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Abstract

Human damage to biogenic substrata such as maerl has been receiving increasing attention

recently. Maerl forms highly biodiverse and heterogeneous habitats composed of loose-lying

coralline red algae, which fulfil nursery area prerequisites for queen scallops (Aequipecten

opercularis) and other invertebrates. The benefits obtained by queen scallops utilising maerl were

poorly understood, so we used both laboratory predation and field tethering experiments to

investigate the refuge and growth potential provided by pristine live maerl (PLM) grounds over other

common substrata. In aquaria, more juvenile queen scallops (b35 mm shell height) survived on PLM

than on gravel substrata in the presence of the crab Carcinus maenas or the starfish Asterias rubens.

Field tethering experiments indicated similar survivorship of juvenile queen scallops on PLM and

gravel; additionally, their growth rates were similar on both substrata. PLM allows scallops to seek

refuge from predators and position themselves to optimise their food supply. Other bivalve refugia

have been shown to provide poor food supply as a consequence of their high heterogeneity, yet maerl

grounds provide a dwin–winT scallop nursery area coupling refuge availability with high food supply.
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1. Introduction

Fisheries science has paid increased attention to the impacts caused by demersal fishing

and extraction gears, and it is now established that biogenic habitats (e.g., maerl, Hauton et

al., 2003; corals, Hall-Spencer et al., 2002; seagrass beds, Moore and Jennings, 2000; kelp

forests, Moore and Jennings, 2000; serpulid reefs, Moore et al., 1998) are particularly

vulnerable to long-term mechanical damage. In the case of maerl habitats, towed demersal

gears significantly reduce their heterogeneity to that of gravel substrata (Kamenos et al.,

2003). Pristine live maerl (PLM) thalli are broken and subsequently die due to siltation

(Hall-Spencer and Moore, 2000), leaving impacted dead maerl (IDM) grounds.

Maerl grounds (also known as drhodolith bedsT) (Foster, 2001) are composed of loose-

lying, usually nongeniculated, coralline red algae (Giraud and Cabioch, 1976) and are

found in areas characterised by high water movements (tidal and/or wave action) in the

photic zone. Maerl grounds, which vary in size from tens to thousands of square metres,

are dense accumulations of unattached coralline algae and occur throughout the world

(Woelkerling, 1988; Foster, 2001). PLM grounds are highly biodiverse (BIOMAERL

Team, 2003; Steller et al., 2003) and have significantly higher heterogeneity than common

adjacent substrata including gravel, sand, and IDM (Kamenos et al., 2003). High

heterogeneity equates to high biodiversity in many marine systems (Purvis and Hector,

2000; Tilman, 2000; Sala, 2001) with heterogeneous substrata providing prey with

increased numbers of refuges from predators (Taylor, 1984; Arsenault and Himmelman,

1996; Lewis and Eby, 2002; Himmelman and Guay, 2003) and impairing certain

predators’ foraging regimes (Sponaugle and Lawton, 1990; Frandsen and Dolmer, 2002;

Wong and Barbeau, 2003).

Seabed topography exerts a strong influence on the food supply to suspension-feeding

bivalves, with increasing substratum roughness increasing turbulence above the sea bed

(Mann and Lazier, 1996; Frandsen and Dolmer, 2002). Suspension feeders living within

the cryptic habitats of structurally complex substrata gain protection from predators but

tend to receive less food and grow more slowly than those living on, and in, less complex

substrata (Bologna and Heck, 1999; Irlandi et al., 1999; Frandsen and Dolmer, 2002).

Bologna (1998), for example, showed that scallops living on less complex substrata grew

more quickly due to increased food supply, but overall scallop productivity was

diminished due to increased predation.

The queen scallop Aequipecten opercularis is of commercial fisheries importance from

the Mediterranean Sea north to the Faroe Islands (A.R. Brand, personal communication).

Crabs and starfish are key predators of scallops worldwide (Pohle et al., 1991; Barbeau et

al., 1994; Arsenault and Himmelman, 1996; Wong and Barbeau, 2003). Predation can be

size-selective, e.g., adult Cancer irroratus crabs prefer larger scallops (Barbeau and

Scheibling, 1994a) whereas Hyas araneus spider crabs and Asterias vulgaris starfish

prefer small scallops (Barbeau and Scheibling, 1994a; Arsenault and Himmelman, 1996).

Nursery areas may be defined as habitats that are characterised by higher juvenile

densities, survival, growth, and adult recruit provision than adjacent habitats (Beck et al.,

2001). Maerl grounds have been found to fulfil the density and refuge prerequisites of a

nursery area for queen scallops and other invertebrates and vertebrates (Kamenos et al.,

2004a,b). In the present study, we used a combination of field and laboratory observations
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to investigate if maerl grounds reduce predation and provide growth advantages to juvenile

queen scallops. Such information is required to make informed choices concerning the

fisheries benefits of protecting maerl habitats.
2. Materials and methods

2.1. Laboratory predation experiment

Rectangular experimental tanks (n=3) (length 3 m; width 0.89 m; depth 0.45 m) with

semicirculating, coarsely filtered (2 mm) sea water were set up. Each tank had two 60�89-

cm compartments separated using a 8-mm diamond mesh (NetlonR) that allows water

circulation through each tank (Fig. 1). Water input and drainage were at each side of each

tank. Water to the two experimental chambers in each tank was recirculated tank water,

provided by a pump at a rate of 3000 l h�1 to ensure even and high water flow through

each chamber. Tanks were covered with solid lids elevated 3 cm above the surface of the

tanks to allow ambient daylight entry.

PLM thalli were collected using SCUBA from Caol Scotnish [Loch Sween,

56801.99VN, 5836.13VW, �4 to �10 m CD (chart datum)]. PLM thalli had a median

rhodolith diameter of 43.3 mm and were assumed to be the upper extreme of heterogeneity

of maerl locally. Gravel (median length 9.5 mm; width 5.7 mm) was collected from the

MHWN at Ballochmartin Bay, Isle of Cumbrae (55847.09VN, 4853.55VW). The collected

substrata were not sorted to give results that were more representative of the natural

environment. Live maerl was stored in a high-flow (3000 l h�1) outdoor seawater tank

after collection until required; gravel was stored in low-flow (1000 l h�1) outdoor sea

water tanks.

PLM and gravel were randomly placed in each compartment of each tank with

substratum depth of 3 cm and left for 8 days to allow biofilm formation.

Juvenile A. opercularis were obtained from a commercial grower (Highland

Aquaculture, Isle of Skye). The spat had been collected on spat bags and grown-on in

lantern nets; thus, they were not preacclimated to any particular natural substratum.
Fig. 1. Experimental tank setup used to compare juvenile A. opercularis predation by A. rubens and C. maenas on

gravel and PLM.
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Fifty juvenile queen scallops were placed on each substratum. It was ensured that

valve heights did not differ significantly between each substratum group within 2–18

mm shell height (SH) (umbo to margin) and 18–35 mm SH size classes. In control

experiments, the numbers of live and dead scallops on each substratum and tank sides

were noted at two 12- and 24-hourly intervals for 7 days. The extended observation

period was required to allow determination of analysis time from subsequent predation

treatments prior to complete predation of scallops due to the confined nature of the

experiments. Experiments in the presence of a predator (Asterias rubens 13.9–14.2

mm total arm diameter; Carcinus maenas 63.2–65.1 mm carapce width, all male)

were identical to the control; however, a predator was added to each substratum 24 h

after the unacclimated scallop addition. Predators had been acclimated to the

corresponding substrata in separate tanks for 24 h prior to the experimental period

and had been fed to satiation 72 h before use. Each individual predator was used only

once.

The coarsely filtered sea water was supplemented with 2 l of concentrated mixed algal

culture (Tetraselmis suecica, Chaetoceros ceratosporum, and Skeletonema costatum) on a

daily basis.

2.2. Field tethering experiment

Fifty juvenile queen scallops (2–18 mm SH), from the same source as the laboratory

experiment, were assigned randomly to either PLM (n=20), gravel (n=20), or control

(n=10) groups. For each scallop, a small area on the upper valve near the umbo was

cleaned using acetone and then dried using an air jet. One end of a 55-cm monofilament

nylon (0.25 mm diameter) tether was attached to the cleaned surface using cyanoacrylate

adhesive (151 Super GlueR). The other end of the tether was attached to a labelled 30-g

teardrop weight. Prior tests indicated this weight was sufficient to prevent scallops from

relocating. Shell heights of scallops in each group were compared to ensure there were no

differences between the groups. Tethered scallops were stored in flow-through tanks until

used 1 day after tether attachment.

The tethering experiments were carried out in the field at Caol Scotnish (Loch Sween)

56801.99VN 05836.13VWat �7 m CD (February). Two areas were chosen at random: one

on PLM and the other on gravel. Using SCUBA, 20 tethered scallops were deployed on

each site in a 4�5 array with 50 cm between scallops. Control scallops were placed in a

modified crayfish creel (TrappyR creels), which prevented predator entry but allowed

water flow through the creel. The control creel was fixed on an intermediate substratum of

PLM and gravel.

Observations were made using SCUBA at T+24 h, noting whether each scallop was live,

missing, or predated by a crab or starfish. Crab predation was assumed when either only

one valve was left attached to the tether, or the remaining valve(s) was broken, while

starfish predation was assumed when both valves remained unbroken and attached at the

hinge. A similar experiment was carried out at the same sites using 18–35 mm SH queen

scallops (June). Pilot experiments indicated T+24 h to be a suitable time to assess predation

as, at longer time intervals, predation reduced numbers to extremely low levels as a

consequence of tethering (Kamenos, personal observation).
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2.3. Predator density quantification

A. rubens and C. maenas densities on PLM and gravel (n=5 for each month) were

quantified in marked 10�2-m transects using SCUBA during both tethering

experiments.

2.4. Field growth experiment

Logistical constraint prevented biomass determination in juvenile queen scallops

using techniques such as those described by Bologna (1998). Change in SH was thus

used as an estimator of growth rate. Shell heights of randomly selected free-living

juvenile queen scallops (n=36–316) on PLM and gravel substrata were measured with

vernier callipers (F0.5 mm) at two monthly intervals from December 2001 to

February 2003 using SCUBA at Caol Scotnish. Sites on gravel and PLM substrata

used for scallop collections were N1000 m apart. Measured individuals were not

returned.

2.5. Data analysis

2.5.1. Laboratory predation experiment

All laboratory study analyses were carried out on distributions 7-days postpredator

addition. T tests (assumptions met, arcsine-transformed) and Kruskal–Wallis tests

were carried out on the proportion of live scallops found associated with each

substratum. This measure was used as it is a proxy for both predated scallops and

scallops that reattached to the sides of the experimental chamber during escape

responses. In all cases, comparisons were with a Dunn–Šidák adjusted p value for

two comparisons.

2.5.2. Field tethering experiments

Mann–Whitney U tests were used to compare numbers of live and predated scallops

on each substratum for each size class. Frequencies of starfish and crab predated

scallops on each substratum were compared using a G-test. The sizes of dlive,T
dstarfish,T and dcrab-predatedT scallops within and between substrata in each size class

were compared using a two-way ANOVA (assumptions met) to account for the unique

array of predators at each plot as experiments were run concurrently. Repeated-

measures ANOVAs (assumptions met) were used to compare A. rubens and C. maenas

densities on PLM and gravel during b18 mm SH (February) and 18–35 mm SH (June)

trials.

2.5.3. Field growth experiments

Very few adults were present in the juvenile-dominated nursery areas, so only the

initial (theoretically linear, if temporal period short) growth period of the von Bertalanffy

growth function was represented; however, a strong seasonal effect was apparent,

generating nonlinear growth over the experimental period—these factors prevented the

use of modal progression analysis. Cohort-1 PLM and gravel growth rates were
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compared over all months sampled using an ANCOVA (assumptions met). Cohort-2

PLM and gravel growth rates were tested using Scheirer–Ray–Hare test comparing

scallop sizes in October 2002 and February 2003 on each substratum only.
3. Results

3.1. Laboratory predation experiment

All scallops on PLM, gravel, and the sides of the experimental chambers were

byssally attached. In both size class control treatments, there were no dead scallops;

thus, it can be assumed that deaths in the predator-present treatments were not due to

natural mortality but predation. All comparisons were at a Dunn–Šidák adjusted p value

of 0.025.

3.1.1. Less than 18 mm SH

Significantly more live scallops were present on PLM than gravel at the end of the

predation period in the A. rubens (T4=�17.15, pb0.001) but not C. maenas (H1=4.35,

p=0.037) treatments (Fig. 2).

3.1.2. 18–35 mm SH

Significantly more live scallops were present on PLM than gravel at the end of the

predation period in both A. rubens (T3=�7.15, p=0.006) and C. maenas (T2=�6.12,

p=0.023) treatments (Fig. 2).
Fig. 2. Mean (n=3) numbers of b18 mm (b18) and 18–35 mm (18–35) shell height queen scallops (A.

opercularis) observed live on PLM and gravel in A. rubens (starfish) and C. maenas (crab) present treatments on

day 7. Error bars=95% CI.
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3.1.3. PLM

There was no significant difference (T3=�1.44, p=0.245) in the numbers of live b18

mm SH and 18–35 mm SH scallops in A. rubens treatments. There was a significantly

(T2=�33.31, p=0.001) greater numbers of live 18–35 mm SH than b18 mm SH scallops in

the C. maenas treatments (Fig. 2).

3.1.4. Gravel

There was a significantly (T3=�6.32, p=0.008) greater numbers of live 18–35 mm SH

than b18 mm SH scallops in the A. rubens treatments. There was no significant difference

(H1=4.35, p=0.037) in the number of live b18 mm SH and 18–35 mm SH scallops in C.

maenas treatments (Fig. 2).

3.2. Field tethering experiment

3.2.1. Surviving scallop densities and frequencies

For both size classes, all control scallops were alive at the end of the experimental

period; thus, any deaths in the treatment groups were attributed to predation or

escape (Table 1). There was no significant difference in the numbers of live and

predated scallops on PLM and gravel in b18 mm SH queen scallops at T24 h

(W1=442, p=0.303) as well as 18–35 mm SH queen scallops at T24 h (W1=339,

p=0.836).

Within the dpredated scallopT term referred to above, frequency analysis of dcrab-
predatedT dstarfish-predatedT juvenile queen scallops on PLM and gravel indicated

distributions to be independent of substratum for b18 mm juvenile queen scallops at T24 h

(G1V=1.07, pN0.05) as well as 18–35 mm SH scallops at T24 h (G1V=0.34, pN0.05).

3.2.2. Predator densities

Significantly higher (F1=21.08, p=0.002) densities of A. rubens were present on

PLM than gravel (Fig. 3). Densities were significantly higher (F1=9.09, p=0.017) in

June than February. Interaction was nonsignificant (F1=4.38, p=0.07). Equal densities

of C. maenas were present on both substrata (F1=0.30, p=0.599) (Fig. 3). Densities

were significantly higher (F1=9.36, p=0.015) during June. Interaction was non-

significant (F1=2.70, p=0.139).
Table 1

Numbers of live, crab-predated (crab), starfish-predated (starfish), and missing juvenile A. opercularis in b18 mm

SH (b18) and 18–35 mm SH (18–35) groups at T+24 h tethered in Caol Scotnish

Size group Treatment Live Crab Starfish Missing

b18 PLM 15 2 3 0

Gravel 12 4 4 0

Control 10 0 0 0

18–35 PLM 6 11 1 1

Gravel 6 12 0 2

Control 10 0 0 0



Fig. 3. Mean (n=5) A. rubens and C. maenas densities on PLM and gravel at Caol Scotnish in February and June.

Error bars=95% CI.
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3.2.3. Size of predated scallops

There were no significant differences in the sizes of live, crab, and starfish-predated

scallops on PLM and gravel in b18 mm (F4=1.04, p=0.401) or 18–35 mm (F2=0.18,

p=0.835) SH groups (Fig. 4) (only one scallop was predated by A. rubens in the 18–35

mm SH group and was not included in the analysis).
Fig. 4. Mean (n=3–12) shell heights of b18 mm (b18) and 18–35 mm shell height (18–35) live, C. maenas (crab)-

predated and A. rubens (starfish)-predated juvenile queen scallops on PLM and gravel. Only one scallop was

starfish-predated in the PLM 18–35 mm group and none in the gravel 18–35 mm group. Error bars=95% CI.



Fig. 5. Shell height of A. opercularis on PLM and gravel at Caol Scotnish during two monthly surveys between

April 2002–February 2003 (n=36–316). Error bars=95% CI; lines join mean shell height within each cohort.
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3.3. Field growth experiment

Spawning and settlement dates of juveniles represented in cohorts 1 and 2 (Fig. 5) were

not known; thus, data analyses were done individually on each cohort. Nonsignificant

ANCOVA interaction (F1=0.02, p=0.891) indicated no significant difference in growth

rates of cohort 1 juvenile queen scallops on PLM and gravel over a 10-month period (April

2002–February 2003) for 10–57 mm SH queen scallops. Nonsignificant Scheirer–Ray–

Hare interaction (H1=1.69, p=0.193) indicated nonsignificant difference in growth rates of

cohort 2 juvenile queen scallops on PLM and gravel over a 4-month period (October

2002–February 2003) for 7–32 mm SH juvenile queen scallops. In cohort 1, scallop

growth rates from April to September were higher on both PLM (4.1 mm month�1) and

gravel (4.1) than rates from October to February (PLM=1.7, gravel=0.89). Cohort 2

growth rates during October to February were comparable to cohort 1 rates (PLM=1.32,

gravel=0.89).
4. Discussion

Juvenile A. opercularis (b35 mm SH) mortality rates were affected by a combination of

predator species, habitat availability, and scallop size. In laboratory experiments, scallop

survival rates on PLM were generally higher than those on gravel, which is characterised

by lower structural heterogeneity. A. opercularis joins a growing list of scallops (e.g.,

Argopecten irradians, Pohle et al., 1991; Garcia-Esquivel and Bricelj, 1993; Arnold et al.,

1998; Irlandi et al., 1999; Chlamys islandica, Arsenault and Himmelman, 1996;

Himmelman and Guay, 2003; and Placopecten magellanicus, Wong and Barbeau, 2003)

and other bivalves (e.g., Geukensia demissa, Lee and Kneib, 1994; Mercenaria

mercenaria, Arnold, 1984; Mya arenaria, Lipcius and Hines, 1986; and Mytilus edulis,

Frandsen and Dolmer, 2002), which are known to benefit from the protection afforded by

structurally complex substrata.
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4.1. A. opercularis behaviour

Both size-classes of queen scallops survived better in maerl through refuge use and

reduced predator efficiency associated with increasing complexities of substrata. In aquaria,

A. rubens was more efficient at predating b18 mm SH than 18–35 mm SH A. opercularis on

gravel, whilst there was no change in predation rates between the two size classes on PLM.

The larger juveniles were better able to swim and escape the starfish, whilst the smaller

juveniles sought refuge using intramatrix and intermatrix spaces within the maerl. Once

located by predators, the juvenile queen scallops using PLM refugiawould gape, gripping the

surroundingmatrix andmaking extraction from themaerl both time-consuming and difficult.

Absence of statistical significance in comparison with the b18 mm SH scallops on

gravel in the crab treatment may be attributed to an artefact of the enclosed experimental

design leading to high predation rates and complete sample predation. Although this

causes analysis problems, biologically, the result is important as there were survivors

present on the comparative substrata.

Structurally complex substrata are important for scallop species that hide from predators

(Wong and Barbeau, 2003), such as juvenile C. islandica, which nestle in crevices and

under shells (Arsenault and Himmelman, 1996; Himmelman and Guay, 2003), and A.

irradians, which attach to eelgrass (Pohle et al., 1991; Arnold et al., 1998; Irlandi et al.,

1999). Our findings for A. opercularis are similar to those of Wong and Barbeau (2003),

who showed that small P. magellanicus juveniles sought substratum refuges whereas the

larger juveniles escaped using their more effective swimming abilities.

4.2. Predator behaviour

C. maenas ate fewer small (b18 mm SH) and large (18–35 mm SH) juvenile queen

scallops on the highly complex PLM than on gravel in laboratory experiments. Sponaugle

and Lawton (1990) also observed that crabs (Ovalipes ocellatus and Callinectes sapidus)

feeding on juvenile M. mercenaria bivalves were much more successful on sand than on

more complex substrata such as sand/gravel and sand/shell. Similarly, C. maenas spent

significantly more time locating mussels on more complex substrata, explaining reduced

predation mortality on complex substrata (Frandsen and Dolmer, 2002). However, Wong

and Barbeau (2003) observed no effect of substratum type on predation rates of C. irroratus

on P. magellanicus, but did find that on more heterogeneous substrata, crabs picked up

many prey-like objects in an nondiscriminatory manner then rejected nonprey items.

Apart from the effects of change in escape responses of growing juvenile queen scallops,

discussed above, this and other studies (Wong and Barbeau, 2003) have observed starfish

predation to be less effective on more complex substrata, possibly because starfish have to

spend more time searching for prey and extracting them from complex substrata (Wong and

Barbeau, 2003).

4.3. Tethering

Confinement of scallops during predation experiments is often achieved using

tethering, although this interferes with their ability to escape. Barbeau and Scheibling
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(1994b) and Barbeau et al. (1994) showed that whilst C. irroratus ate similar amounts

of tethered and untethered scallops (P. magellanicus), A. vulgaris was able to consume

significantly more tethered scallops. In crab–scallop interactions, encounter rate was the

major determinant of predation rate, whereas with starfish, the probability of capture

upon encounter was the major determinant of predation rate because scallops readily

escaped from starfish by swimming or jumping.

Although no differences in mortality rates were observed in our tethering

experiments between scallops on PLM and gravel, two factors indicate tethered

scallops on PLM to have been more successful than those on gravel: (1) significantly

more A. rubens were present on PLM than gravel, with its close relative A. vulgaris

able to consume 16.7 times more tethered scallops than free scallops (Barbeau et al.,

1994); and (2) although 55 cm of tether was initially available to the scallops, this

was severely reduced on PLM due to tangling with the maerl matrix—tangling did not

occur on gravel. The latter is a known artefact of tethering experiments (Aronson and

Heck, 1995), leading to disproportionately increased relative mortality in habitats

causing reduction in tether length. Thus, it is feasible to assume that nontethered

scallops associated with PLM would have lower mortality rates than scallops on the

less complex gravel.

4.4. Growth

Bay scallops (A. irradians) have been observed to have higher growth rates along

the margins of seagrass patches than within patches (Bologna and Heck, 1999; Irlandi

et al., 1999) and it was suggested that food supply was the primary factor controlling

these differences in growth, with restricted flow within seagrass meadows equating to

lower food supply (Irlandi et al., 1999). Similarly, we expected lower growth rates for

scallops utilising higher complexity PLM beds than those on nearby gravel substrata.

However, we observed similar growth rates between scallops on gravel and PLM.

The absence of the expected growth differentiation between scallops on PLM and

gravel may be due to: (1) the presence of refuges provided by PLM (Kamenos et al.,

2004a) and lower-than-expected growth rates on gravel due to the increased energetic

costs of predator/prey interactions in habitats offering few refuges (Gilliam, 1987); and

(2) the considerable motility of juvenile queen scallops allowing them to use refuges in

predator presence yet reattach to PLM surface in the absence of predators (Kamenos et

al., 2004a) and thereby make use of the higher food supply in areas with increased

flow.

Seasonal effects on growth rates observed on PLM and gravel were comparable to

growth rates and seasonal effects observed during warmer and colder months in other

studies (Paul, 1981; Richardson et al., 1982).
5. Conclusions

We have shown that PLM is an unusual substratum allowing scallops to maintain

potential growth rates equal to those of scallops on less heterogeneous substrata. PLM
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grounds have been shown to function widely as nursery areas in western Scottish

waters (Kamenos et al., 2004b) and we now have some insight into refuge and growth

process occurring within this important habitat. PLM has also been shown to have

significantly higher heterogeneity than, and be more attractive to, juvenile queen

scallops than IDM (Kamenos et al., 2003; 2004a). Alteration of PLM to IDM thus

reduces the refuge potential of the substratum and may thus alter growth–predation

relationships to that of less heterogeneous substrata. It is therefore likely that continued

widespread destruction of PLM grounds (BIOMAERL Team, 2003) will adversely

affect local populations of queen scallops by reducing refuge availability, degrading of

nursery areas, and, thus, eventually reducing or stopping recruitment to adult

populations of queen scallops.
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