by Viswanathan and co-workers. 

From this new simulation program, it will be shown that in the majority of cases Lévy 

foragers with µ = 2.0 outperform other foragers and that the advantage is robust to 

prey field densities, prey field distributions and prey depletion. Importantly the 

simulation presented here is a 2D simulation, in contrast to the biologically unrealistic 

1D scenarios that are frequently used, principally because of their analytical tractability 

(e.g. James et al. 2008, Plank and James 2008). 

3.2 Methods 

3.2.1 The foraging simulator 

For this study a new computer program was developed which more realistically 

simulates a 2D forager, a full description of which is given in Appendix F. Briefly, 

however, the simulation begins with the specification of the study arena (the 

simulation is designed to allow simulation of laboratory trials) in which virtual foragers 

will be released. Rectangular arenas can be set up with sizes ranging from a small 

laboratory aquaria to an ocean basin and comprise a 2D grid of cells into which prey 

patches can be ‘pasted’ to generate a prey field. The number, distribution and density 

of prey patches and the overall available biomass can all be specified; once generated 

a configuration can be saved for future reuse and therefore multiple simulations can 

use exactly the same prey field, thereby controlling for prey field variability in the 

results.  
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A single foraging run involves the generation of a random walk through the study 

arena with turn angles being always drawn from a uniform turn angle on the interval 

[0,2π] radians and a move step (or vector) being draw from a pre-defined distribution 

as follows: Uniform, with a single parameter of maximum length (note that because at 

least one interpolated step is always performed the Xmin parameter is effectively 1); 

exponential with parameters of exponent and Xmin; power-law, with parameters of 

exponent (µ) and Xmin; truncated power-law (truncated Pareto) with parameters of 

exponent (µ), Xmin and Xmax. Each move step is interpolated across the prey-field grid 

with any prey encountered being counted and, optionally, consumed (i.e. in the 

‘destructive’ foraging scenarios). If at any point the boundary is encountered the move 

is reflected, i.e. the forager is contained within the arena (see Figure 15). A foraging 

run can be limited to a number of steps, a maximum path length, or both (i.e. 

whichever limit is reached first). Any number of replicate runs can be performed with 

statistics being collected on biomass consumed and distance travelled.  

 
Figure 15: An example foraging run 

A truncated Pareto move step distribution with xmin = 5, µ = 2.0 xmax = 2500. Steps can be seen to be 
reflected from the boundary of the tank. Lévy distributed prey patches are shown in green. 

3.2.2 General methods 

The simple simulations performed by Sims et al. (2008a) replicated the simplest 

foraging model of non-destructive foraging and no prey targeting in the simulations 

and analysis performed by Viswanathan et al. (e.g. 1999, 2000, 2001), which included 

prey targeting whereby the forager stopped moving when a prey item was 

encountered and a new move was then performed. This simple scenario was also 

considered by James et al. (2011), however, the Sims et al. (2008a) simulation was 

actually closer to the destructive foraging scenario because no back-tracking occurred; 
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this is because the forager moved at a constant horizontal rate of one cell per step and 

with varying vertical step-lengths (to reflect the diving movements analysed 

empirically). Therefore, prey patches could not be revisited in the Sims et al. (2008a) 

simulation, a subtlety that was perhaps not fully understood at the time. The 

simulations performed here will cover the four combinations of destructive and 

targeted foraging. The simulations performed by James et al. (2011) were very short, 

comprising only 104 replicates, despite those in Sims et al. comprising 105 runs (some 6 

x 105 replicates in total). In this study 105 replicates are also used. Unless otherwise 

specified each forager performs 5000 steps in each simulation, which was also the case 

in the simulations performed by Sims et al (2008a).  In order to remove the effect of 

differing path lengths Foraging Efficiency was measured as biomass consumed per unit 

distance travelled. A further measure of foraging success reported here was the 

percentage of successful foraging runs, i.e. the number of runs where at least one 

encounter with prey occurred, expressed as Encounters per unit distance travelled.  

3.2.3 Prey fields 

The prey field environment was set up to match the Sims et al. (2008a) simulation, 

setting the arena to 2500x5000 cells. Unless otherwise specified the simulations use a 

sparse prey field with a total biomass of 6000 units distributed as 10 patches giving a 

total of 1876 populated cells with each patch enclosed within a 20x20 area. This gives 

a mean biomass density of 0.00048 units per cell and a populated cell proportion of 

0.015%. Periodic boundary conditions are observed for the placement of patch pixels 

(i.e. if the edge is reached the patch is wrapped around) and biomass is added to any 

already present if a patch overlaps a previously placed patch. 

3.2.4 Simulation scenarios and foraging strategies 

Four simulation scenarios were considered with five different foraging strategies. The 

scenarios were (1) non-destructive, no targeting; (2) destructive, no targeting; (3) non-

destructive, targeted; (4) destructive and targeted. The five foraging strategies (i.e. 

move step-length distributions) used were (1) uniform, maximum step 16; (2) 

truncated Pareto (TP) Xmin 1.0, μ 1.5, Xmax 2500; (3) TP as 2 but with μ 2.0 (the 

hypothetically optimal strategy); (4) TP as 3 but with μ 2.5; (5) Exponential with Xmin 

1.0, exponent 0.148. The uniform and exponential foraging strategies were configured 

to give a mean step-length of ~8, roughly equivalent to the TP with μ 2.0 (this is not 
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particularly important because results are expressed as per unit distance travelled but 

might affect encounter rates). Note that in all these simulations a truncated Pareto, 

rather than a pure power-law was used for the Lévy foragers. The reasons for this are 

twofold; firstly pure power-laws are rare in empirical data (Humphries et al. 2010) and 

therefore using truncated power-law distributions of move step-lengths here makes 

this work more relevant to empirical field studies; secondly the simulation 

environment is bounded to dimensions of 2500x5000 and pure power-laws would 

cause excessively long steps that would frequently exceed these boundaries.  

3.3 Comparison of Lévy, uniform and exponential foragers 

The principal question asked by many studies is simply whether a Lévy foraging style is 

more efficient than other foraging styles (e.g. Viswanathan et al. 1999, Viswanathan et 

al. 2000), with efficiency typically being measured as the quantity of biomass 

consumed per unit distance travelled. Here, in the first simulation scenario, that 

question was addressed by comparing the three Lévy foragers with the two simple 

foragers (i.e. uniform and exponential), that have movement patterns similar to 

Brownian motion. The initial comparison therefore comprised five different foragers in 

a sparse prey field and foraging was non-destructive (i.e. prey patches were not 

depleted and were therefore revisitable). 

The results are given in Figure 16, Figure 17, Table A1 and Table A2. It can be seen that 

the Lévy forager with μ = 2.0 performed slightly, though significantly, better than the 

other foragers in terms of efficiency; 2.95% better than the exponential forager 

(Kruskal-Wallis One Way Analysis of Variance on Ranks; p < 0.001). Differences 

between all foragers were significant at p < 0.05 (Tukey Test). This result is as 

predicted by the Lévy flight foraging hypothesis except that Viswanathan (1999) 

employed prey targeting, whereas here μ = 2.0 was found to be marginally more 

efficient in even the simplest case. However, the most obvious discriminator in this 

scenario is the number of simulation runs that encounter prey, presented as successful 

(i.e. non-zero runs) / mean path length. Clearly it is important to correct for differences 

in mean path length which ranged from 14541 to 249938. Here the Lévy forager with μ 

= 2.0 outperformed all other foraging strategies and outperformed the worst, the 

uniform forager, by ~2.6 times (Mann-Whitney Rank Sum Test; p < 0.001, Figure 17). 
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Figure 16: Comparison of Lévy with exponential and uniform foragers 

The Lévy (TP) forager with µ=2.0 marginally outperformed the other foragers in terms of foraging 
efficiency (i.e. biomass consumed per unit distance travelled). The difference was small (e.g. ~3% > 
exponential) but significant (p < 0.001, Kruskal-Wallis One Way Analysis of Variance on Ranks); all pair-
wise comparisons were significantly different at p < 0.05 (Tukey test), see text and Table A2. The error 
bars show ±S.E. 

 
Figure 17: Encounter rates (measured as successful foraging runs) per mean unit distance travelled 

In the simplest foraging scenario it is the encounter rate of the Lévy forager with µ=2.0 that was the most 
obvious discriminator of performance. The TP2.0 forager was twice as successful as the other foragers. 

3.4 Destructive vs. non-destructive foraging 

Previous studies have suggested that Lévy foraging is only advantageous when a prey 

patch is revisitable (Viswanathan et al. 1999, Viswanathan et al. 2001, James et al. 

2011), i.e. when prey is not depleted, as might be the case with pelagic predators 

preying on large schools of fish or on patches of zooplankton. Other work focusing on 

encounter rates has found that the encounter rate for Lévy foragers was higher even if 

prey was consumed (Bartumeus et al. 2002). To investigate the hypothesis that Lévy 

foragers lose the advantage when foraging is destructive the simulations from the first 

scenario were repeated but with prey being consumed. In this scenario prey is 

depleted, i.e. prey was not replaced somewhere within the arena when consumed 

(which would be complex to achieve while maintaining the prey distribution), so the 

overall level of prey availability fell as the simulation proceeds.  
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The results are given in Figure 18, Figure 19 and Table A1. Here the TP 1.5 forager 

(approaching ballistic movement) outperformed other search patterns (~30% better 

than uniform and ~16% better than exponential, Mann-Whitney Rank Sum Test p < 

0.001) with TP 2.0 being a little less successful (~20% better than uniform and ~8% 

better than exponential, Kruskal-Wallis One Way Analysis of Variance on Ranksp < 

0.001). The overall foraging efficiency was reduced from a maximum rate of 4.37E-04 

for non-destructive foraging to 4.21E-04 (3.66% less) as would be expected with prey 

being depleted. With destructive foraging there now seems to be an advantage in 

leaving a patch and exploring further afield; the TP 1.5 forager had more frequent long 

relocations than the other foragers and spent less time in any given patch. The poor 

performance of the TP 2.5 forager adds weight to this suggestion as this forager had 

less frequent long relocations and therefore tended to remain in a more localised area. 

The difference between the TP 2.0 and the uniform forager was ~11% (Kruskal-Wallis 

One Way Analysis of Variance on Ranks; p < 0.001), similar to the difference found by 

Sims et al. (2008a), supporting the contention that the 2008 simulation is consistent 

with the destructive foraging scenario. It should be noted that both the mean path 

length and the number of encounters was consistent throughout the simulations 

depending only on the foraging strategy, as can be seen in Figure 19 and Table A1. 

  
Figure 18: Destructive foraging in a sparse prey field 

In this scenario the TP 1.5 forager was clearly more efficient in terms of biomass consumed per unit 
distance travelled; however the TP 2.0 forager still outperformed the others. Error bars show ± S.E. 
Variance was considerably less than with the non-destructive scenario. 
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Figure 19: Encounter rates with destructive foraging 

The encounter rates were unchanged from the first scenario with non-destructive foraging, despite the 
depletion of the prey field. 

3.5 The effect of prey targeting 

In the simulation model of Viswanathan et al. (1999, 2000) the forager continually 

scans the surroundings, within a radius of detection, and halts a move step if prey is 

encountered, then proceeding directly to the prey. In the preceding simulations a 

simpler model was employed, where the forager does not alter the path and therefore 

those simulations were simply an investigation into the effect of the movement 

pattern. However, the model used by Viswanathan et al. is biologically realistic, and it 

is with this model that the optimality of µ = 2.0 was originally determined. To 

investigate the effect of prey targeting, a set of simulations was performed with prey 

targeting by halting a move step when a grid cell containing biomass was encountered 

and then selecting another move step; the forager was not randomly relocated. The 

radius of detection for the forager was just one unit, being the most conservative case. 

These simulations covered scenarios (3) and (4) as described above, i.e. non-

destructive and destructive foraging with prey targeting and employed the same five 

foragers.  

The results are given in Figure 20, Figure 21 and Table A1. As with the first scenario the 

TP 2.0 forager clearly outperformed the others, although here it was by a greater 

margin, 18% greater than the next best forager (TP 2.5), 2.17 times greater than the 

exponential forager and 2.5 times greater than the worst performing uniform forager 

(Kruskal-Wallis One Way Analysis of Variance on Ranks, p < 0.001 in all cases). In the 

destructive foraging scenario the results differ from the previous destructive foraging 

simulations but were very similar to the non-destructive, targeted scenario with the TP 

2.0 again being the most successful. Apart from the expected reduction in the overall 
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level of prey consumption there was little difference between the destructive and non-

destructive results when prey targeting was employed. 

The success of the TP2.0 forager was in fact much greater than expected, given that 

the advantage conferred by prey targeting (in terms of the exploitation of a patch once 

encountered) was the same regardless of the movement pattern of the forager. Once a 

patch was encountered, and a step halted, subsequent steps often led immediately to 

another cell containing biomass, causing a further halt and new step. Because prey lies 

within only one or two cells of the present location it made no difference what 

distribution the move step was drawn from and therefore all foragers gained the same 

advantage once a prey patch was encountered. Once within a patch, therefore, all 

foragers proceeded by simple Brownian diffusion until they left the patch. A simplified 

example of such a path is shown in Figure 22. The most likely explanation of the much 

greater success of the TP2.0 forager, therefore, was that the forager encountered 

more new prey patches than the other foragers and consequently was able to exploit 

more patches. The results from all four foraging scenarios are summarised in Figure 23 

where the significant difference conferred by prey targeting is clear. 

It is also worth noting that the relative efficiencies were the same under the 

destructive foraging scenario. However, in these simulations prey patches were used, 

not single prey items and therefore although encountered prey was consumed there 

remained further prey in the immediate vicinity that was exploited. Consequently, the 

destructive foraging scenario explored here differs from that used by Viswanathan et 

al. 

The most consistent result from these simulations was the success of the TP 2.0 

forager in terms of the percentage of successful foraging runs (i.e. runs where some, 

rather than no, prey was encountered), when adjusted for the distance travelled. 

There was, as expected, a clear relationship between the chance of a foraging run 

being successful and the mean path length, as shown in Figure 24. The TP1.5 forager 

experienced an unsuccessful run < 3% of the time. The TP2.0 forager however, was 

almost twice as successful as the exponential and uniform foragers, both of which 

were designed to have almost identical path lengths. Ultimately, it was this increased 

encounter rate that led to the overall success of the TP2.0 forager. A further 

interesting observation was that the percentage of successful foraging runs was 
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completely independent of the foraging scenario being tested, as shown in Figure 25, 

where it is clear that only the movement pattern affects the encounter success. 

  
Figure 20: Non-destructive, targeted foraging 

The results are similar to the first, non-destructive, scenario where the TP 2.0 forager was the most 
efficient, although here the advantage of the TP 2.0 forager was even greater (~1.47 times > uniform). The 
uniform forager however performed very poorly and was in last place rather than fourth. The overall prey 
consumption was much higher, as would be expected given the improved prey patch exploitation in this 
scenario. Again error bars are ± S.E. 

  
Figure 21: Destructive targeted foraging 

Contrary to the previous simulations with destructive foraging (Figure 18) these results are almost 
identical to the non-destructive, targeted simulations. The principal difference was an expected reduction 
in the overall prey consumption. Error bars are ± S.E. 

 
Figure 22: Prey targeting allows greater prey-patch exploitation 

A forager with prey targeting (black circles) performs a complex, diffusive random walk throughout the 
prey patch, halted at every move that encounters prey. Consequently significantly more of the prey patch 
is exploited than is the case with the simple forager (red circles) that moves blindly through the patch, as a 
virtual forager would in this simulation without prey targeting. 
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Figure 23: Summary of sparse prey field simulations 

Differences between the foragers can be seen to be relatively minimal in the simplest non-destructive 
non-targeted case but are quite pronounced in the targeted scenarios. (D) Destructive, (ND) non-
destructive. 

 
Figure 24: Percentage of successful foraging runs vs mean path length 

With increasing mean path length there is an expected increase in the percentage of foraging runs that 
encounter prey and it was therefore not surprising that the TP1.5 forager, with a mean path length 17 
times greater than the uniform forager, has about 97% of successful runs. What was most interesting here 
was the performance of the TP2.0 forager compared to the exponential and uniform foragers which were 
designed to have the same mean path length. The TP2.0 forager yielded 31% success compared to 14 and 
12% for the exponential and uniform foragers respectively; more than twice as successful.  

 
Figure 25: Summary of encounter success 

Remarkably, regardless of the scenario being tested, the percentage of successful encounters for each of 
the foragers is unchanged. There is clearly a superficial correlation with the mean path length as shown in 
Figure 24, but the TP2.0 forager easily outperforms all but the TP.15 forager, despite having a similar 
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mean path length to the exponential and uniform foragers. 

3.6 Investigation of stabilisation/convergence of foragers after many 
runs 

James et al. (2011) suggest that after 104 simulation runs the results from all four 

foraging strategies studied (Lévy or uniform foragers in Lévy or uniform prey fields) 

converge to the same foraging efficiency. This was not the outcome found by Sims et 

al. (2008a) after 105 runs and it is clear that different foragers do not converge in the 

simulations performed here except perhaps the simplest case of scenario 1 (non-

destructive, non-targeted foraging). With scenario 1 the differences between the 

foragers are small and there is therefore a possibility that they do indeed converge 

after sufficient simulations have been performed. Therefore, to explore this, the 

results from the simulations performed here were analysed further by calculating a 

running mean from the individual simulation results over all 105 simulation runs. The 

mean was calculated as the sum of biomass consumed per unit travelled for runs 1 to 

n, divided by n, for all simulations in the sparse, uniform prey-field set.  

The results are given in Figures 26-29. For scenario one it was clear that the 

simulations were very far from convergence at 104 runs, contrary to the findings of 

James et al. (2011) and have not properly stabilised after 105 runs. There was an 

indication that the TP2.0 forager will remain marginally better, and that the 

exponential forager will remain the poorest performer, as reported in the results from 

these simulations. However, the outcome was quite unclear and in fact it is possible 

that the stochastic variations might always exceed the intrinsic differences in 

performance, leading the outcome never to settle on any one forager as being the 

most efficient. Taking the TP2.5 forager as an example, the mean biomass 

consumption is 6.33 and the standard deviation is 40.61 (n = 105). With such a large 

variance in individual simulations and with small differences in performance (~3%) it 

seems likely that the foragers will never converge on distinct outcomes. The exception 

being the TP1.5 forager which seemed to have stabilised by about the 40,000th run and 

had a mean biomass consumption of 107.78 (76.61 s.d.), confirming the lower 

stochastic variation.  

In scenarios 2 to 4 the results were different, with all five foragers quickly settling to 

clearly defined and different efficiencies. There was still considerable stochastic 
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variation (mean 5.38, s.d. 33.5, n = 105 for the TP 2.5 forager, scenario 4), but in 

scenarios 2 to 4 the variation was well below the level of difference in efficiency. We 

can therefore be confident that the reported results for these simulations are robust 

and correct. 

To explore further the lack of convergence or stabilisation in scenario 1, 106 

simulations were performed and again the running mean was calculated. The results 

are shown in Figure 30 where it is evident that even after 106 runs the foraging 

efficiencies have still not either converged or stabilised. Furthermore, it is also clear 

that the ranking of the five foragers was different from the previous simulations and 

that the apparent superiority of the TP2.0 forager was simply a stochastic variation. 

Examining the standard deviations of foraging efficiency for the five foragers (Table 5) 

it can be seen that the TP2.5 forager has the most variation and the TP1.5 the least, as 

expected from the plot in Figure 30.  

There is an interesting difference between the Lévy foragers with an apparent inverse 

correlation between the variance and the exponent; the TP1.5 forager settled 

relatively quickly to a steady result, whereas the TP2.5 forager was far from settling 

after 106 runs, with the TP2.0 forager being intermediate. It is possible that this result 

was a consequence of the marked difference in path lengths between the three Lévy 

foragers; the TP1.5 forager has a mean path length of 249,928 compared to 39,016 for 

the TP2.0 and 14,543 for the TP2.5 foragers. To test whether this is the case the 

convergence simulations were repeated using a limited path instead of limited steps; 

the path length was set to 40,000 units, to match the TP2.0 forager. The results are 

given in Figure 31 and Table 5 and show that even with limited path length there was 

still a difference in the standard deviation of foraging efficiency between the five 

foragers. The standard deviation of the uniform, exponential and TP2.0 foragers was 

similar between step-limited and path-limited simulations; however, the TP1.5 forager 

had increased variance (3.07E-04 for step-limited and 7.62E-04 for path-limited) while 

the TP2.5 forager had reduced variance (2.80E-03 for step-limited and 1.72E-03 for 

path-limited). Given that the TP1.5 forager had the longest mean path length under 

the step-limited simulations and therefore was subject to the greatest reduction in 

path length, the increase in variance was in line with the prediction; albeit less than 

expected. Similarly with the TP2.25 forager, which had the shortest path length under 
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the step-limited simulations and therefore was subject to the greatest increase in path 

length the reduction in variance is again in line with predictions. The uniform, 

exponential and TP2.0 forager’s path lengths were unchanged, as was the variance in 

foraging efficiency. It can therefore be concluded that while path length is an 

important factor in the variance in foraging efficiency it is only part of the explanation 

and some of the differences in variance must be due to differences in the movement 

patterns.  Limited path simulations are investigated in more detail below in Section 

3.9. 

Given the lack of stabilisation in scenario 1 the remaining investigations here used only 

scenarios 2, 3 and 4; namely destructive, targeted non-destructive and targeted 

destructive foraging. 

 
Figure 26: Stabilisation of scenario one simulations after 10

5
 runs 

Large stochastic variations can still be seen to cause the outcome to meander after 10
5
 runs, suggesting 

either that further runs are required before the simulations settle on a final value or that stochastic 
variations might always exceed the intrinsic differences between the foragers, leading to a constantly 
varying outcome. At around 10,000 runs it is clear that the situation is still very dynamic. The stability of 
the TP1.5 forager is in marked contrast to the other foragers. 

 
Figure 27: Stabilisation of scenario two simulations after 10

5
 runs 

With destructive foraging the results are quite different from scenario 1 (Figure 26 and Figure 30) with all 
five foragers settling to distinct outcomes by the 40,000

th
 run. The ranking of the foragers is unchanged 
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after about run 15,000, but large stochastic variations make the final outcome unclear prior to that point. 

 
Figure 28: Stabilisation of scenario three simulations after 10

5
 runs 

With prey targeting and non-destructive foraging the foragers stabilise much more quickly, with the 
ranking unchanging after less than 5000 runs.  

 
Figure 29: Stabilisation of scenario four simulations after 10

5
 runs 

With destructive, targeted foraging the simulation outcomes settle to clear and distinctly different results 
after 10,000 runs, with little change in relative values after 50,000 runs. 10

5
 runs, as used in all simulations 

in this study, is therefore a sufficient number for confidence in the results. 

 
Figure 30: Stabilisation of scenario one after 10

6
 simulation runs 

Even after 10
6
 simulations stochastic variation exceeds the difference between the foragers. The inset 
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shows the last 20000 simulations, confirming the continuing variability and uncertainty. 

 
Figure 31: Stabilisation of scenario one after 10

6
 limited path simulation runs  

Even after 10
6
 simulations stochastic variation exceeds the difference in efficiency between the foragers. 

The inset shows the last 20000 simulations, confirming the continuing variability and uncertainty. Limiting 
the path length does seem to reduce the variability slightly, but the differing paths lengths are clearly not 
the whole story. 

Table 5: Variation in foraging efficiency after 10
6
 simulations 

The table below gives the mean foraging efficiencies for the limited step and limited path simulations.  
Difference is calculated as the absolute value of the difference between the mean of the foraging efficiency 
and the average value of all means. In all cases the standard deviation significantly exceeds the differences 
in the means, indicating that with the non-destructive, non-targeted scenario the simulations will not 
stabilise to a final result. 

 Limited step Limited path 

Forager Mean Difference S.D. Mean Difference S.D. 

Uniform 4.3110E-04 1.0954E-06 1.6943E-03 4.3218E-04 6.1717E-07 1.6972E-03 

Exponential 4.3227E-04 7.4259E-08 1.5868E-03 4.3377E-04 9.6977E-07 1.5639E-03 

TP 1.5 4.3180E-04 3.8961E-07 3.0717E-04 4.3192E-04 8.7928E-07 7.6294E-04 

TP 2.0 4.3185E-04 3.3779E-07 1.0763E-03 4.3319E-04 3.9262E-07 1.0561E-03 

TP 2.5 4.3394E-04 1.7485E-06 2.8045E-03 4.3293E-04 1.3406E-07 1.7221E-03 

3.7 Comparison of sparse and abundant prey fields 

A further contention that has been discussed in many studies is that Lévy foraging is 

only significantly advantageous when prey are scarce (Viswanathan et al. 1999, 

Bartumeus et al. 2002, Bartumeus et al. 2005, Reynolds and Bartumeus 2009, James et 

al. 2011). Therefore, to investigate differences in foraging efficiency of Lévy flight 

search patterns caused by prey field density, all the simulations reported above in 

Sections 3 to 5 were repeated with an abundant prey field with 106 biomass units 

distributed as 166 patches with a total of 61144 populated cells. This gave a mean 

biomass density of 0.00489 units per cell and a populated cell proportion of 0.489% (as 

discussed later a biologically realistic value, based on plankton densities might be 

much lower at 0.26% (Sims 1999)). This prey field was specified so as to have the same 
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density as that used by James et al (2011). For comparison both prey field distributions 

are given in Figure 37 and example sparse and abundant prey patches are shown in 

Figure 38. The expectation for these simulations is that the exponential and uniform 

strategies would perform as well as the Lévy search (TP) strategies, as suggested by 

Viswanathan et al. (2002).  

The results for all simulations are given in Figure 32 and in Table A3, and contrary to 

expectations the relative performance of the five foragers in the abundant prey field 

was similar to that of the sparse prey field (Figure 23). The only noticeable difference 

was in the quantity of prey consumed. In the destructive non-targeted scenario the 

TP1.5 forager was still the best by about the same margin as that found in the sparse 

prey field (28.79%, Mann-Whitney Rank Sum Test p < 0.001). With prey targeting the 

TP 2.0 forager was clearly the most efficient, performing 2.4 times better than the 

worst forager (uniform), 2.15 times better than exponential when foraging was non-

destructive, and 2.75 and 2.35 times better than uniform and exponential, 

respectively, when foraging was destructive (Kruskal-Wallis One Way Analysis of 

Variance on Ranksp < 0.001 in all cases). 

Encounter rates in the abundant prey field (Figure 33) were not only very different to 

those obtained with the sparse prey field but seem at odds with the efficiency results; 

the TP 2.5 forager, which was the poorest performing in terms of biomass consumed, 

was the most successful in terms of the number of foraging runs where prey were 

found, when corrected for mean path length. The encounter rates were also robust to 

the foraging scenario, as with the sparse prey field. However, the problem in this case 

was that there were a very small number of unsuccessful foraging runs, so the number 

of encounters was more a reflection of differences in mean path length, a likelihood 

confirmed in Figure 34 where mean path lengths showed a correlation with the 

encounter rates. The effect of mean path length will be explored further in a set of 

limited path length simulations described below (section 3.9). 

To investigate the possibility that the prey field being used was simply not abundant 

enough to provide sufficient difference with the sparse prey field to separate the 

foraging efficiencies, as expected, a second, more abundant prey field was used (i.e. 

30x106 biomass units were distributed as 5000 patches with a total of 1,716,802 

populated cells with each patch enclosed within a 20x20 area). This gave a mean 
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biomass density of 2.4 units per cell and a populated cell proportion of 13.73%. The 

results are given in Figure 35 and Table A4 and in the destructive non-targeted 

scenario the results are unchanged, with the TP1.5 forager performing 26% better than 

uniform and 10% better than exponential (Kruskal-Wallis One Way Analysis of Variance 

on Ranks; p < 0.001). In the non-destructive targeted scenario the differences between 

the foragers was now, as expected, less than in either the sparse or abundant prey 

fields, with the TP2.0 forager now only 78% better that the uniform forager in the non-

destructive targeted scenario, compared to 2.4 and 2.75 times the sparse and 

abundant prey fields, respectively (Kruskal-Wallis One Way Analysis of Variance on 

Ranks; p < 0.001). The pattern was similar in the destructive targeted scenario with the 

TP2.0 forager being 89% better than uniform and 65% better than exponential 

(Kruskal-Wallis One Way Analysis of Variance on Ranks; p < 0.001).  

As the expected parity between the foragers had still not been achieved the 

simulations were repeated with an even denser prey field (i.e. 120x106 biomass units, 

distributed as 2 x 104 patches with a total of 5,568,712 populated cells; 9.6 biomass 

units per cell, 44.55% populated cells). The results are given in Figure 36 and Table A5 

and here the advantage of the Lévy foragers was much reduced, although in the 

destructive targeted scenario the TP2.0 forager still outperforms the rest (47% better 

than uniform, 33% better than exponential) (Kruskal-Wallis One Way Analysis of 

Variance on Ranks; p < 0.001). Again in the non-targeted destructive scenario the 

results are unchanged, with the TP1.5 forager still performing 29% better than the 

worst performer. All differences are significant at p < 0.001 (Kruskal-Wallis One Way 

Analysis of Variance on Ranks). 

 
Figure 32: Summary of abundant prey field simulations 

The results are almost identical to the results with the sparse prey field, contrary to expectations and 
suggesting that the prey field used was not abundant enough to fulfil theoretical expectations. 
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Figure 33: Encounter rates with abundant prey 

Results here are quite different from the sparse prey field. Note that this shows the number of successful 
foraging runs, rather than the number of prey items encountered. Therefore while more of the TP2.5 
forager runs find some prey, less prey per unit distance travelled is found than with the TP2.0 forager. 

 
Figure 34: Mean path length 

There is a clear inverse correlation between the mean path length and the encounter rate per unit 
distance travelled as shown in Figure 33. 

 
Figure 35: Summary of simulations in a super-abundant prey field 

The difference between foragers is now less than with the sparse prey field, as expected. 
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Figure 36: Destructive, targeted foraging in a mega-abundant prey field 

The difference between the foragers is now considerably reduced, although in the targeted destructive 
scenario the TP2.0 forager was still 47% better than the uniform forager and all the Lévy foragers still have 
the advantage, despite the abundance of prey covering 44% of populated cells. 

 

   
Figure 37: Sparse and abundant uniform random prey fields 

 

   
Figure 38: Sparse and abundant prey patches 

Darker pixels indicate higher values of biomass in that grid cell. Prey patches are generated by overlaying 
multiple random walks with the origin at the centre of the patch with each walk adding one unit to the 
biomass of each visited cell. 

3.8 Comparison of Lévy and uniformly distributed prey patches 

In the simulations performed by Sims et al. (2008a) the Lévy forager was found to 

perform even better than the uniform forager when the prey patches were distributed 

with inter-patch distances being drawn from a Lévy distribution. The simulations were 

therefore repeated using both sparse and abundant Lévy-distributed prey fields, with a 

truncated Pareto distribution being used with Xmin = 10.0, µ = 2.0 and Xmax = 2500, to 

provide the inter-patch prey field distances. The prey field was constructed in the same 
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way as with Sims et al. (2008a), with the first patch being located using uniform 

random numbers for the x and y coordinates. Subsequent patches are then located 

relative to the first patch by calculating a vector (from the TP distribution) and a 

uniform turning angle; periodic boundary conditions were observed. The resulting 

pattern has been referred to as a Lévy ‘dust’ (Miramontes et al. 2012). 

Results with the sparse Lévy prey field are given in Figure 39 and Table A6. With the 

destructive non-targeting foraging scenario the overall pattern was the same as with 

the uniform prey field (Figure 23 and Table A1) where the TP 1.5 forager was best 

having a 25.07% advantage over the worst (TP2.5) forager, and the TP2.0 forager being 

second best with a 16.52% advantage. Compared to the uniform forager, the TP2.0 

forager was 13.18% better, a value that corresponds very well with the 14% advantage 

found by Sims et al. (2008a). In addition the TP2.0 forager was 9.42% better than the 

exponential forager. All differences were significant at p < 0.001 (Kruskal-Wallis One 

Way Analysis of Variance on Ranks). 

With prey targeting the pattern was almost identical to the other simulations. 

However, the advantage of the TP2.0 forager was even greater at 2.90 times better 

than the uniform forager for both the non-destructive and destructive scenarios, 

compared to 2.4 times greater for the uniform prey field, and 2.63 and 2.50 greater 

than the exponential forager in the non-destructive and destructive scenarios 

respectively. All differences were significant at p < 0.001 (Kruskal-Wallis One Way 

Analysis of Variance on Ranks). 

With the abundant Lévy prey field (Figure 40 and Table A7) the results of the 

destructive, non-targeted scenario were almost identical to the uniform prey field 

results, with the TP1.5 forager being the most successful with a 28.79% advantage over 

the TP2.5 forager. In the targeted scenarios the results were, again, almost identical to 

all the other targeted simulations although the advantage of TP2.0 forager was now 

even greater, being 3.2 times greater in the non-destructive, and 3.44 times in the 

destructive targeted scenarios than the uniform forager, and 2.75 and 2.90 better than 

exponential, respectively.  

As a final test the simulations were repeated using the super-abundant Lévy prey field. 

The results are given in Figure 41 and Table A8. The overall relative performance of all 

foragers was unchanged in all three scenarios, however the advantage of the TP2.0 
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forager was reduced, being greater by 2.55 times in the targeted non-destructive 

scenario and by 2.56 times in the targeted destructive scenario. Again all differences 

are significant at p < 0.001 (Kruskal-Wallis One Way Analysis of Variance on Ranks). 

This result differs from the super-abundant uniform prey results where the TP2.0 

performance advantage was more noticeably reduced with increasing prey abundance. 

Because the Lévy prey field has greater heterogeneity prey abundance can increase 

without a concomitant increase in the number of encounters, consequently it was 

likely that the abundance level at which TP2.0 performance began to decline was 

higher in a Lévy prey field. 

 
Figure 39: Simulation results with the sparse Lévy prey field 

Results with all scenarios are almost identical to the results obtained with the sparse uniform prey field. 

 
Figure 40: Simulation results with the abundant Lévy prey field 

Again, the results are almost identical to all other scenarios. 
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Figure 41 Simulation results with the super-abundant Lévy prey field 

Other than the expected increase in biomass consumed there is no significant difference in the relative 
performance of the foragers. 

3.9 Comparison of limited path length rather than step-limited 
number 

In the previous simulations each foraging run was limited by the number of steps 

made. Given the wide range of mean step-lengths resulting from the different Lévy 

distributions used there was a similar wide range of overall path lengths (e.g. the TP1.5 

forager had a mean path length of around 250,000 compared to 14,500 for the TP 2.5 

forager). While the simulation results, in terms of both biomass consumed and 

encounters, were corrected for this difference it was possible that the large 

discrepancy affected results in some cases. In particular it is possible that the greater 

mean path length unduly increased the number of prey patch encounters and greatly 

increased the likelihood that a foraging run will be successful (i.e. will find and 

consume some prey). The simulations were therefore repeated, using the uniform 

sparse and abundant prey fields but with the foraging runs limited to a maximum path 

length of 40,000 units, rather than 5,000 steps. The value of 40,000 was selected as 

this approximates the mean path length for the TP2.0, exponential and uniform 

foragers used previously in the limited step simulations. Foraging runs were halted, 

following completion of a step, once the path length limit had been reached; 

consequently the final path lengths are slightly greater than 40,000 by the remainder 

of the last step taken. However the differences average only 0.3%. 

The results obtained with the sparse prey field are given in Figure 42 and Table A9. 

Again there is no difference in the overall pattern, with TP1.5 being the most efficient 

in the destructive scenario (a 31.95% advantage) and TP2.0 being second (22.36% 

advantage); these values are very close to the step-limited simulations (29.98% and 
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20.66% advantages respectively). In the targeted scenarios TP2.0 is once again much 

more efficient, having an advantage over the worst performer (uniform) of ~2.5 times 

in both the non- and destructive scenarios and of ~2.26 and ~2.23 times over the 

exponential forager in the non- and destructive scenarios respectively. All differences 

are significant at p < 0.001 (Kruskal-Wallis One Way Analysis of Variance on Ranks). 

The results obtained with the abundant prey field are given in Figure 43 and Table A10. 

With all scenarios the pattern is the same as with previous simulations; TP1.5 performs 

best with destructive, non-targeted (32% greater) and TP2.0 is the best in both 

targeted scenarios performing 2.46 times better in the non-destructive and 2.75 times 

better in the destructive scenario. All differences are significant at p < 0.001 (Kruskal-

Wallis One Way Analysis of Variance on Ranks). 

The most obvious difference between the step-limited and path-limited simulations 

was the number of successful foraging runs (Figure 44 and Figure 45). In the sparse 

prey field the step-limited TP2.0 forager had the greater number of successful foraging 

runs, while with the path-limited simulations it was the TP1.5 forager, which 

performed ~3.4 times better than the worst performer (uniform). The TP2.0 forager 

still clearly outperformed the remaining foragers by a very similar margin to the step-

limited simulations of ~2.13 times. In the abundant prey field the outcome is different 

again; here it is now the TP2.0 forager that has most successful foraging runs, closely 

followed by the TP.15 forager. In the path-limited scenario it was the TP2.5 forager 

that had the most successful foraging runs, by a considerable margin.  All differences 

are significant at p < 0.001 (Kruskal-Wallis One Way Analysis of Variance on Ranks). 

Therefore, limiting the mean path length rather than the number of steps had very 

little effect on the relative foraging efficiency of the 5 foragers. The principal difference 

was found to be in the number of foraging runs that found some, rather than no prey, 

and with this simple measure it was the TP1.5 forager that performed best, rather than 

the TP2.0. 
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Figure 42: Sparse limited path simulations 

Apart from very minor differences in the non-destructive, non-targeted scenario these results are almost 
identical to the step-limited simulations. 

 
Figure 43: Abundant limited path simulations 

The results in the abundant prey field match those in the sparse prey field. 

 
Figure 44: Limited path encounters in a sparse prey field 

These results are different from the step-limited simulations (right) where the TP2.0 forager is clearly the 
most successful. While the advantage of the TP2.0 forager is maintained over the TP2.5, exponential and 
uniform foragers it is the TP1.5 forager that has the most successful foraging runs. The encounter rates 
are not significantly affected by the foraging scenario, with the same pattern emerging in each case. 
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Figure 45: Limited path encounters, abundant prey 

With the abundant prey field the encounter rates are again different from the step-limited simulations 
(right). 

 
Figure 46: Successful encounter rates with limited path length 

With the limited mean path scenario there is still some variation in mean path length caused by the 
completion of the final step, however the range of path lengths is now reduced to only ~1%. The results 
here differ from the limited step scenario in that the TP2.5 forager now performs worse than the 
exponential and uniform foragers; however the advantage of the TP2.0 forager was still twice that of all 
but the TP1.5 forager. Although the TP1.5 forager was still the best the advantage was considerably 
reduced compared with the step limited scenario (Figure 24). 

3.10 Robustness of results to differing prey fields 

All the simulations performed so far used fixed prey fields for each of the four 

environments (sparse or abundant uniformly distributed, and sparse or abundant Lévy 

distributed) which removed prey field variability from the results. Given that the 

results have been shown to be robust to all these environments it seemed unlikely that 

different prey fields of a given environment (e.g. sparse Lévy) would be likely to affect 

the outcome significantly. However it was necessary to confirm this, therefore the 

TP2.0 forager was used with the scenario 4 simulation (i.e. destructive, targeted 

foraging) to test the effect of using different prey fields. Two sets of simulations were 

performed; 1000 simulations were repeated 400 times using either a fixed sparse Lévy 

prey field or a different sparse Lévy prey field for each set of simulations. The intention 
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being simply to confirm that the results previously obtained were not due in any part 

to the particular prey field configuration being used. 

Figure 47 shows the results from 50 simulations from each set and it can be seen that, 

while variability between simulations is, as expected, very high, there are no clear 

differences between the fixed and varying scenarios. 

Table 6: Results of fixed and varying prey field simulations 
Mann-Whitney U Statistic= 74189, T = 154389, n(small)= 400, n(big)= 400, p = 0.075. We can therefore 
conclude that the results are robust to differing prey fields. 

Group N Median 25% 75% 

Varying prey field 400 0.000544 0.000507 0.000584 

Fixed prey field 400 0.000550 0.000509 0.000595 

 

 
Figure 47: Foraging efficiency in fixed and varying prey fields 

50 simulation results are shown from each scenario, with the 25
th

 and 75
th

 percentiles shown as red 
horizontal lines. It can be seen that variation between individual simulations is greater than between the 
two groups as a whole. 

3.11 Innate or emergent behaviour 

A subject that has received much discussion in the literature is whether the observed 

movement patterns from tagged animals result from innate movement processes or 

are simply an artefact of the animal’s interaction with the environment (Viswanathan 

et al. 2002, Bartumeus et al. 2005, Boyer et al. 2006, Bartumeus 2007, Benhamou 

2007, Bartumeus and Levin 2008, Plank and James 2008, Boyer et al. 2009, Reynolds 

2009, Reynolds and Rhodes 2009, Reynolds et al. 2009, de Jager et al. 2011). It is 

conceivable that an animal moving with a pattern based on a simple correlated 

random walk, but changing direction on encountering prey, would generate a 
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movement pattern that simply reflected the prey field distribution. Therefore, in a 

Lévy-distributed prey field a Lévy pattern might arise, while in a uniformly (or 

exponentially) distributed prey field an exponential pattern might be found. This 

question is difficult to settle empirically as only in a few studies is anything known 

about the actual prey field density or structure through which tagged animals are 

moving (Sims and Quayle 1998, Sims et al. 2006b). General prey field characteristics 

can be inferred from proxies such as chlorophyll ‘a’ concentration (for primary 

productivity), or water column stratification, and can be correlated with observed 

movement patterns (Sims et al. 2008a, Humphries et al. 2010), but this does not help 

to determine how the observed pattern arose. 

In a simulation environment however it is possible to control both the prey field 

density and structure and to specify directly the innate movement behaviour of the 

forager. It is therefore possible to test the hypothesis that observed movement 

patterns are the result of a simple diffusive, or ballistic, forager interacting with prey 

patches. To do so the five original foragers and a ballistic forager were used in the 

most biologically realistic scenario of prey targeting with destructive foraging and 

either uniformly or Lévy-distributed prey patches. The prey fields differed from 

previous prey fields in that the prey patches were not the complex high biomass 

patches used in previous simulations but instead were single grid cells; simple patches 

were used here to remove the complexities caused by the large number of very small 

move steps that result from intra-patch rather than inter-patch movements. Also both 

prey fields were considerably more abundant than previous prey fields employed, to 

ensure sufficient encounters to affect the resultant path significantly. Here the prey 

fields comprised 6 x 105 populated grid cells (4.8% occupation, Figure 54). For each 

simulation the movement paths resulting from the interaction of the forager with the 

prey fields from 1000 runs were recorded and analysed using maximum likelihood 

estimation and model selection as described in Chapter 2 (Clauset et al. 2009, 

Humphries et al. 2012) to determine whether the resulting path was best fit by a 

truncated power-law, an exponential distribution or neither. To remove the boundary 

effects caused by reflection off the edges of the arena a separate set of coordinates 

was maintained using un-reflected deltas in X and Y (see Appendix F). The recorded 

paths therefore represent a forager moving in an unbounded area with the prey field 

effectively reflected in a tessellated pattern (see Appendix F).   
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It was expected that by interacting with a uniformly distributed prey field the resulting 

path from any forager would be best fit by an exponential distribution; while with the 

Lévy prey field a truncated power-law might result. A further expectation was that 

while Lévy foragers might produce exponential paths as a result of the step truncation 

resulting from prey field interactions the converse would not be true, as an 

exponential forager can never produce the long relocations necessary for a power-law 

(or truncated power-law) distribution. Additionally, with the TP foragers, interaction 

with the prey field, which will lead to truncation of move steps, was also expected to 

raise the value of μ, and reduce the value of xmax, consistent with more, shorter step-

lengths. 

3.11.1 Analysis of resulting paths – Lévy prey fields 

Results from both prey fields are given in Table 7. All the TP1.5 and the majority of the 

TP2.0 and TP2.5 paths were correctly classified as TP, however the classification by AIC 

was not unequivocal, with only 6 of the TP2.5 paths having full support from AIC. In all 

cases the fitted TP was favoured over the competing exponential, but the fitted 

exponential was favoured over the competing TP, the conflict being resolved by the 

adjusted goodness of fit (GOF) value which favoured the TP distribution in all cases. An 

examination of the plots in Figure 48, which show the fitted TP and the fitted 

exponential, reveal that the exponential, despite the support from AIC, was a poor fit 

to the data in comparison to the TP distribution. It seems that the exponential fit to 

the very small steps (< 1.0 units) was responsible for the AIC result; this emphasises 

the importance of visual inspection to confirm the statistical results. 

There were 22 TP2.0 and 292 TP2.5 paths that were unclassified as a result of the 

fitted TP spanning less than 1.5 orders of magnitude; if this constraint were relaxed 

then all paths would be classified correctly. From the plots shown in Figure 48 it can be 

seen that the TP1.5 forager, as expected, suffered the greatest level of step-length 

truncation as the lower exponent results in a greater proportion of long step-lengths. 

Interaction with the prey field and the resulting truncation of step-lengths resulted in 

elevated values for the exponent and reduced values for Xmax, as given in Table 8. The 

change in the exponent is at most only ~5% however the reduction in Xmax is 

considerable as was expected given the density of the prey field and that the original 

value was 2500. It is the TP1.5 paths, which begin with the longest step-lengths, which 
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were subject to the greatest level of truncation and consequently the largest changes 

in μ and Xmax. 

All the exponential paths were classified as exponential with all but 3 being fully 

supported by AIC and the plots shown in Figure 49 confirm the very good fit.  

Of the ballistic paths 998 were classed as TP but none had full support from AIC with 

again the fitted TP being favoured over the exponential and the fitted exponential over 

the TP; the conflict being resolved by the GOF. Plots for the ballistic paths are given in 

Figure 50 where both the fitted TP and the fitted exponential distributions are 

illustrated. It is clear that despite the evidence from AIC neither distribution fitted well 

to the entire dataset. The mean fitted TP parameters are given in Table 9. The value for 

μ (1.12) was significantly lower than the value used in the construction of the prey field 

(2.0). Lower exponents result in more ballistic paths so this finding was not surprising, 

however it was clear that the resultant path does not simply reflect the prey field 

characteristics, despite being modified by it.  

3.11.2 Analysis of resulting paths – uniform prey fields 

While the majority of TP paths were still classified as TP in the uniform prey field, 

fewer attained full support from AIC and more paths were unclassified again because 

the fit spanned less than 1.5 orders of magnitude. However the plots in Figure 51 show 

that the fit to the TP distribution was better than to the exponential and again it would 

seem that it was the fitting of the exponential to small step-lengths that biases AIC in 

favour of the exponential. The effect of truncation on the values of μ and Xmax are 

similar to those found in the Lévy prey field. 

All the exponential paths were classified as exponential with all but 16 being fully 

supported by AIC and the plots shown in Figure 52 confirm the very good fit.  

The expectation with the ballistic paths was that the resultant paths would reflect the 

prey field distribution and this is confirmed with the uniform prey field results where 

all of the ballistic paths are categorised as exponential with only 10 not having full 

support from AIC. The plots shown in Figure 53 illustrate the good fit. 

Given the patchier distribution of the Lévy prey field, and the larger voids that result, it 

is not surprising that the uniform prey field has a greater effect on the emergent paths; 

interactions are far more frequent. 
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Note that in some of the ranked step-length plots shown below there is a noticeable 

break in the observed values (shown as black circles); this break occurs between step-

length values of 1.414 and 2.0 and was a result of the way that moves were 

interpolated. This issue is discussed further in section 2.2.2 and Appendix F. 

In summary these results show that interaction with the environment is not sufficient 

to produce Lévy patterns from paths that are intrinsically exponential or vice versa. All 

the exponential paths were correctly identified as such, as were the Lévy paths, if the 

constraint regarding the number of orders of magnitude spanned by the data is 

relaxed. Only the ballistic paths produced patterns that reflected the prey field 

distribution. The Lévy paths were affected (i.e. interaction with the prey field did 

occur) but only in terms of a truncation of Xmax and an increase in the value of μ. 

   
 

 

 
Figure 48: Rank step-length plots of Lévy paths in the Lévy prey field  

Red lines show fitted truncated Pareto; blue dashed lines show fitted exponential; grey circles are 
simulated path data. Despite the very good fit of the TP distribution, which is favoured over the 
competing exponential, AIC favours the fitted exponential over the competing TP and therefore the AIC 
results are conflicted. The reason for this would appear to be the large number of points around Xmin that 
bias the log-likelihood values used in the AIC calculations (see text, section 3.11.1). 
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Figure 49: Rank step-length plots of exponential paths in the Lévy prey field  

Two examples of exponential foragers in a Lévy prey field. Blue dashed lines show fitted exponential; red 
lines show competing truncated Pareto; black circles are simulated path data. The exponential forager is 
unaffected by interaction with the Lévy prey field. 

   
Figure 50: Rank step-length plots of ballistic paths in the Lévy prey field  

In Lévy-B (E) blue dashed lines show fitted exponential; red lines show the competing truncated Pareto. In 
Lévy-B (TP) red lines show fitted truncated Pareto; blue dashed lines show the competing exponential. 
Black circles are simulated path data. Neither distribution fits well to all the data. 

  

 
Figure 51: Rank step-length plots of Lévy paths in the uniform prey field  

Red lines show fitted truncated Pareto; blue dashed lines show fitted exponential; black circles are 
simulated path data. Despite the conflicting evidence from AIC it is clear that the fitted TP is a better fit 
than the exponential in all cases. 
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Figure 52: Rank step-length plots of exponential paths in the uniform prey field  

Red lines show fitted exponential; blue dashed lines show competing truncated Pareto; black circles are 
simulated path data. The exponential forager is unaffected by interaction with the prey field. 

   
Figure 53: Rank step-length plots of ballistic paths in the uniform prey field 

Two examples of ballistic foragers in a uniform prey field. Blue dashed lines show fitted exponential; red 
lines show competing truncated Pareto; black circles are simulated path data. The majority of ballistic 
paths result in good fits to the exponential distribution when interacting with a uniform prey field. 

 
Table 7: Emergent path MLE analysis results 

The emergent movement paths of Lévy, exponential and ballistic foragers (rows), resulting from 
interactions with either Lévy or uniform prey fields were analysed and classified as either TP, Exponential 
or unclassified (columns). Figures in parentheses show the number of unequivocal AIC fits 

Forager Prey field TP Exponential Unclassified Notes on unclassified 

TP1.5 Levy 1000 (897)    

TP1.5 Uniform 1000 (275)    

TP2.0 Levy 977 (261) 1 (0) 22 < 1.5 orders of magnitude 

TP2.0 Uniform 981 (0)  19 < 1.5 orders of magnitude 

TP2.5 Levy 708 (6)  292 < 1.5 orders of magnitude 

TP2.5 Uniform 535 (2)  465 < 1.5 orders of magnitude 

Ballistic Levy 998 (0) 2 (0)   

Ballistic Uniform  1000 (990)   

Exponential Levy  1000 (997)   

Exponential Uniform  1000 (984)   
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Table 8: Mean exponent and Xmax shift for Lévy paths 

Prey field µ Resulting µ  Increase Resulting Xmax Decrease 

Levy 1.5 1.58 5.3% 95 96.2% 

Levy 2.0 2.06 3.0% 69 97.2% 

Levy 2.5 2.54 1.6% 63 97.5% 

Uniform 1.5 1.52 1.3% 66 97.4% 

Uniform 2.0 2.04 2.0% 49 98.0% 

Uniform 2.5 2.54 1.6% 45 98.2% 

 
Table 9: Mean parameters values for ballistic paths in the Lévy prey field 

Parameter Mean value S.D. 

Xmin 1 0 

μ 1.12 0.024 

Xmax 195.22 52.16 

 

    
Figure 54: Simple prey fields for emergent path analysis 

Left, a Lévy distributed field, right a uniform distributed field. For clarity both figures show a 200x100 cell 
section of the prey field. Approximately 4.8% of cells are occupied. 

3.12 Feast or famine 

Foraging efficiency, in terms of resources obtained for effort expended, is clearly an 

important biological quantity and has been the focus of the simulation studies 

presented here. There is however a further consideration that is of great importance 

to individual animals, namely the experienced heterogeneity of resource availability. 

Regardless of the actual abundance of available resources the foraging behaviour of an 

individual animal has not only to allow the animal to locate sufficient mean resources 

in a given time, but must do so in a way that avoids long periods without food which 

increase the likelihood of starvation.  

In the simulation environment used here it was possible to study resource 

heterogeneity directly for individual foragers. The sum of interpolated move steps 

performed between each encounter with food (i.e. the actual distance travelled) was 

considered to represent the length of a single famine period. At the end of each 

foraging run the number of famine periods (i.e. the number of intervals between prey 
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encounters) and the mean duration of the periods were recorded. The number of 

famine periods is directly related to the number of feeding events and therefore, 

possibly counter-intuitively, a higher number of famine periods represents higher 

resource homogeneity; similarly it follows that where the number of famine periods is 

higher the mean duration will be lower, for a given path length. Given that the TP2.0 

forager has been shown in previous simulations to have higher encounter rates it was 

expected that the number of famine periods would be higher and the mean famine 

duration lower. 

Simulations recording famine periods were run for the five foragers in both abundant 

uniform and abundant Lévy-distributed prey fields. Abundant prey fields were used to 

ensure sufficient encounters for reliable statistics. The simulations were run 105 times 

using the most biologically realistic scenarios of destructive foraging, with and without 

prey targeting and with limited path length rather than step-limited number to remove 

that factor of variability. 

The results from the prey-targeted simulations are summarised in Figure 55, Figure 56, 

Table A11 and Table A12 and confirm that the TP2.0 forager experiences greater 

resource homogeneity. In the uniform prey field the TP2.0 forager experiences 3.2 

times more famine periods than the uniform forager (the worst performer) which 

experienced a median famine duration 3.2 times greater than the TP2.0 forager. All the 

Lévy foragers outperformed the uniform and exponential foragers in this respect. 

Results in the Lévy prey field were very similar, but were more pronounced with the 

TP2.0 forager having experienced 96 times more famine periods with a 

correspondingly shorter duration. Again, it was the uniform forager that performed 

worst. Statistical results from Kruskal-Wallis One Way Analysis of Variance on Ranks 

tests are shown in Table A11; all results are significant at p < 0.001 and all pair wise 

comparisons are significant at p < 0.01. 

Interestingly, despite the significant differences in prey heterogeneity, the overall 

proportion of time spent in famine (calculated as the product of the number of periods 

and mean duration) was similar between all foragers (Figure 57 and Table A12). In the 

uniform prey field the TP2.5 forager was marginally better than the TP2.0 forager and 

both are significantly better than the rest. In the Lévy prey field the TP2.0 forager 

performed best which conformed to expectations, as the TP2.5 forager has a more 
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Brownian-like movement pattern that is predicted to perform sufficiently well in 

uniform abundant prey fields. The very small differences in total famine time reflect 

the very small proportion of time any of the foragers spent feeding, even in the 

abundant prey fields. 

Results from the non-targeted destructive scenario are given in Figure 58, Figure 59, 

Table A13 and Table A14. The results here reflect the outcome of nearly all the other 

simulations performed using the destructive non-targeting scenario, where the TP1.5 

forager performed best, followed closely by the TP2.0 forager with the same relative 

performance for the other foragers. Total famine time for the non-targeted scenario 

showed even less difference than with the targeted scenario, with a maximum 

difference of only 0.077% in the uniform prey field. 

The replication of the pattern of relative performance between all foragers in the two 

scenarios was confirmed (Figure 60). 

 
Figure 55: Feast and famine results – uniform prey field 

The number of famine periods is directly linked to the number of feeding events therefore a large number 
of famine periods indicates more feeding events and more homogenous resource availability. The TP2.0 
forager experiences more famine periods of shorter overall duration. As expected there is an inverse 
correlation between the number of famine periods and the famine duration. 

 
Figure 56: Feast and famine results – Lévy prey field 

There is considerably more variability in the results from the Lévy prey field, which is expected given the 
more heterogenic distribution of prey. However the overall results are very similar to those from the 
uniform prey field.  
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Figure 57: Total famine time calculated from number of periods and mean duration 

Results from the uniform prey field are shown on the left, from the Lévy prey field on the right. In the 
uniform prey field the TP2.5 forager is marginally better than the TP2.0 forager; in the Lévy prey field the 
TP2.0 forager is clearly the better. However, differences between all foragers are very small (0.25% max.), 
reflecting the very small amount of time spent feeding by any of the foragers. 

 
Figure 58: Non-targeted feast and famine results – uniform prey field 

The results here are consistent with the other results with the non-targeted, destructive foraging scenario 
in that the TP1.5 forager is the best, having more famine periods of shorter duration (and therefore more 
frequent feeding events). 

 
Figure 59: Non-targeted feast and famine results – Lévy prey field 

There is considerably more variability in the results from the Lévy prey field, which is expected given the 
more heterogenic distribution of prey. However the overall results are very similar to those from the 
uniform prey field.  

Total famine time (Uniform and Lévy)

TP 1.5 TP 2.0 TP 2.5 Exponential Uniform TP 1.5 TP 2.0 TP 2.5 Exponential Uniform

T
o

ta
l 
fa

m
in

e
 t

im
e

3.586e+9

3.588e+9

3.590e+9

3.592e+9

3.594e+9

3.596e+9

Famine periods: Uniform prey, destructive

No of famine periods

1 10 100

Exponential

Uniform

TP 1.5

TP 2.0

TP 2.5

Famine durations: Uniform prey, destructive

Famine durations

100 1000 10000

Exponential

Uniform

TP 1.5

TP 2.0

TP 2.5

Famine periods: Levy prey, destructive foraging

No of famine periods

1 10 100 1000

Exponential

Uniform

TP1.5

TP2.0

TP2.5

Famine durations: Lévy prey, destructive foraging

Famine durations

100 1000 10000

Exponential

Uniform

TP1.5

TP2.0

TP2.5



101 

 
Figure 60: Summary of famine period results 

From left to right the figure shows targeted uniform, targeted Lévy, non-targeted uniform, non-targeted 
Lévy. The relative performances of the five foragers are remarkably similar to the results obtained in the 
other simulations, with the TP2.0 forager performing best under prey-targeting conditions and the TP1.5 
forager performing best with destructive foraging but no targeting. 

3.13 The optimality of µ = 2.0 

The original simulation and mathematical analysis work performed by Viswanathan et 

al. (2000) demonstrated that Lévy searches are optimal when µ = 2.0 and showed (in 

their figure 4d, reproduced below as Figure 61) how foraging efficiency changes with 

values of µ from 1.0 to 3.0. Having explored many of the questions regarding the Lévy 

flight foraging hypothesis it seems appropriate to end this chapter by confirming 

whether the pattern found by Viswanathan et al. can be replicated using a very 

different simulation environment. Therefore, simulations were performed to 

determine foraging efficiencies for Lévy foragers with values of µ from 1.5 to 2.5. The 

destructive targeted scenario was used with a path limited to 40000 units and the 

abundant Lévy prey field which conforms closely to the prey densities used by 

Viswanathan et al. (2000). 

The results are given in Figure 62 and confirm a close congruence between the original 

analysis and the foraging simulations developed here: a search pattern approaching µ 

= 2.0 conferred the highest foraging efficiency. The result was robust to prey field 

density and structure and, interestingly, it can be seen that the Lévy foragers were 

even more efficient in locating prey in a Lévy rather than a uniform prey field. This 

confirms the finding by Sims et al. (2008a). The results obtained with the sparse prey 

fields are subject to greater variability as the total number of encounters was very low; 

consequently the plots appear less smooth. 
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Figure 61: Optimality of µ = 2.0 taken from Viswanathan et al. 2000. 

Reproduced from the original figure 4d. The optimality of µ = 2.0 is shown for the case of non-destructive 
foraging in a 2-D environment. 

  

  

  
Figure 62: Optimality of µ = 2.0 from the foraging simulations in this study. 

In the abundant Lévy prey field the results are almost identical to those obtained by Viswanathan et al. In 
the sparse prey fields the results are less clear, as the very low number of prey encounters leads to an 
under-sampling of the true values. 

3.14 Discussion 

It is clear from these investigations that the simplest foraging simulation scenario, with 

non-destructive prey consumption and no prey targeting was, for all foragers, 

overwhelmed by stochastic variability and consequently produced unreliable results, 

regardless of how many simulations were run. The results essentially converged to 

within around 3% as found by James et al. (2011). The failure of any of the foraging 
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strategies to stabilise under this simple scenario, however, makes it useless for 

foraging investigations and casts doubt on the reliability of some aspects of the study 

by James et al. (2011). The implication of the simulation results presented here is that 

in actual foraging scenarios, where prey is not specifically targeted and where prey is 

not effectively depleted, the movement strategy of the forager will play little part in 

the efficiency of foraging; under such a foraging scenario it appears that anything will 

do. Such a scenario might be found with filter-feeding macro-predators such as whales 

or basking sharks on occasions where very large patches of plankton are encountered; 

while within the patch the animal does not need to halt and handle prey and the patch 

to some extent ‘recovers’ from the passage of the animal by the re-distribution of prey 

through turbulent mixing. On these occasions, while the prey patch lasts, the fine scale 

movements of the animals within the prey patch can take any form and be equally 

efficient. On the whole though, it seems likely that such occasions may occur relatively 

rarely in the natural environment.   

3.14.1 The stability of destructive or targeted foraging 

One of the most striking results from these investigations is the robust stability of the 

remaining three foraging scenarios. In the destructive non-targeted scenario the TP1.5 

forager is always the most efficient, as predicted by the more rapid patch leaving 

behaviour this forager will exhibit. The advantage varied from 25 to 32% which was 

highly significant. Destructive foraging is likely to be more biologically realistic than 

non-destructive as even macro-scale plankton patches, as discussed above, will 

become depleted eventually. This result therefore confirms one of the Lévy-flight 

foraging hypothesis’ predictions: that with destructive foraging Lévy foragers with low 

exponents win out (Bartumeus et al. 2005). It is interesting to note that in this scenario 

the TP2.5 forager was always the least efficient; it might seem that this is related 

simply to the mean path length, which at 14,500 units was less than half that of the 

other foragers. However, the TP2.5 forager also performs worst in the limited path 

scenario, where path lengths are equal. Comparing a typical TP2.5 path (which is more 

Brownian-like than the other Lévy foragers) with uniform and exponential paths 

reveals the TP2.5 to have significantly more long relocations, but, nonetheless, to 

cover considerably less of the prey field than the uniform and exponential foragers (as 

shown in Figure 63). Using ImageJ (Rasband 1997-2012) to compute a histogram from 
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each image gives a value that represents the proportion of the image covered (i.e. the 

proportion of black pixels, see Figure 63). The results show that the TP2.5 forager 

covers 2.0%, while the uniform and exponential foragers cover 6.2 and 6.0% 

respectively, confirming that the TP2.5 forager would encounter less biomass and have 

a lower foraging efficiency. 

It is interesting that incorporating destructive foraging reduces stochastic variability 

sufficiently for the performance of the foragers to settle reasonably quickly (i.e. within 

3.5 x 104 simulations). As some studies have performed only 104 simulations it is 

possible that previously reported results (e.g. James et al. 2011) show foragers that 

have not reached efficiency stability. As a final comment on the destructive non-

targeted scenario it is interesting that in all simulations the TP2.0 forager outperforms 

the uniform forager by between 8.35 to 13.78%, a figure that is in close agreement 

with the result found by Sims et al. (2008a), confirming that the simulations performed 

for that paper were closer to a destructive foraging scenario than was realised at the 

time. 

   
Figure 63: Example foraging paths for TP2.5, uniform and exponential foragers 

Four sample paths from each of a TP2.5 (left), uniform (middle) and exponential forager (right), arranged 
so as not to overlap. It is clear, simply from the overall darkness of each image, that the TP2.5 forager 
searches a smaller proportion of the prey field. 

3.14.2 The importance of prey targeting 

In the original studies by Viswanathan (Viswanathan et al. 1999, Viswanathan et al. 

2000) the foraging model included prey targeting. The results presented here make it 

abundantly clear, firstly, that with prey targeting the TP2.0 forager consistently 

emerges as the most efficient searcher and, secondly, that the relative performance of 

the other foragers is also strongly conserved. Overall the foraging efficiencies shown 

by the TP2.0 forager and the relative performances of the other foragers were robust 

to prey field abundance, prey field distribution, prey field variability and prey patch 

revisitability. It is worth reiterating that the destructive scenario used here differs from 



105 

that of Viswanathan, where individual prey items were used. Here, much of a patch of 

prey remained when a single item (grid cell) was destructively consumed, which is 

perhaps more comparable to natural prey patches. As mentioned in the results it is 

somewhat surprising that prey targeting should produce such a stable outcome, given 

that the advantage gained when a patch is encountered is the same for all foragers 

(Figure 22). The most likely explanation is that the TP2.0 forager, as predicted, 

encounters more new prey patches per unit distance travelled and consequently has 

more prey to exploit. This is supported by the encounter rates measured here simply 

as the number of simulation runs that encounter biomass, which have been shown to 

be remarkably robust to the foraging scenario (as shown in Figure 24 and Figure 25). 

This is not the only or perhaps not the best measure of encounter rates, particularly in 

abundant prey fields where few foragers find zero biomass regardless of movement 

pattern. The results from the feast and famine simulations are likely a more accurate 

reflection of actual prey encounter rates and these confirm the TP2.0 forager as having 

more encounters. Prey targeting adds further biological realism to the simulations; 

predators are not blind to prey and simply halting a move step probably represents a 

very conservative interaction.  

Prey targeting adds a further dimension to the simulation in that it represents a 

behavioural switch; on encountering prey a move step is terminated. With a power-

law distribution of move-steps subsequent steps are likely to be small, representing a 

slowing of movement, or increased tortuosity. The virtual foragers in this study cannot 

alter their move-step distribution in order to respond to prey-fields with changing 

densities, a behaviour that would be expected in real foragers, with switching to area-

restricted search being commonly observed when prey-field densities are greater 

(Pinaud and Weimerskirch 2005, Hamer et al. 2009). It is all the more interesting, 

therefore, that prey targeting is so important in differentiating between the different 

foragers. 

3.14.3 Prey abundance is less important than first thought  

As prey field abundance was increased the difference between the five foragers was 

reduced as predicted. However the level of abundance required for parity was much 

higher than expected so it is interesting that previous studies have concluded Lévy 

foraging is only more efficient when prey is sparse (Viswanathan et al. 1999, 
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Viswanathan et al. 2000, Bartumeus et al. 2002, Viswanathan et al. 2002). It is possible 

that the use of simplified 1D simulations caused this result, although it is clear that this 

conclusion might also be reached if the simulation scenario used did not include prey-

targeting. In the mathematical analysis by Viswanathan et al. (2000) the conclusion 

regarding prey abundance, i.e. that Brownian movement emerges though interaction 

with the prey field, is made when the abundance is such that the distance to the next 

prey item is less than or equal to the radius of detection (described in the paper as λ ≤ 

rv). The radius of detection used in this simulation is set to 1 unit, the most 

conservative value, and clearly it is not possible to have prey abundance set to such a 

density without all cells being populated. It is worth noting that even the level of prey 

abundance in these simulations cannot be considered biologically realistic as it 

represents far too dense a concentration. For example, if the scale of the simulation 

represented a 1cm grid and the biomass represented plankton, such as copepods, with 

each unit of biomass comprising a single copepod, then the prey density in the mega-

abundant prey field (44.55% populated cells) would be equivalent to 445,500 

copepods m-3. Even at this density parity between the foragers had not been achieved. 

One field measurement of plankton density, recorded by Sims (1999; based on total 

zooplankters) was found to be around 2600 m-3, which would represent a populated 

cell density of 0.26%; corresponding well with the first abundant prey field used in this 

section. This density was the highest reported in that study and agrees well with other 

studies that put maximum regional concentrations at around 103 individuals m-3 

(Pendleton et al. 2009), yet is much lower than the density at which a significant 

difference between the foragers was found here. While much higher plankton 

densities have been recorded on scales of < 1m, associated with the sea surface 

boundary (Gallager et al. 1996) these represent micro-scale aggregations and are not 

representative of the patch as a whole. At a larger scale such densities could represent 

fish within a shoal as opposed to the distribution of shoals within the ocean. In general 

it was clear that within the scale of biologically realistic prey patch abundances the 

Lévy foragers will consistently outperform the exponential and uniform foragers by a 

substantial margin. 
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3.14.4 Innate or emergent? 

Several studies have argued that observed Lévy patterns are not likely to be the result 

of an innate process the output of which is a scale-invariant movement pattern, but 

instead are the result of simple movements interacting with the environment (e.g. 

Boyer et al. 2006, Brown et al. 2007, Reynolds and Frye 2007, Guy et al. 2008, 

Reynolds 2008). There is growing support however, for the presence of power-laws in 

neuronal systems (Klaus et al. 2011) and in simple organisms under controlled 

conditions (Cole 1995, Ohkubo et al. 2010, Bendesky et al. 2011) suggesting a 

neurophysiological basis for observed fractal movement patterns. In this chapter it has 

been shown that interaction with the modelled environment does not change a Lévy 

pattern into an exponential pattern nor vice versa and therefore, if an animal’s 

movement is intrinsically either Lévy or exponential, then it is most likely to be 

recognised as such, regardless of the prey field distribution. 

Only the ballistic paths show a switching of outcome dependent on the prey field 

distribution. The outcome of the ballistic foragers was as expected with paths being 

recognised as exponential in the uniform prey field and as Lévy through interaction 

with the Lévy prey field, albeit with low exponents. However, in the natural 

environment, animals do not move with intrinsically ballistic patterns until they find an 

object, rather it is evident that animals show spontaneous changes of direction 

independent of objects (Bartumeus and Levin 2008, Proekt et al. 2012). Therefore, on 

balance, it seems unlikely that this provides a sufficient explanation of the observed 

fits to power-law or exponential distributions.  

Given that exponential paths have few long relocations it was not expected that 

exponential paths would produce Lévy patterns, where such long relocations are 

characteristic. There were however two expectations regarding Lévy paths that were 

not met. Firstly there was an expectation that TP 1.5 paths, which include relatively 

many long relocations, would interact with the prey field in much the same way as the 

ballistic paths, producing exponential patterns. Secondly, given the more Brownian 

nature of the TP2.5 paths, it was expected that these might give rise to exponential 

paths. Instead the Lévy patterns of both were preserved with, in the case of TP1.5, 

higher exponents and truncated xmax values. That neither of these expectations was 

met adds support to the contention that the patterns observed in nature are the result 
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of intrinsic behaviour and are therefore the result of an adapted innate behaviour and 

not an emergent property of environment structure.  

Finally, it is worth noting that the conflicting support for TP fits by AIC serves as a 

reminder of the importance of plotting the results for visual confirmation. Regardless 

of the findings of MLE and AIC all the TP paths are in fact a good visual fit to the TP 

distribution. 

3.14.5 Feast and famine 

Heterogeneity in prey availability requires energetically expensive adaptations to deal 

with the resulting periods of feast or famine, such as excess digestive capacity 

(Armstrong and Schindler 2011) and lipid storage (Arrington et al. 2006). Piscivores in 

particular have been found to have empty stomachs more often than other feeding 

guilds (Arrington et al. 2002) and, while difficult to observe in the wild (although 

stomach loggers are becoming available for sharks: Papastamatiou et al. 2007), a feast 

and famine feeding pattern has been observed in captive seven-gill sharks 

(Notorynchus cepedianus) (Vandykhuizen and Mollet 1992). In this context the TP2.0 

forager delivers a double benefit; increasing the number of new prey-patch encounters 

not only increases the quantity of prey available but reduces the mean time between 

feeding events. Theoretically Lévy foragers are therefore less likely to starve, or suffer 

from malnutrition, than uniform or exponential foragers, which clearly confers many 

physiological benefits. Thus, Lévy foraging results in more predictable resources in 

unpredictable environments. These findings make it increasingly likely that movement 

patterns approximating a Lévy flight would have been naturally selected since the 

advantages to trophic status appear so strong. In support of this, the fundamental 

result from Viswanathan et al. (2000) demonstrating the optimality of µ = 2.0 was 

reproduced here using a very different simulation program and environment with 

different parameterisation. This adds considerable independent support to the central 

hypothesis concerning the Lévy flight foraging hypothesis. As such, search patterns 

similar to an idealised Lévy flight will clearly be a very efficient foraging strategy under 

a much broader range of conditions than previously thought. 

Even the most biologically realistic scenario presented here falls far short of the 

behavioural complexity exhibited by an apex predator such as a shark. No account is 

taken of refined sensory input, memory effects or the sophisticated hunting and 
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foraging behaviour that is ubiquitous among higher organisms. The foragers presented 

here are therefore very much a null model of foraging; all that is being studied is the 

effect that simple, basal movement patterns have on the efficiency of an uninformed 

random search. It is likely that even nematodes, such as Caenorhabditis elegans, by 

sensing chemical gradients (Ohkubo et al. 2010), have at least some knowledge of their 

wider resource environment. Nevertheless, it is clear that differences in these simple 

patterns produce significant differences in foraging efficiency which are robust to 

differences in prey abundance or distribution. The differences are not small; in the 

sparse, Lévy-distributed prey field the TP2.0 forager has a foraging efficiency 2.6 times 

that of the exponential forager. Given that all that is required for an organism to 

produce a Lévy movement pattern is a time-fractal activity pattern (Bartumeus and 

Levin 2008), which has been observed in even simple animals such as Drosophila (Cole 

1995), it seems very likely that such behaviour would have been selected for during 

evolution.   

When studying complex organisms, such as marine vertebrates, these simple 

movement patterns are only going to be observed on those occasions when the animal 

is actively engaged in foraging, when information of the location of prey is absent and 

when other behaviours, such as prey avoidance, migration or response to 

environmental cues are not dominating the animal’s movement. It is therefore to be 

expected that empirical evidence for these patterns will be relatively rare. There is at 

the present time some limited empirical support for Lévy movement patterns in a 

range of taxa, including insects (Cole 1995, Reynolds and Frye 2007, Reynolds et al. 

2007), dinoflagellates (Bartumeus et al. 2003), marine gastropods (Seuront et al. 

2007), some marine predators (Sims et al. 2008a) and primates (Ramos-Fernandez et 

al. 2004) including humans (Brown et al. 2007, Gonzalez et al. 2008, Rhee et al. 2008). 

However, there has not been a thorough and robust empirical test of the Lévy-flight 

foraging hypothesis in free-ranging animals. 

Perhaps it is expected that Lévy patterns would not be common in terrestrial animals 

as stable environmental structures (i.e. topology, trees etc.) provide very persistent 

clues as to the location of prey or other resources. Nor are they likely to be common 

among higher vertebrates such as bears, Ursus arctos, where the animals rely on good 

spatio-temporal mental maps of resource availability and rarely perform large-scale 
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random searches (Bojarska and Selva 2012). Therefore, it seems likely that Lévy search 

patterns should be most common in an environment such as the open sea because 

resources are often highly sparse, have complex dynamic distributions and are 

transported by currents over widely different spatio-temporal scales. As such, 

submerged predators are only likely to have an incomplete knowledge of resource 

location and the detection of such resources at distance (e.g. vision, olfaction) will be 

limited by the seawater medium compared to terrestrial or aerial environments. 

Hence, for a robust test of the Lévy flight foraging hypothesis the study of pelagic open 

ocean predators may provide particularly interesting and long-lasting insights. 
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4 Environmental context explains Lévy and Brownian 
movement patterns of marine predators 

 This chapter was published in Nature as: Humphries, N. E., Queiroz, N., Dyer, J. R. M., 

Pade, N. G., Musyl, M. K., Schaefer, K. M., Fuller, D. W., Brunnschweiler, J. M., 

Doyle, T. K., Houghton, J. D. R., Hays, G. C., Jones, C. S., Noble, L. R., 

Wearmouth, V. J., Southall, E. J. & Sims, D. W. (2010) Environmental context 

explains Lévy and Brownian movement patterns of marine predators. Nature, 

465, 1066-1069. 

4.1 Introduction 

An optimal search theory, the so-called Lévy flight foraging hypothesis (Viswanathan et 

al. 2008), predicts predators should adopt search strategies known as Lévy flights 

where prey is sparse and distributed unpredictably, whereas Brownian movement is 

sufficiently efficient for locating abundant prey (Viswanathan et al. 1999, Bartumeus et 

al. 2002, Bartumeus et al. 2005). Empirical studies have generated controversy 

because less accurate statistical methods have been used to identify Lévy behaviour 

(Edwards et al. 2007, Sims et al. 2007). Consequently whether foragers exhibit Lévy 

flights in the wild remains unclear. Crucially, moreover, it has not been tested whether 

observed movement patterns across natural landscapes having different expected 

resource distributions conform to the theory’s central predictions. Here we use 

maximum likelihood methods to test for Lévy patterns in relation to environmental 

gradients in the largest animal movement dataset assembled for this purpose. Strong 

support was found for Lévy search patterns across 14 species of open-ocean fish 

predator (sharks, tuna, billfish, ocean sunfish), with some individuals switching 

between Lévy and Brownian movement as they traversed different habitat types. We 

tested the spatial occurrence of these two principal patterns and found Lévy behaviour 
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associated with less productive waters (sparser prey) and Brownian movements 

associated with productive shelf or convergence-front habitats (abundant prey). These 

results are consistent with the Lévy flight foraging hypothesis (Bartumeus 2007, 

Viswanathan et al. 2008), supporting the contention (Travis 2007, Buchanan 2008) that 

animal search strategies evolved to exploit optimal Lévy patterns. 

4.1.1 The Lévy flight foraging hypothesis 

Lévy flights are a special class of random walk with movement displacements (steps) 

drawn from a probability distribution with a power-law tail (the so-called Pareto-Lévy 

distribution) (Shlesinger and Klafter 1986, Viswanathan et al. 2008), giving rise to 

stochastic processes closely linked to fractal geometry and anomalous diffusion 

phenomena (Shlesinger et al. 1993, Bartumeus 2007). Lévy flights describe a 

movement pattern characterised by many small steps connected by longer relocations, 

with this pattern having scale invariance under projection, such that P(l) ~ l-, with 1 < 

  ≤  3 where l is the flight length (move step-length), and  the power-law exponent. 

Lévy flights comprise instantaneous flight lengths, hence involve infinite velocities, 

whereas a Lévy walk (Shlesinger and Klafter 1986) refers to a finite velocity walk such 

that displacement is determined after a time t, reflecting a dynamical process such as 

movement (Shlesinger and Klafter 1986, Shlesinger et al. 1993, Viswanathan et al. 

2008). Lévy flights and walks are theorised to be the most efficient movement pattern 

for locating patchy prey in low concentrations at spatial scales beyond a searcher’s 

sensory range, with an optimal search having a power-law exponent of   2 

(Bartumeus et al. 2005, Sims et al. 2008a). It is hypothesised that organisms have, 

therefore, evolved to exploit optimal Lévy search patterns (Bartumeus 2007, Sims et al. 

2008a, Viswanathan et al. 2008). 

4.1.2 Controversy over empirical evidence 

Burgeoning empirical support for this hypothesis recently foundered however 

following studies suggesting methodological shortcomings in both the estimation of 

power-law exponents and in determining the goodness of fit of the distribution to the 

data (Edwards et al. 2007, Sims et al. 2007, Edwards 2008, White et al. 2008, Clauset et 

al. 2009), thus casting doubt on some, if not all, of the empirical studies to use such 

methods (Travis 2007, Buchanan 2008). Hence, controversy remains over whether 

Lévy behaviour occurs in nature (Benhamou 2007, Edwards et al. 2007, Buchanan 
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2008), despite many empirical studies (Viswanathan et al. 2008, Bartumeus and 

Catalan 2009). Furthermore, long time series of movements (weeks to months) derived 

from animal-attached electronic tags will very likely capture complex movement data 

resulting from different types of behaviour (e.g. searching, travelling, resting) as 

animals respond to various biotic and abiotic factors over time. Previous studies 

analysing free-ranging animal movement data (Viswanathan et al. 1996, Edwards et al. 

2007, Sims et al. 2008a) for Lévy motion used data across long time periods and 

different habitat types, without sufficient consideration given to the issue of different 

types of behaviour interspersed within the time series. The lack of analysis of separate 

behaviour pattern types may be at least one reason why evidence for Lévy flights in 

animal behaviour has proved challenging to detect unequivocally (Benhamou 2007, 

Buchanan 2008). 

4.2 Methods 

Here we present an analysis of the largest dataset of recorded movements (n = 

12,294,347 steps) assembled to test the Lévy flight foraging (LFF) hypothesis 

(Viswanathan et al. 2008) using statistical methods (Maximum Likelihood Estimation, 

MLE, and Akaike’s Information Criteria weights, wAIC, for model comparisons) that are 

considered robust and accurate (Edwards et al. 2007, Edwards 2008, White et al. 2008, 

Clauset et al. 2009). To test the predictions of the LFF hypothesis we focused analysis 

on vertical movement data recorded over 5,700 days by electronic tags attached to 

open-ocean fish predators (sharks, tunas, billfish, ocean sunfish; Table B1). These 

species may be among those most likely to exhibit Lévy behaviour because they 

occupy unpredictable and depauperate environments with highly patchy prey 

distributions (Sims et al. 2008a), where Lévy motion is hypothesised to increase new-

patch encounter probability (Viswanathan et al. 2000). 

4.2.1 Study animals 

In total, 129 track sections from 55 individuals collected over more than 5,700 days 

were analysed, representing 14 species: bigeye thresher shark (Alopias superciliosus, 

Lowe 1841) n = 2 individuals; blue shark (Prionace glauca, Linnaeus 1758) n = 12; 

shortfin mako shark (Isurus oxyrinchus, Rafinesque 1810) n = 1; porbeagle shark 

(Lamna nasus, Bonnaterre 1788) n = 1; silky shark (Carcharhinus falciformis, Müller & 
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Henle 1839) n = 3; oceanic whitetip shark (Carcharhinus longimanus, Poey 1861) n = 1; 

basking shark (Cetorhinus maximus, Gunnerus 1765) n = 6; whale shark (Rhincodon 

typus, Smith 1828) n = 1; bigeye tuna (Thunnus  obesus, Lowe, 1839) n = 5; yellowfin 

tuna (Thunnus  albacares, Bonnaterre, 1788) n = 6; black marlin (Makaira indica, Cuvier 

1832) n = 1; blue marlin (Makaira nigricans, Lacepède 1802) n = 11; swordfish (Xiphias 

gladius, L. 1758) n = 1; ocean sunfish (Mola mola, L. 1758) n = 1. These comprise 5 

taxonomic or functional groups (macropredatory sharks, planktivorous sharks, tunas, 

billfish, ocean sunfish) with 12.2 million individual movement steps analysed. Table B1 

gives tag types used and technical details, together with tagging locations. Long-term 

high resolution depth datasets from fish are difficult to obtain given the very limited 

bandwidth of the Argos data-relay satellite system (Hays et al. 2007). We made 

serendipitous use of an extensive number of satellite and archival tags that had been 

recovered after long deployments and contained complete high resolution datasets. 

Only the basking shark dive data (n = 6 individuals; 10.9% of total individuals) have 

been analysed previously in the context of Lévy flights (Sims et al. 2008a), although, 

importantly, this did not include division of tracks into sections that were then geo-

referenced and compared with environmental habitat type, the prime objective in the 

current paper.  

4.2.2 Division of recorded time series into behaviourally consistent sections 

It is hypothesised that long and complex dive time series (vertical tracks) recorded by 

animal-attached electronic tags are likely to have captured a series of different 

movement behaviours. This is due, at least in part, to animals encountering differing 

environmental conditions such as sea temperature, depth or prey densities, for 

example. If analysed as a whole, these time series may result in more complex move 

step-length frequency distributions which may not be readily or accurately interpreted 

by the proposed statistical analysis for exploring underlying model fits to empirical 

data (i.e. Maximum Likelihood Estimation, MLE). It is therefore desirable to divide such 

tracks into sections which are behaviourally more consistent. Furthermore, it is an aim 

of this study to explore different movement patterns in relation to environmental 

gradients. Hence, there is an additional requirement that the track divisions should be 

made, where possible, at or at least temporally close to encountered environmental 

boundaries (e.g. between water masses with different characteristics). An examination 
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of the dive time series often reveals clear changes in patterns of vertical space use 

which can in turn, when spatial data is available, be linked to environmental changes 

such as water temperature gradients and sea depth (Queiroz et al. 2012). 

Although for some tracks discontinuities are clearly identified by changes in patterns of 

vertical space use in a time depth plot in other cases changes are less clear and 

therefore an objective method is needed to identify discontinuities.  

Therefore, to enable a more robust test of the LFF hypothesis, long and complex time 

series of vertical diving movements (hereinafter tracks, or sections) undertaken as fish 

moved horizontally across their ranges, were divided into shorter sections using a split-

moving window analysis (Cornelius and Reynolds 1991) to identify discontinuities in 

the pattern of vertical space use which represent transitions from one pattern of space 

use to another (see Chapter 5 for details). In total, tracks from 55 individuals across 14 

species (shark, 8 species; tuna, 2; billfish, 3; ocean sunfish, 1) were divided into 129 

sections. MLE methods (Clauset et al. 2009) were used to fit three models (power-law, 

truncated power-law (truncated Pareto) or exponential) to the observed move step-

length frequency distributions. Sections that from visual inspection of MLE model fits 

to empirical data were a poor fit to all candidate distributions were excluded from 

further analysis (n = 35) since our objective was to test the spatial occurrence of good 

fits to step-length distributions. MLE methods with AIC weights (Edwards et al. 2007, 

Edwards 2008) (wAIC) were then used to determine model best fits for the remaining 

94 sections. Since movements can only take place in finite space (e.g. moves are 

limited by the sea surface, seabed or range edge) leading to upper cut-offs in the move 

step-length frequency distribution, only truncated Lévy walks are biologically plausible 

(Viswanathan et al. 2008). Therefore, our principal intention was not to find which 

kinds of all possible probability distributions best fit the data, rather, it was to test 

between truncated Lévy (truncated power-law model) and Brownian-type (exponential 

model) movement patterns. 

To perform the analysis a two dimensional (2D) time-at-depth matrix, with 6 hour time 

bins (as columns) and 10 m depth bins (as rows), is first constructed from the raw dive 

time-series data by calculating the proportion of time spent at each depth within each 

time period (Figure 64a). A virtual window with a width of 6 time bins is placed at the 

start of the time-at-depth matrix and a measure of dissimilarity between the two 
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window halves is calculated and assigned to the centre position of the window. The 

dissimilarity measure used here was the multivariate measure of Euclidean distance 

between averaged time at each depth. The window position is then advanced by one 

time bin and the calculation is repeated until the window reaches the end of the time 

series. Statistical significance of each dissimilarity value is calculated using a Monte-

Carlo technique whereby the calculation is repeated 1000 times with a shuffled time-

at-depth matrix. The number of times the dissimilarity value exceeds that calculated 

using the real data is counted and converted to a percentage which represents the p-

value. Significant discontinuities in the time series will have higher dissimilarity values 

than most of those calculated using a random re-arrangement of the data, resulting in 

very few randomisations yielding higher dissimilarity values. The width of the window 

is then incremented by two and the process is repeated up to a width of 32, giving 14 

window sizes. The p-values calculated from each window size and position are stored 

and finally plotted by stacking them vertically, with significant values (in this case p < 

0.001) being plotted in black, as shown in Figure 65. Discontinuities in the dive time 

series are revealed by the presence of inverted triangles which ‘point’ to the 

discontinuity and indicate the position at which the time series can be divided as a 

quantitative estimate of where different movement patterns are located in the time 

series. 

The vertical movement tracks of large marine fish analysed in this study are complex 

and therefore the results of the split-moving window analysis can appear ‘noisy’, in 

some cases, with many discontinuities being identified. Referring to Figure 65a below 

it can be seen that the discontinuities labelled i, iii, iv and vi extend over many window 

sizes and have a general trend of increasing width at smaller window sizes. These 

discontinuities represent shifts between prolonged behavioural bouts and are 

therefore the points at which this track was divided. The smaller discontinuities 

labelled ii, v, vii and viii, although statistically significant, are of shorter duration or 

extend over only a few window sizes and are therefore ignored since they do not 

capture persistent pattern changes. Accurate detection of power-laws in biological 

data can be affected by small dataset size (Sims et al. 2007, White et al. 2008) so there 

is a further consideration not to divide the tracks into sections with too few data 

points. Therefore in the current study only the clearest discontinuities arising from the 

SMW analysis were used to divide the tracks. 



117 

Patterns of vertical space use of marine fish can be analysed using simple binning 

techniques to generate a time-at-depth matrix with temporal and depth resolution set 

to the required level of detail (Figure 64). Therefore, vertical space use is a good 

candidate measure for the identification of movement pattern discontinuities that 

would encompass both responses to changes in environment (e.g. sea depth or 

thermocline depth) as well as other behavioural shifts (Queiroz et al. 2010). An 

alternative measure that could be used is the move step-length distribution. It is a 

central hypothesis of the current study that long, complex tracks will comprise 

different move step-length frequency distributions and that changes in these could be 

related to environmental gradients and other variables. Move step-length frequency 

distributions are, however, relatively poorly analysed using simple binning techniques 

and the equivalent time/step-length frequency matrix (Figure 64b) reveals 

considerably less detail than that generated from depth usage (Figure 64a). One 

reason for the lack of detail could be the very small sample sizes that result from the 6-

hour time divisions used to generate the matrix; using longer time windows, however, 

results in a much coarser analysis and missed discontinuities (Figure 65).  

 
Figure 64: Identification of movement pattern discontinuities. 

Time at depth (a) and time step-length (b) dissimilarity matrices generated from depth data of blue shark 
10. Red colour shows areas of high dissimilarity and blue low dissimilarity. The step-length matrix lacks 
contrast in comparison to the time-at-depth matrix and is therefore likely to miss some significant 
discontinuities.  
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Figure 65: Split-moving window analysis plots at differing time resolutions.  

For blue shark 10 with time divisions set to (a) 6 hours, (b) 12 hours and (c) 24 hours. Increasing the time 
division results in decreasing resolution of the discontinuities.  

4.2.3 Preliminary data analysis 

Prior to performing the MLE analysis all sections, which comprised time-stamped 

depth measurements, were converted into move step-lengths by calculating vertical 

movement deltas between successive pairs of data points. As part of the process, 

three causes of potential calculation error were addressed. Firstly, some datasets were 

recorded at very high temporal resolution (e.g. 1s) which can in some cases be 

insufficient time to record movement deltas greater than the depth resolution of the 

tag, resulting in considerable step-wise alternating values, i.e. long series of alternating 

move steps with lengths close to the vertical resolution of the tag (Figure 66). High 

temporal resolution datasets were therefore under-sampled at 1 in 10 to give a 

sampling interval of 10 seconds, which was found to be sufficient time for the animal 

to make moves significantly greater than the tag depth resolution (Figure 67). Where 

the data was recorded with high vertical (i.e. depth) resolution then the accuracy of 

the tag is sufficient to prevent the effects of jitter (Figure 68). Secondly, in all datasets, 

sampling artefacts were introduced when the animal made long movements with a 

temporal interval that exceeded the sampling interval (Figure 69). Even with a 

sampling interval of 1 hour it was found that some long movements had been 

artificially divided into a series of shorter steps. Correction of this second sampling 

artefact involved coalescing steps that were part of a single movement (i.e. where the 

trend of consecutive steps was either a continuously increasing or decreasing depth) 

into a single step rather than many smaller steps. It should be noted that this method 

of path integration maintains move step-lengths consistent with that of a Lévy walk 

since displacements have finite velocity and are dependent on a time t (Shlesinger and 
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Klafter 1986, Viswanathan et al. 2008). Finally, some of the datasets obtained via Argos 

satellite telemetry inevitably contained gaps where data was not retrieved, or was 

recovered corrupted and so was discarded (Hays et al. 2007). If uncorrected, a 

spurious step would have been calculated between points either side of a gap; 

therefore, any step occurring immediately following a gap was ignored, ensuring that 

only genuine movement steps for which both the start and end depth had been 

recorded were included. Previous work has shown that small datasets can be prone to 

large statistical fluctuations and may result in poor fits to a candidate distribution or 

inaccurate estimates of the exponent (Sims et al. 2007). Therefore, datasets with 

fewer than 500 data points prior to pre-processing were excluded from the analysis. 

 
Figure 66: An example of high temporal resolution data exhibiting jitter 

In this case the data was recorded at 1 s intervals from a porbeagle shark (Lamna nasus). Jitter can be 
seen as small alternating vertical displacements. 

 
Figure 67: Under sampled depth data 

Under-sampling the data at 1 in 10 to give a 10 s resolution reduces the jitter. 

 
Figure 68: High resolution dive data 

If data is recorded at a high spatial resolution then there is little or no jitter, even when recorded at a high 
temporal resolution.  Here the depth resolution is 4cm and the temporal resolution is 1 s. 
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Figure 69: Sampling artefacts producing short step-lengths 

When the animal makes moves with a duration that greatly exceeds the sampling interval of the tag long 
steps are truncated. In this case the data was recorded at 1 hour intervals from a swordfish (Xiphius 
gladius). Lower panel shows corrected data. 

4.3 Results 

We found clear and persistent signals of Lévy and Brownian motion; of the 94 sections 

analysed statistically (MLE with wAIC), one section was best fit by a pure power-law 

(Figure 70b) and 60 sections were found to best fit a truncated Pareto-Lévy 

distribution (e.g. Figure 70d,e;Table B2), with exponents (μ) in the Lévy range 1 < μ ≤ 3 

and so were consistent with Lévy behaviour. The mean μ value for the Lévy sections 

was 1.94 (S.D. 0.43, n = 61) which is close to the proposed optimum (μopt = 2) 

(Viswanathan et al. 1999, Bartumeus et al. 2005, Viswanathan et al. 2008). Six sections 

best fit by a truncated power-law yielded exponents outside the Lévy range.  

Lévy searching in open ocean predators therefore appears not only present, but 

prevalent, however, it does not appear to be a universal pattern to explain all 

movements nor does it occur in all individuals at all times (occurring in only 47% of 

sections). A logical extension therefore supports the hypothesis that other movement 

behaviour types intersperse Lévy patterns. In support of this we found 27 sections 

(21%) were best fitted by an exponential model describing normal random processes 
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(Brownian motion) (Table B2) that under the LFF hypothesis are consistent with 

optimal searches where prey are abundant (Viswanathan et al. 2008). The 35 sections 

(27%) that were poorly fit by any of the distributions was, perhaps because the 

sections comprised many different movement patterns making them too complex for 

the statistical methods employed here. 

 
Figure 70: Examples of good fits to power-law and truncated power-law distributions. 

(a) Synthetic power-law and truncated power-law (Pareto) distributions with upper truncations set to 50, 
250, 5000, compared with empirical power-law and truncated power-law fits to dive data from (b, d) 
individual blue sharks (Prionace glauca), together with (c) the diving time series for the individual in b 
(over ≈ 8 days), and (e) an ocean sunfish (Mola mola) with (f) dive time series (≈ 4 days). Tick marks in c 
and f are 24 h. Red line in (a) shows synthetic power-law, (b) a power-law and (d, e) truncated power-law 
MLE model fits to empirical data. 

4.3.1 Maximum Likelihood Estimation (MLE) results 

MLE best fit parameters, log-likelihoods and Akaike weights for all track sections are 

given in Table B2. Details for the best fitting sections (i.e. those used in the spatial 

analysis, or shown in figures) are given in Table B3. Figure 71 shows plots for those 

sections best fitted by a power-law or truncated Pareto models that do not appear 

elsewhere in the paper showing two competing model fits. 

Truncated power-laws provided the majority of best fits to empirical movement data 

of tracked fish predators. It is perhaps unsurprising that natural phenomena such as 

animal movement data should be better fitted by truncated Pareto-Lévy distributions 

rather than pure power-laws: where the animal is restricted by the depth of the water 

column or other factors (e.g. thermal or oxygen tolerances, predator physiological 
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capacity to withstand increased depths, prey absence) the truncation of the best fit 

distribution is increased (see Figure 70). 

For the best fitting truncated Pareto-Lévy (power-law) sections, MLE and the R Gamma 

functions (R Development Core Team 2009) were used to attempt to fit a (shifted) 

Gamma distribution to ensure that this model was not a better alternative. GOF values 

calculated using the Kolmogorov-Smirnov test are given in Table B3 and ranked step-

length plots of the fits are shown in Figure 72. Overall, it was found that gamma 

distributions were not better fits to the move step-length frequency distributions best 

fitted by a truncated power-law. 

 
Figure 71: Ranked step-length plots for sections well fitted by a truncated Pareto-Lévy distribution.  

Best fit truncated Pareto (power-law) (red line) and exponential (blue) models to observed data (black 
circles) for those figures not shown elsewhere. (a) bigeye tuna 1 section 4; (b) ocean sunfish 1 s2; (c) blue 
shark 9 s3 (note that this fit is to a power-law, not a truncated power-law); (d) blue shark 12 s2; (e) bigeye 
tuna 5 s4; (f) yellowfin tuna 2 s1; (g) yellowfin tuna 4 s4; (h) yellowfin tuna 5 s1; (i) yellowfin tuna 5 s3; (j) 
yellowfin tuna 1 s3; (k) yellowfin tuna 3 s3; (l) yellowfin tuna  3 s4; (m) blue shark 9 s2; (n) silky shark 3 s1.  
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Figure 72: Gamma distribution fits to empirical data best fitted by the truncated Pareto distribution. 

 Best fit Gamma (red) and observed data (black circles). (a) bigeye tuna 1 section 4; (b) bigeye tuna 2 s3; 
(c) bigeye tuna 2 s6; (d) bigeye tuna 2 s8; (e) bigeye tuna 5 s4; (f) yellowfin tuna 1 s3; (g) yellowfin tuna 2 
s1; (h) yellowfin tuna 3 s3; (i) yellowfin tuna 3 s4; (j) yellowfin tuna 4 s4; (k) yellowfin tuna 5 s1; (l) 
yellowfin tuna 5 s3; (m) ocean sunfish 1 s2; (n) blue shark 9 s3; (o) blue shark 10 s2; (p), blue shark 10 s4; 
(q) blue shark 10 s5; (r) blue shark 12 s2; (s) silky shark 3; (t) blue shark 10 s1. See Supplementary Table S4 
for model comparison values. 

4.3.2 Environmental context: Behavioural switching 

To investigate the environmental context of different behaviour patterns we mapped 

the horizontal tracks of individual predators in the Atlantic or Pacific Oceans to 

determine in which types of habitat the sections showing Lévy and Brownian vertical 

movement patterns occurred. For example, in the Central North Pacific in productive 

waters of the Equatorial Convergence Front, the entire track of a silky shark 

Carcharhinus falciformis was best fit by an exponential model, whereas for another 

silky shark tracked further north in oligotrophic waters the best fit was a truncated 

power-law with an exponent of 2.02, close to the theoretical optimum for Lévy 
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movement (μopt = 2). We also found for 8 individuals of 5 species of fish predator 

(bigeye tuna Thunnus obesus, yellowfin tuna Thunnus albacares, blue Prionace glauca, 

basking Cetorhinus maximus and whale sharks Rhincodon typus) where different model 

fits occurred between different habitat types within an individual. For example, a blue 

shark tracked in the Northeast Atlantic moving from highly productive, shelf habitat of 

the western English Channel south to the less productive, deep water of the Bay of 

Biscay, showed switches in the pattern of vertical movement (Figure 73a-e). The shark 

showed diving behaviour in tidal front waters on the shelf (0 – 200 m depth) well fitted 

by an exponential model (Figure 73a,f,k; Table B3). Moving off-shelf into less 

productive waters (with well-developed thermal stratification) (Figure 73m,q), vertical 

movements down to 700 m conformed well to a truncated power-law with an 

exponent of  = 2.19 (Figure 73b,g,l), before diving movements shifted to a pattern 

better approximated by an exponential fit when in colder, shelf-edge habitat in the 

southern Bay of Biscay (Figure 73c,h,m). Returning to warmer, well stratified but less 

productive open ocean habitat (Figure 73d,e,n,o,q), this shark once again exhibited 

vertical movements best fit by truncated power-laws with  = 1.97 and 1.99 (Figure 

73i,j). A bigeye tuna in the Central Eastern Pacific near the Galapagos Islands switched 

several times between diving movements best fit by a truncated power-law when in 

warmer, stratified waters, to movements approximated by an exponential model in 

colder waters of the Equatorial Convergence Front. 
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Figure 73: Behavioural switching between Lévy and Brownian motion in relation to habitat type.  

(a-e) Split-moving window analysis showing significant discontinuities in the dive time series of blue shark 
10. Red lines indicate points where the time series was divided into sections (S). (f-j) MLE analysis with μ 
values for sections best fitting a truncated power-law distribution; black circles, observed step-lengths; 
red lines, best fit truncated power-law; blue lines, best fit exponential distribution. (k-o) Electronic tag 
recorded depth profiles of sea temperature. (Continued below...) 

Temperature 
o
C

10 15 20 10 15 2010 15 2010 15 2010 15 20

D
e
p
th

 (
m

)

0

100

200

600

700

1.5 2.5

Date

30/08 13/09 27/09 11/10 25/10

D
e
p
th

 (
m

) 100

300

500

700

W
in

d
o
w 6

14
22
30

S1
shelf

S2
off shelf

S3
shelf
edge

S4
off 

shelf
S5

off shelf

Log
10

 Step length

1.5 2.5

L
o
g
1
0
 R

a
n
k

0

1

2

3

4

1.5 2.5 1.5 2.5 1.5 2.5

=1.63 =2.19 =1.97 =1.99

a b c d e

f g h i j

k l m n o



126 

 
Figure 73 (Continued): 

(p) Geo-referenced track sections of blue shark 10 overlaid on bathymetry and (q) chlorophyll ‘a’ 
concentrations. Section (SEC) numbers correspond to those in a-e.  

4.3.3 Statistical significance 

These results conform to the LFF hypothesis prediction that Lévy behaviour should 

occur in environments where prey is sparsely distributed whereas Brownian motion is 

theoretically optimal where prey is abundant (Bartumeus et al. 2002). To test the 

significance of this with our habitat-mapped data we compared the frequency of 
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sections that conformed to this broad prediction. It was assumed prey were likely to 

be more sparsely distributed in open ocean habitats having lower primary (Behrenfeld 

and Falkowski 1997) and secondary production (Sims et al. 2006b), compared with 

more productive shelf, frontal and convergence zone habitats where prey of the 

predators we tracked is known to be more highly abundant (Clarke and Stevens 1974, 

Moteki et al. 2001, Sims et al. 2006b, Zainuddin et al. 2006). We used only geo-

referenced sections yielding best fits where the step-length data spanned at least 1.5 

orders of magnitude (range, 1.53 – 2.27). 

For 4 species of fish predator (3 sharks and ocean sunfish) in the Northeast Atlantic 

that moved between continental shelf areas with high surface zooplankton abundance 

and open ocean areas with lower abundance (Sims et al. 2006b), that provide a proxy 

for prey-abundant and prey-sparse environments, respectively, 14 mapped sections 

were available. Movement patterns in 12 sections performed as hypothesised (sparse 

prey, Lévy behaviour; abundant prey, Brownian motion) (chi-squared with Yates 

correction for continuity: χ2 = 5.78, 84.32

2,05.0  , P < 0.025) (Figure 74a). This indicates 

that the frequency of observed movement patterns approximated by a Lévy 

distribution  in less productive areas and by an exponential distribution (Brownian) in 

more productive waters, did not deviate significantly from theoretical predictions of 

the LFF hypothesis (Bartumeus et al. 2005, Viswanathan et al. 2008). For bigeye and 

yellowfin tuna in the Central Eastern Pacific moving between warm stratified waters 

and cooler, more productive convergence front waters there were 21 sections for 

analysis. A higher number of sections best fit by an exponential distribution occurred in 

convergence front waters than in stratified waters (chi-squared with Yates correction 

for continuity: χ2 = 4.00, 84.32

2,05.0  , P < 0.05) (Figure 74b). Therefore, the occurrence 

of Brownian-type behaviour of tuna in the Pacific agrees with predictions of the LFF 

hypothesis. Interestingly, the number of sections where diving movements conformed 

to a truncated power-law was equal between convergence front and stratified waters. 

We speculate that one reason for tuna in the productive convergence zone exhibiting 

Lévy diving movements characterised by longer vertical steps is that fish prey may 

become spatially constrained within mesoscale eddy features (Zainuddin et al. 2006) 

that are common in the region and have diameters between about 50 and 200 km. 

Thus, even in this productive environment, tuna movement may be optimised by 
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longer vertical re-orientations (searching) between eddies since prey hot-spots may be 

patchily distributed across a wide range of scales linked to turbulent eddy formation, 

size and persistence (Powell et al. 1975). 

 
Figure 74: Spatial occurrence of Lévy and Brownian behaviour types.  

Frequencies of behaviour types in (a) productive (frontal/shelf) and less productive (off-shelf) habitats in 
the Northeast Atlantic and in (b) productive (frontal) and less productive (stratified) habitats in the Central 
Eastern Pacific. Tests of two theoretical assumptions of the Lévy flight foraging hypothesis (sparse prey 
predicts Lévy behaviour; abundant prey predicts Brownian movement) were performed on frequency data 
(not percent frequency data). See main text for statistical test details. 

4.3.4 Environmental context and Lévy behaviour of silky sharks 

In further support of the prediction that when prey is abundant Brownian motion is an 

optimum search strategy, whereas when prey is sparse Lévy is optimum, Figure 75 

shows geo-referenced tracks from two silky sharks (Carcharhinus falciformis) in 

relation to chlorophyll ‘a’ concentrations, a proxy for productivity. Silky shark 2 was 

located in comparatively productive waters with a move (dive) step-length distribution 

best fitted by an exponential distribution representing Brownian motion. In contrast, 

silky shark 3 remained in very low productivity (oligotrophic) waters with diving 

behaviour approximated by a truncated power-law with an exponent of  = 2.02, close 

to the theoretical optimum for Lévy behaviour in an environment with sparse target 

sites.  
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Figure 75: Horizontal movements of silky sharks in different productivity zones.  

Left panel, silky shark (Carcharhinus falciformis) 2 in productive waters (Equatorial Convergence Zone) 
with vertical movements following an exponential distribution; right panel, silky shark 3 in less productive, 
oligotrophic waters (south of the Hawaiian Islands) with vertical movements approximated by a truncated 
power-law exponent of 2.02. 

4.3.5 Behavioural pattern switching of a bigeye tuna in relation to habitat type 

Under the adaptive (optimal) behaviour conceptual framework of the Lévy flight 

foraging hypothesis, changes in searching behaviour are expected as an animal moves 

between areas of differing productivity and hence prey density. In the Northeast 

Atlantic, continental shelf waters with abundant, seasonally persistent tidal and shelf-

break fronts have generally higher primary and secondary productivity than open 

ocean waters where the water column is less well mixed and characterised by strong 

and stable vertical thermal stratification (Le Fèvre 1986, Sims et al. 2003). Here we 

defined two principal habitats for the purposes of simple analysis of behaviour types in 

relation to environmental gradients: productive shelf waters with strong tidal front 

presence (Frontal/Shelf) and less productive off-shelf areas typified by thermally 

stratified water with a deep thermocline at around 50 – 100 m depth (Off-shelf). In the 

Central Eastern Pacific, near the Galapagos Islands, the northerly flowing Peru Current 

meets the southward turning Equatorial Counter Current which form zones of 

upwelling and convergence along the westward flowing Equatorial Current. At these 

boundaries cold, nutrient rich water is up-welled and mixed with warmer surface 

waters creating a highly productive habitat characterised by plankton blooms (Le Fèvre 

1986). Adjacent to these areas, to the north and south, the ocean is relatively 

oligotrophic and vertically thermally stratified with a thermocline depth of about 100 

m. Here we defined two principal habitats to examine tuna behaviour: highly 

productive upwelling/convergence zone fronts (Frontal) and oligotrophic stratified 

water with a strong and stable thermocline (Stratified).  
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Although in this study switching behaviour was observed in only 8 individuals (from 55 

individuals for which we had data), this is largely due to the difficulty of obtaining high-

temporal resolution tracking data over long time periods where different large-scale 

habitat types were encountered. Longer tracks traversing different oceanographic 

regimes provided a greater chance of recording changes in patterns of search 

behaviour. 

Switching between behaviour types – identified by split-moving window analysis, MLE 

model fits and Akaike weights (wAIC) model comparison values, and as a function of 

ocean productivity – was found for bigeye tuna (Thunnus obesus) (n = 2) and yellowfin 

tuna (T. albacares) (n = 2) in addition to blue shark (n = 1), basking shark (n = 2) and 

whale shark (n = 1) Table B2 & Table B3). As a representative example, Figure 76 shows 

the vertical movements of bigeye tuna 2, together with the MLE model fits to move-

step frequency distributions of the different sections, water temperature-at-depth 

profiles and the horizontal movements corresponding to the analysed sections. The 

split-moving window analysis identified eight adjacent sections as having different 

features (Figure 76a,b). Horizontal movements were characterised by traversing east-

west movements mostly along the boundary between the Equatorial Convergence 

Front spreading west of the Galapagos Islands and lower productivity, stratified waters 

further south (Figure 76c,d,e). The analysed sections show changes in vertical 

movement pattern, with Lévy behaviour occurring predominantly in the west and 

Brownian-type movement in the east. The switch from Lévy to Brownian patterns of 

movement (Figure 76c sections 3 to 4) and back again (Figure 76c sections 5 to 6, and 

sections 6 and 7) was also coincident with a change in water mass type, from warm 

well-stratified water to cooler surface-layer water with a weaker thermocline that is 

characteristic of zones of upwelling and convergence (Figure 76d sections 3 to 4). 

The behaviour of the bigeye tuna shows changes in relation to the environment and 

we speculate that prey may have been more abundant in the eastern region nearer 

the Galapagos since Brownian motion was identified there. The physical complexity of 

the Equatorial Convergence Zone characterised by upwelling, meso-scale fronts and 

eddies (Zainuddin et al. 2006) is likely to entrain complex distributions of prey, 

including aggregation of individuals (Fiedler and Bernard 1987), and will likely 
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contribute to the observed complexity in tuna behaviour such as switching between 

different optimal strategies as resource conditions change.  

 
Figure 76: A bigeye tuna switching diving behaviour in relation to environmental gradients.  

(a) Split-moving window analysis and (b) time depth profile for bigeye tuna 2 showing the seven points of 
most significant discontinuity at which the track was divided. (c) MLE analysis of the eight sections 
showing μ values for those sections best fitted by a truncated Pareto (power-law) distribution. Maximum 
Likelihood Estimation (MLE) model parameters and Akaike’s Information Criteria (AIC) weights model 
comparisons for c given in Supplementary Tables S3 and S4. (d) Profiles of temperature at depth recorded 
by fish-attached electronic tags. These show the thermal profile of the water column and thermocline 
depth being similar from S3 to S5 followed by a decrease in upper layer temperatures and weaker 
thermocline (S4 and S5) and re-establishment of a stronger thermocline and higher temperatures from 
S6-S8. The weaker thermocline is associated with a better fit of vertical move step-lengths within a section 
to an exponential distribution (S5) while vertical move steps within well stratified waters are better fit by 
a truncated power-law distribution (S1, S8). 
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Figure 76 (Continued) 

(e) Horizontal movements of bigeye tuna 2 west of the Galapagos Islands along the southern boundary of 
the Equatorial Convergence Front. Sections are numbered as for a-c and arrows in the lower panel 
indicate directions of movement paths.  

4.3.6 Lévy flight behaviour in a productive convergence zone 

As expected from the Lévy flight foraging hypothesis (LFF) bigeye (Thunnus  obesus) 

and yellowfin tuna (T. albacares) displayed a higher frequency of Brownian-type diving 

movements than Lévy movements in the Equatorial Convergence Zone. However, both 

species were found to exhibit Lévy movements in a productive zone at least as 

frequently (in terms of frequency of time series sections) as in a lower productivity 

region, which is more often than might be expected according to the LFF hypothesis. 

This contrasts with the occurrence of Lévy behaviour in the Northeast Atlantic where 

clearer spatial difference between productive and less productive large-scale habitats 

was evident (productive shelf/frontal habitat versus lower productivity off-shelf 

habitat) and where Lévy movement patterns were associated with off-shelf regions. 

That tuna exhibited both Lévy and Brownian movement types in the Equatorial 

Convergence Zone west of the Galapagos Islands suggests a requirement for a flexible 

approach to searching that may be linked to complexity in prey distributions (as 

mentioned above). One possible explanation for this flexibility in tuna movement 

pattern is that although prey resources are generally higher in frontal zones compared 

d a 
b c 
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to adjacent regions (Le Fèvre 1986), physical processes act to influence distributions of 

prey in complex ways. For example, the heterogeneity in distribution and abundance 

of zooplankton species in the Northwest Atlantic has been shown to be related to their 

associations with specific water masses of different origin and associated 

temperature/density discontinuities such as pycnoclines and fronts (Gallager et al. 

1996, Zimmerman and Biggs 1999). Indeed, along mesoscale frontal features in the 

Eastern North Pacific  albacore (Thunnus alalunga) and skipjack tuna (Katsowonus 

pelamis) were found to be aggregated in high productivity areas where prey such as 

anchovy, pelagic red crab and euphausids were enhanced (Fiedler and Bernard 1987). 

However, even along frontal features prey distributions were highly patchy across a 

broad range of mesoscales (Fiedler and Bernard 1987).  

In the present study it is possible that the adoption of Lévy and Brownian movements 

by tuna are responses to changes in patchy prey distributions that are entrained by 

frontal features such as eddies. It has been observed that in Pacific inter-tropical 

convergence zones albacore tuna are associated with meso-scale fronts and eddies 

(Zainuddin et al. 2006). These oceanographic features create local aggregations of prey 

organisms and patchier distributions of prey than might otherwise be expected at the 

meso-scale (Zimmerman and Biggs 1999). Therefore, very rich prey areas are expected 

within or near eddies, whereas relatively lower concentrations of prey may be 

available between such systems. This could account for the change between an 

optimal strategy for sparse prey environments and a strategy for where prey is more 

abundant occurring in the Equatorial Convergence Zone near the Galapagos Islands. 

The tuna tracked in this study covered very large distances (1502 to 7867 km) and 

areas (87,399 to 1,111,654 km2) (Figure 77, Figure 78) which greatly exceed the scale 

of eddies in this region (ca. 50 – 200 km diameter). It is therefore possible that at the 

scales over which the tuna ranged prey is not always highly abundant but patchy over 

a wide range of scales, and therefore Lévy diving movements may be a more efficient 

strategy for large interpatch distances than the expected Brownian diving movements.  
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Figure 77: Yellowfin tuna horizontal movements across different productivity zones.  

Yellowfin tuna 2 (Thunnus albacares) covered a distance of 7,867km and an approximate area of 
249,751km

2
 while traversing habitats with differing productivity. 

 
Figure 78: Bigeye tuna horizontal movements across different productivity zones. 

Bigeye tuna 3 (Thunnus obesus) crossed the equatorial convergence zone from near the Galapagos Islands 
northwest into warmer oligotrophic waters, covering a distance of 2,609km. 

4.4 Discussion 

In summary, our analysis provides the strongest evidence yet for Lévy behaviour in 

diverse animals ranging across natural landscapes. Furthermore, movement patterns 

of some individuals approximated theoretically optimal Lévy searches. It was also 

evident, however, that Lévy behaviour is not a universal pattern; rather, some 
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individuals utilise other patterns approximated by normal random processes, 

sometimes interspersed with Lévy movements. We found that mapping the locations 

of where Lévy and Brownian movements occurred enabled a preliminary field test of 

the Lévy flight foraging hypothesis, confirming theoretical predictions. Therefore, our 

results not only lend strong support to the contention that Lévy flights do occur in 

free-ranging animals, but our observations of pattern switching between Lévy to 

Brownian type motion suggest searching animals adjust adaptively their optimal 

pattern of movements to different environmental resource distributions.. We 

recognise however, that our analysis could not detect how the movement patterns 

arose, that is, whether the patterns identified were an adaptive behaviour or whether 

observed patterns were an emergent property of the spatial distributions of prey 

(Boyer et al. 2006, Benhamou 2007, Sims et al. 2008a). To resolve this issue, controlled 

experiments (Bartumeus et al. 2003) rather than natural experiments, as here, will be 

needed. Such tests will be important to progress from asking whether Lévy flights 

(walks) occur in animals (Travis 2007, Buchanan 2008) to explore why they occur and 

whether animals evolved to exploit Lévy flights as an optimal search strategy for living 

in complex, highly changeable natural landscapes. Simulations of biological evolution 

indicate varying environments posing complex goals can speed up natural selection 

(Kashtan et al. 2007), which also raises the question that if animals have evolved Lévy 

flight behaviour, when did such a strategy first appear among organisms? 
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5 Foraging success of biological Lévy flights recorded in 
situ 

This paper was published in PNAS as: Humphries, N. E., H. Weimerskirch, N. Queiroz, E. 
J. Southall, and D. W. Sims. 2012. Foraging success of biological Lévy flights 
recorded in situ. Proceedings of the National Academy of Sciences of the 
United States of America 109:7169-7174 

5.1 Introduction 

Recent, statistically robust, empirical studies, such as described in Chapter 4, have now 

identified Lévy flights in individual insects (Cole 1995; Maye et al. 2007), jellyfish (Hays 

et al. 2012), sharks, tuna, billfish, turtles and penguins (Sims et al. 2008a, Humphries et 

al. 2010, Sims et al. 2011), and in the population movement patterns of shearwaters 

(Bartumeus et al. 2010). Interestingly, Lévy patterns did not occur at all times in 

marine predators (Bartumeus et al. 2010, Humphries et al. 2010, Sims et al. 2011, Hays 

et al. 2012), rather their occurrence was dependent on environmental context – such 

as prey-sparse distributions – as predicted by theory (Viswanathan et al. 1999). 

However, in none of the studies was the foraging success measured; such a measure 

represents the ultimate test of whether Lévy flight might represent an advantage to 

the forager. Given that albatrosses often forage in highly heterogeneous habitats on 

squid and fish prey they catch at the surface (Weimerskirch 2007) it is reasonable to 

assume that a search strategy aimed at increasing the chance of encountering sparse 

prey, such as Lévy flight, may be present. Furthermore, given that the albatross 

studied here were brooding chicks, the foraging trips had to provide sufficient food 
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with sufficient regularity for the chick to thrive and not starve. It has been estimated 

that a pair of D. exulans require 1.7 kg bird-1 day-1 of food (an estimated total of 2733 

MJ for both birds for the 365 days of the breeding season, giving 3800 kJ per bird per 

day) in order to raise a chick (Shaffer 2004) with chicks requiring 60-65 kg of food in 

total (Berrow and Croxall 2001) and with foraging trips lasting from 12h to 6 days 

(Weimerskirch and Lys 2000). From the Feast and Famine simulations in Chapter 3 it is 

clear that Lévy flight foraging, with the increased encounter rate it confers, could be an 

advantageous strategy to improve chick survival. In particular, when the chick is young 

food is required more frequently (Weimerskirch and Lys 2000) and therefore longer 

intervals between feeding events could result in starvation, even if the total food 

returned by the parent was sufficient. Shorter less productive foraging trips might be 

favoured at this time over longer more productive trips. The virtual Lévy foragers 

studied in Chapter 2 experienced more frequent prey encounters and would be 

expected therefore to be more successful in rearing young that are vulnerable to 

starvation. Therefore, using appropriate datasets and robust statistical methods we (1) 

tested whether Lévy flight search patterns were present in albatrosses, and (2) using 

prey capture events, determined whether Lévy flights do result in successful foraging 

trips compared with another strategy, such as a Brownian walk, as predicted by the LFF 

hypothesis.  

5.2 Methods 

Animal-attached GPS tags provided time-stamped location datasets for 61 black 

browed albatrosses (Thalassarche melanophrys) brooding chicks on Kerguelen Island 

(49.35°S 70.22°E) and 27 wandering albatrosses (Diomedea exulans) incubating or 

brooding chicks on Possession Island (46.40°S 51.76°E) in the Crozet Islands 

archipelago. Between 2002 and 2010, birds were equipped just before taking off for 

the sea with GPS loggers attached with adhesive tape on the back feathers; the total 

mass of devices (between 20 and 45 g according to the season and species) was far 

below the recommended 3% threshold. A summary of the original GPS datasets is 

given in Table C1. Eleven of these birds were also fitted with a stomach temperature 

logger for determining the timing of prey capture and estimating prey mass ingested. 

Details of deployment procedures for GPS tags and stomach temperature loggers are 

given in Weimerskirch et al. (1994, 2002a, 2007).  
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For the prey capture study we also analysed 17 individual location time series of 

wandering albatross tagged in 1998, 1999 and 2001 that were each fitted with an 

Argos satellite transmitter, a wet/dry logger on one leg and were induced to swallow a 

stomach temperature logger. A summary of these datasets is given in Table C2. Full 

details of procedures and studies are given in Weimerskirch et al. (2005). Landing 

times of these birds were known from the wet/dry logger data and therefore no flight 

profile analysis was required. For consistency flight times were analysed using the 

same MLE and model selection methodology used for the 88 other birds in this study 

where no wet/dry logger data was available.  

5.2.1 Processing of GPS time series data 

The data obtained from the GPS tags are a time series of geographic locations at 

intervals of between a few seconds to several minutes, depending on both tag 

configuration and the time taken for the tag to acquire sufficient satellites to compute 

a location. This high resolution data captures the complex swooping flight path 

performed by the bird as it soars over the wave crests (Richardson 2011). Our 

intention was to test whether the bird flight steps that link periods of rest on the water 

or possible feeding events follow either a Lévy or exponential distribution. An 

exponential distribution might be expected if the movement pattern was essentially 

Brownian, resulting from a Poisson process; a Lévy pattern could suggest an optimal 

foraging search pattern such as a Lévy flight (Bartumeus et al. 2005), which would 

emerge from a bird conducting a Lévy walk since the turning points (landings for 

resting or feeding) in a Lévy walk are a Lévy flight (Shlesinger et al. 1993). Alternatively, 

a Lévy (heavy-tailed) pattern could arise by random movements across a fractal 

distribution of prey patches (Fritz et al. 2003, Nams 2005, Pinaud and Weimerskirch 

2005). Because the majority of tags did not include a salt water switch (wet/dry logger) 

we determined whether the bird was in flight or at rest from variations in flight speed 

and for consistency used this method for all tags. Periods of time spent resting on the 

sea surface and drifting with the current would have low speeds, whereas flight speeds 

would be necessarily higher. We used a speed threshold of 10 km h-1 (Wakefield et al. 

2009) above which the bird was most probably in flight and below which the bird was 

most likely at rest (or feeding) on the water. The first processing step converted the 

time series of locations into a series of movement steps using the Haversine equation 
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to calculate great circle distances, which together with the time intervals, average 

speeds were calculated. The undulating form of the flight path results in sudden 

changes in speed and would produce a complex flight profile if each move step below 

the threshold were taken to be a rest step, and each step above the threshold as a 

flight step (Figure 79, upper grey plot). Therefore, the second processing step 

converted the movement steps into a flight profile, where unrealistically short periods 

of time, either at rest or in flight, were ignored. The time series was divided into one 

minute intervals and an average speed was computed for each interval (Figure 79, 

upper blue plot). If the speed was below the 10 km h-1 threshold then the interval was 

considered to be a rest interval. However, if more than 90% of the steps included in 

the interval had a speed above the threshold then the decision was reversed and the 

interval was set to be a flight interval. In the same way, intervals originally considered 

to be in flight because the average speed was above the threshold would be reversed 

and become rest intervals if 90% of the steps in the interval had speeds below the 

threshold. This reduces the bias associated with steps with unusually high or low 

speeds. Finally, to remove short-term transient changes in speed from the flight 

profile, any single rest or flight intervals were also ignored, as indicated by arrows in 

Figure 79. The resulting flight profile accurately captures the clear bimodal pattern of 

activity and rest indicated by the raw tag data (Figure 79, grey line) while removing the 

noise inherent in the bird’s complex flight. From each flight profile (Figure 79, lower 

plot) the flight step-lengths were calculated as the great circle distance from the start 

and end locations of flight steps using the Haversine equation. Additionally, for 

comparison, the total distance travelled (summed from individual step-lengths) and 

the flight times were calculated. The data processing of GPS locations therefore 

generated three separate sets of data for each bird, representing three different 

aspects of the calculated flight profile, all of which are suitable for analysis using 

Maximum Likelihood Estimation (MLE): (1) move step-lengths between consecutive 

landings, (2) total distance travelled between consecutive landings, and (3) time 

between consecutive landings. After this flight profile analysis, three flight profiles 

comprised only two flight steps and were therefore discarded (BBA28, BBA36 and 

BBA56), leaving 85 flight profiles available for further analysis. 
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Figure 79: Flight speed profile of black-browed albatross 29  

Upper plot: Grey line shows flight speeds computed from the raw GPS tag data; blue line shows average 
speeds for one minute intervals; red reference line indicates the 10 km h

-1
 speed threshold. Lower plot 

shows the resulting flight profile comprising periods of flight (grey) or rest (white). Green arrows indicate 
intervals where the speed threshold decision has been overridden. 

5.2.2 Maximum Likelihood Estimation (MLE) Analysis 

The Maximum Likelihood Estimation (MLE) methodology employed was that described 

in Chapter 2 (General methods) resulting in each dataset being categorised as either 

fitting a truncated Pareto or exponential model or being categorised as mixed model. 

While the focus of this study was the analysis of step-lengths the distance and time 

datasets produced by the flight profile analysis were also analysed to provide a 

comparison.  

5.3 Results 

The general pattern of foraging movements of the two species was different, with T. 

melanophrys concentrating searches closer to the shelf edge (Figure 80), whereas trips 

of D. exulans were either mostly in neritic (shelf < 2000m depth) or oceanic waters (> 

2000m) (Figure 81). Individual foraging tracks showed a similar complex pattern at 

increasing scales that were reminiscent of the scale-invariant (fractal) patterns of Lévy 

flights (e.g. Figure 80a).  

5.3.1 MLE Analysis of flight step-lengths 

From the Maximum Likelihood Estimation (MLE) analysis we found strong support for 

individual bird movements approximating truncated Lévy flight (power-law) and 

Brownian (exponential) search patterns in both black-browed and wandering 

albatrosses (see Figure 82 for TP plots and Appendix C for exponential and mixed 

model plots and tables of results). Lévy flights occurred in 22 (38%) individual T. 

melanophrys and 4 (15%) D. exulans (Figure 82), whereas exponential (Brownian type) 

movements were exhibited by 11 (18%) and 7 (26%) birds, respectively (Figure 80c, 
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Figure C1 and Table C4). A significant proportion of trajectories (41% T. melanophrys; 

59% D. exulans) were not fitted by either distribution and were of more complex form, 

which may represent tracks having both Lévy and Brownian features, as might be 

expected if similar time is spent by a bird in both shelf and oceanic habitats (see Figure 

C2 and Table C5). The lower proportion of Lévy best fits in the D. exulans data was 

likely due to the much lower number of landings per km (and therefore flight steps) for 

individual birds of this species compared to T. melanophrys, as more data points are 

required to identify power-law distributions clearly (Sims et al. 2007) (see MLE Fitting 

correlations below for a detailed analysis). The µ values of truncated power-law fits 

were within the range of values consistent with the LFF hypothesis (1 <  ≤ 3), but 

were lower than the theoretical optimum for non-destructive search (µ  2) where 

prey is distributed in revisitable patches and is only temporarily depleted (Viswanathan 

et al. 2011). Instead, we calculated mean exponent values of 1.27 for black-browed 

and 1.19 for wandering albatrosses. These lower exponents are consistent with 

optimal Lévy flight search patterns (  1) expected under the LFF hypothesis when 

encountered prey are consumed (destructive search) and not available to subsequent 

searches (non-revisitable patches) (Santos et al. 2004, Sims et al. 2011, Viswanathan et 

al. 2011); this predicts optimal searches when fewer prey are sparsely distributed (e.g. 

single prey; see prey capture results below; Table 10).  
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Figure 80: GPS tracks of albatross foraging indicate scale-invariant patterns. 

 (A) GPS foraging track of a black-browed albatross (BBA46) off the Kerguelen Islands, Southern Indian 
Ocean, viewed across large (100s km; left panel) to small (10s m; right panel) scales showing similar 
patterns of trajectory complexity at all scales. Background colour denotes bathymetry in m. Each red 
square denotes area covered by panel adjacent right. (B) Foraging track of a black-browed albatross 

(BBA33) with flight steps between landings best approximated by a truncated Lévy distribution ( = 1.28), 
with movements principally in deep shelf and oceanic habitats. (C) Foraging track of BBA35, best 
approximated by an exponential distribution, was more spatially intensive in shelf and shelf edge habitats. 
Colour denotes water depth, with bathymetric contours identifying neritic shelf waters < 2000 m and 
oceanic waters > 2000 m. Red square denotes area shown in (B).  
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Figure 81: GPS tracks and prey capture contrasts between Lévy and exponential patterns 

(A) Foraging track, prey capture locations and prey masses of wandering albatross WA08 during an 89 h 

foraging trip approximated by a Lévy pattern ( = 1.25) occurring principally over deep shelf edge (1000-
2000 m) and oceanic waters (> 2000 m). Captures totalled 3.5 kg, but prey were generally solitary and 
taken further apart indicating prey sparse habitats. Red square denotes area shown in (B). (B) Foraging 
movements by wandering albatross WA16 during which it captured 1.8 kg of prey in 21.5 h when over 
shallow shelf (500 – 1000 m) and shelf edge habitats during landings best described by an exponential 
distribution (Brownian pattern). Numerous prey items were often taken in a single landing, indicating a 
greater abundance of prey. 
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Figure 82: Ranked step-length plots for best fits to TP distributions for albatross flight steps 

Black circles are step-lengths; red line is the best fit TP distribution; blue dashed line is the competing exponential distribution. Plots are shown in descending sequence of number of points.  
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Figure 82: Continued... 
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Figure 82: Continued... 
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5.3.2 Species differences between black-browed and wandering albatross datasets 

The MLE analysis revealed clear species differences. Four of the 27 (15%) wandering 

albatross datasets were found to be best fitted by a TP distribution whereas 22 out of 

61 black browed albatross datasets were fitted by the distribution (38%). Ten of the 24 

exponential best fits were to wandering albatross movement datasets (42%), in 

addition to 14 of the 35 mixed model tracks (40%). One possibility for the species 

difference was that fewer TP best fits were found because the wandering albatross 

datasets comprised on average only about half the number of flight steps than black-

browed albatross individual datasets (Mann-Whitney Rank Sum Test: BBA median = 24, 

n = 58; WA median = 15, n = 27, p = 0.005). This difference in the number of landings 

estimated for wandering albatross GPS tracks has been shown to affect the likelihood 

of finding a good fit to a TP distribution. However, the difference in the number of 

flight steps suggests that the two species behave differently because the duration that 

wandering albatrosses were tracked for was similar  to those of black-browed 

albatross tracks (Mann-Whitney Rank sum test: BBA median = 37.9 h, n = 58; WA 

median = 43.4 h, n = 27, p = 0.137). If their foraging behaviour or feeding event 

frequencies were similar it may be expected that both species might land with similar 

frequency if tracks were of similar duration. This interpretation is consistent with 

previous observations on the foraging behaviour of the two species (Weimerskirch and 

Guionnet 2002, Phalan et al. 2007, Mackley et al. 2010). 

From the flight profiles calculated here we find a mean landing rate of 0.75 h-1 for the 

black-browed and 0.34 h-1 for wandering albatrosses. While these figures are lower 

than those found by Waugh and Weimerskirch (2003), where a figure of 1.35 flight 

steps h-1 was found for wandering albatross, it is still in general agreement with the 

observation that wandering albatrosses make fewer flight steps and spend more time 

on the water than other, smaller species. Clearly, the landing frequency will be 

dependent on the foraging environment and the availability of prey, with richer areas 

resulting in more frequent landings. This might indicate that the birds in this study 

were foraging in areas (or at times) of sparser prey availability than those studied by 

Waugh and Weimerskirch (2003).  
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5.3.3 Habitat dependence of Lévy and Brownian movements 

Having identified the presence of Lévy and Brownian patterns in the landing 

distributions of both black-browed and wandering albatrosses, we next tested whether 

search patterns were associated with particular habitats. The Lévy flight foraging (LFF) 

hypothesis (Viswanathan et al. 2008, Viswanathan et al. 2011) predicts that Lévy 

patterns should occur where resource distributions are sparse and Brownian patterns 

where resources are more abundant. To test this for albatrosses we calculated the 

water depths at each landing location as a proxy for habitat type and compared these 

between birds showing Lévy and Brownian patterns. The Kerguelen and Crozet Islands 

in the southern Indian Ocean are remote islands with three principal bathymetric 

domains: namely, shelf waters (depth < 200 m), slope waters (200 to 2000 m; including 

deep shelf-edge waters, 1500 to 2000 m), and oceanic waters (> 2000 m) 

(Weimerskirch et al. 2005). Shelf and slope waters are together termed neritic waters 

(< 2000 m). Therefore, water depth indicates habitat types that have different 

productivities and resource distributions; for example, primary productivity at the 

Kerguelen Islands has higher concentrations in neritic waters (Fig. S7A,B) and the squid 

prey of albatrosses at Crozet are found closer together in neritic than in oceanic waters 

(Weimerskirch et al. 2005). 

Analysis shows that black-browed albatrosses exhibiting a Lévy pattern landed on 

average over deeper water (mean 520.3 m, S.D. 522.5, random data reduction from n 

= 958 to n = 165) than those individuals exhibiting a Brownian pattern (mean 396.8 m, 

S.D. 561.9, n = 165) (t test:  t = -2.07, P < 0.05). Comparing the 25 deepest habitat 

depths over which surface landings occurred, confirmed that birds showing Lévy 

patterns occupied deeper slope waters than Brownian birds (Mann-Whitney test: W = 

524, P < 0.05).  

 The landing locations of wandering albatrosses exhibiting a Lévy pattern and for which 

prey capture data were available, were associated with significantly deeper water 

habitats than those showing Brownian patterns (Lévy, mean habitat depth 1587.4 m, 

S.D. 934.3, n = 23, random data reduction to match Brownian, with mean 958.3 m, S.D. 

601.9, n = 23; t test, t = -2.71, P < 0.01). This is consistent with Lévy search patterns 

occurring more frequently in deep shelf edge and oceanic habitats than Brownian 

patterns which occurred mainly in shallow shelf and shelf edge habitats. There were 
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several exceptions to this general pattern. For example, the pattern of landings of 

albatross WA18 was best described by an exponential distribution, although the prey 

capture data showed that some 24 of the 25 capture events recorded occurred in 

oceanic habitat. Mapping the prey capture locations along the track showed that 22 

prey capture events took place during 7 landings within a comparatively localised area 

(45 x 20 km). This shows that WA18 encountered a very abundant patch or patches of 

prey in oceanic habitat and because short distances occurred between landings as a 

result, the dominant pattern found for this bird was best described by Brownian 

motion. This demonstrates that although Lévy patterns of wandering albatrosses were 

generally dependent on deep shelf edge and oceanic habitats, a Brownian pattern may 

dominate when particularly high concentrations of prey are found regardless of 

habitat. This finding is consistent with predictions of the LFF hypothesis.  

5.3.4 Prey capture and foraging efficiency 

A significant gap in our knowledge is whether Lévy flights actually confer the 

advantages to foragers that have been theorised (Viswanathan et al. 2011). We were 

able to test whether Lévy flights yield sufficient prey gain compared with Brownian 

behaviour – as expected under the LFF hypothesis – by using 11 GPS and 18 satellite-

tracked wandering albatrosses fitted with stomach temperature loggers that recorded 

timing and estimated the mass of prey captured (Weimerskirch et al. 1994, 

Weimerskirch et al. 2005, Weimerskirch et al. 2007). In contrast to GPS tracked 

individuals where time spent on water is measured from flight speed, landing locations 

of satellite tracked birds were detected by a wet/dry logger attached to one of the 

bird’s legs; the time between consecutive landings is shown to approximate the 

distance flown. MLE analysis of this data found 4 datasets with a good fit to a 

truncated Pareto distribution, 1 to an exponential with the remaining 12 being 

classified as mixed model (see Figure 83 for plots of TP fits and Appendix C for plots of 

the exponential and mixed model fits and the MLE results).  

Analysis showed that D. exulans with Lévy patterns landed a greater number of times 

during a foraging trip than Brownian foragers, although the number of prey captures 

per km flown was similar between Lévy and Brownian foragers, as was the total mass 

of prey consumed per trip (Table 10). Wandering albatrosses that showed statistically 

reliable approximations to a Lévy flight achieved net energy gains despite longer 
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foraging trips further from the nest. We calculated that D. exulans showing Lévy 

behaviour ingested on average 1.46 kg of prey per day, which is sufficient to exceed 

daily energy requirements of the bird (Weimerskirch et al. 2002b) by nearly four-fold 

(Table 10). A pair of birds could in theory, therefore, collect 2.92 Kg of food, well in 

excess of the 1.7 Kg required to raise a chick (Shaffer 2004). Hence, Lévy flight search 

patterns by albatrosses represent a viable alternative strategy, compared with 

Brownian movements, for attaining net energy gain. 

The apparent success of Lévy flights in albatrosses is consistent with expectations 

under the LFF hypothesis. Furthermore, an assumption of the hypothesis is that Lévy 

flight search is optimal where prey are sparsely and randomly distributed. Hence, we 

tested the corollary that greater heterogeneity is expected where birds exhibit Lévy 

flight patterns, whereas more homogeneous resources are expected where Brownian 

patterns are identified (Humphries et al. 2010, Sims et al. 2011). We tested for 

biological heterogeneity in black-browed albatross described as having Lévy (n = 22) or 

Brownian movement patterns (n = 11) by extracting time-referenced chlorophyll ‘a’ 

concentrations at landing locations as a proxy for resource availability in areas visited 

(Figure 84 a&b). During individual trips by T. melanophrys, concentrations were 

significantly more variable for the Lévy pattern than for individuals exhibiting Brownian 

patterns, confirming the theoretical prediction of longer distances between abundant 

resources where Lévy behaviour is observed (Figure 84 c&d). In addition, the sea-

surface areas where T. melanophrys exhibited movements modelled by Lévy flights 

were over significantly deeper water depths than those having Brownian patterns, 

which supports the prediction that Lévy flights may be more advantageous in oceanic 

waters (> 2000m) or deep shelf edge (1500–2000 m) where albatross prey are sparse 

compared to shallower shelf edge where resources are more abundant (Weimerskirch 

et al. 2005). Supporting this, we found for D. exulans that Lévy patterns comprised 

landing locations in both neritic and oceanic zones, but that prey captures occurred 

mainly in shelf edge or oceanic habitats (72% of capture events; Figure 81). Prey 

distribution in habitats visited appears sparse because prey capture during Lévy 

movements was typified by consumption of solitary, larger prey items that were 

further apart (lower intake per landing, with more unsuccessful landings), compared to 

Brownian patterns where numerous smaller items were ingested within a single 
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landing in prey abundant areas (higher intake per landing) (Table 10; Figure 81b). For 

the majority of tracks where Brownian patterns described landings of D. exulans, prey 

captures were in more productive neritic waters (76%), although on occasion a high 

density prey patch was encountered in oceanic habitat, where multiple prey capture 

events occurred within a highly localised area, a finding predicted by the LFF 

hypothesis. Taken together, these results suggest Lévy patterns of both species 

occurred in prey-sparse and thus less predictable habitats. 

 

 
Figure 83: Truncated Pareto fits for flight step distributions from wet dry logger data 

Red line represents the fitted TP distribution; black circles are observations; blue dashed line is the 
competing exponential. 
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Table 10: Foraging performance from prey capture results 
Means (± 1 s.d.) for 13 birds 

 

No. 
landings 

Distance 
flown 
(km) 

Total prey 
mass 

captured 
(kg)* 

Mass 
captured 

per 
landing 

(g) 

Mass 
per 

capture 
(g) 

Total 
mass per 
day (kg d-

1) 

Energy 
ingested 
per day 

(kJ kg-1 d-
1)† 

Factorial increase 
of ingested 

energy per day 
over daily energy 
requirements‡ 

Truncated 
Lévy (n=7) 

34.6 

(13.8) 

1151.9 

(660.9) 

3.74 

(1.53) 

97.9 

(37.7) 

346.4 

(170.9) 

1.46 

(0.86) 

734.8 

(390.5) 

3.68 

(2.49) 

Exponential 

(Brownian) 
(n=6) 

15.5 

(7.5) 

699.1 

(556.5) 

4.18 

(2.37) 

352.6 

(304.9) 

296.1 

(126.8) 

2.53 

(0.56) 

1364.8 

(491.0) 

7.69 

(3.12) 

  

Means in bold indicate significant difference between pattern types (truncated Lévy vs exponential): number of landings (t-test), t = 3.01, p < 0.02. All other comparisons not significant at p 
= 0.05. 

*Prey capture data from stomach temperature loggers was available for 6 Lévy and 4 Brownian birds. Of the 10 birds, landing patterns for 5 of them (4 Levy, 1 Brownian) were calculated 
from times between landings recorded by wet/dry loggers (Weimerskirch et al. 2005) rather than distances from GPS-derived landing locations (Supporting Results 2.5). 

†D. exulans feed mainly on squid. An energy value of Antarctic squid of 4.64 kJ g
-1

 wet weight was used (Clarke and Prince 1980). 

‡Daily energy requirement of 157 kJ kg
-1

 d
-1

 was an average determined from heart rate telemetry during the brooding period and validated with indirect calorimetry of oxygen consumption 
(Weimerskirch et al. 2002b). 



 

154 

 

 
Figure 84. Lévy flight patterns encounter greater environmental heterogeneity.  

Examples of (a) truncated Lévy and (b) exponential distributions of distances between landing locations 
(red circles) for two different black-browed albatrosses off Kerguelen Island and in relation to the 
distribution of chlorophyll ‘a’ concentrations, where warm colours represent higher concentrations of 
primary productivity. c, Abundance of environmental resources was nearly twice as variable during 
truncated Lévy search patterns of T. melanophrys than for exponential (Brownian) foraging patterns. ** 
denotes P < 0.001. 

5.3.5 Reanalysis of 2004 Albatross data 

Our analysis of albatross movements from high-resolution GPS tracking of birds 

foraging in the southern Indian Ocean indicate the presence of movement patterns 

approximated by Lévy flights. However, a previous study by Edwards et al. (2007), 

having corrected an error in the analysis of wandering albatross data recorded in 1992 

in the Southern Ocean (Bird Island, South Georgia) (Viswanathan et al. 1996), found no 
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evidence for Lévy flight. Analysis of new data from foraging wandering albatrosses 

collected in 2004 also contributed to the conclusion that wandering albatrosses do not 

conduct Lévy flights and, as a consequence therefore, the evidence for biological Lévy 

flights was weaker, at that time, than previously thought. Nevertheless, the paper by 

Edwards et al. (2007) did not test the LFF hypothesis explicitly on individual albatross 

tracks. Even though 20 individual wandering albatross wet/dry logger-recorded flight 

times collected in 2004 were analysed (Edwards et al. 2007) MLE fits of the truncated 

power-law distribution to these data were not estimated. Hence, the conclusion that 

wandering albatross do not exhibit movement patterns consistent with Lévy flights can 

be considered premature in the absence of statistically robust fitting of an alternative 

model (e.g. truncated power-law distribution) to the ones fitted by Edwards et al. 

(2007) (i.e. exponential and shifted gamma distributions). Therefore, we tested the LFF 

hypothesis by fitting truncated power-law distributions to the data given in Edwards et 

al. (2007). 

 The 20 datasets in Edwards et al. (2007) comprising time steps in seconds of 

wandering albatrosses tracked with wet/dry loggers in 2004 were kindly provided for 

reanalysis here by A. M. Edwards and R. A. Phillips. The data required no pre-

processing by us and was subject to identical analysis to the albatross data we 

described previously, with the one difference being that the correction for discrete 

data was used as described in Clauset et al. (2009). In the original paper (Edwards et al. 

2007), the data was pooled and was fitted to a gamma distribution without fitting the 

xmin parameter. Therefore in our study, as well as analysing the datasets separately for 

individual birds, the datasets were again pooled and were analysed both with and 

without fitting the xmin and xmax parameters to provide a direct comparison with 

Figures S3, S4 and S5 in the original Supplementary Information (Edwards et al. 2007); 

the pooled results are shown with the reference 2004_P (pooled) and 2004_PNF 

(pooled no fitting), respectively. 

For 20 individual datasets, we found 11 best fits to the truncated power-law (TP) 

distribution and 3 best fits to the exponential distribution with 8 datasets being 

classified as mixed (see Figure 85 below for plots of TP fits and Appendix C for the 

exponential and mixed model fits). Hence, we find good support for the truncated 
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power-law (Pareto-Lévy) distribution approximating the movement pattern of 

wandering albatrosses. Although we also find support for the exponential distribution 

it was less prevalent than the truncated power-law fit. These results are consistent 

with other studies analysing the complex behavioural data of marine predators (Sims 

et al. 2008a, Humphries et al. 2010), where some individual animal datasets provide 

good support for Lévy movement while others are best supported by an exponential 

(i.e. Brownian) movement pattern. It is proposed that the observation of both Lévy 

and Brownian patterns reflects the complex range of behaviours exhibited by different 

animals at different times. 

Our results of this reanalysis of published data are at odds with the conclusions drawn 

in the paper by Edwards et al. (2007), where no support was found for power-law 

distributed move steps (flight times). It should be noted that in the latter paper no 

attempt was made to fit a power or truncated power-law to either the pooled or 

individual datasets so no comparison similar to that reported here was possible. As an 

example, wandering albatross 2004_5 was found here to be best fit by a TP 

distribution; indeed from visual inspection it seems clear from the plot of this data in 

Figure 85 in Edwards et al. (2007) that the TP best fit we found better describes the 

empirical data than the shifted gamma or exponential fits shown in the original 

Supplementary Figure S3. Individual bird 2004_3 (Figure 85)(Edwards et al. 2007) 

provides another example: in our analysis a best fit to the TP distribution was found for 

this dataset comprising only 29 data points. With the limited size of individual datasets 

in terms of data points for MLE analysis available here compared to previous studies 

(e.g. Sims et al. 2008a, Humphries et al. 2010), it is also relevant to note that although 

the MLE methodology finds best fit values for xmin and xmax, in nearly all the datasets 

we analysed the xmax fitted value was also the maximum value in the data. Therefore, 

the best fits presented here are fits to most of the dataset in each case since very few 

data were not included in the best fit model using the method of Clauset et al. (2009). 
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Figure 85: Truncated Pareto fits from the 2004 reanalysed albatross data 

Here the blue dashed line represents the alternate exponential distribution. 

5.3.6 MLE Fitting correlations 

There was a significant correlation between the number of steps (lengths between 

landings) in an individual bird dataset and the likelihood that the dataset will be fitted 

by either truncated power-law (Pareto-Lévy) or exponential distributions (Mann-

Whitney Rank Sum Test; p < 0.001). Generally, smaller datasets were more likely to 

yield best model fits to the exponential distribution. This is illustrated by the box plot 

in Figure 86. It seems likely therefore that the low numbers of steps in the wandering 

albatross datasets may well explain why these gave principally exponential best fits 

since larger datasets will have a greater chance of containing longer step-lengths, if 

they were exhibited by the albatrosses. Although this bias affects the results in terms 

of the number of individuals exhibiting movements approximated by TP and 
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exponential distributions, it does not affect the test of the LFF conducted here, which 

is to determine whether albatrosses do indeed show movement patterns best 

approximated by a Lévy flight pattern. 

The average number of points comprising datasets best fitted by the TP distribution 

was ~41 (n = 26; median = 38.5), yet all of the exponential fits were to datasets with 

fewer than 42 steps (maximum 29, mean ~15, median = 12.5, n = 18). While the 

numbers of steps available for this analysis are lower than has been considered ideal 

from simulation studies (see Sims et al. 2007), we analysed individual albatross 

trajectories rather than pooling multiple individuals’ step-lengths, which occurs usually 

in an attempt to increase n number (for an example of pooling albatross step lengths 

see Edwards et al. 2007). The problem with pooling data from several individuals is 

that different patterns of movement by different individuals may emerge as a Lévy 

flight without any one individual displaying such a pattern (Petrovskii et al. 2011). 

Although the datasets used here were of relatively low n number, they each described 

the movement pattern of an individual albatross and provided appropriate ranges of 

move step data spanning several orders of magnitude in some cases, which can 

counteract the effect of a lower number of steps. Hence, we found there were clear 

and reliable best fits of the TP distribution to the albatross movement data. For 

example, BBA2 in Figure 86 provided 37 steps for analysis yet yielded a robust best fit 

to the TP distribution over 2.45 orders of magnitude in move step-length.  

 
Figure 86. MLE Fitting correlations in flight step-length data.  

Boxes show 25
th

 to 75
th

 percentiles; whiskers show the 10
th

 and 90
th

 percentiles. There is a statistically 
significant difference (P < 0.001) between the exponential and the TP groups. 

5.3.7 Comparison of MLE results using steps, distances and times 

The main focus of our analysis was on the step-lengths calculated as great circle 

distances between the start and end of flights (straight line distances between 
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consecutive landings), where the landings between flights are considered to be the 

turning points in a Lévy walk. Two other measures were calculated from the flight 

profile; cumulative distances were calculated as the sum of the individual steps 

comprising a flight, and times were calculated from the start and end times of each 

flight. For a direct comparison these datasets for each individual bird were analysed in 

the same way as the move steps. It was hypothesised that neither of these measures 

would provide as many best fits to a truncated power-law (Pareto-Lévy) distribution 

because the distances include many complex movements associated with the bird’s 

soaring flight, while the times do not take account of the variations in the bird’s speed 

and so do not properly reflect the distance travelled. Table 11 shows a summary of the 

best fitting results for the three different data sets.  As expected the distance and time 

measures produce slightly fewer TP best fits (25 and 23 respectively, compared to 26 

for the step-lengths). There were 39 datasets where the analysis results are the same 

for all data types (12 TP, 8 exponential and 19 mixed model fits). Overall, therefore, it 

seems that distances and times between consecutive landings can be considered to be 

reasonable proxies for step-length measurements used to test the LFF hypothesis, 

although it should be noted that not all Lévy patterns will be detected by these 

proxies.  

Table 11: Summary of fitted distributions to the three different sets of data 

Fitted distribution Steps Distances Times 

TP 26 25 23 

Exponential 18 17 25 

Mixed model 41 43 37 

5.4 Discussion 

Our analyses of albatross foraging tracks indicate a significant proportion (29%) of Lévy 

flight patterns among 126 individuals from two species, overturning a principal 

conclusion of the study by Edwards et al. (2007). An important result in this study was 

that foraging albatrosses undertaking Lévy flight-modelled search patterns have 

comparatively high energy gains despite foraging in more heterogenic environments. 

Although several modelling studies demonstrate Lévy searches confer foraging 

advantages in certain types of environment (for review see Viswanathan et al. 2011) 
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ours is the first study to quantify empirically the foraging success of biological Lévy 

flights in a free-ranging organism. We also found evidence that Lévy-flight modelled 

movements for both species were theoretically optimal and occurred in more prey-

sparse habitat; such habitat dependence is predicted by the LFF hypothesis. It is 

possible that albatrosses exhibit movement patterns approximated by Lévy flights as a 

response to unpredictable habitat such as the oceanic environment, where prey are 

larger but also highly patchy in their distribution (Weimerskirch et al. 2005, 

Weimerskirch et al. 2007). Similarly, albatross movements may emerge as Brownian 

motion when foraging in more predictable environments, such as shelf edges where 

prey availability is more likely to be concentrated. Thus, our results may explain the 

field observation that albatrosses show high site fidelity to more predictable shelf 

waters, but in unpredictable oceanic habitat rarely return to the same coarse scale 

sites (Weimerskirch et al. 2007). The foraging advantage conferred by Lévy flight 

search patterns is further strengthened for the birds studied here by the reduction in 

the duration of famine periods experienced by the chicks. The chick survival rate is 

clearly a significant factor in the success of the population and will be subject to strong 

selective pressure. It would be expected that a search strategy that reduced chick 

mortality would have evolved naturally in albatross populations. In addition to Lévy 

and Brownian patterns, we found evidence of more complex movements that were 

perhaps a result of switching between behaviours during single trips by individual 

birds. Recent analyses of predatory marine fish (Humphries et al. 2010, Sims et al. 

2011) have found similar links between Lévy patterns and habitats with sparsely 

distributed resource fields, including switching behaviour by individuals, indicating that 

Lévy flight patterns may be a solution to the search problem for diverse animals 

occupying unpredictable environments. 

5.4.1 Reanalysis of 2004 Albatross data 

Our results with the pooled data of 20 wandering albatrosses from 2004 are also 

interesting and contrast with those of Edwards et al. (2007). With both analysis 

methods (i.e. fitting of xmin and xmax and no fitting) the pooled data was best fit by a TP 

distribution. However, when best fitting is performed there is a conflict between the 

wAIC values for the exponential and TP best fits, which was here resolved by the GOF 
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value which favoured the TP distribution. However, there is a serious problem with 

pooling datasets comprising complex movement data, as Edwards et al (2007) have 

done. While pooling homogenous data can result in more powerful statistical testing 

(Zar 1999), this is not the case with complex heterogeneous data. The datasets 

analysed in this study describe movements from individual animals, each of which are 

likely to be behaving and moving in different ways. Pooling such data confuses these 

individual movements and can have unpredictable results, such as concluding the 

presence of Lévy flight when it is not exhibited by any one individual, and concluding 

Brownian motion even though an individual in the pool may have a very different 

behaviour pattern (e.g. Codling and Plank 2011, Petrovskii et al. 2011). This difference 

can be seen in the comparison of the MLE results obtained with the pooled data and 

an individual dataset such as 2004_11, both shown in Figure 85, where it is clear that 

not only does the individual data fit a TP distribution but the difference in the observed 

step-lengths is quite noticeable. Therefore, for an unbiased test of whether albatrosses 

exhibit movements approximated by Lévy flights it was preferable to analyse individual 

movement trajectories by fitting both truncated power-law and exponential 

distributions. In summary, we find no support for the conclusion of Edwards et al. 

(2007) questioning the strength of the evidence for biological Lévy flights, and find that 

this was both incorrect and premature. 
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6 The ambush predator: Encounter rates and waiting 
times 

6.1 Introduction 

The foraging simulations explored in Chapter 3 investigated the consequences of 

differing search patterns with a cruise predator and stationary prey patches, 

concluding that Lévy movement confers a significant advantage in terms of the 

number of prey items located for the effort expended. In this chapter the scenario of 

moving prey targets is considered. Viswanathan et al. (2002) showed that with moving 

targets Lévy flight would only be advantageous if the predator moves faster than the 

target and that with fast moving targets Brownian search strategies or stationary 

predators are optimal.  

This chapter will explore some of the consequences of the ambush predation strategy. 

Many marine animals, such as barnacles, have adopted a sedentary life style, 

benefiting from the energetic advantage conferred by simply waiting for the prey to 

move, or be moved, to them. However, entirely sedentary animals require other 

adaptations that tend to balance the energetic cost saving. For example, adaptations 

such as broadcast-spawning, with the concomitant production of abundant gametes, 

are required when adults cannot move to find mates and are found in diverse taxa 

such as corals (Graham et al. 2008, Gleason and Hofmann 2011), sea anemones (Scott 

and Harrison 2007) and holothurians (Mercier et al. 2007). Further, as with many 

marine organisms, dispersal requires a planktonic larval stage which itself involves 

considerable energetic costs, such as the costs of metamorphosis, and risks such as 

predation, dispersal away from suitable settling locations and increased susceptibility 

to environmental stress (Pechenik 1999). Sedentary predators can be seen as one end 
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of an activity continuum which ends with fast cruise predators such as mako sharks 

(Isurus oxyrinchus) or Atlantic bluefin tuna (Thunnus thynnus). Mobile foraging 

strategies that increase encounter rates with prey are also likely to increase the 

encounter rate with predators, and there is, therefore, a balance to be made between 

foraging success and predation risk (Visser 2007, Ferrari et al. 2010, Alos et al. 2012). 

These factors are likely to have played a role in the evolution of the broad continuum 

of observed foraging strategies from sessile through sit-and-wait, saltatory movement 

across different spatial scales and continuous activity characteristic of pelagic cruise 

swimming. 

The ambush predator is faced with many decisions that affect foraging success, 

principally the selection of a suitable location, how long to wait before giving up and 

how far to move to find a new patch (Nishimura 1991, Beachly et al. 1995, Visser 

2007). In real world scenarios learning and sensory input play an important role (Gall 

and Fernandez-Juricic 2010, Nilsson et al. 2010) however such complexities can make 

understanding the underlying principles problematic. In this chapter a simulation will 

be used where the focus will be on the effect of predator and prey movement 

strategies and predator waiting times. The aim will be to gain a better understanding 

of predator-prey encounter rates when prey are mobile and of the optimal strategies 

employed by ambush predators.  

The initial investigations validated the simulation program and confirmed simple 

predictions about the factors which are expected to affect encounter rates. Encounter 

rates with stationary prey were then considered and were expected to be in close 

agreement with the results from Chapter 3. Moving prey was then investigated and 

the advantage gained by the ambush predator strategy was considered with a test of 

the prediction by Viswanathan et al.  (2002) regarding the emergence of the ambush 

predator. The final investigations focused on the optimum waiting times for ambush 

predators in differing prey fields. 

6.2 The simulation model 

The Predator-Prey simulation model is described in detail in Appendix G but, briefly, a 

2D arena of 500x250 grid cells is populated with a number of predators (sharks) and 
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prey (fish). Within the simulation both predators and prey are moved in turn through 

interpolated steps and encounters are recorded. Each individual is placed at a random 

location in the arena and, as with the foraging simulations in Chapter 3, performs a 

random walk with uniform random turn angles and step-lengths drawn from the 

specified distribution (e.g. exponential, truncated Pareto). The simulation proceeds by 

giving each individual a turn in which it moves one interpolated move step and checks 

the surrounding grid cells to a radius r for the presence of other individuals, each of 

which will represent an encounter. Interpolated steps are computed in the same way 

as with the foraging simulations, where moves are in continuous space and each 

interpolated step is ≈1 grid cell unit (see Chapter 2, General Methods). When a shark 

encounters a fish the encounter can be either non-destructive or, optionally, 

destructive i.e. the fish is relocated to a new random start location, removing it from 

further immediate encounters with the shark. Statistics are gathered on the number 

and type of encounters e.g. Fish-Fish, Sharks-Fish etc. For both fish and sharks the 

familiar movement styles are employed with move step-lengths being drawn from 

either truncated Pareto, exponential or uniform distributions with a further option of 

still whereby the fish do not move. Sharks can be set to be in ambush mode, whereby 

the shark does not move but encounters are checked at each turn. Following an 

encounter with a fish the shark can either continue waiting or can relocate. For 

ambushing sharks a statistical distribution of waiting times can be set after which, if no 

encounter has occurred, the shark relocates using the defined movement style. During 

the relocation move all encounters are ignored. 

It is important to note that as each individual within the simulation moves a single 

interpolated step at each turn, and as each interpolated step is ≈1 unit of distance (i.e. 

one grid cell), all individuals move at a similar speed and consequently cover a similar 

distance during the course of a simulation run. What differs between different move 

step-length distributions is the rate of diffusion and therefore the net displacement. 

Individuals with super-diffusive movement paths will appear to move faster than those 

with normally diffusive or sub-diffusive movements. Because there are small 

differences in the total distance travelled all statistics are expressed as encounters per 

unit distance travelled. 
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Note that, for brevity, where the movement style is described as TP this refers to a 

distribution of move steps drawn from a truncated Pareto distribution with, unless 

otherwise stated, xmin = 1 and xmax = 500; TP2.0 signifies an exponent of 2.0 etc. 

Exponential in all cases refers to an exponential distribution of move steps with xmin = 1 

and, unless otherwise stated, an exponent of 0.19; these parameters are chosen to 

give the same mean step-length as the TP2.0 predator. Uniform refers to a uniform 

distribution of move steps on the interval [1, 12], unless otherwise stated, again to 

result in a mean step-length equivalent to the TP2.0 predator. 

6.3 Validation of the simulation program 

In a real world 3D scenario, encounter rates for an individual predator with immobile 

prey can be described by Z = πr2fv, where Z is the encounter rate, r the detection 

radius, f the prey (fish) concentration and v the swimming speed (after Visser 2007). In 

the 2D world of the simulation used here the swept volume of πr2 now becomes the 

swept area 2r giving Z2D = 2rfv. Because, as will be described below, all individuals 

move at the same speed (≈1 interpolated grid cell per turn) there is no proper concept 

of speed in the simulation. Changes in movement style (e.g. in Lévy exponent) result in 

changes in diffusivity and consequently the relation to velocity must be dropped to 

give the simpler relation Z2D = 2rf. To consider encounters from all predators in the 

simulation the predator concentration must also be included giving Z2D = 2rfs, where s 

is the predator (shark) concentration. Finally, as this is a turn based simulation, the 

number of encounters will also be proportional to the number of turns (t) giving a final 

equation of Z2D = 2rfst. This equation is essentially the two dimensional analogue of 

the “ideal gas model” of animal encounters described by Hutchinson and Waser (2007) 

and represents a useful null model of animal encounter rates.   

This equation was used to make some general predictions about encounter rates in the 

predator-prey simulation and allow some tests to be performed to validate the 

simulation program’s performance. We should in fact find that encounter rates are 

linearly proportional to the detection radius, prey concentration, predator 

concentration and the run time. In the validation tests, unless otherwise specified, the 

simulations used in program validation had 10 still fish, 10 TP2.0 sharks, destructive 
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predation without prey targeting and comprised 1000 repeats of 100,000 turns to 

enable robust statistical analysis. 

6.3.1 Detection radius 

With constant speed the encounter rate is simply proportional to the detection radius 

r and the prey concentration f. This corresponds to the encounter rate to detection 

radius relationship found by Cole (1995) where increasing the detection radius 

resulted in an approximately linear increase in detection rate for a Lévy predator with 

µ = 1.37. Clearly from Z2D = 2rfst this program should also give a linear increase in 

encounter rate with increasing radius. However there is a complication in that after 

each interpolated step it is the area around the individual that is scanned to a radius r 

for encounters; for r = 2 this represents a 5x5 square (see Appendix G). Consequently it 

might be expected that the encounter rate might increase as a function of area (i.e. a 

power-law) rather than simply a swept area which would be linear. To test this 

assertion a series of simulations were performed with the radius of detection set to 

1...5 units, with 10 still fish and 10 TP2.0 sharks. The results are shown in Figure 87 and 

Table D1 where it is clear that the relation is linear (r2 = 1, p < 0.0001, SigmaPlot linear 

regression) and therefore it is the swept area, rather than the area scanned at each 

interpolated step, that is important. 

6.3.2 Prey concentration 

With the detection radius fixed at a default value of 2 units and the ‘speed’ being 

constant at one unit per turn the encounter rate should be directly proportional to the 

prey concentration. To check this relationship a series of simulations were run with 10 

sharks and increasing numbers of fish, from 2 to 20 in steps of 2. The results are shown 

in Figure 88 and Table D2 and as expected there is a clear linear relationship (r2 = 

0.998, p < 0.0001, SigmaPlot linear regression). 

6.3.3 Predator-Prey numbers and effective prey field density 

From Z2D = 2rfst  it is clear that the effective prey field density is dependent on both 

the number of fish and the number of sharks, and should scale with the square of the 

sum of the fish and sharks. A further series of simulations was performed to test this, 

with equal numbers of fish and sharks increasing in total number from 4 to 40. The 
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results are shown in Figure 89 and Table D3 and confirm the power-law relationship 

with exponent 2.012 (r2 = 1, p < 0.0001, SigmaPlot non-linear regression). 

6.3.4 Number of turns 

From Z2D = 2rfst it follows that the number of encounters in any given simulation will 

depend on the number of turns. Therefore the number of encounters is expected to 

scale linearly with the number of turns and this is confirmed by the results shown in 

Figure 90 and Table D4 (r2 = 1, p < 0.0001, SigmaPlot linear regression).  

6.3.5 Optimum predator and prey ratios 

From the investigation into predator:prey ratios above it was clear that the same 

effective prey field will result from using 10 fish and 1 shark or 1 fish and 10 sharks. 

Both scenarios involve 11 individuals and therefore have the same computational 

effort. However, given that the effective prey field scales with the product of total 

number of sharks and fish, we should find that equal numbers of both generates the 

highest effective prey field density and, therefore, the highest number of encounters 

for the same computational effort. To test this assertion a series of simulations were 

performed using a total of 20 individuals but in ratios varying from 1 fish to 19 sharks 

to 19 fish to 1 shark. The results are shown in Figure 91, where it is clear that the 

optimum encounter rate does occur with equal numbers of sharks and fish. 

6.3.6 Faster moving sharks 

All the fish or sharks move at the same ‘speed’ and will cover the same distance over 

the course of a simulation. The different movement patterns result in changes in 

diffusivity and therefore in net displacement which cannot simply be substituted for v 

in the original equation Z = πr2fv. To prove this, a series of simulations were performed 

using 10 still fish but with sharks moving with a simple uniform distribution with 

maximum step-lengths ranging from 5 to 65. The results are shown in Figure 92 and 

Table D6, and it is clear that changes in the encounter rate are not linear, but are 

found to rise with an exponential growth function. This reflects the fact that a uniform 

distribution of step-lengths confers Brownian motion and, therefore, there is an 

exponential relationship between the step-length x and the area covered. In this 

example parameters were fitted to the function 
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such that a = 464.9819 and b = 0.0522 (r2 = 0.9996, p < 0.0001; SigmaPlot non-linear 

regression). There was therefore no linear relationship with the mean step-length and, 

as expected, no simple analogue for velocity. Lévy predators will exhibit super-diffusive 

movements with, again, no simple relationship expected between the exponent and 

the area explored. While this relationship is investigated in more detail in a later 

section it is worth repeating the previous simulations using changes in Lévy exponent 

rather than mean step-length. The results are shown in Figure 93 and Table D7, and it 

can be seen that over the range 1.2 to 2.8 the relationship is very closely sigmoidal 

with parameters for the equation 

 
 

being a = 567.98, b = -0.46 and x0 = 2.219 (r2 = 0.999, p < 0.0001, SigmaPlot non-linear 

regression). Over a more restricted range of 1.6 to 2.4, however, the relationship is 

seen to be approximately linear, which is confirmed through linear regression which 

gives r2 = 0.9987, p < 0.0001, SigmaPlot linear regression. The overall distance travelled 

is almost the same with differing values of μ as can be seen in Table D7; the slightly 

lower distances for higher exponents are caused by minor interpolation errors with 

very small steps, the number of which is greater with higher exponents. 

6.3.7 Summary 

The accuracy of the scaling of the encounter rates with detection radius, prey 

concentration, predator prey population ratios, total individuals and number of turns 

demonstrates that the simulation program is performing precisely as expected and 

allows further simulations to be performed in confidence. It should be noted that 

many of the datasets generated in the preceding simulations were not normally 

distributed (see Table D4) and therefore for all the following investigations, unless 

otherwise stated, it will be the median number of encounters that will be reported and 

non-parametric statistical tests (i.e. Mann-Whitney rank sum test or ANOVAR on ranks) 

that will be used. Median values will be written either with the 1st and 3rd quartiles 

(Q1, Q3) or the inter-quartile range (IQR) as a measure of variance. 
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Figure 87: Detection radius and encounter rates 

There is a clear linear relationship between the detection radius and the number of encounters. 

 
Figure 88: Encounter rates with increasing prey concentration 

With 10 sharks increasing the prey concentration (i.e. the number of fish) produces a linear increase in the 
number of encounters. 

 
Figure 89: Encounter rates with increasing numbers of fish and sharks 

As the total number of fish and sharks increases there is a power-law increase in the number of 
encounters. In each simulation equal numbers of sharks and fish are used with total numbers of 4-40 
individuals. 
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Figure 90: Encounter rates with increasing turns 

As the number of turns increases there is a linear increase in the number of recorded encounters between 
sharks and fish. 

 
Figure 91: Encounter rates with different ratios of fish and sharks 

Maintaining the total number of individuals but varying the ratio of fish to sharks shows that a maximum 
number of shark-fish encounters is achieved with equal numbers of both. F1S19 represents 1 fish and 19 
sharks. Values are medians and error bars represent 10

th
 and 90

th
 percentiles. 

 

 
Figure 92: Increasing encounter rate with increasing diffusivity 

With steps drawn from a uniform distribution with increasing maximum step-length the encounter rate 
increases following an exponential function. 
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Figure 93: Encounter rate with changing Lévy exponent 

With increasing values for μ the movement becomes less super-diffusive and more Brownian, leading to a 
reduce area explored and lower encounter rates. Over the range 1.2 to 2.8 (a) the relationship is 
sigmoidal, however over the narrower range 1.6 to 2.6 (b) the relationship is very close to linear. 

6.4 Encounters with stationary prey 

Foraging efficiency with stationary prey patches has been covered previously in 

Chapter 3, with the foraging simulation experiments, and clearly an ambush predator 

will fare poorly with stationary prey. However, the foraging simulations did not count 

encounters directly, in the way that the Predator-Prey simulation does, and therefore 

it is useful to begin these investigations with a verification of this aspect of the 

Predator-Prey simulation. With the foraging model described by Viswanathan et al. 

(1999) two scenarios were considered; destructive, where prey were relocated on 

encounter, and non-destructive where encountered prey were not relocated. In the 

destructive scenario low µ values (≈1) were found to be most efficient while in the 

non-destructive case µ = 2.0 was the most efficient. Two sets of simulations were 

performed to confirm these predictions, one with destructive and one with non-

destructive predation. Both used 10 still fish and 10 moving sharks with prey targeting 

(where the predator halts a move on encountering prey, truncating the step) to 

simulate more natural encounters. In each case sharks were set up to be either Lévy 

predators, with move steps drawn from a truncated Pareto distribution with a range of 

exponents from 1.2 to 2.8 (TP1.2 to TP2.8), or from exponential or uniform 

distributions, as described above. 

The results using destructive foraging are shown in Figure 94 (see also Table D7 and 

Table D8), and confirm the predictions. Differences are significant (one-way ANOVA on 

ranks, p < 0.001) as are most pairwise comparisons except TP1.2 and TP1.4, and Exp 
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and TP2.4. Prey once encountered is consumed (relocated) and therefore there is no 

benefit in staying in the area. Consequently, it is the Lévy predators with lower 

exponents that perform better as these have higher diffusivity and faster patch-leaving 

behaviour. Nonetheless, the TP2.0 predator outperforms the exponential predator by 

38.6%. Therefore, while µ = 2.0 may not be optimal, it is still a much better strategy 

than exponential. The results of the non-destructive scenario are shown in Figure 95 

(and Table D9), and now the optimality of µ = 2.0 is recovered. The performance of the 

TP2.0 predator is slightly, but significantly, better than all but the TP2.2 predator (one-

way ANOVA on ranks, p < 0.001) and is considerably better than the exponential and 

uniform foragers (55% and 62% respectively). These tests confirm that the predator-

prey simulation performs as expected from the models employed by Viswanathan et 

al. (1999, 2000, 2001). 

We can see that in all the non-destructive scenarios the encounters measured here 

would be the same if seen from the perspective of the ambush predator with moving 

prey i.e. the encounter rates will be symmetrical. There is, therefore, no requirement 

for further simulations to determine encounter rates between a still (i.e. sessile) 

ambush predator and prey moving in different ways; Lévy prey with low exponents will 

generate more encounters. 

  
Figure 94: Destructive encounters with stationary prey 

With destructive foraging the situation is similar to the foraging lab simulations without prey targeting, 
with Lévy predators with lower exponents performing better. While not optimal the TP2.0 predator still 
performs better than the exponential or uniform predators. Values are medians and error bars represent 
10

th
 and 90

th
 percentiles. 

Destructive encounters with stationary prey

Predator

TP1.2 TP1.4 TP1.6 TP1.8 TP2.0 TP2.2 TP2.4 TP2.6 TP2.8 Exp Uni

E
n
c
o
u

n
te

rs

0

1

2

3

4

5



 

174 

 

 
Figure 95: Non-destructive encounters with stationary prey 

This scenario closely matches the results from Chapter 3, with the TP2.0 predator being the most efficient 
performer. However, the optimality is less pronounced as there is no significant prey patch to exploit. All 
the Lévy predators outperform the exponential and uniform foragers by a considerable margin. Values are 
medians and error bars represent 10

th
 and 90

th
 percentiles. 

6.5 Encounters with moving prey 

The optimality of a Lévy search is predicted to be reduced if the prey move fast in 

relation to the predator, with Brownian or ambush predators then being the most 

efficient (Viswanathan et al. 2002). To explore the consequences of moving prey with 

moving predators, two sets of simulations were performed using either slow moving 

prey (uniform with max step of 5) or fast moving prey (uniform with max step of 60, 5x 

the mean TP2.0 move step). In these simulations six predators were tested, three Lévy 

predators (TP with µ = 1.5, 2.0 and 2.5), exponential with exponent = 0.19, uniform 

with xmax = 12 and a still, ambush predator. Again these simulations used 10 fish and 10 

sharks with destructive predation and prey targeting. 

Results of the slow fish simulations are shown in Figure 96 and Table D10. As expected 

these results are similar to those obtained using stationary prey and although the 

ambush predator performed worst in terms of the total number of encounters these 

results cannot be simply adjusted for distance travelled (as the distance travelled by 

the still predators is zero) and therefore do not reflect any measure of efficiency. 

Consequently, comparisons based on encounters alone may well be misleading. In 

order to compare more accurately the benefits of active pursuit with ambush 

predation, it is necessary to introduce some measure of energetic cost, which will 

differ between the more and less active predators. For the purpose of this comparison 

Non-destructive encounters with stationary prey

Predator

TP1.2 TP1.4 TP1.6 TP1.8 TP2.0 TP2.2 TP2.4 TP2.6 TP2.8 Exp Uni

E
n
c
o
u
n
te

rs

15

20

25

30

35



 

175 

 

the values can be arbitrary, as long as the difference between the active and waiting 

costs is realistic (i.e. is comparable to differences recorded in marine fish). Taking as an 

example a pelagic shark, the scalloped hammerhead (Sphyrna lewini), estimates of 

standard (Rs) and maximum (Rm) metabolic rates ranged from 161 to 501 mg O2 kg-1 h-

1 (Lowe 2001). Standardising these values, for simplicity, by setting Rs to 1, gives a 

value for Rm of 3. These values can, therefore, be used as energetic costs by using Rs 

as the standard metabolic cost incurred for each 104 turns, whether moving or not, 

and Rm as the active metabolic cost incurred for each 104 units of movement. Clearly, 

this is a gross simplification and does not take into account any physiological 

differences which exist between pursuit and ambush predators. For example, some 

ambush predators, such as anglerfish (LophiusI sp.) are sluggish swimmers (Grove and 

Sidell 2002) and probably incur a greater energetic cost of movement than well 

adapted pelagic predators such as sharks. Nonetheless, these energetic cost values are 

sufficient to provide a more robust comparison of encounter efficiency. 

Using these simple assumptions a value of encounters per unit energy expended was 

calculated, the results of which are shown in Figure 97 and Table D11, where it is clear 

that the ambush predator was easily the most efficient, being 6.3 times more efficient 

than the TP1.5 predator.  

Results with the fast moving fish are shown in Figure 98 and Table D12 and here, as 

predicted, the Lévy optimality is greatly reduced, although the TP1.5 predator did 

perform marginally better than the other moving predators. However, the ambush 

predator performed almost as well as the rest. If the encounter rates are adjusted, as 

described above for the slow fish, then it is again the TP1.5 predator that performed 

marginally better out of the moving predators; however the still predator performed 

24 times better (Figure 99 and Table D13).  

Repeating these simulations with non-destructive predation and slow moving fish the 

optimality of the TP2.0 predator was recovered, albeit with less advantage than with 

the still fish simulations, being 22% better (Figure 100; one way ANOVA on ranks, p < 

0.001). With fast moving fish (Figure 101) the TP2.0 predator was only slightly better 

than the other moving predators (3% better than the TP2.5 predator) but was 

outperformed by the still predator by 1.6% (one-way ANOVA on ranks, p < 0.001). If 
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results are adjusted to take the simple energetic costs into account then the ambush 

predator outperforms the next best (TP2.5 in both cases) by 24.7 and 29.3 times for 

the slow and fast fish, respectively.   

These results therefore confirm those of Viswanathan et al. (2002) and demonstrate 

the, considerable, estimated energetic advantage of ambush predation when the prey 

are fast moving, or super-diffusive. 

 
Figure 96: Encounters with slow moving fish 

As expected with slow moving fish destructive encounter rates are similar to those obtained using still 
fish. The ambush predator performs worst in terms of encounters but this result does not take account of 
the energy conserved by not moving. Error bars are 10

th
 and 90

th
 percentiles.  

 
Figure 97: Adjusted encounters with slow fish 

If all predators are assumed to have the same standard metabolic cost and the results are adjusted to 
allow for an assumed energetic cost of movement then the ambush predator is easily the most efficient, 
about 2.2 times better than the TP1.5 predator. 

Encounters with slow fish

Predator

TP 1.5 TP 2.0 TP 2.5 Exp Uni Still

E
n

c
o

u
n

te
rs

0

100

200

300

400

500

600

Encounters with slow fish (adjusted)

Predator

TP 1.5 TP 2.0 TP 2.5 Exp Uni Still

E
n
c
o

u
n
te

rs
 p

e
r 

u
n
it
 e

n
e

rg
y 

e
xp

e
n
d

e
d

0.0

0.5

1.0

1.5

2.0

9.0

10.0

11.0



 

177 

 

 
Figure 98: Encounters with fast fish 

With fast moving fish the advantage of the Lévy predators is greatly reduced and the ambush predator 
performed nearly as well as the rest. Error bars are 10

th
 and 90

th
 percentiles. 

 
Figure 99: Adjusted encounters with fast fish 

When the encounter rate is adjusted for distance travelled the differences between the moving predators 
are small. The best mobile predator (TP1.5) was 8.5 times less efficient than the still predator. 
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Figure 100: Non-destructive encounters with slow moving fish 

With non-destructive encounters, as with the still fish, the optimality of the TP2.0 predator is recovered. 
However the advantage gained with moving prey is less than with still prey and the still (ambush) predator 
performs almost as well.  

 
Figure 101: Non-destructive encounters with fast moving fish 

With fast moving fish the optimality of the TP2.0 predator is much reduced and the still (ambush) 
predator performs best. 
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If prey is distributed homogenously, as it has been for the preceding simulations and as 

illustrated in Figure 102, then the location of an ambush predator is of little 

consequence, one place being as likely as another to afford encounters with prey. 

Consequently, there is no benefit in moving and a sessile predator will be the most 

efficient. However, if the prey field is heterogeneous, as will be the case in the majority 

of natural settings, moving can be beneficial if the predator is located in an area of low 

prey abundance. Therefore to investigate aspects of the ambush predator strategy 
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such as waiting times a heterogeneous prey field is required. In this section a prey field 

grid will be introduced, as a mechanism for generating a heterogeneous prey field, and 

simulation results will be presented that show that a certain minimum prey field 

density is required for the heterogeneity to become evident. 

The heterogeneous prey field illustrated in Figure 103 was generated by specifying a 

2x2 prey field grid and populating the area with 4000 fish. Each cell of the grid is 

randomly marked as either sparse or abundant with an equal number of each. The 

prey field grid operates by increasing the diffusivity of fish that are located within a 

prey field grid cell marked as sparse i.e. the speed at which a fish leaves the grid cell is 

increased (as described in full in Appendix G). To determine the density of fish required 

to achieve a significant difference in encounter rates between the prey abundant and 

prey sparse grid cells a series of simulations was performed using 25, 50, 100, 200 or 

500 slow moving fish with uniformly distributed move steps on the interval [1, 5] and a 

single still shark in ambush mode. With this configuration the shark, which will not 

move throughout each repeat of the simulation, will be either in a prey abundant or 

prey sparse grid cell (or at the boundary between the two) and it would be expected 

that a bimodal distribution of encounter rates would result from many repeats of the 

simulation. Each simulation comprised 103 repeats of 105 turns. The results are shown 

in Figure 104 and a clear bimodal pattern can be seen to develop as the prey field 

density increases. With 25 fish there is no clear pattern; with 50 fish there is a clear 

spike at around 15 encounters and with 200 or 500 fish the expected bimodal pattern 

is very clear. To perform a statistical test the results from each simulation (i.e. the 

number of shark-fish encounters from each run) were sorted and divided so that the 

lowest 500 values were grouped as ‘sparse’ and the highest 500 as ‘abundant’; this is a 

reasonable approach given that there is a 50:50 chance of the shark being located in 

either a sparse or abundant area. Differences between all simulations were significant 

(Mann-Whitney rank sum test; p < 0.001). The results are given in Table 12 and it can 

be seen that there is a linear increase in the values for the sparse and abundant prey 

fields, as expected from the prey field investigations performed previously. A further 

observation is that the number of encounters in the abundant areas is between 2.44 
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and 2.66 times greater than the median value in sparse areas, indicating that the 

heterogeneity of the prey field is consistent with increasing prey field density. 

It should be noted that this mechanism of producing sparse and abundant areas only 

works well with relatively slow moving fish, such as the fish used here. With fast, or 

rather, super-diffusive fish, this simple mechanism of increasing diffusivity is 

insufficient to maintain the disparity between areas; simply put, the fast fish quickly 

diffuse throughout the simulation arena as can be seen in Figure 105. 

Table 12: Encounter rates for the sparse and abundant prey field areas 

Number of Fish 

Sparse 
median 

(IQR) 

Abundant 
median 

(IQR) 

 
% difference 

25 9 (4) 22 (9) 244 

50 18 (6) 47 (12) 261 

100 36 (9) 95 (22) 263 

200 72 (16) 189.5 (44) 263 

500 183.5 (29) 489.5 (71) 266 

 

 
Figure 102: A densely populated homogenous prey field 

Without a prey field grid the 4000 fish are distributed homogenously. 

 
Figure 103: A densely populated heterogeneous prey field 

With 4000 fish the heterogeneity of the 2x2 prey field grid is clear. 
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Figure 104: Encounter rates in a heterogeneous prey field 

The bimodal pattern of encounter rates only becomes evident with a sufficiently dense prey field of slow 
moving fish. With 50k turns and a sparse prey field of 25 fish there is no clear effect, but the expected 
bimodal pattern becomes clearer as the prey density increases. The pattern also becomes clearer if the 
number of turns is increased as can be seen in the final figure with 25 fish and 400k turns. 

  
Figure 105: Loss of prey field heterogeneity with super-diffusive fish 

With super-diffusive TP.20 fish the prey field quickly loses its integrity. The image on the left shows the 
prey field near the start of a run, the image on the right is after less than 1000 turns and already the prey 
field is becoming homogenous. This method of generating heterogeneity only works with slow (normally 
diffusing) fish. 

6.7 Waiting times 

In a heterogeneous prey field the ambush predator could be located in either a prey 

rich or prey sparse area. The predator may not be aware of the status of the current 

location except through prey encounters and therefore, if encounters are infrequent, 

there might well be a benefit in giving up the wait and moving to a new area. The 

question becomes one of how long the predator should wait; giving up too soon in a 

prey rich area will miss opportunities while waiting too long in a sparse area could lead 
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to starvation (Nishimura 1991). Ideally, if following an encounter the predator extends 

the waiting time (i.e. responds to a successful encounter by waiting longer in that 

place), the wait time should be set to be just longer than the mean time between 

encounters in a prey rich area; this would ensure that the predator remained in prey 

rich areas but moved from prey sparse areas. The prediction therefore would be that 

waiting strategies with very long or very short waiting times, relative to the encounter 

rate, would result in fewer encounters than intermediate strategies. To test this 

prediction a series of simulations was performed using a 2x2 prey field grid and slow 

moving fish having a uniform distribution of move steps on the interval [1, 5] as used 

previously. Each simulation used 40 sharks in ambush mode with a truncated Pareto 

movement strategy (xmin = 1, μ = 2.0, xmax = 500). Simulations were repeated with 50, 

100, 200, 500, 1000 and 2000 fish and with uniform waiting times set on the intervals 

of 1 to 10, 50, 100, 200, 500, 1k and 10k turns and also a still ambush predator as a 

control. In the program, move on encounter was set to ‘false’ and destructive foraging 

to ‘true’. These parameters result in sharks that wait for encounters until the waiting 

time is up and then move super-diffusively to a new location. If prey is encountered 

then the prey is relocated (i.e. predation is destructive) but the shark stays where it is 

and the waiting time is extended by a new increment drawn from the distribution. 

Several predictions can be made for this scenario: firstly an optimum waiting time 

should be found which maximises the number of encounters and performs significantly 

better than the still predator; secondly, as waiting times increase, the scenario 

becomes increasingly similar to the still ambush predator which should result in the 

emergence of the bimodal pattern of encounter frequencies and consequently 

increased variance in the number of encounters; finally, as the number of fish 

increases and consequently the mean time between encounters decreases, the 

optimum waiting time should also decrease. In these simulations more fish are used 

than in the program validation simulations performed earlier and therefore, as 

encounters scale linearly with turns, fewer repeats are required to produce robust 

statistics; 100 repeats are therefore employed. Further, to produce results which are 

easier to compare between simulations the number of turns was adjusted in line with 

the number of fish to generate similar encounter rates; with 50 fish 400k turns were 
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performed, with 2000 fish only 10k turns are required to generate the same number of 

encounters as 100k turns with 200 fish.  

 The results are shown in Figure 106 and with 50 fish a clear optimum value of around 

1000 turns was found. As predicted, as the number of fish increased the optimum 

value decreased, as summarised in Table 13, with a value of 50 for 2000 fish. There 

was also a clear increase in variance as the waiting time increases, resulting from 

predators spending more time in either prey sparse or prey abundant areas. The 

advantage, in terms of percentage increase in encounters over a still predator was in 

all cases around 50%. The average encounter rate for still predators will be the mean 

rate for both sparse and abundant areas. Taking the simulation with 500 fish and a 

single shark described above as an example, the sparse areas have an encounter rate 

of 183, the abundant areas of 489 (Table 12), an average rate for this simulation 

should be about 336.5 encounters for one shark and 50,000 turns. With the 

simulations performed here with 500 fish, 40 sharks and 40000 turns, the expected 

rate is therefore 4/5 * 40 * 336 = 10768; reasonably close to the 11635 recorded for 

still predators with 500 fish (8% difference). The fish with a maximum waiting time of 

200 turns spent 1,585,235 of 1,600,000 turns waiting, the rest was spent moving and 

therefore about 1% of the available waiting time was lost. If this predator spent all of 

the waiting time in an abundant area the expected encounter rate would be 0.99 * 4/5 

* 40 * 489 = 15491; the recorded rate was 17831 (Q1=17055; Q3=18507.5), 14% better 

which is greater than the inter-quartile range of about 8%, suggesting that the 

predator might be optimising encounters within the fine scale distribution of prey in 

the abundant patches, rather than simply matching the encounter rate recorded by a 

still predator. However it is also possible that the measured improvement was simply 

down to stochastic variability between simulations. To test this the scenario was re-run 

a further 3 times with 1000 repeats (rather than 100) which gave values of 18080 

(Q1=16669.25,Q3=19317.75), 17273 (Q1=15800.5,Q3=18613.75), and 17033 

(Q1=15511, Q3=18367.75). While found to be significantly different (ANOVAR on 

Ranks; p < 0.001), runs 2 and 3 were not different at p < 0.05 (Tukey test) and the 

differences are small, averaging only 4%. Therefore, it seems that encounter rates 

were indeed better than would be expected than with a still predator located at some 
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fixed point within an abundant patch. The moving predator does appear to be able to 

respond to the fine scale prey distributions within the abundant patches;  further 

maximising the encounter rate to a value greater than the average abundant patch 

value. 

Table 13: Optimum waiting times 

No of 
fish 

Optimum 
waiting 

time (turns) 

Peak 
waiting time 

(turns) 

Peak median 

encounter rate 

(IQR) 

Median still 
encounter rate 

(IQR) 

% 
Advantage 

over still 

50 1k 1k 16644 (1679) 11707 (2653) 42 

100 ~750 1k 180751 (1795) 11485 (2366) 57 

200 500 500 17662 (2237) 11872 (2451) 49 

500 ~300 200 17831 (1452) 11635 (2595) 53 

1000 ~75 100 17623 (2316) 11961 (3090) 47 

2000 50 50 17964 (1637) 11635 (2233) 54 
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Figure 106: Optimum waiting times with increasing prey field density 

With increasing waiting times the encounter rate also increases up to an optimum value, above which the 
penalty of waiting too long in a sparse environment leads to a reduction in encounters. As the prey field 
density increases the mean time between encounters decreases and so the optimum waiting time also 
decreases. Values are medians and error bars are 10

th
 and 90

th
 percentiles. The red dashed reference line 

represents the encounter rate for the still predator. 

6.7.1 Optimising the minimum waiting time 

In the preceding simulations a simple uniform distribution was specified with a lower 

bound of 1, i.e. a maximum value of 500 generated values uniform on the interval [1, 

500]. As described above, the mean for such a distribution is just the mean of the 

minimum and maximum values; so 250 for the example just given. The simulations 

performed above demonstrated that the optimum maximum value for the waiting 

time reduced with increasing prey density but did not investigate optimum minimum 
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waiting times. There is, presumably, a range of values (xmin to xmax) which will be 

optimal for a given combination of prey field density and prey swimming speeds and it 

would be possible, through a systematic search of all the options to determine this 

combination of values. There is a more elegant solution to the problem however, 

which is to employ an evolutionary algorithm to fine tune the xmin and xmax values. 

To implement this a few changes were required to the Predator-Prey simulation 

program. The principal change was that after a certain number of turns, sufficient for 

predator performance to be evaluated, the bottom 30% of sharks (in terms of 

encounters) ‘die’, to be replaced by reproduction of the upper 30%. During the 

reproduction process (which simply ‘clones’ individual sharks) mutations will occur 

that alter either the xmin or xmax values by either increasing or decreasing the value by a 

mutation factor. To achieve this, rather than all sharks sharing the same waiting time 

parameters, each shark requires its own parameter set (i.e. the µ, xmin and xmax values) 

for the waiting time distribution, however all sharks share the same movement style 

(e.g. uniform).  

Simulations were performed using 200 fish, as used previously, and with 100 sharks in 

ambush mode, in order to provide a reasonable population for the evolution process. 

As before the sharks did not move on encounter but on cessation of waiting moved 

using a move step drawn from a truncated Pareto distribution with xmin = 1,  μ = 2.0 

and xmax = 500. Initial values for the uniform waiting time xmin and xmax values were set 

to 400 and 600 respectively; these values were deliberately set higher than the 

expected optimum value of around 250 (from the previous simulation using 200 fish) 

in order to investigate the manner in which the values change. The simulation 

performed 100k turns (one generation) after which an evolution step occurred as 

described above, with the chance of a mutation occurring during each reproduction 

(the mutation rate) being set to 50%; this rate results in 50% of the reproducing 30% 

being subject to a mutation, therefore 15% of the population is changing with each 

generation. If a mutation occurred it was implemented by changing either the xmin or 

xmax value by a mutation factor of ±10%. This process was repeated for 1000 

generations and the results are shown in Figure 107. It can be seen that encounter 

rates rapidly increase in a linear fashion until an optimum value is reached at about 
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300 generations, at which point the encounter rate settles to a steady value, albeit 

with considerable variability. If the results from the last 100 generations are compared 

with the results obtained above (having corrected for using 100 rather than 40 fish) 

the number of encounters is 23770 [uncorrected 59425 (Q1=54895.25,Q3=62874.5)] 

which is significantly greater than the previous result (17662) by more than 32% 

(Mann-Whitney Rank Sum Test; p < 0.001). 

Figure 107 also illustrates the changes to the xmin and xmax values from the best 

performing 30% of the population as the simulation proceeded and it can be seen that 

as expected the changes mirror the changes in encounter rate. It is interesting that the 

changes were both rapid and roughly linear, which might be expected given the fixed 

mutation rate (50%) and mutation factor (±10%) being used. For the last 100 

generations the optimised median values for xmin and xmax are 99 (Q1=90, Q3=111) and 

239 (Q1=221, Q3=247) respectively with an overall mean waiting time of 169. This 

figure is somewhat lower than the rough estimate of 250 from the previous 

simulations, but the significantly higher encounter rate demonstrates the importance 

of raising the minimum waiting time (xmin) from 1 to 99. 

If the prey field density is increased by increasing the number of fish then it would be 

expected that the optimised xmin and xmax values would be reduced. To check this 

hypothesis the simulation was repeated with 400 fish and, as encounter rates will be 

doubled, 50k rather than 100k turns to provide comparable results in terms of the 

total number of encounters. The results are shown in Figure 108 and as predicted, for 

the last 100 generations, the median xmin and xmax values are reduced to 48 and 119 

respectively, almost exactly half the value found with 200 fish. The median encounter 

rate for the last 100 generations was 57455 (Q1=52999.75, Q3=61595.25) which was 

not significantly different from the value of 59425 obtained with 200 fish (Mann-

Whitney Rank Sum Test; p = 0.088). This result demonstrates that the optimum values 

for xmin and xmax and the optimal encounter rate are dependent primarily on the prey 

field density.  

The variability in encounter rates attributable to the variability in the xmin and xmax 

values could perhaps be lowered by reducing both the mutation rate and the mutation 

factor. Both measures will increase the proportion of the population that matches the 
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most successful individuals and while the optimisation will take longer to reach a 

stable point, the variability at that point should be reduced, and the mean encounter 

rate should be increased. To test this hypothesis a further simulation was performed as 

above, with 200 fish, but with the mutation rate reduced from 0.5 to 0.2 (20% of the 

reproducing 30% are subject to mutation, therefore 6% of the population changes with 

each generation). The mutation factor is also reduced from 0.1 to 0.05 (±5%) which will 

slow the rate of change of the parameters. To investigate the long term stability of the 

encounter rate, and the optimised values, the simulation was allowed to run for 5000 

generations. The results are shown in Figure 109 and as expected encounter rates take 

much longer to reach an optimum value, about 1000 generations rather than about 

300 with higher mutation rates. The encounter rate obtained for the last 100 

generations is the same as with faster mutations rates, 59847 (Q1=56472.25, 

Q3=63181) compared to 59425 (Mann-Whitney Rank Sum Test; p = 0.265). This result 

was unexpected as it seemed probable that if the xmin and xmax values had less 

variability within the population then more members of the population would have 

optimal values for xmin and xmax, leading to an overall increase in mean encounter rate. 

However, there was no expected reduction in the variability of the encounter rate or 

of the optimised values of xmin and xmax.  

To investigate the cause of the variance, the difference in encounter rates between the 

best and worst performing 30% of the population was calculated from the original 200 

fish simulation results. The plot in Figure 110 illustrates the results and shows clearly 

that the variability of encounter rates is not reduced as the population evolves. Initially 

the difference is lower, reflecting the fact that all individuals begin the simulation with 

identical parameters. As the simulation proceeded the range of parameter values 

increased and this is shown in the higher variability. However, in the final 100 

generations, it might be expected that parameter values would have converged on 

more optimal values and that variation within the population would be reduced as 

suggested by the plot of xmin and xmax values in Figure 107. The remaining variability 

must therefore be intrinsic to the simulation. The inter-quartile range of the first 100 

and last 100 generations is almost unchanged at 7173 and 7979 respectively adding 
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support to the hypothesis that the variance seen is essentially intrinsic to the 

simulation. 

 

 
Figure 107: Encounter rates increase as xmin and xmax values are optimised 

There is a rapid increase in the number of encounters until an optimum value is reached at around 300 
generations. The lower plot shows mean values for xmin and xmax calculated from the top performing 30% 
of the population. The initial rate of change is rapid and approximately linear. There is considerable 
stochastic variation in the final values.  
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Figure 108: Evolution of encounter rates with 400 fish 

With 400 fish and 50k turns encounter rates reach a similar optimum value to that found with 200 fish 
and 100k turns as expected. With the higher prey field density of 400 fish the optimum values for xmin and 
xmax are approximately half of those obtained with 200 fish. There is a noticeable delay before the 
population begins to evolve but optimum values are still achieved at around generation 300. 

Encounter rates with 400 fish (50k turns)

Generation

0 100 200 300 400 500 600 700 800 900 1000 1100

E
n
c
o

u
n
te

rs

30000

40000

50000

60000

70000

Evolving x
min

 and x
max

 values

Generation

0 100 200 300 400 500 600 700 800 900 1000

W
a

it
 t
im

e
 p

a
ra

m
e

te
r 

va
lu

e

100

200

300

400

500

600 Xmin 

Xmax 



 

191 

 

 

 
Figure 109: Evolution of encounter rates with reduced mutation rates 

With the mutation rate reduced to 0.2 and the mutation factor to 0.05 the rate of change is, as expected, 
considerably slower, taking over 1000 generations to achieve optimal values. Optimum values are reached 
at over 1000, rather than around 300, generations. However the values do not settle to more stable 
values as predicted, rather there is still considerable variability even in the long term. 

 
Figure 110: Difference in encounter rate between best and worst performers 

The plot shows the difference in mean encounters between the best and worst performing 30% of the 
population from the simulation with 200 fish. It is clear that there is significant intrinsic variability which 
does not reduce as the population evolves. 
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6.7.2 Optimised values with faster moving prey 

With faster moving prey, encounter rates should be higher and therefore waiting times 

should be lower just as with increasing prey field densities. Encounter rates have an 

exponential relation to the maximum step-length of a uniform distribution as 

demonstrated previously, so the final encounter rate with faster moving prey is 

difficult to calculate. The present method of maintaining prey field heterogeneity 

places upper limits on how fast the fish can be, however it is possible to increase the 

xmax value from 5 to 10, which will be sufficient for a noticeable increase in encounter 

rates. The results are shown in Figure 111 and it can be seen that the encounter rate 

and parameters reach optimum values somewhat later than with the slower moving 

fish, at around 400 generations. The median encounter rate for the last 100 

generations was 95125 (Q1=90026.75, Q3=98803) which was significantly higher than 

with slow fish (59425) by 60% (Mann-Whitney Rank Sum Test; p < 0.001). Interestingly 

the value for xmin for the last 100 generations was not significantly different from that 

obtained with the slow fish at 98.78 compared to 98.66 (Mann-Whitney Rank Sum 

Test; p = 0.478). The value for xmax however was half the value of that with the slower 

fish at 121 and 239 respectively and was significantly different (Mann-Whitney Rank 

Sum Test; p < 0.001). It is interesting that with increased prey field density both the 

xmin and xmax values were halved, as expected, but with increased prey diffusivity only 

the xmax value was affected.    

  
Figure 111: Optimisation of encounter rates with faster moving fish 

With fish moving (diffusing) approximately twice as fast the encounter rates quickly reach an optimum 
value which is not quite twice as high as with the slower moving fish. The optimised xmin and xmax values 
however are lower than those obtained with the slower fish as expected. 

6.7.3 Non-uniform waiting times 

The previous investigations used uniformly distributed waiting times as a simple way 

to illustrate the underlying principles. Here we investigate the performance of both 
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exponential and power-law distributed waiting times by using the evolution algorithm 

to determine optimised values for xmin, xmax and the exponent as appropriate. Initial 

values for xmin and xmax were set to 400 and 600, as with the uniform distribution and, 

for power and truncated Pareto distributions, μ was set to the Lévy optimum value of 

2.0. For the exponential distribution an exponent of 0.02 was used which gives a 

similar mean value of 164 which is sufficient as a starting value. While the value of μ 

was adjusted through mutation in the same way as the xmin and xmax values it was not 

allowed to become < 1 or > 3; i.e. it was kept within the Lévy range. There were several 

questions regarding these simulations: would the xmin and xmax values differ 

significantly from those obtained with a uniform distribution; what value would the 

exponent take and would the mean encounter rate be greater for the TP or 

exponential predator than the uniform predator? 

The results from the exponential distribution are shown in Figure 112 with statistical 

results for this and the other distributions given in Table D14 and Table D15. The 

evolution of encounter rates showed a similar rapid change as for the uniform 

distribution. The rate for the last 100 generations is 60654 (Q1=58020.25, Q3=64123) 

which while significantly different from that obtained with the uniform distribution 

(Mann-Whitney Rank Sum Test; p = 0.03) was greater by only 2.06%. The value for xmin 

rapidly settles to a reasonably constant value of 157 by 300 generations. The exponent 

(λ) ranges from 0.0389 to 0.127 (median 0.105) which, from simulated data with xmin 

set to 157, gives mean waiting times of 182 (n = 50000, s.d. 25.98) and 164 (n = 50000, 

s.d 7.8) respectively, and an overall mean waiting time of around 173. These values are 

close to the optimum mean of 167 for the uniform distribution. The xmin value for the 

last 100 generations was kept with about 15% of the median, however the exponent 

was only kept within about 37% of the median, suggesting that selection pressure on 

this parameter was less than for the xmin value and that the exponent was therefore 

less critical in determining the optimum waiting time. 

The results from the power-law simulation are shown in Figure 113. The evolution of 

encounter rates was very similar to that obtained with the uniform distribution but the 

rate for the last 100 generations was not significantly different at 59119 (Q1=55169, 

Q3=61705.25) compared to 59425 (Mann-Whitney Rank Sum Test; p = 0.647). The 
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value for xmin from the last 100 generations was 81 and for µ was 2.84. From simulated 

data these parameters generate a mean waiting time of 177 (n = 50,000, s.d. 310), 

which was close to the mean value obtained with the uniform distribution of 167. The 

xmin and exponent reach their optimum values at about the same time as the 

exponential distribution, after about 200 generations. The exponent (µ) was kept with 

about 7% of the final value and xmin was kept within about 14%. 

The results from the truncated Pareto distribution are shown in Figure 114. The 

optimisation of encounters proceeds more slowly than with the uniform or power-law 

distributions which was expected given that there are now three parameters being 

mutated; not only does each parameter change more slowly as a result (as only one 

parameter was changed with each mutation), but the parameter trade space (i.e. the 

number of possible combinations of all parameters) was now much larger. Each 

parameter effectively adds a dimension to the parameter trade space, considerably 

increasing the time required to find optimal values in the ‘fitness landscape’ (Sole et al. 

1999). The encounter rate for the last 100 generations was 60573 (Q1=56458.25, 

Q3=62357.5) which was not significantly different from the value of 59425 obtained 

with the uniform simulation (Mann-Whitney Rank Sum Test; p = 0.317). The value for 

xmin for the last 100 generations was 90, which is comparable to the power-law value 

(81). For xmax the value was 353, which was much higher than that obtained for the 

uniform distribution (174). The value for µ does not seem to settle to an optimised 

value, instead meandering with stochastic variation between 1.4 and 1.9 (median = 

1.7). This represents an overall variation of about 30%. From simulated data generated 

using these parameters it can be seen that with µ = 1.4 the mean waiting time was 178 

(n = 50000, s.d. 70) and with µ = 1.9 the mean waiting time was 165 (n = 50000, s.d. 

66), so it is interesting to note that the overall mean waiting time of 171.5 was again 

very close to that obtained with the uniform distribution (169). Variation in xmin was 

about 18% and in xmax was 41%.  
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Figure 112: Evolving encounter rates with exponentially distributed waiting times 

This result is very similar to that obtained with the uniform distribution. While the xmin value quickly 
settles to an optimum value the exponent seems to meander with stochastic variation, suggesting lower 
selection pressure on this parameter. The bottom right plot shows the values from generation 200, 
allowing a more revealing scale. From this plot it can be seen that both parameters vary considerably and 
that there seems to be some correlation between the two. 
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Figure 113: Evolving encounter rates with power-law distributed waiting times 

This figure is very similar to the results obtained with the uniform distribution except that the final 
encounter rate is somewhat lower. Both values quickly evolved to optimum values with xmin settling at a 
mean of 68 and µ at 2.83. The bottom right plot shows the values from generation 200, allowing a more 
revealing scale. From this plot it can be seen that both parameters varied considerably and that there 
seems to be some correlation between the two. 
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Figure 114: Encounter rates with truncated Pareto waiting times 

While the xmin and xmax values reach optimum values after about 300 generations the exponent value 
meanders through stochastic variation implying that selection pressure on this parameter was low or non-
existent. 

6.8 Discussion 

From the simple equation derived to describe encounter rates (Z2D = 2rfst) it is clear 

that the relationship between most parameters and the encounter rate is linear for the 

range of values used. Such a simple relationship has made validation of this simulation 

program relatively straightforward and, therefore, it is possible to be confident in the 

more complex results obtained in some scenarios. The only aspect that proved to be 

more complicated was relating increased diffusivity to the encounter rate as an 

analogue for velocity. Increased diffusivity results in increased net displacement, but 

the relationship is too complex to allow straightforward investigations into encounter 

rates between predators and prey moving at different speeds. Instead, the 

investigations were couched in more general terms of more or less diffusive 
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individuals, however this was sufficient to identify the predicted differences in 

encounter rates between predators and still or moving prey. Similar simulations have 

been used before and have run into problems in the way that velocity was dealt with 

(e.g. see Scharf et al. 2006, Avgar et al. 2008, Scharf et al. 2008). Future work could 

better consider the implications of velocity by modifying the simulation to allow 

multiple interpolated steps to be performed per turn, although this would only deal 

with integer velocities. Another problem with dealing with differing velocities lies in 

correctly modelling the simultaneous movements of individuals. In a turn-based 

framework two close individuals could perform moves separately on paths that cross; 

in reality the two should meet but by taking turns they will miss. This problem was 

raised by Avgar et al.(2008) and has, as yet, no clear solution in a simple grid based 

simulation such as the one employed here. To properly deal with different velocities 

the simple regular grid approach would have to be discarded and accurate collision 

detection algorithms would have to be employed, as is the case with modern 3D 

games (Jimenez et al. 2001). However, dealing with large numbers of objects can 

become computationally intensive and many complex but efficient algorithms have 

been developed to speed up the process (e.g. Leszczynski and Ciesielski 2004, Liu et al. 

2010).  

An important outcome in this study was confirming the optimality of low exponents (µ 

= 1.5) for Lévy predators in destructive foraging scenarios, and the optimality of μ = 2.0 

in non-destructive scenarios, providing a useful independent verification of the 

predictions made by Viswanathan et al. (1999, 2000, 2001). The simulation presented 

in this chapter differs significantly from both the mathematical model presented by 

Viswanathan et al. and from the simulation presented in Chapter 3, and therefore to 

obtain such similar results provides very strong support for the theoretical basis of the 

Lévy flight foraging hypothesis. 

The simulations have also upheld those predictions concerning ambush predators, 

namely that with faster moving prey the movement pattern of the predator becomes 

less important and that the ambush predator can be the most efficient in terms of the 

number of encounters (Viswanathan et al. 1999, Scharf et al. 2006). This advantage 
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was not just in terms of encounter efficiency (i.e. encounters per unit energy 

expended) but in absolute terms of the number of encounters occurring. 

The natural environment is heterogeneous and this will result in problems for 

sedentary predators. Sessile organisms, which include non-relocating ambush 

predators such as ant-lions (Scharf and Ovadia 2006), will only thrive where conditions 

are suitable and cannot usually relocate in an attempt to improve encounter rates; 

sessile organisms that settle in adverse conditions simply die. More mobile ambush 

predators such as angel sharks (Squatina squatina) or anglerfish (Lophius piscatorius) 

are able to give up waiting in less favourable conditions and relocate to new areas. 

From the results presented here it is clear that for given levels of prey field density and 

heterogeneity there are consistent values for the minimum and maximum waiting 

times that significantly optimise the overall encounter rate. Of particular interest is 

that there is a mean value for the waiting time independent of the waiting time 

distribution. In all cases examined here the mean waiting time was around 172.6 

(uniform 169, exponential 173, power-law 177 and TP 171.5). Previous studies have 

also suggested that in heterogeneous environments an optimal waiting time is 

expected (Nishimura 1991), however, to date, the link between optimum waiting time 

and prey field density has only been shown in one dimension (Benichou et al. 2011). In 

this study, it has been demonstrated clearly that there is an inverse relationship 

between prey field density and the optimum waiting time. While, in itself, this is not an 

unexpected finding the evidence that the actual distribution (i.e. uniform, exponential 

or power-law) plays no significant role is interesting. In the foraging simulations 

performed in Chapter 3, it was found that the distribution was a very significant factor, 

with a truncated Pareto distribution with µ = 2.0 outperforming the other 

distributions, even when the mean step-length was comparable. Consequently, it was 

not expected that the distribution would have so little effect in these simulations. This 

suggests that the foraging scenarios of Chapter 3 are less analogous to the scenarios 

presented here than was first expected. 

In all cases there was also a range of values, between xmin and xmax, rather than a single 

value, suggesting an advantage in having some variability in the waiting time. It could 

be that having a broad range of values helps in dealing with the intrinsic stochastic 
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variability of the simulation environment as well as the heterogeneity of the prey field. 

In the evolutionary simulations the xmin and xmax values changed rapidly from the 

starting values to more optimised values, yet failed to converge on a single value. It 

seems likely, therefore, that the range of values was important in optimising 

encounters in the simulation environment, where there was strong, random, prey field 

heterogeneity. Consequently, the waiting time of an individual predator had to deal 

with both sparse and abundant prey patch densities. Further work could test this idea 

using homogenous prey fields. A further factor that would have affected the optimised 

xmin and xmax values, in this study, is that the predators could not choose to ‘give up’ 

waiting in response to environmental cues. Previous studies have considered the 

problem of predator choice in waiting times (Nishimura 1991), concluding that the 

optimum strategy is to initially decide on a long waiting time, and then adjust this 

time, in subsequent trials, in response to prey capture. Again, however, in the 

simulations performed by Nishimura (1991), the predator could not ‘change its mind’ 

and give up early. It seems likely that natural ambush predators base waiting decisions 

on perceived prey availability, rather than actual prey capture, as the majority of 

ambush predators have a sensory range that exceeds the prey capture range; e.g. 

parasitic wasps (White and Andow 2007) or anglerfish (Laurenson et al. 2004). 

Consequently, more informed decisions regarding patch quality can be made by 

natural predators than by the simulated predators in these studies.  

Decisions about patch quality, and how long to wait for a prey encounter, require 

memory. Memory windows, where behaviour is learned, retained and then forgotten, 

have been demonstrated in a range of lower vertebrates; e.g. fish (Mackney and 

Hughes 1995) and tadpoles (Ferrari et al. 2010) where prey handling and predator 

avoidance were shown respectively. Therefore, it is likely that ambush predators can 

learn to adjust their waiting time (i.e. be more patient) if environmental cues suggest 

the patch to be profitable, rather than unprofitable, and vice versa. Furthermore, it has 

been shown that limited memory capacity, as would be expected in lower vertebrates, 

can actually improve the identification of correlations in a heterogeneous 

environment. Kareev (1995) showed that small sample sizes tend to overstate 

correlations, i.e. if a correlation exists then it is more likely to be found in a small 
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sample than a large sample; suggesting that it is quite possible to make quick decision 

about patch quality. Further, in dynamic heterogeneous environments, long term 

memories could be maladaptive as they become out of date, therefore shorter 

memory windows are expected to be advantageous in changing environments 

(Mackney and Hughes 1995, Fortin 2002). Therefore, it is possible that the optimised 

xmin and xmax values found in these simulations could represent some aspect of an 

animal’s memory window. 

The use of an evolutionary algorithm provided a relatively straightforward way to 

investigate the optimisation of waiting time parameters that would have been time 

consuming and difficult to achieve with other methods (such as performing factorial 

simulation experiments). Genetic algorithms (of which this was a very simple 

implementation) have been used extensively in many fields including ecology and 

optimal foraging (Strand et al. 2002, Scharf et al. 2009). However a full investigation of 

either the algorithmic details, such as optimum population sizes and mutation 

parameters, while very interesting, is beyond the scope of this chapter. It is, perhaps, 

of more importance to recognise that if artificial selection processes work so 

effectively to optimise attributes which have quite subtle effects, then it is very likely 

that the same has occurred in nature. 

Consequently, it is reasonable to conclude that observed behavioural patterns, such as 

waiting times, will also very likely represent optimised values; although the full suite of 

factors for which these values are optimised are more difficult to elucidate. Clearly, in 

the natural environment, predators must respond to a range of factors, such as light 

intensity, temperature, salinity and depth, as well as the likely profitability of the 

current prey patch. How these environmental factors are integrated with other factors, 

such as predation risk or hunger, in the optimisation of waiting strategies of marine 

ambush predators such as anglerfish (Lophius sp.), will prove challenging to determine. 
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7 Assessing the potential impact of long-line fisheries 
on a wide-ranging pelagic predator: a simulation 
study 

This chapter was presented at the symposium ‘Marine Protected Areas on the High 

Seas’ as  

Humphries, N. E., N. Queiroz, G. R. Mucientes, L. L. Sousa, and D. W. Sims. 2011. 

Assessing capture risk of pelagic fish by satellite-tracked long-line vessels and the 

effectiveness of Marine Protected Areas. Marine Protected Areas on the High Seas, 

February 2011, Institute of Zoology, Regents Park, London, NW1 4RY, UK. 

The analysis methodology presented in this chapter has been used in Queiroz, N., N. E. 

Humphries, L. R. Noble, A. M. Santos, and D. W. Sims. 2012. Spatial Dynamics and 

Expanded Vertical Niche of Blue Sharks in Oceanographic Fronts Reveal Habitat Targets 

for Conservation. PLoS ONE 7 (2), e32374. 

7.1 Introduction 

It has long been known that the rise of industrialised fishing has resulted in largely 

unsustainable increases in catches of the target species (Garstang 1900, Thurstan et al. 

2010). Another consequence of larger, more powerful fishing vessels entering the 

industry since the 1940s is a significant impact on large open-ocean species, such as 

pelagic sharks (Megalofonou et al. 2005b, Zeeberg et al. 2006, Dulvy et al. 2008, 

Campana et al. 2009), by more technologically sophisticated long-liners. Up until the 
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1950s, open-ocean pelagic sharks were largely beyond the range of most of the fishing 

fleet. Significant changes in the pelagic fish community and in the size structure of 

populations have been observed since the 1950s (Ward and Myers 2005) and other 

more complex ecosystem effects on shark populations have been predicted using 

ecosystem models (Kitchell et al. 2002). Industrialised fishing fleets not only affect the 

target species however, but can have a significant impact on non-target by-catch 

species, which in the case of the long-line fishing fleet can be turtles, seabirds or fish 

(Marin et al. 1998, Baez et al. 2007, Jimenez et al. 2010, Casale 2011, Tuck et al. 2011), 

and especially sharks such as blue (Prionace glauca), mako (Isurus oxyrinchus) or silky 

(Carcharius falciformis) which have suffered major declines (Buencuerpo et al. 1998, 

Campana et al. 2006, Aires-da-Silva et al. 2008, Cortes et al. 2010). 

Other than increasing regulation regarding the practice of ‘finning’, there are currently 

few catch limits on pelagic sharks and no size restrictions in place.  In Canadian waters 

there is a recognised directed fishery for porbeagle sharks (Lamna nasus), despite 

recommendations for the fish to be listed as endangered by the Committee on the 

Status of Endangered Wildlife in Canada (COSEWIC). The Canadian Atlantic Pelagic 

Shark Integrated Fisheries Management Plan also places restrictions on the total 

allowable catch (TAC) of blue and mako sharks, totalling < 100 tons per year. In the 

USA, NOAA Fisheries management set the commercial quotas at 273mt for blue 

sharks, 1.7mt for porbeagle and at 488mt for all other pelagic sharks, up to December 

2012. European regulations, however, are less strict. There are zero TAC limits for 

porbeagle, spiny dogfish (Squalas acanthius) and deepwater sharks and prohibitions on 

handling and landing of skates, rays and angelsharks (Squatina squatina). However, the 

EU currently places no restrictions on pelagic sharks. Given the slow population 

recovery potential, resulting from the low fecundity and late age of maturity of many 

pelagic sharks (Cheung et al. 2007), the likelihood of further declines appears probable 

(Cortes et al. 2010), unless management measures are implemented. A potential 

mitigation of over-exploitation of pelagic sharks is spatial management, which imposes 

large areas where fishing for pelagic sharks is prohibited. Recent developments in this 

approach have seen the establishment of vast marine protected areas (MPAs). For 

example, the Chagos Islands Marine Reserve, established in April 2010, covers more 
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than 600,000 km2 of the Indian Ocean and was implemented primarily to protect coral 

reef habitat (Sheppard et al. 2012). In September 2011 a 1M km2 protected marine 

reserve was announced for the Cook Islands in the Pacific Ocean. In the NE Atlantic, 

somewhat to the north of the study area in this chapter, a network of six MPAs was 

established in 2010 by the OSPAR convention, which totals 286,200 km2 (O'Leary et al. 

2012). Nevertheless, how well such areas or other potential methods for catch 

reduction by the long-line fishing fleet will protect highly migratory species, such as 

pelagic sharks, is only poorly understood. 

Pelagic sharks such as blue, or shortfin makos (Isurus oxyrinchus) are the most 

commonly caught shark on pelagic long-lines, but catches are currently unregulated 

and are under pressure from both targeted fishing effort (for fins or meat) or as by-

catch from other fisheries, especially long-liners targeting tuna or billfish (Megalofonou 

et al. 2005a, Megalofonou et al. 2005b). For many species of pelagic shark the intrinsic 

low productivity resulting from late maturity and low fecundity make them vulnerable 

to over-fishing, resulting in significant declines in wild populations in recent years 

(Cortes et al. 2010). Many studies into the impact of fishing fleets on by-catch species 

have relied on data from landings (e.g. Buencuerpo et al. 1998) or from observers 

(Rogan and Mackey 2007, Sims and Cox et al.2008b) however, both these methods 

have some shortcomings. Data from landings does not include detailed information 

about where or when the by-catch was caught, and does not document  discards made 

at sea, which can be significant (Stevens et al. 2000, Campana et al. 2009). Observer 

programs are more accurate but suffer from poor coverage as only a small percentage 

of vessels will have observers aboard. Consequently, the full extent of the risk posed 

by long-line and other fisheries to pelagic shark populations is not fully understood. If 

pelagic sharks are to be managed sustainably then clearly some form of regulation is 

required whereby-catches are limited and numbers caught, whether landed or 

discarded, are accurately recorded. For such protection measures to be economically 

viable and enforceable they must be focussed on the locations and times at which the 

sharks are most at risk, for example mating or pupping aggregations. Therefore, a 

detailed understanding of the movements and migrations of these widely distributed 

sharks is essential. However, it is equally important to understand the spatio-temporal 
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distribution of fishing effort that is posing the risk to the sharks. Mitigation measures 

such as Marine Protected Areas (MPAs), seasonal closures or fleet restrictions will not 

result in a reduction of risk unless they target those areas and times during which the 

sharks are at risk. 

Accurate distributions of fishing effort are now available for some fleets, in the form of 

Vessel Monitoring System (VMS) data which record the location, speed and heading of 

each vessel every two hours (or more frequently in some cases). It is therefore possible 

to determine seasonal and spatial hotspots of fishing activity. The missing piece, 

however, is similar data concerning the movements of sharks. Technological advances 

in the design of electronic tags and in global positioning systems has led to an 

acceleration in tagging studies seeking to fill this gap in our knowledge (e.g. Block et al. 

2011). Such studies are time consuming and expensive and to date the information 

regarding the movement and migration of pelagic sharks is scant (however, see Pade 

et al. 2009, Queiroz et al. 2010), and as yet, insufficient for a detailed analysis of the 

interactions between the Atlantic fishing fleet and the shark populations.  

This study will investigate the effect of several by-catch mitigation measures using fleet 

movement data provided by the vessel monitoring system (VMS) for the Spanish and 

Portuguese long-lining fleets in a shared grid occupancy analysis. Ideally, the prey field 

for the analysis would be populated using tracks recorded from the by-catch species of 

interest (i.e. blue, mako or silky sharks) resident in the N.E. Atlantic where the fleet are 

fishing; however, the number and extent of tagged animals is currently insufficient for 

a comprehensive analysis (Queiroz et al. 2010). Consequently, this study uses a 

simulated prey field representing a wide-ranging pelagic predator, such as a blue shark 

(Prionace glauca), constructed using tracks generated by a shark simulator program, 

described in full in Appendix H. 

As will be shown in this study, fishing effort by Spanish and Portuguese long-liners has 

an extensive but patchy distribution in the NE Atlantic, with ‘hotspots’ occurring in 

different locations at different times of the year. The overall fishing effort also varies 

throughout the year. These differences are driven primarily by the movements and 

migrations of the principal target species which, for the Spanish and Portuguese long-

liners, is generally swordfish (Xiphias gladius). However, the fishery has an impact on 
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non-target or targeted by-catch species, such as blue sharks (Buencuerpo et al. 1998, 

Marin et al. 1998, Vega and Licandeo 2009) which have overlapping feeding niches 

with those of swordfish (Pusineri et al. 2008, Queiroz et al. 2012). Fisheries controls, 

such as closed seasons or no take zones, created to maintain the sustainability of the 

target species may have different and even detrimental consequences for non-target 

or targeted by-catch species with differing temporal and spatial distributions 

(Hyrenbach et al. 2000, Blyth-Skyrme et al. 2006, Cadiou et al. 2009, Jennings 2009). 

By using vessel monitoring data from long-line fleets it is possible to determine both 

the spatial and temporal distribution of fishing effort. If detailed information were 

available on the movements and distribution of a non-target or targeted by-catch 

species, such as blue, mako (Isurus oxyrinchus) or silky sharks (Carchirhinus falciformis), 

then it would be possible to investigate spatial and temporal ‘hotspots’ of interaction 

between the fleet and the sharks under different fisheries management scenarios. 

Unfortunately, detailed information on the individual movements of sharks in the form 

of tracks recorded by animal-attached electronic tags, is available for only a few 

individuals (around 50 at the current time) and only for short durations (i.e. months 

rather than years). It is therefore difficult to determine what the impact of different 

fisheries control measures might be on by-catch species. Ultimately, this could result in 

marine protected areas (MPAs) being established in locations where interactions 

between fishers and the protected species are already low, causing unnecessary and 

unhelpful reductions in fishing activity without commensurate reductions in fishing 

pressure to the focal species of concern. To investigate the effect mitigation measures 

might have on by-catch it is possible instead to use a modelled prey population. 

Several modelling studies have been used to investigate the design of MPAs, either for 

particular species such as sand eels (Ammodytes marinus) (Christensen et al. 2009) or 

Mediterranean hake (Merluccius merluccius) (Apostolaki et al. 2002), where population 

dynamics models are combined with fisheries models to determine the effect reduced 

fishing pressure would have on the populations.  Other studies have used models to 

consider the effect of fishing effort displacement (Greenstreet et al. 2009). In this 

chapter a simulation model was used to generate a modelled prey field which was 

combined with VMS-derived fishing vessel movements in a grid occupancy analysis to 
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investigate the effects that various by-catch mitigation measures could have on the 

risk posed to the by-catch species by a long-line fishing fleet. 

Using movement patterns of blue sharks determined from recent electronic tagging 

studies in the North Atlantic, together with some general thermal tolerance 

characteristics of blue shark (Queiroz et al. 2012), it was possible to simulate the 

annual movements of a generalised free-ranging pelagic predator and to generate 

from these movements a simulated ‘prey’ field available to the fishing fleet. This prey 

field was then used to investigate the spatio-temporal interactions between the prey 

and the fishing fleet. While these modelled predators do not reflect all the details of 

the complex large-scale movements and migrations of real blue sharks, they do 

provide a useful probe with which to explore the distribution of fishing effort and allow 

general conclusions about interactions between the fleet and the prey to be drawn. 

The prey field for this study was created by simulating individual, generic, open-ocean 

predators which moved in response to a daily map of sea surface temperature (SST) 

based on a thermal preference of 16 to 23°C. The simulation program used to generate 

the tracks is described in full in Appendix H. For each analysis 1000 simulated shark 

tracks were randomly selected from a pool of 20,000 tracks.  

The impact of a fishing fleet, or of a vessel within the fleet, could have been estimated 

from the number of days spent fishing each year. However, this simple metric does not 

take into account the spatial distribution of the fishing effort nor, importantly, how 

that effort is distributed in relation to highly mobile, free-ranging prey species. The 

Spanish and Portuguese long-line fishing fleets primarily target swordfish, so it would 

be expected that the spatial distribution of the fishing effort should closely match that 

of the migratory patterns of the swordfish. However, given the differing thermal 

preferences of blue sharks, and the resulting differences in distribution, it is expected 

that the impact of the fishery, and of changes to the fleet, will be different for this by-

catch species. 
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7.2 Methods 

7.2.1 Simulated sharks 

The shark simulation program is described in full in Appendix H, but, briefly, an 

individual shark movement path, comprising one location per day, is constructed as a 

random walk throughout the study area. Move step-lengths are drawn from a 

distribution derived from the movements of satellite tracked blue sharks (Queiroz et 

al. 2012). Turn angles are drawn from a uniform distribution, but are modified in order 

to constrain the shark to sea surface temperatures within a tolerance of 16 to 23°C. 

The simple method used to implement this constraint was for the shark to have an 

increased tendency to head south when surface waters were too cold and north when 

too warm, based on daily interpolated SST maps. Move–steps were halted if land was 

encountered. Each shark path therefore comprised 366 locations with an overall north 

south seasonal migration being evident.   

7.2.2 The 3D grid occupancy analysis program 

The 3D Grid Occupancy analysis quantifies the shared space use of a fishing fleet (e.g. 

long-liners) and pelagic fish (e.g. blue sharks) over time in the north east Atlantic. 

Shared space use is determined by calculating occupancy of cells within a 2D grid 

covering the study area, with grid cell dimensions equating to approximately 1 degree, 

for each day analysed. Two separate levels of analysis can be performed, referred to as 

2D or 3D. The 2D grid occupancy analysis focuses on shared space use averaged over 

the specified time period while the 3D grid occupancy analysis generates measures for 

each day within the time period. The study area is situated in the north east Atlantic 

from 20 - 55°N and 0 - 35°W, encompassing the Azores islands, Canary Islands, 

Madeira and the coasts of north west Africa, the Iberian peninsula, southern Ireland 

and south west England. The grid cell dimensions of one degree in the Plate Carrée 

projection used (111.319km) results in a 2D grid of 35x35 cells. 

Boat VMS data is imported into the analysis program from time series of locations that 

were previously converted from latitude and longitude to X, Y coordinates in metres 

using a simple Plate Carrée projection. After the conversion two filters were applied: (i) 

a maximum fishing speed, set to 5ms-1 and (ii) a maximum time interval between 

points, set to 12h, so that travel between fishing locations could be ignored. 
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Consequently, the converted track comprises a series of points where each point 

represents a day when fishing occurred, that is when a baited long-line of hooks was 

deployed and actively fished. 

Shark tracks were imported in the same way as boat tracks but no filters were applied 

as the sharks were always considered to be present, whereas boats might be present, 

but not be fishing. 

7.2.3 2D Analysis 

The 2D analysis output comprises occupancy values for each grid cell for combined 

(boats plus sharks), boats only, sharks only or shared (simultaneous boats and sharks). 

The 2D analysis can be run over a specified date range, which defaults to the earliest 

start date of any imported track to the latest end date. Taking the boat-only analysis as 

an example, the analysis proceeds by mapping all points for every boat track onto the 

2D grid and maintaining counts of the number of boats in each grid cell. The same 

process is used for the shark-only analysis and the combined analysis simply sums the 

boat and shark values together. The shared occupancy analysis processes all boat and 

shark tracks then calculates a metric of shared occupancy for each grid cell which is 

simply Number of Boats * Number of Sharks.  

7.2.4 3D Analysis 

The output of the 3D analysis comprises a measure of shared space use (an overlap 

coefficient) for each day and, for each grid cell, a sum of the number of days for which 

shared occupancy (i.e. the presence of both boats and sharks) was recorded. The 

analysis also calculates, for each day, the numbers of shared cells, boat-only cells and 

shark-only cells; the maximum number of boats or sharks in a single grid cell 

(maximum occupancy), the number of boats fishing, and a fisheries impact factor 

calculated from the overlap coefficient divided by the number of boats fishing on that 

day. For each boat the number of days fishing is calculated, together with the number 

of days where the boat shares a cell with a shark (termed days of threat), although this 

figure is not currently used. For each shark the number of days where the shark shares 

a cell with a boat is calculated (termed days at risk). It should be noted that as the 
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measure of days at risk is based on the interactions with individual sharks, this figure 

can exceed the number of days fishing.  

For the 3D analysis, as with the 2D analysis, a date range can be specified which 

defaults to the earliest start date of any imported track to the latest end date. For each 

day of the analysis, each boat track is examined to determine whether a point exists 

for that date. If so, then the grid coordinates are calculated from the X, Y coordinated 

and the grid-cell boat count is updated. Given the scale of the long lining operation, 

with 100km lines, it is only reasonable to consider one grid cell per day’s fishing. Once 

all boat tracks have been processed the shark tracks are then processed in the same 

way with interpolated grid cells updated with occupancy and counts made of cells 

containing both boats and sharks (days at risk). Once all boats and shark tracks have 

been processed the 2D array of grid cells is analysed to derive the measures of days of 

threat, maximum occupancy and boats fishing etc. From the shared occupancy 

statistics for all grid cells a coefficient of overlap (O) is then calculated for that day 

using the equation derived by Horn (1966) and modified by Rijnsdorp et al. (1998): 

 

where Pbj = Proportion of boats in grid cell j, Psj = Proportion of sharks in grid 

cell j. 

The analysis was repeated for each day in the specified period and daily overlap 

coefficients were accumulated for each grid cell to generate a 2D summary. 

A fisheries impact factor was calculated from the two metrics of boats fishing per day 

and the overlap coefficient. The impact factor is a positive value when the overlap 

coefficient is higher than would be expected for a given number of boats fishing and is 

negative when the overlap coefficient is lower than expected. To calculate the factor 

an adjusted overlap coefficient (Oa) was first calculated to match the same range as 

the boats fishing values (by multiplying O by Max(boats fishing) / Max(O)). The factor is 

then calculated as Oa – Boats fishing, for each day. In the graphs shown below the 

fisheries impact factor is shown as a 7-day running mean in order to smooth the line  
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To provide some baseline and control data the 2D and 3D analysis was first performed 

for the full fleets for the full year, and then a seasonal analysis was performed for each 

quarter Q1 to Q4 representing the months 1-3, 4-6, 7-9 and 10-12. 

7.2.5 Fleet composition analysis 

To investigate the impact of changes to the fleet composition, boats were ordered by 

the number of days fishing and divided into 10 percentiles such that each of the ten 

groups represented approximately the same number of days fishing (as accurately as 

possible given that exact percentiles cannot be achieved given the discrete nature of 

the boats involved). The upper percentiles therefore had fewer, busier boats while the 

lower percentiles comprised many less busy boats. The advantage of dividing the fleet 

in this way is that for each analysis the fishing pressure, in terms of days fishing, is 

approximately equal; results are in any case presented as a metric of fishing pressure 

per day fishing. Dividing the fleet in this way places the larger, more commercial 

vessels in the upper percentiles and smaller, artisanal boats, in the lower percentiles, 

allowing some investigation into fleet structure and the impact of different sectors 

despite having no information about the actual vessels. A summary of the composition 

of the ten groups for each fleet is shown below in Figure 115 and Figure 116; full 

details can be seen in Tables E1-4. It can be seen that while each group had 

approximately 10% of the total days fishing for the fleet, the number of boats in the 

lower groups was much higher than in the upper groups. The smaller number of boats 

in the Portuguese fleet makes the division into groups more difficult than with the 

Spanish fleet. However, as the analysis metric was risk per day fishing, the results were 

not unduly affected. The 2D and 3D Grid occupancy analysis was repeated having 

imported just the boats from one of the ten groups at a time. The results from the full 

fleet analysis were used as a control. 
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Figure 115: Spanish fleet groupings 

Each group represents about 10% of the overall fishing effort, in terms of days fishing. Group A comprises 
the busiest boats (based on the number of days fishing per year), group H the least busy (see text). Grey 
bars show percentage effort in terms of number of days fishing for each of the groups; blue bars show the 
number of boats in each group. The red line indicates the target effort of 10%. All groups represent a 
similar fishing effort. 

 
Figure 116: Portuguese fleet groupings 

Grey bars show percentage effort in terms of number of days fishing for each of the groups; blue bars 
show the number of boats in each group. The red line indicates the target effort of 10%. With fewer boats 
overall the Portuguese fleet cannot be divided into such equal groupings as the Spanish fleet. 

7.2.6 Marine protected areas 

To investigate the effect that high seas marine protected areas (MPAs) would have on 

the threat posed to the by-catch species, MPAs were implemented in this study as no-

take zones for only the by-catch species. Doing so allowed the VMS boat tracks to be 

used without alteration, as the boats would simply continue along the recorded track 

but with no days fishing and no interactions recorded while the vessel was within the 

bounds of an MPA. The restriction on retaining sharks in the catch from within the 
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MPAs is therefore in force for the by-catch rather than the target species and it can be 

considered that only the target species are retained, all others being released. 

Implementing MPAs in this way also removes the complications involved with the 

relocation of fishing effort which has been found to occur around MPAs where all 

fishing is banned with fishing activity concentrated on the borders of the MPA 

(Murawski et al. 2005, Forcada et al. 2010). Relocation of effort is clearly difficult to 

predict as skippers might opt to travel further afield to other grounds or to change to a 

different target species. Furthermore, in this study it was more important that the 

VMS tracks be followed accurately. 

For this initial study three MPAs were defined and were placed in areas according to 

the hotspots of fishing pressure identified for the two fleets. The areas were West 

Africa, Iberian Peninsula and Goban Spur; W. Africa and the Goban Spur were selected 

for the Spanish fleet and the Iberian Peninsula for the Portuguese fleet. The details of 

all areas are given in Table E5 and are illustrated below in Figure 117 where the 

overlap with the fishing hotspots can be seen. 

The values calculated for days of risk, days fishing and risk per day fishing refer to the 

entire study area, with whatever MPA is in force effectively removed and are therefore 

a measure of the effect the MPA has on the overall fleet fishing pressure and potential 

risk. 

   
Figure 117: MPAs overlaid on the spatial distribution of fishing effort 

a Spanish fleet; b Portuguese fleet. Warmer colours represent greater fishing effort. The MPAs (red line 
boxes) are, from top to bottom, Goban Spur, Iberian Peninsula and W. Africa.  

a b
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7.2.7 Closed seasons 

A further modification to fishing practices investigated here was the seasonal closure 

of the entire fleet. Such closures have been used, usually in restricted areas, to protect 

spawning populations (e.g. Moltschaniwskyj et al. 2002, Kraus et al. 2009). Here, the 

effect of closing the entire fishery on a seasonal basis was investigated by ignoring 

interactions occurring during a closed season. As with the spatial MPAs the protection 

was implemented as a no-take for the by-catch species, with the fishing vessels 

continuing along the recorded paths. As before, seasons were defined simply as Q1 to 

Q4 representing the months 1-3, 4-6, 7-9 and 10-12. 

1.1.1.1 Null sharks 

For the fleet manipulation investigations the entire fleet acts as a suitable control with 

which to compare the fleet group results. For the MPA analysis one control was 

provided by having no MPA, however, a further control was provided by using null 

sharks. Null sharks are modelled virtual sharks as described above in section 7.2.1, but 

with no thermal preference and therefore no seasonal migration of habitat preference. 

These sharks were used to generate a prey field in the same way as the other modelled 

sharks by selecting 1000 at random from a pool of 20,000 for each simulation run.  

7.3 Results 

7.3.1 Spanish fleet 

1.1.1.2 Spatial distribution of fishing effort 

The fishing effort was distributed across a large area of the N.E. Atlantic (Figure 118a & 

b) reaching north to the British Isles and South to the West coast of Africa. Coastal 

regions of Africa are avoided as are the Azores and the area around Madeira where 

Portugal operates an exclusive economic zone (EEZ). There was a clear difference in 

the spatial concentration of long-line vessel (hereafter boat) occupancy compared to 

the shared occupancy shown in Figure 118a,b & c. Fishing effort was concentrated off 

the coast of West Africa and in the Bay of Biscay, whereas shared occupancy was 

concentrated around the Canary Islands and between the West coast of Portugal and 

north of the Azores. Shared occupancy is a measure of the spatial overlap between the 
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fleet and the prey field but has no temporal component. There was also a difference 

between the distribution of fishing effort and the distribution of interactions as shown 

in the 3D analysis in Figure 118d. The 3D analysis represents a map of the spatio-

temporal hotspots of interaction between the fleet and the by-catch prey field where 

hotter colours represent a greater number of daily occurrences of both boats and 

sharks within that grid cell. Figure 118d is effectively a map of the threat posed to the 

by-catch species by the fleet. 

Figure 119 shows the results of the 3D grid occupancy analysis with plots of boats 

fishing per day, the overlap coefficient and the fisheries impact factor. The simple 

measure of boats fishing per day reveals clear peaks of activity in January, July and 

August with reduced activity in the remaining months especially in late May and June 

when there was a virtual cessation of fishing activity. The overlap coefficient shows 

peaks in the spring and winter months but during May through August shows very low 

values, indicating little interaction. Consequently, the fisheries impact factor was 

strongly negative during July, August and September, when interactions were low but 

days fishing was high, and only showed peaks around March and April. What is clear is 

that neither the overlap coefficient, nor the fisheries impact values, were simply 

correlated with the number of boats fishing.  
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Figure 118: Spatial distribution of Spanish fishing effort. 

a) Vessel tracks with fishing locations shown in black and relocations in blue; b) annual density of boats 
fishing by grid square (blue is low density, red is high); c) 2D grid occupancy analysis showing shared 
occupancy between the fleet and a simulated prey-field of 1k sharks; d) 3D grid occupancy analysis 
showing spatio-temporal hotspots of interaction between the fleet and a simulated prey field of 1k sharks. 

 
Figure 119: 3D Grid occupancy results for the Spanish fleet. 

Upper blue bars are overlap coefficient; lower green bars, number of boats fishing; black line is fisheries 
impact factor (see Methods). 
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1.1.1.3 Seasonal spatial distribution of fishing effort 

By restricting the grid occupancy analysis to three month intervals it was possible to 

reveal seasonal changes in the spatial distribution of fishing effort as shown in Figure 

120. There were marked differences between the seasons; during Spring and Winter 

the fleet was generally fishing closer to the mainland, dispersing throughout Summer 

and Autumn to areas further afield. This dispersal resulted in lower overall fishing 

intensity, in the study area, during these months, as confirmed by the occupancy 

analysis shown in Figure 119. 

 
Figure 120: Seasonal spatial distribution of Spanish fishing effort 

2D analysis of boat occupancy for the four quarters Q1 to Q4 (where Q1 represents months 1 to 3 etc.) in 
figures a-d respectively. There were significant changes in the spatial distribution of fishing effort 
throughout the year with boats more dispersed in Q3. 

1.1.1.4 Fleet manipulations 

A 3D grid occupancy analysis was performed with each of the ten fleet groups and the 

total days at risk for all sharks was calculated for each analysis run as a measure of the 

potential impact on the by-catch species. The analysis was repeated 1000 times with a 

new set of 1000 randomly selected modelled sharks from the pool of 20k sharks. A 

summary of the results is shown in Figure 121 and Figure 122. There were clear 

differences in days at risk between some groups with three sub-groups being 

apparent; Groups A, H and J had the lowest impact, followed by all other groups 

except D which had an impact factor of 2.03, almost twice that of the next largest 

group, I (Figure 121). The box plot shown in Figure 122 reveals clear separation 

a b

c d
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between the fleet groups. The results failed a Shapiro-Wilk normality test (Table E6), 

therefore a one-way ANOVA on ranks was performed (Kruskal-Wallis). Differences 

between the groups were significant at p < 0.001 (Table E7) and most pair wise 

differences were also significant at p < 0.001 (Tukey Test; Table E8). Only the pairs I-F, 

and G-C were not significantly different. It is interesting that the vessels representing 

group A, the busiest boats in the fleet in terms of days fishing per year, had the lowest 

days at risk. Figure 123, below, shows the vessel track for the group A vessels 

superimposed on a mean annual occupancy chart for the simulated prey-field. It can 

be seen that the vessels spent most time towards the southern limit of the range of 

the simulated sharks where encounters were less frequent. The same is true for the 

vessels in group H (Figure 124), the group with the next lowest impact. In comparison 

the vessels in group D, which had by far the greatest impact, shown in Figure 125, 

spent most time in areas where prey-field density was high so it is understandable that 

the 2D (i.e. boat) occupancy and the 3D (i.e. shared) occupancy distributions were very 

similar. Figure 126 shows the 3D grid occupancy analysis results for the vessels 

comprising group H, the group with the second lowest mean days at risk. Fishing 

activity for this group was limited to January, July through August and December and 

at all times the overlap coefficient was very low and consequently the fisheries impact 

factor was strongly negative, confirming the spatial mismatch between fleet group H 

and the prey field found above. 

 
Figure 121: Mean days at risk per day fishing – Spanish Fleet 

Red line shows control. The group with the busiest boats was, unexpectedly, the group with the lowest 
number of days of risk to the by-catch sharks. Error bars are 10

th
 and 90

th
 percentiles. 
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Figure 122: Spanish fleet group analysis 

The box plot reveals a clear separation between the fleet groups. Three groupings are evident, with group 
D being significantly different from the rest. 

 
Figure 123: Occupancy for the Spanish vessels representing group A. 

a) Mean annual occupancy of the simulated prey-field with superimposed vessel track; b) 2D (boat) 
occupancy and c) 3D (shared) occupancy. This vessel spent most time towards the southern limit of the 
range of the simulated prey-field where encounters are less frequent. 

 
Figure 124: Occupancy for the Spanish vessels in group H. 

a) Mean annual occupancy of the simulated prey-field with superimposed vessel tracks; b) 2D (boat) 
occupancy and c) 3D (shared) occupancy. These vessels spent most time towards the limits of the range of 
the simulated prey-field where encounters were less frequent; resulting in differences between the 2D 
and 3D occupancy patterns. 

Spanish Fleet analysis

Risk per day fishing

0.0 0.5 1.0 1.5 2.0 2.5

F
le

e
t 
g

ro
u
p

in
g

Control

A

B

C

D

E

F

G

H

I

J

b ca

b ca



 

221 

 

 
Figure 125: Occupancy for the Spanish vessels in group D. 

a) Mean annual occupancy of the simulated prey-field with superimposed vessel tracks; b) 2D (boat) 
occupancy and c) 3D (shared) occupancy. These vessels spent most time towards the centre of the range 
of the simulated prey-field where encounters were more frequent and consequently the 2D and 3D 
occupancy distributions are almost identical. 

 
Figure 126: 3D Occupancy results for the Spanish vessels in Group H. 

Upper blue bars are overlap coefficient; lower green bars, number of boats fishing; black line is fisheries 
impact factor (see Methods).  

7.3.2 Portuguese fleet 

1.1.1.5 Spatial distribution of fishing effort 

The Portuguese fishing effort was concentrated in the area between the west coast of 

Portugal and the Azores, with some activity off the west coast of Africa but none as far 

north as the Bay of Biscay (Figure 127). As with the Spanish fleet the coastal regions 

directly off Africa were avoided. Unlike the Spanish fleet however, the 2D analysis 

revealed a strong coincidence of occupancy between the fleet and the simulated prey-

field as shown in Figure 127b & c. The 3D analysis shown in Figure 127d is very similar 

to the 2D results, with the exception of the areas off the West coast of Africa where 

interactions were virtually absent. 
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Figure 128 shows the results of the 3D grid occupancy analysis with plots of boats 

fishing per day, the overlap coefficient and the fisheries impact factor. In the 

Portuguese fleet there was a clear monthly periodicity to the number of boats fishing 

with peaks mid-month for every month with activity. Activity was greatest during 

January to March and from mid-September to December, but during the summer 

months fishing activity was very low and the number of boats fishing was frequently 

zero. The overlap coefficient followed this trend more closely than with the Spanish 

fleet, suggesting a greater coincidence between the Portuguese fleet and the by-catch 

prey field. However, there were interesting differences in the fisheries impact that 

would not otherwise be revealed. Firstly, there was a marked dip in fisheries impact in 

mid-January and unexpected peaks in late July and late August. Clearly, as with the 

Spanish fleet, the dynamics of the interactions are more complex than suggested by 

the simple measures of the number of boats fishing and the overlap coefficient. 

 
Figure 127: Spatial distribution of Portuguese fishing effort. 

a) Vessel tracks with fishing locations shown in black and relocations in blue; b) annual density of boats 
fishing by grid square (blue is low density, red is high); c) 2D grid occupancy analysis showing shared 
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occupancy between the fleet and a simulated prey-field of 1k sharks; d) 3D grid occupancy analysis 
showing spatio-temporal hotspots of interaction between the fleet and a simulated prey field of 1k sharks 

 
Figure 128: 3D Occupancy results for the Portuguese fleet. 

Upper blue bars are overlap coefficient; lower green bars, number of boats fishing; black line is fisheries 
impact factor (see Methods).  

1.1.1.6 Seasonal distribution of fishing effort 

Seasonal changes in the spatial distribution of fishing effort for the Portuguese fleet 

are shown in Figure 129 and Figure 120. The differences between the seasons were 

similar to those found with the Spanish fleet; during Spring and Winter the fleet was 

generally fishing closer to the mainland, dispersing throughout Summer and Autumn 

to areas further afield resulting in lower overall fishing intensity in the study area 

during these months, in agreement with the occupancy analysis shown previously in 

Figure 128. 
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Figure 129: Seasonal spatial distribution of Portuguese fishing effort 

2D analysis of boat occupancy for the four quarters Q1 to Q4 in figures a-d respectively. As with the 
Spanish fleet there are significant changes in the spatial distribution of fishing effort throughout the year. 

1.1.1.7 Fleet manipulations 

As with the Spanish fleet a 3D grid occupancy analysis was performed with each of the 

ten fleet groups and the total days at risk for all sharks was calculated for each analysis 

run as a measure of the potential impact on the by-catch species. A summary of the 

results is shown in Figure 130 and Figure 131. Differences between groups are less 

obvious than with the Spanish fleet but, interestingly, the busiest group (A) again had 

the lowest impact on the by-catch prey field. The box plot in Figure 131 shows less 

separation between the groups than was found with the Spanish fleet (Figure 122). 

Groups E to H are similar and had the highest impact with groups A and I having the 

lowest. In general the impact of the Portuguese fleet on the simulated shark 

population was much greater than that of the Spanish fleet (Portuguese mean 2.09, 

S.D. 0.01; Spanish mean 0.767, S.D. 0.022). Figure 132 shows vessel tracks from group 

A superimposed on the mean annual prey-field; there was considerable spatial overlap 

between the two which was unexpected given that group A has the lowest impact 

factor. In Figure 133 the overlap between vessels in group E (highest impact factor) 

and the prey-field is as expected for a high impact factor group with little discernable 

difference between the 2D and 3D occupancy. As with the Spanish fleet groups the 

results failed normality in some cases (Table E9) and therefore one-way ANOVA on 

ranks was performed (Kruskal-Wallis). Differences between the groups were significant 
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at p < 0.001 (Table E10) and nearly all pair wise differences were also significant at p < 

0.001 (Tukey Test; Table E11). Only the pairs D-B, E-G and Control-I were not 

significantly different at p < 0.001. 

 
Figure 130: Mean days at risk per day fishing – Portuguese fleet. 

Red line shows control. As with the Spanish fleet it was the group with the busiest boats that has the 
lowest impact. Error bars are 10

th
 and 90

th
 percentiles. 

 
Figure 131: Portuguese fleet group analysis 

There is more overlap between the groups with the Portuguese fleet than the Spanish fleet. Other than 
groups A and I all groups presented a greater threat than the control (all groups). 
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Figure 132: Occupancy for the Portuguese vessel representing group A. 

a) Mean annual occupancy of the simulated prey-field with superimposed vessel track; b) 2D (boat) 
occupancy and c) 3D (shared) occupancy. The considerable overlap was unexpected given that group A 
has the lowest impact. 

 
Figure 133: Occupancy for the Portuguese vessels in group E. 

a) Mean annual occupancy of the simulated prey-field with superimposed vessel tracks; b) 2D (boat) 
occupancy and c) 3D (shared) occupancy. These vessels are spending most time towards the centre of the 
range of the simulated prey-field where encounters are more frequent and the 2D and 3D occupancy 
distributions are almost identical. Here the considerable overlap is as expected. 

 
Figure 134: Occupancy for the Portuguese vessels in group J. 

a) Mean annual occupancy of the simulated prey-field with superimposed vessel tracks; b) 2D (boat) 
occupancy and c) 3D (shared) occupancy. These vessels spent most time towards the centre of the range 
of the simulated prey-field where encounters were more frequent and the 2D and 3D occupancy 
distributions were very similar. Here the considerable overlap was as expected. 
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Figure 135: 3D Occupancy results for the Portuguese vessels in Group J. 
Upper blue bars are overlap coefficient; lower green bars, number of boats fishing; black line is fisheries 
impact factor (see Methods). Group J comprises the boats with the fewest days fishing buts ranks 5

th
 in 

terms of risk per day fishing 

7.3.3 MPA analysis 

1.1.1.8 Spanish fleet 

The results of the MPA analysis with the Spanish fleet are shown in Figure 136 which 

shows days fishing, total days of risk and risk per day fishing for the control (i.e. no 

MPA in force), for each MPA and for the Iberian MPA with closed seasons in Q1 to Q4. 

The Iberian MPA considerably reduced risk per day (-16.68%) and days at risk (-20.93%) 

while having very little effect on days fishing, imposing a reduction of only -5.1%. 

Conversely, the West African MPA reduced days fishing from 5312 to 4237 (-20.23%) 

but produced only a small reduction in days at risk (-1.91%), thereby causing an 

increase in risk per day of 22.98%. These two results confirm that the area of greatest 

fishing pressure, where the W. African MPA was located, did not correspond to the 

area of maximum interaction between the boats and the sharks, which coincided 

instead with the Iberian MPA. Differences between all groups were significant at p < 

0.001 (Kruskal-Wallis one-way ANOVA on Ranks; Table E12 and Table E13) except for 

Control vs Q2. 

Figure 137 shows a box plot of the MPA results where the separation between the 

groups is clear. This figure also presents the results from the MPA analysis using the 

null shark population. Given that the null sharks have an even, non-seasonal 

distribution it was expected that fishing pressure would be equally evenly distributed 

PT 3D Occupancy analysis Group J

O
v
e
rl

a
p
 c

o
e
ff
ic

ie
n
t

Date

1/1/2008 1/2/2008 1/3/2008 1/4/2008 1/5/2008 1/6/2008 1/7/2008 1/8/2008 1/9/2008 1/10/2008 1/11/2008 1/12/2008 1/1/2009

B
o
a
ts

 f
is

h
in

g

0

1

2

3

F
is

h
e
ri
e
s
 i
m

p
a
c
t



 

228 

 

and that closure of any area would therefore make no difference to the risk per days 

fishing; each days fishing should carry the same risk and therefore removal of any days 

will not affect the average value. This is found to be true for all MPAs except for the 

Goban Spur where a slight increase in risk results. 

1.1.1.9 Seasonal MPA closure  

The Q1 closure of the Iberian MPA reduced days at risk by 11.14% and risk per day by 

8.74%, almost as much as closure for the full year (reductions of 20.93% and 16.68% 

respectively). The Q2 closure had very little impact on the fleet, reducing days fishing 

from 5312 to 5304 (- 0.15%) and consequently had little impact on overall risk to the 

sharks, a reduction of only 0.52%, so the similarity to the control was as expected. 

1.1.1.10 Within-MPA activity 

To determine the activity that would normally have occurred within the MPA the 3D 

occupancy analysis was re-run with interactions within the MPA, rather than outside, 

being counted resulting in the plots shown in Figure 138. It can be seen that activity 

within some of the MPAs was distinctly seasonal. Fishing activity in the W. African MPA 

can be seen to have occurred throughout the year; however, significant overlap with 

the by-catch prey field only occurred during the first half of the year when there was a 

positive fisheries impact factor. During the rest of the year, although the number of 

boats fishing was similar, there is very little overlap and a low impact factor. Closing 

this MPA for the first half of the year was expected to reduce overall risk, as both the 

fishing effort and interactions would be reduced; however in the second half of the 

year only the fishing effort would be reduced with no concomitant reduction in 

interactions, leading to an increased overall risk per day fishing. This, therefore, 

confirms the results shown in Figure 136, where overall closure of the W. African MPA 

did increase risk. In the Iberian MPA, fishing activity was seasonal only occurring during 

January and December; however, whenever boats were fishing there was considerable 

overlap with the by-catch prey field producing a very high impact factor at those times 

(few boats fishing but many interactions). Activity in the Goban Spur MPA was 

restricted to just the months of August and September with interactions peaking in 

mid September. Interestingly however, during August and early September the 
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number of boats fishing was relatively high but the overlap was quite low; overlap 

peaked during late September when the number of boats fishing had dwindled to only 

two or three. Activity patterns in this small area over a short time frame were more 

complex than were expected. 

 
Figure 136: Spanish MPA results 

The red dashed line indicates the risk per day for the control. Only the Iberian MPA significantly reduced 
risk per day. Q1 to Q4 show the effect of closing the Iberian MPA for each quarter of the year. 

 
Figure 137: Box plot of Spanish MPA results 

The plot shows risk per day fishing for the three MPAs and for the seasonal closure of the Iberian MPA. 
Boxes show median, 25

th
 and 75

th
 percentiles. Whiskers are 5

th
 and 95

th
 percentiles, outliers shown as 

circles. As expected the MPAs had no effect with the null sharks, except for the Goban Spur where the 
high concentration of boats within a few grid cells skews the results. 
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Figure 138: Spanish 3D MPA occupancy results 

Results of the 3D grid occupancy analysis for the areas enclosed by the MPAs described above. The 
seasonality of the fishing effort is clear. Blue bars overlap coefficient; green bars boats fishing; black line 
fisheries impact factor. Plots are top W. Africa; middle Iberian Peninsula; bottom Goban Spur. 

1.1.1.11 Portuguese fleet 

Results of the MPA analysis with the Portuguese fleet are shown in Figure 139. As 

expected the Goban Spur MPA had no effect on days fishing or days of risk and only 

the Iberian MPA had any significant effect. As with the Spanish fleet, closure of the W. 

African MPA reduced boats fishing, but being somewhat south of the range of the 

modelled sharks in the latter half of the year, did not similarly reduce interactions, 

leading to an overall increase in risk per day fishing. The Iberian MPA, as expected 

given the spatial coincidence with the Portuguese fishing hotspots, reduced both days 

fishing (by 56%) and days of risk (by 60%), giving a small but significant reduction in risk 

per day of 7.8% (differences significant at p < 0.001 Kruskal-Wallis One-way ANOVA on 

Ranks and all differences with the control significant at p < 0.05 except for Q2 and the 
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Goban Spur, Tukey Test; Table E14 and Table E15). The box plot in Figure 140 

highlights the difference between the modelled and null sharks with the Portuguese 

fleet. Interactions were much less frequent with the null sharks showing that the 

spatiotemporal dynamics of the modelled sharks more closely matches those of the 

fleet.  

1.1.1.12 Seasonal MPA closure  

The Q1 closure of the Iberian MPA did not have the same effect as with the Spanish 

fleet, resulting in only a very small reduction in overall risk (1.44%), despite the Iberian 

MPA having a significant effect when closed for the year. 

1.1.1.13 Within-MPA activity 

Repeating the analysis with the focus inside rather than outside the MPA reveals 

interesting seasonal dynamics as shown in Figure 141. Activity in the West African MPA 

was concentrated from April to August and during most of that time there was 

significant overlap with the modelled sharks, resulting in a positive impact factor. 

Within the Iberian MPA the pattern was almost exactly opposite to the West African 

MPA with activity from January to March and from August to December. There was 

almost no activity during Q2 as confirmed by the results shown in Figure 139. This 

explains why the Q1 closure had little effect, as activity was fairly evenly spread 

through Q1, Q3 and Q4. 

 
Figure 139: Portuguese MPA analysis 

The red line indicates the risk per day for the control. Only the Iberian MPA significantly reduced risk per 
day. 

Portuguese MPA Analysis

C
on

tro
l

G
ob

an
 S

pu
r

W
.A

fri
ca

Ib
er

ia Q
1

Q
2

Q
3

Q
4

D
a

y
s
 f

is
h

in
g
 

&
 T

o
ta

l 
d

a
y
s
 a

t 
ri
s
k

0

1000

2000

3000

4000

R
is

k
 p

e
r 

d
a

y
 f

is
h

in
g

1.6

1.8

2.0

2.2

2.4

2.6

Days fishing 

Days at risk 

Risk per day



 

232 

 

 
Figure 140: Box plot of Portuguese MPA results 

The plot shows risk per day fishing for the three MPAs and for the seasonal closure of the Iberian MPA. 
Boxes show median, 25

th
 and 75

th
 percentiles. Whiskers are 5

th
 and 95

th
 percentiles, outliers shown as 

circles. There is a marked difference between the null shark and modelled shark results, emphasising the 
coincidence of occupancy between the Portuguese fleet and the modelled sharks. 

 

 
Figure 141: Portuguese 3D MPA occupancy analysis 

Results of the 3D grid occupancy analysis for the areas enclosed by the MPAs described above. The 
seasonality of the fishing effort is clear. Blue bars overlap coefficient; green bars boats fishing; black lines 
fisheries impact factor. Plots are top W. Africa; bottom Iberian Peninsula. There is no activity in the Goban 
Spur MPA from the Portuguese fleet. 
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7.3.4 Closed season analysis 

1.1.1.14 Spanish fleet 

The results from the seasonal analysis are illustrated in Figure 142. All seasonal 

closures resulted in significant differences (p < 0.001, Kruskal-Wallis one-way ANOVA 

on Ranks, Table E16) and all pair wise comparisons were significant at p < 0.05 (Tukey 

test, Table E17). Q3 produced the greatest increase in risk (26%) and Q1 the greatest 

decrease (19%). Both closures produced a similar reduction in days fishing (34%), but 

as can be seen from the full fleet occupancy analysis (Figure 119), there was a greater 

degree of overlap in months January to March than in July to September where the 

fisheries impact factor was very low. Consequently, the Q3 closure reduced days 

fishing without reducing interactions, hence the increased risk per day fishing. In Q4 

the reduction in days at risk was in line with the reduction in days fishing, hence the 

risk per day was almost the same as the control, suggesting that activity in Q4 was 

similar to the year as a whole. 

 
Figure 142: Spanish closed season results 

The red line indicates risk per day for the control. All seasonal closures result in significant changes to 
fishing effort and days of risk. 

1.1.1.15 Portuguese fleet 

The results from the seasonal analysis are illustrated in Figure 143. All seasonal 

closures resulted in significant differences (p < 0.001, Kruskal-Wallis one-way ANOVA 

on Ranks, Table E18) and all pair-wise comparisons were significant at p < 0.05 (Tukey 

test, Table E19). Q1 produced the greatest reduction in days at risk (43%), but as this 

was at the cost of a reduction of 34% in days fishing, the reduction in risk per day is 

relatively small (13%). Q4 produced the greatest decrease in days fishing (37%) but did 
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not reduce days at risk by the same amount (only 32%) so increases risk per day, as 

does Q2. 

 
Figure 143: Portuguese closed season results 

The red line indicates risk per day for the control. All seasonal closures result in significant changes to 
fishing effort and days of risk, however it is only Q1 that reduces risk per day.  

7.4 Discussion 

In this study a new approach to the analysis of the dynamics of interaction is presented 

which is able to take full advantage of both VMS and tagged shark data as it becomes 

available. To illustrate the methodology, and explore the consequences of some 

mitigation methods, a simulated prey-field is used, based on a generalised pelagic 

predator with thermal preferences similar to those recorded from blue sharks for 

which data is available from recent studies (Queiroz et al. 2012). Clearly, a simulated 

prey field such as this does not reflect the true distribution of sharks in the N.E Atlantic 

and in particular includes no knowledge of associations which are known to occur 

between sharks and either bathymetric features (e.g. seamounts), oceanic fronts or 

upwellings (Worm et al. 2003, Priede and Miller 2009, Lucifora et al. 2012, Queiroz et 

al. 2012) nor of behavioural patterns such as sex, size or life stage segregation 

(Mucientes et al. 2009, Vogler et al. 2011). The prey field does, however, exhibit 

seasonal dynamics, allowing the investigation of a more complex interaction between 

the fleet and the sharks. 

The focus here has been to investigate how useful the grid occupancy analysis can be 

for determining the effectiveness of by-catch mitigation measures, considering 

specifically those of fleet reductions, marine protected areas (MPAs) and seasonal 
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closures. For the latter two scenarios it is only the by-catch that is prohibited, with the 

fishing vessels continuing to follow the VMS track, generally targeting swordfish. 

7.4.1 Fleet reduction analysis 

The analysis performed here to investigate the effect of changing the size or 

composition of the fishing fleet is hampered somewhat by the anonymity of the fishing 

vessels which made it impossible to determine the risk posed by specific classes of 

vessel. Instead, the simple measure of days fishing was used to classify the vessels into 

groups such that each group comprised vessels with progressively lower fishing extent. 

The results were unexpected: the busiest vessels from both fleets posed the lowest 

capture risk to the simulated shark population. It seems likely that these vessels were 

larger as they were travelling for longer and further afield, beyond the limits of the 

distribution of the simulated sharks. With both fleets there is no clear trend for the 

remaining vessel groups with the impact on the by-catch prey field being somewhat 

unpredictable. Without more information being made available regarding the vessel 

type, it is clear that it would be very difficult to design effective, economic, fleet 

reduction measures to protect the by-catch species. 

7.4.2 Marine protected areas 

Because the vessel tracks were determined from the VMS data it was not possible to 

study effects such as the displacement of fishing effort, which can lead to overfishing 

in other areas (Dinmore et al. 2003). Nor was it possible to investigate what effect the 

MPA might have on the protected populations within the area, or more complex 

effects such as spill-over of thriving populations to adjacent areas (Murawski et al. 

2005). 

The areas in this study used to investigate the potential effectiveness of high seas 

MPAs were selected simply on the basis of fishing intensity. The results emphasise that 

such a simple approach is likely to be unsuccessful for by-catch species, showing 

instead that it is the areas where interactions occur between the fleet and the by-

caught fish that should be targeted for mitigation. Furthermore, it is shown that the 

timing of closures is also important; clearly there is little point closing an area to fishing 

at a time when either the fleet or the fish are absent. The results argue persuasively 
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for the need for adaptive management of any high seas MPAs that may be instituted in 

the area studied. What is important in this context is that the grid occupancy analysis is 

able to determine the effectiveness of a proposed MPA, allowing fishing interactions 

both inside and outside the MPA to be measured. 

7.4.3 Seasonal closures 

Seasonal closures could offer potential benefits in that they could be simpler to 

regulate and allow the fishing fleet to target other areas or species during the closure. 

The closure can be specifically targeted to protect pupping or mating aggregations, 

maximising the benefit. However, closure of the entire fishing fleet is too blunt an 

instrument because, although the Q1 closures do reduce risk per day to the by-catch 

species, there is also a significant reduction in days fishing and therefore likely to be a 

significant economic impact. The analysis performed here highlights the importance of 

timing closures to target times of maximum interaction and suggests that combining 

seasonal, or temporary, closures with MPAs could improve the performance of both 

protection measures. Temporary closure of Mexico’s Economic Exclusion Zone (EEZ) to 

long-lining for striped marlin (Kajikia audax) was found to increase abundance by up to 

22% (Jensen et al. 2010). However, this was a long term (4 year) closure of a large area 

(a 200 nautical mile EEZ); a subsequent, shorter closure of 2 years produced likely 

increases in abundance of around 12%. Further, striped marlin, while highly mobile, 

tend to have more restricted movements than other billfish species (Domeier 2006) 

which might have increased the efficacy of the MPA.  

Overall, it is possible that an analysis such as presented here would lead to a better 

understanding of the dynamics of interaction between the fishing fleet and the by-

catch species, helping to inform the placement and timing of high seas MPAs for highly 

migratory species such as pelagic sharks. Other studies have considered interactions in 

other ways, for example Tuck et al. (2011) combined data from The International 

Commission for the Conservation of Atlantic Tunas (ICCAT) on the number of hooks set 

in 5° grid squares with distribution data on 60 populations of seabirds, known to be at 

risk as long-line by-catch, (e.g. wandering (Diomedes exulans), black-browed 

(Thalassarche melanophris) and Atlantic yellow-nosed (T. chlororhynchos) albatrosses. 

Interactions were assessed as the product of fishing effort (i.e. hooks set) and 
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percentage distribution of the bird population within each grid square for each month 

of the study, concluding that the fishery had significant conservation implications for 

the birds. However, the VMS data used in the present study provides a much finer 

spatial and temporal resolution and therefore offers the potential for more accurate 

estimates of overlap. VMS data, from UK trawlers and scallop dredgers, was used by 

Stelzenmüller et al. (2008) to assess the distribution of fishing pressure on the marine 

landscape off the English and Welsh coasts. The study considered correlations 

between fishing effort and substrate or tide state, rather than with species 

distributions; however this information would help inform the siting of MPAs, in that 

areas of high fishing pressure could be targeted. Fishing pressure is very likely to be 

highest in areas of higher fish density, so this represents an indirect measure of the 

distribution of the target fish species. 

There is some doubt as to the efficacy of MPAs with highly migratory species (Kaiser 

2005), especially in high latitudes where there is greater larval dispersal (Laurel and 

Bradbury 2006). However, MPAs can be effective if placed to protect sensitive phases 

of the life cycle, such as spawning. The Mediterranean hake (Merluccius merluccius) 

performs seasonal migrations but was found, in a modelling study, to benefit from an 

MPA sited to protect spawning aggregations (Apostolaki et al. 2002). By contrast, 

however, a study into the consequences of MPAs for the South African deep-water 

hake (Merluccius paradoxus) found a negligible benefit (Edwards et al. 2009), although 

the authors acknowledge that this might be due to deficiencies in the model. Tagging 

experiments with north Atlantic cod (Gadus morhua) within two MPAs found benefits 

for small (immature) individuals, but not for larger cod, which exhibited less site 

fidelity (Schopka et al. 2010).  

Timing of closures is also important, as was found by Loher (2011) in a study on the 

closure of the Pacific halibut (Hippoglossus stenolepis) fishery. Opening and closing 

dates were based on economics, as well as biology, to protect spawning migrations. 

The closure was found to be consistently too short to protect the entirety of the 

migration season. Detailed information regarding the movements and migrations of 

the species to be protected and, in particular, assessing issues such as source-sink 

population dynamics (Crowder et al. 2000), density-dependant movements, ontogenic 



 

238 

 

dispersal, and behavioural polymorphism are therefore very important to the success 

of an MPA (West et al. 2009, Grüss et al. 2011). However, such information is clearly of 

little use if overridden by economic demands. Conversely, it is possible to select sites 

for pelagic, high-seas MPAs based on the location of relatively static oceanographic 

features, such as frontal systems, ocean ridges or sea-mounts (Game et al. 2009). 

Locations such as these often represent ‘hot-spots’ of abundance for many highly 

mobile or migratory species, especially sharks (Priede et al. 2006) and could offer 

significant protection while simplifying spatial planning. Worm et al. (2003) suggest 

that when such features occur at between 20-30°N or S they represent biodiversity 

hotspots, and protection of such areas could outperform other closures. While more 

recent studies cast some doubt on seamounts having very high biodiversity (Howell et 

al. 2010), or aggregating animals as extensively as first thought (Morato et al. 2008) 

they do represent significant aggregations and high abundances of many species.  

Empirical studies into the efficacy of MPAs have found a number of benefits. For 

example La Mesa et al. (2011) found evidence of spill-over in three species of sea 

breams (Diplodus puntazzo, D. sargus and D. vulgaris) across the boundaries of the 

Portofino MPA (NW Mediterranean). A sharp decline in abundance was found 100m 

from the MPA boundary, suggesting that the MPA was successful in increasing 

abundance (density and biomass) within and just beyond the MPA. It was suggested 

that the spill-over effect was, however, only moderately pronounced due to increased 

fishing pressure at the MPA boundary. Increased abundance and biomass, and greater 

average size, have been reported in several studies (Gell and Roberts 2003, Rodríguez-

Cabello et al. 2008, Yemane et al. 2009), with no take zones being, unsurprisingly, 

more effective than partially protected sites (Lester and Halpern 2008). 

One of the most significant, potential, problems with MPAs that has received much 

attention is the displacement of fishing activity to other areas. Dinmore et al. (2003) 

used the observed response of the north sea beam trawl fleet to the closure of the 

‘cod box’, together with a size-based model of the impact of beam trawling to predict 

the effect of seasonal closures. They concluded that repeated seasonal closures would 

lead to a slightly more homogenous distribution of fishing effort that would have 

greater impacts on benthic invertebrates, particularly if the displacement was to 
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previously un-fished areas. Greenstreet et al. (2009) also found that the displacement 

of fishing effort greatly reduced the efficacy of MPAs in the north sea, unless the MPA 

was combined with restrictions on total allowable catch (TAC). Without TAC 

restrictions the modelling study found only a 1.7 to 3.8% reduction in fish mortality 

through the closure of 7.7% of the North Sea. However when combined with a TAC 

restriction the mortality was reduced by around 17%.  

The grid occupancy analysis presented here has the additional advantage of being able 

to determine accurately the impact on the fishing fleet, as well as the fish, which can 

be an important factor in assessing the economic, or political, viability of a scheme. An 

important factor missing from the analysis is the vertical coincidence of the long-line 

hooks and the sharks. The simplifying assumption here is that sharks will always be at 

risk if they share a grid cell with an active fishing vessel, i.e. that there is always a 

vertical overlap between the sharks and the long-line hooks. While this has been 

shown to very often be the case (Queiroz et al. 2012), this analysis does not currently 

allow other scenarios to be investigated. It is possible, for example, that while there 

might be a geographic coincidence between the target species and the by-catch there 

might not always be a vertical coincidence. The two species might have differing dial 

vertical migration behaviour, or might be constrained to different depths, especially at 

geographic range margins, through thermoregulatory requirements. Walsh et al. 

(2009) found that using deep-set hooks in the Hawaii-based pelagic long-line fishery, 

targeting bigeye tuna (Thunnus obesus) rather than shallow set hooks, targeting 

swordfish, significantly reduced the by-catch of blue and shortfin mako sharks. Other 

measures, such as reducing soak times (Carruthers et al. 2011) or using circle rather 

than J-hooks (Kerstetter and Graves 2006, Yokota et al. 2006, Gilman et al. 2007) 

should also be considered alongside MPAs to reduce by-catch of species such as 

sharks, turtles or seabirds. The analysis methodology presented here will only be 

successful in real world situations if there is sufficient, detailed information about the 

movements and migrations of the species in question, including site fidelity to static 

features in the marine landscape. While the simulated prey field is sufficient to 

demonstrate the principal, it does not capture sufficient reality to investigate actual 

interactions, or inform the placement of real MPAs.  
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Marine protected areas do, therefore, have the potential to significantly reduce by-

catch as well as providing protection from over-fishing. However, there are problems 

associated with appropriately locating MPAs for highly mobile species that would 

benefit from the high spatial and temporal resolution analysis of interactions 

presented here. 
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8 General discussion 

The work presented in this thesis has investigated several aspects of the movement 

patterns, behavioural functions and population redistributions of marine predators in 

relation to environmental heterogeneity, including anthropogenic impacts (e.g. long-

line fishing). In this General Discussion the main results from each chapter will be 

discussed and drawn together to contribute to a broader understanding of how and 

why predators move in the ways they do. 

8.1 The Lévy flight foraging hypothesis 

The foraging simulation results presented in Chapters 3 and 6 confirm the findings of 

Viswanathan et al. (1999, 2000, 2002) and others (Bartumeus et al. 2002, Raposo et al. 

2003, Bartumeus et al. 2005, Raposo et al. 2009), that Lévy flight movement patterns 

optimise random searches, further strengthening the theoretical underpinning of the 

Lévy flight foraging (LFF) hypothesis. Importantly, the simulations presented here show 

Lévy foraging to be advantageous under a broader range of conditions than previously 

reported. For example, the prey does not need to be sparse (Viswanathan et al. 1999, 

Bartumeus et al. 2002), nor does the prey need to be revisitable for a Lévy forager with 

µ=2.0 to outperform a Brownian (exponential) forager (Viswanathan et al. 2001), 

although as predicted, lower Lévy exponents perform better when prey is non-
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revisitable; i.e. it is confirmed that µ=2.0 is not optimal under all conditions. However, 

it is also clear that simple pattern matching (i.e. fractal movements in a fractal 

environment) cannot alone explain this optimality because the simplest scenario that 

tested this was shown to offer no significant advantage to any of the foragers, whether 

Lévy, Brownian or other type. The inclusion of prey targeting, which simply adds some 

biological realism in the form of prey detection, a pause to process or ingest 

encountered prey, makes the µopt=2 forager significantly more successful in all 

scenarios and is perhaps one of the most important findings from the simulation 

studies presented here. As the overwhelming majority of predator-prey encounters 

involve a prey-handling pause, the implication is that Lévy µopt=2 foraging presents an 

almost universal advantage in random searches performed by ‘blind’ hunters; that is, 

where there is no prior knowledge of the location of prey that would allow a more 

direct path to it to be taken. Finally, a further constraint on the LFF was confirmed in 

that Lévy foraging is only energetically more efficient for cruise predators that move 

significantly faster than their prey (Viswanathan et al. 2002).  

8.2 Empirical evidence: the case for biological Lévy flight 

Despite mounting empirical evidence for Lévy movement patterns in diverse species 

there has been some debate about whether the observed patterns are likely to be real 

and not simply an artefact of the analysis method. Furthermore, it is contested 

whether such movements are intrinsic processes resulting from adaptive behaviour, or 

whether they simply result from a normal random path interacting with a 

heterogeneous (e.g. fractal) environment. The work presented here has attempted to 

approach some answers to these questions: for example, I have demonstrated using 

simulations that Lévy patterns of movement can only arise through interaction with a 

fractal environment if the animal moves with perfect ballistic motion. As animals do 

not move in pure, ballistic straight lines between encounters with targets (e.g. food, 

shelter, mates), this finding strengthens the proposition that Lévy flights approximate 

naturally evolved stochastic movement patterns. 

Much of the uncertainty in the interpretation of recorded movement patterns stems 

from the need to consider a movement path as a series of move steps and turns in 
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order to perform the analysis of move step-lengths. Animals very rarely move in such a 

structured way and therefore the analysis imposes a set of external rules, such as 

maximum turning angles or path deviations, to derive step-lengths between turns and 

hence ‘discretise’ what is essentially an analogue path (Turchin 1998). The process is 

very sensitive to both the sampling rate with which the original path was recorded (or 

re-sampled) and to the methods and parameters used in turn identification. These 

problems were highlighted by Codling and Plank (2011) who point out that the lack of 

a rigorous and objective method for determining turn points can result in paths that 

were not generated from a power law distribution of step-lengths being incorrectly 

identified as Lévy, and vice versa. This same problem was encountered in Chapter 5 

where high-resolution GPS data of albatross movements was available for analysis. 

Several different methods of turn identification were attempted and it was realised 

that the resulting analysis output was strongly dependent on the input parameters 

used. Without an objective method for determining what turn angle, or path deviation, 

represented a turn it was not possible to robustly defend either the parameter 

decision or the results. For example, with some parameters the calculated step-lengths 

would be best fitted by an exponential distribution, whilst with other parameters a 

Lévy distribution would be the best fit. The solution in the case of albatross GPS data 

was to identify landings on the sea from a flight profile analysis and use these as robust 

and unambiguous turning points in the path. The identification of Lévy patterns in 

horizontal movement data is therefore fraught with problems and this issue seems to 

underlie much of the controversy surrounding biological Lévy flights. It is perhaps 

unsurprising therefore that the most robust evidence for Lévy flights has been found in 

data where the identification of turning points is unambiguous, as in the analysis of 

animal diving time-series data, where the turning points are simply where the animal 

changes from diving (descending) to ascending, or vice versa, as shown in Chapter 4 

(see also Sims et al. 2008a, Hays et al. 2012, Sims et al. 2012). Even with this data 

however, care must be taken in the analysis to remove sampling artefacts (as 

described in Chapter 2). A further example of relatively unambiguous turning points is 

in the movements of fruit flies (Drosophila melanogaster). These movements, referred 

to as saccades (Fry et al. 2003), are well approximated by a sequence of straight steps 

and turns. From the results shown in Chapter 4 and other published work (Sims et al. 
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2008a, Hays et al. 2012, Sims et al. 2012) it seems likely that where the recorded path 

can be analysed unambiguously Lévy flight movement patterns will be found; with the 

now familiar caveat that these patterns are only to be expected when the animal is 

searching. 

A question that is yet to be resolved is whether, when Lévy movement patterns are 

observed in pelagic predators, the animals are in fact foraging. While Lévy patterns 

have been observed in animals that spend time in deep scattering layers (Humphries et 

al. 2010, Queiroz et al. 2012) where fish and squid prey are known to reside, suggests 

it is highly probable that the primary activity is often foraging, however such patterns 

have not been linked directly to feeding events. The analysis of albatross movements 

in Chapter 5 addressed this knowledge gap directly by using stomach-temperature 

logger data to identify prey capture events and was therefore able to compare prey 

capture statistics between Lévy and non-Lévy foragers. It is a realistic assumption that 

albatrosses rearing chicks will indeed spend most of their time at sea foraging, 

however the analysis was of the distribution of landing locations, rather than 

specifically of the searching movements leading to prey capture. Nonetheless, the 

results presented in Chapter 5 provide the first empirical results showing that the 

foraging success of Lévy-type movements by albatrosses in the open ocean, where 

prey is sparser, is similar to prey capture success recorded for non-Lévy foragers where 

prey is abundant. That the estimated energy gain of Lévy foraging albatrosses was four 

times greater than the costs of searching, provides further support for adaptations 

having evolved that approximate optimal Lévy random movements. 

A similar analysis has not yet been performed for the large pelagic fish predators 

considered in Chapter 4, leaving some uncertainty as to whether the patterns 

observed always correspond to actual searching and foraging. However, satellite relay 

transmission of ectotherm stomach temperature and acoustic transponding stomach 

loggers that record pH in sharks, allowing prey capture events to be recorded, have 

both now been developed (Papastamatiou et al. 2007) suggesting that this question 

could be addressed in the near future. Lévy flight optimises random searches, not 

foraging specifically, therefore these patterns could be expected when animals are 

searching for resources other than food, such as mates or, in the case of honey bees, a 
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nest site (Reynolds et al. 2007). The Lévy flight foraging hypothesis has perhaps 

focussed too much on the search for a single, admittedly important, resource (i.e. 

food) when there is in fact a much broader application of it in the analysis of animal 

movement to identify bouts of searching behaviour in general. 

Finally, the movement patterns of the pelagic predators analysed in Chapter 4 were 

vertical displacements representing searching of the water column. Clearly the animals 

do not just move vertically, rather what has been measured by the tag is the vertical 

component of a three dimensional movement. The development of tags with tri-axial 

accelerometers  (e.g. Fossette et al. 2010, Shamoun-Baranes et al. 2012) means that it 

might now be possible to record the movements of pelagic predators in three 

dimensions, allowing a much more detailed analysis of the movements to be 

performed. 

8.3 Pattern generation 

There is now ample theoretical evidence that Lévy movements optimise random 

searches and burgeoning empirical evidence that these movement patterns occur and 

are widespread in nature. Given these recent advances, it is reasonable for attention 

to turn to consider how these patterns are generated and how they may have evolved. 

One popular comment, made in connection with the results of Chapter 4, that must be 

immediately dismissed is that “sharks do math” (Witze 2010); clearly, the animals 

neither consciously draw their movements from a Lévy distribution, nor are likely to 

make conscious decisions about what search strategies to use. At present, the 

motivations that drive predators to adopt particular movement patterns at different 

times are too complex to elucidate, however research is beginning to reveal the 

mechanisms that might underlie the generation of step-lengths. Intermittency in 

locomotion, whereby a movement is interrupted by power law distributed (i.e. fractal) 

reorientations, has been shown theoretically to generate Lévy movement patterns 

(Bartumeus and Levin 2008). The principle is straightforward: if the animal moves at a 

roughly constant speed and the times between reorientations follow a Lévy 

distribution then the resulting step-lengths will also be Lévy distributed. The fractal 

reorientations themselves are a result of what has been referred to as ‘bursty’ 
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behaviour which is characterised by a heavy tailed distribution of intervals between 

events (Barabasi 2005). Maye et al. (2007) also found temporal power-law patterns in 

the spontaneous flight manoeuvres of tethered D. melanogaster and suggested that a 

general neural mechanism is responsible for the observed patterns. Recent work by 

Sorribes et al. (2011) has sought to identify such mechanisms in D. melanogaster and 

has found links with the dopaminergic system and the brain’s mushroom body, both of 

which are involved in decision making processes. For example, mutant flies with 

disrupted dopaminergic function showed different levels of burstiness in their 

behaviour. The bursty behaviour giving rise to Lévy movement patterns may be based, 

therefore, on neural control and with the behaviour being intrinsic rather than 

extrinsic. 

Given the significant advantage that Lévy search patterns confer it seems highly likely 

that adaptations leading to intrinsic pattern generation of Lévy movement will have 

naturally evolved. Recent work has demonstrated bursty behavioural patterns in mice 

(Proekt et al. 2012), desert locusts (Schistocerca gregaria) (Bazazi et al. 2012) and in 

human activities (Barabasi 2005), suggesting that this type of behavioural pattern 

generation may be widespread in organisms. Indeed, heavy tailed distributions in 

move step-lengths have even been observed in the movement patterns of the 

nematode Caenorhabditis elegans (Ohkubo et al. 2010). It is worth noting, however, 

that in evolutionary terms the underlying mechanism is largely irrelevant; it does not 

matter whether it is neurological, chemical or even mechanical, natural selection 

operates on the resulting behaviour of the animal. This observation only serves to 

strengthen the argument that optimised searching behaviour could have evolved very 

early in life’s history as a fundamental characteristic of predatory animals. Some 

extinct animals have left fossil tracks which could provide clues as to when Lévy-type 

foraging may have evolved (ichnofossils) (Plotnick 2012, D.W. Sims, V.J. Wearmouth, 

R.J. Twitchett, unpublished data). Such tracks are relatively rare, however, and most 

commonly belong to animals which burrow or graze in marine sediments; pelagic 

cruise predators leave no trace. With the meandering tortuous traces that have been 

found (such as Cosmorhaphe e.g. Crimes and Crossley 1991) it is possible that the 

patterns of area restricted search, which can appear similar to a Lévy walk, result from 
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the animal grazing in areas of higher resource availability rather than forming part of a 

random search, as shown in several invertebrate species, such as snails, worms and 

crabs (Koy and Plotnick 2010). The shift to area restricted search in response to 

increased resource availability requires a different behavioural process to the intrinsic 

search movements of a Lévy flight. Given the significant advantage conferred by Lévy 

foraging it seems likely that it would have evolved at the same time as fast prey-

targeting predators. Some evidence suggests that these taxa might have arisen first in 

the Early Cambrian when there was a dramatic diversification in ichnotaxa and 

evidence of vertical bioturbation, that is, the signs of more active predators (Seilacher 

et al. 2005). Further study into the movements of diverse and more primitive taxa than 

the higher vertebrates considered here might provide further clues as to when Lévy-

type search patterns first evolved. Recent work has suggested an alternative possibility 

to fast predators as the driving mechanism behind the evolution of Lévy movement 

patterns. In the formation of cooperative aggregations, de Jager et. al. (2011), found 

that young mussels (Mytilus edulis) move in a Lévy walk when forming spatially 

patterned beds which enhance individual fitness, in terms of the local availability of 

algae and reduced predation risk. A Lévy walk, with µ = 2.0, was found to maximise the 

rate of pattern formation. Identification of Lévy processes in pattern formation in taxa 

such as mussels suggests that the intrinsic timing mechanisms responsible for Lévy 

behaviour might have evolved very early.  

8.4 Balancing hunting with predation risk 

The animals that formed the focus of the work in Chapter 4 were all large apex 

predators such as sharks, tunas and billfish, and for all these species Lévy movements 

were found to be prevalent. However, are such movements also prevalent in smaller-

bodied predators? While such movements clearly optimise the search for prey, the 

super-diffusive nature of Lévy walks also results in more encounters with predators 

(Visser 2007). Therefore, it might be expected that Lévy foraging bouts in smaller, 

more vulnerable predators, might be restricted to times and locations where the risk 

of predation was reduced. This is a difficult question to answer in a pelagic fish tagging 

study, as smaller animals are currently more difficult to tag given the size ratio of the 

tag to the fish (which by rule of thumb should not exceed 2%), and small tags are less 
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likely to be spotted and returned from a purse seiner catching mackerel (Scomber 

scombrus) than a long-liner catching blue sharks (Prionace glauca) with large, 

externally attached tags. Smaller predators such as mackerel would be interesting to 

study given the necessary compromises that must be made between finding food and 

avoiding predation. Further, as a behavioural defence against predation, many small 

fish form schools and consequently individual movements are strongly influenced by 

those of nearby fish and by the school as a whole (Romey 1996, Hubbard et al. 2004). 

Whether Lévy foraging occurs in these fish, and whether it occurs at the individual or 

school level, is therefore a very interesting but difficult question to approach, and 

which will need to wait for the development of smaller and cheaper tags. 

Nevertheless, another species which has been successfully tagged in the past and 

might help with this question is the ocean sunfish (Mola mola). These fish are known 

to form aggregations and schools (Pope et al. 2010, Abe et al. 2012). In a preliminary 

investigation the current author was involved with (N. Queiroz, L. Sousa, N. Humphries, 

D.W. Sims, unpublished data), four small M. mola (~1m) were tagged with archival 

data storage tags (DSTs) and were kept for two days in the holding pen of a large tuna 

set-net. Under these semi-natural conditions the four fish showed correlated vertical 

movements consistent with schooling behaviour (as shown in Figure 144). All possible 

pairings of individual sunfish show correlations and in Figure 145 the similarities in the 

depth-at-time plots are clear. Smaller M. mola are also known to exhibit Lévy 

searching, as shown in Chapter 4, however, the predation risk to these young sunfish is 

difficult to ascertain so it is not possible to determine how it may affect the occurrence 

of Lévy behaviour. A further problem with pelagic tagging studies is the inability to link 

the observed movement patterns accurately with specific activities such as feeding or 

prey avoidance. Despite this, these preliminary results indicate that young predators 

may mitigate the increased encounters expected with other (possibly larger) organisms 

when they exhibit Lévy-type movements, by forming aggregations or schools. 

 Alternatively, the general question of how best to optimise the conflicting goals of 

finding prey and avoiding predators could be explored using a simulation. By 

combining the Foraging Lab and Predator-Prey simulations it would be possible to 

assess both the foraging success and survival rates of the virtual animals occupying the 
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middle trophic level under a range of predation risks from cruise or ambush predators. 

It might be expected that the Lévy exponent might increase, resulting in a more 

Brownian like movement pattern as the risk of predation increases. The incorporation 

of an evolutionary algorithm could again be used to explore the trade space of 

movement behaviours. Animals do not perform a single behaviour however, so it is 

most likely that in real, small predators what would be observed is a switch between 

foraging and hiding in response to predator presence. While possible to simulate such 

a scenario it is difficult to do so without introducing arbitrary movement patterns or 

controlling parameters. However, future simulation work could explore some of these 

possibilities to test predictions. 

An extreme case of balancing hunting and hiding is, of course, the ambush predator, 

which in many cases manages to combine the two goals very effectively (cf. 

camouflage in cuttlefish). Ambush predators can have a significant energetic 

advantage, as shown in the simulations presented in Chapter 6, and this is in itself 

probably sufficient for this predatory lifestyle to have evolved. While some ambush 

predators, such as angler fish (Lophias spp.) or angel sharks (Squatina spp.) will have 

reduced predation risk as adults through their larger body size, young individuals and 

smaller species will not and will therefore gain an additional advantage. Young fish 

hide from predators in a variety of ways, by occupying shallower water in lagoons, as 

with lemon sharks (Negaprion brevirostris) (Feldheim et al. 2002) or by sheltering 

amongst mangrove roots (Mumby 2006). Selection pressure on successful hiding could 

therefore have been an additional driver in the evolution of ambush predation. The 

advantage of reduced predation risk was not considered in the simulations in Chapter 

6 which focussed on one simple aspect of ambush predation, the optimum waiting 

time in a strongly heterogeneous prey field. Under the perhaps rather artificial 

conditions of those simulations it was interesting that the optimum waiting (or giving 

up) time was dependent only on the prey field density (i.e. the encounter rate) and not 

on the distribution used to derive waiting times. On giving up waiting, the simulated 

ambush predator moved super-diffusively with a TP2.0 movement pattern; however, it 

was not investigated whether this was in fact the best movement style to adopt 

between waiting periods. Given the sedentary habits of ambush predators such as 
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angler fish (although see Rountree et al. 2008 for evidence of more energetic 

behaviour) it is possible that movements following prey capture or on cessation of 

waiting are less extensive. It would be interesting to pursue this further in a simulation 

with a fixed waiting time and a range of different movement patterns; it may be that 

super-diffusive movements between waits confer no particular advantage in this case. 

The findings in Chapter 6 regarding mobile (cruise) predators again confirmed the 

predictions of Viswanathan et al. (2002) showing that Lévy foraging is only 

advantageous when the predator moves significantly faster than the prey. This adds 

further weight to the suggestion that large pelagic predators are the most promising 

candidates for studying the nature of biological Lévy flights. 

 

 

 
Figure 144: Schooling behaviour in four ocean sunfish (Mola mola) 

The six scatter plots show correlations between time at depth for four ocean sunfish tagged with archival 
DSTs and moving within the confines of a set net. 
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Figure 145: Time depth plots of four ocean sunfish 

The plots show the depths recorded by archival DSTs for the four sunfish shown in Figure 145. The overall 
pattern of coordinated vertical movements is clear. 

8.5 Using the LFF hypothesis to analyse movement data 

The statistical tools to identify biologically meaningful step-length distributions in 

animal movement data are now mature and robust in the form of maximum likelihood 

estimation, fitting algorithms and Akaike weights for model selection. The necessary 

equations are available for power-law and exponential distributions as well as 

truncated versions of these. (The truncated exponential was not used in the current 

work although it is perhaps a less contentious alternative model to the truncated 

Pareto than the exponential.) The possibility therefore exists to use this statistical 

analysis as a probe to locate bouts of search behaviour in a tag-recorded time series of 
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displacements, providing a deeper insight into not just where an animal is located, but 

in what activity it might have been engaged. Work presented here identifies several 

caveats, however, that limit the usefulness of the technique. Firstly, there is the 

problem of ‘noisy’ biological data; tag recorded data encompasses a suite of 

behaviours, of which searching may not be the most dominant. Consequently, the 

searching signal can be weak or lost altogether. Much of the analysis in Chapter 4 

focussed on identifying consistent bouts of movement that offered a sufficiently good 

fit to one of the competing distributions. In this case a split-moving window matrix 

analysis was employed that provided an objective method for dividing the time series. 

However, it is clear that divisions of a week or more still include many behaviours 

other than searching, such as diel vertical migration, that significantly affect the 

outcome of the MLE analysis. The boxplot shown in Figure 146 shows the range of µ 

values obtained for seven of the species analysed in Chapter 4, all of which are known 

to perform regular diel vertical migrations (DVM, see Figure 147). Of these, the billfish 

all have low µ values, close to or below 1.0, which might suggest foraging in sparse 

environments for prey in non-revisitable patches. It is equally possible however, that 

the low µ values result from the large number of long step-lengths associated with 

DVM, as shown in the time depth profiles in Figure 147 where these large vertical 

displacements can be seen to dominate the movements. Despite this possibility, there 

is no clear correlation between the presence of DVM in the time series and low µ 

values; both blue sharks (Prionace glauca) and bigeye tuna (Thunnus obesus) show 

strong DVM yet have optimised µ values of around 2.0. These inconsistencies mean 

that some predictions about the underlying behaviour may be less robust, which 

without reference to the species or individual-specific movement patterns may reduce 

the generality of the LFF hypothesis between some species. However, given that the 

scale-free movements associated with a µ=2 forager must be the dominant pattern for 

it to be recognised, and the extent to which the pattern optimises random searches, it 

is most likely that power-law distributed step-lengths indicate a period of searching 

behaviour. The LFF hypothesis is therefore likely to be most useful in the general 

recognition of search patterns, but perhaps less so in attempts to use particular µ 

values to predict particular environmental contexts. One example where this has been 

successful, however, was in the study of the vertical movements of great white sharks 
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(Carcharodon carcharias) (Sims et al. 2012). In this case the association of different 

prey items with different geographic locations was known apriori and, consequently, 

accurate predictions of the movement pattern were achieved. For example Brownian 

movement was predicted when resident at a seal colony, ballistic movements when in 

shallow seas hunting for shoaling fish and optimal Lévy movements when in deep 

water, where the likely prey were dolphins; both predictions were confirmed. 

  
Figure 146: Diversity in µ values from Chapter 4 

The long step-lengths resulting from diel vertical migrations significantly reduce the µ value calculated for 
the billfish in the study in Chapter 4. However, other predators, also known to perform diel vertical 
migration, such as blue sharks or big eye tunas, are less affected. Shaded areas on the plot indicate 
regions where the value of µ is outside the range of Lévy exponents. 

 
Figure 147: Time depth profiles of species with low µ values  

All these species exhibit strong diel vertical migrations which result in many long step-lengths, however 
only the swordfish (Xiphius gladius) and blue marlin (Makaira nigricans) have low µ values (Figure 146).  
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8.6 The assessment of fisheries controls 

The grid occupancy analysis presented in Chapter 7 demonstrates an application of 

behavioural movement analysis which combines recorded and simulated data. The 

underlying analysis can however be used with any track-based movement data to 

study the spatio-temporal dynamics of interaction between, in principle, any number 

of participants. Therefore, while this application considered fishing vessels and 

simulated sharks, it could just as easily be applied to the movements of blue and mako 

sharks, or male and female blue sharks, when sufficient data becomes available. The 

metric used here was ‘days at risk’ but this is, of course, equivalent to days of co-

occurrence, and the coefficient of overlap (Rijnsdorp et al. 1998) can be extended to 

deal with more than two entities, by adding additional terms Pxj as required to the 

equation: 

 

The focus of the study here was to explore the effectiveness of by-catch mitigation 

measures with long-line fishing fleets with fleet composition, marine protected areas 

(MPAs) and seasonal closures being considered. While a simulated prey field was used 

here the analysis was able to highlight problems which would be expected if real shark 

data were used. The key point is that the mitigation measures used here are all reliant 

on the accurate targeting of times and locations where interactions between the fleet 

and the sharks are maximised. This finding emphasises the importance of having 

accurate movement data from the species to be protected if any of these measures 

are to be successful and economically viable.  

There are potential benefits associated with MPAs that cannot be assessed using the 

grid occupancy analysis. For example spillover is an expected consequence of an MPA, 

whereby the enhanced population levels within the MPA result in migration of 

individuals to outside the MPA. Spillover can provide more productive fishing at the 

borders of the MPA. For example Murawski et al. (2005) found that trawling revenue 

was twice as high within 4km of the MPA boundary, although catch variability was 

greater. Nor is it possible to determine the effect of the displacement of fishing effort 

to other areas which might result in increased fishing intensity in those areas outside 



 

255 

 

the MPA that fishers consider to be viable alternative targets (Dinmore et al. 2003). 

The placement of MPAs and timing of seasonal closures can be targeted in ways that 

do not require the kind of analysis presented here. For instance, short-term closures 

can protect spawning aggregations leading to improved reproductive success, a result 

of reduced disruption and disturbance, which was found to be the case with spawning 

southern calamari (Sepioteuthis australis)  (Moltschaniwskyj et al. 2002). There can 

also be a direct effect of protecting vulnerable spawning aggregations that could 

otherwise be targeted and fished to the point of extinction such as the red hind 

(Epinephelus guttatus) aggregations studied by (Beets and Friedlander 1999)  

Considerably more information is needed about the movement and migration of highly 

mobile widely ranging marine predators such as pelagic sharks if high seas MPAs are to 

be effectively located. There is some evidence that mating or pupping aggregations 

(which are vulnerable to disturbance) might be found associated with bathymetric 

features such as sea mounts (Worm et al. 2003) which would simplify the location of 

MPAs. However modern technology, such as the GPS-based vessel monitoring system 

would allow more complex, mobile MPAs to be defined and monitored, through the 

real-time tracking of vessels, which might be the only way high seas MPAs will work 

with wide ranging predators such as pelagic sharks. 

8.7 Summary 

The work presented here has attempted to take a step beyond the descriptive nature 

of the ‘where’ and ‘when’ in animal movement analyses to elucidate what activity the 

animal might have exhibited, i.e. whether it was searching, and to explore ‘why’ 

certain behaviour patterns occur. A theoretical framework for the analysis of the fine 

structure of animal movements, in the form of the Lévy flight foraging hypothesis, has 

been confirmed as an optimal search strategy under a broad range of conditions and 

this movement pattern has been found to be prevalent in the vertical displacements of 

pelagic fish predators and in the foraging patterns of albatrosses. The implication 

therefore is that much of the time these predators are searching, which is a reasonable 

conclusion given the sparse and patchy distribution of prey in the open ocean where 

these animals were tagged and tracked (Sims and Merrett 1997, Sims 1999). There are 
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some limitations however with this statistical approach. The principal difficulty 

perhaps is the application to horizontal movement data. As well as the issue of 

determining turning points, as described previously, there is a further problem with 

the large error fields that accompany location data derived from light-level geolocation 

and Argos satellite tracking. These errors have been shown in simulations to lead 

potentially to incorrect conclusions in the estimation of the Lévy exponent (µ) and in 

the accurate identification of a track as a Lévy walk (Bradshaw et al. 2007). While 

methods such as state-space models have been developed in an attempt to interpolate 

smoothly the animals movement while accounting for these error fields (Jonsen et al. 

2006, Tremblay et al. 2009), the resulting paths are difficult to validate and are not 

suitable for a statistical analysis. The advent of GPS transmitters solves, to a large 

extent, the problem of determining an accurate location, but has the significant 

disadvantage for pelagic predators that these devices will only work when at the 

surface and are able to obtain a fix of the GPS satellite constellation. For animals that 

do surface regularly, however, such as ocean sunfish (Mola mola) these tags have 

proved to very useful (Sims et al. 2009b) but still do not solve the problem of 

identifying turning points objectively along paths, as discussed in Chapter 5. While 

these problems do not, in general, exist with vertical (dive time series) data there is the 

problem that it has not yet been confirmed empirically that animals moving in a Lévy 

pattern are indeed searching for food. This missing link between the pattern and the 

activity weakens to some extent the conclusions that can be drawn about what the 

animal is doing. The identification of feeding events through the use of stomach 

temperature loggers would be a useful goal for future research. 

Several studies have sought to extend Lévy dynamics to human activities (Bertrand et 

al. 2005, Brown et al. 2007, Gonzalez et al. 2008). In the case of activity patterns 

explored by Barabasi (2005), where the time taken to answer emails was found to 

follow a power law, the underlying process is found to be the way in which queued 

items are prioritised and dealt with; a very human activity resulting in a ‘bursty’ 

behavioural pattern very similar to that potentially underlying the Lévy patterns 

explored here. However, while the patterns are similar the processes are not, which is 

especially true in the case of movement patterns where the extension of the Lévy 
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model to human activities is less appropriate. If we consider the movements of a 

person over a period of time we would expect to find a large number of small steps, as 

the individual moves around the house, garden or office for example, and with larger 

steps associated with trips to local shops, and perhaps a few much longer steps 

derived from travelling further afield. The resulting distribution of many short and a 

few long step-lengths might well be very well fitted by a power law distribution. 

However, it would not be an appropriate model, because the Lévy flight foraging 

hypothesis pertains to random searches, whereas the individual’s movements are 

usually largely deterministic (i.e. mostly directed). Similar caution is required in testing 

the Lévy flight foraging hypothesis when considering other predators where 

movements are more likely to be directed than random. For example, while one might 

be able to fit a power-law distribution to the movements of a bear (Ursus spp.) these 

animals have a very good knowledge of the spatio-temporal distribution of resources, 

having spent several years as a cub learning from their mother (e.g. Mattson 2004, 

Smith and Partridge 2004, Coop et al. 2005, Mattson et al. 2005) and consequently 

spend far less time performing random searches and more time in directed 

movements between known resource locations. This argues for the need for 

researchers to apply the Lévy flight paradigm where they have reasonable evidence 

that the movements results from a random, rather than a directed, search. 

The animals that have been the focus of this study form part of one of the largest 

ecosystems on the planet, the marine pelagic realm. Difficult to study and poorly 

understood, this ecosystem is threatened by climate change, both from increased 

temperature and acidification, as well as over–exploitation, pollution and habitat 

degradation. The impacts of these processes have already resulted in declines for 

some species and populations, such as Atlantic Cod (Gadus morhua) (Hutchings 2000), 

sooty shearwaters (Puffinus griseus) (Veit et al. 1997) and many pelagic sharks (Baum 

et al. 2003). The long term consequences, while far from clear, are likely to be difficult 

to reverse. Continued research into this ecosystem through quantitative studies and 

the modelling of the movements and migrations of the apex pelagic predators that 

have such an important trophic role is vital, not just for our own social well-being and 

economy, but for that of marine ecosystems more generally. 
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9 Appendix A: Chapter 3 tables of results 

In the following tables: 
* The value shown here is the number of successful forage runs / mean path length. 
** % Difference is calculated relative to the worst performer in the group. 

Table A1: Simulation results from the sparse uniform prey field scenarios 

Scenario Forager 
Mean 
path 

length 

Mean 
biomass 

consumed 

Biomass 
per unit 
travelled 

Encounters 
per unit 

travelled* 

% 
Difference** 

Non-
Destructive 

TP 1.5 249938 1.08E+02 4.31E-04 3.88E-06 1.52% 

TP 2.0 39006 1.71E+01 4.37E-04 8.09E-06 2.95% 

TP 2.5 14541 6.34E+00 4.36E-04 4.20E-06 2.59% 

Exp. 38755 1.65E+01 4.25E-04 3.62E-06 0.00% 

Uniform 39985 1.72E+01 4.31E-04 3.14E-06 1.37% 

Destructive 

TP 1.5 249974 1.05E+02 4.21E-04 3.88E-06 29.98% 

TP 2.0 39032 1.53E+01 3.91E-04 8.06E-06 20.66% 

TP 2.5 14543 4.71E+00 3.24E-04 4.19E-06 0.00% 

Exp. 38757 1.40E+01 3.62E-04 3.67E-06 11.56% 

Uniform 39986 1.41E+01 3.52E-04 3.16E-06 8.71% 

Non-
Destructive, 

targeted 

TP 1.5 245536 1.78E+02 7.23E-04 3.95E-06 99.30% 

TP 2.0 38831 3.48E+01 8.96E-04 8.04E-06 146.84% 

TP 2.5 14532 1.10E+01 7.56E-04 4.27E-06 108.18% 

Exp. 38724 1.60E+01 4.13E-04 3.68E-06 13.78% 

Uniform 39952 1.45E+01 3.63E-04 3.15E-06 0.00% 

Destructive, 

targeted 

TP 1.5 246535 9.75E+01 3.96E-04 3.94E-06 101.61% 

TP 2.0 38872 1.88E+01 4.83E-04 8.09E-06 146.29% 

TP 2.5 14534 5.39E+00 3.71E-04 4.25E-06 88.97% 

Exp. 38736 8.55E+00 2.21E-04 3.64E-06 12.45% 

Uniform 39966 7.84E+00 1.96E-04 3.15E-06 0.00% 

 

Table A2: Statistical results from the sparse uniform prey field scenarios 

Comparison Diff of Ranks q P<0.05 

TP1.5 vs TP2.5 20673162408 452.926 Yes 

TP1.5 vs Uniform 18861317428 413.23 Yes 

TP1.5 vs Exponential 18466109287 404.572 Yes 

TP1.5 vs TP2.0 14161121247 310.254 Yes 

TP2.0 vs TP2.5 6512041161 142.672 Yes 

TP2.0 vs Uniform 4700196181 102.976 Yes 

TP2.0 vs Exponential 4304988040 94.317 Yes 

Exponential vs TP2.5 2207053121 48.354 Yes 

Uniform vs TP2.5 1811844980 39.695 Yes 

Exponential vs Uniform 395208141 8.659 Yes 
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Table A3: Simulation results from the abundant uniform prey field scenarios 

Scenario Forager 
Mean 
path 

length 

Mean 
biomass 

consumed 

Biomass 
per unit 
travelled 

Encounters 
per unit 

travelled* 
% Difference** 

Destructive 

TP 1.5 249868 17492 7.00E-02 4.00E-06 28.79% 

TP 2.0 39020 2553 6.54E-02 2.56E-05 20.38% 

TP 2.5 14542 790 5.44E-02 4.66E-05 0.00% 

Exp. 38756 2301 5.94E-02 2.38E-05 9.23% 

Uniform 39986 2309 5.77E-02 2.24E-05 6.23% 

Non-
Destructive, 

targeted 

TP 1.5 169412 19757 1.17E-01 5.90E-06 96.72% 

TP 2.0 35241 5088 1.44E-01 2.83E-05 143.54% 

TP 2.5 14259 1672 1.17E-01 4.76E-05 97.75% 

Exp. 37728 2524 6.69E-02 2.44E-05 12.84% 

Uniform 38991 2311 5.93E-02 2.29E-05 0.00% 

Destructive, 

targeted 

TP 1.5 190458 8995 4.72E-02 5.25E-06 103.54% 

TP 2.0 36049 2300 6.38E-02 2.77E-05 174.99% 

TP 2.5 14335 747 5.21E-02 4.73E-05 124.49% 

Exp. 38253 1036 2.71E-02 2.41E-05 16.70% 

Uniform 39529 917 2.32E-02 2.26E-05 0.00% 

 

Table A4: Super-abundant uniform prey field results 

Scenario Forager 
Mean 
path 

length 

Mean 
biomass 

consumed 

Biomass 
per unit 
travelled 

Encounters 
per unit 

travelled* 
% Difference** 

Destructive 

TP 1.5 249938 528758 2.12E+00 4.00E-06 26.27% 

TP 2.0 39137 78341 2.00E+00 2.56E-05 19.47% 

TP 2.5 14699 24627 1.68E+00 6.80E-05 0.00% 

Exp. 38783 70838 1.83E+00 2.58E-05 9.02% 

Uniform 39999 70955 1.77E+00 2.50E-05 5.88% 

Non-
Destructive, 

targeted 

TP 1.5 22508 68858 3.06E+00 4.44E-05 61.14% 

TP 2.0 14315 48388 3.38E+00 6.99E-05 78.05% 

TP 2.5 10413 31639 3.04E+00 9.60E-05 60.05% 

Exp. 21372 45436 2.13E+00 4.68E-05 11.98% 

Uniform 22658 43015 1.90E+00 4.41E-05 0.00% 

Destructive, 

targeted 

TP 1.5 35801 41452 1.16E+00 2.79E-05 65.34% 

TP 2.0 18476 24454 1.32E+00 5.41E-05 88.99% 

TP 2.5 11916 14105 1.18E+00 8.39E-05 69.03% 

Exp. 28454 22715 7.98E-01 3.51E-05 14.00% 

Uniform 30165 21124 7.00E-01 3.32E-05 0.00% 
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Table A5: Mega-abundant uniform prey field results 

Scenario Forager 
Mean 
path 

length 

Mean 
biomass 

consumed 

Biomass per 
unit 

travelled 

Encounters 
per unit 

travelled* 
% Difference** 

Destructive 

TP 1.5 249960 2108485 8.44E+00 4.00E-06 29.56% 

TP 2.0 39018 308245 7.90E+00 2.56E-05 21.33% 

TP 2.5 14541 94675 6.51E+00 6.88E-05 0.00% 

Exp. 38755 277300 7.16E+00 2.58E-05 9.89% 

Uniform 39984 278306 6.96E+00 2.50E-05 6.90% 

Non-
Destructive, 

targeted 

TP 1.5 10082 97295 9.65E+00 9.92E-05 24.99% 

TP 2.0 8674 85656 9.88E+00 1.15E-04 27.91% 

TP 2.5 7764 73787 9.50E+00 1.29E-04 23.10% 

Exp. 10940 90056 8.23E+00 9.14E-05 6.62% 

Uniform 11282 87100 7.72E+00 8.86E-05 0.00% 

Destructive, 

targeted 

TP 1.5 17640 69194 3.92E+00 5.67E-05 37.28% 

TP 2.0 12452 52390 4.21E+00 8.03E-05 47.25% 

TP 2.5 9780 39021 3.99E+00 1.02E-04 39.63% 

Exp. 18938 59524 3.14E+00 5.28E-05 10.00% 

Uniform 20198 57711 2.86E+00 4.95E-05 0.00% 

Table A6: Simulation results from the sparse Lévy prey field scenarios 

Scenario Forager 
Mean path 

length 

Mean 
biomass 

consumed 

Biomass per 
unit 

travelled 

Encounters 
per unit 

travelled* 
% Difference** 

Destructive 

TP 1.5 249945 106.04 4.24E-04 3.70E-06 25.07% 

TP 2.0 39037 15.40 3.95E-04 5.55E-06 16.52% 

TP 2.5 14535 4.92 3.39E-04 2.48E-06 0.00% 

Exp. 38756 13.98 3.61E-04 1.57E-06 6.49% 

Uniform 39984 13.94 3.49E-04 1.34E-06 2.95% 

Non-
Destructive

, 

targeted 

TP 1.5 245166 194.01 7.91E-04 3.78E-06 119.72% 

TP 2.0 38845 40.47 1.04E-03 5.62E-06 189.39% 

TP 2.5 14529 11.41 7.85E-04 2.44E-06 118.06% 

Exp. 38722 15.35 3.96E-04 1.59E-06 10.00% 

Uniform 39954 14.37 3.60E-04 1.34E-06 0.00% 

Destructive
, 

targeted 

TP 1.5 246322 106.67 4.33E-04 3.75E-06 125.52% 

TP 2.0 38859 21.67 5.58E-04 5.64E-06 190.63% 

TP 2.5 14531 5.67 3.90E-04 2.44E-06 103.13% 

Exp. 38738 8.63 2.23E-04 1.60E-06 16.15% 

Uniform 39968 7.69 1.92E-04 1.36E-06 0.00% 
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Table A7: Simulation results from the abundant Lévy prey field scenarios 

Scenario Forager 
Mean 
path 

length 

Mean 
biomass 

consumed 

Biomass 
per unit 
travelled 

Encounters 
per unit 

travelled* 

%  
Difference** 

Destructive 

TP 1.5 249910 17514 7.01E-02 4.00E-06 28.05% 

TP 2.0 39007 2558 6.56E-02 2.33E-05 19.82% 

TP 2.5 14543 796 5.47E-02 2.33E-05 0.00% 

Exp. 38754 2310 5.96E-02 1.18E-05 8.93% 

Uniform 39983 2340 5.85E-02 1.06E-05 6.95% 

Non-
Destructive, 

targeted 

TP 1.5 166598 22721 1.36E-01 6.00E-06 148.23% 

TP 2.0 35227 6184 1.76E-01 2.58E-05 219.49% 

TP 2.5 14284 1755 1.23E-01 2.37E-05 123.60% 

Exp. 37807 2409 6.37E-02 1.22E-05 15.95% 

Uniform 39086 2148 5.49E-02 1.08E-05 0.00% 

Destructive, 

targeted 

TP 1.5 189982 10478 5.52E-02 5.26E-06 148.31% 

TP 2.0 36185 2769 7.65E-02 2.51E-05 244.55% 

TP 2.5 14359 791 5.51E-02 2.35E-05 148.05% 

Exp. 38289 1009 2.64E-02 1.20E-05 18.66% 

Uniform 39563 879 2.22E-02 1.06E-05 0.00% 

 

Table A8: Super-abundant Lévy prey field results 

Scenario Forager 
Mean 
path 

length 

Mean 
biomass 

consumed 

Biomass 
per unit 
travelled 

Encounters 
per unit 

travelled* 
% Difference** 

Destructive 

TP 1.5 250106 529749 2.12E+00 4.00E-06 25.82% 

TP 2.0 39139 78563 2.01E+00 2.55E-05 19.24% 

TP 2.5 14702 24749 1.68E+00 6.38E-05 0.00% 

Exp. 38786 71197 1.84E+00 2.53E-05 9.04% 

Uniform 40000 71796 1.79E+00 2.43E-05 6.62% 

Non-
Destructive, 

targeted 

TP 1.5 29122 96409 3.31E+00 3.43E-05 131.26% 

TP 2.0 17144 62559 3.65E+00 5.83E-05 154.91% 

TP 2.5 11515 33259 2.89E+00 8.14E-05 101.77% 

Exp. 26422 43672 1.65E+00 3.71E-05 15.46% 

Uniform 27971 40040 1.43E+00 3.48E-05 0.00% 

Destructive, 

targeted 

TP 1.5 48644 56894 1.17E+00 2.06E-05 116.31% 

TP 2.0 21882 30327 1.39E+00 4.57E-05 156.33% 

TP 2.5 12736 14439 1.13E+00 7.37E-05 109.68% 

Exp. 32094 20213 6.30E-01 3.06E-05 16.48% 

Uniform 33774 18261 5.41E-01 2.88E-05 0.00% 
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Table A9: Limited path simulation results with a sparse uniform prey field 

Scenario Forager 
Mean 
path 

length 

Mean 
biomass 

consumed 

Biomass 
per unit 
travelled 

Encounters 
per unit 

travelled* 
% Difference** 

Destructive 

TP 1.5 40426 17.13 4.24E-04 1.08E-05 31.95% 

TP 2.0 40159 15.78 3.93E-04 8.05E-06 22.36% 

TP 2.5 40025 12.86 3.21E-04 3.77E-06 0.00% 

Exp. 40007 14.35 3.59E-04 3.61E-06 11.69% 

Uniform 40005 14.00 3.50E-04 3.18E-06 8.93% 

Non-
Destructive, 

targeted 

TP 1.5 40423 28.84 7.14E-04 1.08E-05 98.03% 

TP 2.0 40159 36.95 9.20E-04 8.02E-06 155.38% 

TP 2.5 40025 29.34 7.33E-04 3.72E-06 103.44% 

Exp. 40007 16.28 4.07E-04 3.63E-06 12.93% 

Uniform 40005 14.41 3.60E-04 3.12E-06 0.00% 

Destructive, 

targeted 

TP 1.5 40421 15.99 3.96E-04 1.09E-05 100.51% 

TP 2.0 40159 19.76 4.92E-04 8.07E-06 149.42% 

TP 2.5 40024 14.66 3.66E-04 3.74E-06 85.68% 

Exp. 40007 8.79 2.20E-04 3.61E-06 11.38% 

Uniform 40005 7.89 1.97E-04 3.19E-06 0.00% 

 

Table A10: Limited path simulation results with an abundant uniform prey field 

Scenario Forager 
Mean 
path 

length 

Mean 
biomass 

consumed 

Biomass 
per unit 
travelled 

Encounters 
per unit 

travelled* 
% Difference** 

Destructive 

TP 1.5 40426 2853 7.06E-02 2.47E-05 32.01% 

TP 2.0 40161 2642 6.58E-02 2.49E-05 23.04% 

TP 2.5 40025 2140 5.35E-02 2.36E-05 0.00% 

Exp. 40007 2374 5.93E-02 2.32E-05 11.01% 

Uniform 40005 2322 5.80E-02 2.23E-05 8.56% 

Non-
Destructive, 

targeted 

TP 1.5 40353 4722 1.17E-01 2.48E-05 94.90% 

TP 2.0 40129 5924 1.48E-01 2.49E-05 145.90% 

TP 2.5 40022 4844 1.21E-01 2.35E-05 101.61% 

Exp. 40007 2754 6.88E-02 2.32E-05 14.67% 

Uniform 40005 2402 6.00E-02 2.23E-05 0.00% 

Destructive, 

targeted 

TP 1.5 40355 1910 4.73E-02 2.48E-05 103.94% 

TP 2.0 40130 2559 6.38E-02 2.49E-05 174.80% 

TP 2.5 40022 2109 5.27E-02 2.35E-05 127.12% 

Exp. 40007 1088 2.72E-02 2.31E-05 17.25% 

Uniform 40005 928 2.32E-02 2.23E-05 0.00% 
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Table A11: Statistical results from the feast and famine simulations 

Prey field Forager 

Periods Durations 

Median 25% 75% Median 25% 75% 

Uniform 

TP1.5 81 53 118 441.96 304.51 682.88 

TP2.0 103 62 154 347.16 233.57 577.81 

TP2.5 74 29 133 484.18 269.01 1241.86 

Exp. 39 14 77 921.77 466.23 2572.14 

Uniform 32 10 68 1125.19 528.93 3606.30 

Lévy 

TP1.5 81 53 118 441.96 304.51 682.88 

TP2.0 96 29 199 374.82 180.13 1231.10 

TP2.5 15 1 138 2400.77 259.13 35963.75 

Exp. 1 1 58 35913.00 621.43 36018.00 

Uniform 1 1 43 35950.00 837.09 36023.00 

Table A12: Summary results of the feast & famine analysis 

Prey 
field 

Forager 
Famine 
periods 

Mean 
duration 

Period 
difference 

Duration 
difference 

Total famine 
time 

Time 
difference 

Uniform 

TP 1.5 8978151 400.32 97.41% 49.38% 3.5941E+09 0.134% 

TP 2.0 11399034 314.92 150.64% 60.18% 3.5897E+09 0.012% 

TP 2.5 9019545 397.95 98.32% 49.68% 3.5893E+09 0.000% 

Exp. 5220879 688.77 14.80% 12.91% 3.5960E+09 0.187% 

Uniform 4547908 790.87 0.00% 0.00% 3.5968E+09 0.209% 

Lévy 

TP 1.5 10129451 354.58 133.18% 57.18% 3.5917E+09 0.123% 

TP 2.0 13468623 266.35 210.04% 67.83% 3.5873E+09 0.000% 

TP 2.5 9858815 363.97 126.95% 56.04% 3.5883E+09 0.028% 

Exp. 5027762 715.27 15.74% 13.62% 3.5962E+09 0.248% 

Uniform 4344092 828.02 0.00% 0.00% 3.5970E+09 0.270% 
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Table A13: Statistical results from the destructive, non-targeted feast & famine analysis 

Prey field Forager 

Periods Durations 

Median 25% 75% Median 25% 75% 

Uniform 

TP1.5 90 70 112 400.56 321.12 514.92 

TP2.0 83 57 113 434.49 317.94 629.50 

TP2.5 64 29 110 561.97 326.26 1241.93 

Exp. 71 33 119 505.69 301.87 1090.82 

Uniform 67 26 119 536.31 302.36 1382.69 

Lévy 

TP1.5 81 50 120 441.94 298.12 717.56 

TP2.0 66 27 123 548.05 290.69 1343.82 

TP2.5 14 1 102 2590.18 352.14 35966.00 

Exp. 1 1 101 35912.00 355.81 36018.00 

Uniform 1 1 90 35950.00 398.97 36024.00 

 

Table A14: Summary results of the destructive, non-targeted feast & famine analysis 

Prey 
field 

Forager 
Famine 
periods 

Mean 
duratio

n 

Period 
difference 

Duration 
difference 

Total famine 
time 

Time 
difference 

Unifor
m 

TP 1.5 9199040 390.49 20.66% 17.09% 3.5921E+09 0.039% 

TP 2.0 8777389 409.21 15.13% 13.12% 3.5918E+09 0.030% 

TP 2.5 7623772 470.99 0.00% 0.00% 3.5907E+09 0.000% 

Exp. 8214469 437.42 7.75% 7.13% 3.5931E+09 0.067% 

Uniform 8024755 447.80 5.26% 4.92% 3.5935E+09 0.077% 

Lévy 

TP 1.5 8928444 402.33 21.79% 17.87% 3.5921E+09 0.032% 

TP 2.0 8530378 421.10 16.36% 14.03% 3.5922E+09 0.033% 

TP 2.5 7330875 489.84 0.00% 0.00% 3.5910E+09 0.000% 

Exp. 8001127 449.10 9.14% 8.32% 3.5933E+09 0.065% 

Uniform 7814031 459.90 6.59% 6.11% 3.5937E+09 0.075% 
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10 Appendix B: Chapter 4 tables of results 

Table B1 Summary information of electronic tags deployed. 

Species 
(approx. body size cm)

1
 

or weight (kg) 

Tagging location Tag type
2
 

Recording 
interval 

(min / sec) 
Depth resolution (m) n datasets

3
 Reference 

Bigeye thresher shark 
(~220cm FL) 

N.Pacific MT PTT-100 60 min 5.4 2 Musyl et al. unpubl. data, (Musyl et al. 2004) 

Blue shark 
(120-215cm FL) 

NE. Atlantic 
 

N.Pacific 

WC PAT Mk10 
 

MT PTT-100 

1.0 s 
 

60 min 

< 0.5 
 

5.4 

3 
 

16 

 
(Queiroz et al. 2010) 

 
Musyl et al. unpubl. data, (Musyl et al. 2004) 

 

Shortfin mako shark 
(210 cm FL) 

N.Pacific MT PTT-100 60 min 5.4 1 Musyl et al. unpubl. data 

Porbeagle shark 
(180 cm FL) 

NE.Atlantic WC PAT Mk10 1.0 s < 0.5 1 (Pade et al. 2009) 

Silky shark 
(120 – 213cm FL) 

N.Pacific MT PTT-100 15-60 min 5.4 10 Musyl et al. unpubl. data,(Musyl et al. 2004) 

Oceanic whitetip shark 
(115-215cm FL) 

N.Pacific MT PTT-100 15-60 min 5.4 13 Musyl et al. unpubl. data,(Musyl et al. 2004) 

Basking shark 
(400 – 700cm TL) 

NE.Atlantic WC PAT 3 & 4 1 min < 0.5 6 (Sims et al. 2003) 

Whale shark 
(600 – 700cm TL) 

W.Indian Ocean MT PTT-100 15 min 5.4 1 (Brunnschweiler et al. 2009) 

Bigeye tuna 
(65-99cm FL) 

Eq. Eastern Pacific LW LTD 2310 1 min 1.0 5 (Schaefer et al. 2009) 

Yellowfin tuna 
(51-60cm FL) 

Central N.Pacific 
 

Eq. Eastern Pacific 

MT PTT-100 
 

LW LTD 2310 

60 min 
 

1 min 

5.4 
 

1.0 

1 
 

5 

(Musyl et al. 2004) 
 

(Schaefer et al. 2009) 
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Species 
(approx. body size cm)

1
 

or weight (kg) 

Tagging location Tag type
2
 

Recording 
interval 

(min / sec) 
Depth resolution (m) n datasets

3
 Reference 

Black marlin 
(453kg) 

N.Pacific MT PTT-100 60 min 5.4 1 Musyl et al. unpubl. data,(Musyl et al. 2004) 

Blue marlin 
(45-204kg) 

N.Pacific MT PTT-100 15-60 min 5.4 14 Musyl et al. unpubl. data,(Musyl et al. 2004) 

Swordfish 
(215-240cm) 

N.Pacific MT PTT-100 15-60 min 5.4 10 Musyl et al. unpubl. data,(Musyl et al. 2004) 

Ocean sunfish 
(60cm TL) 

NE.Atlantic WC PAT Mk10 1.0 s < 0.5 1 (Sims et al. 2009a) 

1. Body size: TL, total length, FL Fork length. 

2. Tag Manufacturers: LW, Lotek Wireless; MT, Microwave Telemetry; WC, Wildlife Computers. Tag type: PAT, pop-up archival transmitting tag; 

PTT, platform terminal transmitter, LTD, archival tag (light, temperature, depth). 

3. Some of the datasets were too short or had too many gaps to be included in the analysis. 
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Table B2. Summary of the data used and results of the MLE best fit parameters and model comparison analysis. 
[log-likelihoods (LLH) and Akaike weights (wAIC)]. P, TP and E denote power-law, truncated Pareto (power-law) and exponential models respectively; -- indicates that none of the proposed 
models were considered to be a good fit. Exp denotes the exponential model in the model comparison results. For a few sections where the estimated exponent for the truncated Pareto 
distribution was < 1 it was not possible to calculate the log-likelihood. When this occurred (in 8 sections), then the Akaike weights could not be calculated. 

Species ID Section 
Total 
points 

Max step-
length (m) 

Best fit 
distribution 

Best fit 
exponent 

Best fit 
Xmin 

Best fit 
Xmax 

TP / P 
GOF 

Exp 
GOF 

TP / P 
LLH 

Exp LLH 
TP / P 
wAIC 

Exp 
wAIC 

Big eye tuna 1 Section 1 48881 719 --          

Big eye tuna 1 Section 2 52801 1531 TP 2.062 15.000 466.000 0.022 0.186 -34989 -36223 1.000 0.000 

Big eye tuna 1 Section 3 6001 259 TP 2.012 15.000 259.000 0.036 0.167 -4818 -4946 1.000 0.000 

Big eye tuna 1 Section 4 5281 1683 TP 2.213 9.000 1683.000 0.037 0.258 -2657 -2954 1.000 0.000 

Big eye tuna 1 Section 5 67321 627 --          

Big eye tuna 1 Section 6 18721 336 TP 2.022 10.000 297.000 0.027 0.172 -12937 -13505 1.000 0.000 

Big eye tuna 1 Section 7 7899 336 --          

Big eye tuna 2 Section 1 19801 1281 --          

Big eye tuna 2 Section 2 11521 334 TP 2.189 19.000 334.000 0.032 0.166 -7097 -7332 1.000 0.000 

Big eye tuna 2 Section 3 14401 1635 TP 1.938 9.000 1601.000 0.029 0.262 -14885 -15925 1.000 0.000 

Big eye tuna 2 Section 4 38881 586 E 0.018 53.000  0.069 0.040 -7217 -7120 0.000 1.000 

Big eye tuna 2 Section 5 79201 415 E 0.015 42.000  0.069 0.072 -20058 -19945 0.000 1.000 

Big eye tuna 2 Section 6 25921 715 TP 2.548 15.000 715.000 0.027 0.189 -12029 -12425 1.000 0.000 

Big eye tuna 2 Section 7 36001 529 TP 1.988 10.000 529.000 0.028 0.185 -30064 -31204 1.000 0.000 

Big eye tuna 2 Section 8 33481 422 TP 1.975 5.000 422.000 0.026 0.217 -36913 -39232 1.000 0.000 

Big eye tuna 3 Section 1 13072 249 TP 2.752 8.000 249.000 0.041 0.135 -8269 -8325 1.000 0.000 

Big eye tuna 3 Section 2 49081 1526 TP 2.129 23.000 677.000 0.026 0.171 -28517 -29182 1.000 0.000 

Big eye tuna 3 Section 3 4741 212 E 0.102 2.000  0.158 0.022 -7228 -6801 0.000 1.000 

Big eye tuna 3 Section 4 11581 317 TP 2.072 13.000 317.000 0.058 0.095 -9459 -9520 1.000 0.000 

Big eye tuna 4 Section 1 7200 302 --          

Big eye tuna 4 Section 2 33120 301 TP 2.525 18.000 301.000 0.022 0.159 -15726 -16065 1.000 0.000 
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Species ID Section 
Total 
points 

Max step-
length (m) 

Best fit 
distribution 

Best fit 
exponent 

Best fit 
Xmin 

Best fit 
Xmax 

TP / P 
GOF 

Exp 
GOF 

TP / P 
LLH 

Exp LLH 
TP / P 
wAIC 

Exp 
wAIC 

Big eye tuna 4 Section 3 7200 539 --          

Big eye tuna 4 Section 4 27360 409 --          

Big eye tuna 4 Section 5 15841 648 TP 1.863 13.000 262.000 0.031 0.140 -15605 -15892 1.000 0.000 

Big eye tuna 5 Section 1 20067 271 TP 2.369 9.000 271.000 0.034 0.208 -11380 -12077 1.000 0.000 

Big eye tuna 5 Section 2 15841 281 TP 2.213 9.000 281.000 0.029 0.208 -14620 -15496 1.000 0.000 

Big eye tuna 5 Section 3 15426 412 --          

Big eye tuna 5 Section 4 30241 1541 TP 2.155 13.000 1541.000 0.025 0.238 -25494 -27279 1.000 0.000 

Big eye tuna 5 Section 5 5761 271 --          

Big eye tuna 5 Section 6 15841 695 --          

Big eye tuna 5 Section 7 12961 363 TP 2.323 18.000 363.000 0.02 0.160 -5819 -5960 1.000 0.000 

Big eye tuna 5 Section 8 50761 735 TP 2.636 33.000 395.000 0.02 0.124 -18969 -19080 1.000 0.000 

Yellowfin tuna 1 Section 1 6121 316 E 0.037 4.000  0.109 0.073 -11286 -11136 0.000 1.000 

Yellowfin tuna 1 Section 2 4321 57 E 0.262 1.000  0.148 0.036 -5587 -5928 0.000 1.000 

Yellowfin tuna 1 Section 3 28801 324 TP 1.610 5.000 286.000 0.043 0.175 -34348 -35298 1.000 0.000 

Yellowfin tuna 1 Section 4 17281 315 E 0.033 15.000  0.101 0.027 -16697 -16330 0.000 1.000 

Yellowfin tuna 1 Section 5 37081 339 --          

Yellowfin tuna 2 Section 1 23711 370 TP 2.059 11.000 370.000 0.026 0.184 -19744 -20596 1.000 0.000 

Yellowfin tuna 2 Section 2 68401 133 E 0.044 4.000  0.123 0.051 -110071 -107593 0.000 1.000 

Yellowfin tuna 2 Section 3 50401 1018 E 0.037 8.000  0.107 0.045 -59448 -57663 0.000 1.000 

Yellowfin tuna 2 Section 4 10801 370 --          

Yellowfin tuna 2 Section 5 23041 133 E 0.027 4.000  0.143 0.022 -47195 -45065 0.000 1.000 

Yellowfin tuna 2 Section 6 154080 1018 --          

Yellowfin tuna 3 Section 1 3948 202 TP 2.187 12.000 202.000 0.065 0.212 -2871 -3007 1.000 0.000 

Yellowfin tuna 3 Section 2 12961 350 TP 2.071 12.000 333.000 0.047 0.230 -9477 -9946 1.000 0.000 
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Species ID Section 
Total 
points 

Max step-
length (m) 

Best fit 
distribution 

Best fit 
exponent 

Best fit 
Xmin 

Best fit 
Xmax 

TP / P 
GOF 

Exp 
GOF 

TP / P 
LLH 

Exp LLH 
TP / P 
wAIC 

Exp 
wAIC 

Yellowfin tuna 3 Section 3 86041 414 TP 1.364 3.000 267.000 0.063 0.159 -118329 -121948 1.000 0.000 

Yellowfin tuna 3 Section 4 38881 414 TP 1.464 3.000 397.000 0.058 0.291 -48854 -54359 1.000 0.000 

Yellowfin tuna 4 Section 1 2521 200 TP 2.235 13.000 200.000 0.052 0.179 -2101 -2175 1.000 0.000 

Yellowfin tuna 4 Section 2 36001 327 TP 2.600 18.000 291.000 0.051 0.124 -20834 -21144 1.000 0.000 

Yellowfin tuna 4 Section 3 8641 539 TP 2.584 23.000 539.000 0.023 0.181 -5806 -5947 1.000 0.000 

Yellowfin tuna 4 Section 4 5761 339 TP 1.743 8.000 339.000 0.07 0.173 -5729 -5995 1.000 0.000 

Yellowfin tuna 4 Section 5 10441 331 TP 1.859 11.000 331.000 0.077 0.125 -8706 -8844 1.000 0.000 

Yellowfin tuna 5 Section 1 2521 275 TP 1.505 7.000 275.000 0.088 0.268 -3208 -3377 1.000 0.000 

Yellowfin tuna 5 Section 2 34081 293 TP 2.931 25.000 231.000 0.029 0.104 -13483 -13546 1.000 0.000 

Yellowfin tuna 5 Section 3 4801 334 TP 1.160 2.000 266.000 0.102 0.133 -8162 -8274 1.000 0.000 

Yellowfin tuna 5 Section 4 9001 318 --          

Yellowfin tuna 6 Entire 1058 177 E 0.022 5.380  0.215 0.085 -2825 -2720 0.000 1.000 

Black Marlin 1 Section 1 590 204 TP 1.071 5.380 91.450 0.143 0.165 -1661 -1744 1.000 0.000 

Black Marlin 1 Section 2 863 349 TP 1.266 5.380 349.670 0.185 0.193 -1808 -1849 1.000 0.000 

Blue Marlin 1 Entire 1519 177.522 TP 0.519 5.379 145.000 0.123 0.196 0    

Blue Marlin 2 Entire 1110 177.522 --          

Blue Marlin 3 Entire 1903 290.491 --          

Blue Marlin 4 Entire 1302 215.179 --          

Blue Marlin 5 Entire 1688 107.589 TP 0.442 5.379 80.700 0.145 0.224 0    

Blue Marlin 6 Entire 2174 156.004 TP 0.971 5.379 123.700 0.145 0.152 0    

Blue Marlin 7 Entire 2534 172.143 TP 0.768 5.379 86.100 0.142 0.176 0    

Blue Marlin 8 Entire 2985 209.799 TP 1.092 5.379 166.800 0.122 0.169 -4315 -4484 1.000 0.000 

Blue Marlin 9 Entire 2468 129.107 --          

Blue Marlin 10 Entire 2117 172.143 TP 1.680 21.500 150.000 0.107 0.082 -1404 -1425 1.000 0.000 
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Species ID Section 
Total 
points 

Max step-
length (m) 

Best fit 
distribution 

Best fit 
exponent 

Best fit 
Xmin 

Best fit 
Xmax 

TP / P 
GOF 

Exp 
GOF 

TP / P 
LLH 

Exp LLH 
TP / P 
wAIC 

Exp 
wAIC 

Blue Marlin 11 Entire 4128 204.42 E 0.027 5.380  0.17 0.133 -7166 -7052 0.000 1.000 

Swordfish 1 Entire 1191 597 TP 0.908 5.379 597.100 0.107 0.178 0    

Swordfish 2 Entire 2035 962 --          

Swordfish 3 Entire 1429 624 --          

Swordfish 4 Entire 2650 1285 TP 1.223 5.379 1285.600 0.108 0.307 -7385 -8097 1.000 0.000 

Ocean sunfish 1 Section 1 305100 145 TP 2.052 7.000 145.000 0.063 0.151 -891 -913 1.000 0.000 

Ocean sunfish 1 Section 2 378000 185 TP 1.924 5.000 185.000 0.077 0.232 -675 -714 1.000 0.000 

Big Eye Thresher 1 Entire 1440 473 TP 1.329 10.758 435.700 0.118 0.147 -2903 -3003 1.000 0.000 

Big Eye Thresher 2 Entire 1492 457 TP 1.195 32.276 457.200 0.116 0.168 -2285 -2350 1.000 0.000 

Blue Shark 1 Entire 819 381 E 0.013 5.380  0.126 0.102 -2207 -2201 0.000 1.000 

Blue Shark 2 Entire 1211 387 E 0.017 5.380  0.166 0.180 -3488 -3417 0.000 1.000 

Blue Shark 3 Entire 1541 387 --          

Blue Shark 4 Entire 2621 177 TP 0.458 5.379 161.300 0.14 0.205 0    

Blue Shark 5 Entire 2256 532 E 0.012 5.380  0.171 0.151 0    

Blue Shark 6 Entire 4133 430 --          

Blue Shark 7 Entire 846 333 --          

Blue Shark 8 Entire 1924 371 --          

Blue Shark 9 Section 1 29160 121 --          

Blue Shark 9 Section 2 25920 482 TP 1.886 9.000 167.000 0.063 0.217 -741 -765 1.000 0.000 

Blue Shark 9 Section 3 70435 482 P 2.458 12.000  0.066 0.237 -1089 -1162 1.000 0.000 

Blue Shark 10 Section 1 653040 122 TP 1.630 6.500 122.000 0.062 0.187 -4254 -4405 1.000 0.000 

Blue Shark 10 Section 2 1900800 599 TP 2.190 11.000 599.000 0.038 0.242 -9949 -10696 1.000 0.000 

Blue Shark 10 Section 3 864000 200 E 0.040 15.000  0.075 0.062 -1916 -1904 0.000 1.000 

Blue Shark 10 Section 4 777600 545 TP 1.972 5.500 545.000 0.056 0.234 -6143 -6642 1.000 0.000 
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Species ID Section 
Total 
points 

Max step-
length (m) 

Best fit 
distribution 

Best fit 
exponent 

Best fit 
Xmin 

Best fit 
Xmax 

TP / P 
GOF 

Exp 
GOF 

TP / P 
LLH 

Exp LLH 
TP / P 
wAIC 

Exp 
wAIC 

Blue Shark 10 Section 5 2125260 523 TP 1.993 7.500 523.000 0.049 0.206 -9326 -9949 1.000 0.000 

Blue Shark 11 Entire 38090 87 --          

Blue Shark 12 Section 1 121403 132 E 0.047 12.500  0.069 0.055 -2645 -2630 0.000 1.000 

Blue Shark 12 Section 2 98699 396 TP 2.316 8.500 396.000 0.054 0.173 -2455 -2563 1.000 0.000 

Mako shark 1 Section 1 145 376 E 0.017 16.140  0.121 0.106 -333 -333 0.275 0.725 

Mako shark 1 Section 2 1273 398 E 0.018 5.380  0.15 0.108 -4031 -3916 0.000 1.000 

Mako shark 1 Section 3 865 338 E 0.021 5.380  0.176 0.129 -2319 -2257 0.000 1.000 

Mako shark 1 Section 4 532 355 E 0.016 5.380  0.153 0.078 -1530 -1504 0.000 1.000 

Porbeagle 1 Entire 2571721 38.5 E 0.172 7.500  0.079 0.080 -2012 -1951 0.000 1.000 

Silky shark 1 Entire 2667 231 E 0.027 5.380  0.187 0.079 -7201 -7101 0.000 1.000 

Silky shark 2 Entire 4272 193 E 0.055 21.520  0.229 0.137 -2975 -2839 0.000 1.000 

Silky shark 3 Entire 1584 166.7 TP 2.030 16.138 156.000 0.181 0.102 -2217 -2256 1.000 0.000 

White tip shark 1 Entire 3405 166 TP 1.839 21.520 129.110 0.12 0.114 -4480 -4546 1.000 0.000 

Basking shark 1 Section 1 4784 62 TP 1.463 3.000 62.000 0.102 0.166 -935 -972 1.000 0.000 

Basking shark 1 Section 2 4705 72 --          

Basking shark 2 Section 1 5715 66 TP 1.576 4.000 66.000 0.073 0.182 -3325 -3464 1.000 0.000 

Basking shark 2 Section 2 25439 59 TP 1.750 4.000 59.000 0.063 0.137 -9715 -9832 1.000 0.000 

Basking shark 2 Section 3 2880 80 --          

Basking shark 2 Section 4 11521 73 TP 1.379 7.000 73.000 0.134 0.178 -3224 -3338 1.000 0.000 

Basking shark 3 Section 1 26770 160.5 TP 1.596 5.500 159.000 0.064 0.214 -7597 -8007 1.000 0.000 

Basking shark 3 Section 2 27360 138.5 --          

Basking shark 3 Section 3 42120 161 TP 1.776 7.500 146.000 0.081 0.233 -9741 -10331 1.000 0.000 

Basking shark 4 Section 1 51385 100 --          

Basking shark 4 Section 2 12960 182 E 0.030 14.000  0.121 0.104 -2933 -2891 0.000 1.000 
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Species ID Section 
Total 
points 

Max step-
length (m) 

Best fit 
distribution 

Best fit 
exponent 

Best fit 
Xmin 

Best fit 
Xmax 

TP / P 
GOF 

Exp 
GOF 

TP / P 
LLH 

Exp LLH 
TP / P 
wAIC 

Exp 
wAIC 

Basking shark 4 Section 3 213892 168 TP 2.414 18.000 168.000 0.058 0.127 -12712 -12735 1.000 0.000 

Basking shark 5 Section 1 43437 186 --          

Basking shark 5 Section 2 236425 72 E 0.107 32.000  0.244 0.244 -275 -206 0.000 1.000 

Basking shark 6 Section 1 24258 112 TP 1.820 12.000 112.000 0.121 0.180 -4836 -4874 1.000 0.000 

Basking shark 6 Section 2 17281 120 E 0.039 16.000  0.085 0.105 -2340 -2304 0.000 1.000 

Basking shark 6 Section 3 5761 140 --          

Basking shark 6 Section 4 5761 132 --          

Basking shark 6 Section 5 11521 116 --          

Basking shark 6 Section 6 5224 156 TP 1.732 14.000 156.000 0.137 0.179 -405 -413 0.999 0.001 

Whale shark 1 Section 1 1753 80 TP 2.023 5.379 59.200 0.368 0.264 -2529 -2610 1.000 0.000 

Whale shark 1 Section 2 721 1285 E 0.012 5.380  0.135 0.012 0    

Whale shark 1 Section 3 4828 1285 --          

Table B3. Kolmogorov-Smirnov goodness of fit values, log-likelihoods and Akaike weights 
 for key sections analysed and shown in figures or in the spatial analysis.  

Species ID Section 
Best fit 

distribution 
Best fit 

exponent 
Best fit 
Xmin 

Best fit 
Xmax 

TP / P 
GOF 

Exp GOF 
TP / P 

LLH 
Exp LLH 

TP / P 
wAIC 

Exp wAIC 
Gamma 

GOF 

Big eye tuna 1 Section 4 TP 2.213 9.0 1683.0 0.037 0.258 -2657 -2954 1.000 0.000 0.242 

Big eye tuna 2 Section 2 TP 2.189 19.0 334.0 0.032 0.166 -7097 -7332 1.000 0.000 0.105 

Big eye tuna 2 Section 3 TP 1.938 9.0 1601.0 0.029 0.262 -14885 -15925 1.000 0.000 0.196 

Big eye tuna 2 Section 4 E 0.018 53.0  0.069 0.040 -7217 -7120 0.000 1.000  

Big eye tuna 2 Section 5 E 0.015 42.0  0.069 0.072 -20058 -19945 0.000 1.000  

Big eye tuna 2 Section 6 TP 2.548 15.0 715.0 0.027 0.189 -12029 -12425 1.000 0.000 0.185 

Big eye tuna 2 Section 7 TP 1.988 10.0 529.0 0.028 0.185 -30064 -31204 1.000 0.000 0.136 
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Species ID Section 
Best fit 

distribution 
Best fit 

exponent 
Best fit 
Xmin 

Best fit 
Xmax 

TP / P 
GOF 

Exp GOF 
TP / P 

LLH 
Exp LLH 

TP / P 
wAIC 

Exp wAIC 
Gamma 

GOF 

Big eye tuna 2 Section 8 TP 1.975 5.0 422.0 0.026 0.217 -36913 -39232 1.000 0.000 0.148 

Big eye tuna 3 Section 3 E 0.102 2.0  0.158 0.022 -7228 -6801 0.000 1.000  

Big eye tuna 5 Section 4 TP 2.155 13.0 1541.0 0.025 0.238 -25494 -27279 1.000 0.000 0.233 

Yellowfin tuna 1 Section 1 E 0.037 4.0  0.109 0.073 -11286 -11136 0.000 1.000  

Yellowfin tuna 1 Section 3 TP 1.610 5.0 286.0 0.043 0.175 -34348 -35298 1.000 0.000 0.144 

Yellowfin tuna 1 Section 4 E 0.033 15.0  0.101 0.027 -16697 -16330 0.000 1.000  

Yellowfin tuna 2 Section 1 TP 2.059 11.0 370.0 0.026 0.184 -19744 -20596 1.000 0.000 0.175 

Yellowfin tuna 2 Section 2 E 0.044 4.0  0.123 0.051 
-

110071 
-107593 0.000 1.000  

Yellowfin tuna 2 Section 3 E 0.037 8.0  0.107 0.045 -59448 -57663 0.000 1.000  

Yellowfin tuna 2 Section 5 E 0.027 4.0  0.143 0.022 -47195 -45065 0.000 1.000  

Yellowfin tuna 3 Section 3 TP 1.364 3.0 267.0 0.063 0.159 
-

118329 
-121948 1.000 0.000 0.112 

Yellowfin tuna 3 Section 4 TP 1.464 3.0 397.0 0.058 0.291 -48854 -54359 1.000 0.000 0.160 

Yellowfin tuna 4 Section 4 TP 1.743 8.0 339.0 0.07 0.173 -5729 -5995 1.000 0.000 0.154 

Yellowfin tuna 4 Section 5 TP 1.859 11.0 331.0 0.077 0.125 -8706 -8844 1.000 0.000  

Yellowfin tuna 5 Section 1 TP 1.505 7.0 275.0 0.088 0.268 -3208 -3377 1.000 0.000 0.203 

Yellowfin tuna 5 Section 3 TP 1.160 2.0 266.0 0.102 0.133 -8162 -8274 1.000 0.000 0.081 

Yellowfin tuna 6 Entire E 0.022 5.4  0.215 0.085 -2825 -2720 0.000 1.000  

Mola mola 1 Section 2 TP 1.924 5.0 185.0 0.077 0.232 -675 -714 1.000 0.000 0.173 

Blue Shark 9 Section 2 TP 1.886 9.0 167.0 0.063 0.217 -741 -765 1.000 0.000 0.185 

Blue Shark 9 Section 3 P 2.458 12.0  0.066 0.237 -1089 -1162 1.000 0.000 0.214 

Blue Shark 10 Section 1 TP 1.630 6.5 122.0 0.062 0.187 -4254 -4405 1.000 0.000 0.157 

Blue Shark 10 Section 2 TP 2.190 11.0 599.0 0.038 0.242 -9949 -10696 1.000 0.000 0.215 

Blue Shark 10 Section 3 E 0.040 15.0  0.075 0.062 -1916 -1904 0.000 1.000  
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Species ID Section 
Best fit 

distribution 
Best fit 

exponent 
Best fit 
Xmin 

Best fit 
Xmax 

TP / P 
GOF 

Exp GOF 
TP / P 

LLH 
Exp LLH 

TP / P 
wAIC 

Exp wAIC 
Gamma 

GOF 

Blue Shark 10 Section 4 TP 1.972 5.5 545.0 0.056 0.234 -6143 -6642 1.000 0.000 0.182 

Blue Shark 10 Section 5 TP 1.993 7.5 523.0 0.049 0.206 -9326 -9949 1.000 0.000 0.179 

Blue Shark 12 Section 2 TP 2.316 8.5 396.0 0.054 0.173 -2455 -2563 1.000 0.000 0.180 

Silky shark 2 Entire E 0.055 21.520  0.229 0.137 -2975 -2839 0.000 1.000  

Silky shark 3 Entire TP 2.030 16.138 156.000 0.181 0.102 -2217 -2256 1.000 0.000 0.160 
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11 Appendix C: Chapter 5 additional tables and 
figures 

Table C1: Summary of the original GPS location data used to calculate the flight profiles. 
BBA is black-browed and WA is wandering albatross. 

Reference Points 
Elapsed Time 

(hours) 
Length (m) 

Min Step 
(m) 

Max Step 
(m) 

No of flight 
steps 

BBA01 2638 47.83 640345 0.58 2677.48 41 

BBA02 2528 46.25 935469 1.08 1992.37 37 

BBA03 2432 46.64 752561 0.45 2354.88 41 

BBA04 732 37.69 306117 3.72 10847.04 24 

BBA05 1424 24.78 449560 0.89 1339.30 25 

BBA06 1516 26.78 727512 1.40 2504.82 18 

BBA07 4792 83.93 1425396 0.45 308381.90 70 

BBA08 853 15.60 404979 0.45 2680.43 12 

BBA09 2503 44.80 652106 0.50 1771.48 46 

BBA10 2117 36.98 777877 1.77 2270.50 24 

BBA11 3170 59.25 1167475 0.73 3911.72 77 

BBA12 1392 24.98 534236 2.08 1884.21 49 

BBA13 703 18.11 513686 4.80 12499.82 12 

BBA14 2294 41.94 741684 0.45 2668.50 51 

BBA15 3433 60.87 861308 0.45 2066.58 46 

BBA16 3457 67.88 1407061 1.32 3516.70 97 

BBA17 1311 24.00 434634 3.43 5656.79 15 

BBA18 2512 46.49 810655 0.45 2889.89 54 

BBA19 240 12.16 111097 0.89 2456.46 13 

BBA20 565 33.19 543329 3.06 8530.54 16 

BBA21 655 33.69 736786 1.32 5419.73 23 

BBA22 1806 96.95 1477311 0.33 8464.50 52 

BBA23 1663 87.35 1309014 0.33 11372.01 22 

BBA24 1521 27.58 579787 0.78 2425.25 35 

BBA25 14774 48.62 1566633 0.18 2451.97 29 

BBA26 8690 28.53 1214995 0.36 3529.26 9 

BBA27 15059 47.99 1245957 0.13 1037.72 19 

BBA28 160 2.61 38018 0.63 21267.48 2 

BBA29 16852 49.38 1508445 0.29 1060.35 32 

BBA30 17106 50.81 1866018 0.11 7154.09 20 

BBA31 9612 38.87 1000653 0.18 5467.32 20 

BBA32 8567 30.28 835572 0.29 2754.65 11 

BBA33 15535 48.01 1355576 0.22 1663.76 33 

BBA34 11377 36.17 1237470 0.29 8207.48 17 

BBA35 2744 8.76 235204 0.23 1122.48 7 

BBA36 5680 22.64 917187 1.71 3974.96 2 

BBA37 22450 69.68 2240907 0.18 2702.88 49 

BBA38 8708 42.86 363093 0.13 715.15 33 

BBA39 4904 19.99 527722 0.29 1705.60 7 
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Reference Points 
Elapsed Time 

(hours) 
Length (m) 

Min Step 
(m) 

Max Step 
(m) 

No of flight 
steps 

BBA40 9471 34.55 823298 0.22 4456.25 9 

BBA41 5224 21.98 511339 0.31 3483.31 14 

BBA42 7496 27.63 810469 0.13 3090.90 18 

BBA43 21833 66.11 2197770 0.13 22959.36 35 

BBA44 12259 38.18 988215 0.18 14807.79 27 

BBA45 14917 49.63 1305995 0.22 12442.33 36 

BBA46 24158 79.80 1287188 0.07 3244.49 68 

BBA47 13285 43.89 1867030 0.13 379082.90 30 

BBA48 6440 21.44 301416 0.13 7796.18 8 

BBA49 10485 35.43 1082602 0.11 11769.75 9 

BBA50 1918 5.37 175063 0.53 601.17 6 

BBA51 15706 56.66 791716 0.13 2355.02 16 

BBA52 19543 69.02 1694744 0.13 7467.27 38 

BBA53 7075 21.56 719796 0.18 2177.53 30 

BBA54 12727 44.97 1293197 0.22 3698.27 26 

BBA55 13599 44.68 1121769 0.07 3167.87 34 

BBA56 570 2.14 90557 0.66 1696.93 2 

BBA57 3550 10.25 402538 0.23 514.57 6 

BBA58 10384 33.21 1242367 0.23 3031.86 17 

BBA59 6056 22.60 547045 0.30 1832.12 35 

BBA60 10451 32.40 1040653 0.31 1279.98 14 

BBA61 3257 11.46 404602 0.49 1986.44 9 

WA01 8609 18.70 427702 0.22 12839.40 14 

WA02 6993 18.38 514517 0.08 32056.53 10 

WA03 27734 37.48 1371064 0.11 11292.90 16 

WA04 27423 43.38 1046134 0.23 105668.40 15 

WA05 9887 30.74 1449278 0.34 906.95 9 

WA06 22488 78.56 2531244 0.19 12147.15 34 

WA07 7399 32.52 631939 0.19 1029.00 5 

WA08 28672 89.26 2426064 0.14 17363.29 39 

WA09 9629 29.19 967481 0.27 2033.50 9 

WA10 13985 44.43 1395147 0.19 13507.16 15 

WA11 7572 24.95 311985 0.14 1026.84 5 

WA12 23566 72.77 2951930 0.08 29393.30 27 

WA13 16350 48.79 1424881 0.15 1961.04 20 

WA14 7212 31.40 897982 0.30 4382.00 7 

WA15 7284 30.38 332189 0.19 3195.47 12 

WA16 4602 21.53 350554 0.27 914.56 11 

WA17 27696 90.39 3398509 0.11 3540.00 21 

WA18 13777 52.35 1358927 0.11 1901.25 8 

WA19 12224 41.97 1503415 0.27 1646.33 6 

WA20 12881 41.31 757913 0.14 5110.63 14 

WA21 31197 90.42 3994637 0.11 1206.78 40 

WA22 23064 71.10 2046603 0.24 1800.14 42 
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Reference Points 
Elapsed Time 

(hours) 
Length (m) 

Min Step 
(m) 

Max Step 
(m) 

No of flight 
steps 

WA23 29659 88.48 4718301 0.20 26374.45 27 

WA24 30209 86.92 3287408 0.08 2666.38 18 

WA25 23086 73.83 2476751 0.14 9196.77 23 

WA26 24906 76.24 2212841 0.11 5116.33 17 

WA27 2864 8.15 319635 0.30 1118.82 4 

 

Table C2: Summary of the wet/dry logger data 

Reference No of Steps 
Elapsed Time 

(hours) 
Length (m) 

Min Step 
(m) 

Max Step 
(m) 

WA30 22 21.52 140946 177 80717 

WA31 30 59.88 1192241 11 191640 

WA32 19 45.57 718688 258 176911 

WA33 8 4.97 142697 2134 81093 

WA34 35 64.37 1475209 125 190528 

WA35 10 23.45 150878 239 42776 

WA36 4 2.05 93014 1075 69558 

WA37 30 38.38 708676 57 173671 

WA38 21 46.63 411277 437 69387 

WA39 54 74.43 1076748 657 207885 

WA40 47 72.90 1938794 281 287843 

WA41 28 39.43 827186 194 237290 

WA42 13 41.65 138905 696 38840 

WA43 30 141.38 2651628 114 272700 

WA44 21 39.97 1187369 710 267044 

WA45 36 53.38 782257 113 126758 

WA46 14 24.45 311699 67 110136 
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In the following tables Comp AICw refers to the competing distribution; OoM refers to Orders of Magnitude. In some cases (unusually high or low TP 

exponents) it is not possible to calculate log-likelihoods and in other cases (fewer than 5 fitted steps) it is not possible to calculate Akaike weights, 

values are therefore shown as --. 

Table C3. Truncated Pareto (TP) fits for flight step distributions 

Reference Steps Min Step Max Step Xmin Exponent Xmax Exp AICw Exp Comp AICw TP AICw TP Comp AICw Exp Fit TP Fit Fitted steps OoM 

BBA16 97 103 90018 344 1.35 65495 0.00 1.00 1.00 0.00 0.335 0.052 80 2.28 

BBA11 77 61 75555 244 1.33 58867 0.09 0.91 1.00 0.00 0.171 0.062 67 2.38 

BBA46 68 21 85913 323 1.30 47717 0.20 0.80 1.00 0.00 0.162 0.123 52 2.17 

BBA18 54 30 87001 732 1.28 31986 0.18 0.82 1.00 0.00 0.171 0.051 42 1.64 

BBA22 52 569 119532 728 1.34 119532 0.66 0.34 1.00 0.00 0.178 0.083 49 2.22 

BBA14 51 19 131879 137 1.13 52015 0.01 0.99 1.00 0.00 0.309 0.067 46 2.58 

BBA37 49 70 107824 129 1.26 33017 0.01 0.99 1.00 0.00 0.204 0.084 38 2.41 

BBA09 46 178 73229 1938 1.44 70914 0.08 0.92 1.00 0.00 0.274 0.100 24 1.56 

BBA15 46 56 75897 95 1.07 68676 0.07 0.93 1.00 0.00 0.159 0.122 42 2.86 

WA22 42 119 94364 983 1.04 37622 0.04 0.96 0.96 0.04 0.246 0.097 33 1.58 

BBA03 41 110 60098 469 1.29 15664 0.00 1.00 0.99 0.01 0.345 0.076 29 1.52 

BBA01 41 25 126983 313 1.30 126983 0.69 0.31 1.00 0.00 0.161 0.129 33 2.61 

WA08 39 364 265214 2104 1.25 265214 0.55 0.45 1.00 0.00 0.165 0.103 31 2.10 

BBA52 38 40 158908 1321 1.31 158908 0.82 0.18 1.00 0.00 0.122 0.086 26 2.08 

BBA02 37 216 151350 543 1.11 151350 0.00 1.00 1.00 0.00 0.298 0.130 32 2.45 

BBA45 36 47 162559 233 1.28 140678 0.00 1.00 1.00 0.00 0.298 0.105 30 2.78 

BBA59 35 51 123722 315 1.52 79569 0.00 1.00 1.00 0.00 0.534 0.080 27 2.40 

BBA55 34 94 116256 972 1.46 116256 0.00 1.00 1.00 0.00 0.339 0.104 22 2.08 

BBA33 33 59 106320 2539 1.28 106320 0.15 0.85 0.99 0.01 0.187 0.092 24 1.62 

BBA47 30 174 376409 309 1.37 376409 0.00 1.00 1.00 0.00 0.552 0.109 28 3.09 
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Reference Steps Min Step Max Step Xmin Exponent Xmax Exp AICw Exp Comp AICw TP AICw TP Comp AICw Exp Fit TP Fit Fitted steps OoM 

BBA53 30 185 169608 267 1.46 19799 0.11 0.89 1.00 0.00 0.295 0.141 23 1.87 

BBA54 26 430 147638 3853 1.03 147638 0.41 0.59 0.89 0.11 0.247 0.147 16 1.58 

BBA05 25 121 110475 121 1.10 110475 0.91 0.09 1.00 0.00 0.236 0.084 24 2.96 

WA17 21 3128 640030 12547 1.45 640030 0.66 0.34 1.00 0.00 0.264 0.117 18 1.71 

WA01 14 83 57494 83 1.03 57494 0.00 0.00 1.00 0.00 0.476 0.158 13 2.84 

BBA13 12 453 95362 1328 1.00 95362 0.17 0.83 0.83 0.17 0.251 0.126 9 1.86 

 

Table C4. Exponential fits for flight step distributions 

Reference Steps Min Step Max Step Xmin Exponent Exp AICw Exp Comp AICw TP AICw TP Comp AICw Exp Fit TP Fit Fitted steps OoM 

BBA25 29 217 82855 606 6.46E-05 0.87 0.13 0.46 0.54 0.088 0.105 24 2.14 

WA23 27 416 657713 7205 7.44E-06 0.78 0.22 1.00 0.00 0.110 0.123 20 1.96 

WA12 27 545 442310 13758 1.08E-05 0.79 0.21 0.99 0.01 0.089 0.091 14 1.51 

BBA44 27 139 70814 19547 6.79E-05 0.96 0.04 0.43 0.57 0.198 0.089 8 0.56 

BBA21 23 838 79991 1447 4.73E-05 0.54 0.46 0.98 0.02 0.121 0.138 18 1.74 

BBA30 20 706 227013 45408 2.57E-05 0.88 0.12 0.03 0.97 0.090 0.151 13 0.70 

WA24 18 774 354412 42323 8.96E-06 0.64 0.36 0.02 0.98 0.173 0.174 13 0.92 

BBA51 16 91 105091 91 5.13E-05 0.54 0.46 0.14 0.86 0.137 0.167 15 3.06 

BBA19 13 348 21110 2299 2.04E-04 1.00 0.00 0.26 0.74 0.319 0.111 5 0.96 

WA15 12 2707 52412 2707 7.66E-05 0.83 0.17 0.22 0.78 0.188 0.251 11 1.29 

WA16 11 104 67625 104 6.65E-05 0.67 0.33 0.00 1.00 0.104 0.298 10 2.81 

WA05 9 2471 402166 90015 9.81E-06 1.00 0.00 0.00 1.00 0.273 0.273 5 0.65 

BBA49 9 666 191927 7010 1.81E-05 1.00 0.00 0.09 0.91 0.273 0.204 5 1.44 

BBA48 8 765 43379 765 4.68E-05 0.76 0.24 0.02 0.98 0.305 0.193 7 1.75 

WA18 8 387 441150 387 8.43E-06 0.76 0.24 0.03 0.97 0.153 0.193 7 3.06 



 

282 

 

Reference Steps Min Step Max Step Xmin Exponent Exp AICw Exp Comp AICw TP AICw TP Comp AICw Exp Fit TP Fit Fitted steps OoM 

BBA39 7 1379 43882 1379 5.07E-05 0.94 0.06 0.00 1.00 0.362 0.242 6 1.50 

BBA35 7 756 9727 756 3.09E-04 0.99 0.01 0.01 0.99 0.181 0.181 6 1.11 

BBA50 6 105 21844 105 1.34E-04 1.00 0.00 -- -- 0.223 0.323 5 2.32 

 
Table C5. Mixed model flight step distributions 

Reference Steps 
Min 
Step 

Max Step 
Exp 

Xmin 
Exp 

Exponent 
TP 

Xmin 
TP 

Exponent 
TP 

Xmax 
Exp 

AICw 
Exp Comp 

AICw 
TP 

AICw 
TP Comp 

AICw 
Exp Fit TP Fit 

TP 
OoM 

Exp 
OoM 

BBA07 70 92 43848 229 1.41E-04 225 0.91 21728 0.00 1.00 1.00 0.00 0.138 0.066 1.99 2.28 

BBA12 49 52 70669 52 1.64E-04 237 1.87 3340 0.00 1.00 0.44 0.56 0.586 0.097 1.15 3.13 

WA21 40 2386 348474 2386 1.78E-05 16910 1.73 348474 1.00 0.00 0.96 0.04 0.155 0.123 1.31 2.16 

BBA43 35 35 91744 237 4.59E-05 35 0.78 91744 0.17 0.83 1.00 0.00 0.109 0.119 3.42 2.59 

BBA24 35 136 52189 1058 6.33E-05 136 0.96 32329 0.10 0.90 1.00 0.00 0.148 0.070 2.38 1.69 

WA06 34 144 242265 2331 2.01E-05 11679 1.05 146353 0.84 0.16 0.72 0.28 0.079 0.055 1.10 2.02 

BBA38 33 92 35748 577 1.88E-04 420 1.16 11042 0.02 0.98 0.85 0.15 0.183 0.083 1.42 1.79 

BBA29 32 125 60158 680 5.26E-05 281 0.89 60158 0.04 0.96 1.00 0.00 0.136 0.102 2.33 1.95 

BBA04 24 586 56878 586 1.30E-04 1350 1.15 13797 0.36 0.64 0.55 0.45 0.220 0.114 1.01 1.99 

BBA10 24 260 119171 651 5.45E-05 260 0.80 12612 0.00 1.00 0.97 0.03 0.284 0.114 1.69 2.26 

WA25 23 633 384623 22188 8.52E-06 10365 1.25 170763 0.49 0.51 0.48 0.52 0.210 0.105 1.22 1.24 

BBA23 22 803 90633 803 3.51E-05 7288 1.28 86467 0.12 0.88 0.80 0.20 0.145 0.128 1.07 2.05 

WA13 20 320 140636 320 2.19E-05 45090 0.77 140636 0.17 0.83 0.11 0.89 0.107 0.180 0.49 2.64 

BBA31 20 49 95834 6537 2.33E-05 1661 0.93 95834 0.47 0.53 0.97 0.03 0.303 0.147 1.76 1.17 

BBA27 19 544 60266 5073 4.59E-05 4339 4.00 8149 0.33 0.67 0.00 1.00 0.223 0.274 0.27 1.07 

BBA42 18 488 62765 548 6.04E-05 1123 0.89 62765 0.21 0.79 0.73 0.27 0.130 0.142 1.75 2.06 

BBA06 18 315 92777 5664 2.87E-05 3066 1.31 92131 0.44 0.56 0.89 0.11 0.292 0.194 1.48 1.21 

BBA58 17 126 143584 21770 2.76E-05 126 0.92 143584 0.96 0.04 1.00 0.00 0.208 0.128 3.06 0.82 



 

283 

 

Reference Steps 
Min 
Step 

Max Step 
Exp 

Xmin 
Exp 

Exponent 
TP 

Xmin 
TP 

Exponent 
TP 

Xmax 
Exp 

AICw 
Exp Comp 

AICw 
TP 

AICw 
TP Comp 

AICw 
Exp Fit TP Fit 

TP 
OoM 

Exp 
OoM 

WA26 17 1174 417106 64834 1.15E-05 1174 0.75 97896 0.93 0.07 0.64 0.36 0.143 0.123 1.92 0.81 

BBA34 17 252 130486 1572 3.19E-05 12155 1.75 123557 0.16 0.84 0.18 0.82 0.153 0.170 1.01 1.92 

BBA20 16 1756 69325 1756 5.43E-05 9025 -0.18 17064 0.33 0.67 0.09 0.91 0.205 0.167 0.28 1.60 

WA03 16 53 174220 180 1.35E-05 53 -0.34 205 0.00 1.00 0.25 0.75 0.361 0.204 0.59 2.99 

WA10 15 1074 68428 1396 4.50E-05 1074 0.86 68428 0.22 0.78 0.90 0.10 0.162 0.073 1.80 1.69 

BBA17 15 222 60606 222 6.39E-05 11773 3.29 33758 0.02 0.98 0.01 0.99 0.220 0.199 0.46 2.44 

WA04 15 21 135047 135 2.30E-05 21 0.90 135047 0.01 0.99 1.00 0.00 0.205 0.147 3.81 3.00 

WA20 14 477 71643 477 3.54E-05 12878 0.87 71643 0.27 0.73 0.30 0.70 0.158 0.115 0.75 2.18 

BBA41 14 502 50948 502 8.82E-05 4922 1.39 50948 0.23 0.77 0.17 0.83 0.158 0.159 1.01 2.01 

BBA60 14 1930 65805 1930 4.94E-05 8264 1.12 65805 0.41 0.59 0.26 0.74 0.158 0.229 0.90 1.53 

BBA08 12 308 87517 3501 4.47E-05 308 0.90 87517 0.80 0.20 0.79 0.21 0.149 0.094 2.45 1.40 

BBA32 11 957 104025 957 5.12E-05 957 0.81 31411 0.38 0.62 0.35 0.65 0.208 0.121 1.52 2.04 

WA02 10 78 119567 78 3.13E-05 36728 2.61 119567 0.17 0.83 -- -- 0.233 0.415 0.51 3.18 

BBA61 9 646 65872 646 4.28E-05 646 0.87 49975 0.35 0.65 0.42 0.58 0.264 0.161 1.89 2.01 

BBA40 9 406 85597 406 3.54E-05 47717 2.83 85597 0.37 0.63 -- -- 0.264 0.667 0.25 2.32 

BBA26 9 770 192692 770 1.32E-05 141268 4.15 192692 0.13 0.87 -- -- 0.264 0.667 0.13 2.40 

WA09 9 4739 158782 121526 7.75E-05 121526 718.22 121865 -- -- -- -- 0.396 0.000 0.00 0.12 

WA14 7 43280 106342 77463 8.97E-05 77463 108.67 78915 -- -- -- -- 0.351 0.000 0.01 0.14 

BBA57 6 3670 21990 3670 8.50E-05 11716 -2.45 21990 1.00 0.00 -- -- 0.445 0.323 0.27 0.78 

WA19 6 2795 343588 151222 1.34E-05 151222 2.34 343588 -- -- -- -- 0.544 0.544 0.36 0.36 

WA11 5 233 31330 233 1.00E-04 4444 1.98 31330 -- -- -- -- 0.290 0.488 0.85 2.13 

WA07 5 1336 147270 1336 1.38E-05 1336 0.76 147270 -- -- -- -- 0.580 0.290 2.04 2.04 

WA27 4 17908 35046 28545 3.08E-04 28545 1.00 35046 -- -- -- -- 1.000 1.000 0.09 0.09 
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Figure C1. Ranked step-length plots for best fit exponential distributions for albatross flight steps  

Black circles are step-lengths; red line is the competing exponential distribution; blue dashed line is the alternate TP distribution. 
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Figure C1 (Continued…) 
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Figure C2. Ranked step-length plots for mixed model fits for flight steps  

Black circles are step-lengths; red line is the best fit TP distribution; blue dashed lines are the best fit exponential distribution. Plots with fewer than 15 points are not shown. 
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Figure C2 (Continued…) 

 

11.1 MLE Results of wet/dry logger analysis 
Table C6: Truncated Pareto (TP) fits for flight step distributions 

Reference Steps 
Min 
Step 

Max 
Step 

Xmin Exponent Xmax 
Exp 

AICw 
Exp 

Comp AICw 
TP 

AICw 
TP 

Comp AICw 
Exp 
Fit 

TP 
Fit 

Fitted 
steps 

OoM 

WA39 53 424 207885 424 1.05 94120 0.60 0.40 1.00 0.00 0.142 0.061 50 2.35 

WA40 47 281 287843 4597 1.16 196604 0.64 0.36 0.99 0.01 0.107 0.060 36 1.63 

WA45 36 113 126514 135 1.11 53049 0.03 0.97 1.00 0.00 0.224 0.094 24 2.59 

WA41 28 187 236327 187 1.03 236327 0.71 0.29 1.00 0.00 0.289 0.175 24 3.10 
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Table C7: Exponential fits for flight step distributions 

Reference Steps 
Min 
Step 

Max 
Step 

Xmin Exponent 
Exp 

AICw 
Exp 

Comp AICw 
TP 

AICw 
TP 

Comp AICw 
Exp 
Fit 

TP 
Fit 

Fitted steps OoM 

WA38 21 312 69387 312 5.13E-05 0.65 0.35 0.63 0.37 0.152 0.225 20 2.35 

 

Table C8: Mixed model flight step distributions 

Reference Steps 
Min 
Step 

Max 
Step 

Exp 
Xmin 

Exp 
Exponent 

TP 
Xmin 

TP 
Exponent 

TP 
Xmax 

Exp 
AICw 

Exp 
Comp  
AICw 

TP 
AICw 

TP 
Comp  
AICw 

Exp 
Fit 

TP 
Fit 

TP 
OoM 

Exp 
OoM 

WA34 35 115 190528 125 2.27E-05 115 0.78 190528 0.00 1.00 1.00 0.00 0.134 0.128 3.22 3.18 

WA43 30 76 262529 114 1.21E-05 43832 1.44 229857 0.40 0.60 0.44 0.56 0.109 0.167 0.72 3.36 

WA31 30 10 191508 68 2.50E-05 2197 0.71 113910 0.03 0.97 0.90 0.10 0.146 0.134 1.71 3.45 

WA37 30 57 173184 2946 2.64E-05 115 0.95 173184 0.33 0.67 1.00 0.00 0.141 0.080 3.18 1.77 

WA30 22 177 80188 883 3.34E-05 177 1.34 1060 -- -- 0.24 0.76 0.557 0.251 0.78 1.96 

WA44 21 358 267037 2366 1.23E-05 358 0.92 267037 0.25 0.75 1.00 0.00 0.165 0.102 2.87 2.05 

WA32 19 775 176911 6821 1.82E-05 6821 1.16 160244 0.24 0.76 0.59 0.41 0.223 0.128 1.37 1.41 

WA46 14 108 108715 542 3.23E-05 108 0.91 35160 0.26 0.74 0.63 0.37 0.229 0.194 2.51 2.30 

WA42 13 555 38827 13164 1.34E-04 555 0.93 38827 1.00 0.00 0.81 0.19 0.239 0.172 1.85 0.47 

WA35 10 159 132601 159 3.77E-05 20546 4.79 23909 0.31 0.69 -- -- 0.233 0.699 0.07 2.92 

WA33 8 1235 81093 4610 4.36E-05 1235 1.27 81093 -- -- 0.40 0.60 0.375 0.153 1.82 1.25 

WA36 4 910 69134 910 3.34E-05 22381 1.00 69134 -- -- -- -- 0.421 1.000 0.49 1.88 
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Figure C3: Exponential fit for flight step distributions from wet dry logger data 

For TP fits see Chapter 5 

 

 
 
Figure C4: Mixed model fits for flight step distributions from wet/dry logger data.  

Two shortest plots not show. 
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11.2 Reanalysis of 2004 Albatross data 

In the following tables, Comp AIC refers to the competing distribution and OoM refers to Orders of Magnitude. 

Table C9. Data reanalysis showing TP fits 

Reference Steps 
Min 
Step 

Max 
Step 

Xmin Exponent Xmax 
Exp 

AICw 
Exp 

Comp AICw 
TP 

AICw 
TP 

Comp AICw 
Exp 
Fit 

TP 
Fit 

Fitted steps OoM 

2004_P 1416 40 53590 40 1.05 23430 1.00 0.00 1.00 0.00 0.105 0.052 1396 2.77 

2004_PNF 1416 40 53590 40 1.12 53590 0.00 1.00 1.00 0.00 0.257 0.085 1415 3.12 

2004_18 171 40 36130 230 1.10 14280 0.96 0.04 1.00 0.00 0.170 0.047 133 1.79 

2004_11 119 40 30190 40 1.22 30190 0.00 1.00 1.00 0.00 0.248 0.102 118 2.88 

2004_12 113 40 30410 180 1.16 30410 0.00 1.00 1.00 0.00 0.239 0.055 94 2.23 

2004_20 82 40 29490 40 1.01 12430 0.00 1.00 1.00 0.00 0.251 0.092 77 2.49 

2004_05 66 40 21210 350 1.44 21210 0.50 0.50 1.00 0.00 0.140 0.104 43 1.78 

2004_16 60 40 24380 110 1.42 24380 0.05 0.95 1.00 0.00 0.273 0.074 44 2.35 

2004_14 51 40 19430 40 1.59 2590 0.22 0.78 1.00 0.00 0.211 0.187 40 1.81 

2004_13 42 40 21070 40 1.21 21070 0.19 0.81 1.00 0.00 0.147 0.123 41 2.72 

2004_03 29 50 21760 320 1.13 21760 0.39 0.61 0.97 0.03 0.166 0.099 22 1.83 

 

Table C10. Data reanalysis showing exponential fits 

Reference Steps 
Min 
Step 

Max 
Step 

Xmin Exponent 
Exp 

AICw 
Exp 

Comp AICw 
TP 

AICw 
TP 

Comp AICw 
Exp 
GOF 

TP 
GOF 

Fitted 
steps 

OoM 

2004_08 64 40 53590 70 1.78E-04 1.00 0.00 1.00 0.00 0.097 0.114 54 2.88 

2004_07 64 40 35940 320 1.67E-04 0.99 0.01 1.00 0.00 0.062 0.098 37 2.05 

2004_17 24 40 20600 230 2.90E-04 0.90 0.10 0.97 0.03 0.122 0.176 18 1.95 
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Table C11. Data reanalysis showing mixed model fits 

Reference Steps 
Min 
Step 

Max 
Step 

Exp 
Xmin 

Exp 
Exponent 

TP 
Xmin 

TP 
Exponent 

TP 
Xmax 

Exp 
AICw 

Exp 
Comp 
AICw 

TP 
AICw 

TP 
Comp 
AICw 

Exp 
Fit 

TP 
Fit 

TP 
OoM 

Exp 
OoM 

2004_15 133 50 40020 720 1.94E-04 110 0.97 14960 0.99 0.01 1.00 0.00 0.080 0.050 2.13 1.74 

2004_01 117 40 22660 690 2.47E-04 50 0.96 13980 0.93 0.07 1.00 0.00 0.121 0.045 2.45 1.52 

2004_10 73 100 12950 100 4.40E-04 350 1.04 6650 0.99 0.01 0.99 0.01 0.125 0.120 1.28 2.11 

2004_06 62 50 10900 180 3.45E-04 50 0.84 10900 0.06 0.94 1.00 0.00 0.127 0.082 2.34 1.78 

2004_02 50 40 30500 180 2.25E-04 40 0.74 12230 0.93 0.07 1.00 0.00 0.150 0.084 2.49 2.23 

2004_09 40 50 34230 1250 1.06E-04 50 0.90 34230 0.48 0.52 1.00 0.00 0.102 0.077 2.84 1.44 

2004_04 34 70 36680 120 2.40E-04 110 0.77 6480 0.02 0.98 0.89 0.11 0.173 0.076 1.77 2.49 

2004_19 22 60 15980 330 2.02E-04 60 0.98 15980 0.27 0.73 1.00 0.00 0.167 0.097 2.43 1.69 

 

 
Figure C5. Exponential fits from the 2004 reanalysed data.  

Red line is the best fit exponential distribution; dashed blue line is the alternate TP. For TP fits see Chapter 5 

2004_8

Log
10

 Step length
2 3 4

L
o
g

1
0
 R

a
n
k

0.0

0.5

1.0

1.5
2004_7

Log
10

 Step length
2 3 4

L
o
g

1
0
 R

a
n
k

0.0

0.5

1.0

1.5
2004_17

Log
10

 Step length
2 3 4

L
o
g

1
0
 R

a
n
k

0.0

0.5

1.0



 

292 

 

 
Figure C6. Mixed model fits from the 2004 reanalysed data.  

The plots show the best fitting TP (red) and best fitting exponential (blue dashed) distributions. 
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12 Appendix D: Chapter 6 tables of results 

Encounter rates shown are adjusted for distance travelled using (No of encounters * 

104) / total distance travelled, unless otherwise specified. 

Table D1: Encounter rate with increasing detection radius 

Detection radius Shark-Fish encounters 

1 0.2224 

2 0.3590 

3 0.4866 

4 0.6056 

5 0.7227 

Table D2: Encounter rate with increasing prey field concentration 

No of fish Shark-Fish encounters 

20 0.0708 

40 0.1433 

60 0.2171 

80 0.2882 

100 0.3593 

120 0.4312 

140 0.5047 

160 0.5733 

180 0.6496 

200 0.7187 

Table D3: Encounter rates with increasing numbers of fish and sharks 

Total number of fish and sharks Shark-Fish encounters 

20 0.0707 

40 0.1435 

60 0.2150 

80 0.2886 

100 0.3584 

120 0.4308 

140 0.5012 

160 0.5757 

180 0.6487 

200 0.7203 
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Table D4: Encounter rates with increasing numbers of turns 

Number of turns Encounters 
Adjusted 

encounters 

20 677.00 3.2627 

40 1356.50 3.2729 

60 2029.50 3.2858 

80 2689.00 3.2876 

100 3368.00 3.2904 

Table D5: Results from the prey field analysis 

Ratio of fish to sharks Median Mean Std Dev 
K-S 

Prob. 

F10 : S190 640 645.437 120.918 0.092 

F50 : S150 2545.5 2549.292 241.736 0.133 

F70 : S130 3053 3069.078 252.559 0.004 

F100 : S100 3379 3386.221 265.67 0.516 

F130 : S70 3073 3084.514 245.479 0.304 

F150 : S50 2541 2545.489 235.86 0.282 

F190 : S10 634 636.795 118.751 0.008 

Table D6: Encounter rate and distance travelled (Uniform sharks) 

Maximum 
step-length 

Mean number 
of encounters 

Distance 
travelled 

5 104.39 1008040 

11 207.33 1045834 

17 277.47 1063398 

23 326.1 1073295 

29 361.06 1079700 

35 386.73 1084226 

40 403.98 1087046 

45 417.56 1089327 

50 429.29 1091208 

55 438.74 1092779 

60 449.03 1094096 

65 453.02 1095275 
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Table D7: Encounter rate and distance travelled (Lévy sharks) 

μ 
Mean number of 

encounters 
Distance travelled 

1.2 504.98 1098363 

1.4 486.91 1089642 

1.6 455.96 1074021 

1.8 410.49 1049143 

2 349.46 1014932 

2.2 283.33 975375 

2.4 222.56 936595 

2.6 172.85 902586 

2.8 135.03 874615 

Table D8: Destructive Lévy optimality results 

Predator Median Mean Std Dev 

TP 1.2 0.467 0.468 0.0194 

TP 1.4 0.462 0.462 0.02 

TP 1.6 0.444 0.445 0.02 

TP 1.8 0.411 0.412 0.0203 

TP 2.0 0.357 0.357 0.0188 

TP 2.2 0.292 0.292 0.0174 

TP 2.4 0.226 0.226 0.016 

TP 2.6 0.172 0.173 0.0135 

TP 2.8 0.133 0.133 0.0128 

Exponential 0.227 0.227 0.0157 

Uniform 0.203 0.203 0.0153 

Table D9: Non-destructive Lévy optimality results 

Predator Median Mean Std Dev 

TP 1.2 2.236 2.24 0.15 

TP 1.4 2.531 2.535 0.179 

TP 1.6 2.862 2.868 0.206 

TP 1.8 3.126 3.13 0.228 

TP 2.0 3.266 3.27 0.261 

TP 2.2 3.225 3.231 0.292 

TP 2.4 3.052 3.057 0.327 

TP 2.6 2.85 2.851 0.346 

TP 2.8 2.66 2.673 0.374 

Exponential 1.912 1.92 0.194 

Uniform 1.832 1.836 0.195 
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Table D10: Encounters with slow fish 

Predator Median 25% 75% 

TP 1.5 0.519 0.505 0.534 

TP 2.0 0.423 0.409 0.438 

TP 2.5 0.269 0.258 0.281 

Exponential 0.274 0.263 0.285 

Uniform 0.251 0.238 0.262 

Table D11: Encounters with slow fish adjusted for energetic costs 

Predator 
No of 

encounters 
Distance 
travelled 

Energetic 
cost of 

movement 

Standard 
metabolic 

cost 

Total 
energetic 

cost 

Encounters 
per unit 
energy 

expended 

TP 1.5 542.65 1081956.22 324.59 10.00 334.59 1.621851 

TP 2.0 419.69 1013347.57 304.00 10.00 314.00 1.336574 

TP 2.5 274.52 918175.02 275.45 10.00 285.45 0.961701 

Exponential 316.11 1018865.16 305.66 10.00 315.66 1.001427 

Uniform 287.03 1015369.58 304.61 10.00 314.61 0.912333 

Still 101.6 0 -- 10.00 10.00 10.160000 

Table D12: Encounters with fast fish 

Predator Median 25% 75% 

TP 1.5 0.582 0.568 0.597 

TP 2.0 0.591 0.573 0.607 

TP 2.5 0.620 0.603 0.638 

Exponential 0.570 0.554 0.584 

Uniform 0.568 0.553 0.585 

Table D13: Encounters with fast fish adjusted for energetic costs 

Predator 
No of 

encounters 
Distance 
travelled 

Energetic 
cost of 

movement 

Standard 
metabolic 

cost 

Total 
energetic 

cost 

Encounters 
per unit 
energy 

expended 

TP 1.5 618.34 1082029.55 324.61 10.00 334.61 1.847949 

TP 2.0 572.95 1013201.49 303.96 10.00 313.96 1.824911 

TP 2.5 526.45 918036.01 275.41 10.00 285.41 1.844534 

Exponential 540.77 1018835.85 305.65 10.00 315.65 1.713191 

Uniform 536.21 1015387.1 304.62 10.00 314.62 1.704331 

Still 445.05 0 -- 10.00 10.00 44.505000 
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Table D14: Encounter rates with evolved parameters 

Distribution Xmin Exponent Xmax 
Mean waiting 

time 
Encounter  

rate 

% Difference from  
non-evolved 

Uniform 

Uniform (non-evolved) 1  500 250 44155  

Uniform 119  174 147 s.d. 29 58148 31.69% 

Exponential 122 0.068  152 s.d. 52 58890 33.37% 

Power 68 2.83  149 s.d. 349 56403 27.74% 

TP 70 1.4 to 2.6 343 141 s.d. 65 57946 31.23% 

 

Table D15: Pair wise comparisons for encounter rates with evolved parameters 

Comparison 
Diff of 
Ranks 

q P<0.05 

Exponential vs Power 120001 9.293 Yes 

Uniform vs Power 96193.5 7.449 Yes 

TP vs Power 86477.5 6.697 Yes 

Exponential vs TP 33523.5 2.596 No 

Exponential vs Uniform 23807.5 1.844 Do Not Test 

Uniform vs TP 9716 0.752 Do Not Test 
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13 Appendix E: Chapter 7 tables of results 

Table E1: Spanish fleet percentile groups 

Group Days fishing Group % No of boats 

A 443 8.34% 2 

B 615 11.58% 3 

C 578 10.88% 3 

D 478 9.00% 3 

E 568 10.69% 4 

F 525 9.88% 5 

G 549 10.34% 6 

I 509 9.58% 9 

J 503 9.47% 21 
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Table E2: Detail of the Spanish fleet groupings 

Vessel 
Days 

fishing 
Group 

Days 
fishing 

Group % of total No of boats 
 

Vessel 
Days 

fishing 
Group Day  fishing Group % of total No of boats 

3743091_2008 232 A 443 8.34% 2  3716365_2008 63 I 509 9.58% 9 

3969296_2008 211 A     3841462_2008 61 I    

3647457_2008 210 B 615 11.58% 3  3640373_2008 59 I    

3778672_2008 207 B     4165394_2008 59 I    

3646330_2008 198 B     3775935_2008 58 I    

3751624_2008 193 C 578 10.88% 3  3730855_2008 57 I    

4242996_2008 193 C     3723610_2008 53 I    

3841623_2008 192 C     3908921_2008 51 I    

102720_2008 167 D 478 9.00% 3  2540099_2008 48 I    

1693078_2008 156 D     3709925_2008 47 J 503 9.47% 21 

4057202_2008 155 D     3834217_2008 45 J    

3730372_2008 152 E 568 10.69% 4  3721517_2008 43 J    

3504328_2008 145 E     2492604_2008 41 J    

2570689_2008 141 E     3525580_2008 39 J    

3268463_2008 130 E     3761284_2008 34 J    

96602_2008 119 F 525 9.88% 5  3948205_2008 32 J    

3786722_2008 113 F     3607046_2008 31 J    

3797348_2008 101 F     3770944_2008 31 J    

4203873_2008 97 F     4085860_2008 27 J    

3860299_2008 95 F     3468103_2008 25 J    

4192925_2008 94 G 549 10.34% 6  4167004_2008 24 J    

3834056_2008 92 G     3507709_2008 19 J    

4241547_2008 92 G     2407596_2008 14 J    

3640695_2008 91 G     3934842_2008 14 J    
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Vessel 
Days 

fishing 
Group 

Days 
fishing 

Group % of total No of boats 
 

Vessel 
Days 

fishing 
Group Day  fishing Group % of total No of boats 

4178113_2008 91 G     3933393_2008 9 J    

4090207_2008 89 G     3751463_2008 8 J    

3944180_2008 85 H 544 10.24% 7  3724898_2008 6 J    

3589497_2008 83 H     3793162_2008 5 J    

3952069_2008 79 H     3856274_2008 5 J    

3738744_2008 78 H     3889601_2008 4 J    

4234302_2008 75 H           

4027417_2008 73 H           

3808135_2008 71 H           
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Table E3: Portuguese fleet percentile groups 

Group Days fishing Group % No Of Boats 

A 199 10.39% 1 

B 143 7.47% 1 

C 276 14.41% 2 

D 134 7.00% 1 

E 226 11.80% 2 

F 199 10.39% 2 

G 181 9.45% 2 

H 153 7.99% 2 

I 236 12.32% 4 

J 168 8.77% 5 

Table E4: Detail of the Portuguese fleet groupings 

Boat name Days fishing Group Group % No Of Boats 

56007-2008 199 A 10.39% 1 

56463-2008 143 B 7.47% 1 

51655-2008 138 C 14.41% 2 

57678-2008 138 C    

51532-2008 134 D 7.00% 1 

58761-2008 115 E 11.80% 2 

56066-2008 111 E    

55765-2008 101 F 10.39% 2 

57262-2008 98 F    

53443-2008 92 G 9.45% 2 

55976-2008 89 G    

50998-2008 81 H 7.99% 2 

58511-2008 72 H    

51728-2008 66 I 12.32% 4 

30527-2008 62 I    

53141-2008 56 I    

56683-2008 52 I    

57578-2008 52 J 8.77% 5 

56452-2008 36 J    

58603-2008 36 J    

53798-2008 25 J    

50352-2008 19 J     

 
 



 

303 

 

Table E5: Coordinates of the three Marine Protected Areas 

 
Top left Bottom right 

MPA 
Longitude Latitude Longitude Latitude 

W. Africa -25 25 -19 20 

Iberian Peninsula -20 35 -11 40 

Goban Spur -14 49 -12 52 

 

Table E6: Shapiro-Wilk normailty test results for the Spanish fleet groupings 

Group W-Statistic p value Result 

Control 0.997 0.07 Passed 

A 0.996 0.01 Failed 

B 0.994    < 0.001  Failed 

C 0.998 0.53 Passed 

D 0.998 0.23 Passed 

E 0.996 0.01 Failed 

F 0.996 0.02 Failed 

G 0.999 0.58 Passed 

H 0.997 0.10 Passed 

I 0.999 0.60 Passed 

J 0.963    < 0.001  Failed 

Table E7: ANOVA results for Spanish fleet groupings 
Kruskal-Wallis One-way ANOVA on Ranks 

Group N Median 25% 75% 

Control 1000 0.766 0.752 0.781 

A 1000 0.278 0.251 0.309 

B 1000 0.788 0.75 0.83 

C 1000 0.862 0.825 0.903 

D 1000 2.021 1.956 2.094 

E 1000 0.708 0.669 0.752 

F 1000 1.025 0.977 1.074 

G 1000 0.885 0.845 0.927 

H 1000 0.331 0.305 0.358 

I 1000 1.045 1.004 1.09 

J 1000 0.386 0.36 0.416 
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Table E8: Tukey test results for Spanish fleet groupings 
Results are ordered by descending difference of ranks. 

Comparison Diff of Ranks q P<0.01  Comparison Diff of Ranks q P<0.01 

D vs A 9770088 97.29 Yes  D vs G 3485628 34.71 Yes 

D vs H 9024464 89.87 Yes  Control vs H 3283005 32.69 Yes 

I vs A 8293796 82.59 Yes  E vs A 3220319 32.07 Yes 

D vs J 8205448 81.71 Yes  G vs E 3064142 30.51 Yes 

F vs A 8074655 80.41 Yes  B vs J 2985191 29.73 Yes 

I vs H 7548172 75.17 Yes  C vs E 2718608 27.07 Yes 

F vs H 7329031 72.98 Yes  E vs H 2474695 24.64 Yes 

I vs J 6729156 67.01 Yes  Control vs J 2463989 24.54 Yes 

D vs E 6549769 65.22 Yes  I vs C 2354869 23.45 Yes 

F vs J 6510015 64.83 Yes  G vs Control 2255832 22.46 Yes 

G vs A 6284461 62.58 Yes  F vs C 2135728 21.27 Yes 

C vs A 5938927 59.14 Yes  I vs G 2009335 20.01 Yes 

D vs Control 5741459 57.17 Yes  C vs Control 1910298 19.02 Yes 

G vs H 5538837 55.16 Yes  F vs G 1790194 17.83 Yes 

D vs B 5220258 51.98 Yes  G vs B 1734630 17.27 Yes 

C vs H 5193303 51.72 Yes  D vs F 1695434 16.88 Yes 

I vs E 5073477 50.52 Yes  E vs J 1655679 16.49 Yes 

F vs E 4854336 48.34 Yes  J vs A 1564640 15.58 Yes 

G vs J 4719821 47.00 Yes  D vs I 1476293 14.70 Yes 

B vs A 4549831 45.31 Yes  C vs B 1389097 13.83 Yes 

C vs J 4374287 43.56 Yes  B vs E 1329512 13.24 Yes 

I vs Control 4265167 42.47 Yes  J vs H 819016 8.16 Yes 

F vs Control 4046026 40.29 Yes  Control vs E 808310 8.05 Yes 

Control vs A 4028629 40.12 Yes  H vs A 745624 7.43 Yes 

D vs C 3831161 38.15 Yes  B vs Control 521201.5 5.19 Yes 

B vs H 3804207 37.88 Yes  G vs C 345533.5 3.44 No 

I vs B 3743965 37.28 Yes  I vs F 219141 2.18 No 

F vs B 3524824 35.10 Yes      
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Table E9: Shapiro Wilk normaility test results for the Portuguese fleet groups 

Group W-Statistic p value Result 

Control  0.999 0.82 Passed 

A  0.998 0.27 Passed 

B  0.997 0.10 Passed 

C  0.997 0.11 Passed 

D  0.997 0.12 Passed 

E  0.997 0.04 Failed 

F  0.998 0.30 Passed 

G  0.995 0.01 Failed 

H  0.998 0.22 Passed 

I  0.996 0.02 Failed 

J  0.997 0.10 Passed 

 

Table E10: ANOVA results for Portuguese fleet groupings 

Group N Median 25% 75% 

Control 1000 2.093 2.037 2.153 

A 1000 1.638 1.548 1.729 

B 1000 2.385 2.252 2.517 

C 1000 2.304 2.203 2.406 

D 1000 2.44 2.3 2.59 

E 1000 3.122 2.982 3.242 

F 1000 2.899 2.769 3.03 

G 1000 3.061 2.912 3.221 

H 1000 2.797 2.667 2.941 

I 1000 2.059 1.975 2.153 

J 1000 2.601 2.482 2.744 
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Table E11: Tukey test results for Portuguese fleet groupings 
Results are ordered by descending difference of ranks. 

Comparison Diff of Ranks q P<0.01  Comparison Diff of Ranks q P<0.01 

E vs A 9143706 91.05 Yes  F vs D 3245584 32.32 Yes 

G vs A 8827049 87.9 Yes  H vs B 2982682 29.7 Yes 

F vs A 7852358 78.2 Yes  G vs J 2941663 29.29 Yes 

E vs I 7468046 74.37 Yes  D vs I 2931115 29.19 Yes 

E vs Control 7323897 72.93 Yes  D vs Control 2786966 27.75 Yes 

H vs A 7193651 71.64 Yes  H vs D 2586877 25.76 Yes 

G vs I 7151389 71.22 Yes  B vs I 2535309 25.25 Yes 

G vs Control 7007240 69.78 Yes  B vs Control 2391161 23.81 Yes 

F vs I 6176698 61.51 Yes  J vs C 2311077 23.01 Yes 

F vs Control 6032550 60.07 Yes  F vs J 1966973 19.59 Yes 

J vs A 5885386 58.61 Yes  E vs H 1950055 19.42 Yes 

E vs C 5569397 55.46 Yes  C vs I 1898649 18.91 Yes 

H vs I 5517991 54.95 Yes  Control vs A 1819809 18.12 Yes 

H vs Control 5373843 53.51 Yes  C vs Control 1754500 17.47 Yes 

G vs C 5252740 52.31 Yes  I vs A 1675660 16.69 Yes 

E vs B 4932737 49.12 Yes  J vs B 1674417 16.67 Yes 

G vs B 4616080 45.97 Yes  G vs H 1633398 16.27 Yes 

D vs A 4606775 45.88 Yes  H vs J 1308266 13.03 Yes 

E vs D 4536931 45.18 Yes  E vs F 1291348 12.86 Yes 

F vs C 4278050 42.6 Yes  J vs D 1278611 12.73 Yes 

G vs D 4220274 42.03 Yes  D vs C 1032466 10.28 Yes 

B vs A 4210969 41.93 Yes  G vs F 974691 9.71 Yes 

J vs I 4209726 41.92 Yes  F vs H 658707 6.56 Yes 

J vs Control 4065577 40.49 Yes  B vs C 636661 6.34 Yes 

F vs B 3641389 36.26 Yes  D vs B 395806 3.94 No 

H vs C 3619343 36.04 Yes  E vs G 316657 3.15 No 

C vs A 3574309 35.59 Yes  Control vs I 144149 1.44 No 

E vs J 3258320 32.45 Yes      

 

Table E12: Statistical analysis of the Spanish MPA results 
Kruskal-Wallis One-way ANOVA on Ranks 

Group N Median 25% 75% 

Control 1000 0.76 0.743 0.776 

Goban Spur 1000 0.797 0.78 0.813 

W.Africa 1000 0.935 0.915 0.955 

Iberia 1000 0.633 0.618 0.649 

Q1 1000 0.694 0.677 0.71 

Q2 1000 0.756 0.74 0.772 

Q3 1000 0.742 0.726 0.757 

Q4 1000 0.726 0.709 0.741 
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Table E13: Pair wise statistical analysis of the Spanish MPA results 
All Pairwise Multiple Comparison Procedures (Tukey Test) 

Comparison 
Diff of 
Ranks 

q P<0.01 

W.Africa vs Iberia 6956674 95.252 Yes 

W.Africa vs Q1 5700847 78.057 Yes 

Goban Spur vs Iberia 5585613 76.479 Yes 

W.Africa vs Q4 4503318 61.66 Yes 

Goban Spur vs Q1 4329786 59.284 Yes 

Control vs Iberia 4160391 56.965 Yes 

Q2 vs Iberia 3998562 54.749 Yes 

W.Africa vs Q3 3710729 50.808 Yes 

Q3 vs Iberia 3245946 44.444 Yes 

Goban Spur vs Q4 3132257 42.888 Yes 

W.Africa vs Q2 2958112 40.503 Yes 

Control vs Q1 2904564 39.77 Yes 

W.Africa vs Control 2796284 38.287 Yes 

Q2 vs Q1 2742735 37.554 Yes 

Q4 vs Iberia 2453356 33.592 Yes 

Goban Spur vs Q3 2339668 32.035 Yes 

Q3 vs Q1 1990119 27.249 Yes 

Control vs Q4 1707035 23.373 Yes 

Goban Spur vs Q2 1587051 21.73 Yes 

Q2 vs Q4 1545206 21.157 Yes 

Goban Spur vs Control 1425223 19.514 Yes 

W.Africa vs Goban Spur 1371061 18.773 Yes 

Q1 vs Iberia 1255827 17.195 Yes 

Q4 vs Q1 1197529 16.397 Yes 

Control vs Q3 914445 12.521 Yes 

Q3 vs Q4 792590 10.852 Yes 

Q2 vs Q3 752617 10.305 Yes 

Control vs Q2 161829 2.216 No 

Table E14: Statistical analysis of the Portuguese MPA results 
Kruskal-Wallis One-way ANOVA on Ranks 

Group N Median 25% 75% 

Control 1000 2.287 2.221 2.361 

Goban Spur 1000 2.287 2.221 2.361 

W.Africa 1000 2.484 2.408 2.563 

Iberia 1000 2.112 2.034 2.193 

Q1 1000 2.257 2.181 2.33 

Q2 1000 2.284 2.215 2.355 

Q3 1000 2.259 2.198 2.337 

Q4 1000 2.255 2.183 2.331 
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Table E15: Pair wise statistical analysis of the Portuguese MPA results 
All Pairwise Multiple Comparison Procedures (Tukey Test) 

Comparison Diff of Ranks q P<0.05 

W.Africa vs Iberia 5547694 75.96 Yes 

W.Africa vs Q4 3357147 45.97 Yes 

W.Africa vs Q1 3347605 45.84 Yes 

W.Africa vs Q3 3247634 44.47 Yes 

W.Africa vs Q2 2816007 38.56 Yes 

Goban Spur vs Iberia 2793893 38.26 Yes 

Control vs Iberia 2793893 38.26 Yes 

W.Africa vs Control 2753801 37.71 Yes 

W.Africa vs Goban Spur 2753801 37.71 Yes 

Q2 vs Iberia 2731688 37.40 Yes 

Q3 vs Iberia 2300060 31.49 Yes 

Q1 vs Iberia 2200089 30.12 Yes 

Q4 vs Iberia 2190548 29.99 Yes 

Goban Spur vs Q4 603346 8.26 Yes 

Control vs Q4 603346 8.26 Yes 

Goban Spur vs Q1 593804 8.13 Yes 

Control vs Q1 593804 8.13 Yes 

Q2 vs Q4 541140 7.41 Yes 

Q2 vs Q1 531599 7.28 Yes 

Goban Spur vs Q3 493833 6.76 Yes 

Control vs Q3 493833 6.76 Yes 

Q2 vs Q3 431628 5.91 Yes 

Q3 vs Q4 109513 1.50 No 

Q3 vs Q1 99971 1.37 No 

Goban Spur vs Q2 62206 0.85 No 

Control vs Q2 62206 0.85 No 

Q1 vs Q4 9542 0.13 No 

Goban Spur vs Control 0 0.00 No 

 

Table E16: Statistical analysis of the Spanish close season results 
Kruskal-Wallis One-way ANOVA on Ranks 

Group N Median 25% 75% 

Control 1000 0.766 0.752 0.781 

Q1 1000 0.615 0.600 0.631 

Q2 1000 0.736 0.720 0.752 

Q3 1000 0.969 0.949 0.989 

Q4 1000 0.754 0.738 0.771 
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Table E17: Pair wise statistical analysis of the Spanish close season results 
All Pairwise Multiple Comparison Procedures (Tukey Test) 

Comparison Diff of Ranks q P<0.05 

Q3 vs Q1 3999668 87.62 Yes 

Q3 vs Q2 2530412 55.43 Yes 

Control vs Q1 2468608 54.08 Yes 

Q4 vs Q1 2060808 45.15 Yes 

Q3 vs Q4 1938860 42.47 Yes 

Q3 vs Control 1531060 33.54 Yes 

Q2 vs Q1 1469256 32.19 Yes 

Control vs Q2 999352 21.89 Yes 

Q4 vs Q2 591552 12.96 Yes 

Control vs Q4 407800 8.93 Yes 

Table E18: Statistical analysis of the Portuguese close season results 
Kruskal-Wallis One-way ANOVA on Ranks 

Group N Median 25% 75% 

Control 1000 2.093 2.037 2.153 

Q1 1000 1.811 1.745 1.877 

Q2 1000 2.207 2.147 2.271 

Q3 1000 2.072 2.013 2.130 

Q4 1000 2.254 2.187 2.324 

Table E19: Pair wise statistical analysis of the Portuguese close season results 
All Pairwise Multiple Comparison Procedures (Tukey Test) 

Comparison Diff of Ranks q P<0.05 

Q4 vs Q1 3405632 74.61 Yes 

Q2 vs Q1 3006437 65.86 Yes 

Control vs Q1 1815801 39.78 Yes 

Q4 vs Q3 1808482 39.62 Yes 

Q3 vs Q1 1597150 34.99 Yes 

Q4 vs Control 1589831 34.83 Yes 

Q2 vs Q3 1409287 30.87 Yes 

Q2 vs Control 1190636 26.08 Yes 

Q4 vs Q2 399195 8.75 Yes 

Control vs Q3 218651 4.79 Yes 



 

310 

 

Table E20: Numerical results from the Spanish fleet analysis 

  Risk per day Total days at risk 

 Days Fishing Mean St dev Median 5
th

 % 95
th

% Mean  St dev Median 5
th

 % 95
th

 % 

Control 5312 0.766 0.022 0.766 0.730 0.804 4071 118.060 4069 3878 4271 

Close Q1 3716 0.615 0.023 0.615 0.580 0.653 2287 84.546 2285 2155 2428 

Close Q2 4577 0.736 0.024 0.736 0.699 0.775 3369 108.541 3368 3198 3549 

Close Q3 3699 0.968 0.030 0.969 0.918 1.016 3582 109.730 3583 3395 3759 

Close Q4 3944 0.754 0.025 0.754 0.713 0.797 2976 99.772 2973 2811 3143 

Group A 443 0.281 0.045 0.278 0.208 0.357 124 19.833 123 92 158 

Group B 615 0.790 0.059 0.788 0.696 0.896 486 36.370 484 428 551 

Group C 578 0.864 0.060 0.862 0.768 0.965 499 34.733 498 444 558 

Group D 478 2.025 0.102 2.021 1.856 2.195 968 48.591 966 887 1049 

Group E 568 0.712 0.062 0.708 0.616 0.820 404 35.287 402 350 466 

Group F 525 1.027 0.074 1.025 0.903 1.150 539 38.852 538 474 604 

Group G 549 0.885 0.060 0.885 0.787 0.985 486 33.044 486 432 541 

Group H 544 0.332 0.039 0.331 0.270 0.399 181 21.205 180 147 217 

Group I 509 1.046 0.065 1.045 0.935 1.153 532 33.311 532 476 587 

Group J 503 0.387 0.040 0.386 0.322 0.457 195 20.354 194 162 230 

MPA W. Africa 4237 0.928 0.027 0.927 0.884 0.970 3930 113.423 3928 3747 4112 

MPA Iberia 5041 0.655 0.022 0.655 0.621 0.691 3303 108.437 3303 3129 3482 

MPA Goban Spur 5058 0.800 0.023 0.800 0.761 0.839 4045 117.381 4045 3851 4242 

MPA Iberia & Q1 5172 0.698 0.021 0.698 0.663 0.733 3608 111.073 3609 3430 3791 

MPA Iberia & Q2 5304 0.764 0.022 0.764 0.728 0.802 4053 117.816 4052 3861 4252 

MPA Iberia & Q3 5274 0.752 0.022 0.751 0.715 0.789 3965 117.671 3960 3771 4160 

MPA Iberia & Q4 5227 0.744 0.022 0.744 0.707 0.780 3890 115.799 3889 3698 4078 
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Table E21: Numerical results from the Portuguese fleet analysis 

  Risk per day fishing Days at risk 

 Days Fishing Mean St dev Median 5
th

 % 95
th

 % Mean  St dev Median 5
th

 % 95
th

 % 

Control 1915 2.094 0.083 2.093 1.959 2.230 4010 158.971 4009 3752 4270 

Close Q1 1265 1.813 0.093 1.811 1.666 1.967 2294 117.665 2291 2108 2488 

Close Q2 1738 2.207 0.091 2.207 2.056 2.351 3836 158.216 3835 3574 4086 

Close Q3 1541 2.072 0.087 2.072 1.927 2.216 3193 133.665 3193 2970 3415 

Close Q4 1201 2.254 0.101 2.254 2.085 2.424 2707 120.702 2706 2504 2911 

Group A 199 1.640 0.135 1.638 1.427 1.869 326 26.952 326 284 372 

Group B 143 2.389 0.199 2.385 2.077 2.734 342 28.430 341 297 391 

Group C 276 2.306 0.145 2.304 2.080 2.551 636 40.128 636 574 704 

Group D 134 2.443 0.223 2.440 2.082 2.821 327 29.868 327 279 378 

Group E 226 3.119 0.193 3.122 2.801 3.429 705 43.726 705 633 775 

Group F 199 2.901 0.199 2.899 2.578 3.236 577 39.650 577 513 644 

Group G 181 3.073 0.231 3.061 2.718 3.464 556 41.730 554 492 627 

Group H 153 2.804 0.217 2.797 2.444 3.163 429 33.227 428 374 484 

Group I 236 2.064 0.140 2.059 1.843 2.305 487 33.105 486 435 544 

Group J 168 2.615 0.201 2.601 2.292 2.958 439 33.748 437 385 497 

MPA W. Africa 1753 2.275 0.091 2.274 2.126 2.426 3988 159.181 3987 3727 4252 

MPA Iberia 834 1.806 0.091 1.806 1.661 1.953 1506 75.580 1506 1385 1629 

MPA Goban Spur 1915 2.094 0.083 2.093 1.959 2.230 4010 158.971 4009 3752 4270 

MPA Iberia & Q1 1445 1.912 0.085 1.911 1.778 2.058 2763 123.206 2761 2569 2974 

MPA Iberia & Q2 1904 2.090 0.083 2.089 1.954 2.224 3979 158.086 3978 3720 4235 

MPA Iberia & Q3 1742 2.037 0.082 2.034 1.905 2.175 3548 142.981 3543 3318 3789 

MPA Iberia & Q4 1488 2.181 0.090 2.180 2.036 2.326 3246 133.510 3243 3029 3461 
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14 Appendix F: Foraging lab simulation program 

14.1 Introduction 

The ‘foraging lab’ is a 2D lattice based foraging simulation, written in Microsoft C#, 

where the lattice, or ‘tank’ (the simulation is designed as a null model for laboratory 

studies) can be set to any arbitrary size, memory permitting, and where the forager is a 

random walker with uniform random turning angles and move step-lengths drawn 

from either a uniform, exponential, power-law or truncated power-law distribution. 

The lattice is populated with prey patches which are encountered and optionally 

consumed by the forager. 

14.2 Prey patch construction and distribution 

A single prey patch has parameters of size (i.e. the length of the side of a square lattice 

in no of cells) and the biomass. The patch is created by overlaying random walks, 

starting at the centre which increment the biomass of each cell visited. All steps in this 

walk are one unit and move to one of the eight neighbours; each walk is performed 

until the edge of the patch is reached. By this method a ‘fuzzy’ patch can be built 

where the maximum concentration of biomass is at the centre of the patch. 

Any number of patches can be created in the tank. The distribution of the patches can 

be simple random, i.e. distributed according to a Poisson process by selecting uniform 

random values for the X and Y coordinates. Alternatively patches can be distributed 

according to a specified distribution (i.e. Uniform, Exponential, power-law or truncated 

Pareto) whereby the first patch is placed at random coordinates and subsequent 

patches are placed by using a uniform random angle on the interval [0,2π] radians and 

a vector drawn from the specified distribution. 

The total biomass is recorded along with the total number of populated cells (i.e. cells 

with > 0 biomass). The populated tank can be saved for use in later simulations to 

ensure prey field variability is not a factor in simulation variability. 
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14.3 Foraging runs 

A virtual forager is specified using parameters of number of move steps, maximum 

path length and move step-length distribution (i.e. Uniform, Exponential, power-law or 

truncated Pareto). A single foraging run comprises a random walk performed within 

the tank in continuous space with boundaries being reflecting; each walk begins at a 

random location. The generation and interpolation of move steps is as described in the 

general methods chapter. At each interpolated step the cell coincident on the forager’s 

location is checked for biomass. The foraging run ends when the specified number of 

steps has been performed or when the total distance travelled reaches the specified 

maximum. When fewer than 20 foraging runs are performed the resulting paths are 

displayed with the prey field to allow visual confirmation and testing (Figure F1). 

14.4 Foraging strategies 

Foraging can either be non-destructive, where the cell biomass contents are 

unchanged by the forager, or destructive with cell biomass values being set to zero 

when encountered. Note that the consumed biomass is not replaced within the tank as 

this would disrupt the prey distribution; consequently prey availability steadily 

decreases under this scenario. 

Prey targeting can be switched on, causing the forager to halt a move step whenever a 

populated cell is encountered. A new move step is then computed. 

14.5 Famine periods 

The number of interpolated moves performed between encountering biomass are 

counted and recorded as famine periods. If the forager encounters no prey then there 

will be a single famine period with a duration equal to the total number of interpolated 

move steps performed.  

14.6 Statistics 

The program records total biomass consumed, total distance travelled and the number 

and duration of all famine periods for each forager. Two levels of statistics are 

available: detailed, where the outcome of every foraging run is written to an output 
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file, in CSV format; or simple where only the computed means and standard deviation 

of distance travelled and biomass consumed is recorded. Any number of multiple 

repeats can be performed, and a simple macro language allows a set of studies to be 

automated. 

14.7 Recording foraging paths 

A further option exists to record foraging runs, by writing the end points of each move 

step to an output file in CSV format. It should be noted that if the forager’s path 

reflects off the tank boundary then the actual move step will be lost as only the start 

and end coordinates will have been recorded. Therefore an option is provided to 

record an ‘un-reflected’ movement path. This option maintains separate XY 

coordinates and the original un-reflected deltas. Normally, when the boundary is 

reached, either the dx or dy movement delta is negated, reversing movement in that 

dimension and effecting a reflection from the boundary. When recording an un-

reflected path this still occurs however the separate DX and DY deltas are unchanged 

and therefore the un-reflected coordinates are incremented as if no boundary was 

encountered. The overall effect is that the foraging path now continues over a 

boundless plain which is tessellated by repeated tiles of the foraging arena (Figure F2); 

long steps are therefore no longer truncated. 

 
Figure F1: An example screen shot from the ‘foraging lab’ program 

Five TP2.5 foragers in a Lévy distributed prey field. Foraging tracks are only drawn when fewer than 20 
runs are performed, for illustrative and testing purposes. 
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Figure F2: How a reflected prey field appears to an unreflected forager 

To an unreflected forager the prey field is effectively tessellated, through either horizontal or vertical 
reflection, to produce a boundless field with an identical prey distribution. In effect the prey field is 
reflected rather than the forager. 
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15 Appendix G: Predator-Prey simulation program 

15.1 Introduction 

The ‘predator-prey’ simulation is a 2D lattice based program written in Microsoft C# 

where the simulation arena comprises 500x250 cells. The purpose of the simulation is 

to investigate the effect of differing movement patterns on the encounter rates 

between predators and prey. The program provides a null model of interactions where 

each interacting individual is unaware of the existence of other individuals outside a 

narrow sensory range. Two types of predator behaviour can be simulated, cruise 

predation or ambush predation. In each case foraging can be non-destructive, or 

destructive with replacement (i.e. relocation). The program records distance travelled 

and number of encounters for each individual and reports averages over the requested 

number of runs with standard deviations; the principal metric is therefore encounters 

per unit distance travelled. For ambush predators the time spent waiting and the time 

spent active (i.e. moving) are also recorded. Prey behaviour is simpler than predator 

behaviour, being simply an uncorrelated random walk with step-lengths drawn from 

one of the standard distributions. However the ‘prey-field’ can be structured into a 

grid with cells being allocated randomly as either sparse or abundant allowing 

simulations in a heterogeneous environment. 
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15.2 Simulation parameters 

Table G1: Predator-Prey simulation parameters 
The following parameters control the simulation 

Parameter Type Description 

Number of fish integer The number of prey 

Fish foraging style distribution 
The distribution and associated parameters to use to control the 
movement of the prey 

Count fish encounters boolean Whether to count interactions as ‘seen’ by the prey 

Number of sharks Integer The number of predators 

Shark foraging style Integer 
The distribution and associated parameters to use to control the 
movement of the predators 

Destructive predation boolean Whether prey are ‘eaten’ (i.e. relocated) when encountered 

Prey targeting boolean Whether a move step is halted when prey is encountered 

Ambush mode boolean Whether ambush mode is implemented 

Waiting time distribution 
If ambush mode is selected then the waiting time can be set 
using a probability distribution or can be set to an infinite wait 
by setting it to Still 

Move on encounter boolean 
If ambush mode is selected then the predator can be set to 
move once a prey is encountered, in which case a move is 
performed using the shark foraging style 

Scan on move boolean 
Whether relocating ambush predators check for encounters 
during the move 

Use prey field grid boolean 
If selected then a heterogeneous prey field will be created using 
the grid  size and Strength parameters 

Prey field grid  size integer 
One of 3 prey field grid sizes can be specified: 10x10, 5x5, or 2x2 
cells. 

Prey field strength integer 
The strength of the prey field can be adjusted between 1 and 9, 
with 1 being the weakest effect and 9 the strongest 

Number of turns integer 
The number of k turns that will be performed in a single 
simulation 

Number of repeats integer 
The number of repeats to be performed in order to allow 
statistical analysis 

Evolve sharks boolean 
Whether evolution processing will be performed following each 
repeat 

Evolve move steps boolean Whether the move step distribution parameters will be evolved 

Evolve waiting times boolean 
Whether the waiting time distribution parameters will be 
evolved 

Mutation rate decimal 
A value between zero and 1.0 that specifies the probability that 
the parameters of a reproducing shark will undergo a mutation 

Mutation factor decimal 
A value between zero and 1.0 that controls the extent to which 
a parameter changes under mutation; i.e. 0.1 represents a ± 
10% change in the value 

15.3 Instantiating fish and sharks 

At the start of a simulation run (or repeat) the required number of fish and sharks are 

instantiated and placed at random locations within the 2D array representing the 

arena. For fish, if the prey field grid is in use, a location within a sparse grid cell can be 
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rejected with a probability dependant on the prey field grid strength (see below); the 

location will also be rejected if it is already occupied (which applies to sharks as well); 

new random locations are selected until a suitable one is found. When an empty cell is 

found an entry is made at that grid location identifying the fish or shark. Each fish and 

shark therefore has two sets of location data; coordinates in continuous space and an 

entry in the 2D array which allows it to be ‘seen’ by other fish or sharks moving within 

the simulation. 

For fish, or sharks if not in ambush mode, a trajectory is required and is calculated 

using a vector drawn from the specified distribution and a random angle on the 

interval [0, 2π] radians. From these values interpolated movement deltas are 

calculated as described in the General Methods chapter. Note that sharks do not share 

a single set of movement (and waiting) parameters but have individual values 

populated from the parameter values at the start, even if evolution processing is not 

being performed. 

For sharks in ambush mode a waiting time is required which is drawn from the 

specified distribution; all sharks start off waiting when in ambush mode.  

15.4 Individual movement 

On each turn the interpolated deltas are applied to the current position and from the 

new position grid cell indices are calculated (simply by taking the integer of the 

continuous coordinates). If the grid location is unoccupied the shark will be relocated 

to that position by removing the entry from the old grid cell and making a new entry at 

the new location. If the location is occupied then the continuous space coordinates are 

still updated with the new position and the move within the grid is postponed until the 

next turn at which point the cell is likely to be free. 

For ambush predators in waiting mode there is no move to make, instead the waiting 

time is decremented and on zero a new move trajectory is selected as described 

above. 

Following the move (or wait) the new area is scanned for encounters as described 

below, unless the entity is a shark in ambush mode that is in the process of relocating.  
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15.5 Detection area and encounters 

The detection area is calculated from the new grid location ± the detection radius as 

shown below in Figure G1; the number of cells checked for a given radius is given in 

Table G2. A radius of 2 was used in all simulations except those performed to 

investigate the effect of changing the value. All the cells in the detection area are 

checked and if any are occupied the encounter is recorded. For a fish there is no 

further action taken following the detection of an encounter, it is simply counted (if 

required). For a shark in cruise predation mode, if prey targeting has been selected, 

then the shark will halt its current move step and a new step will be calculated as 

described above. If the encounter is instigated by a shark (being the entity being 

processed) and the encounter is with a fish and destructive predation is selected then 

the fish is relocated to a new random location and is given a new trajectory. If the 

encounter is instigated by a shark in ambush mode and move on encounter is selected 

then a new trajectory is selected and a move will begin on the next turn. Otherwise the 

waiting time is extended by a new increment drawn from the specified distribution. 

15.6 Prey field grid 

To generate a heterogenic prey field a prey field grid (PFG) can be specified which 

overlays a coarse grid upon the 2d simulation lattice. Two parameters control the PFG, 

the grid size and the grid strength. The prey field grid size can be specified as 10 x 10, 5 

x 5 or 2 x 2; to avoid edge effects in the relatively small arena used in the simulations 

presented here only the 2x2 grid was used. The strength is an integer on the interval 

[1, 9] when 1 is weak and 9 is strong; only the value of 9 was used here. The cells of the 

grid are randomly assigned a value of either sparse (0) or abundant (1) such that 50% 

of the grid cells are abundant. The grid is used on two occasions within the simulation, 

firstly when determining a random start location and secondly when computing a new 

trajectory; the grid is only used when dealing with fish. When determining the start 

location the PFG cell that corresponds to the proposed start location is checked; if the 

cell is marked as abundant it is allowed, otherwise it is rejected with a probability 

dependant on the grid strength. When computing a new trajectory, if the fish is in an 

abundant PFG cell no changes are made to the move. However if in a sparse PFG cell 

the number of move steps is increased by a factor based on the PFG strength; with a 
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strength of 9 this results in 9 x more steps being made. No change is made to the 

direction of the move. The result of increasing the number of steps is to increase the 

diffusivity and directionality of the move such that the fish is more likely to quickly 

leave the grid cell. As discussed previously this method works well when the fish have 

a movement pattern corresponding to normal (Brownian) diffusion, but breaks down if 

the fish already have a super-diffusive pattern, such as a Lévy walk. In that situation 

the fish tend to leave the abundant grid cells too quickly and the heterogeneity 

disappears. 

15.7 Evolution 

If evolution is selected then at the end of each repeat (i.e. following the specified 

number of turns) the shark population is sorted by the number of encounters each has 

accumulated. The top 30% are then each ‘cloned’ to replace the bottom 30%. The 

value of 30% was chosen to provide a reasonably fast rate of change within the 

population without losing all stability (with a mutation rate of 0.5 one sixth of the 

population changes at each evolutionary step). During the replication process a 

movement and/or waiting time parameter can be mutated with a probability set by 

the mutation rate parameter. If selected for mutation then one of the two or three 

distribution parameters is selected (with equal probability) and is then adjusted by ± 

the mutation factor. 
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Figure G1: Detection area in the Predator-Prey program 
The detection area; 0 indicates the location of the shark. 
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Table G2: Number of cells checked for a specified detection radius 

Radius Cells scanned 

1 8 

2 24 

3 48 

4 80 

5 120 
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16 Appendix H: The shark simulation program 

16.1 Introduction 

Ideally tracks from real sharks, recorded with either SPOT or PAT tags would be used to 

determine the spatial and temporal interactions between the sharks and the fishing 

fleets. However, at present, there is simply insufficient data to make the analysis 

meaningful. Figure H1 illustrates the problem with the tracks of the 20 sharks for 

which data is currently available; it is clear that the tracks comprise too few locations 

and are too limited in spatial extent to be useful, with only 5 recorded interactions. In 

order to investigate how the fleets might interact with a pelagic predator, such as a 

blue shark, and to gain a better understanding of the spatio-temporal distribution of 

the risk posed by the fleet, it is possible to use a simulated by-catch prey field. The 

shark simulation program presented here is designed to build up a prey field through 

the generation of many individual shark tracks. While it is beyond the scope of this 

work to attempt to emulate the complex behavioural patterns of migration or site 

fidelity exhibited by real blue sharks it is never the less possible to simulate the 

movements of a generic pelagic predator using movement dynamics and thermal 

preferences based on those recorded from tagged blue sharks. 

The program uses a land map to define the coastline (see Figure H1) to constrain 

simulated sharks geographically and daily sea surface temperature (SST) maps as a 

thermal constraint. Each generated track comprises 366 move steps with each step 

representing one day; interactions are to be analysed on a daily basis so finer 

resolution is not needed. A pool of 20,000 individual tracks was created and the by-

catch prey field was built for each analysis run by selection 1000 tracks at random. 

Further details of how the program worked are given below. 

16.2 Program operation 

On start up a set of resources are loaded which will be used for all simulation runs; 

these comprise the coastline bitmap, the temperature maps and the coordinates of 

the population centre which will be used to help constrain the simulated sharks to the 

study area and reduce edge effects. 
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The area matches that used in the Grid Occupancy program and represents the north 

eastern Atlantic, covering an area of 3896182.18x3896182.18m with the lower left 

corner positioned at x = -3896182.18; y = 2226389.82. 

Unlike with the foraging lab there is no underlying grid representation of the area 

within which the sharks will move, however there are grid overlays for land & 

temperature.  

Details of the generation of a track are provided below, but in summary each 

simulated track begins on 2008-01-01 at a location randomly chosen, within the 

specified maximum distance of the population centre. A step-length is then selected 

according to the specified movement pattern with a uniform random turn angle on the 

interval [0, 2π] radians. This turn angle can be modified as described below depending 

on sea surface temperature or distance from the population centre. The move is 

performed by interpolating the vector at 20m intervals, prior to each of which a 

coastline check is made; should land be encountered the move is terminated. Further 

move steps are generated and executed as described until the specified number of 

move steps is reached. The end point of each move step is written to a file in comma 

separated variable (CSV) format for use in the grid occupancy program. 

16.2.1 Coastline 

On start up a land map is generated from a coastline bitmap which has dimensions of 

1200x1200 pixels. The map has dimensions of 604x604 pixels which is sufficient detail 

for the simulation and reduces memory usage. During shark move processing 

interactions with land are dealt with by translating shark coordinates (in m) to 

coastline coordinates to allow checking prior to each interpolated move step, as 

described below. 

16.2.2 Temperature maps 

Maps were generated for each month from OSTIA monthly cloud free data sets using 

ArcGIS with a grid size of 350x350. Factors were calculated to translate shark 

coordinates (in m) to grid cell coordinates to allow SST to be checked prior to each 

interpolated move step, as described below.  All maps are loaded into an array at start 

up so that all that is needed to select a new map is to change the current map index.  
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Once the monthly maps are loaded daily maps are created by interpolation.  Having 

daily maps reduces sudden temperature changes but does not increase processing 

time, only memory requirements. 

16.2.3 Track step-length calculations 

Each step of the simulated track will represent the movement from a single day.  Step-

lengths can be drawn from a statistical distribution, such as exponential, power-law or 

truncated Pareto, or can be drawn from a sample track (recorded from a tagged shark) 

which has been pre-loaded for this purpose. Sample tracks used to derive step-lengths 

are pre-processed to simply interpolate steps to 1 day intervals. If a random number 

generator is used, especially a power-law, then it is very likely that steps greater than 

would be possible in one day will be generated. When the step exceeds the daily 

maximum (86.4km) the step is spread over several days as required. Each step is 

interpolated at 20m intervals to ensure that the interaction with the coastline is 

handled accurately. 

16.3 Generation of a simulated track 

Each track starts within the maximum distance of the population centre (PC) and 

comprises 366 days of move steps (as the tracks are for 2008) with step-lengths 

derived as described above. At the start of each move step a direction of movement is 

computed such that if there are no constrains imposed by either sea surface 

temperature or distance from the PC then the angle is uniform random on the interval 

[0, 2π] radians. Otherwise the angle of movement is modified as follows. 

If the sea surface temperature at the current location is within the specified optimum 

range (Trng; i.e. 16-23°C) then the angle is calculated according to the distance from 

the PC as described below. Otherwise a base angle θ is computed to be π if the 

temperature is too cold, otherwise is zero. This creates a base angle whereby the shark 

will head south if too cold or north if too hot which, within the confines of the study 

area, is sufficient to provide a behavioural response to temperature. The angle is then 

modified by adding a randomising factor dependant on the extent of the difference 

between the temperature (T) and the average optimum temperature (Topt) using: 

  f = Max[0.1, 1.0 - (|Topt – T| / Trng)] 
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the final angle a is found using 

  a = U[0,2π] + (θ.f). 

If the SST is within the specified range then temperature will have no effect on the 

direction of movement which will then only be constrained by the distance from the 

populations centre. As the distance to the PC (D) approaches the maximum specified 

distance (Dmax) then the direction of movement will be controlled so that the 

Population Centre (PC) will seem to exert a force on the simulated shark: while close to 

the PC there will be little or no directionality, however as distance from the PC 

increases movement will become increasingly directed towards the PC.  In other words 

the further the shark is from the PC the more likely it will be to move back towards it. 

To achieve this two angles are first computed: a) the angle θ back from the shark to 

the PC; b) a random angle on the interval [0, 2π]. The distance from the PC (D) is then 

used to compute a factor f ranging from 0.1 to ~ 1.0 using 

  f = Max[0.1, 1.0 - (D / Dmax)] 

the final angle a is found using 

  a = U[0,2π] + (θ.f). 

Therefore when the distance is < the maximum distance the angle is essentially 

random but as the distance approaches the maximum distance the angle becomes 

directed back in the general direction of the PC. 
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16.4 Simulation parameters 

Table H1: Shark simulation program parameters 
The following parameters control the creation of the simulated track: 

Parameter Description 

Number of tracks The number of tracks to be created. 

Number of steps 
The number of one day steps in each track.  This defaults to the number of days in the 
specified year which for this study is 2008, so this parameter was set to 366. 

Year 
The 3D Grid Occupancy program can use tracks from different years to allow analysis of 
time frames spanning year end.  Different years can therefore be specified for the 
simulated tracks; here all tracks were set to 2008. 

Optimum temperature 
range 

The temperature range (°C) that will be used to constrain the track. The range 16-23 was 
used for these tracks. 

Maximum distance 
from population centre 

The population centre acts to prevent simulated sharks moving too far from the centre 
of the study area thereby reducing edge effects. A value of 120000m was used in this 
study. 

Maximum distance per 
day 

The furthest distance to be travelled in a single day.  If a single step exceeds this then it 
will be split over several days. A value of 86.4km was specified, representing a mean 
speed of 1ms-1. 

Movement style 
This specifies either a theoretical distribution (e.g. power-law or exponential) or that 
step-lengths should be draw from an imported sample track. 

Movement distribution 
parameters 

Xmin, μ and Xmax as appropriate. 

Population centre 
coordinates 

X = -1948275, Y = 3940710 

16.5 Program validation and development 

16.5.1 Optimal temperature range 

An appropriate temperature range to use to constrain the sharks was determined from 

records from sharks tagged with pop up archival transmitters (PAT). The returned data 

provides time at temperature matrices such as that shown Figure H2 and described by 

Queiroz et al. (2010). From this data a histogram was produced to obtain the 

temperatures experienced by both adult and juvenile sharks (Figure H3) from which a 

range of 16-23°C was considered to be appropriate as a constraint for the simulated 

sharks. When remotely sensed SST data sets became available a further analysis was 

performed, whereby the SST for each location in each of the 20 tagged shark tracks 

was determined. The results are shown in Figure H4 

It is straightforward to add the sea surface temperature (SST) at each point in the 

simulated track to the output file and therefore to allow a verification of the constraint 

applied by the SST movement controls. The results of this analysis are shown in Figure 

H5 and it is clear that at no point does the recorded SST exceed the limits set in the 
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simulation. Figure H6 shows the sequence of SST changes throughout the year to 

which the sharks are responding; the rapidly advancing warm front evident in July 

causes the recorded temperature to rise as shown in Figure H5 and pushes the sharks 

northward.  

16.5.2 Ensuring an even distribution of modelled sharks 

At the start of each simulation run all sharks start at a position calculated to be one 

random step away from the coordinates of the population centre. It was found that 

this tended to concentrate the sharks at this location during the first few months more 

than was expected as illustrated in Figure H7 which shows the maximum number of 

sharks recorded in a single grid cell for each day of the year. To reduce this unrealistic 

concentration each simulation was allowed to run for 360 days before starting to 

collect location data; i.e. each simulation was started on the 4th of January 2007 with 

data being collected from the 1st of January 2008. Doing so allows the sharks to 

disperse sufficiently for no unrealistic clumping to occur, as shown in Figure H8 where 

shark concentrations fluctuate throughout the year as the sharks respond to changing 

temperatures. Figure H9 shows the shark simulation program output display with 100 

simulated shark tracks. 

 
Figure H1: Real shark tracking data 

a) Tracks from 20 sharks tagged with either SPOT or PAT tags; b) 2D Grid occupancy summary of space use 
by the 20 real sharks; c) 2D Grid occupancy summary showing space use for the two fleets; d) 3D Grid 

a b

c d

a b

c d
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occupancy analysis showing actual interactions between the real sharks and the boats. There are too few 
interactions to make the analysis useful. 

 
Figure H2: Time at temperature matrix for a blue shark 

 

 

 
Figure H3: Temperature preferences from tagged sharks 

The histogram shows records of temperatures recorded from both adult and juvenile sharks by pop up 
archival tags (PATs) in the North East Atlantic. A temperature range of 16-23°C is sufficient to encompass 
most of the recorded values. 
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Figure H4: Remotely sensed SST values from tagged blue sharks 

Sea surface temperature values derived from remote sensing data for 20 tagged blue sharks. Other than 
the one shark (SPOT 66957) the selected temperature range of 16-23°C can be seen to encompass the 
majority of the recorded temperatures. These data compare well with the values obtained from the tag 
recorded time at temperature histograms, suggesting that, when swimming near the surface, sharks are 
well above the thermocline. 

 
Figure H5: Verification of the temperatures experienced by simulated sharks 

Blue line is the temperature record from a single shark; Black line shows the average values from 10 
sharks. The recorded temperature stays within the 16-23°C temperature range. 
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Figure H6: The sequence of SST changes throughout the year 

SST maps for the months a) January; b) April; c) July and d) October. 

 
Figure H7: Shark occupancy with no start up delay 

When all simulations begin with sharks positioned one move step from the population centre there is an 
unrealistic clumping of sharks in the first few months, before they disperse throughout the area. 
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Figure H8: Shark occupancy with a start-up delay 

When the simulation is run for 360 days prior to beginning to record the track the sharks have already 
dispersed before data is collected; there is no longer any clumping in the first few months. 

 
Figure H9: The simulation program display 

The figure shows 100 simulated shark tracks overlain on a sea surface temperature map (for January) and 
the coastline that forms the western boundary of the study area. While most sharks are confined to an 
area west of the Iberian Peninsula there are many movements which extend well beyond this area, as far 
south as The Gambia and north into the Bay of Biscay. 
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LETTERS

Environmental context explains Lévy and Brownian
movement patterns of marine predators
Nicolas E. Humphries1,2, Nuno Queiroz1,3,4, Jennifer R. M. Dyer1, Nicolas G. Pade1,4, Michael K. Musyl5,
Kurt M. Schaefer6, Daniel W. Fuller6, Juerg M. Brunnschweiler7, Thomas K. Doyle8, Jonathan D. R. Houghton9,
Graeme C. Hays10, Catherine S. Jones4, Leslie R. Noble4, Victoria J. Wearmouth1, Emily J. Southall1

& David W. Sims1,2

An optimal search theory, the so-called Lévy-flight foraging hypo-
thesis1, predicts that predators should adopt search strategies
known as Lévy flights where prey is sparse and distributed unpre-
dictably, but that Brownian movement is sufficiently efficient for
locating abundant prey2–4. Empirical studies have generated con-
troversy because the accuracy of statistical methods that have been
used to identify Lévy behaviour has recently been questioned5,6.
Consequently, whether foragers exhibit Lévy flights in the wild
remains unclear. Crucially, moreover, it has not been tested whether
observed movement patterns across natural landscapes having
different expected resource distributions conform to the theory’s
central predictions. Here we use maximum-likelihood methods to
test for Lévy patterns in relation to environmental gradients in the
largest animal movement data set assembled for this purpose.
Strong support was found for Lévy search patterns across 14 species
of open-ocean predatory fish (sharks, tuna, billfish and ocean sun-
fish), with some individuals switching between Lévy and Brownian
movement as they traversed different habitat types. We tested the
spatial occurrence of these two principal patterns and found Lévy
behaviour to be associated with less productive waters (sparser prey)
and Brownian movements to be associated with productive shelf or
convergence-front habitats (abundant prey). These results are con-
sistent with the Lévy-flight foraging hypothesis1,7, supporting the
contention8,9 that organism search strategies naturally evolved in
such a way that they exploit optimal Lévy patterns.

Lévy flights are a special class of random walk with movement
displacements (steps) drawn from a probability distribution with a
power-law tail (the so-called Pareto–Lévy distribution)1,10, and give
rise to stochastic processes closely linked to fractal geometry and
anomalous diffusion phenomena7,11. Lévy flights describe a move-
ment pattern characterized by many small steps connected by longer
relocations, with this pattern having scale invariance under projec-
tion, such that the probability density function, P(lj), has a power-law
tail in the long-distance regime: P(lj) < lj

2m, where lj is the flight
length (step length of move j), and m, 1 , m # 3, is the power-law
exponent. Lévy flights comprise instantaneous steps and hence
involve infinite velocities, whereas a Lévy walk10 refers to a finite-
velocity walk such that displacement is determined after a time t,
reflecting a dynamical process such as movement1,10,11. Lévy flights
and walks are theorized to be the most efficient movement pattern

for locating patchy prey in low concentrations on spatial scales
beyond a searcher’s sensory range, with an optimal search having a
power-law exponent of m < 2 (refs 4, 13). It is proposed that organ-
isms have therefore naturally evolved search patterns that can be
modelled as optimal Lévy flights1,7,13.

However, burgeoning empirical support for this hypothesis
recently foundered following studies suggesting methodological
shortcomings in the estimation of power-law exponents and in deter-
mining the goodness of fit to the data5,6,14–16, thus casting doubt on
some, if not all, of the empirical studies that used such methods8,9.
Hence, controversy remains over whether Lévy behaviour occurs in
nature6,9,17, despite many empirical studies1,18. Furthermore, long time
series of movements (over weeks to months) derived from animal-
attached electronic tags will very probably capture complex move-
ment data resulting from different types of behaviour (for example
searching, travelling and resting) as animals respond to various biotic
and abiotic factors over time. Previous studies analysing movement
data6,12,13 on free-ranging animals for Lévy motion used data collected
over long time periods and different habitat types, without giving
sufficient consideration to the issue of there being different types of
behaviour interspersed within the time series. The lack of analysis of
separate behaviour-pattern types may be at least one reason why
evidence for Lévy flights in animal behaviour has proved challenging
to detect unequivocally9,17.

Here we present an analysis of the largest data set of recorded
movements (n 5 12,294,347 steps) assembled to test the Lévy-flight
foraging (LFF) hypothesis1 using statistical methods (maximum-
likelihood estimation (MLE) and Akaike information criteria (AIC)
weights for model comparisons) that are considered robust and
accurate6,14–16. To test the predictions of the LFF hypothesis, we
focused our analysis on vertical movement data recorded over 5,700
days using electronic tags attached to open-ocean predators (sharks,
tunas, billfish and ocean sunfish; Methods and Supplementary
Table 1). These species may be among those most likely to exhibit
Lévy behaviour because they occupy unpredictable and depauperate
environments with highly patchy prey distributions13, where Lévy
motion is proposed to increase new-patch encounter probability19.

To allow for a more robust test of the LFF hypothesis, long and
complex time series of vertical diving movements (hereafter tracks,
or sections) undertaken as fish moved horizontally across their

1Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK. 2Marine Biology and Ecology Research Centre, Marine Institute, School of
Marine Sciences and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK. 3CIBIO – Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando
Quintas, 4485-668 Vairão, Portugal. 4Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24
2TZ, UK. 5Joint Institute for Marine and Atmospheric Research, University of Hawaii at Manoa, Kewalo Research Facility/NOAA Fisheries, 1125-B Ala Mona Boulevard, Honolulu,
Hawaii 96814, USA. 6Inter-American Tropical Tuna Commission, 8604 La Jolla Shores Drive, La Jolla, California 92037-1508, USA. 7ETH Zurich, Raemistrasse 101, CH-8092 Zurich,
Switzerland. 8Coastal and Marine Resources Centre, ERI, University College Cork, Glucksman Marine Facility, Naval Base, Haulbowline, Cobh, Cork, Ireland. 9School of Biological
Sciences, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK. 10Department of Pure and Applied Ecology, Institute of Environmental
Sustainability, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
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ranges were divided into shorter sections using a split moving-
window analysis20 (Supplementary Information, sections 1.2 and
1.3) to identify discontinuities in the pattern of vertical space use
that represent transitions from one pattern of space use to another. In
total, tracks from 55 individuals across 14 species (shark, eight
species; tuna, two; billfish, three; ocean sunfish, one) were divided into
129 sections. MLE methods16 were used to fit three models (power law,
truncated power law (truncated Pareto) or exponential) to the
observed move step-length frequency distributions (Supplementary
Information, section 1.4). Sections that from visual inspection proved
to be poor fits to all candidate distributions were excluded from further
analysis (n 5 35), because our objective was to test the spatial occur-
rence of good fits to step-length distributions. MLE methods with AIC
weights6,15 were then used to determine model best fits for the remain-
ing 94 sections. Because movements can only take place in finite space
(moves are limited by, for example, the sea surface, the sea bed or the
range edge), which leads to upper cut-offs in the move step-length
frequency distribution, only truncated Lévy walks are biologically
plausible1. Therefore, our principal intention was not to find which
kinds of all possible probability distributions best fit the data; rather, it
was to test between truncated Lévy (truncated power-law model) and
Brownian-type (exponential model) movement patterns.

We found clear and persistent signals of Lévy and Brownian
motion; of the 94 sections analysed statistically (MLE with AIC
weights), one section was best fitted by a pure power law (Fig. 1a–c)
and 60 sections were best fitted by a truncated Pareto–Lévy distri-
bution (see, for example, Fig. 1d–f and Supplementary Table 3) with
exponents in the Lévy range, 1, m # 3, and so were consistent with
Lévy behaviour. The mean m value for the Lévy sections was 1.94 (s.d.,
0.43; n 5 61), which is close to the proposed optimum, mopt < 2 (refs
1, 2, 4). Six sections best fitted by a truncated power law yielded
exponents outside the Lévy range.

Lévy searching in open-ocean predators therefore seems to be not
only present but prevalent; however, it does not seem to be a universal
pattern, explaining all movements, nor does it occur in all individuals
at all times (it occurs in only 47% of sections). A logical extension of the
hypothesis is that other movement behaviour types intersperse Lévy
patterns. In support of this, we found that 27 sections (21%) were best
fitted by an exponential model describing normal random processes
(Brownian motion; Supplementary Table 3) that under the LFF hypo-
thesis are consistent with optimal searches where prey is abundant1. We
also found that 35 sections (27%) were poorly fitted by all of the
distributions; this was perhaps because the sections comprised many
different movement patterns, making them too complex for the stati-
stical methods used here (Supplementary Information, section 1.5).

To investigate the environmental context of different behaviour
patterns, we mapped the horizontal tracks of individual predators in
the Atlantic or the Pacific ocean to determine in which types of habitat
the sections showing Lévy and Brownian vertical movement patterns

occurred. For example, in productive waters of the equatorial conver-
gence front of the central North Pacific, the entire track of a silky shark
(Carcharhinus falciformis) was best fitted by an exponential model,
whereas for another silky shark tracked farther north in oligotrophic
waters, the best fit was a truncated power law with an exponent of 2.02,
close to the theoretical optimum for Lévy movement, mopt < 2 (Sup-
plementary Information, section 2.1, and Supplementary Table 4).

We found that different model fits occurred between different
habitat types of the same individual for eight other individuals of
five species of predator (bigeye (Thunnus obesus) and yellowfin
(Thunnus albacares) tuna, and blue, basking (Cetorhinus maximus)
and whale (Rhincodon typus) sharks; see Supplementary Table 4 for
model comparisons). For example, a blue shark tracked moving
south in the northeast Atlantic, from the highly productive shelf
habitat of the western English Channel to the less productive, deep
water of the Bay of Biscay, showed switches in the pattern of its
vertical movement (Fig. 2a–e). The shark showed diving behaviour
in tidal front waters on the shelf (0–200-m depth) that was well fitted
to the distribution’s tail by an exponential model (Fig. 2a, f, k and
Supplementary Table 4). Moving off-shelf into less productive waters
(with well-developed thermal stratification) (Fig. 2m, p, q), the
shark’s vertical movements down to 700 m conformed well to a
truncated power law with an exponent of m 5 2.19 (Fig. 2b, g, l),
before its diving movements shifted to a pattern better approximated
by an exponential fit when in colder, shelf-edge habitat in the southern
Bay of Biscay (Fig. 2c, h, m). Returning to warmer, well-stratified but
less productive open-ocean habitat (Fig. 2d, e, n, o, q), this shark once
again exhibited vertical movements best fitted by truncated power
laws with m 5 1.97 and 1.99 (Fig. 2i, j).

A bigeye tuna in the central eastern Pacific near the Galapagos
Islands switched several times from diving movements best fitted
by a truncated power law when in warmer, stratified waters to move-
ments approximated by an exponential model in colder waters of
the equatorial convergence front (Supplementary Information, sec-
tion 2.2).

These results agree with the prediction of the LFF hypothesis that
Lévy behaviour should occur in environments where prey is sparsely
distributed but that Brownian motion is theoretically optimal where
prey is abundant3. To test the significance of this with our habitat-
mapped data, we compared the frequency of sections that conformed
to this broad prediction. We assumed that prey in open-ocean
habitats with lower primary21 and secondary production22 was likely
to be more sparsely distributed than that in more productive shelf,
frontal and convergence-zone habitats, where prey of the predators
we tracked is known to be more abundant22–25. We used only geo-
referenced sections yielding best fits where the step-length data
spanned at least 1.5 orders of magnitude (range, 1.53–2.27).

For four species of predator (three sharks and ocean sunfish) in the
northeast Atlantic that moved between continental-shelf areas with
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high surface zooplankton abundance and open-ocean areas with
lower abundance22, which provide proxies for prey-abundant and
prey-sparse environments, respectively, 14 mapped sections were
available. Movement patterns in 12 sections performed as proposed
(sparse prey, Lévy behaviour; abundant prey, Brownian motion)
(chi-squared test with Yates’s correction for continuity: x2 5 5.78,
x2

0:05,2 5 3.84, P , 0.025; Fig. 3a). This indicates that the frequency of
observed movement patterns approximated by a Lévy distribution
in less productive areas and by an exponential (Brownian) distri-
bution in more productive waters did not deviate significantly from

theoretical predictions of the LFF hypothesis1,4. For bigeye and
yellowfin tuna in the central eastern Pacific moving between warm
stratified waters and cooler, more productive convergence-front
waters (Supplementary Information, sections 2.2 and 2.3) there were
21 sections for analysis. A higher number of sections best fitted by an
exponential distribution occurred in convergence-front waters than
in stratified waters (x2 5 4.00, x2

0:05,2 5 3.84, P , 0.05; Fig. 3b).
Therefore, the occurrence of Brownian-type behaviour in tuna in
the Pacific agrees with predictions of the LFF hypothesis. The number
of sections where movements conformed to a truncated power law
was the same in convergence-front waters as in stratified waters. We
speculate that one reason tuna in the productive convergence zone
exhibit Lévy movements characterized by longer vertical steps is that
fish prey may become spatially constrained within mesoscale eddy
features25 that are common in the region and have diameters of
between about 50 and 200 km. Thus, even in this productive environ-
ment, tuna movement may be optimized by longer vertical reorien-
tations (searching) between eddies because prey hot spots may be
patchily distributed across a wide range of scales linked to turbulent
eddy formation, size and persistence26 (Supplementary Information,
sections 2.2 and 2.3).

Our analysis provides the strongest evidence yet for Lévy behaviour
in diverse animals ranging across natural landscapes. Furthermore, the
movement patterns of some individuals approximated theoretically
optimal Lévy searches. It was also evident, however, that Lévy beha-
viour is not a universal pattern; rather, some individuals use other
patterns approximated by normal random processes, sometimes inter-
spersed with Lévy movements. We found that mapping the locations of
where Lévy and Brownian movements occurred allowed a preliminary
field test of the LFF hypothesis, confirming theoretical predictions.
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Therefore, not only do our results lend strong support to the conten-
tion that Lévy flights occur in free-ranging animals, but our observa-
tions of pattern switching between Lévy and Brownian-type motion
suggest that searching animals adaptively adjust their optimal patterns
of movement to different environmental resource distributions. We
recognize, however, that our analysis could not detect how the move-
ment patterns arose, that is, whether the patterns identified were an
adaptive behaviour or whether observed patterns were an emergent
property of the spatial distributions of prey13,17,27. Controlled experi-
ments28, rather than natural experiments as here, will be needed to
progress from asking whether Lévy flights (walks) occur in animals8,9

to exploring why they occur and whether animals evolved such that
they exploit Lévy flights as an optimal search strategy for life in com-
plex, highly changeable landscapes. Simulations of biological evolution
indicate that varying environments posing complex goals can speed up
natural selection29, which also raises the question of when, if animals
have evolved Lévy flight behaviour, did such a strategy first appear
among organisms.

METHODS SUMMARY
Study animals. Animal-attached electronic tags provided time-stamped depth

records (tracks) for 55 individuals from 14 species: bigeye thresher shark (Alopias

superciliosus), blue shark, shortfin mako shark (Isurus oxyrinchus), porbeagle

shark (Lamna nasus), silky shark, oceanic whitetip shark (Carcharhinus

longimanus), basking shark, whale shark, bigeye tuna, yellowfin tuna, black

marlin (Makaira indica), blue marlin (Makaira nigricans), swordfish (Xiphias

gladius) and ocean sunfish.

Track analysis. We used a split moving-window analysis to identify statistically

significant discontinuities in depth use and divided tracks into sections that were

considered more behaviourally consistent than the whole. Each of the 129 result-

ing sections was then corrected for sampling artefacts and converted from depths

to a series of vertical displacements (move step lengths).

MLE analysis and model selection. For each track section, parameters for

power-law, exponential and truncated Pareto distributions were calculated using
MLE16. We used plots of ranked move step length, combining empirical and best-

fit plots, to reject sections that were a poor fit to all distributions. Log-likelihoods

and AIC weights were calculated for the remaining sections and were used to

determine which distribution (model) best fitted the data.
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1. Supplementary Methods 

1.1 Study animals 

In total, 129 track sections from 55 individuals collected over more than 5,700 days 

were analysed, representing 14 species: bigeye thresher shark (Alopias superciliosus, 

Lowe 1841) n = 2 individuals; blue shark (Prionace glauca, Linnaeus 1758) n = 12; 

shortfin mako shark (Isurus oxyrinchus, Rafinesque 1810) n = 1; porbeagle shark (Lamna 

nasus, Bonnaterre 1788) n = 1; silky shark (Carcharhinus falciformis, Müller & Henle 

1839) n = 3; oceanic whitetip shark (Carcharhinus longimanus, Poey 1861) n = 1; 

basking shark (Cetorhinus maximus, Gunnerus 1765) n = 6; whale shark (Rhincodon 

typus, Smith 1828) n = 1; bigeye tuna (Thunnus  obesus, Lowe, 1839) n = 5; yellowfin 

tuna (Thunnus  albacares, Bonnaterre, 1788) n = 6; black marlin (Makaira indica, Cuvier 

1832) n = 1; blue marlin (Makaira nigricans, Lacepède 1802) n = 11; swordfish (Xiphias 

gladius, L. 1758) n = 1; ocean sunfish (Mola mola, L. 1758) n = 1. These comprise 5 

taxonomic or functional groups (macropredatory sharks, planktivorous sharks, tunas, 

billfish, ocean sunfish) with 12.2 million individual movement steps analysed. Table S1 

gives tag types used and technical details, together with tagging locations. Long-term 

high resolution depth datasets from fish are difficult to obtain given the very limited 

bandwidth of the Argos data-relay satellite system1. We made serendipitous use of an 

extensive number of satellite and archival tags that had been recovered after long 

deployments and contained complete high resolution datasets. Only the basking shark 

dive data (n = 6 individuals; 10.9% of total individuals) have been analysed previously in 

the context of Lévy flights2, although, importantly, this did not include division of tracks 

into sections that were then geo-referenced and compared with environmental habitat 

type, the prime objective in the current paper.  
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Table S1. Summary information of electronic tags deployed. 

Species  

(approx. body size 

cm)1 

or weight (kg) 

Tagging 

location Tag type2 

Recording 

interval 

(min / sec) 

Depth 

resolution (m) 

n  

datasets3 Reference 

Bigeye thresher shark 

(~220cm FL) 
N.Pacific MT PTT-100 60 min 5.4 2 Musyl et al. unpubl. data, 3 

Blue shark 

(120-215cm FL) 

NE. 

Atlantic 

 

N.Pacific 

WC PAT Mk10 

 

MT PTT-100 

1.0 s 

 

60 min 

< 0.5 

 

5.4 

3 

 

16 

 

4 

 

Musyl et al. unpubl. data, 3 

 

Shortfin mako shark 

(210 cm FL) 
N.Pacific MT PTT-100 60 min 5.4 1 Musyl et al. unpubl. data 

Porbeagle shark 

(180 cm FL) 
NE.Atlantic WC PAT Mk10 1.0 s < 0.5 1 5 
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Species  

(approx. body size 

cm)1 

or weight (kg) 

Tagging 

location Tag type2 

Recording 

interval 

(min / sec) 

Depth 

resolution (m) 

n  

datasets3 Reference 

Silky shark 

(120 – 213cm FL) 
N.Pacific MT PTT-100 15-60 min 5.4 10 Musyl et al. unpubl. data, 3 

Oceanic whitetip shark 

(115-215cm FL) 
N.Pacific MT PTT-100 15-60 min 5.4 13 Musyl et al. unpubl. data, 3 

Basking shark  

(4000 – 7000cm TL) 
NE.Atlantic WC PAT 3 & 4 1 min < 0.5 6 6 

Whale shark 

(6000 – 7000cm TL) 

W.Indian 

Ocean 
MT PTT-100 15 min 5.4 1 7 

Bigeye tuna 

(65-99cm FL) 

Eq. 

Eastern 

Pacific 

LW LTD 2310 1 min 1.0 5 8 
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Species  

(approx. body size 

cm)1 

or weight (kg) 

Tagging 

location Tag type2 

Recording 

interval 

(min / sec) 

Depth 

resolution (m) 

n  

datasets3 Reference 

Yellowfin tuna 

(51-60cm FL) 

Central 

N.Pacific 

 

Eq. 

Eastern 

Pacific 

MT PTT-100 

 

LW LTD 2310 

60 min 

 

1 min 

5.4 

 

1.0 

1 

 

5 

3 

 

8 

Black marlin 

(453kg) 
N.Pacific MT PTT-100 60 min 5.4 1 Musyl et al. unpubl. data, 3 

Blue marlin 

(45-204kg) 
N.Pacific MT PTT-100 15-60 min 5.4 14 Musyl et al. unpubl. data, 3 

Swordfish 

(215-240cm) 
N.Pacific MT PTT-100 15-60 min 5.4 10 Musyl et al. unpubl. data, 3 
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Species  

(approx. body size 

cm)1 

or weight (kg) 

Tagging 

location Tag type2 

Recording 

interval 

(min / sec) 

Depth 

resolution (m) 

n  

datasets3 Reference 

Ocean sunfish  

(60cm TL) 
NE.Atlantic WC PAT Mk10 1.0 s < 0.5 1 9 

 

1. Body size: TL, total length, FL Fork length. 

2. Tag Manufacturers: LW, Lotek Wireless; MT, Microwave Telemetry; WC, Wildlife Computers. Tag type: PAT, pop-up archival transmitting tag; 

PTT, platform terminal transmitter, LTD, archival tag (light, temperature, depth). 

3. Some of the datasets were too short or had too many gaps to be included in the analysis. 
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1.2 Division of recorded time series into behaviourally consistent sections 

It is hypothesised that long and complex dive time series (vertical tracks) recorded by animal-

attached electronic tags are likely to have captured a series of different movement behaviours. This 

is due, at least in part, to an animal encountering differing environmental conditions such as sea 

temperature, depth or prey densities, for example. If analysed as a whole, these time series may 

result in more complex move step-length frequency distributions which may not be readily or 

accurately interpreted by the proposed statistical analysis for exploring underlying model fits to 

empirical data (i.e. Maximum Likelihood Estimation, MLE). It is therefore desirable to divide such 

tracks into sections which are behaviourally more consistent. Furthermore, it is an aim of this study 

to explore different movement patterns in relation to environmental gradients. Hence, there is an 

additional requirement that the track divisions should be made, where possible, at or at least 

temporally close to encountered environmental boundaries (e.g. between water masses with different 

characteristics). An examination of the dive time series often reveals clear changes in patterns of 

vertical space use which can in turn, when spatial data is available, be linked to environmental 

changes such as water temperature gradients and sea depth4. 

Although for some tracks discontinuities are clearly identified by changes in patterns of 

vertical space use in a time depth plot, as in Figure 2 (main paper), in other cases changes are less 

clear and therefore an objective method is needed to identify discontinuities. In this study a split-

moving window (SMW) analysis similar to that described by Cornelius and Reynolds10 was applied 

to all tracks that were free from temporal gaps in the time series.  

To perform the analysis a two dimensional (2D) time-at-depth matrix, with 6 hour time bins 

(as columns) and 10 m depth bins (as rows), is first constructed from the raw dive time-series data 

by calculating the proportion of time spent at each depth within each time period (Fig. S1a). A 

virtual window with a width of 6 time bins is placed at the start of the time-at-depth matrix and a 

measure of dissimilarity between the two window halves is calculated and assigned to the centre 
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position of the window. The dissimilarity measure used here was the multivariate measure of 

Euclidean distance between averaged time at each depth. The window position is then advanced by 

one time bin and the calculation is repeated until the window reaches the end of the time series. 

Statistical significance of each dissimilarity value is calculated using a Monte-Carlo technique 

whereby the calculation is repeated 1000 times with a shuffled time-at-depth matrix. The number of 

times the dissimilarity value exceeds that calculated using the real data is counted and converted to a 

percentage which represents the p-value. Significant discontinuities in the time series will have 

higher dissimilarity values than most of those calculated using a random re-arrangement of the data, 

resulting in very few randomisations yielding higher dissimilarity values. The width of the window 

is then incremented by two and the process is repeated up to a width of 32, giving 14 window sizes. 

The p-values calculated from each window size and position are stored and finally plotted by 

stacking them vertically, with significant values (in this case p < 0.001) being plotted in black, as 

shown in Figure S2 (and Fig. 2 main paper). Discontinuities in the dive time series are revealed by 

the presence of inverted triangles which “point” to the discontinuity and indicate the position at 

which the time series can be divided as a quantitative estimate of where different movement patterns 

are located in the time series. 

The vertical movement tracks of large marine fish analysed in this study are complex and 

therefore the results of the split-moving window analysis can appear “noisy”, in some cases, with 

many discontinuities being identified. Referring to Figure S2a below it can be seen that the 

discontinuities labelled i, iii, iv and vi extend over many window sizes and have a general trend of 

increasing width at smaller window sizes. These discontinuities represent shifts between prolonged 

behavioural bouts and are therefore the points at which this track was divided. The smaller 

discontinuities labelled ii, v, vii and viii, although significant, are of shorter duration or extend over 

only a few window sizes and are therefore ignored since they do not capture persistent pattern 

changes. Accurate detection of power laws in biological data can be affected by small dataset 

size11,12 so there is a further consideration not to divide the tracks into sections with too few data 
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points. Therefore in the current study only the clearest discontinuities arising from the SMW 

analysis were used to divide the tracks. 

Patterns of vertical space use of marine fish can be analysed using simple binning techniques 

to generate a time-at-depth matrix with temporal and depth resolution set to the required level of 

detail (Fig. S1). Therefore, vertical space use is a good candidate measure for the identification of 

movement pattern discontinuities that would encompass both responses to changes in environment 

(e.g. sea depth or thermocline depth) as well as other behavioural shifts4. An alternative measure that 

could be used is the move step-length distribution. It is a central hypothesis of the current study that 

long, complex tracks will comprise different move step-length frequency distributions and that 

changes in these could be related to environmental gradients and other variables. Move step-length 

frequency distributions are, however, relatively poorly analysed using simple binning techniques 

and the equivalent time/step-length frequency matrix (Fig. S1b) reveals considerably less detail than 

that generated from depth usage (Fig. S1a). One reason for the lack of detail could be the very small 

sample sizes that result from the 6-hour time divisions used to generate the matrix; using longer time 

windows, however, results in a much coarser analysis and missed discontinuities (Fig. S2).  
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Figure S1. Identification of movement pattern discontinuities. Time at depth (a) and time step-length (b) 

dissimilarity matrices generated from depth data of blue shark 10. Red colour shows areas of high 

dissimilarity and blue low dissimilarity. The step-length matrix lacks contrast in comparison to the time-at-

depth matrix and is therefore likely to miss some significant discontinuities.  
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Figure S2. Split-moving window analysis plots at differing time resolutions. For blue shark 10 with time 

divisions set to (a) 6 hours, (b) 12 hours and (c) 24 hours. Increasing the time division results in decreasing 

resolution of the discontinuities. 
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1.3 Preliminary data analysis 

Prior to performing the MLE analysis all sections, which comprised time-stamped depth 

measurements, were converted into move step-lengths by calculating vertical movement deltas 

between successive pairs of data points. As part of the process, three causes of potential calculation 

error were addressed. Firstly, some datasets were recorded at very high temporal resolution (e.g. 1s) 

which can in some cases be insufficient time to record movement deltas greater than the depth 

resolution of the tag, resulting in considerable step-wise alternating values, i.e. long series of 

alternating move steps with lengths close to the vertical resolution of the tag. High temporal 

resolution datasets were therefore under-sampled at 1 in 10 to give a sampling interval of 10 

seconds, which was found to be sufficient time for the animal to make moves significantly greater 

than the tag depth resolution. Secondly, in all datasets, sampling artefacts were introduced when the 

animal made long movements with a temporal interval that exceeded the sampling interval. Even 

with a sampling interval of 1 hour it was found that some long movements had been artificially 

divided into a series of shorter steps. Correction of this second sampling artefact involved coalescing 

steps that were part of a single movement (i.e. where the trend of consecutive steps was either a 

continuously increasing or decreasing depth) into a single step rather than many smaller steps. It 

should be noted that this method of path integration maintains move step lengths consistent with that 

of a Lévy walk since displacements have finite velocity and are dependent on a time t (Refs.13,14). 

Finally, some of the datasets obtained via Argos satellite telemetry inevitably contained gaps where 

data was not retrieved, or was recovered corrupted and so was discarded1. If uncorrected, a spurious 

step would have been calculated between points either side of a gap; therefore, any step occurring 

immediately following a gap was ignored, ensuring that only genuine movement steps for which 

both the start and end depth had been recorded were included. Previous work has shown that small 

datasets can be prone to large statistical fluctuations and may result in poor fits to a candidate 

distribution or inaccurate estimates of the exponent11. Therefore, datasets with fewer than 500 data 

points prior to pre-processing were excluded from the analysis. 
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1.4 Maximum Likelihood Estimation (MLE) and model comparisons 

The Maximum Likelihood Estimation (MLE) methodology employed was that described by 

Clauset et al.15 with, in this study, power law, truncated Pareto-Lévy (truncated power law) and 

exponential distributions being tested. Briefly, the appropriate MLE equation was used to derive an 

exponent with the initial xmin parameter set to the minimum value found in the dataset. A best fit 

dataset was generated with the estimated parameters and a Kolmogorov-Smirnov (KS) test was used 

to determine the goodness of fit (the KS D statistic). To determine the best fit value for the xmin 

parameter the calculation was repeated with increasing values for xmin taken from the dataset with 

the value that resulted in the best (lowest) KS-D statistic being retained as the best fit value. When 

fitting a truncated Pareto distribution the method was repeated to derive a best fit value for the xmax 

parameter, so for the truncated Pareto distribution both the xmin and xmax parameters were fitted in the 

same way. There were two departures from the method as implemented in the programming code 

given in Clauset et al.15. Firstly, once values for xmin and xmax had been derived, the dataset was 

reduced to include only values between those lower and upper bounds. The resulting dataset 

therefore contained only the step lengths fitting the proposed distribution and it was this that was 

used to produce plots of log10 rank vs log10 step-length that were used to assess the goodness of fit; 

however, for purposes of clarity, this was plotted against the full set of observations so that the 

extent of the fit was evident. Secondly, rather than test all values in the dataset as possible 

candidates for xmin or xmax, the iterative search routine was halted once five consecutive worse fits 

had been found to avoid the problem of fitting to a very small sub-set of the data; a problem 

exacerbated by complex biological data and exponent estimation (see above). The aim of fitting the 

lower and upper bounds was to find the distribution that best fit most of the data, rather than select a 

small sub-set of the data that was a very good fit to a particular distribution. 

The MLE analysis requires two equations for each distribution to be tested. One is the MLE 

equation for the distribution and is used to estimate the exponent. The other is a random number 
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generator (RNG) and is used to generate best-fit datasets. Table S2 gives the equations that were 

used for each distribution. The power law MLE and the power-law and exponential RNG equations 

were obtained from Clauset et al.15, the truncated Pareto MLE equation was from White et al.12 and 

the truncated Pareto RNG was from Kagan16. 

 

Table S2. The MLE and RNG equations used in the analysis. 
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In some cases the tags convert integer pressure readings to real depth measurements by 

multiplying by 5.379; resulting in depths, and consequently step lengths, that are multiples of 5.379. 

Therefore, discrete approximation was used as described by Clauset et al.15, but using the observed 

step-length multiple (e.g. 5.379) so that the best fit datasets used in Kolmogorov-Smirnov tests had a 

similar structure to the observed distribution. However, when generating the rank/step-length (rank-

frequency) plots, the best fit distribution parameters were used to generate points from a continuous 

distribution as the resulting plots are easier to interpret, and doing so provides good confirmation of 

the accuracy of the approximations. 
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The approach to best-fit model selection in this study was to use MLE, log-likelihoods (LL) 

and Akaike Information Criteria (AIC) weights (wAIC) in addition to visual inspection for assessing 

best fits to rank-frequency plots of observed data. Once MLE best fit parameters for the three 

candidate distributions [power law, truncated Pareto (power law), exponential] had been derived the 

observed data and best fits were plotted as log10 rank vs log10 step-length (rank-frequency plots) and 

were assessed visually to determine which, if any, of the three candidate distributions provided a 

reasonable fit (see Fig. S3 for examples). Of the 129 sections assessed, 35 (27%) rank-frequency 

plots were found to be of complex form and were not fitted by any of the three distributions we 

tested; these were excluded from further analysis. The remaining 94 sections were analysed 

statistically using MLE with wAIC to select the best fit model. Log-likelihoods were calculated17 for 

the two competing models for each section. Model selection using wAIC yielded one power law fit, 

60 truncated power law fits within the Lévy range, 6 truncated power law fits outside the Lévy 

range, and 27 exponential fits to move step-length distributions (n = 94). In this study, therefore, 

model best fits selected for individual sections using log-likelihoods and wAIC were used in all 

analyses to test the Lévy flight foraging hypothesis. 

MLE best fit parameters, log-likelihoods and Akaike weights for all track sections are shown 

in Table S3. Details for the best fitting sections (i.e. those used in the spatial analysis, or shown in 

figures) are given in Table S4, which also identifies the Figure where the ranked step-length plot for 

each section is shown [i.e. observed data with truncated Pareto (power law) and exponential model 

fits]. Figure S3 shows plots for those sections best fitted by a power law or truncated Pareto models 

that do not appear elsewhere in the paper showing two competing model fits. 

Truncated power laws provided the majority of best fits to empirical movement data of tracked 

fish predators. It is perhaps unsurprising that natural phenomena such as animal movement data 

should be better fitted by truncated Pareto-Lévy distributions rather than pure power laws: where the 

animal is restricted by the depth of the water column or other factors (e.g. thermal or oxygen 
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tolerances, predator physiological capacity to withstand increased depths, prey absence) the 

truncation of the best fit distribution is increased (see Fig. 1a, b, d, e). 

For the best fitting truncated Pareto-Lévy (power law) sections, MLE and the R Gamma 

functions18 were used to attempt to fit a (shifted) Gamma distribution to ensure that this model was 

not a better alternative. GOF values calculated using the Kolmogorov-Smirnov test are given in 

Table S4 and ranked step-length plots of the fits are shown in Figure S4. Overall, it was found that 

gamma distributions were not better fits to the move step-length frequency distributions best fitted 

by a truncated power law. 
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Figure S3. Ranked step-length plots for sections well fitted by a truncated Pareto-Lévy distribution. 

Best fit truncated Pareto (power law) (red line) and exponential (blue) models to observed data (black circles) 

for those figures not shown elsewhere. (a) bigeye tuna 1 section 4; (b) ocean sunfish 1 s2; (c) blue shark 9 s3 

(note that this fit is to a power law, not a truncated power law); (d) blue shark 12 s2; (e) bigeye tuna 5 s4; (f) 

yellowfin tuna 2 s1; (g) yellowfin tuna 4 s4; (h) yellowfin tuna 5 s1; (i) yellowfin tuna 5 s3; (j) yellowfin tuna 1 

s3; (k) yellowfin tuna 3 s3; (l) yellowfin tuna  3 s4; (m) blue shark 9 s2; (n) silky shark 3 s1. For model 

comparison values see Supplementary Table S3.   
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tolerances, predator physiological capacity to withstand increased depths, prey absence) the 

truncation of the best fit distribution is increased (see Fig. 1a, b, d, e). 

For the best fitting truncated Pareto-Lévy (power law) sections, MLE and the R Gamma 

functions18 were used to attempt to fit a (shifted) Gamma distribution to ensure that this model was 

not a better alternative. GOF values calculated using the Kolmogorov-Smirnov test are given in 

Table S4 and ranked step-length plots of the fits are shown in Figure S4. Overall, it was found that 

gamma distributions were not better fits to the move step-length frequency distributions best fitted 

by a truncated power law. 
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1.5 Sensitivity of MLE analysis to behavioural complexity 

We found that 35 (27%) of track sections analysed were poorly fitted by either power law, 

truncated Pareto (power law) or exponential distributions. We hypothesised that some of the poor 

fits might be caused by behavioural complexities in the movement time-series arising from the 

inclusion of simple Brownian motion in addition to Lévy motion. Theoretical studies14 have shown 

that when prey is relatively abundant Brownian motion is an optimum search strategy, which would 

explain the presence of exponentially distributed step lengths. To test this hypothesis, simulated time 

series were generated using steps from a truncated Pareto (power law) distribution with 5, 15 or 25% 

of steps being drawn from an exponential distribution. The parameters for the exponential 

distribution were derived by using MLE to fit an exponential distribution to the synthetic truncated 

Pareto distribution dataset. Fitting in this way ensured that the exponential step lengths covered a 

similar range to the truncated Pareto step lengths and could in principle, therefore, have been 

generated by the same animal. As we hypothesised, the MLE analysis (Fig. S5a-c) reveals that 

increasing proportions of exponential move steps results in increasingly poorer fits. Interestingly, 

comparison of the synthetic data and model fits to empirical examples (basking shark, bigeye and 

yellowfin tunas) (Fig. S5d-f) shows distinct similarities in form, supporting the hypothesis that 

poorer fits to the truncated Pareto distribution in some individuals may well be the result of 

behavioural switches in response to changes in prey field density.  

Analysis using simulated move-step frequency distributions drawn from both Lévy and 

Brownian distributions to form a single test distribution appeared to account for some of the 

complex patterns in rank-step length plots that we found, suggesting different search behaviours 

may be interspersed at finer temporal scales than was possible to detect using our split-moving 

window technique. Behavioural complexity such as this could explain why Lévy behaviour can be 

difficult to detect in longer time-series where the likelihood of recording different movement 

behaviours is increased2. It seems likely that good fits to power laws or truncated power law 
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distributions will only be found when Lévy behaviour is adopted by foragers for the majority of the 

period within a time series section being analysed, even if a statistical technique such as split-

moving window is used to identify discontinuities. 

Given the effect of complex biological data on the form of rank-frequency plots (e.g. Fig. S5) 

visual inspection of plots can be useful to help assess that any particular distribution is a good fit 

when testing for the presence of power laws or truncated power laws to infer Lévy behaviour. This 

may be particularly relevant in the context of testing for the presence of biological Lévy flights 

because it is the heavy (fat) tail of the move step-length frequency distribution that should be 

reasonably accounted for by any candidate best fit model for the identification of Lévy behaviour to 

be reliably detected. The frequency of longer move steps that make up the heavy tail of a 

distribution (the right-hand side of the distribution) is low compared with the more frequent smaller 

steps making up the left hand side. Importantly in this context, MLE model fitting to empirical data 

plotted as a rank-frequency plot gives equal weight to all points even though the vast majority of 

points are clustered on the left hand side. This may be a potential problem for model selection in 

some cases because strong support for a model using Akaike weight values (e.g. wAIC = 1.0; 

strongest support) may be based on a good fit to the left hand side of the distribution rather than to 

the heavy tail also. 
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Figure S5. Analysis of complex data. Black circles represent synthetic or empirical observations; red lines 

represent MLE best fit truncated Pareto distributions. (a-c) Synthetic truncated Pareto distribution datasets 

including 5, 15 and 25% move steps derived from an exponential distribution; (d) basking shark Cetorhinus 

maximus 2, section 2; (e) bigeye tuna Thunnus obesus 3, section 4; (f) yellowfin tuna Thunnus albacares 1, 

section 5, showing visually similar patterns to synthetic Lévy-Brownian (exponential) datasets. Arrows 

indicate departures from a good fit to the truncated Pareto distribution. 
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2. Supplementary Results 

The LFF hypothesis states that Lévy flights (or truncated Lévy flights) optimise random 

searches, therefore biological organisms must have evolved to exploit Lévy flights14. Two 

predictions have arisen from theoretical analysis: (truncated) Lévy flights (walks) with μ ≈ 2 

optimise random searches in environments with sparsely distributed random, revisitable target sites, 

while at higher concentrations of random targets Lévy flight with μ > 3 is optimal, corresponding 

essentially to Brownian motion14. 

2.1 Environmental context and Lévy behaviour of silky sharks 

In further support of the prediction that when prey is abundant Brownian motion is an 

optimum search strategy, whereas when prey is sparse Lévy is optimum, Figure S6 shows geo-

referenced tracks from two silky sharks (Carcharhinus falciformis) in relation to chlorophyll ‘a’ 

concentrations, a proxy for productivity. Silky shark 2 was located in comparatively productive 

waters with a move (dive) step-length distribution best fitted by an exponential distribution 

representing Brownian motion. In contrast, silky shark 3 remained in very low productivity 

(oligotrophic) waters with diving behaviour approximated by a truncated power law with an 

exponent of μ = 2.02, close to the theoretical optimum for Lévy behaviour in an environment with 

sparse target sites.  
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Figure S6. Horizontal movements of silky sharks in different productivity zones. Left panel, silky shark 

(Carcharhinus falciformis) 2 in productive waters (Equatorial Convergence Zone) with vertical movements 

following an exponential distribution; right panel, silky shark 3 in less productive, oligotrophic waters (south of 

the Hawaiian Islands) with vertical movements approximated by a truncated power law exponent of 2.02. 

 

2.2 Behaviour pattern switching of a bigeye tuna in relation to habitat type 

Under the adaptive (optimal) behaviour conceptual framework of the Lévy flight foraging 

hypothesis, changes in searching behaviour are expected as an animal moves between areas of 

differing productivity and hence prey density. In the Northeast Atlantic, continental shelf waters 

with abundant, seasonally persistent tidal and shelf-break fronts have generally higher primary and 

secondary productivity than open ocean waters where the water column is less well mixed and 

characterised by strong and stable vertical thermal stratification6,19. Here we defined two principal 

habitats for the purposes of simple analysis of behaviour types in relation to environmental 

gradients: productive shelf waters with strong tidal front presence (Frontal/Shelf) and less 

productive off-shelf areas typified by thermally stratified water with a deep thermocline at around 50 

– 100 m depth (Off-shelf) (Fig. 3a in the main paper). In the Central Eastern Pacific, near the 
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Galapagos Islands, the northerly flowing Peru Current meets the southward turning Equatorial 

Counter Current which form zones of upwelling and convergence along the westward flowing 

Equatorial Current. At these boundaries cold, nutrient rich water is up-welled and mixed with 

warmer surface waters creating a highly productive habitat characterised by plankton blooms19. 

Adjacent to these areas, to the north and south, the ocean is relatively oligotrophic and vertically 

thermally stratified with a thermocline depth of about 100 m. Here we defined two principal habitats 

to examine tuna behaviour: highly productive upwelling/convergence zone fronts (Frontal) and 

oligotrophic stratified water with a strong and stable thermocline (Stratified) (Fig. 3b main paper).  

Although in this study switching behaviour was observed in only 8 individuals (from 55 

individuals for which we had data), this is largely due to the difficulty of obtaining high-temporal 

resolution tracking data over long time periods where different large-scale habitat types were 

encountered. Longer tracks traversing different oceanographic regimes provided a greater chance of 

recording changes in patterns of search behaviour. 

Switching between behaviour types – identified by split-moving window analysis, MLE model 

fits and Akaike weights (wAIC) model comparison values, and as a function of ocean productivity – 

was found for bigeye tuna (Thunnus obesus) (n = 2) and yellowfin tuna (T. albacares) (n = 2) in 

addition to blue shark (n = 1) (e.g. Fig. 2), basking shark (n = 2) and whale shark (n = 1) 

(Supplementary Table S3, S4). As a representative example, Figure S7 shows the vertical 

movements of bigeye tuna 2, together with the MLE model fits to move-step frequency distributions 

of the different sections, water temperature-at-depth profiles and the horizontal movements 

corresponding to the analysed sections. The split-moving window analysis identified eight adjacent 

sections as having different features (Fig. S7a,b). Horizontal movements were characterised by 

traversing east-west movements mostly along the boundary between the Equatorial Convergence 

Front spreading west of the Galapagos Islands and lower productivity, stratified waters further south 

(Fig. S7c,d,e). The analysed sections show changes in vertical movement pattern, with Lévy 
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behaviour occurring predominantly in the west and Brownian-type movement in the east. The switch 

from Lévy to Brownian patterns of movement (Fig. S7c sections 3 to 4) and back again (Fig. S7c 

sections 5 to 6, and sections 6 and 7) was also coincident with a change in water mass type, from 

warm well-stratified water to cooler surface-layer water with a weaker thermocline that is 

characteristic of zones of upwelling and convergence (Fig. S7d sections 3 to 4). 

The behaviour of the bigeye tuna shows changes in relation to the environment and we 

speculate that prey may have been more abundant in the eastern region nearer the Galapagos since 

Brownian motion was identified there. The physical complexity of the Equatorial Convergence Zone 

characterised by upwelling, meso-scale fronts and eddies20 is likely to entrain complex distributions 

of prey, including aggregation of individuals21, and will likely contribute to the observed complexity 

in tuna behaviour such as switching between different optimal strategies as resource conditions 

change.  
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Figure S7. A bigeye tuna switching between diving behaviour types in relation to environmental 

gradients. (a) Split-moving window analysis and (b) time depth profile for bigeye tuna 2 showing the seven 

points of most significant discontinuity at which the track was divided. (c) MLE analysis of the eight sections 

showing μ values for those sections best fitted by a truncated Pareto (power law) distribution. Maximum 

Likelihood Estimation (MLE) model parameters and Akaike’s Information Criteria (AIC) weights model 

comparisons for c given in Supplementary Tables S3 and S4. (d) Profiles of temperature at depth recorded by 

fish-attached electronic tags. These show the thermal profile of the water column and thermocline depth 

being similar from S3 to S5 followed by a decrease in upper layer temperatures and weaker thermocline (S4 

and S5) and re-establishment of a stronger thermocline and higher temperatures from S6-S8. The weaker 

thermocline is associated with a better fit of vertical move step lengths within a section to an exponential 

distribution (S5) while vertical move steps within well stratified waters are better fit by a truncated power law 

distribution (S1, S8). (e) Horizontal movements of bigeye tuna 2 west of the Galapagos Islands along the 
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southern boundary of the Equatorial Convergence Front. Sections are numbered as for a-c and arrows in the 

lower panel indicate directions of movement paths.  

 

2.3 Lévy flight behaviour in a productive convergence zone 

As expected from the Lévy flight foraging hypothesis (LFF) bigeye (Thunnus  obesus) and 

yellowfin tuna (T. albacares) displayed a higher frequency of Brownian-type diving movements 

than Lévy movements in the Equatorial Convergence Zone (Fig. 3b main text). However, both 

species were found to exhibit Lévy movements in a productive zone at least as frequently (in terms 

of frequency of time series sections) as in a lower productivity region, which is more often than 

might be expected according to the LFF hypothesis (Fig. 3b). This contrasts with the occurrence of 

Lévy behaviour in the Northeast Atlantic where clearer spatial difference between productive and 

less productive large-scale habitats was evident (productive shelf/frontal habitat versus lower 

productivity off-shelf habitat) and where Lévy movement patterns were associated with off-shelf 

regions (Figs. 2, 3 in the main paper). 

That tuna exhibited both Lévy and Brownian movement types in the Equatorial Convergence 

Zone west of the Galapagos Islands suggests a requirement for a flexible approach to searching that 

may be linked to complexity in prey distributions (as mentioned above in Supplementary Results 

2.2). One possible explanation for this flexibility in tuna movement pattern is that although prey 

resources are generally higher in frontal zones compared to adjacent regions19, physical processes 

act to influence distributions of prey in complex ways. For example, the heterogeneity in distribution 

and abundance of zooplankton species in the Northwest Atlantic has been shown to be related to 

their associations with specific water masses of different origin and associated temperature/density 

discontinuities such as pycnoclines and fronts22,23. Indeed, along mesoscale frontal features in the 

Eastern North Pacific  albacore (Thunnus alalunga) and skipjack tuna (Katsowonus pelamis) were 

found to be aggregated in high productivity areas where prey such as anchovy, pelagic red crab and 
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euphausids were enhanced21. However, even along frontal features prey distributions were highly 

patchy across a broad range of mesoscales21.  

In the present study it is possible that the adoption of Lévy and Brownian movements by tuna 

are responses to changes in patchy prey distributions that are entrained by frontal features such as 

eddies. It has been observed that in Pacific inter-tropical convergence zones albacore tuna are 

associated with meso-scale fronts and eddies20. These oceanographic features create local 

aggregations of prey organisms and patchier distributions of prey than might otherwise be expected 

at the meso-scale23. Therefore, very rich prey areas are expected within or near eddies, whereas 

relatively lower concentrations of prey may be available between such systems. This could account 

for the change between an optimal strategy for sparse prey environments and a strategy for where 

prey is more abundant occurring in the Equatorial Convergence Zone near the Galapagos Islands. 

The tuna tracked in this study covered very large distances (1502 to 7867 km) and areas 

(87,399 to 1,111,654 km2) (Figs. S8, S9) which greatly exceed the scale of eddies in this region (ca. 

50 – 200 km diameter). It is therefore possible that at the scales over which the tuna ranged prey is 

not always highly abundant but patchy over a wide range of scales, and therefore Lévy diving 

movements may be a more efficient strategy for large interpatch distances than the expected 

Brownian diving movements.  
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Figure S8. Yellowfin tuna horizontal movements across different productivity zones. Yellowfin tuna 2 

(Thunnus albacares) covered a distance of 7,867km and an approximate area of 249,751km2 while traversing 

habitats with differing productivity. 
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Figure S9. Bigeye tuna horizontal movements across different productivity zones. Bigeye tuna 3 

(Thunnus obesus) crossed the equatorial convergence zone from near the Galapagos Islands northwest into 

warmer oligotrophic waters, covering a distance of 2,609km. 
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Table S3. Summary of the data used and results of the MLE best fit parameters and model comparison analysis [log-likelihoods (LLH) and Akaike 

weights (wAIC)]. P, TP and E denote power law, truncated Pareto (power law) and exponential models respectively. Exp denotes the exponential model in 

the model comparison results. See Supplementary Methods 1.4 for more details. 

Species  ID  Section 
Total 
points 

Max 
step 
length 
(m) 

Best fit 
distribution 

Best fit 
exponent 

Best fit 
Xmin 

Best fit 
Xmax 

TP / P 
GOF 

Exp 
GOF 

TP / P 
LLH  Exp LLH 

TP / P 
wAIC 

Exp 
wAIC 

Big eye tuna  1  Section 1  48881  719                     
Big eye tuna  1  Section 2  52801  1531  TP  2.062  15.000  466.000  0.022  0.186  ‐34989  ‐36223  1.000  0.000 
Big eye tuna  1  Section 3  6001  259  TP  2.012  15.000  259.000  0.036  0.167  ‐4818  ‐4946  1.000  0.000 
Big eye tuna  1  Section 4  5281  1683  TP  2.213  9.000  1683.000  0.037  0.258  ‐2657  ‐2954  1.000  0.000 
Big eye tuna  1  Section 5  67321  627                     
Big eye tuna  1  Section 6  18721  336  TP  2.022  10.000  297.000  0.027  0.172  ‐12937  ‐13505  1.000  0.000 
Big eye tuna  1  Section 7  7899  336                     
Big eye tuna  2  Section 1  19801  1281                     
Big eye tuna  2  Section 2  11521  334  TP  2.189  19.000  334.000  0.032  0.166  ‐7097  ‐7332  1.000  0.000 
Big eye tuna  2  Section 3  14401  1635  TP  1.938  9.000  1601.000  0.029  0.262  ‐14885  ‐15925  1.000  0.000 
Big eye tuna  2  Section 4  38881  586  E  0.018  53.000    0.069  0.040  ‐7217  ‐7120  0.000  1.000 
Big eye tuna  2  Section 5  79201  415  E  0.015  42.000    0.069  0.072  ‐20058  ‐19945  0.000  1.000 
Big eye tuna  2  Section 6  25921  715  TP  2.548  15.000  715.000  0.027  0.189  ‐12029  ‐12425  1.000  0.000 
Big eye tuna  2  Section 7  36001  529  TP  1.988  10.000  529.000  0.028  0.185  ‐30064  ‐31204  1.000  0.000 
Big eye tuna  2  Section 8  33481  422  TP  1.975  5.000  422.000  0.026  0.217  ‐36913  ‐39232  1.000  0.000 
Big eye tuna  3  Section 1  13072  249  TP  2.752  8.000  249.000  0.041  0.135  ‐8269  ‐8325  1.000  0.000 
Big eye tuna  3  Section 2  49081  1526  TP  2.129  23.000  677.000  0.026  0.171  ‐28517  ‐29182  1.000  0.000 
Big eye tuna  3  Section 3  4741  212  E  0.102  2.000     0.158  0.022  ‐7228  ‐6801  0.000  1.000 
Big eye tuna  3  Section 4  11581  317  TP  2.072  13.000  317.000  0.058  0.095  ‐9459  ‐9520  1.000  0.000 
Big eye tuna  4  Section 1  7200  302                     
Big eye tuna  4  Section 2  33120  301  TP  2.525  18.000  301.000  0.022  0.159  ‐15726  ‐16065  1.000  0.000 
Big eye tuna  4  Section 3  7200  539                     
Big eye tuna  4  Section 4  27360  409                     
Big eye tuna  4  Section 5  15841  648  TP  1.863  13.000  262.000  0.031  0.140  ‐15605  ‐15892  1.000  0.000 
Big eye tuna  5  Section 1  20067  271  TP  2.369  9.000  271.000  0.034  0.208  ‐11380  ‐12077  1.000  0.000 
Big eye tuna  5  Section 2  15841  281  TP  2.213  9.000  281.000  0.029  0.208  ‐14620  ‐15496  1.000  0.000 
Big eye tuna  5  Section 3  15426  412                         
Big eye tuna  5  Section 4  30241  1541  TP  2.155  13.000  1541.000  0.025  0.238  ‐25494  ‐27279  1.000  0.000 
Big eye tuna  5  Section 5  5761  271                         
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Species  ID  Section 
Total 
points 

Max 
step 
length 
(m) 

Best fit 
distribution 

Best fit 
exponent 

Best fit 
Xmin 

Best fit 
Xmax 

TP / P 
GOF 

Exp 
GOF 

TP / P 
LLH  Exp LLH 

TP / P 
wAIC 

Exp 
wAIC 

Big eye tuna  5  Section 6  15841  695                         
Big eye tuna  5  Section 7  12961  363  TP  2.323  18.000  363.000  0.02  0.160  ‐5819  ‐5960  1.000  0.000 
Big eye tuna  5  Section 8  50761  735  TP  2.636  33.000  395.000  0.02  0.124  ‐18969  ‐19080  1.000  0.000 
Yellowfin tuna  1  Section 1  6121  316  E  0.037  4.000    0.109  0.073  ‐11286  ‐11136  0.000  1.000 
Yellowfin tuna  1  Section 2  4321  57  E  0.262  1.000    0.148  0.036  ‐5587  ‐5928  0.000  1.000 
Yellowfin tuna  1  Section 3  28801  324  TP  1.610  5.000  286.000  0.043  0.175  ‐34348  ‐35298  1.000  0.000 
Yellowfin tuna  1  Section 4  17281  315  E  0.033  15.000     0.101  0.027  ‐16697  ‐16330  0.000  1.000 
Yellowfin tuna  1  Section 5  37081  339                         
Yellowfin tuna  2  Section 1  23711  370  TP  2.059  11.000  370.000  0.026  0.184  ‐19744  ‐20596  1.000  0.000 

Yellowfin tuna  2  Section 2  68401  133  E  0.044  4.000     0.123  0.051  ‐110071 
‐

107593  0.000  1.000 
Yellowfin tuna  2  Section 3  50401  1018  E  0.037  8.000    0.107  0.045  ‐59448  ‐57663  0.000  1.000 
Yellowfin tuna  2  Section 4  10801  370                         
Yellowfin tuna  2  Section 5  23041  133  E  0.027  4.000     0.143  0.022  ‐47195  ‐45065  0.000  1.000 
Yellowfin tuna  2  Section 6  154080  1018                     
Yellowfin tuna  3  Section 1  3948  202  TP  2.187  12.000  202.000  0.065  0.212  ‐2871  ‐3007  1.000  0.000 
Yellowfin tuna  3  Section 2  12961  350  TP  2.071  12.000  333.000  0.047  0.230  ‐9477  ‐9946  1.000  0.000 

Yellowfin tuna  3  Section 3  86041  414  TP  1.364  3.000  267.000  0.063  0.159  ‐118329 
‐

121948  1.000  0.000 
Yellowfin tuna  3  Section 4  38881  414  TP  1.464  3.000  397.000  0.058  0.291  ‐48854  ‐54359  1.000  0.000 
Yellowfin tuna  4  Section 1  2521  200  TP  2.235  13.000  200.000  0.052  0.179  ‐2101  ‐2175  1.000  0.000 
Yellowfin tuna  4  Section 2  36001  327  TP  2.600  18.000  291.000  0.051  0.124  ‐20834  ‐21144  1.000  0.000 
Yellowfin tuna  4  Section 3  8641  539  TP  2.584  23.000  539.000  0.023  0.181  ‐5806  ‐5947  1.000  0.000 
Yellowfin tuna  4  Section 4  5761  339  TP  1.743  8.000  339.000  0.07  0.173  ‐5729  ‐5995  1.000  0.000 
Yellowfin tuna  4  Section 5  10441  331  TP  1.859  11.000  331.000  0.077  0.125  ‐8706  ‐8844  1.000  0.000 
Yellowfin tuna  5  Section 1  2521  275  TP  1.505  7.000  275.000  0.088  0.268  ‐3208  ‐3377  1.000  0.000 
Yellowfin tuna  5  Section 2  34081  293  TP  2.931  25.000  231.000  0.029  0.104  ‐13483  ‐13546  1.000  0.000 
Yellowfin tuna  5  Section 3  4801  334  TP  1.160  2.000  266.000  0.102  0.133  ‐8162  ‐8274  1.000  0.000 
Yellowfin tuna  5  Section 4  9001  318                     
Yellowfin tuna  6  Entire  1058  177  E  0.022  5.380    0.215  0.085  ‐2825  ‐2720  0.000  1.000 
Black Marlin  1  Section 1  590  204  TP  1.071  5.380  91.450  0.143  0.165  ‐1661  ‐1744  1.000  0.000 
Black Marlin  1  Section 2  863  349  TP  1.266  5.380  349.670  0.185  0.193  ‐1808  ‐1849  1.000  0.000 
Blue Marlin  1  Entire  1519  177.522  TP  0.519  5.379  145.000  0.123  0.196  0       
Blue Marlin  2  Entire  1110  177.522                     
Blue Marlin  3  Entire  1903  290.491                     
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Blue Marlin  4  Entire  1302  215.179                     
Blue Marlin  5  Entire  1688  107.589  TP  0.442  5.379  80.700  0.145  0.224  0       
Blue Marlin  6  Entire  2174  156.004  TP  0.971  5.379  123.700  0.145  0.152  0       
Blue Marlin  7  Entire  2534  172.143  TP  0.768  5.379  86.100  0.142  0.176  0       
Blue Marlin  8  Entire  2985  209.799  TP  1.092  5.379  166.800  0.122  0.169  ‐4315  ‐4484  1.000  0.000 
Blue Marlin  9  Entire  2468  129.107                     
Blue Marlin  10  Entire  2117  172.143  TP  1.680  21.500  150.000  0.107  0.082  ‐1404  ‐1425  1.000  0.000 
Blue Marlin  11  Entire  4128  204.42  E  0.027  5.380    0.17  0.133  ‐7166  ‐7052  0.000  1.000 
Swordfish  1  Entire  1191  597  TP  0.908  5.379  597.100  0.107  0.178  0       
Swordfish  2  Entire  2035  962                     
Swordfish  3  Entire  1429  624                     
Swordfish  4  Entire  2650  1285  TP  1.223  5.379  1285.600  0.108  0.307  ‐7385  ‐8097  1.000  0.000 
Ocean sunfish  1  Section 1  305100  145  TP  2.052  7.000  145.000  0.063  0.151  ‐891  ‐913  1.000  0.000 
Ocean sunfish  1  Section 2  378000  185  TP  1.924  5.000  185.000  0.077  0.232  ‐675  ‐714  1.000  0.000 
Big Eye Thresher  1  Entire  1440  473  TP  1.329  10.758  435.700  0.118  0.147  ‐2903  ‐3003  1.000  0.000 
Big Eye Thresher  2  Entire  1492  457  TP  1.195  32.276  457.200  0.116  0.168  ‐2285  ‐2350  1.000  0.000 
Blue Shark  1  Entire  819  381  E  0.013  5.380     0.126  0.102  ‐2207  ‐2201  0.000  1.000 
Blue Shark  2  Entire  1211  387  E  0.017  5.380    0.166  0.180  ‐3488  ‐3417  0.000  1.000 
Blue Shark  3  Entire  1541  387                     
Blue Shark  4  Entire  2621  177  TP  0.458  5.379  161.300  0.14  0.205  0       
Blue Shark  5  Entire  2256  532  E  0.012  5.380     0.171  0.151  0       
Blue Shark  6  Entire  4133  430                     
Blue Shark  7  Entire  846  333                     
Blue Shark  8  Entire  1924  371                     
Blue Shark  9  Section 1  29160  121                         
Blue Shark  9  Section 2  25920  482  TP  1.886  9.000  167.000  0.063  0.217  ‐741  ‐765  1.000  0.000 
Blue Shark  9  Section 3  70435  482  P  2.458  12.000     0.066  0.237  ‐1089  ‐1162  1.000  0.000 
Blue Shark  10  Section 1  653040  122  TP  1.630  6.500  122.000  0.062  0.187  ‐4254  ‐4405  1.000  0.000 
Blue Shark  10  Section 2  1900800  599  TP  2.190  11.000  599.000  0.038  0.242  ‐9949  ‐10696  1.000  0.000 
Blue Shark  10  Section 3  864000  200  E  0.040  15.000     0.075  0.062  ‐1916  ‐1904  0.000  1.000 
Blue Shark  10  Section 4  777600  545  TP  1.972  5.500  545.000  0.056  0.234  ‐6143  ‐6642  1.000  0.000 
Blue Shark  10  Section 5  2125260  523  TP  1.993  7.500  523.000  0.049  0.206  ‐9326  ‐9949  1.000  0.000 
Blue Shark  11  Entire  38090  87                     
Blue Shark  12  Section 1  121403  132  E  0.047  12.500    0.069  0.055  ‐2645  ‐2630  0.000  1.000 
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Blue Shark  12  Section 2  98699  396  TP  2.316  8.500  396.000  0.054  0.173  ‐2455  ‐2563  1.000  0.000 
Mako shark  1  Section 1  145  376  E  0.017  16.140    0.121  0.106  ‐333  ‐333  0.275  0.725 
Mako shark  1  Section 2  1273  398  E  0.018  5.380     0.15  0.108  ‐4031  ‐3916  0.000  1.000 
Mako shark  1  Section 3  865  338  E  0.021  5.380     0.176  0.129  ‐2319  ‐2257  0.000  1.000 
Mako shark  1  Section 4  532  355  E  0.016  5.380     0.153  0.078  ‐1530  ‐1504  0.000  1.000 
Porbeagle  1  Entire  2571721  38.5  E  0.172  7.500    0.079  0.080  ‐2012  ‐1951  0.000  1.000 
Silky shark  1  Entire  2667  231  E  0.027  5.380    0.187  0.079  ‐7201  ‐7101  0.000  1.000 
Silky shark  2  Entire  4272  193  E  0.055  21.520    0.229  0.137  ‐2975  ‐2839  0.000  1.000 
Silky shark  3  Entire  1584  166.7  TP  2.030  16.138  156.000  0.181  0.102  ‐2217  ‐2256  1.000  0.000 
White tip shark  1  Entire  3405  166  TP  1.839  21.520  129.110  0.12  0.114  ‐4480  ‐4546  1.000  0.000 
Basking shark  1  Section 1  4784  62  TP  1.463  3.000  62.000  0.102  0.166  ‐935  ‐972  1.000  0.000 
Basking shark  1  Section 2  4705  72                     
Basking shark  2  Section 1  5715  66  TP  1.576  4.000  66.000  0.073  0.182  ‐3325  ‐3464  1.000  0.000 
Basking shark  2  Section 2  25439  59  TP  1.750  4.000  59.000  0.063  0.137  ‐9715  ‐9832  1.000  0.000 
Basking shark  2  Section 3  2880  80                      
Basking shark  2  Section 4  11521  73  TP  1.379  7.000  73.000  0.134  0.178  ‐3224  ‐3338  1.000  0.000 
Basking shark  3  Section 1  26770  160.5  TP  1.596  5.500  159.000  0.064  0.214  ‐7597  ‐8007  1.000  0.000 
Basking shark  3  Section 2  27360  138.5                         
Basking shark  3  Section 3  42120  161  TP  1.776  7.500  146.000  0.081  0.233  ‐9741  ‐10331  1.000  0.000 
Basking shark  4  Section 1  51385  100                     
Basking shark  4  Section 2  12960  182  E  0.030  14.000    0.121  0.104  ‐2933  ‐2891  0.000  1.000 
Basking shark  4  Section 3  213892  168  TP  2.414  18.000  168.000  0.058  0.127  ‐12712  ‐12735  1.000  0.000 
Basking shark  5  Section 1  43437  186                        
Basking shark  5  Section 2  236425  72  E  0.107  32.000    0.244  0.244  ‐275  ‐206  0.000  1.000 
Basking shark  6  Section 1  24258  112  TP  1.820  12.000  112.000  0.121  0.180  ‐4836  ‐4874  1.000  0.000 
Basking shark  6  Section 2  17281  120  E  0.039  16.000     0.085  0.105  ‐2340  ‐2304  0.000  1.000 
Basking shark  6  Section 3  5761  140                       
Basking shark  6  Section 4  5761  132                         
Basking shark  6  Section 5  11521  116                       
Basking shark  6  Section 6  5224  156  TP  1.732  14.000  156.000  0.137  0.179  ‐405  ‐413  0.999  0.001 
Whale shark  1  Section 1  1753  80  TP  2.023  5.379  59.200  0.368  0.264  ‐2529  ‐2610  1.000  0.000 
Whale shark  1  Section 2  721  1285  E  0.012  5.380     0.135  0.012  0       
Whale shark  1  Section 3  4828  1285                         
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For a few sections where the estimated exponent for the truncated Pareto distribution was < 1 it was not possible to calculate the log-likelihood.  When this occurred (in 

8 sections), then the Akaike weights could not be calculated. 
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Table S4. Kolmogorov-Smirnov goodness of fit values, log-likelihoods and Akaike weights for key sections analysed and shown in figures 

(denoted in first column) or in the spatial analysis (Fig. 3 main paper). For explanation of model comparison values in table columns see legend to Table 

S3 and Supplementary Methods 1.4 for details. 

Figure  Species  ID  Section 
Best fit 

distribution 
Best fit 
exponent 

Best 
fit 

Xmin 
Best fit 
Xmax 

TP / 
P 

GOF 
Exp 
GOF  TP / P LLH  Exp LLH 

TP / P 
wAIC 

Exp 
wAIC 

Gamma 
GOF 

3, S3, S4  Big eye tuna  1  Section 4  TP  2.213  9.0  1683.0  0.037  0.258  ‐2657  ‐2954  1.000  0.000  0.242 
3, S6  Big eye tuna  2  Section 2  TP  2.189  19.0  334.0  0.032  0.166  ‐7097  ‐7332  1.000  0.000  0.105 
S6  Big eye tuna  2  Section 3  TP  1.938  9.0  1601.0  0.029  0.262  ‐14885  ‐15925  1.000  0.000  0.196 
S6  Big eye tuna  2  Section 4  E  0.018  53.0    0.069  0.040  ‐7217  ‐7120  0.000  1.000   
3, S6  Big eye tuna  2  Section 5  E  0.015  42.0    0.069  0.072  ‐20058  ‐19945  0.000  1.000   
S6  Big eye tuna  2  Section 6  TP  2.548  15.0  715.0  0.027  0.189  ‐12029  ‐12425  1.000  0.000  0.185 
3, S6  Big eye tuna  2  Section 7  TP  1.988  10.0  529.0  0.028  0.185  ‐30064  ‐31204  1.000  0.000  0.136 
  Big eye tuna  2  Section 8  TP  1.975  5.0  422.0  0.026  0.217  ‐36913  ‐39232  1.000  0.000  0.148 
3, S3, S4  Big eye tuna  3  Section 3  E  0.102  2.0     0.158  0.022  ‐7228  ‐6801  0.000  1.000   
  Big eye tuna  5  Section 4  TP  2.155  13.0  1541.0  0.025  0.238  ‐25494  ‐27279  1.000  0.000  0.233 
3, S3, S4  Yellowfin tuna  1  Section 1  E  0.037  4.0    0.109  0.073  ‐11286  ‐11136  0.000  1.000   
  Yellowfin tuna  1  Section 3  TP  1.610  5.0  286.0  0.043  0.175  ‐34348  ‐35298  1.000  0.000  0.144 
3, S3, S4  Yellowfin tuna  1  Section 4  E  0.033  15.0     0.101  0.027  ‐16697  ‐16330  0.000  1.000   
  Yellowfin tuna  2  Section 1  TP  2.059  11.0  370.0  0.026  0.184  ‐19744  ‐20596  1.000  0.000  0.175 
  Yellowfin tuna  2  Section 2  E  0.044  4.0     0.123  0.051  ‐110071  ‐107593  0.000  1.000   
  Yellowfin tuna  2  Section 3  E  0.037  8.0    0.107  0.045  ‐59448  ‐57663  0.000  1.000   
3, S3, S4  Yellowfin tuna  2  Section 5  E  0.027  4.0     0.143  0.022  ‐47195  ‐45065  0.000  1.000   
3, S3, S4  Yellowfin tuna  3  Section 3  TP  1.364  3.0  267.0  0.063  0.159  ‐118329  ‐121948  1.000  0.000  0.112 
3, S3, S4  Yellowfin tuna  3  Section 4  TP  1.464  3.0  397.0  0.058  0.291  ‐48854  ‐54359  1.000  0.000  0.160 
S3, S4  Yellowfin tuna  4  Section 4  TP  1.743  8.0  339.0  0.07  0.173  ‐5729  ‐5995  1.000  0.000  0.154 
3, S3, S4  Yellowfin tuna  4  Section 5  TP  1.859  11.0  331.0  0.077  0.125  ‐8706  ‐8844  1.000  0.000   
3, S3, S4  Yellowfin tuna  5  Section 1  TP  1.505  7.0  275.0  0.088  0.268  ‐3208  ‐3377  1.000  0.000  0.203 
  Yellowfin tuna  5  Section 3  TP  1.160  2.0  266.0  0.102  0.133  ‐8162  ‐8274  1.000  0.000  0.081 
3, S3, S4  Yellowfin tuna  6  Entire  E  0.022  5.4    0.215  0.085  ‐2825  ‐2720  0.000  1.000   
S3, S4  Mola mola  1  Section 2  TP  1.924  5.0  185.0  0.077  0.232  ‐675  ‐714  1.000  0.000  0.173 
1, 3, S3, S4  Blue Shark  9  Section 2  TP  1.886  9.0  167.0  0.063  0.217  ‐741  ‐765  1.000  0.000  0.185 
2, S4  Blue Shark  9  Section 3  P  2.458  12.0     0.066  0.237  ‐1089  ‐1162  1.000  0.000  0.214 
2, 3, S4  Blue Shark  10  Section 1  TP  1.630  6.5  122.0  0.062  0.187  ‐4254  ‐4405  1.000  0.000  0.157 
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2  Blue Shark  10  Section 2  TP  2.190  11.0  599.0  0.038  0.242  ‐9949  ‐10696  1.000  0.000  0.215 
1, 2, 3, S4  Blue Shark  10  Section 3  E  0.040  15.0     0.075  0.062  ‐1916  ‐1904  0.000  1.000   
2, 3, S4  Blue Shark  10  Section 4  TP  1.972  5.5  545.0  0.056  0.234  ‐6143  ‐6642  1.000  0.000  0.182 
3, S3, S4  Blue Shark  10  Section 5  TP  1.993  7.5  523.0  0.049  0.206  ‐9326  ‐9949  1.000  0.000  0.179 
3, S3, S4  Blue Shark  12  Section 2  TP  2.316  8.5  396.0  0.054  0.173  ‐2455  ‐2563  1.000  0.000  0.180 

S9  Silky shark  2  Entire  E  0.055  21.520    0.229  0.137  ‐2975  ‐2839  0.000  1.000   
S3,S4,S9  Silky shark  3  Entire  TP  2.030  16.138  156.000  0.181  0.102  ‐2217  ‐2256  1.000  0.000  0.160 
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It is an open question how animals find food in dynamic natural
environments where they possess little or no knowledge of where
resources are located. Foraging theory predicts that in environ-
ments with sparsely distributed target resources, where forager
knowledge about resources’ locations is incomplete, Lévy flight
movements optimize the success of random searches. However,
the putative success of Lévy foraging has been demonstrated only
in model simulations. Here, we use high-temporal-resolution Glo-
bal Positioning System (GPS) tracking of wandering (Diomedea ex-
ulans) and black-browed albatrosses (Thalassarche melanophrys)
with simultaneous recording of prey captures, to show that both
species exhibit Lévy and Brownian movement patterns. We find
that total prey masses captured by wandering albatrosses during
Lévy movements exceed daily energy requirements by nearly four-
fold, and approached yields by Brownian movements in other
habitats. These results, together with our reanalysis of previously
published albatross data, overturn the notion that albatrosses do
not exhibit Lévy patterns during foraging, and demonstrate that
Lévy flights of predators in dynamic natural environments present
a beneficial alternative strategy to simple, spatially intensive beha-
viors. Our findings add support to the possibility that biological
Lévy flight may have naturally evolved as a search strategy in re-
sponse to sparse resources and scant information.

optimal foraging ∣ organism ∣ predator-prey ∣ telemetry ∣ evolution

Theoretically, in situations where animals possess limited or no
information on the whereabouts of resources, a specialized

random walk known as a Lévy flight can yield encounters with
sparsely and randomly distributed targets (e.g., prey) more effi-
ciently than random walks such as Brownian motion (1, 2), which
are efficient where prey is abundant (3) and probably more pre-
dictable (4, 5). Lévy flight, in which movement displacements
(steps) are drawn from a probability distribution with a power-
law tail (a Pareto-Lévy distribution), describes a search pattern
composed of many small-step ‘walk clusters’ interspersed by long-
er relocations. This pattern is repeated across all scales, such that
PðlÞ ∼ l−μ, with 1 < μ ≤ 3 where l is the flight length (move-step-
length), and μ the power-law exponent. Simple model simulations
of Lévy search generally describe a forager moving along conse-
cutive step lengths drawn from a power law distribution, such that
when randomly and sparsely distributed prey is detected within a
“sensory” field, the current step length is terminated, the prey is
consumed and then a new random direction and step length are
selected (3). These Lévy search-model simulations indicate an
optimal exponent of μ ≈ 2 for the power-law move-step frequency
distribution, leading to searches that increase the probability of a
forager encountering new prey patches (1–3). In recent years,
Lévy flight or Lévy walk patterns approaching the theoretically
optimal value of μ ≈ 2 have been identified in movements of di-
verse organisms, from microbes to humans (1–6). Consequently,
it has been proposed (1, 6) that because Lévy flights can optimize
search efficiencies, natural selection should have led to adapta-

tions for Lévy flight foraging—the so-called Lévy flight foraging
(LFF) hypothesis. Nevertheless, despite a burgeoning literature
describing theoretical advantages of adopting Lévy flight search
patterns (e.g., 1), and empirical evidence of such patterns among
diverse organisms (1–6), the actual prey capture success of Lévy
flights in the natural environment compared with other search
patterns has not been demonstrated. Without this datum, it re-
mains unclear how compelling the LFF hypothesis might be
for explaining an adaptive basis for random search patterns in
wild animals.

Lévy flight movement patterns in animals were first suggested
for foraging ants (7) and identified in the activity patterns of Dro-
sophila (8) reared in the laboratory. However, of singular impor-
tance was the first observation of theoretically optimal (μ ≈ 2)
Lévy flight in the foraging movements of a free-ranging animal,
the wandering albatross (9), which introduced the possibility that
optimal Lévy strategies were widespread in nature. This possibi-
lity was then confirmed by numerous empirical studies (1, 6).
Over the last few years, however, a significant number of these
studies have been overturned (10–12) on account of the use of
inappropriate statistical methods for identifying putative power-
law behavior in move-step-length frequency distributions. The
most significant overturning (12) was that of the original obser-
vation (9) of Lévy flights in wandering albatross, where long move
steps were wrongly attributed to searching, and where the ab-
sence of power-law-distributed move steps in wandering albatross
and other species cast some doubt (13, 14) on the strength of
evidence for biological Lévy flights in general.

Recent, statistically robust, empirical studies have now iden-
tified Lévy flights in individual insects (8), jellyfish (15), sharks,
tuna, billfish, turtles, and penguins (4, 5, 16), and in the popula-
tion movement patterns of shearwaters (17). Interestingly, Lévy
patterns did not occur at all times in marine predators (4, 5, 15);
rather, their occurrence was dependent on environmental con-
text—such as prey-sparse distributions—as predicted by theory
(3). However, in none of the studies was the foraging success mea-
sured; such ameasure represents the ultimate test of whether Lévy
flight might represent an advantage to the forager. Given that
albatrosses often forage on squid and fish prey they catch at
the surface in highly heterogeneous habitats (18), it is reasonable
to assume that a search strategy aimed at increasing the chance
of encountering sparse prey, such as Lévy flight, may be present.
Therefore, using appropriate datasets and robust statistical
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methods, we tested (i) whether Lévy flight search patterns were
present in albatrosses, and (ii) whether Lévy flights do result in
successful foraging trips compared with another strategy, such
as a Brownian walk, as predicted by the LFF hypothesis.

Results and Discussion
High-temporal resolution GPS transmitters (19) that report an
accurate geographical position approximately every 1 or 10 s were
used to track the foraging movements of 27Diomedea exulans and
61 Thalassarche melanophrys in the southern Indian Ocean during

incubating or chick brooding periods (SI Appendix, SI Materials
and Methods). The general pattern of foraging movements of the
two species was different, with T. melanophrys concentrating
searches closer to the shelf edge (Fig. 1 A–C), whereas trips of
D. exulans were either mostly in neritic (shelf <2; 000 m depth)
or oceanic waters (>2; 000 m) (Fig. 2 A and B). Individual fora-
ging tracks showed a similar complex pattern at increasing scales
that was reminiscent of the scale-invariant (fractal) patterns of
Lévy flights (e.g., Fig. 1A). For a generalized searcher undertak-
ing a Lévy walk, the turning points along the track are the points

Fig. 1. GPS trackings of albatross foraging indicate scale-invariant patterns. (A) GPS foraging track of a black-browed albatross (BBA46) off the Kerguelen
Islands, Southern Indian Ocean, viewed across large (100 s km; Left) to small (10 s m; Right) scales showing similar patterns of trajectory complexity at all scales.
Background color denotes bathymetry in m. Each red square denotes area covered by panel adjacent right. (B) Foraging track of a black-browed albatross
(BBA33) with flight steps between landings best approximated by a truncated Lévy distribution (μ ¼ 1.28), with movements principally in deep shelf and
oceanic habitats. Red square denotes area shown in (C). (C) Foraging track of BBA35, best approximated by an exponential distribution, was more spatially
intensive in shelf and shelf edge habitats. Color denotes water depth, with bathymetric contours identifying neritic shelf waters <2; 000 m and oceanic waters
>2; 000 m. (D) Time series profile of flight speeds of a GPS tracked black-browed albatross showing how landing locations and surface resting times were
identified.
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visited by a Lévy flight (20)—in our case, the sea-landing loca-
tions of albatrosses. Therefore, we calculated flight steps as the
distances between consecutive landings on the sea surface for
each individual albatross from each individual time series of flight
speeds (Fig. 1D; SI Appendix, SI Materials and Methods) and cal-
culated whether the truncated power law (Pareto-Lévy) (21) or
exponential (Brownian) distributions best fit the observed data.
Our purpose was not to test which was the best fit of all possible
distributions, but rather to test whether Lévy flight or Brownian
walk behavior was present (5).

Using Maximum Likelihood Estimation (MLE) for model
parameter fitting and Akaike’s Information Criteria weights
(wAIC) for model selection (SI Appendix, SI Materials and
Methods), we found strong support for individual bird movements
approximating truncated Lévy flight (power law) and Brownian
(exponential) search patterns in both black-browed and wandering
albatrosses (Fig. 3 A–D; SI Appendix, SI Results). Lévy flights
occurred in 22 (38%) individual T. melanophrys and 4 (15%)
D. exulans (Figs. 1B and 2A and SI Appendix, Fig. S4), whereas
exponential (Brownian type) movements were exhibited by 11
(18%) and 7 (26%) birds, respectively (Figs. 1C, 2B, and SI
Appendix, Fig. S5). A significant proportion of trajectories
(41% T. melanophrys; 59% D. exulans) were not fitted by either
distribution and were of more complex form, which may represent
tracks having both Lévy and Brownian features, as might be ex-
pected if similar time is spent by a bird in both shelf and oceanic
habitats (see below). (SI Appendix, SI Results, Table S9, and
Fig. S6). The lower proportion of Lévy best fits in the D. exulans
data was likely due to the much lower number of landings per km
(and therefore flight steps) for individual birds of this species com-
pared to T. melanophrys, as more data points are required to iden-

tify power-law distributions clearly (11) (SI Appendix, SI Results).
The μ values of truncated power-law fits were within the range of
values consistent with the LFF hypothesis (1 < μ ≤ 3), but were
lower than the theoretical optimum for nondestructive search
(μ ≈ 2) where prey is distributed in revisitable patches and is only
temporarily depleted (1). We calculated mean exponent values of
1.27 and 1.19 for black-browed and wandering albatrosses, respec-
tively. These lower exponents are consistent with optimal Lévy
flight search patterns (μ → 1) expected under the LFF hypothesis
when encountered prey are consumed (destructive search) and not
available to subsequent searches (nonrevisitable patches) (1, 4, 22);
this predicts optimal searches when fewer prey are sparsely distrib-
uted (e.g., single prey; see prey capture results below in Table 1).

Clearly our results are at odds with the study of Edwards, et al.
(12), which concluded, on the basis of analysis of a new high re-
solution dataset, that wandering albatrosses do not exhibit Lévy
flight search patterns. To address these apparently conflicting
results we reanalyzed the published data of Edwards, et al. (12),
which comprised the times (as a proxy for distances) between
consecutive landings during foraging trips of 20 wandering alba-
trosses fitted with wet/dry data loggers at Bird Island, South
Georgia in 2004. The study pooled individual datasets and did
not test for truncated power-law distributions in individual bird
move-step data, so it was unclear whether individual birds exhib-
ited Lévy flight patterns. Repeating the robust statistical methods
described here with, first, the pooled data, we found better
support for a truncated power-law best fit than for an exponential
fit (SI Appendix, Table S13 and Fig. S11). This rather different
result to that found by Edwards, et al. (12) can be attributed to
Edwards et al. testing for a pure, rather than truncated power law
(SI Appendix, SI Results and Discussion). Repeating the analysis

Fig. 2. Different types of wandering albatross GPS tracks and prey capture contrasts between Lévy and exponential patterns. (A) Foraging track, prey capture
locations, and preymasses of wandering albatrossWA08 during an 89 h foraging trip approximated by a Lévy pattern (μ ¼ 1.25) occurring principally over deep
shelf edge (1,000–2,000 m) and oceanic waters (>2; 000 m). Captures totalled 3.5 kg, but prey were generally solitary and taken further apart, indicating prey
sparse habitats. Red square denotes area shown in (B). (B) Foraging movements by wandering albatross WA16 during which it captured 1.8 kg of prey in 21.5 h
when over shallow shelf (500–1,000 m) and shelf edge habitats during landings best described by an exponential distribution (Brownian pattern). Numerous
prey items were often taken in a single landing, indicating a greater abundance of prey.
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with individual bird data, we found strong support for Lévy flight
search patterns, with the truncated Lévy distribution accounting
for best fits in 45% of bird tracks analyzed and exponential best
fits for only 15% (Fig. 3 E–H, SI Appendix, Figs. S11 and S12, SI
Results). This significant difference highlights the extent to which
the pooling of heterogeneous data can obscure individual move-
ment patterns. The close agreement with results from our Crozet
Island birds is interesting because the data of Edwards, et al. (12)
were collected from South Georgia (South Atlantic Ocean) and
with move steps between landings estimated by a different meth-
od to ours, which suggests that Lévy patterns may be widespread
in this species.

A significant gap in our knowledge is whether Lévy flights ac-
tually confer the advantages to foragers that have been theorized
(1). We were able to test whether Lévy flights yield sufficient prey
gain compared with Brownian behavior—as expected under the

LFF hypothesis—by using 11 GPS and 18 satellite-tracked wan-
dering albatrosses fitted with stomach temperature loggers that
recorded the timing and estimated mass of the prey captured
(23–25). In contrast to GPS tracked individuals, whose time spent
on water is measured from flight speed, landing locations of
satellite-tracked birds were detected by a wet/dry logger attached
to one of the bird’s legs; the time between consecutive landings
is shown to approximate the distance flown (SI Appendix, SI
Results). Analysis showed that D. exulans with Lévy patterns
landed a greater number of times during a foraging trip than
Brownian foragers, although the number of prey captures per km
flown was similar between Lévy and Brownian foragers, as was
the total mass of prey consumed per trip (Table 1). Wandering
albatrosses that showed statistically reliable approximations to
a Lévy flight achieved net energy gains despite longer foraging
trips further from the nest. We calculated that D. exulans showing
Lévy behavior ingested an average of 1.46 kg of prey per day,
which is sufficient to exceed daily energy requirements (26) by
nearly fourfold (Table 1). Hence, Lévy flight search patterns
by albatrosses represent a viable alternative strategy, compared
with Brownian movements, for attaining net energy gain.

The apparent success of Lévy flights in albatrosses is consistent
with expectations under the LFF hypothesis. Furthermore, an as-
sumption of the hypothesis is that Lévy flight search is optimal
where prey are sparsely and randomly distributed. Hence, we
tested the corollary that greater heterogeneous resources are ex-
pected where birds exhibit Lévy flight patterns, whereas more
homogeneous resources are expected where Brownian patterns
are identified (4, 5). We tested for biological heterogeneity in
black-browed albatross described as having Lévy (n ¼ 22) or
Brownian movement patterns (n ¼ 11) by extracting time-refer-
enced chlorophyll ‘a’ concentrations at landing locations as a
proxy for resource availability in areas visited (SI Appendix,
Fig. S10 A and B). During individual trips by T. melanophrys,
concentrations of resources were significantly more variable for
the Lévy pattern than for individuals exhibiting Brownian pat-
terns, confirming the theoretical prediction of longer distances
between abundant resources where Lévy behavior is observed
(SI Appendix, Fig. S10 C and D). In addition, the sea-surface
areas where T. melanophrys exhibited movements modeled by
Lévy flights were located over significantly deeper water depths
than those having Brownian patterns (SI Appendix, SI Results),
which supports the prediction that Lévy flights may be more
advantageous in oceanic waters (>2; 000 m) or the deep shelf
edge (1,500–2,000 m) where albatross prey are sparse, compared
to the shallower shelf edge where resources are more abundant
(24). To support this prediction, we found for D. exulans that
Lévy patterns comprised landing locations in both neritic and
oceanic zones, but that prey captures occurred mainly in shelf
edge or oceanic habitats (72% of capture events; SI Appendix,

Fig. 3. Albatrosses exhibit truncated Lévy flight patterns of landing loca-
tions. Examples of MLE parameter fitting andwAIC model selection showing
truncated Lévy best fits to GPS-flight-speed derived landing locations of
black-browed (A–C) and wandering (D) albatrosses, and (E–H) for previously
published (12) wet/dry logger-derived landing times of wandering albatross
(SI Appendix, SI Results).

Table 1. Foraging performance of wandering albatrosses showing Lévy or Brownian movement patterns, means (�1 s:d.) for 13 birds

No.
landings

Distance
flown
(km)

Total prey
mass captured

(kg)*

Mass captured
per landing

(g)

Mass per
capture

(g)

Total mass
per day
(kgd−1)

Energy
ingested
per day

(kJ kg−1 d−1)†

Factorial increase
of ingested energy
per day over daily

energy requirements‡

Truncated
Lévy (n ¼ 7)

34.6(13.8) 1,151.9(660.9) 3.74(1.53) 97.9(37.7) 346.4(170.9) 1.46(0.86) 734.8(390.5) 3.68(2.49)

Exponential
(Brownian) (n ¼ 6)

15.5(7.5) 699.1(556.5) 4.18(2.37) 352.6(304.9) 296.1(126.8) 2.53(0.56) 1,364.8(491.0) 7.69(3.12)

Means in bold indicate significant difference between pattern types (truncated Lévy vs exponential): number of landings (t-test), t ¼ 3.01, p < 0.02. All other
comparisons not significant at p ¼ 0.05.
*Prey capture data from stomach temperature loggers was available for six Lévy and four Brownian birds. Of the 10 birds, landing patterns for five of them
(four Levy, one Brownian) were calculated from times between landings recorded by wet/dry loggers (24) rather than distances from GPS-derived landing
locations (SI Appendix, Supporting Results 2.5).

†D. exulans feed mainly on squid. An energy value of Antarctic squid of 4.64 kJ g−1 wet weight was used (29).
‡Daily energy requirement of 157 kJ kg−1 d−1 was an average determined from heart rate telemetry during the brooding period and validated with indirect
calorimetry of oxygen consumption (26).
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SI Results) (Fig. 2A). Prey distribution in habitats visited appears
sparse because prey capture during Lévy movements was typified
by consumption of solitary, larger prey items that were further
apart (lower intake per landing, with more unsuccessful land-
ings), compared to Brownian patterns where numerous smaller
items were ingested within a single landing in prey abundant areas
(higher intake per landing) (Table 1) (Fig. 2B). For the majority of
trackings where Brownian patterns described landings of D. exul-
ans, prey captures were in more productive neritic waters (76%),
although on occasion a high density prey patch was encountered
in oceanic habitat, where multiple prey capture events occurred
within a highly localized area (SI Appendix, SI Results), a finding
predicted by the LFF hypothesis. Taken together, these results
suggest Lévy patterns of both species occurred in prey-sparse
and thus less resource-predictable habitats.

Our analyses of albatross foraging tracks indicate a significant
proportion (31%) of Lévy flight patterns among 126 individuals
from two species, overturning a principal conclusion of the study
by Edwards, et al. (12). An important result in this study was that
foraging albatrosses undertaking Lévy flight-modeled search pat-
terns have comparatively high energy gains despite foraging in
more heterogenic environments. Although several modeling stu-
dies demonstrate that Lévy searches confer foraging advantages
in certain types of environment (for review see ref. 1), our study
quantifies empirically the foraging success of biological Lévy
flights in a free-ranging organism. We also found evidence that
Lévy-flight modeled movements for both species were theoreti-
cally optimal and occurred in more prey-sparse habitat; such ha-
bitat dependence is predicted by the LFF hypothesis. It is possible
that albatrosses exhibit movement patterns approximated by Lévy
flights as a response to unpredictable habitat such as the oceanic
environment, where prey are larger but also highly patchy in their
distribution (24, 25). Similarly, albatross movements may emerge
as Brownian motion when foraging in more predictable environ-
ments, such as shelf edges where prey availability is more likely to
be concentrated. Thus, our results may explain the field observa-
tion that albatrosses show high site fidelity to more predictable
shelf waters, but in the unpredictable oceanic habitat, rarely re-
turn to the same coarse scale sites (25). In addition to Lévy and
Brownian patterns, we found evidence of more complex move-
ments (SI Appendix, Tables S9, S12; Figs. S6, S9) that were per-
haps a result of switching between behaviors during single trips by
individual birds. Recent analyses of predatory marine fish (4, 5)
have found similar links between Lévy patterns and habitats with
sparsely distributed resource fields, including switching behavior
by individuals, indicating that Lévy flight patterns may be a solu-
tion to the search problem for diverse animals occupying unpre-
dictable environments.

A Lévy-flight specialized random walk is the most efficient
behavior to find sparse, unpredictable prey patches when informa-
tion is incomplete (1), that is, when local clues such as olfactory
trails are absent. It is not unreasonable to assume that there are
occasions when albatrosses and other predators will not have ac-
cess to such clues, or where experience may not help, such as when
they are in new or highly dynamic environments. Under such con-
ditions, an innate movement process could account for the move-
ment patterns we observed in albatrosses, and could apply more
generally. Although there is no clear evidence of an innate Lévy
process driving movements of vertebrates, experimental studies
have shown that in featureless environments Drosophila activity
patterns are well approximated by a Lévy flight (8, 27). Further-
more, Drosophila with silenced parts of the brain’s mushroom
body, or modified dopaminergic signaling—circuitry linked to

decision-making—show disrupted activity patterning and beha-
vioral burstiness, where burstiness is described as heavy-tailed
distributions of move or pause times (28). Such evidence for neu-
rophysiological pattern generation linked to decision-making be-
havior, taken together with our results showing Lévy movements
of albatrosses can yield high energy gains in resource-sparse ha-
bitats, raises the question of whether an innate stochastic search
process based on Lévy flight foraging has naturally evolved in or-
ganisms.

Materials and Methods
Study Animals. Animal-attached GPS tags provided time-stamped location
datasets for 61 black-browed albatrosses (Thalassarche melanophrys) brood-
ing chicks on Kerguelen Island (49.35 °S 70.22 °E) and 27 wandering alba-
trosses (Diomedea exulans) incubating or brooding chicks on Possession
Island (46.40 °S 51.76 °E) in the Crozet Islands archipelago. Between 2002
and 2010, birds were equipped just before taking off for the sea with GPS
loggers attached with adhesive tape on the back feathers; the total mass
of devices (between 20 and 45 g according to the season and species) was
far below the recommended 3% threshold. In addition, some wandering al-
batrosses were also induced to swallow stomach loggers recording tempera-
ture from which prey capture events are estimated. Details of deployment
procedures and studies are given in SI Appendix, SI Materials and Methods.

Flight Profiles. Each individual bird time series of GPS locations was divided
into 1min intervals, and for each interval, an average speed was calculated. If
the average speed of an interval was above the threshold flight speed of
10 kmh−1 and 90% of the data points comprising the interval were also
above the threshold, the interval was categorized as in-flight; otherwise it
was categorized as at rest. A flight step was calculated for each series of
contiguous in-flight intervals; all single interval (i.e., 1 min) flight steps were
ignored. For each flight step the move-step-length was calculated as the
great circle distance between the points of take-off and landing.

MLE Analysis and Model Selection. For each individual bird flight profile da-
taset (calculated as per above), parameters for exponential and truncated
Pareto (TP) distributions were estimated using MLE and log-likelihoods
(and Akaike weights) were calculated for both the fitted distribution (TP
or exponential) and the paired competing distribution (exponential or TP).
Where AIC favored the fitted TP over the competing exponential, but the
fitted exponential was favored over the competing TP (which can arise be-
cause of the slightly different ranges of the dataset over which the distribu-
tions are fitted), an adjusted goodness of fit (GOF) value, based on the KS-D
statistic, was used for model selection. Using AIC or GOF, datasets were ca-
tegorized as (i) TP, where AIC supported TP and either AIC or GOF rejected the
exponential, the exponent fell in the Lévy range (1 < μ ≤ 3) and the fit
spanned at least 1.5 orders of magnitude of the data range; (ii) exponential,
where AIC or GOF supported exponential and AIC or GOF rejected the com-
peting TP; or (iii) mixed-model, where none of the above applied or where
the TP fit was supported by AIC/GOF but covered <1.5 orders of magnitude
of the data range. See SI Appendix, SI Methods and Results for detailed
descriptions.
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1 Supporting Methods 

1.1 Study animals and tags 

Global Positioning System (GPS) tags were used to collect movement data from 61 black 

browed (Thalassarche melanophrys) and 27 wandering albatross (Diomedea exulans). A 

summary of the original GPS datasets is given in Table S1. Eleven of these birds were 

also fitted with a stomach temperature logger. Details of deployment procedures for GPS 

tags and stomach temperature loggers (for determining the timing of prey capture and 

estimating prey mass ingested) are given in Weimerskirch et al. (1-3). For the prey 

capture study we also analysed 17 individual location time series of wandering albatross 

that were each fitted with an Argos satellite transmitter, a wet/dry logger on one leg and 

were induced to swallow a stomach temperature logger. Full details of procedures and 

studies are given in Weimerskirch et al. (4), the results of the MLE analysis of these 17 

additional flight profiles are given in section 2.5 below.  

1.2 Processing of GPS time series data 

The data obtained from the GPS tags are a time series of geographic locations at intervals 

of between a few seconds to several minutes, depending on both tag configuration and 

the time taken for the tag to acquire sufficient satellites to compute a location. This high 

resolution data captures the complex swooping flight path performed by the bird as it 

soars over the wave crests (5). Our intention was to test whether the bird flight steps that 

link periods of rest on the water or possible feeding events follow either a Lévy or 

exponential distribution. An exponential distribution might be expected if the movement 

pattern was essentially Brownian, resulting from a Poisson process; a Lévy pattern could 

suggest an optimal foraging search pattern such as a Lévy flight (6), which would emerge 

from a bird conducting a Lévy walk since the turning points (landings for resting or 

feeding) in a Lévy walk are a Lévy flight (7). Alternatively, a Lévy (heavy-tailed) pattern 

could arise by random movements across a fractal distribution of prey patches (8-10). 

Because the tags did not include a salt water switch (wet/dry logger) we determined 

whether the bird was in flight or at rest from variations in flight speed. Periods of time 

spent resting on the sea surface and drifting with the current would have low speeds, 
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whereas flight speeds would be necessarily higher. We used a speed threshold of 10 km 

h
-1

 (11) above which the bird was most probably in flight and below which the bird was 

most likely at rest (or feeding) on the water. The first processing step converted the time 

series of locations into a series of movement steps using the Haversine equation to 

calculate great circle distances, from which, together with the time intervals, average 

speeds were calculated. The undulating form of the flight path results in sudden changes 

in speed and would produce a complex flight profile if each move step below the 

threshold were taken to be a rest step, and each step above the threshold as a flight step 

(Figure S1, upper grey plot). Therefore, the second processing step converted the 

movement steps into a flight profile, where unrealistically short periods of time, either at 

rest or in flight, were ignored. The time series was divided into one minute intervals and 

an average speed was computed for each interval (Figure S1, upper blue plot). If the 

speed was below the 10 km h
-1

 threshold then the interval was considered to be a rest 

interval. However, if more than 90% of the steps included in the interval had a speed 

above the threshold then the decision was reversed and the interval was set to be a flight 

interval. In the same way, intervals originally considered to be in flight because the 

average speed was above the threshold would be reversed and become rest intervals if 

90% of the steps in the interval had speeds below the threshold. This reduces the bias 

associated with steps with unusually high or low speeds. Finally, to remove short-term 

transient changes in speed from the flight profile, any single rest or flight intervals were 

also ignored, as indicated by arrows in Figure S1. The resulting flight profile accurately 

captures the clear bimodal pattern of activity and rest indicated by the raw tag data 

(Figure S1, grey line) while removing the noise inherent in the bird‟s complex flight. 

From each flight profile (Figure S1, lower plot) the flight step lengths were calculated as 

the great circle distance from the start and end locations of flight steps using the 

Haversine equation. Additionally, for comparison, the total distance travelled (summed 

from individual step lengths) and the flight times were calculated. The data processing of 

GPS locations therefore generated three separate sets of data for each bird, representing 

three different aspects of the calculated flight profile, all of which are suitable for 

analysis using Maximum Likelihood Estimation (MLE): (1) move step lengths between 

consecutive landings, (2) total distance travelled between consecutive landings, and (3) 
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time between consecutive landings. After this flight profile analysis, three flight profiles 

comprised only two flight steps and were therefore discarded (BBA28, BBA36 and 

BBA56), leaving 85 flight profiles available for further analysis. 

Table S1: Summary of the original GPS location data used to calculate the flight profiles. 

BBA is black-browed and WA is wandering albatross. 

Reference Points 
Elapsed Time 

(hours) 
Length (m) 

Min Step 
(m) 

Max Step 
(m) 

No of 
flight steps 

BBA01 2638 47.83 640345 0.58 2677.48 41 

BBA02 2528 46.25 935469 1.08 1992.37 37 

BBA03 2432 46.64 752561 0.45 2354.88 41 

BBA04 732 37.69 306117 3.72 10847.04 24 

BBA05 1424 24.78 449560 0.89 1339.30 25 

BBA06 1516 26.78 727512 1.40 2504.82 18 

BBA07 4792 83.93 1425396 0.45 308381.90 70 

BBA08 853 15.60 404979 0.45 2680.43 12 

BBA09 2503 44.80 652106 0.50 1771.48 46 

BBA10 2117 36.98 777877 1.77 2270.50 24 

BBA11 3170 59.25 1167475 0.73 3911.72 77 

BBA12 1392 24.98 534236 2.08 1884.21 49 

BBA13 703 18.11 513686 4.80 12499.82 12 

BBA14 2294 41.94 741684 0.45 2668.50 51 

BBA15 3433 60.87 861308 0.45 2066.58 46 

BBA16 3457 67.88 1407061 1.32 3516.70 97 

BBA17 1311 24.00 434634 3.43 5656.79 15 

BBA18 2512 46.49 810655 0.45 2889.89 54 

BBA19 240 12.16 111097 0.89 2456.46 13 

BBA20 565 33.19 543329 3.06 8530.54 16 

BBA21 655 33.69 736786 1.32 5419.73 23 

BBA22 1806 96.95 1477311 0.33 8464.50 52 

BBA23 1663 87.35 1309014 0.33 11372.01 22 

BBA24 1521 27.58 579787 0.78 2425.25 35 

BBA25 14774 48.62 1566633 0.18 2451.97 29 

BBA26 8690 28.53 1214995 0.36 3529.26 9 

BBA27 15059 47.99 1245957 0.13 1037.72 19 

BBA28 160 2.61 38018 0.63 21267.48 2 

BBA29 16852 49.38 1508445 0.29 1060.35 32 

BBA30 17106 50.81 1866018 0.11 7154.09 20 

BBA31 9612 38.87 1000653 0.18 5467.32 20 

BBA32 8567 30.28 835572 0.29 2754.65 11 

BBA33 15535 48.01 1355576 0.22 1663.76 33 

BBA34 11377 36.17 1237470 0.29 8207.48 17 

BBA35 2744 8.76 235204 0.23 1122.48 7 

BBA36 5680 22.64 917187 1.71 3974.96 2 

BBA37 22450 69.68 2240907 0.18 2702.88 49 

BBA38 8708 42.86 363093 0.13 715.15 33 

BBA39 4904 19.99 527722 0.29 1705.60 7 

BBA40 9471 34.55 823298 0.22 4456.25 9 
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Reference Points 
Elapsed Time 

(hours) 
Length (m) 

Min Step 
(m) 

Max Step 
(m) 

No of 
flight steps 

BBA41 5224 21.98 511339 0.31 3483.31 14 

BBA42 7496 27.63 810469 0.13 3090.90 18 

BBA43 21833 66.11 2197770 0.13 22959.36 35 

BBA44 12259 38.18 988215 0.18 14807.79 27 

BBA45 14917 49.63 1305995 0.22 12442.33 36 

BBA46 24158 79.80 1287188 0.07 3244.49 68 

BBA47 13285 43.89 1867030 0.13 379082.90 30 

BBA48 6440 21.44 301416 0.13 7796.18 8 

BBA49 10485 35.43 1082602 0.11 11769.75 9 

BBA50 1918 5.37 175063 0.53 601.17 6 

BBA51 15706 56.66 791716 0.13 2355.02 16 

BBA52 19543 69.02 1694744 0.13 7467.27 38 

BBA53 7075 21.56 719796 0.18 2177.53 30 

BBA54 12727 44.97 1293197 0.22 3698.27 26 

BBA55 13599 44.68 1121769 0.07 3167.87 34 

BBA56 570 2.14 90557 0.66 1696.93 2 

BBA57 3550 10.25 402538 0.23 514.57 6 

BBA58 10384 33.21 1242367 0.23 3031.86 17 

BBA59 6056 22.60 547045 0.30 1832.12 35 

BBA60 10451 32.40 1040653 0.31 1279.98 14 

BBA61 3257 11.46 404602 0.49 1986.44 9 

WA01 8609 18.70 427702 0.22 12839.40 14 

WA02 6993 18.38 514517 0.08 32056.53 10 

WA03 27734 37.48 1371064 0.11 11292.90 16 

WA04 27423 43.38 1046134 0.23 105668.40 15 

WA05 9887 30.74 1449278 0.34 906.95 9 

WA06 22488 78.56 2531244 0.19 12147.15 34 

WA07 7399 32.52 631939 0.19 1029.00 5 

WA08 28672 89.26 2426064 0.14 17363.29 39 

WA09 9629 29.19 967481 0.27 2033.50 9 

WA10 13985 44.43 1395147 0.19 13507.16 15 

WA11 7572 24.95 311985 0.14 1026.84 5 

WA12 23566 72.77 2951930 0.08 29393.30 27 

WA13 16350 48.79 1424881 0.15 1961.04 20 

WA14 7212 31.40 897982 0.30 4382.00 7 

WA15 7284 30.38 332189 0.19 3195.47 12 

WA16 4602 21.53 350554 0.27 914.56 11 

WA17 27696 90.39 3398509 0.11 3540.00 21 

WA18 13777 52.35 1358927 0.11 1901.25 8 

WA19 12224 41.97 1503415 0.27 1646.33 6 

WA20 12881 41.31 757913 0.14 5110.63 14 

WA21 31197 90.42 3994637 0.11 1206.78 40 
WA22 23064 71.10 2046603 0.24 1800.14 42 
WA23 29659 88.48 4718301 0.20 26374.45 27 
WA24 30209 86.92 3287408 0.08 2666.38 18 
WA25 23086 73.83 2476751 0.14 9196.77 23 
WA26 24906 76.24 2212841 0.11 5116.33 17 
WA27 2864 8.15 319635 0.30 1118.82 4 



 7 

 

  00:00   00:30   01:00   01:30   02:00

In
 F

lig
h
t

S
p
e
e
d
 (

m
s
-1

)

5

15

25

 

Figure S1. Flight speed profile of black-browed albatross 29 showing how flight and rest times were 

identified. Upper plot: Grey line shows flight speeds computed from the raw GPS tag data; blue line shows 

average speeds for one minute intervals; red reference line indicates the 10 km h-1 speed threshold. Lower 

plot shows the resulting flight profile comprising periods of flight (grey) or rest (white). Green arrows 

indicate intervals where the speed threshold decision has been overridden. 

1.3 Maximum Likelihood Estimation (MLE) Analysis 

In the following sections the term „dataset‟ is used to refer to a set of move step 

lengths computed from a single flight profile of a bird, as described above. This term 

accurately reflects the nature of the data, which is simply a list of calculated step lengths 

and cannot correctly be termed a time series.  

It is important to recognise that, regardless of the computations performed to 

determine the best fitting distribution, it is essential to select candidate distributions that 

are meaningful in terms of the hypothesis being tested. In this study, the hypothesis to be 

tested is the Lévy flight foraging hypothesis (LFF), where three distributions are most 

relevant: power law, exponential and truncated power law. Exponential distributions 

produce move step lengths with normal diffusion (i.e. Brownian movements), whereas 

power laws produce super-diffusive movements which have been shown previously to 

optimise encounter rates under conditions of sparse prey availability (12). Because 

natural movement data is inevitably bounded, pure power law fits are rare and therefore, 

in the first instance, only truncated power law and exponential distributions are of 

interest. Other distributions may well exist that provide better fits to the data, but these 

would not be consistent in terms of the hypothesis being tested and are therefore not 

considered further in this study. The methodology used here to determine the best fit 
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distribution is based on that described in Humphries et al. (13 Supplementary 1.4) with 

some additional refinements made here to improve robust model selection.  

The Maximum Likelihood Estimation (MLE) methodology employed was that 

described by Clauset et al. (14) with, in this study, truncated Pareto (truncated power 

law) and exponential distributions being tested. Briefly, the appropriate MLE equation 

was used to derive an exponent with the initial xmin parameter set to the minimum value 

found in the dataset. A best fit dataset was generated with the estimated parameters and a 

Kolmogorov-Smirnov (KS) test was used to determine the goodness of fit (the KS D 

statistic). To determine the best fit value for the xmin parameter the calculation was 

repeated with increasing values for xmin taken from the dataset with the value that resulted 

in the best (lowest) KS-D statistic being retained as the best fit value. When fitting a 

truncated Pareto distribution the method was repeated to also derive a best fit value for 

the xmax parameter, so for the truncated Pareto distribution both the xmin and xmax 

parameters were fitted in the same way. There were two departures from the method as 

implemented in the programming code given in Clauset et al. (14). Firstly, once values 

for xmin and xmax had been derived, the dataset was reduced to include only values 

between those lower and upper bounds. The resulting dataset therefore contained only the 

step lengths fitting the proposed distribution and it was this that was used to produce 

plots of log10 rank vs log10 step-length; however, for purposes of clarity, the full set of 

observations were plotted so that the extent of the fit over the data range was evident. 

Secondly, rather than test all values in the dataset as possible candidates for xmin or xmax, 

the iterative search routine was halted once five consecutive worse fits had been found to 

avoid the problem of fitting to a very small sub-set of the data, a problem exacerbated by 

complex biological data and exponent estimation (see section 1.2 above). The aim of 

fitting the lower and upper bounds was to find the distribution that best fit most of the 

data, rather than select a small sub-set of the data that was a very good fit to a particular 

distribution. 
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The MLE analysis requires two equations for each distribution to be tested. One is 

the MLE equation for the distribution and is used to estimate the exponent. The other is a 

random number generator (RNG) and is used to generate best-fit datasets. Table S2 gives 

the equations that were used for each distribution. The power law MLE and the power-

law and exponential RNG equations were obtained from Clauset et al. (14), the truncated 

Pareto MLE equation was from White et al. (15) and the truncated Pareto RNG was from 

Kagan (16). The MLE equation for the truncated Pareto distribution has no closed form 

solution and is therefore solved numerically by finding the value for â that minimises y in 

the equation: 

 

Table S2: The MLE and RNG equations used in the analysis. 

 
MLE equations 

Power-law 

 

Exponential 

 

Truncated Pareto  

See note below and text 

 
Random number equations (in all cases r represents a uniform random number in the 

interval (0,1) 

Power-law 
 

Exponential 
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Truncated Pareto 

 

Note: The MLE equation for the truncated Pareto distribution has no closed form solution (15) and must 

therefore be solved numerically (see text). 

1.4 Model selection 

To use Akaike Information Criteria weights (wAIC), or Akaike weights, as an objective 

model selection method it is necessary to compute log-likelihoods (LLH) for both of the 

competing distributions. In this study the competing distributions fitted to data were the 

exponential and the truncated Pareto (TP). The LLH equations for these distributions, 

respectively, are given as: 

 

 

 

  

The methodology used to estimate the exponents and parameters of these two 

distributions frequently results in different xmin and xmax values, thus resulting in fitting 

the two distributions to different ranges of the original data. Consequently, it is not 

possible to compute separately comparable LLHs from the same fitted distributions. Here 

we address this by dividing the analysis into two stages, whereby LLHs and Akaike 

weights for both distributions are computed from each fitted dataset. First, we compute 

the LLH for the fitted TP distribution and using the same dataset (defined by the xmin and 

xmax parameters) compute the LLH for the competing exponential distribution fitted to 

that same data. From these LLHs we compute wAIC, which can be compared in the usual 

way to perform the first stage in model selection (17). The result of this first stage might 

be that the TP distribution is favoured over the competing exponential distribution for 

that range of the data. The second stage tests this more completely by repeating the 

calculations for the reverse scenario: for this we calculated  the best fit exponential 

distribution to the original data, then proceeded to fit the competing TP distribution to 
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that data range over which the exponential was best fitted. This provides a second 

comparison of wAIC that can be used confidently to rule out the exponential distribution 

if it was not selected over the TP distribution during the first or second stages. Therefore, 

using this two stage method we only consider a dataset to be fitted by the TP distribution 

if wAIC favours the fitted TP over the competing exponential (stage 1), and favours the 

competing TP over the fitted exponential (stage 2). 

This method suffices when the results of the wAIC analysis are unambiguous for 

stages 1 and 2. However, because the distributions can be fitted to slightly different 

ranges of the data it is possible for the wAIC results to conflict, whereby the TP fitting 

favours the competing exponential and vice versa. To resolve these conflicts we used the 

goodness of fit of the two fitted distributions. Because the Kolmogorov-Smirnov test was 

used as part of the fitting process we made use of the D statistic as a measure of goodness 

of fit. There is a requirement to select the distribution that not only fits the observations 

closely, but also which fits as much of a dataset (for a single bird) as possible. For 

example, a distribution that is a very good fit but to only 10% of the data set (and might 

as a consequence have a low D-statistic) should be rejected in favour of a distribution 

with a slightly worse D statistic (i.e. higher), but which fits significantly more of the 

dataset. Therefore, in this study the GOF was adjusted to account for how much of the 

original dataset was fitted by the distribution, using the equation Dadj = D * (log(Total 

Steps) / log(Fitted Steps)) where D is the KS-D statistic. Taking the log of total and fitted 

steps serves to reduce the impact of a difference of just a few points. If the fit is to the 

entire dataset then the result is D; hence, the less of the data fitted by the best fit 

distribution the poorer (larger) the resulting GOF value becomes. Adjusting the D 

statistic in this way allows a better comparison between distributions fitted to different 

ranges of the dataset.  

The decision process we used in this study is summarised in Table S3. For datasets 

where the wAIC decision is to be classed as a best fit TP, there are the additional 

requirements that the estimated exponent µ falls within the Lévy range (1 < µ ≤ 3), and 

that the range of data fitted (i.e. xmax – xmin) should span at least 1.5 orders of magnitude. 

Candidate TP datasets that fail these requirements are assigned to the Mixed-model 



 12 

category since it is assumed that such data may represent more complex behaviour 

patterns, e.g. a mixture of Lévy and Brownian strategies. 

 

Table S3: The simple “truth-table” used to perform model selection.  

TP denotes a truncated Pareto-Lévy distribution. 

wAIC values Result 

Fitted TP Competing 

exponential 

Fitted 

exponential 

Competing TP  

1 0 0 1 TP 

0 1 1 0 Exponential 

1 0 1 0 Resolve using GOF 

0 1 0 1 Mixed-model 

 

The decision process used for model selection is given in detail in Figure S2 below, and 

the decisions are further explained as follows: 

 

A. Does wAIC support the fitted TP over the alternate exponential? 

B. Does wAIC support the fitted exponential over the alternate TP? 

C. Does the adjusted GOF support exponential over TP? 

D. Does wAIC reject the fitted exponential in favour of the alternate TP? 

E. Does the adjusted GOF reject exponential in favour of TP? 

F. Is the TP exponent in the range 1.0 to 3.0? 

G. Does the fitted TP range (i.e. xmin to xmax) span at least 1.5 orders of magnitude?  
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Figure S2. The decision process used for model selection. The process begins at question (A) with green 

lines being followed for positive responses and red dashed lines for negative responses. A truncated power 

law (TP) fit is only concluded when there is considerable certainty that it is the correct conclusion. OOM 

signifies orders of magnitude. 

 

The outcome of this model selection process was that each dataset was sorted into 

one of the three categories (TP, exponential or mixed-model) based on Akaike weights, a 

valid Lévy exponent and a sufficient range of fit in terms of the orders of magnitude over 

which data was fitted. Thus, all the criteria must be met and there must be unequivocal 

support from AIC weights for an individual bird dataset to be placed in the TP category, 

(A) 
TP_AIC > 

TP_Alt_AIC 

(D) 

E_AIC < 
E_Alt_AIC 

 

(F) 

1 < μ ≤ 3 

(E) 

E_GOF > 
TP_GOF 

(G) 

OOM > 1.5 

(B) 

E_AIC > 
E_Alt_AIC 

 

(C) 

E_GOF < 
TP_GOF 

 

TP 

Exponential 

’Mixed’ 
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and hence being considered as consistent with the LFF hypothesis. This methodology is 

appropriately robust because model selection is strict and entirely objective. 

Nevertheless, this process did not remove the need to perform a final check by 

scrutinising the model fits to the data on ranked step length plots (e.g. Figure S3). This 

final visual check is important because Akaike weights do not confirm the goodness of 

fit, but merely help to decide which of the competing distributions is least bad. Thus, it is 

entirely feasible for both distributions to have very poor fits to the underlying 

observations but wAIC will still select one poor model fit over another slightly worse fit. 

The model fitting and selection methodology used in this study can be applied to any 

appropriate data and with any suitably relevant distributions. As such it may have wider 

applicability, particularly in the study of movement data where a conceptual framework 

already exists in terms of the LFF hypothesis and other movement models (18, 19). 

1.5 Model selection validation 

The model selection methodology described in 1.1 above was validated using simulations 

to determine whether the method was sufficiently accurate in assigning known move 

distributions to their correct category. Simulated datasets were generated comprising 50 

move steps drawn from a truncated Pareto (TP) distribution, or 50 move steps from an 

exponential distribution, or 100 steps comprising a 50:50 mixture of both; 100 datasets 

being generated in each case giving 300 datasets for analysis. If the model selection 

methodology is robust and accurate for identifying truncated Lévy walks when present, 

our expectation from this validation is that TP distributions will be unambiguously 

identified as TP and not erroneously identified as having been drawn from an exponential 

distribution. The results of the validation analysis are shown in Table S4. It is evident that 

none of the pure truncated Pareto distribution (TP) datasets were wrongly assigned as 

exponential, and none of the pure exponential datasets were wrongly assigned as TP. 

Although a large percentage of the TP and exponential datasets were classified as mixed 

(59% and 65% respectively), we considered it to be more important to reduce the number 

of misclassifications at the cost of losing some datasets from further analysis. The 

majority of the mixed datasets were classified as mixed model (81%), as expected, with 

18 datasets being classified as TP and only one as exponential. With the mixed data it is 
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probable that in some cases the TP move steps will be the predominant feature and in 

others the exponential. However, the presence of some longer steps in the TP 

distributions tends to rule out their classification as exponential.      

The relatively low number of unambiguous classifications was attributed to the low 

number of steps in these datasets which is known to reduce the accuracy of the analysis 

as described above. To confirm this, we repeated the validation using datasets with 250 

steps, the results of which are given in Table S5. It is clear from this further analysis that 

with more steps the percentage of correct model assignment increases, hence the 

accuracy becomes greater. We found, as before, that there were no incorrect 

identifications of either TP or exponential datasets, but increasing the move step number 

from 50 to 250 increased the correct identification of known TP datasets to 91% and 

exponential datasets to 84%. 

 

Table S4: Results of the model selection validation tests with 50 steps. 

 Resulting category 

Input Data TP Exponential Mixed 

TP 41 0 59 

Exponential 0 35 65 

Mixed 18 1 81 

 

Table S5: Results of the model selection validation tests with 250 steps. 

 Resulting category 

Input Data TP Exponential Mixed 

TP 91 0 8 

Exponential 0 84 16 

Mixed 14 1 86 

 

2 Supporting Results and Discussion 

2.1 MLE results 

Detailed results from the MLE fitting procedure for the flight step lengths are given in 

Table S7 (truncated power law, TP, fits), Table S8 (exponential fits), Table S9 (mixed 

model fits). Of the 85 datasets available for analysis 26 were found to be best fit by the 

TP and 24 by the exponential distribution. The remaining 35 datasets produced model fits 

that could not be classed robustly as TP or exponential and were therefore classified as 
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„mixed model‟ according to the decision process described above. Of the TP model best 

fits to empirical data only four were wandering albatross (WA01, WA08, WA17 and 

WA22); species differences that might lead to this discrepancy are discussed in 

Supporting Results 2.3. Of the 18 exponential model best fits, 7 were wandering and 11 

were black-browed albatross. There was a significant correlation between the number of 

steps (lengths between landings) in an individual bird dataset and the likelihood that the 

dataset will be fitted by either truncated power law (Pareto-Lévy) or exponential 

distributions (Mann-Whitney Rank Sum Test; T = 201.5, p < 0.001, n(small)= 18  

n(large)= 26). Generally, smaller datasets were more likely to yield best model fits to the 

exponential distribution. This is illustrated by the box plot in Figure S3. It seems likely 

therefore that the low numbers of steps in the wandering albatross datasets may well 

explain why these gave principally exponential best fits since larger datasets will have a 

greater chance of containing longer step lengths, if they were exhibited by the 

albatrosses. Although this bias affects the results in terms of the number of individuals 

exhibiting movements approximated by TP and exponential distributions, it does not 

affect the test of the LFF conducted here, which is to determine whether albatrosses do 

indeed show movement patterns best approximated by a Lévy flight pattern. 

 

The average number of points comprising datasets best fitted by the TP distribution was 

~41 (n = 26; median = 38.5), yet all of the exponential fits were to datasets with fewer 

than 42 steps (maximum 29, mean ~15, median = 12.5, n = 18). While the numbers of 

steps available for this analysis are lower than has been considered ideal from simulation 

studies (see 20), we analysed individual albatross trajectories rather than pooling multiple 

individuals‟ step lengths, which occurs usually in an attempt to increase n number (for an 

example of pooling albatross step lengths see 21). The problem with pooling data from 

several individuals is that different patterns of movement by different individuals may 

emerge as a Lévy flight without any one individual displaying such a pattern (22). 

Although the datasets used here were of relatively low n number, they each described the 

movement pattern of an individual albatross and provided appropriate ranges of move 

step data spanning several orders of magnitude in some cases, which can counteract the 

effect of a lower number of steps. Hence, we found there were clear and reliable best fits 
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of the TP distribution to the albatross movement data. For example, BBA2 in Figure S3 

provided 37 steps for analysis yet yielded a robust best fit to the TP distribution over 2.45 

orders of magnitude in move step length.  

Steps

Number of steps

0 20 40 60 80 100

TP

Exponential

Mixed model

 

Figure S3. MLE Fitting correlations in flight step length data. Boxes show 25th to 75th percentiles; 

whiskers show the 10th and 90th percentiles. There is a statistically significant difference (p < 0.001) 

between the exponential and the TP groups. 

2.2 Comparison of MLE results using steps, distances and times 

The main focus of our analysis was on the step lengths calculated as great circle distances 

between the start and end of flights (straight line distances between consecutive 

landings), where the landings between flights are considered to be the turning points in a 

Lévy walk. Two other measures were calculated from the flight profile; cumulative 

distances were calculated as the sum of the individual steps comprising a flight, and times 

were calculated from the start and end times of each flight. For a direct comparison these 

datasets for each individual bird were analysed in the same way as the move steps. It was 

hypothesised that neither of these measures would provide as many best fits to a 

truncated power law (Pareto-Lévy) distribution because the distances include many 

complex movements associated with the bird‟s soaring flight, while the times do not take 

account of the variations in the bird‟s speed and so do not properly reflect the distance 

travelled. Table S6 shows a summary of the best fitting results for the three different data 

sets.  As expected the distance and time measures produce slightly fewer TP best fits (25 

and 23 respectively, compared to 26 for the step lengths). There were 39 datasets where 

the analysis results are the same for all data types (12 TP, 8 exponential and 19 mixed 
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model). Overall, therefore, it seems that distances and times between consecutive 

landings can be considered to be reasonable proxies for step length measurements used to 

test the LFF hypothesis, although it should be noted that not all Lévy patterns will be 

detected by these proxies.  

 

Table S6. Summary of fitted distributions to the three different sets of data 

Fitted distribution Steps Distances Times 

TP 26 25 23 

Exponential 18 17 25 
Mixed model 41 43 37 

 

2.3 Species differences between black-browed and wandering albatross datasets 

The MLE analysis of individual bird datasets for step lengths revealed clear species 

differences. Four of the 27 (15%) wandering albatross datasets were found to be best 

fitted by a TP distribution whereas 22 out of 61 black browed albatross datasets were 

fitted by the distribution (38%). Ten of the 24 exponential best fits were to wandering 

albatross movement datasets (42%), in addition to 14 of the 35 mixed model tracks 

(40%). One possibility for the species difference was that fewer TP best fits were found 

because the wandering albatross datasets comprised on average only about half the 

number of flight steps than black-browed albatross individual datasets (Mann-Whitney 

Rank Sum Test: BBA median = 24, n = 58; WA median = 15, n = 27, p = 0.005). This 

difference in number of landings estimated during wandering albatross GPS trackings has 

been shown to affect the likelihood of finding a good fit to a TP distribution (section 2.1 

above). However, the difference in the number of flight steps suggests that the two 

species behave differently because the duration that wandering albatrosses were tracked 

for was similar  to those of black-browed albatross tracks ( Mann-Whitney Rank sum 

test: BBA median = 37.9 h, n = 58; WA median = 43.4 h, n = 27, p = 0.137). If their 

foraging behaviour or feeding event frequencies were similar it may be expected that 

both species might land with similar frequency if tracks were of similar duration. This 

interpretation is consistent with previous observations on the foraging behaviour of the 

two species (23-25). 
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From the flight profiles calculated here we find a mean landing rate of 0.75 h
-1

 for 

the black-browed and 0.34 h
-1

 for wandering albatrosses. While these figures are lower 

than those found by Waugh and Weimerskirch (26), where a figure of 1.35 flight steps h
-1

 

was found for wandering albatross, it is still in general agreement with the observation 

that wandering albatrosses make fewer flight steps and spend more time on the water than 

other, smaller species. Clearly, the landing frequency will be dependent on the foraging 

environment and the availability of prey, with richer areas resulting in more frequent 

landings. This might indicate that the birds in this study were foraging in areas (or at 

times) of sparser prey availability than those studied by Waugh and Weimerskirch (26).  
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In the following tables Comp AICw refers to the competing distribution. In some cases (unusually high or low TP exponents) it  is not possible to calculate 

log-likelihoods and in other cases (fewer than 5 fitted steps) it is not possible to calculate Akaike weights, values are therefore shown as --. 

 

Table S7. Truncated Pareto (TP) fits for flight step distributions 

Reference Steps 
Min 
Step 

Max 
Step 

Xmin Exponent Xmax 
Exp 

AICw 
Exp 

Comp AICw 
TP 

AICw 
TP 

Comp AICw 
Exp 
Fit 

TP 
Fit 

Fitted 
steps 

Orders of 
magnitude 

BBA16 97 103 90018 344 1.35 65495 0.00 1.00 1.00 0.00 0.335 0.052 80 2.28 

BBA11 77 61 75555 244 1.33 58867 0.09 0.91 1.00 0.00 0.171 0.062 67 2.38 

BBA46 68 21 85913 323 1.30 47717 0.20 0.80 1.00 0.00 0.162 0.123 52 2.17 

BBA18 54 30 87001 732 1.28 31986 0.18 0.82 1.00 0.00 0.171 0.051 42 1.64 

BBA22 52 569 119532 728 1.34 119532 0.66 0.34 1.00 0.00 0.178 0.083 49 2.22 

BBA14 51 19 131879 137 1.13 52015 0.01 0.99 1.00 0.00 0.309 0.067 46 2.58 

BBA37 49 70 107824 129 1.26 33017 0.01 0.99 1.00 0.00 0.204 0.084 38 2.41 

BBA09 46 178 73229 1938 1.44 70914 0.08 0.92 1.00 0.00 0.274 0.100 24 1.56 

BBA15 46 56 75897 95 1.07 68676 0.07 0.93 1.00 0.00 0.159 0.122 42 2.86 

WA22 42 119 94364 983 1.04 37622 0.04 0.96 0.96 0.04 0.246 0.097 33 1.58 

BBA03 41 110 60098 469 1.29 15664 0.00 1.00 0.99 0.01 0.345 0.076 29 1.52 

BBA01 41 25 126983 313 1.30 126983 0.69 0.31 1.00 0.00 0.161 0.129 33 2.61 

WA08 39 364 265214 2104 1.25 265214 0.55 0.45 1.00 0.00 0.165 0.103 31 2.10 

BBA52 38 40 158908 1321 1.31 158908 0.82 0.18 1.00 0.00 0.122 0.086 26 2.08 

BBA02 37 216 151350 543 1.11 151350 0.00 1.00 1.00 0.00 0.298 0.130 32 2.45 

BBA45 36 47 162559 233 1.28 140678 0.00 1.00 1.00 0.00 0.298 0.105 30 2.78 

BBA59 35 51 123722 315 1.52 79569 0.00 1.00 1.00 0.00 0.534 0.080 27 2.40 

BBA55 34 94 116256 972 1.46 116256 0.00 1.00 1.00 0.00 0.339 0.104 22 2.08 

BBA33 33 59 106320 2539 1.28 106320 0.15 0.85 0.99 0.01 0.187 0.092 24 1.62 

BBA47 30 174 376409 309 1.37 376409 0.00 1.00 1.00 0.00 0.552 0.109 28 3.09 

BBA53 30 185 169608 267 1.46 19799 0.11 0.89 1.00 0.00 0.295 0.141 23 1.87 

BBA54 26 430 147638 3853 1.03 147638 0.41 0.59 0.89 0.11 0.247 0.147 16 1.58 

BBA05 25 121 110475 121 1.10 110475 0.91 0.09 1.00 0.00 0.236 0.084 24 2.96 

WA17 21 3128 640030 12547 1.45 640030 0.66 0.34 1.00 0.00 0.264 0.117 18 1.71 

WA01 14 83 57494 83 1.03 57494 0.00 0.00 1.00 0.00 0.476 0.158 13 2.84 

BBA13 12 453 95362 1328 1.00 95362 0.17 0.83 0.83 0.17 0.251 0.126 9 1.86 
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Table S8. Exponential fits for flight step distributions 

Reference Steps 
Min 
Step 

Max 
Step 

Xmin Exponent 
Exp 

AICw 
Exp 

Comp AICw 
TP 

AICw 
TP 

Comp AICw 
Exp 
Fit 

TP 
Fit 

Fitted 
steps 

Orders of 
magnitude 

BBA25 29 217 82855 606 6.46E-05 0.87 0.13 0.46 0.54 0.088 0.105 24 2.14 

WA23 27 416 657713 7205 7.44E-06 0.78 0.22 1.00 0.00 0.110 0.123 20 1.96 

WA12 27 545 442310 13758 1.08E-05 0.79 0.21 0.99 0.01 0.089 0.091 14 1.51 

BBA44 27 139 70814 19547 6.79E-05 0.96 0.04 0.43 0.57 0.198 0.089 8 0.56 

BBA21 23 838 79991 1447 4.73E-05 0.54 0.46 0.98 0.02 0.121 0.138 18 1.74 

BBA30 20 706 227013 45408 2.57E-05 0.88 0.12 0.03 0.97 0.090 0.151 13 0.70 

WA24 18 774 354412 42323 8.96E-06 0.64 0.36 0.02 0.98 0.173 0.174 13 0.92 

BBA51 16 91 105091 91 5.13E-05 0.54 0.46 0.14 0.86 0.137 0.167 15 3.06 

BBA19 13 348 21110 2299 2.04E-04 1.00 0.00 0.26 0.74 0.319 0.111 5 0.96 

WA15 12 2707 52412 2707 7.66E-05 0.83 0.17 0.22 0.78 0.188 0.251 11 1.29 

WA16 11 104 67625 104 6.65E-05 0.67 0.33 0.00 1.00 0.104 0.298 10 2.81 

WA05 9 2471 402166 90015 9.81E-06 1.00 0.00 0.00 1.00 0.273 0.273 5 0.65 

BBA49 9 666 191927 7010 1.81E-05 1.00 0.00 0.09 0.91 0.273 0.204 5 1.44 

BBA48 8 765 43379 765 4.68E-05 0.76 0.24 0.02 0.98 0.305 0.193 7 1.75 

WA18 8 387 441150 387 8.43E-06 0.76 0.24 0.03 0.97 0.153 0.193 7 3.06 

BBA39 7 1379 43882 1379 5.07E-05 0.94 0.06 0.00 1.00 0.362 0.242 6 1.50 

BBA35 7 756 9727 756 3.09E-04 0.99 0.01 0.01 0.99 0.181 0.181 6 1.11 

BBA50 6 105 21844 105 1.34E-04 1.00 0.00 -- -- 0.223 0.323 5 2.32 

 

Table S9. Mixed model flight step distributions 

Reference Steps 
Min 
Step 

Max 
Step 

Exp 
Xmin 

Exp 
Exponent 

TP 
Xmin 

TP 
Exponent 

TP 
Xmax 

Exp 
AICw 

Exp 
Comp AICw 

TP 
AICw 

TP 
Comp AICw 

Exp 
Fit 

TP 
Fit 

TP 
Orders of  

magnitudes 

Exp 
Orders of  

magnitudes 

BBA07 70 92 43848 229 1.41E-04 225 0.91 21728 0.00 1.00 1.00 0.00 0.138 0.066 1.99 2.28 

BBA12 49 52 70669 52 1.64E-04 237 1.87 3340 0.00 1.00 0.44 0.56 0.586 0.097 1.15 3.13 

WA21 40 2386 348474 2386 1.78E-05 16910 1.73 348474 1.00 0.00 0.96 0.04 0.155 0.123 1.31 2.16 

BBA43 35 35 91744 237 4.59E-05 35 0.78 91744 0.17 0.83 1.00 0.00 0.109 0.119 3.42 2.59 

BBA24 35 136 52189 1058 6.33E-05 136 0.96 32329 0.10 0.90 1.00 0.00 0.148 0.070 2.38 1.69 

WA06 34 144 242265 2331 2.01E-05 11679 1.05 146353 0.84 0.16 0.72 0.28 0.079 0.055 1.10 2.02 

BBA38 33 92 35748 577 1.88E-04 420 1.16 11042 0.02 0.98 0.85 0.15 0.183 0.083 1.42 1.79 
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Reference Steps 
Min 
Step 

Max 
Step 

Exp 
Xmin 

Exp 
Exponent 

TP 
Xmin 

TP 
Exponent 

TP 
Xmax 

Exp 
AICw 

Exp 
Comp AICw 

TP 
AICw 

TP 
Comp AICw 

Exp 
Fit 

TP 
Fit 

TP 
Orders of  

magnitudes 

Exp 
Orders of  

magnitudes 

BBA29 32 125 60158 680 5.26E-05 281 0.89 60158 0.04 0.96 1.00 0.00 0.136 0.102 2.33 1.95 

BBA04 24 586 56878 586 1.30E-04 1350 1.15 13797 0.36 0.64 0.55 0.45 0.220 0.114 1.01 1.99 

BBA10 24 260 119171 651 5.45E-05 260 0.80 12612 0.00 1.00 0.97 0.03 0.284 0.114 1.69 2.26 

WA25 23 633 384623 22188 8.52E-06 10365 1.25 170763 0.49 0.51 0.48 0.52 0.210 0.105 1.22 1.24 

BBA23 22 803 90633 803 3.51E-05 7288 1.28 86467 0.12 0.88 0.80 0.20 0.145 0.128 1.07 2.05 

WA13 20 320 140636 320 2.19E-05 45090 0.77 140636 0.17 0.83 0.11 0.89 0.107 0.180 0.49 2.64 

BBA31 20 49 95834 6537 2.33E-05 1661 0.93 95834 0.47 0.53 0.97 0.03 0.303 0.147 1.76 1.17 

BBA27 19 544 60266 5073 4.59E-05 4339 4.00 8149 0.33 0.67 0.00 1.00 0.223 0.274 0.27 1.07 

BBA42 18 488 62765 548 6.04E-05 1123 0.89 62765 0.21 0.79 0.73 0.27 0.130 0.142 1.75 2.06 

BBA06 18 315 92777 5664 2.87E-05 3066 1.31 92131 0.44 0.56 0.89 0.11 0.292 0.194 1.48 1.21 

BBA58 17 126 143584 21770 2.76E-05 126 0.92 143584 0.96 0.04 1.00 0.00 0.208 0.128 3.06 0.82 

WA26 17 1174 417106 64834 1.15E-05 1174 0.75 97896 0.93 0.07 0.64 0.36 0.143 0.123 1.92 0.81 

BBA34 17 252 130486 1572 3.19E-05 12155 1.75 123557 0.16 0.84 0.18 0.82 0.153 0.170 1.01 1.92 

BBA20 16 1756 69325 1756 5.43E-05 9025 -0.18 17064 0.33 0.67 0.09 0.91 0.205 0.167 0.28 1.60 

WA03 16 53 174220 180 1.35E-05 53 -0.34 205 0.00 1.00 0.25 0.75 0.361 0.204 0.59 2.99 

WA10 15 1074 68428 1396 4.50E-05 1074 0.86 68428 0.22 0.78 0.90 0.10 0.162 0.073 1.80 1.69 

BBA17 15 222 60606 222 6.39E-05 11773 3.29 33758 0.02 0.98 0.01 0.99 0.220 0.199 0.46 2.44 

WA04 15 21 135047 135 2.30E-05 21 0.90 135047 0.01 0.99 1.00 0.00 0.205 0.147 3.81 3.00 

WA20 14 477 71643 477 3.54E-05 12878 0.87 71643 0.27 0.73 0.30 0.70 0.158 0.115 0.75 2.18 

BBA41 14 502 50948 502 8.82E-05 4922 1.39 50948 0.23 0.77 0.17 0.83 0.158 0.159 1.01 2.01 

BBA60 14 1930 65805 1930 4.94E-05 8264 1.12 65805 0.41 0.59 0.26 0.74 0.158 0.229 0.90 1.53 

BBA08 12 308 87517 3501 4.47E-05 308 0.90 87517 0.80 0.20 0.79 0.21 0.149 0.094 2.45 1.40 

BBA32 11 957 104025 957 5.12E-05 957 0.81 31411 0.38 0.62 0.35 0.65 0.208 0.121 1.52 2.04 

WA02 10 78 119567 78 3.13E-05 36728 2.61 119567 0.17 0.83 -- -- 0.233 0.415 0.51 3.18 

BBA61 9 646 65872 646 4.28E-05 646 0.87 49975 0.35 0.65 0.42 0.58 0.264 0.161 1.89 2.01 

BBA40 9 406 85597 406 3.54E-05 47717 2.83 85597 0.37 0.63 -- -- 0.264 0.667 0.25 2.32 

BBA26 9 770 192692 770 1.32E-05 141268 4.15 192692 0.13 0.87 -- -- 0.264 0.667 0.13 2.40 

WA09 9 4739 158782 121526 7.75E-05 121526 718.22 121865 -- -- -- -- 0.396 0.000 0.00 0.12 

WA14 7 43280 106342 77463 8.97E-05 77463 108.67 78915 -- -- -- -- 0.351 0.000 0.01 0.14 

BBA57 6 3670 21990 3670 8.50E-05 11716 -2.45 21990 1.00 0.00 -- -- 0.445 0.323 0.27 0.78 

WA19 6 2795 343588 151222 1.34E-05 151222 2.34 343588 -- -- -- -- 0.544 0.544 0.36 0.36 

WA11 5 233 31330 233 1.00E-04 4444 1.98 31330 -- -- -- -- 0.290 0.488 0.85 2.13 

WA07 5 1336 147270 1336 1.38E-05 1336 0.76 147270 -- -- -- -- 0.580 0.290 2.04 2.04 
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Reference Steps 
Min 
Step 

Max 
Step 

Exp 
Xmin 

Exp 
Exponent 

TP 
Xmin 

TP 
Exponent 

TP 
Xmax 

Exp 
AICw 

Exp 
Comp AICw 

TP 
AICw 

TP 
Comp AICw 

Exp 
Fit 

TP 
Fit 

TP 
Orders of  

magnitudes 

Exp 
Orders of  

magnitudes 

WA27 4 17908 35046 28545 3.08E-04 28545 1.00 35046 -- -- -- -- 1.000 1.000 0.09 0.09 
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2.4 Ranked step-length plots for black browed and wandering albatross data 
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Figure S4.  Ranked step length plots for best fits to TP distributions for albatross flight steps. Black circles are step lengths; red line is the best fit TP distribution; blue dashed line is 

the competing exponential distribution. Not including plots given in Figure 2a-d. 
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Figure S4 (Continued) 
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 Figure S5. Ranked step length plots for best fit exponential distributions for 

albatross flight steps. Black circles are step lengths; red line is the competing exponential distribution; blue dashed line is the alternate TP distribution. 
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Figure S6. Ranked step length plots for mixed model fits for flight steps as determined by wAIC and GOF. Black circles are step lengths; red line is the best fit TP distribution; blue 

dashed lines are the best fit exponential distribution. Plots with fewer than 15 points not shown. 
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2.4 MLE Analysis of wet-dry logger data 

To support the analysis of the prey capture patterns further data was obtained from 17 wandering albatrosses tagged in 1998, 1999 and 2001. Landing 

times of these birds were known as they had been fitted with wet-dry loggers as well as stomach temperature loggers. Flight times were analysed using the 

same MLE and model selection methodology used for the other birds in this study. The results of the analysis are given below. 

 

Table S10: Truncated Pareto (TP) fits for flight step distributions 

Reference Steps 
Min 
Step 

Max 
Step 

Xmin Exponent Xmax 
Exp 

AICw 
Exp 

Comp AICw 
TP 

AICw 
TP 

Comp AICw 
Exp 
Fit 

TP 
Fit 

Fitted 
steps 

Orders of 
magnitude 

WA39 53 424 207885 424 1.05 94120 0.60 0.40 1.00 0.00 0.142 0.061 50 2.35 

WA40 47 281 287843 4597 1.16 196604 0.64 0.36 0.99 0.01 0.107 0.060 36 1.63 

WA45 36 113 126514 135 1.11 53049 0.03 0.97 1.00 0.00 0.224 0.094 24 2.59 

WA41 28 187 236327 187 1.03 236327 0.71 0.29 1.00 0.00 0.289 0.175 24 3.10 

 

Table S11: Exponential fits for flight step distributions 

Reference Steps 
Min 
Step 

Max 
Step 

Xmin Exponent 
Exp 

AICw 
Exp 

Comp AICw 
TP 

AICw 
TP 

Comp AICw 
Exp 
Fit 

TP 
Fit 

Fitted steps 
Orders of 

magnitude 

WA38 21 312 69387 312 5.13E-05 0.65 0.35 0.63 0.37 0.152 0.225 20 2.35 

 

Table S12: Mixed model flight step distributions 

Reference Steps 
Min 
Step 

Max 
Step 

Exp 
Xmin 

Exp 
Exponent 

TP 
Xmin 

TP 
Exponent 

TP 
Xmax 

Exp 
AICw 

Exp 
Comp AICw 

TP 
AICw 

TP 
Comp AICw 

Exp 
Fit 

TP 
Fit 

TP 
Orders of 

magnitude 

Exp 
Orders of 

magnitude 

WA34 35 115 190528 125 2.27E-05 115 0.78 190528 0.00 1.00 1.00 0.00 0.134 0.128 3.22 3.18 

WA43 30 76 262529 114 1.21E-05 43832 1.44 229857 0.40 0.60 0.44 0.56 0.109 0.167 0.72 3.36 

WA31 30 10 191508 68 2.50E-05 2197 0.71 113910 0.03 0.97 0.90 0.10 0.146 0.134 1.71 3.45 

WA37 30 57 173184 2946 2.64E-05 115 0.95 173184 0.33 0.67 1.00 0.00 0.141 0.080 3.18 1.77 

WA30 22 177 80188 883 3.34E-05 177 1.34 1060 -- -- 0.24 0.76 0.557 0.251 0.78 1.96 

WA44 21 358 267037 2366 1.23E-05 358 0.92 267037 0.25 0.75 1.00 0.00 0.165 0.102 2.87 2.05 

WA32 19 775 176911 6821 1.82E-05 6821 1.16 160244 0.24 0.76 0.59 0.41 0.223 0.128 1.37 1.41 
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Reference Steps 
Min 
Step 

Max 
Step 

Exp 
Xmin 

Exp 
Exponent 

TP 
Xmin 

TP 
Exponent 

TP 
Xmax 

Exp 
AICw 

Exp 
Comp AICw 

TP 
AICw 

TP 
Comp AICw 

Exp 
Fit 

TP 
Fit 

TP 
Orders of 

magnitude 

Exp 
Orders of 

magnitude 

WA46 14 108 108715 542 3.23E-05 108 0.91 35160 0.26 0.74 0.63 0.37 0.229 0.194 2.51 2.30 

WA42 13 555 38827 13164 1.34E-04 555 0.93 38827 1.00 0.00 0.81 0.19 0.239 0.172 1.85 0.47 

WA35 10 159 132601 159 3.77E-05 20546 4.79 23909 0.31 0.69 -- -- 0.233 0.699 0.07 2.92 

WA33 8 1235 81093 4610 4.36E-05 1235 1.27 81093 -- -- 0.40 0.60 0.375 0.153 1.82 1.25 

WA36 4 910 69134 910 3.34E-05 22381 1.00 69134 -- -- -- -- 0.421 1.000 0.49 1.88 
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Figure S7: Truncated Pareto (TP) fits for flight step distributions from wet dry logger data 
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Figure S8: Exponential fit for flight step distributions from wet dry logger data 
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Figure S9: Mixed model fits for flight step distributions from wet/dry logger data. Two shortest plots not show. 
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2.5 Habitat dependence of Lévy and Brownian movements 

 

Having identified the presence of Lévy and Brownian patterns in the landing distributions of 

both black-browed and wandering albatrosses (sections 2.1 – 2.5), we next tested whether 

search patterns were associated with particular habitats. The Lévy flight foraging (LFF) 

hypothesis (19, 27) predicts that Lévy patterns should occur where resource distributions are 

sparse and Brownian patterns where resources are more abundant. To test this for albatrosses 

we calculated the water depths at each landing location as a proxy for habitat type and 

compared these between birds showing Lévy and Brownian patterns. The Kerguelen and 

Crozet Islands in the southern Indian Ocean are remote islands with three principal bathymetric 

domains: namely, shelf waters (depth < 200 m), slope waters (200 to 2000 m; including deep 

shelf-edge waters, 1500 to 2000 m), and oceanic waters (> 2000 m) (4). Shelf and slope waters 

are together termed neritic waters (< 2000 m). Therefore, water depth indicates habitat types 

that have different productivities and resource distributions; for example, primary productivity 

at the Kerguelen Islands has higher concentrations in neritic waters (Fig. S7A,B) and the squid 

prey of albatrosses at Crozet are found closer together in neritic than in oceanic waters (4). 

Analysis shows that black-browed albatrosses exhibiting a Lévy pattern landed on average 

over deeper water (mean 520.3 m, S.D. 522.5, random data reduction from n = 958 to n = 165) 

than those individuals exhibiting a Brownian pattern (mean 396.8 m, S.D. 561.9, n = 165) (t 

test:  t = -2.07, P < 0.05). Comparing the 25 deepest habitat depths over which surface landings 

occurred, confirmed that birds showing Lévy patterns occupied deeper slope waters than 

Brownian birds (Mann-Whitney test: W = 524, P < 0.05).  

 The landing locations of GPS-tracked wandering albatrosses exhibiting a Lévy pattern and 

for which prey capture data were available, were associated with significantly deeper water 

habitats than those showing Brownian patterns (Lévy, mean habitat depth 1587.4 m, S.D. 

934.3, n = 23, random data reduction to match Brownian, with mean 958.3 m, S.D. 601.9, n = 

23; t test, t = -2.71, P < 0.01). This is consistent with Lévy search patterns occurring more 

frequently in deep shelf edge and oceanic habitats than Brownian patterns which occurred 

mainly in shallow shelf and shelf edge habitats. There were several exceptions to this general 

pattern. For example, the pattern of landings of albatross WA18 was best described by an 

exponential distribution, although the prey capture data showed that some 24 of the 25 capture 

events recorded occurred in oceanic habitat. Mapping the prey capture locations along the track 

showed that 22 prey capture events took place during 7 landings within a very localised area 

(45 x 20 km). This shows that WA18 encountered a very abundant patch or patches of prey in 
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oceanic habitat and because short distances occurred between landings as a result, the dominant 

pattern found for this bird was best described by Brownian motion. This demonstrates that 

although Lévy patterns of wandering albatrosses were generally dependent on deep shelf edge 

and oceanic habitats, a Brownian pattern may dominate when particularly high concentrations 

of prey are found regardless of habitat. This finding is consistent with predictions of the LFF 

hypothesis.  
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Figure S10. Lévy flight patterns encounter greater environmental heterogeneity. Examples of (A) truncated 

Lévy and (B) exponential distributions of distances between landing locations (red circles) for two different black-

browed albatrosses off Kerguelen Island and in relation to the distribution of chlorophyll „a‟ concentrations, where 

warm colours represent higher concentrations of primary productivity. (C) Median abundance of environmental 

resources was similar, however (D) the variance was over seven times greater during truncated Lévy search 

patterns of T. melanophrys than for exponential (Brownian) foraging patterns. This indicates shelf edge and 

oceanic habitats supporting Lévy searches by albatrosses were highly heterogeneous compared with shallower 

habitat where Brownian search occurred; see teext for explanation of habitat differences. N.S. denotes non 

significance at the 5% level. Test for equal variances in chlorophyll „a‟ at Lévy and exponential landing locations: 

n = 151 per group, Levene‟s test, W = 26.95, P < 0.001. ** denotes P < 0.001. 
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3 Reanalysis of 2004 Albatross data 

Our analysis of albatross movements from high-resolution GPS tracking of birds foraging in 

the southern Indian Ocean indicate the presence of movement patterns approximated by Lévy 

flights and Brownian motion. However, a previous study by Edwards et al. (21) corrected an 

error in tracking data of wandering albatrosses recorded in 1992 in the Southern Ocean 

(foraging from Bird Island, South Georgia) (28). Analysis of new data from foraging 

wandering albatrosses collected in 2004 also contributed to the conclusion that wandering 

albatrosses do not conduct Lévy flights and, as a consequence therefore, the evidence for 

biological Lévy flights was weaker, at that time, than previously thought. Nevertheless, the 

paper by Edwards et al. (21) did not test the LFF hypothesis explicitly on individual albatross 

tracks. Even though 20 individual wandering albatross wet/dry logger-recorded flight times 

collected in 2004 were analysed (21)(Supporting Figures S3-S5), MLE fits of the truncated 

power law distribution to these data were not estimated. Hence, the conclusion that wandering 

albatross do not exhibit movement patterns consistent with Lévy flights can be considered 

premature in the absence of statistically robust fitting of an alternative model (e.g. truncated 

power law distribution) to the ones fitted by Edwards et al. (21) (i.e. exponential and shifted 

gamma distributions). Therefore, we tested the LFF hypothesis by fitting truncated power law 

distributions to the data given in Edwards et al. (21) Figures S3-S5. 

  

The 20 datasets in Edwards et al. (21) comprising time steps in seconds of wandering 

albatrosses tracked with wet/dry loggers in 2004 were kindly provided for reanalysis here by A. 

M. Edwards and R. A. Phillips. The data required no pre-processing by us and was subject to 

identical analysis to the albatross data we described previously (see section 1.3), with the one 

difference being that the correction for discrete data was used as described in Clauset et al. 

(14). In the original paper (21), the data was pooled and was fitted to a gamma distribution 

without fitting the xmin parameter. Therefore in our study, as well as analysing the datasets 

separately for individual birds, the datasets were again pooled and were analysed both with and 

without fitting the xmin and xmax parameters to provide a direct comparison with Figures S3, S4 

and S5 in the original Supplementary Information (21); the pooled results are shown with the 

reference 2004_P (pooled) and 2004_PNF (pooled no fitting), respectively. 

 

For 20 individual datasets, we found 11 best fits to the truncated power law (TP) distribution 

and 3 best fits to the exponential distribution with 8 datasets being classified as mixed. Hence, 

we find good support for the truncated power law (Pareto-Lévy) distribution approximating the 
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movement pattern of wandering albatrosses. Although we also find support for the exponential 

distribution it was less prevalent than the truncated power law fit. These results are consistent 

with other studies analysing the complex behavioural data of marine predators (13, 29), where 

some individual animal datasets provide good support for Lévy movement while others are best 

supported by an exponential (i.e. Brownian) movement pattern. It is proposed that the 

observation of both Lévy and Brownian patterns reflects the complex range of behaviours 

exhibited by different animals at different times. 

 

Our results of this reanalysis of published data are at odds with the conclusions drawn in the 

paper by Edwards et al. (21), where no support was found for power law distributed move steps 

(flight times). It should be noted that in the latter paper no attempt was made to fit a power or 

truncated power law to either the pooled or individual datasets so no comparison similar to that 

reported here was possible. As an example, wandering albatross 2004_5 was found here to be 

best fit by a TP distribution; indeed from visual inspection it seems clear from the plot of this 

data in Figure S11 in Edwards et al. (21) that the TP best fit we found better describes the 

empirical data than the shifted gamma or exponential fits shown in the original Supplementary 

Figure S3. Individual bird 2004_3 (Figure S11)(21) provides another example: in our analysis a 

best fit to the TP distribution was found for this dataset comprising only 29 data points. With 

the limited size of individual datasets in terms of data points for MLE analysis available here 

compared to previous studies (e.g. 13, 29), it is also relevant to note that although the MLE 

methodology finds best fit values for xmin and xmax, in nearly all the datasets we analysed the 

xmax fitted value was also the maximum value in the data. Therefore, the best fits presented here 

are fits to most of the dataset in each case since very few data were not included in the best fit 

model using the method of Clauset et al. (14). 

 

Our results with the pooled data of 20 wandering albatrosses from 2004 are also interesting and 

contrast with those of Edwards et al. (21). With both analysis methods (i.e. fitting of xmin and 

xmax and no fitting) the pooled data was best fit by a TP distribution. However, when best fitting 

is performed there is a conflict between the wAIC values for the exponential and TP best fits, 

which was here resolved by the GOF value which favoured the TP distribution. However, there 

is a serious problem with pooling datasets comprising complex movement data, as Edwards et 

al (21) have done. While pooling homogenous data can result in more powerful statistical 

testing (30), this is not the case with complex heterogeneous data. The datasets analysed in this 

study describe movements from individual animals, each of which are likely to be behaving 

and moving in different ways. Pooling such data confuses these individual movements and can 

have unpredictable results, such as concluding the presence of Lévy flight when it is not 



 37 

exhibited by any one individual, and concluding Brownian motion even though an individual in 

the pool may have a very different behaviour pattern (e.g. 22, 31). This difference can be seen 

in the comparison of the MLE results obtained with the pooled data and an individual dataset 

such as 2004_11, both shown in Figure S11, where it is clear that not only does the individual 

data fit a TP distribution but the difference in the observed step lengths is quite noticable. 

Therefore, for an unbiased test of whether albatrosses exhibit movements approximated by 

Lévy flights it was preferable to analyse individual movement trajectories by fitting both 

truncated power law and exponential distributions. In summary, we find no support for the 

conclusion of Edwards et al. (21) questioning the strength of the evidence for biological Lévy 

flights and find that this was both incorrect and premature. 
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3.1 2004 Data reanalysis: MLE results 

In the following tables, Comp AIC refers to the competing distribution. 

Table S13. Data reanalysis showing TP fits 

Reference Steps 
Min 
Step 

Max 
Step 

Xmin Exponent Xmax 
Exp 

AICw 

Exp 
Comp 
AICw 

TP 
AICw 

TP 
Comp 
AICw 

Exp 
Fit 

TP 
Fit 

Fitted 
steps 

Order of 
magnitude 

2004_P 1416 40 53590 40 1.05 23430 1.00 0.00 1.00 0.00 0.105 0.052 1396 2.77 

2004_PNF 1416 40 53590 40 1.05 23430 1.00 0.00 1.00 0.00 0.105 0.052 1396 2.77 

2004_18 171 40 36130 230 1.10 14280 0.96 0.04 1.00 0.00 0.170 0.047 133 1.79 

2004_11 119 40 30190 40 1.22 30190 0.00 1.00 1.00 0.00 0.248 0.102 118 2.88 

2004_12 113 40 30410 180 1.16 30410 0.00 1.00 1.00 0.00 0.239 0.055 94 2.23 

2004_20 82 40 29490 40 1.01 12430 0.00 1.00 1.00 0.00 0.251 0.092 77 2.49 

2004_05 66 40 21210 350 1.44 21210 0.50 0.50 1.00 0.00 0.140 0.104 43 1.78 

2004_16 60 40 24380 110 1.42 24380 0.05 0.95 1.00 0.00 0.273 0.074 44 2.35 

2004_14 51 40 19430 40 1.59 2590 0.22 0.78 1.00 0.00 0.211 0.187 40 1.81 

2004_13 42 40 21070 40 1.21 21070 0.19 0.81 1.00 0.00 0.147 0.123 41 2.72 

2004_03 29 50 21760 320 1.13 21760 0.39 0.61 0.97 0.03 0.166 0.099 22 1.83 

 

Table S14. Data reanalysis showing exponential fits 

Reference Steps 
Min 
Step 

Max 
Step 

Xmin Exponent 
Exp 

AICw 
Exp 

Comp AICw 
TP 

AICw 
TP 

Comp AICw 
Exp 
GOF 

TP 
GOF 

Fitted 
steps 

Orders of  
magnitude 

2004_08 64 40 53590 70 1.78E-04 1.00 0.00 1.00 0.00 0.097 0.114 54 2.88 
2004_07 64 40 35940 320 1.67E-04 0.99 0.01 1.00 0.00 0.062 0.098 37 2.05 
2004_17 24 40 20600 230 2.90E-04 0.90 0.10 0.97 0.03 0.122 0.176 18 1.95 
 

Table S15. Data reanalysis showing mixed model fits 

Reference Steps 
Min 
Step 

Max 
Step 

Exp 
Xmin 

Exp 
Exponent 

TP 
Xmin 

TP 
Exponent 

TP 
Xmax 

Exp 
AICw 

Exp 
Comp 
AICw 

TP 
AICw 

TP 
Comp 
AICw 

Exp 
Fit 

TP 
Fit 

TP 
Orders of 

magnitude 

Exp 
Orders of 

magnitude 

2004_15 133 50 40020 720 1.94E-04 110 0.97 14960 0.99 0.01 1.00 0.00 0.080 0.050 2.13 1.74 

2004_01 117 40 22660 690 2.47E-04 50 0.96 13980 0.93 0.07 1.00 0.00 0.121 0.045 2.45 1.52 
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Reference Steps 
Min 
Step 

Max 
Step 

Exp 
Xmin 

Exp 
Exponent 

TP 
Xmin 

TP 
Exponent 

TP 
Xmax 

Exp 
AICw 

Exp 
Comp 
AICw 

TP 
AICw 

TP 
Comp 
AICw 

Exp 
Fit 

TP 
Fit 

TP 
Orders of 

magnitude 

Exp 
Orders of 

magnitude 

2004_10 73 100 12950 100 4.40E-04 350 1.04 6650 0.99 0.01 0.99 0.01 0.125 0.120 1.28 2.11 

2004_06 62 50 10900 180 3.45E-04 50 0.84 10900 0.06 0.94 1.00 0.00 0.127 0.082 2.34 1.78 

2004_02 50 40 30500 180 2.25E-04 40 0.74 12230 0.93 0.07 1.00 0.00 0.150 0.084 2.49 2.23 

2004_09 40 50 34230 1250 1.06E-04 50 0.90 34230 0.48 0.52 1.00 0.00 0.102 0.077 2.84 1.44 

2004_04 34 70 36680 120 2.40E-04 110 0.77 6480 0.02 0.98 0.89 0.11 0.173 0.076 1.77 2.49 

2004_19 22 60 15980 330 2.02E-04 60 0.98 15980 0.27 0.73 1.00 0.00 0.167 0.097 2.43 1.69 
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3.2 2004 Data reanalysis: Ranked step length plots 
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Figure S11. Truncated Pareto fits from the 2004 reanalysed data. Here the blue dashed line represents the alternate exponential distribution. 
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Figure S12. Exponential fits from the 2004 reanalysed data. Red line is the best fit exponential distribution; dashed blue line is the alternate TP. 
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Figure S13. Mixed model fits from the 2004 reanalysed data. The plots show the best fitting TP (red) and best fitting exponential (blue dashed) distributions. 
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