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Abstract

Learning, self-organisation and homeostasis in spiking neuron

networks using spike-timing dependent plasticity.

James Humble.

Spike-timing dependent plasticity is a learning mechanism used extensively within neural mod-
elling. The learning rule has been shown to allow a neuron to find the onset of a spatio-temporal
pattern repeated among its afferents. In this thesis, the first question addressed is ‘what does
this neuron learn?’ With a spiking neuron model and linear prediction, evidence is adduced that
the neuron learns two components: (1) the level of average background activity and (2) specific
spike times of a pattern.

Taking advantage of these findings, a network is developed that can train recognisers for longer
spatio-temporal input signals using spike-timing dependent plasticity. Using a number of neu-
rons that are mutually connected by plastic synapses and subject to a global winner-takes-all
mechanism, chains of neurons can form where each neuron is selective to a different segment
of a repeating input pattern, and the neurons are feedforwardly connected in such a way that
both the correct stimulus and the firing of the previous neurons are required in order to activate
the next neuron in the chain. This is akin to a simple class of finite state automata.

Following this, a novel resource-based STDP learning rule is introduced. The learning rule
has several advantages over typical implementations of STDP and results in synaptic statistics
which match favourably with those observed experimentally. For example, synaptic weight
distributions and the presence of silent synapses match experimental data.
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Chapter 1

Introduction
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1.1. BIOLOGICAL BACKGROUND

1.1 Biological background

1.1.1 Neurons and synapses

A typical neuron is divided into three parts: the soma, the axon and dendrites. For simplicity,

dendrites can be thought of as input, axon as output and the soma as the decision segment. Input

typically gets integrated on dendrites and, when this activity (membrane potential) reaches the

soma, if it is great enough, an action potential is propagated down the axon to other neurons.

These action potentials form the communication substrate of the brain and nervous system.

Communication of these action potentials is facilitated between neurons by synapses, these

are structures that permit activity to pass from one neuron to another. An action potential is

transmitted through a synapse via neurotransmitters which are released presynaptically, and

bind to receptors postsynaptically, this in turn allows ions to flow into the postsynaptic neuron

and change the membrane potential. Many different neurotransmitters are present, and many

different types of receptors mediate different ionic currents and ions pre- and postsynaptically.

Essentially, specific neurotransmitters bind with specific receptors; this allows for individual

postsynaptic currents to be controlled presynaptically.

Furthermore, many synapses are ‘plastic’; this means their efficacy is not fixed. A synapse can

have a very weak effect on postsynaptic activity, a strong efficacy towards activity, or an efficacy

somewhere in between. Moreover, this synaptic efficacy is controlled by many factors including

those found presynaptically such as neurotransmitter release rate, postsynaptic factors such as

receptor quantity and receptor type and mechanisms found both pre- and postsynaptically like

synapse size. ‘Plasticity’ describes the process of changing synapses’ efficacies.

Different receptors are crucial to different forms of plasticity and changes in receptor presence

or quantity, effect different plastic mechanisms, which subsequently alter synaptic efficacy. It

has been observed that pre- and postsynaptic activity can affect a synapses efficacy: activity-

dependent plasticity .
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1.1. BIOLOGICAL BACKGROUND

1.1.2 Long-term potentiation and depression

Two examples of plasticity are long-term potentiation (LTP) and long-term depression (LTD).

These refer to two types of plasticity (Bliss and Gardner-Medwin 1973; Levy and Steward 1983;

Siegelbaum and Kandel 1991; Bliss and Collingridge 1993; Linden and Connor 1995; Nicoll

and Malenka 1995). Both forms are activity-dependent and can result in either a long-term

increase (LTP) or decrease (LTD) in the efficacy of synapses.

Commonly studied receptors implicated in LTP and LTD are AMPA (2-amino-3-(3-hydroxy-5-

methyl-isoaxazol-4-yl)propanoic acid) (Hayashi et al. 2000; Shi et al. 2001; Carroll et al. 1999;

Shi et al. 2001; Takahashi et al. 2003; Bredt and Nicoll 2003; Oh et al. 2006; Park et al. 2006;

Serulle et al. 2007; Yang et al. 2008) and NMDA (N-methyl-D-aspartic acid) receptors. AMPA

receptors allow the passage of Na+ and K+ and NMDA receptors, Na+.

An important mechanism of NMDA receptors for plasticity is their voltage-dependent activa-

tion: Mg2+ ions extracellularly block the channel until the membrane voltage reaches a certain

amount. This is important as calcium ion flow through NMDA receptors is critical in synaptic

plasticity.

1.1.3 Spike-timing-dependent plasticity

Another well established plasticity mechanism is spike-timing dependent plasticity (STDP).

STDP permits spike time differences between pre- and postsynaptic activities to affect changes

in synaptic efficacy (Bastrikova et al. 2008; Bell et al. 1997; Bi and Poo 1998, 1999; Markram

et al. 1997; Pratt et al. 2008): if presynaptic activity precedes postsynaptic activity, the conjoin-

ing synapse is strengthened—usually according to some STDP function—and if the reverse is

observed, the synapse is depressed. See figure 1.1 for STDP data and fitted exponential func-

tions. This form of synaptic plasticity, which relies on temporal differences between pre- and

postsynaptic activity, was found using electrophysiology; for example Bell et al. (1997) found

that in cerebellum-like structures in fish, synaptic plasticity depended on the sequence of pre-

and postsynaptic events and Markram et al. (1997) found a similar effect in pyramidal neurons.
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1.2. COMPUTATIONAL MODELS

Figure 1.1: Spike-timing-dependent plasticity observed in hippocampal neurons. Relative
changes of evoked postsynaptic currents are shown for repeated pre- and postsy-
naptic spike pairs with different temporal differences. Two exponential functions
are fitted with time constants τp=19 and τd=34ms. (Image from Bi (2002).)

1.1.4 Further forms of plasticity

LTP, LTD and STDP are not alone–other mechanisms of plasticity have been discovered includ-

ing heterosynaptic plasticity, homeostasis, synaptic scaling, and presynaptic plasticity. Het-

erosynaptic plasticity for example describes cases where LTP is induced at some afferents, and

LTD is sometimes induced at other afferents (Dunwiddie and Lynch 1978; Tsumoto et al. 1978;

Hirsch et al. 1992). There are also findings of the reverse: LTD inducing LTP (Royer and

Paré 2003; Wöhrl et al. 2007). Synaptic scaling describes a homeostatic regulation of synapses

across a neuron. For example, artificially blocking or increasing a neuron’s activity can lead to

an increase, or decrease, of AMPA receptors (O’Brien et al. 1998; Turrigiano et al. 1998; Watt

et al. 2000).

1.2 Computational models

1.2.1 Neuron models

There are many different computational models with features of biological neurons: for example

(in increasing complexity) integrate-and-fire model (Lapicque 1907), leaky integrate-and-fire
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1.2. COMPUTATIONAL MODELS

model (LIF) (Stein 1967) and Hodgkin-Huxley model (Hodgkin and Huxley 1952). Integrate-

and-fire neurons integrate some input, I, with a membrane time constant, τm=10ms, until a

threshold, θ , is reached and the membrane potential, V , is reset, Eq. 1.1. Leaky integrate-

and-fire neurons compute the same, although they have a leak current which represents current

loss due to a leak across a neuron’s membrane potential, Eq. 1.2. A more complex model is

the Hodgkin-Huxley neuron model, which models different channel types, and exhibits more

realistic behaviour such as refractory periods. For many purposes, however, a leaky integrate-

and-fire neuron is used as it is computationally cheaper, and captures the fundamental properties

of the membrane potential.

τm
dV
dt

= I if V ≥ θ then reset V = 0 (1.1)

τm
dV
dt

=−V + I if V ≥ θ then reset V = 0 (1.2)

1.2.2 Long-term potentiation and depression

Computational rules of LTP and LTD are usually based on firing rates . For example, an increase

in afferent firing rate leads to an increase in synaptic efficacy, and a decrease in firing rate a

decreased in synaptic efficacy. LTP and LTD computational learning rules are not considered in

this thesis as the emphasis is on spike-timing-dependent plasticity.

1.2.3 Spike-timing-dependent plasticity

The amount of change for different intervals between pre- and postsynaptic activity, τ , is de-

pendent on an STDP function, f (τ). A commonly used function is an exponential decay with

maximum synaptic change and minimal temporal difference between pre- and postsynaptic ac-

tivity, Fig. 1.1 and Eq. 1.3 where Ap and Ad are learning rates and τp and τd are time constants

for potentiation and depression respectively.
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1.2. COMPUTATIONAL MODELS

f (τ) = Ap× exp
(
−τ

τp

)
if τ ≥ 0

f (τ) = Ad× exp
(

τ

τd

)
if τ < 0

(1.3)

Spike-timing-dependent plasticity has been studied extensively, and is commonly used as a

substrate of many forms of learning (Linsker 1988; MacKay and Miller 1990; Swindale 1982).

Linsker (1988) demonstrated that through Hebb-type synaptic plasticity, structured receptive

fields could be developed. Furthermore, since the discovery of temporal synaptic plasticity,

many potential benefits have been proposed. For example, STDP can (1) increase the mutual

information between inputs and outputs of simple networks (Masquelier et al. (2009) used in-

formation theory to quantify learning performance), (2) provide a function for Hebbian and

development and (3) capture the causality of determining the direction of synaptic change that

is implied by Hebb’s original postulate. Plasticity rules based on such temporal differences have

consequently been studied extensively, and have been applied successfully to both simple pat-

tern learning and complicated competitive pattern learning (Guyonneau et al. 2005; Masquelier

et al. 2008, 2009; Masquelier and Thorpe 2007; Song et al. 2000; Izhikevich and Desai 2003;

Bush et al. 2010; Gerstner and Kistler 2002).

Masquelier and colleagues (2008) demonstrated that a leaky-integrate and fire neuron equipped

with STDP can learn repeated spatio-temporal spike patterns, even when embedded in a statis-

tically identical distractor signal—a somewhat non-trivial task. In their setup a singular neuron

received Poisson input on 2000 afferents. Half of these afferents always presented this Poisson

noise, however the other half alternated between Poisson noise and a repeated spatio-temporal

stimulus with identical Poisson statistics. The neuron was able to distinguish the repeated pat-

tern from a background signal even though the firing rates of both were equal. Furthermore,

after the neuron had learnt a part of the pattern it reduced the response latency—relative to the

beginning of the pattern—until it responded within a few milliseconds after the onset of the

pattern. It is proposed that such learning may take advantage of the view that a pattern is a

succession of spike coincidences (Masquelier et al. 2008).

Masquelier et al. (2009) later extended their network with multiple neurons. As in their previous

6



1.3. BIOLOGICAL AND COMPUTATIONAL COMPARISON

work each neuron was learning a repeated spatio-temporal spike pattern, however the neurons

competed to learn a pattern through lateral winner-takes-all inhibition. Due to this inhibitory

competition each neuron learnt a different segment of a pattern. Specifically, it was found that

neurons learnt to respond near the onset, as in (Masquelier et al. 2008), however remaining

neurons then ‘stacked’ on this neuron so their response latencies increased.

However, an important question is ‘what is a neuron learning in this case?’ After

learning, is the neuron sensitive to spike-count, spike-timing, firing rates or some

other property of the stimulus? Is the neuron only sensitive to one stimulus com-

ponent, or are multiple features learnt? These questions are the first main topic of

this thesis.

1.3 Biological and computational comparison

Synaptic statistics of computational studies rarely match those found biologically. For example,

synaptic weight distributions resulting from computational learning are either bi-modal (Masque-

lier et al. 2008, 2009; Barbour et al. 2007), or uni-modal with a peak near the midpoint of the

weight range (van Rossum et al. 2000; Burkitt et al. 2004). To the contrary, biological distri-

butions are mostly unimodal with a peak near zero (Montgomery et al. 2001; Song et al. 2005;

Frerking et al. 1995; Isope and Barbour 2002).

Two other biological factors often left out of computational studies are non-potentiable synapses

and silent synapses. Non-potentiable or non-plastic synapses have been reported in area CA1

of hippocampal slices (Petersen et al. 1998), and silent synapses (synapses with a lack of

AMPA receptors) are one of five discrete observed synaptic states (reviewed by Montgomery et

al. (2004)).

The observation that computational results do not match those found experimen-

tally questions whether typical computational STDP implementations are com-

plete. For example, do common implementations of STDP require additional prop-

erties/mechanisms to better match the synaptic distributions found in biology? And

does the lack of non-potentiable and silent synapses in typical computational STDP

7



1.4. SYNFIRE CHAINS AND SELF-ORGANISING MAPS

have an effect on how significant the results are? These questions form the last main

topic of this thesis.

1.4 Synfire chains and self-organising maps

In 1982, when trying to account for observed precise sequences of neural firing with long inter-

spike delays, Abeles coined the term “synfire chain” (Abeles 1982, 1991). Some delays seen

between spikes of simultaneously recorded neurons were extremely long, but repeated with a

precision in the millisecond range. This was difficult to understand given that the firing patterns

of single neurons look very noisy, and can often be well described as rate-modulated Poisson

processes. A possible mechanism to produce these delays, was the postulated synfire chain

consisting of feed-forwardly connected populations of cells. Each population would contain

neurons with excitatory “diverging-converging” connections to neurons in the next population.

The populations are defined by their connectivity, and therefore symbolise the order of acti-

vation; individual neurons may take part in more than one (and in fact many) populations.

Experimental evidence supporting synfire chains is limited, however precisely repeating firing

patterns have been observed (Prut et al. 1998; Nádasdy et al. 1999; Ikegaya et al. 2004).

There have been some attempts to learn synfire chains using computational models (Bienen-

stock 1991; Hertz and Prügel-Bennett 1996). There are, however, limitations to these studies.

For example, closed loops form in which once activity enters, it never exits again.

Along side synfire chains, the formation of topographically ordered maps has been a focus of

research within neuroscience. The research is driven by findings of topographically organised

maps in nervous systems; for example, Fox et al. (2008) found somatosensory maps in bar-

rel cortex, Wandell et al. (2011) demonstrate a retinotopic map, and Horton et al. (1996) and

Casagrande et al. (1994) show ocular dominance maps. Whether these maps self-organise is a

topic of ongoing debate, although some evidence suggests that maps may be half formed during

neural development and fully organised by plasticity (Rosa 2002).

A seminal self-organising map algorithm is that of Kohonen (1995). Kohonen’s SOM algorithm

firstly compares input with synaptic weights. A “winning” neuron is selected: usually that

8



1.5. THESIS LAYOUT

which has synaptic weights most accurately matching the input. This winner and neighbouring

neurons (within a certain neighbourhood distance function), have their weights adjusted slightly

to more accurately match the input. Finally, the neighbourhood distance decreases during a

simulation. This leads to the formation of a feature map, where similar features are represented

by neurons spatially close to each other and dissimilar features by those far apart.

Self-organising map algorithms, such as Kohonen’s, commonly have limited biological evi-

dence supporting their function, and any evidence is usually considered after algorithm design.

On the other hand, very few computational studies look at self-organising maps arising from

simple computational rules.

The formation of topographically ordered maps, and the evidence adduced for syn-

fire chains suggests that there is one or many computational rule(s) underlying the

formation and organisation of ordered neural activity. There have been attempts

to elucidate these rules. Studies looking at synfire chains have found computa-

tional limitations. Therefore a main topic of this thesis considers synfire chains

and SOMs: ‘how can a simple learning rule, such as STDP, produce synfire chain

like structures?’ If a neuron with STDP is able to learn synfire chains, it may be

possible to use STDP as a substrate to learn the experimentally observed topo-

graphically ordered maps.

1.5 Thesis layout

Throughout the introduction above, several crucial questions have been presented, that will be

the centre of this thesis:

• What stimulus properties does a neuron with STDP learn?

– Does a neuron with STDP learn spike-count, spike-timing or firing rate? Does the

spatial or temporal structure of a stimulus make a difference? Is only one property

of a stimulus learnt, or are combinations learnt? - We shall adduce evidence that

a neuron learns two components: (1) the level of average background activity and

9



1.5. THESIS LAYOUT

(2) specific spike times of a pattern. Some of this work is presented in a conference

contribution (Humble et al. 2010) and the rest will be included in a forthcoming

paper (Humble, in preparation A).

• How can a simple learning rule, such as STDP, produce synfire chain like structures or

self-organised ordered maps?

– Assuming synfire chain like structures and self-organising maps are the product of

simple learning rules which can be reproduced computationally and that these struc-

tures are mostly formed through plasticity, is STDP—or a modified form thereof—a

substrate? - We take advantage of the answer from the previous main question and

a network is developed that can train recognisers for spatio-temporal input signals

using STDP. Furthermore, the setup is such that a recognising neuron only responds

if the correct stimulus and the firing of all previous neurons is present. This is akin

to a simple class of finite state automata. This work is all presented in a recent

paper (Humble et al. 2012)

• Do current computational rules fully represent the biology and if not, what is missing?

– Why do computational synaptic distributions not match those found experimen-

tally? Are missing mechanisms/properties that are found experimentally, such as

non-potentiable synapses, important, and how can these be reproduced with com-

putational learning rules? - To answer these questions a novel resource-based STDP

learning rule is introduced. The learning rule results in synaptic statistics which

match those observed experimentally and also has several advantages over currently

existing STDP learning rules. This work will be presented in an upcoming paper

(Humble in preparation B).

This thesis has three main chapters addressing the questions above in three mostly separate

studies. Methods common throughout the thesis are described next and methods distinct to a

study are described in their own chapters. Unless otherwise stated methods in the main methods

chapter (next) apply throughout the thesis. Similar to the methods, distinct background infor-
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1.5. THESIS LAYOUT

mation is described at the beginning of chapters in a distinct introduction and each chapter also

includes its own discussion.

Firstly, results are presented in chapter 3 which address the first question: ‘What can a neuron

learn with STDP?’ We use both a spiking neuron model and linear prediction to study in detail

what stimulus properties are learnt through STDP, and find that more than one property is impor-

tant. This question is addressed first, as answers have implications for the subsequent questions.

For example, our finding that a neuron with STDP learns both firing rate and spike-timings, is

important when approaching the learning of structures such as synfire chains.

Secondly, chapter 4 describes a successful attempt to learn synfire chains with a typical STDP

implementation. Simple synfire chain structures are learnt with nearest-neighbour STDP, and

more complex chains learnt with all-to-all STDP (see (Morrison et al. 2008)). Furthermore,

learnt synfire chains behave as simple finite state automata: one or more accepting neurons

are present which only respond when a stimulus is presented in full. Limitations found in this

chapter, such as weight normalisation, motivate the next.

Finally, in chapter 5 we look at our last question and address missing properties of typical

STDP implementations. A novel resource-based STDP learning rule is proposed, and support-

ing evidence discussed. Our proposed learning rule produces synaptic statistics comparatively

more similar to biological findings than typical STDP. It also solves the weight normalisation

limitation of our previous synfire chain learning study.
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Chapter 2

Methods
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2.1. NETWORK STRUCTURE AND STIMULUS

Some methods are common across all chapters; these are presented here. Unless otherwise

stated these methods and terms apply throughout the thesis. Any distinct methods specific for a

certain chapter are presented at the beginning of the respective chapter. See table 2.1 for a table

of parameters that are common across all chapters.

2.1 Network structure and stimulus

A spiking neuron model is used in all chapters. The basic network structure is similar to that

of Masquelier et al. (2008): 2000, Ninput, afferents converging on an excitatory neuron (see

figure 2.1). These 2000 afferents carry Poisson spike trains which are produced ‘on the fly’,

with 1000 of these afferents occasionally conveying a repeated spatio-temporal pattern of 50ms

duration.

Input, I, consists of one half continuously transmitting independent Poisson spike trains, Inoise.

The other half, Iin, alternate between independent Poisson spike trains and a fixed spatio-

temporal pattern. The simulation is segmented into 50ms segments, and the spatio-temporal

pattern is inserted into random segments with a probability of 0.25 per segment. These 50ms

patterns are generated by Poisson processes as well, but the patterns are fixed for the duration

of the simulations. The rate of the Poisson spike trains and the repeated spatio-temporal pattern

were 54Hz. Additionally, 10Hz Poisson noise is added to all afferents including during the

presentation of the frozen patterns. This provides a scenario where a pattern is embedded in a

statistically identical carrier signal.

All simulations use forward Euler-integration with a time-step of dt=0.1ms.

2.2 Neuron model

All spiking neurons were leaky-integrate-and-fire cells, Eq. (2.1), with synaptic currents de-

scribed by alpha functions, Sr and S f , Eq. (2.2). The membrane potentials of all neurons fol-

lowed a low-pass dynamics with time-constant τm=10ms and a reset when they reached firing

threshold; a firing threshold θ=1 was used. τm=10ms is the membrane time constant, τr=1ms is

the rise time constant of the alpha synapse and τ f =5ms the decay constant.

14



2.3. SPIKE-TIMING-DEPENDENT PLASTICITY

1

1000

2000

+

J in

Jnoise

Iin

Inoise

Figure 2.1: An excitatory neuron receives input consisting of a total of Ninput=2000 afferents.
Half of these, Iin, alternate between presenting a repeated spatio-temporal pattern
(for 50ms) and Poisson input (for at least 50ms). The other half, Inoise, continu-
ously present Poisson input. All input synapses, Jin and Jnoise, are plastic.

τm
dV
dt

=−V +S f if V ≥ θ then reset V = 0 (2.1)

τr
dSr
dt =−Sr + I

τ f
dS f
dt =−S f +Sr

(2.2)

2.3 Spike-timing-dependent plasticity

The spike-timing-dependent plasticity (STDP) rule used in chapters 3 and 4 is a typical addi-

tive exponential STDP update rule. Pre- and post-synaptic spike-pairs evoked synaptic changes

given by a function f of their temporal distance τ , see Eq. (2.3). We used both, all-to-all

and nearest-neighbour spike implementations (see (Morrison et al. 2008)), which differ only

with respect to how many pre-synaptic spikes are considered: an all-to-all rule considers all

pre-synaptic spikes whereas a nearest-neighbour implementation will only consider the pre-

synaptic spike that is received closest to the time of post-synaptic activity. Equation (2.3) de-

scribes the STDP function used, where τp=τd=20ms. τp and τd were chosen similar to those

15



2.4. MAXIMUM SYNAPTIC WEIGHT

observed experimentally (Bi and Poo 1998; Levy and Steward 1983; Wittenberg and Wang

2006) where the strongest synaptic modifications occur within a window of±20ms. These con-

stants vary from previous studies such as Masquelier et al. (2008; 2009) who used τ+=16.8ms

and τ−=33.7ms. Learning rates Ap and Ad for potentiation and depression were assigned us-

ing (2.4) where λ=1.05. The assignment of these is in accordance with the finding by Song

et al. (2000; 2003; 2010) that Ad
Ap

needs to be slightly larger than one to maintain reasonable

postsynaptic activity.

f (τ) = Ap× exp
(
−τ

τp

)
if τ ≥ 0

f (τ) = Ad× exp
(

τ

τd

)
if τ < 0

(2.3)

Ap = 0.002×W P
max

Ad =−Ap×
(

τp

τd

)
×λ (2.4)

2.4 Maximum synaptic weight

Many studies into STDP pattern learning use weight bounding to control synaptic change; such

saturation limits unstable forms of STDP based learning changing synaptic efficacies ad in-

finitum. Furthermore, the maximum synaptic weight can have a great impact on the learning

process: if too low, postsynaptic activity may not reach threshold, and if too high, postsynaptic

activity may be erratic and uninformative.

The maximum synaptic weight W P
max for Poisson afferents was thus assigned such that the dif-

ference in membrane potential required to go from resting to threshold is divided by the total

number of afferents. This value may further be adjusted to allow fluctuations in the membrane

potential to reach the neuron’s threshold because (1) all afferents in the pattern may not be learnt

through STDP, (2) synapses are not guaranteed to converge fully to weight boundaries and (3)

the afferents are not guaranteed to fire at the average firing rate or sufficiently within the mem-

brane time constant. To this end, an appropriately selected value (considering the above points)
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2.5. INITIAL SYNAPTIC WEIGHTS

can allow STDP to be affected by positive fluctuations in input and membrane potential—found

to be crucial by Song et al. (2000; 2003; 2010) and designed into a learning rule by Senn et

al. (2005). It was found that STDP trained best with A=20.

This choice of W P
max allows for a reliable activation of neurons when the pattern is presented

after training, but only few occasional output spikes due to random inputs. Furthermore, the

cumulative change in weights from random activity approximates to < 0; see Eq. (2.5).

∫
∞

−∞

f (τ)dt < 0 (2.5)

Crucially, this is a ‘best guess’ approach to assigning maximum synaptic weights because a

‘best’ value will depend on how many afferents are fully potentiated at the end of learning,

and this changes between simulations depending on the stimulus, chance during learning and

random initial synaptic weights. Specifically, the rheobase will stay the same across simulations

but the number of synapses contributing and their individual contributions will change.

2.5 Initial synaptic weights

The initial strength of synaptic weights can be as important as their maximum efficacies. Several

different approaches are used to set initial weights; the approach we adopted is to set weights,

w, with random values drawn from a uniform distribution between 0 and W P
max as in Eq. (2.6).

0 < w≤W P
max (2.6)

Initial weights should be set such that fluctuations from all afferents cause the output neuron

to fire frequently. This is important because it allows all synapses contributing to postsynaptic

activity to be affected by STDP (Song et al. 2000; Izhikevich and Desai 2003; Bush et al. 2010),

and thus be potentiated or depressed.
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2.5. INITIAL SYNAPTIC WEIGHTS

Table 2.1: Table of parameters

Parameter Description Value
Ninput Number of input afferents. 2000

I Input. -
Iin Input transmitting the repeated pattern. -

Inoise Input not transmitting the repeated pattern. -
dt Euler-integration time step. 0.1ms
τm Membrane time constant. 10ms
θ Firing threshold. 1
θr Rise time constant for alpha function. 1ms
θ f Fall time constant for alpha function. 5ms
Sr Rise synaptic current of alpha function. -
S f Fall synaptic current of alpha function. -

f (τ) STDP function. -
τ Temporal distance between pre- and postsynaptic activity. -
τp Potentiation time constant for STDP function. 20ms
τd Depression time constant for STDP function. 20ms
Ap Positive learning rate. 0.002×W P

max

Ad Negative learning rate. −Ap×
(

τp
τd

)
×λ

λ Parameter adjusting the proportionality of the learning rates. 1.05
W P

max Maximum synaptic weight for input afferents. 1/Ninput
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Chapter 3

What can a neuron learn with STDP?
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3.1. INTRODUCTION

3.1 Introduction

As described in the main introduction, Masquelier et al. (2008) found that a singular neuron with

STDP is able to learn to respond to the start of a repeated spatio-temporal pattern. However,

a question arises: what exactly do the STDP synapses ‘learn’? Are they adjusted so a neuron

is sensitive to spike-counts on a subset of its afferents or does the neuron become sensitive to

some temporal properties, perhaps spike timing, and if so, at what resolution?

Some indication comes from recent studies. It has been found that when sustained neuronal

noise is included in simulations and in vitro experiments, a neuron’s input-output relationship

is changed (Chance et al. 2002; Hô and Destexhe 2000; Stacey and Durand 2001; Shu et al.

2003; Wolfart et al. 2005; Fellous et al. 2003) (see (Silver 2010) for an excellent review). In

fact, neurons are continually receiving spikes from thousands of neurons (White 1989; Abeles

1991), and the sheer number of these can have strong effects on the activity of a neuron (Hô and

Destexhe 2000; Chance et al. 2002; Fellous et al. 2003). Shu et al. (2003) and Hô et al. (2000)

found that background synaptic activity increased the probability of a neuron responding to

small inputs. Shu and colleagues also found that it decreased the latency and jitter of spikes.

Furthermore, Shu et al. and Stacey et al. (2001) found that an increase in background activity

can increase the correlation between a neuron responding and a stimulus. Hô et al. (2000) have

shown additionally that background activity can be split into a tonically active conductance

and voltage fluctuations. Interestingly, these fluctuations were found to be crucial to Hebbian

learning by Song et al. (2000). Song et al. found that with an STDP function with
∫

∞

−∞
f (τ)dt <

0, presynaptic activity positively correlated with membrane potential fluctuations was crucial to

STDP learning. Considering these, a hypothesis on learnt features might include a combination

of background activity, small inputs and voltage fluctuations.

With these findings in mind, we address our proposed question. To do this we use a combination

of a spiking neural model and linear prediction. Linear prediction is used instead of a spiking

neural model due to the time requirement to run many spiking neural model simulations. More

specifically, when studying whether timing is important when using STDP, we would have to

run thousands of spiking neural model simulations to cover the several parameters; the linear
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3.2. METHODS

prediction model can be used to look at these parameters more timely. However, because the

linear prediction misses some of the non-linearities of the spiking neural model we return to

the spiking neuron after using the linear prediction model to pinpoint a much smaller parameter

space to study.

We adduce that a neuron learns a pattern’s spike times ‘on top’ of background activity and due

to a change in this background activity level, the temporal accuracy—the latency relative to

the onset of the pattern—of the learning can become unstable. Subsequently, insights into the

neuron’s encoding are possible, viz. that a neuron with STDP appears to learn both background

activity and specific pattern spike times with millisecond precision.

3.2 Methods

In this chapter, two models are used: one spiking and the other based on linear prediction. See

table 3.1 for a table of parameters for this chapter.

3.2.1 Spiking model

The spiking model is identical to that described in the methods section, confer chapter 2. Each

full simulation ran for up to 3000s. During typical simulations it was found that any individual

weight could converge (change from one weight limit to the other) in typically 200s, therefore

weight values are recorded every 2s allowing sufficient resolution of weight trajectories and

distributions.

3.2.2 Linear prediction

A linear predictor was used because each spiking simulation takes considerable time to simulate

due to computational costs, and an investigation into specific features in such a large stimulus

space could be infeasible because of the sheer number and type of features such as spike timing

and spike count.

If one considers a neuron as a stimulus-response transducer that is driven by sensory stimulation

(a pattern), one can use linear prediction described below to study how neurons integrate input

from receptive fields in time and space.

21



3.2. METHODS

Spatio-temporal receptive field

Firstly, one computes the spatio-temporal receptive field (STRF) of a neuron. This STRF is a

matrix, S, see Eq. 3.1. It has dimensions j = 1, . . . , τm
∆

and i = 1, . . . ,Ninput where ∆ is a binning

factor (in our simulations we used ∆ = dt=0.1ms therefore our STRF matrix has dimensions

100x1000). S is produced by recording the previous τm=10ms of the input, Iin(t) (which in

our simulations is also 100x1000), whenever the output neuron discharges. These recordings

continue for every output spike for 200s after the neuron has learnt the pattern (1000–1200s).

The arithmetic mean (angular brackets) is taken across all these spikes/trials. The STRF is

finally multiplied by learnt weights to take into account any learning.

S j=0,..., τm
∆
,i=1,...,Ninput

=
〈
Iin
i (t− j)

〉
wi (3.1)

Linear prediction

The linear predictor, C(t), can then be taken between this STRF and different test inputs, Itest(t),

to predict the response from a learnt neuron: Eq. 3.2. This effectively convolves C(t) and will

be maximum when Itest(t) equals the STRF, and will decrease as Itest(t) becomes less similar to

the STRF. Therefore, any change in Itest(t) is matched with a change in C(t).

C (t) =
Ninput

∑
i=1

τm
∆

∑
j=0

Si, jItest
i (t− j) (3.2)

Spike train metric

During experiments we altered the pattern. We either temporally jittered spikes on individual

afferents by varying amounts, temporally reversed the entire pattern or swapped pattern seg-

ments around, for example we swapped the beginning half and end half of a pattern while still

maintaining the precise spike times and afferents within each half. To observe any effect this

had on the neuron’s response the linear prediction error, Φ, was calculated with Eq. 3.3 where

arg max is the maximum linear predictor value for a test input and a modified van Rossum spike
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3.2. METHODS

train metric (van Rossum 2001) was used to record the alteration amount.

Φ = arg max
(
Cbefore(t)

)
− arg max

(
Cafter(t)

)
(3.3)

Before we compute the spike train metric we cumulatively sum the spike trains over afferents

as in 3.5, where Porig is the original binary pattern matrix, Pperm is the altered binary pattern

matrix and Porig and Pperm are resulting vectors of the original and altered matrices.

Porig (t) =
Ninput

∑
i=1

Porigi (t) (3.4)

Pperm (t) =
Ninput

∑
i=1

Ppermi (t) (3.5)

The van Rossum spike train metric can be computed between Porig and Pperm by firstly adding an

exponential tail to the spikes—Eq. 3.6a where M is the number of spikes in the original pattern,

M′ the number in the altered pattern and τc is appropriately chosen to take into account coin-

cidence detection and total spike count, cf. van Rossum (2001)—and secondly by calculating

the Euclidean distance, Eq. 3.6b. (After pattern alteration, some spikes may no longer be in the

pattern hence M and M′.)

h(t) =
M

∑
i

Porig (t− ti)e−(t−ti)/τc

g(t) =
M′

∑
i

Pperm (t− ti)e−(t−ti)/τc (3.6a)

D2 (h,g)
τc
=

1
τc

∫
∞

t=0
[h(t)−g(t)]2 dt (3.6b)
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3.2. METHODS

Table 3.1: Table of parameters

Parameter Description Value
Ninput Number of input afferents. 2000

I Input. -
Iin Input transmitting the repeated pattern. -

Inoise Input not transmitting the repeated pattern. -
dt Euler-integration time step. 0.1ms
τm Membrane time constant. 10ms
θ Firing threshold. 1
θr Rise time constant for alpha function. 1ms
θ f Fall time constant for alpha function. 5ms
Sr Rise synaptic current of alpha function. -
S f Fall synaptic current of alpha function. -

f (τ) STDP function. -
τ Temporal distance between pre- and postsynaptic activity. -
τp Potentiation time constant for STDP function. 20ms
τd Depression time constant for STDP function. 20ms
Ap Positive learning rate. 0.002×W P

max

Ad Negative learning rate. −Ap×
(

τp
τd

)
×λ

λ Parameter adjusting the proportionality of the learning rates. 1.05
W P

max Maximum synaptic weight for input afferents. 1/Ninput
S The spatio-temporal receptive field. -
∆ Binning factor in the implementation of S. 0.1ms
wi Weight vector indexed by i. -

C(t) Linear predictor. -
Itest Test input spike train. -
Φ Linear prediction error. -

Porig Original pattern matrix. -
Pperm Altered pattern matrix. -
Porig Original pattern vector. -
Porig Altered pattern vector. -

M Number of spikes in original pattern. -
M′ Number of spikes in altered pattern. -
h(t) Function used in implementation of van Rossum spike train metric. -
g(t) Function used in implementation of van Rossum spike train metric. -
D2 van Rossum spike train metric. -
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3.3. RESULTS

3.3 Results

3.3.1 Background activity

During a typical simulation of the spiking neural network, a neuron’s responses can be charac-

terised by three temporal phases—first observed by Masquelier et al. (2008). In our simulations

the first two phases are identical to (Masquelier et al. 2008) and the third differs; it is the last

phase we investigate in more detail in this section. The results suggest that the level of back-

ground activity is one feature of stimulus space which a neuron with STDP learns. Moreover,

the firing rate of the background activity—consisting of afferents not transmitting the pattern

during a pattern presentation and all afferents when not—stays constant (64Hz), as described

in the methods, but its effect on the neuron’s membrane potential is modulated through the

synapses and as these are plastic, the resulting effect can be non-trivial.

Typical background activity

A typical simulation of the spiking model for 1000s is depicted in Fig. 3.1. There are three clear

phases within the simulation: (1) when the neuron fires tonically due to high initial synaptic

weights; (2) when the neuron has recognised the repeating pattern and reduces its response

onset latency to ≈10ms; and (3) when the neuron responds near the onset of the pattern but

drifts a little increasing the latency.

These results reinforce those of Masquelier et al. viz. that a neuron equipped with STDP is able

to effectively find and train to the onset of a repeated spatio-temporal pattern embedded within

a statistically identical signal. This is not surprising as the mechanism presented by Masquelier

et al. is very general. However, Masquelier et al. found that once a neuron had trained to a

pattern it had “converged towards a fast and reliable pattern detector” and usually responded

at the onset of a pattern. In our simulations we further found that a learnt neuron’s response

latency appeared to drift backwards through the pattern, as in phase 3 in Fig. 3.1.

To study this drift in more detail, longer simulations (3000s) were run to see how much drift

would occur and whether the latency would stabilise—figure 3.2 shows the results of such a

simulation. Figure 3.2A depicts a neuron’s response onset-latency as a function of simulation
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Figure 3.1: Post-pattern-onset latency—relative to the pattern start—as a function of dis-
charges. When the neuron discharges outside of the pattern a latency of 0 is shown.
The neuron clearly learns the pattern and has similar periods to those observed by
Masquelier et al.: (1) the neuron is non-selective to the pattern and most weights
are being depressed due to

∫
∞

−∞
f (τ)< 0; (2) the neuron is training to the beginning

of the pattern; and (3) the neuron consistently fires within the pattern.

time. The phases described earlier are still visible, (albeit compressed due to a change in the

independent variable). Notably, the neuron responds as early as 13ms, but saturates at ≈18ms

and this backward drift through the pattern has a longer time scale than the second phase.

To elucidate the mechanism behind this slower component, synaptic weight values were recorded

every 2s (Figs. 3.2B–E). Weight distributions and trajectories are fairly stable after 1000–2000s

and are bimodal (as expected; see Masquelier et al. (2008) and Rubin et al. (2001)). The first

phase, when the neuron learns the pattern, can be seen in the weights’ distributions and trajec-

tories of afferents transmitting the pattern (Figs. 3.2B and 3.2D): the weights quickly converge

to either weight bound. This convergence of weights to the pattern is mostly complete be-

fore 250s with very few weights still varying throughout the rest of the simulation. In contrast,

synapses not transmitting the pattern take relatively much longer to stabilise—≈1000–2000s—

with some never stabilising (Figs. 3.2C and 3.2E). These non-pattern weights are depressed over

this longer period (the desired effect of STDP as they are not transmitting the repeated pattern).

The time scale is longer as the neuron is no longer firing tonically and only responds to the pat-
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Figure 3.2: Results of a long simulation (3000s) including weight distributions and trajecto-
ries. (A) depicts post-pattern-onset discharge latency as a function of simulation
time (cf. Fig. 3.1). (B) depicts the evolution of the weight distribution of afferents
in the pattern and (C) of those not in the pattern. (D) shows the weight trajectories
of 50 afferents in the pattern and (E) 50 of those not in the pattern.
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tern and thus the learning is slowed. This longer time scale has a possible side-effect however:

the latency drift described above.

Explicitly, during the first phase, the neuron does not fire specifically to the pattern, and thus

STDP depresses most weights. This continues until stimulus-driven fluctuations in the neuron’s

membrane potential facilitate STDP learning (Song et al. 2000; Izhikevich and Desai 2003;

Bush et al. 2010): phase two. These fluctuations are based on a background activity level

consisting of the activity of the synaptic weights of all afferents at that time (≈200–250ms).

We hypothesised that it was this level of background activity and the subsequent change in this

level that causes the drift.

Artificial change in background activity after learning

To test this hypothesis, an additional constant electrical current was applied to the output neuron

after it had learnt a pattern and remained present for the rest of the simulation. This additional

constant is analogous to raising the level of background activity. (We chose to inject current

into the neuron instead of raising the background activity level through the afferents as the first

guarantees a set effective amount.)

If a trained neuron learns a short succession of coincidences, as has been postulated before

(Masquelier et al. 2008), it may have little if any reliance on the background activity. Therefore,

our constant current—if small relative to the membrane potential range—should not disturb the

neuron’s response latency; figure 3.3 shows the results of such an experiment.

When constant current is applied to the neuron at 2000s there is a significant change in weights

(Fig. 3.3B–E). Moreover, Fig. 3.3A shows a significant change in the neuron’s firing latency

during this additional current: the latency is reduced. Interestingly the neuron’s latency then

drifts again. The synapses are plastic for the entirety of the simulation.

An analysis of the weight distributions and trajectories from 2000s onwards helps to postulate

as to the cause of this second drift: some afferents which convey the pattern change their ef-

ficacy significantly—either going from 0 to Wmax or vice-versa. Accompanying these changes

is a reduction in weights for afferents not conveying the pattern—similar to the initial training
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Figure 3.3: Results of a long simulation (3000s) with an additional injection of constant elec-
trical current at 2000s. (A) clearly shows a decrease in latency at the current onset;
the latency then increases and levels off. As with Fig. 3.2, weight distributions (B
and C) and weight trajectories (D and E) were recorded every 2s.

29



3.3. RESULTS

A

M
em

b
ra
n
e
p
ot
en
ti
al

0.0

0.5

1.0

Simulation time (s)

251.20 251.25 251.30 251.35

B

M
em

b
ra
n
e
p
ot
en
ti
al

0.0

0.5

1.0

Simulation time (s)

952.30 952.35 952.40 952.45

Figure 3.4: A neuron’s membrane potential depicting a lower background activity and conse-
quently a longer integration time. (A) reaches threshold with a latency of ≈10ms,
whereas (B), with ≈15ms due to level of membrane potential being lower before
pattern presentation (dotted lines). Patterns started at 251.25s and 952.35s.

phases. We suggest the neuron is adjusting to its new background activity.

To further clarify the reliance on background activity, Fig. 3.4 depicts a neuron’s membrane

potential during two different presentations of a pattern in a simulation. Figure 3.4A is just after

the neuron has trained to the pattern, and Fig. 3.4B is later in the simulation. One would expect

the background activity—and thus the membrane potential—to be higher just after learning than

after some drift because the background activity is continuously decreasing due to non-pattern

weights being depressed. We found that the level of membrane potential is higher before pattern

presentation (dashed lines) just after learning, Fig. 3.4A, than after some drift has occurred,

Fig. 3.4B.

To summarise, if during the second phase the neuron learns to respond at t, the neuron is sensi-

tive to coincident spikes in a window ranging from about t− τm to t. Ideally the neuron should
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respond at t because there is some background activity present before the window and the neu-

ron’s membrane potential is near threshold allowing the activity in the window to contribute

to reaching threshold. However, if the initial activity before the window is reduced the neuron

may not respond until t + x where x is the extra time required to temporally sum the activity,

as in Fig. 3.4. These results suggest that during the drift and after the latency has stabilised the

neuron is still sensitive to the onset of the pattern, however, the background activity modulates

the neuron’s response latency.

Artificial change in background activity during learning

Next we questioned what happens when the level of background activity is modulated during

learning. To this point, neurons trained to the beginning of the pattern, however if Gaussian

white noise with positive mean is added directly to a neuron’s membrane potential at every dt,

this is no longer the case. Figure 3.5 depicts two typical results with noise (both with µ=0.05

and σ=0.013): in Fig. 3.5A the shortest latency is ≈20ms, and in Fig. 3.5B it is ≈38ms. It

appears the noise interferes with the learning phase (Fig. 3.1). In fact, with noise we found

that a neuron’s learnt latency varied greatly, Fig. 3.6; increasing amounts of noise changed the

distribution of learnt response latencies.

Depicted in figure 3.6A are learnt response latency distributions for simulations with different

amounts of noise added to a neuron learning a 50ms long pattern. Initially, with no or little

noise the neurons respond near the onset (Fig. 3.6A). However, as the noise amount increases the

neurons stop responding near the onset and respond later and later in the pattern. To test whether

this was an artefact of a pattern with length 50ms, we also tried adding varying amounts of noise

to patterns of length 75 and 100ms (Fig. 3.6B): we found the noise’s effect was independent of

pattern length.

Further, we fitted right censored gamma distributions to the response latency distributions. The

peaks of these distributions are shown in figure 3.7A and show a general result, viz. that an

increase in noise disrupts the neuron’s ability to train to the beginning of the pattern and the

peak latency drifts backwards through the pattern. In addition, there is a negative side effect

of this additional noise: a drop in learning performance. Figure 3.7B depicts a major drop in
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Figure 3.5: Raster plots of different trials when Gaussian noise (µ=0.05 and σ=0.013) is added
directly to the membrane potential at every dt. In the two trials the neurons learn
to different temporal positions within their patterns.
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Figure 3.6: When additional noise is added, the response latency distributions are affected
(N=100). (A) Response latency distributions for varying amounts of background
noise (from σ=0.0 to σ=0.9; all with µ=0.05) for a pattern of length 50ms. (B)
Fitted Bezier curves to response latency distributions for patterns of length 50, 75
and 100ms.
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performance for larger values of σ . Specifically for σ=0.9, performance drops to just below

20% for 50ms patterns, ≈ 3% for 75ms and does not learn a 100ms pattern at all.

Masquelier et al. (2008) also noted that the final learnt latency may not be at the onset of the

pattern and suggest this might be due to a zone of low spike density. We postulate that adding

extra noise to a neuron increases the likeliness that the neuron stops during one of these low

spike density zones, however also reduces its ability to learn the pattern at all with high amounts

of noise.

3.3.2 Stimulus spike features

The level of background activity described hereto does not alone allow a neuron to learn to

fire specifically at the onset of a pattern—it merely increases a neuron’s sensitivity to smaller

inputs via a raised membrane potential consequently adjusting a learnt neuron’s response la-

tency; therefore we subsequently investigated what additional features in input space are learnt:

spike-counts, spike-order, spike-timing etc. Specifically, we found that spike-timings within the

pattern are further learnt by neuron’s with STDP and allow a neuron to become sensitive to a

specific segment of the stimulus.

To facilitate our investigation into the input space we used linear prediction. Firstly, we tested

the linear predictor’s ability to predict the output neuron’s activity with the original pattern used

during the learning. If the linear predictor predicts a neuron’s activity accurately there should

be a peak in C(t) at approximately the same time in the pattern as the neuron spikes. Results

are shown in Fig. 3.8, where (A) is the original neuron’s behaviour during the simulation, (B) is

the prediction with the original pattern and (C) is the STRF: there is a peak in the value of the

linear predictor at the learnt latency.

Spike-count, spike-order or spike-timing

As the linear predictor accurately mimics a neurons activity (membrane potential excluding

action potentials) from our spiking model, it can be used to elucidate whether, and if so, what,

spike features are crucial for a neuron to learn a segment of the repeated pattern. If we take a

neuron that has learnt to fire at the onset of the pattern (13ms) and swap the first 25ms (half)
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Figure 3.7: Adding increasing amounts of noise not only disrupts the response latency dis-
tribution but also produces a drop in performance. (A) The peak of fitted right
censored gamma distributions and (B) the learning performance.
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Figure 3.8: Typical results using linear prediction. The STRF (A) shows the average posi-
tion of input spikes preceding a response. (B) depicts the progress of learning as
previously described. The response latency after learning is approximately 18ms
(B). When the linear predictor was tested with the original pattern used during
training (C), C(t) peaks at the same response latency as the spiking neural model
confirming that the linear predictor is replicating the spiking model.
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Figure 3.9: Typical results before and after swapping two halves of a pattern at 4000s. The
neuron’s activity (A) shows the point where the pattern was flipped. Specifically,
before swapping the neuron responds with a latency of approximately 15ms, and
after swapping the latency increases to 40ms. This change in latency is mirrored
by the linear predictor (B and C) by peaks in C(t).

with the second 25ms, and vice-versa, the order of the spikes and timings within the learnt

segment (now 28ms–38ms) are identical, therefore the linear predictor should be identical for

the old and new positions: see Fig. 3.9 for an example. Such an experiment was also carried out

with the spiking model (flipped after ≈4000 discharges in Fig. 3.9A)—the neuron responds as

expected. Note that a very small amount of extra current (injected into the neuron) was needed

to evoke the spikes after the flipping; we postulate this is due to a change in background activity

as described before.

If the pattern is mirrored however—that is, temporally mirroring the pattern—the neuron no

longer responds in the mirrored pattern; see Fig. 3.10 for an example. This is also reflected

in the reduced result from the linear predictor. Extra input was also injected as with flipping

the pattern, however this did not help evoke spikes at the reversed position; instead, the neuron

started to fire unmeaningfully again, hence the spikes registered at 0ms.

To understand these results one must consider the different features which are available to the

neuron. In the mirrored pattern, the learnt segment is at the end of the pattern (in the case

in Fig. 3.10, 35ms–45ms), and the spike count within these 10ms is identical to the original

pattern. The lack of response from the neuron with the mirrored pattern suggests that the spike

count is not the determining feature: perhaps spike-order or spike-timing is?

If spike-order is important for a neuron to learn a repeated pattern, it is possible that spike-order
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Figure 3.10: Typical results before and after mirroring a pattern at 4000s. The neuron’s activity
(A) shows the point where the pattern was mirrored and the neuron no longer
responded. Specifically, before mirroring the neuron responded at approximately
13ms and after mirroring only responded outside the pattern. This is replicated
in the linear predictor (B before and C after): before mirroring there is a peak in
C(t) however afterwards there is no peak and C(t) stays low throughout.

will be correlated with synaptic weight. For example, if a neuron responds with a pattern onset

latency of ≈15ms, spikes presented at 5ms could be strengthened more than those at 10ms, or

vice-versa. Furthermore, if this were the case, the linear predictor we use would reflect this

because spike-order is preserved in the STRF.

We tested this hypothesis and found that there was no correlation between spike-order and

synaptic weight. In the example in figure 3.11, the neuron would respond with a pattern onset

latency of ≈15ms. We therefore depict the time of pattern spikes which are presented between

0ms and 15ms, with their corresponding afferents’ synaptic weights. There are two clusters of

synaptic weights: one near zero, and the other near the upper maximum synaptic weight bound

(W P
max). This result is supported by the typical bimodal synaptic weight distribution for learning

with additive STDP, such as that used in this chapter. The lack of correlation suggests that

spike-order is not a feature a neuron with STDP uses when learning a repeated spatio-temporal

pattern.

We therefore next studied spike-timing. We carried out an experiment where different window

widths between 1 and 20ms were temporally moved through the pattern and only spikes within

this window were jittered (±5ms). More specifically a window of 10ms would include spikes

from 1ms to 10ms in the pattern initially. Only spikes within this window are jittered and the

38



3.3. RESULTS

S
y
n
ap

ti
c
w
ei
gh

t

t (ms)

0 5 10 15
0

WP
max

Figure 3.11: Spike-order and synaptic weight. In this example, the neuron will respond at
≈15ms. Therefore, we consider the order of spikes within the pattern from 0ms
to 15ms (x-axis). The synaptic weight for each spike’s corresponding afferent is
also included (y-axis). There are two clusters, which correspond to the bimodal
synaptic weight distribution: approximately half of the spikes’ afferents have
synaptic weights near zero, while the other half have synaptic weights near the
upper maximum synaptic weight bound (W P

max). There is no correlation between
spike-order and synaptic weight.
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Trial Mean firing (ms) Window of greatest error (ms)
1 13.7 5–15
2 17.0 8–18
3 20.1 11–21
4 16.7 7–17
5 17.2 8–18
6 14.4 5–15
7 15.9 7–17
8 14.8 6–16

Table 3.2: Results of jittering spikes ±5ms within a 10ms window where ‘mean firing’ is the
recorded mean firing position of the neuron on a respective trial of the last 100
discharges, and ‘window of greatest error’ is the 10ms window that produced the
biggest error

effect recorded. Next, this window is moved through the pattern in dt=0.1ms increments so the

window will next include spikes from 1.1ms to 10.1ms and subsequently 1.2ms to 10.2ms. This

was done with the various window widths noted above.

Logically one would expect that the linear predictor would be lowest when spikes before the

temporal position of the learnt output neuron’s response are changed, with less of an effect

apparent for jitter elsewhere (especially after the discharge position as the spikes there should

have no effect on when and/or if the neuron is to fire, unlike those immediately preceding the

discharge). Results of this experiment are in table 3.2, where ‘mean firing’ is the recorded mean

firing position of the neuron on a respective trial of the last 100 discharges, and ‘window of

greatest error’ is the 10ms window that produced the biggest error (cf. section 3.2.2). Only the

results from jittering spikes in a 10ms window is included herein as this had the greatest effect

(> 10 had an equal effect) and as τm=10ms. The results suggest that, as expected, the 10ms

before the neuron’s response latency are important, and crucially, jittering spike-times can be

destructive.

Spike-timing tolerance

It appears that spike-timing is an important feature in stimulus space which allows for a neuron’s

sensitivity to a subset of a repeated pattern. To further understand what the STDP synapses are

becoming sensitive to, spikes within the 10ms window before a neuron’s response latency were

jittered by varying amounts to find the spike-timing temporal tolerance of a neuron with its
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respective pattern. Furthermore, a spike train metric was used to measure the amount of change

in the stimulus and the linear prediction error (Φ) was used to gauge the erosive effect of the

alterations.

Typical results of this experiment are shown in Fig. 3.12: (A) shows the mean linear prediction

error (N=10) when spikes—on different numbers of afferents—are jittered by varying amounts

and (C) the squared spike train distance between the original and altered patterns. The effect

of jittering spikes is non-linear—error increases steeply with jitter amount and then plateaus; in

contrast, error grows linearly with the number of afferents altered. Interestingly, we also found

that some small jitters increased the linear prediction, suggesting that a neuron’s learnt STRF is

not always optimal.

Furthermore, returning to our spiking model and by just adjusting the jitter amount and keeping

the number of afferents altered constant, we found a critical jitter amount which resulted in the

neuron no longer firing. This was because the spike jitter prevented the neuron from reach-

ing threshold. It was possible, however, to recover the neuron’s correct response by adding an

additional constant current. This increased the neuron’s membrane potential to threshold. An-

other boundary was also found where a neuron stopped responding only within a pattern even

if additional constant current was added to help the neuron reach threshold. In this case, when

additional current was added, the neuron responded not only within the pattern but also outside

the pattern at random times due to fluctuations in the membrane potential not stimulated by the

pattern. These error boundaries form three parameter regions: Φα , Φβ and Φγ . These are in-

cluded in Fig. 3.12(A). In Fig. 3.12(B); cartoon membrane potentials are also included for each

region.

We then tested the proposed segmentation of the parameter space with three experiments using

the spiking model with adjustments to both jitter amount and number of afferents altered. When

spikes on 300 afferents were jittered by 5ms the neuron still responded; when spikes on 500

afferents were jittered by 10ms the neuron no longer responded on its own but responded with

additional input; and when spikes on 800 afferents were jittered by 20ms the neuron no longer

responded informatively even with additional input.
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Figure 3.12: Results of jittering spikes on a varying number of afferents by varying jitter
amounts. (A) shows the linear prediction error (Φ) as a function of jitter amount
and number of afferents altered. When Φ increases it signifies a decrease in
C(t) and therefore implies a lower chance that a neuron will not respond to input
correctly (either with an increased stimulus onset latency or not at all). As we in-
creased the amount of temporal jitter the effect on Φ was non-linear; specifically,
small amounts of jitter greatly increased Φ however once the jitter amounts were
greater than 10ms, Φ increased more slowly. When we adjusted the number of
afferents that were altered by this jittering the effect on Φ was linear.
We tested various sets of parameters from (A) with the spiking model and were
able to further split the space in to three sub-spaces: Φα , Φβ and Φγ . While in
Φα , the spiking neuron responded correctly. But when the spiking neuron was
tested with parameters from Φβ additional current was required to permit the
neuron to reach threshold. Further, this additional current no longer successfully
worked with the jitter amounts and number of afferents altered in Φγ and the
neuron was no longer able to respond correctly.
(B) is a contour plot of (A). (C) is the squared spike train distance between the
original and altered patterns. Furthermore, (B) includes cartoons of membrane
potentials.
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Figure 3.13: The leak current’s effect on input integration. Two results of a singular neuron,
with one afferent, integrating three input spikes. In (A) the three spikes are suffi-
cient to integrate to threshold, however when they are jittered, as in (B), they are
no longer sufficient even though the spikes occur over a shorter time span.

Finally, figure 3.13 depicts two results of a singular neuron’s membrane potential, with only one

afferent, integrating three spikes. In (A), the three spikes are sufficient to integrate to threshold,

however in (B), these spikes are jittered and the input is no longer sufficient to reach threshold.

This is the case even though the spikes in (B) occur over a shorter time span. This proof of

principle demonstrates that the leak current present during inter-spike intervals can affect how

latter input spikes are integrated and consequently affect a neuron’s ability to produce an action

potential.

Furthermore, the distribution of, below threshold (θ=1), membrane potential peaks is approxi-

mated by the left hand side of a Gaussian distribution: see figure 3.14. To produce this distribu-

tion, we recorded the peak value of a neuron’s membrane potential during a pattern presentation

if it did not respond. The distribution of peak membrane potentials spans from neuronal firing

threshold to 0.85. The lower values, near 0.85, correspond to the background activity level (see

Fig. 3.4).

Further work is needed to elucidate fully the mechanism behind how spike-timing is learnt by

a neuron, however it appears that a neuron’s leak current could be partly responsible. Essen-

tially, a reduction of a neuron’s membrane potential either due to a reduced background activity
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Figure 3.14: Below threshold peak membrane potential distribution. Peak values of a neuron’s
membrane potential was recorded for cases where the neuron did not respond
to a pattern presentation (where the membrane potential was less than threshold,
θ=1). The distribution is approximated by a the left hand side of a Gaussian
distribution with, µ=0.99 and σ=0.35.

(Fig. 3.4) or a change in spike-timing (possible due to leak currents Fig. 3.13) can affect whether,

and with what latency, a neuron responds.

3.4 Discussion

Firstly, we presented results that reconfirm the findings by Masquelier et al. (2008); even though

we used a different STDP window and different learning rates, a neuron with STDP was able

to distinguish a repeated pattern from random background activity, learn it and fire consistently

within it. The main topic for this chapter however was our proposed question, what does this

neuron learn? Using a combination of a spiking neuron model and linear prediction we found

that a neuron learns both the level of background activity and spike timing of a pattern.

Using the spiking model, we found that with long simulations the latency of a learnt neuron’s

response increased with respect to the beginning of the pattern and saturated at a later time. (It

is not clear if Masquelier et al. (2008) ran their simulations for longer than 450s or whether
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they found this drift.) We demonstrated that the drift is due to two components: fast learning of

the pattern and relatively slower unlearning of background activity. Specifically, STDP initially

modifies afferents’ weights which are transmitting the stimulus, promptly (within 250s) stabil-

ising appropriate weights at either bound. Then remaining weights are depressed on a longer

time scale (within 1000–2000s). This second longer time scale adjusts the level of background

activity, and we hypothesised that this caused our observed drift. We verified this hypothesis

and found that an artificial change in the level of background activity can change the response

latency. Moreover, we found that the tuning of the pattern detector towards the pattern onset is

unstable against noise: with increasing levels of background noise, the learnt latency increased.

We inferred from these results that the level of background activity is a feature that a neuron

with STDP uses to learn a repeated pattern: it raises the membrane potential to near threshold

so a presentation of the repeated pattern can evoke a response. Therefore, a change in the learnt

level affects a neuron’s responses. However, this did not fully answer our question. To expose

any spike-count or spike-timing reliance we used linear prediction.

Using linear prediction we altered the spikes of the stimulus and observed the result: we found

that neither spike-count nor spike-order are important features, however spike-timing is. Jitter

of just±2ms significantly impacted the postsynaptic neuron’s response. Masquelier (2008) also

previously found that a small amount of jitter (3ms) degraded the ability of a neuron to learn

a pattern. We extended these results and found that the effect on the linear predictor is non-

linear with spike-timing jitter, and linear with an increase in the number of afferents affected.

Our results suggest that spike timing is another feature that a neuron with STDP uses to learn

a repeated pattern. Further, we found that a neuron’s leak current is crucial to spike-timing,

however, further work is needed to fully elucidate the mechanism behind the learning of spike-

timing.

It must be noted that the results presented in this chapter and their conclusions only apply to

leaky-integrate-and-fire neurons under the protocol of an input consisting of a constant firing

rate. It is plausible that other neuron models, conductance based for example, may react dif-

ferently to the stimulus, and therefore may result in a neuron with STDP learning different

45



3.4. DISCUSSION

features of stimuli. Furthermore, the results we present are applicable to unsupervised learn-

ing only; possible limits of supervised learning with STDP have been previously studied by

Legenstein et al. (2005). It is also possible that a pattern embedded in a modulating firing rate

stimulus may be learnt differently.

3.4.1 Functional consequences

We have adduced that different stimulus features are learnt by a neuron, so it is pertinent to

consider their functional consequences. For example, it would be advantageous for resources

if synapses which are depressed—and determined not to carry information—were eliminated.

However if this was to occur, our results predict that a neuron may either not fire at all or fire

with a much greater latency due to the reduction in background activity. Furthermore, even

after learning a stationary patten, a neuron’s ability to respond to the pattern may drop sharply

with spike timing permutations of ≈2–3ms, even if only a relatively few number of spikes are

changed. However, researchers have commented that the vast amount of input typically found

on neurons may take part in many beneficial mechanisms (Shu et al. 2003; Bernander et al.

1991; Hirsch et al. 1998). Bernander et al. (1991) for example, found that as background firing

rate increases, a neuron’s ability to act as a coincidence detector also increases. Furthermore,

Hô et al. (2000) postulated that background activity keeps a neuron in a highly responsive

state, which our results support: the background activity allows the detection of normally sub-

threshold activity, viz. the relatively smaller subset of learnt synapses presenting a pattern.

Wolfart et al. (2005) further postulated that their results support an idea that the control of

information transfer could be through a change in background activity intensity. It seems that

these two mechanisms are crucial for pattern learning with STDP within the protocol used in

this study.
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Sequence learning
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4.1 Introduction

Synfire chains are a possible mechanism proposed to reproduce observed delays in vivo. They

consist of feed-forwardly connected populations of cells. Activity propagates from population

to population in a synchronous manner which can be shown to be a stable and precise process

when the compound post-synaptic potential caused by neurons in one population converging in

the next population is significantly larger than the noise level (Abeles 1991; Wennekers 2000;

Wennekers and Palm 1996). As activity can travel through a synfire chain in the same manner

many times, the delay between two neurons along the chain is fixed, as observed originally

in the experimental recordings. Abeles’ synfire chain model has homogeneous axonal delays

between populations, an assumption that can be relaxed to include an axonal delay distribution.

Connections may then straddle intermediate populations. Such a set-up was called a “synfire

braid” by Bienenstock (1995). Izhikevich (2006) has shown that similar connectivity and acti-

vation patterns (called “polychronous waves”) can be generated in networks of spiking neurons

as a result of random excitation and a learning rule that depends on pre- and post-synaptic

spike-times (STDP, “spike-timing-dependent plasticity”, cf., (Bi and Poo 1998; Morrison et al.

2008)).

Experimental support for synfire chains is difficult to obtain as one needs to simultaneously

record from many neurons at once in order to find correlated pairs. Current techniques are lim-

ited to record from up to a few 100 sparsely located neurons and are at best able to record a few

neurons from a chain. Nevertheless, precisely repeating firing patterns have been observed (Prut

et al. 1998; Nádasdy et al. 1999; Ikegaya et al. 2004). For example, Ikegaya et al. (2004) de-

scribe precise repetitions of spontaneous patterns in neocortical neurons in vivo and in vitro and

Nádasdy et al. (1999) found repeating spike sequences in awake and asleep rat hippocampus.

It has further been shown that sequences can be related to a monkey’s behaviour (Prut et al.

1998; Shmiel and Drori 2006). Prut et al. (1998) observed both (1) precise firing sequences in

cortical activity which spanned hundreds of milliseconds and (2) their correlation with animal

behaviour in one study. Hahnloser et al. (2002) also reported repeating spike-patterns in the

song-system of birds that are clearly related to syllable generation. More recently, Ayzenshtat
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et al. (2010) described spatio-temporal patterns within and across early visual areas that con-

tained enough information to reliably discriminate between stimulus categories. Some of these

findings, however, have been challenged. For example Mokeichev et al. (2007) re-examined the

observation of repeating spontaneous patterns and suggest that they may not be significant but

appear by chance. Furthermore, even though the precisely repeating firing patterns could be the

result of synfire chains, these patterns do not ultimately prove the existence of synfire chains.

A question following these ideas is “how can synfire chains form?”. Early attempts to de-

rive them in neural networks subject to some kind of self-organisation have been moderately

successful. Bienenstock and Doursat (1991), for example, reported that exciting neurons syn-

chronously in a random network could lead to the formation of synfire chains. Another study

by Hertz and Prugel-Bennett (1996) also attempted to learn synfire chains in random networks

but found that closed loops formed. These loops are a problem as once activity enters a loop

it never exits again; consequently, activity may never propagate fully through a synfire chain.

In these studies, the total synaptic strength for a neuron’s efferent synapses was limited; if this

was not the case, connections would strengthen uncontrollably. A more recent study by Izhike-

vich (2006) used STDP in spiking neuron networks subject to unspecific random excitation. In

these very large scale simulations complex recurrently connected web-like structures of specific

synaptic pathways formed that carried repeating “polychronous waves” with many properties

of synfire chains, but a broad distribution of possible delays between neurons. In the more ab-

stract set-up of Markov chains, Wennekers and Ay (2003) also demonstrated the formation of

web-like nested transition structures in the joint state space of N units using timing-dependent

plasticity. These transition structures could be linked to finite state automata (Wennekers and

Ay 2005) which suggests that they could be employed for neural state-based computations. An

alternative hypothesis for computing with polychronous waves has been suggested by Izhike-

vich (2009).

In this chapter we took a different approach to learn synfire chains assuming that they may not

form autonomously in a network, but rather by spatio-temporal driving activity which may come

from other areas or the sensory surfaces. Repeated inputs could cause their target neurons to
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learn a specific firing pattern. Essentially, we attempted to recognise a repeated spatio-temporal

pattern with a sequence of neurons. When successful, several neurons respond one after the

other, each recognising a segment of the input pattern. The learning of short repeated spatio-

temporal patterns has been studied and analysed previously (Masquelier et al. 2008, 2009; Hum-

ble et al. 2010) in chapter 3. It has been shown that a neuron with STDP is able to learn and

respond to the beginning of a repeated spatio-temporal pattern even when it is embedded in

a statistically identical carrier signal. Furthermore, Masquelier et al. (2009) reported that if,

instead of one neuron, several neurons are competing for the ability to respond and learn the

pattern, they each learn a segment of the pattern. When inspecting the whole learnt pattern,

however, a limitation becomes apparent: each neuron is responding to a unique learnt segment

of the input regardless of when it appears. Therefore one could take an input pattern, switch the

segments around, and the same neurons in the trained network would fire, albeit in a different or-

der. We therefore were interested in whether it was possible to learn the order of the responses.

If so, the network would learn to recognise a spatio-temporal input pattern in such a way that a

chain of activity in the trained network would only propagate if a specific spatio-temporal input

pattern supported it from the beginning to its end.

To learn temporal order, it seems natural to introduce plastic lateral connections which reinforce

and prime a subsequent neuron’s firing. A neuron will then not only rely on the input pattern

but also on previously responding neurons. We found that by including lateral connections with

STDP the model could learn the order of neural firing activity and it was possible to have an

’accepting neuron’ that only responded if a learnt pattern was presented fully, thereby signalling

when the whole pattern was contained in the input stream.

Such a set-up is analogous to finite state automata where an accepting state is reached only

if previous states are transitioned correctly. The currently firing neurons represent “the state”

of a recogniser for the input pattern and the momentary inputs act as “symbols” that drive the

recogniser through its states. If at the end of the input the final neurons of the synfire chain

fire, this signifies that the sequence of input symbols has been recognised correctly. This is

functionally a simple finite state automaton with no loops in the transition graph. In Wennekers
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and Palm (2007) and Wennekers (2006) the authors argued how more complex neural systems

of this sort can be systematically constructed.

In the present work we take a step towards algorithms that can learn spiking neuron automata

with accepting states/neurons. We present a learning scenario whereby a biologically based

learning rule learns temporal sequences comprised of several neurons firing one after another.

Furthermore, we find that by using plastic lateral connections our network’s neurons can learn

to respond only when temporally appropriate. This differs from previous work such as that

of Masquelier et al. (2009; 2010) and the previous chapter because we include plastic lateral

connections.

The chapter is organised as follows. The next section introduces distinct methods from those

described earlier. Section 4.3 presents the main results split into several subsections. At first,

proof-of-concept simulations for sequence learning and recognition are given followed by some

analyses of parameter dependences. It is then shown that previously learnt chains can be se-

quenced into longer chains. It is argued that learnt chains contain a high amount of information

and a certain robustness against variations in the speed of stimuli. Factors that limit robustness

and memory capacities are discussed. The discussion section finally puts the results into a wider

context and outlines their relevance for state-based neural computing architectures.

4.2 Methods

4.2.1 Network structure and setup

The research presented in this chapter uses an extension of that presented in common methods.

See table 4.1 for a table of parameters for this chapter.

The network comprised N=20 excitatory neurons with one inhibitory neuron providing winner-

takes-all competition: see Fig. 4.1. The size of N can be small, if only short sequences are

to be learned. The excitatory neurons were laterally connected to all other excitatory neurons

with synapses that were plastic throughout a simulation. The input synapses, Jin and Jnoise, and

lateral synapses, Jlat, are plastic for the duration of the simulation.

The inhibitory neuron was an integrate and fire neuron with the same parameters as the exci-
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Figure 4.1: Network structure with several excitatory neurons (+) and one inhibitory neuron
(−) with corresponding excitatory (triangle) and inhibitory (circle) synapses. Ex-
citatory neurons are connected to one another with plastic mutual connections.
They are in competition with each other via the one inhibitory neuron. Each exci-
tatory neuron receives input consisting of a total of Ninput=2000 afferents. Half of
these alternate between presenting a repeated spatio-temporal pattern (for 50ms)
and Poisson input (for at least 50ms). The other half continuously present Poisson
trains. This input is presented to each of the excitatory neurons, however, across
the excitatory neurons the input has only the repeated spatio-temporal pattern in
common as the alternating and continuous Poisson trains are different. Further-
more, the repeated spatio-temporal pattern is presented to each neuron at the same
time. All input synapses and lateral synapses are plastic. One pathway including
input, excitatory lateral and inhibitory competition is emboldened for clarity.
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tatory neurons. For convenience, inhibitory synapses had the same dynamics than excitatory

ones, but were non-plastic. Likewise, excitatory synapses on the inhibitory cell did not learn.

(Plastic synapses on the inhibitory neuron could be included although because the effect of

these synapses changing could interfere with the competition–a potentially useful phenomena–

this was left for future research.) Their values were all identical and set such that a spike in

the excitatory network reliably triggered activity in the inhibitory neuron as well. Inhibitory

synapses also had identical weights and were set such that a spike of the inhibitory neuron re-

liably suppressed firing in the excitatory sub-network for typically a few milliseconds after the

firing of an excitatory neuron (“winner-takes-all” mechanism).

4.2.2 Weight normalisation

Similar to previous synfire chain learning studies, we included weight normalisation, Eq. (4.1),

so that the total excitatory lateral input to a neuron was no greater than W L
max=50. The value for

W L
max was found experimentally, c.f., Fig. 4.5.

wi =


wi

∑wi
W L

max if ∑
n
i=1 wi >W L

max

wi if ∑
n
i=1 wi ≤W L

max

(4.1)

4.2.3 Simulations

Unless otherwise stated, training is run for a fixed duration of 200s, at which time weights

have practically converged (Fig. 4.5). After training, the network performance is tested. We

distinguish between ‘learning of a pattern’ and ‘learning of a sequence’. This corresponds

roughly to training of the feedforward and the recurrent synapses, respectively:

A spatio-temporal pattern counts as learnt if a fixed set of neurons responds reliably to segments

of it. Neurons are considered part of a trained chain only if they fire with a probability of at

least 50% during repeated presentations of the input pattern in the test phase. The majority of

neurons are much more reliable than 50% after training.

A sequence counts as learnt if the pattern is learnt (as described above), none but the first
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Table 4.1: Table of parameters

Parameter Description Value
Ninput Number of input afferents. 2000

I Input. -
Iin Input transmitting the repeated pattern. -

Inoise Input not transmitting the repeated pattern. -
dt Euler-integration time step. 0.1ms
τm Membrane time constant. 10ms
θ Firing threshold. 1
θr Rise time constant for alpha function. 1ms
θ f Fall time constant for alpha function. 5ms
Sr Rise synaptic current of alpha function. -
S f Fall synaptic current of alpha function. -

f (τ) STDP function. -
τ Temporal distance between pre- and postsynaptic activity. -
τp Potentiation time constant for STDP function. 20ms
τd Depression time constant for STDP function. 20ms
Ap Positive learning rate. 0.002×W P

max

Ad Negative learning rate. −Ap×
(

τp
τd

)
×λ

λ Parameter adjusting the proportionality of the learning rates. 1.05
W P

max Maximum synaptic weight for input afferents. 1/Ninput
N Number of excitatory neurons. 20
Jin Input synapses for Iin. -

Jnoise Input synapses for Inoise. -
Jlateral Lateral synapses. -
W L

max Maximum synaptic weight for lateral afferents. 50

neuron fires with recurrent input switched off in response to the learned pattern, but they do fire

in fixed order with recurrent synapses present. This implies that both the feedforward and the

recurrent input into a neuron are needed to make it fire. A sequence counts as recognised during

a presentation if all neurons of a learnt chain fire; this signals that a complete pattern has been

seen by the network.

Due to the Poisson spikes on 1000 input lines and additional 10Hz background spikes on all

synapses, learning and retrieval are stochastic processes. Therefore, after training, neurons do

not respond 100% reliable to the input pattern, but missing and spurious firings may occur

caused by the random background input. This causes sequence recognition to fail and becomes

more severe for longer sequences.
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Figure 4.2: Typical raster plot of output spikes in response to 10 presentations of a trained
sequence. After learning a repeated pattern of 50ms duration, neurons in the net-
work responded to unique segments of the pattern. The cumulative responses of
ten pattern presentations are shown, with jitter in the response times visible. The
jitter in response latencies increases through the pattern as the variance is cumula-
tive. Here, the order of firing is E→O→D→T→P→M→S→B→R→Q and each
neuron responds in each trial but some spikes are printed on top of each other.

4.3 Results

4.3.1 Pattern learning for nearest-neighbour STDP

After learning a pattern with nearest-neighbour STDP, a set of neurons typically respond at

different times during a pattern enforced by the winner-takes-all mechanism, see Fig. 4.2 for

an example. The figure shows the cumulative spikes of ten neurons (Q to E) over time for ten

presentations of the trained pattern starting at time zero. Each line contains ten accumulated

firings (black dots; some printed on top of each other) reflecting proper sequence recognition

for each individual pattern presentation.

Note that noise in the model is high – more than 75% of all spikes are noise spikes, because half

of the input lines carry pure Poisson spike trains, the actual 50ms training patterns are shorter

than the periods of intermittent noise between their presentations, and there is an additional
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Figure 4.3: Three chains learnt with nearest-neighbour STDP. A is a relatively long sequence
consisting of 10 neurons whereas B and C are shorter. In C, two chains were
learnt; when the pattern was presented, two sets of neurons responded in sequence.
Double-line neurons are accepting neurons. Only synapses that are greater than 5%
of W L

max are displayed as these were deemed the most important.

10Hz Poisson noise on each synapse. Therefore, even after training finished, the membrane

potential fluctuations (not shown) are large such that the spike times in Fig. 4.2 display a con-

siderable jitter. The distribution of response times becomes greater later in the pattern. The

first neuron responds after about 15ms reflecting the combined membrane and synaptic time-

constants. These spikes are driven by the forward inputs only and quite reliable. Subsequent

neurons fire in quicker succession driven by feedforward and recurrent input. Later spikes reveal

a larger jitter because they rely on the feedforward input noise and the already jittered recurrent

spike times. The large noise limits the recognition rates that can be reached (see section 4.3.4).

We found that with nearest-neighbour learning recurrent synapses between successive neurons

were strengthened, leading to chains where each neuron in a sequence primed the next (Fig. 4.3).

Sometimes multiple chains would be learnt (Fig. 4.3C), each responding to the same pattern.

In such a case, all chains respond simultaneously to a pattern. This situation becomes more

prominent when the number of neurons is increased. A 50ms pattern requires only a relatively

small number of neurons to be represented (on average five). A significantly larger number of

neurons then allows for multiple representations.

4.3.2 Convergence of Learning

Input to the model is stochastic. Even after long simulation times synaptic facilitation and

depression events can happen by chance at individual synapses. Therefore, strictly speaking,

weights never converge to deterministic limits but remain fluctuating even though with poten-

tially small standard deviation. Whether, well-defined asymptotic weight distributions exist is
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Figure 4.4: Weight changes over time for lateral excitatory synapses during learning. Only
10 synapses are depicted for simplicity. After 15s the pattern is already learnt,
although the weights do not fully stabilise until about 200s.

likely, but given that winner-takes-all dynamics are difficult to understand those are difficult

to predict. Beyond this general remark, Fig. 4.4 provides some insight into the learning dy-

namics of the recurrent connections (aspects of training the feedforward synapses are studied

in (Masquelier et al. 2008; Humble et al. 2010) and the previous chapter).

Synapses start randomly initialised in a range [0,W L
max/N] with N=20. Because total depression

exceeds total excitation in the STDP learning curve, pure random spike trains depress synapses

when output neurons fire noise-driven. This happens during the first few seconds of the sim-

ulation (cf. (Masquelier et al. 2008; Humble et al. 2010)). The repeating pattern counteracts

this weakening, leading to the development of specific feedforward synapses for segments of

the input in some output neurons. Subsequently recurrent synapses develop that chain output

neurons together according to the temporal structure in the input.

The amount of time required for a network to learn a pattern according to our 50% criterion

is a few seconds (simulated time) given the parameters in section 2. Sequences were learnt in

between 10 and 20s, or at most 100 stimulus presentations. The mean length of learnt sequences

was 5 neurons. The learning of weights continues after the sequence is learnt (15s in Fig. 4.4);

weights stabilise much later (200s in Fig. 4.4). After learning, lateral weights had values close
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to zero or the maximally possible value.

4.3.3 Effect of lateral weight bounds

To analyse the effect of W L
max on learning we varied the parameter and measured the percentage

of neurons, which had learnt a pattern that responded with severed lateral connections (Fig. 4.5).

When W L
max was increased the percentage of neurons that responded within the pattern without

lateral connections decreased. In other words, as W L
max increased a neuron depended more on

precedent neurons. Specifically, when W L
max was low (W L

max=5), 80% of neurons responded with-

out lateral synapses, however this decreased to≈25% with stronger lateral synapses (W L
max=55).

Furthermore, very strong lateral synapses (W L
max ≥60) interfered with the common Poisson in-

put as they had a relatively strong efficacy towards a neuron’s firing and therefore impeded with

the learning.

When W L
max=50, the start neuron was routinely the only neuron which responded without lateral

connections. Furthermore, we found that an accepting neuron only responded when a pattern

was presented in full. For example, if a pattern was reversed a chain’s last neuron (and usually

many more) would not respond. This effect was independent of the number of neurons and only

depended on the absolute value of W L
max.

4.3.4 Impact of other model parameters on learning and retrieval

Over 30 trials the success rate for learning patterns was 100% meaning that a reliable set of neu-

rons practically always developed that reflects segments of the input patterns. These segments

can then be chained in to a sequence to represent the entire pattern. However, this does not

imply that individual neurons respond 100% reliably to their respective input segments. Given

the large noise in the system, even after long learning periods a residual probability for missing

or spurious firings remains. For sequence retrieval the probability of errors accumulates, which

leads to a success rate for learning sequences of 62% given the parameters used.

The noise level can be adapted by changing the background firing rate or the number of back-

ground inputs. This, however, is possible only in limits due to the special nature of the model:

the input noise is integrated over time by the membranes where it forms temporally correlated
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Figure 4.5: Effect of W L
max on a neuron’s dependence on previous neurons. As the maximum

strength of lateral connections, W L
max, was increased, neurons became more depen-

dent on the input from antecedent neurons. Due to STDP in the lateral connections
the number of neurons responding without strengthened lateral connections de-
creased accordingly.

Gaussian noise (asymptotically for many inputs). Because all neurons receive precisely the

same learning pattern reducing the standard deviation of the noise would make the membrane

potentials of all neurons more and more similar. Noise is needed to break this symmetry and

assign different neurons to different segments of the input pattern (with the additional help of

the winner-takes-all mechanism). On the other hand, increasing the standard deviation of the

noise also increases the error probabilities for spurious and missing spikes during retrieval. This

can in turn lower recognition rates. Therefore, small changes in the background firing rate are

theoretically tolerable however in practice even small changes, ±5Hz, can negatively affect the

learning of patterns/sequences.

Changing the pattern duration has previously been studied by Masquelier et al. (2008). Masque-

lier and colleagues found that as pattern duration increased the performance of pattern learning

dropped to 59% with 100ms and further to 46% with 150ms; this effect would impede the

learning of chains in this study and we therefore kept pattern duration at 50ms. The decrease is

due to the STDP rule which depresses synapses if they see Poissonian input and output spikes,

because overall LTD dominates LTP in the learning rule. A pattern embedded in noise must
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therefore appear sufficiently frequently in order to facilitate synapses. As patterns get longer

their presentation frequency decreases, which impairs learning.

The number of competing neurons (N) could be changed, but increasing the number too much

interferes with learning for similar reasons as longer patterns: During the initial learning phase

more neurons compete for a segment to learn, such that they respond less often because com-

petitors do. Thereby the chance for facilitation becomes reduced and depression dominates.

Overall the parameter dependences discussed in this section suggest that the original model

from (Masquelier et al. 2008, 2009) can be improved for optimal sequence learning. We come

back to this point in the discussion.

4.3.5 Results for all-to-all STDP

When all-to-all STDP is used instead of nearest-neighbour STDP, more than one outbound/in-

bound connection per neuron was strengthened (Fig. 4.6). For example, if A→B→C→D was

learnt with nearest-neighbour spike STDP, all-to-all STDP would add A→C and B→D, and

possibly A→D, if the temporal window of the learning rule and the spike-times allowed for

this. As with the last chain in Fig. 4.3, the connections do not always form in one single ordered

sequence, but more complex situations are possible. For example, three accepting neurons are

present Fig. 4.6A: neuron O will respond if the entire pattern is presented and neurons D and H

will respond when the majority of the pattern is presented. However, these cases were rare and

the majority of chains had one accepting neuron as in Fig. 4.6B. The presence of more than one

accepting state was due to some neurons responding only just above 50% accuracy. In Fig. 4.6A

for example, neurons D and O would not respond 100% of the time and in the cases where they

did not respond neuron H was the final neuron.

4.3.6 Training more than one pattern at a time

Next we looked at presenting two patterns to see if more elaborate chains could form. The

patterns were randomly presented but always non-overlapping. We usually found that both

patterns were learnt (Fig. 4.7), although sometimes only one of the patterns was learnt. In

addition to a neuron learning one pattern, some neurons learnt both patterns and took part in
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Figure 4.6: Two synfire chains learnt with all-to-all STDP. With all-to-all STDP, more
synapses were strengthened resulting in some connections straddling subsequent
neurons. For example, in (A) neuron C not only receives input from the previous
neuron, L, but also J, M and T. The same is found in (B) where N not only re-
ceives input from the previous neuron, J, but also from B and L. Furthermore, it
is possible to have more than one accepting neuron as in (A) where all D, H and
O are accepting neurons. This is not always the cause though: in (B) only K is
an accepting neuron. Double-line neurons are accepting neurons. Only synapses
that are greater than 5% of W L

max are displayed as these were deemed the most
important.
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both chains. Networks therefore were often complicated with multiple pathways.

As several lateral connections now drove each neuron we analysed the strength of these synapses:

generally the more direct the connection the stronger the synapse. In a chain A→B→C for ex-

ample, the synapse between A and B would usually be stronger than that between A and C.

Synaptic strengths are indicated in figures 4.7 and 4.8 to illustrate the fact.

4.3.7 Concatenating chains by training

In the previous sections we learnt only short patterns. The length of patterns can in principle

be increased, but we tested an alternative option: the chaining of already learnt segments. For

this purpose two patterns were stored as before, but in a second phase the two patterns were

repeatedly presented consecutively. This allowed two chains to connect, see Fig. 4.8 for an

example. If before learning two patterns were recognised by two unique chains, then the end of

one would be linked to the beginning of the other. Still, recognition of the individual sub-chains

remained possible using appropriate entry and exit nodes along the combined chain.

This mechanism in principle allows to train sequences hierarchically and potentially also to

form more complex graph-like structures from simpler elements.

4.3.8 Notes on Memory Capacities

It may seem that using 20 neurons to store two patterns makes inefficient use of resources. This,

however, deserves further consideration. Observe that two types of connections in the model

store information, the feedforward synapses and the recurrent connections in the output layer.

Each trained neuron in the output layer responds specifically to a short segment in the input of

length roughly similar to the duration of post-synaptic potentials; this is the time over which

synaptic integration efficiently takes place in the feedforward synapses, and it is of the order

of 10ms. Segments coded by subsequent output neurons overlap to some degree (see Fig. 4.2

where distinct output neurons fire about every 5ms).

The output network therefore basically uses a one-out-of-N code to represent short segments of

the full spatio-temporal input pattern. If two spatio-temporal patterns each of 50ms duration are

stored in 20 neurons this gets quite close to the maximally possible number of segments. The
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Figure 4.7: Synfire chains learnt for two patterns, orange and yellow, presented separately to
the same network. In A, each pattern is recognised by a different set of neurons.
In contrast, the patterns in B are both recognised with two overlapping pools of
neurons. The strength of synapses is represented by edge colour and thickness;
for example, a thick black edge represents a strong synapse. If many synapses are
strengthened they will all be relatively weaker than if only one was strengthened
(due to weight normalization). For example, in (A) F only has one afferent and is
relatively stronger than the three afferents to A. Double-line neurons are accepting
neurons. Only synapses that are greater than 5% of W L

max are displayed as these
were deemed the most important.
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Figure 4.8: A long chain formed from two shorter ones each recognising a different pattern.
After learning the two patterns separately, they were presented in succession: pat-
tern two → pattern one. The end of pattern two connected to the beginning of
pattern one. The strength of synapses is represented by edge colour and thick-
ness; for example, a thick black edge represents a strong synapse. Double-line
neurons are accepting neurons. Only synapses that are greater than 5% of W L

max
are displayed as these were deemed the most important.
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pattern capacity of a one-out-of-N code is α := P/N = 1 or, informally, as many segments P

can be represented as there are neurons, N. The recurrent connections chain these segments in

the order of their occurrence.

It is known from theories of associative memories that sparse codes can have a much higher

pattern capacity than dense codes and one-out-of-N codes. For example, the memory capacity

of the Hopfield network with dense memory patterns (that is, a probability of p = 1/2 ones

and minus ones each) is α = P/N ≈0.14, whereas for sparse codes with p percent ones (and

zeros else) the capacity is of the order of α ∼−1/(p log p). As p becomes small this number can

become much bigger than 1 (as compared to a constant of 0.14 in the Hopfield net). Both results

hold asymptotically in very large networks, but approximately also in smaller networks (Palm

1991).

This suggests that a k-winner-takes-all mechanism which selects k output neurons sparsely in-

stead of only one, could be much more efficient regarding pattern storage capacities in the re-

current connections of the output layer. Unfortunately, it is not obvious how to design a neurally

plausible mechanism that selects k neurons reliably and randomly during learning. Bienenstock

noticed that the number of sets of k out of N neurons grows quickly in the sparse region, which

makes a threshold mechanism to reach a controlled level of activity k and selects the same k

neurons under the same input conditions unreliable (Bienenstock 1995). Also, in a case where

learning is ongoing, some neurons will have already strengthened synapses relative to others

which biases them towards higher firing probabilities and therefore a higher rate to be selected

again. This is not only unwanted because it reduces memory capacities (high capacities assume

independent neurons in patterns) but also in practice often leads to a core of neurons developing

many mutual synapses, whereas other neurons never learn. The problem of designing a reliable

k-winner-takes-all mechanism that avoids these problems has to be left to future work.

The amount of information contained in the forward synapses of the network is also quite close

to a theoretical limit given a one-out-of-N code in the output layer. Note that given firing rates of

roughly 50Hz (or 1 spike per 20ms) in the spatio-temporal patterns to learn, a neuron fires with

probability 1/2 in a segment of about 10ms duration. Because binary patterns with independent
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0/1-entries and p=1/2 contain maximally possible information, the learnt segments per output

neuron in our model have a high information content close to maximum. This, of course is only

an estimate; a more elaborate theory would have to take threshold and noise levels into account

as well as jitter in spike times. Note also that again, sparse patterns in the input and output

layers may potentially increase the pattern capacity or total information stored in the forward

synapses.

4.3.9 Invariance against Stimulus Speed

Earlier work implies that it is possible to reach a certain amount of invariance in pattern recog-

nition if the speed of the input pattern is changed. This may require an adjustment of the firing

thresholds (Wennekers and Palm 1996; Wennekers 2000).

Figure 4.9 demonstrates the main mechanisms. Sub-plot A shows spike times of three consec-

utive neurons in the output layer, which for simplicity are assumed to fire at regular intervals.

Each firing requires feedforward input from the spatio-temporal driving pattern. This is indi-

cated in sub-plot B where the solid line applies to spike i+ 1 and the dashed line to spike i.

These post-synaptic potentials are caused by brief segments before the spike that utilise trained

pattern-specific synapses. After a spike in neuron i, the inhibitory loop is triggered as well as

an excitatory post-synaptic potential is elicited on neuron i+ 1. The superposition of both is

exhibited in sub-plot C. Sub-plot D shows the sums of the feedback inhibition and feedforward

(ff) and feedback (fb) excitation for neurons i (dashed) and i+1 (solid). The neurons fire where

the sum reaches the firing threshold (solid circles). The spikes times in A and the threshold

crossing in D coincide for reasons of self-consistence.

Now assume that the input is slightly slower (or faster). In that case the curves in B will be

slightly stretched and lower (or compressed and higher), whereas those in C stay the same.

This will furthermore lead to slight changes in the summed curves in D, however, as long as

the changes are small, the curves and changes are continuous. Therefore, the threshold can be

slightly adapted to have neuron i+1 fire at a slower (or higher) speed as required by the input.

Simulations actually show that the system tolerates a certain amount of noise in the input, which

implies that the system is stable; for small enough speed changes a threshold adaptation is not

66



4.3. RESULTS

Figure 4.9: Robustness against input speed variations. A) shows spikes in three consecutively
firing output neurons. These spikes are partly caused by specific feedforward input
(B) and the recurrent feedback connections (C). The dashed post-synaptic poten-
tial in (B) contributes to the firing of neuron i, the solid line to i+ 1. C) shows
excitatory-inhibitory post synaptic signals on neuron i+ 1 due to specific excita-
tory feedback (fb) from neuron i and the global inhibition also triggered by the
firing of neuron i. (D) The feedforward and feedback signals superimpose on the
output neurons and cause spikes where firing thresholds are crossed. These times
must be the same as in (A) for consistency. If an input gets (slightly) faster than
during training signals in B get compressed in time but larger in amplitude, which
(slightly) moves the threshold crossing. By continuity, threshold variations can be
used to speed up (or slow down) the recognition speed in the output network.
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required. Changes of <±5Hz are tolerable however greater variations impact pattern/sequence

learning.

Even though the above analysis applies to the model in this chapter, the speed changes that can

actually be tolerated are quite small for two reasons. At first, the rise times of the post-synaptic

membrane potentials are small only (a few milliseconds). Because the threshold crossing caus-

ing the firing of neurons must fall on the rising edge, the maximum amount of speed tolerance

is thereby limited. A second limiting factor is the large input noise for the parameters used in

accordance with previous works. The input noise causes large membrane fluctuations which

have an impact on the stability of wave propagation. On one hand, in order to allow any reli-

able retrieval, the threshold should be more than one standard deviation of the noise below the

maximum in the summed potentials in Fig. 4.9; otherwise a neuron in the chain may miss firing

by a significant probability which would terminate the chain. On the other end, the threshold

must also be sufficiently bigger than the sum of both the feedforward and feedback excitation,

again, by more than a standard deviation of the noise. Otherwise neurons may easily get excited

randomly. It turns out that given the parameters used in the simulations the noise is so large that

this leaves only a relatively small region for proper threshold settings. This is, for example, also

indicated by Fig. 4.2 where even with a properly set threshold, spike jitter of output neurons

in repeated simulations are around a few milliseconds, much comparable with the rise-times of

the post-synaptic potentials.

Finally let us briefly mention that the above picture is not entirely complete. It leaves out a

(constant) potential offset due to the Poisson inputs, membrane potential resets of the leaky-

integrate-and-fire neurons after firing, and the fact that the recurrent inhibition acts globally.

These effects have an impact on the precise shape of the membrane potential and firing times

but do not change the main arguments qualitatively.

4.4 Discussion

It has previously been found that several neurons can learn to recognise different sections of a

repeated spatio-temporal pattern (Masquelier et al. 2009). We studied whether it was possible to

join these consecutively firing neurons into an ordered chain that recognises a spatio-temporal
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input pattern. Using both nearest-neighbour and all-to-all STDP it was possible to form chains

using a simple network of excitatory neurons laterally connected and one inhibitory neuron

providing winner-takes-all competition.

Previous attempts to learn synfire chains (Bienenstock 1991; Hertz and Prügel-Bennett 1996;

Hosaka et al. 2008) have set up random networks and some have excited neurons synchronously

to strengthen connections. Our approach was different: we had a simple network that was driven

mainly by a repeated spatio-temporal pattern where all excitatory connections were plastic for

the duration of a simulation. Furthermore, a major limitation of some previous studies was that

cyclical chains could form. When present, these closed loops interfered with the learning of long

chains as once activity enters a loop it does not exit. None of our chains had cycles because the

network was driven by a specific stimulus instead of random activity as with previous studies.

This stimulus driven set-up deterred the formation of loops because the repeated patterns were

separated by random activity that was not learnt.

An important result of having the lateral connections plastic throughout the learning process was

that subsequent neurons in a chain not only recognised when a pattern segment was presented,

but crucially only did so if the previous neuron had fired as well. The chains are therefore effec-

tively simple finite automata that recognise linear sequences. However, the lateral connections

only had this effect if they were allowed to strengthen enough (Fig. 4.5). When a neuron re-

ceives input through a lateral connection from a precedent neuron, this increases the membrane

potential and primes the neuron to fire on appropriate input from the Poisson inputs.

We tested the possibility to learn longer sequences hierarchically from shorter segments repre-

senting two subsequent patterns. The longer chains that formed, included at least one accepting

neuron that only responded if a learnt pattern was presented in full correctly. For example, if

the pattern was reversed or split in half the accepting neuron would not respond. This multi-

ple order dependence on previous neurons allowed for multiple paths through a network to be

learnt.

Given that due to the random inputs firing was to some degree stochastic, the structures learned

using nearest-neighbour learning may be considered to be similar to first-order Markov chains.
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To extend this interpretation of learnt sequences as Markov chains, we found it was possible to

learn higher order chains with all-to-all STDP. These produced neurons which not only relied

on a previous neuron’s response and the appropriate pattern input, but to a certain extent on

the temporal pattern of activity across several neurons and time-steps. This dependence on

previous neurons reinforced the concept of an accepting neuron only responding if a pattern

had been presented in full.

These results take advantage of the finding in the previous chapter that a neuron with STDP

learns both background activity and stimulus properties. In this case the lateral connections are

modifying the background activity. For example, the background activity is increased slightly

by lateral connections and when these are not present the combination of background activity

and stimulus is not enough to reach threshold. Therefore a neuron is dependent on precedent

neurons. However, it should also be noted, that the level of background activity allows the

control of the speed of activation patterns in synfire chains (Wennekers 2000; Wennekers and

Ay 2006). Such a mechanism can be used to gain a certain invariance against the replay speed

of learned patterns. However, given the high noise level used in the present work (for better

comparison with previous models of Masquelier et al., (2008) the controllable range is only

small.

The high noise level also implies relatively low sequence recognition rates. The noise level,

cannot be simply reduced because as discussed in section 4.3.4 at low noise levels membrane

potentials become more and more similar because all neurons receive the same input. In this

case the winner-takes-all mechanism has difficulties to reliably select only one neuron. Noise

is needed to spread the membrane potential distribution and randomly select output neurons

during learning. If neurons would not all see the same input, the noise level could likely be

lowered and the recognition rates increased. This may improve the performance of the model.

Another drawback of the model is the relatively simple standard STDP learning rule. As men-

tioned in section 4.3.4 and already observed by Masquelier et al. (2008) the rule limits the

maximum length of trainable patterns. In response to Poisson spikes synapses depress such that

a certain minimum frequency for training patterns to repeat is required to facilitate synapses.
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The inverse of this frequency limits the maximum duration of trainable patters.

The weight normalisation used in our study may be seen as a limitation. However, previous

studies have used similar forms of weight normalisation; it seems to be crucial for the formation

of synfire chains (Bienenstock 1991; Hertz and Prügel-Bennett 1996). Our implementation of

weight normalisation is not local and would therefore require some signalling in biological

neurons. Whether such signalling or weight normalisation is present within neurons is not

known. Furthermore, the calculations for the maximal afferent weight for both input and lateral

synapses (W P
max and W L

max) would also require some, as yet, unknown signalling. However this

would ideally be an “inbuilt” property of neurons. The resource-based STDP rule introduced in

the next chapter addresses this problem.

Another limitation of our network is its small pattern capacity. Neurons can typically not be

trained to participate in more than two patterns. This limitation is mainly due to the non-sparse

input with 1000 inputs representing the signal and another 1000 carrying Poisson noise. The

study of sparse input and output patterns suggested in section 4.3.8 remains an interesting but

open problem. Sparse codes are known to drastically increase pattern capacities in associative

memories (Palm 1991). In the present context they may similarly help with 1) overcoming the

need to have about 20 neurons to recognise “only” 100ms of input and 2) increasing the number

of different patterns stored within a network.

Experimental evidence is accumulating that cortical activity is often sparse and precisely timed

in response to repeating stimuli. Wolfe et al. (2010) review evidence from a variety of species

and cortical areas showing that neurons can respond highly selectively in response to brief

periods of repeating inputs. The selectivity and sparseness is controlled by inhibitory networks

of neurons which also chop the excitatory responses into bursts in the beta frequency range.

Our model acts in a similar way causing sequences of neurons to fire in response to specific

segments in the inputs. The firing activity in the model is rhythmic due to the winner-takes-all

inhibition, ie., the firing of only a single neuron per recognised segment. A k-winner-takes-

all mechanism may reflect the biological situation even closer. Our model, however, has the

additional feature that on top of neurons that recognise single short segments of the input, we
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also utilise lateral excitatory connections to encode longer patterns. It may be worthwhile to

explore this possibility in experiments by stimuli that either support the propagation of activity

(the original pattern) or not (the reverse pattern or scrambled segments). The possibility to stitch

patterns together can also be tested experimentally. In the present work we have only shown

this for two patterns (due to limitations of the learning rule) but in principle chains could be

combined into more complex patterns that may underlie cortical computations.
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Resource-based STDP
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5.1 Introduction

In this chapter we introduce a novel STDP learning rule. The learning rule addresses many

issues that are common with typical STDP learning rules (such as that used in previous chap-

ters). For example, computational and biological synaptic distributions do not match, the lack

of non-potentiable and silent synapses, and computational problems with synaptic competition

and bounds. Before background information is introduced on these limitations some additional

forms of plasticity, that were only briefly mentioned in the main introduction, shall be discussed

in more detail, viz. heterosynaptic plasticity and synaptic scaling.

In addition to typical experiments studying long-term potentiation (LTP), long-term depres-

sion (LTD) (Bliss and Gardner-Medwin 1973; Levy and Steward 1983; Siegelbaum and Kandel

1991; Bliss and Collingridge 1993; Linden and Connor 1995; Nicoll and Malenka 1995) and

spike-timing dependent plasticity (STDP) (Bi and Poo 1998; Wang et al. 2005), several stud-

ies have found so called heterosynaptic plasticity. Heterosynaptic plasticity describes cases

where the induction of one type of plasticity causes the expression of another type. For exam-

ple, previous studies have found that LTP (Bradler and Barrionuevo 1989; Misgeld et al. 1979)

or LTD (Muller et al. 1995; Staubli and Ji 1996; Cowan 1998) can spread postsynaptically to

nearby synapses.

Furthermore, when LTP is induced at afferents, LTD is sometimes induced at other afferents

in Schaffer collaterals (Dunwiddie and Lynch 1978), cortex (Tsumoto et al. 1978; Hirsch et al.

1992), dentate gyrus (Levy and Steward 1979; Abraham and Goddard 1983) and CA3 of hip-

pocampus. The corollary are findings of LTD being induced by LTP in amygdala (Royer and

Paré 2003) and the hippocampus (Wöhrl et al. 2007). In addition, Staubli and colleagues found

that previous potentiation of a synapse would reduce the threshold for induction of LTD (Staubli

and Lynch 1990), however Harvey et al. (2007) found that the induction of LTP at a synapse

reduced the LTP threshold at neighbours (≈ 10µm) for approximately 10 minutes. The direc-

tion and magnitude of plasticity can also depend on the predisposition of a synapse to undergo

plasticity (Chistiakova and Volgushev 2009) and heterosynaptic plasticity has also been found

presynaptically (Kossel et al. 1990; Schuman and Madison 1994). These studies complicate the
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picture of LTP and LTD being correlated with activity. The findings suggest that the induction

of LTP or LTD is dependent on many complex and interlaced mechanisms and signals.

Synaptic scaling is another phenomenon recently discovered, and is a form of homeostatic

plasticity. Synaptic scaling describes the homeostatic regulation of synapses across a neuron.

Blocking a neuron’s activity, or artificially inducing hyperactivity, leads to an increase, or de-

crease, of AMPA receptors (O’Brien et al. 1998; Turrigiano et al. 1998; Watt et al. 2000; Thi-

agarajan et al. 2005; Shepherd et al. 2006; Lissin et al. 1998; Wierenga et al. 2005; Stellwagen

and Malenka 2006; Grunwald et al. 2004; Ju et al. 2004) and NMDA receptors (Watt et al. 2000;

Rao and Ballard 1997; Mu et al. 2003) with a compensatory increase in current for both AMPA

and NMDA receptors (Watt et al. 2000) and increase in insertion of AMPA receptors (Ju et al.

2004; Sutton et al. 2006). These effects last for hours to days (Turrigiano et al. 1998), can be

seen from as early as 4 hours after intervention (Ibata et al. 2008) and have been found to occur

across all synapses (Turrigiano et al. 1998; Thiagarajan et al. 2005; Ibata et al. 2008) and re-

stricted subsets of synapses on a dendritic branch (Branco et al. 2008; Ju et al. 2004; Hou et al.

2008; Sutton et al. 2006; Ibata et al. 2008; Thiagarajan et al. 2005). The majority of studies

are in vitro, however synaptic scaling has also been observed in vivo (Maffei et al. 2004; Desai

et al. 2002; Goel et al. 2002).

Synaptic scaling is not confined postsynaptically and can be found presynaptically. For exam-

ple, a blocking of activity leads to an increase in vesicle recycling (Moulder et al. 2006; Bacci

et al. 2001; Burrone et al. 2002), an increase in the probability of vesicle release (Branco et al.

2008; Petersen et al. 1997) and an enlargement of the active zone and an increase in the num-

ber of vesicles (Moulder et al. 2006) with hyperactivity resulting in a reduction in the release

probability (Branco et al. 2008; Petersen et al. 1997; Moulder et al. 2004).

5.1.1 Issues with typical STDP

Despite these biological findings of complicated interlaced forms of plasticity, common im-

plementations of STDP do not include most of these phenomena; furthermore, STDP-based

learning rules share several computational results which do not agree with those found ex-

perimentally. These include a non-biologically matching weight distribution, the lack of non-
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potentiable synapses and silent synapses, synaptic stability and competition, and the implemen-

tation of synaptic bounds. Each shall now be described with reference to resource-based STDP

results.

Synaptic distribution (Fig. 5.8). Recorded distributions of synaptic strengths are mostly ex-

ponential with a peak near zero; they have long tails with few relatively strong connections but

many weak connections. Such distributions are found for excitatory synapses (Montgomery

et al. 2001; Song et al. 2005; Frerking et al. 1995; Isope and Barbour 2002; Markram et al.

1997; Mason et al. 1991; Sayer et al. 1990; Feldmeyer et al. 2006; O’Brien et al. 1998; Holm-

gren et al. 2003; Thiagarajan et al. 2007) (AMPA and NMDA (Montgomery et al. 2001)), in-

hibitory synapses (Miles 1990; Holmgren et al. 2003) and for quantal distributions (Edwards

et al. 1990), but see Feldmeyer et al. (1999). Furthermore, Sjostrom et al. found that 95% of

synaptic connections were less than a threshold required for LTP (Sjöström et al. 2001) and

Brunel et al. (2004) found—through a computational study—that the distribution of synaptic

weights for optimal information storage was similar to those empirically recorded.

In contrast to biological distributions, computational studies have found synaptic distributions

varying depending on STDP rule use. Specifically, multiplicative-STDP (weight-dependent) in

general produces unimodal distributions with a peak between zero and the middle of the possible

synaptic range (van Rossum et al. 2000; Burkitt et al. 2004; Barbour et al. 2007; Billings and

Rossum 2009; Rubin et al. 2001) whereas additive-STDP (non-weight-dependent) produces

bimodal distributions with a peak near zero and another near the upper bound (van Rossum

et al. 2000; Barbour et al. 2007; Masquelier et al. 2008, 2009; Song et al. 2000; Izhikevich

and Desai 2003; Bush et al. 2010; Billings and Rossum 2009; Câteau and Fukai 2003; Rubin

et al. 2001; Song and Abbott 2001). Furthermore, Gutig et al. (2003) used a learning rule that

allowed them to adjust the amount of weight dependence continuously and showed that the final

distributions are not segregated into either uni- or bimodal, but can be interpolated in between

these two extremes.

Nevertheless, no computational studies using a spiking learning rule have yet produced a synap-

tic distribution that qualitatively matches those found empirically. It has however been postu-
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lated that perhaps both unimodal and bimodal distributions are stable. The unimodal distribution

could represent unlearnt weights, and a bimodal distribution learnt synapses (Toyoizumi et al.

2007). This is still an open topic as one does not know when recording from synapses whether

they are ‘learnt’ or not.

Non-potentiable synapses (Fig. 5.10). In addition to the distributions described above, stud-

ies have found that some synapses appear to be non-potentiable or non-plastic. For example,

Debanne et al. (1999) found that 24% of EPSPs they studied did not show potentiation, and an

identical proportion of non-potentiable synapses have been reported in area CA1 of hippocam-

pal slices (Petersen et al. 1998). Moreover, Debanne et al. concluded that their non-potentiable

connections had been previously potentiated to a saturating level (Debanne et al. 1999).

Silent synapses (Fig. 5.8). When synapses are plastic however, five discrete synaptic states

have been defined (reviewed by Montgomery et al. (2004)): active, potentiated, depressed,

silent and recently silent. Silent synapses are characterised by their lack of AMPA receptors

(they still have NMDA receptors), and for this reason they could potentially be missed by stud-

ies recording synaptic distributions, such as those above, due to technical limitations. Some

studies, however, have considered silent synapses and have estimated the number of undetected

synapses. For example Brunel et al. (2004) included a Dirac delta of silent synapses into an

empirically recorded distribution (Isope and Barbour 2002).

Synaptic stability (section 5.3.5). In addition to whether synapses are silent or not, many

studies have found that after a tetanizing protocol, LTP decays back to a level similar to be-

fore tetanizing. Furthermore, three families of decay curves have been observed and defined

as LTP1, LTP2 and LTP3 with time constants of 2.1 hour, 3.5 days and 20.3 days respec-

tively. (Terming is from (Racine et al. 1983; Abraham et al. 1991) and decay time constants are

from (Abraham et al. 1991, 1993).)

Contrary however, are other studies which find that LTP can be persistent for many months

and even up to a year (Abraham et al. 2002). Moreover, other forms of LTP have been found

intermediate to early and late phases including one protein synthesis independent (Winder et al.

1998) and another dependent on translation but not transcriptional processes (Raymond et al.
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2000).

When taken together these studies suggest that LTP has a myriad of inducing and maintaining

functions and mechanisms with greatly varying time constants, which are not often considered

in computational studies of spiking learning rules. A few exceptions are a study by Billings et

al. (2009) and those by Standage and Trappenberg (2007) and Standage et al. (2007). Billings

and colleagues studied the weight persistence/stability for multiplicative (weight-dependent)

and additive (non-weight-dependent) STDP. They found that additive STDP was fairly stable

with weights decaying with a time constant of 18 hours, however multiplicative STDP was

very unstable with weights decaying with a time constant of just 29 seconds. Furthermore,

they found that even when the stability of receptive fields were studied the additive STDP rule

was still more stable (93 hours) when compared to the multiplicative rule (1 hour); Standage

et al. found similar results. In addition, when Standage and colleagues used a multiplicative

STDP rule the learning was slow, and when the learning rate was increased, rapid forgetting

was prominent due to noise.

There is however a fundamental difference between these computational studies and the em-

pirical findings: the computational studies’ time constants are for decaying exponentials fitted

to autocorrelation functions whereas the empirical findings are decaying exponentials fitted to

actual amplitude traces. Furthermore, whether the empirical studies were done in vitro or in

vivo and the type of activity used computationally could greatly effect the results.

Synaptic competition and synaptic bounds (Figs. 5.8 and 5.10). Synaptic bounds can greatly

affect the outcome of a STDP-based learning rule. For example, computational studies have

found that additive STDP requires hard upper bounds or potentiating synapses will potentiate

forever due to self reinforcement. Another method to control runaway synapses is with mul-

tiplicative (weight-dependent) STDP, which enforces a soft upper bound. Furthermore, multi-

plicative rules have very little synaptic competition (van Rossum et al. 2000) whereas additive

rules have strong competition. Therefore, because learning must be both competitive and stable,

when choosing between additive and multiplicative learning rules one has to consider compe-

tition, upper synaptic bound implementation and synaptic distribution realism (Brunel et al.
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2004).

If global (hard or soft) upper bounds are used, this can constrict synaptic growth as synapses can

only get so strong. Specifically, upper bounds have to be set prior to learning and can therefore

limit learning if not chosen appropriately.

A possible solution is normalisation. Weight normalisation limits only the total amount of

synaptic efficacy allowing for redistribution of synaptic efficacy and permits a setup with no

global upper bounds. Normalisation introduces a simple form of competition that can be ben-

eficial and is used for this reason in some computational studies. This does however lack sup-

porting biological evidence as normalising computations often need to be neuron wide.

Another possible solution is to have local synaptic upper bounds instead of global bounds,

however no computational studies have yet looked at intrinsic synaptic maxima (Standage and

Trappenberg 2007; Standage et al. 2007). Local bounds may also be present in electrophysio-

logical data. For example, it is possible that the synapses in Bi & Poo’s data may not transition

through the total range they recorded from and may saturate at their own maxima.

Weight dependence (section 5.3.6). In addition to a synapse depending on timing for po-

tentiation polarity and amount of change, Bi & Poo (1998) also showed (independently of

spike-timing) that the actual amount of change for depression was dependent on initial synap-

tic strength. This was later reconfirmed under more complicated protocols including triplet

and quadruplet pairing relationships (Wang et al. 2005). Specifically, with spike-timing held

constant, a strong synapse depresses (actual change of pA) more than a weak synapse; this

dependence was not present (or not with such a strong dependence) for potentiation. This is

not the full picture however as studies to the contrary find that LTP is dependent on potentiation

too (Montgomery et al. 2001; Debanne et al. 1999); these studies however do not consider spike

timing.

Several possible explanations have been proposed for these seemingly contradictory results:

• Firstly, the unsilencing of silent synapses and saturating of strong synapses is suggested

to be responsible for the LTP weight dependence (Montgomery et al. 2001; Debanne et al.
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1999), which differs from assumptions underlying Bi & Poo’s data.

• Secondly, a standard computational interpretation of Bi & Poo’s results on weight depen-

dence includes an assumption that the data do not include saturated synapses (Standage

et al. 2007) which could explain the lack of potentiation dependence. However, if the

data reflect saturated synapses, synapses might need intrinsic synaptic maxima as the

synapses may not transition through the total range Bi & Poo recorded from (Standage

and Trappenberg 2007), leading to an extra complication for computational STDP imple-

mentations.

• Finally, it is possible that weight-dependency data reflect non-weight-dependency (Dis-

cussed by Debanne et al. (1999) and Standage et al. (2007)). The apparent weight-

dependence could possibly be an artefact of limitations with the recording equipment

and protocols (Standage and Trappenberg 2007). For example, extracellular stimulation

is commonly used in STDP protocols, however may stimulate many synapses, and while

intracellular stimulation eliminates this problem, neurons in culture may have multiple

synapses between pre- and postsynaptic neurons (Koester and Johnston 2005; Markram

et al. 1997; Silver et al. 2003).

Nevertheless, Bi & Poo’s data suggest that computational STDP rules should include weight

dependence for depression (and not for potentiation); many studies have done just this (Mor-

rison et al. 2008; Standage and Trappenberg 2007; Standage et al. 2007; Kepecs et al. 2002;

van Rossum et al. 2000), but highlight problems with weight-dependent STDP rules such as

synaptic stability and synaptic competition—described above.

These limitations are rarely addressed in STDP learning rules and the phenomena mentioned

above are not reproduced by current learning rules. Although our resource-based STDP learning

rule was not specifically designed to, it addresses all of the above.

5.1.2 Resource-based STDP.

Even though synaptic scaling has been observed as multiplicative (Turrigiano et al. 1998; Goel

and Lee 2007), and thus maintains the relative strengths of synapses stored through Hebbian-
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like learning rules, studies finding homeostatic plasticity on a more local scale suggest that

specific learnt synapses may be overwritten by synaptic scaling: an important computational

problem which has previously been noted by Rabinowitch and Segev (2008). Rabinowitch and

Segev proposed a solution to this with a local homeostatic plasticity mechanism, which has

advantages over global homeostatic plasticity rules. Specifically, they suggest that if a synapse

is potentiated, itself and its neighbours are depressed slightly to counter the increase in local

mean activity. The reverse is also noted: to reflect a slight decrease in local mean activity when

a synapse is depressed, itself and its neighbours are slightly potentiated.

This suggestion by Rabinowitch and Segev is the inspiration for the extension to STDP intro-

duced in this chapter. Specifically, our learning rule includes the following: when a synapse

is potentiated, its neighbours (not itself) are depressed by an amount depending on the neigh-

bour’s distance but totalling the same as the potentiating synapse. Moreover, when a synapse’s

neighbours have been fully depressed—and are therefore lacking in resources—a potentiating

synapse can draw resources from a ‘pool’. We do not include any compensatory change due to

a synapse depressing–its resources are simply placed in the pool. Therefore, as one synapse po-

tentiates, it becomes more specific and its neighbours, less specific. To complete this learning

rule, the pool of resources decays over time (relatively much longer than all other time con-

stants in the learning rule or neuron model). See figure 5.1 for a cartoon depicting the various

scenarios in the learning rule. This resource-based STDP further addresses several phenomena,

described above, that are often not considered in theoretical studies of typical STDP.

In the next section we firstly describe our resource-based STDP learning rule mathematically.

Subsequently in the results section we first study how resource-based STDP compares with a

typical STDP learning rule. Afterwards we show results that are qualitatively similar to those

found experimentally. We specifically show synaptic weight distributions and results for synap-

tic stability, weight dependence and synaptic bounds. Finally we study a singular neuron’s

ability to learn two stimuli with both resource-based and typical STDP.
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Figure 5.1: Resource based STDP has three scenarios: A) a synapse is depressed and its re-
sources enter the pool; B) a synapse is potentiated and takes resources from neigh-
bouring synapses with an exponential-distance dependent function and the pool
remains unchanged; and C) a synapse is potentiated and takes resources from the
pool as its neighbours are depleted. The height of the synapses signifies weight
strength and there is no relation between the pool sizes of A, B and C.
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5.2 Methods

In this chapter we introduce a new STDP learning rule: resource-based STDP. Therefore we

refer to the form of STDP already introduced and used in the previous two chapters as ‘typical’

STDP. The following describes modifications made to typical STDP to formulate resource-

based STDP. See table 5.1 for a table of parameters for this chapter.

5.2.1 Neuron model

In this chapter adaptation is introduced to the neuron model used in the last two chapters: Eq. 5.1

where τa=100ms and β=0.18. When a neuron reaches threshold and spikes, an amount of

adaptation, a, increases slightly. The adaptation has a negative effect on a neuron’s membrane

potential. Therefore, after a neuron spikes it requires more input to reach threshold (the same

threshold as introduced in the methods chapter) and spike again; consequently a third spike

would require even more input. This type of adaptation is used to minimise the number of

successive spikes a neuron can respond with.

τm
dV
dt =−V +S f −a

τa
da
dt =−a

if V ≥ θ then increase adaptation a→ a+β

(5.1)

5.2.2 Resource-based STDP

Heterosynaptic plasticity local to synapses (the sharing of ‘resources’) extends the typical ad-

ditive weight update rule described in the methods chapter (and repeated here for convenience,

Eq. 5.3). Furthermore, a pool of resources is included, P. Similar to many receptors and pro-

teins which undergo degradation, the pool’s resources decay with a time constant of τP=1000ms

(Eq.5.2)
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τP
dP
dt

=−P (5.2)

f (τ) = Ap× exp
(
−τ

τp

)
if τ ≥ 0

f (τ) = Ad× exp
(

τ

τd

)
if τ < 0

Depressing a synapse (A from Fig. 5.1) When depressing a synapse wi by f (τ) if τ < 0, its

resources are relocated into the pool:

P→ P+ f (τ)

wi→ wi− f (τ)

(5.3)

Potentiating a synapse (B and C from Fig. 5.1) When potentiating a synapse wi by f (τ) if

τ > 0, its neighbours are decreased by a function of their distance, x, and the potentiating

amount, fLH [ f (τ),x], to a maximum distance, xmax ≈ 10 synapses, with resources drawn

from the pool if necessary.

As neighbours may not have the required amount of resources a cumulative amount is

used which includes only those resources that are available: Ω. When a neighbour has

enough resources to donate, the full amount is added to Ω and subsequently to the poten-

tiating synapse (lines 2 and 3 in pseudocode and 3a and 3b in equation 5.5). However,

if a neighbour does not have enough resources, the amount they do have is added to Ω

and the rest is taken from the pool (lines 5 to 7 in pseudocode and 5 and 6&7 in equation

5.5). And if the pool does not have enough the potentiating synapse does not get the full

amount (lines 9 and 10 in pseudocode and 8 and 9&10 in equation 5.5).
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1 FOR each neighbour

2 IF enough resources in neighbour

3 move resources directly from neighbour to potentiating synapse

4 IF NOT enough resources in neighbour

5 IF enough total resources in pool

6 move remaining resources from neighbour (depleting it)

to potentiating synapse

7 move resources from pool to potentiating synapse

8 IF NOT enough total resources in pool

9 move remaining resources from neighbour (depleting it)

to potentiating synapse

10 move remaining resources from pool (depleting it)

to potentiating synapse

wi→ wi +Ω (5.4)
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1 for x = 1 to xmax:

2 if wi±x ≥ fLH [ f (τ),x]

3a wi±x→ wi±x− fLH [ f (τ),x]

3b Ω→Ω+ fLH [ f (τ),x]

4 if wi±x < fLH [ f (τ),x]

5 if P≥ fLH [ f (τ),x]−wi±x

6&7 Ω→Ω+wi±x

6&7 Ω→Ω+( fLH [ f (τ),x]−wi±x) (5.5)

6&7 P→ P− ( fLH [ f (τ),x]−wi±x)

6&7 wi±x→ 0

8 else

9&10 Ω→Ω+wi±x

9&10 Ω→Ω+P

9&10 wi±x→ 0

9&10 P→ 0

Specifically, the amount taken off synapse wi’s neighbours is a trapezoidal Riemann

sum of a half-bounded interval [x− 1,x[ for a specific synapse of a decaying exponen-

tial with a time constant τx ≈3 describing the maximum distance to retrieve resources

from (xmax ≈10 synapses). This must be adjusted, ψ , because two sums total the amount

required for potentiating (one in each direction away from the potentiating synapse) and

is adjusted to match the potentiating amount, f (τ).
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ψ = 0.5 1∫ xmax

x=0
e(
−x
τx )dx

f (τ)

fLH [ f (τ),x] = 1
2

[
e(
−x−1

τx ) + e(
−x
τx )
]

ψ

(5.6)

Our typical STDP implementation uses learning rates assigned with λ=1.05 (cf. Eq. 2.4). This

is suited because random activity results in the same number of spike pairings for both po-

tentiation and depression, and thus overall depression slightly dominates (Song et al. 2000;

Izhikevich and Desai 2003; Bush et al. 2010). However with local heterosynaptic plasticity,

depression greatly dominates as every potentiation event is accompanied by an equal amount of

depression (resources permitting); therefore λ has to be decreased. We adjusted λ and found

that learning was best with λ = 0.18. If λ > 0.18, depression dominated too much and a pattern

was not learnt, and if λ < 0.18, potentiation dominated. Essentially, we found the same balance

between potentiation and depression where depression slightly dominates—as with λ=1.05—

however adjusted for resource-based STDP. The resulting new STDP learning window is shown

in figure 5.2.

5.3 Results

Our resource-based STDP (rbSTDP) includes extra computational aspects when compared to

typical STDP (tSTDP); the first set of results will be comparing the two.

5.3.1 Learning rates, speed and accuracy

In order to compare the two learning rules, appropriate learning rates have to be chosen; as

the learning rules have various time constants the learning rate can have a great impact on the

learning. Therefore, we varied the learning rate while recording both the performance (the

percentage of trials where a neuron learnt the stimulus) and the number of pattern presentations

it took until the stimulus was learnt (its learning speed): see figure 5.3. When considering both

the performance and the number of pattern presentations, resource-based STDP learns quicker

for all learning rates and more accurately for most. We kept all other parameters in the learning

rules constant and identical between the two learning rules.
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Table 5.1: Table of parameters

Parameter Description Value
Ninput Number of input afferents. 2000

I Input. -
Iin Input transmitting the repeated pattern. -

Inoise Input not transmitting the repeated pattern. -
dt Euler-integration time step. 0.1ms
τm Membrane time constant. 10ms
θ Firing threshold. 1
θr Rise time constant for alpha function. 1ms
θ f Fall time constant for alpha function. 5ms
Sr Rise synaptic current of alpha function. -
S f Fall synaptic current of alpha function. -

f (τ) STDP function. -
τ Temporal distance between pre- and postsynaptic activity. -
τp Potentiation time constant for STDP function. 20ms
τd Depression time constant for STDP function. 20ms
Ap Positive learning rate. 0.002×W P

max

Ad Negative learning rate. −Ap×
(

τp
τd

)
×λ

λ Parameter adjusting the proportionality of the learning rates. 0.18
W P

max Maximum synaptic weight for input afferents. 1/Ninput
a Adaptation amount. -
τa Time constant for adaptation. 100ms
β Adaptation increment. 0.18
P The pool of resources. Initially 0.
τP Time constant for decay of pool. 1000ms

fLH [ f (τ),x] Potentiating amount in resource-based STDP. –
xmax Maximum distance of neighbours. 10
Ω Cumulative amount of resources. Initially 0.
τx Decay constant for neighbour distance. ≈ 3
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Figure 5.2: STDP curve for learning with resource-based STDP. The STDP curve for the learn-
ing rule being described herein is different from typical STDP functions. This is
because depression dominates as every potentiation event is accompanied by an
equal amount of depression. Therefore, the depression section of the function is
reduced (by reducing λ ) to negate this effect. λ=0.18 produces a STDP window
with a greatly reduced depression half.

The learning accuracy of the rules further depends on whether adaptation is present or not: see

figure 5.4. Resource-based STDP without adaptation performs the most accurately at 100%

and with adaptation this performance only drops to 96%. Typical STDP, with and without

adaptation, performs between 96% and 100%. Accuracy is the percentage of trials where the

stimulus was learnt. For the rest of this chapter we used adaptation with both resource-based

STDP and typical STDP to keep results comparable.

5.3.2 Number of responses to stimulus

We found that—similar to previous studies (Masquelier et al. 2008, 2009)—typical STDP al-

lows a neuron to learn to respond with one action potential near the onset of the stimulus.

Resource-based STDP on the other hand did not respond with only one action potential but

with one or more and needed adaptation to bring the number of responses down to one: see

figure 5.5.
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Figure 5.3: Effect of adjusting the learning rates. Adjusting the learning rates for both typical
STDP rule (tSTDP) and resource-based STDP (rbSTDP) affects the speed and
accuracy of learning. Firstly, it is clear that as the learning rate increases both the
speed of learning (A) and the mean performance (B) increase. More specifically,
the performance of resource-based STDP is greater or equal to that of typical STDP
for most learning rates and learns much quicker (roughly a factor of 5 quicker)
when considering both overall performance and number of pattern presentations
required to learn.

90



5.3. RESULTS

P
at
te
rn

le
ar
n
t
ac
cu

ra
cy

tSTDP tSTDP adapt rbSTDP rbSTDP adapt
0

96

98

100

Figure 5.4: The learning accuracy is different for typical STDP and resource-based STDP.
They further depend on adaptation. Specifically, resource-based STDP without
adaptation has the best accuracy, 100%, and this coupled with adaptation only
drops the performance to 96%. Typical STDP’s performance with and without
adaptation is in-between these two values.
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Figure 5.5: The number of response spikes within the stimulus. With and without adaptation
typical STDP responds with one action potential the majority of the time, however
resource-based STDP requires adaptation to respond with only one action poten-
tial, responding up to four times without adaptation.
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5.3.3 Afferents’ structure

Changing the structure of the afferents can have a negative effect on learning. For example, the

structure can be changed such that there are 1600 afferents with 70% presenting the stimulus,

or there can be 2400 afferents with only 30% presenting the stimulus. But, because STDP

rules and networks have to commonly be set up to learn under strict parameters, such a change

can result in a network no longer learning correctly. Figure 5.6 shows the results of such an

experiment, where we modified the afferents’ structure and recorded how well both typical

STDP and resource-based STDP fair (both with and without adaptation).

As mentioned, implementations depend on set parameters for specific scenarios; in the typical

STDP case, the maximum synaptic weight is set to facilitate learning on 2000 afferents with

50% presenting the stimulus; this could be changed to allow learning of different afferents’

structures however as we are studying how well the learning rule can perform to an afferent

structure that it is not specifically tuned to, we kept this constant. Resource-based STDP’s

parameters are set similarly to accommodate 2000 afferents with half presenting the stimulus.

The results in Fig. 5.6 show that typical STDP is only able to produce an ideal response for a

small subset of afferents’ structures with or without adaptation, whereas resource-based STDP

with adaptation is able to respond ideally across a much greater range of afferents’ structures.

Specifically, a neuron with resource-based STDP is able to learn a pattern when presented on

240 afferents (600 total with 40% presenting the pattern), 2700 afferents (3000 total with 90%

presenting the pattern) and all combination in-between. This is a multiple of more than 11 times

the number of afferents presenting the pattern.

This is not the only advantage of resource-based STDP. It further only needs an approximate

amount of resources set prior to be able to learn the stimulus when presented across a great

range of afferents (320—2700): the initial total amount of resources can change by 15%.

5.3.4 Weight distribution

As described in the introduction empirical and computational synaptic weight distributions do

not match; most biological distributions are unimodal with a peak near zero and have a distinc-
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tive long tail of strong connections with the majority of connections being weak, whereas addi-

tive STDP produces a bimodal distribution. Multiplicative STDP produces distributions which

are unimodal, however their qualitative skew and peaks are dissimilar to empirical recordings.

For example see figure 5.7 where biological and computational distributions are shown.

Figure 5.7A shows experimentally derived distributions which have peaks near zero and tails

with fewer synapses of weaker efficacy even though the four distributions are from different sets

of neurons/neural regions (Barbour et al. 2007). Furthermore, the distribution in figure 5.7B has

the same distribution. This distribution also includes an extra peak at zero of undetected po-

tentially ‘silent’ synapses. These were estimated from data (Brunel et al. 2004). On the other

hand are the distributions resulting from computational studies. Figure 5.7C shows distribu-

tions of multiplicative and additive STDP and as described above they are unimodal or bimodal

respectively. Gutig et al. (2003) further found that these distributions are not mutually exclu-

sive and when they adjusted the extent to which STDP was multiplicative one can interpolate

distributions between these two extremes.

Resource-based STDP, however, produces distributions which are very similar to those recorded:

see figure 5.8. These results compare favourably to those in figure 5.7. Furthermore, without

any mechanism to produce silent synapses they arise out of the resource sharing mechanisms:

compare figure 5.7B with figure 5.8.

5.3.5 Weight stability

As described earlier previous studies have found that weights learnt with an additive STDP rule

are much more stable than those learnt with a multiplicative STDP rule. To this end, we studied

the weight stability of resource-based STDP and found that its stability is very similar to that of

typical additive STDP.

Specifically, similar to (Billings and Rossum 2009), we calculated autocorrelations of individual

weights and fitted decaying exponentials to these. The fitted time constants of these exponen-

tials varied slightly depending on whether a weight was being potentiated or depressed. The

distribution of time constants always had a high peak which we we took as the weight persis-

tence time constant. We found that ordinary STDP decayed with a time constant of≈85 minutes
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A B

C D
Figure 5.7: Biological and computational synaptic strength distributions. A are a collec-

tion of recorded distributions (image from (Barbour et al. 2007)); B is a study
which included undetected, potentially ‘silent’ synapses—the peak at 0 (image
from (Brunel et al. 2004)); C shows distributions for additive and multiplicative
STDP (image from (Barbour et al. 2007)); and D shows distributions interpolating
between additive and multiplicative STDP (image from (Gütig et al. 2003)).
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Figure 5.8: Two synaptic distributions from two trials of 10 neurons learning the same pattern
with resource-based STDP. Both distributions are unimodel with a peak near zero;
they have a large tail, and a very large peak of silent synapses. The difference
between the two is due to differences in the number of learnt afferents in a pattern
and random initial synaptic weights. For example, after learning a neuron may
have potentiated 800 (out of the 1000 presenting the pattern) but it may have also
potentiated just 200; this would affect the tail of the distribution. Each neuron has
2000 afferents so a total of 20000 data points are in each distribution.
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and the proposed learning rule decayed with a time constant of ≈70 minutes.

As was discussed in (Billings and Rossum 2009) the learning rate will have a great effect on

these results. We therefore ran our experiment with the optimal learning rates found in sec-

tion 5.3.1. Therefore both typical and resource-based STDP were tested with their own indi-

vidual optimal learning rates. If we proportionally adjust our time constants to match those of

Billings et al. by matching our typical STDP without adaptation with theirs, resource-based

STDP has a time constant of≈14 hours compared with Billings finding of 18 hours for additive

typical STDP and 29 seconds for multiplicative typical STDP.

5.3.6 Weight dependence

Even though the proposed learning rule does not include any weight dependence, we observed

weight dependence for potentiation: see figure 5.9. During a simulation we recorded weights’

strengths before and after an STDP learning event which would result in potentiation. Because

the STDP curve determines the amount of synaptic change depending on the timing, we know

the amount of ‘required change’ and can therefore calculate the percentage of this amount after

the STDP event. This is the ordinate in figure 5.9 and is different from the ordinate in Bi and

Poo’s figure 5 (Bi and Poo 1998). The difference between ordinates is noted as several papers

have found weight dependence experimentally but use different ordinates.

Figure 5.9 depicts two clusters of data: the cluster with an average lower synaptic weight are

synapses that are not associated with the stimulus but are being potentiated by random (and

subsequently depressed), and the cluster with a higher average weight are synapses associated

with the stimulus. Our results suggest that resource-based STDP endows a weight dependence

for potentiation. Moreover, the weight dependence is not always present as some times synapses

will change by the full required amount, even if they are strong.

This weight dependence is due to a lack of resources; for example, if a synapse is attempting

to potentiate, but the pool is nearly empty and its neighbours are completely depleted, then the

synapse can only potentiate by an amount totalling the resources left in the pool.
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Figure 5.9: Weight dependency from resource-based STDP. A weight dependency was found
for potentiation. The ordinate is percent change of the required amount after pair-
ing (for details, see text).

99



5.3. RESULTS

S
y
n
ap

ti
c
st
re
n
gt
h

t/[s]

0 200 400 600 800 1000 1200
0

1

2

3

4

5

Figure 5.10: During a simulation synapses show plateaus at their own intrinsic upper bounds.

5.3.7 Synaptic bounds

As discussed earlier, many learning rules require global upper bounds (hard or soft) or explicit

weight normalisation to control learning and stop runaway potentiating synapses. Resource-

based STDP however has no set global upper bound and appears to implement a form of in-

trinsic synapse specific upper bound due to a limited amount of resources. Furthermore, due

to the redistribution of resources, the learning rule implements weight normalisation indirectly.

Figure 5.10 shows the learning of synapses during a simulation and depicts synapses saturating

at different strengths.

5.3.8 Multiple patterns

In certain cases it is possible for a singular neuron to learn two patterns. With typical STDP

these two patterns must be presented on relatively few afferents (600 or 800). Resource-based

STDP on the other hand allows a single neuron to learn two patterns with a greater range of

different afferent numbers. See figure 5.11 for results of typical STDP and resource-based

STDP. Fig. 5.11A shows the percentage of trials when a neuron learnt two patterns when the
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total number of afferents was adjusted and 5.11B when the percentage of afferents presenting

the pattern was changed; resource-based STDP was able to learn two patterns across the full

range of number of afferents and percentage of afferents while typical STDP, not.

5.4 Discussion

Due to limitations and missing phenomena when using typical additive exponential STDP learn-

ing rules, we developed a novel resource-based STDP learning rule. We found that resource-

based STDP has many advantages over a typical STDP rule. We further found that it produces

results which are comparable to biological results:

Learning accuracy and speed. Overall, a neuron with resource-based STDP learns as, or more,

accurately than typical STDP. The learning speed is improved by approximately a factor

of five.

Afferents’ structure. Resource-based STDP displays a remarkable ability to allow a neuron to

learn a stimulus presented across great numbers of different afferents (320—2700). More

specifically, this is possible with only one set of parameters (which in themselves can

change 15%). This is a major advantage over typical STDP whereby one must pick a set

of parameter values prior to simulation depending on the number of afferents a stimulus

is presented on and any prior change to these parameter values may lead to a total failure

of learning.

Weight distributions and silent synapses. The weight distributions produced by resource-based

STDP are a favourably better match to those recorded empirically than typical implemen-

tations of additive or multiplicative STDP. Specifically, a typical multiplicative STDP

rule will produce a unimodal synaptic strength distribution with a peak near the mean of

synaptic strengths and a typical additive STDP rule will produce a bimodal distributions

with peaks at the upper and lower bounds. However, biological findings have found that

synaptic efficacy distributions are unimodal with a peak near zero and a long tail of more

potentiated synapses. Such a distribution is also produced by resource-based STDP.

Furthermore, estimates of silent synapses which may be missed by current recording
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Figure 5.11: Comparing the ability of typical STDP with resource-based STDP to learn multi-
ple patterns presented on the same afferents. A) depicts the ability of each learn-
ing rule to learn two patterns when the number of afferents is changed (while
keeping the percentage of afferents constant at 50%) and B) shows the percent-
age of trials when the new learning rule learns two patterns when the percentage
of afferents presenting the pattern is changed (while keeping the number of affer-
ents constant at 1000).
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technology and protocols show similar qualitative results to resource-based STDP. These

silent synapses arise purely from the resource sharing mechanism as their is no explicit

mechanism in the learning rule to produce them. Therefore this presents the hypothesis

that perhaps ‘silent’ synapses found experimentally are the result of a synapse running

out of ‘resources’.

Weight stability and competition. A common problem with typical STDP is the trade off be-

tween weight stability (additive) and weight distribution (multiplicative). Resource-based

STDP produces weight distributions more realistic than multiplicative typical STDP while

still retaining the weight stability of additive typical STDP.

Another common distinction between multiplicative and additive STDP rules are their

synaptic competition. Additive STDP produces strong competition whereas multiplica-

tive rules have little to no competition between synapses. Resource-based STDP is still

additive so retains its strong competition. In fact, the synaptic competition is stronger in

the new learning rule as every potentiation can lead to a potentially unwanted depression

in neighbours.

Weight dependence. As described in the introduction there are many studies finding weight

dependence for depression when spike timing is considered and potentiation when spike

timing is not considered; resource-based STDP has weight dependence for potentiation.

Our results are in accordance with the results of Bi & Poo (1998) because the rule is ad-

ditive for both potentiation and depression; therefore, it is not expected that there would

be a depressive dependence on initial weight strength. Furthermore the dependence for

potentiation is an additional phenomenon predicted by resource based learning rule. This

dependence on resources may be analogous to non-potentiable (run out of resources) and

silent synapses (have had all resources depleted). As suggested previously, it is possible

that weight dependence is not required directly, and perhaps the empirical results suggest-

ing weight dependence are in fact indicative of an additive rule with some other mecha-

nisms producing the results seen (suggested by Standage, et al (2007) and discussed by

Debanne et al. (1999)).
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Synaptic bounds and non-potentiable synapses. Typical STDP can either have global soft

(multiplicative) or hard (additive) upper bounds with the choice greatly impacting the

learning. Resource-based STDP has no such global upper synaptic constraint. Instead,

a synapse can continue to potentiate until no more resources are available. Therefore,

each synapse has its own intrinsic upper bound depending on its initial weight and the

availability and competition of resources from its neighbours and the pool. Such intrinsic

bounds have been considered before (Standage and Trappenberg 2007).

Having no upper bound is an advantage over typical STDP as the upper bound has to be

set prior—with knowledge of the learning process and usually the stimulus—and if set

incorrectly can lead to learning failure.

We also found that resource-based STDP allowed a single neuron to learn two patterns more

consistently and across a greater range of afferents’ structures than typical STDP. Having neu-

rons that learn multiple patterns could be useful in a network; it is possible that a distributed

and sparse code of patterns could be learnt with several neurons in a network representing more

than one pattern.

5.4.1 Possible signalling mechanisms and resource molecules.

Even though our model is phenomenological it is interesting to consider what our resources

could be and what mechanisms could fulfil the signalling requirements. Considering resources,

a very attractive candidate is (among others) AMPA receptors:

AMPA receptors AMPA receptors are strongly implicated in LTP and LTD with a change in

exocytosis (Hayashi et al. 2000; Shi et al. 2001; Carroll et al. 1999; Shi et al. 2001; Taka-

hashi et al. 2003; Bredt and Nicoll 2003; Oh et al. 2006; Park et al. 2006; Serulle et al.

2007; Yang et al. 2008), endocytosis (Carroll et al. 1999; Seidenman et al. 2003; Beattie

et al. 2000; Lissin et al. 1999; Carroll et al. 1999; Collingridge et al. 2004; Derkach et al.

2007; Bredt and Nicoll 2003; Luthi et al. 1999; Man et al. 2000), channel increase (Benke

et al. 1998) and decrease, changes in recycling endosomes that process AMPA recep-

tors (Oh et al. 2006; Park et al. 2004, 2006; Prekeris et al. 1998, 1999; Lee et al. 2001),
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insertion (Sutton et al. 2006) and removal of endoplasmic reticulum and Golgi apparatus

from spines which synthesize proteins for and related to AMPA receptors.

In addition to their critical role in LTP and LTD, AMPA receptors are present in several

pools: (1) the recycling endosomes (Park et al. 2004, 2006) and early endosomes (Rácz

et al. 2004) in/near spines which form part of their constitutive pathway of insertion

and internalization; (2) endoplasmic reticulum and Golgi outposts which are present

throughout dendrites (Horton and Ehlers 2004, 2003). Furthermore, Park et al. (2004)

demonstrated that AMPA receptors move between plasma membrane and recycling com-

partments; this maintains AMPA receptors in a “dynamic pool” that is able to rapidly

respond to any NMDA receptor activation.

In addition, AMPA receptors have been found to traffic long distances. For example, from

the soma to dendrites on the neuron’s membrane (Mammen et al. 1997), along dendritic

membranes (Choquet and Triller 2003; Triller and Choquet 2005; Borgdorff and Choquet

2002; Passafaro et al. 2001; Shi et al. 1999), and along microtubules (Washbourne et al.

2002; Hirokawa and Takemura 2005; Lisé et al. 2006; Osterweil et al. 2005). More

specifically, GluR1s can move rapidly (within 1 minute) through silenced synapses before

remaining at a nearby active synapse (Ehlers et al. 2007) and evidence suggests that

extrasynaptic receptors act as a reserve that can be mobilized on demand (Groc et al.

2004).

Several molecular mechanisms have been proposed for heterosynaptic plasticity including:

• Nitrogen oxide (NO) diffuses through cell membranes and mediates changes in the re-

lease probability of other synapses (Schuman and Madison 1994; Gally et al. 1990;

Böhme et al. 1991; O’Dell et al. 1991)

• Calcium has been implicated in many signalling cascades so it is no surprise that it has

also been theorised to contribute to heterosynaptic plasticity. For example, back propa-

gating action potentials increase Ca2+ across broad areas of dendritic trees (Jaffe et al.

1992; Petrozzino and Connor 1994; Yuste et al. 1994; Schiller et al. 1995) and fast large
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increases in intracellular Ca2+ lead to LTP (Yang et al. 1999) whereas brief small in-

creases induces either LTP or LTD. Further, calcium diffusion is distance dependent and

this has been hypothesised for heterosynptic plasticity which results in plasticity of op-

posite direction (Royer and Paré 2003; White et al. 1990; Coussens and Teyler 1996).

Furthermore, a myriad of possible mechanisms have been proposed for, or implicated in, synap-

tic scaling include intracellular calcium (Yu et al. 2009; Davis and Bezprozvanny 2001; Ibata

et al. 2008; Thiagarajan et al. 2005; Abraham and Tate 1997), calcium buffers such as CaMKII (Tur-

rigiano 1999) and CaMKIV (Ibata et al. 2008; Turrigiano 2008), a change in endocytic exit

sites (Pérez-Otaño and Ehlers 2005), BDNF (Rutherford et al. 1998), ARC (Shepherd et al.

2006; Rial Verde et al. 2006; Tzingounis and Nicoll 2006), TNFα (Stellwagen and Malenka

2006; Popivanova et al. 2008) and Retanoic Acid (Aoto et al. 2008; Maghsoodi et al. 2008).

Below, are some of these and other candidates for signalling the local heterostatic modifications

in our resource-based STDP.

PSD-95 PSD-95 binds to stargazin and other TARP family proteins and subsequently TARPs

bind to all four subunits of AMPA receptors (Chen et al. 2000; Nicoll et al. 2006). This

binding is crucial for AMPA receptor targeting to synapses (Chen et al. 2000; Tomita et al.

2005). PSD-95 also binds directly to NMDA receptors (Niethammer et al. 1996; O’Brien

et al. 1998). It is the most abundant PSD component (Cheng et al. 2006; Niell et al. 2004;

Sugiyama et al. 2005) so is potentially readily available for signalling. Furthermore, the

stability of PSD-95 at synapses can be modulated by activity (Colledge et al. 2003; El-

Husseini et al. 2002; Bingol and Schuman 2004; Okabe et al. 1999) and spines’ volumes

are proportional to postsynaptic domain (PSD) size (Harris and Stevens 1989) and synap-

tic strength (Nusser et al. 1998; Takumi et al. 1999). Taken together these results suggest

that the prime mechanism for regulating synaptic strength is PSD-95 (Ehrlich et al. 2007).

PSD-95 is also very mobile, which is crucial for our signalling mechanism. Sharma

et al. (2006) found that within 5 minutes ≈25% of spine PSD-95 had exchanged with

pools of PSD-95 within the rest of the cell. Moreover, Sharma et al. found that PSD-95

exchanges with neighbouring spines by diffusion and spines therefore share a dynamic
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pool of PSD-95. This spread of PSD-95 was bidirectional and after unbinding with a

PSD the inter-synapse diffusion time was a remarkable ≈50ms (Sharma et al. 2006).

Specifically Sharma et al. found that PSD-95 diffuses along the dendritic shaft until it is

trapped by another active PSD, and the trapping properties of PSDs was proportional to

their size and large spines held on to PSD-95 for longer.

CaMKII CaMKII is important for LTP because it is autophosphorylated by an increase in

intracellular Ca2+ influx through NMDA receptors (Lisman 1994; Kennedy et al. 1990;

Barria et al. 1997; Takahashi et al. 2003) and subsequently phosphorylates GluR1 (Roche

et al. 1996) of AMPA receptors (Mammen et al. 1997; Barria et al. 1997; Hayashi et al.

2000; Shi et al. 2001) and increases their currents (Benke et al. 1998). Furthermore,

CaMKII localises to postsynaptic densities (Hanson and Schulman 1992; Lisman et al.

2002; Leonard et al. 1999; Bayer et al. 2001; Ouyang et al. 1997) and causes insertion

of AMPA receptors into excitatory synaptic sites (Barria et al. 1997; Lee et al. 2000;

Hayashi et al. 2000; Poncer et al. 2002).

Pratt et al. (2003) extensively studied CaMKII and found several important phenomena:

(1) correlated pre- and postsynaptic activity activates CaMKII; (2) CaMKII can selec-

tively eliminate synaptic connections; and (3) conclude by commenting that their data

“suggest that inputs that are effective at activating CaMKII, [...], will simultaneously en-

hance themselves and bias inactive synapses toward elimination.” Moreover, “the ability

of CaMKII to differentiate between active and inactive synapses may allow the activity-

dependent activation of a single molecular signal to generate competitive structural rear-

rangements in synaptic connectivity.” (Pratt et al. 2003).

Finally, there is a remarkable arrangement of CaMKII and PP1. These molecules have

opposing effects on signalling synaptic efficacy and CaMKII is enhanced in activated

PSDs whereas inactive synapses are abundant in PP1 (Ehlers 2003).

Ca2+ It is also possible that Ca2+ is potentially available as a signalling mechanism because it

is critical for much of synaptic plasticity, as described above, however its diffusion can

be severally limited by the spine neck.
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Synapsis 1 and ProSAP2 Tsuriel et al. (2006) found that Synapsin molecules are continuously

interchanging among presynaptic boutons on time-scales of tens of minutes. They further

found that molecules of both Synapsin I and ProSAP2 can be reused and reassimilated

into synaptic structures after leaving other synapses. This continues until the lifetime of

a synaptic protein is reached and are thus replaced. These findings imply that dynamic

pools may be shared by neighbouring synapses.

Finally, Royer et al. (2003) found that LTD was found at nearby synaptic sites when LTP was

induced and the reverse, however Hou et al. (2008) found no change in GluR1 at neighbouring

synapses due to LTP, leading to a contradiction in the current literature. Nevertheless, Miller

et al. (1996) suggested that activity-dependent processes do not change a pool of synaptic re-

sources, but merely allocated them.

The most attractive combination of resource molecule and signalling mechanism is AMPA re-

ceptors and PSD-95. PSD-95 could signal whether a synapse requires more resources or not

and the number of AMPA receptors could be appropriately increased or decreased.
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6.1 What can a neuron learn with STDP?

In this thesis, we found that a neuron, equipped with STDP, learning a repeated spatio-temporal

pattern under continuous constant stimulation learns two features of the stimulus to encode a

pattern: the average background activity level and specific spikes times ‘on top’. Furthermore,

we found that modulations in either of these components can disrupt a neuron’s ability to learn

the onset of a pattern and can result in the neuron learning an arbitrary time in the pattern. For

example, a typical unmodified setup will result in a neuron responding at the onset of the pattern

however when one of these components are changed a neuron may respond in the middle or near

the end of the pattern. Consequently, in a noisier framework—perhaps with greatly fluctuating

non-pattern afferent activity as may be the case in biological situations—a neuron may no longer

respond (or respond accurately) to its learnt pattern; however, fluctuating background activity,

viz. oscillations have been used to facilitate learning (Masquelier et al. 2009).

This reliance on background activity has been noted before; for example, Silver (2010) com-

mented that synaptic noise is a mechanism for neuronal arithmetic and Hô et al. (2000) and

Shu et al. (2003) found that an increase in synaptic activity may increase the probability of a

spike to small input, which is partially supported by our results. We have further adduced its

importance during learning with STDP. These results suggest that background modulations on a

slower temporal scale may underlie precise spike timing computations on a faster scale; such a

segregation was shown by Hô et al. (2000) in reconstructed neocortical pyramidal neurons. Fur-

thermore, our results suggest that when presenting a stimulus to a neuron, the neuron may not

respond due to a lack of background activity and that a lack of a response may not necessarily

mean a presented stimulus is not preferred by a neuron. Appropriately designed neurophysio-

logical experiments might be able to (1) find such a phenomenon, which may have implications

for finding preferred stimuli of neurons; (2) study the segregation of input; and (3) elucidate

further its importance within STDP learning.

The emphasis has been pattern onset learning, however if the task was to simply fire within a

learnt pattern the drift described herein does not present a problem. Furthermore, when addi-

tional noise was added—if relatively small (σ < 0.4)—it did not greatly impact on performance,
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but did distort response latency distributions in favour for responding with an increased latency.

A complete lack of background activity on the other hand may pose a significant complication,

and indeed a great amount of additional noise severely impacted on learning performance.

The first half of this research has been presented as a conference contribution (Humble et al.

2010) and all of the work will be published in a forthcoming paper (Humble in preparation A).

6.2 Sequence learning

We extended the network in chapter 3 to include plastic excitatory lateral connections and an in-

hibitory neuron producing winner-takes-all competition. To summarise, we found that a simple

network of laterally connected excitatory neurons can self-organise into spatio-temporal pattern

recognisers. Simple Markov-like synfire chains were learnt with nearest-neighbour STDP and

more complicated multiple order chains with all-to-all STDP. Furthermore chains recognising

different patterns could be joined to represent longer, potentially nested patterns. Even though

some limitations must be overcome, the latter offers the possibility to learn graph-like tran-

sition patterns with stronger computational capabilities than linear sequences, for example as

suggested by Wennekers (2006) or Izhikevich (2009).

Previous attempts to learn synfire chains (Bienenstock 1991; Hertz and Prügel-Bennett 1996)

have been somewhat successful. Cyclical chains formed in most previous studies and once

activity enters these it never exits. This limitation was not present in our synfire chains and we

posit that this is because our setup was stimulus driven–previous studies used random activity.

Our synfire chains took advantage of findings in the first chapter: specifically, lateral connec-

tions increase the background activity. When a neuron fires, its lateral connections increase the

background activity of those it is connected to. This effectively primes these neurons to respond.

This priming becomes crucial to a neuron firing. Therefore, our model has the advantage that

if this priming does not take place, a neuron will not respond: the dependence of neurons in a

chain on their preceding neurons’ activity. This research presented in chapter 4 was published

in a recent paper (Humble et al. 2012).
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6.3 Resource-based STDP

Limitations of typical STDP implementations and the disparity between experimentally ob-

served phenomena and computational results inspired our development of a novel resource-

based STDP learning rule. Specifically, we included local heterosynaptic sharing of ‘resources’.

When a synapse is potentiated, its neighbours are depressed by an amount dependent on their

distance from the potentiating synapse but totalling the same amount. Furthermore, when a

synapse is depressed its resources are moved to a communal pool which decays with a time

constant of 1000ms (significantly longer than all other time components in the model). This

pool provides extra resources for potentiating synapses if their neighbours are depleted.

We found that resource-based STDP has advantages over typical STDP such as faster and more

accurate learning. It also reproduces phenomena to this point missing from existing STDP

learning rules: synaptic weight distributions, silent synapses, stable weights with competition

and non-potentiable synapses. Resource-based STDP also exhibits weight dependence for po-

tentiation and no upper global synaptic bound; instead individual intrinsic upper bounds are

present for synapses.

Several candidate molecules were proposed to be ‘resources’ in our model: AMPA receptors,

nitric oxide and calcium. Possible signalling mechanisms include PSD-95, CaMKII, calcium,

synapsis 1 and ProSAP2. We propose that AMPA receptors and PSD-95 is a favourable com-

bination for our model. This research with resource-based STDP presented in chapter 5 will be

published in an upcoming paper (Humble in preparation B).

6.4 Future

Several further studies could be done to extend the work in this thesis. Firstly, the finding

that a neuron with STDP learns two components—the average background activity level and

stimulus’ spike-timings—is only applicable to the setup used herein. This means that a model

without constant input activity—perhaps with only periodic stimulus input, may learn different

components of the stimulus. Therefore, different network and input setups should also be used

to fully understand what a neuron with STDP learns in different scenarios. It is possible that our
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findings may apply to other setups, but it is equally possible that computational STDP utilises

different stimulus features depending on setup.

That any potentials studies may find different learnt components has implications for learning

synfire chains. We took advantage of STDP learning the level of background activity to prime

subsequent neurons in a synfire chain. Neurons were therefore dependent on both stimulus

input and preceding neurons responding. However, this dependence may be more difficult to

produce in different input scenarios.

Our synfire chains were relatively simple and consisted only of a few neurons responding in

sequence to a pattern. We concatenated two chains together to represent a longer sequence

that consisted of two stimulus patterns. There are some limitations to chain length discussed in

chapter 4 however further research could look at forming more complicated chains or regular

expressions.

One approach to learn more complex structures could be to use our resource-based STDP learn-

ing rule. Because resource-based STDP has advantages such as weight normalisation it may be

able to learn regular expressions. Furthermore, a more complex network with either segregated

inhibition or a k-winner-takes-all mechanism could be used. Such possibilities will be included

in a paper extending our previous synfire chain paper (Humble et al. 2012).

Finally, experimental setups could address whether any form of resource-based STDP similar to

ours is present biologically. Any such setups would need to measure synaptic efficacy on many

synapses simultaneously while inducing pre- and postsynaptic activity pairings. An additional

mechanism could also be included in resource-based STDP that would increase the pool on

request. Such a mechanism might be used to induce learning to a new stimulus sometime after

already having learnt one. This mechanism could be unsupervised or supervised. Nevertheless,

the research undertaken with resource-based STDP is in a paper under preparation.
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Glossary.

W P
max: the upper bound of synapses. A synapse can not potentiated beyond this value.

∆: a binning factor used to produce S. See S.

λ : a parameter which adjusts the relative contributions of potentiation and depression to

the spike-timing-dependent plasticity function.

Porig: the original pattern vector used when computing Φ. See Φ.

Pperm: the altered pattern vector used when computing Φ. See Φ.

S: the spatio-temporal receptive field.

Ω: a cumulative amount of resources used when implementing resource-based spike-timing-

dependent plasticity.

Φα : a sub-space of parameters (jitter amount and number of afferents altered) whereby the

spiking neuron model still responded correctly.

Φβ : a sub-space of parameters (jitter amount and number of afferents altered) whereby the

spiking neuron model still responded correctly with additional current.

Φγ : a sub-space of parameters (jitter amount and number of afferents altered) whereby the

spiking neuron model no longer responded correctly eve with additional current.

Φmathrmtolerance: a border between Φα and Φβ .

Φ: linear prediction error. The change in C(t) when comparing the maximum value of C(t)

with the original pattern and with test input.

ψ: a parameter used in the implementation of resource-based spike-timing-dependent plas-

ticity.

τa: time constant for neuronal adaptation. See neuronal adaptation.

τ f : the fall time constant of the alpha function.

τm: see membrane time constant.

τr: the rise time constant of the alpha function.

τd: the time constant for the depression contribution the exponential spike-timing-dependent

plasticity function.
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τ p: the time constant for the potentiation contribution the exponential spike-timing-dependent

plasticity function.

θ : see Neuronal threshold.

a: amount of adaptation. See neuronal adaptation.

Ad : the negative learning rate. See learning rate.

Ap: the positive learning rate. See learning rate.

B(t): the component representing the background activity.

C(t): the linear predictor. See linear prediction.

D2: squared van Rossum spike train metric. See van Rossum spike train metric.

f (τ): the spike-timing-dependent plasticity function. If τ ≥ 0 then a synapse is potentiated

and if τ < 0 then it is depressed.

F(t): the component representing the fast fluctuations in the neuron’s membrane potential due

to spike-timing within the pattern.

fLH [ f (τ),x]: the potentiating amount for resource-based spike-timing-dependent plasticity which

depends on a function of the distance between the potentiating synapse and its neigh-

bours and the spike-timing-dependent function.

g(t): a function of the van Rossum spike train metric. See van Rossum spike train metric.

h(t): a function of the van Rossum spike train metric. See van Rossum spike train metric.

I: input to a neuron. See dendrite.

Iin: half of the input afferents that alternate between independent Poisson spike trains and a

fixed spatio-temporal pattern.

Inoise: half of the input afferents that continuously transmit independent Poisson spike trains.

M: the number of spikes in the original pattern.

Ninput: the number of input afferents.

P: the pool in resource-based spike-timing-dependent plasticity.

Porig: the original pattern matrix used when computing Φ. See Φ.

Pperm: the altered pattern matrix used when computing Φ. See Φ.

R(t): the component representing both F(t) and B(t).
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S f : see synaptic current.

Sr: see synaptic current.

V : see membrane potential.

W L
max: the maximum synaptic weight for lateral synapses between excitatory neurons.

wi: a specific synapse indexed by i.

xmax: the maximum distance to take resources from neighbouring synapses when implement-

ing resource-based spike-timing-dependent plasticity.

τc: a parameter in the van Rossum spike train metric. See van Rossum spike train metric.

M′: the number of spikes in the altered pattern.

Action potential: a pulse of chemical/electrical activity that is propagated down a neuron’s axon

due to its membrane potential reaching threshold.; often called a spike.

Activity-dependent plasticity: a form of plasticity that is controlled by activity.

Afferent: describes incoming synapses.

All-to-all: a form of spike-timing-dependent plasticity which includes all pre- and postsynaptic

action potentials when computing synaptic efficacy changes.

Alpha function: a function describing synaptic currents. See synaptic current.

AMPA receptor: a receptor commonly found at synapses that transduces neurotransmitters to

ionic current.

Axon: the output section of a neuron.

Axonal delay: the delay an action potential takes to propagate from the soma to a synapse.

Calcium: calcium is critical in synaptic plasticity as releases the extracellular NMDA block. It

has also been implicated in nearly all forms of plasticity.

Computational mode: a mathematical representation of a phenomena which is usually simu-

lated on a computer.

Dendrite: the input section of a neuron.

Depression: the decrease in a synapse’s efficacy.

Efferent: describes outgoing synapses.

Excitation: the effect of excitatory synapses. See excitatory synapse.
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Excitatory neuron: a neuron which has an excitatory effect on postsynaptic neurons. See exci-

tatory synapse.

Excitatory synapse: a synapse which increases membrane potential.

Firing rate: the average rate a neuron is producing action potentials.

Hebbian: a type of synaptic plasticity learning named after Dr. Hebb. Hebbian plasticity de-

scribes an increase in synaptic efficacy for activity correlated across a synapse and a

decrease in efficacy for uncorrelated activity.

Heterostasis: see heterosynaptic plasticity.

Heterosynaptic plasticity: describes cases where the induction of one form of plasticity is ac-

companied by the induction of another.

Hodgkin-Huxley model: the first model which models different ionic channels of neurons.

Homeostasis: see homeostatic plasticity.

Homeostatic plasticity: a form of plasticity which adjusts a neuron’s synapses so some property

of them (usually the average synaptic efficacy) is at a preset value.

Information theory: a theory explaining information such as mutual information. See mutual

information.

Inhibition neuron: a neuron which has an inhibitory effect on postsynaptic neurons. See in-

hibitory synapse.

Inhibition: the effect of inhibitory synapses. See inhibitory synapse.

Inhibitory synapse: a synapse which decreases membrane potential.

Input-output relationship: the relationship between input to a neuron and any induced output

action potentials or changes in membrane potential.

Integrate-and-fire model: one of the most simple models of a neuron which includes the inte-

gration of input to a threshold and the resulting action potential

Ion channel: a channel in a neuron’s membrane which allows the passing of ions. These ions

then adjust the potential different across the membrane.

Jitter: a adjustment in the timing of an action potential.

Latency: a delay that usually describes the delay between stimulus and response.

Leaky integrate-and-fire model: an extension of the integrate-and-fire model which includes

leak currents which allow electrical current to constantly exit a neuron.
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Learning rate: the rate at which synaptic efficacy is changed in a computational model. A

higher rate describes a quick change in efficacy.

Linear prediction: is a method whereby future values are predicted as a linear function of pre-

vious values.

Linear predictor: a function that operates linear prediction.

Long-term depression: a long term decrease in a synapse’s efficacy.

Long-term potentiation: a long term increase in a synapse’s efficacy.

Membrane potential: the voltage across the membrane of a neuron.

Membrane time constant: the time constant with which the membrane potential relaxes to a

resting potential.

Mutual information: the amount of information that is communicated between transmitter and

receiver.

Nearest-neighbour: a form of spike-timing-dependent plasticity which only includes one pre-

and one postsynaptic action potential when computing synaptic efficacy changes.

Network: more than one neuron connected via synapses.

Neuron: the specialised cell found throughout the central nervous system and brain.

Neuronal adaptation: adaptation has a negative effect on a neuron’s membrane potential every

time a neuron produces an action potential. This leads to the scenario where every

response from a neuron makes it more difficult to produce another.

Neuronal reset value: the voltage to which a neuron is ‘reset’ after an action potential is pro-

duced. This value can be different to resting.

Neuronal threshold: a voltage level at which an action potential is produced. In neurons this

threshold is not a fixed value however in many models such as the leaky integrate-and-

fire model the value is fixed for simplicity

Neurotransmitter: chemicals/proteins which pass across a synapse transducing chemical/electrical

activity from one neuron to another.

NMDA receptor: a receptor that is crucial to many forms of plasticity including long-term and

potentiation and depression and spike-timing-dependent plasticity.

Non-potentiable synapse: a synapse which cannot undergo potentiation under an experimental

protocol.
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Pattern learning: a type of learning which is concerned with learning specific, often, repeated

stimuli (patterns).

Plastic: see plasticity

Plasticity: a change in the efficacy of a synapse.

Poisson noise: noise which follows the Poisson distribution. That is, the probability of a num-

ber of events occurring with a given average rate independently and within a fixed in-

terval.

Population: several neurons which often cooperate to achieve a task.

Postsynaptic: referring to the neuron after a synapse.

Potentiation: the increase in a synapse’s efficacy.

Presynaptic: referring to the neuron before a synapse.

Receptive field: describes a subsection of input which a neuron is sensitive to. Receptive fields

can be spatial or temporal.

Receptor: a structure which transduces incoming chemicals such as neurotransmitters into in-

tracellular current.

Refractory period: a period after a neuron has produced an action potential within which is is

difficult to produce another action potential (relative refractory period) or impossible

(absolute refractory period).

Response distribution: the distribution of number of response spikes within a presented stimu-

lus.

Resting potential: the voltage at which a neuron will rest/stay if no input is present.

Rheobase: the minimum current that will produce an action potential.

Self-organising map: often describes a network of neurons which organise without external

pressure.

Silent synapse: a synapse which exhibits no detectable AMPA receptors and therefore theoret-

ically will not transduce any bound neurotransmitter into chemical/electrical activity.

Soma: the main body section of a neuron.

Spatio-temporal receptive field: see receptive field.

Spike count: the number (count) of action potentials (spikes) within a set period.
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Spike train metric: a metric which describes certain properties of a spike train.

Spike train: a series of spikes in sequence. The delays between spikes do not have to be constant

and the spikes can come at various times.

Spike-timing-dependent plasticity: a type of plasticity that permits the spike time differences

between pre- and postsynaptic activities to affect changes in synaptic efficacy.

Spike-timing: describing the specific times of action potentials (spikes).

Spike: see action potential.

Stimulus-response transducer: a model that characterises the transduction of stimulus into re-

sponse.

Synapse: a structure that permits chemical/electrical activity to pass from one neuron to an-

other.

Synaptic bound: a value which bounds synaptic change. For exmaple, if two synaptic bounds

of 0 and 10 were enforced then a synapse could be not be set less than 0 or greater than

10.

Synaptic current: a synapse does not transduce neurotransmitters into an instantaneous increase

or decrease in membrane potential but rather has a current profile that gradually in-

creases and/or decreases.

Synaptic efficacy: how effective a synapse is at transducing incoming activity to either an in-

crease or decrease in membrane potential.

Synaptic scaling: a form of homeostatic plasticity which adjusts synaptic efficacies so the av-

erage value is at a preset value. See homeostatic plasticity.

Synfire chain: a theoretical network where several neurons are connected in sequence allowing

the propagation of activity accurately from ‘layer’ to layer.

van Rossum spike train metric: a certain spike train metric. See spike train metric.

Weight normalisation: a computational tool to normalise synaptic efficacies over a neuron.

Weight: see synaptic efficacy.

Winner-takes-all competition: such competition describes how, out of several neurons, one one

may fire at a time due to competition. When one neuron does produce an action potential

it inhibits (either directly or via an inhibitory inter-neuron) all other neurons.
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