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Abstract*

A connectionist model is presented that used a hebbian
learning rule to acquire knowledge about an artificial
grammar (AG). The validity of the model was evaluated
by the simulation of two classic experiments from the
AG learning literature. The first experiment showed that
human subjects were significantly better at learning to
recall a set of strings generated by an AG, than by a
random, process. The model shows the same pattern of
performance. The second experiment showed that human
subjects were able to generalize the knowledge they
acquired during AG learning to novel strings generated by
the same grammar. The model is also capable of
generalization, and the percentage of errors made by
human subjects and by the model are qualitatively and
quantitatively very similar.

Overall, the model suggests that hebbian learning is a
viable candidate for the mechanism by which human
subjects become sensitive to the regularities present in
AG's. From the perspective of computational
neuroscience, the implications of the model for implicit
learning theory , as well as what the model may suggest
about the relationship between implicit and explicit
memory, are discussed.

Introduction

An artificial grammar (AG) is produced according to a
"Markovian process in which a transition from a state Sj
to any state Sj produces a letter” (Reber, 1967).
Experimental psychology has extensively studied the
learning of AG's (Reber, 1989). The data reveal several
things. I) Subjects can learn and use the grammatical
structure of the strings to facilitate the learning itself.
This has been shown by comparing the learning time for
grammatical and random letter strings. II) Subjects can
generalize the knowledge they have acquired to novel
strings. This was found by using a discrimination task in
which previously unseen strings were classified as

* Authors names are in alphabetical order. Research
supported by the McDonnell-Pew Center for Cognitive
Neuroscience in San Diego.

838

Haline Schendan
Program in Neurosciences, 0608
UC, San Diego

LaJolla, CA 92093
hschenda@igradl.ucsd.edu

grammatical or non-grammatical. III) Depending upon
the instructions, subjects have differing degrees of
awareness of the nature of the grammar and of the
underlying rules. Nevertheless, both the processes
involved in AG learning and the resultant knowledge
structure remain largely unknown. The purpose of our
model was to shed light upon both of these aspects of AG
learning.

There are several ways in which AG knowledge may be
represented. I) Subjects could represent the AG by
explicit rules that correspond to the Markovian process.
II) Subjects may discover the correlation between
symbols, combinations of symbols, and their string
positions, as well as the frequency of occurrence of such
correlations. IIT) According to the "distributive position”
(Vokey and Brooks, 1991), the knowledge that subjects
acquire is composed of a set of specific instances. These
instances can be used to categorize new stimuli by means
of a similarity evaluation process. IV) In contrast to III,
the "abstractive position” concludes that subjects learn
by means of a nonconscious abstraction system without
retention of specific instances (Reber, 1989). According
to this position, both learning and knowledge are
implicit.

While there is evidence for all of these positions, this
may not be problematic because there may be multiple
learning mechanisms which thus result in multiple forms
of knowledge representation. Additionally, - these
positions may not necessarily be mutually exclusive.
For example, the distributive position bears some
resemblance to exemplar models of perceptual
categorization and and the abstractive position resembles
prototype models (Posner and Keele, 1968). Parallel
distributed processing (PDP) models have been proposed
which result in representations that encompass both
exemplars and prototypes (Rumelhart and McClelland,
1986). PDP models are an attempt to use what is known
about the brain to constrain psychological explanation.
With regard to the kind of sequence learning that may be
involved in AG learning, Cleeremans and McClelland
(1991) used a simple recurrent PDP model to explain how
human subjects could encode the temporal context of
complex sequential material. They suggest that “sequence
learning may be based solely on associative learning
processes.” The model presented here suggests that
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associative learning, as may be involved in AG learning,

may take place according to a hebbian mechanism.

Though not a PDP model, the competitive chunking
model of Servan- Schreiber and Anderson (1990), one of
the few computational models of AG learning, is also of
interest because it is based on the notion of hierarchical
chunking. Chunks within a level compete with each

other, while those between levels do not.

The main

shortcoming of the model, however, is that it suggests
little about neuronal mechanisms, failing to explain how
the mind/brain system can accomplish AG learning by

chunking.

One way in which chunks may be formed is through a
process that causes multiple representations to be
connected together. The mechanism proposed by our
model is that of hebbian modification of synaptic weights
between neurons in a network. The Hebb rule is a
neurobiologically plausible mechanism of learning (for
review, cf. Brown etal, 1990). It states that when cell
A excites cell B "some growth or metabolic” change will
take place in both cells such that there is an increase in
the ability of cell A to fire cell B: (Hebb, 1949). The

main points of hebbian plasticity are that (1)

it is

activity between two neurons which determines plasticity,
(2) the level of activity in cell B must be high enough to
generate action potentials, and (3) the change in efficacy
is specific to the connection between cell A and B. In
other words, correlated firing in two neurons enables an

increase in efficacy of the connection between them.

One of the hallmarks of hebbian plasticity is that it is a
mechanism whereby correlations in the environment are
the parameters which determine learning and memory.
Correlations between environmental stimuli are a
ubiquitous characteristic of both the structure of the world
and the temporal sequencing of events. The PDP model
presented in this paper incorporates the Hebb rule since
it is the appropriate computational function for picking
up the correlations present in AG strings. In this paper,
we focus upon the computations and products of neuronal
plasticity which enable a rapprochement between the
various theories of AG learning. The model is tested on
the seminal learning experiments conducted by Reber
(1967). Additionally, our model may have general
implications for how the brain acquires and structures its

knowledge of the world.

The model

The model is a feedforward net composed of three layers,
as shown in Figure 1. The input layer is a 6X8 two
dimensional array in which the rows correspond to the set
of symbols that may appear in a string plus a blank
symbol, and the columns correspond to the position of
the symbol within each string. Each unit projects

forward onto several units in the next layer.

The

dimensions of layers 2 and 3 are 10X8. Each unit in
layers 2 and 3 receives projections from all units in the
previous layer corresponding to its position and to

positions immediately adjacent to it.
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Figure 1. Architecture of the network. Only a few
connections are depicted for simplicity. The filled
ellipses represent the units in the input layer that are
activated by the string -bottom.

The training process can be divided into stages. First,
a string was presented and the activation of each unit was
computed in a feedforward fashion by taking a weighted
sum of the incoming inputs. The formula used was:

(1) Outputj =8 Xj wijj Inputj, where Bisa
scaling factor.

In order to prevent the activations from becoming too
high, they were clipped at top and bottom. Then, for
each position, the most active unit was selected and its
weights updated according to a hebbian rule:

(2) w = Inputj Outputj Delta, where Delta is
the learning rate.

After being updated, the weights were normalized in such
a way that the sum of their absolute value remained
constant. Such a normalization can be justified in
neurobiological terms by assuming that weights have a
metabolic cost; there is a limit to the amount of
connection weighting that a neuron may support. This
process is repeated for every string and the changes in the
weights are cumulative. The value of Delta was selected
following pilot simulations and analysis of the developed

weights and activations. Delta of 0.2 was chosen because
this value resulted in more local weight representations,
while allowing more units to develop than did higher
values. Lower values of Delta resulted in more
distributed weight representations.

Experiment 1

The first experiment simulated experiment 1 of Reber
(1967). In this experiment there were two types of 6-8
letter strings,generated either by a Markovian
(grammatical) or a random process. Fig. 2 shows the



X(4)

Figure 2. The artificial grammar used both in Reber
(1967) and in our experiments.

Markovian process that was used both in our experiments
and in Reber (1967). Subjects were trained on recall of 4
letter strings. For each of 7 sets of strings, training
continued until a criterion per set was reached.
Grammatical strings were learned faster than random, as
reflected in the mean number of recall errors per set (ME).
Supposedly, the acquisition of knowledge about the AG
made it easier to recall, and/ or learn to recall, the
grammatical strings. Analogously, the model was trained
on either grammatical or random strings, and the training
list was divided into sets of 4 strings. The network
learned by updating its weights following each
presentation of a string. To evaluate performance of the
net, it was necessary to select a criterion that was
analogous to ME. Average mean activation (avgMA) per
set, which is inversely related to ME, was chosen because
it incorporates the values of the weights that develop
during training. AvgMA was calculated for both
grammatical and random strings for 4 subjects.

Results

The graphs of the model's data for both layers 1 (Fig. 3a)
and 2 (Fig. 3b) approximate Reber (1967) well. For both
layers 1 and 2, the graph for grammatical strings rises
with each set, while that for the random strings remains
relatively flat. Performance improved with training set
and grammatical strings were easier to learn than random.
A two-way ANOVA was performed. For layer 1, there
was a significant increase in avgMA across sets for both
grammatical and random strings [(F = 72.78), p<0.001].
String type, grammatical versus random, was also
significant [(F = 225.37), p<0.001]. Additionally, there
was an interaction effect of string type with set number
[(F = 29.33), p<0.001]. For layer 2 also, there was a
significant increase across training sets for both
grammatical and random strings [(F = 70.18), p<0.001].
String type , grammatical versus random, was also
significant [(F = 306.95), p<0.001]. Additionally, there
was an interaction effect of string type with set number
[(F =22.63), p<0.001]. A Tukey test for the avgMA for
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Figure 3b. Results of Experiment 1 for layer 2.

sets 1 and 2 was not significant for both layers 1 and 2.
This accounts for the interaction. The most striking
difference between the experimental and simulation graphs
corresponds to the steep change that Reber found between
sets 1 and 2 for both string types. This is missing from
both simulation graphs.

Discussion

The absence of a steep rising phase during training on
sets 1 and 2 is consistent with Reber's explanation of this
finding. He attributed this rise to "a rather complicated
warm-up effect” (Reber, 1967). This learning is
unrelated to the stimuli. Rather, it is a kind of
procedural learning of the training task, irrespective of
the stimuli. It is of interest that procedural learning is
also a kind of implicit learning (Squire, 1987). Thus
there may be at least two forms of implicit learning
active that are involved in AG learning. One that is
stimulus specific and one that is task general. It is only
the former which interested Reber and which the model
was designed to emulate.

Experiment 2



Experiment 2 of Reber (1967) was also simulated.
Here, subjects were trained with 20 grammatical letter
strings until a criterion level of performance was reached.
At test, subjects classified novel strings as grammatical
or ungrammatical. These grammaticality judgments were
about 79% correct (Reber, 1967).

While the simulation training procedure was identical
to that used in experiment 1, the training strings differed
as per Reber (1967). 20, as opposed to 28, grammatical
strings were learned, and the range of string lengths was
broader, 3-8 symbols long. Each sequence of 20
grammatical strings was presented to the net 5 times, for
a total of 100 training trials. The testing phase and the
construction of grammatical, ungrammatical, and
random test strings were identical to that of Reber (1967).
The trained net was presented with all 44 test strings
twice. 5 subjects were simulated by using different initial
weights. In experiment 1, avgMA was used as the
dependent variable because it was a rough index of
learning; in experiment 2, fine grammaticality judgments
were required, based upon subtle irregularities present in
the strings. We therefore used a more sensitive criterion
for grammaticality judgment. The criterion was such
that, after being trained with grammatical strings, the
net classified such strings as grammatical. At the end of
training, the net was tested with its training strings.
Each string generated different activations in the various
units. For each one of the eight possible spatial
positions, the minimum activation obtained over the
whole set of strings was taken as criterion for that spatial
position. A string was judged as grammatical by a layer
if and only if the activations generated by that string were
above criterion for all the eight possible spatial positions.
If there was a conflict between the judgments made by the
two layers, the choice was made at random. It is
obvious by construction that all the training strings were
judged grammatical.

Results

The frequencies of errors made by the network matched
those of Reber (1967), as shown in Table 1a and 1b,
respectively. The type of errors made by the network on
ungrammatical items was analyzed. As in Reber (1967),
strings with multiple errors had a significantly higher
detection rate than any of the others, [X2(1) = 6.21,
p<0.01], the detection rate of strings with a single error
in the last position was higher than that of strings with
an error in the middle, [X2(1) = 6.42, p<0.01], and the
detection rate of strings with a single error in the first
position was higher than that of strings with an error in
the last position, [X2(1) = 694, p<0.01]. The
analysis of the weight matrices indicated that n-gram
detectors had developed. N varied from 1-3 symbols for
units in layer 1; this means that the units could be
selective for a single symbol, bigram, or trigram. An
average of 40% of the units in layer 1 became selective
for a single n-gram. 5% of the units became selective for
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two n-grams. The remaining units had very small
weights, non-selective for any particular n-gram. An
example of a single symbol detector is a unit which was
highly activated only by a "4" in the second position. An
example of a single bigram detector is a unit which
became selective only for the bigram "44" in positions 3
and 4. Examples of trigram detectors are a unit selective
for the trigram "200" in positions 1, 2, and 3, and a
unit selective for the trigram "430" in positions 4, 5, and
6. Units in layer 2 were always highly activated by
multiple symbols, bigrams, trigrams, and/ or higher n-
grams,

Discussion

The consistency of the model with Reber's data support
the hypothesis that the learning principle of the model is
analogous to that used by human beings. Assuming this,
then the structure of the weight matrices developed
according to this learning principle may reveal something
of the nature of mental/brain representation of AG
knowledge. While Reber (1967) found that errors in the
last position were most consistently detected, our model
was most consistent at detecting errors in the first
position. This discrepancy between Reber (1967) and the
model arose because there was less variability that
position than in any other position. Specifically, while
the last symbol in a string was always a ‘1’ and the first
symbol either a ‘2’ or ‘3’, the position of the final
symbol could appear in positions 3-8, whereas the initial
symbol could only appear in position 1. Thus,
considering both variability in symbol type and position,
symbols in the first position were most determined.
Additionally, units in the first and last positions received
input from only 2 columns of units in the previous layer,
whereas all other units received input from 3 columns,
and the constraint on maximum total weight yielded
higher weights per connection between units for those
receiving 2 columns of input. Since symbols at the end
of a string could be represented by a unit in positions 3-8,
strings with the final symbol in either of positions 3-7
would have lower connection strengths than for symbols
in either the first or 8th position. Thus the end symbols
were disadvantaged, relative to the those in the first
position, in terms of the strength of weights that may
project to them. This further contributed to the superior
error detection for symbols in the first position.

Gr Ungr
Gr| 79% | 21%

Judged
Ungr | 22% | 78%

Table 1a. Frequencies of errors obtained in Reber (1967).



Gr Ungr
Gr | 73% | 27%

Judged
ungr | 23% | 77%

Table 1b. Frequencies of errors obtained in the model.

The analysis of the weight matrices confirmed that
pooling knowledge present in both layers 1 and 2 is a
good strategy. Both layers developed units that preferred
certain n-grams to others. However, there was a broad

range of n-gram specificity in each layer. Some units

were specific to only one n-gram, while others responded
well to many. In general, this specificity reflected two
characteristics of the AG used. One characteristic is the
frequency of occurrence of each n-gram. More frequent n-
grams had a higher probability to develop responsive
units, and those units were also more likely to respond
only to that n-gram. The second characteristic is number
of different symbols or n-grams which may occur per
position, or set of positions, respectively. The more n-
grams, the less specificity there was for any particular n-
gram at that position.

One problem with the representation of n-grams within
layers 1 and 2 needs to be emphasized. Because of the
two characteristics of the AG mentioned above, the broad
tuning of some units tended to make such units more
highly activated by some ungrammatical n-grams. These
ungrammatical n-grams were mixtures of the multiple,
grammatical n-grams that the unit had come to prefer.
For example, a unit that preferred legal n-grams "444"
and "002" in positions 2, 3, and 4 could combine these
in several ways that result in a strong activation for
ungrammatical n-grams, such as "404." This property of
broadly tuned units indicates that for AG learning,
distributed representation can increase error rates. Indeed,
several of the errors made in grammaticality judgments
were the results of this. Had there been more unit
specificity, the accuracy of the model might have been
greater. However, since the model performed about as
well as Reber's subjects, humans may also use broadly
tuned units to code AG information. Thus the successes
and pitfalls of hebbian learning mirror those of implicit
learning mechanisms in humans.

It should also be mentioned that layer 2 units were
more broadly tuned than layer 1 units. This follows
naturally from the fact that layer 2 made use of the units
in layer 1, many of which themselves were broadly
tuned. That the combined information from both layers
yielded greater accuracy is also of relevance to theories
about brain processing. According to neuroscience, it is
the more advanced the levels of processing are the ones
that most strongly influence overt behavior. Assuming
the model captures the most relevant aspects of the
neurobiology of learning, then the simulation results
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argue against this idea. It is perhaps more realistic to say
that the level of processing than is most relevant to the
overt response depends upon the characteristics of the
task. In the case of AG learning, each layer contributes
different factors to the grammaticality judgments. Layer 2
has units which prefer longer strings than any layer 1
unit. For strings, or n-grams, less than six symbols long,
there may be a unit in layer 1 that prefers it to any other
string. Thus, the most important function of layer 2 is to
represent longer strings (than layer 1). The most
important function of layer 1, however, may be to be
specific to only one n-gram. This may counteract the
effects of the broadness of layer 2 units. Thus it is a
combination of narrow and broad tuning in conjunction
with distributed representation that constitutes the useful
structure of AG knowledge.

General Discussion

In this paper, a PDP model was presented that used a
hebbian learning rule to acquire AG knowledge. To
evaluate the validity of the model, two experiments from
the classic paper by Reber (1967) were selected. It was
found that the model simulated the Reber results well.
The increase in avgMA of the net paralleled the decrease
in ME that humans exhibit. Novel stimuli that display
the same invariants as learned stimuli elicit similar
responses both in the model and in human subjects.
Thus both are capable of generalization. This was
demonstrated by the testing phase of experiment 2. Thus,
in general, a hebbian learning mechanism is capable of
computing the correlations between aspects of a stimulus
and is able to use that knowledge to generalize and make
decisions. These are basic cognitive abilities.

The model may have important implications extending
beyond the domain of AG learning. While the model may
be presumed to reveal characteristics only of implicit
learning, our results are consistent with the hypothesis
that implicit learning is carried out in the brain by means
of a hebbian mechanism. Perhaps, the representations
formed consist of units distributed across areas of cortex.
with both narrow and broad tuning for correlations in the
stimuli.

This characterization of the structure of knowledge
resulting from implicit learning may be used to address
issues from the implicit/explicit memory literature, such
as whether or not there is a relationship between implicit
and explicit stores and, if so, what the nature of the
interaction may be. Specifically, a grammaticality
judgment must be verbalized. Thus implicit knowledge
must be accessible to verbalization, or explicit memory,
systems. The simulations of Reber's experiments
suggest how implicit knowledge may be used by the
explicit system.

Once the model has been trained on a set of AG strings,
within it is stored the level of activation that corresponded
to acceptable sequences. This information exists as the
weights connecting units in the model and, perhaps, as
the relative efficacy of synapses in the brain of a human



subject. In this type of neural representation, units
coding grammatical n-grams have higher weights for
symbols in correct positions within a string. Thus when
a novel string is presented, mainly grammatical n-gram
units will be activated. These grammatical n-gram units
will produce higher activation over the net than when
ungrammatical strings are presented. In the
ungrammatical case, fewer of these highly weighted n-
gram units are activated, resulting in relatively lower net
activation for such strings.

Through training, systems involved in generating a
response may learn what level of activation tends to be
elicited by the training strings. Any novel string that
elicits a similar level of net activation, its minimum
determined by a threshold, may tend to be treated in the
same way by the response system. This may be related
to perceptual categorization (Posner and Keele, 1968).

That this may be a consequence of AG learning is
supported by the Reber et al (1980) finding that the carlier
explicit instructions are presented to a subject during
training, the better will be performance when tested with
a well formedness task. Well formedness was substituted
for grammaticality by Reber in subsequent experiments
(Reber, 1989). The implications of this study for the
results of the model are twofold. One, the function of
the explicit instructions may be to provide the learning
system with feedback. This may enhance the ability of
the system to categorize the stimuli as belonging to one
kind. Additionally, this may enable a response system
to better differentiate between the levels of activations
that correspond to the category of training stimuli. For
example, in terms of the simulation, the threshold, or
range of thresholds, may be set more precisely.

The second implication of the Reber et al (1980) results
for the model is that the explicit system is capable of
interaction with implicit knowledge systems. The nature
of this interaction probably depends upon the specific task
demands. However, it is not clear in what ways they
interact. The explicit system may not interact with the
kind of learning system modelled here, but rather with a
system involved in generating responses. However,
since in the Reber experiments, training did not involve
grammaticality feedback, the human leaming system can
acquire the ability to make accurate well formedness
judgments without being specifically taught to do so.
Rather, human subjects can use the knowledge gleaned
from exemplar presentation to influence such judgments.
Our model supports this view. The hebbian learning
mechanism permits knowledge of correlations within
exemplars to be stored in a form that may be used by an
explicit, verbalization, or response system to
successfully complete tasks like grammaticality or well
formedness judgments. The model suggests also that the
learning system may function largely in isolation from
one involved in determining the overt behavioral
response. However, that human subjects are able to use
explicit information under certain conditions to facilitate
their performance, and because the results of our simple
model did not conform perfectly to the human data
suggests that under most conditions, the implicit and
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explicit knowledge systems may interact. This includes
the possibility that the structure of the implicit
knowledge system may be modified by the explicit
system. In terms of the model, it must be remembered
that the model is restricted to coding the stimuli in
isolation from any other functions that are performed by a
real neural net. Therefore, it is possible that systems
outside that modelled here are responsible for the effect of
explicit instructions found by Reber, et al (1980).
Adding such systems to the model may allow it to
explain how implicit and explicit systems interact. The
model may best be described as simulating both how
knowledge is stored implicitly and the form of such
knowledge, while also being suggestive of how implicit
knowledge may be used by a verbalizable knowledge
system.
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