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Abstract

Coastal defence systems are implemented in many countries for the stability of coastlines
and prevention of erosion and flooding. The maintenance of such schemes includes the use of
'soft’ engineering techniques, which require accurate predictions of sediment transport and profile
change. This thesis describes the development of a numerical model for coarse-grained cross-
shore transport for use in such schemes. The model combines a hydrodynamic model based on
weakly non-linear Boussinesq equations, coupled to a sediment transport module and a
rorphology change module, Studies have been performed an the hydrodynamic and sediment
models to assess the performance of the components for this purpose.

The 1-D Boussinesq model has been validated with physical wave flume data. The model
is shown to provide good predictions for shoaling and breaking waves near the coastline, and is
also shown to provide good predictions for the properties of a reflected wave field. The model is
then used to perform a study on the nature of wave shoaling and reflection with regard to the
- velocity field, and the development of the velocity skewness pattern is discussed. Recent sediment
transport formulae have been reviewed, and a bed-load sediment transport model has been
developed. A model for differential transport of different grain sized material has also been
introduced. Developed from a river sediment model, this is able to predict sorting of grain sizes
over the cross-shore profile. Results of the combined model are shown for natural plane beaches,
and for beaches coupled with sea walls. The madel predicts reduced erosion patterns for irregular
wave fields compared to regular waves, and for mixed sediment composition sea beds compared
to homogeneous sea beds. These findings show agreement with featuras found in previous
physical studies. A series of sensitivily studies has also been performed with respect to
hydrodynamic and sediment properties. The model shows a high degree of sensitivity for the profile
changes to these parameters. The ability of the model to show predictions for an evolving beach

profite subject to tidal water depth variation is also introduced.
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1. Introduction

1.1. Background

The current philosophy of the coastal engineering profession for the construction
and maintenance of ¢oastal defence systems is to use soft engineering techniques where
appropriate. In the UK, and elsewhere, increasing use is made of coarse grained
sediment (shingle) to replenish eroding beaches, often in conjunction with groynes or
breakwaters. Accurate, predictive models for both long-shore and cross-shore sediment
transport are therefore needed for the use of such systems. Beach failures often occur
during storm events, so the behaviour of a beach system during a storm is of particular
interest.

Most numerical models used to predict cross-shore beach evolution have
concentrated on sand sized sediment. However, the particular properties of a shingle
beach have a number of consequences for the processes of sediment transport, which
mean that the sediment transport characteristics of a shingle beach are very different to
those of a sand beach. Most notably, shingle can support a steep gradient {frequentiy as
steep as 1:8) which allows waves to progress much closer inshore before breaking.
Consequently, energy dissipation through breaking is concentrated over a much narrower
region than on a sand beach. On plane beaches this results in an unsaturated breaker
zone and a swash zone of similar width to the surf zone (see e.g. Baldock ef al.,1998).
Accordingly, the sediment transport within the swash zone is of more significance on a
shingle beach than on a sand beach,

Where a beach is terminated by a sea wall, there will be no swash zone, but still a
narrow breaker zone. To reliably simulate the movement of sediment under these
conditions, it is first necessary to have a sufficiently accurate hydrodynamic description of
the motions of breaking waves. The wave model must then drive a mobile sediment model

to determine the heach morphological evolutions for a particular case.
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Earlier morphology models were simple empirical fits of beach profile fo-an
equilibrium shape. Bruun, (1954) found the general shape of
h=Ys" (N
where # is the sea bed level and x is the cross shore distance from the siilt water line, for
two parameters ¥,n. This profile was later confirmed by Dean, (1977), who found the best
fit for this profile was obtained using » = 2/3, with ¥ as a sediment dependent dissipation
parameter.

This concept was then extended to consider in an empirical manner the evolution
of the beach profile towards the equilibrium. Kriebel and Dean, {1985) developed a time-
varying model where the cross shore transport rate was a function of the deviation of the
wave dissipation rate from its equilibrium value. As time evolved, this model was found to
converge onto Dean's profile. Larson, (1988) was able to extend this concept to include
barred profiles. Such models can be used to evaluate damage from storms of a limited
duration.

The next generation of models is the so-called process based model. These
account for individual physical processes involved in morphological change: The first
group of these models relied on phase-averaged numerical qwave models for
hydrodynamic information, rather than considering detailed intra-wave behaviour. Five
such models are reviewed by Roelvink and Braker, (1993). Phase-averaged models must
treat long waves and wave asymmetry in an approximate manner. These earlier models
also had poor descriptions of waves on steep slopes and did not incorporate swash
processes.

Later process-based models have sought to improve the wave-sediment
representation by explicit determination of quantities, rather than using averaged
properties. A more recent model is given in Rakha et al., (1997), which includes a model
of an evolving, variable thickness boundary layer. The majority of effort in this field

however has still been in the direction of sand transport.
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‘A particular feature of most coastlines in the UK is the existence of significant tidal
ranges. An equilibrium profile does not really exist,‘as the sea bed is continually moving to
adjust to the present tidal height. Sea levels may also be affected by storm surges.
Therefore a model should seek to incorporate long term sea level adjustments in its
predictions.

A predictive tool for engineers must be convenient to use. One measure of
convenience is the time taken for a simulation. Therefore one goal of this. study is to
develop a model that can be run in a relatively short time. In this thesis the development
of a coarse-grained sediment fransport model in conjunction with a phase resolving
hydrodynamic madel is presented. The model is intended to simulate beach beviour

during a nominal storm/tide event.

1.2. Hydrodynamics

Various techniques have been investigated in recent years te develop the
understanding of near-shore wave fields. Approaches that study the depth-mean flow
include the use of the non-linear shallow water (NLSW) equations as used by Glaister,
(1987), Dodd, (1998), and Hudson et a!.,u (2005}, and the Bousssinesqg equations (e.g.
Madsen ef al., (1991), Schéffer ef al.,1993, Madsen ef al.,1997a, Kennedy ef al.,2000).
Studies of the full vertical flow include those using a Navier-Stokes solver, {e.g. Kothe et
al., 1991 and Barr et al.,2004) and more generally, approximate solutions of the Laplacian
potential flow may be found, such as the Local Polynomial Approximation (e.g. Kennedy
and Fenton,1997).

Each of these types of solver has its own limitations. The NLSW equations for
example are only useful inside the breaker zone, and have poor dispersion
characteristics. Boussinesq equations of low order can be computationally cheap to solve,
but lose accuracy in highly non-linear situations (such as close to the breaker line). Higher

order Boussinesq equations (e.g. Wei et al,, (1995), Madsen et al., (2002)) are more
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accurate buf expensive. Navier—Stokés.solvers and potential flow solvers again provide
higher accuracy, but are computationaily even more expensive.

In fact, Boussinesq, (1872) first infroduced his equations a number of years ago.
The equations are derived by in;:orporating low order dispersive effects in shallow water
wave propagation. The first numerical implementation however was not until Peregrine,
(1967). Abbott and Rodenhuis, (1972) studied the sensitivity of the equations to numerical
errors,; and established the need for high accuracy difference schemes. Subsequently,
Abbott ef al., (1978) and Abbott et al., (1984) introduced a third order accurate scheme for
a modified version of Peregrine's equations. Initial fests of these equations against
analytical solutions and experimental data were also made, such as Abbott ef al., (1978)
and Madsen and Warren, (1984). These showed satisfactory performance for the
prediction of wave height for wave shoaling, and also in 2D models, refraction and
diffraction. Accordingly Boussinesq equations have now been used for many years for the
simulation of harbour conditions due to incident waves.

The study of wave-wave interactions in Boussinesq equations was first made by
Freilich and Guza, (1984). They derived a set of spectral evolution equations from the
original Boussinesq equations, that contained quadratic interaction terms. These terms
allowed energy transfer through the wave spectrum over short distances in shallow water.
Tests of this model showed that the evelution of power spectra of shoaling waves could
be accurately predicted.

Earily versicns of Boussinesq equations were only weakly nonlinear, and only
applicable for relatively long waves, and significant effort has been made in extending the
applicability of the equations into shorter waves/deeper water Such efforts include Witting,
(1984),McCowan, (1987), Madsen ef al., (1991) and Nwogu, (1996). Boussinesq
equations may be derived for different choices of velocity variable, and a 'tuning' process
may be appiied to making this choice to make these deep water extensions. Dingemans,

(1997) gives a good discussion of this process. Improved deep water performance is also
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obtained by manipulation of the higher order terms of the equations, and again applying a
‘funing’ process.

More recently, higher order Boussinesq equations have been obtained by refaining
more terms of the dispersive effects. Examples may be found in Wei and Kirby, (1995),
Gobbi and Kitby, (1999), Agnon et al., (1999) and Madsen ef al., (2002). Gobbi and Kirby
introduce a second velocity variable, thus considering some variation in-the vertical profile,
and Agnon ef al., (1999) decouple the equation system into separate linear and nonlinear
problems. Each improvement introduces more dependent variables to the equation set
and therefore reguires the use of more computational resources to provide a numerical
solution.

Ozanne, (1998) implemented a model after Madsen ef al., (1991), and showed
that while a low order model, it provided good representation of wave energy transfer in
low order harmonics. Ozanne ef al., (2000) subsequently showed the model provided
good predictions of velocity statistics in the surf zone. This model was therefore chosen
for this study as a base for a sediment fransport model. This model has dispersion
properties that are generally acceptable in the water depths considered. The numerical
scheme of this model is also simple enough for the simulation of long periods of wave
actions in a computationally acceptable time. Continual advances in computer speed may

be expected fo allow the use of the higher order models in a sitnilar manner before long.

1.3. Sediment transport

The motion of sea bed sediments under wave action has also been the subject of
much study over the years. Bagnold, (1963) suggested the immersed weight bedload
sediment transport rate in a stream flow was proportional to the time averaged energy
dissipation rate. In oscillatory flow this may actually be restated that the sediment
transport rate is proportional to the energy dissipation rate times the ratio of the net
current velocity and the wave orbital velocity. Inman and Bowen, (1963) found the

transport over a rippled bottom was rather more complex than this, probably due to phase
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relationships between the waves and the sediments. However, the model has still been
useful, with extensions by Bailard and Inman, (1981) and Bailard, (1981) in the study of
longshore transport. Later McDowell, (1989) incorporated a fuller treatment of bed friction
coefficient, bed shear stress, particle properties and unsteady flow properties. Chadwick,
(1991) used this theory in a-numerical model of wave driven sediment transport. All such
energetics models however rely on a coefficient of proportionality between the dissipation
rate and the transport rate, which can only be determined empirically.

Previously, Shields, (1938) studied the mobilisation of sediment particlés and
introduced the well known mobility parameter. This work was parameterised and also
extended for very fine grains by Soulshy and Whitehouse, (1997). Various transport
formuiae have been proposed, from Meyer-Peter and Miller, (1948) to Engelund and
Fredsge, (1976), to Nielsen, (1992) as examples. These all derive a transport rate from
the difference of the flow Shield's parameter to the critical Shield's parameter. Such
formulae require a calculation of bed shear stress fo determine the Shield's parameter.

In fact, the majority of these transport formulae were criginally developed for
steady flow in channels. To apply them to oscillatory flow such as in waves, a wave
oscillatory friction formulation must be found instead of a time independent channel friction
formula. Reviews of these models and others are in Fredsge and Deigaard, (1992) and
van Rijn, {1993). A good summary also exists in Soulsby, (1997).

Another feature of earlier models is that they are formulated for a homogeneous
mix of sediment. In reality, sediment grains of a variety of sizes may be present in a sea
bed. Studies of steady flow in river channels have explored the differential transport rates
that occur when such a mixed sediment exists. An early example is found in Armanini and
Di Silvio, (1988). Ancther study of the differential flow rates is found in Pender and L,
(1995) and an example of a numerical model of channel mixed sediment transport is
found in Pender and Li, (1996). The different sized sediment fractions have separate (and
varying) sediment flow rates. Modelling the fractions individually then allows numerical

sediment sorting, which determines the time-varying composition of the sediment mix.
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More information is available in Kleinhans and van Rijn, (2002). Since the mixed sediment
formulae are derived from the homogeneous channel formulae described above, it is
expecied that they may extend {o oscillatory flow in the same way. The development of
mixed grain models in coastal studies is desirable, and such an approach is made in this
thesis.

In general, sediment may be transported in fwo modes. The first. mode is the
movement of sediment particles in contact with the bed, and is known:as bed load. This
mode has a fast response to the hydrodynamic motions. The second mode is the.
transport of particles moving through the water column, and is known as the suspended
load. One characteristic that governs this mode is the falf velocity of the sediment, and
lighter sediments, having a lower fall velocity will spend more fime in suspension. This can
lead to sediment being mobilised while the fluid moves in one direction, but then being
actually transported after the fluid changes direction. This study is concerned with coarse
grained sediments, which are sufficiently heavy that no suspended load transport occurs.

Since shingle beaches sustain a steep beach face, the sediment transport
procedures are further modified by the beach slope. Material close to the angle of repose
is likely to move down the slope mare readily than material moving across a horizontal
surface, because of the assistance of gravity. Similarly, movement up a slope is retarded
by the same process. This can be modelled by a variation in the critical fiuid stress
required to move a sediment particle, as found in Soulsby (1997). Material lying on a
slope of half the angle of repose may in fact see a change in the critical stress of
approximately 50%. Furthermore, material deposited such that the beach slope is greater
than the critical angle will slump under gravity until a stable beach slope is regained. The
meodel also includes these processes.

Some studies of sediment transport on the beach face have suggested that
infexfiliration of sea water through the beach face may modify the sediment processes
there. During infiltration events, the bed velocity may be. increased, increasing the

potential for sediment transport. An alternative mechanism is thaf excess pressure during
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an uprush event may increase the effective weight of sediment, enhancing beach stability,
while upwards pressure gradients during downwash exfiliration may reduce the effective
sediment weight, destabilising the bed. A sufficiently large gradient may lead to bed
fluidising. Experiments including Horn ef af., (1998),Butt and Russell, (1999), and Roman-
Blanco and Holmes, (2003) have studied some of these effects. Attempts to model the
effect of infexfiliration include Masselink and Li, (2001} and Acufia, (2005). Masselink and
Li suggest another mechanism, that the infiltration causes a change in-the velocity
asymmetry, which promotes onshore sediment transport, and that this can only happen
for a sufficiently high beach permeability. Acufia parameterised the infiltration by two
different methods, firstly fo enhance the bed friction during uprush, and secondly to
include an efficiency factor in the sediment transport calculations, which differed for
uprush and downwash stages Neither method could fully explain observed profile
responses. Butt ef al., (2001) find there is considerable uncertainty in the relative
magnitude of the various mechanisms, finding that in/exfiltration can promote beach
stability or instability depending on a number of factors. In the light of this uncerfainty, the

present study has not considered this further.

1.4. Objectives

In this thesis the applicability of the low order Boussinesq model for driving
sediment and morphology models of coarse-grained beaches is considered. This includes
a study of the hydrodynamic mechanisms that drive morphology changes.

In this thesis the applicability of recent sediment studies to include a sediment
transport module and a morphology madule is considered. The variability of the sediment
models is also explored.

In this thesis the ability of the model to respond to tidal changes is evaluated.

In Chapter 2, a description of the hydrodynamic mode! will be given. A theoretical
basis for validating some hydrodynamic results will be set out. In Chapter 3 the

performance of the Boussinesq model will be assessed against theoretical and

22




experimental data. The hydrodynamics of wave reflection iﬁ varying depth channels is
also considered. In Chapter 4 a brief review of recent wave friction and sediment transport
formulae is given. The coupling of the Boussinesq model to the sediment model is
described, and the mixed sediment differential transport model is introduced. In Chapter
5, the performance of the model on plane beaches is assessed, and the sediment sorting
model is introduced. In Chapter 6, the performance of the model on beaches with sea
walls is assessed. The ability of the model to simulate tidal changes is:also demonstrated.

In Chapter 7 a final discussion and conclusions are given.
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2. Hydrodynamic Modelling
2.1. Boussinesq equations
The motion of an inviscid, incompressible Newtanian fluid may b.e described by the
Euler equations, expressing the conservation of mass and momentum. Consider a
channel containing fluid. Then x,y,z are the conventional space coardinates with an origin
someawhere on the still water line, # is the still water depth at a point and 7 is the

instantaneous elevation at a point.

Figure 1 Axes and depths

Since flow is being considered in the cross shore (x) direction, variation in the y
direction will not be considered, and the model will be considered as a 2-dimensional
system.

There are many forms of Boussinesq type equations available. This is because
there are muliiple choices available for selecting dependent variables. The velocity
variable for example may be chosen as the surface velocity, the bed velocity, or the depth
mean velocity. A good discussion of the choices available is found in Dingemans (1997).
Early forms of the equations, such as Peregrine (1967), were limited in application to
relatively shallow water. McCowan (1987} and Madsen et al., (1991) evaluated various

forms of the equations for the ability to propagate waves with the correct celerity, and
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found the bést performance in this respect was found with the depth mean velocity as the
variable of choice.

For the two-dimensional flow in a vertical plane the equations are:

Ou, ow_,

& 8z (2.2)
ou  ou ou 10op

LR S (2.0)
ot ox oz px

a—1’V-+ui“i+w§£+lE:'a—p+g=() (2.c)
ot ox 0z poz

where u,v,w are the fluid velocities in the corresponding directions, ¢ is time, p is
pressure, p is the fluid density and g is the acceleration due to gravity.

For a model of cross-shore flow (or flow in a 2D channel) on a horizontal bed, the
full system is a free-surface problem since the upper boundary of the flow is not fixed in

space. The relevant boundary conditions that must be applied are

_on 4/
M’I.m;;fbcc - -E”*. u surface -a_x.at z=17 (2‘d)
Hoyer, =012 =7 e
Wiog =~ 8tz =N @

where 7 is the free surface elevation.

This leads to a highly complex system. Computational solutions of the full set of
Euler equations are computationally expensive. To reduce expense, a method of reducing
the systern is sought. One approach (e.g. Kennedy and Fenton, (1997) ) is to approximate
the velocity profile in the vertical to a sum of a series of shape functions. This is still a
complex system, but brings some advantages. To seek a faster solution, the vertical
variation of the flow may be approximated by some means, and the profile then described
as some function of the depth mean flow.

The vertical flow can be isolated by integrating through the vertical. Such a
procedure is described by Schéffer et af., (1993). It is followed here in a dimensional form.

Use is made of Leibniz's rule {o transform integral properties:
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The scaling quantities &, u will also be used, where
e=A/h 4)
o= ML) (5)

g, 1s the ratio of wave amplitude A to water depth A, and is a measure of wave
nonlinearity. « is the square of the ratio of water depth 4 to wavelength Z, and is a
measure of the degree of dispersion of the wave.

Firstly the continuity equation is integrated throughout the vertical. The boundary

conditions. (Equations 2.d,2.f) are applied to the resulting vertical velocities

“(ou ow 8 T.ow
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The horizontal momentum equation is similarly treated, applying all the boundary

conditions. The continuity equation is used to transform quantities of 5w/3z to -Bufox: -

7 7 1 n
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If the hydrostatic pressure condition p(z) = p.g(77—z) is substituted in this

equation, the non-linear shallow water (NL.SW) equations may be recovered. To develop

the Boussinesq equations however, the vertical momentum equation is also integrated:
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leading to a pressure equation:
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I may be seen that the hydrostatic assumption of the NLSW equation is simply the
first term of this expression. This in fact is assuming that all terms of vertical acceleration
(which are of O(x) or smaller) may be neglected. The NLSW equations do not admit a
permanent wave solution. The phase celerity formula for these equations is ¢ = g(h+n)
which is independent of the wave number. Wave crests therefore travel faster than
troughs, and a propagating wave continually steepens as it travels.

The Boussinesq equations are obtained by retaining the first acceleration term of

the pressure equation,
a T
PR = pla=2)+_ fwd (10)

which is equivalent to retaining terms of O¢g} and Ofu). An integration of the continuity

equation through a vertical section of a lower layer of water results in an expression for w:

“(ou ow g 3
—t—dZ = =—— |udZ
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Equations 10 and 11 are substituted into Equation 7, and the following expression

is now obtained:

8 I
> Judz-l—a '[uzdz+gh%z-+w=0 (12)
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where
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with all non-linear contributions to ¥~ being neglected. y is the dispersive contribution to

the momentum equation.

The depth integrated velocity P and the momentum flux A are now defined:
P2

P= \udz, M = (1Pdz=
fuazure = Jurae =22

—-h =

(14)

where d is the total water depth, #+7. To evaluate i, a uniform vertical distribution

of horizontal velocity is assumed. This results in

_ K &u K F(ub) (15)
6 ax*or 2 oxtor

Since yis taken to be linear, differences between d and / are neglected, so the

term may also be expressed as

B & (Plh) K 2(P)
= (16)
6 oxor 2 oxtor

This gives the final form of the Boussinesq Equations:

an aP

Pl =0 (17.a)
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On a horizontal bed, these equations now describe a system where a permanent
progressive wave is possible. For a slowly varying horizontal bed, higher order spatial

derivatives of the bathymefry may be ignored, and the system further reduces to:

877 opP
=0
Ey sz (i8.a)
2 3
8P+6P /d+gh6n_h_ 62}" 1 @_ oP —0 (18.b)
ot ox B 3 ot 3 Ox dxot

This set of equations can be shown to have a permanent wave sclution. Full

details of this are shown in the appendix A.1. The form of this wave may be described by

ihe formula
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where 7, is depth of water under a wave trough, H is the wave height and A is the
wavelength. Cn is the (periodic) Jacobi elliptic function and K,m are wave dependent
properties as shown in the appendix. The Cn function was named Cnoidal by Korteweg
and de Vries, (1895). Hence the waveform described by Equation 19 is now called the

Cnoidal wave. Some examples of the wave profile are shown in Figure 2

Cnoidal Profile

! i ",&,t:;,m-.,___.__-_“_‘,_,_ _“‘;if;-q.-..h ' m=1-10~-3
0 0.1 0.2 0.3 0.4 05 |--—--m=1-10"6
(et o m=1A0MO

Figure 2 Cnoidal wave profiles
The existence of this permanent wave provides a basis for verifying the

performance of a hydrodynamic model.

2.2. Boussinesq modelling

The Boussinesq equations now derived are only accurate to the order (&), and
so are only weakly non-linear. A finite difference scheme is used to provide a numerical
solution. Previous implementations of weakly non-linear equations have been made by
Madsen ef al., (1991), and Wei and Kirby, (1995). Madsen et al., (1991) followed the
second order scheme of Abbott and Basco, (1989), and subsequent additions such as
wave-breaking have later been included. The scheme is time centred implicit and spatially
staggered. An update of the solution requires a single previous time-step, so its requires a
low usage of computing resources.

Wei and Kirby implemented a fourth-order predictor-corrector method for the

Boussinesq equations. The grid used here is non-staggered, and uses the information
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from three previous time-steps to update the solution. Other more recent implementations
are of higher order Boussinesq models, e.g. Wei ef al., (1995).In general, the use of
higher order schemes or higher order equations requires the use of more computer
resources, either processing time or storage.

Ozanne ef al., (2000) showed the predictions of the Madsen ef al., (1991) scheme
gave acceptable predictions for velocity skewness, and as a computationally ‘cheap’

scheme it was used for this study. A schematic of the computational grid is shown in

Figure 3

E Numerical Scheme
-

n+1

l n
n & ° & P &
P P P
n-1
i-1 i i*1  space

Figure 3 Computational grid

Subscript / will be used to denote the spatial discretisation, thus x; = 7. 4x,-and
superscript » o denote the time discretisation, thus x” = n.At. The full numerical scheme

corresponding to Equation 18 is then:
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In fact the Taylor series that approximate flix and elevation variation in this
numerical scheme are truncated after the 2nd order terms. The error introduced by this is
of the same order of magnitude as the dispersion terms. Abbott ef al., (1984) show that
extra.terms need to be added to the momentum scheme to eliminate these emors, and

Ozanne (1998} finds these terms {o be

2 A3 2 03 2 3
(O P M 0 i 21)
24 or 24 ox 8 oxor?

which after manipulation by the long wave equation (see Mei,1989) are:

(A (Ax)*) &P
(gd 12 24 )orer @2

This is in a similar form to the fourth term in the momentum equation in Eguation.
20, and may be discretised in the same manner.
The fult system of equations may be written in the following form,

a B + b +¢, Pl =d,
utl (23)

TP + @l + B B+ il 1 B =4,
which may be assembled as a matrix equation. This may be easily transformed into a
form with a tri-diagenal matrix and has been solved by a double sweep method (a

particular implementation of Gaussian elimination.). An explanation may be found in Abbott

and Basco, (1589)
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The model is implicit, and nominally stable for any time step. in fact, the presence
of intermediate terms in Equation 20 means that too high a time step leads to attenuation
of wave energy at high 4. Further details may be found in Madsen ef af., (1991).

The model may be run in three modes. The offshore boundary is implemented as
a source generating function as described by Kennedy ef al., (2000) in all these modes, fo
provide the wave input. The first mode replaces the near-shore boundary with a run-off
zone into a numerical sponge layer. This represents a transmissive flow in an open
region. The second mode consists of a shoreline tracking algorithm with a moving
shoreline, representing a wave runup/down on a (gentle) beach. The third mode consists
of fixed shoreward reflective (vertical) boundary, representing a reflecting flow against a
solid structure such as a sea wall.

In fact the source generating boundary requires a sponge layer offshore from the
model in all three modes. The sponge layer absorbs numerically all input waves, with no
{or negligible) reflection. The elevation and flow fields are numerically damped by division
by a series of coefficients y; in the sponge layer at every time step. Larsen and Dancy,

(1983) derived the damping field of the form:

(24)

Y4
#a‘:(}lmax_l)(N_'-l IJ +I

where u,....p are constants, ¥ is the number of grid cells in the sponge layer, and i
is an index where i=1 is the terminal boundary cell. The generat form of these damping
coefficients is shown in Figure 4. For the model runs in this thesis, the parameter values
of 1.8, 1.3 were found to be suitable for z,.. and p respectively. The length of the sponge
layer is required to be of the order of two wavelengths, and care should be taken when

choosing parameter values.
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Figure 4 Sponge Layer Coefficients

For the shoreline tracking boundary, the slot method of Kennedy ef al., (2000) has
been implemented. The Boussinesq equations are modified by a parameter representing

the water depth at each point as follows: infroduce a function y such that

1, zzz,

o= (25)

y(2)= [
g+(l—g)e N z,>z23z,

where z; is the physical sea bed depth, and zz is the datum depth of the slot. The slot
represents a region of decreasing porosity below the sea bed, and the datum is usually
fixed fo be the toe of the slope. yis unity in clear water. gis a parameter that governs the
rate of decrease of porosity, and ¢ is the minimum porosity. This function may now be

used to compute an effective water depth A such that:
n

Axy.ty= [r(2)dz (26)
o]

The porosity yis now used in the continuity equation, and the effective depth 4 is

substituted for the original depth in the momentum equation thus:

on ©oP

—+—=90
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2
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Near the shoreline the Boussinesq terms are also switched off, the egquation set

reducing to the NLSW equation. In practice damping filters are also required to prevent
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the growth of spurious oscillations in the solution. Further details may be found in, e.g.
Kennedy ef al., (2000} or Karunarathna ef af., (2005).
The third mode is included info the numerical model-by applying the boundary

condition of P=0 atthe sea wall boundary.

2.3. Frequency dispersion improvement

Other forms of the Boussinesq equations may be developed, by using different
reference velocities such as the bottom velocity «,.; or mean sea level velocity u,, instead
of the depth mean velocity # in Equation 14. Further details may be found in Madsen et
al., (1981). These forms lead to the following formulation of the dispersion relation;
¢’ 1+ Bi*H
g i 1+ (B + l}’czh2 (28)

3

with B = {0, 1/6, -1/3} for equations in { &, us, ttm} rESPECtively.

These are illustrated in Figure 5, and are compared against the exact linear wave

solution
¢ _ tanh(kh) 29)
gh kh

It can be seen that errors in the dispersion relation increase with increasing k.
Since B appears to be an adjustable parameter, it may be chosen to give the closest
relation between Equation 28 and the exact relation. Witting (1984) took a Padé
approximant of Equation 29 and compared it against Equation 28. For the [2,2] Padé
expansion of Equation 29, the form is in fact of Equation 28, with B=1/15. This line is

included in Figure 5, and shows good agreement with the linear relation.
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Figure 5 Comparison of dispersion relationships
Madsen et af., (1891) found that the higher terms of the Boussinesq equation may
be manipulated, so that the dispersion relation of the set in question may be adjusted to:

fit this form. The linear long wave relation

opP on
—+gh—=10 30
ot & ox

may used to manipulate higher order terms. Differentiating twice with respect to x, and
ignoring higher terms, this yields

P oh 8 °n
420228 p 9 _
oo Toaxad 2 o

Adding B#’ times the LHS of Equation 31 to Equation 18.b yields the set of

(31

equations:
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This new set has the dispersion relation required in Equation 28, and so a choice
of B may be made in the equation to obtain the desired frequency response. The extra,
higher order derivative terms are of a similar nature to the dispersive terms in the original

equations, and their inclusion into the numerical scheme is made in a similar manner:
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2.4. Wave reflection

According to linear wave theory, a travelling wave may be described by the
expression A(d) costk(d).x -w 1), noting that in general A and % are depth dependent. If a
wave is then fully reflected from a wall, a returning wave takes the form
A(d) cos(k(d).x +wt). The principal of superposition says the standing wave so formed
may then be written as 2A(d).cos(k(d).x).cos(et). Isolating time and space dependencies,
the standing wave is then of the form y(x,d).cos(wt) for some function y.

On a flat bed, A,k become constant, and so isy{(d). It is therefore apparent that at
times for which ex=#/2,32/2,5 72, the surface of the standing wave system will be
horizontal. Comparable behaviour in the Boussinesq system is sought, and the Cnoidal
wave is found to have a comparable standing wave solution. This solution is again the
simple sum of left and right travelling Cnoidal waves. The full derivation is given in the
appendix A.2.

A time series of such profiles through a half wave period is shown in figures 6 to 9,
and compared to the comparable standing sinusoidal wave. The peaked nature of the
Cnoidal standing wave relative to the sinusoidal wave can be seen. Figure 8 at the quarter
wave period also shows the absence of the level water surface compared to the
sinusoidal wave, and there is not a true nodal point for the Cnoidal type wave. Again, the
existence of the standing wave profile is used as a basis for verification of the

hydrodynamic model.
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Figure 6 Comparison of sinusoidal and Cnoidal standing wave profiles (a)
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Figure 7 Comparison of sinusoidal and Cnoidal standing wave profiles (b)
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Figure 8 Comparison of sinusoidal and Cnoidal standing wave profiles (c)
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Figure 8 Comparison of sinusoidal and Cnoidal standing wave profiles (d)

2.5. Wave breaking

As natural waves shoal, the crest accelerates and the wave steepens. If the water
depth becomes sufficiently shallow, the wave crest then breaks and dissipates. A simple
numerical simulation of this effect is also incorporated into the model. Schaffer et al.,
(1993) proposes a numerical roller of the following form.

The principal wave consists of a body of water moving at a uniform velocity. The
broken part of the wave consists of a significantly smaller body of water, 'riding' the wave
crest, and known as the rofler. The roller travels at the wave speed. The velocity profile

this indicates is given in Figure 10

c Ig

Figure 10 Schematic of breaking wave and rofler profile
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Since the velocity profile under the roller is constant, the depth integrated velocity

and momentum flux in Equation 14 may be written as:

7
P= \udz=1(d-8)+cF,

—k (34.8)
7
M= [z =i (d-8)+c*6 (34.b)
—h
Rearranging Equation 34.a yields
P—cé
U= 35
T (35)
and substituting this into Equation 34.b with further re-arranging yields
2
M= £ +R
¢ (36)
2 -1
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d d
and Equation 17.b may now be written as
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It remains to determine values for the wave celerity ¢ and the roller thickness 4,

and determine a breaking criterion.

Following Schéffer ef al., (1993), the model assumes breaking occurs when the
local water slope reaches a threshold angle ar. Water lying above the slope is in the roller,
and 6 may be determined by simple geornetry. The wave continues to break while the

local slope « is greater the breaking slope o5

(me{5)) (38)

tr indicates the time that breaking initiated in that wave-front, and ¢ governs the

tana, = tanoy, + (tanc, —tana, e

decay of the breaking slope. In fact, Schaffer et af found & should be multiplied a shape
factor f5to give a reasonable model. The values (ay; au, 1+, f3) =(20°, 10°, T/0, 1.5) are
recommended by Schéffer ef al and used by Ozanne (1998).
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The roller is then implemented in the numérical code by the addition of the 6R/0x

term as follows:

6R
8x

1 5;'-{‘6}"“ §n+§_n+l P”'}‘P Pn+l +Pn+1
el 1-= : 1 3 f _____lﬂ 1.3 f ___._..._r+_l.
Ax‘: 2 ( 24" 24

511! 61:—1]—! ( _1 5::11-1 - Pf +P Pn+1 Pn-:—l
i i i i 13 h i-1 1 3 h -1 i
Ax[ 2 2 B " ar, B T g

i-1

Since this term does nat contain any higher order derivatives, it may be included in-
the extended numerical model for the linearly improved Boussinesq equations, without
any further treatment for the truncation error.

Strictly, this formulation is only valid for progressive waves. In a standing wave
situation the wave crest no longer fravels at the shallow water wave speed, and the

velocity assumptions are no longer valid.
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3. Hydrodynamic Application

3.1. Previous work

Much work has been done by others on the validation of Boussinesq numerical
models. Madsen ef al., (1991) demonstrated the propagation of mono-chromnatic and bi-
chromatic waves with a model of the present type on a flat bed. Analysing predictions of
wave elevation an error in wave celerity and group velocity of the order of 3% was
obtained. Madsen and Serenson, (1992) demonstrated the shoaling properties of the
equations in the present 1D formulation, and also the comparable 2D formulation. For the
1D case an error of the order of 3% was obtained comparing the numerical model o the
shoaling computed by a Stokes 1st order theory on a 1:25 slope. For the 2D case good
agreement was shown with the experiment of Whalin, (1971) of wave propagation over a
semi-circular shoal. Madsen ef al., (1997a) demonstrated the use of the wave breaking
mechanism. Comparisons were made with experimental observations by Luth ef al.,
(1993) and Beji and Battjes, (1993) of mono-chromatic waves breaking over submerged
bars, and by Stive, (1980) and Ting and Kirby, (1994) of waves breaking on plane shallow
slopad beaches. Again, good agreement was found with measured wave elevations.
Tuning of the wave-breaking parameters was often found necessary for optimum results.
Madsen ef al., (1997b) further verified the performance of a Boussinesq model against the
experiment by Mase, (1994) of bi-chromatic waves on a plane sloping beach and the
experiments by Cox et al., (1991) and Arcilla et al., (1994) of irregular waves breaking on
sloping beaches. Again, good agreement with wave elevation profites was found, and also
good agreement with statistical properties of the wave elevation. In general, the dominant
energy dissipation mechanism in the surf zone is found to be from the turbulence of wave
breaking, with bed friction having little effect on the wave profiles. Bed friction may be
important in determining wave runup, but the experiments of Madsen ef al., (1997a) and
Madsen ef al., (1997b) suggest that friction may affect maximum runup by only 3%. Bed

friction is accordingly omitted from the present model.
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Ozanne (1998) demonstrated further comparisons between a Boussinesq model
and the experimental observations by Kraus and Smith, (1994) of regular and irregular
waves breaking on a-non-uniform béach. This showed good agreement of modelied and
observed wave elevations, and also good agreement of depth-mean velocity statistics. Bi-
spectral analysis was used to show energy transfer in low-order harmonics is well
represented in a low-order model of this type. Kennedy et al., (2000) presented another
Boussinesg model with an alternative approach to wave breaking (represented by a
vertical variation in eddy viscosity). This too has shown good agreement with experimental
studies.

Most earlier validations however have concentrated on the validity of elevation
predictions for shoaling waves. More recently, Ozanne et al., (2000) performed
comparisons with the experiment by Ting and Kirby, (1994). Good agreement of velocity
statistics was found, and the model also showed reasonable estimation of the vertical
velocity profile from the modelled mean velocity. Lawrence and Chadwick, (2005)
demonstrated further comparisons between a Boussinesq mode! of reflecting waves, and
the large scale experiment by Bullock et al., (2004) of waves in a strongly reflecting tank.
Good agreement was found for calculations of the wave elevation in the resulting wave

field. Further details of these last two comparisons are shown below.

3.2. Constant channel

The first numerical experiment is to confirm the behaviour of the present numerical
model by reproducing a theoretical solution of a propagating Cnoidal wave. The model
was run to simulate conditions in an open channel (i.e. mode |) The channel profile was a
constant water depth of 5m, with a wave height of 0.5m and a period of 10s, This
corresponds to a value of m of approximately 0.75 for the Cnoidal wave. The grid spacing
was 0.4m, and the time step was 0.78125s ( or 1/128th of the wave period). This grid
spacing and time step are chosen {o provide acceptable resolution for the later

implementation of the morphology model. They are comparable fo those used by Madsen
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et al., (1991). The wave envelope is shown in Figure 11. The permanent nature of the

propagating wave can be seen.
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Figure 11 Cnoidalf wave propagation — flat bed

A Cnoidal wave can be shown to consist of a wave at the fundamental frequency,
and diminishing components of the higher harmonics. Taking a fast Fourier transform
(FFT)} of the model resulits across the channel, the fundamentar frequency and the first two

higher harmonics are illustrated for this case in Figure 12.
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Figure 12 Frequency propagation of Cnoidal wave

The propagation of the fundamental frequency is seen to be good. There are
slight variations in the propagation of the higher harmonics, but the magnitude of the
variation is less than 1% of the magnitude of the fundamental frequency.

Of interest for the sediment transport properties-of a simulation is the velocity
skewness. As this travelling wave is of a constant form, the velocity skewness in this case
is also constant. The theoretical value for this is 0.36, while the modelled value is 0.33.

3.3. Shoaling channel

Another validation of the hydrodynamic model is described in Ozanne et al.,
(2000). The present author's contribution to this evaluation, of a compariéon against the
experimental data of Ting and Kirby (1994), is described here.

Ting and Kirby installed a sloping beach of gra‘dient 1:35 in an experimenta!l flume.
Regular waves of 6s period and 10s period were then run. This was to examine the
behaviour of a spilling breaker and a plunging breaker respectively.

Figure 13 shows the model performance in simulating the spilling breaker case.
Here the model is being run using the slot boundary.

44




This figure commences at the seaward part of thefslope, with wave generation
occurring some 25m distant. The figure shows the cross-shore profiles of the mean water
fevel (77mean), and wave crest and trough heights (#max-7imean » 7min = Tmean). The agreement
with wave crest and mw! measurements from Ting and Kirby (1994) is fairly good, and the
discrepancy between the modelled and experimental values of maximum wave crest
height is a consequence of the weak non-linearity of the Boussinesq equations. This is
explained in Schaffer et af (1993). Figure 13 also shows the performance of the model in

the swash zone by including the shore line boundary.
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Figure 13 Model simulation of spilfing breaker experiment

Figure 14 shows the surface elevation time series at the point indicated by the
vertical line in Figure 13, through one wave period. At this point in the inner surf zone, the
experimental skewness was calculated to be 0.61 and the modelled skewness was 0.51.
The experimental and modelled kurtosis values are 1.76 and 1.65 respectively.

Figure 15 shows the velocity measurements at the same point. The experimental

skewness is 0.26 and the modelled value is 0.24. The experimental and modeiled kurtosis
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values are 1.76 and 1.65 respectively. This demonstrates fair reproduction of the
asymmetric properties of-the wave, in peakedness and oifshore or onshore dominant flow.
If the experimental velocity is only integrated through the water column below the surface
roller (estimated from the modelled roller thickness) to determine the mean, the skewness

value rises to 0.31 and the kurtosis value rises to 1.82.
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Figure 14 Elevation time series comparison - spilling breaker
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-In Figure 16 the cross-channel elevation results from a comparison of the model

with the plunging breaker case are shown. The channel shape is identical.
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Figure 16 Model simulation of plunging breaker experiment

In this case the model was run using the sponge layer boundary. This causes a

lowering in the mwl value of the model which ¢an be seen in the figure. This is due ato
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mass flux through the shoreline boundary. It was found necessary fo increase the value of
JsTfor this case, to reduce oscillations that were found in the surface excursion time series.

In Figure 17 the elevation series from the model and the experiment are
compared, again for the point indicated with the vertical line in Figure 16. The
experimental skewness for this case was found to be 0.36, while.the model skewness was
0.53. The kurtosis values were found to be 2.06 and 2.5

Velocity comparisons for the same point are shown in Figure 18. The experimental
skewness was 0.31 and the model skewness was 0.26. The kurtosis values were found to
be 2.20 and 1.91. Again, if only the water column below the estimated surface roller is
integrated, the skewness rises to 0.37 and the kurtosis rises to 2.24. Although the roller
construction is more suited to a spilling breaker, the results for the plunging breaker are in

closer agreement for the plunging breaker.
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Figure 17 Elevation time series comparison- plunging breaker
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3.4. Cnoidal wave reflection

The numerical model was run to simulate reflection in a flat channel with a vertical

sea wall, comparable to the case in section 3.1. Again, the channel was a constant 5m
depth, with a wave height of .5m and a period of 10s. The model was run to a steady state

to observe the developed 'standing' wave field. The wave envelope is shown in Figure 19.

‘The profiles are of a similar nature to those in figures 6 to 9 The energy of the

frequency components is shown in Figure 20.

It can be seen the amplitude of all the harmonics shows considerable variation.

Note also that the second harmonic shows a maximum at the fundamental's minimum. In
general the higher odd harmonics are aligned with common nodes, and the higher evén

harmonics are aligned with common-antinodes. Since this is still an idealised case, with

perfect reflection, the velocities are symmetrical, and the skewness is zero.
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3.58. Reflecting shoreline

Another series of wave tank experiments was performed by Bullock ef al., (2004)
in the Grosse Wellen Kanal, Hannover, Germany. A large number of wave tests were run,
and some fwo regular wave cases have been selected as suitable for comparison with the

numerical model. Figure 21 shows the physical arrangement of the wave tank.
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Short packets of waves were run down the channel to invéstigate wave breaking
on the sea wall. Since the waves are fully reflected at the wall, a quasi-standing wave field
developed in the channel for a few wave periods. The incident waves were not strictly
Cnoidal in form, but were composed primarily of the fundamental and the first harmonic.
The nature of reflection was slightly modified by the two sloping bed sections immediately
before the wall. This will be considered again later. Figure 21 shows the location of wave
gauges in the flume. No velocity measurements were taken at these points however. The
wave elevation data was analysed by FFT to consider the harmonic contributions to the

wave field.
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Figure 21 Schematic of GWK experiment
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The numerical model was setup to match the configuration of the GWK. Wave
input was at the location of the wave paddle, and corresponded to the input wave signal at
the GWK. The first comparison was made with a wave sequence of 1m high 6s period
waves. The elliptic parameter for a Cnoidal wave of these properties has the value 0.66.
The case was designed by Bullock et al. to be a case with no wave-breaking. The
modelled wave profile is shown in Figure 22.

While the profile is somewhat noisy, there is evidence of a standing wave in the
figure. An FFT of the wave evolution is shown in Figure 23, with the comparable

experimental data.
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The general siructure of the nodes is apparent in this figure. This is of a similar
pattern to the flat channel case, but there is some modification near the sloping bed. The
lacations and magnitudes of these nodes and anti-nodes in the fundamental. frequency
are predicted fairly well by the model. The nodal structure of the second harmonic is less

clear, however the general modelled magnitude of this harmonic shows good agreement

with the experiment.
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Figure 23 Frequency analysis of GWK case (1)
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The second comparison was made against a similar wave but with only a 5s
period. The corresponding elliptic parameter for this is 0.44. This wave then is of relatively

low non-linearity. The wave profile for this is shown in Figure 24.
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Figure 24 Elevation profile — GWK case (2)

The nodal structure can again be made out, although it is less clear than the
previous case. The FFT analysis for this case is shown in Figure 25,

The model again locates the nodal structure fairly well. Agreement with the
fundamental frequency amplitude is fair. The second harmonic is reproduced less clearly
away from the wall, but is still fairly good overall. Since the wave has low non-linearity, the
wave length of the second harmonic is now very short; a Boussinesq mode! is not

expected to reproduce short wave dynamics very well.
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3.6. Wave reflection and superposition

Recalling the linear standing wave, 24(d) cos{k(d).x).cos(af). of section 2.4, the
model has been applied to a study of the left and right travelling waves in the nonlinear
system, and the interaction between them. Previous studies of wave shoaling have shown
transformation of higher harmonics as a wave travels over a changing bed. The numerical
model was used to study a shoaling wave, and then extend the situation to a reflecting
wave. The initial case (case ) for this study was a channel with a flat section of 5m, rising
to a depth of 3m over a constant slope. Beyond the crest the model was run into a flat
channel and then a sponge layer. Slopes of gradient 1:40, 1:20 and 1;10 were studied.
The wave was a Cnoidal wave of 10s period and 0.5m wave height. This corresponds to-a
value for the elliptic parameter of 0.75. The wave profile for the 1:40 case is shown in
Figure 28.

Figure 26 shows a degree of reflection from the slope. Analysis shows the
reflection co-efficient to be 2%. The Battjes empirical model for wave reflection predicts a
value of 1%.

An FFT of the wave profile is shown in Figure 27. This again shows wave

refiection in the fundamental frequency, The magnitude of the higher harmonics is
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relatively constant until the sloping bed is reached, there is then a significant increase in

this component up to the crest. Finally, the velocity skewness for this case is shown in
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Figure 27 Frequency analysis of Cnoidal shoaling — 1:40 slope
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Figure 28 Velocity skewness of Cnoidaf shoalfing — 1:40 slope

This shows a relatively constant skewness for the flat section of the channel, with
an increasing skewness as the second harmonic magnitude increases.

Figures 29 to 31 show the comparable figures for the 1:20 slope case.
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Similar trends are seen as with the 1:40 case. The reflection coefficient from the
numerical results is 3%, and the Baftjes prediction is also 3%, while there is less growth in
the higher harmonics.

Results for the 1:10 bed lope case are shown in Figures 32 to 34. For this case,
the model reflection coefficient is found to be 8%, compared to the Battjes value of 12%.

This is clearly visible in the profile figure and the FFT figure. The FFT also indicates

57




reflection occurring in the 2nd harmonic. The effect of reflection is also clearly seen in the

velocity skewness results.
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Figure 34 Velocily skewness of Cnoidal shoaling — 1:10 slope

The model was then extended by changing the shoaling bed info a symmetrical
wedge with otherwise identical properties (case ll}. The wave propagated onward into a
long flat bed region again, before finally dissipating into a sponge layer. The incident
hydrodynamic conditions are the same as in the previous case, and of particular interest
now are the downstream conditions beyond the wedge.

The results for the 1:40 case are shown in figures 35 to 37

Cnoidal Wave Shoaling (1:40)
0.4 1 T = 108 H=0.5m A=67.9m m=0.75
,’f"--‘.‘\\-‘ e l- -1
— e -
= o~ ™.
= 03 ——
= [t TN T e \‘-.___‘ — ~— —m= ——  Channet Deplh
™ N2 E | Max Wave Height
[T =
= =1
g 0.2 - 8
a -3
2 VAN T
g o Ve N\ -
£ / AN &)
2 7 N
00 e e e |\ N L .5
-0.1 T - T T T T T -— -6
50 100 150 200 250 300 350

Cross Shore Distance ()
Figure 35 Cnoidal wave fransmission — 1:40 siope

59




FFT Cnoidai Wave Shoaling (1:40) - 5
0.3 - T =10s H=0.5m 3=67.9m m=0.75 »
W- 3 .
£ o5l L2 Channel Depth
s’ FE
E -1 B, | e qu
E ’- 0 a8 |-—- 3y
< L e » g ——— Mean Elevation
<« | ., 1 £
= P '-._\_'.'. 2 .
L T Uy |
B | e . 2 &
0.0 SEmE e P i i I
o
-~ a L 4
e ~
mmmmm - N ——— e — -5
041 ™ T 7 T T T T
50 100 150 200 250 300 350

Cross Shore Distance (m)
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Figure 37 Velocity skewness of Cnoidal transmission — 1:40 slope

The wave reflection is again apparent between the wave-maker and the wedge.
Beyond the wedge the wave shows considerable spatial variation, the FFT showing that
energy transfer between the harmonics is taking place over significant spatial scales. Of
particular note is the fact the incident wave is not recovered beyond the wedge. This is
partly due to the energy transfer process, and partly due to the partial reflection of the
incident wave. The effects of these changes are readily apparent in the velocity skewness

figure. There are in fact minor differences between the previous case and this wedge case
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near the crest itself. The numerical model calculates a 3rd order spatial derivative of the
bed profile; since this changes across the crest position this causes a change in the
numerical simulation. A further difference is that a wave propagating from shallow water to
deep water is also partially reflected by the bathymetry change. Such a reflection will not
be present in the previous shoaling case.

The results for the 1:20 wedge are shown in figures 38 to 40.
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These show similar trends to the 1:40 case, with slowly varying energy exchange
between the harmonics beyond the wedge, and a corresponding change of velogcity
skewness,

The sequence of results for the 1:10 wedge are shown in figures 41 to 43.
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Again the same general pattern’is observed. Similar patterns of fransformed flow
have been found in other experiments, both physical and numerical, but these have
studied a different profile for the submerged bar. The present profile is studied to gain
insight into the processes involved in wave reflection.

Returning to the flume characteristics of case | in this section, if instead of
extending the model, the land boundary is replaced by a reflecting wall, the principle of
superposition expects the resulting flow to the combination of the seaward side flow in

case |l with the (reversed) flow of the landward side. The model was then set up to study
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this situation (case [ll). In Figure 44 the elevation profile for the numerical model of the

reflecting tank shown for the 1:40 slope.
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Figure 44 Cnoidal wave reflection — 1:40 slope

This shows a standing wave-like pattern of similar form to the flat bed case.
However the nodal points show development of profile features. In Figure 45 this result is
repeated, and compared with the result predicted by superposition described above. This
is referred to as the linear re-combination.

A further comparison of non-linearity may be made by running the wedge model
with two generated waves, one at the left and one at the right hand boundary. With a
symmetrical profile and symmetrical wave generation, the leftward travelling wave after
traversing the crest may be considered as the reflected wave of the right travelling
counterpart in the reflecting model. This result is referred to as the non-linear

recombination.
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Figure 45 Cnoidal wave superposition — 1:40 sfope

There is close agreement between the models, but the difference at-the extrema
is quite visible. This indicates the effect of the non-linear interactions between the waves.

The FFT for this case is shown in Figure 46.

This shows clearly the standing wave of the fundamental frequency similar to
Figure 20. The pattern of the second harmonic is rather different however. Similar
oscillations are seen, but have super-imposed on them the rise and fall of the transmitted

second harmonic in the wedge model. The are also no true nodes in this pattern.
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The velocity skewness pattern arising from this model is shown in Figure 47. The
apparent spikes in the velocity are an artefact of the statistical computation, occurring at
locations where the velocities from the model are always very small. The skewness
calculation requires division by the time mean velocity, which is therefore approaching
zero at these points. Since the actual velocities are low, in a sediment transport
calculation there would be no sediment transport at these points. The general pattern
shows a velocity skewness varying with the same space scale of the elevation standing

wave.
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Figure 47 Velocity skewness of Cnoidal reflection — 1:40 slope

Figures 48 to 51 show the predictions of the reconstruction methods for the 1:20
slope case, with Figure 49 comparing them to the actual reflection profile obtained from

the numerical model.
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This also shows a similar set of trends. The differences between the linear and the

non-linear interactions are seen in Figure 49. The frequency analysis again shows the

moduiation of the higher harmonics, and the length scale of the skewness variation is

clearly seen,

Figures 52 to 54 show the predictions of the reconstruction methods for the 1:10

slope case, and compares them to the actual reflection profile obtained from the numerical

model.
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In all cases the contribution to the wave profiles due to slope reflection and non-

linear interactions may be discerned. The changes in velocity skewness are also of

considerable magnitude.

As the incident wave traverses the rising slope of the reflecting boundary, it

undergoes the same reflection/process as in the rising wedge of case |. Therefore not all

the incident energy can be reflected at the sea wall. Accordingly, the reflected wave

interference is modulated. The final pattern of the.velocity skewness field is seen to have
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a contribution from the wave companent reflected off the slope, and separately the

reflection off the sea wall.
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4. Sediment Transport Modelling

4.1. Bed shear stress calculations

Sediment transport at the sea bed is driven by the transfer of energy and
momentum from the fluid to the sediment. A principle mechanism for this transfer is the
interaction of fluid shear stress and the sediment (Soulsby , 1997). Therefore it is first
necessary to estimate the magnitude of this shear stress before estimating the transport
rate. Two approaches have been evaluated. The first is to use Manning's friction law to
determine the bed shear stress. This assumes the flow is generally comparable to a
uniform flow, such as over a river bed. The second approach is to consider the wave
motion at the sea bed, and uses a flow dependent wave friction factor. A variety of
empirical laws have been suggested for this approach.

The first approach, Manning’s law, states that the bed shear stress is given by

n2 2
— pgun (39)

T, =
b
hlIS

where » is a changing parameter for different types of flow (e.g. open, river, pipe,
channel), and is also a measure of the bed roughness. The principle physical rule of this
law is that shear stress will increase as the water depth uhder a wave gets smaller.

The second approach, a friction factor, has been considered by éxamining three

available formulations for a wave friction factor. These calculate the bed shear stress from
1 2
Tb = _2-p f:l'ruw (40)

where £,, is the friction factor and u, is the bed velocity. In the model linear wave theory is
used to derive u, from .

Swart, (1974) suggests

ﬁ,.,=0_3 for r<1.57
Sor=0.0025127 7] 151,57 “0

Nielsen (1992) suggests
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Frr=eB575 for all 1, (42)
and Soulsby (1997) suggests
Sor=02377" forall r (43)

where

r=A4./k

4. =wave semi orbital excursion

N=0.04k,"® = Manning's n

ks= 3dys = Nikuradse equivalent sand grain roughness
deg = 90% grainsize

These formulations , and others, are available in Soulsby (1997). Packwood,
(1980), and Chadwick (1891} have found that when considering flows in the surf zone,
Manning’'s n should be multiplied by a coefficient of the value 2~3.

A comparison of the bed shear sfresses given by these four methods is shown in
figures 56 and 57. Shear stress is shown as a function of grain size for combinations of
fluid velocity and depth. Shear stress according to Manning’s law is shown for coefficients
of 1 (i.e. unaltered) and 2. To determine the wave friction factors, a wave orbital excursion
is required. To establish equivalence between the Manning’s formulation and the friction
factor formulation, linear shallow water theory is used. The wave amplitude for the given
wavelength in the given total water depth is determined for which the maximum depth

mean velocity is equal to the deptih mean velocity of the Manning’s calculation.
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It can be seen that agreement between the Manning's formulation and the friction
factor formulations is dependent on the depth of the flow and can obviously be ‘tuned’ by
Packwood's factor. Manning's law directly includes a height dependency that calculates a
higher shear stress in shallower water. Shoaling waves generally increase in wave
amplitude near the shore, and therefore have higher bed excursions and higher bed

velocities. The wave friction.factor reduces as the bed excursion increases, but as the full
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friction formula is (friction factor)*(velocity squared), the final bed friction prediction also
grows as the wave moves into shallower water.

4.2, Sediment transport calculations

For shingle beaches, bed load sediment flow is found to predominate. The

estimated sediment transport rate is determined as a function of the bed shear stress

(estimated from the depth mean velocity) and the grain size. Initially, this is considered for

a single grain size. The madification used in the presence of multiple grain sizes is-
discussed in section 4.4. A variety of formulations are presented in Soulsby (1997). Some
comparisons of their predictions were presented in Lawrence et al., (2001). Particular
choices are detailed below.

Shields (1936) investigated the threshold of motion of sediments. The Shields

parameter

G=— "
glp, —p)dy,

is used to determine the onset of motion. This measures the ratio of frictional and
gravitational forces acting on a grain. The critical value required for sediment motion has
been established empirically, and the best expression for this is given by Souisby and
Whitehouse, (1997) as

0.3
B =——" 4+0.055(1 - "%
“ 1+1.24, (A=) “4)

where d* is the dimensionless grain size given by

13
d {Mg_] (45)

2
4

Sediment flow occurs for & > &,

The critical shear stress is modified for the bed slope by correction factor of

_|sin(BEy)
% _[ sin(5) } a6
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where £is the angle of repose of the material, and y is the local angle of slope for
the beach. The sign of y is dependent on the direction of the slope and the instantaneous
velacity, so that upslope transport is retarded and downslope transport is enhanced.

Two approaches for the sediment transport have also been evaluated.

McDowell (1989) uses a virtual stream power method as follows

w=(z,/ p)"*

P=p u’
Uy = (2.1 p)"
B=pu (47)
s, =174(p g’ N'z ;'d" (P-B)'"
g, =—2—(+e)
p_f - p“‘

Nielsen and Van Rijn have developed an alternative approach, based in part on a
force balance. Defining ¢ as the dimensionless transport rate, and
g, =4,(7,,7,) = P[g(s~Dd’]"” (48)
where van Rijn, (1984) uses

D= FR9112 (9!!2 _9[!2 2.4

0.00S[dsu J“‘z (49)
e="am %

and Nielsen (1992) uses the simpler
©=120"*(0-6,) (50)

Figures 58 to 60 compare the resuits of these formulations.
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There is clearly considerable variation between these formulations, in particular in
the response of the transport prediction with regard to grain size.

No account is taken by either the shear stress model or the transport model of
enhanced stress and therefore transport due to increased turbulence from the breaking

wave.

4.3. Undertow

in the hydrodynamic model mode without a shoreline boundary there is a ‘run off
region of shallow water after the slope, ending in a2 numerical sponge layer. As a
consequence there is a net flow of water through the model, parily due fo a Stokes drift-
like mechanism, and partly due to onshore transport in the wave surface roller. In the
physical situation, the net onshore hydrodynamic flux is zero, as onshore fluxes are
matched by the wave undertow. Accordingly, the net flow through the model may be used
as an estimate for the undertow. Comparisons are now made between ignoting and
correcting for the undertow in the bed stress calculations. The undertow is estimated by
determining the time averaged mass flux in the mode! at the edge of the sponge iayer,
and subtracting this from the instantaneous mass fluxes. These corrected mass fluxes are
then used to calculate corrected depth mean velocities.

The model has been run for a test case of a 1:20 bed slope from 5m depth to 0.3m

depth, with input waves of 0.75m wave height, and wavelengths of 75m (Cnoidal wave),
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35m (Cnoidal wave) and 22m(sinusoidal wave), with corresponding wave steepnesses of
0.01, 0.02, 0.04. These values have been restricted to those the hydrodynamic model has
been able to run without showing signs of instability. This appears to be a restriction
caused by the performance of the model in the shallow water ‘run off region, which must
remain deep enough to allow the incoming wave to propagate without the wave trough
touching the sea bed.

To evaluate the bed shear stress according to Manning’s law, the instantaneous
values of the depth averaged current are evaluated at each-node. To evaluate the wave
friction factors, the model time series output has to be analysed to calculate the wave
amplitude at each node. From the wave amplitude the wave: orbital excursions may be
calculated by using linear wave theory.

The figures 61 to 83 show the maximum wave height in the model for the three

cases, and the associated roller thickness.
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Figure 61 Cross shore wave amplitude — 75m wave length
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Figure 63 Cross shore wave amplitude — 22m wave length

Figures 64 to 66 show the maximum and mean onshore and offshore velocities
output by the model. These are shown as the values calculated directly from the model,
and also the values with the undertow correction described above. By correcting for the

-

undertow it can be seen the calculated onshore velocities are reduced, and the

corresponding offshore velocities are increased. Onshore values are positive.
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Figure 64 Cross shore wave velocities — 75m wave length
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Figure 65 Cross shore wave velocities — 35m wave length
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Figure 66 Cross shore wave velocities — 22m wave length

The figures 67 - 72 show the maximum onshore and offshore bed shear stresses

for the long wave case with two values of dy, (= .02 and .001m), neglecting and including

the undertow corrections. The figures now show the cross shore variation from a point

50m from the left hand boundary, to show detail at the top of the slope better.

Comparisons of the instantaneous values of bed shear stress at a particular timestep are

No Corrections, ds,= 0.02 wavelength=75m

- Manning's stress )
— Nielsén's stress
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Figure 69 Cross shore instantaneous bed shear sfress — ds=0.02m
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Instantaneous Stress, dfiity=0,001 wavelength=75m

1.00E+02-

--= Manning’s stress
3.00E+01 o = = = Nielsen's stress
e Soulshy's stress
= —ﬁwgrt’ﬂs oo ted Manni fr
8.00E+01 + = Undertow correc tanning's strass
T ! —Undertow carrected Nielsen's stress
= == = Underiow corrected Soulsby's stress
~ A.00E+01 - == = Undenlow corrected Swart's sbress
g :
© 2.00E+01 4
™
@
%
0.00E+00 -Pnimn —— - ;
0 60 70 80
-2.00E+01 4
~4.00E+M

Cross shore distance {m)

Figure 72 Cross shore insfantaneous bed shear stress — ds=0.001m

It can be seen from the figures that before correcting for undertow the calculated
onshore shear stresses can be an order of magnitude greater than the calculated
offshore. The undertow correction makes the onshore and offshore stresses comparable.
It can also be seen that the various stress formuiations lead to similar calculated values,
despite the different physical assumptions made.

Figures 73 — 78 show the some of calculated transport rates for the long wave
case with a dsp of 0.02m. The instantaneous transport rates correspond to the timestep for -
the instantanecus stresses. The net transport rates are the time integrated transport
through each grid point in the model over a single wave period. Again, the figures are
calculated neglecting and including the undertow correction, and are from a point 50m

from the leit hand boundary.
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Figure 74 Wave period net transport rates, McDowell's formula
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Figure 75 Instantaneous transport rates, Nielsen's formula
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Figure 76 Wave period net transport rates, Nielsen's formula
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Instantaneous Transport: Van Rijn's Transport, ds=0.02m, Wavelength=75m
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Figure 78 Wave period net fransport rafes, van Rijn's formula

Here the importance of the undertow correction can be seen. Without the
correction essentially all the transport is calculated as onshore, regardless of the
hydrodynamic conditions.

In fact, the McDowell transport formula only calculates net transports comparable
to Nielsen's and Van Rijn’s transport rated when used with Manning’s stress formula and
with the Manning enhancement factor of Packwood and Chadwick.

Using Nielsen's or Van Rijn’s transperts, Manning’s stress generally predicts the

least magnitude of net transport, and Swart's stress predicts the greatest.
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There is no obvious optimum combination of these formulae from the physical
point of view, as the overall predictions agree to an order of magnitude. In ﬁiew of this, in
the final evolving bed numerical model, the simplest computational choices have been
made for the shear stress and transport rate formulae, that is: Soulsby's stress formulation

and Nielsen's transport formulation.

4.4. Multiple grain size transport

To extend the sediment transport model to a set of grain sizes, a hiding function:
approach has been taken. This modifies the shear stress according to the relative
presence of different grain sizes. A good introduction to this is given in Kleinhans and van
Rijn, (2002). The procedure is outlined below.

Since the sediment mixture is in fact time varying, the critical shear siress is

actually a function of time. That is to say,

z-cr = Tcr (dSO (I)) (51)

The critical shear stress for each sediment fraction may then be calculated

accoerding to

\ € (52)
7"1:.'.r',f = dSO,f
Tor dg (¢)

where .., is the critical shear stress for the fraction f and ds,indicates the ds of the

fraction f. ¢ is an empirical parameter which takes a value between 0 and -1. Using the
value ¢ = 0 corresponds to not correcting the Shields values at all, and using the value

¢ = -1 corresponds to using an identical critical bed shear stress for all size fractions.
Kleinhans and van Rijn, (2002) discuss previous works estimating values of ¢ and report
an average observed value of approximately -0.65.

Finally, the volume transport rate for each fraction f may be calculated from
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qs,f = q(‘rb’rcr,f)
Q.s- = ; qs,f

which replaces Equation 48.
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5. Sloping Beach Morphology Application

5.1. Previous work

Roelvink and Brgker, (1993) review a set of process based models. However, all
these models are based on phase-averaged wave models. These are restricted by a
number of inherent assumptions in the models chosen. Typically the models have no
direct treatment of long-waves or wave asymmetry. Such a models reliability is also
restricted fo regions of quasi-uniform flow, whereas in the vicinity of the breakpoint the
flow is highly non-uniform. This requires further (empirical) approximations to treat the
transition zone inshore.

Rakha ef al., (1997) described a model based on the Boussinesq equations. An
oscillatory boundary layer model, based.on an moementum integral method, formed the
interface between the hydrodynamics.and the sediment transport. The boundary layer
was assumed to grow from a zero thickness at each velocity zero-crossing. Suspended
sediment transport was included, coupled with an eddy-viscosity model. Long ef al.,
(2005) describe another Boussinesq based model. Again a boundary layer model is
included, this time derived from a Reynolds averaging of the Navier-Stokes equation at
the boundary. Both of these models have been used fo study sand beaches.

This chapter describes a coupling of a Boussinesq based model to a sediment
model for coarse grains. Since the grain size is relatively large, the grains are larger than
the boundary layer thickness, so boundary layer effects will be neglected. This will also

improve computational speed for the model.

5.2. Single grain sized morphology model

The fully developed, interacting numerical model is implemented by adding an
evolving bed morphology routine. The bed evolution is calculated by applying the law of
conservation of mass to the sediment transport rates described in the previous chapter.

For the single grain model this may be written
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(54)
where

Z = depth of sea bed, and

n = sediment porosity:

The depth Z need not be on the same origin as the fluid; providing the sea bed
with its own frame of reference allows a convenient representation for calculating bed
level changes independently of tidal sea level changes. This equation is a type of
advection equation, but the sediment velocities are never evaluated, just the overall mass
transport rates. The bed evolution is solved by an upwinded implicit finite difference
scheme. The morpholegy model has a single independent variable, the bed level, which is
solved alongside the Boussinesq variables, making a coupled equation set. In the sloping
beach version of the model (using the slot boundary condition), it has been-found
necessary to apply a numerical filter to the bed evolution to remove high frequency
numerical noise from the calculations. This was applied in the form of a low pass
numerical filter applied to the sea bed depth changes. This is similar to the filter used by
Kennedy et al., (2000) in their hydrodynamic model.

Rakha et al., (1997) implemented a similar morphology routine, but used a
modified Lax's method for the bed update procedure. This also needed a filter for stability,
with the filter was applied to the modified Lax's morphology routine.

The first trial for the combined model studied the 1:20 beach slope, commencing in
a channel of 2m depth, with a 5mm grain size and a 3s period, 0.5m wave height. The
initial wave crest, wave trough and mwl positions are shown in Figure 79. The model was

run to simulate 2 hours duration of wave action.
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Figure 79 Initial hydrodynamic conditions, 3s, 0.5m wave, 1:20 sfope
A sequence of bed profiles through the 2 hour simulation is given in Figures 80
and 81. In Figure 80 the evolution in the first hour is show at 15 minute intervals, with the
graphs vertically staggered for clarity. The initial profile is also shown against each

evolved profile to show the changes.
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—————— Bed evolution after 45 min
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Figure 80 Evolution of 1:20 slope bed, first hour
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In the first hour a bar is seen developing before moving offshore. The bar is

generally located under the suif zone.

In Figure 81 the bed evolution over the second hour is shown in a similar manner.
The bed continues to evolve and in this run does not seem to be approaching a steady
state.

This is qualitatively similar to a result of Rakha et al., (1997), which-also generates

a bar migrating offshore, however the substaniive cases studied are very different.
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Figure 81 Evolution of 1:20 slope bed, second hour

To illustrate the changing nature of the sediment transport rates as the sea bed
evolves, net transport rates over a single wave period are shown in figures 82 and 83.

Figure 82 shows the net rate over the time interval of 29s — 32s, and Figure 83 shows the

net rate over the interval 70s - 73s.
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Figure 83 Net sediment fransport rate, 70s~ 73s

In Figure 82 the onshore accretion is significantly larger than in Figure 83 and
exists closer to the still water line. This illustrates the significance of changes that may
occur in the sediment transport regime over short time scales.

A second run was performed with a 1:10 sloped beach and a 6mm grain size. The

bed evolution from this run is shown in Figure 84.
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Figure 84 Evolution of 1:10 slope bed, single grain size

This shows accretion nearer the shore, leading to steepening of the beach face. It

is also approaching a steady state much faster than the previous case,

5.3. Multiple grain sized morphology model
The multiple grain sized morphology model integrates the sediment transport rates
in a similar manner to the single grain sized model, but now summing over all the

transported fractions. Changes in seabed level are therefore calculated by

1774 1

+ Z é’QS,_f - 55
gt (1-n) 7

0

where f'= fraction index, and other quantities are with the same notation as before. For the
mix of grain sizes considered here the sediment porosity » is taken as a constant, but for a
mix of sand and shingle this shouid be time varying.

The sediment fractions are also individually sorted by alse considering the
conservation of mass of the separate fractions. The morphodynamic now model consists
of a layer of sediment available for transport, called the active layer, of thickness & which

rests on the sediment substrate. § is an adjustable parameter. Sediment becomes mobile
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by erosion from this active layer, and is deposited onto this layer. The full expression for

the calculation is given in Equation 56.

3y ) p (028,02 _5
EYREACAR 1 WrYRRPYY i PYamey

8z 8 YA
2 2Ny -L 56
p"'f(at ar)"[ o1 61‘) 8
2
+ Hsr _ g
Ox

prand pyrdenote the percentage of fraction f present in the active layer and the
substrate respectively. A model of this type has been used by Pender and Li (1996) to
study river sediments. (It is not strictly conservative, as the substrate sediment ratios
never change. This can be improved by a multi-layer approach, but with a consequent
increase in computational time.)

The exchange rate of sediment between the active layer and the mobile sediment
is the second term of Equation 56. This is determined by the rate of change of the sea bed
level, and the erosion rate of the sediment. As the depth of the seabed changes, the
interface between the substrate and the active layer moves accordingly. Sediment
therefore numerically migrates between the substrate and the active layer, and this
exchange rate is the third term of Equation 56. A schematic of the sediment layers is

shown in Figure 85.
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Figure 85 Multiple grain size sorting schematic

The model was run with an initial sediment composition with a mean ds, of 6mm,
and with the initial grain size distribution shown in Figure 86 applied throughout the model.
The bed slope was 1:10 and the wave was a 3s period, 0.5m wave height as in the single

grain size case above.

Initial sediment compasition:
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Figure 86 Multiple grain size initial distribution

The evolved profile for this case is shown in Figure 87.
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Multiple grain size profile
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Figure 87 Evolution of 1:10 slope bed, multiple grain sizes

While showing similar characteristics to the single grain size run, it is clear that the
overall movement of sediment is much reduced for this case. This agrees with the finding
of Roman-Blanceo and Holmes, (2003) in a large scale experiment,

For the multiple grain size runs the changes of sediment compaosition through the
run may aiso be examined. The cross shore profiles of relative sediment presence (e.g. a
presence of 0.1 indicates 10% of the material is within that fraction) are shown in Figure
88, after 25 and 50 waves, corresponding to the bed profiles in Figure 87. The initial

condition from Figure 86 is shown as the horizontal dotted lines.
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Figure 88 Sediment composition, final distribution

This figure shows the change in sediment composition increasing with time. There
is an increase in the quantity of the coarse grains present in the onshore direction, and a
corresponding derease in the quantity of fine grains present. There is also a decrease in
the quantity of the coarse grains present in the offshore direction, and a corresponding
increase in the quantity of fine grains present.

These runs show the types of prediction possible with the sioped beach model.
However, the shoreline boundary is rather problematic. In practice, the slot parameters
and filtering necessary to study a particular beach case must be found by trial and error,
which is very time consuming. The use of filtering also causes inaccuracies in the evolved
profile calculations, smoothing out shorf scale bed forms that may evolve. In pariicuiar,
much detail is lost at the swash zone.

The model may also be applied to the study of beaches terminated by a
submerged seawall, by changing the appropriate boundary conditions. In fact, a major

limitation of the present model is the behaviour in very shallow water. The numerical
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scheme is stable in deep water, and so may applied to the sea wall case without the need

for any smoothing: The use of such a model is described in the next chapter.
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6. Beach Morphology with a Sea Wall

6.1. Previous work

A sea wall may be placed on a beach to pre\}ent landward retreat of the shoreline,
or to prevent flooding due to high sea levels. The wave regime on the beach is then
considerably modified. [f the beach material adjacent to the wall is removed by wave
action is removed, then the wall may fail. A number of physical experiments have been
carried out over the years to understand this case. Russell and Inglis, (1953) provide one
of the earliest, and this appears to be the only study that considered the effects of tides.
They suggested scour would stop at about one wave-height below low water. Irie and
Nadaoka, (1984) and Xie, (1985) found two patterns of sediment evolution under standing
wave fields, that are now called P-fype and N-type. For fine sediments, the P-type
transport from the wave nodes to the antinodes has been observed and for coarser
sediments the N-type patiern of transport from the antinodes to the nodes has been
observed. There is also the SUPERTANK experiment reported by Kraus and Smith,
(1994), and many others. A good review of the subject is found in DEFRA, (2003).

As with plane beaches, more work has been performed on sandy beaches than
shingle beaches. Powell and Lowe, (1994) investigated toe scour in a physical model for
nominally coarse sediment (actually graded anthracite) that was scaled to a ds5, of Smm <
d < 30mm, and measured the response of a beach to a number wave fields. The wave
flume was physically scaled at 1:17. They found a zone of erosion associated with wave
reflection generally within the space of
1<DJ/H,<3 (57)
where D, is the depth of water at the structure toe, and H; is the significant wave height.

Their resulfs are reproduced in Figure 89
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Figure 89 Experimental contours of toe scour, Powelf and Lows, (1994)

A theoretical study of wave refiection was made by Longuet-Higgins, (1953) where
rotating cells develop in a boundary layer. The main body of fluid then rotates in the
opposite sense above this boundary. A schematic is shown in Figure 90

Bed load transport within the boundary has been suggested as a mechanism for
the development of the N-type flow, and suspended load sediment in the main flow has
been suggested as a mechanism for the P-type flow.

A numerical model with no boundary layer cannot reproduce these rotating cells.
However, such cells are derived for a fully developed flow, whereas in most cases of
interest, an constantly varying incident wave field does not allow a steady state to
develop. Wave asymmetry-induced transport however does not require the flow to be fully
developed, and may be present for any non-linear or partial reflection case. Accordingly it

may be a complementary mechanism for sediment transport.
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Figure 90 Boundary layer currents under standing wave

Numerical models for the sea-wall case are again sparse. Recently, McDougal et
al., (1996) have presented a wave-averaged model for a sandy sediment, and Rakha and
Kamphuis, (1997} have presented a mode! driven by a Navier-Stokes solver also for a
sandy sediment. Lawrence ef al., (2003) have presented a coarse grained sediment
transport model coupled with a Boussinesq hydradynamic model, and further resuits from

this model are given in this chapter.

6.2. Sea wall model

Combining the numerical sediment techniques of the previous chapter fo a
reflecting wall hydrodynamic model such as in section 3.4 allows a simulation of the wave
flow and heach evolution for a sloping beach with a sea wall located seaward of the
natural still water line. In this case there is very little need for numerical filtering. Some
high frequency noise has been observed in the Boussinesq model, but a filter at every

hour of simuiated time is sufficient fo remove it.
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The combined numerical model was set up with a deep channel section of a still
water depth of 10m. At the shoreward end of the tank, a plane slope of 1:10, rising to a
depth of 3m was placed, ending with the vertical wall. A regular Cnoidal wavé series of
period 8s was run, with a grain size of 15mm. This was allowed to run to a steady state
sea-bed profile, taking approximately 2500s. A series of the resulting profiles is shown in

Figure 91
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Figure 91 Evolution of 1:10 slope bed, 8s monochromatic wave

This shows a region of accretion close to, but not adjacent to the sea wall. There is
then a wider zone of erosion further offshore, and also a corresponding zone of accretion
offshore, The pattern is generally of N-type motion. Since the hydrodynamic model
assumes a zero flow condition at the sea wall, the modelled velocities adjacent to the sea
wall are low, in accordance with the standing wave profile. Therefore, the bed shear stress
predicted is always less than the critical shear stress, and no sediment motion due to
wave action is modelied in this zone. However, sediment is stiil able to move due to

slumping, to preserve slope stability.
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A similar case but-for a wave period of 5s was also run. The resulting profile is

shown in Figure 92
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Figure 92 Evolution of 1:10 sfope bed, 5s monochromatic wave

Here there is no accretion near the sea wall. Since the 5s wave has a shorter
wavelength, the morphological 'cell’ in which the bed moves has a narrower width. Overall
this run shows lower amounts of sediment movement, but is otherwise showing the same
general features as seen in Figure 91.

A random wave series was aiso chosen for a comparison. An irregular wave series
of mean period 8s was run in a similar manner in the same numerical wave tank. The
friction factor formula (Equation 43} used above could no longer apply; this formula
requires constant orbital motion, and therefore constant wave period. Instead, the friction
factor was held fixed at the value of #, =0.04. This corresponds to the regular wave
mation at a depth of approximately 4m. The bed profile from this run is shown in Figure

93.
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Figure 93 Evolution of 1:10 slope bed, 8s mean period irreguiar waves

The same general characteristics as the regular wave can be seen, although the
overall change in bed profile is less significant. This is in agreement with the finding of
Hughes and Fowler, (1991) that iregular waves caused less erosion than regular waves.

The physical dimensions of the coastal situation suggest two families of
parameters for more detailed study. The first family describes the wave field, and consists
of the wave height, wave period, bed slope and the toe-depth of the sea wall. A second
family of parameters may be grouped by the flow characteristics of the sediment, in
particular the friction factor and the grain size. Series of experiments have therefore been
performed to study the behaviour of these parameter families. Further tests have also
been made to show the capability of the sea wall model in the muitiple grain size case,
and in its use for simulating tidal situations.

6.3. Variation of wave characteristics

The irregular wave run referred to previously was taken as the base line run. The
first comparison was made by varying the depth of the wall foe and the wave period. A set

of model runs was generated for wave periods between 5s and 14s at 0.5s intervals, and
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for toe depths varying from 1m to 6m in 0.25m intervals. A second comparison was then
made by fixing the toe depth, but changing the bed slope to a value of 1:7. Figure 94
shows more illustrative patterns of the behaviour found, with an example of changed toe
depth, and an example of changed bed slope. The depth axis for this figure has been
normalised to indicate a toe depth equal to zero for all cases.

This shows clear differences in the sea-bed response to the variations: in the bed
slope. The magnitude of accretion adjacent to the toe (when it exists) is particularly
sensitive to such changes. In this figure, the 2.5m toe depth run has the overall shallowest
water depths, and shows the largest morphological changes. For the 3.5m toe depth runs,
the 1:10 slope case a_nd 1:7 slope case result in similar erosion/deposition patterns, and

have distinct final steady states.

Siope Parameter Variation
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Figure 94 Wave characteristic comparison: 8s mean period irregular waves

The contour graph of the maximum relative erosion (erosion depth divided by
significant wave height) across the numerical model profile while varying the wave period
and toe depth for a 1:10 slope is presented in Figure 85.This figure is scaled to the same

dimensionless parameters as in Powell and Lowe, (1984) (Figure 89).
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A decrease in relafive erosion is seen across this chart for increasing H/L,,.
Another contour graph of the maximum relative erosion for varied toe depth and wave
period with a bed slope of 1:7 is presented in Figure 96. Again, a decrease in relative
erosion is found with increasing #/L,. The general slope of the contours is similar to the
corresponding region of Figure 89.

In both cases, the model is unable to make predictions for the full range of wave
period and toe depth cases stated above. As the bed evolves, wave froughs touch the sea
bed away from the sea wall, and further numerical code is required to handle these cases.
For such regions of shallow water, the assumption of small £ (wave height divided by

water depth) for the Boussinesq equations is in fact broken.
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Figure 85 Contour graph of maximum toe erosion, 1:10 slope
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Random waves Fic=0.03 slope=1:7
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Figure 96 Contour graph of maximum foe erosion, 1:7 sfope.

6.4. Variation of sediment characteristics

Similar runs were then performed to compare the effect of changing the friction
factor and the sediment size. Changing the friction factor directly changes the shear
stress acting on a grain, and therefore changes transport initiation and fransport rates,

according to Equations 40 and 50. Changing sediment grain size alters transport initiation
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by altering the Shields parameter fof the flow case. An illustrative figure for these changes

is given in Figure 97.

Sediment Parameter Variation
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Figure 97 Variation of sediment flow characteristics
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Random waves fric=0.04 slope=1:10
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Figure 98 Contour graph of maximum toe scour, f,, = 0.04
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Random waves d5°=0.015 slope=1:10
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Figure 99 Confour graph of maximum foe scour, ds; = 0.0715.

Figure 98 shows the erosion confour diagram for the increased friction factor case

of £,=0.04. Figure 99 shows the erosion diagram for the smaller ds, case of d5, =0.015.

Again there is clearly variation across these parameters, but the overall pattern looks

similar to that in Figure 89.
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6.5. Multiple grain sizes
A single comparison run for the multiple grain size case was run, comparing to the

baseline run in section 6.1 with the multiple size fractions as shown in Figure 100.

Initial sediment
composition
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Fraction present
[=]
%)
L

Figure 100 Initial sediment distribution.

The evolution of the bed profile with this sediment composition is shown in Figure
101, and is compared to the single grain size case. Figure 102 shows the final cross

shore profile of the sediment fraction distribution.
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Figure 101 Comparison of single grain size and mixed grain sizes evolution
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Figure 102 Cross shore distribution of sediment composition.

The magnitude of the bed change is reduced with the mixed sediment. After the

run has reached a steady profile, the relative change in composition shows a

predominance of the iarger grains in the onshare erosional region, and a predominance of

the smaller grains in the offshore depositional region.
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6.6. Tidal effects

A final series of runs has been made to study the effect of tidal cycles on-the
-erosion patterns. This is achieved by changing the still water level component of the:
model at successive timesteps, according to the tidal signal. A tidal range of 1m with a
period of approximately 12.5 hours has been added to the conditions for the base line run.
The model was run for 3 tidal cycles, and approached 'convergence' afterabout 1 cycle. A

sequence of bed profiles is shown in figures 103 and 104, starting at high:water for the

third cycle.
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Figure 103 Bed evolution profiles — falling tide.
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Tidal Variation
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Figure 104 Bed evolution profiles — rising fide.

The maximum erosion is seen at low water, when the shoreline wavelength is
shorfest, and the profile responds relatively swiftly to the tidal changes. As the fide falls,
material is moved both on and offshore from the maximum erosion position. As the tide
subsequently rises, material returns from the on and offshore bars. The location of the
offshore bar can also be seen changing its cross-shore position as the shoreline

wavelength changes.

118




7. Conclusions

7.1. Summary

Boussinesq models for non-breaking waves are now well developed, and find
good application for engineering applications. There are a number of higher order models
now available. The performance of the present low order model is shown in Chapter 3,
and is evaluated against the theory shown in Chapter 2. The hydrodynamic model is
shown to reproduce observed wave elevations in a number of cases, and also to
reproduce the depth mean velocities observed in the surf zone of a breaking wave. The
model has also been applied to the case of a reflecting wave, and the accuracy of the
predictions is shown with regard to the GWK experiment.

The model has then been used to study the interaction of wave shoaling and
reflection in a series of numerical experiments. This demonstrates the effect of paitial
reflection occurring on a sloping bed and the transfer of energy between the higher
harmaonics in the resulting wave field. The consequent interactions between shoaling and
reflection are then shown to generate a highly varying velocity skewness in the wave field,
quite unlike that of either the incident or reflected wave, which must be taken into account
in the development of a morphological response.

The experiments also show the contribution of wave non-linearity to the wave crest
heights in the reflected field. The study of wave reflection with the Boussinesq model also
shows very good performance at predicting the disfribution of a standing wave. While
there is no velocity data to confirm the model velocities, in the absence of wave breaking
the predictions for the modelled velocity statistics are expected to be as good as for a
progressive wave case.

In Chapter 3 a review of recent sediment transport formulae is given, and their
predictions of sediment transport rates are compared. Predictions of friction made using
Manning's law are shown to be significantly different from those using the friction factor

laws for certain flows, partly due to the independence of Manning's law from the wave
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characteristics. The flow predictions of McDowell's energetics approach are also shown to
be different from the others given.

The influence of undertow is then shown on a set of wave fields, and the
corresponding effect on bed shear stress and sediment transport rates is shown. The
significance of this process is confirmed.

The morphology model is introduced in Chapter 5, applied to a sloping beach. The
model is shown having a rapid response in the coupling of the morphology model to the
hydrodynamic model, with the modified bed forms leading to changes in the transport
rates and velocity field. The model is-also shown making predictions of bed response over
a long term simulation.

The extension of the model to a muitiple grain size form is also shown, and a
reduction in profile response due to mixed sediments is observed. This is consistent with
experimental findings by Roman-Blanco and Holmes, (2003). The ability of the model to
track differential motion of sediment fractions is also demonstrated.

The morphology model is applied to the sea wall case in Chapter 6. The mode! is
again shown providing long term simulations of the sea bed response. In general, the
results show well defined N-type morphology patterns, with clear nodal zones of negligible
sediment transport. The mode! is found to agree with the observation of Hughes and
Fowler, (1991) that erasion is reduced under an irregular wave field compared to a regular
wave field. The model also shows some agreement with the results of Powell and Lowe,
(1994) in the trend of the erosion patterns. A series of sensitivity tests has then been
performed with model, studying the behaviour of the model with regard to the incident
wave field characteristics, and also with regard to changes in sediment characteristics.
The model shows high variation with regard to all these properties.

The mixed grain-size model also demonstrates differential motion of sediment
fractions for the sea wall case. As with the sloping beach model, the sea wall model

predicts a reduction in profile change for a sediment mixture for nonbreaking waves.
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The tidal. model shows a consi.stent profile adjustment with tidal changes. The
width of the morphological cell responds to changes in nearshore wave length, and the
depth of scour responds directly to the tidal height. The profile is adjusting between the
two extreme profiles that correspond to constant water depth for the high and low water
values. The profile does not reach those limits, although it approaches them at slack

watear.

7.2. Discussion

The hydrodynamic model provides good estimates for the wave height in most of
the cross-shore domain for waves of interest. The most significant shortcoming is the
under-prediction of the breaking wave elevation, although the location of the breakpoint is
well represented. The importance of the breaking wave elevation is dependent on the
sediment model chosen. The McDowell formula uses an explicit wave height, whereas the
friction factor approach is based on the wave orbital velocities. The velocity predictions of
the model are generally overestimated near the break-point, but the skewness of the
depth mean velocity is in good agreement with the physical data.

In general, higher order Boussinesq models can be expected to improve
performance in hydrodynamic predictions. It will require further study to determine the
relative benefits of computer time versus accuracy. The computational complexity of a
Boussinesq model increases with the order. The numerical stencil of the present model
covers 5 grid points (3 velocity and 2 elevation), but can be algebraically reduced fo a tri-
diagonal system. It only requires the storage of 2 time steps. The earlier higher order
model of Wei et al., (1995) requires storage of 3 time steps to fit a tri-diagonal system.
The solver of Madsen ef al., (2002) uses a stencil of seven points and requires the
solution to a banded matrix-of 7 bands, requiring significantly more resources.

The development of the sediment model in Chapter 5§ shows some useful initial
results. The performance of the swash zone is dis-appointing however, and clearly much

work need to be done to improve this. The results here are strongly affected by the
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numerical filtering applied to the model, and a good choice of model will require the
elimination of such filters. Otta and Acuiia, (2005) show improved resuiis in this area
using a shoreline-fitting procedure. Other possibilities are a moving grid model such as
that presented by Zhang, (1996), although this would need extending from the NLSW o
the Boussinesq equations. Such a model would however provide an exact solution to the
shoreline flow.

The morphodynamic predictions made so far with this model are.sparse. It shows
a capability of generating similar features as a more complex model, but no extensive
comparison has been made. The models are not applied to similar cases.

The predictions from the sea wali model in Chapter 6 are significantly improved.
With the absence of filtering, there is no damping of the morphological evolution, and the
bed features are clearly seen.

For the wave cases that the model is able to run, it has provided a general
agreement with the erosion patterns shown by Powell and Lowe. There is clearly much
variation within the model results. Unlike the algebraic model of Dean (1977), these
experiments predict different steady state profiles for different initial bed slopes but
otherwise identical incident waves. Since the bed further offshore has retained the initial
bed slope, this can be expected to give each slope a unigue wave shoaling response.
Therefore the wave spectrum in the morphology cell adjacent to the sea wall is not
uniform across all the profile tests, and so a uniform sediment response is not expected.
This situation may change when more energetic waves, or a broader band wave spectrum
is used, as this could widen the morphological cells. This is expected to result in changes
further out in the seaward part of the bed profile.

The response of the model tp the variation of sediment size and friction factor
allows a tuning of the model to the Powell and Lowe findings. This has not been
performed. The extent to which the Powell and Lowe Figtre is really applicable is not
clear. The diagram is based on scaled results, and the results may be true for a more

restrictive band of d5, than stated. Powell and Whitehouse, (1998) provide a scour
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diagram (from another humerical mode!) comparable to Powell and Lowe for a sandy
sediment, and this is very different. Powell and Whitehouse aiso do not provide accretion
predictions, due to limitations in the model they have used.

Less sediment sorting is observed in fthe mixed grain model for the sea wall case,
compared to the sloping beach. However, the sediment is reacting to lower flow velocities
in much deeper water. There are no indications of numerical instability in the sediment
sorting.

There is scope for improvement of the sea wall model in two important aspects.
Firstly the model does not accurately handle sediment transport immediately adjacent to
the sea walll, due to the hydrodynamic assumptions. A full treatment of this is likely o
need a turbulence model to account for sediment motion in this region.

Secondly, the model needs to handle a fuller range of incident wave fields and toe
depths. This is related to the moving shoreline problem of the sloping beach model, and is
expected to be solvable by similar methods.

The sediment model of Chapter 4 is based on recent work by various authors, but
is-not definitive. Recent studies of sediment transport suggest that flow acceleration may
have a contribution o sediment transport. Watanabe and Sato, (2005) suggest such an
improvement for sheet flow formulae. Other studies suggest a contribution to sediment
mobility is caused by sediment pore-pressure variations, and flow infexfiltration events.
Karambas, (2005) suggests an improvement to the Meyer-Peter and Muller formula to
account for such processes in fine sediments. Another possible contribution to the
sediment model is the variation of turbulence or friction between the uprush and downrush
phases.

The model siill requires a full calibration against field data. Only one data set is
known-to the author for the sloping beach model, which is the GWK experiment of

Roman-Blanco and Holmes, (2003). A safisfactory shore-line is required for this.
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Suitable field data for the sea wall modelis also sparse. The most extensive data
set is the Powell and Lowe experiment of a scaled flume discussed above. Ideally, an

experiment of the magnitude of Roméan-Blanco and Holmes would provide such data.

7.3. Further work

Further work for the numerical model should consider the relative importance of
the suggested modifications for flow turbulence and infexfiltration. Such work may be
directed to finding a suitable parameterisation, orincorporating an analytical treatment.

Further work for the numerical model should also consider an appropriate means
of modeliing wave breaking on reflected and standing waves.

For the sloping beach model, a robust shoreline routine needs to be found.
Examples have been presented with the NLSW equations (e.g. Chadwick , 1991). There
seems to be more success with these technigues in a non-conservative form however.

A suitable data set for verification femains to be identified, and a new series of
experiments may well be beneficial for this. This would have the benefit of providing a

consistent data set with regard to sediment size and scaling factors.
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A.Appendix
A.1. Cnoidal wave theory
Unlike the NLSW equations, the Boussinesq equations have a permanent wave
solution. Rahman, (1995}, describes the following process. It is convenient to transform
the Boussinesq equations-(Equations 18) by applying P = w.d =u(h+7)} which gives the

following set of equations:

on ou
—+(h —=10
Py (+ﬂ)3x (A1)

ou ou on KW &u
—t U gt =

ot ox “ox 3 oxlor

These in turn may be non-dimensionalised by taking a series of scalings:

X=k

T=kCt
(A2}
h=ak >

u=20y
h

where C? = g

where k= 27/L is the wave number and C? = gh is the wave celerity squared. 7', »' are

scaled water depth and velocity , which results in the following formulae:

a—77+i((1 +en'y)=0
or ox (A3)
al, o or o

+ £u =
or 8X a8x 3 ax’er

where 77’ is the scaled elevation, £ = 4/ and y=k 4. ¢is the same as in Equation 4, and yis

related to the x of Equation 5 by ¥=47°1.
Substituting »’ = AF¥3X (i.e. describing «' with a velocity potential), and eliminating 77, a

single equation for ¢ may be obtained:

A
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Far a progressive wave, a solution is sought of the form ¢=/{4) where {=X-cT.

Substituting for ¢ in the above, the following ordinary differential equation is obtained
. . . . - v
(using a subscript notation to denote differentiation thus 8_4? =Y )

/2 :
(@D =L S, +5. c[l+ ](f; ), =0 (A5)
This equation implies ¢ = 1+0(g,#), so terms in.¢ on the RHS may be

approximated by 1. This equation may then be integrated to yield the following:

(-1 f, + 4, =—-fg¢+g( J(f;) (A6)

The substitution 77'= -fr= f; may now be made. For clarity however, the dash will

however be omitted until Equation A19. The equation becomes:

2

=0+ 4 =Lon, +e(§)(rf)

!

0 (AT)

This may be multiplied by 7, and integrated again to yield:

2

2 3
a —1)12-4-,411;4-,4, —5[5 (n3)=%ﬂ§ (A8)

or
R

2 _ 2
_ﬂ3+(c Dn2+Bm+Bz=Z-7?§ (A9)
g 3¢

noting the change in the integration constants. The LHS of this is sitmply a cubic

polynomial in #, so the equation may be represented as

M=) —=1,)1s~17) =——?74
(A10)

=5
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Since g yand 7' are always real, the RHS of this always positive or zero.
Accordingly, 77, 7,.77; may be chosen such that 7;>7,> 7, noting the sign of 7;. A general
sketch of the cubic is show in Figure A1. I can be seen that  must lie between »; and 7,

inferring that 7; -7, is in fact the wave height.

NZaN

=l S nen2

Figure A1 Roots of cubic equation

To find the expression for #, the substitution

77 =1 c0s’ @ +77,sin* &

(A11)
8=08({)
is made, leading to:
Mg = (71, — 1, )(—2cos@sin6) 6, (A12)
Substituting Equations A11 and A12 into Equation A10 yields:
46, (11, =1, (cos® @sin” §) =i—f(ﬂ3 cos® 8 +1, sin’ 9—171)
.(173 cos” §+n,sin? @ —7)2).(773 —17, cos® 8 +17, sin” 9) (A13)
= ?;((773 —1h) =G5 —17,)sin” 8)(; —1, ) cos” 6.z, —p,)sin® @
Cancelling common factors, and defining m={n;-n)/(n:-1,) yields:
o' =j$(m-m)(1—msin29) (A14)
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Since 7, 71, 1> m > 0. This eéxpression may be solved by a separation of
variables, and leads to an incomplete eflipfic integral of the first kind. (Abramowitz and

Stegun,1965)

—% L A T (A15)

(1 — msin? 8’)”2 2y
This equation arises in the calculus of elliptic equations, and may be solved using

elliptic theory. For

i do
&=Fy,m)= I—ﬁ, {A16)
0 (l —msin o’)
define
w =F"'(&,m)=am(&,m) (A17)
'am' is known as the Jacobi ampfitude, and '»' is the modulus. Furthermore
sin(y) = sin(am(&, m)) = Sn(&, m) (A18)
cos(y) = cos(am(&, m)) = Cn(&, m)

where 'Sn, Cn' are the Jacobi elliptic functions. These functions are clearly periodic. The
period is in fact 4K where X = K(n)} = F(#/2,m} is known as the complete elliptic integral of
the first kind. Also Sn’() + Cnl) = 1.

For the Boussinesq equations then, Equation A15 is solved to give

112
d= am( (3;), (773 /)| )U2 (T )st (A19)

This may be substituted into Equation A11 and the following is obtained (reverting

now to »’ notation):

(35)”2
2y

7' =15+, —n&)an( A M (N} m) (A20)

77';~ "2 is the wave height, A, but »'; and i are still to be determined.
Since the Cn function is periodic, it can be seen that the wavelength of the non-

dimensional formulation is given by
A4
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Over a wavelength, since 7' is the perturbation of fluid depth from the mean, itis

known that
»
J 7de =0 (A22)
0
Substituting from Equation A11 gives

I(n; cos” @ +17, sin” 6)—3% dd=0 (A23)

[}

By using symmetry of the sin function, this can be rewritten as

zi2 4 ¥ T =2
7+ (s —m)(1—msin“ &)
e e Gy 40=0 (A24)
0
However,
xi2
[a—msin? 6)d6 = E(m) (A25)
0

is simply the complete elfiptic integral of the second kind, (Abramowitz and Stegun,1965)

so Equation A24 may be written as

17, K(m)+ (7, —771) E(m) = 0 (A26)
and so
v ot _ o B (r—m) E(m) _ H E(m)
m=—(—m) ) K mR(m) (A27)
This may be substituted into Equation A21 to give.
112
A= 4_-7’12(”%)[&} (A28)
(3g) H

Substituting aiso back into Equation A26,

A5




. (KGm) \_H(, Em
e ”[E(m) 1] - [l K(m)J 29

and also it can be found that

74 =17;—H=£( —E@J—H=£[1—m—m] (A30)
m\ K(m) m K(m)

Equation A9 gives an expression for ¢ which can be restated'as
¢* =1+&( +17; +1773) (A31)

and now substifuting into Equations A27, A29, A30 yields

& =1+3—{I—(2-m—mj (A32)
m K(m)

Knowing ¢ and A, the dimensionless wave period p’ can also be found:

12
Ay (m
A (3)" (H)
P = _c" - = - 172 (A33)
R PSR - o)
m K(m)
Reversing the scaling of Equation A2 can now recover the physical forms of these
equations.

Equation A20 in physical dimensions has the form:

2 "/_g_ (373 . 771)“2
2

7 =3;;2+(173—?72)Cn{ PEE (x—ct),m]

- (A34)
=n,+HCn? (—/1— (x—ct), m)

The wavelength is now

A 112 !
A=4 K(m)H[énE:l (A35)

The celerity is given by

¢t = ghlil+%%(2—m—%§%)] (A36)

and lastly the period may be written as
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Equation A35 relates A,h,.H and m. In practice, m must be found using an iterative
method to satisfy this equation, given the wave case of interest. The necessary elliptic
integral evaluations are available in sofiware such as MATLAB and MAPLE. Considering
Equation A36, the RHS of this equation will he negative for the range. 0 < m < my, for
some myys < 1. Accordingly, m must be sufficiently large (or the wavelength must be
sufficiently long) for the celerity equation to have a real solution. Another consequence of
this equation is that wave celerity is now a function of wave height, water depth and
wavelength,

Considering the case of m — 0. Then H = nj15; > 0, and &2 - gh. Also,

Cn(z,0) = cos(z), and K(0)=#/2. Therefore Equation A34 reduces to:
2| 7 7
n =1,+Hcos [:I— (x— ct)] (A38)
which, since i, = -a = -H/2, may be written:
n = os[ 2 (xmct) (A39)
2 2 |

and the waveform is the linearised sinusoidal wave with wavespeed ¢=¥(gh) and
amplitude &72.

A.2. Cnoidal wave reflection

Left and right travelling linear waves may be combined to form the well known
standing wave solution. Similar behaviour for a Cnoidal wave may also found. The
following is developed in Mei (1989).

Considering again Equation Ad:

-t {242

= . =0
oT* aX* 3 aX*T* AT|\aX 2\oT } (A40)

A7




Firstly, intfroduce the change of scale r=¢&T, c=X-T. 1/¢is the (dimension-less)

scale of time variation. The equation may now be rewrifien as

G+ =G o+ oy =0 (ra)
&

Seeking a potential flow solution for this, ¢, may be replaced by ¢, and this may
now be written as:

3 ¥’
C:r + E {Cg + _g;é’a'a* =0 (A42)

This is the well known Korteweg-de Vries equation. Since the Cnoidal wave is a
solution of Equation A4, it must also be a solution of the Korteweg de-Vries equation.

Still considering Equation A4, a solution of the form &=¢%¢x,; 9+ (1,7 is

sought. This leads to the equations:

’50)_ g) =0 (A43)
w_gz0_17 0 _[(oF, 1o} ©
" ¥ rx =—_¢.1:xn‘_ (¢x ) +—( f) ) H2¢ﬂ (A44)
3¢ 2 .
Equation A43, being the wave equation has a general solution of
(A45)

$O=¢" ")+ 47 (0757)

for o " =X-T, o =X+T. These are the low order left and right waves of the solution.

Equation A44 may be expanded in terms of #%, and becomes

a2¢(1) _ zi a¢+ +3-a¢+ 82¢+ +l}’2 a4¢+
LAl drdc* 9ot o0 3 € pot’
B 8¢ op g 1y (Ad6)
dr do~  do o= 3 & o’
32¢+ a¢— 62¢— a¢+
+ 2 - 2 +
fo* 96~ po~" 0o

It is required that the solution for this does not grow linearly for ¢* or . Such a

solution is found if the first and second lines of Equation A46 are zero independently. That

is to say:
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dr do* 280 3o+t 6 & aa

47
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dr 8o~ 280" 30-'2 6 & 35"

Now applying ¢'=-¢*=¢", and £ =-¢", =4 ", the set of equations

aé’ a§++1y2 8344-_
81‘ do* 6 &' do*
ISP ST (A49)

o7 2 0o~ 6 £ oo
is obtained, showing that each wave separately satisfies the Korteweg-de Vries equation.
The wave ¢%=¢" (o ", 9+ ¢ (o7 may therefore be constructed by superposition, which is
accurate again to the leading order.

Considering a wave tank in the domain 0 < X < z, the elevation solution given by
{'=F(-c";9), {*=F(c",9), (A49)
has the corresponding velocity solution
w(0)=-F(-c*:0+F(c",7). (A50)

Since the wave reflects at the tank wali, the solution requires that »@ vanishes at
X=x, or —F(t-m; )+ F+7;7)=0. This is satisfied when F is periodic in o (or X) with a period

of 2z. The Cnoidal wave of unit height satisifies these requirements, and in the form of

Equation A20 may be written:
[ Be)? 12
F=f,+(f;~f)Cn —5},—0‘3—f1) (o+Qf),m (A51)
Comparing with Equations A27, A28 it is found that
E(m)
=- , and 2
Y mK{(m) (A52)
1 3 E(m) 1
-—|1- , and A53
m( 2 K(m)] 2 (A53)
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¥ 372

(A54)

Since this formulation is in dimensioniess units, a reverse scaling must again be

applied. Knowing the Ursell number

2
L E(EJ 1 \ (A55)

y: h\h) 7’

Equation A53 may be used to find £2, and Equation A54 to find m.
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