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Abstract

With recent advances in laser technology we have seen lasesities reach the order of
1072 W/cn?, with higher intensities anticipated in the near futureisthesis concerns a
classical approach to the simulation of laser matter ioteyas for intensities above the
relativistic threshold of 1 W/cn?. A pulsed plane wave model is used to simulate the
laser fields. In particular this thesis aims to determineetifect of radiation reaction on
relativistic interactions as well as proposing an effextivethod of vacuum laser accel-
eration from rest. We consider the equations of motion actog for radiative effects
and present their analytic plane wave solution. A novel micakscheme to solve the
equations of motion for arbitrary field configurations isgaeted. The method is mani-
festly covariant and exact for constant fields. Radiatiaetien effects are explored using
the numerical method and we find that the electron gains griesg the radiation field
produced by its acceleration. Methods of vacuum laser aexa#bn are studied and we
predict a significant acceleration using two co-propaggtsers where the frequency of
the two lasers differ significantly. We also look at analgtid numerical solutions of the
radiation spectrum, observing an increase in oscillationise spectrum for larger inten-

sities. We see more photons radiated when we include regli@ims in our calculations.
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Chapter 1

| ntroduction

1.1 Background and Motivation

The idea of the laser traces back to the work of Albert Einsiteil917. His theoretical
understanding of the interaction between light and matieeg the way for the first laser.
In his paper “On the Quantum Mechanics of Radiation” [1], 46 introduced the con-
cept of stimulated emission. This is the physical princtplgt allows light amplification
in a laser, hence its name “laser” - an acronym for Light Arfigdtion by Stimulated
Emission of Radiation. The idea of stimulated emissionasely linked to spontaneous
emission whereby an excited atom or ion may spontaneously wr its lower energy
level, emitting its energy in the form of a photon in a randanection. Stimulated emis-
sion occurs when a photon with the correct wavelength pdsste excited atom, stim-
ulating it to release its photon. The emitted photon trauvelhe same direction as the
original photon and has the same frequency and phase. If wedkarge collection of
atoms then as the photons pass by the rest of the atoms, nbraae photons of the
same mode are emitted to join them, effectively amplifying power of the incoming
radiation [2]. One of the main components of a laser is ite ga¢dium, which has the
required properties that allow for light to be amplified byratlated emission. Using
mirrors at either end of this medium allows light to be bouhback and forth, being am-

plified each time. A pump source is required to excite theigdag in the gain mediuni [3].

Despite having the basic information to build such a deviceas not until 1960 that
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the first working laser was built. However since then therl&ses evolved considerably.
Initially described as a ‘solution looking for a problemheir extreme versatility means
that they are now being applied to a wide range of problemseisaare now being used
in the areas of medicine, measurement, defence, energynaeidagnment, to list just a

few [4,5].

Since the technological breakthrough of chirped pulse ditgtion in the mid 80s,
laboratories have been able to produce lasers of highersitiees than ever before. Chirped
pulse amplification is a technique for amplifying pulses &yhigh optical intensities
while avoiding excessive pulse distortions or damage taydie medium or any of the
other optical elements. It works by stretching out the pulséme before passing it
through the gain medium, thus reducing its peak power antliegpany damage. This
stretched pulse then safely passes through the laser egtm® it is amplified. Finally
the pulse is temporally compressed back to its originaltlengllowing for ultra-high
intensities([4]. Much progress has been made in the redudfigulse duration and in
the focusing of lasers over smaller areas, increasingsittes further. High power lasers
have become increasingly accessible, now small enoughetdetheir use in many uni-

versity laboratories [6].

Applications of high intensity lasers include thermonacliision, fundamental science,
particle acceleration and medical applicatians [4]. Usheglaser’s electromagnetic field
it is possible to accelerate charged particles allowindgHerdea of kilometre sized linear
accelerators being replaced by table-top laser systemsJatiemes for laser accelera-
tion have largely relied on plasmas, however Sirigh [8] ctatimat there are a number
of advantages of vacuum acceleration over plasma acdeleraising a vacuum avoids
problems such as instabilities, which occur with lasespla interaction. The duration
of interaction between the laser pulse and electron is patsrlonger in vacuum, which
in theory increases the energy gain. It is also easier tatiqjeeaccelerated electrons
in vacuum than in plasma and peak energy increases withlieitctron energy. These
claims suggest it would be worthwhile to investigate theeptal of vacuum acceleration

schemes. In addition our calculations are simplified by iglating additional background
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effects of the plasma. Despite these advantages it seeingthaum laser acceleration
has so far been unable to compete with plasma acceleratiengfothe main disadvan-
tages of working in vacuum being that a high threshold poweequired for substantial
acceleration [9]. However the results shown(iri [9, 10] ssgteat direct acceleration of
electrons in vacuum is within reach of the current technpbngd that schemes of vacuum
laser acceleration are still being explored. Methods ofivatlaser acceleration and their
potential for large energy gains will be explored in moreadléh Chaptef B.

The advances in table-top, ultra-high intensity lasers afgarked a renewed interest in
Thomson scattering, with applications such as ultra-spol$e duration X-rays [11].
Thomson scattering, the classical limit of Compton scaitgrdescribes the scattered
electromagnetic radiation by an electron that is acceddrby an external field. As laser
intensities exceed the relativistic threshold of®\ /cn? the process becomes nonlinear.
This ‘nonlinear Thomson scattering is the process that beysed for table-top X-ray
sources[[12].

There are currently a number of facilities for high poweraskeks all over the world. The
UK is world-leading in this field with its Central Laser Fatjlat the Rutherford Lab, in
particular the Astra-Gemini and Vulcan lasers. The Plyrmdearticle Theory Group
is part of teams supporting experiments at Astra-Gemini thiedVulcan 10 Petawatt
Upgrade Project [4]. The most powerful laser facilitiesFNLLNL, USA) and LMJ
(Bordeaux, France), are intended primarily for inertiarthonuclear fusion. Future ex-
awatt scale facilities HIPER (High Power laser Energy Resgand ELI (Extreme Light
Infrastructure) are intended for fundamental science.okatory astrophysics is one of
the main motivations for the ELI project, which plans intigies of 16> W /cn [13].
Experimentalists are now routinely able to achieve lasenisities high enough to accel-
erate particles close to the speed of light. We therefone dur attention to Einstein’s
earlier work “On the Electrodynamics of Moving Bodies” [1A]1905, which introduced

the special theory of relativity. This theory is based onttte main principles:

e The laws of physics are the same for all observers in unifootion relative to one

another (postulate of relativity).



e The speed of lightin vacuum is the same for all observersrdtgss of their relative
motion or the motion of the light source (postulate of thestancy of the speed of

light).

These two principles require the modification of the laws ethanics for high speed mo-
tions. Newton’s laws hold as long as the velocities involkeadain much smaller than the
speed of light, however as particles approach the extrefoeities now achieved through
acceleration by modern lasers we must use the relativiggmative equations. We find
for example that we must use the relativistic form of Newsmgcond lawk = ma, where
we interprefr anda as four-vectors. We will use this relativistic version often’s law

in Chaptei 2. The form of the equations of motion needs furtbesideration when we
account for radiation reaction (RR). It is well known thatelerated charges radiate, but
problems arise when we consider that the electromagndtis fieeated by an accelerated
charge can act upon that same charge, effectively causielfrmteraction.

The issue of RR has a history spanning more than a centuryhérd has recently been
a renewed interest in this subject. Lorentz![15] and Abralfibéh developed the equa-
tion of motion for an accelerated charge including the ¢ftédhe backreaction of the
emitted electromagnetic radiation. This equation was ptat its final covariant form by
Dirac [17], giving a third-order equation for the particlajectory. It is now known as
the Lorentz-Abraham-Dirac (LAD) equation. This equatisrknown for its unphysical
solutions explored in_[18, 19] and many other texts and has Ibeferred to as “...one of
the most controversial equations in the history of physj2g]. It has been shown [21]
that the unphysical behaviour of the LAD equation, can beonead by eliminating the
triple derivative term by iteration, resulting in the Landiaifshitz (LL) equation[[22].
Radiation reaction is often neglected as it does not sigmiflg affect the motion of a
particle in most situations. The recent technological adea however have seen the
problem of RR come back into the limelight. Acceleratingrgfes in such strong fields
suggests that RR (which is normally a tiny effect) may becqimgsically relevant and,
hence, experimentally observable[23]. It is thereforeangnt that this radiative effect is

accounted for when modelling the behaviour of particlegrorg laser fields. The effects
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of RR will be considered throughout this thesis.

Having established the motivations for this research angwed some of the latest de-
velopments we are now in a position to begin modelling therlasatter interactions of
interest. However before we begin to look into the equatm@mn®otion in any detail we

must first decide upon how our laser fields will be modellede Tikext section therefore
briefly discusses the properties of laser light and how thay e incorporated into a

model for the laser fields.

1.2 Modellingalaser Beam

Laser light differs from normal light due to its unique projes [3]:
e Monochromaticity - lasers emit only a very narrow range ov&angths.

¢ Directionality - lasers can emit light in one direction, whispreads only very little
with distance. However, all laser beams eventually divaigéhey move through

space.
e Coherence - lasers have a high degree of spatial and tengodr@ence.

In most cases, a laser emits electromagnetic radiatioreifotim of a laser beam. A laser
beam can be emitted continuously as an infinite wave or indima bf a fast sequence of
pulses. The latter allows for extremely high peak power® dlectric and magnetic field
components of a laser field oscillate in phase perpenditukeach other and perpendicu-
lar to the direction of energy propagation. A laser may bedity or circularly polarised
(or something in between - elliptic polarisation) [2]. Tansilate the properties of the
laser we must incorporate the shape of the laser field, gagtih and how it is polarised
into our description of the field. Our model will thereforensist of a shape function and
a strength parameter, as well as polarisation and promageatictors.

Plane wave models are commonly used when modelling lasetreh interactions since
they are simple enough to allow for the analytic calculanbmany of the physical be-
haviours associated with such interactions, but also gdeogi reasonable model for the

laser field in certain regimes [24]. The simplest choice efltser field model would be
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to use an infinite plane wave. Hig 1l.1a shows the pulse shapduation of the laser
phase for an infinite plane wave. To create a pulsed plane wagtable envelope is
chosen. Fig 1.1b shows the effect of using a Gaussian erejeddthough similar alterna-
tives may be used. This is still unphysical due to its infinigasverse extent. Gaussian
beams provide a realistic model for a laser beam since theeyeatricted by a beam ra-
dius. Gaussian functions are used.in/[25, 26] for exampleddeha laser beam. Fig 1l1c
shows the beam radius as a function of the position in thestilore of propagationwg

is the waist size which is the beam diameter at the point ofrmim radius. We obtain

plane wave fields in the limit where the beam waist becomeglar

Jlly
i A —

(@) (b) ()

Figure 1.1: Models of a laser beam; (a) Infinite plane wave, (b) Pulsedeplsave using a Gaus-
sian envelope, and (c) Beam radius as a function of positidthea direction of propa-
gation;wg is the waist size.

As our model becomes more realistic it also becomes more lexmipor this reason for
the majority of this thesis a pulsed plane wave model will bedu Despite the addition
of a pulse envelope to the infinite plane wave model, its relliifproperties still allow for

the analytic calculations required. We shall see in Chaptdat the analytical solution
to the LL equation is known for plane waves; this can be used Bsnchmark for our
numerical codes. However, we must take into account thergssons made by using a

pulsed plane wave model.

To model the intensity of our laser field we use the laser gtteparameteag, defined by

:eEKLwll/z,

= (1.1)
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whereE is the amplitude of the laser fieldjs the electron chargeyis the electron mass
and A = c/w is the laser wavelength. This strength parameter is therefe energy
gain of the electron per laser wavelength aa%dis proportional to the laser intensity.
Whenag is greater than 1 it will describe relativistic behaviouo Jive an idea of the
magnitude ofy for intense lasers, the current record for an optical lasef the order of
107 (intensity of the order 138 W/cn¥) [27]. The laser system of the Berkeley Lab Laser
Accelerator (BELLA) in the U.S., has the potential to acleiay = 280 [28]. We will be
using the valuegg = 10 for an XFEL anday = 3000 for an optical laser (the kind af
value envisaged for ELI) throughout this thesis.

Now that we have decided upon how we shall model our laser\ieldre in a position
to study the behaviour of particles in such a field. The stmacof this thesis is outlined

in the following section.

1.3 Organisation of the Thesis

The topics covered in this thesis fall nicely under threemtsgadings: motion, vacuum
acceleration and radiation. Chapter 2 explores the equsaatb motion and methods of
their solution. Chapters 3 and 4 apply these results to eaten and radiation.

We begin in Chapter 2 by considering the equations of motidyoih their 3-dimensional
and covariant forms. The covariant Maxwell equations atativstic Newton’s second
law are derived using the action principle. We then incluat#iative effects in our equa-
tions and review the issues that occur when including re@iaérms. The equations of
motion are solved analytically for a pulsed plane wave andiraarical method is in-
troduced, which can solve the equations in arbitrary fielllse method is tested using
constant fields and the analytic plane wave solution; itentextended to a higher order
of accuracy. This method is used to study the impact of rafiataction on the motion
of a charged particle in a laser field.

Having established methods for calculating the motion @frgld particles, we look at
the application of these results. Chapter 3 uses the metnwdi€quations introduced

in Chapter 2 to explore laser acceleration of charged pastio vacuum. The methods
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of acceleration considered in this chapter are short puseleration, using a chain of
pulses to accelerate a charge, searching for an optimura plhégpe and lastly using two
co-propagating lasers to get a net acceleration.

Chapter 4 looks at the radiation produced by the accelecitedyed particles. The radi-
ation spectrum is calculated for crossed fields analytic&lle consider the spectrum of
radiation as a method of tracing RR in experiments. Numkinéegration is used to cal-
culate the spectrum for a pulsed plane wave initially witteR. The effect of increasing
ao Is then explored. The oscillations observed for laag@rompt us to check for chaotic
behaviour in the spectrum. Then having ruled this out we idenshe impact of RR on
the spectrum of radiation.

Highlights of the research are summarised and discusselaptér 5. Possible areas of

future work are also considered in this final chapter.



Chapter 2

M otion

This chapter is devoted to exploring the motion of chargeatigdes in electromagnetic
fields. We first consider the foundations of classical etefytnamics in the familiar
3-dimensional notation and then rederive the equationsatiom using a covariant for-
malism. Both analytic and numerical methods are used tesbkse equations and these
methods shall be used in the subsequent chapters to irsestigceleration and radiation.
In this chapter we shall also introduce a pulsed plane wawdeirfor our laser field, the
structure of which will again be used in the remaining cheptdt is well known that
accelerating charges radiate. The effect of this electgomic radiation on the motion of

the charges will be explored in Section 2.4.

2.1 From Maxwell's Equationsto Particle Motion

We begin our discussion on motion by stating Maxwell’s eauret and the Lorentz force
law, which together form the foundations of classical etstynamics. There exists a
set of four partial differential equations describing tledavior of electric and magnetic
fields; how they relate to their sources, charge densiand current density, and how

they develop with time. This set of fundamental equatiorigi®vn as Maxwell’s equa-
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tions, which in Heaviside-Lorentz units read as follows,

- E(X7t) = p(X,t),

xB(xt) - ZEXY _ Ly
0I§((>9(tt) (2.1)
O x E(x,t) + T )
O-B(x,t) =0,

whereE(x,t) is the electric field andB(x,t) is the magnetic fieldx andt denote the
location and time respectively, arl the speed of light is a universal constaot=
299792458 ms). The continuity equation for charge density and curremisdy fol-
lows from combining? /dt of the first of Maxwell’s equations with the divergence of the

second

dp(x,t)
ot

+0-j(x,t)=0. (2.2)

The Lorentz force equation gives the force acting on a changéhe presence of electro-
magnetic fields:

FL(X,t) = eE(x,t) + Sv(t) x B(x,1), (2.3)

whereF_ is the Lorentz force and denotes the particle’s velocity. For a single chagge
the rate of doing work (the power) by external electromaigrietids isv-F_ = ev-E; the

magnetic field does not contribute since it is perpendidoléine velocity.

2.1.1 Covariant Formulation of Classical Electrodynamics

The equations above show the equations of motion and Maswezuations in their
3-dimensional form, however it is convenient to use an exhfi covariant formalism
based on four-vectors so that all equations are valid in afgrence frame. Let us first
introduce the four-velocity#, u = 0...3, a contravariant vector of Minkowski space. Its

covariant components can be found using the Minkowski mgt:

Uy =guwu’, g=diag(1,-1,-1,-1). (2.4)

10



We denote the position of the particle &Y, x° = ct, X = (x)'. The infinitesimal line

element (distance) is

ds= \/dxu 0 = |1 = (‘;’t‘)cdt_cdr (2.5)

whereT is the proper timedr is Lorentz invariant and is equal to the particle’s time in
its rest frame wherex/dt = 0. It will be useful to introduce the Lorentz gamma factor,

which is defined as
1 _dt

\/1 dx \/1—[32_&7

wheref is the ratio of the velocity of the particle to the speed ofitigThe four-velocity

(2.6)

and current density are given by

PH(x) :e/dr W ()34 (X—X(T)) , 2.7)

where the charge density and current density have been nechbo form the 4-vector

jH = (cp,j). The continuity equation (2.2) takes the covariant form
oujt =0, (2.8)

where

9 [0

For what follows we will need to introduce the four-poteh#g,, of an electromagnetic
field, which characterises the properties of the field. Thedlspace components of the
four-vectorA# form the vector potential of the field and the time component is the
scalar potentiah® = @, i.e. AH = (®,A). The electric and magnetic fields relate/d
via

10A

E=——+1 -0 B=0OxA. 2.1
T D X (2.10)

We will also be working with the electromagnetic field ten$gy,, which is related to the

11



four-potential via

J0A, OA

In order to rewrite the equations of motion in their four-éinsional form, we start from

the principle of least action. This principle states thagfach mechanical system the mo-
tion between two points is such that the act®an integral describing the overall motion
of the system, is minimised, i.&S= 0. The action function for a system consisting of

an electromagnetic field as well as the particles locatetdnmst contain three parts:

¢ the action for the field in the absence of charges,
1 4 uv .
St = _Z/d XF“VF ) (212)
¢ the action depending only on the patrticles (for a single fraticle),
S = —mcz/dr ; (2.13)
¢ the interaction between the particles and the field (for glsiparticle),
e
5= —(—:/dx“A“ . (2.14)
Together these make up the action for the whole system
€ 1 4 v
S= —mcz/dr—a/dx“A“—Z/d Xy FHV | (2.15)

This may be rewritten in its alternative version in “field ¢arage” by noting thaf dx*A;, =

Jdruy,AH and usingjH(x) = e[ dt uH(1)8*(x—X(T)). We have
2 1o L
S=-m /dT—E/d Xj A“—Z/d XFuuFHY (2.16)

To find the equations of motion we assume that the field is garghvary the trajectory.

Noting that the field term variation is zero, we find accordinghe principle of least

12



action that

dx,doxH
5S= _/ (m%-kgAudéx“-i—géA“dx“) =0, (2.17)

where we have usetldr = /dx,dx*. Following careful manipulation of the expression

detailed in[22], we obtain

duy e /oA, AL\ V] suu
/{mﬁ_é (M _ axv)” SxHdT | (2.18)
It follows that the integrand must be zero, hence
du, e /oA, OAL\ ,
mE‘E(aXu‘axv)“ =0. (2.19)

Further simplification results from replacing the term iadikets with the electromagnetic
field tensor according td (2.111). The equations of motiorh@irtfour-dimensional form

may therefore be written as

(2.20)

where the Lorentz four-forcEH appears on the right-hand side and where, from now on,
the over-dot is used to denote derivatives with respece@tbper time. By multiplying
(2.20) byuy, we find thatuy,u* = 0, which implies thatd(uy,ut)/dt = 0. Therefore
uguH = u? is a constant which can be set in relation to the speed of ligting (Z.5), as

u® = ¢ This implies the on-shell conditiop? = m? ¢, wherep” = mw is the four-

momentum of the particle.

By substituting the value&, = (¥, —A) into (2.11), according to the definitions 6f(2110)

we see thaFHY may be expressed in termsBfandB as follows

Foi(X) = —Fio(X) = Ei(X), Fk(X) = —&kmBm(X) - (2.21)

Converting[(2.20) back to three-dimensional notation wiol{2.3) from the three space

components and the work dorev ( E) from the time component.
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Similarly Maxwell’'s equations can be written in covariaatrh by two tensor equations.
The homogeneous Maxwell equations may be rewritten usiagléfinition of the elec-

tromagnetic field tensor as

OxP  OxH oxv 0, (2.:22)

or in its compact form
HepoFP? =0 = 9,FH* =0, (2.23)

whereg,ypo is the Levi-Civita symbol and* is the dual field strength tensgH’ =
eHYPIF,5/2. This equation can easily be shown to correspond to the penemus

Maxwell equations by using (Z.21).

As for the inhomogeneous pair of Maxwell equations, we atgrsagain the principle
of least action. Now we assume the motion of the charge to\®ngind vary only the
potentials. Therefore there is no variation in the partieten of [2.16) and we do not vary

j# in the interaction term. According to the principle of leastion we have
1. 1 1% 4
5S— _/ MR+ SFH SRy ) d'x =0, (2.24)

where the resuleHY 8Fy, = F,,0FH" has been used. Again following [22] we obtain

uv
/ (%j“ + 00va ) 5A,d*x = 0. (2.25)

Hence the two inhomogeneous equations of motion may be=wrats

v iU v

This when written in its three-dimensional form gives thmagéning equations i (2.1).

With the Lorentz gauge conditio(A* = 0) this becomes the inhomogeneous wave

14



equation

o
OAH — % , (2.27)

where[] is the d’Alembert operator. Solving this equation gives Lienard-Wiechert
potentials, that show us that accelerating particles tadiollowing [29] we define!\ﬂ
and Aﬁ”t to be the incoming and outgoing radiation respectively. Tdrenula for the

energy radiated is given by

Prad = p, (A% — P, (AM) (2.28)
which is found in[[29] to be
PLy= 34n05/druAu ut . (2.29)

The integrand may be considered the momentum four-vedmofaadiation, hence

dP, 2 € . ., 2 &
== [ Ut =2 =g atuH 2.30
dr 3ams MY T gt (2.30)

whereut = aH is the acceleration four-vector. The energy rate of ragliiatr radiated
power is proportional tcﬁ’Lad -UH [19]. It may be expressed using the zero component of

I;)IJ

od = (Wrad/C, Prad), WhereW,q is the radiated energy,

_ dWag _ dP.c 2 € Au0c 2 & 5

rad

dt  ydr  34meA? Ty T 3

(2.31)

This is the relativistic generalisation of the famous nelativistic Larmor formula which

expresses the radiated povireas

2e22

P—
343

(2.32)

It is now clear that radiation is proportional to the accafien squared. There is no

radiation ifa = 0. We are considering a charged particle acted on by an extéeid.
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Since the particle is accelerated it will emit radiation aae proportional to the square
of this acceleration. The emitted radiation changes thereat field, which modifies the
motion of the particle - a ‘backreaction’ on the particle. &xount for the effect of the

backreaction on the motion of the particle we must modifydfeations of motion.

2.1.2 TheRédativistic Equations of M otion with Radiation Reaction

We have established that an accelerated charge radiatesgdration exerts a force back
on the charge. We will call this fordérgd, the radiation reaction force and use the associ-
ated field strength tenséy, 4 such thaf:, = eF: u, /c. To ensure energy conservation,
the work done by the RR force on the particle must be equal ppdsite to the energy
radiated[[3D]. Taking account of RR, we replde#” in (Z.20) withFA" +F1 | and after

a mass renormalisation (outlined [n [29]) we obtain the LAdquation in the form first

presented by Dira¢ [17].

e 2 &
muH = EFin Uy — ém(u"u" —u’iM)u, (2.33)
By taking the second derivative of, we see thati‘'u= —u- U, and hence (2.33) may be
equivalently written as
e 2 &
miH = —FHVuy, + = —— (H + 0P uH /2 2.34
where we now omit the subscript “in”. Notice tlle="X term, which means we have a
third-order differential equation. This causes problennshsas runaway solutions [29],
where even with a constant force we end up with the acceberagiowing exponen-
tially with time. One method of dealing with this problem @ ¢hoose the initial con-
ditions such that the runaways are eliminated. Howeverléaids to another issue, pre-
acceleration, where there is acceleration before the &@tsein. If the higher order terms
are replaced with the Lorentz term in the equation of motian, u¥ = e F*u, /mc

andut = e F#Vu, /mc+ € FHIF,Vu, /mPc?, we end up with the much better behaved
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Landau-Lifshitz equation [22]:

e | e R TR Pt |
(2.35)

m — —F“VUV+

The LAD and LL equations may be simplified by using the progct®’ = gtV —
uMu¥ /c? [31]. The LAD equation becomes

mu = F_+ ToPmu, (2.36)

wheretg = (2/3) €/4rmc. Usingmii = F_ + O(o) from the LAD equation we replace

mu and obtain the LL equation in its simplified form
mu=F + ToPFL . (2.37)

This makes it much clearer to see how we get the LL equatian tiee LAD equation.
For the study of laser-matter interactions it will be usefulise dimensionless variables,
particularly for the numerical approach which will folloand to adopt natural units =

1. We will assume that our laser beam is described by a lightdave vectok = (w, k),

k? = w? —k? = 0, with w andk being lab frame coordinates. To combine this with the
electron motion we follow Wald [32] and define a frequency bytitg k into the initial
velocity, up,

Qo= k-Uo. (2.38)

If the particle is initially at rest we hava{)‘ = 6‘(‘) and Qg = ap, wherewy denotes the
laser frequency in the initial rest frame. We also define aedisionless proper time,
s= QT and denotes-derivatives by an over-dot. Rescalie§H’/meQg — FHV makes
FHY dimensionless. In this new notation we use the followingirant definition forag,

which was introduced in(1.1),

ag = oy (FHFy V)uoy (2.39)
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where the bracket§ . .) at this point denote typical value such as the root-mean-square
(proper time average) or the amplitude (cycle maximum).sTimplies that=#Y is pro-
portional toag (the strength parameter) which will be made explicit in 8edP.2. We

define the dimensionless energy varialjend the effective coupling parametgrby

Qo
= — 2.4
Vo m’ ( 0)
2
ro = §GVO, (2.41)

wherea = € /4m= 1/137 is the fine structure constant. Finally we introduce aetim
sionless energy density = u,FH*?F, Yu,. We may then rewrite the LAD and LL equa-

tions in compact form:

U =FHY uy +ro(UH +u2u“) ,
(2.42)
Ut =FHY uy +ro(FFY +FHOF, Y —w g*V)uy .
The LL equation is an expansion in powersrgf(or a), with coefficients being propor-
tional to powers of field strength, henag. The leading orderrg) is the Lorentz term

while the LL term isO(rg). By solving the LL equation for a given external field we may

study the motion of a charged particle subject to that field.

2.2 Analytic Solution of the Equations of Motion

We may solve the LL equation in order to find the four-velo@tyd also the trajectory
of a particle in a laser field. We model the laser beam by a pleange. In this case
the field strengthFHY = FHY(k-x), is assumed to be transver&ggF#" = 0. The null-
plane properties of the plane wave allow for an analytictsmt, which can be used as a
benchmark for the numerical results. Definipg k- X, we will consider the field strength
of the form

FHY (@) = a0 fi(g) £ fHY = nHe” —nveH. (2.43)
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whereg is the strength parameter. We specialise to linear potaisa
f =0, fi=f, nH =(1,2), el = (0,%), (2.44)
and choose a pulse with a Gaussian envelope,

)2
f(p) = —exp{—%} sin(g) , (2.45)

where ¢y denotes the centre of the pulse axds the half-width of the pulseN also
controls the number of cycles within the pulse as we shalisé&haptef B. If we plug

(2.43) into [2.42) we may rewrite the LL equation in the faliag form
0 = [aof ¥, +roaou { ' ¥, +aof?(nfuy —nyu)}] u”, (2.46)

whereu; = n-uand where the prime denotes differentiation with respegt td we take

the scalar product with and use the fact tha, f#, = 0 we find that
0y = —roagf(@)u? . (2.47)

Using the initial conditioru; = 1, we can solve(2.47) using separation of variables,

1

u (@) = Trrol (@)’

() =25 [ 12(8) . 2.48)

Sincep = u; (@) we may use the relationship

s@) = [ [1+1ol(9)] do (2.49

to trade proper tims for the invariant phase. Following [33], we introduce a rescaled

velocity vM by

U (s) = U (@)VH (@) , U = —roadf2(@)uvH () +u?(@)VH . (2.50)
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Plugging this in[(2.46) we find that

f(o) /
vH = |2 +roapf fH VY
U (@) odof' (@)

roag f2(o)
Wnﬂ . (2.51)

SincefH,n” = 0 we can solve this for using the exponential ansatz

VH() = [exp(l(@) F)IH, vo +12(@)nH (2.52)
where
e [aof(9) roa0f2
1(p) = [ dg {um +faof(¢} )= [de . (2.53)

subject to the initial conditiom(0) = vp = up. The null field properties lead to
(fHH, =ntn,, (fMH*, =0, n>3, (2.54)
which allows us to simplify[(2.52) considerably
V() = i+ () A+ [1a0) + 2 12(0) | (2.55)
The exact solution is therefore
Wg = 1@ (2.56)

1+rol(g)’

where proper time is given in [2.49). To calculate the exact solution withcadiative

corrections, we simply sep = 0 in (2.56) and[(2.53) to give
u u uowv o, Loy S
U(9) = U + la(s) A g + SIEO M, la(9) = ao/o dg f(¢). (257

Setting the initial conditions

up = (1,0), (2.58)
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we find

1 1
u°:1+§|§, ul=—1;, u?*=0, u3:§|f. (2.59)

We see thaty, = u’ — ud = 1 is conserved when we “switch off” RR. Neglecting the
radiative effects greatly simplifies our equations. We malgwate [Z.50) easily and use

the results to evaluate the numerical method that will b@diced in the next section.

2.3 Covariant Matrix Method asan Approach to Particle
Motion

To solve the equation of motioh (2]20) numerically, a typegaproach would be to use
a finite difference scheme. Such schemes can introducestigation errors that violate
the on-shell condition and lead to Lorentz violations. Toiduhis, we introduce a novel
numerical scheme for the calculation of the motion of cleastharges in electromagnetic
fields. Our method maintains explicit covariance and presethe on-shell condition,
u? = 1 (using natural units). Details of this method are preskintd34] and reproduced

below.

To begin we introduce the matrix basig, = (I,0) where o denotes the three Pauli
matrices
01 0 —i 1

ol= . 0°= . 0= , (2.60)
10 i O 0 -1

which satisfyg20®? = 8, +i€40c0°, Whereg,,cis the Levi-Civita tensor in three-dimensions.
We associate the four-velocity' with the hermitian matrix

ut v_

U=uto, = coutr=uxud, vi=utti’=v

- (2.61)

Ve ou

We have det)) = u —u? = u? = 1.
Let F2 = 2(E2—iB?) andE = F20, € su(2). We may write the equation of motion in
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matrix form is as follows:

U=EU+UE. (2.62)

In generalE (or Fyy) will depend ons, u¥(s) andx(s). If E = E(s) only then [2.6P)
is similar to a (linear) Schroédinger equation with time-eiegent Hamiltonian. It can

therefore be solved by introducing the time ordered product
S
L(s) = ‘Iexp{ / dsE' (g)} € SL2,C). (2.63)
0
The solution of[(2.62) becomes
U(s)=L(s)U(0)L'(s). (2.64)

If howeverE = E(s;X(s), u(s)) the equation of motion becomes non-linear, but an iterative
scheme is still expected to work. The solutidn (2.64) is ligesuited for the required
numerical computations. To do this we introduce a discretetn+ 1 equally spaced

proper time values,, k= 0...n, such that
=0, s = kds, SH=S, Ex:=E(xX(x)) - (2.65)
We then approximate (with an error of ordés?)
L~ exp{E}ds} x ... x exp{Elds} =: Ly, (2.66)
where “x” denotes matrix multiplication. For the solutidn (2].64)stimplies
U(s) = Un(s)+ O(ds), where Up(s) = Lo,U(O)L], (2.67)

i.e. our method corresponds to a first-order scheme.

For a numerical solution, we evaluaie (2.67) iteratively chlculate the approximate

solution of the matrixJn(s) we need to know the matrix field%. These fields depend on
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the particle’s position. We assume that the approximatgesal s ) have been determined
and then use the trapezium rule to calculate the positioheparticle. The position is
used to find values foEy, which in turn is used to find an improved s€t) of four-
velocities. This is repeated for each given proper tsnentil x(s) andu(s) settle within
given error margins. To start the iteration, we ugg) = ug, foralli =0,...,n.

We can show that the on-shell condition is exactly maintiog the approximate solu-

tion. Using [2.67) we have
U(s + ds) = %'9U (s)™s  (+0(dSD)). (2.68)

Noting that since is a hermitian matrix, dééxp(Eds)) = 1, we find therefore that

detU (s+ds)) = det(€'95) detU (s)) det(e™s)
(2.69)
=1x(UW—-u?)x1=1
So for alln

detUp(s) =detU(0) =1. (2.70)
Hence we are preserving the on-shell condition exactly.

2.3.1 Constant Fields

Using our new method to solve the equations of motion we tefek to [2.68) and_(2.64).
In the simple case of time-independent fields the methodastesince there is no path
ordering needed and therefore no need to approximeein (2.63). We will consider
the four cases discussed by Taubl [35]; condiaield only, constanB field only, crossed
fields and parallel fields. We expect to observe hyperbaliptie, parabolic and loxo-

dromic (spiraling) motion respectively.
2.3.1.1 Constant Electric Field

Firstly consider the case of a charged particle in a conslantric field (e.g. in a particle
accelerator). We will use the case where the electric fieldtpdn thex! direction only

and there is no magnetic field present, ile= Ee; = const B = 0. We find that this

23



simplifies our expression far(s):
; 1
L(s)=L"(s) =exp §E 0S¢ . (2.71)
The particle four-velocity can now be obtained as follows,
1 1
U(s) = exp{éE : as} u(0) exp{éE . os} . (2.72)

Assuming that the particle is initially at rest simplifiegtps further and using hyperbolic

identities we find the components of the four-velocity easil
. E

U (s) = exp{E- os} = cosh(Es) + sinh(Es) g0 (2.73)

The electric field is in the! direction only and so the components of velocity are
uw = cosh(Es), ul=sinh(Es), u>=u*=0. (2.74)
By integration the particle’s trajectory can also be found,
o_ 1. 11 2
X’ = Zsinh(Es), x' = = cosh(Es), x* = x3=0. (2.75)

The left panel of Figuré 211 shows the velocity in the directof the electric field and
the right panel shows the trajectory in the direction of tleetic field as a function oé.
There is no acceleration in the directions perpendicul#nécelectric field so the motion
remains constant in those directions. We see hyperboliGcomats expected since the

particle moves with constant proper acceleration.

2.3.1.2 Constant Magnetic Field

Now consider the case of a charged patrticle in a constant etiagreld (e.g. in a syn-

chrotron) in thex! direction, and there is no electric field present, Be= Be; = const
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Figure 2.1: Left:Velocity, Right: Trajectory, for constant electric fiel& (= 1) in thex! direction.

E = 0. (2.63) now becomes

L(s) = exp{%iB : as} , LT(s) = exp{—%iB : as} : (2.76)

This results in the following expression for(s):

U(s) :exp{%iB-as}U(O) exp{—%iB-as}. (2.77)

It is useful to write this in terms of its trigonometric idérds,

U(s) = (c—|—is§ : 0) (up(0)I+u(0)- o) (c—isg : a) ) (2.78)

where c= cogBs/2) and s=sin(Bs/2). Assuming an initial velocityy* (0) = (up, 0,0, uy)
and a constant magnetic fiesBl= Be;, Eq. [2.78) is greatly simplifiedB - o /B is simply

o1 andu(0) - o is simplyu,03. We may rewrite the above equation in matrix form:

c is Uo + Uy 0 c —is
is ¢ 0 Ug — Uy —-is ¢
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After multiplying out the matrices and simplifying, the ergsion forU (s) can now be

written as

(9 — Up+UzcogBs)  —iuzsin(Bs) | (2.80)
iuzsin(Bs)  up— ucogBs)

Therefore the components of the velocity can be deduced:
wW=ug, ut=0, u?>=u,sin(Bs), u®=u,cos(Bs). (2.81)

Note thatu®(s) = ug is conserved as there is no energy transfer in the magnétc By

integration the trajectory of the particle is found,

u Uy
¥ =ups, x!=0, ¥ = —EZ cos(Bs), X = Ezsm(Bs) : (2.82)

The left panel of Figure 212 shows the velocity and the rigirtgd shows the trajectory in

the transverse directions. We observe elliptic motion @eeted, with the particle in this

o o
- ] — ]
0 o)
o | o |
™ o ) o
5 O — 9 O ]
o) o
o o
1 1
o o
— —
| I I I I I | I I I I I
-1.0 -05 0.0 0.5 1.0 0.0 0.5 1.0 1.5 2.0
u? X

Figure 2.2: Left: Velocity, Right: Trajectory, for constant magnetic fiel8 & 1) in thex! direc-
tion.

case following a circular path.
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In order to calculate the trajectory for a particle in crak$elds or in perpendicular
electromagnetic fields a little more effort is required. Wshwto find the components of

velocity up(s) andu(s) given
U(s) = Up(s) + u(s)-a = L(s)U (0) LT(s) (2.83)

and

L(s) = exp{%(EJriB)as}, LT(s) = exp{%(E— iB)as}. (2.84)

Our general expression far(s) given constant fields is

U(s) = exp{%(E—i— iB)as} U (0) exp{%(E - iB)as} . (2.85)

LetE, = J|E+iBs|andE_ = 3|E—iB 5. Now exp((1/2)(E +iB)as) =C. + S, E. g,
whereC. = coshE.), St = sinh(E..) andE. = E +iB/ |E +iB|. We therefore have

A

(Cy +SE, 0) (up(0)+u(0)-0) (C_+S E o). (2.86)
Taking the first two brackets of this equation and expandingsy
C,Uup+C u-0+uSE,0+S,E (0-u)o (2.87)

Note that [(2.87) can be written in the forig+ Vv - 0. Using this idea repeatedly on
expanding the brackets and using well known vector progevtie end up with the messy

looking expressions falp(s) andu(s):

Ug = Up(0)C,C_ +E,u(0)C_S; +u(0)E_C,S +E,E u(0)S,S_,
U=uU(0)C4S_E_ +S,E u(0)S_.E_+C,C_u(0)+iu(0) xE_C,S_

(2.88)
+Up(0)S;C_E, +iE, x E_up(0)S;S_+iS,C_E, x u(0)

—(E; xu(0)) xE_S,S_.
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This is the most general case for constarandB fields however this expression dramat-

ically simplifies for the four special cases considered.

Take for example the case of a constant electric field onlpénxt direction. Assuming
U(0) =1 as before and using the fact tHat B = 0 andB = 0, the expressions fary
andu agree with those obtained in(2174). Similarly, substitgf8 = Be;, E = 0, and
U (0) = up I+ u; o3, we get back the results froin (2181).

2.3.1.3 Crossed Fidds

We may usel(2.88) to find the trajectory for a particle in cedsBelds. Let us consider
the case wher& = Ee; andB = Bey, it follows thatE - B = 0. To simplify matters we
assume that the particle is initially at rest. Hqg. (2.88 ) to

E2 1 B2

Up = coslf (as) +sinif(as) 2

£ B (2.89)

. E .
u = 2sina s)cosha s)——— + 2sintf(a =

(n2>1/2

in agreement with [36] whene = E +iB anda= (1/2)(n?)Y/2. For crossed fields where
E = B we see than? = 0. Taking the limiting case of EJ.(2.89) wharé= 0, we get the

resulting expressions for the four-velocity in crossedifel

0 1, 1 2 3 1o

u:1+§E sz,u:Es,u:O,u:éE &, (2.90)
and corresponding trajectory:

= E E?
X0:S+€53, X1:§SZ7 XZZO,X3:€SS. (291)

We note thau® — u® is conserved, a feature that will come in useful in Chaptethénw
we calculate the spectrum of radiation for crossed fieldse [Eft panel of Figuré 213
shows the velocity and the right panel shows the trajectotiiéx — z plane. We observe
parabolic motion in the velocity as expected with the pltiorming a parabola shaped

path.
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Figure 2.3: Left: Velocity, Right: Trajectory, for crossed fieldE(= 1 andB = 1) where the
electric field is in the<! direction and the magnetic field is in ti&direction.

2.3.14 Parallel Fields

Finally for the case of parallel fields we shall uSe- B = Ee; and initial velocityu! (0) =
(Up, 0,0, u;). We can therefore redude (2188) using the factEh& = E2 andE? — B = 0.
Making use of several trigonometric and hyperbolic idésditve end up with the four-

velocity
w0 = upcoshEs), ul=upsinh(Es), u?=u,sin(Es), u®=u,cogEs). (2.92)
and upon integration

X0 = %sinh(Es), xt = %cosl‘(Es), X2 = —%cos(Es), X = %sin(Es). (2.93)

Notice that the parallel fields case is the sum of the congllactric field case and the
constant magnetic field case. This can be seen visually ir&lig.4 as a superposition
of the corresponding plots (see Figures 2.1 2.2). Werebgmxodromic motion as

expected, the motion following a spiraling path.

Our new approach to particle motion allows us to calculagetthjectories and velocities
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Figure 2.4: Left: Velocity, Right: Trajectory, for parallel fieldsf = 1 andB = 1) in thex! direc-
tion.

for a charge in constant fields exactly. As expected we obkdeyperbolic motion for a
constant electric field, elliptic motion for a constant metmfield, parabolic motion (for
uHt) for crossed fields and loxodromic/spiraling motion forgdkl electromagnetic fields.

Next we shall see how our new approach performs when the Aeddso longer constant.

2.3.2 TimeDependent Fields

The numerical method will now be tested for a time dependeid.fiUsing our pulsed
plane wave defined in Sectign 2.2 and initially neglectindjative reaction effects, we
produce Figuré 215, which shows our laser pulse funcfidrom (2.45) as a function of
invariant phase (left) and the velocity componaftsindu® from (2.59) as a function of
invariant phasep = s (right).

The numerical solution, using a step stze= 0.125, is not visibly distinguishable from
the analytic solution in the plots. To quantify the numereraor, we compare the numer-
ical solutionut(s) to the exact solutionby(s) using the Euclidean norm and a maximum

norm. Looking firstly at the Euclidean norm, we have

+As 4
€eucl = (Ais/% ’ ds P(s) 3 [u“(s)—ugx(s)}2> : (2.94)

So—As H=0
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Figure 2.5: Left: Laser pulse functiorf as a function of invariant phase, Right: Velocity
componentsly andu; as a function of invariant phase,= s. These plots have been
produced using the parameter valggs= 50,N = 10 andag = 1.

whereP(s) = exp{—(s—%0)?/N?}. Sinceds— {2, whereNp is the number of data

points, the above may be equivalently written as

1 So+As 4 5
€eucl = ( Z Z —Uex )} ) . (2.95)

Np So—Ds =0

Here, the Centre of masg and widthAs of the pulse are defined via

sozc—lz/o;dsslﬁ(s)
C:/_st P(s)

(2.96)
As=2\/sp— 3,
1 (o]
== dsgP?s).
-2 [ ds$Pis)
The error interval can be seen in Figlrel 2.5.
To calculate the maximum norm the following equation is ysed
Emax=max{|u(s) —u(s)[] ¥ s.p, (2.97)

which simply uses the maximum difference between exact antenical results out of all

the possible values qf ands. Both error estimates are shown in Figurg 2.6 as a function
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of discretisation step siz#s They are well fitted b¥eyci~ 0.32(1) dS €max~ 0.50(1) ds

and are linearly proportional tbs (as expected since we are using a first-order scheme).

l : T T T T T T ‘ T T T T L ‘ :
- G—O Euclidean norny .
i 3—E1 maximum norm ]
9 C ]
c I ]
0.01~ -
L Il Il 1111 ‘ Il Il 1111 ‘ 1

0.01 0.1 1

ds

Figure 2.6: Numerical errors[(2.94) and (2J97) as a function of the préipge discretisation step
dsfor a linearly polarised laser pulse using our first-ordethud.

2.3.3 Higher Order Numerics

We have seen that the covariant matrix approach is a powastihod that allows us to
solve the LL equation for arbitrary fields whilst still pregiemg the on-shell condition.
Now that we have a working first order scheme, the next logitegp is to extend this

method to higher orders of accuracy. Currently we have
U(s) = Un(s)+ O(ds). (2.98)

This is fine ifdsis very small, however it is desirable to have a scheme thatymres

accurate results using even a coarse mesh. The currenapr@gproximates

S
L(s) = ‘Iexp{/ déET(s’)} ~exp{Elds} x ... xexp{Elds} =: L, L(0)=1,
0
(2.99)
which has an error of ordels. We will find a more accurate approximationldfs) with

an error ofds’. To do this we take the derivative bf LT andx with respect te and solve
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the coupled ODEs using the fourth-order Runge-Kutta me{®i4). The derivative
equations fot. andL" are implied by[[Z.62) and{2.64) as follows

dL(s)
ds

—EfxL(s), dL;és) — LT(s) xE. (2.100)

We form the vectorZ'(s) = (L(s), X(s)), whereX = x"gy,, so that

dL

awr (5] [ Fxene 2101
=A%) \wuots

sincedX(s)/ds=U(s). If we letd.¥/ds= f(s,.Z) subject to the initial conditions
L(0) =1, X(0) = 0 then we can apply RK4 as follows:

1
$n+1:$n+é (k1 + 2ko + 2kz + ka), (2.102)
where.%, = Z(s) and. %11 = Z(sh+ds) and where

ki =ds f(sy,-Zn)

1 1
ko =ds f(sh+ 5ds Zn+ ékl)

1 1
ko =ds f(s+5ds %+ Ske)

ka=ds f(sh+ds Zh+ks) .

(2.103)

We then read off our values &fandX from the vectorZ(s) and use them to calculate

U (s) according tdJ (s) = L(s)U (0)LT(s) at each time step.

To check that our method is now fourth-order we use it to firelftur-velocity for our
pulsed plane wave and calculate the errors according toefimtibns in Eq.[(2.94) and
(2.97) (Euclidean norm and maximum norm respectively). uResare shown in Fig-
ure[Z.¥. We find that the errors are proportionall& as expected for a fourth-order
method. Comparing the slopes in Figuted 2.6 2.7 we eadcior the first-order
method that our gradieat 1.0 and for the fourth-order method the gradiend.O as ex-
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Figure 2.7: Numerical errors[(2.94) an@ (2197) as a function of the prépee discretisation step
dsfor a linearly polarised laser pulse using RK4. The erroesmoportional tals* as
expected for this fourth-order method.

pected. By using this method we achieve a very high accurattyanstep size as large
asds= 1 (better thards= 0.03125 using the first-order alternative). In Figlrel 2.7 we
have an error of less than 1®for ds= 1 compared to an error of approximatelyson

Figure2.6.

2.4 Impact of Radiation Reaction

Having found our method to be consistent with analytic rssute may now include the
radiation reaction term. First we write the LL equatibn 8).#h terms of an effective field

strength tenso@",,

= GHuY, (2.104)
GH, = aof ¥, +roaguy { f' ¥, +agf3(nfu, —n,ut)} . (2.105)

34



Next we define aisu(2) matrix,

L .
G =Gl = > (G°a+ lzsabCGbC) Oa, (2.106)

so that the LL equation can be rewritten as
U=G'U+UG, (2.107)

in complete analogy with th6L(2, C) Lorentz equation (2.62). We can repldgevith G

in the program used before.

The plots in Figure 218 show the numerical resultafbwith and without radiative damp-
ing. SurprisinglyuC is larger when radiation is accounted for; the electron gjaimergy
from the radiation field produced by its acceleration. Frémse plots it is clear that

radiative damping can have a significant effect.

6)(106 T T T T T T T T 60 T T T T T T T
i — without rad A i — without rad
—_— Wi i — withrad d i
5x106 L W with rad damping  _| 50 ” with rad damping ~ _|
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D
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Figure 2.8: Theyfactoru® of the particle as a function of the dimensionless propee timithout
and with radiative damping.eft: ay = 3 x 10° andvy = 10~ (optical laser).Right:
ap = 10 andvy = 103 (XFEL).

As gg increases so does the effect of radiative back reaction.udotdy the deviation,
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we use the maximum norm,

1 1
= Hig — WMl = =
o n;gx u[a =0](s)—u" |a 137} (91,
N=u![ad =0](Smax), for |u![a =0](Smax) —U! |0 = %7} (Smax)| — max,
(2.108)

whereut [a = 0] (s) is the four-velocity of the particle without radiative daimg and
ut[a = 1/137)(s) is the four-velocity with dampingsmax represents the value sfvhere
the maximum difference occurs. Hence the deviatdocan be interpreted as the max-
imum relative deviation between the full four-velocity attnd four-velocity without the
radiative back reaction. Figure 2.9 shows the deviationdoyingag. From the plot it can
be seen that for large values &f, the RR has a significant impact on the four-velocity.
The results showed that RR is significant in the case of arcapfser, although it is

negligible for an XFEL.
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— optical lase
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deviationd
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Figure 2.9: The deviationd from (2.108) measuring the difference between the 4-vedscivith
and without radiative damping as a functionagffor the linearly polarised laser pulse.
For an optical laservy = 10°6; for an XFEL:vg = 103,

We have seen that energy is radiated by an accelerated adratdw this impacts on the
equations of motion. The LL equation provides a well behalestription of the motion

of a charge taking into account RR. Using the numerical ntethglined in Section 213,
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we were able to include the RR of the particle and solve theduaéion for a pulsed plane
wave. Due to its null-plane properties the results coulddréied analytically and were
consistent with the known analytic solutidn [33] 37]. Egrgcaled as expected with the
discretisation step size. Comparing and contrasting tesuth and without RR we have
seen that the particle gains energy from the radiated fi®lsnote that our calculations
are based on an initigf factor of 1, i.e. starting with the particle at rest. However
radiation in one frame of reference may not necessarily liekradiation in another. It
has been shown for example [n [31] that for a head-on coflisibthe charged particle
with the laser we get a net energy loss. We will continue tosmer the impact of RR on
our results in the next chapter, where we will be trying toi@ed a net acceleration using

laser fields.
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Chapter 3

Vacuum Acceleration

Having studied the equations of motion and established edstlof solution for these
equations we can now look at applying our methods to the sbfisacuum laser accel-
eration. We consider how we might accelerate a particle frest with a laser pulse,
without the use of plasmas. It has been greatly debated ehgtis possible for elec-
trons to obtain net energy gain from a plane wave laser puls@ac¢uum, based on the
Lawson-Woodward Theorem. The Lawson-Woodward Theoretesstaat the net en-
ergy gain of an electron interacting with an electromagrfetid in vacuum is zero under
the following conditions: (i) the region of interaction isfinite, (ii) the laser field is in
vacuum with no walls or boundaries present, (iii) the el@tis highly relativistic along
the acceleration path, (iv) no static electric or magneéltl§ are present, (v) nonlinear
effects like ponderomotive forces and RR forces are nege@8]. It is discussed by
Troha et al. that electrons can be accelerated by plane@ieatjnetic waves, whilst still

being consistent with the theorem [39+-41].

In this chapter we shall briefly review some of the suggestethods of vacuum laser
acceleration and then study in detail a select few of thessipitities. The selected
areas covered will be short pulse acceleration, using aeseguof pulses, pulse shaping
and lastly using a “two-colour” laser to accelerate a chafgjecases considered in this

chapter will assume the particle is initially at rest.
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3.1 Existing Schemesfor Vacuum Laser Acceleration

There are many suggestions in the literature as to how atr@bemay gain energy from
a laser pulse in vacuum and there have also been experinodsetvations showing that
vacuum acceleration is indeed possible in a real laser B2 [The energy of an electron
can be extremely high at the peak of a laser pulse, but génersdrages out to zero,
leaving zero net energy gain. To take advantage of the higk peergies, an electron
can be separated from the laser pulse before it deceleratszs) therefore continue to
move forward without much energy loss [43] 44]. A thin foil fexample can be used
to stop the laser pulse, allowing the electron to escape fhenpulse with a nonzero net
energy gain[[B]. There have however been many studies thgestia potential for high
net energy gain, even up to the order of TeV using intensifid€”?W /cr? [45], without

extracting electrons from the laser fields.

In order to get net acceleration after the full pulse duratie need a pulse with a nonzero
average field, a unipolar pulse [46]. This comes down to oorcehof pulse shape and
there have been a number of examples of potential pulse stibpeenable accelera-
tion. Subcycle laser pulses with averagely positive oryfpibsitive fields can be used
to accelerate electrons [47]. There have in particular lmeany studies into using half-
wavelength acceleration [48,149], which provides a fullgipwe field so the electron is
never decelerated. There are experimental limitationgeolycing such fields, but as
noted in [50], the half-wavelength solution provides anerdpnit to the potential energy
that an electron can gain from a laser field. Wang et al [50kictar using ‘shock-like’
laser pulses as an alternative to the half-wavelength rdefflmey found that by using an
intense laser with sharply rising or falling edges in vacyamelectron can reach energies

close to those found using the half-wavelength approach.

Short pulses, including the types mentioned above, are kriovwaccelerate electrons.
Some research has gone into comparing standard shape uadféhort pulses to see
which may maximise accelaration [51,52], but these shddgsuare not the only ones
that can accelerate electrons. One interesting way of pingieffective pulse shapes

is the use of ‘two-colour’ lasers [53], two co-propagatingwes of different frequen-
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cies. The crossing [54,55] or overlapping[56] of two laseaims can produce an overall
pulse with nonzero average field, capable of giving elestommsiderable net energy gain.
Whichever method one chooses to employ, the idea of ‘stagiagries of pulses results
in even higher gains as net energies are added for each piligestaging of two laser

accelerators has been demonstrated in [57, 58].

We shall consider four methods of accelerating a partiaddenfrest in vacuum. First
we will look at the effects of using a short pulse to achieveehatceleration. Using a
sequence afi pulses results in an increase in energy gain for increasagghe net energy
received from each pulse builds up. This idea is briefly aersid in Sectiof 313. We
then look at ways of choosing an optimum shape for a laseegalsichieve maximum
acceleration. We conduct a search for the optimum shapeewhe&an be reasonably
large (i.e. not a short pulse). Although standard shapelgsofiave been compared
(e.g. [61.53]), such a search does not seem to feature atmtwegsxisting research into
vacuum laser acceleration. The final method that we will @epis to overlap two lasers
of differing frequency. This type of method features freoflyein the literature, however

our choice of frequency difference provides particulamrgrpising results.

3.2 Short Pulse Acceleration

Changing the laser pulse duration can affect the final viglaxfi the particle. For our
test case in Chaptetl 2 we found that the particle returnets wriginal velocity after the
duration of the pulse. However, for a sufficiently short pulge shall show how energy
gains may be achieved. The term ‘short pulse’ in this seaibers to few cycle pulses

(N < 10). When our parameteéd takes on values below 1, the pulse shape does not

contain a complete cycle; we obtain a subcycle pulse.

3.21 Method

We require a pulse that can transfer a net acceleration totialpa As stated in[[46], to

achieve this we require a unipolar pulse, which containswiEozero mode. Consider
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for example a simple model for a pulse with a Gaussian eneelop
f(¢) = sin(@)e /N, (3.1)
The Fourier transform of the function is
s) = /dgo &5 sin(¢) e /N (3.2)

Replacing sifg) with its exponential identity and rearranging, we may résvthis ex-

pression as
f(s) = % / dp ds+00-0/N _ % / dp ds-Do-¢/N | (3.3)

We assign the exponents to the functigng@) such that

¢

9:(¢) = —z Ti(sE D)o, gi (@) = 29

—1p Ti(s£1). (3.4)

The zeros of the gradient function are thus givergpy= N2 i(s+1) /2. We take a Taylor

expansion about these points tpr(¢) and obtain, after simplifying the expansion,

N2 2 1 2
9+(@) = — 5 (s£1)" — (0~ @:)". (3.5)

Now, we use this result to rewrite our Fourier transfornf ),

2|/d e ——/d(peg

2 1 .72
:Eexp< N* (s+1) )/dqde ne? Zlexp<—NZ(s—l)2)/dqde_N2“d :
(3.6)
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Since both of the terms on the RHS of the equation above coateintegral of a Gaussian

distibution, we can reduce this equation significantly mgvihe final result

2

~ 2
f(s) = ivmN et D sink(s N

) (3.7)

We see quickly thaf (0) = 0, i.e. the Fourier zero mode fdi(¢) is zero. This type of
pulse has a zero average field and hence regardless of oanpidih we cannot achieve

a net acceleration.

We try adding a carrier phade [46] as with our plane wave tes# @ Chaptér|2, now

PRy
f(@) =sin(g) exp{—%ig(m} . (3.8)

The Fourier transform of this function is
f(s) = /d(p &0 sin(¢p) e (9~ ®)*/N* (3.9)

Similarly we can find an expression for the Fourier zero madeich in this case is
nonzero,

f(0) = VTIN sin(@) e N/ (3.10)

Note that if@ is zero we get back th&(0) = 0 that we expect when there is no carrier
phase. Taking the average of the field we see that it is alspemorsince it is proportional

to the zero mode,

- 1 @+Nm 1 - 1

N ~ — _ " qj 7N2/4
f 2N gy do f(@) ~ 2an(O) 2\/ﬁsm<¢b) e . (3.11)

This is exponentially small for largd. Interestingly the magnitude of the average field
depends on the two parametegsandN. For an appropriate choice @ and with a small

value ofN (how small to be determined shortly), significant gains camiade.

In order to study the effect of altering the pulse size it igartant to ensure that the

total energy of the pulse remains constant for each of tressiansidered. Since exper-
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imentally we begin with a finite amount of energy, which ism&d into different pulse
shapes|[53], the energy should be fixed in order to comparpulses of varying width.
For the plane wave test case studied in Chdpter 2, our eteatyoetic fields may be writ-
ten as

E =B = —Eg P(@)sin(p) (3.12)

whereP(@) = exp{—(¢— @)?/N?} andp = k-x = wt —k - x. We considered the case
where the amplitud&y = |Ep| was fixed. Simply changinby (which controls the width
of the pulse) alters the total energy;Mss reduced so is the enerdyy must therefore be
defined by a function oN such that the total energy is kept constant, i.e. indepdrafen

N.

The energy densityy, is given by the equation

W= %(EZ+ B?) = E? = E2 P%(¢) sirf(). (3.13)

The total energy, W, is therefore given by
W= /dsx w= A/dz B2 P?(kz— wt) sir?(kz— wt), (3.14)

where we let/ (dxdy) = A. We require the transverse energy density to be a finite con-
stant,

VKV = const= gp = EZ(N)g(N), (3.15)

whereg(N) = [dz P(kz— wt) sir?(kz— wt). Hence the expressidiy(N) = /0o/g(N)
must be used to ensure constant energy. Indad) may be worked out analytically to
give
1 ym B —N2/2\ .
g(N) = Zk\/; N (1 cos(2@) e ) . k=w)/c. (3.16)

We can now change the amplitullg with N such thatop = const Note that for largeN,

Eo is proportional tdN—1/2.
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Table 3.1:Values of the maximumy® (the peak value occurs Bit= 0.48 unless otherwise stated).
Results are shown for varyirgg without RR and (for two choices of the dimensionless
energy variable/) with RR.

no RR Vo =103 vo=10"°
ap=1 2.9980 2.9980 2.9980
ap=10 | 2.0080x 107 2.0065x 107 2.0080x 107
ap=100 | 1.9981x 10* | 1.9105x 10* (at N = 0.43)| 1.9980x 10*
ap=1000| 1.9980x 10° - 1.9829x 10°

3.2.2 Reaults

To investigate the effects of changihg we varyEp as a function oN. We choosegy
such that the total energy is consistent with the choice 8|2 Firstly considering the
case where RR is ignored and using a valuegf 1, we obtain the results illustrated
in Figure[3.1, using the numerical method introduced in @dB. The left-hand plot
shows the finaj factor after the laser field has vanished as a function of énapeteN
(which roughly counts the number of cycles within the pul$#&¢ use the superscript”

to denote final values. This plot tells us a lot about the inhp&the pulse size on the net
acceleration. We see evidence of subcycle acceleratidh,tie maximumy occuring
for values ofN less than 1. The peak value occurdNat 0.48 (=~ half cycle), where we
get the most positive contributions from a laser field. Mincreasesy’ exponentially
decreases in the tail, consistent with the average fieldedsorg exponentially with in-
creasingN (f_~ exp(—N?/4)). For values oN more than around 4 thefactor returns to
its initial value after the laser field vanishes. The rightit plot of Figuré_3]1 shows the
final values ofu® andu® as we varyN (e.g. wherN = 0 thenu! = (1,0,0,0) and when
N = 0.48 thenu! = (3.0, 2.0,0,2.0)). The direction of the final velocity is confined to the
x-z plane, in fact al(u™f,u3") lie on the curve shown in Figufe 3.1 (right).

The effect of varyingN was investigated for different values of the strength patam
ap, and the effects of including the RR terms were studied. €balts are summarised in
Tabled 31 and3l2. Neglecting RR we see from Table 3.1 thaj imereases, so does

the maximum acceleration. The relationship betwagand the maximum value of is
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Figure 3.1: Left: final y factor, Right: final velocity in thex-z plane, for varyingN. A strength
parametegy = 1 and phase shiffy = 50 are used.

Table 3.2:Maximum difference betweep’ values with/without RR ofy)"™®. The value ofN

indicates where this maximum occurs. Results shown fontieechoices ofvg shown
in Table[3.1.

vo=103| N |v=10%| N
ag=100 | 3411.418| 1.21| 4.503471| 1.27
ag = 1000 - - | 43596.16| 1.24

described by

[EEN

Vrfnax: 1+ 2 a% |127max7 l1max= [1(Nmax) (3.17)

wherel; is defined by

1N = [ dgT(8.N)., (3.18)

andNnaxis the value oN that gives maximum net energy gain. This is consistent with 0
analytic solution[{2.39). The maximuyi also increases for increasiagwhen damping
is included, but at a slightly slower rate. The peak valug/obccurs atN = 0.48 for
the majority of the parameters considered, however we sdigld shift to N = 0.43

for ag = 100, whenvy = 10°3. We note from the tables that the differences between
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values obtained with and without RR are relatively smaltthat where a difference does
occur we find thay' is smaller when we account for RR. From Tabléel 3.2 we note that
the maximum difference between with and without RR does wotioat the peak. As
observed in Chaptéd 2 we find that the impact of RR on the aat&la increases with
increasinggy.

The numerical results above are consistent with the aegadgiutions. We have shown
how using a short pulse one may accelerate a charge. Forvalges ofag the final
velocities can reach huge values, although wheis more than around 4 or 5 is
approximately equal to 1, regardless of the intensity ofitld. For large values dfl the
positive and negative forces on the particle cancel eadr otht leaving zero acceleration
overall, assuming a symmetric envelope. When a complele ¢yaot contained within
the pulse the acceleration and deceleration effects doammet and we are left with an
overall acceleration - ‘subcycle acceleration’/[47]. le ttase wher&l is approximately
half of a cycle, the field is unidirectional or ‘unipolal’ [#&nd there is no deceleration
effect at all. For a perfectly symmetrical model the maximfimal velocity should occur
whenN = 0.5, the slight deviation found for the test case is likely doehte Gaussian
envelope used. It appears that by using a half cylcle we ceempally accelerate charged
particles to extremely high velocities, however we redadittthere are potential experi-
mental issues with producing such laser pulses [50]. Inteatdive note that we have
used a pulsed plane wave to model our laser, ignoring anguease effects such as the
pondermotive forces trying to expel the charges in the trarse direction[[59]. Clearly

this will have some impact on our estimates of the net acaeter possible.

3.3 Sequenceof Pulses

We have seen that by using a small pulse width we are able terggenacceleration.
Now if we were to subject the particle to a series of thesetghdses, each pulse would
accelerate the particle a bit more each time. By using asefiepulses, one can amplify
the acceleration of a particle in the laser field. This cohoéstaging is demonstrated

below. To simulate multiple laser pulses, we add a series @fase shifted functions
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together,

n . . 2
f(p) = —sin(p) i;exp{—w (ZRIZ D) } ) (3.19)

To demonstrate the potential gains of this staging prosess;hoose a value doff = 4
and use a series of three pulses. We saw in Figure 3.1 thatid¢bras choice oN, with

a single pulse we achieve only minimal acceleration, in feetobtainy’ = 1.01. The
left panel of Figuré_3]2 shows a plot ¢f @) for N = 4 andn = 3, and the right panel
shows the corresponding values of théactor. An increase in net energy is seen after
each pulse duration leaving the final resyft= 1.03. This is an overall improvement of
three times as much energy gain than using a single pulsehuto be expected since

we have three pulses.

1.71
0.8
1.6
0.6
0) 5]
0.4
1.44
021 W(s)
O . . , 13’
100 200 300
-021 o 1.21
-0.4 114 Jl
-0.61 1.0 = ‘ ‘ ‘
0 100 200 300
-0.8 S

Figure 3.2: Left: Laser pulse functiorf (¢) from (3.19),Right: correspondingy factoru®(s), for
a choice ofN = 4,n= 3 andg, = 50.

This same idea may be used even without short pulses. Whemackelé RR terms

we actually see a small amount of acceleration. We take famgke the optical laser
with parametersy = 3 x 10° andvg = 10-° used in Section 214. For a choice Nf=

10 we obtainy’ = 1.042, which was unobservable in Figurel2.8. This sryllimay

be magnified as above by usimgsuccessive pulses. We note however that our shape
function (3.19) chooses the centre of each oftiipailses automatically without regard to
an optimal choice ofy. In the previous section we saw hayyis an influential parameter

in determining the size of the average field. We now consides@imum choice of the
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pulse centre for each successive pulse to get maximum aatiete Figure 3.3 shows the
value ofy' after one pulse, for varyingy 1) (Wheregyy) is the centre of the first pulse) for
an optical laser. The choice of carrier phase clearly hamaadt ony®, which oscillates

steadily within a fixed range. We choose our initg;) such thaty' is a maximum; for

1.042
L
—
——
—

1.038

1.034
|

il \/

I I I I I
140 145 150 155 160

(1)

1.030

Figure 3.3: Value ofy for varying @(1)- Results are shown fa@p = 3 x 10° andvg = 107, using
@G19) withn = 1.
our first pulsegy ;) = 1555. Let ¢z and @) be the centre of our second and third
pulses respectively. The left hand panel of Figuré 3.4 shbws/alue ofy’ expected
given a range of2) values for our second pulse. After choosing an appropriegp
®2) = 124, a fair distance from the centre of the first pulse, thegss is repeated to
find an optimumg3). The right hand panel of Figuie 3.4 is a plotydfagainst varying
choices ofgy ), given our choices ofgy ;) and @y 2); we choosegy 3 = 92.5 for this
third pulse. Using a series of three pulses with the chosésementres we get a value
of yf = 1.275 for our optical laser, achieving more than six times tie gvhen only one
pulse was used. This idea can easily be extended to a longeer alpulses.
Clearly this is an effective way to magnify our energy gainse®an optimum pulse shape
has been established, and this idea can be readily applig toulse shapes explored
in the remaining sections of this chapter. Of course thermiseason why the pulses

must all be the same shape; there is potential for increasszlamation by using pulses
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Figure 3.4: Left: Value of final y factor for varyingg ), given gy 1) = 1555; Right: Value of
final y factor for varyinggs), given @y 1) = 1555 andgy ) = 124.

of varying shape in series too.

3.4 Pulse Shaping

In the previous sections it has been demonstrated how by asgmall pulse width, a
particle that is initially at rest can be accelerated toaxily high velocities. We shall
now see whether this can be achieved by changing the shape piilse (whilst keeping
N constant) even wheN is reasonably large. Again, for acceleration we will requar
pulse shapd (¢), such that there exists a nonzero Fourier zero modg, tfierefore a

carrier phasep is again used below. A shape functi8fyp) is introduced. We shall use

f(@) = S(p)cog9), (3.20)
where
S(@) = S(@n,bn; @) = e,w%)ﬂ ni{anm{@) + bnsin (W) } :
(3.21)

is the shape function. This Fourier expansion is chosenaatty shape can be made by

changinga, andb,. We wish to find optimum values @k, andby, for maximum finaly
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factor: maxy") = yf (a9PT,bOPT).

Let us consider the terms in our shape function. Introdusiages for theb, terms

has no effect on the overall acceleration since their p@sdand negative values cancel
upon integration. Similarly they term does not contribute to the net acceleration. For
maximumy’ we require thatf (¢) returns a positive value for as many valuesgoés
possible. Now we may form a function that only takes on pesitalues with a cdserm.

For example Figuré_ 3.5 shows the pulse shape and corresgppdactor for f (@) =
exp(— (@ — @)?/N?)cos’(p). We see that the charge is continuously accelerated and

never decelerates hence huge gains can be made. In cootrdsdttwe have seen earlier,

404
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Figure 3.5: Left:Laser pulse profild (¢) for the cog pulse,Right: corresponding factoru®(s).

by increasing\ for this pulse shape, we get more acceleration. Taking #ha@our into
account we see that if in our shape funct®(p), we choosey to be large thery" will

be large. It is however unrealistic to use the<pslse, since this is equivalent to having
only a magnetic field, but it does give us an upper limit forgmial acceleration.

Given the behaviour of the terms in our shape function (3.28) make some minor
modifications. We firstly limit our sum to stop at= N /2 to avoid choosing an unrealistic
pulse shape. To make life simpler we also remove the norrbating ap andby, terms,

reducing our shape function to

2y N2 -
S(¢) = San,0;9) :exp(—%) Zlancos(w) . (3.22)
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Ideally to find the maximuny® one would test every possible combinatioragt= 0...K,
a=0.K, ..., ay;2=0..K, butevenif only 10 possible values for eagfwere used (in
reality there would be an infinite number) aNd= 10 was used (ideally we would like to
consider larger values of), there would already be ¥®possible combinations! Instead
we conduct a search using simulated annealing (the genethloch described in_[60]).
We search random combinationsapf coefficients and try and improve on oyt result
until a maximum has been found. This approach is chosen @teenative maximisation
schemes as it has the advantage of searching globally failp@snaxima instead of
settling at local minima. Starting with the initial valuag we add a random numbér
sampled from the Gaussian distribution, to each ofaheoefficients, givinga\EW =

an+ & The initial a, coefficients are used to calculateand thea)EW

coefficients are
substituted into our shape function to calculgd!&" (both of these being evaluatedshj.

We accept the change in the coefficients with probabjity min(1, exp(B(YNEW —y))).

If YNEW is bigger thany then we automatically accept the change since @xp' 5"V —

y)) > 1. If howeveryNEW is smaller thary we accept the change only jif > R where

Ris random number sampled from the uniform distributib®, 1). The method accepts
these decreases jnso as not get trapped at a local maximum. If a change is aatepte
thena, becomes\EW and the process is repeated. The probability of acceptingraev
solution decreases with time and this is controlled by redyf after a predetermined

number of steps. Depending on the number of accepted chamgesay also choose to

change the size a¥, which controls the size of the search area.

After running our search foN = 10 our method returned theg, coefficients shown in
Table[3.8.  Using these coefficients results in the lasereppitefile shown in Figure
[3.8. For the parametesg = 3 x 10° andvy = 10~ this pulse shape generates a value of
y' = 2.63x 103, considerable energy gain compared to our valug of 1.042 obtained
using our original pulse profile (2.45). We notice thatthe 3 termis larger than the other
terms, in fact when we altered obrwe found consistently that the~x N /4 coefficient
was larger than the others. This suggest that there is aplartitype of pulse shape that

is more effective than others at producing acceleratiorokirgy back at Figuré 316 we
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Table 3.3:0ptimum coefficients foN = 10

0.190
0.316
0.991
0.373
-0.168

o & wme|s]

1.51

f®)

0.57

0 20 A\d‘dl A\W 80 100

-0.57

11

Figure 3.6: Laser pulse profild (@) using [3.22) and optimum coefficients fidr= 10.

notice the beat like structure, observed when waves oftyfiglfferent frequencies are
superimposed [61]. This observation leads us nicely to the fiection of this chapter,

where we create a pulse shape from two terms of differingueaqgies.

3.5 Two-Colour Laser

Our search for an optimum pulse shape revealed that usimgetise similar to a beat
wave we can get acceleration. Two co-propagating laser beaenan experimentally
feasible option[|62] that we shall use to recreate the etiéour optimum pulse results.
When two waves with slightly different frequencies are cogagated they produce a
beat structure. This breaks the symmetry of the individuates and also allows for an
overall field amplitude up to twice as large as that of theviahlial waves, assuming they

are of the same amplitude. This feature is exploited in ttegteof vacuum beat wave
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Table 3.4:Final y factor values for two-colour lasers with and without RR faldistengthag =
3000.

Vw=10°%| noRR
1.34 1.00
8.65x 10° | 2.07 x 10°
3.04x 108 | 2.47x 108
16 | 3.11x 10° | 2.59x 10°

o b~ N

acceleration; examples are givenin/[63] and [64] wheredeagy differencesy =1.1 w
andw, = 2 w, are used respectively. Our results suggest that even hegleegy gains

can be achieved by changing this frequency difference.

To simulate a two-colour laser we use the following functionour pulse shape,

f(o) = exp(—((p%ng) (cos((p)-i—cos(?(p)), (3.23)

where here we use the constaras a measure of the ratio between the two frequencies.
As in the previous section we use the carrier ph@ast ensure a nonzero Fourier zero
mode of f. Experimenting with different values ofwe obtain the results in Table 3.4.
We note thaty' increases as we go down the table. We also note that theretigea h
difference between our results with and without RR. Thetad@ogains a net acceleration
much larger than we would expect if we neglect the RR termse gdiise profiles for
these two-colour lasers can be seen in Figurés 3.7 16 3.10.edeb of the pulse profiles
considered we see that overall the sum of the two waves aatekhe particle more than
they decelerate it giving a net acceleration. For the fraquelifferencew; = 16 wy, we
see that the pulse profile approaches thé cesult shown in Figure3.5. The electron
ends up with close to the peak energy. Using the frequengies1.1 w, for comparison
we obtainy’ = 1.09 with RR accounted for, smaller than the results in Teble Fhis
method looks extremely promising for laser vacuum accetarait also highlights the

significant impact of RR on particle motion.
The overarching theme in this chapter has been the searalptdse shape with a nonzero
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Figure 3.7:Laser pulse profild (3.23) using= 2, ¢ = 100 andN = 20.
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Figure 3.8: Laser pulse profild(3.23) using= 4, @ = 100 andN = 20.
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Figure 3.9: Laser pulse profild (3.23) using= 8, ¢ = 100 andN = 20.

average field. We have seen that the two important parantatgrsnable a unipolar pulse

are@ andN. Choosing these wisely allows us to generate a net acdelenaithout the

need to separate the electron from the pulse. The use of iagtagcess was explored,
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Figure 3.10: Left: Laser pulse profild(3.23) using= 16, ¢ = 100 andN = 20. Right: Corre-
spondingy factor u®(s) when RR is accounted for.
which allowed our accelerated particle to gain more energh the addition of each

pulse. It was shown that two ways of achieving a unidireclqulse were:

e makingN so small that the pulse does not complete a full cycle; hayictecor less

allows us to get only positive contributions,

e using a co$pulse, a function of only positive values.

Alternatives to these two suggestions were studied in dadebtain experimentally fea-
sible options. A search for the optimum pulse shape was ataduwhich highlighted
a beat like structure as a useful tool in gaining net accetera The idea of using beat
waves was the basis of recreating an optimum pulse shapg tginaser beams simul-
taneously. The interaction of the two different frequencyspsw, = wy /r resulted in
highly significant energy gains for a particle initially &ist.

We note that the two individual waves that make up the twawolaser are both unipolar
and therefore the success of this method relies on theyatmlpproduce unipolar pulses
experimentally. It is still unclear as to whether a suitglgse could be produced and
there is certainly much debate around the possibility ofiuat laser acceleration. In[65]
it is shown using energy conservation and Fourier analysisa bounded source cannot

create a unipolar pulse. However there are experimentaltsatat show that by using a
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unipolar-like pulse a free electron may extract energy ftbenelectromagnetic field [42].
These unipolar-like pulses consist of a sharp tail of onantyl and a long tail of the
opposite polarity. The dynamics of such a system is geryedadtated by the sharp tail.
Experimental results reported [n |66] suggest that hugesyaiay be made in vacuum and
despite some uncertainty over the interpretation of thesdts[67], they show promise in
the area of vacuum laser acceleration. In fact notwithstancbncerns about producing
unipolar pulses there is still on-going experimental iegtin this areg [10].

This chapter has focussed on the acceleration of a chargédigpan electromagnetic
fields. As we saw in Chapter 2, accelerating charges radiateye have not spent much
time looking athow these charges radiate. This will be investigated in theofalg
Chapter. It has also been observed in Chapters 2land 3, theaRBignificantly impact
on the motion of a particle. Chapter 4 will consider how tmgact may be detected

experimentally.
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Chapter 4
Radiation

We have established that our accelerated particles raahakéhat this radiation can have
significant impact on the motion of a particle. For relatizcidaser matter interactions
the scattered radiation is not just of the same frequencheasaser frequency. Instead
we observe harmonics in the radiation/[68], with each haimbaving its own angular
distribution [12]. The spectrum of frequencies observelll dgpend on the intensity of
the laser([69]. In this chapter we shall study the emittedhatazh for a particle in crossed
fields. We shall also attempt to identify how the spectrumasfiation may be used to
observe RR effects for a pulsed plane wave. The effect of RRamiinear Thomson
scattering was explored in [23] for an electron with an aliyifactoryy = 300. Following
on from our example in Chapter 2 we shall explore the effe@Rffor an electron that is

initially at rest.

4.1 Calculatingthe Spectrum of Radiation

In Chaptef 2 we calculated the trajectotyof a particle in an electromagnetic field, and
its four-velocityut. We may use these to calculate the current and thus thelpawdic
diation. To calculate the radiation spectrum we begin withriadiation four-momentum
PLg- Using the formulal(2.28) for the energy radiatBff? = P, (A°"") — P, (A"), it fol-

lows [29] by the use of advanced and retarded Green’s fumetizat the four-momentum
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of the radiated field may be written as

rad __ 1— d4k/

179 =3 | G SUROBKARY §(K) - °(K) . (4.1)

wherejH(K') is the Fourier transform of the current,
H(K) = e/dru“(r)e”‘/'x(r) : (4.2)

andk’ = &/(1,n"). The scattered frequeney and the scattering directiar have been
introduced. We are interested in the zero componerii of ,(th&)radiated energy. We

therefore follow[[70], and integrate (3.1) oué?. The energyPr%d can thus be written

1 / / P ¥
H%d:_ﬁ/dw dQ ()2 j(K) - j*(K)

(4.3)
:/dw’ dQ o p(w/,n’),

where we have introduced the spectral dengjtywhich describes the number of photons
radiated per unit frequency per unit solid angle,
d?N, o

pl(ef,n) = - = — () (K) (4.9)

The radiation over all angles is found by integration of tpediral density ovedQ =

sin6dOodg
dN,

2n s
_/dQ p(a,n") :/ d(p/ dOsinfp(w',n’) , (4.5)
dow 0 0

and the total radiation emitted is obtained by integratiggjia overw’
Ny = /dw’ dQ p(ed,n') . (4.6)

The results calculated in the remaining sections will usgdscaled frequenefw’ /c w —
«', wherew is the laser frequency, 90’ will be measured in units a#/c. We will now

study the properties of this radiation.
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4.2 Analytic Investigation: Radiation for Crossed Fields

We may obtain analytic solutions for our spectrum of radiatif we consider the case
of constant fields. This has been studied extensively foclaytron radiation([71, 72]
(motion on a circle([73]) and is referred to in many classelakttrodynamics text books
for examplel[22,30]. We choose to investigate the scattaaidtion for motion in crossed

fields, the long wavelength limit of our pulsed plane waveadticed in Chapter 2.

421 Method

The spectral density for crossed fields can be calculatedddyng use of Airy functions.
This is possible since the trajectory of the particle in seakfields is a cubic function. To
calculate the spectral density, as defined[byl (4.4), we nrgsefialuatg ¥ (k') given by
(4.2). Itis useful to work with lightcone coordinates sincsimplifies the calculation of

the spectrum considerably [[74]. We use the notation
a =a’—a’; at=a’+a’; a =(apa), (4.7

for an arbitrary four-vectoa. Using this lightcone formalism allows us to equivalently

write (4.2) as
/dx U (x e KX0O), (4.8)

sincedt = dx~/u,. Note that we now use the notatidhto define the trajectory of the
particle for clarity as it is a function of~. We find that for thej— (k') component the

expression reduces to

/d ik X(x _e/dxe'kx( ) (4.9)

sinceu™ is conserved. This is essentially the integral of the exptakexp{ —ik - X(x™)}.

Ignoring the prime for convenience, we need to worklout (x™).

For our choice of crossed fields we note tBatind B are perpendicular and of equal

strengthF. Neglecting radiation effects and using the solution ofltbeentz equation
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given in (2.57) we have in terms of lightcone components

F2(x7)?
2u6

uH =uf —Fx el + nH. (4.10)

Assumingx, = 0, we obtain the following expression f#':

1 1 F2(x™)3
xH = — JuMx —ZF(x )2l 4+ 2 2 it 4.11
{ufpe—groc e+ 2 b} (@.11)

With the following choice of polarisation vectors, and propagation vectoms, n,
(4.12)

we can write out the simplified equations for the componehthefour-velocity of the

particle,
F2(x)? .
Uu =uy; u=uf+ fj ) ; up =—Fx &. (4.13)
0

Specialising to the case of a head-on collision, where therlmoves in the direction
and the particle in the-z direction, we have the initial conditiong = yo(1+ o) and
ug = y(1—Bo). To simplify our equations somewhat, we introduce the rigpigl so that

e*¢ = yp(1+ Bo). Hence the components of the trajectory are

X =x; x'=e%x <1+:—:;F2(x)2) Xy = —%e F(x)%8. (4.14)

We can now calculatk- X (x™),

tx— ke x (1+1F2(x)2 —CF(x)2
k.x(x_):kzx n (;3 OC)) | ke Z(X> . (4.15)

Let the exponentik- X (x~) = —if (x™) then after grouping the various powers<of we
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may write

1 - Bk kKt +k e
2f(x7) = 3ke ZZFZ{(X )3+k—e—X5F(X )2+3Wx : (4.16)

In order to make use of Airy functions we need to get rid of thadratic term so we let

x~ =y —ky/k_e¢F, giving the transformed function df {2160, in terms ofy~

_ 1 k 3 3k k 2
fly )=k e®F2 [y — — ) - (— i )
) 6 € { (y k-e{F + k-e{F y k e {F

. - (4.17)
e k)
k-e 2€F2 k-e<F
After careful manipulation this may be simplified to
— 1 3
Fy) =38 +HE -2, (4.18)

where we have used the following definitions &ru andA:

[ —

1k
6 (k-)2e¢F

(K +3(k")%e %) .
(4.19)

2/3
- k-e %
&= (ke F?/2) %y, u=< o ) A=

We may write the current in terms of this transformed functio
i~ (K) = e/dy‘e‘if(y) . e/dy— exp{—i <%E3+uf) }exp{i)\ L (4.20)

Letk = (k-e % F2/2)Y/3 then& = ky~ andd& /k = dy, hence

7 (k)= Ee” /df exp{—i (%«E%uf)}

(4.21)
Ze;/ﬁ Ai i

(he” ~Kys,

where the standard identity for the Airy function Ai (see.d£5]) has been used. The
modified Bessel functioris; ;3 andK; 3 are sometimes preferred to the use of these Airy

functions (see e.g. [30]), where they are directly propoi to Ai and Af respectively.
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Using what we know about™ (k) we can now calculatg (k) too. We have
/dx U (X )e ), (4.22)
Now after substituting our expression fa(x ) in (4.22) we may rewritgx(k) in terms

ofy~

_ _¢eF ity ek<2\/7_r TN
ez/olyy e 107 4 ZEEV TN A (). (4.23)

Consider the first term on the RHS of this equation,

iA
——/oly—y—e—'f EFé /dE Eexp{—l( €3+u5)} (4.24)

Note the similarity between (4.21) and (4.24), the onlyati#ihce between the integrands
being the additionaf term in (4.24). Partially differentiating the integral [A.21) with

respect tqu we see that

o e i (Ge0enue) | = [ae-injen{-i (e rn) b @2

It follows therefore that

[ a EeXp{—i (%f%us) } — 27 Al () (4.26)

where the prime denotes partial differentiation with resge yu. We hence find the

following expression foljx(k),

ix(K) = 2eexp(iA )\/ﬁ{ iF

p: = Ai(p) — K Al (IJ)} ~Kys . (4.27)

Now we have expressions for bojh (k) and jx(k) we have enough information to cal-
culate the spectral density. We need to calculate the spadauctj - j*, which using
light-cone coordinates can be written

I

R IR IR (4.28)
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However we can make life simpler by eliminatig using the continuity equation in

k-spacek-j =0,
i+ =2 'Jt__ ki (4.29)
We obtain
5= 2K - R L. (4.30)

Noting thatjy = O for our choice ok ; = (1,0), we have the following expression for the

spectral density,

o k. o kP :
p(o,n') = <_W) <2k—f'D[JxJ ]_E“ |2—|Jx|2) : (4.31)

x
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Figure 4.1: Geometry of the scattered radiation.

Our choice of scattering angles is illustrated in Figure dtfbwing

ky = @' sin(0) cog @)
k™ = w/(1—cog8)) (4.32)

k' = of(14cog0)) .

We can see that settirj= 1 simplifies things somewhat. This means tkat= ks = 0
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andk™ = 2/, hence

p(w,80=m) = (4.33)

W'MZ :
wherep is now independent of . This is the spectral density in the opposite direction
of the laser (back scattering). If we choose to look in theation of the laser (forward
scattering),8 = 0, thenk™ = 2«/ andky, = k= = 0; we find thatp tends to infinity due

to division by zero. This observation is consistent with][#here they saw ‘soft and
collinear’ divergence (usually associated with masslessigbes) whenk;l Oky. The
reason for such divergence in these crossed fields is due tofihite constant electric
field, which will accelerate the incoming particle to the sp®f light, hence its final state
being effectively ‘massless’ [46]. We note however thattfar purpose of experiment one
would not be looking at this region since any detector planddont of the laser would

be destroyed anyway.

4.2.2 Results

We begin by looking at the distribution of radiation over aga of frequencies, holding
our angle fixed. Figure 4.2 shows the spectral density fapuarinitial y factors,yp. We
see that agp increases the amount of radiation increases. The peakeenfidquency is
also Doppler shifted to higher frequenciesygss increased. This shift is expected when
the electron moves towards the laser and is an importantsairX-rays and gamma
rays [76]. For all three choices gf we see the same general type of behaviour for

varying ', the familiar curve as seen for synchrotron radiation [30].

Next we choose a fixed frequency and angland study the spectrum for varying angle
6. Results are shown in Figure 4.3 (left) and suggest that ofdke photons are radiated
in the direction of the laser (note that the horizontal atdsts atrr/8 due to the infinity
at zero). We repeat our calculation for fixed frequency argleaft and this time varyp.
Figurd 4.8 (right) shows the symmetrical distribution obfin scattering in the transverse
directions. The plot is vertically stretched for increasys, showing more spread for
highery factors. Maxima and minima however, occur in the same pliaci¢y-z plane)

for eachyp considered. We may integrate over @lto see the effect of varying. Figure
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Figure 4.2: Spectral densityp, for varyingw' and fixed angle® = /8 andg = /2. The solid
black line represents results fgy= 15, the dashed red line fgg = 10, and the dotted
blue line fory = 5.
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Figure 4.3: Left: Spectral densityp, for varying 6 and fixedaw = 200 andg = 11/2. Right:
Spectral density for varying and fixedw' = 200 andd = 17/8 (colours and line types
as in Figuré 4.2).

4.4 shows the integrated spectral density for a fixed frequefhis plot differs from
Figurel4.3 (left) only by the fact that we have a larger numidferndiated photons since

we have summed over aji.

In order to establish how changes as we change frequency and angle together, we pro-
duce the surface plots shown in Figured 4.5[antl 4.6 . In FigBeve hold the anglé

fixed and consider the spectral density as a functiow'acind . We see that the shape
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Figure 4.4: Spectrum of radiation (over afl), for varying 8 and fixedw' = 200 (colours and line
types as in Figure412).
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Figure 4.5: Spectral densityp, for varyingaw' ande (6 = 11/2).

of the distribution of radiated photons for vayiggs unchanged for changing frequency.

Similarly in Figure[4.6, where we fip and varyw’ and 6, we see as before that s

tends to zero we get larger values, but the radiation hasatine shaped distribution for

all 6 asw' varies. If we choose to look at a fixed scattering frequeneymay investigate
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Figure 4.6: Spectral densityp, for varyingw' andé (¢ = 1/2).

how p changes as we vary the two angles together. This is showgindtZ.Y. Again we

T
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Figure 4.7: Spectral densityp, for varying 8 and¢ («w' = 1000).

see that varying the angidoes not impact on the shape of the distribution of radiation
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over .

Since we are looking at the distribution of photons radiaieer the angle® and ¢ it
is useful to look at our results in polar plots. The left harzhe of Figurd_4I8 shows

the distribution of radiation ovef for fixed w’ and . Again we see how the spectral

ki
4

3n 3n
2 2

Figure 4.8: Left: Polar plot of the spectral densitg, for varying 6 and fixedw = 0.1 andg =
/2. Right: Polar plot of the spectral density, for varying ¢ (fixed @’ = 100). The
solid black line represents results fér= 17/5, the dashed red line fd& = /4, and
the dotted blue line fof = r1/3.

density increases #&sdecreases. Looking at the radiation ogdor a fixed frequency we
produce the plot shown in Figure 4.8 (right). Here we see dd@tion for three choices
of 8: 6 = r1/5, 1/4, 11/3. Most photons are radiated whepés close torr/2 or 3r1/2 and
the least photons are radiated whexes close to zero ort. We get the same structure
for each of the choices @, but as before we see that the magnitude aé larger for a

smaller choice of anglé.

This analytic approach has allowed us to explore in quiteesdetail the spectrum of
radiation for a charged particle in constant crossed fieldswever if we are to learn
more about the spectrum for our model of a laser pulse, we regstt to numerics to

evaluate our integrals.
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4.3 Numerical Investigation

Using the Gauss-Legendre method (see e.g. [75]) to nuntigriotegrate the nested in-
tegrals contained i _(4.4) it is possible to evaluate thetspm for time dependent fields
such as a pulsed plane wave, considered in the previousethaadiative reaction can

also be accounted for with the same method.

4.3.1 Current Conservation

When calculating* (k') as defined by(412), the choice of limits of integration havbe
carefully chosen to comply with current conservation. Tiitegrand should be integrated
over all time, however if we select cut-off points (which weed to do for the numerical
approximation) we need to ensure that current is consenvibe start and end points. If
the limits are not chosen appropriately then we define atsiuavhere a particle comes
into existence at a certain point in time with a particularent and vanishes again with

another current. We require

exp(—ik' - x(1y)) = exp(—ik" - x(1L))
(4.34)

=K x(y) =K -x(1) + 2nm,

wheret andty are the lower and upper limits far If we let 7. = 0 thenk’ - x(1.) =0
and so we must ensure tHat x(1y ) = 2nm. Using the bisection method (see elg./[60]),
Ty is varied until it satisfie®’ - x(17y) = 2n1. The continuity equatiork’- j(k') =0, can

be employed to eliminat@ [70] in @.4) to give

/

16n3|n’ xj(K)?>>0 . (4.35)

p(w,n') =

This alternative expression imposes current conservatioour results and also requires
less computational effort to calculate sinCeno longer needs evaluating. In fact by using
(4.35) the bisection method is not required and for thisaoerahis simplified definition
for spectral density will be used for the numerical caldolas. The limits are restricted

to the duration of the pulse since there is no acceleratidsidriof this range and hence
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no radiation. An alternative way of dealing with the issu¢ha limits of integration and
current conservation is outlined in [46] where values in ifwege[—o, 7, | and [Ty, ]

cancel, leaving# (k') as an integral over the pulse duration only.

4.3.2 Crossed Fields

Having evaluated the spectral density for crossed fields/acelly, ideally we would
wish to compare our analytic solutions to results obtaingderically as we did with our
solutions of the LL equation. However, the infinite extentlod constant crossed fields
presents problems for our numerical calculations - we nieeitslfor our integrals.

A finite analytical solution to the unbounded integrals wasgible because the crossed
fields effectively decelerated the particle from the spedybt in the infinite past, and
then re-accelerated it in the infinite futufe [46]. This ledd cancellations that do not
occur for our numerical approach.

The infinite limits however are somewhat unphysical. Weaadtchoose to use our nu-
merical method to model crossed fields of finite durafigrstarting from time=0. The
results for a choice of increasifdgare shown in Figure 4.9. ABis increased, the amount
of radiation increases. The spectral density is therefoated down by thenaxp) in the
figure. We see an increased spread of the frequencies andt afsthie peak towards

higher frequencies as the duration decreases.

4.3.3 Pulsed Plane Wave

We use our numerical approach to calculate the spectrumdeditian for the linearly

polarised pulse with field strengBt (@) = agf (@) fHY, where

)2
f= —exp{—%#} sin(g) , (4.36)

i.e. the pulse studied in Sectibn2.2. The an@lemdg are defined by Figurfe 4.1 as with
the analytic investigation. To get an idea of the basic pitigeof the spectrum for our
laser pulse we begin by neglecting RR and use the strengaimedeay = 1. Throughout

this section we will assume that the particle is initiallyest. We start by looking at the
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Figure 4.9: Rescaled spectral density as a function of scattered fregugo =5, 6 = 11/8, ¢ =
m/2).
distribution of radiation over the frequencies, for fixedigsion angles. In Figure 4.10
we set the angles to zero and observe a clear peak in the alpdetsity atw’ = 1. p
disappears outside of the range roughly @ «’ < 1.5. This single peak for the forward
direction of the laser suggests that radiation scatteréuisrdirection is emitted with the
laser frequency, consistent with the results in [11].
We look at the spectral density as a functio@oh Figure 4,11 (left) and in Figure 4. 11
(right). We find as expected, and as we saw in the analyticcserb&eld example, thai
is highest as we get closer to the forward directi@r=0). However we see in this case
that the number of photons radiated tends to be relativedyelan the backward direction
too. In Figurd 4. 11 (right) we see that a maximum occurs wpenrt/2, a feature that
we observed when looking at the spectrum for crossed fietds al
By looking at surface plots of the spectral density we caragegearer picture of how the
spectrum changes as we vary its parameters simultanedislgee in Figure 4.12 how
the number of peaks for varying frequency increas@ approachest. We compare our

results with Figure 2 in[77] and Figure 6 in_[78], which derstrmate similar qualitative
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Figure 4.10: Spectral densityp, for varyingw' (¢ = 0,06 = 0).
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Figure 4.11: Left: Spectral densityp, for varying 8 (¢ = 0, = 1). Right: Spectral densityp,
for varying @ (6 = /2, ' = 1).

features for their choice of linearly polarised laser pulseFigurel4.1B we see clearly a
symmetrical distribution of radiated photons for varyipdor all frequencies. The basic
distribution of radiation over the angiremains largely unchanged by varyipgs we

observe in Figure4.14.

We wish to look for radiative reaction in the spectrum and samust now look at larger

values ofag where RR is expected to have a significant impact. Using theegaconsid-
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Figure 4.12: Spectral densityp, for varyingw and8 (¢ = 0).
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Figure 4.13: Spectral densityp, for varyingw andg (6 = 11/2).

ered previously, we look at the spectral density wags= 10 andag = 3000 both with
and without RR. Plots op(w',n’) against frequency are shown in Figlire 4.15, where
@ =0 andf = 0. We see that there is little impact of RR fay = 10, but that the maxi-
mum difference occurs at the peak. There is a significantie$isen when we look at the

optical laser; again the maximum difference occurs at tle penere we see a significant
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Figure 4.14:Spectral densityp, for varying6 and¢ («' = 1).

increase in the calculated number of photons radiated. ¥deaddserve a slight redshift
of the scattered frequency with respect to the laser fregguathen we account for RR as

detected in[[79].

Our results appear to contradict those found in [23] whezdR effect was seen to reduce
the scattered radiation. However the results in their papacern a head on collision
rather than the electron initially at rest. As noted in Sed#.4, such a difference is to be
expected for these different initial conditions. We comémurselves that the results make
sense physically by recalling our observations in Sedtigh 2vhen RR was included
in our calculations we saw the electron accelerate more Wian RR was neglected.
Larmor’s formula tells us that radiation is proportionalth® acceleration squared; we
therefore expect more radiation when we include the radiaérms. For the purpose of
experiment these results will not help us to establish theeR€ct on the spectrum. In
practice it would not be possible to put a detector directlfront of the laser to observe
these results since, as stated earlier, the detector wostidb¢ destroyed. We therefore
must consider alternative angles to investigate.

Choosingd = /4 andw’ = 1, the spectral density fap = 10 has been plotted as a func-

tion of @ in Figure[4.16 (left). Interestingly for this choice 8fwe get less photons radi-
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Figure 4.15: Left:Plot of spectral density against frequencydgr= 10, red line = with RR ¢y =
1073), black line = without RRRight: Plot of spectral density against frequency for
ap = 3000, red line = with RR\ = 10°%), black line = without RR. ¢ = 0 and
6 =0)

ated when we include the radiative reaction terms than wiveyndre ignored. Although
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Figure 4.16: Left:Plot of spectral density againgtfor ag = 10 (using6 = 11/4, o = 1). Right:
Plot of spectral density again8tfor ag = 10 (usingp = 0, ' = 1). Red dashed line
= with RR (Vo = 103), black solid line = without RR.

no obvious effect of radiative backreaction can be obseimged the right hand panel of
Figure[4.16 (the lines with and without RR in the plot are stiiguishable), we see that
even atag = 10 the plot of spectral density as a functionfbbecomes extremely oscil-

lating. We compare this observation to the result$ in [77éxehan increased structure is
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seen asy is increased; this is seen even for small valuegydbg < 2). [76] suggests that
for a high intensity laser we should expect strong oscdlaiin the spectrum. Looking
at the results in [23] it would seem that indeed for larggralues such asg = 15 and

ap = 30 the spectrum becomes extremely oscillatory. Our refuts = 10 do not seem
to have any obvious structure, which shows signs of poténthaotic behaviour. This

will be investigated further before we attempt to identifiR Rffects.
4.3.3.1 Chaotic Behaviour

If we look at the spectral density as a functionéin the range0, 1] whenw’ =1 and

¢ = 0 we see that there is an increased structure in the spectufar§er values of

ag. Even increasingg from 1 to 5 allows us to see a dramatic change in the number of
oscillations. Figuré 4.17 shows the transition from the sth@urve whereg = 1 to the

oscillating curve whemg = 5.

— a0=1
-=- a0=2

Figure 4.17: Spectral densityp (scaled down by a factor &), as a function of the anglé,
shown forag = 1,2,3,4,5.

When we sef = 0 and varyw/, we do not get any oscillating behaviour even wiagn
is increased to very large values. We just get a single peatkezkaroundy' = 1. It can

be seen that the only change is an increase by a scale facﬂ@imfhe spectral density;
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after scaling, the results are identical for all choices @ltifstrength. Our observation is
consistent with the statement in [11], which says that tkdetaon spectrum observed for
k' Oki.e. exactly in the forward direction of the laser, has onekptw’ = w, regardless

of the velocity of the electron or the laser intensity.

Upon studying the spectrum of radiation for a rang@g¥alues it was seen that as the
strength of the laser increased so did the number of osoillgtin the spectral density
(for 8 £ 0). Whenag is particularly largeag = 100 say, the spectral density appears to
show signs of chaotic behaviour. Choosing a valuayef 100 and exploring the spectral
density for fixedp = 0 and@ = /4, we produce the results shown in Figlre #4.18. The
spectral density when RR is both ignored and accounted fsihasvn on the left hand
panel; both lines in the figure show chaos-like fluctuatiorenever the small range of

values shown. The results obtained with and without RR sedye tompletely unrelated

P
Difference

Figure 4.18: Left: The spectral density as a function @f. The red line represents the results
with radiation terms included and the black line withoutglRi The difference in
spectral density, as a function af, with and without RR 0norr— PrR)- (@ =0,

0 = /4 andag = 100).

and a plot of the difference (result without RR - result witR)Rshown in the right hand

panel of Figuré 4.18, seems to support this view. There idmmas relationship between
the spectral density with and without RR, in fact the diffeze plot appears completely
random. The plot does however seem to show a larger differfemalues ot that are

closer to zero. If the spectrum becomes chaotic when RR @uated for then this could
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explain why there does not appear to be any clear structuee Vaoking at the difference

as a function otv'.

The most obvious cause for these seemingly random oseilatvould be random noise
caused by numerical instability, after all, the integratsa@l being evaluated numerically.
Improving the accuracy of the numerical integration (aebieby decreasing the step sizes
used in the algorithm), we find that the method does prodwaddestesults. The errors,
which are defined by the difference in results using the twel&of accuracy, are smaller
than the actual values concerned. Figurel4.18 (right) stiosverror values relative to the
oscillating results. Compared with the actual results,etrers are small enough to be

considered as zero and do not account for the fluctuationgrsho

Another possible explanation for the chaos-like oscithasiis related to the limits of in-
tegration. The definition gb involves integrating over infinite limits. This is not past
numerically and so instead the lim{§ 100 were chosen since the laser field disappears
outside of this range. As a check to see whether in fact thaseamy radiation outside
of this range that had been ignored, we increased the rangewar which we integrate.
There was no change, which was to be expected given thatiheoeacceleration outside

of the chosen range and hence no radiation.

Having looked at these possible sources of error and rulédh@se numerical issues,
we can now look for chaos. We use the widely accepted siga&buichaotic behaviour,
‘sensitive dependence on initial condition’ [80], to dexihether there is evidence of
chaos in the spectrum. We will investigate whether the spectof radiation becomes
chaotic at some critical value @. If the behaviour identified is indeed chaotic, this
would be seen in the trajectory since the calculation of gexgal density is essentially

just integration over the velocity and trajectory of thetjude.

As a consequence of the conditions for chaos, a slight chanigéial conditions leads

to a very different outcome. To decide whether or not we héaos, we consider the
velocity four-vector. If we consider the velocity of the pelle over allt and then adjust
the initial values very slightly we would expect the velgdib change very slightly unless

the behaviour of the particle was chaotic, in which case gmsll change would result
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in a completely different velocity. Let the vecta¥ andv* represent the velocity four-
vectors for a particle with gamma factgg = 1 andy, = 1+ € respectively. For these

given vectors we will take a measure of the difference in ei&ydour-vector defined by

1 /T 2
D= E/Tdr(u“—v“) (4.37)

We expectD to be of ordere and therefore if the velocity becomes chaotic after some
critical value, we will seeD increasing after this point. Choosimg= 10-2? (numerical
error for integrationk €) and considering in the rangg0, 100, the difference is actually
constanD = 2.0 x 102, of ordere as expected for non-chaotic behaviour. The test for
chaos was repeated for the case where RR was included; ag&ind atD we see the

same value obtained as when radiation was ignored.

If we instead measure our differenDeby the difference between the spectral dengity,

whenyy = 1 and whengp =1+ ¢€:

D = pyy=1— Pyp=1+¢ (4.38)

we may determine the actual change in the spectral density $mall change in initial
velocity. Again choosing = 1072 from Figure[4.1IP we see th@ is of ordere, thus
supporting the argument above. Therefore despite the sggmiandom behaviour of
the spectrum we find the results are in fact stable, just wightillating. For largeag
our spectral density plots have ‘quasicontinuous’ chara@Z] sharing the qualitative
features shown in the quasiperiodic spectrum of Figure I8lih We shall later remove

these fluctuations by integratimgover the angles.

4.3.3.2 Signatures of Radiation Reaction

Having established that the results are stable, to see \lielargest differences between
results with and without radiative damping lie, it is usefulook at a contour plot of the
spectral density for a larger rangewfvalues and values. We choose to use fixgd= 0

since this is where we saw the biggest disagreement betwitleramd without radiative
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Figure 4.19: The difference between the spectral density whea 1 and whenyy = 1+ € as
measured b, Eq. [4.38), as a function @b (w' = 1,0 = 1/2, ¢ = 0).

terms in Figuré_ 4.16. Due to the highly oscillatory naturetaf spectrum, using a high

resolution for the plots will allow us to see more of the stane of the spectrum.

Using contour plots to represent the spectral density dlsavsius to compare the chang-
ing structure as the laser intensity is increased. FiJuiss #[4.23 were produced with
the aid of parallel programming using the high performarmaputing (HPC) facility at
the University of Plymouth. The structure of the spectrumetp=0.1,1,10, 20 is shown,
all neglecting the radiation terms.  We see the common feattithe primary peak
at w = 1 and an introduction of smaller peaks as the strength paeariseincreased.
We compare these plots to Figure 4[inl[82], which shows thaseegjualitative features.
The plots with radiation terms included are very similartie tontour plots without the
RR terms, so instead of reproducing these plots, in ordee¢osore clearly where the
differences lie we plot the difference in spectral dengtyrr— Prr Results are shown
in Figured 4.24 and 4.25 (Note that although the scale inrE{dE5 is limited to+0.7
so that the structure can be seen more clearly, the largéstetice wherag = 20 is ap-

proximately—70). From these difference plots, we can see that the difteeseem to
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Figure 4.20: Contour plot showing the spectral density &gr= 0.1 as we varyd andw’ (¢ = 0).
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Figure 4.21:Contour plot showing the spectral density fgr= 1 as we varyd andw’ (¢ = 0).

occur in bands, which gives the impression of a shift efféthe RR. A shift towards the
lower frequencies is observed in [23] when RR is includeck differences oscillate from
positive to negative and it is not clear from the plots whethere is an overall difference.

If we calculate the average difference in the region comeilieve get a negative result in
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Figure 4.22:Contour plot showing the spectral density &gr= 10 as we vary andw’ (¢ = 0).

Figure 4.23: Contour plot showing the spectral density &gr= 20 as we vary andw’ (¢ = 0).

both cases implying that RR gives more radiation than if dfisct was not present. A
summary of the differences in shown in Table|4.1. We see Hwabiggest differences

tend to occur whew' is larger. This is in agreement with the results shown in.[23]e
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Figure 4.25:Difference in spectral densitg,orr— Prr, for ag = 20 for varying6 andw’ (¢ = 0).

angle of largest difference seems to shift for differagtfor ag = 10 we find the maxi-
mum difference occurs around/4 whereas foeg = 20 the maximum difference occurs

closer tort/2.

In order to look for the overall effect of RR, the spectrumegriated over both angles
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Table 4.1:Summary of differencespforr— PrR) IN Spectral density foag = 10 andap = 20.
This table contains the maximum and minimum differences,ctivice of parameters
for which these maxima and minima occur (which.max / whigh)imthe sum of the
differences and the average of the differences over theersingwn in Figurels 4.24 and

4.25 @=0).
ag=10 ap =20
maximum 0.221 55.7
minimum -0.207 -70.7

which.max| w' =2.997,0 =0.877 | o =2.673,0 = 1.69
which.min | ' =2.988,0 =0.873| o/ =2.943,6 = 1.78
sum -217.1 -44127.3
average -0.000217 -0.0441

will be calculated. This should magnify its impact as wellsasooth out some of the
oscillations that occur in the spectrum for lage We begin with smalbg values and
start by integrating ovep since there are less oscillations in the spectrum as we kiay t
angle and hence less calculations are required for acaatatgation overp than overd.
Integrating the function again with respect@ave produce the spectrum over all angles
as a function of frequency. Results fay = 1 andag = 2 are shown in Figure 4.26. We
see that the basic shape is similar with a large peak whereatyeency is just less than
«’ = 1. The plot forag = 2 shows a few more oscillations than fay = 1 and also the
number of photons radiated is higher for the larger lasength.

Figurel4.27 is the spectrum integrated over all angles asaifin of w’ when we choose
ap = 10. We again find similarities in the overall shape, for exkrthe peak around
«' = 1 and decrease in radiation for higher frequencies. We asa ¢arge amount of
radiation for frequencies close to zero; there was a sligtreiase fronag = 1 toag = 2

in the radiation for these smaller frequencies althoughheyes near as large as what we
find for ag = 10. As expected the number of radiated photons is increaseti§ larger
laser strength. As predicted, integration over the anglems to have smoothed out the
oscillatory behaviour. Comparing the results with and withRR we find that there is
little difference between the two results, not visible frohe plot in Figurd 4.27, but

this is not surprising given our earlier results gy= 10. However, if we now plot the

86



1.0

0.8

int( psin(6) d8 dg)
0.6

0.2
|

0.0

Figure 4.26:Spectrum of radiation integrated over all angles for varyisl. Red dashed line
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Figure 4.27:Spectrum of radiation integrated over all angles for vayyin whenap = 10.
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difference as a function of the frequency (see Figurel4.28jmd that there is a difference
(larger than the numerical error). Despite no obvious paitethe difference plot, we see
on average that the difference, without RR - with RR, is nggatThis indicates that
the overall number of radiated photons is larger in the cdser&RR is accounted for.

Although we would not expect to be able to easily detect susimall difference for an
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Figure 4.28:Difference between spectrum of radiation integrated ollearayles for varyingw/
whenag = 10 without RR - with RR ¢g = 10~3).

intensity of this magnitude, it suggests that for higheemsities there would be more
radiation detected than expected when RR effects are igndilee overall amplitude of
the spectra is larger when we account for RR due to the eneiigyod the electron from
the radiation field. In the case of no RR the electron does aiot(@r lose) energy and so
continues to radiate at the initial energy [23]. Howeverha tase when there is RR the
electron, which begins initially at rest, radiates whiletoually gaining energy.

In this chapter we have observed the spectrum of radiatiperfzssed fields and for a
pulsed plane wave. In our analytic investigation of the sédensity for crossed fields

we were able to determine the impact of the initial gammaofach the spectrum. We
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saw that for larger initial values we got more radiation. Aftsiowards higher scattering
frequencies was also observed for larggr It was also possible to explore the effect
of the duration of the field when we numerically calculated #pectrum for crossed
fields of finite duration. For increased duration we saw thatspectrum was red shifted,
but also that there was more radiation emitted for the lodgeations. When exploring
the spectrum for the pulsed plane wave we were able to stueintpact ofag on the
spectrum. Ifag > 1, the harmonics dominate the spectrum [83]. In particulanvere
interested in the RR effects. Since the radiation spectruovigles a sensitive way of
revealing RRI[[79] we compared the spectrum with and withadiative terms included.
Overall we found an increase in emitted radiation when RRaeasunted for due to the

energy gain of the electron from the radiation field.
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Chapter 5
Conclusions and Outlook

Since its invention in 1960, the laser has come a long wayeisdsave developed rapidly,
now used worldwide in areas from entertainment to fundaaiectence. With lasers now
able to accelerate particles close to the speed of light atidplans for further increases
in laser intensity, the theory behind laser matter intéoasthas required some attention.
This thesis sought to simulate the interaction of thesensgdasers with charged par-
ticles, taking into account the relativistic nature of #aésteractions. In particular we
wished to determine the impact of radiation reaction (RRjh@nbehaviour of electrons
in high-intensity laser beams, a topic that has receivedattention due to the contin-
uing advances in laser technology. We also looked to find tattefe mechanism for
vacuum laser acceleration for a particle initially at rd$te use of lasers as table-top par-
ticle accelerators has been an area of great interest sie@eténsities now achievable by
modern lasers have continued to rise. These developmergsskan a renewed interest
in Thomson scattering, a process which becomes nonlinean witensities exceed the
relativistic threshold. We looked to the scattered radrasipectrum as a way of detecting

evidence of RR.

5.1 Summary

We used a pulsed plane wave model to simulate our laser fledden since it provided a
reasonable description of the laser field and still allowedousolve the Landau-Lifshitz

(LL) equation analytically. This choice was therefore ws@h providing a benchmark
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for our numerical calculations. We began by laying the gowrk for our investiga-
tions, first considering Maxwell's equations and the Lozefiorce law in their familiar
3-dimensional notation and then rederiving them using aveoient covariant formal-
ism. We looked at the power radiated and saw that it was ptiopait to the acceleration
squared. Having established this link between accelerafioharges and emitted electro-
magnetic radiation, we explored the impact that this haseretjuations of motion. For
high intensities RR needs to be included. The inclusiondifition terms in the equations
of motion has a long history with issues arising such as rayaelutions and preacceler-
ation in the Lorentz-Abraham-Dirac (LAD) equation. The Lijuation provided us with

a good solution to such problems.

A novel numerical scheme was introduced, which can be usedite the equations of
motion for arbitrary field configurations. The method wasrtlughly tested and as well
as being exact for constant fields maintains explicit carare; in particular, it precisely
preserves the on-shell condition. Some of the conventiamge difference schemes can
introduce discretisation errors that lead to Lorentz \iolss. In addition, the method can
include the radiative back-reaction on the particle motibtime LL equation was therefore
solved analytically and numerically to find the trajectongldhe velocity of an electron in

the laser field. Comparing the numerical results to the dicadplution for a pulsed plane
wave, the errors were seen to scale as expected for a firstroetbod. The method was
extended to a fourth order method and the errors scaleddingty. The higher order

method was shown to be extremely accurate even for a largeetigation step size.

We successfully identified differences in the particle motivhen RR was accounted for.
For a particle initially at rest in a pulsed plane wave, a ghdrparticle is accelerated
by the external field. The particle radiates so we see a lagygemma factor when RR
is accounted for. We note however that this is not the casa foead-on collision of
an electron and laser beam [31]. Our results showed thaatradireaction plays an
important role for an optical laser withy = 3 x 103, but is negligible for an XFEL with

ap = 10.
Armed with our method of solution to the equations of motiod a general model for our
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laser pulse we went on to look at the idea of accelerating myehssing a laser in vacuum.
Despite concerns that acceleration in vacuum could notigeecsubstantial energy gain,
we reviewed examples in the literature of possible methésda@ium laser acceleration.
We found that if we wanted a net energy gain we would requira@ipalar pulse. We

were able to identify the important parameters in vacuurarlasceleration - the phase
shift and the pulse width. We found that without a carrier ggh¢éhe pulse had a zero
average field. For a nonzero average field we observed a rofizal velocity, but for a

zero average field there is no net acceleration. It was alsershow staging a series of
laser pulses could magnify the effects of these unipolasgauio give even larger energy
gains. Our investigation into short pulse accelerationcaued that if we were to use an
incomplete cycle, the average field would be non zero, hellmgiag a net acceleration.

The half-cycle pulse provided an upper limit to the potdrmrergy gain achievable using

subcycle acceleration.

A search for an optimum pulse shape indicated that a beastikicture was effective in
providing a net acceleration. We therefore proceeded tesinyate the two-colour laser,
where two copropagating lasers of differing frequenciessaiperimposed to a form an
effective overall pulse profile. The overall pulse profildsits the beat wave structure
found in our shape function search. By using a choice of egquw, = w; /16 we saw
the charge leaving with close to peak energy, the type ofggrgain expected when sepa-
rating the electron from the laser before it decelerates.tio-colour laser gave a similar
pulse profile to the cégulse, which again provided an upper limit to potential gathis
time when larger values df are used. The two-colour laser for an optimum choice of
frequency difference showed highly significant energy giasuggesting that there may
be potential for vacuum laser acceleration to compete Wéttrpa laser acceleration. Our
study into vacuum laser acceleration also showed furthieleace of the impact of RR.
The electron achieves a net acceleration much larger thawowdd expect if the RR
terms are neglected. We therefore underestimate the nelesaiton when we ignore the

effects of RR.

The effect of RR was also observed when we studied the speatfuadiation. We
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initially carried out an analytic investigation based oe tadiation in crossed fields. Here
we observed the effect of the initial gamma factor on the spet We saw that for larger
initial values we got more radiation and a shift towards kigécattering frequencies. We
observed soft and collinear divergence when we looked aiiat scattering. A numerical
study of the crossed fields for the more physical scenaribeofields with finite duration
allowed us to explore the effect of changing the duratiork-or increasind we saw that

the spectrum was red shifted and the overall emitted radiatas higher.

We then went on to explore the spectrum of radiation for ougioal plane wave with
Gaussian envelope. We used this to study the impact of iiyems the spectrum. For
largeag we observed increased oscillations. Despite the chakédllictuations however,
we did not find evidence of chaos in the particle trajectory dmpared the spectrum
with and without radiative terms included. For forward seahg we saw a significant
effect of RR forag = 3 x 10°, with RR increasing the amount of radiation. Using parallel
programming, we were able to look at contour plots of theed#hce with and without
RR forag = 10 andag = 20; we noticed a shift effect of RR. When observing the spec-
trum over all angles foag = 10 we found an increase in emitted radiation when RR was

accounted for due to the energy gain of the electron fromatetion field.

The effect of RR was seen consistently throughout Chaptdrs\@ saw that for a charged

particle initially at rest, when accelerated the chargagianergy from the radiation fields.

5.2 Outlook

Up to now the laser has been modelled by a plane \Ekex), a null-field that is infinite
in transverse directions. Now we have established a stragthad of solution for the
equations of motion we may apply it to more complex field cantigions. Standing

waves could be considered,

E(k-x)+E(k-x), k= (ko,k), k= (K —k) . (5.1)
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In the case of standing waves, which do not correspond tefieldis, there is no analytic
solution available and so numerical methods must be used Tars alternative model is
still infinite in the x-y plane, when in reality the laser beam is finite. For a morastal

model of a laser beam that is finite in transverse directiaescould look at Gaussian

beams; this has been explored by Narozhny and Fofanov [R5, 26

We made the assumption in our work with the pulsed plane wandeirthat the electron
only interacts with the centre of the laser focus. We memtibim Sectiorh_1]2 that if we
use Gaussian functions to model our laser beam we obtaie plawe fields in the limit
where the beam waist becomes large. However if an electram lvadius is no longer
narrow compared to the laser waist size, the transverseeffieets become important.
The pondermotive force trying to move electrons from theeantre was shown in [70]
to lead to measurable effects only for a very small beam sadiuwould be interesting
to investigate whether our results for the accelerationhafged particles from rest still
hold for Gaussian beams with a small waist size. Using a meakstic model, we could

also verify our results on the impact of RR.

Our work on the spectrum of radiation could also be develapedew different ways. It
would be useful to extend the work done fgy= 10 on the spectrum over all angles, to
higherag values where the impact of RR has been seen to be more sighifi@blems
arise with the oscillatory behaviour of the spectrum, buh# numerical method were
developed to overcome such issues, the total spectrumrégdg could be investigated.
It would also be useful to provide an exact comparison of theydic and numerical
approaches for the spectral density for constant fieldsndJsibounded trajectory such
as circular motion, for which the analytic result for the gjpem can be calculated, this

kind of comparison would be possible.

As laser intensities continue to rise quantum effects mag become apparent. Differ-
ences between classical and quantum results for an intessiedulse are investigated by
Boca and Florescu in [84] when RR is neglected. It would berggting to compare the
results from our spectra, which include radiative effeatgh nonlinear Compton scat-

tering. A closely related idea is to identify signatures adgtum radiation reaction in
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Compton scattering spectra [85].

Once we have a realistic model for the laser beam, the nuat@niadel can be extended
to look at multi-particle scattering. One option would belevelop cascade codes using
high performance computers to look at how particles behatte nealistic beams when
they are able to interact with each other. This can incotpo@mpton scattering and
pair production|[[86] for example, and could be used for deieing the energy gained

from laser beams.

This thesis has provided the tools needed to simulatevistti laser matter interactions,
promising results in the application of these interactji@msl a way to detect differences
occurring during the interactions when RR effects becomeifsitant. There are still de-
velopments that can be made to our simulations, but mucheo€dintent in this thesis

may be used as a basis for future work in this exciting and evaring area of physics.

96



List of references

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

A. Einstein, “On the Quantum Mechanics of RadiatioBliys. 218 (1917)
121-128.

Encyclopedia of Laser Physics and Technology.

http://www.rp-photonics.com/stimulated_emission.html.

The Council for Scientific and Industrial Research (CHiRSouth Africa.

http://www.csir.co.za/lasers/basics_of_lasers.html.
The Central Laser Facility (CLF) websitettp://www.clf.stfc.ac.uk.

The Engineering and Physical Sciences Research ColztR8RC) website.
http://www.epsrc.ac.uk.

Y. l. Salamin, S. Hu, K. Z. Hatsagortsyan, and C. H. KeitBlelativistic
high-power laser-matter interaction®hys. Rept427 (2006) 41-155.

R. T. Hammond, “Relativistic Particle Motion and Radaamt Reaction in
Electrodynamics,EJTP7 no. 23, (2010) 221-258.

K. P. Singh, “Laser induced electron acceleration inwan,” Phys. Plasma&l
(2004) 1164.

V. Marceau, A. April, and M. Piche, “Electron accelemtidriven by ultrashort and
nonparaxial radially polarized laser pulses,”
arXiv:1204.5726 [physics.acc-phl].

X. Ding, L. Shao, D. Cline, I. Pogorelsky, K. Kusche, Medturin, V. Yakimenko,
Y.K. Ho, Q. Kong, and J. J. Xu, “Vacuum laser accelerationegkpent perspective
at brookhaven national lab-accelerator test facilityPmoceedings of IPAC2012
pp. 2735-2737. 2012.

Y. Y. Lau, F. He, D. P. Umstadter, and R. Kowalczyk, “Nim@ar Thomson
scattering: A tutorial,Phys. Plasma0 no. 5, (2003) 2155-2162.
http://link.aip.org/link/?PHP/10/2155/1.

97


http://www.rp-photonics.com/stimulated_emission.html
http://www.csir.co.za/lasers/basics_of_lasers.html
http://www.clf.stfc.ac.uk
http://www.epsrc.ac.uk
http://dx.doi.org/10.1016/j.physrep.2006.01.002
http://arxiv.org/abs/1204.5726
http://dx.doi.org/10.1063/1.1565115
http://link.aip.org/link/?PHP/10/2155/1

[12] S.Y. Chen, A. Maksimchuk, and D. Umstader, “Experinaobservation of
relativistic nonlinear Thomson scatteringyature396 (1998) 653—-655.

[13] T. Z. Esirkepov and S. Bulanov, “Fundamental Physia$ Relativistic Laboratory
Astrophysics with Extreme Power LasersyXiv:1202.4552 [astro-ph.HE].

[14] A. Einstein, “On the electrodynamics of moving bodies,
Annalen Physl7 (1905) 891-921.

[15] H. A. Lorentz, The Theory of Electrond8.G. Teubner, Leipzig, 1906; reprinted by
Dover Publications, New York, 1952 and Cosimo, New York, 200

[16] M. Abraham,Theorie der ElektrizitdtTeubner, Leipzig, 1905.

[17] P. A. M. Dirac, “Classical Theory of Radiating ElectsghProc. Roy. Soc. A67
(1938) 148-169.

[18] H. SpohnDynamics of Charged Particles and their Radiation Fieltambridge
University Press, Cambridge, 1905.

[19] F. Rohrlich,Classical Charged ParticlesNorld Scientific, Singapore, 3rd ed.,
2007.

[20] G. Ares de Parga, R. Mares, and S. Dominguez, “An unglaysesult for the
Landau-Lifshitz equation of motion for a charged partickRevista Mex. Fisic&2
(2006) 139-142.

[21] H. Spohn, “The Critical manifold of the Lorentz-Diragq@ation,”Europhys. Lett.
49 (2000) 287.

[22] L. D. Landau and E. M. LifshitZThe Classical Theory of Fields (Course of
Theoretical Physics, Vol. 2Butterworth-Heinemann, Oxford, 1987.

[23] J. Koga, T. Z. Esirkepov, and S. V. Bulanov, “Nonlinedromson scattering in the
strong radiation damping regimd?hys. Plasma$2 (2005) 093106.

[24] C. Harvey and M. Marklund, “Radiation damping in pulggdussian beams,”
Phys. Rev. 85 (2012) 013412.
http://link.aps.org/doi/10.1103/PhysRevA.85.013412

[25] N. B. Narozhny and M. S. Fofanov, “Scattering of relettic electrons by a
focused laser pulseJETP90 (2000) 753-768.

[26] N. B. Narozhny and M. S. Fofanov, “Anisotropy of elecgtsoaccelerated by a
high-intensity laser pulsePhys. Lett. A295 (2002) 87-91.

98


http://arxiv.org/abs/1202.4552
http://dx.doi.org/10.1002/andp.200590006
http://dx.doi.org/10.1103/PhysRevA.85.013412
http://link.aps.org/doi/10.1103/PhysRevA.85.013412

[27] V. Yanovsky, V. Chvykov, G. Kalinchenko, P. RousseauRBnchon, T. Matsuoka,
A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krirsck, “Ultra-high
intensity- 300-TW laser at 0.1 Hz repetition rai®ptics Expres46 (2008) 2109.

[28] S. Bulanov. Private communication, 2012.

[29] S. ColemanElectromagnetism, Paths to Researétbenum, New York, 1982. ed.
Teplitz, D.

[30] J. D. JacksonClassical Electrodynamicslohn Wiley & Sons, New York, 3rd ed.,
1998.

[31] C. Harvey, T. Heinzl, and M. Marklund, “Symmetry breagifrom radiation
reaction in ultra-intense laser field®hys. Rev. 34 (2011) 116005,
arXiv:1110.0628 [physics.class-ph].

[32] R. M. Wald,General Relativity University of Chicago Press, 1984.

[33] A. Di Piazza, “Exact solution of the Landau-Lifshitzwegion in a plane wave,”
Lett. Math. Phys83 (2008) 305.

[34] C. Harvey, T. Heinzl, N. lji, and K. Langfeld, “Covarigiorldline Numerics for
Charge Motion with Radiation ReactiorPhys. Rev. 33 (2011) 076013,
arXiv:1012.3082 [physics.class-phl].

[35] A. H. Taub, “Orbits of charged particles in constantdie!
Phys. Rev73 (1948) 786—798.
http://link.aps.org/doi/10.1103/PhysRev.73.786.

[36] C. Itzykson and J. B. ZubeQuantum Field TheoryDover, New York, 2005.

[37] Y. Hadad, L. Labun, J. Rafelski, N. Elkina, C. Kliet al., “Effects of
Radiation-Reaction in Relativistic Laser Acceleration,”
Phys. Rev. 82 (2010) 096012arXiv:1005.3980 [hep-ph].

[38] E. Esarey, P. Sprangle, and J. Krall, “Laser accelenadf electrons in vacuum,”
Phys. Rev. B2 (1995) 5443-5453.

[39] A. Troha, J. Van Meter, E. Landahl, R. Alvis, K. Lgf al,, “Vacuum electron
acceleration by coherent dipole radiatioRliys. Rev. B0 (1999) 926—934.

[40] J. Wang, W. Scheid, M. Hoelss, and Y. Ho, “Comment on (am electron
acceleration by coherent dipole radiatioiPhys. Rev. B5 (2002) 028501.

[41] A. Troha and F. Hartemann, “Reply to comment on ‘Vacuueti&on acceleration
by coherent dipole radiation’Phys. Rev. b5 (2002) 028502.

99


http://dx.doi.org/10.1364/OE.16.002109
http://dx.doi.org/10.1103/PhysRevD.84.116005
http://arxiv.org/abs/1110.0628
http://dx.doi.org/10.1103/PhysRevD.83.076013
http://arxiv.org/abs/1012.3082
http://dx.doi.org/10.1103/PhysRev.73.786
http://link.aps.org/doi/10.1103/PhysRev.73.786
http://dx.doi.org/10.1103/PhysRevD.82.096012
http://arxiv.org/abs/1005.3980
http://dx.doi.org/10.1103/PhysRevE.52.5443
http://dx.doi.org/10.1103/PhysRevE.60.926
http://dx.doi.org/10.1103/PhysRevE.65.028501
http://dx.doi.org/10.1103/PhysRevE.65.028502

[42] P.Bucksbaum, M. Bashkansky, and T. Mcllrath, “Scategof electrons by intense
coherent light,Phys. Rev. Let68 (1987) 349-352.

[43] J. Hus, T. C. Katsouleas, W. Mori, C. Schroeder, and Xt&l, “Laser
acceleration in vacuumgonf. Proc.C970512 (1997) 684—686.

[44] F. Wang, B. Shen, X. Zhang, X. Li, and Z. Jin, “Electrorcaleration by a
propagating laser pulse in vacuurRhys. Plasma4 no. 8, (2007) 083102.
http://link.aip.org/link/?PHP/14/083102/1

[45] W. Scheid and H. Hora, “On electron acceleration by plaansverse
electromagnetic pulses in vacuurhdser and Particle Beaméno. 02, (1989)
315-332.

[46] V. Dinu, T. Heinzl, and A. llderton, “Infra-red divergees in plane wave
backgrounds/arXiv:1206.3957 [hep-phl.

[47] H. Hojo, B. Rau, and T. Tajima, “Particle acceleratiodaoherent radiation by
subcycle laser pulsesNucl. Instrum. Meth. 410 (1998) 509-513.

[48] M. P. Liu, H. C. Wu, B. S. Xie, and M. Y. Yu, “Electron aceghtion in vacuum by
subcycle laser pulsePhys. Plasmag5 no. 2, (2008) 023108.
http://link.aip.org/link/?PHP/15/023108/1

[49] T. Haeuser, W. Scheid, and H. Hora, “Acceleration otelens by intense laser
pulses in vacuum/Phys. Lett. AL86 (1994) 189-192.

[50] J. X. Wang, W. Scheid, M. Hoelss, and Y. K. Ho, “Electrarceleration by intense
shock-like laser pulses in vacuurPhys. Lett. 2275 (2000) 323-328.

[51] H. Malav, K. P. Maheshwari, and V. Senecha, “Analytiaatl numerical
investigation of the effect of pulse shape of intense, fgales Ty, laser on the
acceleration of charged pariclekJPAP 49 no. 4, (2011) 251-256.

[52] D. H. Torchinsky, T. Feurer, and K. A. Nelson,
“Electron acceleration through spatiotemporal shapingjtoashort light pulses,”
in Ultrafast Phenomena XIWol. 79 of Springer Series in Chemical Physics
pp. 152-154. Springer Berlin Heidelberg, 2005.
http://dx.doi.org/10.1007/3-540-27213-5_47.

[53] C. Harvey, T. Heinzl, A. llderton, and M. Marklund, “Thetensity dependent mass
shift: existence, universality and detection.” 2042Xiv:1203.6077 [hep-ph],
to appear in Phys. Rev. Lett.

100


http://dx.doi.org/10.1103/PhysRevLett.58.349
http://dx.doi.org/10.1063/1.2759193
http://link.aip.org/link/?PHP/14/083102/1
http://arxiv.org/abs/1206.3957
http://dx.doi.org/10.1016/S0168-9002(98)00157-0
http://dx.doi.org/10.1063/1.2839031
http://link.aip.org/link/?PHP/15/023108/1
http://dx.doi.org/10.1016/0375-9601(94)90338-7
http://dx.doi.org/10.1016/S0375-9601(00)00614-9
http://dx.doi.org/10.1007/3-540-27213-5_47
http://dx.doi.org/10.1007/3-540-27213-5_47
http://arxiv.org/abs/1203.6077

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

D. N. Gupta and H. Suk, “Electron acceleration to higkrgy by using two
chirped lasers,Laser and Particle Beanb no. 01, (2007) 31-36.

Y. I. Salamin, “Electron acceleration from rest in vaouby an axicon Gaussian
laser beam,Phys. Rev. A3 (2006) 043402.

S. Takeuchi, “Electron acceleration by longitudinigatric field generated by
colinearly overlapped two laser beams,’AiP Conference Seriesol. 369,
pp. 695—-700. 1996.

W. Kimura, A. van Steenbergen, M. Babzien, |. Ben-ZviQampbellet al., “First
staging of two laser accelerator®hys. Rev. LetB6 (2001) 4041-4043.

W. Kimura, L. Campbell, C. Dilley, S. Gottschalk, D. Quiby, et al.,, “Detailed
experimental results for laser acceleration staging,”
Phys. Rev. ST Accel. Beath&001) 101301.

K. Sakai, S. Miyazaki, S. Hasumi, T. Kikuchi, and S. Kaaa'Electron
Acceleration by a Focused Intense Short-Pulse TEM(1, 0) M(DEE1) - Mode
Laser in Vacuum,Laser Physic4d5 no. 12, (2005) 1706-1709.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. Rirfhery,Numerical
Recipes 3rd Edition: The Art of Scientific Computi@ambridge University Press,
3rd ed., 2007.

Encyclopedia of Laser Physics and Technology.
http://www.rp-photonics.com/beat_note.html.

W. W. Hsiang, W. C. Chiao, C. Y. Wu, and Y. Lai, “Direct aiysation of two-color
pulse dynamics in passively synchronized Er and Yb modkeldéiber lasers,”
Opt. Expresd9 no. 24, (2011) 24507-24515.
http://www.opticsexpress.org/abstract.cfm?URI=oe-19-24-24507.

Y. I. Salamin, “Electron acceleration in a tightly-ie®ed vacuum laser beat wave,”
Phys. Lett. A335 (2005) 289-294.

B. Hafizi, A. Ting, E. Esarey, P. Sprangle, and J. Kralatuum beat wave
acceleration,Phys. Rev. B5 (1997) 5924-5933.
http://link.aps.org/doi/10.1103/PhysRevE.55.5924.

K.-J. Kim, K. T. McDonald, G. V. Stupakov, and M. S. Zotoev, “A bounded
source cannot emit a unipolar electromagnetic wa&eXiv Physics e-print¢Mar.,
2000) ,arXiv:physics/0003064.

101


http://dx.doi.org/10.1103/PhysRevA.73.043402
http://dx.doi.org/10.1103/PhysRevLett.86.4041
http://dx.doi.org/10.1103/PhysRevSTAB.4.101301
http://www.rp-photonics.com/beat_note.html
http://dx.doi.org/10.1364/OE.19.024507
http://www.opticsexpress.org/abstract.cfm?URI=oe-19-24-24507
http://dx.doi.org/10.1016/j.physleta.2004.12.049
http://dx.doi.org/10.1103/PhysRevE.55.5924
http://link.aps.org/doi/10.1103/PhysRevE.55.5924
http://arxiv.org/abs/arXiv:physics/0003064

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

G. Malka, E. Lefebvre, and J. L. Miquel, “Experimentab$2rvation of Electrons
Accelerated in Vacuum to Relativistic Energies by a Higtehsity Laser,”

Phys. Rev. Let8 (Apr, 1997) 3314-3317.
http://link.aps.org/doi/10.1103/PhysRevLett.78.3314.

K. T. McDonald, “Comment on “Experimental ObservatioinElectrons
Accelerated in Vacuum to Relativistic Energies by a Higtehsity Laser”,”
Phys. Rev. LetB0 (Feb, 1998) 1350-1350.
http://link.aps.org/doi/10.1103/PhysRevLett.80.1350.

Vachaspati, “Harmonics in the scattering of light bgdrelectrons,”
Phys. Revi28 (1962) 664—666.
http://link.aps.org/doi/10.1103/PhysRev.128.664.

N. Sengupta, “On the scattering of electromagneticasdw free electron-1 :
Classical theory,Bulletin of Cal. Math. Soc41 no. 1, (1949) 187-198.

T. Heinzl, D. Seipt, and B. Kampfer, “Beam-Shape EffactNonlinear Compton
and Thomson Scattering?hys. Rev. 81 (2010) 022125,
arXiv:0911.1622 [hep-ph]l

J. Schwinger, L. DeRaad, K. Milton, and W. Ts@lassical Electrodynamics
Perseus Books, Massachusetts, 1998.

P. J. Duke Synchrotron Radiation Production and Properti€3xford University
Press, Oxford, 2000.

G. SchottElectromagnetic Radiation and the Mechanical ReactionsiAg from
it. Cambridge University Press, Cambridge, 1912.

T. Heinzl, “Light cone quantization: Foundations armgphcations,’Lect. Notes
Phys.572 (2001) 55—14ZarXiv:hep-th/0008096 [hep-th].

M. Abramowitz and I. A. Stegurblandbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tahl€over, New York, ninth Dover
printing, tenth GPO printing ed., 1964.

C. A. Brau, “Oscillations in the spectrum of nonlinedardmson-backscattered
radiation,”Phys. Rev. ST Accel. Beaih2004) 020701.
http://link.aps.org/doi/10.1103/PhysRevSTAB.7.020701.

E. Esarey, S. K. Ride, and P. Sprangle, “Nonlinear Thamscattering of intense
laser pulses from beams and plasm&ys. Rev. B8 (1993) 3003-3021.

102


http://dx.doi.org/10.1103/PhysRevLett.78.3314
http://link.aps.org/doi/10.1103/PhysRevLett.78.3314
http://dx.doi.org/10.1103/PhysRevLett.80.1350
http://link.aps.org/doi/10.1103/PhysRevLett.80.1350
http://dx.doi.org/10.1103/PhysRev.128.664
http://link.aps.org/doi/10.1103/PhysRev.128.664
http://dx.doi.org/10.1103/PhysRevA.81.022125
http://arxiv.org/abs/0911.1622
http://arxiv.org/abs/hep-th/0008096
http://dx.doi.org/10.1103/PhysRevSTAB.7.020701
http://link.aps.org/doi/10.1103/PhysRevSTAB.7.020701
http://dx.doi.org/10.1103/PhysRevE.48.3003

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

A. Thomas, “Algorithm for calculating spectral intetysdue to charged patrticles in
arbitrary motion,’Phys. Rev. ST Accel. Bead®(2010) 020702,
arXiv:0906.0758 [physics.comp-ph].

C. H. Keitel, C. Szymanowski, P. L. Knight, and A. Magu#Radiative reaction in
ultra-intense laser - atom interactiod,”’Phys. B31 no. 3, (1998) L75.
http://stacks.iop.org/0953-4075/31/1=3/a=002.

C. S. Poon, C. Li, and G. Q. Wu, “A unified theory of chaaklng nonlinear
dynamics and statistical physic&iXiv e-prints(2010) ,
arXiv:1004.1427 [nlin.CD].

J. P. Eckmann and D. Ruelle, “Ergodic theory of chaosstreghge attractors,”
Rev. Mod. Phys7 (1985) 617—656.
http://link.aps.org/doi/10.1103/RevModPhys.57.617.

A. Debus, S. Bock, M. Bussmann, T. E. Cowan, A. JochmanKJuge, S. D.
Kraft, R. Sauerbrey, K. Zeil, and U. Schramm, “Linear and-tiorar
Thomson-scattering x-ray sources driven by conventigraadtl laser plasma
accelerated electrons,” BPIE Conference Seriggol. 7359. 2009.

S. K. Ride, E. Esarey, and M. Baine, “Thomson scatteohigtense lasers from
electron beams at arbitrary interaction angl&hys. Rev. (2 (1995) 5425-5442.

M. Boca and V. Florescu, “Thomson and Compton scattewith an intense laser
pulse,”"EPJ D61 (2011) 449-462arXiv:1110.4951 [physics.atom-ph].

A. Di Piazza, K. Hatsagortsyan, and C. Keitel, “Quantadiation reaction effects
in multiphoton Compton scattering?hys. Rev. Lettl05 (2010) 220403,
arXiv:1007.4914 [hep-ph].

A. R. Bell and J. G. Kirk, “Possibility of prolific pair mduction with high-power
lasers,Phys. Rev. Letil01 (2008) 200403.
http://link.aps.org/doi/10.1103/PhysRevLlett.101.200403.

103


http://dx.doi.org/10.1103/PhysRevSTAB.13.020702
http://arxiv.org/abs/0906.0758
http://stacks.iop.org/0953-4075/31/i=3/a=002
http://arxiv.org/abs/1004.1427
http://dx.doi.org/10.1103/RevModPhys.57.617
http://link.aps.org/doi/10.1103/RevModPhys.57.617
http://dx.doi.org/10.1103/PhysRevE.52.5425
http://dx.doi.org/10.1140/epjd/e2010-10429-y
http://arxiv.org/abs/1110.4951
http://dx.doi.org/10.1103/PhysRevLett.105.220403
http://arxiv.org/abs/1007.4914
http://dx.doi.org/10.1103/PhysRevLett.101.200403
http://link.aps.org/doi/10.1103/PhysRevLett.101.200403

	Introduction
	Background and Motivation
	Modelling a Laser Beam
	Organisation of the Thesis

	Motion
	From Maxwell's Equations to Particle Motion
	Covariant Formulation of Classical Electrodynamics
	The Relativistic Equations of Motion with Radiation Reaction

	Analytic Solution of the Equations of Motion 
	Covariant Matrix Method as an Approach to Particle Motion 
	Constant Fields
	Constant Electric Field
	Constant Magnetic Field
	Crossed Fields
	Parallel Fields

	Time Dependent Fields
	Higher Order Numerics

	Impact of Radiation Reaction

	Vacuum Acceleration
	Existing Schemes for Vacuum Laser Acceleration
	Short Pulse Acceleration
	Method
	Results

	Sequence of Pulses
	Pulse Shaping
	Two-Colour Laser

	Radiation
	Calculating the Spectrum of Radiation
	Analytic Investigation: Radiation for Crossed Fields
	Method
	Results

	Numerical Investigation
	Current Conservation
	Crossed Fields
	Pulsed Plane Wave
	Chaotic Behaviour
	Signatures of Radiation Reaction



	Conclusions and Outlook
	Summary
	Outlook

	List of References

