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We build a theoretical model of equilibrium dissolution of a homogeneous, solid
mixture of two salts A and B, KCl and NaCl being used as the type example,
into an aqueous solution of the two salts, with diffusive transport. We find that
there are two sharp dissolution fronts, separating fluid, a partially-molten zone
containing a single solid, and mixed solid. The phase change happens almost entirely
at the two sharp fronts. In equilibrium, the leading front exhibits a small amount
of precipitation of NaCl, simultaneous with complete dissolution of KCl. There
is a unique surface in the space of far-field fluid KCl concentration, far-field fluid
NaCl concentration, and solid composition, dividing conditions where NaCl is the
solid in the partially-molten zone, from conditions where KCl is the solid in the
partially-molten zone. The movement rates of the dissolution fronts decrease as the
concentration of either salt in the far-field fluid is increased. The movement rates of
the dissolution fronts increase as either far-field temperature is increased, but this
effect is smaller than that of concentration. In most circumstances, the dissolution
front for a given salt moves more slowly, the more of that salt is present in the
original solid, although the mass dissolution rate is not greatly affected by the solid
composition.
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1. Introduction

In many evaporites, there are layers composed of an intimate mixture of crystals of
NaCl and KCl, and there is interest in developing physical understanding of the
natural or industrial dissolution of such layers (cf. Sonnenfeld 1985; Garrett 1996;
Titkov 2004).

Recently, we modelled dissolution of a single, pure solid into a three-component
liquid (Hatton & Woods 2007). We focused on dissolution of KCl or NaCl, into
an aqueous solution of both salts. We showed that the dissolution rate depends
on the concentrations of KCl and NaCl in solution. We also showed that, with
a solution of a particular concentration, KCl dissolves faster than NaCl, unless
the concentration of KCl in solution is close to saturation, in which case NaCl
dissolves faster.

When a mixed solid dissolves, the length scale over which salt can be transported
diffusively will initially be short enough that any given parcel of fluid can only be
affected by one solid salt, a situation equivalent to dissolution of a pure salt. We
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Figure 1. Constant temperature contours and cotectic lines, in (KCl concentration,
NaCl concentration) space, in our multi-linear phase equilibrium model.

expect that the different dissolution rates of the two salts in this stage will lead
to the formation of a partially-solid, two-phase zone, because the dissolution front
for one salt advances more rapidly into the solid than the other. In this paper, we
develop an equilibrium model of subsequent growth of the two-phase zone, in the
context of diffusion-controlled mass transfer, once the diffusion lengths become long
enough that not only can the fluid be affected by crystals of both salts, but the
separation into individual crystals is on too small a length scale to be relevant, and
the system behaves as if the solid is a homogeneous mixture. As we noted previously
(Hatton & Woods 2007), the assumption that transport is diffusive may be relevant
to natural dissolution of newly-formed evaporites when a lagoon floods with ocean
water, and to melting of sea ice into underlying ocean water. However, we envisage
that some of the physical principles we derive will carry over to situations with
forced or natural convection.

2. Phase equilibrium model

We develop an equilibrium model (section 3). Figure 1 illustrates what we mean
by “phase equilibrium.” The model on which it is based states that, for aqueous
solution, of salt A (KCl) concentration CA and salt B (NaCl) concentration CB ,
to be in phase equilibrium with a solid i ∈ {A, B, I} (i.e. salt A (KCl), salt B
(NaCl), or ice, respectively), the temperature is

T = aiCA + biCB − ci. (2.1)

As described in Hatton & Woods (2007), we obtained values for the nine parameters
ai, bi, ci, by fitting to empirical data gleaned from Linke (1965 (1907)) and Hall
et al. (1988). The values are tabulated in table 1.
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Diffusion-controlled dissolution 3

Parameter Value/K Parameter Value

aA 859.8 R 1.09

bA 639.6 KL 0.140 (0.561 W/m/K)

cA −83.9 KS (solid KCl) 0.0160 (6.95 W/m/K)

aB 2443.2 KS (solid NaCl) 0.0209 (5.02 W/m/K)

bB 4875.9 LA 229.9 kJ/ kg

cB 1059.1 LB 17.1 kJ/ kg

aI −44.0 lI 142 K

bI −122.68 ρSA (solid KCl) 1.984 t/m3

cI −273.67 ρSB (solid NaCl) 2.165 t/m3

ρL 1.109 t/m3

Table 1. Values of parameters in our model. On the left are phase-equilibrium parame-
ters obtained as described in the caption of figure 1 and in Hatton & Woods (2007). On
the right are parameters obtained directly from the literature (Clauser & Huenges 1995;
Lewis[ Peggs] 1995 (1911); Richardson 1995 (1911); Morrell 1995 (1911); Phillips 1995
(1911)a,b; McGlashan 1995 (1911)b,a; Marliacy et al. 1998; Wheeler & Newman 2004;
Ramos et al. 2005). Salt A is KCl and salt B is NaCl. Thermal conductivities underlying
KL and KS values are in brackets.

A solution in contact with two solids is constrained by phase equilibrium to
lie on the cotectic line, represented in the figure 1 by the sequence of invariant
points C. Each point C relates to a particular temperature. Solution that only
lies in contact with one solid is only constrained to lie on the branch of the phase-
equilibrium surface relating to that solid. The solution evolves (in space) along that
surface to the cotectic, as it approaches a point of contact with the second solid.
This is illustrated schematically as the line BC in figure 2a. Figure 2b shows this
path again, with position made explicit, and information on temperature and solid
fraction. Unless there is a large change in temperature between points B and C, the
fluid in contact with solid NaCl decreases in NaCl concentration, and increases in
KCl concentration, as one approaches a point of contact with solid KCl. Therefore,
NaCl and KCl are transported in opposite directions. This raises the possibility
that, as KCl dissolves at point C, NaCl is precipitated. In field studies, the process
in which one salt precipitates in response to dissolution of the other salt is known
as “salting out” (cf. Garrett 1996).

To incorporate the restriction of salt transport in the partially-molten zone due
to salting out, we set the cross-sectional area available for transport, and therefore
the ratio of flux to concentration gradient, to be proportional to the liquid volume
fraction. The precipitate morphology may involve complex dendritic structures,
but we adopt a laterally-averaged model, to describe conservation of heat and both
salts. The detailed morphology is beyond the scope of the present study.

In section 5, we present quantitative predictions from our model, and give phys-
ical explanations for them. In section 7, we highlight a few important conclusions
from these results. In appendix A, we compare those predictions with a simplified,
disequilibrium model, which neglects salting out. We show that salting out has only
a small effect on the dissolution rate.
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Figure 2. a: Schematic of path in (salt A concentration, salt B concentration) space traced
out, on moving from far-field fluid (point A), past trailing front (point B), to leading front
(point C). Curves L(Tl; X) represent phase equilibrium curves for ternary solution of A
and B and unary solid X ∈ {A, B}; each curve corresponds to a different temperature
Tl. Typically solubility increases with increasing temperature, T2 > T1. b: Schematic
illustration of solid fractions, concentrations, and temperature, as functions of position.
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Diffusion-controlled dissolution 5

3. Physical laws

If a unit-volume, local element of the system contains a mass mW of water, mAL

of dissolved salt A, mBL of dissolved salt B, mAS of solid salt A, and mBS of solid
salt B, we denote the concentrations of A and B by

CA =
mAL

mAL + mBL + mW
(3.1)

and
CB =

mBL

mAL + mBL + mW
. (3.2)

Also, the solid mass fractions φA and φB are denoted

φA =
mAS

mAS + mAL + mBL + mBS + mW
, (3.3)

and
φB =

mBS

mAS + mAL + mBL + mBS + mW
. (3.4)

We use the solid mass fractions φA and φB to represent the solid volume fractions.

(a) Within the fluid region, x < h1 (t)

Salt A is conserved. Therefore, the rate of change of salt A concentration matches
the spatial gradient of diffusive salt A flux. The latter is given by the spatial cur-
vature of salt A concentration:

DA
∂2CA

∂x2
=

∂CA

∂t
, (3.5)

where x is the position co-ordinate, t is the time, and DA is the salt A diffusion
coefficient.

Similarly for salt B:

DB
∂2CB

∂x2
=

∂CB

∂t
, (3.6)

where DB is the salt B diffusion coefficient.
Heat is conserved. Therefore, the rate of change of temperature T matches the

spatial gradient of conductive heat flux:

κL
∂2T

∂x2
=

∂T

∂t
, (3.7)

where κL is the thermal diffusivity (cf. Batchelor 1973 (1967) p. 35) of the fluid.

(b) Within the partially-molten zone, h1 (t) ≤ x < h2 (t)

Salt A is conserved. Therefore, the rate of change of dissolved salt A content
matches the spatial gradient of salt A flux. Both quantities are adjusted to allow
for the possibility of a varying solid fraction:

DA
∂

∂x

(

(1 − φB)
∂CA

∂x

)

=
∂

∂t
((1 − φB)CA) . (3.8)

Article submitted to Royal Society



6 D. C. Hatton and A. W. Woods

Salt B is conserved. Therefore, the rate of change of dissolved salt B concentra-
tion and the dissolved salt B source or sink provided by phase change match the
spatial gradient of salt B flux. All three quantities are adjusted to allow for the
possibility of a varying solid fraction:

DB
∂

∂x

(

(1 − φB)
∂CB

∂x

)

=
∂

∂t
((1 − φB)CB + φB) . (3.9)

We have neglected the effects of variation in the partially-molten material den-
sity, ρM ≡ mAL + mBL + mBS + mW . We have extended this approximation to
neglect the effects of the difference between the densities of the solid salts, ρSA

and ρSB, and ρM ; hence, we define a universal density by a weighted geometric
average ρ = ((ρSAρSB)1/2ρL)1/2, where ρL is the density of the liquid. Water is
then automatically conserved by conserving both salts. During development of the
single-solid model (Hatton & Woods 2007), we explored the effects of the density
difference between solid and liquid. The density difference introduced a small, uni-
form velocity field, directed away from the solid, which reduced the dissolution
rates by a factor of 1.7–1.8 (approximately the ratio of solid density to liquid den-
sity), without changing their functional dependences on the far-field conditions. An
analogous effect will occur herein, but we neglect it for simplicity.

Heat is conserved. Therefore, the rate of change of temperature and the sensible
heat source or sink provided by the latent heat associated with phase change of salt
B match the spatial gradient of heat flux:

kM
∂2T

∂x2
= ρHM

∂T

∂t
− LBρ

∂φB

∂t
, (3.10)

where kM is the thermal conductivity of the partially-molten material and LB is the
specific latent heat of dissolution of solid salt B. We estimate kM by considering
conduction through liquid (thermal conductivity kL) and solid salt B (thermal
conductivity kSB) in parallel (cf. Greitzer et al. 2006), with an estimated value
φB∞/2 of the typical solid fraction in the partially-molten zone:

kM ≈ φB∞

2
kSB +

(

1 − φB∞

2

)

kL,

where φA∞ = 1 − φB∞ is the salt A fraction, and φB∞ the salt B fraction, in the
undisturbed solid. HM is the specific heat capacity of the partially molten material,
which we estimate in a similar way, from the specific heat capacities HSB of solid
salt B and HL of liquid:

HM ≈ φB∞

2
HSB +

(

1 − φB∞

2

)

HL.

Later, it will be convenient to think in terms of the thermal diffusivity of the
partially-molten zone:

κM =
kM

ρHM
.

Contact with solid salt B forces the liquid to be on the solid-B branch of the
phase equilibrium surface:

T = aBCA + bBCB − cB. (3.11)
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(c) Within the solid region, x ≥ h2 (t)

Heat is conserved. Therefore, the rate of change of temperature matches the
spatial gradient of heat flux:

κS
∂2T

∂x2
=

∂T

∂t
, (3.12)

where κS is the thermal diffusivity of the solid. κS is constructed from the thermal
properties of individual solids in the same way that κM is constructed from the
thermal properties of solid salt B and liquid (section b): from a thermal conductivity

kS = (1 − φB∞)kSA + φB∞kSB ,

and a specific heat capacity

HS = (1 − φB∞)HSA + φB∞HSB,

where kSA and HSA are the thermal conductivity and specific heat capacity of solid
salt A. The usual formula

κS =
kS

ρHS

applies.

(d) At the trailing boundary, x = h1 (t)

Salt A is conserved. Therefore, the difference in salt A flux (i.e. in the product
of porosity and the spatial gradient of salt A concentration) across the boundary
matches the additional flux of salt A associated with movement of the boundary.
The additional flux arises because the total mass fraction of salt A is, in general,
different on each side of the moving boundary:

DA

(

∂CA

∂x

∣

∣

∣

∣

x=h1(t)−

−
(

1 − φB |x=h1(t)+

) ∂CA

∂x

∣

∣

∣

∣

x=h1(t)+

)

=h′

1 (t)
((

1 − φB|x=h1(t)+

)

CA|x=h1(t)+
− CA|x=h1(t)−

)

. (3.13)

Salt B is conserved. By analogy with conservation of salt A, this leads to the
relation:

DB

(

∂CB

∂x

∣

∣

∣

∣

x=h1(t)−

−
(

1 − φB |x=h1(t)+

) ∂CB

∂x

∣

∣

∣

∣

x=h1(t)+

)

=h′

1 (t)
((

1 − φB |x=h1(t)+

)

CB |x=h1(t)+
+ φB|x=h1(t)+

− CB|x=h1(t)−

)

.

(3.14)

Heat is conserved. Therefore, the difference in heat flux (i.e. in the spatial gra-
dient of temperature, adjusted for the different thermal diffusivities of fluid region
and partially-molten zone) across the boundary matches the sensible heat source
or sink, provided by the latent heat associated with phase change of salt B as the
boundary moves:

kL
∂T

∂x

∣

∣

∣

∣

x=h1(t)−

− kM
∂T

∂x

∣

∣

∣

∣

x=h1(t)+

= −h′

1 (t)LBρ φB |x=h1(t)+
, (3.15)
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8 D. C. Hatton and A. W. Woods

where HL is the specific heat capacity of the liquid.
Temperature is continuous (cf. Glass et al. 1991):

T |x=h1(t)−
= T |x=h1(t)+

. (3.16)

Salt concentrations are continuous (cf. Glass et al. 1991):

CA|x=h1(t)−
= CA|x=h1(t)+

. (3.17)

CB|x=h1(t)−
= CB|x=h1(t)+

. (3.18)

The fluid immediately to the left is in phase equilibrium with solid salt B:

T |x=h1(t)−
= aB CA|x=h1(t)−

+ bB CB|x=h1(t)−
− cB. (3.19)

(e) At the leading boundary, x = h2 (t)

Salt A is conserved. Therefore, the diffusive salt A flux immediately to the left
matches the flux of salt A associated with the phase change:

(1−φB|x=h2(t)−
)DA

∂CA

∂x

∣

∣

∣

∣

x=h2(t)−

= h′

2 (t)
(

φA|x=h2(t)+
−
(

1 − φB|x=h2(t)−

)

CA|x=h2(t)−

)

.

(3.20)
Similarly, for salt B:

(1−φB|x=h2(t)−
)DB

∂CB

∂x

∣

∣

∣

∣

x=h2(t)−

= h′

2 (t)
(

φB |x=h2(t)+
− φB |x=h2(t)−

−
(

1 − φB |x=h2(t)−

)

CB|x=h2(t)−

)

.

(3.21)
Heat is conserved. Therefore, the difference in heat flux across the boundary

matches the sensible heat source or sink provided by the latent heat associated
with precipitation or dissolution of salts as the boundary moves:

kM
∂T

∂x

∣

∣

∣

∣

x=h2(t)−

−kS
∂T

∂x

∣

∣

∣

∣

x=h2(t)+

= h′

2 (t)
(

−LAρ φA|x=h2(t)+
+ LBρ

(

φB|x=h2(t)−
− φB|x=h2(t)+

))

.

(3.22)
where LA is the specific latent heat of dissolution for salt A.

Temperature is continuous:

T |x=h2(t)−
= T |x=h2(t)+

. (3.23)

The fluid immediately to the left is in phase equilibrium with both solid salts
(i.e. on the cotectic):

T |x=h2(t)−
= aA CA|x=h2(t)−

+ bA CB |x=h2(t)−
− cA. (3.24)

T |x=h2(t)−
= aB CA|x=h2(t)−

+ bB CB|x=h2(t)−
− cB. (3.25)
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Diffusion-controlled dissolution 9

4. Self-similar solutions

Equations 3.5–3.12 admit self-similar solutions, i.e. the concentrations CA and CB,
solid fractions φA and φB, and temperature T depend on position x and time t

only through a similarity variable η = x/
√

2
√

DADBt (cf. Carslaw & Jaegar 1959
(1946); Woods 1992). This converts time-dependent boundary positions to constant

positions in η space, λ = h1 (t) /
√

2
√

DADBt and µ = h2 (t) /
√

2
√

DADB. λ and
µ are proportional to the product of front velocity and the square root of time, so
they also serve as rate constants. Self-similarity also transforms partial differential
equations to ordinary differential equations.

(a) The fluid region, η < λ

The self-similar solutions of equations 3.5–3.7 are (Hatton & Woods 2007):

CA = CA0 + ∆CA0G
( η

R

)

, (4.1)

CB = CB0 + ∆CB0G (Rη) , (4.2)

and

T = Tf + ∆T0G (KLη) , (4.3)

where the error function G (z) is defined, in terms of the normalized Gaussian

g (u) =
exp

(

−u2/2
)

√
2π

, (4.4)

as

G (z) =

∫ z

u=−∞

g (u) du. (4.5)

R = (DA/DB)1/4 is the ratio of fourth roots of the solutal diffusivities for the two

salts, and KL =
√√

DADB/κL is the inverse square root of the Lewis number
(cf. Josberger & Martin 1981). CA0, CB0, and Tf are the known far-field fluid
concentrations and temperature. ∆CA0, ∆CB0, and ∆T0 are parameters indicating
the amplitude of concentration and temperature variation, to be determined from
equations 3.13–3.15. The resulting values are stated in appendix C.

(b) The solid region, η ≥ µ

The self-similar solution of equation 3.12 is (Hatton & Woods 2007):

T = Ts + ∆T2 (G (KSη) − 1) . (4.6)

KS =
√√

DADB/κS is the solid equivalent of KL. Ts is the known far-field solid
temperature. ∆T2 is a parameter indicating the amplitude of temperature variation,
to be determined from equation 3.23. The resulting value is stated in appendix C.
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10 D. C. Hatton and A. W. Woods

(c) The partially-molten zone, λ ≤ η < µ

Self-similarity reduces equation 3.8 to

(1 − φB)
d2CA

dη2
− dφB

dη

dCA

dη
= − η

R2

(

(1 − φB)
dCA

dη
− dφB

dη
CA

)

, (4.7)

equation 3.9 to

(1 − φB)
d2CB

dη2
− dφB

dη

dCB

dη
= −R2η

(

(1 − φB)
dCB

dη
+

dφB

dη
(1 − CB)

)

, (4.8)

and equation 3.10 to

d2T

dη2
= −K2

Mη

(

dT

dη
− LB

HM

dφB

dη

)

, (4.9)

where KM =
√√

DADB/κM is the partially-molten zone equivalent of KL.
We use the approximation R ≈ 1. This is not very restrictive: most common

ions have diffusivities in water within a factor of 2 either side of 1.6 × 10−9 m2/ s
(Vanýsek 2001). We add the product of aB and equation 4.7 to the product of bB

and equation 4.8, and substitute from equation 3.11, to obtain

η
dφB

dη
=

1

Tf + cB − bB

(

(1 − φB)
d2T

dη2
− dφB

dη

dT

dη
− η

(

dφB

dη
(T − Tf) − (1 − φB)

dT

dη

))

.

(4.10)
We take advantage of the fact that, whether salt B is NaCl or KCl, bB, the

rate at which solid-B phase equilibrium temperature varies with dissolved salt B
concentration, is several thousand Kelvin or several hundred Kelvin respectively
(table 1,) hence the denominator Tf + cB − bB ≈ − bB. Temperature varies on a
scale, in η space, of order 1/KM , so that, if the total temperature variation in the
system is Θ, then dT/dη is of order KMΘ and d2T/dη2 is of order K2

MΘ. We do not
consider systems with temperature variations of more than a few tens of Kelvin,
and KM < 1, so neither derivative is nearly as large as bB. The dimensionless
multiplier (1 − φB) is necessarily of order 1 or smaller. We deduce that the right-
hand side of equation 4.10 is of the order of the small parameter KMΘ/bB, and
we can use a perturbation expansion with this quantity as expansion parameter
to exclude the right-hand side of equation 4.10 from leading-order consideration.
The expansion parameter represents the gradient, in η space, of phase-equilibrium
salt B concentration, associated with the temperature gradient. Hence, to leading
order, we can simplify figure 2a to a version that is isothermal for phase-equilibrium
purposes (figure 3). In its zeroth order, the perturbation expansion gives

dφB

dη
= 0. (4.11)

We call this constant solid fraction

φB = φB1 (4.12)

(cf. figure 2b).

Article submitted to Royal Society



Diffusion-controlled dissolution 11
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Figure 3. Schematic of path in (salt A concentration, salt B concentration) space traced
out, on moving from far-field fluid (point A), past trailing front (point B), to leading front
(point C), with effect of temperature on phase-equilibrium concentration neglected.

Substituting from equation 4.11 into equation 4.9, we find

d2T

dη2
= −K2

Mη
dT

dη
(4.13)

for λ ≤ η < µ, and so

T = T1 + ∆T1G (KMη) . (4.14)

Similarly, from equations 4.11 and 4.7,

d2CA

dη2
= −η

dCA

dη
(4.15)

for λ ≤ η < µ, and so

CA = CA1 + ∆CA1G (η) . (4.16)

Similarly, from equations 4.11 and 4.8, once more using R ≈ 1,

d2CB

dη2
= −η

dCB

dη
(4.17)

for λ ≤ η < µ, and so
CB = CB1 + ∆CB1G (η) . (4.18)
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12 D. C. Hatton and A. W. Woods

To summarize, within the partially-molten zone, the solid fraction is constant.
In addition, all three “substances” (salt A, salt B, and heat) are transported inde-
pendently, i,e. the concentrations of both salts in the fluid, and the temperature,
vary as error functions on their respective diffusive length scales. We have intro-
duced parameters φB1, T1, ∆T1, CA1, ∆CA1, CB1, and ∆CB1, representing the
solid fraction, the baseline temperature and concentrations, and the amplitudes of
temperature and concentration variation. These can be determined using equations
3.16–3.22, 3.24, and 3.25. The values are stated in appendix C.

In figure 9, we check a posteriori that the expansion parameter is small enough
to justify the perturbation expansion. In appendix B, we consider the next order
of the expansion.

5. Results

We will now discuss quantitative predictions of the model. Specifically, we analyse
the system where the salts are KCl and NaCl. Values for material properties of
the system, to be inserted into the equations, are tabulated in table 1.

Figure 3 is a schematic illustrating that concentration space divides into two
regions. In régime 1 (e.g. far-field composition A,) the fluid meets the solid-NaCl
phase equilibrium surface at the trailing front (B,) then evolves in space along
that surface in a partially-molten zone containing solid NaCl to the cotectic (C.)
This is described by a version of our model, in which KCl is salt A and NaCl is
salt B. In régime 2 (e.g. far-field composition D,) the fluid meets the solid-KCl
phase equilibrium surface at the trailing front (E,) then evolves in space along that
surface in a partially-molten zone containing solid KCl to the cotectic (C.) This
is described by a version of our model in which KCl is re-labelled “salt B” and
NaCl is re-labelled “salt A.” Where the far-field fluid is on the régime boundary
(e.g. far-field composition F) the fluid approaches the cotectic (C) from a position
of under-saturation in both salts, and there is no partially-molten zone, so that the
two phase-change fronts travel together, λ = µ. This allows the régime boundary
to be readily identified. In figure 4, we plot the predicted locus, in (far-field fluid
KCl concentration CK0, far-field fluid NaCl concentration CNa0, far-field solid
composition φB∞) space, of such conditions. Figure 4 can be interpreted as a régime
diagram, specifying which salt will be solid in the partially-molten zone for given
far-field conditions. The position of the boundary is independent of which version
of the model is used to search for the λ = µ contour, i.e. there is always a unique
answer to the question of which salt remains solid in the partially-molten zone.
In the rest of this section, we concentrate on the régime where the solid in the
partially-molten zone (salt B) is NaCl.

In all the circumstances we have studied, φNa1 > φNa∞, i.e. salting-out (NaCl
precipitation at the leading front) occurs.

In figure 5, we plot the predicted dimensionless rate constants λ for movement
of the trailing (liquid/partially-molten) interface and µ for movement of the leading
(partially-molten/solid) interface, as functions of the NaCl concentration CNa0 in
the far-field fluid, for several solid compositions.

The dissolution rates decrease with increasing CNa0, as the NaCl concentration
contrast between far-field fluid and partially molten zone decreases, and therefore
the NaCl concentration gradients and fluxes decrease.
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together, λ = µ, and there is no partially-molten zone. Far-field fluid temperature
Tf = 50 ◦C. Far-field solid temperature Ts = 50 ◦C.

Usually, the more of one salt is present in the far-field solid, the more slowly that
salt dissolves. This is because the mass dissolution rate of a given salt is proportional
to the product of the relevant dissolution rate parameter and the fraction of the
far-field solid that is composed of that salt. Thus, the greater the fraction of the
far-field solid that is composed of a particular salt, the lower the dissolution rate
parameter that can be sustained by a given diffusive flux of that salt.

However, this principle breaks down at high far-field fluid NaCl concentrations.
At CNa0 ≈ 0.27, the trailing-front velocity curves for different solid compositions
cross, and for CNa0 & 0.27, the NaCl dissolution rate (trailing front velocity)
increases with increasing NaCl content in the far-field solid. This is possible because
here, NaCl dissolved at the trailing front is mostly transported towards the leading
front to be re-precipitated, not towards the far-field fluid. As the NaCl content
of the far-field solid increases, the KCl dissolution rate (leading front velocity)
increases, both because of increasing KCl concentration gradient in the fluid in the
partially-molten zone and because of decreasing KCl content in the far-field solid.
Therefore, there is an increasing demand for NaCl to supply re-precipitation.

Figure 5 does not include cases where the undisturbed solid is a single, pure
salt, φNa∞ ∈ {0, 1}. We discuss these cases separately, in section 6.

In figure 6, we plot the predicted dimensionless rate constants λ and µ, for
movement of the trailing and leading interfaces, respectively, as functions of the
NaCl concentration CNa0 in the far-field fluid, for several far-field fluid KCl con-
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Figure 5. Predicted dimensionless rate constants λ and µ, for movement of trailing and
leading interfaces, respectively, as functions of NaCl concentration CNa0 in far-field fluid.
Far-field fluid contains no KCl, CK0 = 0. Far-field fluid temperature Tf = 50 ◦C. Far-field
solid temperature Ts = 50 ◦C. Eight curves plotted, corresponding to the two dimensionless
rate constants for each of the far-field solid compositions: φK∞ = 0.9, φNa∞ = 0.1;
φK∞ = 0.7, φNa∞ = 0.3; φK∞ = 0.3, φNa∞ = 0.7; and φK∞ = 0.1, φNa∞ = 0.9.

centrations. Adding KCl to the far-field fluid, like adding NaCl to the far-field
fluid, suppresses the dissolution rates. The reasons are analogous.

In figure 7, we plot the predicted dimensionless rate constants λ and µ, for move-
ment of the trailing and leading interfaces, respectively, as functions of the NaCl
concentration CNa0 in the far-field fluid, for several far-field fluid temperatures.

The effect of far-field fluid temperature is smaller than that of far-field fluid
composition. The former relates to increased interface temperature increasing the
saturation concentrations that pertain in the partially molten zone. This in turn
increases the concentration gradients and fluxes between here and the far-field fluid.
As for pure solids, this shift in saturation concentration is kept small by the large
liquidus gradients. The curves for the leading (KCl dissolution) front are very sim-
ilar to those for dissolution of pure KCl, and the curves for the trailing (NaCl
dissolution) front are very similar to those for dissolution of pure NaCl. We ex-
plained (Hatton & Woods 2007) how the different liquidus characteristics for the
two solids ensured that pure KCl would dissolve faster than pure NaCl, except
where the far-field fluid was very concentrated in KCl. Solid KCl requires either
a lower interface temperature or a higher interface concentration than solid NaCl
to maintain phase equilibrium. Therefore, more salt is transported away and/or
more heat is available to provide latent heat for KCl dissolution than for NaCl.
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The predictions of dissolution rates in a binary solid shown in figure 7 represent
an extension of this principle. The range of far-field temperatures we have imposed
is larger than is geophysically realistic. Therefore, given that our imposed temper-
ature variation has only minor effects, the temperature variations encountered in
nature will have even smaller effects.

Figure 7 also includes results of numerical calculations (cf. appendix D), which
illustrate what happens if one uses neither the R ≈ 1 (equal solutal diffusivities
for the two salts) approximation nor the large-bB perturbation expansion (compare
symbols × and + with curves generated from earlier analytic solutions). Because
the solutal diffusivity for KCl is slightly higher than

√
DADB, taking account of the

diffusivity difference R 6= 1 enhances the KCl dissolution rate (symbols ×, figure 7).
Similarly, because the solutal diffusivity for NaCl is slightly lower than

√
DADB,

taking account of the diffusivity difference usually reduces the NaCl dissolution
rate (symbols +, figure 7).

As an interesting aside, in figure 8, we examine what happens to the results
in figure 7 if we artificially increase the thermal conductivity kM of the partially-
molten zone by a factor of 2. Doubling the thermal conductivity of partially-molten
material has made little difference either to the width of the partially-molten zone
or to the dissolution rates of individual solids. This is unsurprising, given that, as
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Figure 7. Predicted dimensionless rate constants λ and µ, for movement of trailing and
leading interfaces, respectively, as functions of NaCl concentration CNa0 in far-field fluid.
Far-field fluid contains no KCl, CK0 = 0. Composition of far-field solid is φK∞ = 0.3,
φNa∞ = 0.7. Far-field solid temperature Ts = 50 ◦C. Six curves plotted, correspond-
ing to the two dimensionless rate constants for each of the far-field fluid temperatures
Tf = −10 ◦C, Tf = 50 ◦C, and Tf = 110 ◦C. Crosses represent numerical results for
Tf = 50 ◦C, based on Euler solution (cf. Arfken 1985 pp. 491–492) of equations 4.7–4.9,
with shooting (cf. Press et al. 1992 (1986) pp. 745–747) by simulated annealing (cf. MacKay
2003 p. 392) to obtain correct boundary conditions for far-field conditions (cf. appendix
D). Numerical method uses neither R ≈ 1 approximation nor large-bB perturbation ex-
pansion.

discussed above, the system behaves to leading order as if the partially-molten zone
is isothermal.

Finally, we assess the validity of the perturbation expansion. In figure 9 we plot
its predicted largest value, as a function of the NaCl concentration CNa0 in the
far-field fluid, for several far-field fluid temperatures. The expansion parameter is
always small compared with unity, as required for the expansion to be valid.

6. Application to dissolution of a pure solid

We can apply the model in this paper to dissolution of a pure salt (say KCl).
When we discussed this problem before (Hatton & Woods 2007), we neglected
the possibility of precipitation of a second salt (say NaCl) from the melt, and of
formation of a partially-molten zone. Usually, the fluid remained everywhere under-
saturated in NaCl, and we found solutions in which the only phase change was
dissolution of KCl, which were consistent with all the physical principles discussed

Article submitted to Royal Society



Diffusion-controlled dissolution 17

0

0.14

0.28

0 0.1 0.2 0.3

λ
o
r

µ

CNa0

λ
for T

f = −10 ◦

C

λ for T
f =

50 ◦

C
µ for Tf = −10 ◦C

λ
for T

f =
110 ◦

C

µ for Tf = 110 ◦C

µ for Tf = 50 ◦C

Figure 8. Predicted dimensionless rate constants λ and µ, for movement of trailing and
leading interfaces, respectively, as functions of NaCl concentration CNa0 in far-field fluid.
Far-field fluid contains no KCl, CK0 = 0. Composition of far-field solid is φK∞ = 0.3,
φNa∞ = 0.7. Far-field solid temperature Ts = 50 ◦C. Six curves plotted, correspond-
ing to the two dimensionless rate constants for each of the far-field fluid temperatures
Tf = −10 ◦C, Tf = 50 ◦C, and Tf = 110 ◦C. Thermal conductivity of partially-molten
zone artificially increased by factor of 2.

in the present paper (régime 2, figure 10a). In that case, line A–B illustrates the
path followed by the solution in concentration space as the solid dissolves. This is
illustrated again with position made explicit in figure 10b. However, if the far field
fluid is almost saturated in NaCl and the solid is composed of KCl (régime 1,
figure 10a,) salting out, as shown by line C–D–E in figure 10a, may occur. This is
illustrated again with position made explicit in figure 10c. The new model developed
in this paper, which allows for salting out, can be applied to describe this situation.

In figure 11, we present a calculation illustrating the far-field conditions (CK0, CNa0)
for which λ = µ and hence which correspond to the limiting concentration for which
salting out can occur. In the regions between this locus of far-field conditions and
the phase equilibrium curves, labelled as “NaCl PMZ” and “KCl PMZ”, salting
out can occur for solid KCl or solid NaCl respectively. The region labelled “no
PMZ” corresponds to the case in which there is no salting out.

In the region labelled “NaCl PMZ”, salting out precipitation produces a partially-
molten zone containing solid NaCl, trailing the undissolved pure KCl solid. In the
region labelled “KCl PMZ”, salting out precipitation produces a partially-molten
zone containing solid KCl, trailing the undissolved pure NaCl solid.

In figure 12, we present some predictions of the model in this paper for the
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dissolution rates of pure KCl, both in the régime where salting out of NaCl occurs
(solid lines: µ is leading dissolution front, λ is trailing dissolution front), and in the
régime where there is a single, planar dissolution front (dashed lines). Dissolution
rates are shown as a function of far-field NaCl concentration CNa0, for three values
of far-field KCl concentration CK0.

7. Conclusions

We have developed a model for diffusion-and-conduction-controlled, equilibrium
dissolution of a homogeneous mixture of two solids A and B (KCl and NaCl being
used as the type example), into a ternary solution including materials A and B
(water being the type example of the third material). The model admits a solution
with two sharp dissolution fronts. The solution has a (central) region occupied
partly by aqueous solution, and partly by solid salt B, between a region occupied
entirely by aqueous solution, and a region occupied entirely by the original, mixed
solid. The leading front can be labelled the salt A dissolution front, and the trailing
front the salt B dissolution front.

As long as the solid-B phase equilibrium temperature varies rapidly with the
concentration of dissolved salt B, the phase change happens almost entirely at
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far-field fluid (point C) past trailing front (point D) to leading front (point E), for pure
KCl solid, with effect of temperature on phase-equilibrium concentration neglected. b:

Schematic illustration of solid fractions, concentrations, and temperature, as functions of
position, without salting out. c: Schematic illustration of solid fractions, concentrations,
and temperature, as functions of position, with salting out.
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the two sharp fronts, and there is almost no distributed phase change within the
partially-molten zone.

Some precipitation (of salt B) takes place at the leading front, a phenomenon
known (Garrett 1996) as “salting out.” However, this may not be the case for other
salts, particularly those that have smaller bB, where the effect of the temperature
gradient on phase-equilibrium concentration may be sufficient that both salts are
transported in the same direction.

There is a unique (for given far-field temperatures) surface in (far-field fluid
KCl concentration, far-field fluid NaCl concentration, solid composition) space,
dividing conditions under which NaCl is the solid in the partially-molten zone
from conditions under which KCl is the solid in the partially-molten zone.

The dissolution rates decrease as the concentration of either salt in the far-field
fluid is increased because this reduces the concentration gradients that drive salt
transport and therefore dissolution.

In most circumstances, the dissolution front for a given salt moves more slowly
as the mass fraction of that salt in the original solid increases. The mass dissolution
rates are controlled by the concentration gradients in the fluid and are not strongly
affected by the solid composition. This corresponds to a lower dissolution-front
speed, as the mass fraction of the dissolving salt in the solid increases.

The dissolution rates increase if either far-field temperature increases, but this
effect is smaller than that of concentration. To a good approximation, the tem-
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perature in and around the partially-molten zone is a weighted average of the two
far-field temperatures, although there is a slight suppression due to the need to
conduct in heat to supply the latent heat of dissolution. A change in temperature
in and around the partially-molten zone produces only a tiny change in concen-
tration, and therefore in the concentration gradients that drive salt transport and
dissolution. The lack of salt transport in the solid means that the salt flux (unlike
the heat flux) in the liquid adjacent to the interface is a strict control on the dissolu-
tion rate. Hence, the small change in salt flux implies a small change in dissolution
rate. All the steps in this qualitative physical argument appear to apply also to
cases where transport is controlled by buoyancy-driven convection, so one would
expect the relative importance of temperature and concentration to be similar in
such cases. We are undertaking further study into the details of the dissolution
process in the presence of buoyancy-driven convection.

We have also shown that salting out is possible during dissolution of a single-
phase solid A by a ternary solution of salts A and B, if the concentration of that
solution is sufficiently close to the phase-equilibrium surface of salt B, thereby
extending the original model of Hatton & Woods (2007).

The models can be applied directly to solids/solutes other than KCl and NaCl,
by replacing the parameter values in table 1 with values appropriate to the other
solids. However, the analysis relies on the liquidus gradient bB for the slower-
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dissolving solid being large compared with other temperature scales relevant in
the partially-molten zone. In particular, this means that, where one of the solids
is ice, and the liquid is an aqueous solution of (e.g.) NaCl and KCl, the model is
valid only as long as ice is the fastest-dissolving of the two solids.

Although the validity of the perturbation expansion requires only the slower-
dissolving of the two solids to have a steep liquidus (large bB), the argument for the
weak dependence of dissolution rate on far-field temperature relies on the liquidus
gradients aA and bB for both solids being large. Therefore, one would expect the
model to predict a greater rôle for temperature if one solid were ice.
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