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Developmental timing in aquatic embryos: linking intraspecific 

heterochrony and evolution 

The main aim of this thesis is to understand the extent to which intraspecific 

variation in developmental event timing might provide the raw material from 

which heterochronies may originate. To this end I studied the timing of a suite of 

both morphological and physiological events in the embryonic development of 

Radix balthica, a species of aquatic snail known to exhibit event timing variation 

during the embryonic period (Tills et al. 2010; Rundle et al. 2011) and that sits 

within an evolutionary clade, in which extensive heterochrony has been 

documented (Smirthwaite et al. 2007). I found that variation in embryonic 

developmental event timing within R. balthica is pervasive (Chapters 2 - 5) and 

distributed primarily at low (inter-individual and egg mass), rather than high 

(population) biological levels (Chapter 3). This variation also appears to have a 

genetic basis (Chapter 2) and to be heritable (Chapters 4 and 5). Examination 

of the development of function in the cardiovascular (CV) system in Chapter 5 

also revealed extensive variation, including differences between egg masses in 

the timing of aspects of this development, and differences between populations 

in the rates of change in heart rate during different phases of ontogeny. 

Variation in CV development also had effects on life history, which suggest that 

altered embryonic development might have implications for Darwinian fitness 

(Chapter 5). This thesis demonstrates that intraspecific variation in 

developmental event timing represents a fundamental link between ontogeny 

and phylogeny and that study of altered timing at the inter-individual level 

provides the opportunity to address questions concerning its evolvability and 

implications.  
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CHAPTER 1 

INTRODUCTION 

1.1 Studying developmental event timing 

Biologists have long been fascinated by the development of individual 

organisms (ontogeny) and the timing and sequence of the assembly of their 

constituent parts during ontogeny. Darwin described development and 

embryology as, “one of the most important subjects in the whole round of 

natural history” (Darwin 1878, p 386) and commented that, “the adaptation of 

the larva to its conditions of life is just as perfect and as beautiful as in the adult 

animal” (Darwin 1859 p 440). Therefore study of the time during ontogeny at 

which developmental events occur has had a long, rich, and at times 

controversial, history (discussed by Gould 1977).  

Arguably the greatest controversy within this subject has focussed on the work 

of Haeckel (1834 - 1919). He proposed in his Biogenic Law that ontogeny 

ordinarily proceeded via a uniform acceleration of the entire development of 

ancestral adult stages (Haeckel 1866) with evolutionary change normally 

occurring by the addition of new developmental stages to the end of this 

ancestral ontogeny. This, ‘terminal addition’, Haeckel proposed, was the main 

method of evolution, thereby preserving the ancestral ontogeny present during 

earlier stages of development. Under the Biogenic Law, novelty, or evolutionary 

change, should occur only towards the end of ontogeny. However, Haeckel was 

aware that this was not always the case, with the timing of some developmental 

events moving seemingly independently and not recapitulating an ancestral 

ontogeny. Haeckel coined the term ‘heterochrony’ for these ‘prominent 
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exceptions to the rule of evolution by change in developmental timing’ (Haeckel 

1866).      

Haeckel was a strong supporter of Darwin’s theory of evolution by natural 

selection and in 1866 he proposed the term “ecology” to embody Darwin’s ideas. 

However, Haeckel’s interest in the relationship between ontogeny and 

phylogeny stemmed not just from a desire to understand the link between 

development and evolution, but to trace phylogenetic trees by identifying 

ancestral developmental events in descendants at an earlier stage (critically 

reviewed in Gould 1977 and Richardson and Keuck 2002). To provide support 

for his Biogenic law Haeckel produced drawings of various species of vertebrate 

at different stages of embryonic development to illustrate that these species 

recapitulated the same ancestral stages (Haeckel 1866). Haeckel’s drawings 

certainly did show marked similarities between stages in different species, but 

there were concerns about the accuracy of these drawings (e.g. Sedgwick 

1894). There were also theoretical objections to the Biogenic law during the late 

nineteenth and early twentieth centuries (e.g. Garstang 1922; Gould 1977; 

Richardson and Keuck 2002).  

Walter Garstang, a British zoologist, summarised his objection to Haeckel’s law 

with the phrase, ‘ontogeny does not recapitulate phylogeny, it creates it’ 

(Garstang 1922). He considered variation in early development commonplace, 

coming to this conclusion from his work with marine invertebrate larvae, which 

show elaborate morphological specialisation during their time as plankton. 

Garstang (1922) concluded that such specialisation during early life stages was 

ubiquitous and not the result of a recapitulation of ancestral ontogenies. Instead 
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he proposed that evolutionary divergence could occur at any time during 

ontogeny, a view shared by many others during this period (Müller 1869; 

Balfour 1875; Lillie 1899; Sedgwick 1909; McMurrich 1912).  

The Biogenic Law fell out of favour during the twentieth century, partly due to 

frustration from embryologists and zoologists in using it as a tool for 

investigating causation during ontogeny (discussed in Holland 2011). However, 

despite the criticisms of Haeckel’s law (e.g. Gould 1977), it still held some 

support for a good part of the 20th century. In 1997, Richardson and colleagues 

re-assessed the drawings Haeckel produced to illustrate his theory, using large 

numbers of tail bud stage vertebrate embryos, and they found Haeckel’s 

drawings to be both idealised and inaccurate (Richardson et al. 1997). This 

demonstration of inaccuracies in the evidence provided by Haeckel to support 

his ideas offered a conclusion to most of the support for his pervasive law, 

which was further undermined by subsequent studies (e.g. Bininda-Emonds et 

al. 2003; Richardson and Keuck 2002). Although Haeckel’s’ theory of 

recapitulation’ was ultimately disproven, it did raise awareness of both the role 

that altered timing of developmental events might play in evolution and the 

study of variation within and between species during different periods of 

development, both of which are now exciting areas of research within the field 

of evolutionary developmental biology (evo-devo) (Richardson 1995; Bininda-

Emonds et al. 2003). 

The perceived importance of heterochrony in evolution has grown from the mid-

20th century, fuelled by the writings of de Beer, (1958), who aimed to distance 

heterochrony from Haeckel’s theory of recapitulation. The result was that 
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heterochrony soon came to be considered as one of the key potential 

processes linking development and evolution (Gould 1977; McKinney and 

McNamara 1991; Raff 1996; Hall 1999).  

The word heterochrony has been defined in many ways (e.g. de Beer 1958; 

Haeckel 1866; Raff and Wray 1989; Richardson 1995; Reilly et al. 1997; Gould 

2001; McNamara 2012), but in this thesis I will adopt the one used by many 

physiologists (Spicer 2006): ‘changes in the relative timing of developmental 

events between ancestors and their descendants’ (Spicer and Rundle 2006). 

Heterochrony has proven to be the norm, in terms of its frequency of 

occurrence (reviews e.g. Mckinney and McNamara 1991; McNamara and 

McKinney 2005; Spicer et al. 2011 – Appendix 1), contrary to Haeckel’s belief 

that it was the exception. 

1.2 Contemporary approaches to investigating developmental sequences 

In 1977 Gould published ‘Ontogeny and Phylogeny’ and arguably this book 

marked the time at which heterochrony became a common word within the 

vocabulary of evolutionary biology (discussed in McNamara 2012). However, 

Gould had a much more restricted use of the term heterochrony, than earlier 

workers such as de Beer, moving from changes in relative timing to focussing 

on changes in size and shape. Alberch et al. (1979) took Gould’s work further 

by extending heterochrony to encompass changes to growth rates. The 

terminology and analytical approaches put forward, however, were largely 

unsuitable for those not studying morphological characters, thereby impeding 

the study of these traits within the context of heterochrony (e.g. Smith 2001; 

Spicer and Gaston 1999). The two main difficulties with the approaches 
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proposed by Gould and Alberch for application to non-morphological traits, are: 

(i) size was often used as a surrogate for time, assuming a linear relationship 

between size and age; and (ii) the analytical approaches were restricted to 

events measured in terms of either size or shape, which for many traits (e.g. 

differentiation of organ systems, gene expression, segmentation) are unsuitable 

measures (discussed in Smith 2001; 2002). 

Although most heterochrony research was, and still is, performed using traits 

presented within this size/shape framework, there are alternative approaches to 

the analysis of altered timing and these can be categorised according to the 

way they treat time: (i) the use of developmental sequences (i.e. 

ranking/numbering developmental events by the order in which they occur) (e.g. 

Smirthwaite et al. 2007; Rundle 2011; Tills et al. 2011 – Appendix 2); (ii) relative 

timing (i.e. timing of one event relative to the duration of a period of 

development)  (e.g. Germain and Laurin 2009; Laurin and Germain 2011); or (iii) 

absolute time (i.e. timing of an event in real time) (e.g. Mourabit et al. 2010; Tills 

et al. 2010 – Appendix 2; Tills et al. 2011 – Appendix 3). Within ontogeny, 

absolute time is highly species-specific and therefore the use of developmental 

sequences and relative timing are preferred for interspecific comparisons as 

they help to control for differences in the overall rate of development.  

The most sophisticated tools for analysing altered timing are probably those 

designed for application to developmental sequences. These include 

approaches for investigating altered timing within a phylogenetic context (event 

pair cracking- Bininda-Emonds 2004) and for analysis of complex patterns of 

variation in ontogenic itineraries (Ontogenic Sequence Analysis (OSA) - Colbert 
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and Rowe 2008). However, in sequence analyses, events are only considered 

to alter in their timing if they switch positions with another event and, therefore, 

the temporal resolution with which altered timing can be detected is relatively 

low. The use of relative timing is a step up from sequence analysis, in terms of 

the ability to detect altered developmental event timing, and recently the 

application, and suitability, of event pairing to relative timing data, to allow 

analyses within a phylogenetic context has been promoted by Germain and 

Laurin (2011). Finally, the use of absolute timing data is mostly restricted to 

intraspecific investigations of altered timing as there is no standardisation to 

control for the overall rate of development. 

1.3 Altered event timing within and between species 

The contemporary study of heterochrony consists mainly of interspecific 

comparisons (e.g. Jeffery et al. 2002; Smirthwaite et al. 2007; Mitgutsch 2009; 

Fabrezi 2011). This has been fruitful and has led to the recording of 

heterochronies in a wide range of groups, and across a diverse range of traits 

(reviewed in McKinney and McNamara 1991; Smith 2003; McNamara and 

McKinney 2005; Spicer et al. 2011 – Appendix 1). It is becoming increasingly 

apparent, however, that altered developmental event timing is also present, and 

measureable, within species (discussed in Spicer et al. 2011 – Appendix 1). 

Therefore, what is the relationship between intraspecific altered developmental 

event timing and interspecific heterochrony? 

The definition of heterochrony presented in Sect 1.1 (altered timing of 

developmental events between ancestors and descendants) implies an 

interspecific phenomenon, so the question is does this exclude ancestor-
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descendant altered timing within species? This question is complicated by the 

need to first consider whether altered timing is the result of developmental 

plasticity or has a genetic underpinning. Spicer and Burggren (2003) aimed to 

make this distinction clear by coining the term heterokairy which they defined as, 

“plasticity in the timing of the onset of physiological regulatory systems or their 

components”. Distinguishing environmentally-induced altered timing (plasticity) 

from altered timing, caused, not by an environmental stimulus, but genetic 

differentiation, is paramount to understanding the implications of intraspecific 

altered timing (discussed in Spicer et al. 2011 – Appendix 1).  

Heterokairy has been demonstrated in many groups, including crustaceans 

(Spicer and El-Gamal 1999; Terwilliger and Ryan 2001; Spicer and Eriksson 

2003), molluscs (Tills et al. 2010 – Appendix 2; Rundle et al. 2011), fish 

(Sakamoto 1993; McCormick 1994) and amphibians (Warkentin, 1995, 2000, 

2002, 2005; Warkentin et al. 2005). Increasingly, however, reports of 

intraspecific differences in event timing not induced by an environmental 

stimulus, are also being made (Gomez-Mestre et al. 2008, 2010; Rogge and 

Warburton 2008; Warkentin 2007, 2011, a,b; Pan and Burggren 2010; Mourabit 

et al. 2010).  

Work by Warkentin and colleagues investigating altered timing of hatching in 

tree frogs provides some evidence of how differences at the inter- and intra- 

specific levels might be linked (e.g. Warkentin 2007; 2011a). A study using the 

toad, Bufo americanus investigated hatching plasticity in response to a 

pathogenic water mould and this suggested that: (i) induced early hatching had 

evolved independently of early hatching without this stressor; and (ii) heritability 
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for hatching age was higher in controls than in the stressed individuals (Gomez-

Mestre et al. 2008). In addition, a recent review by Warkentin (2011b) showed 

that environmentaly-induced hatching in the Amphibia is common and has 

evolved independently in distant lineages to similar environmental cues, and 

within some clades multiple cues. Looking to the invertebrates, altered timing of 

developmental events have also been revealed in embryos of a freshwater snail, 

Radix balthica, both in response to, and in the absence of, biotic (Rundle et al. 

2011) and abiotic (Tills et al. 2010 – Appendix 2) environmental stressors.   

It appears that altered timing at the intra-specific level, a lower biological level 

than has typically been the focus of heterochrony research, is prevalent. 

Variation in developmental event timing with a genetic underpinning is perhaps 

not too surprising, after all, variation at this level is most likely the raw material 

form which heterochronies were formed. However, it does demand a re-

evaluation of what is meant by the term heterochrony and what the relationship 

might be between altered timing at the within and between species levels.  

1.4 Gene regulatory mechanisms and genetic basis for altered timing 

Altered timing is pervasive as a pattern at different hierarchical levels (reviewed 

by McKinney and McNamara 1991; Raff 1996; Spicer and Rundle 2006; Spicer 

et al. 2011 – Appendix 1), but what do we know of the gene regulatory 

mechanisms underpinning altered timing and secondly of its genetic basis? In 

what follows I discuss possible gene regulatory mechanisms before going on to 

look at their genetic basis.  
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1.4.1 Gene regulatory mechanisms  

In a recent review paper, Spicer et al. (2011) (Appendix 1) suggested that 

haemoglobins in humans are probably the physiological system for which we 

know the most about the underlying genetic mechanisms for altered timing, due 

to their clinical relevance in combatting the symptoms of Sickle Cell Disease 

and β-cell thalassemia (Thein et al. 2009; Bower and Orkin 2011; Sankaran and 

Nathan 2011). Humans usually express the γ-globin gene during fetal 

development and this produces fetal haemoglobin, which has a higher oxygen 

affinity than adult haemoglobin, thereby enhancing oxygen delivery from the 

mother to the fetus. Ordinarily the production of fetal haemoglobin occurs over a 

period of several months, however significant increases can also occur over just 

a few days, in humans (Sankaran et al. 2009) and also baboons (Desimone et 

al. 1978). Close to the time of birth fetal haemoglobin is suppressed, and 

replaced, via expression of the adult β-globulin gene, by adult haemoglobin. 

The mechanism underpinning the switch from fetal to adult haemoglobin has 

received considerable research focus, but is still far from clear. What is clear, 

however, is that there are at least four chromosomes that play a role in 

regulating production of fetal haemoglobin (reviewed in Spicer et al. 2011 – 

Appendix 1). There is also considerable natural variation in the timing of this 

transition both within and between human populations (Leonova et al. 1996; 

Rottgardt et al. 2010) and also between species (Opazo et al. 2008). Yet 

despite this being one, if not the, best-studied example of altered timing of a 

physiological system, we still do not yet understand the regulatory pathways 

responsible. 
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The soil nematode Caenorhabditis elegans is perhaps the species for which we 

know most about the mechanisms underlying altered morphological 

developmental event timing. Work with C. elegans has documented the 

complete cell lineage of its ‘wild type’ development, which has proven largely 

invariant (Sulston and Horvitz 1977; Kimble and Hirsh 1978; Sulston et al. 1983). 

This cell lineage information allows comparison of the relative timing of 

developmental events at the level of individual cell divisions and differentiations, 

at both inter- and intra-specific levels. This information has been used to 

understand the mechanisms responsible for heterochrony, which occurs mainly 

in the cuticle morphology and moulting behaviour, induced via chemicals or 

radiation (Ambros and Horvitz 1984). This work has identified six genes that can 

be mutated to cause heterochrony (Chalfie et al. 1981; Ambros and Horvitz 

1984) and analysis of these mutations suggests that heterochrony can be 

caused by just small base-pair deletions in these genes, which appear to control 

the relative timing of developmental events (Rukuvin et al. 1989).  

Together these examples demonstrate that we have made considerable 

progress towards understanding the potential genetic mechanisms leading to 

altered developmental event timing in some well-studied systems. It is also 

evident, however, that for most researchers this degree of study of the 

mechanistic basis of altered timing is unobtainable and that in the case of the 

fetal Hb example, hundreds of studies have still not fully resolved the 

mechanism underlying the altered timing of the production of this relatively 

simple molecule.  
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1.4.2 Genetic basis of altered timing 

Understanding the nature of the genetic basis for intra-specific variation in 

altered timing should be a pivotal step in disentangling the link between inter- 

and intra- specific variation, but is an area of investigation that has been largely 

overlooked in heterochrony research. Noticeable exceptions include the work of 

Gomez-Mestre et al. (2008) suggesting a heritable component to hatching age 

in Bufo americanus and a study of polychromatism in a species of cichlid, 

Nechromis omnicaeruleus, which hints at a heritable component to the timing of 

transition in colour (Maan et al. 2005). 

Perhaps the best method for investigating the genetic basis of altered timing will 

prove to be the use of experimental evolution. Experimental evolution can be 

broadly divided into “Laboratory natural selection” (LNS) and “Artificial selection” 

(Rose and Garland 2009). Laboratory natural selection studies allow ‘natural’ 

selection to proceed in the lab, with no selective culling, typically in individuals 

or populations exposed to different treatments. Artificial selection, involves the 

experimenter selecting breeders to use for the next generation, based on either 

single, or multiple, trait values (Garland 2003).  

The application of selection studies within the field of evolutionary physiology 

has become commonplace over the past decade (Bennett 2003; Garland 2003; 

Swallow and Garland 2005), but has so far not been utilised to address 

questions relating to altered timing or, more specifically, the extent to which 

intraspecific altered timing might be the raw material from which heterochronies 

arise. The reason for this is uncertain, but Darwin did comment, “that natural 

selection will always act very slowly” (Darwin 1859, p108) and Rose and 
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Garland (2009) discussed that this belief has led to very old patterns of 

research in which the focus all too often jumps to higher biological levels (e.g. 

population or species comparisons). In Chapters 4 and 5 I use perhaps the 

simplest form of breeding experiment, a direct parent-offspring comparison with 

no environmental stressor. This experimental design allowed me to compare 

the timing of developmental events in a (selfing) parent, with the timing of the 

same events in their offspring and thereby determine the degree of inter-

generational similarity. Parent-offspring comparisons are relatively common in 

biology and have revealed hundreds of heritabile traits, including, amongst 

others: fecundity in Drosophila (Sgro and Hoffmann 1997); tarsus length in the 

pied flycatcher (Alatalo and Lundberg 1986); susceptibility to ectoparasites in 

kittiwakes (Boulinier et al. 1997); and growth rates in cattle (Carter 1959).  

1.5 Thesis aims and objectives 

The main aim of this thesis was to investigate to what extent intraspecific 

variation in developmental event timing could contribute to the origin/genesis of 

heterochrony.  

This was achieved by addressing three objectives: 

(1) I described, in detail, the pattern with which variance in intraspecific 

developmental event timing occurs at different biological levels (Chapters 2 and 

3); 

 (2) I then investigated the extent to which this variation might have a genetic 

underpinning (Chapters 2, 4 and 5); 
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(3) Finally, I explore the implications of altered timing for an individual’s life 

history (Chapter 5). 

The chapters in this thesis are structured as follows: 

In Chapter 2 I investigate whether, in embryos taken from a wild population, 

levels of difference in inter-individual developmental event timing are linked to 

levels of inter-individual genetic dissimilarity. 

In Chapter 3 I address how variation in developmental event timing is 

partitioned between the levels of population, egg mass and inter-individual, with 

the aim of better understanding the ecological and evolutionary implications of 

this variation. 

In Chapter 4 I use a parent-offspring comparison to investigate the degree to 

which variation in developmental event timing has a parental origin. Determining 

cross-generational similarity in event timing will help elucidate what role 

intraspecific variation might play in the generation of heterochronies. 

In Chapter 5 I explore within and between generational variation in the 

development of aspects of cardiovascular (CV) function, including the timing of 

CV developmental events. This physiological system was chosen as its 

functional development can be visualised with ease during the embryonic period. 

In my final chapter (Chapter 6), I provide a general discussion of my thesis 

including its implications for our understanding of the origins of heterochrony 

and potential future directions in the study of altered timing. 
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1.6 Model organism used in this study 

1.6.1 Gastropods as a model for studying altered event timing 

In gastropods the fundamentals of morphological (Raven 1966) and 

physiological (Wilbur and Yonge 1966) development were described in the late 

nineteenth to mid-twentieth century. This early work included descriptions of cell 

lineages (Blochman 1882; Delsman 1912) and these facilitated the investigation 

of phylogenetic signals in cell linage across 30 species of gastropod (Hyman 

1951; Lindberg and Guralnick 2003). Gastropods have also provided a good 

model for neurobiology, in particular for the study of learning and memory (e.g. 

Dickinson and Croll 2003).  

A group of air breathing gastropods, the Lymnaeidae, were the first invertebrate 

group in which heterochrony was investigated within a quantitative framework 

(Smirthwaite et al. 2007) using (as a basis) the work of Morrill (1982) who 

detailed the development and culture of Lymnaea and also Cumin (1972), who 

described developmental stages in Lymnaea stagnalis. Smirthwaite et al. (2007) 

described fourteen developmental events, both physiological and morphological, 

spread throughout the embryonic development of 12 species in this group and 

discovered relatively large numbers of heterochronies in events that included 

first heart beat, eye spot formation and body flexing. Heterochronies were found 

to have occurred at familial, generic and species levels in the phylogeny and 

several occurred repeatedly, and independently. Smirthwaite et al. (2007) 

showed that the occurrence of heterochronies in these functional events, within 

this invertebrate group, had occurred with a similar frequency to that seen in the 

vertebrates suggesting that heterochrony may have had a prominent role in the 
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evolution of this group. Here, I use many of the same developmental events 

described by Smirthwaite et al. (2007), but also some others (e.g. velum and 

shell formation – Chapter 4) and these are described within the chapters in 

which they feature. 

Further work with snails from the Lymnaeidae has revealed environmentally 

induced altered timing in many of the developmental events used in Smirthwaite 

et al. (2007). Using an estuarine population of Radix balthica (Linnaeus, 1758), 

Tills et al. (2010) demonstrated salinity induced heterokairy in developmental 

events including veliger, eye spot formation, first heartbeat and hatching. This 

study also discovered significant differences in event timing between embryos 

from different egg masses in control treatments and in salinity treatments the 

magnitude of plastic response was also different between egg masses. Further 

work by Rundle et al. (2011) also revealed heterokairy in this group, but in this 

instance in response to kairomones from a fish predator. They exposed 

embryonic Radix balthica and R. auricularia to predator cue and discovered 

species-specific responses. Radix auricularia exhibited earlier eye spot 

formation, first heart beat and body flexing whereas R. balthica showed earlier 

foot attachment and crawling, but later mantle muscle flexing. Interestingly the 

direction of altered developmental timing in these two species resulted in more 

similar development in a stressed environment than control, and not all embryos 

responded to the predator cue. Radix balthica is known to use crawling 

behaviour to escape predators and therefore it is interesting that crawling is an 

event bought forward in embryos exposed to predator cue and to consider the 

potential post-hatch advantage such early development of this behaviour might 

entail.  
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1.6.2 Radix balthica as a model study species 

The common pond snail, Radix balthica (formerly Lymnaea peregra) is part of 

the Lymnaeidae family (Bassomatophora) and is widely distributed throughout 

European streams, lakes and ponds (Pfenninger 2006). Radix balthica is a 

highly plastic species, in terms of its morphology (Lakowitz et al. 2008; 

Pfenninger 2006; Brönmark et al. 2011; Schneibs et al. 2011), behaviour 

(Åhlgren and Brönmark 2012), development (Tills et al. 2010 – Appendix 2; 

Rundle et al. 2011) and reproduction (Evanno et al. 2006; Pfenninger et al. 

2011; Haun et al. in press). Also, despite being a freshwater species, it is found 

in the brackish waters of the Baltic sea (Råberg and Kautsky 2007) and in UK 

estuaries (Tills et al. 2010 – Appendix 2). 

In 1920 a large scale breeding experiment using R. balthica was begun on the 

rooves of various London hospitals and universities, which lasted for over ten 

years. Radix balthica were maintained both in pairs and individually, in which 

case offspring were produced via selfing, in glass jars containing Canadian 

pondweed, Elodea densa. This breeding study was performed to investigate the 

heritability of sinistrality (left-handed coiling) in shell and body coiling, making 

use of rare, but naturally occurring sinistral snails, in this largely dextral (left-

handed coiling) species (Boycott and Diver 1923; Boycott and Diver 1925; 

Boycott et al. 1931). This study involved the breeding of over a million snails 

and demonstrated the potential of R. balthica in breeding experiments.  

Radix balthica lays transparent eggs (approx. 1 mm length) within a gelatinous 

egg mass and these can subsequently be dissected from the egg mass with 

relative ease, cultured individually, and their development observed (e.g. 
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Smirthwaite et al. 2007; Tills et al. 2010, 2011 [Appendices 2 and 3]; Rundle et 

al. 2011).  

Here, for the studies detailed in Chapters 4 and 5, I adopted a similar approach 

to Boycott and Diver in culturing R balthica. I maintained individual snails in 

glass jars, with pieces of Elodea densa, on shelving positioned in a west facing 

window, in a 15°C controlled-temperature (CT) facility (Figure 1). Time to 

maturity and egg laying was approximately eight months and eggs were most 

commonly deposited on the E. densa. Hatchling and juvenile snails primarily 

grazed on the Elodea. However, from three weeks after hatching, Lactuca 

sativa (lettuce) was used to supplement the diet and to promote growth. 

Mortality during the three weeks after hatching was approximately 50%, but low 

thereafter (~ 5%). This method of long-term culture proved to be effective and 

required fairly low levels of maintenance. 

 

Figure 1.1 a) Jars used to culture hatchling snails, containing Elodea densa, 

positioned in the window. Red line indicates the 20 mm width of a single jar.; b) 

Mature Radix balthica feeding on lettuce. Red line indicates the 10 mm length of 

the snail’s shell. 
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1.7 Measuring developmental event timing 

1.7.1 A purpose-built bio-imaging system 

Embryonic development of R. balthica takes place over approximately 10 days 

at 20°C and previous work with this species has identified a suite of functional 

physiological and morphological developmental events occurring throughout 

this period, which can all be observed under low power magnification (x 10) 

(Smirthwaite et al. 2007). Given the central importance of being able to 

measure the timing of functional events, with high temporal resolution, in large 

numbers of embryos, I decided to invest several months into the research and 

development of a bio-imaging system that would facilitate the observation of a 

greater number of embryos, and with higher frequency, than is feasible using 

manual methods. The requirements of this system were: i) image quality (high 

resolution and frame rate); ii) depth of field (sufficiently high to encompass the 

depth of an egg, thereby ensuring embryos are in focus regardless of their 

position in the egg); and, iii) automation (system must be capable of running for 

months at a time). It soon became apparent that none of the microscopes on 

the market could meet these requirements and therefore I trialled individual 

components with a view to designing and constructing a system in house.   

The resulting system comprises a four megapixel, monochrome, shutterless 

machine vision camera (Pike 421, Allied Vision Technologies, Germany) 

connected to a zooming optic lens (VHZ20R, Keyence, Japan) (Fig. 2). The 

optics are then inverted and mounted in an aluminium frame, which was 

machined ‘in-house’. Above the optics a robotic XY stage (Optiscan, Prior, 

England) is mounted and this is fitted with the appropriate insert for multiwell 
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plates. Darkfield lighting is provided by a light emitting diode (LED) ring light 

(Keyence, Japan), which is mounted above the robotic stage using a plastic 

mounting bracket designed and also machined in house.  

An Apple Mac Pro was used to control the system and was connected to the 

camera via a Firewire800 cable. The robotic stage was connected to the Mac 

Pro via a Universal Serial Bus (USB) to serial adapter (USA-19HS, Keyspan, 

USA). Camera and stage were controlled using the open source software 

Micromanager (Edelstein et al. 2010), which runs as a plugin to Image J, a 

popular image analysis software, and provides drivers for both this camera and 

stage. To facilitate safe and efficient data capture an external Serial ATA 

(eSATA) Peripheral Component Interconnect (PCI) card was installed in the 

Mac Pro, and, to this, an external hard drive array was connected (6 drive). This 

arrangement allowed data to be written simultaneously to mirrored hard drives 

and meant that, in the event that one hard drive failed, the remaining intact drive 

would still contain a complete copy of the data, and image capture would 

continue uninterrupted. Use of this array also allowed removal and addition of 

hard drives whilst the system was still running. For data storage I used 2 

terabyte (TB) Seagate Barracuda 3.5 inch with a spin-rate of 7200 revolutions 

per minute (RPM) hard drives owing to their speed and the reputation of 

Seagate. 

The imaging system was housed in a 20°C controlled-temperature (CT) facility 

and embryos were maintained, when being imaged, in individual wells of a clear 

384 well microtitre plate (Elkay, UK) with a lid. Embryos were cultured in 

artificial pond water (APW; ASTM 1980) containing 90 mg/litre of calcium 
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(Rundle et al. 2004) and this was changed in each of the wells daily via manual 

pipetting.  

Appendix 4 describes the use of this bio-imaging system for the application of 

motion analysis for developmental staging and assessment of embryonic stress 

responses. 

Figure 1.2 The purpose built bio-imaging system with labelled components. a) 

Inverted camera and lens mounted beneath the motorised microscope stage 

(red line = 50 mm length); b) LED lighting unit providing dark-field lighting to a 

384 well multi-well plate positioned on the motorised microscope stage (red line 

= 130 mm length). 

 

1.7.2 Measures of developmental event timing 

In this thesis I chose, for the most part, to analyse developmental events in 

terms of their absolute timing (measured as time from the first cell division). 

However, I also analyse events in terms of their relative timing in Chapter 3 and 

position within the developmental sequence for some analyses in Chapter 2. 

The decision to focus mainly on absolute timing was made as this thesis 
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concerns intra-specific comparisons and therefore I wanted to conserve as 

much temporal information about event timing as possible. 
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CHAPTER 2 

A GENETIC BASIS FOR INTRA-SPECIFIC DIFFERENCES IN 

DEVELOPMENTAL TIMING 

 

Published as – Tills, O., Rundle, S.D., Salinger, M., Haun, T., Pfenninger, M., 

and Spicer, J.I. 2011. A genetic basis for intraspecific differences in 

developmental timing? Evolution and Development, 13(6): 542-548. 

 

2.1 Summary 

Heterochrony, altered developmental timing between ancestors and their 

descendants, has been proposed as a pervasive evolutionary feature and 

recent analytical approaches have confirmed its existence as an evolutionary 

pattern. Yet the mechanistic basis for heterochrony remains unclear and, in 

particular, whether intraspecific variation in the timing of developmental events 

generates, or has the potential to generate, future between-species differences. 

Here I make a key step in linking heterochrony at the inter- and intra- specific 

level by reporting an association between inter-individual variation in both the 

absolute and relative timing (position within the sequence of developmental 

events) of key embryonic developmental events and genetic distance for the 

pond snail, Radix balthica. I report significant differences in the genetic distance 

of individuals exhibiting different levels of dissimilarity in their absolute and 

relative timing of developmental events such as spinning activity, eye spot 
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formation, heart ontogeny and hatching. This relationship between genetic and 

developmental dissimilarity is consistent with there being a genetic basis for 

variation in developmental timing and so suggests that intraspecific 

heterochrony could provide the raw material for natural selection to produce 

speciation. 

2.2 Introduction 

In the Origin of Species Darwin (1859) asked “at what period of life (do) the 

causes of variability, whatever they may be, generally act” (p. 8), highlighting 

that variation early in development could be important for natural selection. 

Haeckel (1866) subsequently championed the notion of a link between early 

development and evolution, proposing in his Biogenetic law that an organism’s 

ontogeny was a brief and rapid recapitulation of its phylogeny (Gould 1977). 

This ‘law’ was subsequently refuted, most notably by De Beer (Olsson et al. 

2009; Richardson et al. 2009), who, like Darwin, suggested that evolutionary 

innovation could occur throughout development. De Beer’s theories on 

embryology played a crucial role in the Modern Synthesis, yet it is his views on 

heterochrony, altered developmental timing, that have had greatest longevity. 

Despite his discredited theory of recapitulation, Haeckel did identify the 

occurrence of heterochrony, the altered timing of developmental events 

between ancestors and descendants, which has had greater longevity and has 

been proposed to be a pervasive evolutionary feature (Gould 1979). Recent 

analytical approaches have demonstrated the occurrence of heterochrony 

within vertebrate phylogenies, confirming the occurrence of heterochrony as an 

evolutionary pattern (Spicer and Rundle 2006; Richardson et al. 2009; Fiser et 
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al. 2008; Richardson et al. 2002; Weisbecker et al. 2008; Maxwell et al. 2010). 

Despite this body of evidence, however, the key question of what generates 

heterochrony still persists (Spicer et al. 2011 – Appendix 1). 

Intra-specific variation in the timing of developmental events is an aspect of 

development that has been rarely examined due to the assumption that 

variation at the intra-specific level is low relative to inter-specific heterochrony 

(Spicer and Gaston 1999). However, the number of studies reporting altered 

timing of developmental events at the intra-specific level is increasing, perhaps 

due to the use of larger sample sizes (Cubbage and Mabee 1996; de Jong et al. 

2009; Mabee and Trendler 1996; Schmidt and Starck 2004; Spicer and Rundle 

2007; McKinney and McNamara 1991). Given the existence of variation in 

developmental event timing at both the inter- and intra-specific level, a key 

challenge is to elucidate whether there is a relationship between these two 

levels of variation, in particular whether intra-specific variation in developmental 

timing generates, or has the potential to generate, between-species 

heterochrony (Spicer et al. 2011 – Appendix 1).  

Here I investigate whether altered developmental timing might provide the raw 

material for natural selection to fix heterochronies by asking if variation in the 

timing of developmental events within a species has a genetic basis. 

Observations of freshwater snail embryos from the Lymnaeidae provided the 

first evidence for extensive heterochrony among species, on both internal and 

terminal branches, in an invertebrate phylogeny (Smirthwaite et al. 2007). Snail 

embryos have advantages over those of vertebrates as they allow the 

generation of continuous developmental data whereas studies of vertebrate 
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development typically rely on one-off measurements of individuals at discrete 

developmental stages (Bininda-Emonds et al. 2003). At the same time, intra-

specific changes to the developmental sequence of Radix balthica embryos, the 

snail I use here, have been reported in response to both biotic (Rundle et al. 

2010) and abiotic (Tills et al. 2010 – Appendix 2) stressors making this a 

relevant species for investigating intra-specific variation in developmental timing. 

I used a standard suite of developmental events (Smirthwaite et al. 2007) to 

identify developmental event sequences within Radix balthica (Fig. 2.1, Table 

2.1) and compared differences in developmental timing to strength of genetic 

relation, measured using eight polymorphic microsatellites (Salinger and 

Pfenninger 2009; Nei et al. 1983). 

2.3 Materials and Methods 

2.3.1 Embryonic development 

Egg masses of R. balthica as identified by DNA-barcoding (Pfenninger et al. 

2006) were collected at low tide on the 9th of June, 2009 from a single nine 

metre stretch of shore in the upper estuary of the River Dart, Totnes, Devon, UK 

(50°26’19” N, 3°41’24” W). They were removed to the laboratory at Plymouth 

and examined under low power (x 10) (Leica MZ12) with those egg masses 

containing eggs that had not developed beyond the 2-cell division stage being 

used in the study. Six eggs from each of 11 egg masses were dissected under 

low power and placed in multi-well trays (vol. per well = 24 ml, 24 wells per trays) 

containing Artificial Pond Water (APW) (ASTM 1980) with 90 mg l-1 [Ca 2+] 

(Rundle et al. 2004) with a single egg in each well. Eggs within multi-well trays 

were cultured in a controlled-temperature facility (T = 20°C) under a 12: 12 light: 
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dark cycle. Treatment solution in each of the wells was changed daily under low 

power magnification at which time the developmental events undergone by 

each embryo were recorded (see Fig. 2.1 and Table 2.1 for description of the 

developmental events used). Both morphological and physiological 

developmental events were used and these events were chosen as they have 

undergone heterochrony between species within the Lymnaea group, of which 

Radix balthica is a member (Smirthwaite et al. 2007). When examining embryos 

for ‘non-morphological’ developmental events, such as the appearance of the 

first heart beat, embryos were monitored for several minutes to identify the 

onset of that developmental event. Embryonic development lasted an average 

of 13 days (Fig. 2.2). 

 

Figure 2.1. Developmental stages (E4, E6, E8, E10, E11) of Radix balthica 

embryos (Cumin 1972). The location of the developmental events; eye spot 

formation (e), foot attachment (f), heart beat (h) and radula function are 

indicated. 
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Developmental event Description of event 

Spinning activity Rotating using cilia. 

Trochophore  Spherical liver cells form a helmet like velum within the 

egg. 

Veliger  Foot formation and shell secretion. Symmetrical 

development of two ends of the embryo. 

Hippo  Asymmetrical development with further development of 

the foot and shell. This is the major stage of 

organogenesis, the head becomes more conspicuous 

from the rest of the body, as the middle part pinched in. 

Ontogeny of eyes Formed on the head, further pigmentation of eye spots 

occurs as they develop. 

First heart beat Chamber type heart forms and begins beating on the 

far back of the shell, which moves closer towards the 

head as the embryo grows. 

Initial foot attachment Foot attaches to the capsule wall enabling the embryo 

to crawl. 

Radula activity The radula situated in the head starts actively sucking 

the capsular fluid in. 

Hatching Rupture of the egg capsule, enabling the embryo to 

emerge out of it. 

 

Table 2.1 Descriptions of the developmental events recorded (Smirthwaite et al. 

2007). Each developmental event was recorded when it was first observed, 

observations were made every 24 h. 

 

2.3.2 Genetic analysis 

Once snails hatched they were preserved separately in microcentrifuge tubes 

(Eppendorf, vol. = 0.6 ml) containing 70% ethanol. DNA extraction was 

accomplished using a glass fibre DNA extraction method after a protocol 

developed by the Canadian Centre of DNA Barcoding (Ivanova et al. 2006).  
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All snails were genotyped for 8 highly polymorphic microsatellite loci (Salinger 

et al. 2009) by collaborators at Frankfurt University. Multiplex Microsatellite 

amplification was carried out using Quiagen Type-itTM microsatellite PCR Kit 

with fluorescent dye labeled forward primers. PCR products were separated 

using ABI Prism 3730 sequencer (Applied Biosystems) with GeneScanTM 500-

LIZTM size standard (Applied Biosystems). Microsatellite allele lengths were 

analysed using GENEMAPPER 4.0 software (Applied Biosystems).  

Genetic analysis was successful for forty-eight embryos and these data 

together with the embryonic development data were used in the analysis. Pair-

wise genetic distance among individuals was estimated as Nei’s standard 

genetic distance (Nei et al. 1983) (Table 2.2). This genetic distance measure is 

a rather conservative estimate of genetic relatedness, as it does not partition 

between recent co-ancestry and the background relatedness of individuals 

belonging to the same population. There was no significant relationship 

between the genetic distance of eggs from different egg masses and their 

topographical distance at the collection site.  AMOVA revealed that 96% of 

molecular variance is at the individual level and only 3% is distributed between 

egg masses (Among egg masses - R 10 = 0.034, p = 0.01; Among individuals – 

R 104 = 0.994, P = 0.01) and therefore I did not include egg mass in the analysis. 

2.3.3 Analytical approach 

Developmental data were analysed both as the absolute time of onset of 

developmental events and as the position of events within the developmental 

sequence (relative timing) for each snail on which microsatellite analysis was 
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successful (N = 48). The relative timing of developmental events provides a 

potentially better method of comparing an embryo’s timing of decision making 

and therefore could be more useful in understanding the mechanism underlying 

heterochronic change (Smith 2001). To allow comparisons of developmental 

difference between individuals the developmental data for each individual was 

subtracted from that for every other individual, and the direction of all 

differences expressed as positive values. This provided a dataset of 

developmental differences between all possible pair-wise individual 

comparisons. 
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Figure 2.2 Time of onset (mean ± 1 S.D.), from the 2-cell division stage, of 

nine embryonic developmental events. 

 

A Generalised Linear Model with log linked interval level response was used to 

test for differences in the genetic distance of individuals with different levels of 

developmental dissimilarity and post-hoc Tukey’s tests were used for pair-wise 

comparisons. 
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Figure 2.3. Genetic distance of individuals with no significant differences in the 

time of onset of nine embryonic developmental events compared with 

individuals exhibiting a difference Values are means ± 1 SD.  

 

2.4 Results 

2.4.1 Absolute time of onset of developmental events 

Variation in the time of onset of developmental events increased as 

development progressed (Fig. 2.2). I found clear evidence for between-embryo 

differences in the absolute time of onset of several developmental events that 

was associated with their genetic relation: individuals with the same time of 

onset of all nine developmental events used here had higher genetic similarity 

than individuals with any differences (χ²946, 1 = 13.437, P < 0.001) (Fig. 2.3). 

Individuals ranged from having zero to nine developmental events that differed 

in their time of onset and there were significant differences in the genetic 
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distance of individuals with these different levels of developmental dissimilarity 

(χ²946, 9 = 47.486, P < 0.001) (Fig. 2.4). Individuals with either no events, or a 

single event, with differences in their time of onset were more genetically similar 

than individuals with two or more events with differences in their developmental 

timing (0 Events vs 1 – P = 0.002; 0 vs 2 – P = 0.008; 0 vs 3 – P = 0.006; 0 vs 

4 – P = 0.006; 0 vs 5 – P < 0.001; 0 vs 6 – P < 0.001; 0 vs 7 – P < 0.001; 0 vs 8 

– P < 0.001; 0 vs 9 – P < 0.001. 1 Event vs 2 – P = 0.005; 1 vs 3 – P = 0.028; 1 

vs 4 – P = 0.02; 1 vs 5 – P < 0.001; 1 vs 6 – P < 0.001; 1 vs 7 – P < 0.001; 1 vs 

8 – P < 0.001; 1 vs 9 – P = 0.001). 

 

 

Figure 2.4. Genetic distance of individuals with different numbers of 

developmental events with differences in their time of onset. Different letters 

above error bars, within each developmental event, indicate significant 

differences in genetic distance as indicated by post-hoc Tukey tests. 
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There were also event-specific genetic relationships with significant differences 

in the genetic similarity of individuals with altered time of onset of several 

developmental events (spinning, χ²946, 1 = 9.65, P = 0.006; trochophore, χ²946, 2 = 

16.46, P < 0.001; veliger, χ²946, 1 = 8.216, P = 0.016; eyes, χ²946, 3 = 20.749, P < 

0.001; heart, χ²946, 3 = 22.817, P < 0.001 and hatching, χ²946, 5 = 13.874, P = 

0.016) (Fig. 2.5). The majority of pairwise comparisons between individuals for 

the developmental events spinning, trochophore and veliger revealed no 

developmental differences (Fig. 2.5). However, several of the developmental 

events occurring later in development (eyes, heart and hatching) have more 

pairwise comparisons revealing differences in their time of onset. Each 

developmental event had fewer pairwise comparisons revealing the greatest 

level of difference in developmental timing than comparisons where there was 

no difference. 
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Figure 2.5. Genetic distance of individuals with various differences in the time of onset of several developmental events. N = 

the number of pairwise individual comparisons revealing that level of difference in the timing of that developmental event. 

Different letters above error bars, within each developmental event, indicate significant differences in genetic distance as 

indicated by post-hoc Tukey tests. 
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2.4.2 Relative timing of developmental events 

Variation was also observed between embryos in the relative timing (position 

within the developmental sequence) of several developmental events (eye spot 

formation, first heart beat and foot attachment), but only embryos with 

dissimilarity in the position of first heart beat within their developmental itinerary 

had differences in their genetic dissimilarity: embryos with the greatest 

difference in the relative position of first heart beat (two positions) had lower 

genetic similarity than those with no difference (χ²946, 2 = 9.159, P = 0.01) (Fig. 

2.6).  

 

Figure 2.6. Genetic distance of individuals with various levels of difference in 

the position of heart ontogeny within the developmental sequence (χ²946, 2 = 

9.159, P = 0.01). Values are means ± 1 S.D. Different letters above error bars, 

within each developmental event indicate significant differences in genetic 

distance as indicated by post-hoc Tukey tests. 
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Table 2.2. Pairwise matrix containing the genetic distance (Nei et al. 1983) for 48 individuals distributed between 11 egg 

masses. 
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2.5 Discussion 

At present, the precise mechanistic basis for the observed heterochronic 

differences in developmental timing between closely-related species is unclear. 

Here, I have provided clear evidence for inter individual variation in 

developmental event timing in the gastropod Radix balthica which has a genetic 

basis. This variation could provide the raw material on which selection may act, 

leading to the formation of heterochrony. These developmental events have 

undergone heterochrony within R. balthica’s recent evolutionary past, which 

adds strong support for the hypothesis that intraspecific variation, such as seen 

here, has led to the formation of heterochrony within this phylogeny. At present, 

however, I am unable to go further and identify the mechanism underlying this 

link between developmental and genetic differences. 

 

The developmental events that showed timing (both absolute and relative) shifts 

in this study (i.e. spinning activity, trochophore stage, veliger stage, eye spot 

formation, first heart beat, foot attachment and hatching) have also been shown 

to be important in distinguishing species within the evolutionary clade of which 

R. balthica is part (Smirthwaite et al. 2007).  Although I am not inferring a direct 

link in this instance, the fact that the timing of these events has been 

demonstrated to be labile both within and between species does suggest a 

possible link between these two levels of variation (Rundle et al. 2010, Tills et al. 

2010 – Appendix 2). It is important to remember that the timing of 

developmental events is inherently non-independent; for example, the insertion 

of time early in development can have a cascading effect leading to the later 

occurrence of subsequent events. Whilst this non-independence limits the 
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ability to infer the mechanisms underlying changes in developmental timing it 

can help us to understand the relationship between different developmental 

events. 

 

Radix balthica is a mixed mating simultaneous hermaphrodite and therefore 

within a population can have varying levels of independence between family 

lineages, with potentially poor blending (Jarne and Delay 1990; Haun et al. 

submitted). This population structure has perhaps allowed for differences in 

developmental sequence to be maintained and the magnitude of those 

differences to increase within a small population. I was unable to detect any 

relationship between the topographical distance of eggs collected and either 

their genetic or developmental dissimilarity which is perhaps not surprising 

given this species’ mating system and population structure. Moreover, as most 

of the genetic variation in our study was at the level of the individual I am 

confident that maternal effects (i.e. differences between eggs masses) were 

highly unlikely to have driven the main findings of this study.  

 

The genesis of sequence change and the fact that that through time the 

magnitude of the change came to mirror genetic dissimilarity, I suggest is 

evidence for the role of intraspecific developmental sequence variability in the 

formation of heterochrony. The next step in linking heterochrony at the intra- to 

inter-specific level will be to demonstrate a direct genetic link underlying intra- 

and inter-specific variation in developmental timing. A genetic basis for both the 

overall number of developmental events with dissimilarity in their time of onset, 

and in event-specific differences in time of onset, suggest that intraspecific 
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variation in the timing and sequence of developmental events, which might have 

historically been treated as experimental noise, may be a target for natural 

selection.  If so, the differences reported here are highly significant in 

evolutionary terms and take us a step closer to understanding at least one of 

the origins of heterochrony. Once the link between inter- and intra-specific 

heterochrony is revealed and if it can be shown that intra-specific heterochrony 

has fitness consequences, this will represent a major advance in our 

understanding of heterochrony as an evolutionary process. 

Having identified a potential genetic basis for intraspecific altered timing within a 

population, in Chapter 3 I will extend my focus to investigate how variance in 

event timing is partitioned at different biological levels when considering 

populations from across R. balthica’s geographical range.  
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CHAPTER 3 

EFFECTS OF BIOLOGICAL ORGANISATION AND MATERNAL 

PROVISIONING ON VARIANCE IN GASTROPOD EMBRYONIC 

DEVELOPMENTAL EVENT TIMING 

3.1 Abstract 

Intraspecific variation in developmental event timing is becoming increasingly 

apparent and is believed to be the raw material from which heterochronies 

(altered timing of developmental events between ancestors and descendants) 

arise. However, our understanding of how variance in intraspecific 

developmental event timing is distributed at different biological levels is 

extremely poor. Here I used high (temporal and spatial) resolution imaging of 

the entire embryonic development of Radix balthica, a pond snail, to investigate 

variance partitioning between the biological levels of population, egg mass and 

individual, in: the relative timing of four key developmental events (four cell 

division, a discrete heart beat, capsule rupture and hatching); egg volume (a 

measure of maternal investment); and hatchling size and shape (to compare 

embryonic with post-hatch variance). I found that the timing of developmental 

events other than four cell division plus all measures of hatchling size and 

shape had most variance partitioned at the individual level, and variance at the 

population level was surprisingly low despite sampling populations from across 

R. balthica’s range. This pattern raises important questions regarding variation 

in developmental event timing in evolutionary ecology.  
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3.2 Introduction 

Variation is the raw material required for natural selection to operate (Darwin 

1859) and understanding the nature of variation in physiological, morphological, 

developmental and behavioural traits is key to our knowledge of their ecology 

and evolution (Spicer and Gaston 1999; Arthur 2011).  To understand the 

biological significance of variation the pattern this variation takes in nature 

should be documented (Spicer and Gaston 1999; Chown and Gaston 2008). 

However, given that this process of quantifying variance in a particular trait at 

different biological levels is relatively simple compared to investigating the 

processes underlying variation, it is surprising that this key step is often omitted 

in research of trait function, ecology and evolution. Although, there are studies 

documenting variance partitioning (e.g. Heatwole et al. 1965; Chown et al. 1999; 

Bagatto 2000), they are rare, particularly for lower biological levels (e.g. 

population, clutch, inter-individual).  

Chown et al. (1999) investigated variance partitioning at the levels of genus, 

species, population and individual, in traits related to desiccation resistance in 

African keratin beetles. Variance in physiological traits, which were strongly 

influenced by body size, was partitioned mostly at the genus level with the 

lowest levels of variance in these traits measured at the population and 

individual levels. Once the effects of body size had been accounted for, 

however, variance in survival time and the rate of maximum water loss were 

partitioned mostly at the species level, whereas maximum tolerable water loss 

and lipid and water content exhibited most variance at the individual level. As 

this study demonstrated, variation at the inter-individual level can dominate 

even when considering higher biological levels, but a major barrier to 
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investigating variation at this level is both the inability to replicate the individual 

(Spicer and Gaston 1999) and that variation at this level has often been 

regarded as developmental and experimental noise (Spicer and Gaston 1999). 

Therefore, our understanding of variation among individuals is limited. However, 

within the field of evolutionary biology a growing body of evidence is revealing 

significant variation in the timing of developmental events at the inter-individual 

level.  

Heterochrony, defined as altered timing of developmental events between 

ancestors and descendants, is a well documented macroevolutionary pattern 

(Bhuller et al. 2012, McNamara 1996, Spicer 2006, Spicer et al. 2011 – 

Appendix 1) which was proposed by Gould as being the main mechanism of 

evolutionary innovation (Gould 1977). Most study of heterochrony has 

concentrated on documenting differences in developmental event timing 

between species, with the reasoning that any within species variation will be 

minor, and probably not appropriate to addressing questions relating to this 

macroevolutionary pattern. However, the body of evidence for intraspecific 

differences in developmental timing has grown substantially recently, including 

the study detailed in the previous chapter, which has hinted that this inter-

individual variation could have a genetic basis (Chapter 2; Tills et al. 2011 – 

Appendix 3). Tills et al. (2011) discovered using embryos of Radix balthica, a 

pond snail, that within a single population there was a positive relationship 

between inter-individual genetic distance and the degree of dissimilarity in 

embryonic developmental event timing; suggesting there to be a genetic basis 

for inter-individual variation, even within a single population. Given the recent 

highlighting of intraspecific variation in developmental timing understanding how 
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this variation is partitioned at different biological levels and therefore its potential 

significance in the formation of heterochronies is timely. 

Here, I used Radix balthica to investigate how variance in the timing of five key 

embryonic developmental events, which exhibit variation at both the inter- and 

intra-specific levels (Smirthwaite et al. 2007; Tills et al. 2010 – Appendix 2; Tills 

et al. 2011 – Appendix 3), was partitioned at the levels of population, egg mass 

and inter-individual. Given the potential influence of maternal investment on 

development (Ho and Burggren 2010) I investigated variance partitioning in egg 

volume and the effect of including egg volume as a covariate on the partitioning 

of variance in the other traits we examine. Finally, I measured variance 

partitioning in hatchling size and shape to investigate whether variance was 

distributed in the same manner as for embryonic traits. My overall aim was to 

understand how variation in these early developmental traits was partitioned at 

different biological levels and the factors which might be generating it, a key 

step in understanding what intraspecific variation in developmental event timing 

means for heterochrony. 

3.3 Material and Methods 

3.3.1 Embryo culture 

Second generation stock populations of Radix balthica from each of four 

European populations spanning this species’ latitudinal range (North Sweden – 

66.428, 19.683; South-west England – 50.439, -3.690; Bavaria, Germany – 

50.007 9.156; South France – 44.053, 4.784) (Pfenninger et al. 2011) were 

maintained at 15ºC under a 12:12 light-dark regime. Snails were cultured in 

aquaria (vol. = 15 l; stocking density = 15) containing Artificial Pond Water 
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(Rundle et al. 2004) and fed lettuce and spinach ad libitium. Egg masses were 

harvested from aquaria and examined under low power (x 10) and if eggs had 

not developed past the first cell division, they were used in the experiments 

described below. 

3.3.2 Bio-imaging 

Eggs were dissected from egg masses under low power (x 10) and six eggs 

were selected haphazardly from along the length of the egg mass (France - 7 

egg masses; Sweden - 4 egg masses; Germany - 3 egg masses; England - 6 

egg masses) and cultured at 20ºC in a 384 well microtitre plate (well vol. = 84 

μl). The entire development of embryos was recorded using an automated 

imaging system designed in our laboratory for imaging aquatic animals (Sect. 

1.7.1). This system comprises a 4 megapixel shutterless monochrome camera 

(Pike 421 B, Allied Vision Technologies, Germany) connected to a zooming lens 

system (Zoom 70 XL, Optem, Luxembourg), inverted beneath a motorised XY 

stage (Optiscan XY stage, Prior Scientific, England). Transmitted, dark-field, 

cold lighting was provided by light emitting diodes (LEDs). The camera and XY 

motorised stage were controlled using the open-source software MicroManager 

1.3 (Edelstein et al. 2010) running on a Mac Pro using OS X. The first four days 

of development were captured by recording a single image of each embryo 

every 30 min. After day four, image sequences were acquired at 7.5 frames sec-

1 for 20 sec, every 60 min. Artificial pond water (Rundle et al. 2004) in each well 

of the multi-well plate was replaced daily. 
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3.3.3 Image analysis 

Following image acquisition, image sequences were analysed by manual 

observation of the sequences using Image J (Abramoff, et al. 2004). The time of 

onset of six embryonic developmental events; two cell division, four cell division, 

a discrete heart beat, radula ontogeny, egg capsule rupture and hatching, were 

recorded for each embryo. The events used, have all been shown to vary in the 

timing of their appearance both between and within species (Smirthwaite et al. 

2007; Tills et al. 2010 – Appendix 2; Tills et al. 2011 – Appendix 3). The time 

period between two cell division and radula ontogeny was used to standardise 

the timing of the remaining four developmental events (four cell division, a 

discrete heart beat, egg capsule rupture and hatching) to provide a measure of 

relative event timing and therefore control for differences in the overall rate of 

development between embryos. As a result of this standardisation 2 cell division 

and radula ontogeny had no variance in relative timing and so were excluded 

from subsequent analyses. Radula ontogeny was chosen as the second 

developmental event with which to standardise developmental timing, rather 

than capsule rupture or hatching, as radula ontogeny exhibits far less variation 

in timing (pers. obs.) and so its use produces a more consistent measure of 

relative developmental event timing. The resultant values for the relative timing 

of four cell division, a discrete heart beat, egg capsule rupture and hatching 

were used in subsequent statistical analyses.  

Egg volume was calculated using the formula 1/6πlw² (Taylor 1973) from 

measurements of egg length (l) and width (w) obtained from images acquired at 

the beginning of development. The shell parameters length, width, aperture 

length, aperture width and aperture height were measured immediately after 
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hatching. Aspect ratio (length:width), aperture ratio (aperture length:aperture 

width) and the ratio of length: aperture height were calculated to provide 

measures of shell shape (Tills et al. 2010 – Appendix 2). 

3.3.4 Data analysis 

A nested analysis of variance, using the Satterthwaite approximation (Sokal and 

Rohlf 1995) for unequal sample sizes, was performed to partition variance in the 

relative timing of the four developmental events (four cell division, a discrete 

heart beat, capsule rupture, hatching), egg volume and hatchling shell size and 

shape parameters between the levels of population, egg mass and individual 

(including the error term).  

3.4 Results 

3.4.1 Egg volume 

Egg volume was significantly different between egg masses (F17, 63 = 16.94, P ≤ 

0.001), but not populations (F3, 63 = 1.69, P = 0.207). Most variation in egg 

volume was partitioned at the egg mass level (72%) and the least at the 

population level (11%) (Fig. 3.1). Egg volume had significant effects on both the 

relative time of onset of developmental events (Fig. 3.2 and Table 3.2) and the 

size of hatchlings (Fig. 3.3) and, therefore, analysis of variance was performed, 

both with (ANCOVA) and without egg volume (ANOVA) as a covariate. 

3.4.2 Developmental event timing 

Variance in the relative timing of all four measured developmental events was 

lowest at the population level, both with and without (Fig. 3.1) egg volume 

factored into the analyses. With egg volume as a covariate in the ANOVA model, 

most variation in the timing of developmental events was partitioned at the 
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individual level, however, ANOVA without egg volume as a covariate revealed 

the timing of four cell division had more variance partitioned at the egg mass 

(39%) than individual level (34%). This relationship between egg volume and 

the relative timing of four cell division was confirmed by a significant, negative 

regression between these two parameters (Fig. 3.2a). Regression analysis also 

revealed the relative timing of a discrete heart beat to be significantly influenced 

by egg volume (Fig. 3.2b). 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1. Results of ANOVA testing for differences in the relative time of onset 

of key embryonic developmental events between populations and egg masses 

in the pond snail, Radix balthica. ns – p > 0.05; * - p < 0.05; ** - p ≤ 0.001.

 

Factor 
 

df 
 

SS 
 

MS 
 

F 
 

P  

Four cell 
division 

      

Population 3 0.0001802 0.0000601    3.88  0.028 * 

Egg Mass 17 0.0002626 0.0000154 5.46   ≤ 0.001 ** 
Error 63 0.0001784   0.0000028    

A discrete 
heart beat 

      

Population 3 0.038403 0.012801 2.23 0.122 ns 
Egg Mass 17 0.097698 0.005747 3.67   ≤ 0.001 ** 
Error 63 0.098787 0.001568    
       
Capsule 
rupture 

      

Population 3 0.40546 0.13515 1.53 0.242 ns 
Egg Mass 17 1.49737 0.08808 3.24 ≤ 0.001 ** 
Error 63 1.71081 0.02716    
       
Hatching       
Population 3 0.37815 0.12605 1.49 0.253 ns 
Egg Mass 17 1.43682 0.08452 3.14 ≤ 0.001 ** 
Error 63 1.69404 0.02689    
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Figure 3.1 Variance in egg volume (%) and the relative time of onset of developmental events partitioned at the population, 

egg mass and individual level in the pond snail, Radix balthica. Percentages are calculated both with and without egg volume 

included as a covariate. 
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Table 3.2 Results of an ANCOVA testing for differences in the absolute time of 

onset of key embryonic developmental events between populations and egg 

masses in the pond snail Radix balthica, with egg volume as a covariate. ns – 

p > 0.05; * - p < 0.05; ** - p ≤ 0.001. 

 

The partitioning of variance at the population level decreased as embryonic 

development progressed (i.e. four cell division > heart beat > capsule rupture > 

radula > hatching) whereas the partitioning of variance at the individual level 

increased (Fig. 3.1). The relative timing of four cell division, the earliest 

developmental event analysed here, was significantly different between both 

populations and egg masses, whereas the timing of an identifiable heart beat, 

 

Factor 
 

df 
 

SS 
 

MS 
 

F 
 

P  

Four cell division       
Egg volume 1 0.0000002 0.0000002 0.08 0.7785 ns 

Population 3 0.0000870   0.0000290   3.24   0.046 * 

Egg Mass 17 0.00001698  0.0000100  3.48 ≤ 0.001 ** 
Error 62 0.0001781   0.0000029    

A discrete heart 
beat 

      

Egg volume 1 0.001846 0.001846 1.18 0.281 ns 
Population 3 0.038546 0.012849 2.57 0.085 ns 
Egg Mass 17 0.094898 0.005582 3.57   ≤ 0.001 ** 
Error 62 0.096941 0.001564    
       
Capsule rupture       
Egg volume 1 0.00313 0.00313 0.11 0.737 ns 
Population 3 0.22627 0.07542 1.14 0.357 ns 
Egg Mass 17 1.23417 0.07260 2.64 0.003 * 
Error 62 1.70767 0.02754    
       
Hatching       
Egg volume 1 0.00223 0.00223 0.08 0.776 ns 
Population 3 0.20813 0.06938 1.10 0.375 ns 
Egg Mass 17 1.18079 0.06946 2.55 0.004 * 
Error 62 1.69181 0.02729    
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capsule rupture and hatching were significantly different between egg masses, 

but not populations (Tables 3.1 and 3.2). 

 

Figure 3.2 (a) Regression analysis of the effect of egg volume on the relative 

timing of four cell division (R2 = 33.6, F 1, 82 = 42.94, P ≤ 0.001: y = 0.16 - 0.14 x) 

and (b) a discrete heart beat (R2 = 19.0, F 2, 81 = 10.7, P ≤ 0.001: y= 0.78 – 0.13 

x) in the pond snail, Radix balthica. Models are those of best fit. 

3.4.3 Hatchling size and shape 

Most variation in size and shape parameters was partitioned at the individual 

level, both with (68% - 100%, Fig. 3.4) and without (71% - 98%, Fig. 3.4) egg 

volume as a covariate. There were no significant differences between either 

populations or egg masses in any of the size and shape parameters measured.   

 

Figure 3.3 Regression analysis of the effect of egg volume on the length (R2 = 

14.9, F 1, 54 = 5.9, P = 0.005: y = 0.6 + 1.28 x – 0.78 x 2) and width (R2 = 11.0, F 

1, 55 = 7.9, P = 0.007: y= 0.57 + 0.27 x) of hatchlings, in the pond snail, Radix 

balthica. Models were those of best fit. 
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Egg volume was a significant predictor of both length and width of hatchling 

snails (Fig. 3.3). This relationship appears to have been driven by both a 

prolonged overall duration of embryonic development in larger eggs and a 

prolonged relative period of development between the radula becoming 

functional and hatching. 
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Figure 3.4 Variance (%) in hatchling shell parameters (L – length, W – width, AL – aperture length, AW – aperture width, AH – 

aperture height, L:W [aspect ratio], AL: [aperture ratio], AH:L – ratio of aperture height to length) partitioned at the levels of 

population, egg mass and individual level in the pond snail, Radix balthica. Percentages are calculated both with and without 

egg volume included as a covariate. 
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3.5 Discussion 

In this chapter I investigated variance partitioning in the relative timing of four 

key embryonic traits, plus egg volume and hatchling size and shape, between 

the levels of population egg mass and individual in R. balthica. Variance 

partitioning in the timing of all embryonic developmental events occurring after 

the four cell division stage was greater at the individual level (52 – 61%) than at 

either egg mass (36 – 34%) or population levels (12 – 5%) (Fig. 3.1). Egg 

volume had most variance (72%) partitioned at the egg mass level and was also 

a predictor of the relative timing of four cell division and first heart beat (Fig. 3.2) 

and the size of hatchlings (Fig. 3.3). Egg volume when included as a covariate 

in the analysis decreased variance partitioning in developmental traits at both 

population and egg mass levels whereas hatchling size and shape parameters 

had most variance partitioned at the individual level regardless of whether egg 

volume was included as a covariate (Figs. 3.1 and 3.4). 

An assumption in many studies of heterochrony has been that intraspecific 

variation in developmental event timing is both low and inappropriate for 

addressing questions relating to this macro-evolutionary pattern.  Here, I show 

not just the prevalence of intraspecific variation in developmental event timing, 

but that the partitioning of this variation at different hierarchical levels (greater 

inter-individual than population variance partitioning) is not as might have been 

predicted and provides some insight into the factors that could contribute to 

producing such variance. The predominance of individual level variation in the 

traits studied here could either have a genetic basis or be attributable to 

variation in environmental conditions during development (Spicer and Gaston 

1999). In Chapter 2 I studied variation in embryonic developmental event timing 
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within a population of R. balthica and demonstrated a positive inter-individual 

relationship between developmental timing dissimilarity and genetic distance 

(Tills et al. 2011). This previous study suggests there may be a genetic basis for 

inter-individual differences in embryonic developmental event timing and 

therefore presents the possibility that some portion of the variance partitioned at 

the individual level in the current study might result from genetic differences. 

Chapter 2 also showed that embryos from within a single egg mass were no 

more closely related to each other than to embryos from other egg masses 

within their population. A proposed explanation for this pattern of relatedness is 

that R. balthica is a mixed mating, simultaneous hermaphrodite. Thus a single 

egg mass can contain eggs produced using sperm from more than one father 

(Jarne and Delay 1990). If some portion of the variance uncovered here has a 

genetic component, previous evidence of an absence of genetic differentiation 

between egg masses in a R. balthica population may explain why there is not 

more partitioning of this variance between egg masses. 

Radix balthica embryos have been shown to exhibit plasticity in the timing of 

developmental events in response to both biotic (Rundle et al. 2011) and abiotic 

(Tills et al. 2010 – Appendix 2) stressors. No changes were intentionally made 

to the environmental conditions in which either parents or embryos were 

cultured. However differences in egg volume may have contributed to some of 

the variance recorded. When egg volume was included as a covariate in the 

ANOVA model, variance in developmental event timing at the egg mass level 

decreased, suggesting that egg volume was driving some of the variance 

partitioning at the egg mass level. For example, the distribution of variance in 

the relative timing of four cell division was strongly influenced by egg volume. 



 74 

Without egg volume as a covariate, four cell division had most variance at the 

egg mass level (39%). When egg volume was included as a covariate, however, 

most variance was partitioned at the individual level (48%). Here, embryos were 

harvested from F2 stock populations in which variation in maternal age might 

exist, and this could have contributed both to variation in egg volume between 

egg masses and subsequent variation in embryonic developmental traits. Egg 

size has been shown to be affected by factors including: maternal age (both 

positive [Bingham et al. 2004; Chester 1996; George 1994] and negative [Ito 

1997; Qian and Chia 1992] relationships), nutrition (Bertram and Strathmann 

1998) and exposure to toxicants (Lardies et al. 2008). Egg size has also been 

observed to have effects on offspring development (discussed in Ho and 

Burggren 2010).   

The potential influence of maternal provisioning was evident in the fact that egg 

volume was a significant predictor of both length and width of hatchling snails 

with larger snails hatching from larger eggs (Fig. 3.3). Despite significant 

relationships between egg volume and hatchling size, and differences in egg 

volume between egg masses, variation in hatchling length and width was 

partitioned mostly at the individual level (length – 73%, width – 74%) with little 

variation being explained by egg mass (length – 15%, width – 20%), or 

population (length – 12%, width – 6%). This suggests that either: (i) egg volume 

may be a poor indicator of maternal investment; (ii) hatchlings do not make 

complete use of maternal investment; or (iii) that hatchling size is not a 

complete indicator of the maternal investment to the offspring occurring during 

its embryonic development. Baur (1994) showed that eggs of the land snail 

Arianta arbustorum had less variable nutrient content than egg volume and that 
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both nutrient content (nitrogen and carbon) and egg volume were more variable 

between, than within, egg masses. Baur (1994) also reported that only 61% of 

egg masses contained eggs with levels of nitrogen correlated with their volume. 

Here, while egg volume can be used as an indicator of maternal investment, it is 

unlikely to provide a complete measure.  Egg size has also been shown to be 

heritable in the serpulid polychaete, Hydroides elegans, (Miles et al. 2007) in 

response to artificial selection, using a half-sib breeding analysis. In the current 

study egg volume affected both the size of hatchlings and the timing of several 

developmental events and, therefore, if some component of egg volume has a 

genetic component this may have important developmental and ecological 

consequences.  

The least variation in all of the developmental events measured here was 

partitioned at the population level despite the use of populations from the 

extremes of R. balthica’s geographical range (North Sweden – South France) 

(Pfenninger et al. 2011). This is surprising because if a genetic basis for 

developmental differences can arise within a single population (Tills et al. 2011 

– Appendix 3), it might be expected that such differences would also be evident 

between populations and therefore that a significant portion of variation would 

be distributed at this level. However, Pfenninger et al. (2011) demonstrated 

across R. balthica’s range that there was no significant relationship between the 

geographical distance between populations and their genetic distance. A key 

dispersal mechanism for R. balthica is believed to be transport via waterfowl 

and therefore the magnitude of dispersal can be fairly independent of distance. 

Pfenninger et al. (2011) attributed the absence of a relationship between 

geographical and genetic distance to the genetic variability which results from 
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bird mediated transport. Although the findings of Pfenninger et al. (2011) help to 

explain why variation at the population level might be lower than otherwise 

expected, it is still surprising given the results of Tills et al. 2011 which 

demonstrated developmental timing differences related to genetic distance 

within a single population (from a 10 m stretch of shore) that there was not more 

variance partitioning between populations.  

Variance at the level of population was greatest early in development (i.e. in the 

timing of four cell division) and subsequently decreased as development 

progressed. Differences between populations in the timing of early development, 

which are subsequently replaced by variation mainly at the individual level in 

later development, is interesting as it suggests some mechanism by which inter-

individual variation increases as development progresses.  

De Jong et al. (2009) studied 82 developmental characters within Haplochromis 

piceatus, a species of Lake Victoria cichlid using Ontogenetic Sequence 

Analysis (Colbert and Rowe 2008). Data from 261 embryos revealed 26,880 

equally parsimonious developmental sequences, which is an incredible 

complexity of intraspecific developmental variation.  Here we employed 

relatively few embryonic developmental events. Whilst studying more traits may 

have revealed different patterns of variance distribution between groups of traits, 

the prevalence of variation in the traits we did use being largely partitioned at 

the individual level raises important questions regarding variance partitioning in 

developmental timing and what this may mean for the link between intraspecific 

variance in developmental timing and heterochrony.  
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Intraspecific variation in developmental event timing is a possible source of 

heterochrony. Hence, understanding the distribution of this intraspecific 

variance (both hierarchically and geographically) is of paramount importance to 

understanding the ecology and evolution of event timing, and ultimately to 

understanding how heterochronies occur. Inter-individual variation in embryonic 

developmental timing appears to not only be prevalent in this species and to 

have a genetic basis, but to still be the predominant level of variation, even 

when studying populations from across the species’ geographical range. The 

implications of the variance partitioning reported here on the relationship 

between developmental event timing at the inter- and intra-specific levels is 

unclear, but highlights the need for us to address how variation in 

developmental event timing between these two levels is related. 

Chapters 2 and 3 have focussed on altered event timing within an ecological 

context. Owing to the ecology of R. balthica these studies have revealed some 

unexpected distributions of variation in altered timing – a genetic underpinning 

to developmental differences within a population (Chapter 2) and inter-individual 

differences being predominant when considering populations spanning R. 

balthica’s range. In Chapter 4, I move on, from the ecological context of the 

previous two Chapters, to using a laboratory breeding study to compare the 

degree of cross-generational similarity in event timing. 
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CHAPTER 4 

PARENT-OFFSPRING SIMILARITY IN THE TIMING OF DEVELOPMENTAL 

EVENTS COULD PROVIDE A MISSING LINK BETWEEN ONTOGENY AND 

PHYLOGENY 

 

4.1 Summary 

Understanding the link between ontogeny (development) and phylogeny 

(evolution) remains one of the key aims of Biology. Heterochrony, the altered 

timing of developmental events between ancestors and descendants, could 

provide such a link, although the processes responsible for this macro-

evolutionary pattern are still unclear. A candidate process is that intraspecific 

variation in developmental event timing provides the raw material from which 

heterochronies originate and evidence for such variation is growing. In Chapter 

2 I showed that, in the pond snail, Radix balthica, variation in embryonic 

developmental event timing has a genetic basis. However, in order for 

intraspecific differences in developmental event timing to be the source of 

heterochronies, this variation must also be heritable. Consequently, I used high 

resolution (temporal and spatial) imaging of the entire embryonic development 

of R. balthica, to perform a parent-offspring comparison of the timing of a suite 

of twelve, physiological and morphological, developmental events. I show that 

between-parent differences in the timing of all twelve embryonic developmental 

events investigated are good predictors of such differences between their 
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offspring, and heritability was demonstrated for two of these developmental 

events (foot attachment and crawling). Such heritable intraspecific variation in 

developmental event timing could provide the raw material for speciation events 

and, therefore provide a fundamental link between ontogeny and phylogeny, via 

heterochrony.   

4.2 Introduction   

How ontogeny (development) and phylogeny (evolution) are linked has been, 

and remains, one of the key questions in biology. In fact, heterochrony, the 

altered timing of developmental events between ancestors and descendants, 

has been suggested as the main driver of evolutionary change (deBeer 1958; 

Gould 1977). This suggestion has been re-enforced by the fact that 

heterochrony has been documented as an evolutionary pattern in several 

animal groups and for a diverse array of morphological (McNamara 1995; Raff 

1996; Ji et al. 2009; Bhuller et al. 2012) and physiological (Spicer 2006; Spicer 

et al. 2011 – Appendix 1) traits. Despite the pervasiveness of heterochrony as a 

macroevolutionary pattern, however, we still know relatively little about the 

processes through which this pattern forms. An obvious candidate process is 

that intraspecific variation in developmental event timing provides raw material 

on which selection, either during or post development, could act. However, 

studies of heterochrony have focused on between-species comparisons, with 

an assumption that intraspecific developmental event timing is largely invariant 

or insignificant, despite variation being required for evolutionary change. 

Consequently we know far less about intraspecific differences in developmental 

event timing, despite variation at this level being a probable source of answers 

to questions regarding the formation of heterochronies. However, an increasing 
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number of studies have reported widespread intraspecific variation in 

developmental event timing (Cubbage and Mabee 1996; Mabee and Trendler 

1996; Mabee et al. 2000; Schmidt and Starck 2004; Sheil and Greenbaum 2005; 

de Jong et al. 2009; Kawajiri et al. 2009). For example, de Jong (2009) showed, 

using 82 developmental characters in 261 embryos of the cichlid, Haplochromis 

piceatus, that embryos could follow 26,680 different developmental sequences 

(de Jong et al. 2009). This magnitude (and complexity) of intraspecific variation 

is astounding and demonstrates that intraspecific developmental timing is far 

from invariant.  

It is clear that intraspecific variation in developmental event timing exists, 

however, its source and relationship to between-species differences in 

developmental event timing, are not. For intraspecific variation in developmental 

event timing to be the raw material from which heterochronies arise, requires it 

to both have a genetic basis and to be heritable. Chapter 2 revealed greater 

inter-individual magnitudes of difference in developmental timing with increasing 

genetic distance, indicating the presence of a genetic basis for intraspecific 

variation in developmental timing, but did not extend to investigating heritability 

(Tills et al. 2011 – Appendix 3). 

Consequently, in this chapter I used R. balthica to perform a direct parent-

offspring comparison to investigate whether cross-generational similarity in 

developmental event timing was evident, and whether this similarity extends to 

the level of heritability. Parents were first harvested, as embryos, from a stock 

population and their development was recorded. Once hatched, these snails 

were cultured in isolation through to reproduction and, because R. balthica is a 
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simultaneous hermaphrodite, offspring were produced sexually via selfing 

(Jarne and Delay 1990; Coutellec-Vreto et al. 1997). The embryonic 

development of these offspring were then recorded in the same manner as for 

their parents. A limitation of direct parent-offspring comparison is the inability to 

control for maternal effects (Falconer and Mackay 1990) and therefore here I 

used egg size as a measure of maternal investment (Sinervo 1990; Bernado 

1996; Rutkowska and Cichoń 2002) and incorporated this measure into 

analyses to estimate its contribution to the observed relationships and to 

investigate relationships with its effect removed. 

4.3 Materials and Methods 

4.3.1 Animal culture 

To begin the parent-offspring comparison, eggs were harvested from an F2 

laboratory stock population of Radix balthica originating from the River Dart in 

Totnes, Devon, UK (50°26’19’N, 3°41’24’W). Eggs were examined under low 

power magnification (x 10) and those which had not developed past the two cell 

division stage were dissected from their egg masses and placed individually 

within a multiwell plate (384 well plate, vol. per well = 70 μl) containing Artificial 

Pond Water (APW; Rundle et al. 2004). This multiwell plate was placed into a 

custom system, designed for time lapse inverted imaging of aquatic embryos 

(Sect 1.7.1), housed in a 20°C controlled temperature facility. Water changes 

were performed every two days and each well was checked daily to identify 

hatchlings.  

Hatchlings were cultured in glass jars (vol. = 40 ml) containing APW (vol. = 35 

ml) and a 5 cm length of Elodea densa. Jars were placed on shelving positioned 
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in a west facing window (in locations chosen at random and moved every 21 

days) in a 15°C controlled temperature facility. Snails were provided with 

washed lettuce discs (diam. = 4 mm) every two weeks. Mortality in the three 

months following hatching was 50%, reducing the number of snails cultured 

from 28 to 14. Three months after hatching, snails were transferred to larger 

jars (vol. = 500 ml) containing APW (vol. = 450 ml) and two 15 cm lengths of 

Elodea. Water was changed in these jars every 21 days and snails were fed 

discs of washed lettuce (diam. = 10 mm) every 14 days. When snails reached 

maturity, jars were checked regularly for eggs and if present these were 

examined under low power and if embryos had not developed past the 2 cell 

division stage their entire embryonic development was imaged using the same 

method as for their parents’ embryonic development. Ten out of the fourteen 

snails that grew to a mature size reached sexual maturity and produced viable 

eggs. However, one of these snails only produced a single egg and therefore 

for statistical reasons its developmental data are not used here. The nine 

remaining snails produced between 3 and 19 viable embryos. 

4.3.2 Image acquisition  

A 150 frame image sequence of each embryo was acquired (at 7.5 frames per 

second) every 2 h until hatching, using a custom built bio-imaging system (Sect. 

1.7.1). Briefly, this imaging system comprises an aluminum frame housing an 

XY motorised stage (Prior Optiscan) mounted above a 4 megapixel 

monochrome camera (Allied Vision Technology Pike 421 B) connected to a 

zooming lens (Keyence VHZ20R) with illumination provided by a light emitting 

dioide (LED) array. The motorized stage and camera were controlled and 

synchronized using Micromanager 1.3 (Edelstein et al. 2010) run on a Mac Pro. 
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Figure 4.1 Radix balthica at different embryonic developmental stages (E4, E6, 

E8, E10, E11 (based on Cumin 1972) illustrating some of the developmental 

events used here. A – velar lobes are visible on either side of embryo, 

distinguishing the veliger; B – location of first, discrete heart beat; C – the shell 

begins forming as a ridge on top of mantle; D – body flexing occurs, during 

which the mantle is bought closer to foot and vice versa; E – eye spots form on 

either side of the head; F – snail attaches to the egg wall using its foot and 

begins crawling; G –radula movement detectable. 

4.3.3 Image analysis  

The time of onset, from four-cell division, of twelve developmental events (Table 

4.1) was determined by manual observation of the image sequences recorded 

for both parental and offspring embryonic development. Egg length and width 

was measured from the images at the time of four-cell division and from these 

values egg volume was calculated and incorporated into our analysis to 
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investigate the contribution of egg volume to observed relationships (Falcolner 

and Mackay 1990). 

 

Developmental 

event 

 

Description of event 
 

Mean event timing 

(from four cell 

division) ± 1 S.E. (h) 

Four cell division Four individual cells visible as a cross.  

Velum Opaque appearance of the embryo is broken by a semi-

transparent, helmet-like velum that extends further outwards 

than the rest of the embryo at this stage. 

43 ± 0.72 

Liver cells Liver cells visible as individual globular structures forming a 

cuplike layer running around the endodermal lumen.  

55.4 ± 1.2 

Veliger Two lobes at either end of the embryo have developed and 

extend to transform the embryo into a “crescent moon” like 

shape. 

68.26 ± 1.5 

Eye spots Onset of eye spot pigmentation. 119.9 ± 1.4 

Discrete  

heart beat 

First visible heart beat. This begins as an irregular beat but as 

development progresses becomes more regular. 

115.4 ± 1.8 

Body flexing First muscular contraction causing the body of the embryo to 

flex resulting in the mantle and foot moving closer together. 

This movement is similar to that seen in adult snails when they 

retract their shell. 

130.2 ± 1.2 

Shell formation Front edge of the shell becomes visible as a ridge extending 

around the mantle and this later in development extends down 

towards the head of the embryo. 

121.1 ± 1.7 

Foot attachment Embryo uses muscular foot to attach to egg capsule wall, 

often only for very short periods before reverting back to 

gliding around the egg using cilia. 

126.9 ± 1.4 

Crawling Embryo uses its muscular foot after attachment to the egg 

capsule wall to crawl. Crawling is initially usually for only very 

short periods. 

127.1 ± 1.5 

Use of radula Radula begins functioning and its movement is visible within 

the embryo before it is extended outside of the head to use for 

rasping against the egg capsule wall.  

173.9 ± 4 

Capsule rupture Embryo uses radula to rupture the egg capsule wall. 307.9 ± 9.4 

Hatch Snail emerges from egg capsule. 314.3 ± 10.97 

 

Table 4.1. Descriptions of the embryonic developmental events used (based on 

Cumin 1972; Smirthwaite et al. 1997). 

4.4 Results 

There was significant variation in the timing of all twelve developmental events 

used here (Fig. 4.2). To test for differences in developmental event timing 

between the offspring from different parents and to determine if there was a 

relationship between parents and their offspring, I performed an ANOVA with 
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parents weighted by their own event timing and egg volume included as a 

covariate (Table 4.2). The timings of all developmental events, with the 

exception of capsule rupture, were significantly different between the offspring 

from different parents. Predicted values for offspring timing of each 

developmental event, produced by the ANOVA, were related positively with 

parental timing, demonstrating parent-offspring similarity in the timing of all 

twelve of the developmental events used here (Fig. 4.1). 

 

 

 



 86 

 

Figure 4.2. Mean developmental event timings for embryos produced from different parents. 
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Figure 4.3 Boxplots showing developmental event timing for offspring produced 

from different parents (indicated by different colours) arranged in increasing 

order of their event timing. Significant differences in developmental event timing 

between offspring produced from different parents are indicated by horizontal 

bars above box plots (determined by ANOVA between parents weighted with 

parental developmental timing using weighted least squares and with egg 

volume included as a covariate). Plots of developmental event timing (mean ± 1 

S.E.) for offspring produced from different parents, predicted from the ANOVA 

model, are shown for each developmental event above the box plots.   
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Table 4.2. Results of an ANOVA testing for differences in the timing of 

developmental events (Table 4.1) between offspring produced from different 

parents with parents weighted by their own developmental timing using 

weighted least squares and egg volume included as a covariate. *** - ≤ 0.001, ** 

- ≤ 0.005 * - ≤ 0.05, ns – not significant. 
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Significant heritabilities of event timings, calculated by regressing the average 

timing of each event in offspring on that in their parents (Falconer and Mackay 

1990), were found for foot attachment (h2 = 0.380) and crawling (h2 =0.381) (Fig. 

3). An obvious limitation of direct parent-offspring comparisons is the inability to 

control for maternal effects. To assess if relationships between parents and 

their offspring in the timing of foot attachment and crawling were being driven by 

differences in egg volume, I performed the same analysis, but replaced means 

for offspring developmental event timing with means of the residuals from 

regressions testing for the effect of egg volume on the timing of these 

developmental events. This procedure effectively removes any effect of egg 

volume on offspring developmental timing. This analysis resulted in no 

significant change to the relationships between parents and their offspring in the 

timing of foot attachment and crawling, and again demonstrated heritability for 

these events, indicating that egg volume was not a driver of these relationships. 

In fact, the relationship between the timing of shell formation in parents and 

their offspring was only significant when the effect of egg volume was removed, 

which suggests that egg volume was actually masking this relationship (Table 

4.1). 
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Figure 4.4 Comparison of parental event timing with; (i) mean (± 1 S.E.) offspring timing, to test for heritability (Foot 

attachment - R2 = 0.47, F 1, 7 = 6.28, P = 0.041; regression coefficient (h2) = 0.380. Crawling - R2 = 0.44, F 1, 7 = 6.22, P = 0.041; 

regression coefficient (h2) = 0.381), (ii) mean (± 1 S.E.) offspring residuals, from a regression analysis testing the effect of egg 

volume on event timing (blue plots in top panel), to examine whether relationships which indicate heritability are still present 

with the effect of egg volume on developmental timing removed (Shell (residuals) - R2 = 0.39, F 1, 7 = 6.28, P = 0.041; 

regression coefficient = 0.043. Foot attachment (residuals) - R2 = 0.43, F 1, 7 = 7.06, P = 0.033; regression coefficient = 0.028. 

Crawling (residuals) - R2 = 0.43, F 1, 7 = 7.08, P = 0.032; regression coefficient = 0.029). 
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4.5 Discussion 

In embryonic Radix balthica there was a positive relationship in the timing of a 

suite of twelve physiological and morphological developmental events between 

parents and their offspring. Further, heritability was evident in the timing of foot 

attachment and crawling in this comparison of parental and offspring 

developmental event timing. A limitation of direct parent-offspring comparisons 

is the inability to control for maternal effects. However, even when I factored 

egg volume into these analyses there remained a detectable parent-offspring 

similarity.  

Smirthwaite et al. (2007) found that the timing of events including, eye spot 

formation, heart ontogeny, body flexing, foot attachment and crawling had all 

exhibited heterochrony within the group of pond snails, to which R. balthica 

belongs. Here I find the timing of many of the same developmental events 

exhibit significant parent-offspring similarity (Smirthwaite et al. 2007) and for two 

of these events (foot attachment and crawling) this similarity extends to 

heritability. For the events other than foot attachment and crawling the evidence 

of parent-offspring is consistent with the timing of these events also being 

heritable in the presence of more statistical power (i.e. larger numbers of 

embryos per parent). The parent-offspring similarity reported here is further 

supported by previous work with R. balthica embryos freshly collected from the 

field which revealed increasing inter-individual differences in developmental 

timing with increasing genetic distance, suggesting that there could be a genetic 

component to this inter-individual variation (Chapter 2; Tills et al. 2011 – 

Appendix 3). Our findings substantiate the idea that intraspecific and even inter-



 92 

individual, differences in developmental event timing can be the raw material 

from which heterochronies arise.  

I have shown that within a single generation similarities in developmental timing 

between parents and their offspring are present and heritable and therefore the 

notion of heterochrony as a macroevolutionary pattern is too narrow. Historically, 

agreeing on a definition of heterochrony has been controversial (Spicer and 

Rundle 2006); however “altered developmental timing between ancestors and 

their descendants” is now a widely accepted usage of the term (Spicer et al. 

2011 – Appendix 1). Thus, the findings presented here show that altered timing 

between ancestors and descendants (heterochrony) is not only interspecific, but 

can also be observed at the intraspecific level and therefore this is a 

fundamental link between ontogeny and phylogeny, but what do these heritable 

timing differences mean at the organismal level? 

Outcomes of altered timing were categorised by Richardson et al. (2009), in a 

review of vertebrate limb development, and they categorised these as (i) 

functional changes in the adult; (ii) functional changes in the embryo (without 

change in the adult); and (iii) changes not related to selection for an adaptive 

trait. These authors warn of the danger of creating adaptive scenarios for 

heterochrony based on examples of timing shifts that seem to correlate with 

either changes to development or environment.  

I found significant variation in the timing of twelve developmental events, 

including functional features such as an identifiable heartbeat, foot attachment, 

crawling and radula activity. Identifying whether altered timing of these events 

translates to difference in function in either the embryo or adult will be an 
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important future step in revealing how selection might act on variation in the 

timing of developmental events. In the study that documented heterochrony in 

this group of pond snails, Smirthwaite et al. (2007) discussed that in the two 

physid species they studied, foot attachment and crawling occurred early, 

relative to other species (Smirthwaite et al. 2007). Work using adult physids has 

revealed this group have a pronounced ability to use crawling as an escape 

response from predation (Rundle and Brönmark 2001). Early crawling in 

embryonic physids could perhaps therefore lead to improved crawling function 

in adults, scenario (i) described by Richardson et al. (2009). Work with 

embryonic Lymnaea stagnalis, another species of snail from this group, 

revealed increased spinning frequency in response to hypoxia (Byrne et al. 

2009). These authors suggest this increased spinning activity improves mixing 

of capsular fluid thereby maintaining a diffusive gradient for diffusion of oxygen 

into the egg, providing an adaptation to the embryo for surviving hypoxic 

environments and this is in line with scenario (ii) outlined by Richardson et al. 

(2009). 

The variation observed here is in a diverse array of developmental events and 

therefore it is conceivable that altered timing of particular events might result in 

any of the three functional outcomes outlined by Richardson et al. (2009). Given 

the potential functional consequences to altered timing described above, it also 

seems likely that the functional consequences of these events might be very 

environment-specific. The current study did not investigate environmentally 

cued altered timing, which has been previously demonstrated in the 

development of embryonic R. balthica (Tills et al. 2010; Rundle et al 2011). A 

potentially fruitful, future research direction for work investigating intraspecific 
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altered timing could be to consider the implications of both background and 

environmentally induced, altered timing and how these contribute to the event 

timing embryos undergo in situ. Research in this direction would allow us to 

understand heritable heterochrony within an ecological context and therefore 

begin to grasp the effect of environment on ontogeny and how this then 

translates to phylogeny. 

Whereas Chapters 2-4 have primarily focussed on the time of onset of 

developmental events, Chapter 5 investigates the ontogeny of function in the 

cardiovascular system, during the period of embryonic development. In Chapter 

5 I use the development of cardiovascular function as a model to investigate the 

origins, pattern and implications, of variation during ontogeny.  
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CHAPTER 5 

ONTOGENY OF CARDIOVASCULAR FUNCTION IN THE POND SNAIL 

RADIX BALTHICA AS A MODEL TO STUDY THE ORIGINS, PATTERNS, 

AND IMPLICATIONS OF VARIATION WITHIN AND BETWEEN 

GENERATIONS 

5.1 Summary 

Our knowledge of ontogeny of invertebrate cardiovascular (CV) function is poor, 

with most of our understanding deriving from studies on crustaceans. 

Development of CV function in other groups, including molluscs, has received 

very little attention. Consequently, using the pond snail Radix balthica, I firstly 

described the ‘normal’ pattern of CV ontogeny from the appearance of a 

functional heart to hatching, before going on to explore how variation in this 

pattern is distributed between populations and egg masses. I then present the 

results of a parent-offspring comparison of CV development and, finally, 

investigate how differences in the ontogeny of CV function correlate with 

various life history characteristics. The first heartbeat commenced between 129 

and 159 h after first cell division and increased rapidly over the first 66 h of CV 

function. However, the ontogeny of CV function then appeared to follow one of 

two paths: either a steady decrease in HR with time (Trajectory 1) or continued 

increase, but at a less rapid rate (Trajectory 2). These trajectories occurred with 

equal frequency and those embryos following Trajectory 1 were significantly 

larger at hatching than those adopting Trajectory 2, suggesting a fitness cost of 

the latter developmental path. For embryos following Trajectory 1 during Phase 
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2, there were significant between-population differences, in both the rate of 

increase of heart rate during Phase 1 and the rate of decrease during Phase 2. 

Between egg masses the relative timing of the breakpoint between Phases 1 

and 2 of CV development was significantly different. Moreover, in a comparison 

of parent-offspring CV development the timing of the breakpoint was also a trait 

exhibiting significant cross-generational similarity. Together these findings 

suggest intraspecific variation in CV development appears to have both 

functional and ecological consequences for this species. 

5.2 Introduction 

5.2.1 The development of cardiovascular function as a model for studying 

variation 

The cardiovascular system (CV) is one of the first physiological systems to 

appear in the developing human embryo (Chen 1996) and has been noted in 

many early comparative studies, most notably that of Harvey where he 

investigated not just humans but other vertebrates and even a number of 

invertebrate groups (Harvey, 1889). Knowledge of a species’ basic pattern of 

cardiovascular (CV) development is crucial to making any sense of the form and 

function of its CV system and most physiological texts attempt to present a 

‘normal’ or ‘standardised’ pattern of CV development. However, it has long been 

recognized that physiological variation is both pervasive and widespread 

(Spicer and Gaston 1999). Establishing the “basic pattern” is a necessary first 

step to studying development of a CV system, but is only the start of a 

framework with which to work from. Using this framework it is then possible to 

understand how, why, and the consequences for, individuals deviating during 
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their ontogeny from this ‘basic pattern’. Although the significance of variation in 

physiological traits is recognized (e.g. Spicer and Morritt 1996; Spicer and 

Gaston 1999), our knowledge of such variation in CV development and how this 

variation partitions different levels of biological information is scarce, with a few 

noticeable exceptions. Bagatto et al. (2000) investigated within- and between-

litter variation in banded armadillos using a number of physiological parameters 

including heart rate. This species produces monozygous quadruplets and with 

this mode of reproduction, genetic variation within litters is negligible. However 

variation in heart rate, although lower than between litters, was still evident. 

Spicer and Morrit (1996) also revealed that that something other than genetic 

differentiation was responsible for variation in heart rate in Daphnia magna, as 

levels of variation in heart rate were the same in cloned and wild type 

populations.  

Perhaps surprisingly, the life-history consequences of variation in CV function 

have also received little attention. The most notable exceptions here are the 

studies of beat-to-beat variation within the medical literature, that have led to 

variation in this trait being used in medicine as a good predictor, and indicator, 

of adult heart disease (e.g. Appel et al 1989; Tsuji et al 1996). Decreased beat-

to-beat variation, i.e. a more metronomic heartbeat, is a key indicator of the 

level of risk posed to a patient by serious ventricular arrhythmias (Malik et al 

1990; Malik 2006). This link between beat-to-beat variability and human 

pathology demonstrates the importance of understanding variation in the 

development of CV function to understanding organism function and life history. 
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In conclusion the CV system seems an ideal model system to study 

physiological variation during development. It shows variation at a number of 

different hierarchical levels, and this variation is pervasive. Cardiac function is 

also relatively easy to observe and quantify in embryos, and if invertebrates are 

used, comparatively large numbers of individuals may be employed in 

experiments. The question then is, given the variation catalogued and examined 

in previous chapters (Chapters 2, 3 and 4) is the CV system of gastropod 

molluscs a good model system to investigate variation during development, 

both within and between generations? 

5.2.2 Cardiovascular function in invertebrates 

While much is known of the ontogeny of CV function in higher, and to a lesser 

extent lower, vertebrates (Burggren and Warburton 1994) this is not so for even 

the most well-studied invertebrate groups (McMahon, et al. 1997). Nearly all of 

the research on CV function in invertebrates has focused on crustacean hearts 

(McMahon et al. 1997), and: i) how cardiac function (mainly rate of beating) 

changes through time (Spicer 1994; Spicer and Morritt 1996; McMahon et al. 

1997; Spicer 2001; Reiber and Harper 2001); ii) how cardiac response to 

neurohormones appears and develops through ontogeny (Harper and Reiber, 

2001, 2004); and iii) the effect of environmental factors such as temperature 

(Spicer 1994), trace metals (Spicer 1996) and hypoxia (Reiber 1997) on heart 

function. The picture that emerges of crustacean CV function is that: i) there is 

interspecific variation in the timing of when it appears during development; ii) 

cardiac activity increases in rate with increasing development and is initially 

myogenic and insensitive to environmental perturbation; and iii) subsequently, 

there is a shift and cardiac activity decreases in rate with development, and in 
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some, but not all species this shift co-occurs with a switch from myogenic to 

neurogenic control (Yamagishi and Hirosi 1996; Yamagishi et al. 1997). 

Despite beginning to understand CV functional development in crustaceans, our 

knowledge of other invertebrate groups is extremely poor. This is the case even 

for a group like the molluscs where our understanding of adult CV function is 

comparatively good (Yeoman et al, 1999; Bourne, et al. 1990; Buckett et al. 

1990; Martin 1980; Jones 1983). Work describing the morphology (reviewed in 

Raven 1958) and physiology (reviewed in Hill and Welsh 1966) of the molluscan 

CV system was performed in the mid-nineteenth century1 and the function of 

the adult CV system was later investigated by Bourne et al. (1990). Apart from a 

small number of sporadic studies, for example on the effect of temperature on 

cardiac activity in freshwater pulmonates (Bachrach and Cardot, 1923) and the 

development of the heart beat and its temperature sensitivity in a slug species 

(Crozier and Stier 1925), it is only recently that the ontogeny of embryonic CV 

function was described (Bitterli et al. 2012). Bitterli et al. (2012) focused on the 

effect of hypoxia on the rate of beating of the true and larval hearts (a transitory 

organ that beats alongside the true heart during early CV development) in the 

marine gastropod, Littorina obtusata. This study revealed that both larval and 

                                                
1
 Raven (1958) provided a comprehensive review of molluscan morphological development 

including the CV system. The heart in most molluscs (excluding the cephalopods – the only 
molluscan group with a closed CV system) arises from a pallial origin together with the kidney, 
pericardium and, often, reproductive organs. The heart begins as an ectomesodermal vesicle 
behind the velum on the right hand side of the animal and as the snail undergoes torsion the 
heart moves anteriorly and across from the right to the left hand side (Raven 1958). Gastropod 
molluscs have a two-chambered heart, consisting of an auricle which receives blood from the 
gills, kidney or venous sinuses, connected to a ventricle which pumps blood out through an 
aorta, positioned at the opposite end of the ventricle to the auricle (Hill and Welsh 1966). 
Mollusc hearts are myogenic (Krijgsman and Divaris 1955, Hill and Welsh 1966, Irisawa 1978), 
but, despite some disagreement, it is now evident that there is also some level of nervous 
innervation from the visceral nerves to both the auricle and ventricle (Carlson 1905; Divaris 
1955 Krijgsman 1954; Ripplinger 1957). We also have some knowledge of the response of adult 
molluscan heart rate to temperature (Skarmlik 1929), hypoxia (Nomura 1950), neurohumor 
analogues (Loveland 1963) and various drugs (Krijegsman and Divaris 1955). 
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adult heart were sensitive to acute hypoxia, but at different times during their 

ontogenies and highlights interesting questions regarding the function of this 

larval organ during embryonic development. However, this study only 

investigated embryos during the period at which both hearts beat together (up 

to 25 days from first cell division) and so didn’t provide a full description of the 

true heart’s functional ontogeny. 

5.2.3 This chapter 

In summary, variability in CV development pervades all biological levels, but 

there has been little, systematic exploration of this variation. Whilst the mollusc 

heart may be a good model for studying developmental variation, our 

knowledge is lacking, and any attempt to use such a model must work from a 

basic description of the pattern of the development of CV function. 

Consequently, in this chapter, I describe, with high temporal resolution, the 

basic pattern of the ontogeny of CV function in the pond snail, Radix balthica, 

focusing on the timing of a number of key events. Next, I use this basic pattern 

to explore how variation in ontogeny of CV function is distributed between egg 

masses and populations. To probe further the potential source of this variation I 

perform a direct parent-offspring comparison of CV ontogeny. Finally, I use 

embryonic growth rate and size at hatching as proxies for Darwinian fitness and 

relate these to variation in CV development in order to assess the biological 

implications of CV functional ontogeny.  
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5.3 Material and Methods 

5.3.1 Embryo culture 

Radix balthica from each of four second generation stock populations, founded 

from European populations, spanning this species latitudinal range (Swedish – 

66.428, 19.683; English – 50.439, -3.690; German – 50.007 9.156; French – 

44.053, 4.784; Pfenninger et al. 2011), were maintained at 15ºC under a 12:12 

light-dark regime. Snails were cultured in aquaria (vol. = 15 l; stocking density = 

15) containing Artificial Pond Water (APW) (Rundle et al. 2004) and fed lettuce 

and spinach ad libitium. Egg masses were harvested from aquaria and 

examined under low power magnification (x 10). Only eggs that had not 

developed past two-cell division were used in observations. 

5.3.2 Bio-imaging 

Under low power magnification (x 10), six eggs were selected haphazardly from 

each egg mass (French population - 7 egg masses; Swedish - 4 egg masses; 

German - 3 egg masses; English- 6 egg masses), dissected from the mass and 

placed in random positions within a 384 well microtitre plate which was covered 

with a lid (cell vol. = 70 μl).  

The entire development of these embryos was recorded using a purpose-made, 

automated bio-imaging system (Sect. 1.7.1), housed in a 20ºC facility. This 

system comprised a 4 megapixel shutterless monochrome camera (Pike 421 B, 

Allied Vision Technologies, Germany) connected to a zooming lens system 

(Zoom 70 XL, Optem, Luxembourg), inverted beneath a motorised XY stage 

(Optiscan XY stage, Prior Scientific, England). Transmitted dark field cold 

lighting was provided by an array of light emitting dioides (LEDs). The camera 
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and XY motorised stage were controlled using the open-source software 

MicroManager 1.3 (Edelstein et al. 2010) running on a Mac Pro using OS X. 

Embryos were imaged every 1h by acquiring an image sequence at 7.5 frames 

sec-1 for 20 sec and these image sequences were written to mirrored hard 

drives, to guard against loss of data from hardware malfunction. Artificial pond 

water (Rundle et al. 2004) in each well of the multi-well plate was replaced daily, 

via manual pipetting. 

5.3.3 Image analysis 

Following image acquisition, image sequences were analysed manually. Firstly, 

the time of onset of the four developmental events - two cell division, first 

discrete heartbeat, radula function and hatching, were recorded for each 

embryo. The time period between two cell division and radula ontogeny was 

used to provide a standardised measure of developmental timing, hereafter 

referred to as relative timing. Radula ontogeny was chosen for use in 

standardization as it exhibits relatively little variation in its time of onset (pers. 

obs.). The next set of observations investigated the development of heart 

function. Heart rate was measured, via manual observation, of the 20 sec image 

sequences, from 15 h after the first discrete heartbeat, every 6 hours until 

hatching.  

I also used animal size as a measure of ontogeny and this parameter was 

measured as the distance from the anterior to the posterior margins of the 

mantle (Fig. 5.1) from when the heart function was quantifiable, up to hatching. 

Hatchling size was measured immediately prior (i.e. within 2 h) to hatching (Fig. 
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5.1). Egg volume, at the beginning of development, was calculated using the 

formula 1/6πlw² (Taylor 1973), where l = egg length and w = egg width.  

 

Figure 5.1. Micrograph illustrating embryos at various stages of development 

and where the measurement of mantle length from the recorded image 

sequences was made. This measurement was used as a metric of animal size 

from the first heart beat to hatching. Asterisks indicate the approximate position 

of the heart in embryos at these three different stages of development (left to 

right, E6, E9, E11; Cumin 1972). 

5.3.4 Data analysis 

This is the first detailed examination of molluscan heart rate during development 

and, hence, an initial visual examination of heart rate time series for all 

individuals was used to identify fundamental patterns. This qualitative analysis 

of heart rate ontogeny suggested a biphasic pattern. A biphasic heart rate had 

also been observed in developing brine shrimp (Artemia franciscana) (Spicer 

1994). These crustaceans showed an initial increase in heart rate followed by a 

decrease, which occurred close to the time at which the heart switched from 

differentiation to elongation. This pattern of heart rate development did not 

conform to a simple power-curve model and Spicer (1994) found that 
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segmented regression was an effective method for analysis of this ontogenetic 

trend. Given the apparent biphasic nature of heart rate in R. balthica, I too 

applied segmented regression analysis to explore the ontogeny of these two 

phases of heart rate (Fig. 5.2). This analysis was performed using the ‘R’ 

package ‘segmented’. Three different measures of ontogeny were used: i) time 

from two cell division (absolute timing); ii) proportion of time between two cell 

division and radula (relative timing); and iii) size. The regression analysis was 

repeated for each of these measures of ontogeny. 

Analysis of variance was performed to test for differences in aspects of 

cardiovascular development between embryos from different populations and 

egg masses. For these analyses egg mass was nested within population and 

both were classed as random factors. Egg volume was included in all analyses 

as a covariate to provide a measure of, and to control for, differences in 

maternal investment.  

5.3.5 Parent-offspring comparison 

Comparison of CV functional ontogeny between five parents and 29 of their 

offspring (2 – 14 offspring per parent) was performed and these data are 

presented here. Parents were taken from a laboratory stock population, as 

embryos that had yet to develop past the first cell division, and their embryonic 

development was imaged using the method described in the section above. 

Once hatched these snails were cultured individually in glass vials (vol. = 40 ml), 

containing APW (vol. = 35 ml) and a 5 cm long piece of Canadian pondweed, 

Elodea densa. Jars were placed on shelving placed in a west-facing window, in 

a 15 º C controlled temperature facility. Snails were fed lettuce discs (diam. = 4 
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mm) every two weeks and water was changed every three weeks, at which time 

position in the windows was also changed haphazardly. Three months after 

snails hatched they were transferred to larger volume jars (vol. = 500 ml; APW 

= 450 ml) containing two pieces of 15 cm Elodea densa. Water in these jars 

was changed every three weeks and snails continued to be fed lettuce discs 

(diam. = 10 mm). When snails reached sexual maturity their jars were checked 

for egg masses daily and, if present, and if they had not proceeded past the first 

cell division, their development was imaged using the same approach as 

adopted for their parents. Parent and offspring CV development was analysed 

using the same approach as detailed above. Comparison between parents and 

their offspring in aspects of CV development was performed using ANOVA to 

test for differences between embryos from different parents, with parents 

weighted by their own CV development (using Weighted Least Squares) and 

offspring egg volume included as a covariate. 

 

5.4 Results 

5.4.1 General description of the ontogeny of cardiac function 

The first discrete heartbeat occurred between 129 and 159 hours after the first 

cell division, across all individuals, with a mean value of occurrence of 144 ± 1 h 

(mean ± 1 SE). The heartbeat remained faint and irregular for circa 15 hours 

following this first visual evidence of its ontogeny. After this time a regular 

heartbeat was apparent and quantifiable with a mean beat rate of 44 ± 2 beats 

per minute (bpm). In most individuals, the ontogeny of heart rate then appeared 

to follow a biphasic trajectory. Heart rate first increased rapidly for 
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approximately 66 h to a mean value of 84 ± 1 bpm around 81 h after the first 

discrete heartbeat (Figs. 5.3 and 5.4). Following this period of rapid increase the 

rate of change in heart rate slowed and then followed either a more gradual 

increase, or a decrease, until hatching (Fig. 5.2). Unlike the ontogeny of heart 

rate, embryonic growth exhibited a largely linear relationship with chronological 

time suggesting that the non-linear ontogeny of heart rate was not being driven 

by non-linear changes in embryonic growth.  

5.4.2 A model describing ontogeny of cardiac function 

Segmented regression analysis confirmed a significant biphasic relationship in 

most (89%) of the embryos examined and provided a good fit for the ontogeny 

of heart rate in these embryos (R2 = 0.81 ± 0.019, P = 0.0005 ± 0.00024) (Fig. 

5.2). Of the 11% of embryos for which a segmented regression did not provide 

a good fit, 8% had no significant change in slope (i.e. no breakpoint) through 

their ontogeny and 3% had a highly variable heart rate to which regression was 

unable to fit a significant model.  
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Figure 5.2. The ontogeny of heart function in two individual embryos that differ 

in their trajectories. Line fitted to data is the result of segmented regression 

analysis. 

All embryos exhibited increasing heart rate during the first part of their ontogeny 

of CV function (Phase 1 - Fig. 5.3). However, after this phase, embryos could 

be assigned to one of two different ontogenic trajectories depending on if their 

heart rate ontogeny showed: i) a negative (Trajectory 1), or ii) a positive 

(Trajectory 2), slope (Phase 2 - Fig. 5.3). 

Embryos followed each trajectory with roughly equal frequency (Table 5.1) and 

there were some differences in heart rate ontogeny occurring prior to Phase 2 

between these trajectories: embryos exhibiting a decreasing heart rate during 

Phase 2 (Trajectory 1) had both a later breakpoint (relative timing - F1, 40 = 36, P 

≤0.001; absolute timing - F1, 40 = 15.53, P ≤0.001) and a less steep slope during 

Phase 1 (relative timing - F1, 40 = 5.12, P = 0.029, absolute timing - F1, 40 = 6.49, 

P = 0.015) than embryos whose heart rate continued to increase during Phase 

2 (Trajectory 2). 
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Figure 5.3 Cartoon illustrating the components of CV functional development of 

Radix balthica used in analyses. 

 

5.4.3 Variation in the ontogeny of cardiac function 

There were significant differences in the time to first heart function when 

ontogeny was measured as either absolute or relative timing, between embryos 

from different egg masses, but not populations (absolute timing – F12, 41 = 10.76, 

P ≤ 0.001; relative timing – F12, 41 = 2.35, P = 0.021).  

There were also noticeable differences in the pattern of the ontogeny of heart 

rate between embryos from different, populations (Fig. 5.4) and egg masses 

(Fig. 5.5).  
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Figure 5.4. Ontogeny of CV function in individual embryos from French, German, Swedish and English populations of Radix 

balthica. Each line show shows the results of segmented regression analysis of an individual’s ontogenic trends in heart rate, 

with ontogeny measured as: i) time from two cell division; ii) relative timing (measured as proportion of time from two cell 

division to radula function); and iii) embryo size. 
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The ratio of embryos following Trajectories 1 or 2 was approximately equal 

within populations and egg masses (Table 5.1), although the small numbers of 

embryos obtained from each egg mass preclude any definitive statement on this 

ratio. Embryos from different populations whose heart rate followed Trajectory 1 

displayed significant differences in their rate of increase in heart rate during the 

first Phase (relative timing - F3, 14 = 3.81, P = 0.026; absolute timing - F3, 14 = 

3.24, P = 0.045), but there was no such difference in embryos following 

Trajectory 2, between populations. For embryos that followed Trajectory 1, the 

time during ontogeny at which the breakpoint (between Phases 1 and 2) in 

heart rate occurred also differed significantly between egg masses (relative 

timing – F13, 14 = 4.49, P = 0.004; absolute timing - F13, 14 = 4.28, P = 0.005). 

Further, the rate of decrease in heart rate in embryos following Trajectory 1 was 

different between populations (F13, 14 = 4.28, P = 0.005), but only when 

ontogeny was measured as relative, rather than absolute, time. 

There were no significant differences between either egg masses or populations 

in growth trajectory during the embryonic period (Fig. 5.6) and egg volume was 

not a significant covariate of this trait. 
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Table 5.1. Numbers of embryos following Trajectories 1 or 2, from different egg 

masses and populations (Figs. 5.4 and 5.5).  
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Figure 5.5. Ontogenies of CV function in individual Radix balthica embryos from 

different populations and egg masses within these populations. Fitted lines were 

derived by segmented regression analysis and individuals from the same egg 

mass, within populations, are indicated by the same line style. 
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Figure 5.6. Growth trajectories of individual embryos from different populations of Radix balthica, determined by regression 

analysis. There were no significant differences in the rates of growth between embryos from either different egg masses or 

populations. 



 114 

Table 5.2. Results of an ANCOVA testing for differences in the development of 

CV function, with ontogeny quantified as relative timing, between embryos from 

different populations and egg masses, in the pond snail Radix balthica, ns – p > 

0.05; * - p < 0.05; ** - p ≤ 0.001. 
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Table 5.3. Results of an ANCOVA testing for differences in the development of 

CV function, with ontogeny quantified as absolute timing, between embryos 

from different populations and egg masses, in the pond snail Radix balthica, ns – 

p > 0.05; * - p < 0.05; ** - p ≤ 0.001. 

 

5.4.4 Parent-offspring comparison of CV functional ontogeny 

Comparison of CV functional ontogeny between parents and their offspring 

revealed that the relative timing of the breakpoint between Phase 1 and 2 was 

both significantly different between offspring from different parents and had 

significant similarity to the timing of their parent’s CV breakpoint (Fig. 5.7; Table 
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5.4). None of the other heart rate parameters used here displayed significant 

cross-generational similarity, with the exception of the timing of a discrete 

heartbeat, which is analysed and discussed in Chapter 4 (using a larger dataset 

than in the current chapter).  

 

Figure 5.7. Parent-offspring comparison of the relative timing of the breakpoint 

in the ontogeny of heart function in offspring produced from different parents. 

Offspring are weighted by parental breakpoint timing, and egg volume is 

included as a covariate in the model (Table 5.4). Significant differences 

between offspring produced from different parents are indicated by horizontal 

bars across box plots. The top plot shows developmental event timing (mean ± 

1 S.E.) for offspring from different parents, as predicted from the ANOVA model. 
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Table 5.4. Results of an ANOVA testing for differences in the relative timing of 

the breakpoint between the first and second phase of the ontogeny of CV 

function between embryos from different parents, with parents weighted by their 

own relative timing of breakpoint and egg volume factored as a covariate. ns – 

p > 0.05; * - p < 0.05; ** - p ≤ 0.001. 

5.4.5 Heart ontogeny, growth rate and hatchling size 

Hatchling size was used to assess whether there were implications to 

individuals of differences in aspects of their CV development. This analysis 

revealed that embryos following Trajectory 1 hatched significantly larger than 

those following Trajectory 2 (Table 5.5), although there were no relationships 

detected between the other traits used here to describe heart ontogeny (Fig. 5.3) 

and hatching size. To investigate the origins of these size differences growth 

rates were calculated, during the periods from 24 h after first heart function to 

72 h and from 72 h to 144 h. Embryos following Trajectory 1 exhibited faster 

growth from 72 h to 144 h than embryos following Trajectory 2, but not between 

24 h and 72 h (Table 5.5). Hence, the differences in size at hatch between 

embryos following Trajectories 1 or 2 appears to originate from differences in 

growth rate during this late embryonic development, at approximately the same 

time at which they are displaying differences in heart rate trajectory. 

There were also significant differences in size at hatch between embryos from 

different egg masses (F12, 40 = 2.47, P = 0.016) and differences in growth rate 

between 24 h and 72 h between populations. 
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Table 5.5. Results of an ANOVA testing for differences in the size and growth in 

embryos following different trajectories during phase two of the ontogeny of 

heart function. ns – p > 0.05; * - p < 0.05; ** - p ≤ 0.001.  

 

5.5 Discussion 

5.5.1 Ontogeny of CV function: pattern and timings 

The ontogeny of cardiac function in Radix balthica follows a biphasic 

relationship between heart rate and developmental time. During Phase 1 heart 

rate increases until it reaches a breakpoint at which time two pathways are 

followed with apparent equal frequency – heart rate either, continues to 

increase (Trajectory 2), but at a reduced rate, or decreases (Trajectory 1), for 

the remainder of embryonic development. This is the first demonstration of a 

biphasic relationship in the development of CV function in molluscs and this 
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type of relationship appears to be similar to that reported for other invertebrates, 

such as the crustaceans (Spicer 2001) (Fig. 5.8).  

In crustaceans the suggested mechanism underlying the breakpoint, from, a 

rapid increase to a decrease, in cardiac function, is the switch from myogenic to 

neurogenic cardiac innervation (Spicer, 2001). However, the heart of molluscs 

is myogenically controlled (Krijgsman and Divaris 1955; Hill and Welsh 1966; 

Irisawa 1978), presumably throughout development, and therefore, there must 

be another basis for the biphasic relationship in R. balthica. It is surprising, 

however, that a biphasic relationship is evident in both groups and perhaps 

suggests an, as yet, unidentified process might be responsible for the ontogenic 

patterns seen in the Crustacea other than a switch in mode of cardiac 

innervation (Spicer 2001). This said, it should be noted that mollusc hearts do 

possess some degree of neuronal control (Koester and Koch 1987), and so 

perhaps ruling out linking changes in cardiac control to this relationship is 

premature. 

If the biphasic patterns of heart ontogeny in molluscs and crustaceans are not 

homologous this might go some way to explaining why molluscs exhibit two 

trajectories during Phase 2 (up or down) whereas crustaceans all appear to 

follow a downward trajectory during the second phase of this biphasic 

relationship. Figure 5.8 shows that for R. balthica when mean heart rate is 

plotted for embryos following Trajectories 1 and 2, both follow a downward 

trajectory during Phase 2, even though the embryos following Trajectory 2 all 

exhibit an increase in heart rate after the breakpoint. The averaging of data for 

embryos with different intercepts (breakpoint) and slopes during Phase 2 has 
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effectively masked the biologically relevant inter-individual variation. This plot 

highlights the problems inherent in presenting such data as mean values when 

studying such ontogenic trends. If individual embryos’ ontogenies were not 

considered, the occurrence of embryos following both “up” and “down” 

trajectories during Phase 2 may well have been overlooked. The issue with 

being unable to replicate the individual is a problem highlited by Spicer and 

Gaston (1999) and is illustrated here by much of the interesting variation in the 

ontogeny of heart function being lost when an average ontogenic path is 

considered. 

 

Figure 5.8. Ontogeny of cardiac function, in (a) Gammarus duebeni, (b) 

Daphnia magna (clone), (c) Artemia franciscana and (d) Radix balthica (mean ± 

1 SE). Plots (a) – (c) are adapted from Spicer and Morritt (1996). All data is for 

species cultured at 20°C. 
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5.5.2 Variation in ontogeny of CV function 

When ontogeny was measured as relative time, embryos from different 

populations whose heart rate followed Trajectory 1 during Phase 2 had 

significant differences in both the rate of increase in heart rate during Phase 1, 

and the rate of decrease during Phase 2 (Table 5.1). Differences in the 

ontogeny of physiological traits between populations appear to be quite 

common (Stauber 1950; Prosser 1957; Vernberg 1964; Garland and Adolph 

1994) and are often attributed to in situ environmental factors. Here, the 

population differences in the rates of chance in heart rate during both Phases 1 

and 2 could be caused by persistent physiological acclimatisation of differences 

in situ between populations, or alternatively are the result of genetic differences 

accompanying physiological differentiation (Spicer and Gaston 1999). 

Interestingly, population differences in the rates of change in heart rate were 

only present among individuals following Trajectory 2, suggesting that there 

might be different mechanisms underpinning these two trajectories. 

There were also differences in the timing of CV developmental events between 

embryos from different egg masses, including the time of both the first discrete 

heartbeat and the breakpoint between Phases 1 and 2. In the comparison of 

parent-offspring CV development it was only the relative timing of the 

breakpoint that showed cross-generational similarity, suggesting that 

differences between egg masses, in this trait, might be caused by these egg 

masses originating from different parents, which is probable given that they 

were sourced from a stock tank. The parent-offspring comparison of CV 

development was performed using only a preliminary, small, dataset, but a 

parent-offspring similarity in the relative timing of the breakpoint was 
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nevertheless evident. It therefore seems that, as with the developmental events 

(including the timing of first heart function) used in the parent-offspring 

comparison in Chapter 4, a significant portion of the variation in the timing of the 

breakpoint has a parental origin.  

Bagatto et al. (2000) studied variation in physiological traits, including heart rate, 

within and between Amadillo litters, which produce monozygous quadruplets 

with essentially zero genetic variation within-litters, and found that for all traits 

studied within-litter variability was always less than between-litter variability. 

These authors attribute this pattern of variability to genetic components that 

determine physiological characters. Similar patterns have been found in other 

studies (reviewed by Burggren 1999) and the consensus of authors seems to 

be that these CV differences between litters are a result of either difference in 

genetic regulation or maternal effects. However, to my knowledge, mine is the 

first study that has attempted to link differences in CV development between 

offspring from different parents back to the CV development of the parent. This 

parent-offspring comparison of CV development revealed cross-generational 

similarity, suggesting either genetic differences or perhaps maternal effects are 

the cause. Here, the analysis of parent-offspring similarity also incorporated egg 

volume as a measure of maternal investment and found this to not be a 

significant covariate and previous work with R. balthica (Chapter 2; Tills et al. 

2011- Appendix 3) has hinted at a genetic basis for the timing of nine 

developmental events (not including the cardiac breakpoint described here). 

Therefore it would perhaps not be too surprising for a genetic underpinning to 

be responsible for variation in the timing of other developmental events. 

However, to truly understand the relative roles of genetic and epigenetic effects 
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on CV developmental event timing will require a more sophisticated breeding 

experiment than was performed here. 

5.5.3 Effects of ontogeny of CV function on life history 

Embryos whose heart rate followed Trajectory 2 (an increase) during Phase 2 

were significantly smaller on hatching than those following Trajectory 1. This 

difference in size appeared to result from differential growth rates during the 

period of Phase 2, approximately 72 – 144 h after first heart function (Table 5.5). 

It therefore seems that during Phase 2 a trade-off exists between energy 

investment in growth and that invested in sustaining an elevated, and increasing, 

heart rate. That both trajectories occur with apparent equal frequency, and that 

Trajectory 2 appears to have negative life history effects, suggests that 

Trajectory 2 might have biological or ecological importance to justify the trade-

off, of following this trajectory. Size at hatching has been shown in snails 

(Moran and Emlet 2001; Spight 1976) and in other groups (e.g. turtles – Janzen 

(1993) and fish – Hutchings (1991)) to be a good predictor of survival, providing 

support for the hypothesis that here, the trade-off between growth and cardiac 

function during Phase 2 would result in reduced fitness for individuals, which as 

embryos, follow Trajectory 2. 

It is also interesting to consider what effects these two Trajectories might have 

on embryos at different positions within the egg mass, or whether these 

trajectories might be linked with the position within the mass of the egg, perhaps 

via a maternal cue. Here, egg capsules were dissected from along the length of 

the egg mass and cultured separately and their original location within the mass 

was not recorded. However, it is known that developmental rate (Marois and 
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Croll 1991) and the microenvironment (Moran and Woods 2007) at different 

locations within an egg mass can differ. Understanding whether there are 

patterns to the location of embryos within egg masses following these 

alternative pathways might provide some insight as to whether these pathways 

provide different strategies for coping with environmental stress during the 

embryonic period (Cohen and Strathmann 1996). In other aquatic species it has 

been shown that embryos developing in the middle of gelatinous masses are 

close to the limit for adequate oxygen supply (Cohen and Strathmann 1996). 

For R. balthica, it could be predicted that embryos which follow Trajectory 2 

might have higher Darwinian fitness in the middle of an egg mass, than 

embryos with a declining heartbeat, during this embryonic period. Or, perhaps 

these two trajectories do not exist in embryos cultured within the egg mass, but 

have resulted from their removal from the egg mass, and the associated 

environmental stressors, which might normally suppress this variation.  

Studies of the implications of an organism’s early development on later life 

history are quite rare, but crucial for understanding the implications to Darwinian 

fitness (or proxies of Darwinian fitness, i.e. size). Spicer and El-Gamal (1999) 

are a noticeable contribution in this area, having shown in brine shrimp that 

relatively small changes in the timing of respiratory regulation, driven by hypoxia, 

led to decreased Darwinian fitness (individual lifetime reproductive output). Here, 

I do not have life history data beyond size at hatching, so cannot be sure that 

these differences in CV functional development translates to differences in 

Darwinian fitness. However, the differences in hatching size do suggest a 

potential fitness cost of following Trajectory 2. It is also interesting to consider 

whether Trajectories 1 and 2 have any effects beyond hatching. Future work 
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must focus on whether these differences in heart rate extend beyond the 

embryonic stage and if so, whether this translates to differences in growth, 

behavior or other life history characteristics. Work with Daphnia magna revealed 

an inverse relationship between heart rate and longevity (MacArthur and Baillie 

1929) and therefore here, if the differences between Trajectories 1 and 2 

remain post-hatch, these might result in considerable differences to life history. 

Radix balthica hatchlings from the same egg mass can show considerable 

differences in growth rates (pers. obs.), but unfortunately I do not have post-

hatch data for the embryos in this study so can only speculate on the 

implications for later life stages.  

Here, I show that Radix balthica’s ontogeny of heart function appears similar to 

that of crustaceans, the best studied invertebrate group, in so far as the 

ontogeny follows a biphasic relationship. In crustaceans however, a switch from 

myogenic to neurogenic innervation was believed to be the cause of this switch 

and this cannot be the case for R. balthica. Further I find two alternative 

ontogenic pathways with embryos following Path 1 hatching smaller than those 

following Path 2. Finally, this study of events during ontogeny of heart function, 

as with other developmental events in R. balthica (Chapter 4), reveals that 

variation in the timing of cardiac functional ontogeny is prevalent and appears to 

have a parental origin. It appears that intraspecific variation in developmental 

event timing in this species’ is not just “developmental noise” (Spicer and 

Gaston 1999), but also both functionally and ecologically relevant. 
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CHAPTER 6 

CONCLUSION 

6.1 Introduction 

The main aim of this thesis was to understand the extent to which intraspecific 

variation in developmental event timing might provide the raw material from 

which heterochronies may originate. In this final, discursive chapter, I revisit the 

three objectives of my thesis (Sect. 1.5) and consider, in turn, how each chapter 

has contributed to our understanding of the relationship between altered timing 

at the inter- and intra-specific levels, through the investigation of: i) patterns in 

altered event timing; ii) the genetic basis for altered event timing; and iii) fitness 

implications. 

6.2 Patterns in altered event timing 

Variation in a trait is the raw material of natural selection (Darwin 1859) and 

therefore observing and describing the pattern of this variation, at the levels of 

both macro- and micro-evolution, is an important step in understanding 

evolutionary pattern and process (Arthur 2011). Altered timing at both the inter- 

and intra-specific level has been compared (e.g. Cubbage and Mabee 1996; 

Mabee and Trendler 1996; Mabee et al. 2000) and the importance of the 

relationship between these two levels has been discussed (e.g. Strauss 1990; 

Reilly et al. 1997; Mabee et al. 2000; Holtmeier 2001; Spicer et al. 2011 – 

Appendix 1), with Reilly et al. (1997) commenting that, “it is the interaction of 

intraspecific heterochrony [altered timing] and phylogenies that produces the 

interspecific patterns we observe”. However, studies focusing on how variation 

in developmental event timing is distributed at different, intraspecific biological 
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levels are extremely rare (Kawajiri et al. 2009), despite the fact that this 

distribution may be pivotal to the relationship between altered timing at the inter- 

and intra-specific levels. A notable exception is the study by Kawajiri et al. 

(2009), which compared fin development in a northern and southern Japanese 

population of an amphidromous medaka, Oryzias latipes. This study revealed 

differences between populations in the time of onset of fin development and 

growth rate relative to body size, with southern fish showing earlier and more 

rapid fin growth than northern fish. The authors suggest that delayed 

development in the northern population might be a trade-off for faster overall 

growth which has evolved as an adaptation to cope with a shorter growing 

season (Kawajiri et al. 2009).  

Here, I found intraspecific variation in the developmental event timing of R. 

balthica embryos to be pervasive (Chapter 2-5) and that the distribution of this 

variation at different biological levels did not fit with previous predictions (see 

below; cf. Spicer and Gaston 1999 Ch. 4; Chown et al. 2002). In Chapter 3 I 

investigated how variation in embryonic event timing was partitioned in embryos 

from populations originating from across R. balthica’s latitudinal range (from the 

north of Sweden to the south of France). This study revealed that the timing of 

four cell division had most variance at the egg mass level, but that events later 

in development had more variance at the level of inter-individual, than egg mass, 

or population. The inclusion of egg volume in the ANOVA model also affected 

the partitioning of variance in event timing, increasing inter-individual and 

decreasing egg mass variance. Based on the findings of Chapter 2 (Tills et al. 

2011), which suggested a genetic basis for altered developmental event timing, 

within a single population, it might have been predicted that variation would be 
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even greater at higher biological levels, but the findings of Chapter 3 indicate 

that this developmental divergence does not extend to the level of inter-

population.  

An explanation for this lack of scaling from within, to between, population 

differences in event timing might lie with examination of the population genetics 

of R. balthica. Recent work with Radix balthica has revealed that mediated 

transport, via migratory birds, has led to considerable mixing along a north-

south trajectory in populations from across Europe, to the extent that there is no 

relationship between geographic and genetic distance in this species, even 

when comparing populations separated by over 2 500 km (Pfenninger et al. 

2011; Haun et al. in press). These studies also showed that many of the most 

genetically distant populations were separated by only a few kilometers. 

Chapter 3 uses populations from along this migratory route and therefore 

considerable mixing between populations is a probable explanation for the low 

levels of population differentiation discovered.  

The population genetics of R. balthica at smaller geographical scales is also 

surprising, with single, small, populations commonly containing distinct lineages 

which persist side-by-side, with limited inter-breeding, probably due to a mixed-

mating structure (Jarne and Delay 1990; Jokela et al. 2006; Pfenninger et al. 

2011; Haun et al. in press). Hence, it appears that this genetic divergence within 

a single population of R. balthica can be greater than that between populations 

separated by thousands of kilometers. This pattern could explain why, in this 

case, differences in developmental event timing did not extend to the population 

level (Chapter 3). The prevalence of variation at lower (inter-individual and egg 
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mass) rather than high (population) biological levels, highlights that future work 

aiming to link altered timing at the inter- and intra-specific levels should 

incorporate lower biological levels than might ordinarily be considered. It will, 

perhaps, only be through incorporating lower taxonomic levels that we can 

begin to understand how natural selection on intraspecific altered timing could 

lead to heterochrony. 

Variation is prevalent at all levels in Biology and this variation is best resolved 

by increasing the resolution of biological data (discussed in Spicer and Gaston 

1999). First identifiable heart function is an event used in Chapters 2-5, 

however heart rate is also visible beyond this event in the developing embryo 

and therefore in Chapter 5 I focused, with high temporal resolution, on how this 

cardiovascular (CV) function develops during embryonic development. I began 

by analysing the trends of individual embryos’ ontogeny of CV function and 

discovered that this consisted of two Phases: during Phase 1 heart rate 

increased, but during Phase 2 heart rate either decreased (Trajectory 1) or 

continued to increase, all be it less rapidly than during Phase 1 (Trajectory 2) 

(Fig. 5.4). An analysis of these patterns of heart ontogeny revealed 

considerable variation, in both the timing of events and the rates of change in 

heart rate during each Phase. There were significant differences: i) between 

egg masses in the time during ontogeny at which the switch between Phases 1 

and 2 occurred; and ii) between populations in the rate of decrease in heart rate 

during Phase 2, in embryos following Trajectory 1.  

Despite the occurrence of two Trajectories (positive or negative) in Phase 2 of 

CV development, when mean values for embryos following each of these 
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different trajectories were plotted, both groups of embryo appear to show 

decreasing heart rate during Phase 2 (Fig. 5.8). The ‘cancelling-out’ of two 

different Trajectories when using mean values highlights the importance of 

analysing ontogenies of individuals, rather than groups of individuals (Spicer 

and Gaston 1999). The level of intraspecific variation reported here, in both 

developmental event timing and CV functional development, should perhaps 

serve as a warning to those comparing ontogenies of pooled groups of 

individuals, without first having a detailed understanding of the different 

ontogenic patterns individuals follow. In Chapter 5 this detailed study of 

individual ontogenies was fruitful, but would have, perhaps, been considerably 

less so had individual ontogenies not been analysed. 

Variation in the development of Radix balthica appears to be predominantly at 

low biological levels. Given that this species has considerable mixing between 

populations across large geographic distances, yet isolated lineages within 

single populations, the distribution of variance reported here is perhaps not 

surprising. Future work with R. balthica aimed at understanding the importance 

of intraspecific variation in altered timing to the formation of heterochrony will 

require detailed knowledge of both the population and inter-individual genetics, 

as geographical distance cannot be relied on as a mode of isolation in this 

species. Pfenninger et al. (2006) investigated the taxonomy of the Radix genus 

within Europe and discovered that species identification based on 

morphological characters was unreliable due to continuous variation within and 

between species in traits such as shell shape. A genetic analysis of 

mitochrondrial COI sequence showed that five Molecularly defined Taxonomic 

Units (MOTU) could be distinguished. Further work with R. balthica could 
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consider relationships between developmental event timing and genetic 

differentiation within and between the five MOTUs described for Radix. Such a 

research strategy will allow investigation of variation in altered timing from the 

inter-individual up to the inter-specific level and help to address the paucity of 

our understanding of the relationship between variation within and between 

these different biological levels. 

6.3 A genetic basis for altered timing 

Variation is a requirement for natural selection to act (Darwin 1858), but a 

knowledge of the source of this variation is required in order to understand its 

evolutionary implications (Falcolner and Mackay 1996). Inter-individual variation 

in a trait can occur through: i) experimental error; ii) environmental influence; or 

iii) genetic variation (Spicer and Gaston 1999, p 98). For intraspecific variation 

to be the raw material from which heterochronies originate, such variation must 

have a genetic basis. Assessing whether there is a genetic basis for 

intraspecific altered developmental event timing is therefore of paramount 

importance for determining whether variation at the intraspecific level might be 

the raw material from which interspecific heterochronies form.  

In this thesis I assessed whether intraspecific variation in event timing in R. 

balthica had a genetic basis using both a genetic analysis of a wild population 

(Chapter 2; Tills et al. 2011), and a laboratory breeding study (Chapters 4 and 

5). Analysis of a wild population allowed me to assess whether a genetic basis 

for differences in developmental timing was present in situ, whereas, the 

laboratory breeding study enabled me to investigate cross-generational 

similarities in developmental event timing. Together these approaches let me 
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assess whether there was a genetic basis for altered timing within both an 

ecological (Chapter 2; Tills et al. 2011) and evolutionary (Chapters 4 and 5) 

context. 

In Chapter 2 I investigated the relationship between inter-individual pairwise 

genetic distance and the magnitude of pair-wise difference in developmental 

event timing, using eggs collected from a small population of R. balthica. This 

study revealed a significant positive inter-individual relationship in the 

magnitude of difference between genetic similarity and the timing of 

developmental events, indicating the presence of a genetic basis for 

developmental event timing (Tills et al. 2011). Embryos with no difference in the 

sequence position, within their developmental itinerary, of the first identifiable 

heart beat, were also more genetically similar than embryos with a difference in 

the position of this event, suggesting that the sequence position of this event 

might also have a genetic underpinning. In Chapters 4 and 5 I used a laboratory 

breeding study to test whether this suggested genetic basis for event timing was 

detectable within a single generation, via a parent-offspring comparison of 

embryonic developmental event timing. These investigations revealed 

significant parent-offspring similarity in all twelve of the developmental events 

studied (Chapter 4) and in the timing of the breakpoint in cardiovascular 

functional development (Fig. 5.7) (Chapter 5). Further, in Chapter 4, for two 

developmental events (foot attachment and crawling) this similarity between 

parents and their offspring was sufficiently strong for the timing of these events 

to be classed heritable.  



 133 

A parent-offspring comparison has the limitation that maternal effects (e.g. 

maternal investment) cannot be controlled for in the experimental design 

(Falconer and Mackay 1990), however in both Chapters 4 and 5 I factored egg 

volume into my analyses and the similarity between parents and their offspring 

was still present, suggesting, as in Chapter 2 (Tills et al. 2011), that intraspecific 

altered event timing has a genetic basis. 

These findings from Chapters 4 and 5 highlight that the prevalent view of 

heterochrony (altered timing of developmental events between ancestors and 

descendants) as an interspecific phenomena is too restricted and that altered 

timing with a genetic basis can be observed at the very lowest evolutionary level 

of a parent (ancestor) and their offspring (descendant). Such heritable 

intraspecific developmental event timing might provide the raw material from 

which heterochronies arise, accompanying or perhaps even driving speciation 

events, and therefore this is a fundamental link between ontogeny and 

phylogeny (discussed in Spicer 2006). It is therefore perhaps at this level that 

we should investigate the evolvability (i.e. the ability to produce heritable 

phenotypic variation (Kirschner and Gerhart 1998)) of heterochrony (discussed 

in Minelli and Fusco 2012), and also the link between heterochrony and 

heterokairy (discussed in Spicer et al. 2011 – Appendix 1).  

Experimental evolution, has the potential to be a powerful tool with which to 

observe heterochrony “in action”, in living animals (Garland and Rose 2009), 

and it will perhaps only be through observing the process of altered timing 

through successive generations that we will truly learn the role of heterochrony 

in evolution. Here, I performed a relatively simple parent-offspring comparison, 
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but more elaborately designed breeding studies should be a focus of future 

work. For example, a half-sib breeding design (comparison of siblings which 

share a single parent) would allow investigation of both maternal and paternal 

effects and therefore provide clearer evidence of the extent to which altered 

timing has a genetic basis (Lynch and Walsh 1998).  

In this thesis, heritability was revealed using isolated R. balthica and this has 

demonstrated the possibility of culturing inbred lines, with differences in 

developmental event timing. Such lineages would be a valuable resource for 

addressing a multitude of questions relating to the genetic underpinning, 

heritability and implications of altered timing. Use of artificial selection with 

differences in developmental event timing would also provide the opportunity to 

address questions such as how variation in event timing compares between 

control and stress (heterokairy) conditions, and to what extent the magnitude 

and direction of heterokairy is influenced by the developmental timing observed 

under control conditions. Answers to these questions will be necessary for 

understanding how heterokairy fits with the findings presented in this thesis (see 

Spicer et al. 2011 – Appendix 1 for a fuller discussion). 

6.4 Implications  

Inter-individual variation must have implications for Darwinian fitness for 

evolution to proceed via natural selection (Darwin 1859). The step of linking 

variation in early development to Darwinian fitness, or proxies for Darwinian 

fitness such as size, is rarely performed, however it is important for 

understanding the implications of variation in early development. The effect of 

altered development on individuals is ultimately the deciding factor in whether a 
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particular pattern of development contributes an advantage, or disadvantage, to 

the developing, or developed, individual, and therefore whether it is adaptive. 

Richardson et al. (2009) is one of only a few studies to have considered how 

natural selection might have acted to produce heterochronies that are 

observable at macroevolutionary scales. This study investigated phylogenetic 

trends in tetrapod limb heterochrony and the developmental mechanisms 

underpinning limb formation and revealed that, despite a comprehensive 

knowledge of tetrapod limb evolution, current knowledge was insufficient for 

identifying developmental changes and selection pressures that might have 

resulted in limb heterochronies. 

In Chapter 5 I focused on timing in the development of CV function and 

revealed two Trajectories during the second Phase of this development; with 

embryos having either an increasing (Trajectory 2) or a decreasing (Trajectory 1) 

heart rate. These different Trajectories were followed with approximately equal 

frequency within both populations and egg masses. Embryos following each 

Trajectory had no significant difference in growth rate from 24 – 72 h – the time 

during ontogeny that broadly coincided with Phase 1 of CV development. 

However, from 72 – 144 h, which was broadly when Phase 2 of CV 

development occurred, embryos that follow Trajectory 1 (decrease in heart rate) 

grew significantly faster and hatched larger, than those following Trajectory 2 

(increase in heart rate). It therefore appears that slower growth rates in embryos 

following Trajectory 2 during late embryonic development may result from a 

trade-off between heart rate and higher levels of energy investment in growth.  
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Chapter 5 did not follow hatchling snails beyond the embryonic period and 

therefore it is not clear if embryos following Trajectory 1 would have had a 

higher Darwinian Fitness than those following Trajectory 2. Radix balthica are 

known to exhibit plasticity in growth rate (Lakowitz et al. 2008; personal obs.) 

and it is possible that snails hatching smaller could display catch up growth. In 

situ, Radix balthica would also usually develop within a gelatinous egg mass 

and previous work has revealed hatchlings can spend several days feeing on 

the algae which has grown on this mass (Smirthwaite et al. 2007). It would be 

interesting to investigate whether snails hatching at different sizes display 

differences in their post-hatch feeding behavior, or whether they have 

differences in physiology that persist after hatching. 

Here, the occurrence of Trajectories 1 and 2 occurred without any intentional 

change to the embryonic environment, however these differences might be in 

response to different environmental conditions within the egg capsule, for 

example nutrient levels, oxygen availability or concentration of metabolites 

(Morrill 1982; Moran and Woods 2007). Differences in size at hatching for 

embryos following each of these trajectories demonstrates an effect of 

embryonic CV development on life history, however future work should try to 

reveal the implications on juvenile and adult development and ultimately 

whether this translates to affecting Darwinian fitness. 

Most studies that have made the link between altered event timing and its 

implications to the organism, have been done so within the context of an 

environmental stressor and therefore have investigated implications of 

heterokairy, e.g. the effect of hypoxia on the onset of respiratory regulation 
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(Spicer and El-Gamal 1999) and effect of hatching plasticity to risk of predation 

(Gomez-Mestre et al. 2008). However, to my knowledge, no studies exist which 

investigate the implications of altered intraspecific developmental event timing 

in response not to an environmental stimulus, but due to genetic differentiation. 

A key next step in understanding the altered timing reported in this thesis will be 

to identify whether such intraspecific altered timing has implications to 

Darwinian fitness. To understand these implications, they will also need to be 

assessed in individuals cultured under environmentally relevant conditions, as 

subtle changes to an organism’s development, through altered timing, might 

only prove adaptive within specific environments. 

6.5 Final conclusion 

Altered timing of developmental events is evident in Biology at all evolutionary 

scales (discussed in Spicer et al. 2011 – Appendix 1), including both inter-

specific (c.f. Jeffery et al. 2002; Smirthwaite et al. 2007) and intraspecific (c.f. 

Warkentin et al. 2005; Chapters 2-5). Only recently, however, has it been 

suggested that the study of intraspecific altered timing might prove a viable 

research vehicle for linking differences in event timing between these scales 

(Minelli et al. 2012). This thesis has adopted an integrative approach to the 

study of altered timing at the intraspecific level, incorporating both 

morphological and physiological developmental events, and has studied the 

timing of these events in the embryonic development of the pond snail Radix 

balthica with very high temporal resolution. This approach has revealed that 

variation in event timing appears to have a genetic basis and that the timing of 

several of these events are heritable. Heritable intraspecific event timing 

represents a fundamental link between ontogeny and phylogeny and this opens 
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up exciting new opportunities for understanding how the macroevolutionary 

pattern of heterochrony might develop. 
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