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Ice internal friction: standard theoretical perspectives on friction

codified, adapted for the unusual rheology of ice, and unified
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Sea ice contains flaws including frictional contacts. We aim to describe quantitatively the
mechanics of those contacts, providing local physics for geophysical models. With a focus
on the internal friction of ice, we review standard micro-mechanical models of friction. The
solid’s deformation under normal load may be ductile or elastic. The shear failure of the
contact may be by ductile flow, brittle fracture, or melting and hydrodynamic lubrication.
Combinations of these give a total of six rheological models. When the material under study
is ice, several of the rheological parameters in the standard models are not constant, but
depend on the temperature of the bulk, on the normal stress under which samples are pressed
together, or on the sliding velocity and acceleration. This has the effect of making the shear
stress required for sliding dependent on sliding velocity, acceleration, and temperature. In
some cases, it also perturbs the exponent in the normal-stress dependence of that shear stress
away from the value that applies to most materials.

We unify the models by a principle of maximum displacement for normal deformation, and
of minimum stress for shear failure, reducing the controversy over the mechanism of internal
friction in ice to the choice of values of four parameters in a single model. The four parameters
represent, for a typical asperity contact, the sliding distance required to expel melt-water, the
sliding distance required to break contact, the normal strain in the asperity, and the thickness
of any ductile shear zone.

1. Introduction

The internal friction of ice, i.e. the process whereby two samples of the same
material, pressed together by an average normal stress σ, resist shearing of the
contacting interface, with an average resisting shear stress τ , is a particularly timely
issue. In a previous paper, we presented a homogenization method, which will allow
us to construct an ocean-scale model of sea-ice dynamics [1]. Its results will be
derived from sub-grid-scale physical laws given as an input to the homogenization
method. That creates a need to know the sub-grid-scale physics of floating ice
sheets that contain various kinds of flaws, such as open-water leads, or normal-
stress-created contacts between individual ice floes. The latter kind of flaws are
the preserve of micro-mechanical internal friction models; they are also the preserve
of laboratory ice-ice friction experiments, of which many have been presented in
the literature, e.g. [2–16]. Sliding on networks of flaws of this kind contributes
much of the strain in compressive deformation of ice [15], including sea ice in the
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Figure 1. Schematic of sliding process involved in internal friction, with definitions of relevant quantities.
A is cross-sectional area of facing surfaces.

field [16, 17]. In the above, “average” means the spatial mean over an area of the
two-dimensional facing surfaces large compared with the square of their roughness
wavelength. The process is illustrated in figure 1.

In this paper, we explore previously-published micro-mechanical models for pre-
dicting the shear stress τ required to induce sliding in internal friction. We take a
particular interest in how these models might apply to the internal friction of ice.
We propose to move forward from the position already established in the literature
in three ways. Firstly, we will bring together the various models, with their widely
differing micro-mechanical assumptions, in one place, permitting ready compari-
son between the results produced with different assumptions. Secondly, we will
note several effects of the unusual rheology of ice, in which properties like Young’s
modulus and yield stress, included in standard internal friction models as constant
parameters, depend on, e.g., strain rate and temperature. This introduces new
independent variables and parameters into the laws for predicting τ generated by
the models. Thirdly, we will propose unification of the models by a principle of
maximum displacement for normal deformation, and of minimum stress for shear
failure. Thus, at the end of this paper, we will have a formula, arising from our uni-
fied model, with just four adjustable parameters, for the local physics to insert into
the homogenization method, where the ice contains normal-stress-created contact
flaws. This means that the micro-mechanical and empirical approaches to friction
are not mutually exclusive, but complementary. One could say that macroscopic
laboratory friction experiments provide a way of discovering the values of the four
adjustable parameters; equivalently, one could say that the four adjustable param-
eters provide a compact way of describing the results of a macroscopic laboratory
friction experiment. The detailed understanding of micro-mechanical models that
we will develop in this paper will be a necessary prerequisite for using empiri-
cal data in this way. Indeed, because four independent variables turn out to be
relevant, the data are scattered over a five-dimensional variable space, and even
generating meaningful plots of a full data set requires theoretical understanding of
how to group or constrain variables to reduce the dimensionality of variable space.

Micro-mechanical models of friction (internal or otherwise), allowing for the fact
that the facing surfaces are not perfectly flat, have analysed the process into two
steps (e.g. [18]). Firstly, normal stress brings the facing surfaces into direct contact
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at a set of surface peaks, totalling a fraction f of the facing-surface area. f is
determined by the size of σ, the rheology of the material under normal stress,
and the topography of the surfaces. Secondly, this direct contact area exhibits
the material’s usual shear strength T, which is responsible for the interface’s shear
resistance

τ = fT. (1)

Theoretical predictions for f have been made for cases where the rheology of
the material under normal stress is ductile (fdu) [18] or elastic (fel), (e.g. [19]).
The former case involves a parameter describing material properties: the yield
stress Tdu of the material. The latter case also has parameters describing material
properties: the Young’s modulus E and Poisson’s ratio ν of the material, in addition
to several parameters describing the surface topography of a particular sample [20],
which we will discuss in detail in section 2.1.1.

The shear strength T may be the ductile yield stress Tdu [13, 21], the brittle
fracture stress in shear Tbr [13, 22], or an effective shear strength Tml, representing
a process whereby heat dissipated in frictional sliding melts part of the material
surface, generating a fluid layer, which separates the peaks of the material surfaces,
and undergoes two-dimensional Couette flow (cf. [23, p. 55]) between them [3]. This
last possibility is only applicable to materials near their melting temperature, and
was developed specifically for ice, although recently some related slip mechanisms
have been discussed for deeply buried rocks [24, 25]. For the former two failure
modes, the shear strength itself is a parameter describing material properties, while
in the latter case, it is constructed from thermodynamic properties of the material
(thermal conductivity κ, specific heat capacity c, density ρs, melting temperature
Θm in the relevant salinity conditions, assumed here to be 3.5 wt% NaCl, and
specific latent heat of melting L), along with rheological properties of the liquid
(dynamic viscosity η and density ρl), and one parameter describing the surface
topography of an individual sample (the typical distance X that the surfaces have
to slide relative to one another, between a fluid element being generated at the
leading edge of an individual peak contact, and the same fluid element being ejected
at the trailing edge of the peak contact) [3]. The shear strength in this case depends
on the temperature Θ of the bulk solid, and on the sliding velocity Ḋ.

Either of the two normal-rheology models (ductile or elastic deformation) can be
combined with any of the three shear-rheology models (ductile, brittle, or melting
failure), producing six friction models in all.

As the citations of the literature above suggest, all of these models have been
thoroughly studied. However, to apply them quantitatively to ice, there is more
work to do, because for ice, the material-property parameters are not constant.
In particular, Tdu depends on the shear strain rate ǫ̇s, and on the temperature Θ
[26]. Also, elastic deformation is composed of a mixture of prompt and delayed
effects [27], which can be expressed as a Young’s modulus that depends on ice grain
size dG, the time-scale tC over which the load is applied, and Θ [27, 28]. Further,
brittle shear fracture strength depends on local normal stress Σ [22]. In addition,
melting temperature depends on Σ[29–31]. Finally, Poisson’s ratio depends on
Θ [32]. The upper two sections of table 1 describevarious universal constantsand
constant material properties of ice, and give their values.

In section 2, we sketch the standard derivations of f and T. For f , we give more
details in supplementary online material A. In section 3, we explore how strain
rate ǫ̇s and contact time tC depend on sliding velocity Ḋ and acceleration D̈, and
how local normal stress Σ depends on average normal stress σ. Hence, we develop

http://www.informaworld.com/ampp/file~id=915923421
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Symbol Name Value Source

R Molar gas constant 8.314472 J/(mol K) [33]

G Glen’s law coefficient 3.565 × 10−12/( Pan s) [27, 28]
n Glen’s law exponent 3 [11, 27, 28]
Ea Activation energy 65.7 kJ/ mol [11, 27, 28]
EP Prompt Young’s modulus 9.3 GPa [27]
d0 Elastic grain size scale 9 mm [28]
t0 Elastic relaxation time 199 ps [27]
p Elastic relaxation exponent 0.34 [27, 28]

S1 Brittle shear fracture coefficient 220 Pa1−b [22]
b Brittle shear fracture exponent 0.67 [22]

Θm0 Zero-pressure Θm, ice Ih 271.5 K [34]
Θm1 Zero-pressure Θm, ice III 251.5 K [31]
CCC1 Ice Ih Clausius-Clapeyron coefficient 84.3 nK/ Pa [30]
CCC2 Ice III Clausius-Clapeyron coefficient 56.3 nK/ Pa [31]

ν0 Poisson’s ratio at Θm0 0.339 [32]
∆ν Temperature derivative of Poisson’s ratio 7.0 × 10−5/ K [32]
κ Ice thermal conductivity 2.3 W/(m K) [35]
c Ice specific heat capacity 2.097 kJ/( kg K) [36]
ρs Ice density 920 kg/ m3 [37]
ρl Liquid brine density 1.034 t/ m3 [38]
η Water dynamic viscosity 1.792 mPa s [39]
L Specific latent heat of melting 333 kJ/ kg [40]

P Areal density of asperities 5.53 × 106/ m2 Section 4
Q Areal density of super-asperities 1.34 × 104/ m2? Section 4
RC Typical asperity radius of curvature 160.4 µm Section 4
RD Super-asperity radius of curvature 4.87 mm Section 4
RE Super-super-asperity radius of curvature 4.875 mm Section 4
X Sliding distance for water expulsion Adjustable Mechanical experiments
Y Sliding distance to break contact Adjustable Mechanical experiments
Z Shearing layer thickness Adjustable Mechanical experiments
ǫ⋆ Typical contact strain Adjustable Mechanical experiments

Table 1. This table describes, and gives values of, parameters in the ice internal friction models. It is divided

by horizontal rules into three sections: at the top, universal constants; in the middle, material properties of ice;

and at the bottom, surface-topographic parameters of a particular sample.

expressions for the dependencies of the material parameters on the independent
variables Θ, σ, Ḋ, and D̈, and finally explore the overall dependence of the sliding-
resistance shear stress τ on these independent variables. On the way, we find we
need to introduce the surface-topographic parameters included in the lower section
of table 1.

2. Recapitulation of classical friction laws

2.1. Contact fraction

2.1.1. Elastic deformation under normal load

The literature [20, 41] contains methods for calculating the real contact area
between pieces of material that deform elastically under normal load. We give the
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RC

Figure 2. Schematic of surface topography with delta-function distribution of peak heights

algebraic details and full derivations in supplementary online material A. In this
section, we summarize the results. A key aspect of these is that the real contact
area depends on the topography of the ice surfaces, so we will give five expressions
for the real contact fraction, each based on a different type of surface topography.
We will later decide which expression to use based on the observed topography
of a real contact surface (section 4). Crucial quantities are the adjusted Young’s
modulus

E′ =
E

2(1 − ν2)
; (2)

the number P of asperities (hummocks) per unit area of surface; the typical radius
of curvature RC of an asperity peak; and the fraction φ(z)dz of the asperities
whose peaks, when undeformed, are at heights between z and z + dz above some
arbitrary reference height. In the first three types of topography, where the normal
load deforms only the asperities on the surface, not the firmament beneath them,
the basis of the analysis is the integral formulae

σ =
4PE′R

1/2
C

3

∫ ∞

z=d
(z − d)3/2φ(z)dz; (3)

and

fel = πPRC

∫ ∞

d
(z − d)φ(z)dz (4)

[20]. The first of these implicitly determines the height d, to which peaks origi-
nally higher than d must be depressed, to bear normal stress σ. The second then
describes how depression of the peaks increases the contact area, both by bringing
more asperities into contact, and by increasing the contact area contributed by
each contacting asperity.

A topography with a delta-function distribution of peak heights is illustrated in
figure 2. This topography has a peak-height distribution

φ(z) = δ(z − z0). (5)

z0 is a parameter to be determined by observation of a real contact surface (section
4). For this peak height distribution, the real contact fraction is

fel =
πP 1/3R

2/3
C

42/3E′2/3
σ2/3. (6)

http://www.informaworld.com/ampp/file~id=915923421
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Figure 3. Schematic of surface topography with top-hat distribution of peak heights

RC

z2

Figure 4. Schematic of surface topography with exponential distribution of peak heights

A topography with a top-hat distribution of peak heights is illustrated in figure
3. This topography has a peak height distribution

φ(z) =
1

z1
(7)

(z0 ≤ z < z0 + z1),

φ(z) = 0 (8)

(all other z). z0 and z1 are parameters to be determined by observation of a real
contact surface (section 4). For this peak height distribution, the real contact
fraction is

fel =
154/5πP 1/5R

3/5
C

2 × 84/5E′4/5z
1/5
1

σ4/5. (9)

An exponential distribution of peak heights is illustrated in figure 4. This to-
pography has a peak height distribution

φ(z) =
1

z2
exp

(

−
z − z0

z2

)

(10)

(z ≥ z0),

φ(z) = 0 (11)
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RC

Figure 5. Schematic of one-step fractal surface topography.

(z < z0). z0 and z2 are parameters to be determined by observation of a real
contact surface (section 4). For this peak height distribution, the real contact
fraction is

fel =
π1/2R

1/2
C

E′z
1/2
2

σ. (12)

A one-step fractal topography is illustrated in figure 5. This topography has a
peak height distribution

φ(z) =
2(z − z0)

R2
D

(13)

(z0 ≤ z < z0 + RD),

φ(z) = 0 (14)

(all other z), a histogram of which is shown in figure 6. z0 and RD are parameters
to be determined by observation of a real contact surface (section 4). For this peak
height distribution, the real contact fraction is

fel =
35/3π11/9P 1/3R

2/3
C

420/9E′8/9
σ8/9. (15)

A two-step fractal topography is illustrated in figure 7. This topography has a
peak height distribution

φ(z) =
2(z − z0)

3

3R2
DR2

E

(16)

(z0 ≤ z < z0 + RD),

φ(z) =
2(z − z0)

R2
E

−
4RD

3R2
E

(17)

(z0 + RD ≤ z < z0 + RE),

φ(z) =
2(z − z0)

R2
E

−
4RD

3R2
E

−
2(z − z0)

3

3R2
DR2

E

+
2(z − z0)

R2
D

−
4RE

3R2
D

(18)
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Figure 7. Schematic of two-step fractal surface topography.

(z0 + RE ≤ z < z0 + RE + RD),

φ(z) = 0 (19)

(all other z), a histogram of which is shown in figure 8. z0, RD, and RE are
parameters to be determined by observation of a real contact surface (section 4).
For this peak height distribution, the real contact fraction is

fel =
341/9π35/27P 1/3R

2/3
C

2148/27 × 13E′26/27
σ26/27. (20)

2.1.2. Ductile deformation under normal load

If, on the other hand, the material behaves in a ductile fashion under normal
load, the asperities will deform, increasing the contact area and reducing the local
stress Σ = σ/f at the asperity tips until it reaches the compressive yield stress S
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[42, 43], which is:

S =

(

ǫ̇n

G

)1/n

exp

(

Ea

nRΘ

)

(21)

[21, 26], where ǫ̇n is the normal strain rate. This means

fdu =

(

G

ǫ̇n

)1/n

exp

(

−
Ea

nRΘ

)

σ. (22)

2.2. Shear strength

2.2.1. Ductile shear failure

The ductile shear strength has been determined empirically to be

Tdu =
1

2

(

ǫ̇s

G

)1/n

exp

(

Ea

nRΘ

)

(23)

[26].

2.2.2. Brittle shear failure

The brittle shear strength has been determined empirically to be

Tbr = S1Σ
b (24)

[22], where b is the brittle shear fracture exponent (table 1).
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2.2.3. Melting-lubrication shear failure

The effective shear strength in the melting-lubrication case results from the shear
stress involved in two-dimensional Couette flow of a lubricating water layer between
asperities of the two facing surfaces [3]. The thickness of the layer is determined
by competition between water creation, by the part of the frictional heat that is
not conducted away into the bulk of the ice, and water loss, as water is left behind
by the moving asperities. The shear strength takes the value

Tml =
sgn(Ḋ)

π1/4X1/2

(

(κcρs)
1/2(Θm − Θ)

|Ḋ|1/2
+

(

κcρs(Θm − Θ)2

|Ḋ|
+ 2ηLρl|Ḋ|

)1/2
)

(25)
[3]. As mentioned above, X is the typical distance the material has to slide between
melt-water being generated somewhere within an individual asperity contact, and
the same melt-water being lost from the trailing edge of the individual asperity
contact. X is a topographic property of a particular sample; its involvement in this
model, but not its value, is established in the literature [3]. Therefore, we will treat
X as an adjustable parameter, for eventual fitting to shear stress measurements
in sliding. However, X cannot be greater than the asperity radius of curvature,
yet must be a significant fraction of the asperity radius of curvature in order to
expel the fluid. Hence, in analysing mechanical experiments, we will represent X
by the dimensionless ratio X̂ = X/RC , and restrict the adjustability of X̂ to values
between 10−2 and 1.

3. The oddities of ice

Ice is “odd” (although not unique) in its rheology in four ways. Firstly, its ductile
yield stress is dependent on strain rate. Secondly, its brittle fracture strength in
shear is dependent on normal stress. Thirdly, its melting temperature decreases
with increasing pressure. Fourthly, the elastic strain at a given stress (and therefore
the adjusted Young’s modulus) depends on how long the stress has been applied,
and (directly and through Poisson’s ratio) on the temperature. We did not discover
these oddities; they are all established in the literature. However, we believe we are
the first to take account of them in a friction model. In the following, we discuss
how we will account for these dependences in a frictional context.

3.1. Strain rate dependence of yield stress

In the formulae for contact fraction under ductile normal deformation, and for shear
strength under ductile shear failure (equations 23, 21) there appears an explicit
strain rate ǫ̇n or ǫ̇s. However, the literature from which these equations were taken
does not include a method for obtaining these strain rates from variables more
typically quoted in friction studies; we will now propose such a method. In the
context of sliding, strain rates must bear some relationship to sliding velocity. For
the shear strain rate, we define a shearing layer thickness Z, which is a topographic
property of a particular sample, and will need to be treated as an adjustable
parameter, for eventual fitting to shear stress measurements in sliding. Then

ǫ̇s =
Ḋ

Z
. (26)
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Z cannot be greater than the asperity radius of curvature, because, as long as
f ≪ 1, the asperity contacts will contain a region of space (bounded in the z
direction) where the cross-sectional area is much smaller than that of the bulk
ice, and the localized shear stress is therefore much larger than in the bulk ice,
localizing the deformation region within the asperities. In all the circumstances we
will examine in section 7, f < 0.0014. In addition, we will not seek to handle cases
where Z is smaller than ∼ 1 µm, because ductile deformation on such small scales
obeys different laws [44, 45]. Hence, for analysing mechanical experiments, we will

represent Z by the dimensionless ratio Ẑ = Z/RC , and restrict the adjustability

of Ẑ to values between 1 µm/RC and 1.
For the normal strain rate, on the other hand, we need to consider the history

of an individual asperity contact. If an individual asperity contact has typically
existed for time tC , and has typically been produced by the introduction of a
normal strain ǫ⋆, then

ǫ̇n =
ǫ⋆

tC
. (27)

We consider ǫ⋆ to be a topographic property of a particular sample, and treat
it as an adjustable parameter for eventual fitting to shear stress measurements.
When we do this, we will assume that only asperities with enough contact for
ordinary macroscopic plasticity theory to apply, i.e. at least 1 µm2, are important,
and that asperities are not completely crushed, restricting the adjustability to
1 µm/RC ≤ ǫ⋆ < 1.

tC may depend, in general, not only on instantaneous sliding velocity, but also
on velocity history. For the sake of simplicity, we approximate the velocity history
by a linear function of time. Then the time a typical asperity contact has existed
is the smallest non-negative value allowed by the two ± signs of

tC =
Ḋ ±(1)

√

Ḋ2 ±(2) 2Y D̈

D̈
, (28)

where Y is an adjustable parameter representing the typical sliding distance be-
tween an asperity contact being formed and being broken. This cannot be greater
than the asperity radius of curvature, yet must be a significant fraction of the
asperity radius of curvature in order to break the contact. Therefore, when we
eventually fit models to mechanical data, we will express it as the dimensionless
ratio Ŷ = Y/RC , and restrict the adjustability of this ratio to values between 10−2

and 1.
Thus, the effect of the strain rate dependence of yield stress is to introduce

velocity dependences into the ductile contact fraction and ductile shear stress.
The famous Coulomb’s law has τ ∝ σ, and τ independent of velocity. Where both
normal and shear deformation are ductile, and the material is ice, Coulomb’s law
represents the low-acceleration limit |2Y D̈| ≪ Ḋ2, where the velocity dependences
in f and T cancel.

3.2. Pressure dependence of brittle strength

In Rist and Murrell’s [22] expression for brittle shear strength (equation 24), there
appears an explicit, local normal stress at the asperity contacts Σ. We propose
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that, to bear the appropriate load, it must be given by

Σ =
σ

f
. (29)

This means that, if the failure of the contact is brittle and the real contact fraction

f ∝ σe0 , (30)

as is the case in equations 6, 9, 12, 15, 20, and 22, then

Σ ∝ σ1−e0 . (31)

According to equation 24, this means a shear strength

Tbr ∝ σ(1−e0)b. (32)

Then equation 1 gives a sliding shear stress

τ ∝ σb+(1−b)e0 . (33)

This tends to bring the sliding shear stress closer to direct proportionality to nor-
mal stress. For example, with elastic normal deformation and a delta-function
distribution of peak heights (equation 6), brittle failure will alter the exponent
from e0 = 2/3 to b+(1−b)e0 ≈ 8/9. b+(1−b)e0 is always significantly larger than
b — so finding an empirical exponent between frictional shear stress and normal
stress close to b (cf. [9]) would not necessarily be characteristic of brittle shear
failure.

3.3. Pressure dependence of melting temperature

The melting temperature involved in equation 25 is the higher of

Θm = Θm0 − CCC1Σ (34)

(representing the low-pressure ice Ih phase) and

Θm = Θm1 + CCC2Σ (35)

(representing the high-pressure ice I3 phase) [30, 31]. As in our proposal of section
3.2, the local pressure implicated in the melting-temperature expressions (equations
34, 35) is

Σ =
σ

f
. (36)

If shear failure is by melting and hydrodynamic lubrication, this means that while,
at small normal stresses (σ ≪ |f(Θ − Θmi)/CCCi|), where T is independent of σ,
the exponent in the normal stress dependence of the sliding shear stress will be
the same (e0) as that in the normal stress dependence of the real contact fraction,
at large normal stresses (σ ≫ |f(Θ − Θmi)/CCCi|), where T ∝ σ/f , sliding shear
stress will be directly proportional to normal stress, regardless of the rheology
under normal load (section 2.1).
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3.4. Time and temperature dependence of adjusted Young’s modulus

The Young’s modulus of ice is given by

E =
EP

1 + (d0/dG) (1 − exp (− (exp (−Ea/(RΘ)) tC/t0)
p))

(37)

[27, 28]. As suggested in this equation, we propose to use the same time tC for
the time of stress application in this formula as for the contact time in equation
27. In addition, the Poisson’s ratio, used in the adjustment of Young’s modulus in
equation 2, depends on temperature:

ν = ν0 + ∆ν(Θm0 − Θ) (38)

[32].

4. What is the surface topography of real ice like?

Given that, in models with elastic deformation under the normal load, the surface
topography of the ice is crucial in determining the friction law, it is important
to understand the surface topography of real ice. Previously, we undertook a pro-
gramme of sliding experiments on floating ice sheets (cf. [14]). The ice used in these
experiments was grown to a thickness of ∼ 170 mm, over a period of ∼ 1 week, in
the Arctic Environmental Test Basin at Hamburgische Schiffbau Versuchsanstalt,
a tank of salt water 30 m long, 6 m wide, and 1.2 m deep, by refrigerating the air
above. Photographs of thin sections of this ice between crossed polarizers are shown
in figure 9, and in a colour version in figure B1 of supplementary online material
B. They confirm that the ice has a columnar (i.e. sea-ice-like) fabric.

At the end of the programme of experiments, we used a commercial rubber
solution (Microset 101RF, cf. [46]) to take a cast of a small area of one of the
facing surfaces, which had undergone repeated back-and-forth sliding during the
experiments. The surface profile of the ice, as measured from the cast using a
commercial optical profilometer (cf. [47]), is shown in figure 10. The raw data from
which this graph is constructed are tabulated in supplementary online material C.
As discussed in more detail in supplementary online material D, we believe that
this surface topography is controlled primarily by the sliding process, not by the ice
growth, nor by the cutting method initially used to produce the faults; certainly
the topography of a surface that has undergone repeated sliding (figure D1 in
supplementary online material D) is very different from that of a freshly-cut surface
(figure D2 in supplementary online material D), while the topographies of surfaces
that have undergone repeated sliding from ice of different chemistries (figure D1
in supplementary online material D and figure 10) are rather similar. We believe
this provides evidence that geophysical floating ice sheets, which have undergone a
similar repeated-sliding process, will have similar topography, allowing our results
to be generalized from our particular ice sample to ice rheology in the field. We
attribute this to the sliding process producing material akin to “fault gouge” in
rock mechanics (cf. [48]), which then refreezes to the bulk ice, producing the surface
topography in figure 10.

The relevant properties of this profile are the heights, radii of curvature, and
areal density of its peaks. By “peaks”, we mean local maxima of height. Two
points are particularly noteworthy here. Firstly, the figure is in the orientation
of the ice, not of the cast, so that asperities are represented by bright spots, not

http://www.informaworld.com/ampp/file~id=915923421
http://www.informaworld.com/ampp/file~id=915923421
http://www.informaworld.com/ampp/file~id=915923421
http://www.informaworld.com/ampp/file~id=915923421
http://www.informaworld.com/ampp/file~id=915923421
http://www.informaworld.com/ampp/file~id=915923421
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Figure 9. Photographs of thin sections, between crossed polarizers, of ice used in experiments; superim-
posed grid squares are 10 mm × 10 mm. Top left: vertical section, parallel to and 250 mm from sliding
surface, topmost 90 mm of ice; bottom left: vertical section, parallel to and 250 mm from sliding surface,
90–180 mm below ice surface; top right: horizontal section, 100–250 mm from sliding surface, 15 mm below
top of ice; bottom right: horizontal section, 100–250 mm from sliding surface, 90mm below top of ice.

by dark spots. Secondly, the height z of the tip of an asperity is measured from
an arbitrary reference plane pertaining to the whole surface, not from the base
of that particular asperity - so that a peak being high (large z) yet small (small
radius of curvature) does not necessarily mean that the aspect ratio of the asperity
associated with it is far from unity: it may stand on a plateau (or a super-asperity,
cf. supplementary online material A); in mountaineering terms, z is “elevation”,
not “prominence”.

In supplementary online material E, we describe a method of finding the peaks
in the profile, and obtaining from them the areal density of peaks, which turns
out to be P = 5.53/ mm2, and the typical radius of curvature of a peak, which
turns out to be RC = 160.4 µm (this makes the lower limit on ǫ⋆, as discussed
above, 1µm/RC = 6.2× 10−3). A histogram of the peak heights found is shown in
figure 11. This list of peak heights can be used to infer which of the topographic
models is most appropriate, and what the parameters of that model are. Each
model directly specifies a likelihood value φ(z) for each peak, that is, the relative

http://www.informaworld.com/ampp/file~id=915923421
http://www.informaworld.com/ampp/file~id=915923421
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Figure 10. Topographic profile of an ice surface, which had undergone repeated back-and-forth sliding.

Model Marginal likelihood Best fit parameters Best fit likeliho

Two-step fractal exp (−5896.6)/ mm3593 z0 = −2.12 mm, RD = 4.87 mm, exp (−5894.29)/ mm
RE = 4.875 mm

Exponential exp (−6018.5)/ mm3593 z0 = 1.849 mm, z2 = 2 mm exp (−6002.1)/ mm
Top-hat exp (−6326.1)/ mm3593 z0 = 1.8485 mm, z1 = 5.8 mm exp (−6305.8)/ mm

One-step fractal exp (−7373.8)/ mm3593 z0 = 0 mm, RD = 8 mm exp (−7358.7)/ mm
Delta-function exp (−7162278327.6)/ mm3593 z0 = 3.80376 mm exp (−7162278313.0)

Table 2. Marginal likelihoods, best-fit parameters, and best-fit likelihoods of the various types of topography,

based on the data in figure 11

probability that a peak of that height occurs, given particular values of the model’s
parameters. One can obtain an overall likelihood (goodness of fit) for these param-
eter values by taking the product, over all the peaks, of φ(z). It is then reasonably
straightforward to compare the models by their marginal likelihood. The marginal
likelihood is the mean likelihood, over all parameter values, weighted by the a priori
plausibility of the parameter values (prior probability distribution). This is equiv-
alent to the product of a factor representing the best fit to the data the model can
achieve (the likelihood maximized with respect to the parameters), and an “Oc-
cam factor” that penalizes a model for achieving its goodness of fit by fine-tuning
parameters (cf. [49]). Comparing marginal likelihoods can be seen as the Bayesian
equivalent of a significance test (cf. [50]). We used Monte-Carlo integration meth-
ods (cf. [51]) to take the necessary means of the likelihoods over parameter values.
The computer code we used for this can be found in supplementary online material
G. As shown in table 2, the two-step fractal model had overwhelmingly the largest
marginal likelihood. Some explanation is in order of the strange unit 1/ mm3593; a
likelihood represents a probability density function, derived from a particular topo-
graphic model, over the space of conceivable values of the measured peak heights,

http://www.informaworld.com/ampp/file~id=915923421
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evaluated at the point in that space representing the peak heights that actually
were measured. Since we identified 3593 peaks, the space is 3593-dimensional,
with each co-ordinate having dimensions of length; hence, a probability density
function over this space must have dimensions 1/(length)3593. In figure 12, we plot
the best-fit theoretical histogram, for comparison with figure 11. (It is the “best
fit” out of the peak height probability density functions for which there are elastic
contact theories in the literature, not necessarily out of all conceivable probability
density functions). Hence, for our mechanical analysis, we take forward a two-step
fractal surface topography with the best-fit parameters detailed in table 2.

5. What remains now surface topography is known

To recapitulate, the knowledge of the surface topography we developed in the pre-
ceding section leaves us with just two possible mathematical forms for the response
to the normal load: an elastic model (equation 20)

fel =
341/9π35/27P 1/3R

2/3
C

2148/27 × 13E′26/27
σ26/27, (39)

where

E′ =
E

2(1 − ν2)
, (40)

E =
EP

1 + (d0/dG) (1 − exp (− (exp (−Ea/(RΘ)) tC/t0)
p))

(41)

[27, 28],

ν = ν0 + ∆ν(Θm0 − Θ) (42)

[32],

tC =
Ḋ ±(1)

√

Ḋ2 ±(2) 2Ŷ RCD̈

D̈
, (43)

with the two ± signs chosen to give the smallest non-negative value of tC , and Ŷ
is a dimensionless adjustable parameter between 10−2 and 1; and a ductile model
(equation 22)

fdu =

(

G

ǫ̇n

)1/n

exp

(

−
Ea

nRΘ

)

σ, (44)

where

ǫ̇n =
ǫ⋆

tC
, (45)

where ǫ⋆ is a dimensionless adjustable parameter between 6× 10−3 and 1, and the
adjustable parameter Ŷ remains relevant through tC . Additionally, we have three
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Figure 11. Empirical histogram of peak height distribution.
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Figure 12. Histogram of two-step fractal peak height distribution with z0 = 2.1 mm, RD = 4.8 mm,
RE = 4.9 mm (best fit to the empirical data).



January 20, 2011 14:38 Philosophical Magazine sendoff˙main

18 Hatton et al.

models for the failure of the real contact area: a ductile model (equation 23)

Tdu =
1

2

(

ǫ̇s

G

)1/n

exp

(

Ea

nRΘ

)

, (46)

where

ǫ̇s =
Ḋ

ẐRC

(47)

and Ẑ is a dimensionless adjustable parameter between 6 × 10−3 and 1; a brittle
model (equation 24)

Tbr = S1

(

σ

f

)b

; (48)

and a melting-lubrication model (equation 25)

Tml =
sgn(Ḋ)

π1/4(X̂RC)1/2

(

(κcρs)
1/2(Θm − Θ)

|Ḋ|1/2
+

(

κcρs(Θm − Θ)2

|Ḋ|
+ 2ηLρl|Ḋ|

)1/2
)

,

(49)
where (equations 34, 35, 36)

Θm = Θm0 − CCC1
σ

f
(50)

or

Θm = Θm1 + CCC2
σ

f
(51)

[30, 31], whichever is greater, and X̂ is a dimensionless adjustable parameter be-
tween 10−2 and 1.

6. Unification of the models

The fact that a material has both elastic/brittle and ductile (and melting-related)
mechanical properties does not imply a free choice of how it deforms under a
given stress history; it will deform by a mechanism chosen deterministically by the
physics. Hence, we propose to unify the models for the response to normal load
and the shear failure of the real contact, by a principle of maximum displacement
for normal deformation, and of minimum stress for shear failure. That is, we pick
the largest value for real contact fraction (equations 39 and 44), and the smallest
value for shear strength (equations 46, 48, and 49). Having chosen a unique contact
fraction and shear strength, we take their product to predict the sliding shear stress
on the fault (equation 1):

τ = max (fel, fdu)smallest(Tdu, Tbr, Tml), (52)

where max () means closest to positive infinity and smallest() means closest to zero.

This unified model contains all four adjustable parameters, X̂, Ŷ , Ẑ, and ǫ⋆.
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It is interesting to view these principles for choosing the dominant deforma-
tion mechanism from a thermodynamic perspective. In the case of the maximum-
displacement principle for the normal deformation, this is straightforward. Max-
imizing the displacement of the pieces of ice towards each other, and therefore
maximizing the real contact fraction, leads to the greatest possible work being
done on the ice (and eventually converted to heat) by the external free energy
reservoir that applies the normal stress; this embodies the availability minimiza-
tion principle of equilibrium thermodynamics. More formally, it is reasonable to
assume that the two possible states will undergo about the same degree of elas-
tic recovery on removal of the stress, and hence that they have approximately the
same Helmholtz free energy. It is also reasonable to assume them to be at the same
temperature, due to contact with surrounding brine and/or air. In situations of
constant Helmholtz free energy and temperature, the appropriate availability func-
tion to minimize for thermodynamic equilibrium is simply the volume [52, p. 110].
Minimal volume is achieved by maximizing the (convergent) normal displacement.

For shear failure, the situation is more complicated. As long as the velocity
and shear stress are non-zero, work continues to be done. Therefore, within the
duration of the processes of interest, the shear displacement degree of freedom never
reaches thermodynamic equilibrium. In this case, the appropriate thermodynamic
principle is not availability minimization but the kinetic rate equation (cf. [53,
pp. 391–392, 436–439]). In supplementary online material H, we discuss how the
kinetic rate equation leads to the principle of minimum shear stress.

We note in passing that our approach, of treating the dimensionless contact-
breaking displacement Ŷ , the dimensionless shear layer thickness Ẑ, and the typical
normal asperity strain ǫ⋆ as adjustable parameters for fitting to friction measure-
ments, is not the only conceivable approach; it might, in principle, be possible
to measure Ŷ , Ẑ, and ǫ⋆ independently, by some method such as time-resolved
imaging of processes at individual asperities with neutron scattering.

7. Results

We are now in a position to plot quantitative predictions of our unified ice internal
friction model, for the sliding shear stress as a function of normal stress on the
fault (figures 13–15) and of sliding velocity (figures 16–18). Each plot additionally
shows the effects of varying one of the four adjustable parameters. However, since
we have not found any circumstances where the minimum stress principle selects
ductile shear failure (section 8), Ẑ is irrelevant to the results, and we do not show
the effects of varying this parameter. Throughout, the temperature is fixed at
Θ = 268.91 K and the sliding acceleration at D̈ = 325µm/ s2.

In addition, we show some illustrative values for shear stress as a function of
temperature (figure 19) and of acceleration (figure 20).

8. Discussion

In all circumstances encompassed by the above plots, the maximum displacement
algorithm chooses the ductile response to normal load.

In most circumstances, the minimum shear stress algorithm chooses the melting-
lubrication shear failure mode. This exhibits a maximum in the shear stress as a
function of velocity, at moderately low sliding speeds (X̂ ∈ {10−1, 1}, figure 16;

Ŷ ∈ {10−1, 1}, figure 17; ǫ⋆ ∈ {6 × 10−3, 8 × 10−2}, figure 18). In some cases, this
peak is so high that the algorithm switches to the brittle shear failure mode at

http://www.informaworld.com/ampp/file~id=915923421
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Figure 13. Sliding shear stress as function of normal stress. Three curves shown, corresponding to dif-

ferent values of dimensionless melt-water expulsion displacement X̂. Other adjustable parameters fixed:

dimensionless contact-breakage displacement Ŷ = 10−1, dimensionless shear layer thickness Ẑ = 10−1/2,
asperity normal strain ǫ⋆ = 8 × 10−2. Sliding velocity fixed: Ḋ = 5.4563 mm/ s.
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Figure 14. Sliding shear stress as function of normal stress. Three curves shown, corresponding to different

values of dimensionless contact-breakage displacement Ŷ . Other adjustable parameters fixed: dimension-

less melt-water expulsion displacement X̂ = 10−1, dimensionless shear layer thickness Ẑ = 10−1/2, asperity
normal strain ǫ⋆ = 8 × 10−2. Sliding velocity fixed: Ḋ = 5.4563 mm/ s.
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of the curves. Specifically, on the X̂ = 10−2 curve, shear failure is by melting and lubrication for Ḋ .
7.2 mm/ s and for Ḋ & 227.8 mm/ s, and by brittle fracture for 7.2 mm/ s . Ḋ . 227.8 mm/ s. On the

X̂ ∈ {10−1, 1} curves, shear failure is by melting and lubrication throughout.
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Figure 17. Sliding shear stress as function of sliding velocity. Three curves shown, corresponding to

different values of dimensionless contact-breakage displacement Ŷ . Other adjustable parameters fixed:

dimensionless melt-water expulsion displacement X̂ = 10−1, dimensionless shear layer thickness Ẑ =
10−1/2, asperity normal strain ǫ⋆ = 8 × 10−2. Normal stress fixed: σ = 113.9 kPa. Changes in the shear
failure mechanism selected by the minimum shear stress algorithm are manifested as discontinuities in the

gradient of the curves. Specifically, on the Ŷ = 10−2 curve, shear failure is by melting and lubrication for
Ḋ . 1.1 mm/ s and for Ḋ & 22.7 mm/ s, and by brittle fracture for 1.1 mm/ s . Ḋ . 22.7 mm/ s. On the

Ŷ ∈ {10−1, 1} curves, shear failure is by melting and lubrication throughout.

(moderately) low sliding speeds (Ŷ = 10−2, figure 17; ǫ⋆ = 1, figure 18), producing
a characteristic “LL” shape which bears a striking qualitative resemblance to the
empirical data sets at similar temperatures presented by Kennedy et al. [13]. We
take this resemblance to suggest that our model is a reasonable description of
real frictional behaviour. In one case, at even lower sliding speeds, the low-speed
shoulder of the peak in melting-lubrication shear stress allows melting-lubrication
to regain control (X̂ = 10−2, figure 16).

The values of the adjustable parameters X̂, Ŷ , and ǫ⋆ make enough difference to
the shear stress predictions to be readily inferred from empirical data. Ẑ, on the
other hand, makes no discernible difference to the predictions. This is unsurprising,
given that the algorithm never selects the ductile shear failure mechanism.

The sliding shear stress is a non-linear function of velocity. This means that one
must be very wary of taking temporal or spatial averages over periods or regions
over which the velocity changes significantly, which will lead to systematic over- or
under-estimation of the shear stress (cf. [51, p. 35]). In particular, Yoshioka [54]
has noted that, where the displacement since the last time the material stopped
moving is small compared with the contact-breaking distance Y , this can invalidate
the procedure of averaging over an area that contains several asperities; hence, our
model can be expected to break down when the displacement since the last time
the material stopped moving is very small.

The velocity-dependence of sliding shear stress in our model becomes particularly
strong at small velocities. Hence, the shear stress at zero velocity is very different
from the shear stress at a small, non-zero velocity. In this sense, our model exhibits
a self-organized distinction between static and dynamic friction.



January 20, 2011 14:38 Philosophical Magazine sendoff˙main

Ice internal friction 23

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300

S
h
ea

r
st

re
ss

τ
/

k
P
a

Velocity Ḋ/(mm/ s)
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Figure 18. Sliding shear stress as function of sliding velocity. Three curves shown, corresponding to
different values of asperity normal strain ǫ⋆. Other adjustable parameters fixed: dimensionless melt-water

expulsion displacement X̂ = 10−1, dimensionless contact-breakage displacement Ŷ = 10−1, dimensionless

shear layer thickness Ẑ = 10−1/2. Normal stress fixed: σ = 113.9 kPa. Changes in the shear failure
mechanism selected by the minimum shear stress algorithm are manifested as discontinuities in the gradient
of the curves. Specifically, on the ǫ⋆ = 1 curve, shear failure is by melting and lubrication for Ḋ .
0.6 mm/ s and for Ḋ & 27.2 mm/ s, and by brittle fracture for 0.6 mm/ s . Ḋ . 27.2 mm/ s. On the
ǫ⋆ ∈ {6 × 10−3, 8 × 10−2} curves, shear failure is by melting and lubrication throughout.

9. Conclusions

The unusual rheology of ice introduces velocity- and acceleration- dependences, as
well as a number of mechanical and topographic parameters, into standard micro-
mechanical theories of friction. A principle of maximum displacement for normal
deformation, and of minimum stress for shear failure allows the unification of the
various standard micro-mechanical theories of friction for ice into a single model
with four dimensionless adjustable parameters. The four parameters represent, for
a typical asperity contact, the sliding distance required to expel melt-water (X̂,
non-dimensionalized with the asperity radius of curvature), non-dimensionalized

with), the sliding distance required to break contact (Ŷ , non-dimensionalized with
the asperity radius of curvature), the normal strain in the asperity (ǫ⋆), and the

thickness of any ductile shear zone (Ẑ, non-dimensionalized with the asperity radius
of curvature). The maximum displacement principle implies ductile deformation
of the ice under normal load, and the minimum shear stress principle implies shear
failure that proceeds mostly by melting-lubrication, although some parameter val-
ues lead to brittle failure at low–moderate sliding speeds. One of the four adjustable
parameters (Ẑ) is essentially irrelevant to the internal frictional behaviour of ice,
relating as it does to the redundant possibility of ductile shear failure. The other
three adjustable parameters are capable of being readily inferred from experimental
data.
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Figure 19. Sliding shear stress as function of temperature. Adjustable parameters fixed: dimensionless

melt-water expulsion displacement X̂ = 10−1, dimensionless contact-breakage displacement Ŷ = 10−1,

dimensionless shear layer thickness Ẑ = 10−1/2, asperity normal strain ǫ⋆ = 8 × 10−2. Normal stress
fixed: σ = 113.9 kPa. Sliding velocity fixed: Ḋ = 5.4563 mm/ s. Acceleration fixed: D̈ = 325 µm/ s2. A
change in the shear failure mechanism selected by the minimum shear stress algorithm is manifested as
a discontinuity in the gradient of the curve. Specifically, shear failure is by melting and lubrication for
Θ & 263.4 K, and by brittle fracture for Θ . 263.4 K.
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Figure 20. Sliding shear stress as function of acceleration. Adjustable parameters fixed: dimensionless

melt-water expulsion displacement X̂ = 10−1, dimensionless contact-breakage displacement Ŷ = 10−1,

dimensionless shear layer thickness Ẑ = 10−1/2, asperity normal strain ǫ⋆ = 8 × 10−2. Normal stress
fixed: σ = 113.9 kPa. Sliding velocity fixed: Ḋ = 5.4563 mm/ s. Temperature fixed: Θ = 268.91 K
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