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Abstract 

The primary aim of the work described in this thesis is to establish a foundation 

for the applicability of a biochemical biomarker, cholinesterase (ChE) activity in 

food animal species, as an instrument for evaluating exposure to pollutants as 

well as predicting high-level effects on public health. Secondary aims are to 

increase the awareness of pesticide users of anti-ChE exposure, to decide 

whether poisoning episodes involve anti-ChE by measuring residual effects in 

tissues, and to identify sources of contamination in food animal tissues. The 

ChE are specialized carboxylic ester hydrolases that break down esters of 

choline. They are classified as either acetylcholinesterase (AChE) or 

butyrylcholinesterase (BChE). Both AChE and BChE activities were found to be 

higher in cattle than in sheep and higher in erythrocytes than in plasma and 

serum. The anticoagulant heparin significantly affects AChE activity in plasma 

compared with EDTA. Of the different tissue tested, the mean of ChE activities 

was found to be highest in tissue from the liver, followed by lung, muscle, 

kidney and heart for sheep and cattle. In pigs, the ChE activities tested higher in 

kidney, liver, lung, muscle and heart.  

The effect of freezing on ChE activities in liver and muscle tissues was 

significant inhibition after 6 months at -80 °C, whereas decreased after 3 

months at -20 °C. A technique to improve the purification of AChE in sheep 

tissue was developed. BW284c51 strongly reduced acetylthiocholine iodide 

(AcTChI) and propionylthiocholine iodide (PrTChI) hydrolysis and slightly 

affected that of butyrylthiocholine iodide (BuTChI) in the liver, while iso-OMPA 

had no significant effect for muscle BuTChI of sheep and pigs. Histochemical 

study of liver tissue found AChE localised mainly in the cytoplasm of the cell 

lining in the sinusoids. The optimal pH values of AChE and BChE in liver and 

muscle ranged between 7.8 and 8.5. Both AChE and BChE activities increased 

when increase the time course and temperature.  

The half maximal inhibitory concentration (IC50) was found to be higher for 

carbaryl than dichlorvos (DDVP) and diazinon (DZN). Very little residual AChE 

activity was seen in the liver, but more was found in muscles. In general, the 
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rate constants of inhibition (ki) values for liver and muscles were increased in 

different pHs according to the rank order of 8.5 > 7.5 > 6.5, while in plasma it 

was decreased in different temperatures as follows: 20 °C > 30 °C > 40 °C. The 

final experiments were carried out at the rate of spontaneous reactivation (ks) of 

inhibited AChE by DDVP and DZN from liver and muscle was found to be 

higher in sheep compared to cattle and pig, while the aging of phosphorylated 

AChE (ka) was found to be higher in cattle compared to sheep and pig. In 

addition, this study indicated that the developed bispyridinium symmetric (K048) 

oxime seems to be promising reactivated to DDVP-inhibited AChE for sheep 

and pigs while HI-6 was effective in cattle.  
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Chapter 1: General introduction and literature review 

1.1 Introduction 

Enzymes that preferentially catalyse the hydrolysis of ester bonds are classified 

as esterase EC 3.1. In general, two types of esterases have been identified in 

mammalian blood and tissues. These are distinguished according to several 

artificial substrates into two groups "A" and "B" esterases (Nigg and Knaak, 

2000). Diisopropyl-fluorophosphate fluorohydrolase (EC 3.1.8.2) and 

arylesterase/paraoxonase (EC 3.1.1.2) represent subclasses of "A" esterase, 

while carboxylesterase (EC 3.1.1.1) and cholinesterases (ChE) represent a 

subclass of "B" esterase, which are characterized by the presence of an anionic 

site as well as an active (esterase) site. These esterases represent important 

enzymes in the nervous system, responsible for the hydrolysis of carboxylic 

esters family and targets for inhibition by pesticides (Fukuto, 1990; Wilson et al., 

2001; Wilson, 2010).  

In 1914, Dale was the first to propose that the neurotransmitter acetylcholine 

(ACh) is involved in the chemical transmission at autonomic ganglia. He 

suggested that enzymatic hydrolysis of the ester linkage would supply a method 

for the rapid exclusion of ACh from the synaptic cleft (Dale, 1914). Proof for the 

existence of such ChE came in (1926) when Loewi and Navratil used 

experiments on frog hearts to demonstrate that ChE could be inhibited by 

physostigmine (eserine) thus prolonging the effect of administered ACh. In 

1932, a crude extract of an ACh-splitting enzyme prepared from horse serum 

was named "choline-esterase" (Stedman, 1932). Then in 1940, the existence of 

two major forms of human ChE was discovered; human serum cholinesterase 

and red blood cell cholinesterase (Alles and Hawes, 1940).  
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It is now known that ACh is the major neurotransmitter at many central 

synapses and is used by all parasympathetic and some sympathetic nerves, as 

well as in innervations of skeletal muscle (Bajgar et al., 2008; Laura et al., 2008; 

Taylor et al., 2009). 

In general, two types of ChE have been identified in mammalian blood and 

tissues. These are distinguished according to their substrate specificity and 

sensitivity to selective inhibitors. The first is acetylcholinesterase (AChE, EC 

3.1.1.7), which is systematically called acetylcholine acetylhydrolase. Other 

names include true cholinesterase, specific cholinesterase, red blood cell 

cholinesterase, erythrocyte cholinesterase and cholinesterase I. The second is 

butyrylcholinesterase (BChE, EC 3.1.1.8), referred to systematically as 

acylcholine acylhydrolase. Other names include cholinesterase, 

pseudocholinesterase, non-specific cholinesterase, plasma cholinesterase, 

serum cholinesterase, propionylcholinesterase, benzoylcholinesterase and 

cholinesterase II (Silver, 1974; Chatonnet and Lockridge, 1989; Wilson et al., 

2001; Wilson and Philip, 2005). 

The preferred substrate for the AChE enzyme is ACh, while the preferred 

substrates for BChE are butyrylcholine and propionylcholine (Tecles and Ceron, 

2001; Wilson et al., 2001; Wilson and Philip, 2005). Both AChE and BChE serve 

a pivotal role in regulating the transmission of nerve impulses by rapid 

hydrolysis of the neurotransmitter ACh (Taylor et al., 2009; Wilson, 2010). It 

appears that AChE is the predominate enzyme performing this function, since 

AChE catalyses the hydrolysis of ACh much more rapidly than does BChE 

(Soreq et al., 2005; Taylor et al., 2009; Shang et al., 2012). The ChE are 

hydrolases which, under optimal conditions, catalyse the hydrolysis of choline 
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and thiocholine esters at a higher rate than that of other esters. Subsequent 

studies have shown that the order of the relative rates of hydrolysis by AChE 

decreases in the series: acetyl > acetyl-β-methyl > propionyl >> butyryl, while in 

BChE, the rate decreases in the series: butyryl > valyryl > propionyl > acetyl >> 

acetyl-β-methyl (Moralev and Rozengart, 2007). 

In recent times the most common anticholinesterase (anti-ChE) or ChE inhibitor 

used for validation and evaluation of ChE activity assay methods include 

organophosphate (OP) compounds, those acting reversibly by the formation of 

covalent bonds, which are used as nerve agents, flame-retardants and 

insecticides in veterinary medicine (Pérez et al., 2010; Nurulain, 2011). 

Then carbamate compounds, those also acting reversible, forming covalent 

bonds, which apply as insecticides in veterinary medicine, herbicides in 

agricultural crops and gardens, as therapeutic drugs in human medicine 

(Alzheimer's disease, glaucoma and myasthenia gravis). Furthermore, OP and 

carbamate compounds when animals are exposed to OP and carbamate 

compounds cause inhibition of ChE with the consequences of over stimulation 

of muscarinic, nicotinic and central nervous system (Fukuto, 1990; Timothy, 

2001; Wilson and Philip, 2005; Jokanovic and Stojiljkovic, 2006; Fodero et al., 

2012). 

1.2 Physiological functions of cholinesterase 

1.2.1 Classical role 

AChE serve a pivotal role in regulating nerve impulse transmission by rapid 

hydrolysis of neurotransmitter ACh (Bajgar et al., 2008; Laura et al., 2008; 

Taylor et al., 2009; Shi et al., 2012). Likewise, AChE appears to be the 

predominant enzyme performing this function, since hydrolysis of ACh is much 
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quicker than does BChE (Soreq et al., 2005; Taylor et al., 2009; Sanchez-

Gonzalez et al., 2012). The neurotransmitter ACh is ester of choline and acetic 

acid, and a specific indicator for monitoring nervous system owing to 

responsible for transmission of nerve impulses at. 

1. autonomic nervous system from preganglionic to postganglionic neurons in 

both sympathetic and parasympathetic nervous system; 

2. between postganglionic parasympathetic nerve fibre and cardiac muscle; 

smooth muscle and exocrine glands; 

3. neuromuscular junction of somatic nervous system; and 

4. cholinergic synapse in the central nervous system (Yoshio, 1999; Timothy, 

2001; Su et al., 2008). 

Yoshio (1999) observed that ACh is formed by the action of choline 

acetyltransferase (EC 2.3.1.6) from choline and acetyl-CoA at the sites of 

cholinergic neurotransmission. The choline acetyltransferase is responsible for 

transporting ACh from the neuronal cytoplasm to the presynaptic vesicle into 

the synaptic cleft and binds to the postsynaptic cholinergic receptor (muscarinic 

or nicotinic) producing depolarization of the post synaptic membrane (Bielarczy 

and Szutowicz, 1989; Sanchez-Gonzalez et al., 2012; Yu and Jiang, 2012). The 

physiological function of BChE is still unknown (Small et al., 1996; Nese 

Cokugras, 2003; Jiri et al., 2004; Shi et al., 2012). A decrease of BChE has 

been found to have no toxicological significance (Mack and Robitzki, 2000). 

1.2.2 Non-classical role 

The role of AChE in the fetus is a neural development by expression on the 

stopped stage of neuroepithelial cell migration and start of exertion of adhesive 

protein stabilizing cell-cell contacts, influences that appear in embryonic brain 
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(Small et al., 1996; Laura et al., 2008; Su et al., 2008). In addition, AChE is 

involved in the synthesis of β-amyloid fibril protein which assists in the 

distribution of β-amyloid plaques by interacting throughout the anionic site of the 

enzyme in the brain, therefore the pathological characteristic of Alzheimer's 

disease is β-amyloid plaques with neurofibrillary tangles and a decline in the 

levels of ACh due to a substantial reduction in the activity of choline 

acetyltransferase (Small et al., 1996; Stefanova et al., 2003). This is because 

there is homology among AChE and members of the β-amyloid fold family, 

including the neurotactins, which are involved in cell-cell adhesion. The 

preserved domain of neurotactin may be replaced by AChE and still maintain 

cell-cell interaction (Adamson et al., 1975). In addition, AChE regulates neurite 

growth through nicotinic or muscarinic receptors (Small et al., 1996; Karun, 

2001; Laura et al., 2008). 

1.3 Structure of cholinesterase 

The ChE is a polymorphic enzyme, whose molecular weights is generally in the 

range between 70-80 kilodalton (kDa) (Silver, 1974; Massoulie et al., 1993). 

AChE has a high catalytic activity and each molecule of AChE degrades around 

25000 molecule of ACh per second, approaching the limit allowed by diffusion 

of substrate. The existence of AChE and BChE in different molecular forms is 

well recognized, and polymorphic enzymes can be classified based on solubility 

characteristics and sedimentation velocities determined by centrifugation in 

sucrose density gradients. These forms are divided into two classes. 

Firstly, asymmetric or collagen-like tailed forms, the quaternary structure is 

characterized by the presence of a collagen-like tail, which is formed by the 

triple helical association of three collagenic subunits (Q subunits); each subunit 
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may be attached to one catalytic tetramer (G4). The asymmetric forms consists 

of one, two or three catalytic tetramers; these forms are called the A4, A8 and 

A12 forms, respectively (Figure 1.1) (Massoulie et al., 1999). Their main 

characteristics are a large Stokes’ radius, and a specific sensitivity to 

collagenase in low salt conditions in the presence of a polyanion. Localized at 

the skeletal neuromuscular junction, synapses, brain, heart, muscle and 

peripheral ganglia, they have glycosylated head, which are joined together by 

sulfhydryl groups containing the active sites and collagen tails that attach the 

enzyme to the cell surface (Massoulie et al., 1991; Massoulie et al., 1993; Paul 

and Elmar, 1995; Small et al., 1996; Jiri et al., 2004). 

The ionic interaction is characterized by their capacity to cooperate with 

polyanionic components, e.g. glycosaminoglycans, at low ionic strength and 

BChE is less abundant than those of AChE (Massoulie et al., 1993). The 

similarity between AChE and BChE is emphasized by the continuation of hybrid 

asymmetric forms, in which both AChE and BChE subunits are joined to the 

same collagen tail (Chatonnet and Lockridge, 1989; Massoulie et al., 1993). In 

addition, Chatonnet and Lockridge (1989) observed that the most complex form 

is A12, which has 12 catalytic subunits and is classified as either hydrophobic 

water soluble or amphiphilic, linked to a phospholipid membrane or extracellular 

matrix by sturdy interaction with other molecules. 

Secondly, in globular forms the quaternary structure is defined in a negative 

fashion, by the lack of collagen-like tails. These forms, found in both vertebrates 

and invertebrates, exist as a monomer (G1), dimer (G2) or tetramer (G4) joined 

together by disulphide bonds, with each subunit containing an esteratic active 

site containing the serine hydroxyl group, and an anionic site for the quaternary 
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ammonium group (Chatonnet and Lockridge, 1989; Massoulie et al., 1993; 

Rocio Marcos et al., 1998; Wilson and Philip, 2005). The G1, G2 and G4 forms 

are released into the body fluids or anchored to the cell surface through 

hydrophobic amino acid sequences or glycophospholipids (Chatonnet and 

Lockridge, 1989; Paul and Elmar, 1995; Shen, 2004). These forms are localized 

in the nerves, brain, muscles, serum, erythrocytes, lymphocytes, placenta, liver, 

urogenital system, digestive tract, exocrine and endocrine glands. 

Globular forms may be operationally subdivided into amphiphilic membrane 

bound and non-membrane bound forms. The former are defined by their ability 

to bind to micelles of non-denaturing detergents. These interactions are 

demonstrated by sedimentation changes, increase in Stokes’ radius or 

alterations in electrophoretic migration under non denaturing conditions 

(Chatonnet and Lockridge, 1989; Massoulie et al., 1991). In addition, 

(Massoulie et al., 1991) distinguished two types of amphiphilic G2 forms. Type I 

corresponds to glycolipid anchored dimers of AChE, occurring not only in 

nervous tissue, but also in muscles and erythrocytes. Type II dimers are found 

in soluble form in the plasma but are also clearly amphiphilic, are insensitive to 

specific phospholipase, and never aggregate in the absence of detergent but 

only show limited sedimentation (Figure 1.1) (Massoulie et al., 1999). 
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Figure 1.1 Schematic model to demonstrate the molecular polymorphism of AChE and 

BChE (taken from (Massoulie et al., 1999)).  

1.4 Enzymatic mechanism 

The primary function of AChE in the tissues is to catalyse the hydrolysis of the 

neurotransmitter ACh (Bajgar et al., 2008; Taylor et al., 2009; Primožič et al., 

2012). The active site of AChE contains two sub-sites, a negatively charged 

anionic site and an esteratic site containing both an acidic (electrophilic) and a 

basic (nucleophilic) group. 

At the simplest level, AChE action is described as follows. Firstly after the initial 

formation of the Michaelis complex (Step 1 in Figure 1.2), the acylation pathway 

starts with nucleophilic attack by the serine hydroxyl residue in the active site on 

the carbonyl carbon atom of the ACh. The nucleophilicity of the serine hydroxyl 

is influenced by the proximity of a histidine (His) residue in the active site 

(general acid/base catalysis; Step 2 in Figure 1.2). This leads to the formation of 

covalently bound intermediate in which the carbonyl carbon has a tetrahedral 

arrangement of bonds and protonation of the His residue (Step 3 in Figure 1.2). 

The final step is the protonation of the choline by the His residue, leading to 
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cleavage of the ester and release of the choline (Step 4 in Figure 1.2) (Qinmi et 

al., 1998; Sant' Anna et al., 2006). 

 

 

Figure 1.2 Hydrolysis of ACh by acylation (taken from (Sant' Anna et al., 2006)). 

The deacylation pathway starts with the nucleophilic attack of a water molecule 

on the acetyl carbonyl carbon (Step 5 in Figure 1.3). Again, this is promoted by 

the His residue acting as a base (Step 6 in Figure 1.3). This forms another 

intermediate in which the carbonyl carbon has a tetrahedral arrangement of 

bonds (Step 7 in Figure 1.3). In the final step (Step 8 in Figure 1.3) this 

intermediate rearranges with the resulting release of acetic acid (Sant' Anna et 

al., 2006). BChE catalyses the hydrolysis of butyrylcholine into choline and 

butyric acid or propionylcholine into choline and propionic acid using a similar 

mechanism (Morizono and Akinaga, 1981; Tecles and Ceron, 2001; Wilson et 

al., 2001; Wilson and Philip, 2005). 
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Figure 1.3 Hydrolysis of ACh by deacylation (adapted from (Sant' Anna et al., 2006)). 

1.5 Localization of cholinesterase 

ChE are widely distributed across different animal species and there is no 

correlation between the distribution of AChE and BChE in different tissues 

(Massoulie et al., 1993). Furthermore, AChE has been detected widely in plant 

species (Sagane et al., 2005; Mukherjee et al., 2007). Generally, AChE and 

BChE in vertebrates are distributed in different tissues as described below. 

1.5.1 Blood 

AChE is located on the surface of blood cells (erythrocytes, megakaryocytes, 

lymphocytes and platelets) (Paulus et al., 1981; Rocio Marcos et al., 1998; 

Jamshidzadeh et al., 2008; Naik et al., 2008), whereas BChE in blood is located 

mainly in serum and plasma (Sun et al., 2002; Anglister et al., 2008; Naik et al., 

2008; Saxena et al., 2008). Neglecting erythrocyte and plasma ChE activity in 

animals may result in misinterpretations of the extent of anti-ChE from 

pesticides, and hence would affect the setting of regulations relating to human 

exposure and food safety (Wilson, 1996). Also one possibility is that AChE in 
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the erythrocytes evolved to protect the body from natural anti-ChE (Rodney et 

al., 1987; Soreq et al., 2005), for example the natural anti-ChE agents 

chaconine and solanine from tubers and nightshades (Nigg et al., 1996). 

BChE in the plasma catalyse the hydrolysis and hence detoxification of many 

drugs, for example, succinyldicholine to succinylmonocholine and choline 

(Lockridge, 1990), cocaine to ecgonine methyl ester with benzoic acid (Xie et 

al., 1999; Sun et al., 2002), aspirin (acetylsalicylic acid) is rapidly hydrolysed to 

salicylate and free acetate (Masson et al., 1998), and heroin rapidly hydrolysed 

to 6-monoacetylmorphine and more slowly to morphine following an intravenous 

dose (Asher et al., 1999). Lockridge et al. (1980) showed that BChE is the 

major esterase involved in the hydrolysis of heroin, while Owen and Nakatsu 

(1983) have identified three further esterases involved in heroin hydrolysis 

within the blood. Furthermore, BChE rapidly hydrolyses procaine mainly to p-

aminobenzoic acid and diethylamino ethanol (Dawson and Poretski, 1983). 

Rapid hydrolysis of procaine to the inactive products results in its relatively short 

time of action. 

1.5.2 Central nervous system 

Both AChE and BChE are well distributed in the central nervous system. Almost 

80% of brain tissue ChE activity is AChE and the remaining 20% is BChE 

(Adamson et al., 1975), although BChE activity is greater in the white matter, 

and where its function appears to be myelin maintenance (Silver, 1974). AChE 

activity is high in the cerebellum and cerebrospinal fluid of mammals (Silver, 

1974; Wilson et al., 2001), and also in other brain areas (pontomedullar, frontal 

cortex and basal ganglia) (Chatonnet and Lockridge, 1989; Weber et al., 1999; 

Bajgar et al., 2008). AChE in the central nervous system has important roles in 
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regulating excitation of nerve cells by destroying the neurotransmitter ACh 

(Wilson et al., 2001; Su et al., 2008; Taylor et al., 2009). 

BChE in the brain is confined to subcortical white matter bundles, for example, 

corpus callosum, anterior commissure, fornix and the internal capsule fibres 

traversing the striatum. It is also found in the thalamus and upper brainstem, in 

regions unrelated to AChE, in capillary endothelial cells of the cerebral cortex 

(Chatonnet and Lockridge, 1989; Weber et al., 1999; Mesulam et al., 2002; 

Wilson and Philip, 2005), glial cells and associated structures such as septa in 

the optic nerve (Silver, 1974), cholinergic neurons and wide-ranging in neuropil 

reactivity region (between neuronal cell bodies in the grey matter of the brain 

and spinal cord) (Mesulam et al., 2002). BChE is able to catalyse the hydrolysis 

of ACh and other choline esters (e.g. butyrylcholine and propionylcholine) 

(Morizono and Akinaga, 1981; Tecles and Ceron, 2001; Wilson et al., 2001; 

Wilson and Philip, 2005), but is unrelated to cholinergic neurotransmission 

(Berman et al., 1987). However, the presence of BChE in the cerebral 

microcapillaries of the rat may be related to maintenance of the blood brain 

barrier (Massoulie et al., 1993). 

1.5.3 Peripheral nervous system and muscular tissues 

Somatic motor nerve fibres, which innervate skeletal muscle, arise from cranial 

nuclei and the ventral horn of the spinal cord. Both AChE and BChE are present 

in the neuron cell body, axons, motor end plate and neuromuscular junctions. 

Most AChE is found post synaptically on the surface of the junction fold in the 

sarcoplasm (Silver, 1974; Wilson et al., 2001). Also AChE histochemically is 

well associated with neuron cell bodies in the ventrolateral ventral horn; 

intermediolateral columns of thoracic, rostral and mid lumbar cord of the 
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sympathetic preganglionic cells; sacral parasympathetic nucleus; central canal; 

and partition cells (Figure 1.4) (Anglister et al., 2008). 

 

Figure 1.4 Distribution of ChE containing neurons in lumbosacral segments of the 

spinal cord. Cryosections of L2, L5, S1 and S2 segments of newborn rat spinal cord 

were histochemically stained for ChE (taken from (Anglister et al., 2008)). ChE 

containing neurons were concentrated in 4 major groups: motoneurons (MN), central 

canal (CC) and partition neurons in all segments, intermediolateral (IML) in L2 and 

sacral parasympathetic neurons (SPN) in S1 segments. Note additional ChE-stained 

cells in medioventral and intermediate zones. 

 

1.5.4 Vascular tissues 

Both AChE and BChE are well distributed in the heart and endothelium of blood 

vessels (Silver, 1974; Chatonnet and Lockridge, 1989; Mirajkar and Pope, 
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2008), however BChE levels are higher in the auricles than in the ventricles, 

and the carotid body contain higher BChE levels than AChE (Silver, 1974). 

1.5.5 Respiratory system 

ChE activities are predominate in bronchial smooth muscle and in the lungs and 

AChE co-regulate the degradation of ACh in respiratory tissues (Mann, 1971; 

Pillai et al., 1993; Mack and Robitzki, 2000). Also AChE and BChE are found in 

the mucous gland, and some goblet cells and their secretions (Silver, 1974). 

1.5.6 Digestive system and associated structures 

There are high levels of ChE in the mammalian salivary glands (Khosravani et 

al., 2007), smooth muscles of the oesophagus, stomach and alimentary tract 

(Silver, 1974), endoplasmic reticulum membrane in the liver (Weber et al., 1999; 

Mack and Robitzki, 2000), and spleen (Morizono and Akinaga, 1981; Nieto-

Ceron et al., 2004). BChE activity in the pancreas is higher than AChE activity, 

and distributed mainly in the Islets of Langerhans, acinar cells and pancreatic 

secretions (Morizono and Akinaga, 1981). The function of ChE in these areas 

are still unknown (Wilson et al., 2001). 

1.5.7 Urogenital system 

ChE activity is present in parts of the kidney, bladder, adrenal medulla and in 

urine samples (Silver, 1974; Yang et al., 2002), however the levels of ChE 

increase in cases of renal tumours (Yang et al., 2002). The ChE are also 

distributed on other sites in some endocrine glands including thyroid, 

parathyroid, pituitary and adrenal glands (Silver, 1974). In addition, ChE are 

found in the skin (Silver, 1974; Wilson et al., 2006). 
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1.6 Clinical significance of measurement of cholinesterase activities  

There are many reasons for measuring ChE activities in domestic animals: 

1. to evaluate of health impact by biomonitoring hazards from anti-ChE 

exposures in domestic animals (Mohammad, 1997; Wilson et al., 2005; Brown 

et al., 2006). When anti-ChE overexposure does arise, ChE monitoring assists 

in clinical management (Brown et al., 2006); 

2. to avoid problems from chronic anti-ChE exposure especially in the early 

stages of poisoning with OP or carbamate compounds when the signs of 

poisoning are unclear due to both compounds being possible contaminants of 

water, soil, air, food, dust or environment and when animals consume these 

compounds (Wilson and Philip, 2005; Angerer et al., 2006; Brown et al., 2006). 

It may also influence the choice of pesticides to use according to their safety 

and increase awareness in pesticide user of anti-ChE exposure (Wilson et al., 

2001; Wilson and Philip, 2005; Brown et al., 2006; Hernandez et al., 2006). In 

addition, decide whether poisoning episodes involved ChE inhibiting agents by 

measuring residues on skin or clothing and identify sources of contamination in 

animal tissues; 

3. to monitor environmental exposure to chemical warfare agents (nerve gases) 

which cause irreversible ChE inhibition (Dorandeu et al., 2008; Saxena et al., 

2008); and 

4. to use as a biomarker for different diseases; since ChE is synthesised in the 

liver the amount of enzyme appearing in the plasma is dependent upon both 

normal liver function and an adequate delivery of amino acids. Determination of 

ChE activities may therefore be used as a test of liver function or as an index of 

protein synthesis. Many forms of liver disease including cirrhosis (Silver, 1974; 

Hada et al., 1999), chronic hepatitis (Hada et al., 1999), malignant disease with 
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secondary fatty liver deposits (Vorhaus and Kark, 1953) have been shown to be 

accompanied by reduction in ChE activity. Likewise, ChE activities are lower in 

other pathological conditions including chronic renal disease (Ryan, 1977), 

myocardial infarction (Ceremuzyński et al., 1985), burns (Frolich, 1977), 

anaemia, malnutrition and chronic debilitating disease (Vorhaus and Kark, 

1953), aflatoxin poisoning (Cometa et al., 2005) and Guillaine-Barre syndrome 

(Dalvie and London, 2006). It is probable that this is due to a secondary 

reduction in protein synthesis. However, it is also possible that enzyme 

synthesis is reduced because of derangement of the metabolic processes of the 

hepatocyte by materials produced in the diseased tissues or toxic materials 

inhibit that enzyme activity. 

With regard to studies that have indicated correlations between exposure of 

farmers to OP compounds and an increased risk of leukaemia. In vitro studies 

reveal that anti-ChE (e.g. eserine) can induce carcinogenesis and potentiate the 

action of oestrogen in the epithelium of rat mammary glands (Calaf et al., 2007). 

Moreover, exposure of rodents to OP (e.g. malathion) can induce breast 

tumours (Cabello et al., 2003), other than ChE levels shows to vary depending 

upon the cellular origin of the tumour, so that there is no clear general 

correlation between increases or decreases in ChE levels and cancer. ChE 

activity increases in malignant tumours in brain and kidney (Razon et al., 1984; 

Yang et al., 2002), but decreases in malignant lymph nodes and colon 

(Francisco et al., 2003; Montenegro et al., 2006). While in lung tumours, 

enzyme levels vary depending on the type of tumour, they have modified 

glycosylation and are reduced in activity in squamous cell carcinomas and large 

cell carcinomas (Martinez-Moreno et al., 2006). 
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Although the role of ChE enzymes in tumorigensis is unclear, the fact that AChE 

and BChE may be involved in the control of cell growth and proliferation during 

the early stages of development, and the amplification of ChE gene could 

influence the ability of tumour cells to proliferate more rapidly (Small et al., 

1996; Nese Cokugras, 2003). On the other hand, levels of ChE is increased in 

Alzheimer’s disease (Geula and Mesulam, 1995; Greenfield and Vaux, 2002), 

and in type 2 diabetes mellitus (Rao et al., 2007). A role for the cholinergic 

system in memory was first suggested in the early 1970s, when cholinergic 

antagonists were found to damage learning, while anti-ChE could have a 

positive effect (Silver, 1974). At this time, examination of post mortem 

Alzheimer’s disease in brain tissue also showed reduction in the cholinergic 

neuronal markers choline acetyltransferase and AChE in the cortex, 

hippocampus and nucleus basalis (Silver, 1974). These findings led to the 

formulation of the "cholinergic hypothesis", linking abnormalities in the 

cholinergic system to functional and pathological changes in Alzheimer’s 

disease. The decreased level of AChE has more recently been localised to the 

selective loss of the membrane-bound tetrameric form, but upregulation of the 

monomeric form (Geula and Mesulam, 1995). In addition, ChE is found in senile 

plaques and neurofibrillary tangles, even at the initial stages of their formation 

(Morán and Gómez-Ramos, 1992). However, in Alzheimer’s disease there is a 

reduction in ChE secretion from the adrenal gland (Appleyard and McDonald, 

1991), and a reduction in salivary ChE, which is being considered as an 

Alzheimer’s disease biomarker (Sayer et al., 2004). This has led to the 

suggestion by Greenfield and Vaux (2002) that neurodegeneration in 

Alzheimer’s disease, and potentially Parkinson’s disease and motor neuron 

disease, may result from a reversion to an embryonic restoration programme. 
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However, another possibility is that the AChE associated with the myeloid 

plaques may be of astroglial origin (Geula and Mesulam, 1995). Recent work 

suggests the alternative splicing of AChE may also contribute to Parkinson’s 

disease. An increased risk for Parkinson’s disease has been found to correlate 

with mutations in the regulatory region of AChE, which impair AChE-R up-

regulation, and mutations in the adjacent paraoxonase gene (Benmoyal-Segal 

et al., 2005). 

1.7 Anticholinesterase 

Chemicals may prevent ChE from breaking down ACh, increasing both the level 

and duration of action of the neurotransmitter ACh (Nigg and Knaak, 2000; Aisa 

et al., 2012; Cabral et al., 2012). There are natural and synthetic anti-ChE; the 

natural reversible inhibitors are found in a number of plant toxins, e.g. 

solanaceous glycoalkaloids and alkaloids are naturally occurring steroids in 

potatoes and related plants (Rodney et al., 1987; Ercetin et al., 2012), fungal 

territrems (Dowd et al., 1992), triazoles, trifluoroacetophenones and fasciculin 

complex from snake venom (Harel et al., 1995; Radic et al., 2005) and 

huperzine A from moss (Gordon et al., 2005). Synthetic ChE inhibitors are 

pesticides that are substances or mixtures intended for use widely within 

modern agriculture and veterinary medicine to control insect infestation. 

Increasing concern is being shown towards their indiscriminate use and the long 

term effects they may cause to the environment, farm animals and human 

health (Davis et al., 2007). Pesticide contamination causes inhibition of ChE at 

muscarinic or at nicotinic receptors or in the central nervous system, leading to 

accumulation of ACh (Timothy, 2001; Ferreira et al., 2008). Generally, 

pesticides can be divided into two main classes according to their chemical 

composition and the stability of the enzyme inhibitor complex. 
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1. Organophosphate (OP) compounds: More than one hundred OP compounds 

are currently used worldwide; they were developed during World War II and 

have been used in terrorist attacks in different countries (Table 1.1; (Nurulain, 

2011)). They are esters of phosphonic, phosphinic or phosphoric acid. The 

general structure of OP compounds is shown in Figure 1.5. 

 

Figure 1.5 Shows the general structure of an OP compounds, where R1 and R2 may be 

almost any group (alkoxy, thioalkyl, alcohol, phenol, mercaptan, amide, alkyl or aryl). 

Group X can be acyl radical such as fluoride, nitrophenyl, phosphates, thiocyanate, 

carboxylate, phenoxy or thiophenoxy group. Where Y, the leaving group can be any 

one of a wide variety of substituted and branched aliphatic, aromatic or heterocyclic 

groups, generally linked by an oxygen (-oxon) or sulphur (-thion). The distinguishes two 

groups of OP, P = O compounds, phosphates, are commonly known as oxonates and 

this can incorporated into the trivial name, (e.g. paraoxon). P = S compounds, 

phosphorothioate, are commonly known as thionates, again this can be incorporated 

into the trivial name (e.g. parathion) (adapted from (Fukuto, 1990; Wilson et al., 2001)). 
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Table 1.1 A brief history of OP compounds (taken from (Nurulain, 2011)). 

Year 
Event 

1854 The process of synthesis of first OP compounds, tetraethyl pyrophosphate 

was reported. 

1936 The first OP nerve poison, tabun was produced in Germany. 

1938 Another nerve agent belongs to OP group was developed and named 

sarin. 

1944 The third neurotoxic compound of the same group was developed in 

Germany, named soman. 

1957 VX, another nerve agent of the same group developed in UK and 

weaponized by USA. 

1983/1984 Iraqi troops used tabun nerve agent against Iranian soldiers during the 

war. 

1988 Sarin was used against Kurdish in Iraq by Iraqi troops. 

1991 It is also believed that allied troops have been exposed to sarin during the 

Gulf war. 

1994 In Matsumoto, Japan a terrorist attack was reported with sarin which 

caused seven deaths and many casualties. 

1994/1995 Assassination attempt with VX was made in Japan. 

1995 A terrorist attack by sarin was reported in Tokyo subway, Japan.  

 

Intoxication by OP compounds causes a cholinergic crisis due to reversible 

inhibition of ChE activity in the nervous tissues and skeletal neuromuscular 

junction. This occurs by a two-step process, the initial formation of an enzyme 

inhibitor complex by binding to the serine hydroxyl group in the esteratic site 

(Michaelis complex) (Step 1 in Figure 1.6) followed by phosphorylation of the 
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enzyme (Step 2 in Figure 1.6) (Fukuto, 1990; Taylor et al., 1995; Gupta et al., 

2007). 

 

Figure 1.6 Scheme for equation of OP and carbamate compounds inhibition by AChE, 

Κd = Is the equilibrium constant for the complex dissociating back to the reactants, ki = 

Is the phosphorylation rate constant (from complex to phosphorylated enzyme) and is 

regarded as an estimate for the reactivity of the OP ester in case of OP compounds, 

while in case of carbamate compounds the ki = Is the carbamylation rate constant (from 

complex to carbamylated enzyme) and is regarded as an estimate for the reactivity of 

the carbamate ester. AChE-OH = AChE with the serine hydroxyl group highlighted, and 

X = Is the leaving group (adapted from (Fukuto, 1990)). 

 

Most OP pesticides are dimethyl compounds (two [-O-CH3] groups attached to 

the phosphorus) or diethyl compounds (two [-O-C2H5] groups attached to the 

phosphorus). These are generally divided according to their use: (1) herbicides 

in agriculture (e.g. glyphosate and glufosinate); (2) insecticides (e.g. dichlorvos, 

chlorfenvinphos, heptenophos, trichlorfon, diazinon, parathion, bromophos, 

fenitrothion, isofenphos, propetamphos, malathion, dimethoate, disulfoton, 

leptophos, ethoprophos, chlorpyrifos-methyl, fenthion, pirimiphos-methyl, 

chlorpyrifos, quinalphos, gardona, methidathion, carbophenothion, phorate, 

phosalone and coumaphos); (3) industrial chemicals (e.g. tri-o-cresyl phosphate 

and fenamiphos); (4) fungicides (e.g. pyrazophos); (5) defoliants (e.g. S,S,S-
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tributyl phosphorotrithioate); and (6) laboratory chemicals (e.g. diisopropyl 

fluorophosphates) (Timothy, 2001; Jiang et al., 2007). 

In addition, the high toxicity of some OP compounds has led to their application 

as chemical warfare agents (e.g. demeton-s-methyl, O-Ethyl-S-[2-

(diisopropylamino) ethyl] methylphosphonothionate, tabun, soman, and sarin) 

(Timothy, 2001; Bajgar et al., 2008). Davis et al. (2007) observed that OP 

compounds are currently commonly used instead of organochlorine pesticides 

due to their lower persistence in the environment, while still remaining effective. 

However, these compounds may still find their way into our food and water 

supplies. Hence the need the use of determination of ChE activity for the 

reliable detection of pesticides for environmental protection and food safety 

purposes. 

In the current study, I have chosen two types of OP compounds; dichlorvos 

(DDVP, C4H7O4Cl2P) 2,2-dichlorovinyl dimethyl phosphate is a chlorinated OP 

insecticide that is extensively used in many countries for controlling insect pests 

on agricultural, commercial and industrial sites, and diazinon (DZN, 

C12H21N2O3PS) O,O-diethyl O-[4-methyl-6-(propan-2-yl) pyrimidin-2-yl] 

phosphorothioate) is a thiophosphoric acid ester first developed in 1952. Both of 

these compounds are routinely used in veterinary medicine. Compared to other 

pesticides, these are generally preferred because of their cost-effectiveness 

and wide range of bioactivity. Their annual worldwide sales in 2003 were about 

40 million US dollars (Liu et al., 2009; Sun et al., 2009b). However, there are 

concerns about the safety of these compounds because of their high acute 

toxicity.  
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2. Carbamate compounds: These were originally extracted from the Calabar 

bean of West Africa. The Calabar bean was known to be toxic and the main 

toxin, physostigma venenosum, was first isolated in 1865. The structure was 

identified in 1925 and the compound first synthesized as physostigmine in 1935 

(Brufani et al., 2000). These compounds are esters of carbamic acid, unlike OP, 

and were developed from natural products. The general structure of carbamate 

compounds is shown in Figure 1.7. 

 

Figure 1.7 Shows the general structure of carbamate compounds, where R is an 

organic group and usually alkyl or aryl groups and are substituted on the nitrogen or 

amides, which have one or two methyl groups attached to the nitrogen atom. A range 

of differing organic groups can be linked to the oxygen atom (adapted from (Timothy, 

2001; Wilson and Philip, 2005)). 

 

Carbamate compounds can be divided into main classes according to their use: 

1. Treatment of chemical disorder diseases such as myasthenia gravis, 

glaucoma and paralytic ileus (e.g. physostigmine, neostigmine, pyridostigmine 

and edrophonium) (Nigg and Knaak, 2000; Corea et al., 2008). 

2. Insecticides and herbicides to control external parasites in agriculture and 

veterinary medicine (e.g. carbaryl, methomyl, carbofuran, formetanate, 

methiocarb, oxamyl and propoxur) (Gupta et al., 2007; Padilla et al., 2007). 

Carbamate compounds also cause a cholinergic crisis due to reversible 

inhibition of ChE activity in the nervous tissues and skeletal neuromuscular 
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junctions by the formation of an enzyme inhibitor complex at the serine hydroxyl 

group in the esteratic site (Michaelis complex) and carbamylation of the enzyme 

(Fukuto, 1990; Taylor et al., 1995; Gupta et al., 2007). I have chosen in this 

study carbaryl (C12H11NO2) 1-naphthyl-N-methylcarbamate, a broad-spectrum 

pesticide sold under the trade name Sevin. This is widely used on farms as a 

contact insecticide because of its effectiveness against numerous insect pests 

and for the control of pests on food animals, fruit, vegetables, forage, cotton and 

many other crops (Demirbas, 1998).  

However, OP and carbamate compounds bind to ChE and inhibit the enzyme in 

insects and parasites, resulting in blocked degradation of neurotransmitter ACh 

accumulation at the synaptic cleft, and prolonged depolarization. Depolarization 

initially causes overstimulation of the peripheral and central nervous system 

leading to a range of effects including: 

1. Muscarinic effects include anorexia, nausea, vomiting, diarrhoea, abdominal 

cramps, bronchoconstriction, sneezing, coughing, tightness in chest, dyspnoea, 

pulmonary oedema, increased bronchial secretions, bradycardia, increases of 

sweating, salivation and lacrimation (Pope et al., 2005; Jokanovic and 

Stojiljkovic, 2006). 

2. Nicotinic effects, which usually occur after muscarinic effects, that reach 

moderate severity. Signs include weakness, twitching, cramps, muscle 

fasciculation, tachycardia, hypertension and mydrasis (Jokanovic and 

Stojiljkovic, 2006; Ferreira et al., 2008; Sharififar et al., 2012). 

3. Central effects include headache, dizziness, convulsion, bronchospasm, 

seizures, mental confusion, ataxia and coma (Jokanovic and Stojiljkovic, 2006; 
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Ferreira et al., 2008); death occurs in some cases of anti-ChE poisoning due to 

central or peripheral respiratory cardiac failure (Bajgar et al., 2008). 

1.8 Prophylaxis and treatment of anticholinesterase 

Decontamination of the gastrointestinal tract by using activated charcoal, and 

cutaneous injection of water and alkaline soap is the general treatment of 

poisoning with OP compounds (Ferreira et al., 2008). Saxena et al. (2008) 

found that BChE could be used as a pre-treatment in cases of OP intoxication 

leading to the prevention of cardiac abnormalities and seizures. Administration 

of atropine sulphate, a muscarinic antagonist which binds to the muscarinic ACh 

receptor, reduces the effectiveness of the excess ACh produced by the 

inhibition of ChE (Ferreira et al., 2008). Activation of ChE inhibited by OP 

poisoning using oximes (e.g. pralidoxime, obidoxime, methoxime, HI6 and 

trimedoxime) eliminates the problem by allowing removal of the excess ACh 

(Worek et al., 2007; Ferreira et al., 2008; Musilek et al., 2009). 

Dimethylated OP structures respond more quickly to reactivation by oximes 

compared to diethylated OPs, because the methyl group causes less steric 

hindrance and has greater electronegativity than ethyl group (Timothy, 2001; 

Ferreira et al., 2008). The reactivity of R groups is in the order of methoxy > 

ethoxy > propoxy > isopropoxy > amine groups (Wilson et al., 2001). If oximes 

are administered with suitable rapidity to an animal that has been exposed to 

OP compounds then they have been shown to effectively reactivate ChE, and 

as a consequence are the most successful therapeutic agents in the treatment 

of OP poisoning (Worek et al., 2007). However, in case of carbamate poisoning 

oxime compounds must be combined with atropine sulphate because if oximes 

are used alone they cause an increase in the toxicity of carbamates, an 
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exception being carbaryl where toxicity is reduced to various degrees (Natoff 

and Reiff, 1973; Ferreira et al., 2008). 

Nicotinic antagonists include ganglionic blocking drugs (e.g. hexamethonium or 

trimetaphan), to alleviate tachycardia and hypertension, followed by skeletal 

muscle relaxant drugs (e.g. atracurium, tubocurarine or pancuronium) to relieve 

weakness, muscle twitching and fasciculation (Gibb, 1986). Furthermore, the 

use of the anticonvulsant diazepam is useful to abolish or reduce convulsion 

(Ferreira et al., 2008; Musilek et al., 2009). 

1.9 Aims and objectives 

The primary aim of the study described in this thesis is to start a foundation for 

the applicability of a biochemical biomarker, ChE activity in food animal tissues, 

as an instrument for evaluating exposure to pollutants, in addition to predicting 

high-level effects on public health. Secondary aims are to increase the 

awareness of pesticide users, to decide whether poisoning episodes involve 

anti-ChE by measuring residual effects in tissues and blood, and to recognise 

sources of contamination in food animal species of anti-ChE exposure. 

The specific objectives of this study were: 

1. to implement and validate simple methods for determining of AChE and 

BChE activities for food animals (Chapter 2); 

2. to evaluate basal levels and characterize AChE and BChE activities in food 

animals, in blood (erythrocyte, serum and plasma) and tissue (liver, kidney, 

muscle, heart and lung), to investigate the most accurate and precise method 

for determination of ChE activities for food animals, and to determine the most 

sensitive (target) tissues for measurement of ChE activity (Chapter 3); 
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3. to investigate the effects of storage at -20 °C and -80 °C on AChE and BChE 

activities, in addition, to determining the best method for storage of samples for 

the determination of AChE and BChE activities in food animals (Chapter 4); 

4. to develop a protocol for the purification of AChE and to extend this method 

for further enzyme characterization (Chapter 5); 

5. to characterize ChE activities, e.g. with respect to the effects of dilution, 

selective inhibitors, pH, temperature and histochemical localisation (Chapter 6); 

6. to investigate the kinetic properties of ChE, and also to establish a foundation 

to determine the effects of pH and temperature on the rate of the constants of 

inhibition with OP and carbamate compounds (Chapter 7); and 

7. to investigate the rates of spontaneous reactivation of AChE inhibited by OP 

compounds, and moreover, to determine the time course of aging of OP-

inhibited AChE. Finally, to find suitable conditions to reactivate of OP-inhibited 

AChE and to determine the most efficacious oxime compounds as antidotes for 

intoxication by OP compounds (Chapter 8). 

The final chapter of the thesis (Chapter 9) discusses the importance of 

applications of biochemical biomarker responses in AChE and BChE activities 

posed by the OP and carbamate compounds for the food animal species. 
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Chapter 2: General materials and methods 

2.1 General chemicals 

Cholinesterases (ChE) substrates (acetylthiocholine iodide, AcTChI, 98% purity; 

S-butyrylthiocholine iodide, BuTChI, 98% purity; propionylthiocholine iodide, 

PrTChI; acetylcholine iodide, 97% purity; and butyrylcholine iodide, 99% purity); 

5,5’-dithiobis-(2-nitrobenzoic acid) (DTNB); dichlorvos (DDVP), 98.1% purity; 

carbaryl; tetraisopropyl pyrophosphoramide, iso-OMPA; 1: 5-bis (4-

allyldimethylammoniumphenyl) pentan-3-one dibromide, BW284c51; epoxy-

activated Sepharose; edrophonium chloride; α-methyl-D-mannoside; Sephacryl 

S-200; polyvinyl alcohol; obidoxime; pralidoxime 99% purity; heparin; and 

ethylenediaminetetraacetic acid (EDTA) were supplied by the Sigma Chemical 

Company (Poole, Dorset, UK). Diazinon (DZN) was obtained from Chem 

Services, Riedel de Haen, Seelze-Hannover, Germany. All other reagents and 

solvents used in this thesis were of analytical grade and were supplied by 

Fisher (Loughborough, Leicestershire, UK). 

2.2 Animal tissue 

Fresh meat from healthy food animals (sheep, Ovis aries; cattle, Bos taurus; 

and pig, Sus domesticus) were obtained from local markets in Plymouth and 

abattoirs in Cornwall (Callington and Launceston), UK (Figure 2.1). These had 

been killed by a blow to the head after which the brain was pithed in the manner 

approved for use in abattoirs. The samples were transported on ice to the 

laboratory at the University of Plymouth for immediate processing. The time 

between death of the animal and the start of processing was about an hour. 

During sample collection from the animal it was ensured that there was no 

possibility of introduction of anti-ChE compounds from the skin of the animals. 
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As noted by Fairbrother et al. (1991) this can be a source of contamination by 

anti-ChE compounds. 

 

Figure 2.1 Map of south-west UK showing sample collection sites in Cornwall. 

2.3 Sample preparation 

2.3.1 Blood samples 

To obtain serum, blood samples were allowed to clot for at least 1 h at 20 °C, 

after which they were centrifuged at 3000 g for 10 min in a Biofuge Pico micro-

centrifuge (Heraeus Instrument, Osterode, Germany). To obtain plasma, 4 ml 

blood samples were added to anticoagulant (either EDTA, 7.2 mg, final 

concentration 0.18%, or heparin, 3.7 mg, final concentration 0.1%) in 12 ml 

centrifuge tubes. Plasma was separated by centrifugation at 3000 g for 10 min. 

The erythrocytes were washed three times with two volumes of 0.1 M sodium 
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phosphate buffer, pH 7.4, centrifuging as described above between washes. 

Next, the packed erythrocytes were diluted in 20 volumes of hypotonic sodium 

phosphate buffer (6.7 mM, pH 7.4) to facilitate haemolysis followed by 

centrifugation at 3000 g for 10 min. The supernatant was removed and the 

pellet re-suspended in hypotonic phosphate buffer. Aliquots of the erythrocyte 

ghosts were stored at -80 °C until use (Tecles et al., 2000; Aurbek et al., 2006). 

2.3.2 Tissue samples 

One gram of each tissue was removed using a scalpel, cut into small pieces (3-

4 mm3), and rinsed until the blood was fully removed. The tissue was then 

placed on ice in 12 ml tubes (7.5 mm internal diameter) and homogenized using 

a mechanically-driven homogenizer (Model X520-D, T6 probe, Bennett and 

Company, Weston Super Mare, North Somerset, England, UK) with sodium 

phosphate buffer (0.1 M, pH 8) at a ratio of 1 part of tissue to 9 parts of buffer, 

and a speed of 10000 rpm. Homogenisation required between 2 and 5 min 

depending on the tissue; after every 30 s or so of homogenisation the mixture 

was rested for 10 s to allow cooling. The homogenate was then centrifuged in 

Eppendorf tubes at 9000 g for 5 min at 4 °C (Morizono and Akinaga, 1981; 

Lassiter et al., 2003). It was important during homogenization to ensure that (a) 

samples were fully homogeneous and that aliquots taken reflected the 

homogenate as a whole, and (b) that ChE activities were not altered in the 

process (e.g. through heat-induced denaturation) (Fairbrother et al., 1991). 

Overall, each experiment in this thesis was designed as described separately in 

each Chapter. 
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2.4 Enzyme activity measurement 

Two methods were used to analysis ChE as described below. 

2.4.1 Ellman method 

2.4.1.1 Introduction 

At present, the most widely used method for the determination of ChE activity is 

the colorimetric method of Ellman et al. (1961). This is a simple, accurate, fast 

and direct method of measuring ChE activity in blood and tissues. It is based on 

the reaction between thiocholine, which is one of the products of the enzymatic 

hydrolysis of the synthetic substrates AcTChI, BuTChI or PrTChI with the 

sulfhydryl group of a chromogen such as 5,5’-dithiobis-(2-nitrobenzoic acid) 

(DTNB). The formation of the yellow product of this reaction, 5-thio-2-

nitrobenzoic acid (TNB) is measured by monitoring absorbance at 410 nm in 

addition mixed disulphide (Figure 2.2). 

 

Figure 2.2 Ellman colorimetric reaction (taken from (Frasco et al., 2005)). 

 

Each mole of anion produced represents the hydrolysis of one mole of substrate 

(Morizono and Akinaga, 1981; Tecles and Ceron, 2001; Frasco et al., 2005; 

Sinko et al., 2007). The advantages of DTNB are that it is water-soluble, it can 

be used at neutral pH with few side reactions, and its reaction with thiocholine is 

fast and sensitive due to the high molar absorption coefficient of TNB (Ellman et 

al., 1961; Tecles and Ceron, 2001; Timothy, 2001). 
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2.4.1.2 Assay 

Cholinesterases (ChE) activity was determined by the Ellman method (1961), 

adapted for use with microtitre plates as described by Haigh et al. (2008), and 

using either AcTChI or BuTChI as the substrate (1 mM final concentration of 

each) for measuring AChE and BChE activities, respectively. Incubation of the 

sample with 4 mM final concentration of iso-OMPA, a potent inhibitor of BChE 

but not for AChE in case measuring of AChE. In preparing solutions during 

measuring, it is essential that the substances have been stored properly and 

have not exceeded their shelf life, however substrates and reagents in solution 

have a much shorter duration of stability and should not to be used on 

experiment extending over one day, and kept on ice during use. Briefly, 0.02 ml 

of sample and 0.24 ml of assay mixture [9.75 ml of 0.1 M sodium phosphate 

buffer, pH 8.0, containing 1 mM EDTA, and 0.25 ml of 0.2 mM final 

concentration of DTNB] were mixed, allowed to stand for 5 min, and then 0.04 

ml of substrate solution were added. The assay temperature in each case was 

25 °C. 

The absorbance increase was monitored for 5 min at 410 nm in a plate reader 

(VersaMax, Molecular Devices, Sunnyvale, CA) (Haigh et al., 2008). There may 

be some non-enzymic (endogenous) reaction between the sample and the 

DTNB which may interfere with the analysis. To control for this, a pre-incubation 

of DTNB and sample is performed prior to the addition of substrate. In each 

case the rate of absorbance increase was corrected by subtracting, the rate 

observed for a reagent blank (i.e. without sample). ChE activities were 

calculated using an extinction coefficient of 13.6 mM-1 cm-1 for TNB (Worek et 

al., 1999), and are expressed as units (1 U  1 µmol  1000 nmol of substrate 
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hydrolysed per min) per g wet weight of tissue. All measurements were carried 

out in triplicate.  

2.4.2 Michel method 

2.4.2.1 Introduction 

Another method for measuring ChE activities is the electrometric method of 

Michel (1949), that has been used to detect ChE activity in human plasma and 

erythrocytes. In this method the change in pH arising from the production of H+ 

in the hydrolysis of cholinester substrates (ACh, butyrylcholine and 

propionylcholine) to form choline and a carboxylic acid is directly determined 

using a pH meter (Michel, 1949; Wilson et al., 2001; Wilson and Philip, 2005). 

The acids produced immediately dissociate liberating H+ to form acetate, 

butyrate and propionate, respectively, resulting in a decrease in pH in the 

reaction mixture (Fedosseeva et al., 2000; Wilson et al., 2001; Ahmed and 

Mohammad, 2005). More recently various modifications to the Michel method 

have been developed including (a) increase in sample volume; (b) decrease in 

incubation time; (c) increase in incubation temperature; and (d) use of a range 

of different buffers (Mohammad, 1997; Hamm, 1998; Ahmed and Mohammad, 

2005). 

2.4.2.2 Assay 

Cholinesterases (ChE) activity was also determined by the Michel method 

(1949), further adapted by Mohammad (2007). In brief, 3 ml of distilled water 

was placed in a 10 ml beaker. Three millilitres of barbital phosphate buffer [6 

mM sodium barbitone, 4 mM potassium dihydrogen phosphate and 600 mM 

sodium chloride, and adjusted to pH 8.1 with a few drops of 1 mM HCl by 

(Hanna GLP Bench-top pH/mV/ISE/oC meter)] was added, followed by a 0.2 ml 
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sample of blood or homogenised tissue. The pH of the mixture was measured 

just after addition of the substrate using a glass electrode connected to a pH 

meter (Hydrus 500R, Thermo Orion, USA). Substrate (0.1 ml of either 27.5 mM 

acetylcholine iodide or butyrylcholine iodide, for measurement of AChE or BChE 

activities, respectively) was added and the mixture incubated in a water bath at 

37 °C for 20 min, after which the pH was again measured (Hawkins and Knittle, 

1972; Domenech et al., 2007). The activity was calculated as the change in pH 

over the 20 min (∆ pH/20 min) minus ∆ pH of the blank, i.e. without added 

sample (Mohammad, 2007; Jamshidzadeh et al., 2008). All measurements 

were carried out in duplicate. Again, substrate solutions were prepared and 

used on the same day and kept on ice during use. 

2.5 Statistical analysis 

Conventional statistical methods were used to calculate the means, coefficient 

of variance (CV), standard deviation (SD) and standard error (SE). Pearson’s 

correlation coefficient, regression analysis, two sample t-test and one-way 

analysis of variance (ANOVA) were applied to test for any significant differences 

(associated probability < 0.05). All statistics was carried out using MiniTab 

statistical software version 15 (MiniTab Ltd., Coventry, UK).  
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Chapter 3: Comparative analysis of cholinesterase activities in 

food animals using modified Ellman and Michel assays 

3.1 Introduction 

Cholinesterases (ChE) are specialized carboxylic ester hydrolases that catalyse 

the hydrolysis of choline esters. They are classified as either 

acetylcholinesterase (AChE, EC 3.1.1.7) or butyrylcholinesterase (BChE, EC 

3.1.1.8) (Chatonnet and Lockridge, 1989; Rao et al., 2007; Wilson, 2010). The 

most widely used method for the determination of AChE and BChE activities is 

the colorimetric method of Ellman et al. (1961). It is based on the reaction 

between thiocholine, which is one of the products of the enzymatic hydrolysis of 

the synthetic substrates AcTChI, BuTChI or PrTChI with the DTNB. The 

formation of the yellow product of this reaction, TNB is measured by monitoring 

absorbance at 410 nm. Each mole of anion produced represents the hydrolysis 

of one mole of substrate (Morizono and Akinaga, 1981; Tecles and Ceron, 

2001; Frasco et al., 2005; Sinko et al., 2007). Another method for determination 

AChE and BChE activities is the electrometric method of Michel (1949), that has 

been used to detect ChE activity in human plasma and erythrocytes (Michel, 

1949; Wilson et al., 2001; Wilson and Philip, 2005). In this method the change 

in pH arising from the production of H+ in the hydrolysis of cholinester 

substrates (ACh, butyrylcholine and propionylcholine) to form choline and a 

carboxylic acid is directly determined using a pH meter (Michel, 1949; Wilson et 

al., 2001; Wilson and Philip, 2005). The acids produced immediately dissociate 

liberating H+ to form acetate, butyrate and propionate, respectively, resulting in 

a decrease in pH in the reaction mixture (Fedosseeva et al., 2000; Wilson et al., 

2001; Ahmed and Mohammad, 2005). Methods governing ChE activities of 

tissues from food animals are still poorly understood. Our objective were (a) to 
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investigate correlations between the modified Ellman and Michel methods, and 

(b) to establish a foundation for the applicability of AChE and BChE activities in 

food animal species as biochemical biomarkers for evaluating of exposure to 

OP and carbamate compounds. Also part of the study is to characterize the 

level of AChE and BChE activities in the selected organs/tissues and 

determined the best organ/tissue in which to measure ChE activity. Biomarkers 

of exposure can be further divided into three groups: (a) potential dose or 

external dose, (b) internal or absorbed dose, and (c) biologically effective dose. 

3.2 Materials and methods 

3.2.1 Sample collection and preparation 

The sample collection and preparation from the sheep, cattle and pig were done 

as described in Sections 2.2 and 2.3. Following this it was then measured the 

enzyme activity as described in Section 2.4. All chemicals were of the highest 

analytical grade obtained from Sigma Chemical Company (Poole, Dorset, UK), 

unless stated otherwise. 

3.2.2 Statistical analysis 

All enzyme measurements were conducted in ten individual samples from each 

animal with results expressed as mean values ± SE. Pearson’s correlation 

coefficient, percentage coefficient of variance (%CV), standard deviation (SD), 

regression analysis and the two-sample t-test were applied to test for any 

significant differences (P < 0.05). The Bland-Altman method was also used to 

compare between two methods as described in Dewitte et al. (2002). All 

statistics was carried out using MiniTab statistical software version 15. 
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3.3 Results 

3.3.1 Determination of cholinesterase activity in blood 

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were 

determined in blood and blood derivatives (plasma with either heparin or EDTA, 

serum and erythrocytes for sheep and cattle) using the modified Ellman and 

Michel method as described in Section 2.4 (Figure 3.1). There was significantly 

higher AChE activity in plasma when heparin was used as the anticoagulant 

compared to when EDTA was used, using both assay methods (Figure 3.1A 

and 3.1B). In all cases (cattle and sheep, using both assay methods) AChE 

activity was higher than BChE activity in plasma (Figure 3.1A and 3.1B). It was 

found that BChE activity in plasma was higher in cattle than in sheep, using 

both assay methods (Figure 3.1A and 3.1B). Using the modified Ellman method 

AChE activity in both in serum and erythrocytes was found to be significantly 

higher in sheep than in cattle (Figure 3.1C and 3.1D, respectively). In contrast, 

BChE activity was significantly higher in both serum and erythrocytes from 

cattle than sheep (Figure 3.1C). Similar to plasma, there was no significant 

correlation between AChE and BChE activities in either serum or erythrocytes 

from sheep or cattle. Taking the overall data set there was a significant 

correlation between both AChE and BChE activities measured by the modified 

Ellman and modified Michel methods (Pearson’s correlation coefficient = 0.90, 

P < 0.0001; Figure 3.2A). However, the percentage coefficient of variance 

(%CV) values for each tissue were generally higher (13 out of 16 sets of data) 

using the Michel method than the Ellman method (Figure 3.3A-D). The Bland 

and Altman plot of the ratio of two methods Ellman and Michel was showed the 

mean differences between two methods to be 0.57 and SD was 1.57 and -0.45 

for upper and lower limits, respectively (Figure 3.4A).  
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Figure 3.1 AChE and BChE activities in plasma (with heparin and EDTA), serum and 

erythrocyte for sheep and cattle using (A and C) modified Ellman method and (B and 

D) modified Michel method. Data are expressed as the mean ± SE, (n = 10 in each 

animal). The different letters are significantly different (t-test, P < 0.05). 
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Figure 3.2 Regression analysis of the individual AChE and BChE activities using 

modified Ellman and Michel assays from blood derivatives (A) and tissues (B) of food 

animals. 
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Figure 3.3 Percentage coefficient of variance (%CV) between modified Ellman and 

modified Michel methods for ChE activities of sheep, cattle and pigs. The x-axis from 

tissues 1 = liver, 2 = kidney, 3 = muscle, 4 = heart, 5 = lung, 6 = plasma with heparin, 7 

= plasma with EDTA, 8 = serum and 9 = erythrocyte. 
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Figure 3.4 Bland and Altman plot of the ratio of the Ellman and Michel (∆ pH) assay 

(plotted on the y-axis) versus the average of the two methods (x-axis) for AChE and 

BChE activities in food animal. Horizontal lines are drawn at the mean difference, and 

at the mean difference ± 1.96 SD of the differences (dashed line). If the differences 

within mean ± 1.96 SD are clinically not important, the two methods cannot be used 

interchangeably.  
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3.3.2 Determination of cholinesterase activities in animal tissues 

Both AChE and BChE activities were also determined in a range of other 

tissues (liver, kidney, muscle, heart and lungs from sheep, cattle and pigs) 

using the modified Ellman and Michel method as described in Section 2.4 

(Figure 3.5). Tissue from the heart had the lowest activities for both AChE and 

BChE in all three animals compared with other tissues using both assay 

methods (Figure 3.5A-D). 

In general both enzyme activities were highest in liver, with the exception of 

tissue from pigs in which AChE activity was higher in kidney than that seen in 

liver and much higher (8 times) than that seen in kidney from sheep and cattle 

(Figure 3.5A and 3.5B). Both enzyme activities tended to be highest in pig, with 

the exception of lung, in which activities were highest in cattle (Figure 3.5A-D). 

Using both assay methods, in the case of lung tissue from sheep, there was a 

significant positive correlation (Pearson's correlation coefficient, r = 0.79, P = 

0.003 and r = 0.78, P = 0.006 for the Ellman and Michel methods, respectively; 

Figure 3.6A-B). 

Again, taking the overall data set there was a significant correlation between 

AChE and BChE activities measured by the modified Ellman and modified 

Michel methods (Pearson’s correlation coefficient = 0.96, P < 0.0001; Figure 

3.2B), and again, the %CV values for each tissue were generally higher (27 out 

of 30 sets of data) using the Michel method than the Ellman method (Figure 

3.3A-F). The Bland and Altman plot of the ratio of the Ellman and Michel two 

methods showed the mean differences between the two methods to be 0.77 

and SD was 1.47 and -0.08 for upper and lower limits, respectively (Figure 

3.4B). 
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Figure 3.5 AChE and BChE activities from tissues of sheep, cattle and pigs using (A 

and C) modified Ellman method and (B and D) modified Michel method. Data are 

expressed as the mean ± SE, (n = 10 in each animal). The different letters between the 

animals are significantly different [analysis of variance (ANOVA), P < 0.05]. 
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Figure 3.6 Pearson's correlation coefficient values between AChE and BChE activities 

from the lungs of sheep using (A) modified Ellman method and (B) modified Michel 

method. 
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3.4 Discussion 

3.4.1 Cholinesterase activities in blood 

The widespread use of OP and carbamate compounds and the dangers 

associated with their application have resulted in ChE activities being used as 

biomarkers for evaluating both exposure to and the effect of these pesticides 

(Wilson et al., 2001). As noted by Wilson et al. (2001) determining ChE 

activities may form the basis for the establishing of safe levels of such 

pesticides in food and the environment. There are two methods widely used to 

measure of ChE activities, are the modified Ellman method (Haigh et al., 2008) 

and the modified Michel method (Mohammad, 1997). These methods have 

been used successfully to measure ChE activities in blood from goats 

(Guhathakurta and Bhattacharya, 1989; Al-Jobory and Mohammad, 2004). 

However, neither method has been validated for use either in blood from other 

food animals or in other tissues. The present study is the first attempt to 

standardize and validate methods for ChE activity determining in tissues, 

including blood, from sheep and cattle. 

Plasma separation from erythrocytes requires a suitable anticoagulant. Some 

anticoagulants, e.g. oxalate and citrate cannot be used for blood samples 

intended for ChE measurement because they bind Ca2+ and Mg2+ which are 

necessary for the enzyme activity (Whitter, 1963). Both anticoagulants used in 

the present study, heparin and Ca2+-EDTA, have been recommended for this 

type of enzyme study (Fairbrother et al., 1991), and apparently did not cause 

major interference with the measurement of either AChE or BChE activities. I 

found significantly higher activities when heparin was used as the anticoagulant, 

than when EDTA was used (Figure 3.1A and 3.1B). This is in agreement with 

previous research by Mohri and Rezapoor (2009), in which they found generally 
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higher levels of analytes (metabolites, ions and enzyme activities, not including 

ChE) in heparinised plasma from sheep compared to EDTA plasma. They also 

found little difference in the measurement obtained for heparinised plasma 

compared to serum. In contrast, when ChE activities were measured in this 

study, activities were higher in plasma than in serum. 

The BChE activities I obtained using the Ellman method for sheep and cattle 

plasma (Figure 3.1A) are lower with those found by Al-Qarawi and Ali (2003). 

However, these authors used a modified Hestrin method (Lee and Livett, 1967) 

in which butyrylcholine is used as the substrate instead of BuTChI which is used 

in the Ellman method. They also used a ten-fold higher concentration of 

substrate. Both of these factors may explain the apparent difference in activity. 

In all cases, both assay methods showed high levels of ChE activity in 

erythrocytes, about 2-3 times higher than that of serum and plasma for AChE 

activity, and about 35 times higher than that of serum and plasma for BChE 

activity (Figure 3.1A-D). This is in agreement with the findings of Al-Jobory and 

Mohammad (2004) reported AChE activity to be about 2-times higher in 

erythrocytes than in plasma in goats. Furthermore, both Ahmed and 

Mohammad (2005) and Silvestri (1977) observed higher ChE activities in 

erythrocytes from humans and horses than for plasma, using the Michel 

method. The high ChE enzyme activities seen in erythrocytes are due to the 

large amount of ChE enzyme located on their surface (Suhail and Rizvi, 1989). 

In general, the level of AChE activity in blood derivatives in sheep was higher 

than in cattle (Figure 3.1A-D). This is in agreement with an earlier report by 

Crookshank and Palmer (1978) observed higher ChE activities in erythrocytes, 

plasma and serum from sheep than cattle using the Michel method, but 
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contrasts with Wilson et al. (2001) observed that activity in erythrocyte from 

cattle was much higher than those by the other food animals (e.g. horses and 

rabbits) by using the manometric method according to Zajicek (1957). 

In all cases, ChE activities measured by both the Michel and Ellman methods 

were directly proportional (Figure 3.2A). This is in agreement with the findings of 

other authors for these activities in human plasma and erythrocytes (Groff et al., 

1976; Crookshank and Palmer, 1978). For example, Groff et al. (1976) found an 

excellent positive correlation found between results for the Ellman and Michel 

methods in human erythrocytes and plasma. Chuiko et al. (2003) found a 

positive correlation between AChE and BChE activities in citrate plasma across 

a range of sixteen teleost fish species. Of the two species studied here, sheep 

and cattle, a correlation between AChE and BChE levels was only seen in 

EDTA plasma from sheep (R2 = 0.61 and P = 0.008). A similar relationship was 

not seen in heparin plasma, nor was it seen in EDTA or heparin plasma from 

cattle, making it likely that this is a spurious observation (Hawkins and Knittle, 

1972). 

Higher coefficient of variance (%CV) values were obtained using the Michel 

method than with the Ellman method (Figure 3.3A-F). The modified Ellman 

method is therefore more precise than the modified Michel method in 

determining contents of blood for sheep and cattle. These interesting results 

differ with these of Lewis et al. (1981) who observed that a good precision for 

both Ellman and Michel assays for measuring ChE activities in human plasma 

and erythrocyte. The modified Ellman ChE assay method can give a more 

reliable result than the laboratory based modified Michel assay. Hence, either 

AChE or BChE would be used to determine ChE activities in the blood tissues. 
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Finally, these results supported the idea that AChE and BChE activity in 

erythrocyte, plasma and serum for sheep and cattle may be a suitable 

biomarker for anti-ChE compounds. The mean differences in the blood 

derivatives between two methods are plotted by Bland and Altman plot and 

showed clinically important, due to the mean was found lesser than ± 1.96 

(Figure 3.4A). 

3.4.2 Tissue cholinesterase activities 

Both AChE and BChE activities were also determined in a range of other 

tissues. The results for sheep and cattle in the present study show that the 

AChE activity was far higher in tissue from the liver than from that of kidney, 

muscle, heart or lungs (Figure 3.5A). This is in agreement with the work of 

Morizono and Akinaga (1981), in which they found AChE activity to be higher in 

liver than in kidney, muscle, lung and heart tissue in cattle. In contrast, AChE 

activity in kidney tissue from pigs was found to be higher than those by the 

other tissues (i.e. lung, muscle and heart) (Figure 3.5A). This is again in 

agreement with previous research by Morizono and Akinaga (1981) found that 

AChE activity was generally higher in tissue from kidney than in that from the 

heart and lung of pigs. 

The AChE activities obtained using the Ellman method for muscle tissue from 

sheep, cattle and pigs (Figure 3.5A) are lower than those found by Sharma et 

al. (1994). However, these authors used a high temperature (30 °C) to dilute 

samples and also filtered the homogenised samples through muslin cloth. In our 

study lower temperature (25 °C) was used, and the homogenates were not 

filtered. Both of these factors may explain the apparent difference in activity. 
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The BChE activities I obtained using the Ellman method for tissue from sheep 

and cattle liver (Figure 3.5C) are lower than those found by Al-Qarawi and Ali 

(2003). However, these authors used a modified Hestrin method (Lee and 

Livett, 1967) and used butyrylcholine as the substrate instead of BuTChI which 

is used in the Ellman method. They also used a ten-fold higher concentration of 

substrate. Both of these factors may explain the apparent difference in activity. 

In general, the total BChE activity in tissue from liver was higher than in the 

tissue from kidney, muscle, lungs and about 51-88 times higher than tissue from 

the heart for sheep, cattle and pig (Figure 3.5D). This is in agreement with an 

earlier report by Mohammad (2007) reported ChE activities to be higher in liver 

than in muscle in rock dove, quail and chickens. Indeed, the liver is considered 

to be a vital organ and effectives in detoxification and hence involved in creating 

of BChE (Ogunkeye and Roluga, 2006). 

The lowest AChE and BChE activities were found in tissue from the heart 

compared with other (e.g. liver, kidney, muscle and lungs in all three animal 

species). This is in agreement with the findings of Abdelsalam and Ford (1985) 

observed that ChE activities were lower in tissue from the heart than that of 

lung, liver and kidney in cattle. But in contrasts with Chemnitius et al. (1992) 

BChE activity in tissue from pig heart was observed to be 216 nmol min-1 g-1 

which is higher compared to that found in our study (Figure 3.5C). These 

authors used a thirty-fold higher concentration of substrate, however, which 

may explain the apparent difference in activity. 

In general, ChE activities were highest in tissue from pigs followed by tissues 

from cattle and sheep (Figure 3.5A-D). These results disagree with those of Al-

Qarawi and Ali (2003) who observed that ChE in tissue liver from sheep was 
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higher than in tissue from cattle. The biological significance of these differences 

may be related to a varying ability of the ChE of different animals to metabolize 

xenobiotics (e.g. anti-ChE compounds) (Al-Qarawi and Ali, 2003). 

In all cases, I found that ChE activities measured by both the Michel and Ellman 

methods were directly proportional (Figure 3.2B). This is in agreement with the 

findings of Hawkins and Knittle (1972) observed that the regression lines were 

directly proportional to each other when both the Ellman and Michel methods 

were compared in the brain of birds. This differs from the results of Padilla et al. 

(2007) who observed that the regression line was not proportional in the brain of 

rats. These authors compared the Ellman method to the radiometric method, 

however rather than to the Michel method. 

Once again higher %CV values were obtained using the Michel method in 

comparison with the Ellman method (Figure 3.3A-F). The modified Ellman 

method is therefore more precise than the Michel method in the tissues of 

sheep, cattle and pigs. These results differ from with the work of Hawkins and 

Knittle (1972) found that %CV values obtained using the Ellman method were 

higher than with the Michel method. However, these authors compared tissue 

from brain of birds rather than from food animals tissues, which may explain the 

apparent difference in activity. Finally, of all the cases, I found that there was a 

significantly positive correlation between AChE and BChE activities in the 

tissues from the lungs of sheep (Figure 3.6A-B). Again, the mean differences in 

the tissues over all animals between the two methods are plotted by Bland and 

Altman plot and was seen clinically important (Figure 3.4B). 
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3.5 Conclusions 

This study shows for the first time that the level of AChE and BChE activities by 

two methods (modified Ellman and Michel) from tissues of sheep, cattle and 

pigs. To summarise the main points of this Chapter, the following conclusions 

can be drawn. 

1. Erythrocytes are the main source for AChE and BChE activities found in the 

blood of sheep and cattle, while the liver and kidney were the main sources of 

ChE activities found in the tissues of sheep, cattle and pigs. In addition, heparin 

was a more sensitive anticoagulant than EDTA for measuring AChE activity. 

AChE and BChE activities in the blood contents were higher in cattle than in the 

sheep. 

2. Both AChE and BChE activities were found in blood contents for sheep and 

cattle, the erythrocyte higher than those by the plasma and serum. Both AChE 

and BChE activities were found highest in the liver, followed by lung, muscle, 

kidney and heart for sheep and cattle, whereas in pigs the AChE and BChE 

activities tested higher in kidney, liver, lung, muscle and heart. 

4. Ellman modified method was more precise than the Michel method in 

determining AChE and BChE activities. 
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Chapter 4: Comparison of two storage methods for the analysis 

of cholinesterase activities in food animals 

4.1 Introduction 

One of the most useful tools in diagnosing exposure of food animals to OP and 

carbamate compounds is measurement of tissue cholinesterases (ChE) activity. 

ChE is specialized carboxylic ester hydrolases that catalyse the hydrolysis of 

choline esters. Two types of ChE activity have been identified in mammalian 

blood and tissues; these are distinguished according to their substrate 

specificity and sensitivity to the selective inhibitors. The first is 

acetylcholinesterase (AChE, EC 3.1.1.7), which is systematically called 

acetylcholine acetylhydrolase. The second is butyrylcholinesterase (BChE, EC 

3.1.1.8), referred to systematically as acylcholine acylhydrolase (Silver, 1974; 

Chatonnet and Lockridge, 1989; Wilson et al., 2001; Wilson and Philip, 2005). 

In recent years, two freezing methods for keeping ChE activity have 

predominated in diagnostic situations (Fairbrother et al., 1991). 

There have been different studies investigating the stability of AChE and BChE 

activities over time at different freezing temperatures, yet there is disagreement 

between authors and many unanswered question still remain. AChE and BChE 

enzymes are sensitive to different freezing temperatures. Methods governing 

effects of freezing of ChE from tissues of food animals are not completely 

understood. Our objective were to investigate the effects of storage at -20 °C 

and -80 °C on AChE and BChE activities, in addition to determining the best 

method for storage of samples for the determination of AChE and BChE 

activities in food animals, and to establish a foundation for the applicability of 
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AChE and BChE activities in food animal species as biochemical biomarkers for 

evaluating both exposures to and the effects OP and carbamate compounds. 

4.2 Materials and methods 

4.2.1 Sample collection and preparation 

The sample collection and preparation were done as explained in Sections 2.2 

and 2.3. However, the tissue homogenates were thoroughly mixed and 

distributed into 16 equal portions in all animals (sheep, cattle and pigs) and 

tissues (liver and muscle), representing freezing temperatures (-80 °C and -20 

°C) for immediate processing one-month intervals, over a period of 8 months. 

Both AChE and BChE activities were measured by Ellman method as explained 

in Section 2.4.1. All the chemicals used in this research were purchased from 

analytical grade. 

4.2.2 Statistical analysis 

All enzyme measurements were conducted in ten individuals from each animal 

with results expressed as mean values ± SE. Pearson’s correlation coefficient, 

coefficient of variance (CV), standard deviation (SD), regression analysis and 

the one-way analysis of variance (ANOVA) were applied to test for any 

significant differences (P < 0.05). The Bland-Altman method was also used to 

compare between two freezing methods as described in Dewitte et al. (2002). 

All statistics was carried out using MiniTab statistical software version 15. 

4.3 Results 

4.3.1 Liver freezing 

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were 

determined in liver for sheep, cattle and pigs of each of the 8 freezing times 

rates at -80 °C and -20 °C as described in Section 2.4.1 (Figure 4.1A-D). There 
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was significantly higher AChE and BChE activities in pigs compared to when 

cattle and sheep used, using both effects of freezing (Figure 4.1A-D). In all 

cases (sheep, cattle and pigs using both freezing methods), BChE activity was 

higher in liver than does AChE activity (Figure 4.1A-D). Freezing for cases 

(sheep, cattle and pigs using both freezing methods) at -80 °C was a significant 

decrease after 6 months (Figure 4.1A and 4.1B). In general, at -20 °C AChE 

and BChE activities were significant decreased after 3 months with exception in 

case of sheep AChE was significant after 1 month (Figure 4.1C). 

The linear regression of means ChE activities of liver in 8 months of freezing is 

shown in (Figure 4.2A-D). The R2 values was tended to be very high in case of 

BChE activity at -20 °C (R2 = 0.98, P = 0.0001; Figure 4.2D). Taking the overall 

data set there was a significant correlation between both AChE and BChE 

activities measured by -80 °C and -20 °C freezing (Pearson’s correlation 

coefficient = 0.70, P < 0.0001; Figure 4.3A). 

However, the percentage coefficient of variance (%CV) values for each month 

were generally higher (35 out of 48 sets of data) using the -20 °C than that of -

80 °C freezing (Figure 4.4A-F). The Bland and Altman plot of the ratio of two 

freezing -80 °C and -20 °C was shown the mean differences between two 

freezing methods to be 8.8 and SD was 144.7 and -127.6 for upper and lower 

limits, respectively (Figure 4.5A). 
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Figure 4.1 AChE and BChE activities in liver for sheep, cattle and pigs using (A and C) 

freezing at -80 °C and (B and D) -20 °C. Data are expressed as the mean ± SE, (n = 10 

in each animal). The letter in the column is significantly different [analysis of variance 

(ANOVA), P < 0.05]. 
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Figure 4.2 AChE and BChE (% of control) over time in liver freezing at -80 °C and -20 

°C for sheep, cattle and pigs. A linear regression obtained between three species of 

animals (sheep, cattle and pig) and the equation usually written: f = a + bx, where f is 

the predicated mean AChE and BChE activities, a is the intercept of the regression line 

with f-axis, b is the slop or regression coefficient and x was any month of storage. 

These equations indeed could be used for predication of ChE activities in different sites 

for any month of freezing. 
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Figure 4.3 Regression analysis of individual activity of AChE and BChE activities using 

storage -80 °C and -20 °C from liver (A) and muscle (B) of sheep, cattle and pig. 
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Figure 4.4 Percentage coefficient of variance between freezing at -80 °C and -20 °C 

for AChE and BChE activities in liver for sheep, cattle and pigs in 8 months. 
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Figure 4.5 Bland and Altman plot of the ratio of the storage -80 °C and -20 °C (plotted 

on the y-axis) versus the average of the storages (x-axis) for food animal AChE and 

BChE activities. Key to the figures are listed under the figure 3.4. 
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4.3.2 Muscle freezing 

Effect of freezing for AChE and BChE activities were also determined in muscle 

for sheep, cattle and pigs using of each of the 8 freezing times rates at -80 °C 

and -20 °C as described in Section 2.4.1 (Figure 4.6A-D). In all cases (sheep, 

cattle and pigs using both freezing methods), AChE activity was higher in 

muscle than does BChE activity (Figure 4.6A-D). In all cases (sheep, cattle and 

pigs using both freezing methods), the freezing at -80 °C was found a significant 

decrease after 3 months for AChE and BChE activities (Figure 4.6A and 4.6B). 

Freezing in all cases (sheep, cattle and pigs using both freezing methods) at -

20 °C, there are a significant decreases after 1 month for BChE activity (Figure 

4.6D), while for AChE there are a significant after 2 months for cattle and pigs 

with exception for sheep after 3 months (Figure 4.6C). 

Once, again linear regression of means ChE activities was seen in muscle in 8 

months of freezing (Figure 4.7A-D). The R2 values was tended to be very high 

in case of AChE activity at -20 °C (R2 = 0.98, P = 0.0001; Figure 4.7C). Again 

taking the overall data set there was a significant correlation between both 

AChE and BChE activities measured at -80 °C and -20 °C freezing (Pearson’s 

correlation coefficient = 0.43, P < 0.0001; Figure 4.3B), and again, the %CV 

values for each month were generally higher (35 out of 48 sets of data) using 

the -20 °C than that of -80 °C freezing (Figure 4.8A-F). The Bland and Altman 

plot of the ratio of freezing -80 °C and -20 °C was shown the mean differences 

between two freezing methods to be 1.5 and SD was 32.5 and -28.9 for upper 

and lower limits, respectively (Figure 4.5B). 
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Figure 4.6 AChE and BChE activities in muscle for sheep, cattle and pigs using (A and 

C) freezing at -80 °C and (B and D) -20 °C. Data are expressed as the mean ± SE, (n = 

10 in each animal). The letter in the column is significantly different [analysis of 

variance (ANOVA), P < 0.05]. 
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Figure 4.7 AChE and BChE activities (% of control) over time in muscle freezing at -80 

oC for sheep, cattle and pigs. Key for the figures are listed under the figure 4.2. 
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Figure 4.8 Percentage coefficient of variance between freezing -80 °C and -20 °C for 

AChE and BChE activities in muscle sheep, cattle and pigs in 8 months. 
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4.4 Discussion 

There are two effects of freezing currently described for the measurement of 

ChE activities, the -20 °C and -80 °C. However, neither effect of freezing has 

been validated for use either in tissues from other food animal or in other 

tissues. The present study was to investigate the effect of freezing (8 months) 

on activity of AChE and BChE for sheep, cattle and pigs using modified Ellman 

method in liver and muscles as described in Section 2.4.1 (Figures 4.1 and 4.6). 

In all cases the results from our study are shown a significant decrease of AChE 

and BChE activities at -80 °C after 6 months in liver (Figure 4.1A and 4.1B). In 

contrast, with muscle I found significant after 3 months (Figure 4.6A and 4.6B). 

This is in agreement with the work of Kirby et al. (2000) found no changes or 

loss in ChE activities for 4 months in freezing at -80 °C for flounder muscle 

tissue. Nigg and Knaak (2000) who observed a little change in human plasma 

BChE activity when freezing at -70 °C after 10 times of frozen and thawing. In 

addition, ChE activities of fish brain tissue freezing at -68 °C and -70 °C for up 

55 days and 5 months, respectively did not differ significantly (Fairbrother et al., 

1991; Nigg and Knaak, 2000). 

In general freezing at -20 °C were significant decreases in all cases (sheep, 

cattle and pigs for liver and muscle) after 1-3 months (Figures 4.1 and 4.6). This 

is in agreement with the work of Crane et al. (1970) observed plasma and 

erythrocyte ChE activities freezing at -20 °C is remain stable after 6 weeks. This 

is in contrast with the work of Nigg and Knaak (2000) stated using freezing at -

20 °C for 14 month without significance loss of plasma BChE activity. 

Panteghini et al. (1986), observed human plasma ChE activities to be stable for 

several months and years using freezing at -20 °C. These authors used a 

human blood plasma measuring rather than from food animals. This factor may 
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explain the apparent difference in activity. There is a 30% loss in BChE activity 

using freezing at -20 °C in human serum, while there is no loss in AChE activity 

at storage for one year (Turner et al., 1984; Huizenga et al., 1985). And there is 

a 23% decrease in up to 6 months in sheep AChE activity using freezing at -20 

°C in whole blood and a 9% decrease of whole blood from dog using freezing at 

-20 °C (Tecles et al., 2002a). Moran and Gomez-Ramos (1992) explained that 

some loss of AChE activity is due to particularly of G4 molecular form of the 

enzyme, which has been described in unfixed human brain tissue, stored frozen 

-20 °C for 4 weeks. 

In addition, there is a great variety of freezing degrees that can be found among 

different laboratories, for example, there were no changes in ChE activities 

when stored more than ten years at lower than 4 °C (Holmstedt, 1971), and a 

10% decrease after 2 months in bovine erythrocyte ChE, in addition, a 95% 

decrease at 37 °C for 4 days (Stefan et al., 1977). Furthermore, Balland et al. 

(1992) found that ChE loses 15% of its activity after 240 days of storage at 

room temperature; additionally who reported that freezing for 1 h at -40 °C and -

196 oC did not affect ChE activities in plasma and stored samples. High 

correlation coefficient was seen at between 8 months of freezing -80 °C and -20 

°C in the liver and muscle (Figures 4.2 and 4.7). One objective of the present 

study was to investigate whether the frozen animal product had effect on activity 

of ChE (Balland et al., 1992). 

Linear regression of mean ChE activities was observed in all individual samples 

on months of freezing at -80 °C and -20 °C (Figure 4.3A and 4.3B). The 

regression is used in present study to find the line that best predicts y (% control 

ChE activities) from x (months). The mean differences between two freezing 
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methods are plotted by Bland and Altman plot and were seen only in muscle 

storage clinically important the mean less than ± 1.96 (Figure 4.5B). With 

regards to precision of the both freezing methods, they showed higher 

coefficient of variance (%CV) values in -20 °C freezing compared with freezing 

at -80 °C (less than 13% and less than 15.2% for freezing -80 °C and -20 °C, 

respectively for liver) and (less than 12.8% and less than 16.9% for freezing -80 

°C and -20 °C, respectively for muscle) (Figures 4.4 and 4.8); therefore freezing 

at -80 °C provided more precise than freezing at -20 °C in muscle and liver for 

sheep and cattle. Finally, it was noticed that the decreases of ChE inhibition 

levels after freezing were broadly similar to those found in the original analysis 

and, therefore, long-term freezing could still be used as an option during 

monitoring programmes, especially where samples are not allowed to thaw 

during storage. 

4.5 Conclusions 

This is the first study that provided the original data concerning the effect of 

freezing for AChE and BChE activities for sheep, cattle and pig. The AChE and 

BChE activities were freezing by two methods (-20 °C and -80 °C) from liver 

and muscle for sheep, cattle and pigs for 8 months. Summarizing the results of 

this Chapter, the following conclusions can be drawn. 

1. Freezing at -80 °C in all three animal species (sheep, cattle and pigs), there 

are found a significant inhibition of AChE and BChE activities after 6 months in 

the liver, while after 3 months in muscle. 

2. Liver extracts using freezing at -20 °C from all three animal species (sheep, 

cattle and pigs) showed a significant decrease in AChE activity after 3 months 

with the exception of sheep. 
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3. Muscle extracts using freezing at -20 °C from all three animal species (sheep, 

cattle and pigs) showed a significantly decreased in BChE activity after 1 

month, while significant decreased after 2 months for AChE activity, with the 

exception in sheep AChE activity after 3 months. 

4. Freezing at -80 °C was more precise than the freezing at -20 °C in 

determining AChE and BChE activities. 

5. Finally, despite this further studies are necessary under different laboratories, 

in order to improve and strengthen these results and to increase in our 

knowledge about this very interesting enzyme as a potential biochemical marker 

for pesticide intoxication. 
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Chapter 5 

Purification of soluble 

acetylcholinesterase from sheep 

liver by affinity chromatography 

 

The results from this Chapter have been presented as poster presentations at 
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Pharmacological Society, December 2010, Queen Elizabeth II Conference 

Centre, London; 23rd Annual Symposium of the Biochemical Society of Recent 

Advances in Membrane Biochemistry, January 2011, University of Cambridge; 

and 2nd European Conference on Process Analytics and Control Technology, 

April 2011, Glasgow. The results have also been published in Applied 

Biochemistry and Biotechnology 165(1):336-346 (Abass Askar et al., 2011).  
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Chapter 5: Purification of soluble acetylcholinesterase from 

sheep liver by affinity chromatography 

5.1 Introduction 

Acetylcholinesterase (AChE, EC 3.1.1.7) is specialized carboxylic ester 

hydrolases that catalyse the hydrolysis of choline esters, which is systematically 

called acetylcholine acetylhydrolase. Other names include true cholinesterase, 

specific cholinesterase, red blood cell cholinesterase, erythrocyte 

cholinesterase and cholinesterase I. The preferred substrate for AChE is ACh 

(Silver, 1974; Wilson et al., 2001; Wilson and Philip, 2005; Wilson, 2010). AChE 

serves a pivotal role in regulating nerve impulse transmission by rapid 

hydrolysis of the neurotransmitter ACh. 

Most of the information about the properties of purified AChE has been obtained 

from studies of the AChE from the electric tissue of the eel Electrophorus 

electricus (Lawler, 1961). Lord in (1961) indicated a partially purified AChE from 

the German cockroach Blatella germanica by grinding insects in sodium 

taurochlorate, dialysing against di-sodium hydrogen phosphate, precipitating 

with ammonium sulphate, dialysing against sodium citrate, incubating in 

protamine sulphate, dialysing against water and precipitating in acetone with the 

final sample being dissolved in sodium citrate buffer. Leuzinger and Baker in 

(1967) purified AChE as a crystalline and electrophoretically homogenous form 

by chromatographic procedures. 

Efficient purification of AChE has since become possible using affinity 

chromatography, which has been described by Cuatrecasas et al. (1968) as 

permitting a given enzyme to be readily separated from a mixture of proteins by 

its selective and reversible adsorption on a resin to which a specific competitive 



Chapter 5  Purification of acetylcholinesterase from sheep liver 

   74  

inhibitor of that enzyme has been covalently attached. Early affinity techniques 

for AChE purification were investigated by Reavill and Plummer (1978) who 

compared the efficiency of three affinity columns. 

Recently, a variety of affinity resins such as tacrine (Carroll et al., 1995), 

procainamide (Philipp, 1994), edrophonium (Son et al., 2002), and m-tri-

methylaminophenylamine (Pascale et al., 1996) have been developed for the 

purification of AChE from various organisms. Most of these ligands are specific 

inhibitors of AChE. I attempted to purify the soluble AChE from sheep liver 

using the two-step affinity chromatography such as Concanavalin A-Sepharose 

4B column and edrophonium-Sepharose 6B column that turned out to be very 

rapid and sensitive. The first goal of this study was to develop a protocol for the 

purification of AChE and to extend this method for further enzyme 

characterization. A further aim was to study whether the edrophonium 

pharmacologic action is due primarily to the inhibition or inactivation of AChE at 

sites of cholinergic transmission. 

5.2 Materials and methods 

5.2.1 Sample preparation 

Ten grams of liver tissue was removed using a scalpel, cut into small pieces (3-

4 mm3), and rinsed until the blood was fully removed. The tissue was then 

placed on ice in 50 ml tubes (10 mm internal diameter) and homogenized using 

a mechanically driven homogenizer with sodium phosphate buffer (0.1 M, pH 8) 

containing 0.5 M NaCl at a ratio of 1 part of tissue to 9 parts of buffer, and a 

speed of 10000 rpm. Homogenisation required 2 min; after every 30 s or so of 

homogenisation the mixture was rested for 10 s to allow cooling. The 

homogenate was then centrifuged in 50 ml tubes by using (MES, T8 probe, 
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Europa 284) at 30,000 g for 1 h, at 4 °C (Son et al., 2002). The AChE activity 

was measured by Ellman method as described in Section 2.4.1. All chemicals 

used in this research were analytical grade. 

5.2.2 Determination of protein 

The protein content was quantified either by measuring the absorbance at 

280 nm (Berg et al., 2002) or by Bradford method (colorimetric protein assay at 

595 nm) (Bradford, 1976) based on the binding of coomassie brilliant blue dye 

to proteins. Bovine serum albumin (BSA) is unique, which plays an important 

role in stabilizing protein structure. The BSA standards were made at 

concentrations of 0, 0.2, 0.4, 0.6, 0.8, 1 and 1.2 mg/ml BSA in distilled water 

(Figure 5.1). 

Samples (50 µl) were placed in dry clean tubes and the volume was made up to 

2.55 ml by the addition of the Bradford buffer (100 mg coomassie brilliant blue 

in 50 ml 95% ethanol, add 100 ml 85% phosphoric acid), volume was made up 

to 1 litre by distilled water and when the dye has completely dissolved, and filter 

through Whatman filter paper. Then sample with Bradford buffer was mixed 

briefly by vortex machine (MS1 Minishaker, IKA Works, Inc.) and incubated for 

5 min at room temperature 20 °C, and analysed spectrophotometrically using a 

Helious Betra UV-Vis spectrophotometer (UK). The protein concentration of the 

test samples could be determined from the standard curve (Figure 5.1). 
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Figure 5.1 Standard calibration curve of BSA for Bradford assay. The data was 

showed as mean for triplicate. 

5.2.3 Synthesis of edrophonium-Sepharose affinity gel 

Preparation of affinity gel was followed by the process of Anthony and Ian 

(1983) with minor modification of Son et al. (2002). Epoxy-activated Sepharose 

was hydrated and washed with deionised distilled water on a sintered glass filter 

as recommended by the producer by the Sigma Chemical Company (Poole, 

Dorset, UK). Before use, the gel could be washed in sequence with 10 volumes 

each of 100 mM sodium acetate buffer (pH 4.5); 12 mM sodium borate buffer 

(pH 10); and deionised distilled water. The gel slurry was dried on a Buchner 

funnel and transferred into a solution (12 mM borate buffer, pH 11) containing 

20 mM edrophonium chloride (1 part gel/2 parts mixture solution). The pH of 

aliquots was then adjusted to 12 by the addition of 0.1 M sodium hydroxide. The 

mixture was shaken for 48 h at 50 °C on an incubator (LEEC, UK). The 

efficiency of edrophonium coupled to Sepharose 6B was measured based on 
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the variation at 280 nm. All purification steps were performed at 4 °C, according 

to Anthony and Ian (1983). 

5.2.4 Isolation and purification of acetylcholinesterase 

Essentially, this followed the method of Son et al. (2002), by which AChE 

retained on an affinity Concanavalin A-Sepharose 4B column (GE Healthcare, 

UK Ltd.) was equilibrated with 50 mM sodium phosphate buffer (pH 7.4) and 

was followed by 0.5 M NaCl at 4 °C previous to packing liver extracts onto the 

column. The column was washed with the sodium phosphate buffer (pH 7.4) 

containing 0.5 M NaCl until the protein content of the eluate was under the 

detection limit at 280 nm. AChE was then eluted with the sodium phosphate 

buffer (pH 7.4) containing 0.5 M methyl α-D-mannopyranoside at a flow rate of 

30 ml/h. Active fractions monitored as a sole peak were collected and pooled, 

and then concentrated by using Amicon Ultra Centrifugal Filter Devises 

(Millipore, Carrigtwohill, Ireland). 

The eluant was then applied onto a column of edrophonium-Sepharose 6B 

previously equilibrated with 50 mM sodium phosphate buffer, pH 7.4 containing 

0.5 M NaCl. Then, the column was washed with the 50 mM sodium phosphate 

buffer, pH 7.4 containing 0.5 M NaCl until the protein content was below 0.01 at 

280 nm. The enzyme was then specifically eluted with 50 mM sodium 

phosphate buffer (pH 7.4) containing 20 mM edrophonium chloride. Each 

fraction of 0.5 ml was collected by a peristaltic pump (Miniplus 3, Gilson, UK) 

connected to a fraction collector (FC 2112 Fraction Collector, Redirac, UK), and 

the active fractions were pooled and dialyzed (see dialysis section) overnight 

against 50 mM sodium phosphate buffer (pH 7.4) containing 0.5 M NaCl, with 

three changes of the buffer (Anthony and Ian, 1983; Son et al., 2002).  
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5.2.5 Dialysis 

Dialysis is a purification method which allows proteins to be separated from 

small molecules by use of a semipermeable membrane, usually made from 

cellulose (Berg et al., 2002). This membrane contains pores of a defined size so 

that there is a molecular weight cut-off. This ensures that small molecules will 

be free to pass through the membrane into the surrounding medium, whilst 

keeping larger macromolecules within (Berg et al., 2002). Dialysis as a method 

can be used to exchange buffers or remove salts or other small molecules from 

the sample of proteins. The dialysis membrane containing protein and small 

molecules are immersed in an aqueous solution into which the latter can 

diffuses via the pores. Once equilibrium is reached, the dialysate is replaced 

until most of the small molecules have been removed from the environment of 

the protein, and the concentration is at an acceptable level (Figure 5.2). 

 

 

 

Figure 5.2 Gradual removal of small molecules from protein sample. 

5.2.6 Sephacryl S-200 HR 

Molecular weight was estimated under non-denaturing conditions by gel 

filtration technique (molecular exclusion) using Sephacryl S-200. High molecular 

weight proteins will go down through a column quickly, while lower molecular 

weight proteins will go down through a column slowly (Son et al., 2002). This is 

because the structure of the gel beads within the column excludes molecules 

that are too big to pass through the bead pores. A standard protein markers 

Replace 

Dialysis 

Buffer 

Replace 

Dialysis 

Buffer 



Chapter 5  Purification of acetylcholinesterase from sheep liver 

   79  

mixture (1 ml) containing (in milligram): Carbonic anhydrase 1.5, β-amylase 2, 

alcohol dehydrogenase 2.5, cytochrome C 4, BSA 5 and apoferritin 5 were 

applied to a Sephacryl S-200 column, followed by 100 ml of 0.15 M sodium 

phosphate buffer (pH 7.2), flow rate (0.5 ml/min) and volume of each fraction 

collected, a sample was detecting at 595 nm after loading to the column. The 

column (2.4 × 24 cm) was calibrated with standard molecular weight: Carbonic 

anhydrase (29,000), BSA (66,000), alcohol dehydrogenase (150,000), β-

amylase (200,000) and apoferritin (443,000). 

5.2.7 Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

Sodium dodecyl sulphate (SDS) gels were prepared according to the method of 

Laemmli (1970) (Table 5.1). Polymerisation was achieved by the addition of 

ammonium persulphate and N, N, N', N'-tetramethylethylenediamine. Protein 

samples were dissolved with three times concentrated sample buffer at a ratio 

3:1. 15 μl was mixed with 5 μl of sample buffer containing [0.2 M Tris buffer (pH 

6.8), 10% (w/v) SDS, 20% (w/v) glycerol, 0.05% (w/v) bromphenolblue]. Next, 

the prepared samples were completely loaded on the gel, and electrophoresis 

was carried out in a Mini Protean 3 system (Bio-Rad, UK) at a constant current 

of about 60 volt until the dye front reached the resolving (separating) gel and 

then at 120 volt until the dye front had reached the bottom of the gel. 

After removal of the staking gel, the resolving gel was placed in stainer [0.125% 

Coomassie blue G-250 in 10% (v/v) phosphoric acid, 10% (w/v) ammonium 

sulphate, 20% (v/v) methanol for 2 h at room temperature 20 oC] and left over 

night at room temperature with constants shaking. Gels were then destained by 

placing in destainer. The destainer [10% (v/v) methanol and 10% (v/v) acetic 
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acid] was changed regularly until the gel was fully destained. All chemicals and 

protein markers used in this study were of analytical grade. 

Table 5.1 Chemical composition of 10% SDS-PAGE gels (adapted from (Laemmli, 

1970)). 

 

Chemical 

Separating 

layer 10% (ml) 

Stacking 

layer 4% (ml) 

Distilled water 12.3 3.075 

1.5 M Tris buffer (pH 8.8) 7.5 - 

Acrylamide/bisacrylamide (30%/0.8% w/v) 9.9 0.67 

0.5 M Tris buffer (pH 6.8) - 1.25 

The above reagents were mixed and degassed and the following 

reagents were then added:- 

20% (w/v) SDS 0.15 0.025 

N, N, N', N'-

tetramethylethylenediamine 

0.02 0.005 

10% (w/v) ammonium persulphate 0.15 0.025 

 

5.2.8 Estimation of the relative mobility 

The relative mobility (Rf) refers to the mobility of the protein of interest 

measured with reference to a tracking dye. Standard molecular weight markers 

were run on every SDS gel conducted. After destaining, the Rf of each marker 

was determined according to Garfin (2009) as follows; 

   
                                                        

                                                  
 

The Rf values was then plotted versus the log of known molecular weights. This 

allowed the construction of a calibration curve from which the Rf values of the 



Chapter 5  Purification of acetylcholinesterase from sheep liver 

   81  

unknown protein could be read off to give the molecular weight of the protein 

(Figure 5.7). 

5.3 Results and discussion 

5.3.1 Purification of acetylcholinesterase 

The present approach to purification of sheep liver AChE entailing affinity 

chromatography was based on the approach of Anthony and Ian (1983) and 

Son et al. (2002). AChE is primarily involved in cholinergic synaptic 

transmission and found in a variety of neuronal and non-neuronal tissues 

(Wilson, 2010). The purification of soluble AChE from sheep liver is summarized 

in Table 5.2. Total protein activity was detected to be 183 mg in 50 ml of 

homogenate, with a specific AChE activity of 0.025 U/mg of protein. After affinity 

1, the purified AChE contained 3.9 mg of protein in 41 ml of supernatant, with a 

specific activity of 0.289 U/mg of protein. The supernatant obtained by 

ultracentrifuge has about 66% of the total AChE activity and about 46% of the 

total protein recovery. When the supernatant was applied onto Concanavalin A-

Sepharose 4B column, AChE was quantitatively adsorbed by Concanavalin A-

Sepharose 4B column (Figure 5.3). About 25% of the enzyme and 2% of protein 

were eluted from the column with 0.5 M methyl α-D-mannopyranoside and 

purification fold was nearly 12. The edrophonium-Sepharose 6B affinity 

chromatography resulted in an AChE activity of 0.382 (U) and a purification fold 

of 842.  
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Table 5.2 Purification of AChE from sheep liver. 

 

Step 

 

Volume 

(ml) 

Total 

protein 

(mg) 

Total 

activity 

(U) 

Specific 

activity 

(U/mg) 

Protein 

recovery 

(%) 

Activity 

recovery 

(%) 

 

Purification 

factor 

Homogenate 50 183.0 4.6 0.025 100 100 1 

 

Supernatant 

 

41 

 

83.3 

 

2.9 

 

0.036 

 

45.5 

 

65.7 

 

1.5 

Affinity 1: 

Concanavalin 

A-Sepharose 

4B column 

 

22 

 

3.9 

 

1.1 

 

0.289 

 

2.1 

 

24.7 

 

11.6 

Affinity 2: 

Edrophonium-

Sepharose 6B 

column 

 

10 

 

0.018 

 

0.382 

 

20.9 

 

0.009 

 

8.4 

 

841.9 

The specific activity of AChE, expressed as  micromole hydrolysed per minute per 

milligram of protein. The recovery (%) of protein and activity was based on the total 

protein and AChE activity, respectively. 

Although there were some tailings at the end of a peak shoulder in the 

adsorption of enzyme from the column, a reasonable amount of enzyme was 

recovered. It has been known that the globular form of AChE, predominant in 

the mammalian liver and muscle, is a glycoprotein (Massoulie et al., 1993). The 

chromatographic behaviour of sheep liver AChE on Concanavalin A-Sepharose 

6B column resin indicates that soluble AChE from sheep liver may be of 

glycoprotein nature (Michizo et al., 1985). The enzyme eluted with 0.5 M methyl 

α-D-mannopyranoside showed a high protein with very sharp peak with AChE 

activity (Figure 5.3). 
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Figure 5.3 A typical elution profile for the chromatography of sheep liver AChE on 

Concanavalin A-Sepharose 4B column (1.5 × 5 cm) previously equilibrated with 0.05 M 

sodium phosphate buffer containing 0.5 M methyl α-D-mannopyranoside at a flow rate 

of 0.5 ml/min. 

Then, the pooled sample concentrated and loaded on the edrophonium-

Sepharose 6B column. After the column was washed with 50 mM sodium 

phosphate buffer (pH 7.4) containing 0.5 M NaCl, AChE was eluted with 

edrophonium chloride. They demonstrated a very sharp peak with high AChE 

activity but with very low protein. However, this enzyme did not show any 

enzyme activity because of the inhibitory action of edrophonium bound to the 

active site of AChE. Most of the non-specifically bound proteins were removed 

in 50 mM sodium phosphate buffer and 0.5 M NaCl washing (Figure 5.4). 
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Figure 5.4 A typical elution profile for the chromatography of sheep liver AChE on 

edrophonium-Sepharose 6B column (1 × 15 cm) previously equilibrated with 50 mM 

sodium phosphate buffer containing 20 mM edrophonium chloride at a flow rate of 0.5 

ml/min. 

The purity of the purified AChE is quite compatible with that of AChE from other 

sources such as 600-fold for rat liver (Leuzinger, 1971), cattle erythrocyte (930-

fold) (Schmidt-Dannert et al., 1994), cattle serum (44,000-fold) (Ralston et al., 

1985), Housefly (400-fold) (Im et al., 2004). The specific activity of the AChE I 

obtained from liver of sheep (Table 5.2) is much lower with those found by 

Eileen (1977), Son et al. (2002) and Im et al. (2004). These authors use brain 

tissues instead of liver which I used. In addition, very high AChE activity found 

in the tissue brain than other tissues. This factor may explain the apparent 

difference in specific activity. 
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5.3.2 Molecular weight determination 

The molecular weight by gel filtration analysis of sheep liver AChE as calculated 

from the calibration curve and estimated to be 201.5 kDa as tetrameric using 

Sephacryl S-200 (Figure 5.5). Our results (Figure 5.5) are lower when 

compared with other food animals, e.g. cattle (Ralston et al., 1985). However, 

this author used serum instead of liver tissue. This factor may explain the 

apparent difference in tetrameric molecular weight. 

Monomeric subunit molecular weight of AChE was calculated from the 

calibration curve and estimated to be 67.1 kDa as single monomeric subunits 

using 10% SDS-polyacrylamide gel electrophoresis (coomassie blue stained) 

(Figures 5.6 and 5.7). It was higher than those in quail brain (62.5 kDa) (Son et 

al., 2002), human brain (66 kDa) (Zhu et al., 1993), human serum (65 kDa) 

(Lockridge et al., 1987), electric organ of the electric eel (25-59 kDa) (Dudai and 

Silman, 1974), while lower than in studied Torpedo californica (71-82 kDa) 

(Taylor and Lappi, 1975; Lwebuga-Mukasa et al., 1976), cattle serum (83 kDa) 

(Ralston et al., 1985), and cattle superior cervical ganglia (75 kDa) (Marc et al., 

1979). The above results differ with our results due to these authors using 

different tissues instead of liver tissue. Finally, I found that in this case, 

purification was most successful on a column containing edrophonium chloride 

covalently linked to epoxy-activated Sepharose 6B and eluted with methyl α-D-

mannopyranoside. 
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Figure 5.5 Calibration curve for gel permeation determination of the molecular weight 

of purified AChE by Sephacryl S-200 HR chromatography. The protein markers used in 

order of increasing molecular weight: Cytochrome C (12,000), carbonic anhydrase 

(29,000), BSA (66,000), alcohol dehydrogenase (150,000), b-amylase (200,000) and 

apoferritin (443,000). Dextran blue (2,000,000) was used to determine the void volume 

(Vo), while (Ve) is the elution volume. 
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Figure 5.6 SDS-polyacrylamide gel electrophoresis pattern of AChE from sheep liver. 

SDS-PAGE was conducted in gel and the protein stained with coomassie blue. Lane 1: 

Standard proteins (molecular weights insert) are carbonic anhydrase (29,000), egg 

albumin (45,000), BSA (66,000), phosphorylase b (97,000), β-galactosidase (116,000) 

and myosin (200,000). Lane 2: Supernatant AChE. Lane 3: 50 mM sodium phosphate 

buffer fraction on Concanavalin A-Sepharose. Lane 4: 0.5 M methyl α-D-

mannopyranoside fraction on Concanavalin A-Sepharose. Lane 5: 20 mM 

edrophonium fraction on edrophonium-Sepharose. 
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Figure 5.7 A typical standard calibration curve for a SDS gel. The protein markers 

used in order of increasing molecular weight: Carbonic anhydrase (29,000), egg 

albumin (45,000), BSA (66,000), phosphorylase b (97,000), β-galactosidase (116,000) 

and myosin (200,000). 

5.4 Conclusions 

A new method for the purification of acetylcholinesterase (AChE, acetylcholine 

acetylhydrolase, EC 3.1.1.7) enzyme and to extend a purification method for 

further enzyme characterization was developed. A research question that could 

be developed from the foregoing fact are as follows. 

1. I succeeded in establishing a gentle solubilization technique that provided a 

favourable detergent during further purification procedure by stabilizing the 

native form of this fragile protein? 

2. The purify AChE by a two-step separation on Concanavalin A-Sepharose 4B 

column followed by edrophonium-Sepharose 6B column. The monomeric 

molecular weight was detected 67.04 kDa by using SDS page, while tetrameric 

form detected to be 201.5 kDa by using the Sephacryl S-200 column? 
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3. Lastly, this protocol, in our opinion, (combined use of Concanavalin A-

Sepharose 4B and edrophonium affinity 6B chromatography) could be a useful 

resource for purifying soluble AChE from sheep liver, which is readily applicable 

to the purification of soluble AChE from other sources? 

Understanding these questions might provide vital clues on strategies to 

improve efficiency in sheep AChE and food safety. 
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Chapter 6 

Characterization of cholinesterase 

 

The results from this Chapter have been presented as poster presentations at the 

following conferences: Annual Meeting of European Federation of Food Science 

Technology (EFFoST)-Food and Health, November 2010, Dublin, Ireland; 23rd Annual 

Symposium of the European Society of Veterinary Neurology-European College of 

Veterinary Neurology, September 2010, University of Cambridge; Winter Meeting of the 

British Pharmacological Society, December 2010, Queen Elizabeth II Conference 

Centre, London; 32nd Annual Congress of the British Toxicology Society, March 2011, 

University of Durham; and Annual Conference of British Society of Animal Science, 

April 2011, University of Nottingham.  

These results have also been published in: 

 

Kasim Abass Askar, A. Caleb Kudi and A. John Moody (2010). The use of selective 

inhibitors to estimation of cholinesterase activity of liver and muscle for food animals. 

Journal of British Pharmacological Society 8:165-165. 

Kasim Abass Askar, A. Caleb Kudi and A. John Moody (2011). Histochemical 

localization of acetylcholinesterase. Toxicology 290(2-3):104-104.  

Kasim Abass Askar, A. John Moody and A. Caleb Kudi (2011). Histochemical 

localization of acetylcholinesterase in liver of food animals by Gomori Method. 

Advances in Animal Biosciences 2:184-184.  
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Chapter 6: Characterization of cholinesterase activities 

6.1 Introduction 

Cholinesterases (ChE) prefers to hydrolyse the natural substrate ACh, which is 

the predominant choline ester, therefore ACh cannot be used as the sole 

substrate in the laboratory determination of AChE activity in blood or tissues 

containing AChE and BChE enzymes (Wilson et al., 2001). To overcome this 

problem, specific substrates are used e.g. acetyl-β-methylcholine, commonly 

employed to measure AChE, while synthetic butyrylcholine or benzoylcholine 

are used to measure BChE (Morizono and Akinaga, 1981; Tecles and Ceron, 

2001; Wilson et al., 2001). Whereas variability in substrate affinity in tissues of 

cattle and pigs yielded highest BuTChI in pancreas, liver, kidney and lungs 

(except AcTChI in the heart and spleen) and PrTChI is poorly hydrolysed, while 

horse, dog and cats are yielded highest AcTChI in pancreas, liver, kidney, heart 

and lungs (except BuTChI in spleen) and PrTChI poorly hydrolysed (Morizono 

and Akinaga, 1981). This variability is due to the different biological function of 

the tissues. The variability in substrate affinity of ChE indicates the need for 

characterisation and selection of the appropriate substrate before determining 

ChE activity in animal species (Tecles and Ceron, 2001). 

The two enzymes may also be distinguished by their affinity for or reactivity with 

various selective inhibitors, e.g. 1: 5-bis (4-allyldimethylammoniumphenyl) 

pentan-3-one dibromide (BW284c51) (Anglister et al., 2008; Naik et al., 2008), 

1: 5-bis (4-trimethylammoniumphenyl) pentan-3-one diiodide (BW284c50) 

(Silver, 1974), or methanesulfonyl fluoride (Borlongan et al., 2005), all of these 

are specific selective to AChE. While tetraisopropyl pyrophosphoramide (iso-

OMPA) (Anglister et al., 2008; Naik et al., 2008), quinidine sulphate (Wilson et 
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al., 2001), bambuterol (Massoulie et al., 1993), or ethopropazine [(10-2-

dimethylaminopropyl) phenothiazine hydrochloride] (Cometa et al., 2005), all of 

these compounds are a reversible and selective inhibitor to BChE. An important 

distinction between AChE and BChE in response to substrate specificity and 

selective inhibitor (Wilson et al., 2001). 

It is well known that pH and temperature depend on the charge of the enzyme 

and/or of the mixture. Protonation of the active site amino acids of the ChE is 

influenced by the pH of the surrounding medium (Silver, 1974; Fairbrother et al., 

1991). The imidazole nitrogen of the His residue attracts serine hydroxyl 

hydrogen to the active site of the ChE, reporting a nucleophilic character to the 

serine oxygen. Serine hydroxyl His imidazol charge transmits structure has a 

three possible forms; one active and other inactive. The active forms contain a 

protonated serine residue in the active site. ChE can assume deactivated forms 

if the serine decreases a proton (at high pHs) or imidazole nitrogen increases a 

proton (at low pHs), forming a quaternary nitrogen incapable of attracting the 

serine hydrogen (Fairbrother et al., 1991; Tecles et al., 2002b). 

ChE can also be demonstrated histochemically at the optical microscope level. 

In brief, the enzyme in the tissue hydrolyses substrate present in the incubation 

medium and the hydrolysed product then reacts with some other component of 

the medium to form an insoluble precipitate at the site of enzyme activity. 

Localisation of AChE activity histochemically has been done for over 50 years. 

At present, the most widely used methods for the histochemical localisation of 

ChE activities is the direct method of Gomori (1948). This is a simple and direct 

method of localisation ChE activities in the tissues. It is based on the reaction 

between thiocholine, which is one of the products of the enzymatic hydrolysis of 
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the synthetic substrates AcTChI or BuTChI, with the medium containing; copper 

sulphate, glycine, maleic acid, magnesium chloride, sodium hydroxide and 

sodium sulphate. The formation of the shadow yellow colour in the tissues is 

indicated enzyme activity. Another method for histochemical localisation of ChE 

activities is the thiocholine method of Kugler (1987). It is based on the reaction 

between polyvinyl alcohol with the medium containing; sodium citrate, copper 

sulphate, potassium ferricyanide and AcTChI. The formation of the shadow 

brown colour in the tissues of this reaction indicates enzyme activity. The 

histochemical localisations of AChE in the tissues have been important in 

supplying supporting evidence for central cholinergic transmission. Table 6.1 

shows specific and general characteristics of AChE and BChE. 

However, the fundamental characterization of ChE in food animals is still not 

completely understood. This study aims to confirm and extend our current 

knowledge towards (a) to investigate the effect of dilution on ChE activities in 

the tissues from food animals used for human consumption; (b) to investigate 

the presence of different ChE by using two selective inhibitors for AChE or 

BChE; (c) to investigate the optimum pH and temperature for AChE and BChE; 

and (d) to determine the histochemical localisation of AChE in the liver of sheep 

used for human consumption. It also aims to identify the values of enzyme 

activity as biomarkers for evaluating exposure to OP and carbamate 

compounds and increase awareness in pesticide user to anti-ChE compounds. 

These objectives are interesting. In fact, it has been known for some time that 

one of the most common causes for human illness is toxic intake, and that 

associated with food is one of the most serious.  
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Studies by researchers worldwide have revealed that even in industrialised 

nations the food contains an ever-increasing quantity of pesticide residues 

(Timothy, 2001). Therefore, the aim of the work in this Chapter was also 

develop the assessment of pesticides residues in meat products and to build of 

a model to assess the residue concentration is meat products in veterinary 

medicine. In practice, supplemental security is a given by the fact that the real 

residue level and the eventual exposure to animal health is largely under the 

established acceptable daily intake (Harris et al., 2001). Consequently, the user 

of animal treatment products applying good veterinary practices to meat 

products with a concentration of substance that does not exceed the 

commercially legal tolerable value. However, the presence of residue does not 

by itself explain the toxicity of a meat product. Hence, maximum concentration 

of pesticide residue (expressed as milligrams of residue per kilogram of 

food/animal feeding stuff) likely to occur in or on food and feeding stuffs after 

the use of pesticides according to Good Agricultural Practice (i.e., when the 

pesticide has been applied in line with the product label recommendations and 

in keeping with local environmental and other conditions) (MAF260/90).  

It is also necessary to take into account the exposure and the toxicological 

effect to effectively minimise the risk of toxicity. Advantage should be use from 

the high variation of animal treatment products and the various pesticides 

compounds. Quantitative distinction should be put in evidence between meat 

products, such as insecticides applied early at the begin of intoxication period 

and substances applied late to protect the meat product, between old products 

requiring a high dose to be effective and recent substances with high bioactivity 

at low rate (FAO/WHO, 1970).  
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Hence, the Food and Agriculture Organization/ World Health organization in 

(1970) found that when cattle and sheep sprayed with 0.025% DDVP, three 

times within two weeks intervals producing no residues detectable at the limits 

of sensitivity in tissues (muscle, liver and kidney) of cattle (<0.25 ppm) or sheep 

(<0.05 ppm). As well as, Noetzel (1964) observed that when cattle received 

dermal applications with 0.5% DDVP, twice daily for 28 day, also causing no 

residues were detectable at the limits of sensitivity in milk (<0.02 ppm) 

(FAO/WHO, 1970).  

Sheep plunge dipped with 250 mg DZN which indicated that residues at low 

levels in liver (<0.01-0.01 mg/kg) and in kidney (0.01-0.04 mg/kg) from one day 

after application of the dipping. Other study for sheep dipping in a DZN solution 

containing 250 mg. The animals were slaughtered in pairs at 1, 3, 7, 14 or 21 

days after treatment and liver and muscle analysed for DZN content (Diazinon, 

2002). Cattle fed in the diet 100 ppm of carbaryl had 1 ppm in kidney, 0.4 ppm 

in liver and 0.1 ppm in muscle. It is therefore recommended that the tolerance 

for meat of cattle reduced from 1 ppm to 0.2 ppm. Other study for pigs when 

receiving 200 mg/kg by gavage or 300 mg/kg in the diet administered during 

gestation or organogenesis showed no effect on reproduction (Weil et al., 

1972).  
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Table 6.1 Properties of two different classes of ChE (adapted from (Silver, 1974; 
Wilson et al., 2001)). 

Characteristics AChE BChE 

 

Preferred substrate 

 

ACh 

Butyrylcholine or 

Propionylcholine 

 

Activity 

towards 

Acetyl-β-

methylcholine 

 

+ 

 

- 

Benzoylcholine - + 

Acetylcarnitylcholine + - 

 

Specific 

inhibitors 

BW284c51 Susceptible to 10-5 M Resistant to 10-5 M 

Iso-OMPA or 

Ethopropazine 

 

Resistant to 10-5 M 

 

Susceptible to 10-5 M 

 

Effect of 

ions 

Ni and Zn Strong inhibition Weak or no inhibition 

Mn and Mg Mg++ the more effective 

activator 

Mn++ the more effective 

activator 

 

Optimum substrate concentration 

 

3 mM 

 

10 mM 

 

Reaction catalyzed 

ACh + H2O 

↓ 

Choline + Acetate 

Acylcholine + H2O 

↓ 

Choline + 

Corresponding acid 

 

Inhibition by excess substrate 

Yes. Most active 

towards substrate in 

low concentration 

No. Most active towards 

substrate in high 

concentration 

Localization Membrane bound Soluble 
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6.2 Materials and methods 

6.2.1 Sample collection and preparation 

The sample collection and preparation were done as explained in Sections 2.2 

and 2.3. Following this it was then assayed the enzyme activity as described in 

Section 2.4.1. All chemicals were of the highest analytical grade obtained from 

Sigma Chemical Company (Poole, Dorset, UK), unless stated otherwise. 

6.2.2 Determination the effect of dilution 

Summarize the steps for measuring AChE and BChE activities in the different 

dilutions for the tissues of food animals by using Ellman method can be drawn 

in below; 

 

The tissues (liver, muscle and kidney) from sheep, cattle and pigs were diluted 

at a ratio of 1:10, 20, 30, 40 and 50 with sodium phosphate buffer (0.1 M, pH 8). 

Blanks were also run at each selected dilution for each based on absorbance 

tested. Then the AChE and BChE activities were determined as described in 

Section 2.4.1.  

AChE and BChE activities were measured by Ellman method 

Centrifugation: 1.5 ml of homogenized meat pipetted into Eppendrof tube 

Homgenization: Meat extracted (1): Sodium phosphate buffer (10, 20, 30, 40 
and 50)  

Meat from three individuals food animals of each species 
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6.2.3 Determination the effect of specific inhibitor  

Determination of AChE and BChE activities by using specific inhibitors in the 

tissues of food animals can be drawn in below; 

 

Iso-OMPA and BW284c51 were used as specific inhibitors of BChE and AChE, 

respectively. Stock solutions of iso-OMPA were prepared in ethanol and 

BW284c51 was dissolved in distilled water (Massoulie et al., 1993; Varo et al., 

2002). From these stock solutions, five dilutions were prepared for each 

inhibitor. Samples (liver and muscle) were individually homogenized and 

centrifuged. Then homogenates (0.02 ml) were incubated at room temperature 

20 °C for 30 min with 3 µl of each inhibitor dilution solution. Controls were 

incubated with 3 µl of sodium phosphate buffer pH 8.0 were included when 

appropriated. A blank without inhibitor and with either distilled water for 

BW284c51 or ethanol (a solvent used for iso-OMPA) was also performed. Final 

inhibitor concentrations ranging from 0.5 to 16 x 10-3 M for iso-OMPA and from 

AChE and BChE activities were measured by Ellman method 

30 min for incubation on 20 °C 

Three microlitre either iso-OMPA or BW284c51 added to 0.02 ml of prepared 
samples  

Centrifugation: 1.5 ml of homogenized meat pipetted into Eppendrof tube 

Homgenization: Meat extracted with sodium phosphate buffer  

Meat from three individuals food animals of each species 
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0.25 to 8 x 10-6 M for BW284c51 (Figure 6.1). The effect of inhibitors of AChE 

and BChE activities was measured by using (AcTChI, BuTChI and PrTChI as 

substrates) as explained in Section 2.4.1. 
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Figure 6.1 Comparison of the two ChE specific inhibitor concentrations. The dashed 

lines represent the relationship between the concentrations of BW284c51 and iso-

OMPA, respectively (µM). 
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6.2.4 Determination of optimum pH 

For detection of optimal AChE and BChE activities by using different pHs in the 

tissues of food animals can be drawn below; 

 

For the measurement of optimum pHs, ChE was measured for different pHs (6-

9). Hence, different pHs were 0.1 M buffer concentrations of 2-(N-morpholino) 

ethanesulfonic acid: pH 6/6.5; sodium phosphate buffer: pH 7/7.5; and Tris 

buffer: pH 8/9. Often, different buffer components are present due to the variety 

of pH used. Blanks were also run at each selected pH for each based on 

absorbance tested. Then the enzyme activity was determined as described in 

Section 2.4.1. The increase and decrease in ChE activity over different pHs was 

then monitored. The data were fitted with a Gaussian peak using SigmaPlot 

version 11 (Systat software, Inc.). 

  

AChE and BChE activities were measured in assay mixture pHs as explained 
above by using Ellman method 

Centrifugation: 1.5 ml of homogenized meat pipetted into Eppendrof tube 

Homgenization: Meat extracted with 2-(N-morpholino) ethanesulfonic acid: 
pH 6/6.5; sodium phosphate buffer: pH 7/7.5; and Tris buffer: pH 8/9 

Meat from three individuals food animals of each species 
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6.2.5 Determination of optimum temperature 

Experimental design for detection of optimal AChE and BChE activities by using 

different temperatures in the blood contents from food animals can be drawn 

below; 

 

 

For detection effect of temperature at 5 different reaction temperatures (15, 20, 

30, 40 and 50 °C) during 0-20 min of measuring ChE activities. For these 

studies, the 96-well microtitre plate reader also used. Blanks were also run at 

each selected temperature for each based on absorbance tested. Following, 

this the enzyme activity was determined as described in Section 2.4.1. The data 

were fitted with an exponential rise to maximum over different times using 

SigmaPlot 11. 

  

AChE and BChE activities were measured by Ellman method at different 
temperatures (15, 20, 30, 40 and 50 °C) during 0, 5, 10, 15 and 20 min 

Centrifugation: 1.5 ml of homogenized meat pipetted into Eppendrof tube 

To obtain plasma 4 ml of blood samples with heparin 

Meat from three individuals food animals of each species 
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6.2.6 Enzyme histochemical localization 

6.2.6.1 Tissue sections 

The unfixed cryostat sections as described, according to Cornelis et al. (1992), 

as follows. 

1. one piece of sheep liver tissue was required that measures at least 0.5 

cm3, separate using a scalpel blade and rinsed until the blood was fully 

removed; 

2. the piece of liver was then wrapped in aluminium foil and carefully 

immersed into the liquid nitrogen (-170 °C to -210 °C) at least for 5 min; 

3. the liver was placed in block to metal chunk in the cryostat cabinet 

(Portable Bench-top Cryostat for Mobile Diagnostics Leica CM1100) 

using cryoprotectant at an ambient temperature between -20 °C and -30 

°C, without allowing the liver block to be warmed up by the liquid 

cryoprotectant; 

4. sectioning started when the block was trimmed to the desired level in the 

tissue block; and 

5. cut into blocks up to 12-μm thick sections and placed on a polysine slide. 

Since the section is cut correctly, it remains flat on the microtome knife 

under the anti-roll plate. Following this it was then placed on the slides. It 

was important during sectioning to ensure that (a) tissue block adjusts to 

the cryostat cabinet temperature; (b) knife and knife holder is firmly fixed; 

(c) anti-roll plate is properly adjusted; and (d) the speed of sectioning 

should be constant (Cornelis et al., 1992). 
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6.2.6.2 Histochemical detection of acetylcholinesterase 

Two methods were used to determine the histochemical localisation of AChE as 

described below. 

1. Gomori method: AChE activity was determined histochemically by the 

Gomori method (1948), with minor modification by staining with haematoxylin-

eosin and mounted with glycerin. Outlines of the procedure of preparing of 

medium and sample sections are shown below. 

 unfixed cryostat sections were fixed in formaldehyde vapour for 10 min, to 

preventing diffusion of some enzymes and other constituent; 

 the medium was prepared as follows: Copper sulphate 0.3 g, glycine 

0.375 g, maleic acid 1.75 g, magnesium chloride 1 g, 4% sodium 

hydroxide (30 ml), 40% sodium sulphate (170 ml), adjusted pH 6.0 stored 

at the 38 °C (LEEC, UK). Following this it was then added 20 mg of 

AcTChI to 10 ml of preparing medium; and 

 the prepared section was incubated for at least an hour at 38 °C in the 

media and rinse 3 times with saturated sodium sulphate. Following this it 

was then treated with dilute yellow ammonium sulphide for 2 min. Lastly, 

it was washed seven times for 1 min each in distilled water, and equal 

amount of glycerine jelly. The sections were then rinsed, slightly counter 

stained with haematoxylin-eosin and mounted with glycerine. 

2. Kugler method: AChE activity was also determined histochemically by the 

Kugler method (1987). An outline of the procedure of preparing of medium and 

sample sections is shown below. 

 unfixed cryostat sections were used; 

 dissolve 18 g polyvinyl alcohol in 100 ml 0.05 M 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (pH 7.0) (1.192 g/100 ml); 
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 to 1 ml polyvinyl alcohol-containing medium, the following was added 

(strictly in the following order) 10 µl sodium citrate (882 mg/ml distilled 

water; final concentration 30 mM), 10 µl copper sulphate (450 mg/ml of 

medium; final concentration 18 mM), 10 µl potassium ferricyanide (127 

mg/ml of medium; final concentration 3 mM), and 10 µl AcTChI (88 

mg/ml of medium; final concentration 3 mM), adjust the pH of the 

medium to pH 6.0; and 

 sections were incubated in the media for at least 1 h at 37 °C, and rinsed 

at least 3 times with distilled water and mounted with glycerine.  

6.2.7 Statistical analysis 

All enzyme measurements were conducted in three individuals from each 

animal with results expressed as mean values ± SE. Data were analysed by 

one-way analysis of variance using MiniTab statistical software version 15. 

Probability values < 0.05 were considered statistically significant. 
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6.3 Results 

6.3.1 Effect of dilution on cholinesterase activities 

The effect of dilutions on ChE activities were determined from kidney, liver and 

muscle of sheep, cattle and pigs using the Ellman method as described in 

Section 6.2.2 (Figures 6.2 and 6.3). The level of AChE and BChE activities in 

dilution 1:10, observed highest activity in the liver, muscle and kidney for sheep, 

cattle and pigs (Figures 6.2 and 6.3). It was found that AChE activity in tissue 

from the liver significantly different (P < 0.05) between dilution 1:10 and dilution 

1:50 for cattle, and between dilution 1:50 among other dilutions and between 

dilution 1:20 with dilutions 1:30, 1:40 and 1:50 for pigs. Tissue from the liver 

BChE, was significant (P < 0.05) between dilution 1:20 and dilution 1:20 with 

dilutions 1:40 and 1:50 for cattle, and the level of AChE and BChE ranged 

between 40.4 and 138.4 nmol min-1 g-1 respectively for sheep, and 100.7 and 

254.6 nmol min-1 g-1 respectively for cattle, and 284.4 and 383.9 nmol min-1 g-1 

respectively for pig samples across different dilutions (Figure 6.2A-C). 

Tissue from muscle AChE was significantly different (P < 0.05) between dilution 

1:30 among other dilutions for sheep, cattle, while in pig was seen significant (P 

< 0.05) between dilution 1:30 and dilutions 1:10, 1:20, BChE was significant (P 

< 0.05) between dilution 1:30 and among other dilutions for cattle, and between 

dilutions 1:40, 1:50 with other dilutions for sheep, in addition a significant (P < 

0.05) differences occurs within dilution 1:20 and dilution 1:40 among other 

dilutions used for pig, and the level of AChE and BChE ranged between 34.8 

and 63.8 nmol min-1 g-1 respectively for sheep and 30.1 and 50.8 nmol min-1 g-1 

respectively for cattle and 20.9 and 84.4 nmol min-1 g-1 respectively for pig 

across different dilutions (Figure 6.2D-F). 
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There was significant (P < 0.05) in kidney AChE within dilution 1:30 among 

other dilutions used for sheep, cattle and pig, while kidney BChE was significant 

(P < 0.05) between dilution 1:30 among other dilutions used for sheep, in 

addition a significantly different (P < 0.05) occurs within dilution 1:10 and 

dilution 1:20 among other dilutions used for cattle, while in pig was seen 

significant (P < 0.05) between dilution 1:10 and dilutions 1:30, 1:40 and 1:50. 

Level of AChE and BChE ranged between 44.7 and 75.6 nmol min-1 g-1 

respectively for sheep, and 40.6 and 145.6 nmol min-1 g-1 respectively for cattle, 

and 259.7 and 367.3 nmol min-1 g-1 respectively for pig samples across different 

dilutions (Figure 6.3A-C). The enzyme activity in the tissues at the higher 

dilution ratio declined faster than that of samples at lower dilution ratio. Overall, 

the dilution 1:10 gave a higher enzymatic activity, and this was selected for the 

rest of the work. 
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Figure 6.2 (A-C) Mean of specific AChE and BChE activities in diluted liver from 
sheep, cattle and pigs. 
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Figure 6.2 (D-F) Mean of specific AChE and BChE activities in diluted muscle from 
sheep, cattle and pigs. 
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Figure 6.3 (A-C) Mean of specific AChE and BChE activities in diluted kidney 

from sheep, cattle and pigs. 
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6.3.2 Use of selective inhibitor to estimate cholinesterase activities 

The effect of BW284c51 and iso-OMPA on ChE was determined from issue of 

liver for sheep, cattle and pigs using the Ellman method as described in Section 

6.2.3 (Figure 6.4A-F). Sheep liver BW284c51 had significantly different (P < 

0.05) between control and different inhibitor concentrations for AcTChI and 

BuTChI (Figure 6.4A). It found that significantly different (P < 0.05) effect for 

cattle and pig between control and different inhibitor concentrations for AcTChI 

and at concentration 50 µM for BuTChI and PrTChI (Figure 6.4C and 6.4E). Iso-

OMPA in sheep had (P < 0.05) effect between control and different inhibitor 

concentrations for BuTChI and at concentration 16 mM for AcTChI (Figure 

6.4B). Cattle iso-OMPA had (P < 0.05) effective between control and different 

inhibitor concentrations for AcTChI and at concentration 1 mM for BuTChI 

(Figure 6.4D). It was (P < 0.05) for pig between control and concentration 1 mM 

for AcTChI, BuTChI and PrTChI (Figure 6.4F). 

In general, BW284c51 effect was highest in tissues of pigs liver followed by 

cattle and sheep for AcTChI and PrTChI, while it increased in rank of cattle > 

sheep > pig for BuTChI. Iso-OMPA increased according rank order of cattle > 

pig > sheep for AcTChI and cattle > sheep > pig for BuTChI, while it increased: 

pig > cattle > sheep for PrTChI (Figure 6.4A-F). Liver percentage inhibition of 

BW284c51 was almost ranged AcTChI (40.7-94%), BuTChI (8.5-79.7%) and 

PrTChI (50.2-80.7%), while iso-OMPA ranged AcTChI (23.8-75.3%), BuTChI 

(41.1-63.8%) and PrTChI (13.9-48.2%) (Figure 6.4A-F). 
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Figure 6.4 A-C Specific inhibitors were measured of liver with 1 mM of AcTChI, 

BuTChI and PrTChI hydrolysis. Data are expressed as the mean. Each 

experiment performed in triplicate (n = 3 in each animal). 
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Figure 6.4 D-F Specific inhibitors were measured of liver with 1 mM of AcTChI, 

BuTChI and PrTChI hydrolysis. Data are expressed as the mean. Each 

experiment performed in triplicate (n = 3 in each animal). 
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Once, again the effects of BW284c51 and iso-OMPA on ChE were also 

determined from the muscle of sheep, cattle and pigs using the Ellman method 

as described in Section 2.4.1 (Figure 6.5A-F). BW284c51 had (P < 0.05) effect 

between control and different inhibitor concentrations for AcTChI and PrTChI for 

sheep and cattle (Figure 6.5A and 6.5C), whereas pig had (P < 0.05) effect 

between control and different inhibitor concentrations for three substrates used 

(Figure 6.5E). Iso-OMPA had (P < 0.05) effect between control and different 

inhibitor concentrations with PrTChI and 4 mM concentration for AcTChI and 

BuTChI for cattle (Figure 6.5D) and at concentration 2 mM for AcTChI and 

PrTChI in pig (Figure 6.5F). Rates of inhibition for the three animals, BW284c51 

were increased as follows: pig > sheep > cattle for AcTChI and PrTChI, while it 

increased: cattle > pig > sheep for BuTChI. Iso-OMPA in animals was increased 

in this rank: pig > cattle > sheep for AcTChI and pig > cattle > sheep for 

BuTChI, while it increased cattle > pig > sheep for PrTChI (Figure 6.5A-F). 

Percentage muscle inhibition of BW284c51 almost ranged AcTChI (51.9-

81.5%), BuTChI (9.3-30%) and PrTChI (32.7-87.5%), whereas iso-OMPA 

AcTChI (21.6-27.2%), BuTChI (10.5-29.5%) and PrTChI (18-65.8%) (Figure 

6.5A-F). 

Pearson correlation coefficient (r) calculated to measure the degree of 

relationship between iso-OMPA and BW284c51 in the liver and muscles for 

testing animals was observed significant (P < 0.05 and r > 0.84), with the 

exception of muscle where BuTChI activity was poor correlation and 

insignificant (P = 0.087; r = 0.69 and P = 0.137, r = 0.62) for sheep and cattle, 

respectively (Table 6.2). 
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Figure 6.5 A-C Specific inhibitors were measured of muscle with 1 mM of 

AcTChI, BuTChI and PrTChI hydrolysis. Data are expressed as the mean. Each 

experiment performed in triplicate (n = 3 in each animal). 
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Figure 6.5 D-F Specific inhibitors were measured of muscle with 1 mM of 

AcTChI, BuTChI and PrTChI hydrolysis. Data are expressed as the mean. Each 

experiment performed in triplicate (n = 3 in each animal). 
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Table 6. 2 Pearson correlation coefficient and (P) values between BW284c51 and iso-
OMPA in the liver and muscle for sheep, cattle and pigs. 

Values in the table are the r (P-value). 

6.3.3 Determination of optimal pH for cholinesterase activities 

Optimal pH for AChE and BChE activities was determined for three different 

buffers [2-(N-morpholino) ethanesulfonic acid, sodium phosphate buffer, and 

Tris buffer] at levels ranging between 6 and 9 as described in Section 6.2.4 

(Figure 6.6A-F). In all cases, there was significantly increased AChE activity 

from pH 6.0 to 7.5 and remained at a high level between pH 7.0 and 8.0 and 

enzyme activity peaked (100%) at 99.69 nmol min-1 g-1 for sheep, 177.12 nmol 

min-1 g-1 for cattle, and 288.13 nmol min-1 g-1 for pig liver AChE, while 75.23 

nmol min-1 g-1 for sheep, 83.31 nmol min-1 g-1 for cattle, and 180.09 nmol min-1 g-

1 for pig muscle AChE at pH 8.0, and became severe as pH increased (Figure 

6.6A-F). In general, the optimal pHs in both enzyme activities were ranged from 

pH 7.9 to 8.1. Pig muscle BChE had the lowest optimum pH effect compared 

with sheep and cattle (Figure 6.5F). AChE was highest in liver for cattle (Figure 

6.6C). BChE in liver was increased from pH 6.0 to 8.0 and remained at a high 

Substrates 

Sheep Cattle Pig 

Liver Muscle Liver Muscle Liver Muscle 

AcTChI 
0.92 

(0.003) 

0.88 

(0.010) 

0.85 

(0.016) 

0.95 

(0.001) 

0.98 

(0.000) 

0.97 

(0.000) 

BuTChI 
0.96 

(0.000) 

0.69 

(0.087) 

0.84 

(0.019) 

0.62 

(0.137) 

0.92 

(0.004) 

0.97 

(0.000) 

PrTChI 
0.89 

(0.007) 

0.90 

(0.006) 

0.98 

(0.000) 

0.94 

(0.002) 

0.96 

(0.001) 

0.91 

(0.000) 
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level from pH 8.0 to 8.5. While the enzyme activity peaked (100%) at 262.54 

nmol min-1 g-1 for sheep, 375.54 nmol min-1 g-1 for cattle, and 482.54 nmol min-1 

g-1 for pig liver BChE at pH 8.5. The optimal pH for the enzymatic reaction is pH 

8.3 to 8.5, but muscle BChE increased from pH 6.0 to 7.0 and remained at a 

high level from pH 7.0 to 7.5, whereas the activity peaked (100%) at 74.45 nmol 

min-1 g-1 for sheep, 84.42 nmol min-1 g-1 for cattle, and 83.54 nmol min-1 g-1 for 

pig muscle BChE at pH 7.5, and became severe as pH increased. 

The optimal pH for the enzymatic reaction is 7.7 to 7.9 (Figure 6.6A-F). Both 

AChE and BChE enzymes in the liver, there was a significant positive 

correlation (Pearson's correlation coefficient, r = 0.83, P =0.0191; r = 0.82, P = 

0.024; r = 0.96, P = 0.001 for sheep, cattle and pig, respectively). Once again 

the AChE and BChE enzymes in muscle, there was a significant positive 

correlation (Pearson's correlation coefficient, r = 0.94, P = 0.002; r = 0.88, P = 

0.009; r = 0.85, P = 0.017 for sheep, cattle and pig, respectively). In all cases 

(sheep, cattle and pigs used different pHs), the relationship was seen between 

liver and muscle ChE activities (% of control at peak) to be (R2 = 0.64; P < 

0.001) (Figure 6.7). 
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Figure 6.6 Effect of pH on AChE and BChE activity extracts from food animals. Using 

0.1 M buffers of 2-(N-morpholino) ethanesulfonic acid (pH 6/6.5), sodium phosphate 

buffer (pH 7/7.5), and Tris buffer (pH 8/9). Each measurement is expressed as the 

mean ± SE of three separate determinations (R2 > 0.82; P < 0.05). 
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Figure 6.7 Comparison analysis between liver and muscle ChE activities (% of value at 

peak) of sheep, cattle and pigs within a range of pHs (6/9). 

6.3.4 Effect of temperature on cholinesterase activities 

AChE and BChE activities were determined in plasma with heparin for sheep 

and cattle using a temperature range of 15-50 °C from 0-20 min of reaction time 

of measuring as described in Section 6.2.5 (Figures 6.8 and 6.9). In all effects 

(e.g. temperature 15-50 °C and time 0-20 min) AChE and BChE activities 

increased with increasing temperature and reaction time of measuring and 

optimised in temperature 50 °C, 20 min than other temperature and time used 

(Figures 6.8 and 6.9). Lower reaction temperature resulted in decreased in 

enzymatic reaction. It was found that AChE activity from temperature 15-50 °C, 

0-20 min was ranged between 0.765 and 166.9 nmol min-1 ml-1 for sheep and 

from 0.471 to 84.5 nmol min-1 ml-1 for cattle (Figures 6.8A and 6.9A), while 

BChE activity was ranged between 0.089 and 55.1 nmol min-1 ml-1 for sheep 

and from 0.166 to 36.5 nmol min-1 ml-1 for cattle (Figures 6.8B and 6.9B). 
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Figure 6.8 Effect of temperature and reaction activity on AChE and BChE activities in 

plasma of sheep. The maximum level of each temperature in each case at the same 

time was then plotted (insert). Data are expressed as the mean ± SE of three separate 

determinations (n = 3). 
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Figure 6.9 Effect of temperature and reaction activity on AChE and BChE activities in 

plasma of cattle. The maximum level of each temperature in each case at the same 

time was then plotted (insert). Data are expressed as the mean ± SE of three separate 

determinations (n = 3). 
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6.3.5 Histochemical localization of acetylcholinesterase 

The various methods available for the demonstration of AChE under the 

microscope have been outlined in Section 6.2.6 (Figures 6.10 and 6.11), 

indicates the discrepancies in the presence of histochemical localization by 

using modified Gomori (Figure 6.10) and Kugler method (Figure 6.11). It 

showed in both methods the most AChE located in the cytoplasm of the cell 

lining in the sinusoids, with a decreasing concentration gradient from the central 

vein to the periphery of the lobule for liver. 

 

Figure 6.10 The figures above show histochemical Gomori method used to 

characterize the location of AChE in liver sections from sheep showing in the 

cytoplasm and in the sinusoids of the liver (left) and normal liver without substrate 

AcTChI (right) (scale bar = x 40). PT = portal tract and HC = hepatic cells. 
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Figure 6.11 The figures above show histochemical Kugler method used to characterize 

the location of AChE in liver sections from sheep showing in the cytoplasm of liver (left) 

and normal liver without substrate AcTChI (right) (scale bar = x 40). HC = hepatic cells. 

6.4 Discussion  

6.4.1 Effect of dilution on tissue cholinesterase activities 

Effects of dilution for AChE and BChE activities in liver, kidney and muscle for 

sheep, cattle and pig was studied to reduce the turbidity of the samples; to 

ensure that the optical signal falls within the linear range of detection throughout 

the measurement, and the enzyme dilution slows down the rate of spending of 

substrate, so providing an extended time window for observation of steady-state 

enzyme kinetics (Kao and Gratzl, 2009). The results from this study show that 

dilution 1:10 had high enzyme activity over different dilutions used and ranged 

between 116.4 and 383.9 nmol min-1 g-1 for liver and between 34.4 and 69.9 

nmol min-1 g-1 for muscle, and between 44.7 and 359.7 nmol min-1 g-1 for kidney 

(Figures 6.2 and 6.3). A similar observation has been made by Lassiter et al. 

(2003), reported that dilution 1:10 for liver and muscle had higher activity than 

dilution 1:50. The reason for this is probably due to adsorption changes 

occurring faster at dilution 1:10 (Soreq, 2001). Enzyme activity in the tissues 
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was at the higher dilution ratio declined faster than that of samples at lower 

dilution ratio. 

6.4.2 Effect of selective inhibitors on tissue cholinesterase activities 

Most test systems for AChE activity (EC 3.1.1.7) are using toxic inhibitors 

(BW284c51 and iso-OMPA) to distinguish the enzyme from BChE (EC 3.1.1.8), 

which occurs simultaneously in the tissues. They are supplied as early warnings 

and also offer essential support to chemical analysis when the habitat suffers 

for a complex mixture of pesticides (Massoulie et al., 1993; Caselli et al., 2006). 

The inhibitors BW284c51 was used to inhibit AChE, thus BChE activity alone 

was measured in the presence of these inhibitors while iso-OMPA inhibit BChE, 

therefore AChE activity only determined in the presence of this inhibitor. 

Although ChE cannot classified neither as AChE nor like BChE since they 

explain the characteristics of each form. In fact, AChE prefers AcTChI as 

substrate (at low concentrations) but at high substrate concentrations, it 

hydrolyses PrTChI at a higher rate. Similarly to BChE, prefer BuTChI as 

substrate (at low concentrations) (Tecles and Ceron, 2001; Wilson and Philip, 

2005). 

BW284c51, are able to infiltrate the deep and narrow catalytic gorge of enzyme 

and in doing so can attach to both the active and peripheral sites, therefore 

resulting inhibition of AChE activity (Talesa et al., 2001). A differential sensitivity 

to BW284c51 had strong inhibition of AChE activity, up to 81% inhibition in the 

liver and muscles (Figures 6.4 and 6.5). It was found that the AChE activity is 

not fully inhibited by BW284c51 up to 80 µM. These results suggest that both 

liver and muscle may be present ChE as Mohammad (2007) reported that high 

level of ChE in the liver and muscles for sheep and cattle. These results are 
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also in agreement with an earlier study carried out on the goat and camel (Al-

Qarawi and Ali, 2003). 

Tissue from the muscle ChE enzyme behaviour towards iso-OMPA did not 

clearly inhibit BChE activity in a concentration-related manner and the 

remaining activity, despite for several concentration incubations, was still 

between 11 and 30% of inhibition. Because the contribution of BChE activity to 

the total enzyme activity is varied between animals studied. When the 

percentage of activity on BuTChI sensitive to 16 mM iso-OMPA (Figure 6.5) is 

taken as an estimate of the quantity of BChE relative to total enzyme in muscle, 

the following order of animals is obtained sheep (30%) > pig (22%) > cattle 

(18%). Although, it has a strong inhibitory (up to 64% inhibition) effect on liver 

compared controls. This is in agreement an earlier report by Rodriguez-Fuentes 

and Gold-Bouchot (2004) who shown that iso-OMPA in the vertebrate produced 

potentiation inhibition due to binding iso-OMPA of the active sites BChE. But in 

contrast with Varo et al. (2002) found that no inhibition was observed in 

invertebrates with iso-OMPA or with excess substrate, which is characteristic 

properties of BChE. 

This interpretation appears to be only explanation consistent with the well-

established views that there are only two types of ChE in the liver and muscles 

of food animals, AChE and BChE activities (Massoulie et al., 1993; Wilson, 

2010). A good correlation was obtained in liver and muscle assessed with two 

inhibitors (Table 6.2). An important result of this work is the finding that AChE 

and BChE activities were predominantly distributed in the liver, while in the 

muscle is only AChE activity. Hence based on the present investigation it can 
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be differentiated liver and meat between sheep, cattle and pigs depending on 

the level of ChE enzyme. 

6.4.3 pH optimum of tissue cholinesterase activities 

The effect of pH on the optimum activity of acetylcholinesterase (AChE, EC 

3.1.1.7) or butyrylcholinesterase (BChE, EC 3.1.1.8) from liver and muscle of 

sheep, cattle and pigs have been investigated. In the last decade, the use of 

AChE and BChE enzymes as biomarkers for ecological monitoring has largely 

been supported because of their exclusive contribution to determine the toxicity 

of a mixture of the pesticides, although each contaminant may be found in the 

habitat below the law threshold. They are supplied as early warnings and also 

offer essential support to chemical analysis when the habitat suffers for a 

complex mixture of pesticides (Massoulie et al., 1993; Caselli et al., 2006). The 

main purpose of this study was to investigate the optimum pH for AChE and 

BChE enzymes from liver and muscle of sheep, cattle and pigs. The pH change 

is useful in accepting the relationship between the structure and functional 

group of the enzyme. Therefore, AChE and BChE compared as a function of pH 

(Akkaya et al., 2009). A bell shaped curve when enzyme activity in the pH range 

of 69 at 25 °C, presented towards substrates is plotted against pH has been 

taken (Figure 6.5A-F). Optimal pH values found to be pH 7.9-8.1 and pH 7.7-8.5 

for AChE and BChE respectively, slightly more acidic than the optimal pH value 

for AChE (about 8.5) (Zou et al., 2006). 

On the other hand, as Bergmann et al. (1958) found the optimum pH for AChE 

from human plasma to be 7.4-8.0 while the pH for BChE from human serum 

7.5-8.1. This is in excellent agreement with the literature data on optimal pH in 

the liver obtained for AChE (from pH 7.9-8.0) found in the literature (Detra and 
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Collins, 1986; Tecles et al., 2002b). In addition, to concurring with the works of 

Cohen and Oosterbaan (1963) found that the optimum pH varies with the 

source of ChE but for most preparations, the range is 8.0-8.5. But in contrast 

with the works of Kok et al. (2001), found higher pH optimum 9.0 for AChE. Bui 

and Ochillo (1987) observed that the lower pH optimum 7.4 from muscle for 

invertebrates. These authors used a higher temperature 38 °C rather than 25 

°C. This factor may explain the apparent difference in optimum pH. Good 

correlation and significant obtained between AChE and BChE to different pHs (r 

> 0.82, P < 0.05). While poor correlation obtained between liver and muscle 

ChE activities within different pHs (6/9) (r = 0.64; P < 0.0001) (Figure 6.7) 

(Wackerly et al., 1996). 

Moreover, there is a great variety of pHs that can be found among different 

laboratories, for example, 7 (Li et al., 2008; Mirajkar and Pope, 2008), 7.4 (Imai 

et al., 2006; Dorandeu et al., 2008), 7.5 (Martinez-Moreno et al., 2006; Zhu et 

al., 2007), 7.6 (Bajgar et al., 2008), 8.0 (Padilla et al., 2007; Yucel et al., 2008; 

Bosgra et al., 2009), 8.1 (Mohammad, 2007), 8.2 (Haigh et al., 2008) and 9 

(Frasco et al., 2005). 

6.4.4 Effect of temperature on cholinesterase activities 

The effect of temperature on the optimum activity on AChE or BChE from 

plasma of sheep and cattle has been also investigated. The catalytic activity of 

AChE and BChE enzymes are likes most enzymes are temperature dependent. 

Optimal rates of temperature for mammalian ChE activity generally occur a 

temperature between 37 °C and 40 °C (Fairbrother et al., 1991). Sahin et al. 

recommended that the optimal temperature being 30 °C (Sahin et al., 2005). 

But in contrast with Bui and Ochillo (1987) who observed that the optimum 
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temperature to be 38 °C. In general, the typical temperature range used in the 

determination of AChE and BChE activities is between 20 °C and 40 °C (Worek 

et al., 2004; Borlongan et al., 2005; Aurbek et al., 2006; Martinez-Moreno et al., 

2006; Al-Badrany and Mohammad, 2007; Oliveira et al., 2007; Padilla et al., 

2007; Mirajkar and Pope, 2008). The temperature difference between the AChE 

and BChE could be attributed to conformational limitation on the enzyme 

movement as a consequence of ionic interactions between the ChE and the 

supports or restriction in the diffusion of the substrate at high temperature 

(Sahin et al., 2005). Authors also observed that AChE do not usually chemically 

bond with polymeric matrices. Regarding AChE and BChE activities were 

decreased at lower temperatures and increases gradually with increasing 

temperature and incubation time. These results in agreement with the literature 

data on temperature values of canine whole blood ChE activities obtained for 

AChE and BChE in a range of temperatures 25-40 °C for (Tecles et al., 2002b). 

In addition, in agreement with the work of Reiner et al. (1974), observed that of 

human plasma AChE and BChE increased with increasing temperature in a 

range 10-40 °C. But in contrast with the work of Bui and Ochillo (1987) who 

observed that the temperature effect on ChE activities gradual increases from 

temperature 20 °C and much decreases of enzyme activity after 37 °C. 

However, these authors used a muscularis muscle from Bufo marinus as 

sample instead of plasma sample. This factor may explain the apparent 

difference in enzyme activity. To our knowledge the when temperature 

increases beyond 55 °C, loss of activity of the protein is likely and above 60-70 

°C, total loss of activity due to protein denaturation is common (Alles and 

Hawes, 1940; Fairbrother et al., 1991). 
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6.4.5 Histochemical localization of acetylcholinesterase  

The histochemical studies of AChE demonstrate that the modified Gomori and 

Kugler histochemical methods described in Section 6.2.6, can effectively 

indicated the distribution of AChE in the liver for sheep. The controls included in 

the procedure provides a check against errors in the identification of AChE 

types, at least as important a consideration in any histochemical method for 

AChE as the elimination of diffusion artefacts (Figures 6.10 and 6.11). However, 

neither method has been validated for use either in liver from other food animals 

or in other tissues. The present study is the first attempt to standardize and 

validate Gomori and Kugler histochemical methods for AChE activity 

localisation in the liver of sheep. 

Zajicek et al. (1954) and Malmgren and Sylven (1955) they observed a needle-

shaped crystals of copper thiocholine were deposited at the site of AChE 

activity, which gradually increased in size during the reaction and eventually 

projected outside the site of AChE activity, especially after prolonged 

incubation; therefore incubation time has been kept as short as possible. In 

addition, they suggested, that the conversion of copper thiocholine to copper 

sulphate increased the risk of artefacts in Gomori method (Figure 6.10). In both 

histochemical methods (Gomori and Kugler methods), I show AChE localised in 

the cytoplasm (Figures 6.10 and 6.11). 

Since AcTChI is a common substrate for AChE, histochemical reactions 

observed using this substrate and hence it can localise only AChE. In this tissue 

(liver), staining in the sinusoids of the liver of the sections, incubated in the 

medium containing AcTChI, indicated that the liver did contain AChE. Hence, 

the enzyme activity, which was visualised in the liver using AcTChI. 
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Accordingly, the present research has shown that the cells of liver possess 

AChE enzymes. The present finding of AChE activity in the cells of the liver 

could indicate that AChE enzyme is primarily involved in the function of the liver. 

This observation is in line with the findings of similar studies, which have 

reported the localisation of AChE from the liver of cat (Koelle, 1951). 

6.5 Conclusions 

This study provided the original data concerning an AChE and BChE 

characterization in the tissues of sheep, cattle and pigs. Some of the principal 

results of this Chapter could be concluded as follows. 

1. Substrate AcTChI indicate that, preferential for detecting enzymes selective 

inhibition of muscle and liver. Hence, in all three animal species (sheep, cattle 

and pigs) the liver and muscle tissues were more sensitive to inhibition with 

BW284c51 than iso-OMPA when used three substrates (AcTChI, BuTChI and 

PrTChI), with exception for BuTChI in sheep and pig iso-OMPA were more 

sensitive to inhibition than BW284c51 in the liver. In addition, in muscle BuTChI 

for sheep and PrTChI for cattle were stronger inhibition in iso-OMPA than in 

BW284c51. 

2. In all animals (sheep, cattle and pigs) and tissues (liver and muscle), the 

optimum pH values for liver in BChE were higher than does AChE, while in 

muscle optimum pH values in AChE higher than does BChE. 

3. The significant effect of time course and temperatures on AChE and BChE 

activities was increased with increase of temperature in plasma for sheep and 

cattle. 

4. Histochemical localisation of AChE in tissue from liver had provided strong 

evidence to suggest that AChE is involved in the cells of liver. In addition, the 

histochemical procedure for showing the presence of AChE is used widely in 
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diagnosing neurodegenerative disease, and in most laboratories dealing with 

ChE tissues are therefore already familiar with its application (Silver, 1974). 
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Chapter 7: Investigation of kinetic properties of cholinesterase 

7.1 Introduction 

Cholinesterases (ChE) are specialized carboxylic ester hydrolases that break 

down esters of choline. In general, two types of ChE activity have been 

identified in mammalian tissues; these are distinguished according to their 

substrate specificity and sensitivity to the selective inhibitors. The first is AChE, 

which is systematically called acetylcholine acetylhydrolase. The second is 

BChE, referred to systematically as acylcholine acylhydrolase (Musilek et al., 

2009; Gholivand et al., 2010). The preferred substrate for AChE enzymes is 

ACh; BChE enzymes prefer butyrylcholine or propionylcholine, depending on 

the species (Wilson, 2010). 

Numerous chemical compounds, routinely used in agriculture and chemical 

industry, can form persistent toxic residues in air, soil, water and foods. Among 

pesticides, organophosphate (OP) and carbamate pesticides that are mainly 

used in agriculture show low environmental persistence but display high acute 

toxicity. The mechanism of toxicity of OP and carbamate compounds is 

acknowledged as anti-ChE agents, represent the main classes concerned in 

cases from mild to severe poisoning. The anti-ChE have in common the same 

mechanism of action but they arise from two different chemical classes. The 

derivatives of phosphoric, phosphorothioic, phosphorodithioic and phosphonic 

acids (OP) and those of carbamic acid (carbamate) (Ferreira et al., 2008; 

Wilson, 2010). Due to ChE sensitivity to these pesticides (several are 

considered to be effective inhibitors of ChE), its inhibition has been used as a 

biomarker of exposure and effects of these pesticides in selected species 

(Frasco et al., 2006). However, it is estimated that of one to five million cases of 
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pesticide intoxication occur every year, resulting in several thousands of 

fatalities chiefly among agricultural workers. Most of these poisonings happen in 

expanding countries where the lack of hygiene, information or sufficient control 

has created unsafe working conditions (Aldridge and Reiner, 1973). 

The intoxication with OP and carbamate compounds cause a generalized 

cholinergic crisis due to an irreversible and reversible inhibition of ChE by 

phosphylation or carbamylation of their active site serine, respectively (Worek et 

al., 2004; Musilek et al., 2009) and successive accumulation of the 

neurotransmitter ACh. OP compounds are a large class of chemicals. Since 

World War II, an estimated several thousand OP has been synthesized for 

various purposes. Furthermore, ChE enzyme group that is inhibited by OP 

pesticides based on time and pH-dependent reaction (Aldridge and Reiner, 

1973). 

However, the fundamental investigation of kinetic properties of ChE for food 

animals is poorly understood. The aim of the present work were (a) to 

investigate the kinetics of characterization of ChE activities in the tissues from 

food animals used for human consumption; (b) to investigate the kinetics of 

inhibition of AChE activity by these OP and carbamate compounds in the 

tissues from animals used for human consumption; (c) to establish a foundation 

for the more sensitive pH effect to the rate of constants (ki) of DDVP-inhibited 

AChE and BChE from tissues from food animal species as biochemical 

biomarkers for evaluating of exposure to OP pesticides; and (d) to study the 

more sensitive temperature effect to the rate of ki of OP as well as carbamate-

inhibited AChE and BChE in food animals. 
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7.2 Materials and methods 

7.2.1 Sample collection and preparation 

The sample collection and preparation were done as explained in Sections 2.2 

and 2.3. Following this it was then measured the enzyme activity as described 

in Section 2.4.1. All the chemicals used were of analytical grade. 

7.2.2 Determination of maximum reaction velocity and Michaelis-Menten 

constant  

Experimental design for detection ChE kinetics in the tissues of food animals by 

using Ellman can be drawn in below; 

 

For the measurement of maximum reaction velocity (Vmax), the substrate 

AcTChI as prepared at concentrations ranging 0.05, 0.1, 0.2, 0.5, 1, 2 and 3 

mM in distilled water, while BuTChI concentrations ranging 0.05, 0.1, 0.5, 1, 2.5, 

5 and 10 mM in distilled water for measuring AChE and BChE, respectively. 

Blanks were also run at each selected substrate for each based on absorbance 

tested. The changes of absorbance were measured at 410 nm for 5 min, 25 °C. 

AChE and BChE activities were measured by Ellman method using a range 
of substrate concentrations 

Centrifugation: 1.5 ml of homogenized meat pipetted into Eppendrof tube 

Homgenization: Meat extracted with sodium phosphate buffer  

Meat from three individuals food animals for each animal 
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The enzyme becomes saturated with substrate and the rate reaches Vmax, the 

enzyme maximum rate (e.g. Figure 7.1). The Michaelis constant (Km) is 

experimentally defined as the concentration at which the rate of the enzyme 

reaction is half Vmax. 
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Figure 7.1 The illustrate figure is the data analysis used to obtain maximum reaction 

velocity (Vmax). The data are for sheep liver AChE. In each case data were fitted with 

non-linear regression analysis using a single rectangular hyperbola by SigmaPlot 11. 
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7.2.3 Determination half maximal inhibitory concentration and rate 

constants for inhibition 

Experimental design for detection kinetics effect of OP and carbamate 

compounds for food animals can be drawn below; 

 

For the measurement of half maximal inhibitory concentrations (IC50), AChE 

was inhibited for 30 min at room temperature 20 °C with either 1-8 µM OP 

compounds or 5-40 µM carbamate compounds, depending on preliminary range 

finding tests. Controls were incubated with sodium phosphate buffer pH 8.0 

were included when appropriated. Blanks were also run at each selected 

inhibitor for each based on absorbance tested. Then the enzyme activity was 

determined as described in Section 2.4.1. The decrease in AChE activity with 

increasing concentrations of compounds was then plotted (e.g. Figure 7.2A). 

AChE activity was measured by Ellman method for 5 min in case of 
determination of IC50, while from 0 to 60 min in case of determination of ki 

30 min for incubation on 20 °C 

Three microlitre of each DDVP, DZN or carbaryl compounds added to 0.02 ml 
of prepared samples  

Centrifugation: 1.5 ml of homogenized meat pipetted into Eppendrof tube 

Homgenization: Meat extracted with sodium phosphate buffer  

Meat from three individuals food animals of each species 
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Stock solutions of inhibitors were prepared weekly, stored at 4 oC and 

appropriately diluted in distilled water just before the experiments. The effect of 

inhibitors of AChE in different concentrations was assayed as explained in 

enzyme activity measurement. 

For the measurement of rate constants of inhibition (ki), AChE was inhibited as 

above with 8 µM DDVP or DZN, or 40 µM carbaryl resulting in an inhibition of 

83-99% of control activity. Controls were also incubated with sodium phosphate 

buffer pH 8.0 were included when appropriated. Blanks were also run at each 

selected inhibitor for each based on absorbance tested. Then the enzyme 

activity was determined as described in Section 2.4.1. The decrease in AChE 

activity over different times (0-60 min) at room temperature 20 °C was then 

plotted (e.g. Figure 7.2B). Half time to inhibition, (t½, expressed as min), was 

calculated using the equation, t½ = ln2/ki. The remaining AChE activity after OP 

and carbamate compounds inhibition represents residual AChE activity. 

However, the percentage inhibition was calculated from the ratio between the 

activity of an exposed sample and unexposed controls by the formula: 
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Figure 7.2 The figures above illustrate the data analysis used to obtain half maximal 

inhibitory concentrations (IC50; A) and rate constants of inhibition (ki; B). The data are 

for pig liver AChE inhibited with DDVP. In each case, data were fitted with non-linear 

regression analysis using a single exponential decay by SigmaPlot 11. 

  



Chapter 7 Investigation of kinetic properties of cholinesterase 

   140  

7.2.4 Effect of pHs on rate constants of inhibition 

Experimental design for detection of rate constants of inhibition in different pHs 

for food animals can be drawn below; 

 

For the measurement of rate constants of inhibition (ki) in different pHs (6.5, 7.5 

and 8.5), ChE was inhibited as above with 4, 6 and 8 µM DDVP concentrations 

and enzyme was measured in the assay mixture as above pHs, respectively. In 

preparing pHs solutions during measuring, it is essential that the substances 

have been stored properly and have not exceeded their shelf life, and materials 

used in pHs solution should not to be used to experiment extending over one 

month, and kept on ice during use. Hence, three different pHs were 0.1 M 

AChE and BChE activities were measured by Ellman method during different 
times 0, 10, 20, 30, 40, 50 and 60 min by using assay mixture buffers: 2-(N-
morpholino) ethanesulfonic acid: pH 6.5; sodium phosphate buffer: pH 7.5; 

and Tris buffer: pH 8.5 

30 min for incubation on 20 °C 

Three microlitre of DDVP (4, 6 and 8 µM) added to 0.02 ml of prepared 
samples  

Centrifugation: 1.5 ml of homogenized meat pipetted into Eppendrof tube 

Homgenization: Meat extracted with sodium phosphate buffer  

Meat from three individuals food animals of each species 
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concentrations buffers of 2-(N-morpholino) ethanesulfonic acid: pH 6.5; sodium 

phosphate buffer: pH 7.5; Tris buffer: pH 8.5. Controls were incubated with 

distilled water were included when appropriated. Blanks were also run at each 

selected pH for each based on absorbance tested. 

Then the enzyme activity was determined as described in Section 2.4.1. The 

decrease in enzyme activity over different times (0-60 min) at room temperature 

20 °C, was then plotted. Then the data of inhibition time courses at different 

times after inhibition was fitted with a single exponential decay using SigmaPlot 

11. 

7.2.5 Effect of temperature on rate constants of inhibition 

Experimental design for detection of rate constants of inhibition in different 

temperatures for sheep and cattle can be drawn below; 

 

AChE and BChE activities were measured by using Ellman method during a 
range times 0-60 min by using assay temperatures (20, 30 and 40 °C) 

30 min for incubation on 20 °C 

Three microlitre of (4 µM DDVP or DZN; 20 µM carbaryl) added to 0.02 ml of 
prepared samples  

Centrifugation: 1.5 ml of homogenized meat pipetted into Eppendrof tube 

Homgenization: Meat extracted with sodium phosphate buffer  

Blood from three individuals of sheep and cattle 
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For the measurement of rate constants of inhibition (ki) in different temperatures 

(20 °C, 30 °C and 40 °C). The AChE and BChE activities were inhibited with (4 

µM DDVP or DZN; 20 µM carbaryl). Controls were incubated with sodium 

phosphate buffer pH 8.0 were included when appropriated. Blanks were also 

run at each selected inhibitor for each based on absorbance tested. Then the 

enzyme activity was determined as described in Section 2.4.1. The decrease in 

enzyme activity over different times (0-60 min) at different temperatures (20 °C, 

30 °C and 40 °C) was then plotted as above (Section 7.2.3). Then the data of 

inhibition time courses at different times after inhibition was fitted with a single 

exponential decay using SigmaPlot 11. 

7.2.6 Statistical analysis 

All enzyme measurements were conducted in three individuals from each 

animal with results expressed as mean values ± SE. The one-way analysis of 

variance (ANOVA) was applied to test for any significant differences (P < 0.05). 

All analyses were done using Minitab statistical software version 15. 

7.3 Results 

7.3.1 Determination of maximum reaction velocity and Michaelis-Menten 

constant 

Maximum reaction velocity (Vmax) and Michaelis-Menten constant (Km) were 

determined in liver, muscle and kidney for sheep, cattle and pig using the 

modified Ellman method as described in Section 7.2.2 (Table 7.1). There was 

significantly higher Vmax in liver and kidney was used as the BuTChI substrate 

compared to when AcTChI substrate in all cases with the exception of sheep 

where kidney AcTChI substrate activity was higher than that seen in BuTChI 

substrate (Table 7.1). The Vmax AChE in animals was decreased according to 
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the rank order of pig > cattle > sheep for liver, muscle and kidney (Table 7.1). 

Nevertheless, Vmax for BChE was decreased according to the rank order of pig 

> cattle > sheep for liver and pig > sheep > cattle for muscle, while decreasing 

pig > cattle > sheep for kidney (Table 7.1). In all cases (sheep, cattle and pig, 

using both substrate concentrations) AcTChI activity was higher in muscle than 

BuTChI activity (Table 7.1). Michaelis-Menten constant (Km) values present the 

substrate concentrations (mM) necessary to obtain half of Vmax of the final 

reaction velocity (nmol min-1 g-1 tissue). Km value for sheep, cattle and pig using 

AcTChI substrate were higher than BuTChI substrate, with the exception of 

cattle liver and pig kidney where BuTChI activity was higher than that seen in 

AcTChI, and much higher (Table 7.1). The Km AChE in animals was decreased 

as follows: sheep > pig > cattle for liver and cattle > sheep > pig for muscle and 

kidney (Table 7.1). However, the Km for BChE was decreased as follows: pig > 

sheep > cattle for liver and sheep > cattle > pig for muscle, while decreasing 

according to the rank order of sheep > pig > cattle for kidney (Table 7.1). In this 

sense, it can be expected that ChE with lower substrate affinity should have 

lower sensitivity to anticholinergic agents. 
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Table 7.1 Substrate affinity constant (Km, expressed in mM) and maximum velocity 

(Vmax, expressed in nmol min-1 g-1). 

Animal Substrate Kinetics Liver Muscle Kidney 

 

 

Sheep 

 

AcTChI 

Vmax 167.6 ± 2.43 49.2 ± 2.03 48.1 ± 1.91 

Km 0.297 ± 0.016 0.317 ± 0.047 0.309 ± 0.044 

 

BuTChI 

Vmax 234.8 ± 3.49 43.1 ± 2.54 46.6 ± 1.34 

Km 0.178 ± 0.015 0.254 ± 0.077 0.271 ± 0.041 

 

 

Cattle 

 

AcTChI 

Vmax 218.1 ± 11.17 50.5 ± 2.02 49.2 ± 2.59 

Km 0.166 ± 0.035 0.348 ± 0.049 0.334 ± 0.062 

 

BuTChI 

Vmax 352.6 ± 21.3 33.6 ± 2.57 132.1 ± 9.44 

Km 0.176 ± 0.058 0.188 ± 0.078 0.144 ± 0.047 

 

 

Pig 

 

AcTChI 

Vmax 270.7 ± 14.4 79.3 ± 2.14 360.2 ± 0.179 

Km 0.261 ± 0.052 0.159 ± 0.018 0.018 ± 8.92 

 

BuTChI 

Vmax 386.5 ± 14.48 36.6 ± 2.087 261.4 ± 18.45 

Km 0.218 ± 0.043 0.069 ± 0.024 0.514 ± 0.157 

Values in the table are the mean ± SE obtained from nonlinear regression analysis, 

each performed in triplicate (n = 3 in each animal). 

7.3.2 In vitro kinetic characterization of acetylcholinesterase inhibited by 

organophosphate and carbamate compounds 

The liver kinetic parameters for reaction among AChE and two OP (DDVP and 

DZN) and one carbamate (carbaryl) inhibitors were determined for sheep, cattle 

and pigs as described in Section 7.2.3 (Tables 7.2 and 7.3). The IC50 values 

were significantly different (P < 0.05) between all animals within each inhibitor. 

The order of potency of inhibition decreased according to the rank order of 

DDVP > DZN > carbaryl, the carbaryl ranged between (4.8-8.4 µM) higher 
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about 3 to 4-times than the DDVP and DZN (Table 7.2). Significant differences 

(P < 0.05) were seen in t1/2 between sheep and cattle and between sheep and 

pig with inhibitors. It was higher in pig than cattle (1.8 to 3.3-times) and then 

sheep (1.2 to 1.3-times). Always, with OP and carbamate compounds, the t1/2 

was higher in pigs than in sheep and in cattle. A rate constants inhibition (ki) 

value was P < 0.05 between sheep and cattle and between sheep and pig 

within inhibitors. It ranged between 43.1 x 10-3-140.9 x 10-3, 44.5 x 10-3-159 x 

10-3 and 51.4 x 10-3-167.5 x 10-3 min-1 for DDVP, DZN and carbaryl, 

respectively. Percentage residual AChE activity in extracts from liver had P < 

0.05 between sheep and cattle and between sheep and pig for DDVP and 

carbaryl, while P < 0.05 between animals for DZN, and ranged from 1.6-3.5%, 

1.4-6.1% and 1.8-4.8% for DDVP, DZN and carbaryl, respectively, 

corresponding to 93.9-98.6% of inhibition (Table 7.2). 
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Table 7.2 In vitro kinetic characterization for AChE from liver of sheep, cattle and pig 

inhibited by DDVP, DZN and carbaryl. 

Inhibitor Animal IC50 (µM) t1/2 (min) ki x10-3 (min-1) 
%Residual 

AChE activity 

 

DDVP 

Sheep 1.0 ± 0.217 4.9 ± 0.301 140.9 ± 9.14 1.6 ± 0.292 

Cattle 1.6 ± 0.017a 13.5 ± 0.159a 51.3 ± 0.599a 3.5 ± 0.25a 

Pig 2.5 ± 0.402bc 16.2 ± 0.955bc 43.1 ± 2.67b 3.5 ± 0.867b 

 

DZN 

 

Sheep 1.4 ± 0.245 4.6 ± 0.295 152 ± 9.17 1.4 ± 0.057 

Cattle 2.8 ± 0.049a 10.8 ± 0.079a 63.9 ± 0.467a 4.6 ± 0.077a 

Pig 2.6 ± 0.202bc 14.5 ± 2.078bc 44.5 ± 10.7b 6.1 ± 0.394bc 

 

Carbaryl 

Sheep 4.8 ± 0.31 4.2 ± 0.25 167.5 ± 9.5 1.8 ± 0.445 

Cattle 7.0 ± 0.217a 9.9 ± 0.014a 68.2 ± 1.44a 4.8 ± 0.799a 

Pig 8.4 ± 0.304bc 13.5 ± 0.323bc 51.4 ± 1.21bc 4.7 ± 0.337b 

Values in the table are the mean ± SE obtained from nonlinear regression analysis, , 

each experiment performed in triplicate (n = 3 in each animal). 

a
Significant differences [analysis of variance (ANOVA), P < 0.05] between cattle and 

sheep within same inhibitor are in the same column. 

b
Significant differences [analysis of variance (ANOVA), P < 0.05] between pig and 

sheep within same inhibitor are in the same column. 

c
Significant differences [analysis of variance (ANOVA), P < 0.05] between pig and 

cattle within same inhibitor are in the same column. 

The muscle kinetic parameters for reaction among AChE and two OP (DDVP 

and DZN) and one carbamate (carbaryl) inhibitors were also determined for 

sheep, cattle and pigs as described in Section 7.2.3 (Table 7.3). IC50 values was 

P < 0.05 between DDVP and carbaryl for all animals by inhibitors, while in DZN 

P < 0.05 was seen between sheep and cattle and between sheep and pig. 

Carbaryl ranged between 7.1-9.9 µM higher about 4-6 fold than DDVP and 



Chapter 7 Investigation of kinetic properties of cholinesterase 

   147  

DZN. The order of potency of inhibition decreased according to the rank order 

of DDVP > DZN > carbaryl; in addition, a significant (P < 0.05) t1/2 was seen in 

between sheep and cattle and between sheep and pig by inhibitors, and cattle 

was higher than sheep (2.5 to 2.6-times) and pig (1.2 to 2.4-times) for DDVP 

and carbaryl; while pig DZN was higher than sheep (2.4-times) and cattle (1.3-

times). In all cases, the t1/2 was higher in cattle than sheep and pig, with 

exception with DZN where t1/2 was higher than sheep and cattle. Rate constant 

of inhibition (ki) values are (P < 0.05) between sheep and cattle and between 

sheep and pig by inhibitors, and were in range 45.5 x 10-3-115.3 x 10-3 min-1. 

Percentage residual AChE activity in extracts from muscle was P < 0.05 

between sheep and cattle and between pig and cattle for DDVP, while P < 0.05 

between all tested animals for DZN and carbaryl, and ranged from 6.6-17, 4.2-

9.6 and 5.6-12.2 for DDVP, DZN and carbaryl, respectively, about 83-95.8% of 

inhibition (Table 7.3). 
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Table 7.3 In vitro kinetic characterization for AChE from muscle of sheep, cattle and 

pig inhibited by DDVP, DZN and carbaryl. 

Inhibitor Animal IC50 (µM) t1/2 (min) ki x10-3 (min-1) 
%Residual 

AChE activity 

 

DDVP 

Sheep 1.1 ± 0.038 6.0 ± 0.169 115.3 ± 3.34 7.1 ± 0.371 

Cattle 2.0 ± 0.064a 15.6 ± 7.39a 46.1 ± 11.1a 17.0 ± 0.011a 

Pig 2.6 ± 0.031bc 13.3 ± 4.11b 60.9 ± 8.34b 6.6 ± 0.203c 

 

DZN 

Sheep 1.4 ± 0.136 6.6 ± 0.01 105.7 ± 1.64 4.2 ± 0.103 

Cattle 2.2 ± 0.229a 12.6 ± 0.814a 55.2 ± 3.34a 9.6 ± 0.253a 

Pig 2.3 ± 0.177b 15.8 ± 2.21b 45.5 ± 5.85b 7.2 ± 0.136bc 

 

Carbaryl 

Sheep 7.1 ± 0.209 6.3 ± 0.296 110.7 ± 5.09 5.6 ± 0.096 

Cattle 8.1 ± 0.153a 15.3 ± 1.589a 46.4 ± 5.37a 12.2 ± 0.499a 

Pig 9.9 ± 0.336bc 12.3 ± 1.86b 58.7 ± 7.7b 8.5 ± 0.116bc 

Values in the table are the mean ± SE. Key to the table is listed under the table 7.2.  

7.3.3 Determination the effect of pH on rate constants of inhibition 

The effect of enzyme activity in three different pHs inhibited by DDVP from the 

liver of sheep, cattle and pigs as described in Section 7.2.4 (Figure 7.3). There 

are nearly similar to ki values for sheep liver AChE and cattle BChE between pH 

7.5 and 8.5 (Figure 7.3A and 7.3D). The ki values are significantly increased 

with increasing pHs in the reaction mixture and reaches a maximum at pH 8.5. 

The activity of BChE in different pHs was higher than AChE activity about 1.8 to 

3.1-times for sheep, 3.5 to 4-times for cattle, and 2.5 to 3-times for pigs, 

respectively. 
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Percentage AChE inhibition was seen at the end of the study highest in sheep 

and ranged between 92.1 to 96.7%, while in cattle between 90.6 to 93.8%. In 

the pig was 90.4 to 94.7%, in addition a BChE activity elevated for sheep 85.9 

to 89.9%, while lowest in cattle and pig and ranged between 66.8 to 83.8%. 

Non-linear regression was observed between AChE and BChE and three 

different of pHs revealed highly significant (R2 = 0.90; P < 0.001) relationship 

with sheep, cattle and pigs (Figure 7.3A-F). In general, the residues (ChE 

activity) of the DDVP from liver for three different pHs was seen to be higher in 

BChE than in AChE (Figure 7.4A-B). In all cases (sheep, cattle and pigs used 

different three pHs), the relationship between AChE and BChE was seen to be 

(R2 = 0.93; P < 0.0001) (Figure 7.5). 
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Figure 7.3 The figures above illustrate the data analysis used to obtain the effect of the 

pH on ki from the liver of sheep, cattle and pig following in vitro exposure to DDVP (● 

pH 6.5, ○ pH 7.5 and ■ pH 8.5, respectively) (R2 > 0.90; P < 0.001). 
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Figure 7.4 Residues of the DDVP for remaining ChE activity after inhibition (plotted on 

the y-axis) versus the percentage liver ChE activities (x-axis) for food animal at 

different pHs (6.5/8.5). Vertical dashed lines are drawn at the mean percentage control 

of ChE activities. The In DDVP residue was calculated as In2/ki. 
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Figure 7.5 Comparison analysis between AChE and BChE activities (percentage 

control) in liver from sheep, cattle and pigs inhibited with DDVP within three different 

pHs (6.5/8.5). 
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7.3.4 Effect of temperature on rate constants of inhibition 

The effect of enzyme activity in three different temperatures inhibited by DZN 

from plasma of sheep and cattle as described in Section 7.2.5 (Table 7.4). 

Significant differences (P < 0.05) were seen between temperature 20 °C and 30 

°C for sheep AChE and BChE inhibited with DDVP, and cattle BChE inhibited 

with DZN. In addition, a significant (P < 0.05) between temperature 20 °C and 

40 °C for cattle AChE and BChE inhibited with DDVP and sheep and cattle 

AChE and BChE inhibited with DZN, and sheep AChE and BChE inhibited with 

carbaryl and cattle AChE inhibited with carbaryl (Table 7.4). In addition (P < 

0.05) between temperature 30 °C and 40 °C for sheep AChE and BChE 

inhibited with DDVP, and cattle BChE inhibited with DDVP, in addition a 

significant (P < 0.05) sheep AChE and BChE inhibited with DZN and cattle 

AChE inhibited with DZN, sheep and cattle AChE inhibited with carbaryl (Table 

7.4). 

There are nearly comparable ki value for plasma BChE between 30 °C and 40 

°C for sheep inhibited with carbaryl and DDVP. In addition, they were similar ki 

value between 20 °C and 30 °C for sheep plasma AChE inhibited by DZN and 

carbaryl. In general, the ki values were increases according to the rank order of 

20 °C > 30 °C > 40 °C. In all cases the ki values for BChE was higher than 

AChE with the exception of sheep plasma DDVP at 40 °C and cattle plasma 

inhibited with carbaryl at 20 °C, there was AChE higher than does BChE (Table 

7.4). 
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Table 7.4 Effect of different temperatures on rate constants inhibition (ki x 10-3 (min-1)) 

for DDVP, DZN and carbaryl from plasma AChE and BChE of sheep and cattle. 

 

Inhibitor  

 

Temp. 

(°C)  

Sheep Cattle 

AChE BChE AChE BChE 

 

DDVP 

20 22.7 ± 0.3 53.8 ± 1.6 27.4 ± 2.0 52.4 ± 10.4 

30 18.6 ± 2.5a 41.1 ± 2.9a 21.0 ± 0.7 39.4 ± 0.9 

40 7.1 ± 2.2c 25.1 ± 1.7c 14.0 ± 4.2b 34.0 ± 2.0bc 

 

DZN 

20 25.8 ± 0.1 40.1 ± 0.8 29.0 ± 1.2 103.6 ± 2.2 

30 23.2 ± 0.6 33.3 ± 1.1a 23.8 ± 4.0 64.0 ± 1.7 

40 16.4 ± 1.0bc 28.8 ± 1bc 13.0 ± 3bc 37.5 ± 1.9b 

 

Carbaryl  

20 37.9 ± 6.2 54.1 ± 4.0 43.0 ± 1.1 273.1 ± 9.6 

30 34.3 ± 1.6 43.8 ± 1.2 38.0 ± 0.6 81.4 ± 1.5 

40 19.3 ± 2.0bc 40.1 ± 0.5b 294 ± 5.9bc 73.4 ± 2.4 

Values in the table are mean ± SE obtained from nonlinear regression analysis, each 

experiment performed in triplicate (n = 3 in each animal). 

a
Significant differences [analysis of variance (ANOVA), P < 0.05] between temperature 

30 °C and 20 °C within same inhibitor in the same column. 

b
Significant differences [analysis of variance (ANOVA), P < 0.05] between temperature 

40 °C and 20 °C within same inhibitor in the same column.  

c
Significant differences [analysis of variance (ANOVA), P < 0.05] between temperature 

40 °C and 30 °C within same inhibitor in the same column. 
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7.4 Discussion 

7.4.1 Determination maximum reaction velocity and Michaelis-Menten 

constant 

Maximum reaction velocity (Vmax) and Michaelis-Menten constant (Km) were 

determined in a range of tissues. The results of the present study of sheep, 

cattle and pigs showed that the Vmax was far higher in liver than in the kidney 

and in muscle, with the exception of the pig where kidney AcTChI substrate 

activity was higher than that seen in BuTChI substrate (Table 7.1). This is in 

agreement with the works of Chatonnet and Lockridge (1989) found AcTChI 

and BuTChI substrates were observed to have higher activity for liver and 

kidney. The high activity of choline substrate activity in the liver and kidney 

occurs due to synthesis of enzyme from liver and kidney (Massoulie et al., 

1993; Wilson et al., 2001; Wilson and Philip, 2005). Other studies have shown 

that ChE specific activity, its kinetic parameters and their sensitivity to anti-ChE 

compounds vary either within tissues or within species (Chuiko et al., 2003). 

Oliveira et al. (2007) suggested that such interspecific variation in ChE kinetic 

characteristics is phylogenetically based, or due to stress and pollutants. 

In all cases, AcTChI substrate gave a higher Km value than BuTChI substrate 

affinity, with the exception of the pig where kidney BuTChI activity was higher 

than that seen in AcTChI (Table 7.1). In this sense, it can be expected that ChE 

with lower substrate affinity should have lower sensitivity to anticholinergic 

agents (Chuiko et al., 2003). In general, the results are similar to that of 

Morizono and Akinaga (1981) observed that Km values in AcTChI higher than 

BuTChI in liver and kidney. Results from the present study indicate the need for 

estimating enzyme kinetic parameters prior to using ChE activity as a biomarker 

as supported by Chuik et al. (2003). 
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7.4.2 In vitro kinetic characterization of acetylcholinesterase 

This is the first research that compares the different kinetic parameters for 

insecticide inhibitor in the tissues of food animals. The kinetic determination of 

AChE is the basic method for the diagnosis of OP and carbamate poisoning, 

some preferring the clinical signs of poisoning as a leading tool for insecticide 

poisoning diagnosis and monitoring, therefore the decrease of AChE activities is 

the most important manner for the confirmation of intoxication (Hamm, 1998; 

Wilson et al., 2005; Dalvie and London, 2006; Gupta et al., 2007; Ferreira et al., 

2008). For the survey of possible interaction between insecticides and AChE 

from food animals, Mohammad (2007) found significant inhibition of the enzyme 

by several OP and carbamate pesticides. Regarding distinguishing inhibitor 

efficiency, determination of IC50 is accepted. DDVP showed higher susceptibility 

than DZN and carbaryl (Tables 7.2 and 7.3). This reason may be due the 

constitution and sensitivity AChE in liver and muscle that may preferentially bind 

DDVP, thereby protecting AChE, resulting in greater tolerance to DDVP. 

However, carbaryl inhibited the AChE at a concentration five-fold higher than 

that of DDVP and DZN. This agrees with the findings of Anguiano et al. (2010) 

reported that DDVP in invertebrates was more potent than carbaryl. In contrast 

with that of Laguerre et al. (2009) they observed that carbaryl in the snail was 

more potent than DDVP (Table 7.5). 
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Table 7.5 Comparison of IC50 of inhibitors, DDVP, DZN and carbaryl, for some 

vertebrates and invertebrates. 

 

The ki values of liver and muscle AChE determined in this study range from 

43.1 x 10-3-167.5 x 10-3 min-1, and DDVP more sensitive than other compounds 

(Tables 7.2 and 7.3). This is in agreement with previous research by Frasco et 

al. (2006) where they found that the DDVP was generally more sensitive than 

carbaryl for the Arthropod and Chordata. In general, DZN was less sensitive in 

    Inhibitor        Species          Tissue IC50 

(µM) 

               Reference 

DDVP Human Erythrocytes 0.23 (Quistad et al., 2005) 

DDVP Mouse Brain 0.56 (Quistad et al., 2005) 

DDVP Oysters Gills 1.08 (Anguiano et al., 2010) 

DDVP Snail Shell and soft 

tissues 

13.5 (Laguerre et al., 2009) 

DDVP Earthworm Crop/gizzard 0.005 (Sanchez-Hernandez et 

al., 2009) 

DDVP Earthworm Foregut 0.006 (Sanchez-Hernandez et 

al., 2009) 

DDVP Rat Liver 0.2 (Jokanović et al., 1996) 

DZN Fish Auricle 164 (Tryfonos et al., 2009) 

Carbaryl Earthworm Whole worm 0.005 (Caselli et al., 2006) 

Carbaryl Oysters Gills 1.37 (Valbonesi et al., 2003) 

Carbaryl Mussels Gills 0.614 (Valbonesi et al., 2003) 

Carbaryl Snail Shell and soft 

tissues 

0.057 (Laguerre et al., 2009) 
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muscle than carbaryl. This is in agreement with the findings of Mohammad et al. 

(2000) where they found that DZN relatively less sensitive to cattle retinal AChE 

compared to carbaryl. 

But in contrast with Herzsprung et al. (1989) they found ki for cattle erythrocytes 

AChE about 2.3 x 104, 3.4 x 104 and 1.8 x 104 min-1 for DDVP, DZN and 

carbaryl, respectively, i.e. 51.3 x 107 to 68.2 x 107 and 46.1 x 107 to 55.2 x 107 

fold higher than liver and muscle, respectively, than our studied results. 

However, these authors used methanol to dilute the OP and carbamate 

compounds and a potassium phosphate buffer (pH 7.0, 0.05 M) during 

measuring enzyme activity instead of distilled water for dissolving these 

compounds and sodium phosphate buffer (pH 8.0, 0.1 M) in our study. They 

also used a four-fold higher concentration of substrate and unmodified Ellman 

method. All these factors may explain the apparent difference in rate constant of 

inhibition. 

Sturm et al. (1999) observed that ki values of AChE for DDVP in fish are about 

7.3 x 103 to 8.9 x 104 min-1 (Sturm et al., 1999), i.e. 46.1 x 106 to 167.5 x 107 

fold greater than that calculated in our study. Since food animals AChE is much 

more sensitive to DDVP than fish (Herzsprung et al., 1989), I suggest a higher 

sensitivity of AChE-inhibited with OP and carbamate compounds from food 

animals in comparison with AChE-inhibited with these compounds for 

invertebrates. These interesting results should be taken into account since food 

animals are considered good sentinel species. Additionally, the use of ki for 

further validation study of t1/2 for inhibition revealed higher t1/2 in the muscle than 

liver. 
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The half time (t1/2) of inhibition (8 µM DDVP or DZN; 40 µM carbaryl) (Tables 

7.2 and 7.3) are lower than those found by Herzsprung et al. (1989). However, 

these authors used methanol to dilute the OP and carbamate compounds and a 

potassium phosphate buffer (pH 7.0, 0.05 M) during measuring enzyme activity 

instead of distilled water for dissolving these compounds and sodium phosphate 

buffer (pH 8.0, 0.1 M) in our study. They also used a four-fold higher 

concentration of substrate. All these factors may explain the apparent difference 

in the rate of inhibition. 

Percentage residual AChE activity in extracts from tissues is also monitored, by 

simply comparing the activity of the non-inhibited enzyme with the inhibited one. 

It was significantly lowered in all inhibitors and mostly more than 83-98.6% 

inhibition detected. This is in agreement with previous studies carried out with 

AChE inhibition in the range 70-100%, after exposure to OP compounds 

(Bocquené and Galgani, 1991; Mcloughlin et al., 2000). It is well accepted that a 

20% or greater inhibition in AChE in birds, fish and invertebrates indicates 

exposure to pesticides (Varo et al., 2002). Some animals are able to survive 

with more than a 50% AChE inhibition but this is an indication of a life-

threatening situation (Ludke et al., 1975). On the other hand, as Escartin and 

Porte (1996) described, the inhibition of AChE at 40% or below caused fatal 

effects, whereas Lundebye et al. (1997) had reported that a 30% of reduction in 

AChE activity is not lethal. 

7.4.3 Effect of pH on rate constants of inhibition 

To the best of our knowledge, this is the first work that compares the ki in 

different pHs from liver of food animals. The ki values increased with increasing 

pH in the reaction mixture, since the pH 6.5 has a more sensitive to inspection 
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AChE and BChE inhibition with DDVP than other pHs (Figure 7.3A-F). They 

are, in general, in good concord with the literature data on ki values obtained for 

rat brain AChE more sensitive in pH higher than 6.5 (Chiappa et al., 1995). 

Based on our result I suggest that the DDVP is more sensitive to inhibition 

AChE than BChE within different pHs from liver of food animals (Figure 7.4). 

This may be due to AChE is loaded ChE and primarily found in the liver. This is 

in agreement with the findings of (Bajgar et al., 2008; Laura et al., 2008) they 

stated that AChE is higher and more sensitive effect to OP compounds than 

does BChE. Hence, in the all cases, I found that ChE activities by both the 

AChE and BChE were directly proportional to each other’s (Figure 7.5). 

7.4.4 Effect of temperature on rate constants of inhibition 

The ki values were decreased with increasing temperature, since the 

temperature 40 °C had a more sensitive to inspection AChE and BChE 

inhibition with OP and carbamate compounds than other temperatures (Table 

7.4). This is in agreement with previous research by Boon et al. (2000) found 

generally higher levels of ki value (oligosaccharides and enzyme activities, not 

including ChE) in temperature 20 °C from Bacillus circulans compared to 40 °C. 

But in contrast with the works of Sun et al. (2009a), they observed that ki value 

in temperature 30 °C > 20 °C ≡ 40 °C. These authors used orange G in 

aqueous solution instead plasma from sheep and cattle, however this factor 

may explain the apparent difference in ki values. 

7.5 Conclusions 

The work described in this Chapter focuses on distinguishing an animal species 

at the degree by the inhibition of ChE activity organizing liver, kidney, muscle 

and plasma. Furthermore, these results are pointed at the importance of 
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estimating kinetic parameters for insecticide inhibitor prior to using in animals as 

biomarker tools of environmental exposure to anti-ChE pesticides. This is 

clearly a very complex issue but on the strength of the evidence I have seen I 

would say. 

1. There were differences between the three species (sheep, cattle and pig) 

with high individual variability were detected. The Vmax for substrate AcTChI in 

animals are decreased according to the rank order of pig > cattle > sheep for 

liver, muscle and kidney. Whereas, Vmax for substrate BuTChI increased as 

follows: pig > cattle > sheep for liver and pig > sheep > cattle for muscle, while it 

increased in rank order of pig > cattle > sheep for kidney. 

2. The IC50 values in pig were higher than in sheep and cattle for AChE inhibited 

with OP and carbamate compounds, except for liver from cattle with DZN where 

the IC50 was higher than for pig and sheep. AChE activity was found to be more 

sensitive to inhibition by DDVP than by DZN or carbaryl, and activity in liver was 

slightly more sensitive to these pesticides than that in muscle tissue. In both 

liver and muscle, ki values for the inhibition of AChE by OP and carbamate 

compounds were higher in sheep than in cattle and pigs. However, in general 

for the same tissue and same animal ki values were similar for all three 

inhibitors. In all animals, residual AChE activity after inhibition of all three 

compounds (DDVP, DZN and carbaryl) was lower in liver than in muscle. 

3. The effect of pHs on ki values from the liver of sheep, cattle and pig inhibited 

by DDVP compounds found to be a higher in pH 6.5 than the other (e.g. pH 7.5 

and pH 8.5). The percentage residual ChE activities in liver extracts after 

inhibition of DDVP compounds were lower in AChE activity than in BChE 

activity. In addition, the effect of ki for different pHs were decreased according 

rank order of 8.5 > 7.5 > 6.5. Therefore, this data pointed that pH 6.5 is more 
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recommended for measuring DDVP-AChE and BChE inhibition than other pHs 

used and AChE were more sensitive than does BChE to inhibition with DDVP.  

4. Effect of different temperatures (20 °C, 30 °C and 40 °C) from plasma for 

sheep and cattle, the ki values for the inhibition by DDVP, DZN and carbaryl 

compounds were higher in BChE than AChE with the exception of sheep 

plasma DDVP at 40 °C and cattle plasma inhibited with carbaryl at 20 °C, there 

was AChE higher than does BChE. In addition, the effect of ki for different 

temperatures were decreased according rank order of 20 °C > 30 °C > 40 °C. 

So, this data pointed that temperature 40 °C is more recommended for 

measuring DDVP, DZN, carbaryl-AChE and BChE inhibition in plasma than 

other temperatures used. 
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Chapter 8 

Reactivation of acetylcholinesterase 

 

The results from this Chapter have been presented as oral presentations at the 

following conferences: 13th Associations of Institutions for Tropical Veterinary 

Medicine, August 2010, Bangkok, Thailand and First Joint Meeting between the 

Society for Experimental Biology, British Ecological Society, Biochemical 

Society, January 2011, London, UK. 

 

These results have also been published in: 

Kasim Abass Askar, A. Caleb Kudi and A. John Moody (2011). Spontaneous 

reactivation and aging kinetics of acetylcholinesterase inhibited by dichlorvos 

and diazinon. Journal of Toxicological Sciences 36(2):237-241.  
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Chapter 8: Reactivation of acetylcholinesterase 

8.1 Introduction 

Although there are many natural and synthetic compounds that inhibit the 

enzyme AChE, the organophosphate (OP) insecticides (e.g. DDVP and DZN) 

remain one of the most dangerous and deleterious series of the compounds to 

animals. The necessary treatment after OP exposure involves the use of 

parasympatholytic (e.g. atropine), oxime reactivators (e.g. pralidoxime) and 

anticonvulsant drugs (e.g. diazepam). Therefore, the reactivate of AChE is 

essential compounds in the treatment of OP intoxications (Musilek et al., 2009). 

The use of OP compounds for pest control and attempted suicide cause huge 

numbers of intoxications and several hundreds of thousands of fatalities per 

year mainly in developing countries (Worek et al., 2004). OP products are 

prevalent in animals destined for human consumption in the world with serious 

public health implications. Animal handlers are at risk of contamination and can 

serve as a source of contamination to susceptible hosts. Targeted pest control 

of animals, concerted veterinary/medical efforts, professional health instruction, 

active attachment of animal careers and good health care systems are 

necessary for effective control (Marrs, 1993; Worek et al., 2004). 

The mechanism of action of OP compounds is a progressive inhibition of AChE 

by phosphylation (both phosphorylation and phosphonylation) of the esteratic 

site of the serine hydroxyl group of the enzyme leading to an inhibition ChE 

(Timothy, 2001; Worek et al., 2004; Ferreira et al., 2008), and successive 

accumulation of the neurotransmitter ACh. AChE primary function is to catalyse 

hydrolysis of released ACh and thus maintain homeostasis of this 

neurotransmitter ACh in the central and peripheral nervous systems. After 
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inhibition, AChE is not able to serve its physiological function and poisoning 

animals (Timothy, 2001; Saxena et al., 2008). 

Phosphorylated AChE is spontaneously hydrolysed, liberating phosphoric acid 

and the original active enzyme. This phenomena spontaneous reactivation 

(dephosphorylation) proceeds very slowly and depends on the leaving group of 

the original OP inhibitor, but on the remaining substituted groups on the 

phosphorus atom and the source of the enzyme (Figure 8.1B) (Morifusa, 1974; 

Worek et al., 2004). However, the OP-inhibited AChE changes gradually into a 

non-reactivatable form on storage. This phenomena is called aging 

(dealkylation) (Figure 8.1A) (Worek et al., 2004). It was assumed that the aging 

might be caused by a migration of the phosphoryl group from an initial position 

to form more stable bond or by the elimination of serine phosphate to lose 

serine hydroxyl group. It is generally accepted that spontaneous reactivation 

and aging mechanism for alkoxyl group of OP residue bound to AChE 

(Morifusa, 1974; Patocka et al., 2004). 

Oxime compounds can reactivate phosphorylated AChE by displacing the 

phosphoryl group from the enzyme by virtue of their high affinity for the enzyme 

and their powerful nucleophilicity. This is characterized by the presence of 

several structural features: Functional oxime group, quaternary nitrogen group 

and a different optimal length of linking chain between two pyridinium rings in 

the case of bispyridinium reactivator (Figure 8.1C) (Kassa, 2002; Worek et al., 

2004). 
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Figure 8.1 Reaction scheme for the reactivation of OP-inhibited ChE by oximes 

(adapted from (Worek et al., 2004)). 

Unfortunately, none of the currently used oximes are sufficiently effective 

against all OP compounds, for example pralidoxime (2-PAM, Pyridine-2-

aldoxime methiodide); obidoxime (1,1′-(Oxydimethylene)bis(pyridinium-4-

carbaldoxime) dichloride bis(4-formylpyridiniomethyl) ether dioxime); and HI-6 

1-(-4-carbamoyl pyridinium)-3-hydroxyyiminomethylpyridinium)-2-

oxapropropane dichloride (Figure 8.2) (Worek et al., 2007; Ferreira et al., 2008). 

Furthermore, the toxic effect of these compounds may cause death due to 

respiratory paralysis (Sevelová et al., 2005). There has been some concern 

about the hepatotoxicity of obidoxime (Marrs, 1993). Likewise, side effects of 

pralidoxime when administered intravenously to human in the absence of nerve 

agent poisoning, are only of transient type-like dizziness and blurred vision. 

Transient diplopia is observed when high doses of pralidoxime (10 mg/kg) are 

applied and occasionally, nausea and vomiting may occur. Furthermore, the 

most serious side effect of pralidoxime is hypertension and tachycardia (Sidell, 

1992). To overcome these problems, I used the newly synthesized oximes, 
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bisquaternary symmetric (K005 and K033) or asymmetric (K027 and K048) 

pyridinium aldoximes with the functional aldoxime group at position two (K005 

and K033) or four (K027 and K048) at the pyridine rings (Figure 8.2) (Kuca and 

Cabal, 2004). 

 

Figure 8.2 Structure of currently used oximes and their new analogues (adapted from 

(Kuca and Kassa, 2003)). 

The main objectives of this study were to investigate the rate of spontaneous 

reactivation of AChE from liver and muscle of food animals inhibited by the OP, 

DDVP and DZN. It also aims to identify the time course of aging of OP-inhibited 

AChE from liver and muscle of food animals. In addition, to find suitable 

reactivator of AChE and to recommend the most efficacious oxime compounds 

for the next evaluation as antidotes for intoxication by DDVP. The results of this 

study confirm that the reactivation effect depends on (a) number of pyridinium 

rings, (b) number of oxime groups and their position, and (c) length and the 

shape of the linkage bridge between the pyridinium rings. 
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8.2 Materials and methods 

8.2.1 Chemicals 

Obidoxime and pralidoxime were supplied by the Sigma Chemical Company 

(Poole, Dorset, UK). Oximes K005, 1,3-bis(2-hydroxyiminomethylpyridinium) 

propane dibromide; K027, 1-(4-hydroxyiminomethylpyridinium)-3-(4-carbamoyl-

pyridinium) propane dibromide; K033, 1,4-bis(2-hydroxyiminomethylpyridinium) 

butane dibromide; K048, 1-(4-hydroxyiminomethylpyridinium)-4-(4-

carbamoylpyridinium) butane dibromide; and HI-6 were synthesized and 

supplied at the Department of Toxicology, Faculty of Military Health Sciences, 

University of Defence, Czech Republic (Kuca and Kassa, 2003). All other 

chemicals used in this study were of analytical grade. 

8.2.2 Sample collection and preparation 

The sample collection and preparation were done as described in Sections 2.2 

and 2.3. Following this it was then measured the AChE enzyme activity as 

described in Section 2.4.1. 

8.2.3 Determination of rate constants for aging and spontaneous 

reactivation 

For the detection of rate constants for spontaneous reactivation, AChE was 

inhibited with either 8 µM DDVP or DZN for 30 min at room temperature 20 °C 

resulting in an inhibition of 85-95% of control activity. The excess inhibitor was 

removed by gel filtration using Sephadex G-25 column (1 x12 cm) to separate 

enzyme from un-reacted inhibitors, with 0.1 M sodium phosphate buffer, pH 8.0 

(Figure 8.3). Hence, the column used was designed to give a good separation 

of proteins present in small samples of relatively impure homogenates. Then 

equilibrated 16 fraction times (0.2 ml each) with sodium phosphate buffer (0.1 
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M, pH 8.0). Eluted with potassium ferricyanide salt (5 mM) [K3Fe (CN)6] and 

measured at 420 nm, 25 °C on endpoint (0.06 ml of three coloured fractions 

was added to 0.24 ml sodium phosphate buffer for 96-well microtitre plates and 

measuring by using a plate reader. 

In a single stage, sample is desalted, exchanged into a new buffer and low 

molecular mass materials, such as unwanted salts, and is removed. The high 

speed and high volume capacity for this separation allows even large sample 

volumes to be processed rapidly and efficiently. Active fractions from monitored 

samples as a sole peak were collected. AChE activity measured as described in 

Section 2.4.1. The increase in AChE activity over time was then monitored (e.g. 

Figure 8.4A). OP-treated samples were stored in aliquots at -80 °C until use. 

For detection of aging, AChE was inhibited as above. Excess inhibitor was also 

removed in the same way. Then at different times 500 µM pralidoxime 

concentrations for 30 min at room temperature 20 °C was added to reactivate 

the enzyme (Figure 8.4B). The decrease of oxime (pralidoxime)-induced 

reactivation in AChE activity over time was then monitored (Škrinjarić-Špoljar et 

al., 1973; Aurbek et al., 2006; Worek et al., 2008). The pseudo-first-order rate 

for constants ks and ka were calculated by a non-linear regression analysis 

(Škrinjarić-Špoljar et al., 1973; Worek et al., 2004). 
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Figure 8.3 The fractionation of AChE on sodium phosphate buffer (0.1 M, pH 8.0). The 

flow rate was 1ml/20 min-1. Data are for sheep liver. 
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Figure 8.4 This illustrates the data analysis used to obtained rate constants for 

spontaneous reactivation (ks, expressed as h-1; A) and for aging (ka, expressed as h-1; 

B). The data are for cattle liver AChE inhibited with DDVP. Spontaneous reactivation 

data were fitted with a single exponential rise to maximum using SigmaPlot 11. For the 

aging data the reactivation time courses at different times after inhibition was fitted in 

the same way, and the maximum level of oxime-induced reactivation in each case plus 

the level of spontaneous reactivation at the same time was then plotted (B, insert). 

Data were then fitted with a single exponential decay. Half times were calculated using 

equation; t½ = ln2/k. 
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8.2.4 Preparation of organophosphate-inhibited samples 

Samples of liver extract were incubated with a small volume (≤ 1% v/v) of 8 µM 

DDVP for 30 min at 20 °C to achieve >90% inhibition of AChE activity in the 

sample. Then, the excess inhibitor was removed by gel filtration using 

Sephadex G-25 equilibrated with 0.1 M phosphate buffer, pH 8. Stock solutions 

of DDVP were prepared weekly, stored at 4 °C and appropriately diluted in 

distilled water just before the experiments. The OP-inhibited samples were 

stored at -80 °C until use.  

8.2.5 Reactivation of organophosphate-inhibited sample 

The reactivation rate constants of AChE treated with various oximes were 

determined by a discontinuous procedure (Worek et al., 2010). Six parts of OP-

inhibited sample incubated with one part of oxime solution (10-2-10-5 M final 

concentration) were transferred to a microtitre plate after specified time intervals 

(0-40 min), after which the AChE activity was measured as explained in the 

Section 2.4.1. AChE activities of OP-inhibited samples after time-dependent 

reactivation are expressed relative to maximum reactivation, i.e. the maximum 

AChE activity at the end of the observation period, which was close to the 

control AChE activity in all cases. 

8.2.6 Determination of dissociation constant of enzyme-reactivator 

complex (Kdis) 

For the measurement of Kdis, samples were incubated with oximes 

(concentrations ranging between 10-2 and 10-6 M), and then AChE activity was 

measured over different times at 20 °C as explained in the Section 2.4.1. Then 

monitored AChE activity within different concentrations over times (0-50 min). 

The data were fitted with a single exponential rise to maximum using SigmaPlot 
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11 (Figure 8.5). Stock solutions of oximes were prepared weekly, stored at 4 °C 

and appropriately diluted in distilled water just before the experiments. Controls 

were incubated with sodium phosphate buffer pH 8.0 were included when 

appropriated. Blanks were also run at each selected oxime for each based on 

absorbance tested. 
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Figure 8.5 The figure above illustrates the data analysis used to obtain the rate 

constant of oxime (kapp). The data are for sheep liver AChE with obidoxime. Then 

plotted the kapp values against different oxime concentrations with a single rectangular 

hyperbola (insert) by using SigmaPlot 11 and the slope of the curve is representing the 

Kdis. 

8.2.7 Determination of reactivation constants 

Reactivation constants separated into the enzyme-inhibitor-reactivator complex 

(dissociation constant, KR) and rate constant (first-order rate constant for 

reactivation, kr) describing the displacement of the OP compound from the 

active-site serine were determined as previously described (Worek et al., 2007; 

Artursson et al., 2009). The measurements were made in 0.1 M sodium 

phosphate buffer (pH 8.0) at 20 °C and 4-5 different oxime concentrations were 
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used in each experiment. The observed first-order rate constant at a given 

oxime concentration (koi) was determined by non-linear regression (SigmaPlot 

11). 

In brief, for the measurement of KR, different oxime concentrations ranging 

between 10-2 and 10-5 M were added to samples of AChE inhibited with DDVP 

(prepared as described above). After this AChE activity was measured over 

different times at 20 °C as described above. The level of reactivation of AChE 

activity over different times (0-40 min) was then plotted (e.g. Figure 8.6), and 

from this the rate constant (kobs) was obtain by non-linear regression (SigmaPlot 

11). After this the kobs values obtained with different oxime concentrations were 

plotted against oxime concentration and fitted with a single rectangular 

hyperbola (SigmaPlot 11). From this the maximum rate of reactivation (kr) and 

the concentration of oxime that gives a rate of reactivation equal to 50% of kr, 

i.e. KR, were obtained. The % of reactivation potency was calculated as the % 

of increase in the activity of a reactivated enzyme in the reaction mixture as 

follows; 
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Figure 8.6 The figures above illustrate the data analysis used to obtain rate constant of 

reactivation in different time and dissociation constant of enzyme-inhibitor-reactivator 

complex were calculated after plotted slope of reactivation after inhibition against oxime 

concentrations. The data are for sheep liver AChE inhibited with DDVP and reactivated 

with K048. 

8.2.8 Bimolecular constants of reactivation (kr2) 

It represents the overall reactivation ability and values of kr2 were calculated by 

dividing kr with KR as described in (Kuca and Kassa, 2003; Artursson et al., 

2009). 

8.2.9 Preparation of the isolated perfusate liver 

Sheep liver from a local abattoir in Launceston, Cornwall (Figure 2.1), UK, was 

killed by a blow to the head; the brain was pithed (ethically approved by 

humanely sacrificed) and transported to the laboratory at the University of 

Plymouth for immediate processing. The time between death of the animal and 

the start of perfusion was about an hour. The decision to use sheep model in 

this research was made as the metabolic rate is more rapid in small animal than 

larger one (relative to body size) (Couture and Hulbert, 1995). The second 
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reason was economic, because all sheep liver samples were obtained at a low 

cost. 

Appropriate captures loosely placed around both the aorta and vena cava, 

posterior to the liver. A snare was also loosely placed around the portal vein 

and caudal lobe of the liver removed quickly. A tube (cannula) connected to the 

perfusion apparatus inserted via the portal vein into the branch leading to the 

caudal lobe, and secured with a purse string suture. The caudal lobe was 

immediately perfused into 100 ml of the Krebs Henseleit bicarbonate buffer 

which contained (in g L-1) according to Ali et al. (2000): Glucose, 2; magnesium 

sulphate, 0.141; potassium dihydrogen phosphate, 0.16; potassium chloride, 

0.35; and sodium chloride, 6.9. In addition, add to this buffer 2.1 mM lactate, 0.3 

mM pyruvate, and 10 U heparin ml-1 at body temperature (37 ºC), gassed with 

95% O2: 5%CO2 (normal CO2). 

The liver started perfused [1 ml min-1 via an peristaltic pump (Miniplus 3, Gilson, 

UK)] with another volume of the same Krebs-Henseleit bicarbonate buffer 

(described above) for up to 1 h, the control (no added DDVP or K048) and 

treatment groups will be run separately after adding the amount of 16 µM DDVP 

alone or with 1 mM K048, that wanted to use in the experiment because the 

high bimolecular rate constant than other oximes used in our previous work. At 

the end of the experiment, the liver carefully washed in deionised water, and 

extracted as described in Section 2.3.2. Following this it was then measured the 

enzyme activity as described in Section 2.4.1. 

8.2.10 Statistical analysis 

Processing of experimental data for the determination of mean values ± SE. 

Differences with P < 0.05 was regarded to have statistical significance. The 
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kinetic constants were performed by using the curve-fitting programs provided 

by SigmaPlot 11. 

8.3 Results 

8.3.1 Spontaneous reactivation and aging of acetylcholinesterase 

Spontaneous reactivation (ks) and aging (ka) kinetics of AChE inhibited by 

DDVP and DZN were determined in liver and muscle for sheep, cattle and pig 

using the modified Ellman method as described in Section 8.2.3 (Tables 8.1 and 

8.2). Liver ks and ka kinetic parameters for insecticide inhibitor for reaction 

between AChE and two OP (DDVP and DZN) are showed in Table 8.1. The ks 

for animals was decreased according to the rank order of sheep > pig > cattle 

for DDVP and DZN. ka values for animals were decreased according to the rank 

order of cattle > sheep > pig for DDVP, while decreased in the range cattle > 

pig > sheep for DZN. The relative activity (ratio of mean) between DDVP and 

DZN was found highest in sheep ks (3.7) lowest in pig ka (0.8). Kinetic ks and ka 

of all tested animals in liver gave no correlation between ka and ks (R
2 < 0.34) 

(Table 8.1). 

Half time (t1/2) from liver for ks and ka kinetic parameters for insecticide inhibitor 

for reaction among AChE and (DDVP and DZN) are showed in Figure 8.7. All 

cases (e.g. sheep, cattle and pigs), the DZN was higher than DDVP for ks and 

ka and much higher (5-times) than that seen in sheep ks (Figure 8.7A). In 

addition, t1/2 for aging was higher in DZN than DDVP in sheep (1.5-times), 

whereas cattle and pig (1.2-times) (Figure 8.7B). 
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Table 8.1 Rate constants for the spontaneous reactivation (ks) and aging (ka) of AChE 

inhibited by DDVP and DZN from liver of sheep, cattle and pig. 

Inhibitor Sheep Cattle Pig 

ks (h
-1)  

DDVP 

 

0.323 ± 0.05a 

 

0.218 ± 0.09a 

 

0.245 ± 0.03a 

DZN 0.088 ± 0.04b 0.061 ± 0.001b 0.070 ± 0.003b 

Ratioa  3.7 3.6 3.5 

ka (h
-1)    

DDVP 0.019 ± 0.003 0.021 ± 0.003 0.013 ± 0.002 

DZN 0.014 ± 0.002 0.018 ± 0.001 0.017 ± 0.006 

Ratioa  1.4 1.7 0.8 

Values in the table are the mean ± SE obtained from nonlinear regression analysis, 

each experiment performed in triplicate (n = 3 in each animal). Different letters in 

column are significantly different [analysis of variance (ANOVA), P < 0.05]. a Ratio 

(DDVP versus DZN). 
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Figure 8.7 Half times for the spontaneous reactivation (ks) and aging (ka) of AChE 

inhibited by ■ DDVP and ■ DZN from liver of sheep, cattle and pig. The letters between 

the DDVP and DZN are significantly different [analysis of variance (ANOVA), P < 0.05]. 

Muscle ks and ka kinetics for reaction among AChE and two OP (DDVP and 

DZN) are seen in Table 8.2. The values of ks for animals were decreased 
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according to the rank order of sheep > pig > cattle for DDVP, while in range 

sheep > cattle > pig for DZN. On the other hand, the first-order rate constants 

for ka values was decreased according to the rank order of cattle > sheep > pig 

for DDVP whereas decreased: sheep > pig > cattle for DZN. DDVP/DZN was 3, 

5.1 and 6.6, respectively, for ks and 1.7, 2 and 0.9, respectively, for ka. The 

comparison between the ks and ka kinetics in the muscles of all tested animals 

gave also poor correlation between ka and ks (R
2 < 0.26) (Table 8.2). 

Half time (t1/2) from muscle for ks and ka kinetic parameters for insecticide 

inhibitor for reaction among AChE and two OP (DDVP and DZN) are showed in 

Figure 8.8. Again in all cases (e.g. sheep, cattle and pigs), the DZN was higher 

than DDVP for ks and ka and much higher (6-times) than that seen in pig 

spontaneous reactivation (Figure 8.8A). In addition, t1/2 for aging was nearly 

similar in DZN than DDVP in pig (Figure 8.8B). 

Table 8.2 Rate constants for the spontaneous reactivation (ks) and aging (ka) of AChE 

inhibited by DDVP and DZN from muscle of sheep, cattle and pig. 

Inhibitor Sheep Cattle Pig 

ks (h
-1) 

DDVP 

 

0.161 ± 0.016 

 

0.133 ± 0.03a 

 

0.139 ± 0.032 

DZN 0.062 ± 0.039 0.026 ± 0.06b 0.021 ± 0.005 

Ratioa 3 5.1 6.6 

           ka (h
-1)    

DDVP 0.017 ± 0.001 0.018 ± 0.001a 0.013 ± 0.003 

DZN 0.010 ± 0.003 0.009 ± 0.001b 0.014 ± 0.001 

Ratioa  1.7 2 0.9 

     Values in the table are the mean ± SE. Key to the table is listed under the table 8.1. 
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Figure 8.8 Half times for the spontaneous reactivation (ks) and aging (ka) of AChE 

inhibited by ■ DDVP and ■ DZN from muscle of sheep, cattle and pig. The letters 

between the DDVP and DZN are significantly different [analysis of variance (ANOVA), 

P < 0.05]. 

8.3.2 Affinity towards the whole acetylcholinesterase and reactivation of 

dichlorvos-inhibited acetylcholinesterase 

8.3.2.1 Affinity towards the whole acetylcholinesterase 

The dissociation affinity constants (Kdis) of currently available (pralidoxime, 

obidoxime and HI-6) and newly synthesized oximes (K005, K027, K033 and 

K048) to intact AChE was investigated as described in Section 8.2.6 (Table 

8.3). It expressed the creation of the AChE-reactivator complex decreased of 

this constant indicated a higher affinity to reactivate of AChE. The values of Kdis 

obtained in this study had high affinities for the AChE from sheep, while HI-6, 

pralidoxime, K005, obidoxime, K027, K048 and K033 had higher affinity for 

cattle AChE. K027 had lower affinity for the AChE of pigs compared with the 

other oximes (K005, K033, K048, HI-6, obidoxime and pralidoxime). Affinity 

between K033 and K048 oximes for cattle and between K005 and HI-6 for pigs 

was comparable. The values of Kdis for the three animals studied increased 
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according to the rank order of cattle > pig > sheep for K005, K027 and HI-6. It 

was increased as follows: cattle > sheep > pig for K033 and obidoxime, while 

for K048 the rank order was sheep > cattle > pig. However, pralidoxime affinity 

in the animals was increased as follows: pig > cattle > sheep (Table 8.3). The 

relative activity (ratio of mean) between highest and lowest oximes affinity was 

found maximum in sheep (808) and minimum in cattle (22) (Figure 8.9). 

Table 8.3 Dissociation constant (Kdis, µM) of the tested oximes towards AChE. 

Oximes Sheep Cattle Pig 

K005 20.7 ± 2.01 465.3 ± 18.5 30.5 ± 2.11 

K027 47.4 ± 5.36 2,836 ± 27.1 670.6 ± 52.5 

K033 1,962 ± 22.7 3,036 ± 42.4 415.2 ± 23.9 

K048 6,062 ± 63.1 3,000 ± 23.9 149.2 ± 14.7 

HI-6 7.5 ± 2.23 139.9 ± 12.5 24.3 ± 6.78 

Obidoxime 962.2 ± 25.5 1,956 ± 10.1 64.5 ± 10.2 

Pralidoxime 100.3 ± 27.8 294.4 ± 13.1 304.5 ± 24.9 

Values in the table are the mean ± SE obtained from nonlinear regression analysis, 

each performed in triplicate (n = 3 in each animal). 
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Figure 8.9 Ratio of dissociation constants (Kdis) from all tested oximes (K005, K027, 

K033, K048, HI-6, obidoxime and pralidoxime). The ratio of Kdis was formed between 

highest and lowest from table 8.3. 

8.3.2.2 Reactivation of dichlorvos-inhibited acetylcholinesterase 

The ability of all studied oximes kinetic parameters (KR, kr and kr2) to reactivate 

DDVP-inhibited AChE in vitro were also investigated as described in Sections 

8.2.7 and 8.2.8 (Tables 8.4-8.6). The value of KR constant characterized the 

affinity of all new oximes to DDVP-inhibited AChE indicated that the K033 for 

sheep, cattle and pigs. But the rates of KR for currently used oximes was as 

follows: HI-6 > obidoxime > pralidoxime for sheep and obidoxime > HI-6 > 

pralidoxime for cattle, while pralidoxime > obidoxime > HI-6 for cattle. The ratio 

of mean between the highest and lowest of KR constant was found largest in 

cattle (568) and smallest in pig (9) (Figure 8.10A). 

The values of KR for the three animals studied increased according to the rank 

order of cattle > sheep > pig for K005, K027 and pralidoxime. It was increased: 

in order of cattle > pig > sheep for K033 and K048, while for obidoxime the 
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order was sheep > pig > cattle. However, the rank order for HI-6 was increased 

as follows: pig > sheep > cattle (Tables 8.4-8.6). 

Higher kr values were obtained for K048 followed by K033, K027 and K005 for 

sheep. So, highest to K033 followed by K005, K048 and K027 for cattle. 

Whereas in pigs the constant of kr ranged as follows: K005, K048, K027 and 

K033. The rates of kr for currently used oximes were as follows: pralidoxime > 

obidoxime > HI-6 for sheep, pralidoxime > HI-6 > obidoxime for cattle, and HI-6 

> pralidoxime > obidoxime for pig. The relative ratio of kr between highest and 

lowest was found utmost in cattle (88) and least for pig (11) (Figure 8.10B). 

kr for the three animals studied increased according to rank order of cattle > 

sheep > pig for K033 and HI-6. In addition, it was increased as follows: pig > 

cattle > sheep for K005 and cattle > pig > sheep for K027. The kr value of K048 

increased in rank order of pig > sheep > cattle and sheep > pig > cattle for 

obidoxime, while it was sheep > cattle > pig for pralidoxime (Tables 8.4-8.6). 

K048 has the highest kr2 representing the overall reactivation ability, followed by 

K027 (520-times), K033 (629-times) and K005 (1230-times) for sheep (Table 

8.4), as well as K048 have had highest for pig followed by K005 (2-times), K027 

(6-times) and K033 (49-times), respectively, (Table 8.6), while K005 was 

highest in cattle (Table 8.5). The kr2 values for K033 and K048 was comparable 

in cattle (Table 8.5). On the other hand, pralidoxime had the highest kr2 followed 

by HI-6 and obidoxime for sheep, while HI-6 in cattle had highest kr2 followed by 

pralidoxime and obidoxime. Obidoxime had the highest kr2 followed by HI-6 and 

pralidoxime for pigs. kr2 between K027 and K033 for sheep and between K033 

and K048 were comparable in cattle. 
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The values of kr2 for the three animals studied increased as follows: pig > cattle 

> sheep for K005 and K027. It was increased according to the rank order of 

cattle > sheep > pig for K033 and HI-6, while for pralidoxime and obidoxime, the 

rank order was sheep > pig > cattle. However, kr2 of K048 was increased as 

follows: sheep > cattle > pig (Tables 8.4-8.6). The ratio of highest/lowest of 

reactivation constants was found the biggest in sheep (1229) and smallest for 

cattle (15) (Figure 8.10C). The percentage reactivation potency of the oximes at 

concentration 10-3 M was higher than that seen 10-2 M in the case of K005 and 

K033 for sheep (Figure 8.9) as well as in the case of cattle with obidoxime 

(Figure 8.10), but for K005 and obidoxime in pigs (Figure 8.11). On the other 

hand, the perfusion of sheep liver treated by oxime K048 alone or K048 with 

DDVP was seen significantly different between control and treated groups 

(Figure 8.14). 

Table 8.4 Kinetic parameters of reactivation of DDVP-inhibited AChE from sheep. 

Oximes KR (µM) kr (min-1) kr2 (min-1.mM-1) 

K005 1,020 ± 33.2 0.007 ± 0.0006 7 

K027 1,283 ± 54.4 0.020 ± 0.0041 16 

K033 3,179 ± 41.6 0.041 ± 0.002 13 

K048 19.4 ± 4.14 0.158 ± 0.005 8 

HI-6 1,896 ± 12.7 0.234 ± 0.045 123 

Obidoxime 4,392 ± 69.7 0.279 ± 0.036 64 

Pralidoxime 2,093 ± 16.9 0.321 ± 0.0741 153 

Values in the table are the mean ± SE obtained from nonlinear regression analysis, 

each experiment performed in triplicate (n = 3). 
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Table 8.5 Kinetic parameters of reactivation of DDVP-inhibited AChE from cattle. 

Oximes KR (µM) kr (min-1) kr2 (min-1.mM-1) 

K005 3,016 ± 103.02 0.185 ± 0.002 62 

K027 1,968 ± 10.46 0.085 ± 0.0854 43 

K033 4,381 ± 17.074 0.245 ± 0.0225 26 

K048 3,606 ± 41.18 0.090 ± 0.0127 25 

HI-6 713.6 ± 9.2 0.265 ± 0.0085 371 

Obidoxime 7.7 ± 2.62 0.003 ± 0.001 39 

Pralidoxime 2,245 ± 11.57 0.132 ± 0.0205 59 

Values in the table are the mean ± SE obtained from nonlinear regression analysis, 

each experiment performed in triplicate (n = 3). 

 

Table 8.6 Kinetic parameters of reactivation of DDVP-inhibited AChE from pig. 

Oximes KR (µM) kr (min-1) kr2 (min-1.mM-1) 

K005 426.1 ± 31.1 0.0593 ± 0.009 139 

K027 516 ± 37.3 0.025 ± 0.004 48 

K033 3,321 ± 47.4 0.020 ± 0.0002 6 

K048 624.1 ± 36.7 0.184 ± 0.026 296 

HI-6 3,934 ± 120.5 0.215 ± 0.002 55 

Obidoxime 2,204 ± 45.4 0.133 ± 0.008 60 

Pralidoxime 329.1 ± 42.8 0.023 ± 0.006 69 

Values in the table are the mean ± SE obtained from nonlinear regression analysis, 

each experiment performed in triplicate (n = 3). 
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Figure 8.10 Ratio of reactivation constants from all tested oximes (K005, K027, K033, 

K048, HI-6, obidoxime and pralidoxime). The ratio of KR (A), kr (B) and kr2 (C) was 

formed between highest and lowest from tables 8.4-8.6. 
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Figure 8.11 Effect of oximes to reactivate sheep liver AChE inhibited by DDVP. 

Homogenated liver of sheep treated with DDVP (8 μM final concentration) for 30 min at 

20 °C to achieve a sample inhibition of >90%. Oximes (10-2-10-5 M final concentration) 

were then added and incubated for 0-40 min under the same conditions. Then 

measured the enzyme activity as explained in the section on ChE determination. 
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Figure 8.12 Effect of oximes to reactivate cattle liver AChE inhibited by DDVP. 

Homogenated liver of cattle was treated with DDVP (8 μM final concentration) for 30 

min at 20 °C to achieve a sample inhibition of >90%. Oximes (10-2-10-5 M final 

concentration) were then added and incubated for 0-40 min under the same conditions. 

Then measured the enzyme activity as explained in section on ChE determination. 
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Figure 8.13 Effect of oximes to reactivate pig liver AChE inhibited by DDVP. 

Homogenated liver of pig was treated with DDVP (8 μM final concentration) for 30 min 

at 20 °C to achieve a sample inhibition of >90%. Oximes (10-2-10-5 M final 

concentration) were then added and incubated for 0-40 min under the same conditions. 

Then measured the enzyme activity as explained in the section on ChE determination. 
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Figure 8.14 Box plots of the range AChE and BChE activities reported to be 

taking DDVP and DDVP with K048 of liver perfusion. 
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8.4 Discussion 

8.4.1 Spontaneous reactivation of acetylcholinesterase 

To the best of our knowledge, this is the first study, which compares the ks, and 

ka of OP inhibited AChE in the liver and muscles for sheep, cattle and pigs. 

Phosphorylated AChE is susceptible to spontaneous hydrolysis of an alkyl-ester 

bond, resulting in a negatively charged residue which is resistant towards 

nucleophilic attack (Aldridge and Reiner, 1973). The rate of ks to inhibit 

erythrocytes AChE by DDVP has been observed to be 0.92 min-1 for cattle 

(Škrinjarić-Špoljar et al., 1973), 0.347 h-1 for rat (WHO, 2007), while ks values to 

DZN was 0.012 h-1 for human (WHO, 2007), but was 0.408 and 0.019 h-1 for 

DDVP and DZN, respectively in ethanol (Morifusa, 1974). Comparable to our 

work DDVP was higher in the liver and muscle of cattle than in erythrocytes, 

which ranged between 0.133 and 0.323 h-1, but lower than DZN, and ranged 

between 0.021 to 0.088 h-1. These differences may be due to AChE activity in 

the erythrocytes being more sensitive to DDVP than in the liver and muscle 

cells, unlikely with DZN. However, ks in the liver proceeded substantially faster 

with cattle DDVP and DZN compared with the other animals. While muscle ks 

was faster with cattle exposed to DDVP and pig to DZN compared with other 

animals (Tables 8.1 and 8.2). 

Literature values of the half time (t1/2) of ks for AChE is about 2 and 58 h for 

DDVP and DZN, respectively in human erythrocytes (Wilson and Philip, 2005; 

WHO, 2007). These findings are in agreement with our results, where observed 

DDVP t1/2 of ks was lower than DZN t1/2 (Figure 8.7A). The recovery of the rate 

ka of reserved erythrocyte AChE by DDVP was 2.62 x 104 min-1 and 7.77 x 104 

min-1 for cattle and horse, respectively (Aurbek et al., 2006), and DZN 0.017 h-1 

for human (Wilson et al., 2005). In agreement with our result with DZN that 
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ranged between 0.009 to 0.018 h-1, while lower than reported with DDVP. 

Except for muscle DZN-inhibited AChE ka proceeded markedly later than ka of 

cattle and pigs. In addition, t1/2 of ka for human erythrocytes AChE is about 41 h 

for DZN (WHO, 2007), concurring with our results which ranged between 39.1 to 

85.3 h (Figure 8.7B). This indicates that the reduction of DDVP t1/2 in the liver 

and muscle might alter the use of oximes. In clinical research, the level and time 

course of ka is important, because it is the factor that limits the period for useful 

oximes administration after affecting food animals with OP pesticides 

(Fairbrother et al., 1991; Worek et al., 2004; Aurbek et al., 2006). Furthermore, 

this study found that values of ka and ks could also play a role on the 

administration of oximes for food animals. 

8.4.2 Affinity towards the whole acetylcholinesterase and reactivation of 

dichlorvos-inhibited acetylcholinesterase 

The our work has presented in vitro experiments for several oximes because a 

previous study showed that in vitro and in vivo results were similar (Kassa and 

Cabal, 1999). DDVP has been pointed in this work due to the main 

contaminants in the cases of OP intoxication in the world. However, the 

antidotal treatment for OP poisonings are not sufficiently effective (Timothy, 

2001). DDVP is an OP compounds and poisoning with this compound has been 

treated with the cholinergic receptor antagonist atropine and with oximes 

(mainly pralidoxime) in an attempt to reactivate the OP-inhibited AChE. It has 

been proposed that early death from severe poisoning with DDVP is mediated 

through the central, but not peripheral, nervous system actions (Steven et al., 

2003). However, pralidoxime has not been efficient to reactivate DDVP-inhibited 

AChE and its routine use has been questioned. One of the objectives of this 

study was evaluated the in vitro potency of standards and newly developed 
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oximes in reactivating DDVP-inhibited AChE derived from food animals liver 

supernatants. 

Steric compatibility, electrostatic effects and hydrophobic interaction effect of 

the affinity constants Kdis and KR. Oxime HI-6 has a highest affinity for AChE 

among all oximes used for sheep, cattle and pigs followed by K005 for sheep 

and pigs, while pralidoxime has the highest affinity in cattle (Table 8.3). This is 

in agreement with the finding of Kuca and Cabal (2004) stated that the oxime 

HI-6 had higher affinity than other oximes such as pralidoxime, obidoxime, 

K005, K027, K033 and K048). 

Dissociation constants (KR) to reactivate DDVP-inhibited AChE by K005 for 

sheep and pigs as well as obidoxime for cattle (Tables 8.4 and 8.6) are lower 

with those found by Kuca et al. (2005). These authors used a rat brain and OP 

(VX)-inhibited instead liver and OP (DDVP)-inhibited. Both of these factors may 

explain the apparent difference in the value of KR. 

KR constant affinity to DDVP showed the highest K048 for sheep, obidoxime for 

cattle, and K005 for pigs. Thus, have a high velocity of reactivation of DDVP-

inhibited AChE, and are able to extensively reactivate DDVP-inhibited AChE at 

relatively low concentrations. Oxime obidoxime for sheep and HI-6 for pigs were 

lower affinity compared to K-series compounds (Tables 8.4 and 8.6). This is in 

agreement with an earlier report by Kuca et al. (2005) who observed that tabun-

inhibited AChE is lowest affinity to obidoxime compared K027, K033 and K048 

(Kuca et al., 2005). It also in agrees with the work of Petroianu et al. (2007) who 

mentioned that the K-series compounds had higher affinity than the other 

currently used oxime pralidoxime. 
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Oxime K048 for sheep and pig, while oxime HI-6 for cattle was found to be 

higher efficacious reactivator AChE inhibited with DDVP than the other oximes 

used in this study. This is in agreement with the work of Aurbek et al. (2006) 

found that oxime HI-6 for pig was found to be higher efficacious reactivator 

AChE inhibited with VR and CVX than other (e.g. pralidoxime and obidoxime). 

These interesting results differ with those of (Aurbek et al., 2006; Herkert et al., 

2010) they stated that oxime HI-6 for pig AChE inhibited to be lowered 

efficacious reactivator than other oximes (e.g. obidoxime). Oxime K005 was 

lowered efficacious reactivator for sheep (Table 8.4). This is in agreement with 

the finding of Kuca and Kassa (2003) who mentioned that K005 was less 

efficacious than the other K-series compounds and currently used oximes in the 

case of sarin inhibited AChE. Oximes K033 seems to be lowered efficacious 

reactivator than other oximes for cattle and pig (Tables 8.5 and 8.6). This differs 

from the results of Kuca et al. (2005) who found that K033 was more effective 

for reactivating AChE than the other (e.g. pralidoxime, obidoxime, HI-6, K005 

and K027). These authors used OP-VX-inhibited AChE instead DDVP, 

however, may explain the apparent difference in efficacious reactivator. 

The percentage of AChE reactivates to DDVP-inhibited AChE was higher in HI-

6 for sheep (Figure 8.11), K005 for cattle (Figure 8.12), and K048 for pig (Figure 

8.13). This is in agreement with the work of Kuca et al. (2005) who found that 

the percentage AChE reactivation by HI-6 was higher than those by other 

oximes in AChE inhibited with cyclosarin. Kassa (1995) found that HI-6 was 

more efficacious reactivation than obidoxime to reactivate soman inhibited 

AChE. While differ with the work of oxime inhibited with sarin and tabun (Kuca 

et al., 2005). Likewise, the reactivation potency in case of K027 at concentration 

M-3 was 21-27% and at concentration M-5 was 4-6%. This is in agreement with 
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the work of Kuca et al. (2010) where they found that K027 in case of DDVP 

inhibition was ranged between 5-26% at for concentrations M-3 and M-5, 

respectively.  

I confirmed these interesting results by perfusion of liver sheep by K048 in 

Figure 8.14. This was done by reasons of (a) to build a simple in vitro liver 

perfusion model for investigating the clinical effectiveness of OP poisoning, (b) 

to determine the effect of perfusion on the OP compounds of newly synthesized 

oximes, and (c) to evaluate the effect of liver perfusion model of anti-ChE 

effects. It is our aim also to develop a portable liver perfusion system that allows 

reactivating of inhibited AChE and BChE activities by DDVP compound to 

longer preservation than with in vivo while maintaining liver viability. The 

requirements were at 37 ºC, gassed with 95% O2: 5%CO2 (normal CO2) system 

has been indicated in several experiments (Ali et al., 2000). I examined the 

changes in liver perfusion at two phases in this study. I found liver perfusion 

with K048 detects in higher levels of AChE and BChE activities than liver 

inhibited with DDVP compound (Figure 8.14). These results suggest that in the 

sheep liver, the toxicity of DDVP is mediated by hepatic and extra-hepatic 

activation. This is agreement with work of Sultatos et al. (1985) found in the 

mouse liver, the acute toxicity of chlorpyrifos is mediated by extra-hepatic 

production of oxon, whereas that of parathion is likely mediated by both hepatic 

and extra-hepatic activation. 

8.5 Conclusions 

In conclusions, this study shows for the first time that original data concerning 

an AChE activity reactivation after inhibiting with OP compounds for sheep, 

cattle and pigs. Furthermore, these results are pointed at the importance of 
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identifying the suitable oximes for treatment of exposed animals with anti-ChE 

pesticides. 

In view of the evidence I have studied I think it is fair to say. 

1. In this research, we designed recent developments in our understanding of 

the kinetic properties of ks and ka for sheep, cattle and pig AChE are 

comparable in view of interactions with DDVP and DZN. In liver from all three 

animals studied, the rate of the aging process is much slower than spontaneous 

reactivation of AChE inhibited with DDVP and DZN. This was also true in 

muscle with DDVP and DZN, although the difference was less. Hence, in the 

case of t1/2 AChE inhibited with DZN the enzyme will tend to become much 

higher than those by the DDVP. The determination of reactivation and aging 

constants of dimethylated and diethylated OP pesticides with food animals 

AChE indicates that a structure activity relationship can be derived for the 

inhibition as well as for spontaneous reactivation but not for dealkylation and 

oxime-induced reactivation. 

2. This study shows also the first time that no single, broad-spectrum oxime is 

suitable for the antidote treatment of poisonings with OP compounds for food 

animals. In addition, indicated that the developed bispyridinium symmetric 

(K048) oxime seems to be promising reactivated to DDVP-inhibited AChE for 

sheep and pigs while HI-6 was effective in cattle. However, obidoxime, 

ineffective against DDVP compared to pralidoxime. Furthermore, little change in 

the structure of the AChE reactivator can greatly affect its affinity to intact or 

inhibited enzyme. Oxime-induced reactivation of phosphorylated AChE activity 

is becoming a complementary methodology for assessing field exposure to OP 

pesticides (Worek et al., 2007). Finally, the present data is very important 

because they indicated that asymmetric bispyridinium oximes of the K-series 
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compounds are promising antidotes for DDVP poisoning and it was more 

efficacious for sheep and pig compared to cattle. 
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Chapter 9: General discussion and recommended future work 

9.1 General discussion 

This thesis focuses on establishing a foundation for the applicability of a 

biochemical biomarker, ChE activity, in food animal species, as an instrument 

for evaluating exposure to pollutants or pesticides as well as predicting high-

level effects to public health (Wilson et al., 2001; Wilson and Philip, 2005). 

Measurements of ChE activity have been made for over 60 years. The 

techniques employed to determine of ChE activities include titrimetry (Stedman, 

1932), manometry (Ammon, 1933), the Hestrin method (Hestrin, 1949), ∆ pH 

method (Michel, 1949), spectrophotometry (Ellman et al., 1961), and the 

radiometric method (Johnson and Russell, 1975). Most of these methods suffer 

problems of reproducibility or complexity (Wilson et al., 2001; Wilson et al., 

2002). 

The first step for the thesis was to investigate a good quality method to 

determine ChE activities in the tissues of slaughtered food animals. Hence, two 

methods extensively used for the measurement of ChE activities were tested. 

The first, the Ellman spectrophotometric method (Ellman et al., 1961) does not 

use the natural substrate, however it was accurate and sensitive. When this 

method was used manually, it was not rapid enough to analyse a sufficient 

number of samples to achieve a reliable estimation of the kinetic parameters. 

This method was then modified for use in a microtitre plate reader system 

(Haigh et al., 2008; Leticia and Gerardo, 2008). This modified system was 

capable of testing the effect of anti-ChE (inhibitor or reactivator) rapidly (up to 

28 samples in triplicate in 5 min). The sensitivity of the method was good and 
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low amounts of reaction mixture (0.3 ml of 1 mM substrate per measurement) 

were used. 

The second method, a modified Michel method, was used for the initial stages 

of this study as it had the advantage of using the natural substrate ACh 

(Mohammad, 1997). This method was fairly reliable for high enzyme activity 

determinations but was unreliable for the measurement of low enzyme activity 

samples due to atmospheric interference and fluctuations in the pH meter. 

Therefore, the work described in Chapter 3 was designed to compare these two 

most widely used methods (Figures 3.1 and 3.5) to confirm the most precise 

method and to establish a foundation for the most applicable method in food 

animal species. I found that the Ellman modified method provided better 

precision than the modified Michel method in determining ChE activities 

because the %CV values were lower in the Ellman method (Figure 3.3). In 

general, an increase of %CV values has been demonstrated to be associated 

with a reduction in the precision of methods (Lewis et al., 1981), whereas other 

studies have demonstrated that a lower %CV value in the tissues is associated 

with increased precision of the method (Hawkins and Knittle, 1972; Lewis et al., 

1981). 

Few studies have investigated the stability of AChE and BChE activities. The 

aim of the work described in Chapter 4 was to determine the stability of AChE 

and BChE activities during long-term freezing. There are two methods 

extensively used for the storage of enzymes, freezing at -80 °C (Kirby et al., 

2000) and at -20 °C (Crane et al., 1970). Therefore, the work described in 

Chapter 4 was designed to compare the effects of the two most widely storage 

methods on AChE and BChE activities. In Chapter 4 a significant loss of both 
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AChE and BChE activities was found after 6 months of freezing at -80 °C and 

after 3 months of freezing at -20 °C. Furthermore, a linear relationship was 

found between mean AChE and BChE activities and storage time. These 

results could be important to freezing of meat in semiarid tropical regions of the 

world. This especially so in Asia, where intensification of food animal production 

is rapidly increasing (Al-Jobory and Mohammad, 2004). 

The fourth objective of this study was to develop a protocol for the purification of 

AChE from sheep liver and to extend the purification method for further enzyme 

characterization. Currently, affinity chromatography has been extensively used 

for the purification of AChE in Japanese quail (Son et al., 2002) and in humans 

(Philipp, 1994). Therefore, the aim of the work in Chapter 5 was to develop a 

protocol for the purification of AChE from sheep liver based on methods 

previously applied to other animal tissues (Table 5.2). The outcome of this work 

was that AChE was purified 842-fold with a specific activity of 21 U/mg protein. 

The purified protein had the expected monomeric molecular mass (SDS-

PAGE), whereas gel filtration chromatography with Sephacryl S-200 under 

nondenaturing conditions showed the protein to have the expected tetrameric 

molecular mass. 

In order to achieve the lowest detection limit for pesticide measurements, it was 

first necessary to determine the effects of dilution on the enzyme, the relative 

levels of AChE and BChE activities by using a specific inhibitors, optimal pH, 

temperature effects and histochemical localisation of the enzyme. All of these 

factors gave optimal results for AChE and BChE in tissues of food animals 

which had not had any exposure to pesticide compounds. Many studies have 

already characterized ChE activities in different species, e.g. Bufo marinus (Bui 
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and Ochillo, 1987) and earth worm (Caselli et al., 2006; Rault et al., 2007). The 

work in Chapter 6 was therefore designed to characterize AChE and BChE and 

to investigate samples for assessment of risk to meat products entering the 

human food market. The practical implications of the findings are: 

1. BW284c51 were strongly reduced AcTChI and PrTChI hydrolysis and 

slightly affected that of BuTChI in the liver, and the iso-OMPA had no 

significant effect for muscle BuTChI of sheep and pig; 

2. the optimal pH values ranging between 7.8 and 8.1 for liver and muscle 

AChE, while in BChE pH values were ranged between 8.3 and 8.5 for 

liver and between 7.7 and 7.9 for muscle; 

3. significant effects of the time course (5 to 20 min) and temperatures 

effects (15 to 50 °C) on AChE and BChE activities were increased with 

an increase in temperature; and 

4. histochemical localisation of AChE in sheep liver by using two methods 

(Gomori and Kugler) showed the most AChE was located in the 

cytoplasm of the cell lining in the sinusoids, with a decreasing 

concentration gradient from the central vein to the periphery of the 

lobule. 

The significance of these results has been discussed within Chapter 6, but it is 

important to state that the reason why AcTChI is higher in the liver and muscle 

samples is not known until now. 

The sixth objective of this thesis was to investigate the kinetic properties of ChE 

activities. In addition, to establishing the effects of pH and temperature with the 

objective of diagnosing of OP and carbamate poisoning and to monitor the 

recovery of intoxicated animals. The use of AChE or BChE activities for the 
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inhibition based for determination of pesticides shown great promise for 

environmental screening analysis. AChE or BChE are irreversibly and reversibly 

inhibited by pesticides (e.g. OP and carbamate compounds, respectively). OP 

and carbamate insecticides are still represent important pesticides, which are 

used worldwide in agriculture to protect plants and animals and to prevent crop 

damages due to insects. Hence, a comparison of activity of AChE or BChE 

activities before and after exposure to tissue samples can provide an evaluation 

of the pesticide level. Several studies have already demonstrated the kinetic 

properties of ChE activities in different species, e.g. auricle (Tryfonos et al., 

2009), rat (Jokanović et al., 1996), earth worm (Sanchez-Hernandez et al., 

2009) and snail (Laguerre et al., 2009). Therefore, the aim of the work in 

Chapter 7 was dealt with the in vitro kinetic affects of OP and carbamate 

compounds in tissue samples by using modified Ellman method. In addition, it 

assessed the risk of contaminated meat products entering the human food 

market. A new method for the detection of pesticides using in food animals by 

the inhibition of ChE was developed. In addition, Ellman modified method 

seemed very promising as a biosensing test for screening pesticides in 

environmental samples. The practical implications of the findings are: 

1. Vmax AcTChI in animals decreased in rank order of pig > cattle > sheep 

for liver, muscle and kidney. Whereas, Vmax for BuTChI increased as 

follows: pig > cattle > sheep for liver and pig > sheep > cattle for muscle, 

while it increased from pig > cattle > sheep for kidney; 

2. IC50 was found to be higher in carbaryl than in DDVP and DZN, about 3-4 

times higher in liver and about 4-6 times higher in muscle; and  
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3. in general, the ki values increased in different pHs according to the rank 

order of 8.5 > 7.5 > 6.5, while they decreased in different temperatures 

as follows: 20 °C > 30 °C > 40 °C. 

The last objective of this study was to investigate the rate of spontaneous 

reactivation of AChE inhibited by OP compounds, and to determine the time 

course of aging of OP-inhibited AChE. In addition, to find a suitable reactivator 

for AChE and to recommend the most efficacious oxime compounds for the 

next evaluation as antidotes for intoxication by OP compounds. Other studies 

have already found oximes that reactivate AChE in other species (Kuca et al., 

2005; Worek et al., 2010). Therefore, the aim of the work in Chapter 8 was to 

investigate in vitro reactivation of AChE activity. In Chapter 8, also the 

implication of oxime compounds are a treatment for food animals was 

investigated. It was designed with the aim of understanding the relationship 

between standard and new synthesis oxime as a treatment used in optimising 

animal health though their ability to resist intoxication by OP compounds. In 

addition, to consider the most suitable oximes (Tables 8.3-8.6) for treatment of 

intoxicated food animals by pesticide compounds. It was hypothesized to 

confirm that the reactivation effects depend on: 

1. number of pyridinium rings; 

2. number of oxime groups and their position; and 

3. length and the shape of the linkage bridge between the pyridinium rings.  

The results demonstrated that: 

1. first-order rate constants obtained for ks were higher in sheep than in 

cattle and pig;  

2. the aging (ka) was higher in cattle than in sheep and pig; 
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3. Kdis for oximes were obtained a highest affinity for intact AChE to HI-6 for 

sheep, cattle and pigs; 

4. KR affinity of new oximes to DDVP-inhibited AChE indicates that the high 

affinity to K048 in sheep and obidoxime in cattle, while K005 was highest 

in pig. First-order rate constant for reactivation (kr) was obtained highest 

for pralidoxime in sheep and HI-6 in cattle and pig; and 

5. oxime K048 have had the highest kr2 in sheep and pig, while HI-6 was 

highest in cattle. However, this aspect was beyond the scope of this 

study and further research on this area is recommended. Therefore, it 

will be of economic importance to undertake more studies in this area to 

make this process more efficient. 

9.2 Recommended future work 

This study has identified areas for future research both generally for OP and 

carbamate compounds and more specifically with regard to the AChE and 

BChE activities in food animals. Regarding the former, it is important that future 

studies monitor and check for drifts in reaction-controlling variable like 

temperature and pH especially in replicated batch type tissues of the kind 

undertaken here. Studies should also investigate and quantify the effect of 

these factors for other food animals (e.g. rabbit, goat, horse and deer) and for 

improved estimates of AChE and BChE activities. 

Other areas for future work include conducting parallel experiments in the 

different organs (e.g. brain, pancreas, intestine, stomach and spleen). 

Regarding the kinetic effects of ChE, a better understanding of the kinetic 

inhibition of OP and carbamate compounds used in this study for food animals 

requires a better understanding of their speciation. Thus, the kinetic 



Chapter 9 General discussion and recommended future work 

   204  

characterization for these compounds requires an improvement and expansion. 

In particular, little is known about their kinetics with AChE and BChE. Among 

the OP, therefore, soman and sarin should perhaps be considered more 

urgently for future studies. Further studies are suggested based on present 

results to determine possible differences of AChE and BChE activities between 

male and female and to make further comparisons with this study. 
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Appendix: Training courses and taught sessions attended  

 

1. Courses and workshops 

 English Language Summer School (Intensive course)-Academic writing 

(June 2008 to September 2008), University of Plymouth. 

 Postgraduate Research Skills and Methods in Biology (October 2008 to 

January 2009), University of Plymouth. 

 Supporting English Language Classes (October 2008 to January 2009), 

University of Plymouth. 

 Further Supporting English Language Classes (October 2009), University 

of Plymouth. 

 General Teahing Associates Course (8th October 2009 to 12th November 

2009), University of Plymouth. 

 Laboratory Based Teaching and Methods Practice (Env 5101) (October 

2009 to December 2009), University of Plymouth. 

 Continuing Professional Development Course for Clinical 

Pharmacologists (14th-16th December 2010), Royal College of Physicians 

of London. 

 Continuing Professional Development Course for Clinical Trials and 

Regulatory Affairs (10th-11th January 2011), University of Plymouth. 

 Continuing Professional Development Course for Continiung Education 

Programe Clinical Biomarkers (27th-30th March 2011), University of 

Durham. 

 Student Associate Scheme Training, organized by the Faculty of 

Education (6th-24th June 2011), Prince Rock Primary School, Plymouth. 

 Postgraduate English Language Summer Classes (June 2011 to July 

2011), University of Plymouth. 

 Real-time PCR course Exeter (November 2011), Dartington Hall 

Conference Centre, Totnes. 

 General Teahing Associates Course (9th-13th July 2012), University of 

Plymouth. 

 

2. Taught sessions 

 Impact factors (19th September 2008). 

 Endnote for beginners (7th November 2008). 

 LaTex part 1 (11th November 2008). 

 Free sessions on learning academic vocabulary (14th November 2008). 

 Introduction to electronic resource (18th November 2008). 

 Word 2007 creating forms (19th November 2008). 

 Planning a carrier in research (19th November 2008). 

 Introduction of Microsoft excel 2007 (20th November 2008). 

 Dr in three years (21st November 2008). 
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 Introduction to R (26th November 2008). 

 Career shaping planning for a career in a non-academic sector (26th 

November 2008). 

 Overview of the University of Plymouth intranet for PGR’s (3rd December 

2008). 

 Giving and receiving feedback (4th December 2008). 

 LaTex Part 2 (20th January 2009). 

  Writing and developing CV’s for academic purposes (21st January 2009). 

 Excel 2007: further features (27th January 2009). 

 C.V. writing for non-academic roles and the creative job search (28th 

January 2009). 

 Risk management for research student (29th January 2009). 

 Managing tough application (4th February 2009). 

 Presentation skills part 1 (9th February 2009). 

 Career Planning-How your personality can impact on career decisions 

(11th February 2009). 

 The transfer process (18th February 2009). 

 Winning at job interviews (4th March 2009). 

 Preparing for the viva (5th March 2009). 

 Plagiarism, your word or others (10th March 2009). 

 Preparing effective poster presentation (12th October 2009). 

 New features of office 2007 (13th October 2009). 

 Creating web pages using Microsoft office share point designer 2007 

(20th October 2009). 

 Microsoft office 2007: Structuring your thesis (23rd October 2009). 

 Introduction to E-Portfolio with pebble pad (28th October 2009). 

 Creating graphics using paint shop pro X2 (4th November 2009). 

 Overview of the University of Plymouth intranet for pgr’s (10th November 

2009).  

 Presenting to an audience part 1 (10th November 2009). 

 Word 2007 proofing and tracking changes (24th November 2009). 

 Presenting to an audience-part 2 (25th November 2009). 

 Analyses that-stats clinic (9th December 2009). 

 Postgraduate society short conference 2011 (29th June 2011).  

 

3. Awards 

 

 British Pharmacological Society, Travel grant for British Pharmacological 

Society-(BPS Winter Meeting), London-UK, December 2010, £75. 

 Biochemical Society, Travel grant for Stress Responses-Molecules 

Organisms and Environments conference, London-UK, January 2011, 

£200. 

 EuroPACT 2011, Travel grant for 2nd European Conference on Process 

Analytics and Control Technology, Glasgow-UK, April 2011, €500. 


