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High-resolution records of climate change from lacustrine stable isotopes through the 

last two millennia in western Turkey. 

Knowledge of past chmate variability is vital if the causes of observed chmate changes 

since instrumental records began are to be fully understood, particularly those, post-1850 

AD, possibly due to anthropogenic activity. The past two millennia provide a long enough 

background with which to compare post-r850 AD change, whilst errors on proxy records 

remain relatively small. In the Eastem Mediterranean changes in water balance are of 

particular interest as water is an important resource. Oxygen isotope records from lakes in 

the region record changes in water balance and are therefore an important archive for 

observing natural, and anthropogenicaly forced, variabiUty in hydrology. 

Full understanding of cUmate proxies requires high-resolution analysis through the 

instramental time period for comparison with measured climate variability. Varved lake 

sediments provide the possibility for obtaining annually-resolvedarchives of climate 

proxies, andstrong chronological control through time. In this study gebchemical-climate 

proxies including oxygen and stable carbon isotope ratios were measured from two lakes in 

central Turkey with varved sediment archives. Lake Burdur's complex carbonate 

mineralogy and large catchment led to stable isotope data that is controlled by a variety of 

mischariisms and highlights the complex nature of some lake-isotope systems. 

A 1725 year long record was obtained from Nar GolU, with the top 900 years analysed at 

an annual resolution. Calibration of the top of this record with instmmental cHmate records 

suggests stable isotope variability at Nar is controlled by changes in evaporation, driven by 

changes in sunmier temperature and relative humidity. The proxy record from Nar shows 

sununer evaporation at Nar to be enhanced at times of increased Indian and African 

monsoon rainfall, and reduced during drier monsoon periods. Major shifts in the chmate 

system occur c. 500 and c. 1400 AD associated with times of change between relatively 

warm and cold periods of Northern Hemisphere temperatures. Cycles, with a frequency of 

64 years, observed in the Nar isotope record and proxy records of solar activity suggest a 

solar forcing mechanism for decadal variability in the Eastem Mediterranean-Indian-

African sununer climate system. 
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Chapter 1 

INTRODUCTION 

1.1 Late Holocene climatic change 

Wamaing trends observed in instramental temperature data since records began in the late 

18*̂  century have led to questions as to the anthropogenic influence on global chmate, 

particularly as a result of industrialisation over the last 200 years. Instrumental data do not 

extend back far enough, into pre-industrial times, for answers to these questions to be 

obtained. Proxy records of climate change are therefore required to give a background 

picmre of late Holocene chmate variabihty to which the observed recent wanning can be 

compared (Mann and Jones, 2003; Jones et al., 1998). 

The last two millennia have become a key focus for recording this background variability, 

as they represent a sufficient amount of time with which to compare the recent observed 

warming. Additionally, as proxy records go back further in time the degree of certainty in 

the interpretation decreases. Even through the last two millennia comparisons between the 

5* or 6*̂  century AD with the 20* century, for example, may be difficult, although 

comparisons between the 5*̂  and 6*̂  centuries may be more valid (Jones et al., 1998). 

To put the recent warming into context chmate proxies must be quantified. Proxy records 

sampled at a high temporal resolution-can be directly correlated to recent instramental data 

(e.g. Esper et al, 2002 using tree rings) or proxy assemblages (e.g. of pollen, diatoms) can 

be compared to modem day assemblages and cUmatic tolerances through transfer functions 

(Birks, 1998) or mutual chmatic range models (Atkinson et al., 1987). Resulting 

relationships can then be used to qiiantify past chmates through changes in the proxy 

record. Palaeotemperature proxies have received particular focus and a range of 

temperature reconstractions for all or part of the last 2000 years now exist (Fig. 1.1) from 

tree rings (e.g. Briffa et al., 2001; Esper et al., 2002), and combinations of ice core, tree 

ring and coral data (e.g. Mann et al., 1998; Jones et al., 1998). These quantified records of 

past chmate are also important for the testing of climate models attempting to predict 

future chmate change. 
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Fig. 1.1 Northem Hemisphere temperature reconstructions over the last 2 millennia, and 
instrumental data, relative to the 1961 - 1990 mean. Blue line (Jones et al1998), green 
Une (BriflFa et al., 2001), black line (Mann and Jones, 2003) instrumental data is shown 
in red (from Mann and Jones, 2003). 

2 





These temperature reconstructions all show similar long-term trends, with a long-term 

cooling from 1000 AD to 1800 AD followed by a relatively rapid warming to the present 

day (Fig. 1.1). They all suggest that the temperatures recorded at the present day are 

unprecedented through the last two milleniua. The periods of coldest temperatures, during 

the 17* and 19* centuries, lie within what is conunonly know as the Little Ice Age (LIA), 

dated to between 1550 and 1900 in most studies, although with some variabiUty (Jones et 

al, 2001). The longer reconstruction of Mann and Jones (2003) identifies a period between 

800 and 1400 AD that is warmer than the preceding and following centennial -scale 

periods. This relatively warm, pre-LIA, period is Often referred to as the Medieval Warm 

Period (MWP; Jones aL, 2001). 

This study aims to obtain high-resolution records of climate variabiUty through the last two 

millennia in the Eastem Mediterranean. The region has very few pubUshed high resolution 

records through this time period (see discussion later in this chapter and in chapter 3) and 

is of cUmatic interest as it is influenced by Northem European, African, and Asian cUmate 

systems (BoUe, 2003; Chapter 3). 

1.2 Near East hydrology 

In the countries bordering the eastem Mediterranean Sea water is an important resource, 

and changes in hydrology, associated with the recent observed warming discussed above, 

may have social and political impUcations(Mann, 2002). Population in the region is 

increasing by 3.5 % each year and irrigation practices consume at least 80 % of the 

available water supply (Cullen and deMenocal, 2000). Changes in hydrology in better-

watered countries such as Turkey not only affect water availability in those countries but 

also that of neighbouring countries. Syria and Iraq, for example, rely on water from the 

Tigris and Euphrates rivers which rise in eastem Turkey. 

The Mediterranean basin is a region with an exceptionally long and rich history of human 

occupation, stretching back to the advent of Neolithic farming in southwest Asia around 

10,000 years ago (Roberts, 2002). Changes in hydrology are therefore also potentially 

important for understanding past changes in human occupation. The rich archaeological 

archive is one of the major factors leading to interest in the environmental history of the 

region, especially through the last glacial-interglacial transition and the Holocene (chapter 

3 reviews previous palaeoenvironmental work in Turkey). 
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Stable isotope values from lakes in the region tend to be a record of past hydrological 

balance (see "discussion in chapters 2 and 3). They are therefore an important resource for 

recording past changes in hydrology and obtaining knowledge of natural variability that 

may be needed to plan for future change, as well as understanding past changes in 

hydrology that may have impacted on former civiUsatidns. 

This study aims to obtain high-resolution records of stable isotopes from.lake sediments 

from sitesin westem Turkey. Thesesites were chosen to provide the high temporal 

resolution required to compare with other detailed studies of the past 2000 years as 

discussed above (chapter 4 discusses in detail the reasons for site selection). 

1.3 Lakes as palaeoarchives 

Lake sediments have been widely used as an archive for proxies of past environmental and 

climate change, and provide one of the few continuous archives from continental settings. 

They allow the recording of numerous proxies from the same core leading to more robust 

palaeoenvironmental reconstructions. Compared to free-rings and ice cores lakes have been 

underused as archives of environmental variability through the last two millennia, largely 

because they rarely have the detailed, annual chronological confrol through the entire 

record required for comparison with these high resolution records. Samphng of lake 

sediments is aliso rarely carried out on.a resolution that hears the annual variabihty 

measured in free rings and ice cores, although in most.lakes it is possible to achieve 

records with at least decadal resolution (Battarbee, 2000); However, lakes are widespread 

and therefore have the potential to fill in some of the spatial gaps left by the ice core 

records, which are concenfrated at the poles and ttopical mountains (e.g. Thompson et at, 

2002), and tree rings, where the current temperature records are largely from higher 

latitude sites (e.g. Esper et al, 2002; Briffa et al, 2002). This wide spatial distiibution 

leads to the potential for lakes to provide a network of sites to assess regional chmate 

variations on continental scales (Battarbee, 2000). 

There are limited numbers of lake records previously published for the late Holocene, at 

decadal or sub-centennial resolution. From Africa (Fig. L2) lake-level reconstructions 

from Lake Naivasha, Kenya, (Verschuren et al, 2000) and stable isotope records from 

Kajemarum Oasis, Nigeria, (Sfreet-Perrott et al, 2000) suggest that climate was relatively 
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Fig. 1.2 Late Holocene palaeolimnological studies from Africa, a) Lake level 
reconstruction from Lake Naivasha (Verschuren et al, 2000), b) stable isotope 
record from Kajemarum Oasis (Street-Perrott et al, 2000). 
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dry during the MWP and relatively wet during the LIA, although the largest shift in the 

Kajemarum record, from wet to dry conditions, occurs between 400 and 500 AD. In North 

America changes between a warm and dry MWP and cold and wet LIA were noted from 

changes in grain size in Pine Lake, Canada (Campbell et al., 1998) and Fritz et al. (2000) 

show drought periods in North Dakota, USA, throughout the last two millennia from 

diatom salinity reconstructions and ostracod trace-element chemistry. Moore et al. (2001) 

produced a palaeotemperature from Baffin Island, Canada, for the last 1250 years from a 

varve thickness record calibrated against instrumental temperature records from the recent 

past. The record shows the onset of a cold LIA around 1375 AD. 

Most of the early palaeolimnological studies in Turkey, as elsewhere (Schnurrenberger et 

al., 2003), were pollen reconstructions of past environments (e.g. van Zeist et al., 1975). 

However, more recently many additional proxies have been used for palaebcHmatic 

reconstructions (discussed in chapter 3), in particular diatoms (e.g. Reed et al., 1999; 

Eastwood et al., 1999) and stable isotopes (e.g. Leng et al., 1999; Roberts et al, 2001). 

The advantage of these other proxies over pollen is they record changes local to the lake 

catchment, rather than regional vegetation changes, and may be less influenced by human 

disturbance of the envirpmnent. In some cases changes in catchment vegetation will 

significantly affect the hydrology (Rosemneier et at, 2002) and therefore also change 

stable oxygen isotope values or lake salinity, recorded by diatoms. However stable 

isotopes, in particular, are less likely to be affected by land-use changes than regional 

pollen records. 

A number of stable isotope studies from continental archives in the region are now 

available, in particular from lake records (e.g. Leng et al., 1999; Tzedakis et al., 2002) but 

also from speleothems (Bar-Matthews et al., 1997) and land snails (Goodfriend, 1990). 

These isotope records have the potential to allow comparison of environmental change 

across the Mediterranean basin. However, which specific cUmatic and environmental 

factors drive the changes in stable isotope ratios remains under debate. Further 

understanding of cUmate-lake isotope interactions are needed for these records to be fully 

understood. 

Figure 1.3 shows the 5̂ 0̂ records from three Eastem Mediterranean lakes lying in 

comparable cUmatic settings, but the generally similar tiends in isotope values have been 
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Eski Acigol Van Zeribar 

Fig. 1.3 5'*0 records for the last ~12 kyr from three Eastem Mediterranean lakes. The data 
are plotted on sunilar depth scales, with dates (boxed numbers) in calendar years BP. The 
horizontal line marks the Pleistocene-Holocene boundary (Roberts and Jones, 2002; data 
from Roberts et al. (2001), Lemcke and Stnm (1997) and Stevens et al. (2001)). 
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interpreted differently from site to site. The record from Eski Acigol has been interpreted 

as following changes in the precipitation: evaporation ratio at the lake site (Roberts et al., 

2001), the lake Van record (Lemcke and Sturm, 1997) as recording evaporation changes 

due to changes in relative humidity and the oxygen isotope record from Zeribar (Stevens et 

al., 2001) has been interpreted as recording changes in the seasonality of rainfall. It is 

likely that all these, and other factors such as temperature, will affect the isotope values of 

lake waters and the resulting values of the carbonate preserved in the sedimentary record. 

The: dominant control on the lake-isotope system may vary from lake to lake and over 

different time scales. However, although the three records shown here have all been • 

interpreted differently they display common trends. Firstly, a clear shift to more negative 

6̂ 0̂ values during the late Pleistocene to early Holocene climatic transition and secondly a 

common trend towards more positive oxygen isotope values during the second half of the 

Holocene, although the precise timing of this shift appears to vary between sites. These 

common trends suggest large scale isotope trends in the lake records may ultimately be 

driven by the same controlling mechanism and this study aims to further understanding of 

Mediterranean lake isotope systems response to climate change. 

1.4 Summary of thesis aims and objectives 

This study aims to obtain high-resolution proxy records of climate change through the last 

2,000 years from the Eastem Mediterranean region via records of lacustrine chemical 

variabihty, particularly changes in oxygen-isotope values, by: 

- obtaining lake cofeswith precise temporal control i.e. varves. 

- high-resolution sampling and analysis of these lake sediments. 

To further interpretation of the stable isotope records other geochemical proxies, including 

mineralogy and colour analysis, will also be measured from the lake sediments. 

Additionally the thesis aims to calibrate high-resolution lacustrine stable isotope records 

with instramental climate data, and study contemporary lake isotope systems, to increase 

understanding of the controls on lake isotope dynamics in the Mediterranean region. 

Through the climate calibration and from modelling lake oxygen isotope variability the 

thesis wiU aim to quantify proxy records of past climate variability. The data obtained 
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during this study will be compared to previous work from the Eastem Mediterranean 

region and beyond to understand better changes in chmate through the last two millennia. 

1.5 Thesis Outline 

The thesis first discusses the controls on lake stable isotope values, the primary technique 

used in this study (chapter 2), and climate patterns in the Eastem Mediterranean and 

Turkey today, and through the Late Quaternary (chapter 3), to understand what the results 

from this study may mean in tisrms of chmate change through the last two rhillenma. The 

methods used during fieldwork and in the laboratory are explained (chapter 4) prior to 

presenting the results of analyses from the contemporary lake environment (chapters 5 and 

7) and for core samples from-two sites in cential Tinkey (chapters 6 and 7). Quantification 

of the proxy archives is attempted through calibration of stable isotope records against 

instrumental chmate records and modelhng of the lake stable isotope system (chapter 8). 

The results are then discussed in terms of global pattems of Late Holocene chmate change 

(chapter 9) as well as critically reviewing the methods used. 
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Chapter 2 

STABLE ISOTOPE PROCESSES IN LACUSTRINE ENVIRONMENTS 

Stable isotopes of oxygen and carbon have become widely used proxies for terreshial 

environmental and climatic change, with records produced from spelebthems (e.g. Bar-

Matthews etal, 1997), land snails (e.g. .Goodfriend;. 1990), and soil profiles (e.g. 

Zanchetta et al.,-2000) as well as lake sediment sequences (e.g. von Grafehstein et al., 

1999; Wei and Gasse, 1999). The high sensitivity of the freshwater isotopic system, 

relative to its marine counterpart (Smiver, 1970), allows detailed records to be obtained for 

periods of relatively stable climate, such as the Holocene (e.g. Lamb et al., 2000). 

However, lake chemistry systems are complex with many possible contiolUng mechanisms 

and an understanding of these is important before palaeoclimatic or palaeoenvironmental 

inferences can be drawn from geological records. This chapter will therefore review the 

processes contiolhng oxygen and stable carbon isotope ratios in the lacustrine system. 

Firstly, the processes contiolUng oxygen isotope values in the hydrological cycle are 

outUned (section 2.2), and the processes by which oxygen isotope values in lake waters 

may change as they are recorded by sedimentary proxies are then discussed (section 2.3). 

Conteols on the lake carbon budget and the possible resulting changes in 6̂ ^C values are 

also discussed (section 2.4). Examples of how theseprocesses have been used to interpret 

previous recdrdis of lacustrine stable isotope variability will be discussedin chapter 3 and 

in the interpretation of results from this study (chapters 5-7). 

2.1 Notation and standards. 

Stable isotope values are expressed in the delta notation e.g. 5D, 5^^0,5^^C (for the ratios 

^H/^H [D/H], ^W^O, ^^C/̂ ^C respectively), as relative values compared to a laboratory 

standard such that 

6X =[R (sample)-R (standard)/R (standard)] X loop (2.1) 

where R is the ratio ̂ "^"^XI " ^ ' X (e.g. ^^0/ ^^O). 
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Conventional standards are Standard Mean Ocean Water (SMOW), for isotope ratios from 

vi'aters,- and PDB [from a Cretaceous belemnite used in the first stable isotope experiments 

(Craig, 1957)] for carbonate materials. 

Oxygen and hydrogen-isotope records are often discussed together, as the controls on them 

are the same, although they respond at different rates to these changes. -Waters are often 

therefore plotted in 5D v. 5̂ 0̂ space in which precipitation isotope values describe the 

Meteoric Water Line (MWL); 

80 = ̂ 6^^0 + 4 (2.2) 

s is the gradient of the line and d the intercept of the line on the 5D axis, known as the 

Deuterium excess, d is initially fixed by the conditions of evaporation from the source 

water body, particularly by the initial relative humidity of the an- mass (Merlivat and 

Jouzel, 1979). The conttolUng factors on the slope of the tine are poorly understood 

although maybe related to relative humidity (see discussion below). Mean global 

precipitation values He along a Une (Global Meteoric Water Line; GMWL) where s = 8.1 ± 

0.1 and c? = 11 ± l(Dansgaard, 1964). More regional relationships have also been observed 

e.g. in the Eastern Mediterranean where 5 = 8 and d = 22 (Gat and Carmi, 1970). 

Other waters, such as those from rivers-or lakes, can therefore be compared to meteoric 

waters by their 6^^0 and 8D values (Fig. 2.1). Waters that plot away from the MWL have 

undergone additional fractionation, often as a result of evaporation where waters become 

increasingly enriched in ^̂ O as ̂ ^O is preferentially evaporated. The slope of this Local 

Evaporation Line (LEL), between the evaporated waters and their initial composition on 

the meteoric water line, depends on relative humidity, temperature and wind steength. The 

slope approaches s with increasing relative humidity (Leng, 2003). 

2.2 Isotope changes in the hydrological cycle 

Throughout the hydrological cycle processes occur which change the oxygen isotope 

values of water (Fig. 2.2). Here discussion will focus on changes in isotope values of 

preciphation (2.2.1) and during in-lake processes (2.2.2). 
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Fig. 2.2 Controlling factors on 6"0 and 5D in die hydrological cycle including lake systems (inset). Values given, (6) are for 5"0 and are 
general values to illustrate changes m the system. (After Gat (1996) and Rozanski et al, (2001), with additionaldata from lAEAAVMO (2001), 
A. Dirican (pers. com.), Stuiver et a/.(1995)). 



2.2,1 Controls on isotopes in precipitation. 

Following the early reviews (Craig, 1961; Dansgaard, 1964) which accompanied the 

formation of the IAEA global network for isotopes in precipitation (GNIP) a number of 

trends have been recognised between the oxygen and hydrogen isotope values of 

precipitation (5^^0precip, 5Dprecip) and physical and climatic factors. These include 

temperature (Rozanski et al, 1992), seasonality, altitude, continentality (Rozanski, 1985), 

the amount of precipitation, and precipitation source area (Rindsberger al, 1983). 

Temperature 

The temperature - precipitation isotope relationship is due to two factors (Cole et al, 

1999). Firstiy, as an air mass cools vapour islost through condensation, the air mass is 

consequently depleted in the heavier isotopes as these are preferentially condensed. 

Secondly, the isotope fractionation factor a, which determines the partitioning of the 

isotopes during phase tiansitions (e.g. evaporation and condensation), is also temperature 

dependent. 

a = Ra/Rb (2.3) 

where R is the ratio ^̂ O/̂ ^O or D/H and a and b are the two phases (e.g. water and water 

vapour). For example, values for the water to. vapour tiansition are 1.0098 at 20°C and 

1.0117 at 0°C for oxygen (Gat, 1996). 

The result of these factors is that increases in temperature are reflected by precipitation 

isotope values enhanced in ^̂ O (Fig. 2.3). This relationship has been shown to hold for 

long-term tiends in temperature and precipitation isotope composition for European 

stations (Rozanski et al, 1992) between 1960 and 1990, with an average shift of 0.6%o°C"^ 

Stuiver (1970) suggests a 0.7%o shift in 5^^0 for each 1°C change in AT, where AT 

represents the difference between the temperature during the evaporation of the air mass 

and the temperature at the time of precipitation. 

Seasonality 

There are also seasonal changes in the isotope values of precipitation although the degree 

of change is dependent on latitude and continentality. Over continental areas, there is an 

enhancement ofthe seasonal variations with increasing distance from the coast (Fig. 2.4). 
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These seasonal variations are due to larger seasonal temperature differences at mid and 

high latitudes (or more continental settings) compared to the tropics (or coastal areas), 

differences in the evaporation flux over the continents inducing seasonal differences in 

atmospheric water balance, and seasonally changing source areas or different storm 

trajectories (Jouzel, et al, 1997). 

Altitude 

From observations of the GNIP data a relationship has been observed between altitude and 

precipitation isotope values, a large part.of which is dueto the corresponding change in 

temperature. The observed relationships show changes of between -0.1%o and -0.6%o/100m • 

for 5^^0, with smaller changes at higher altitudes (Gat et al, 20Q1). 

Continentality 

As air masses lose moisture due to precipitation, the isotope values become lighter due to 

the preferential rain out of the heavier isotopes. Consequently precipitation further along a 

given storm track, for example, will be more depleted in ^̂ O than the first rains that fell 

from it. This pattern is illustiated by the comparison of waters from Northem Europe (Fig. 

2.4), where more easterly stations have considerably lighter precipitation 5^̂ 0 values. The 

continental effect varies considerably from area to area and from season to season (Gat et 

al., 2001), in the example shown here (Fig. 2.4) the difference in mean values between 

Valentia, on the Irish Atlantic coast, and Moscow, Russia,.is 7.6 %p, although the 

difference is much larger in winter compared to summer. 

Amount of precipitation 

Relationships have been observed between the amount of precipitation and 6^^0 

ODansgaard, 1964). For example, very heavy fropical rainfall may be exfremely depleted in 

6^^0. Rainfall values from convective storms in northwest Europe have changed by -7 %o 

within the space of one hour (Gat et al., 2001). Small amounts of rain, especially in more 

arid regions, can be more enriched in the heavy isotopes due to the evaporation of rain 

droplets as they fall to the ground. 

Source area 

Rindsberger etal. (1983) clearly demonstiate the effect of source area on precipitation 

isotope values (Fig. 2.5) in Gaaton (Israel), where precipitation isotope values fall into 

three distinct groups in 5D v 8̂ 0̂ space. These three groups correspond to the three main 
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Fig. 2.5 Rainfall isotope values from three different source areas recorded at 
Gaatdn, Israel (Rindsberger et ql, 1983). Group I rains from air masses arriving 
via the westem Mediterranean and the north African coast, group n from air 
masses entering the eastem Mediterranean from continental lEurope. Group in 
rains approach Israel from the south after travelling through central Europe and 
Africa. 
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trajectories for rain bearing air masses on the Israeli coast. These differences may be 

amplified by, or largely due to, differences in rain outhistory (see Continentality). 

2.2.2 Controls on lake water 5*^0 

Changes in the isotopic composition of water entering a lake are largely due to changes in 

the isotope composition of the rainfall as described above. Some change may occur during 

transport through thp catchment, e.g. due to evaporation, however the major controls on 

lake water values, depend on the hydrological setting of the lake. 

Open lakes 

Open lakes, with a permanent input and output and a short residence time, are controlled 

predominantly by isotopic changes external to the lake basin as discussed above (2.2.1). 

Closed lakes 

In closed lakes, where residence times are long, lake waters have the potential to become 

eraiched in ^̂ O due to the preferential removal of the lighter isotope during evaporation. 

This relationship can be demonstrated by comparing lake waters from closed lake basins, 

or in areas with negative water balance (evaporation > precipitation), with the M W L (Fig. 

2.1). 

A series of water masses from the same region may plot along a LEL. The interception of 

the.LEL with the M W L is taken to be the weighted average value of the annual 

precipitation for the region (Leng and Anderson, 2003); i.e. the value lake waters would be 

if there was no significant evaporation. 

The residence time of the lake is therefore important in the control of lake water isotope 

values. Closed systems may show greater variabihty in isotope values during a given 

chmate change (Leng and Marshall, in press) as isotope shifts due to changes in 

hydrological budget are larger than those caused by changes due to precipitation and 

temperature in open systems. However, due to the long residence times, changes in 5̂ 0̂w 

may be damped, especially in large lakes with residence times on century time scales, as 

the waters are an average of many years flux through the system (Leng and Marshall, in 

press.). 
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Non-climatic processes 

Although the residence time of lakes is important in controlling the isotope values of the 

lake waters, changes in hydrology may not always be due to changes in climate. Changes 

in groundwater inflow may change the amount of water entering the lake, with the 

potential to result in rapid shifts to more negative isotope values if there is a sudden influx 

of meteoric water. This may particularly occur in crater lakes where changes in 

groundwater hydrology may occur due to tectonic or volcanic processes (e.g. Roberts et 

d.,2001). 

Crater lakes have further possible influences on the stable isotope chemistry of their lake 

waters. The input of volcanic waters into the system and the heating of the lake water in a 

hydrothermal regime both effect stable isotope values. Varekamp and Kreuleh (2000) 

studied a series of volcanic lakes from Indonesia. A range of lake types was found ranging 

from those composed almost entirely of meteoric water to those including waters that had 

mixed with volcanic waters with a specific 5̂ ^0 and 6D composition. As a result of the 

differences, volcanic lakes were found to describe a concaveband on a 6^^0 v. 5D plot, 

compared to the normal straight evaporation line observed from non-volcanic lakes as 

waters from the hottest lakes, which therefore evaporate the most, also have most mixing 

with volcanic waters. In general terms, volcanic lakes therefore lie between the local 

evaporation line and the local mixing line for volcanic waters (Fig. 2.6). Additionally, 

lakes that are warm with respect to the atmosphere have a flatter evaporation line than cool 

lakes because of the stronger decrease in ocD relative to â ^O with temperature. 

2.3 Controls on stable isotopes in lake sediments 

Isotope values are measured from a number of proxies found in lake sediments. As well as 

the hydrological controls discussed above specific controlling factors are associated with 

each proxy. 

Sedimentary carbonate 

Carbonate in lake sediments comes from one or more of three main sources (Kelts and 

Hsu, 1978). Calcareous skeletons and shell material from organisms living within the lake 

may make up some of the sediment and can be used independently for measurements of 
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Fig. 2.6 Possible range of 5^̂ 0 and 5D values from volcanic lake 
waters (light grey shaded area; after Varekamp and Kreulen, 2000). 
With no influence of volcanic waters lake water will fall on the LEL, 
increasing influence of volcanic waters (shaded square) will move lake 
waters towards the local mixing line. 
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Ŝ ^O and 5̂ ^C (see discussion below). Clastic input may bring allochtonous carbonates 

eroded and transported from the catchment into the lake and thirdly, carbonate may be 

precipitated directly from the water column. 

Carbonate is precipitated in lakes as bicarbonate is utiUsed, to cope with the depletion of 

CO2 in the lake waters, during the photosynthesis of aquatic plants and algae (Siegenthaler 

and Eicher, 1986), where 

Ca++ + 2HC03-=C02 + CaC03+H20 (2.4) 

There is a temperature dependent carbonate-water fractionation of the oxygen isotopes. 

The values measured from the.precipitated CaCOs (Ŝ ^Ocaibonate) are therefore dependent on 

the temperature of the lake waters. 6^^0 values decrease at 0.24%o°C'̂  (Stuiver, 1970) as a 

result of this fractionation, although any changes in 5'̂ Ocaibonate will also be due to changes • 

in the lake waters. 

From experimental data the relationship between temperature, lake water isotope values 

and the isotope values of the precipitated carbonate can be expressed as: 

10001noC(caicite/water)=18.03(10V )̂-32.42 (Kim and O'Neil, 1997) (2.5) 

where T is the lake temperature in Kelvin. Using the relationship between calcite values on 

the SMOW and PDB scales (Coplen et al, 1983) and the approximation that: 

10001nOC(calcite/water) ~ = Ŝ ^Ocalcite (SMOW) - Ŝ ^Owater (SMOW) (2.6) 

equation 2.5 was re-expressed by Leng and Marshall (inpress) as 

T (°C) = 13.8 - 4.58(5c -5w) + 0.08(5c-5w)^ (2.7) 

where 5c is 5^^0 carbonate (PDB) and 6w is 6^^0 water (SMOW). 

It has been suggested (Mook et al, 1974) that there is a small temperature fractionation 

effect on 5^^C, with values becoming lighter with increasing temperature. However, the 
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effect is small, c. 0.08%o°C "\ and will therefore usually be lost in the overall isotope ' 

signal. 

In open lakes, where lake waters are controlled by changes in precipitation isotope values 

there are therefore two temperature controls on the recorded stable isottope values, firstly 

due to changes in precipitation values (section 2.2.1), e.g. at + 0.6%o/°C in northem 

Europe, and secondly due to the fractionation as carbonate is precipitated at -0.24%o/°C. 

Using these figures there is therefore an overall relationship of + 0.36 %o/°C, which rnay be 

used to quantify past temperature changes from isotope records if lake water values can be 

shown only to be conttoUed by precipitation isotope values in turn only controlled by 

temperature. 

Allochthonous carbonates from local bedrock will influence stable isotope values 

measured from lake sediments. The degree of influence is difficult to quantify, although • 

where this is possible the amount of allochthonous carbonate can be used as a proxy for 

inwash and any isotope values corrected to leave only the effect of authigenic carbonates 

(Hammarlund et al, 1999). 

Biogenic carbonate 

Carbonate shells of freshwater organisms such as osteacods and molluscs can also be 

measured for 5^^0 and 6̂ ^C values. Generally the carbonate used by these organisms to 

make their shells will form in equitibrium with the lake waters however there may be 

additional species-specific fractionation factors,.or "vital effects", especially in ostiacod 

shells (Holmes, 1996) that will shift isotope values away from equiUbrium values. As long 

as the same species can be analysed throughout asedimentary sequence this effect should 

be constant and tiends observed therefore dependent on temperature and isotope values of 

the lake waters. Mollusc shells are usually made of unstable aragonite and can often be 

replaced by calcite following deposition; this process may reset the isotope signature of the 

shell. 

It has been demonstrated, for both molluscs and ostiocods, that difl̂ erent species Uving at 

the same time in the same lake yield different 8^^0 and 8̂ ^C values (Jones et al, 2002; 

Heaton et al, 1995), probably due to differences in microhabitat water isotope values and 

differences in predominant periods of shell growth. 
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Ostracods and small molluscs represent only a short period of time, from a few hours to a 

year, and therefore a number of individuals need to be analysed from any sample level to 

show variation in 6^̂ 0 during the time represented by that sample. Larger fireshwater snails 

live for a number of years and have the potential to record seasonal changes in lake water 

6^̂ 0 over a period of time (Leng et al., 1999). 

Biogenic Silica 

5^̂ 0 values can be measured from sihca deposited by freshwater diatoms and sponges. 

This is a particularly useful technique in lakes where there is little carbonate to exploit. 

Biogenic silica has been used as a proxy for temperature change (e.g. Rosquist et al., 1999; 

Leng et al., 2001), although the exact temperature 5^̂ 0 relationship has yet to be fully 

explained (Leng and Marshall, in press). As well as teinperature shifts in silica Ŝ ^O 

records have also been interpreted as changes in the moisture balance regime (Barker et al., 

2001) or changes in the source of precipitation (Shemesh et al., 2001) reflected in changes 

in lake water 8^^0. 

2.4 Controls on lake 5̂ Ĉ 

Dissolved inorganic carbon (DIC) in lake waters is incorporated into carbonates and the 

6̂ ^C values of DIC reflect environmental changes in the lake carbon pool. Groundwater 

and river water entering the lake typically have 6̂ ^C values between -10 and -15 %o (Leng 

and Marshall, in press). Exchange of CO2 with the atmosphere, biological productivity, and 

changes in catchment vegetation types, may all then contribute to changes in the carbon 

isotope ratio (Fig. 2.7). 

Closed lakes have sufficient time for exchange with atmospheric CO2 (5^^C = -7.8 %©; 

Boutton, 1991) to have a significant impact on DIG 8̂ ^C values. Due to firactionation 

processes carbonates from lakes in equiHbrium with atmospheric CO2 may have carbonate 

6^̂ 0 values of up to +2%o (Valero-Garces, 1999). Within lake productivity of aquatic algae 

will also influence DIC. Increased productivity leads to more positive 8̂ ^C values as ^^C is 

preferentially incorporated into plant materials and therefore removed from the system as 

the plants are sedimented out. This effect will be cancelled out if the organic matter is then 

oxidised at the lake bed, releasing '^C back into the carbon pool. If additional terrestrial 

carbon occurs in the lake sediment the amount of released ^^C will be greater than that 
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Fig. 2.7 Major sources, with associated stable carbon isotope values, andfluxes in lake 
carbon budgets (after Leng and Marshall, in press). 
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removed by plams in the lake-waters resulting in a decrease in 5̂ ^C values (Meyers arid 

Teranes, 2001). 

Outside the lake, the stability of the catchment slopes is an important control on the carbon 

entering the lake. As soils develop in a catchment, land plants become estabhshed and ^^C 

enriched carbon (6̂ ^C = -25%o for C3 plants) may enter the lake through soils and organic 

matter dissolved in groundwaters (Wassenaar et til, 1990). A significant change in,the 

pknt types within the lake catchment may therefore affect the values of DICj C4.-plants • 

have 5̂ ^C values significantly more positive (~ -15%p) than the C3 value. Inwash of 

carbonate from rocks within the catchment with a set 6̂ ^C value (usually more positive 

than DIC values) will also effect the 8̂ ^C of the total DIC (TDIC). 

Organic matter 

The 5̂ ^C of organic matter is dependent on the influences on DIC, from which submergent 

aquatic plants fix their carbon (Tumey, 1999) as described above, and also on differences 

in 5̂ ^C between different sources of organic matter (Fig. 2.7). 

Commonly 5̂ ^C values are obtained from bulk samples of lake sedinient. Without some • 

secondary indicator ofthe source of the organic matter records are difficult to interpret, as 

lake algae and terrestrial C3 plants have a similar range in 5̂ ^C (Meyers and Teranes, 

2001). C:N ratios, can be used to identify the dominant source of the organic niatter as lake 

algae have values between 7 and 9 and C3 plantvalues are generally above 17 (Fig. 2.8). If 

the organic inaterialis.pfedominantly lake algae, Ŝ Ĉorgamc records are largely controlled 

by productivity, whereas 5̂ ^C values for terrestrial organic matter will depend on the type 

of source vegetation (see more detailed discussion above). 

Both5^^0 andS^^C can be measured from lake organic matter cellulose (e.g. Abbot et al, 

2000). Interpretation of these records is based on the assiimption that the fine-grained 

cellulose fraction analysed from lake sediments is derived solely from aquatic plants and 

algae and that the oxygen isotope fractionation between water and aquatic cellulose in 

known (Wolfe et al, 2001). 
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Fig. 2.8 Typical 8̂ ^C and C/N values of organic fractions in lake 
sediments (after Meyers and Teranes, 2001; additional data from 
Leng and Marshall, in press). 
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2.5 Summary 

There are a large number of factors cohtroUirig lake stable isotope values, all of which 

must be taken into account when interpreting palaeorecords. In general open lakes with 

short residence times will have lake water 5̂ ^0 values controlled by changes in 

precipitation, and sedimentary carbonate 6^̂ 0 will be additionally dependent on 

temperature at the time of carbonate precipitation. In closed lake systems 5^^0 values of 

the lake waters will be additionally controlled by evaporation. 

6^̂ C values also have many controUing mechanisms; primarily the degree of equiUbration 

with atmospheric CO2, particularly in lakes with longer residence times, and changes in 

lake productivity. Changes in catchment vegetation and inwash may also be important. 
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Chapter 3 

TURKISH CLIMATE: PAST AND PRESENT 

As well as understanding the controls that may affect lake chemistiy, as discussedin the 

previous chapter, an understanding of the regional climate regime, which may lead to changes 

in these conditions, is also important before correct inferences can be drawn from proxy 

records.. This chapter will therefore review current knowledge regarding climate in Turkey and 

the atmospheric processes controlling it. Previous stadies of past climatic clunate change will 

be also be reviewed to understand how the region responds to large scale climatic events and 

over long time periods. 

3.1 Contemporary Climate 

The Mediterranean climate zone is characterized by wet, mild "winters and hot, dry, cloudless 

summers (Kendrew, 1961) with autunm tending to be warmer than spring. In general, sununer 

conditions are similar to North Africa with winter climates more comparable to northem 

Europe. During the winter the Mediterranean basin is under the influence of the westerlies 

(BoUe, 2003) and the descending branch of the Hadley circulation, duringthe simmaer (Fig. 

3.1). 

The climate of Turkey is more complex than this simple Mediterranean picture, and only the 

southern Mediterranean coast can be described as having a truly Mediterranean climate. Three 

major physical factors contribute to this more complex climate regime (Tiirke§, 1996): 

1) High mountain ranges mn west to east along both the northem and southern edge of the 

Anatolian Peninsula. 

2) Turkey sits between three major water bodies, the Mediterranean, the Aegean and the 

Black seas. 

3) The Anatolian.Plateau has a mean elevation of over 1100m. 
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Fig. 3.1a Wind climatologies at 850 hPa showing differences between wmter 
(JFM) and summer (JAS) conditions over the Mediterranean basin (Raicich et al. 
2003). 
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Fig. 3.1b Streamlines (averaged between 15 and 35E) showing differences 
between winter (JFM) and summer (JAS) conditions over the Mediterranean 
basiu (Raicich et al., 2003). 
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Precipitation 

The mountain ranges provide a barrier to maritime polar (from the Atlantic) and 

Mediterranean air masses moving on to the northem and southern coasts of Turkey, 

respectively. This leads to varying amounts of rainfall across the country (Fig. 3.2). 

Precipitation from the maritime polar air masses on the Black Sea coast is heavy through 

autumn, winter and spring, although rain also falls through the summer. Air masses that reach 

the south coast from the Mediterranean bring heavy rains through the winter, although 

summers are very dry. 

The three basins that surround Turkey act as natural passages for frontal cyclones, moving east 

across the Mediterranean, around the higher-pressure systems that usually sit over the Turkish 

peninsula. The highest numbers of depressions reach Turkey in the winter months, over half of 

which follow track mb (Fig. 3.3), across Italy and Greece, and reach Turkey via the west coast. 

These depressions may be sourced in the Westem Mediterranean or modified there after 

forming in the mid-latitade Atlantic. Tracks I and n are typically summer time tiajectories 

bringing sununer storms to the north of the country, tiacks HI and IV are the dominant winter 

storm paths, affecting tiie south (Karaea et al., 2000). 

The height of the Anatolian plateau, particularly the high mountains in the east of the countiy, 

means that winters are coMand snowy across most of Turkey, 

A number of rainfall regimes were assigned by Tiirke§ (1996) to account for the changes in 

rainfall pattems across Turkey (Fig. 3.4). The Black Sea region is temperate with rainfall 

throughout the year; maximum precipitation is in the autamn. The Mamara region, a 

fransition between the Mediterranean and the Black Sea on the westem coast, again has 

precipitation throughout the year but with lighter rains through the warm sununer. The 

Mediterranean region is markedly seasonal with heavy rains in the cool winters and warm dry 

sununers. In the Continental Mediterranean rain falls in the winter and spring but summers 

are severely hot and dry. Continental Central Anatolia has cool, wet springs and winters 

with some light precipitation during the warm summers. The transition between cential 

Anatolia and the Mediterranean region has only moderate rains through winter and spring. 
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Fig. 3.2 Mean total precipitation across Turkey (Turkey, 2003). Red circles mark sites 
in this study A. Nar GoliJ; B. Burdur Gdlu (see chapters 5 and 7 for details). 

Fig. 3.3 Dominant storm tracks affecting Turkey (Karaca et al., 2000). 

Fig. 3.4 Turkish rainfall regimes (Turkey, 1996). See text for description. 
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Continental Eastern Anatolia has very cold and snowy winters with cool springs and early 

sununers accornpanied by light rains. 

Temperature 

The complexity of Turkish climate is also evident in the temperature pattems (Fig. 3.5). Major 

controls on temperature include topography and proximity to the sea. In general annual mean 

temperature decreases away from the coastal region and to the eastern part of the country 

where the topography is considerably higher. The highest mean temperatares are found along 

the Mediterranean coast (20°C). Along the Black Sea coast annual mean temperamres are 

around 12°C, compared to averages between 8°C and 12°C in the interior of the country 

(Turke§ efaZ., 1995). 

Aridity 

Large parts of Turkey have an annual moisture deficit, where potential evapotransphation (PE) 

> precipitation (P). Fig. 3.6 shows the spatial distribution of an Aridity Index (Al = P/PE) for 

Turkey. Large parts of continental Anatolia are dry sub-humid regions (0.50 < A l < 0.65) with 

certain areas, especially in south cential Turkey between Tuz Golii and the Taurus Mountains, 

semi-arid (0.20 < A l < 0.50) (Tilrkej, 2003). 

3.2 Recent Climate trends 

Meteorological records are aviailable at some sites in Turkey from 1926. However many of. 

these stations have been moved from time to time during this time period, and the longest 

records are found in the largest centers of population some of which have undergone periods 

of severe atmospheric pollution in the latter half of the twentieth century, which may affect 

meteorological observations (Tiirke§ etal., 1996). 

Looking at average temperamres between 1930 and 1992, for the whole of Turkey, Tiirke§ et 

al. (1995) found a general wanning tiend from 1930 to the late 1960's followed by an overall 

cooling trend, interrupted by a brief wanning from about 1972 to 1980 (Fig. 3.7). A more 

detailed study of the data between 1940 and 1993 (Tiirke§ et al, 1996) showed a general ttend 
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Fig. 3.5 Mean temperatures across Turkey (after Turkey et al., 1995). 

Fig. 3.6 Mean values of aridity index across Turkey (Tiirkes, 2003). Red circles mark sites 
in this smdy A. Nar Gdlii; B. Burdur Gdlu (see chapters 5 and 7 for details). 
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Fig. 3.7 Recent trends in Turkish temperatures (data from Turkish State 
Meteorological Service), black lines show ten year running means. 
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of cooling in the seasonal maximum temperatures and warming in the seasonal minimum 

temperamres resulting in an overall decrease in the temperatare range across Turkey. 

There are few trends in the amount of rainfall through the time period covered by 

meteorological observations across Turkey. Those individual stations which do show a 

statistically significant trend, mosfly in the Mediterranean rainfall regime, show a downward-

trend mosfly during die last 25 - 30 years (Turke§, 1996). 

3.3 Controls on cUmate 

Some of the shiftsin precipitation and temperamre across Turkey can be linked to hemispheric 

and global climate phenomena. 

North Atlantic Oscillation (NAO) 

The NAO describes pressure differences between the Azores High and the Icelandic low. 

Numerical indices describing this relationship are based on locations representative of these 

pressure systems e.g. between Lisbon, Portugal and Stykkisholmur, Iceland OHurreU, 1995).-

The negative NAO state, where the Icelandic low is relatively high, results in an increase in 

storm tiacks that enter the Mediterranean basin. Eastem Mediterranean climates are linked to 

this North Aflantic activity via the secondary genesis of cycloiiic storms near Crete, Cyprus 

and the Black Sea, foUowingthe storm tiacks entering'the Westem Mediterranean (Cullen and 

. deMenocal, 2000). The NAO index is more pronounced during winter months due to an 

increased sea-air temperature contiast. 

Tan and Unal (2003) show that the result of this teleconnection is that Tvukey experiences 

drier winters during positive NAO index years. During NAO negative years southern Turkey 

experiences wetter conditions although the northeastem region is relatively dry. Mann (2002) 

shows that during positive NAO phases the eastem Mediterranean would experience cooler 

than normal temperatures. 

36 



North Sea-Caspian Pattern (NCP) 
Kutiel and Benaroch (2002) have described a teleconnection between the Eastem 

Mediterranean and the North Adantic climate systems. The NCP index defines the difference 

inthe 500-hPa geopotential height between the North Sea and the North Caspian Sea. The 

index is defined such that a negative NGP phase relates to higher pressure over the Caspian. 

Sea. Teleconections are more frequent and sfronger in the winter months compared to summer. 

Kutiel et al. (2002) showed that this index was associated with changes in temperatures and 

precipitation in Turkey. The positive phase of the NCP is associated with below normal 

temperatures due to increased northeasterly winds over Turkey. Higher temperatures due to 

increased southerly winds are associated with negative phases of the NCP OFig. 3.8). 

The impact on rainfall variability is more complex. In regions dominated by southern maritime 

fluxes, such as the Mediterranean and Mediterranean to Cehfral Anatolian transition rainfall 

regimes, there is increased rainfall during negative phases of the NCP. In regions dominated 

by northerly maritune fluxes, such as the Black Sea rainfall regime, rainfall is higher during 

the positive NCP phases (Kutiel et aZ., 2002). 

Southern Oscillation (SO) 

The SO describes a shift in surface air pressure between Darwin, Ausfraha and Tahiti in the 

South Pacific. When the pressure is high at Darwin it is low at Tahiti and vice versa (NOAA, 

2003). Global climate events are often associated with E l Nino and its sister event La Ninaithe 

extreme phases of the SO. El Nino refers to a warming of the eastem fropical Pacific, and La 

Nina a cooling. 

Kahya and Karabork (2001) describe a connection between Turkish streamflow and SO 

exfreme events. During El Nino events Turkey experiences exfreme wet seasonal streamflow, 

and it is drier in Eastem AnatoUa during La Nina phases. Mann (2002) also finds a connection 

between temperatures in the Middle/Near East region and SO suggesting cold anomalies in the 

region during La Niiia events. However the relationships are not as strong as those with the 

NAO. 
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Fig. 3.8 Extreme phases ofthe Norfli Sea-Caspian 
Pattern (Kutiel and Benaroch, 2002). Showing areas of 
relative high (+) and low (-) pressure and dominant 
wind directions fornegative (a) and positive (b) phases 
of the NCP. 
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Although the relationships are statistically significantly between the SO and Eastem 

Mediterranean climate pattems there is as yet no simple causative explanation for such a 

teleconnection (Kutiel et al., 2002). 

Indian Monsoon 

During the sununer Turkish climate is linked to the Indian Monsoon via the zonal tiopical 

circulation which is coupled to tiie Hadley cell (BoUe, 2003), Raicich et a/. (2003) show that, 

increased Indian monsoon precipitation occurs during times of lower atmospheric pressure 

over the Eastem Mediterranean. There is a similar correlation with rainfall in the Sahel region 

of northem Africa. iAlthough the exact mechanism for the connection between these weather 

systems is unclear (Raicich et al., 2003) it appears that the Eastem Mediterranean is connected 

to northem African and Indian Monsoon systems during the summer. 

3.4 Previous palaeoclimatic work in Turkey 

Turkey has been the focus of a sigiuficant amount of palaeoenvironmental work, driven by 

questions related to climaticchanges in the Mediterranean compared to other regions, and of 

past human occupation. The majority of this work has come froin lake cores although tiee 

rings have also been used for reconstractions of more recent clunate changes. The sites 

discussed here, describing climate variability in Turkey fi:Om the late Pleistocene through to 

the last milleniuinj are shown in Fig. 3.9. 

Late Pleistocene 

Pre-Holocene lake sediments have been recovered firom a few Turkish lakes, although dating 

contiol on these records is limited they do show changes in Pleistocene climate. A record 

between 27 and 58 ka BP from Lake Pmarba§i shows emiched 5̂ 0̂ firom carbonate material 

around 58 ka and between 30 and 35 Ka BP, interpreted as periods of relatively warm 

summers (Leng et al., 1999). These warm summers correspond to periods of increased spring 

snowmelt inferred from 5̂ 0̂ records from diatoin siUca in the same core. Diatom inferred • 

salinity remains constant throughout the record (Reed et al.,-1999). A 8̂ 0̂ and diatom inferred 

salinity record from the nearby Lake Suleymanhaci suggest that prior to 23 ka BP the region 
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Fig. 3.9 Sites of palaeoclimatic studies in Turkey discussed in the text. (Lake sites, black circles; 1. Gdlhisar, 2. Bey^ehir, 3. Pinarbasi, 4. 
Suleymanhaci, 5. Akgdl, 6. Eski Acigdl, 7. Van. Tree ring sites for Touchan etal. (2003) reconstruction (8,9,10), D'Arrigo and Cullen (2001) 
precipitation reconstmction for Sivas (11.))- Red circles mark sites in this smdy A. Nar Gdlii; B. Burdur Gdlii (see chapters 5 and 7 for details). 





was arid relative to the Holocene, dueto the more positive 5̂ 0̂ values and higher conductivity 

in this closed lake basin. 

Last glacial-interglacial transition 

Gn the basis of die pollen stratigraphy Landmann et dl. (1996) and Wick et al (2003) describe 

an arid or semi-arid climate around 13,600 yr BP recorded in Lake Van. There is a decrease in 

the number of trees and increase in Artemisia between c. 11,500 yr BP and. 10,506yr BP 

suggesting drier conditions and a dechne in vegetation.at the tiihe of the Younger Dryas event 

in northem Europe. The number of teees begins to increase slowly, as climate becomes warmer 

and wetter from 10,500 yr BP. 

From the same lake Lemcke and Smrm (1997) describe a rapid and large (5.6%o) shift tb more 

negative 5̂ 0̂ values between 10,950 and 10,460 varve years BP. This follows a steady frend 

to more positive values between 12,600 and 10,950 varve years BP. This isotope tiend is 

interpreted as a proxy for relative hunudity with a trend to more arid conditions during the 

Younger Dryas type event followed by a rapid shift to more huncud conditions at the beginning 

of the Holocene. Values prior to 13,000 yr BP are similar to those of the early Holocene, and 

may correlate with the Boiling-Alerod stage of northern Europe. 

A similar tiend in 5̂ 0̂ values is shown at Eski Acigol (Roberts et al, 2001); Here there is a 

shift to more negative values around ~ 16, 000 yr BP (Fig. 3.10) prior to a tiend to more 

positive values and the rapid shift to negative values at the beginning of the Holocene 

(-12,000 yr BP). The changes in 6̂ 0̂ are interpreted as changes in the precipitation: 

evaporation ratio, with the shifts to more negative values at 16, 000 and 12,000 yr BP due to 

increases in precipitation as climate warms. A dramatic shift in vegetation is observed at 

12,000 yr BP as well as tiie rapid and large shift in 6̂ 0̂ (Fig. 3.10). There is a dramatic 

reduction in steppic herbs and an increase in grasses again suggesting a more favorable water 

balance. Tree pollen, as at Van, increases more slowly. 
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Fig. 3.10 Climate proxy records from Turkey through the last glacial-interglacial transition and the Holocene from Eski Acigdl (Roberts et al., 
2001), Akgdl (Leng et al., 1999) and Golhisar (Jones et al., 2002). The right hand chart describes general climatic shifts described by these 
records. Bold lines tie pollen depth stratigraphy to Eski Acigdl age model as analyses from different cores (Roberts et al., 2001). 



At Akgol (Leng al, 1999) there is also a negative shift in 8 O at the start of the Holocene 

(Fig. 3.10). This shift is interpreted as being due to an increase in precipitation or by increased 

amounts of snowmelt with waters depleted in ^̂ O entering the lake system as the climate 

warms. ^ • • 

Pollen and stable isotope records both suggest that in Turkey climate changed from cold and 

dry to warm and wet froin the last glacial into the Holocene. 

The Holocene 

The slow increase in arboreal pollen has been observed elsewhere in the region as well as at 

Van and Eski Acigol (Eastwood et al, 1999). At Van, Holocene tiee pollen reached a 

maximum between 6200 and 4000 yr BP, interpreted as the Holocene cUmatic optimum for 

the region (Wick etal., 2003). However, it has been suggested (Roberts, 2002) that tiiis. slow 

increase, compared to the rapid change in smaller vegetation at Eski Acigdl and the rapid shift 

in 8̂ 0̂ values from many records across the region (Roberts and Jones, 2002), is due to 

anthropogenic influences on the landscape. Early NeoUthic settiers and trees would be 

competing for the same space asclimate became more hospitable for both and even limited 

land management may have lead to the slow rate of tiee advance following the climatic 

amelioration. 

Certain pollen types can be used to show previous-peripds of human occupation. F6r example, 

cores from a number of lakes in south-west Turkey, including Bey§elur and Golhisar (Bottema 

and Woldring, 1984; Eastwood et al., 1999), show a period of human occupation between 

-3200 BP and -1500BP marked by the reduction of arboreal poUen due to forest clearance and 

the appearance of cereal and other crops such as olives in the pollen record. 

Stable isotope records from Eski Acigdl and Van show a trend to more positive values through 

the Holocene, both suggesting that conditions have become more arid. At Eski Acigdl, 8̂ 0̂ 

records stabiUse at these more positive values around 6000 yr BP. The 8'^0 record at Van 

shows a period between 4,190 and 2,000 varve years BP of more arid conditions. The trend to 

more arid conditions has also been observed in other isotope records from Golhisar (Jones et 
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al, 2002) and Suleymanhaci, where diatom inferred conductivity also increases into the late 

Holocene again suggesting more arid conditions (Reed et ah, 1999). 

As all the stable isotope records through the Holocene come from closed lakes, where changes 

in climatic proxies are driven by changes in water balance, it is difficult to know how 

temperatares have changed in association with the observed shift to more arid conditions from 

the beginning of the Holocene. 

The last millennium 

Touchan et al. (2003) reconstincted May-JUne precipitation between 1339 and 1998 AD (Fig. 

3.1 la) in southwest Turkey from the composite record of three tiee ring records. The 

reconstmction was based on the correlation between the first and third principle components 

of these data sets and gridded precipitation records between 1931 and 1998. In total 139 

drought events, with a mean interval of 4.8 years between them, were observed in the record, 

with the single driest spring in 1746 and the longest period of drought between 1476 and 1479. 

Extended wet periods, were most prominent between 1532 to 1535 and 1688 to 1690. . 

A shorter, 350 year (1628 to 1980 AD), reconstruction of precipitation at Sivas (Fig. 3.11b) 

has also been obtained from a composite record of 5 tree ring records from across Tuirkey 

(D'Arrigo and GuUen, 2001). The most extieme.drought years in this record are in 1660,1746 

and 1887. The wettest years were found in 1689,1709 and 196.0. 

The most extieme dry event in 1746 and the wet event of 1689 are common to both 

reconstmctions. 
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Fig. 3.11 Precipitation reconstructions from tree rings through the last 700 years from Turkey (a, D'Arrigo and GuUen, 2001; b, Touchan etal., 
2003). 



3.5 Summary 

Climate in Turkey has changed on different scales through the past 50,000 years. Some of 

these changes have affected the whole country e.g. most records display a rapid shift to wet 

conditions at the beginning ofthe Holocene followed by a trend to more arid conditions. Dry 

events have been recorded in tree rings from across the country in 1746 with a wet event in 

1689. Other frends appear in individual records aniprobably describe more local climatic 

variations. , • ' 

Stadies of climate variations through the last 80 years have shown that shifts in Turkish 

climate are related to changes in atmospheric circulation as described by indices such as the 

NAO and the NCP during the winter, and to the Indian Monsoon and Hadley circulation 

dining the summer. 
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C h a p t e r 4 

METHODOLOGY 

4.1 Selection of Study Sites 

The aims of this study were to produce high-resolution, well-dated records of cUmate 

change-through the late Holocene, arid to calibrate lacustrine stable isotope variability with 

meteorological data. The sites chosen for the study therefore needed a high degree of 

chronological control, preferably annual e.g. from laminated sediments. 

Preliminary investigations by Prof. Neil Roberts and co-workers in 1999 had identified Nar 

Golu, a crater lake in the Cappadocian region of central Turkey (see chapter 5 for location 

and full site description), as having laminated sediments similar in nature to the non-glacial 

varves described by Kelts and Hsu (1978) from Lake Zurich. Nar is also a smaU, 

hydrologically closed system and therefore would likely be isotopically sensitive to the 

relatively subtle climate variations pf the late Holocene. The volcanic catchment also 

.contains rio carbonate rocks, so all carbonates in the lake sediments would be authigenic. 

There is a small possibility of influx pf soil carbonates into the lake but soil formation in 

the catchment IS very limited and is unUkely to have a significant impact. 

A number of other lakes (Golciik (Isparta), Lake Salda, and Lake Burdur) were investigated 

to look for a second site to compare with the record from Nar. Lake Burdur (see chapter 7) 

was the only other site found to have laminated sediments and was therefore chosen. The 

lake Ues within a slightly different cUmatic region of Turkey and is much larger in size, 

although also a closed system, and therefore makes an interesting comparison to Nar. 

4.2 Field Methods 

Fieldwork consisted of investigations of the contemporary lakes being studied, to better 

understand contiols on the lake stable isotope systems, and sampling of core sequences for 

studies of past changes in lake stable isotope values. 

47 



4.2.1 Water Sampling 

Lake waters were sampled for pH, conductivity, temperature and stable isotopes during 

summer field seasons in 2000,2001 and 2002 and water samples were also collected in 

April 2002. As well as surface waters, depth profiles were taken to observe any 

stratification of the lake waters. Temperature and pH were measured by a Hanna 

instruments HI 9025 pH Meter and conductivity with a Hanna HI 9033 Conductivity 

Meter, 

Water samples for stable isotope analysis of oxygen, hydrogen and carbon were collected 

to understand the present day stable isotope hydrology of the lake, thereby allowing better 

interpretation of palaeorecords of stable isotope change. Water samples were taken in leak 

proof plastic bottles that had been washed 3 times in the sample and additionally sealed 

with plastic insulating tape to reduce the risk of contamination. Lake surface samples were 

taken at 0.5 m depth to remove any dhect effects of exchange with the atmosphere, which 

may change on a daily or hourly basis. Bottles were filled completely to prevent isotopic 

exchange with any air bubbles. Total dissolved inorganic carbon (TDIC) was precipitated 

from the water on site with tiie addition of BaCl2.NaOH solution. This, prevents exchange 

within the sample's carbon budget due to photosynthesis by any remaining organic matter 

before the sample can be analysed, The samples were refrigerated at the earliest 

opportunity, until analysis could be undertaken. 

4.2.2 Bathymetry 

A picture of lake bed morphology is required before coring can take place. Cores were 

taken from the deepest and flattest part of the lake basin where sediment is most likely to 

accumulate horizontally and have least disturbance from catchment inwash. A calculation 

of lake volume, requiring bathymetry, was also required for accurate hydrological 

modelling of the lake systems. 

Lake depth was measured using a Garmin Fish Finder across a number of north-south and 

east-west tiansects across Nar Gdlu. The depths measured by the fish finder were calibrated 

and confirmed using a weighted tape measure at the full range of depths across the lake. 
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The depths recorded electronically were found to be correct to within 10 cm. Lake volume 

was calculated from these transects using RockWorks computer software. 

4.2.3 Sediment traps 

The primary use of sediment traps in lacustrine environments has been to give an estimate 

ofthe sedimentation rate and to understand the composition of the sediment (e.g. Dillon et 

al, 1990; Nuhfer et al., 1993). In this study sediment traps vyere used for the collection of. 

sediment falling through the water colunm at Nar Golii, for comparison of sediment 

chemistry with the isotope values from the lake waters and those of the surface sediments, 

as well as to observe the type of sedimentation during one year in the lake. Sedimentation 

rate was not the aim of the study and therefore the primary design requirement for the traps 

was that they could be easily transported and constructed. 

Traps (Fig. 4.1) were secured at two depths in the water colunrn; at two separate locations 

in the deepest part of the basin, in July 2001 and collected in August 2002. 

4.2.4 Lake coring 

With advances in palaeolimnology over the last 50 years a number of methods have been 

developed for sampling sediment archives from the bottom of lakes (e.g. Lotter et al. 

1997). The choice of coring system depends on the length of record required and the 

physical properties, most significantly water depth, of the lake under investigation. 

In this study undisturbed cores were required covering the last 100 - 200 years for 

comparison of proxy records with meteorological records and to obtain •̂ °̂Pb dating 

profiles. It was also important to recover the sediment water interface, to be confident that 

the top of the core represented the most recent sediments. At both Nar Gold and Lake 

Burdur (July 2001) a Glew corer (Glew, 1991) was used to sample the surface sediments 

(Fig. 4.2). 
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Fig. 4.1 Sketch showing location of sediment traps in the water column in Nar Gdlu (A), with a photograph (B) and cross section (C) of one ofthe 
traps. 









It was found that with a 50 cm core tube, 30 - 50 cm of sediment was regularly recovered 

including an undisturbed sediment water interface. However, the soft surface sediments at 

Nar Golu led other coring systems (used for obtaining longer cores) to penetrate beyond 50 

cm sediment depth. Longer tubes were therefore added to the Glew corer resulting in the 

retrieval of 60-65 cm of sediment. This was sufficient to overlap with the longer core 

sequences. 

Due to the laminated nature, of the sediments at Nar and Burdur if was important that the 

sediments were as undisturbed as possible so sampling could be carried out at an inter-

laminae resolution. To achieve this Glew cores were retumed to the laboratory within the 

core tubes, packed at either end with Oasis, after all bottom waters had been removed, and 

heavily taped. In some cases drying and shrinking of the sediment occurred, however no 

stratigraphic integrity was lost. 

Preliminary investigations at Nar (September 1999) had used a Im Mackereth corer 

(Mackereth, 1969) but investigations for this study required a longer sequence. A 

Livingstone coring system was used initially (Livingstone, 1955, Wright,. 1967) resulting in 

a 5m sediment sequence being recovered (July 2001). 

The Livingstone corer only produces cores of Im length and the top and bottom of the core 

sections are often disturbed. To gain a continuous sequence it was therefore necessary to 

take-two overlapping cores in close proximity to each other. Due to the depth of the water 

at Nar a core liner, constructed frorh plastic down-pipingi was first lowered into the 

sediment to guide the corer and rods and to keep them from drifting or bending in the water 

colunm. Similar piston systems have been used where one drive, with core tubes 3.5 m or 

7.5 m long, produce much longer cores (Wright, 1980). This technique would have been 

unsuitable for use at Nar Golii due to difficulties with handling the weight of rods and 

sediment through 25m of water. Further, continuous cores from Nar were taken in summer 

2002 using a 3m Mackereth coring system (Mackereth, 1958; Fig. 4.3). 

Both Im and 3m Mackereth samplers were used to obtain cores from Lake Burdiu: during 

the Slimmer 2002 field season. 
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On retrieval, the core sections were extruded into lengths of half guttering, and covered in 

non - PVC cling film to prevent the sediments reacting with the plastic. The two halves of 

guttering were then taped and sealed within lay-flat plastic tubing after being carefully 

labelled with the top and bottom of the core and the depths from the water surface. At the 

earliest opportunity the core sections were refrigerated at 4°C. 

4.3 Laboratory methods 

4.3.1 Core preparation and sanipling 

On retum from the field both Glew and Livingstone core sections were cut in half 

lengthways with cheese wfre and rewrapped in clean noh-PVC cling-film. The core 

sections were then kept refrigerated. The half core sections were cleaned to remove 

smearing caused during the cutting and then described and photographed. 

Once all cores had been described a master sequence was constmcted from the Livingstone 

core sections. Correlation between the cores was possible due to the detailed stiatigraphic 

variation of the laminated sediments. 

Laminae counting 

Cores were pinned at equivalent laminae, at approximately 6 cm intervals, and the numbers 

of laminae in each section were counted independently by two counters. If the difference 

between two counts for any given, section was greater than 3. laminae both counters 

recounted the section until agreement was reached. 

Colour measurement 

As the entire sequence from Nar comprises laminated sediments, changes in the core were 

best described by changes in colour. Grey scale changes, on a scale from 0 (white) to 255 

(black), were measured quantitatively from digital (Tiff) images of the core sequence in the 

analysis image analysis software (Fig. 4.4). 

This method also provides a further numerical data-set of change in'the lake system. Grey 

scale values recorded from laminated sediments elsewhere, from both lake (e.g. Schaaf and 

Thurow, 1997) and marine sediments (e.g. von Rad et al, 1997), have shown that colour 
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1. Colour (Tiff) image 
of core surface 

2. Convert colour image 
to greyscale 

3. Use analysis programme to 
measure greyscale along a line or 
of individual points 

4. Greyscale measurement 
along a line 

5. Greyscale 
measurement 
of pale laminae. 

Fig. 4.4 Method for greyscale analysis of the Nar Sediments. The final data set 
of the mean value of three point measurements for each pale lamina (5). 
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analysis is not a stand alone technique and requires high-resolution analysis of other 

proxies to establish any link between colour and cliniate (Shaaf and Thurow, 1997). 

Sampling 

Samples could then be taken from the cores for palaeoenvironmental proxy analysis. 

Individual laminations were sampled by scraping successive laminae from the top of the 

core, and prepared for geochemical analysis (Fig. 4.5). 

4.3.2 Dating 

Dried sediment samples were analysed for ^^°Pb, ^ '̂'Ra and ^̂ ^Gs by direct gamma assay in 

the Liverpool University Environmental Radioactivity Laboratory, using Ortec HPGe GWL 

series well-type coaxial low background intrinsic germanium detectors (Appleby et al. 

1986). ^^°Pb was determined via its gamma emissions at 46.5keV, and ̂ ^^Ra by the 

295keV and 352keV y-rays emitted by its daughter isotope ^ '̂'Pb, following 3 weeks 

storage in sealed containers to allow radioactive equilibration, ^ '̂Cs was measured by its 

emissions at 662keV. The absolute efficiencies of the detectors were determined using 

calibrated sources and sediment samples of known activity. Corrections were made for the 

effect of self-absorption of low energy y-rays within the sample (Appleby et al. 1992). 

Samples were dated by '̂*C detection in an accelerator-mass-spectrometer (AMS) by Beta 

Analytic Inc. 

From the Nar sediments, bulk organic sediments were first washed in acid to remove any 

carbonates. Carbonate sediments were dated without undergoing any pre-treatments. 

Wood fragments were picked from the Burdur sediments under a binocular microscope 

after the very fine clay fraction had been decanted following settling of agitated samples in 

beakers for 24 hours. Prior to dating the sample was washed in hot HCl to remove 

carbonates and then in NaOH to remove secondary organic acids.The alkaU washes were 

followed by a final acid rinse to neutialise the solution prior to drying. 
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Create core master sequence from core sections. 

Photograph and describe 

Count Laminations 

Light Laminae 

Grey Scale Values 

Dark Laminae 

Overnight in 5% Sodium Hypochlorite 
to remove organics 

XRD 

Phosphoric acid dissolution 

COj mass spectrometry 

8"0 5"C 

Carbonate Mineralogy 

Overnight in 5% Hcl 
to remove carbonates 

Combustion 

Thermal conductivity COj mass spectrometry 

C/N ratio 6"C. 

Fig. 4.5 Typical processes for core samples from Nar taken during this study. Cores from 
Lake Burdur underwent a similar process. 

56 





4.3.3 (Jeochemistry 

Water analysis 

Analysis of water samples, for isotope ratios of oxygen and hydrogen, were undertaken at 

the NERC Isotope Geosciences Laboratory, using the equilibration method for oxygen 

(Epstein & Mayeda, 1953), and Zn-reduction method for hydrogen (Coleman et al, 1982; 

Heaton & Chenery, 1990), using a V G SIRA mass spectrortieter. Isotopic ratios are defined 

in relation to the intemational standard, V-SMOW (Vienna Standard Mean Ocean Water). 

Analytical precision is typically +/-0.05%o for 5^̂ 0 apd +/-2.0%o for 5D. 

TheBaCOa precipitated on site from the TDIC was filtered from the water and washed 

three times with deionised water. The precipitated carbonate was then reacted in vacuo 

overnight in phosphoric acid and the hberated CO2 measured for 5̂ ^C on a dual inlet mass 

spectrometer (see more detailed discussion below). 

Sediment Analysis 

Carbon content 

Prior to stable isotope analysis the carbonate and organic content of the sample must be 

known, as the mass specfrometer requires an optimal amount of CO2 and the initial sample 

size must be adjusted accordingly. Changes in carbonate or organic content through the 

core also provide palaeoenvironmental information. 

Ah estimate of organic and carbonate content was gained by loss on ignition. Dried 

sediment samples of a known weight were combusted at 556°C and then reweighed to give 

a value for organic carbon content. The same samples were then combusted at 950°C to 

remove carbonate material and reweighed (Dean, 1974). 

Where little sample material was available total carbon (TC) and inorganic carbon (IC) 

content were measured on the Shimadzu TOC-5000 carbon analyser in the School of 

Geography, University of Plymouth. Samples were combusted at 950°C and the amount of 

CO2 released measured. Organic carbon was removed from the samples by combusting at 

575°C for 10 minutes. The percentage of organic carbon present in the samples was then 

estimated from the TC and IC values. 
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Carbonate mineralogy 

Before 6̂ 0̂ records from lacustrine carbonates can be fully interpreted the type of 

carbonate being analysed must be known. 

Carbonate mineralogy was measured by X-ray diflEraction in the Department of Geological 

Sciences at the University of Plymouth. Where sufficient material was available cavity 

mounts were prepared (Hardy and Tucker, 1988); smaller samples were smeared on a 

silicon slide. Carbonate mineralogy was found qualitatively by coinparison of the sample 

diffractometer trace withstandard carbonate traces (Appendix 1). 

If more than one form of calcium carbonate is present e.g. calcite and aragonite, the 

percentage of each can be estimated from the XRD trace. The area of the primary aragonite 

and calcite peaks is estimated, assuming that the peaks are regular triangles, the ratio of the 

aragonite peak, as a percentage of the sum of the two peak areas is then used to estimate 

the percentage of aragonite from experimentally calibrated conversion curves (Hardy and 

Tucker,, 1998). Calibration curves are also estabUshed for estimates of the percentage of 

dolomite compared to calcite (Hardy and Tucker, 1998). 

Carbonate stable-isotope analysis 

Carbonate samples were disaggregated in sodium hypochlorite solution overnight to 

remove any organic material (Lamb et al., 2000). Organic impurities in the sample may 

lead to errors in the final stable isotope measurement as, organic materials can produce 

molecular fragments; in the samemass range as the C62 rneaŝ ^ 

spectrometers. Organic material can also be removed by combusting the samples at 250°C 

(combustion at 450°C may cause fractionation of the carbonate isotopes) although it has 

been shown that pre-treatment by chemical oxidation yields smaller deviations than 

through heating (Siegenthaler and Eicher, 1986). 

Samples were then sieved at 75pm to remove any shell fragments. The <75pm fraction was 

filtered through quartz micro fibre filter paper (Whatman 41) and washed three times with 

deionised water to remove any remaining sodium hypochlorite solution and oxidised 

organic matter before drying at 40°C. The dried sediment was crashed in an agate pestle 

and mortar to homogenise the sample and create a fine powder to aid reaction with the acid 

(Lamb et al, 2000). 
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Samples containing -lOmg of calcium carbonate were.weighed into glass vials and placed 

in a reaction vessel with anhydrous phosphoric acid. The samples were then reacted with 

the acid under vacuum and left at 25"C ovemight (Craig, 1957). The liberated CO2 was 

collected through a cold trap that removed any remaining water and organic fractions from 

the CO2 sample. The CO2 was frozen in collection vessel with liquid N2 allowing any other 

fractions that had reached the vessel to be pumped away. 

Stable isotope measurements were then made from the C62 on a dual inlet (VG Optiina) 

mass spectrometer. The CO2 from the lake sediment samples was compared to a standard 

CO2 gas. Three mass fractions are measured (44,45 and 46), leading to values for oxygen 

and carbon stable isotope ratios. It is assumed that the 45/44 mass ratio comprises 

V^Ot/^^C^^Oz, and the 46/44 mass ratio comprises 2̂ĉ ^O^̂ O/̂ 2ĉ 0̂2. These ratios lead, 

respectively, to the values for S^̂ C and 5̂ 0̂ where the 5 notation refers to the measured 

ratios relative to an intemational standard (for carbonates, Vienna Pee Dee Belemnite 

(VPDB)). 

Errors calculated from the standard deviation of laboratory standards used throughout the 

analyses, and repeats of individual samples, show that analytical error is ± 0.1 %o for 5'̂ 0 

and 5^̂ C. Where overlapping cores were used in the Nar record equivalent laminae were 

analysed in both cores and errors were of the same magnitude (Fig. 4.6). 

Organic samples 

Organic samples were left ovemight in 5% HCL to remove any carbonate. Samples were 

then filtered (Whatman 4 filter papers) and washed three times with deionised water. After 

drying at <40''C the samples were homogenised in an agate pestle and mortar. 

Samples containing 1 to 2 mg of Carbon, weighed into tin cups, were analysed for ^^C/^^C 

and C/N ratios by combustion in a Carlo Erba 1500 on-line to a V G TripleTrap and Optima 

dual-inlet mass spectiometer. Samples are dropped, in a continuous flow of helium carrier 

gas, into a 1020°C fumace. A pulse of oxygen causes an exothermal flash oxidation of the 

tin, ensuring full combustion of the sample, and the product gases are further oxidised by 

chromium and cobaltous oxides. Excess oxygen and water are renioved by passage through 

hot copper and magnesium perchlorate. 
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The remaining N2 and CO2 then pass through a G C coluixm and by a thermal conductivity 

detector, which generates an electrical signal proportional to the concentrations of N2 and 

CO2 present in the heUum stream. C / N ratios are quantified by calibration against a 

laboratory standard. 

The CO2 is frozen in the Triple Trap, held at -166°C, allowing the N2 and heHum to vent to 

atmosphere. The TripleTrap is then evacuated before warming the CO2 trap and expanding 

the sample CO2 into the mass spectrometer. 5^^C values are calculated to the VPDB scale 

by comparison with a laboratory standard calibrated against NBS-19 and NBS-22. 

Errors from the standard.deviation of standards used throughout the analyses show that 

analytical errors for Ŝ ^Corganic were ± 0.1 %o and ± 0.2%o for C : N ratios. 

4.4 Numerical Techniques 

Once collected, a number of techniques, as well as standard statistical analyses, are used to 

analyse the data. 

Normalising 

Two series can be plotted on the same scale if they are normahsed, such that if they co-vary 

(r̂  =. 1) they will.fall on the same points through the whole series in normalised space. Data 

is normalised by subtracting the mean of the full data set from each value, and dividing by 

the standard deviation, the resulting normalised series will therefore have a mean of 0 and a 

standard deviation of 1. 

Co-variation 

An idea of how two series co-vary can be gained from the values form the two series, 

which also suggests how much of the variance in series y can be explained by series x. 

Here each equivalent point in the two sisries is taken to be independent. However in 

geological series each set of points is also dependent on the previous values; there is a 

temporal dependence in the relationship. 

The relationship between two variables can be expressed as the cumulative sum of the 

square of the difference between two nonrialised data sets and this provides a test of 
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whether any relationship is constant with time (Taylor et al., 2002). When the series are 

strongly correlated the slope of the graph, cumulative sum against time, will be close to 0, 

If the variables are uncorrelated the slope will be 2. How well the two series are correlated 

can be measured from where the gradient lies between 0 and 2, equivalent to an r̂  value, 

where a paired series resulting in a gradient of 0 would have and "r^" value of 1 and a 

gradient of 2 would have an "r^" of 0. The probability that any relationship has arisen by 

chance can be estimated by comparing the slope with slopes generated from random 

distribution of the data sets (Moyeed, pers. com.,-2003). The probability can be expressed 

as a fraction p. Analyses of p values from 1000 perturbations of the data sets, were run 

using S-Plus 6.1 computer software. 

Spectral analysis 

Geological data sets may contain cycles, which may be related to natural variability in the 

climate system. These cycles can be observed in data series using spectral analysis 

techniques, where curves of different wavelengths are fitted to the data to observe if there 

are any wavelengths that closely match the variabihty in the dataset. 

Spectral analysis was performed using AnalySeries 1.1 (Paillard et al., 1996) a.nd S-Plus 

6.1. Standard Fourier transforms of the data and analyses using the Blackman-Tukey 

method, where the data-sets are smoothed prior to Fourier transformation, were carried out 

using AnalySeries. S-Plus 6.1 was used to observe which cycles in the data were 

significant, as with the cumulative sum pf the squared difference technique above, the data 

can be randomly arranged in 1000 perturbatiphsandspectral analyses perfonned, from 

which it is possible to observe which cycles in the data set are significant, rather than just 

noise. 

62 



C h a p t e r 5 

NAR G O L U - CONTEMPORARY LIMNOLOGY 

For robust interpretations of lacustrine palaeoenviroiimental records to be made the lake 

system, particularly the hydrology and sedimentation regime, must be understood. This 

chapter describes the physical and chemical characteristics of contemporary Nar Golu. 

5.1 Location and general site description 

Nar Golu CFig. 5.1) is a small crater lake located 25 km west of Derinkuyu in the 

Cappadocian region of central AnatoUa (Fig. 5.2). The lake has an area of 556,500 m^ and 

is 26 m deep at the deepest point. The north, east and west sides dip steeply to this depth 

with a more gradual slope on the southern shore where an alluvial fan is present, lake 

volume is 7,692,360 m^ (July 2001). The crater is steep sided creating a smaU catchment 

with an area of 2,408,000 m^ (Fig. 5.3). 

5.2 Catchment morphology and geology 

The north, east and west sides of the crater are steep with a faulted basalt intrusion visible 

on the eastem and westem sides. The southern side of the crater is less steep, and is made 

largely of volcanic ash. At the southem end of the crater is an alluvial fan which extends 

into the lake. There is no stream activity in this fan system at present, either during the 

summer or during April, the wettest part of the year. It is possible that the fan was formed 

during times of permanent stream flow during the past, or by a series of extreme events, 

e.g. heavy rainfall, which lead to sediment transport into the crater. 

The Nar crater Ues within the GoUiidag volcanic complex (Fig. 5.2) and the first volcanic 

activity in the region occurred south of Nar Gdlii, where basaltic to andesitic lavas are 

K/Ar dated to around 1.6 Ma. Above these lavas, tephras, geochemically similar to 

Gdlltidag products, are reworked in fluvio-lacustrine sediments. Overlying these sediments 

two lava flow units sandwich a pumice fall Ar/Ar dated around to 1.3 Ma (D. Mouralis, 

pers. com.). 
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Fig. 5.1 Photograph of Nar Golu looking north from high on the southem edge of the 
catchment (Photo; A. Mather). 
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Fig. 5.2 Location and local geology (after Sassan, 1964) of Nar Gdlii (34°27'30"E; 
38°22'30"N; 1363 masl). 
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Fig. 5.3 Detail of Nar catchment (shaded grey) showing location of sediment traps 
(yellow circles), water sampling locations (blue circles; including springs (Spl and 
Sp2)) and coring sites from 2001 (Grey circle) and 2002 (Red circles). The details ofthe 
cores are discussed in chapter 6. 
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Nar Golii is younger than the 1.6 Ma basalt and the volcanic ash layers at the south of the 

Nar crater are typical of those associated with the activity around 1.3 Ma. There is no 

evidence of any more locally derived volcanic product overlying this ash, implying the Nar 

Golu crater may be older than 1.3 Ma. However magmatic products from Nar are rare 

suggesting some erosion may have taken place. It is therfore impossible to give a definitive 

youngest age for the Nar crater (D. Mouralis, pers. com.). 

5.3 Catchment vegetation 

On the steep north, east, and westem slopes there is relatively little vegetation as the.slopes 

are mostly scree, the vegetation present consists of deciduous oak (Quercus cerris type) 

which is also found at higher elevations in the south of the catchment. A few small fields 

around the edge of the lake have been cultivated with a variety of crop plants (including 

lentils and chickpeas). In the summer months much of this vegetation had been harvested 

leaving empty fields. 

Lines of pine trees have been planted in the crater on the alluvial fan complex. There are 

also limited pinetrees higher on the southem slopes of the catchment along with some 

Plane trees (Platanus orientalis) planted near the springs to give shade. Grasses around the 

high edge of the crater are grazed by sheep and goats. 

A fringe of Phragmites sp and other macrophytes (including Scirpus maritimus) surrounds 

the lake and there is little vegetation on the lakebed beyond this fringe. (Species names 

courtesy of Dr; Warren Eastwood). 

5.4 Clunate 

The nearest meteorological station to Nar Golii was at Derinkuyu, although data were only 

recorded there between 1965 and 1990. The warmest months of the year are July and 

August, with January and Febraary the coldest (Fig. 5.4). Through the 26 years of 

recording there was greater variabihty in winter temperatures compared with summer 

values. The standard deviation of the average monthly temperatures for January and 

Febraary are 3.3°C and 3.2°C respectively compared to 1.0°C and 1.3°C for June and July 
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Fig. 5.4 Average monthly temperatures (minimum, average and 
maximum temperatures) between 1965 and 1990 (a) and average 
monthly precipitation between 1966 and 1990 (b) at Derinkuyu (data 
from Turkish state Meteorological Service). Error bars show 1 
standard deviation of variability through this time period. 
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Total annual precipitation averaged 320 ± 68 mm (mean value ± 1 S.D.) between 1966 and 

1990 (1965 data are only available from June - December). April and May are the wettest 

months, accounting for 27 % of the total annual precipitation, with the driest two months, 

August and September, accounting for only 2 % of the annual total. Fig. 5.4 shows a 

summary of the average precipitation amounts for each month. There is considerable 

variability in the monthly values through the 25 years recorded. 

Values of evaporation are measured at only a few of the meteorological stations in Turkey, , 

with the nearest station to Nar at Nigde (1208 masl; 37 59' N , 34 40' E) , where the average 

value between 1935 and 1970 was 1547.6 mm yr~^ (Meteoroloji Bulteni, 1974). Ankara 

(894 masl; 37 57' N , 32 53' E ) had an average value of 1307.6 mni yr"\ However, it is 

also possible to calculate the amount of evaporation, for example Penman (1948) 

simplified by Linacre (1992): 

E = [0.015 +4 X 10"̂  T + 10-̂ z] x [480 (T + 0.006z)/(84 - A) - 40 + 2.3 u (T - Td)] 

(5.1) 

E = evaporation (mm/day), T = air temperature (°C), z = altimde (m), A = latitude, u = 

wind speed, and Td = dew point temperature which is defined as (Linacre, 1992), 

Td = 0.52 Tnun + 0.60 Tniax - 0.009 (T„^)^ - 2 °C (5.2) 

Using annual average values from Derinkuyu for temperature, and Nev§ehir (1260 masl; 

38 35'N, 34 40'E) for wind speed (the nearest station with available data) evaporation at 

Nar Gdlii is calculated at 1140 nun yr'^ 

However values from the same equation for Ankara and Nigde (1209 and 1315 mm yr'̂  

respectively) are below the recorded values. There is a systematic difference between 

recorded E (Meteoroloji Bulteni, 1974) and calculated E using equation 5.1. Using 11 

stations across Turkey for which there are data (Table 5.1) the relationship between the 

measured and calculated evaporation loss is (Fig. 5.5): 

Erecorded = 1-35 Ecaicuiated - 512.22 mm yr'̂  (5.3) 
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Table 5.1 Calculations of evaporation (from equation 5.1) and measured values of evaporation from 11 meteorological stations in Turkey (data from Meteoroloji 
Bulteni, 1974). See text for explanation. 

T(»C) Z(m) A(°) u (ms'*) Td(°C) T^in (°C) T„,axrC) 
Calculated E 

(mmyr"̂ ) 
Recorded E 

(mmyr'*) 
Nigde 11.1 1208 38.0 3.4 8.2 4.7 17.4 . 1314.8 1547.6 
Ankara 11.8 894 38.0 3.2 8.9 5.9 17.7 1209.0 1307.6 
Burdur 13.2 967 37.5 2.1 10.1 7.6 19.0 1327.0 1072.2 
Bolu 10.2 742 40.5 1.6 7.7 4.0 17.0 • 947.5 677.2 
Konya 11.5 1131 38.0 2.1 8.5 5.0 17.9 1252.4 1186.7 
Sivas 8.6 1285 39.5 2.0 6.1 2.2 14.9 1061.9 1043.9 
Afyon 11.2 1034 38.5 2.6 8.0 4.4 17.3 1219.7 1054.8 
Antalya 18.7 42 37.0 3.1 14.4 13.9 23.9 1512.7 1445.8 
Beysehir 11.3 1129 37.5 1.6 8.2 4.9 17.3 1189.7 987.5 
Erzurum 6 1869 40.0 2.6 4.0. 0.5 11.5 1124.8 1059.0 
Golcak(Kocaeli) 14.4 16 40.5 2.7 11.4 9.9 19.4 1050.9 798.2 
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Fig. 5.5 Relationship between recorded and calculated amounts of evaporation 
for 11 meteorological stations across Turkey (from table 5.1), 
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Using this relationship, evaporation at Nar Golu is the equivalent of a recorded value of 

1025 ± 121 mm yr"̂  (errors from residuals of equation 5.3). 

This value would leave to an Aridity Index of 0.31 (P/E) which compares well to that 

shown by Tinke? (2003) for the Cappadocian region OFig. 3.6). 

5.5 Lake chemistry 

The pH arid conductivity values suggest the lake is alkaline and oligdsaline, becoming 

shghtly more alkahne and rhore saline between August 1999 and August 2002 (Table 5.2). 

5^̂ 0 values have become more positive at the same time (from -3.0 %o to -2.4 %6) 

suggesting that evaporation is currently exceeding precipitation which accounts for the 

increase in salinity (3.1 mS in August 1999 to 4.0 mS in August 2002). The major ion 

water chemistry in the summer of 1999 (Table 5.3) was dominated by Na^ (380 mg/1), 

Mĝ "*" (103.4 mg/1) and CI" (970 mg/1) (Jane Reed, pers. com.). 

The waters show stratification in all the measured variables (Fig. 5.6). There are significant 

differences in.the scale of stratification between July 2001 and August 2002 and the 

difference in depth of the thermocline between the two sample dates. Lake depth had not 

changed measurably over the year and chemistry measurements were inade at the deepest 

part of the lake in both years. From the data available it is not possible to explain these 

differences in stratification between the two sample dates. Nor is it known if the lake is 

stratified all year or if it is mixed at any time. 

The lake bottom waters are anoxic. There is no evidence of benthic life in any of the 

surface sediment cores taken, sediments change colour from black to green and yellow on 

contact with the air due to oxidation, and waters below the thermochne smell anoxic. 

5.6 Hydrology 

The hydrological budget of a lake can be explained by the sum of the inflows and outflows 

from the system (e.g. Ricketts and Johnson, 1996; Gibson et al, 1999), for example 

dV/dt = P + Si + G i - E - S o - G o . (5.4) 
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Table 5.2 Lake water chemistry measurements from Nar Golu. 

Sample Temperatare Conductivity pH 5''0 5D 5''C 
Location Depth (m) (°C) (mS) 
Lake Waters (08/1999) 
Lake Edge 
Lake Centre 

22.0 
21.0 

3.1 
2.5 

7.1 
7.4 -3.0 -37.3 9.3 

Lake Waters (07/2000) 
Lake Edge 0 
Lake Waters (07/2001) 
Lake Centre 0 

26.8 

24.2 

2.9 

3.3 

6.4 

7.9 

-3.2 

-2.6 

-36.8 

-34.6 

10.8 

11.3 
4 24.1 3.4 7.2 
9 22.0 3.4 7.2 -2.8 -36.1 11.2'. 
12 20.7 3.2 6.6 
14 17.2 3.2 6.2 -2.9 -35.8 10.6 
19 16.7 3.1 6.6 
24 15.7 3.0 6.5 -3.2 -38.9 9.1 

Lake Waters (04/2002) 
Lake Edge 8.9 -3.1 -37.3 9.3 
Lake Waters (08/2002) 
Lake Centre 0 23.2 4.0 8.0 -2.4 -33.3 11.6 

5 22.8 4.2 7.9 -2.4 -33.1 11.6 
7.5 20.3 4.2 7.6 -2.8 -35.5 7.6 
10 14.3 4.0 7.1 -3.3 -39.0 8.6 

12.5 10.7 4.0 7.1 -3.3 -39.3 7.8 
15 9.9 4.0 6.9 -3.3 -39.0 10.4 
20 10.1 4.0 6.8 -3.3 -38.2 7.2 

Hot Springs (2000) 
-10.6 -73.7 -13.7 

Springs (07/2001) 
Spring 1 15.7' 0.1 6.0 -9.3 -64.7 -14.3 
Spring 2 12.6 0.2 7.1 -10.5 -73.7 -10.7 
Springs (04/2002) 
Spring 2 
Springs (08/2002) 
Spring 2 

-10.6 

-10.7 

-75.0 

-75.0 

-11.2 

-13.7 

Table 5.3 Nar Golii major ion water chemistiy (mgA), summer 1999. 

c r S04^ Mĝ ^ Câ ^ Sr̂ ^ Na-" 

Lake Centre 970.0 154.0 103.4 59.8 31.3 380.0 144.4 
Lake Edge 970.0 154.0 103.4 59.8 31.3 380.0 144.4 
Hot Spring 830.0 155.0 106.0 72.4 28.9 374.8 145.1 
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Fig. 5.6 Lake chemistry depth profiles from July 2001 and August 2002. 



where V is lake volume; t, time (dV/dt = change in volume per unit time); P, precipitation; 

Si, surface inflow; Gi , groundwater inflow; E , evaporation; So, surface outflow; Go, 

groundwater outflow. V, P, Si, Gi , E , So and Go are measured in the same units. 

Some of these values can be measured directly e.g. P, Si, others have to be calculated e.g. E 

or estimated e.g. Go. Here two methods, a water balance model and ah isotope mass 

balance model, will be used to estimate all unknown values in equation 5.4. 

5.6.1 Water balance model 

For a given period of time it can be assumed that the lake volume is constant so that 

The following values are known: 

P: 178,080 m^ of rainfall enters the lake directly from precipitation each year (lake area x 

mean annual rainfall). 

E: 57(),412 m^ of water is lost from.the lake each year through evaporation (annual 

evaporation x lake area). 

So: there is no surface mnoff from the lake. 

Si: mnoff from the catchment is the only factor to take into account as there are no rivers or 

permanent sfreams that currently enter the lake. A mnoff coefficient (k) of 0.25 ± 0.07 will 

be assumed. Although k is unknown, if it is assumed that Gi > Go (see further discussion 

below), then k < 0.4, from the exfreme values of P and E . (Si = k x precipitation x 

(catchment area - lake area)). A value of 0.25 has been used elsewhere for crater lakes in 

evaporatively dominated regions (Telford and Lamb, 1999). 

Using these values it can be calculated that 

P + Si + Gi = E + So + Go. (5.5) 

G i - G o = 244,212 m^ (5.6) 

75 



Gi and Go are both unknown and difficult to estimate. Go is assumed to be low, relative to 

E as the lake has been shown to be isotopically enriched and saline. This would not be the 

case if Go was high and the residence time of the lake was therefore low. 

5.6.2 Isotope mass balance modelling. 

As well as the water balance model discussed above the stable isotope values of the lake 

must also balance such that 

where the values 5i, 5p, 5si, Bau SE, ^so, 5GO are the isotope values, either 5 O or 8D, of the 

lake waters, precipitation, surface inflow, groundwater inflow, evaporation, surface 

outflow and groundwater outflow respectively. 

At Nar there is no surface outflow, lake waters leaving the lake through ground water are 

assumed to be the same value as all other waters within the lake such that 6GO = 5i. As the 

only surface input into the lake is from mndff directly from precipitation 5si = 8p. 

Therefore for Nar 

As in 5.4 it is assumed that the lake is in a steady state such that dV5i/dt = 0. This 

relationship also assumes that the lake is well mixed although in reality it is sfratified for at 

least part of the year (Fig. 5.6). 

Taking these assumptions into account 

P, Si, and E are already known from measurements and the discussion above. 

5i: lake surface waters between 2000 and 2002 have 5^^0 values of -2.8 ± 0.4 %o (Table 

dV5i/dt = P6p + SiSsi + GiSci - E5E - So6so - GOSGO (5.7) 

dV6i/dt = P8p + Si5p + GiSci - E6E - Go5i (5.8) 

P5p + Si6p + Gi6Gi=E5E + Go6i (5.9) 

5.2; Fig. 5.7) 
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8gi- spring waters from both the catchment and the hot springs in the lake He at 

approximately 5^̂ 0 = -10.6 ± 0.1,5D = -74.4 ± 0.7. Spring waters have given more or less 

consistent values through 3 years (2000-2002), compared to varying lake water values. Al l 

groundwaters lie on the Ankara meteoric water line (AMWL) suggesting they have not 

been affected by evaporation or geothermal effects. 

5p: in a given year the average isotope ratio of rainwaters entering the lake will be a 

weighted average of the values for each month. The weighted average of annual rainfall at 

Ankara is (-8.8, -58.6) from 1996,1997,2000 and 2001 monthly values (lAEAAVMO, 

2002; A. Dirican, pers. com., 2002). 

It is unhkely that isotope values of precipitation are the same at Nar. Various relationships 

are known for differences in precipitation isotope values between locations (e.g. 

Dansgaard, 1964; Rozanski et al., 1993; see full discussion in Chapter 2) and these 

relationships can be used to estimate values for Nar GolU based on those recorded in 

Ankara. Temperatures in Derenkuyu are consistently colder than those in Ankara (Fig 5.8). 

Using the relationship betweein precipitation isotope values and temperature from Ankara 

(Fig. 2.3) 5̂ 0̂ values would be 0.89%o lower at Derinkuyu and 6D values 6.38%o lower. 

These values would be even more depleted if the relationships described by Dansgaard 

(1964) were used. However these are calculations based on northem European stations and 

the Ankara relationship is probably more suitable for use here. 

There is also a standard relationship for changes in isotope values due to height, a large 

part of which is due to the corresponding change in temperature (Gat et al., 2001). Nar lake 

lies 460 m above the recording station in Ankara and this corresponds to a change of -0.92 

%o in oxygen isotope values (-0.2%£yi00m) and - 6.9%o in 6D (-1.5%c/100m). 

Nar lies further along given rain tracks than Ankara OFig 3.3) and 5p values are likely to be 

more negative due to the rain out effect. This effect is difficult to quantify with the data 

currently available. 
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Fig 5.8 Relationship between monthly average tetnperatures in Derinkuyu and 
Ankara between 1965 and 1990. Data from Turkish State Meteorological Service. 
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As the altitude effect is largely due to changes in temperature, the altimde correction will 

be used to give values for rainfall at Nar Golu, by adding this effect to the weighted values 

of precipitation from Ankara. 

This gives weighted values of oxygen and hydrogen isotope ratios in precipitation over Nar 

as -9.74 ± 0.1 %o and - 65.53 ± 0.6 %o respectively. 6p has also been estimated ifrom the 

intercept of local evaporation lines with meteoric water lines, i.e. tiie value of the waters 

from which lakes in a given region evaporate from (e.g; Ricketts and Johnson, 1996). Nar 

waters evaporation Hue intercepts the Ankara meteoric water line at 5̂ 0̂ = -11.0 %o. 

Groundwater values may also represent the weighted average value of mean annual rainfall 

and lie close to the intercept value at -10.6 %o. 

5E: is very difficult to measure directly and is usually calculated. 

Many authors (e.g. Gonfiantini, 1986, Gibson et al., 1999) use equations based on tiie 

Craig-Gordon model of evaporation (Craig and Gordan, 1965) such as: 

8E = ((a 5i) - h5A - e)/(l - h -i- (Kebede et al., 2002) (5.10) 

where a* is the equilibrium isotopic fractionation factor dependent on the temperature at 

the evaporating surface, h is the relative humidity normalised to the saturation vapour 

pressure at the temperature of the air water interface (lake surface temperature); e = e* + 

Ck; e* = 1000 (1- a*) and Ck is the kinetic fraction factor. 5A is the isotopic value of the air 

vapour over the lake. 

a*: the equilibrium fractionation factor, can be calculated 

1/a* = Oeq = exp(1137 - 0.4156 - 2.0667 x 10"̂ ) (5.11) 

where T is the temperamre of the lake surface water in degrees Kelvin (Majoube, 1971). 

T: lake surface temperatures measured over a number of field seasons lie between the 

average and maximum monthly temperatures from Derinkuyu. Lake surface temperatures 

will therefore be taken to be the mean of the average and maximum air temperatures. This 

gives a value of 12.6°C for the mean annual lake surface temperature. 
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h: for a relative humidity of 0.57 at an average air temperature of 9.2°C, the normalised 

value of h at 12.6°C is 0.45. 

e*: can be calculated from a*. 

€k: for 6^^0 has been shown to approximate 14.2(l-h) (Gonfiantini, 1986). 

8A: the isotope value of atmospheric moisture is difficult to'quantify unless measured at the 

site, although is usually assumed to be proportional to 6p. From the relationship between 

the isotope values of atmospheric moistiire and precipitation recorded at Ankara (A. 

Dirican, pers. com., 2002) a value of -21 %o for Satmosphere over Nar Golu is used. 5A has 

often been calculated as 5p- e*, and been shown experimentally to be a correct 

approximation to with in 5% (Gibson et al., 1999). For the Nar data this method gives a 5a 

value of -20.2%o, close to that calculated from the moismre precipitation relationship in 

Ankara. 

An altemative equation for calculating 5E was obtained from observations at Pyramid 

Lake, Nevada (Benson and White, 1994), and has been used by other authors (e.g. Ricketts 

and Johnson, 1996) such that: 

Revap = [(RW0^)-(RH/,rfRad)]/[(l-RH)/akin)+RH(l-/„d)] (5.12) 

where 6i = (Ri -1)10^, Rad is the isotope ratio of the free atmospheric water vapour,/a^ is 

the fraction of atmospheric water vapour in the boundary layer over the lake (if all the 

atmospheric water overlying the lake is derived from evaporation then/a<i= 0), RH is the 

relative humidity, and Oeq and akin are fractionation factors. 

• .Riake is known. 

Ceq: can be calculated as shown above (equation 5.11). 

R H : The average relative humidity at Derinkuyu through the recording period (1965-1990) 

was 57%. This is expressed as a fraction for this calculation. 
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fad'- is unknown and lies between 0 (if all the water above the lake is derived from 

evaporation) and 1. 

Racj: is discussed above. 

aidn: the kinetic fractionation factor, is dependent on wind speed and for wind speeds less 

than 6.8 ms"\ awn = 0.994. This value is appropriate for Nar as average wind speeds in the 

region are 3.2 ms'^ 

From equation 5.10 6E is shown to equal -20.58 %o. 

Values of 8E from equation 5.12 can be calculated for all values o f ^ (Fig. 5.9) showing 

that 5E will lie between -8.66 %o and -15.68 %o. 

Benson and White (1994) suggest that/ad should always be taken as 0 as the water vapour 

immediately overlying the liquid surface will be the dominant control on 8E and will be 

almost entirely made up of evaporated water. 6E must also lie to the left of the AMWL in 

space. As -15.68 %o lies closest to the value calculated from equation 5.10 this 

will be taken as the value from equation 5.12 to be used in the hydrological balance model. 

Using the known values in equation 5.8 it can then be shown that, if 5B = - 20.58%o, then 

10.6Gi - 2.8Go = 8,561,891 (5.13) 

alternatively, if 5E = - 15.68 %o, then 

10.6Gi - 2.8Go = 5,766,872 (5.14) 

Simultaneously solving equations 5.6 and 5.13 or 5.14 therefore gives values for Gi and Go 

(see table 5.4 in chapter summary for values). 

Gi will be a combination of shallow groundwaters, predominantly from rainfall seeping 

from higher ground outside the catchment, and deep groundwaters brought into the lake via 

the hot springs. Chloride is a conservative ion that is not involved in any significant 

chemical or biological reactions within the lake and can be considered negligible in both 
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Fig. 5.9 Calculated values of from equation 5.9 for all values off ad • 
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precipitation and evaporation (Telford and Lamb, 1999). If the shallow groundwaters are 

considered to be predominantly precipitation, having little time to be altered on route to the 

lake, a chloride balance, GiCci = GQCGO (where Cci and CQO are the chloride concentrations 

ofthe groundwater inflow and outflow respectively), will describe the relationship between 

the lake waters, assumed to be the same as Coo, and the deep groundwaters. From this 

relationship it can be shown, from the values is tables 5.3 and 5.4, that the groundwater 

outflow from the lake is 83% of the deep groundwater inflow. 

5.7 Lake Sedimentation 

Lake sediments were collected in sediment traps between July 2001 and August 2002. The 

upper trap from the eastem mooring was lost during the year. The carbon stratigraphy of 

the two westem traps is shown in Fig. 5.10. The top trap, at 5m water depth, comprises 

largely inorganic carbon. If it assumed that all the inorganic carbon comes from calcium 

carbonate (see below for discussion of carbonate chemistry) where all the carbon has a 

mass of 12 tiien between 0 and 25 cm of the top tiap the sediments comprise between 80 

and 90 % calcium carbonate with values of around 2 to 3 % of orgaruc carbon. At around 

30 cm there is a shift to increased amounts of organic carbon, to around 6 %, with 

inorganic carbon suggesting approximately 50% of the sediment is calcium carbonate. 

In the lower tiap, at ~ 20m water depth, the same pattem is repeated with more organic rich 

sediments overlain by more calcium carbonate rich sediments. Organic carbon only 

accounts for 10 to 13 % of the sediment mass at.the base of the trap, with approximately 30 

to 40 % due to calcium carbonate. The majority of the rest of the mass will be diatom 

silica. 

It appears that sedimentation in Nar Golii comprises a period of sedimentation dominated 

by diatoms, with some carbonate deposition, followed by a period dominated by calcium 

carbonate deposition. The sediihent tiap at 5m water depth was covered in carbonate 

precipitate whereas the two traps from the deep water were clean, suggesting that 

carbonate precipitates in the surface waters, probably within the photic zone. Planktonic 

diatoms seem only to appear in the lake for part of the year, whereas carbonate is 

precipitated throughout the year. Diatom blooms may be caused by increased nutrient 

supply during periods of mixing (Lamb et al, 2002), and this is possible in Nar although it 

is not known if or when mixing occurs (see further discussion in chapter 6). 
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Fig. 5.10 Organic (black diamonds) and inorganic (grey squares) carbon stratigraphy of 
sediment traps from Nar Gdlu. Upper trap is picmred. 
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The top trap contains relatively little organic niatter, compared to the bottom trap. It is 

likely that some of the organic matter in the upper trap will have oxidised during the year, 

and preserved in the anoxic waters of the bottom trap, accounting for this difference in 

preservation. 

5.7.1 Carbonate chemistry 

From XRD analysis contemporary precipitated carbonates are shown to be calcite. Kelts 

and Hsu (1978) state that carbonates precipitating from waters with Mg/Ca <2 will be 

calcite so this would be expected (from the Nar lake water chemistry Mg/Ca = 1.7). 

It. has been shown, from Leng and Marshall (in press), that 

5''0calcite(SM0W)- 5''0water(SM0W) = 18.03(103r^)-32.42 (5.15) 

for carbonates precipitated in equihbrium with lake waters, where T is given in Kelvin. 

Using the water data from 2002 and measured 5^^0 values of carbonate precipitates from 

the 2001 - 2002 sediment frap it is possible to check that these carbonates are precipitating 

in equilibrium by using equation 5.14. Note that both carbonate and water values must be 

given against the same standard i.e. SMOW and so carbonate values measured against 

PDB must be corrected to SMOW such that (Coplen et al., 1983) 

8^^0cald,e(SM0W) = 1.0309l6^^Ocalcite(PDB) + 30.91 (5.16) 

With lake water values from 2002 of -2.4%o in the top 5m of water, where the carbonate is 

precipitated, and lake temperatures of 23°C, a value of -4.7%o is calculated from equation 

5.14 for 6̂ 0̂carbonate(PDB). This comparcs to measured values of -3.3%o and-3.5%o for 

precipitated carbonate and lake smface sediments respectively. However the water isotope 

and temperature values are from August 2002 and this may not have been the time of 

carbonate precipitation. Using the values for lake temperatures as discussed above (i.e. the 

mean of the average and maximum temperamres for each month), and by estimating 

monthly lake water values by fitting a sine curve to the lake water values from April and 

August 2002, calculations of 6̂ 0̂carbonate(PDB) can be made for each month (Fig. 5.11). 
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Fig. 5.11 Calculation of 5^^0 of equilibrium precipitated calcite for each month at 
Nar Golu with mean, minimum and maximum air temperatmres. 
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Compared to the measured values of carbonate from 2002 this suggests that carbonate was 

precipitated between April and June, most hkely during May, or between September and 

November. The latter scenario is unhkely as the carbonate deposition was on top of the 

sediment trap and was therefore the most recent sediment precipitated in the lake. It 

therefore seems most likely that carbonate sedimentation at Nar takes place in late spring 

and early summer, if the carbonates here follow relationships found elsewhere and are 

precipitating in equilibrium with the lake waters. 

5.8 Summary 

Nar Golii is a relatively small lake with no surface inflow or outflow, although there is 

probably a significant amount of groundwater throughflow in the system. Calculations of 

the hydrological budget (Table 5.4) show that only 24 to 33 % of the water entering the 

lake comes from direct precipitation or surface ranoff, although the latter is generally 

unknown, with an estimated value of k. The remainder of the water entering the lake is 

therefore from groundwaters. Both deep, from the hot springs, and shallow groundwaters 

lie on the meteoric water line, and are therefore rain-waters. Influx of lake waters is 

therfore probably controlled by the amount of precipitation. 

Depending on the 6E calculation used, evaporation from the lake accounts for between 43 

and 58 % of the water leaving the lake. The result of the calculated hydrological flux is that 

lake-water residence time, based on the lake volume divided by the flux (Lamb et al, 

2002), is between 6 and 8 years (Table 5.4). Changing the isotope values for precipitation 

to -10.6 or -11.0%o, due to estimates based on the local groundwaters and intercept of the 

L E L with the Ankara M W L rather than the calculated value of -9.6%o, make no significant 

difference to the lake residence times calculated (maximum change is ~ 5%). 

Lake sedimentation largely comprises calcite precipitated, in the surface waters of the lake, 

during the early summer. There is also a period of increased organic sedimentation, 

probably associated with an algal bloom in spring or autunm. 
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Table 5.4 Summary of Nar Golii hydrology. 

Lake Area 556,500 m^ Lake Volume 7,692,360 m^ 

Catchment Area 2,408,000 m^ Precipitation 0.320 myr"̂  

Evaporation 1.025 myr"̂  8p -9.74%o 

Run off coefficient (k) 0.25 6Gi - 10.6 %o 

Hydrological Budget 

Value (m^ yr"') Percentage 

5E =-20.58 5E =-15.68 5E =-20:58 5E =-15.68 

Inputs 

Precipitation 178,080 13 18 

Runoff 148,120 11 15 

Deep Groundwater 922,650 490,922 69 50 

Shallow Groundwater 87,392 160,755 7- 17 

Outputs • 

Evaporation 570,412 43 58 

Groundwater 765,800 407,465 57 42 

Total Flux 1,336,212 977,877 

Residence Time 5.76 yrs 7.87 yrs 
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C h a p t e r 6 

NAR G O L U - PALAEOLIMNOLOGY 

A 218 cm cominuous core sequence from Nar Golii (NAROl) was obtained in 2001 from 

Glew and Livingstone core samples (core locations in Fig. 5.3). Further sediments, up to a 

depth of 5m were also recovered but there were significant gaps, of unknown length, in the 

stratigraphy below 218 cm. From this sequence the top 900 individual carbonate laminae 

were sampled consecutively and analysed for 6^̂ 0 and 5^^C, with the intermediate organic 

laminae analysed for 5̂ ^C and C/N ratios, and changes in colour were measured using 

image analysis techniques. Mackereth coring in 2002 (Fig. 5.3) allowed the continuous 

core sequence to be extended to 376 cm. A further 825 carbonate laminae were analysed 

for 6̂ 0̂ and 5^^C, from continuous bulk samples of 5 laminae, and for changes in colour. 

6.1 Lithology 

The 376 cm core sequence is laminated throughout (Fig. 6.1), with occasional 0.1-5.0 cm 

thick grey clastic layers, which often show a fining upwards sequence. Laminations are 

formed of couplets comprising light, often white, largely carbonate layers anddark layers, 

made up of largely organic material and diatoms. 

The composition of the dark laminae remains more or less constant through the sequence. 

However there are marked changes in the carbonate laminae. In some case the carbonate 

laminae comprise fine grained aragonite crystals (< 5 jiim in size; Fig. 6.2a) whereas other 

laminae are made up of a fining upwards sequence of calcite polyhedra (10-40 /im in size; 

Fig. 6.2b). In some laminae both aragonite and calcite layers appear in the carbonate part 

of the couplet, with the aragonite layer overlying calcite polyhedra (Fig. 6.2c). 

Laminated sediments composed of altemating carbonate and organic laminae with fining 

upwards calcite crystals have been described elsewhere (e.g. Anderson, 1993; Kelts and 

Hsu, 1978). In general the hght calcium carbonate layer is precipitated in warm waters 

during the spring and summer and the dark organic layer represents the autumn and winter 

periods (Saamisto, 1986). 
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Fig. 6.1 Photograph of the 376 cm Master sequence from Nar Golii against depth (black 
figures in cm) and number of laminae from the top of the core (red numbers). 
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Fig. 6.2 Composition of Nar laminae. A: with aragonite lamina, B: with calcite lamina, C: 
with both aragonaite and calcite lamina. 
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Contemporary sedimentation at Nar would support this (Chapter 5) and further suggest that 

most of the calcium carbonate is formed before July, the time the sediment trap was placed 

in the lake, as the first sediments in the trap are more organic rich followed by more 

carbonate rich sediments. The isotope values of the carbonate also suggest that they are 

precipitated in the late spring or early summer. It is possible that the calcium carbonate 

deposition is associated with times of increased photosynthesis caused by increased 

productivity during times of mixing of the water column (Lamb et al, 2002) although it is 

not known if the Nar waters mix at any time during the year, or are permanently stratified. 

Changes in carbonate mineralogy occur from one year to the next e.g. between laminae 10 

and 11, and between 587 and 588 (Table 6.1). These changes in mineralogy are 

accompanied by a change in colour. The fme-grained aragonite laminae are much whiter 

than the calcite laminae. These changes can be observed in the greyscale values through 

the core sequence (Fig. 6.3). From the samples analysed grey scale values explain -60% of 

the percentage of calcite in the samples, however most of laminae are nearly 100% calcite 

or aragonite, there are few samples in between, suggesting there are further controls on the 

colour of the carbonate sediments. 

Changes in the mineralogy of calcium carbonate precipitated are due to changes in.the 

Mg/Ca ratio within the lake. With Mg/Ca < 2 calcite is precipitated, as in the current lake 

(Chapter 5). With increased evaporation the lake becomes enriched in Mg and the Mg/Ca 

ratio increases such that aragonite may precipitate (Kelts and Hsu, 1978). For the laminae 

containing both forms of calcium carbonate aragonite overlies the calcite suggesting the 

lake became more enriched through the year resulting in the Mg/Ca ratio passing the 

threshold needed for aragonite to form. 

6.2 Chronology 

Contemporary sedimentation (see 5.7) suggests that each lamina couplet represents 1 year 

of sedimentation. Samples from the top 50 cm of the NAROl sequence were dated to 

validate this assumption for the whole core. 

The ^ '̂Cs activity profile (Table 6.2; Fig. 6.4) has two well resolved peaks, at 6 cm and 

30.5 cm that probably record fallout from the 1986 Chemobyl reactor accident and the 

1963 fallout maximum from the atmospheric testing of nuclear weapons. The 1963 date is 
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Table 6.1 Carbonate mineralogy of laminae analysed by XRD with corresponding grey 
scale and 6^^0 (%o) values. 

Laminae No Carbonate Vlineralogy Grey Scale 
% Calcite % Aragonite 

3 100 0 131.7 -4.3 
5 100 0 125.7 -3.4 
10 90 10 120.3 -4.8 
11 5 95 191.7 -2.8 
12 • 2 98 173.0 -2.5 
13 0 100 181.0 -2.2 
20 1 99 188.7 -1.3 
30 0 100 175.7 -0.5 
33 0 100 176.7 0.3 

•40 0 100 167.3 0.6 
55 0 100 211.3 0.3 
142 0 100 199.0 0.1 
328 20 80 166.7 -1.7 
584 10 90 211.0 0.3 
585 30 70 210.3 -2.2 
586 10 90 200.0 -0.2 
596 10 90 184.0 -2.1 
597 100 0 96.7 -1.6 
598 20 80 212.0 -2.4 
807 100 0 166.0 -1.8 
896 100 0 112.3 -3.8 

921-925 100 0 111.2 -3.3 
1141-1145 65 35 152.6 0.2 
1196-1200 100 0 122.1 -2:0 
1441-1445 50 50 100.5 -4.8 
1446-1450 1 99 156.8 -2.7 
1631-1635 0 100 161.9 
1711-1715 1 99 194.3 -0.7 
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Dark Light 

Fig. 6.3 Grey scale values from carbonate laminae through the Nar sequence 
(data in appendix 2). 
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supported by the detection of significant concentrations of Am at that depth (Appleby et 

al, 1991). ^^°Pb dates calculated using the CRS dating model (Appleby and Oldfield, 

1978) show different age-depth relationships compared to the *̂ ^Cs peaks, placing 1986 at 

a depth of -10.5 cm and 1963 at a depth of -15.5 cm. The most likely causes of this 

discrepancy are incomplete recovery of tiie ̂ °̂Pb record in the older sections of tiie core, 

due to very low activities caused by rapid accumulation rates. There may have also been 

variations in the ^^°Pb supply rate at the core site (Appleby, pers. com. 2003). 

By fitting the ^^°Pb age model to the ^ '̂Cs dates, following methods outlined in Appleby 

(2001), a composite inodel has been used to construct a chronology that best fits all of the 

radiometric data (Table 6.3). The detailed values given in this table, other than the dates 

determined from the ^ '̂'Cs record, have some uncertainties due to the problems with the 

ages as discussed above. 

The laminae count from the NAROl sequence compared to the radiometric age model from 

Table 6.2 shows that at any given depth the laminae count is younger than the ^^^b age. 

However, the laminae counts lie 5 years from both the ^̂ ^Cs dates and shifting all the 

laminae counts by 5 years results in the two chronologies fitting very well (Fig. 6.5). 

Laminae in the very top of the core, where the two chronologies diverge, are unclear 

because the sedimentation regime changed above 7 cm depth. It appears from the age 

models that laminae number 6 represents 1991, and laminae 1 to 5 represent 2001 -1992. 

Below laminae 6 each couplet represents one years' sedimentation and a chronology can, 

thereforCi be obtained for the rest of the sequence by counting the number of laminae 

couplets (Fig. 6.6) where ages are given in varve years before 2001, converted to years 

AD. The loss of laminae in the very top of the core may be due to disturbance of the soft 

surface sediments during coring, or due to a change in sedimentation pattems in the lake, 

possibly associated with recent anthropogenic activity. 

The laminae count from the NAROl sequence was compared with laminae counts from 

two continuous cores (M2 and M3), taken in 2002 from different parts of the basin (Fig. 

5.3), to show if there were any parts of the NAROl sequence that significantly 

underrepresented the number of laminae through the stiatigraphy (Table 6.3). Comparison 

of the three counts shows that the NAROl core was a good representation of the number of 
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Table 6.2 Fallout radionuclide concentrations in Nar GolU lake sediments. 

2 1 0 p b 

Depth Total • Unsupported Supported '^^^Cs 
cm gcm"^ Bq kg ' + Bq kg' + Bq kg"' • ± Bq kg-' + 

0.25 0.1 112.4 11.3 55.8 11.7 56.6 3 4.1 1.7 
4 1.7 78.2 9.3 25.6 9.6 52.6 2.7 6.6 1.56 

6.5 2.9 102.1 8.4 13.7 8.8 88.4 2.5 48. 1.99 
9 4.2 98.4 10.2 36.2 10.6 62.2 3 20.1 2.08 

11.5 5.6 107.6 13.2 65.2 13.4 42.5 2.5 5.9 1.75 
17.5 9 80.6 12.1 28.3 12.3 52.4 2.4 11.9 1.75 
23.5 12.5 75.2 8.8 10.8 8.3 63 2.4 26.8 1.78 
26.5 14.5 71.7 8.7 -8.1 9 79.9 2.2 20.6 1.55 
28.5 15.6 66 8.6 -3 8 66.4 2 41.5 1.73 
30.5 16.8 87.8 9.9 28.8 10.3 59 2.8 56.8 2.51 
32.5 18.1 82.9 8.3 20.3 8.6 62.6 2.5 20.6 1.83 
36.5 20.5 59.1 6.1 4.4 6.4 54.7 1.8 6.3 1.32 
40.5 23 51.9 6.7 -14.6 7 64.6 2.2 5.7 1.31 
44.5 25.5 63.3 9.5 7.2 9.7 56.1 2 0 0 
48.5 28.1 51.5 8 -11.9 8.3 63.4 2.3 1.3 1.21 

Fig 6.4 Cs profile from the top of the Nar sequence. 
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Table 6.3 Radiometric chronology for Nar Gdlu from ^'''Pb age depth 
relationship corrected to '^^Cs ages. 

Depdi Date Age Error 
cm AD V ± 
0 2001 0 

2.5 1995 6 2 
4.5 1990 11 2 
6.5 1987 14 3 
8.5 1984 17 3 
12.5 1979 22 4 
16.5 1973 28 4 
20.5 1969 32 4 
24.5 1966 35 4 
28.5 1964 37 4 
30.5 1963 38 4 
32.5 1959 42 5 
36.5 1956 45 5 
40.5 1954 47 6 
44.5 1952 49 6 
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Fig 6.5 Comparison of'^^Cs (red squares) corrected ^'°Pb chronology (yellow 
line) to varve chronology (grey line) from Nar Gdlti. The varve chronology has 
been shifted by 5 years to younger values. 
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Fig. 6.6 Age depth relationship for varve chronology from Nar Golii (data in 
appendix 2). 

Table 6.4 Comparison of laminae counts from cores NAROl, M2 and M3. 

NAROl Counts Cumulative count 
depth Nar 01 M2 M3 Max Nar 01 M2 Max 

29.5 31 33 33 31 33 • 33 
42.5 13 13 13 44 46.. 46 
50.5 23 23 23 67 69 69 
60.5 22 26 26 26 89 95 95 

.70.5 33 33 30 33 122 128 128 
79 32 32 33 33 154 160 161 

85.5 27 27 27 27 181 187 188 
96.5 43 44 44 44 224 231 232 
106.5 45 48 47 48 269 279 280 
116.5 70 70 68 70 339 349 350 
127 50 51 53 53 389 400 403 
138 60 60 55 60 449 460 463 

149.5 55 55 56 56 504 515 519 
159.5 58 57 57 58 562 572 577 
169.5 51 53 / 53 613 625 630 
179.5 73 76 70 76 686 701 706 
189.5 56 55 58 58 742 756 764 
199.5 56 56 53 56 798 812 820 
209.5 42 39 39 42 840 851 862 
218.5 50 45- 52 52 890 896 914 
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laminae across the lake. The similarity of the three cores suggests the stratigraphy is 

constant across the lake basin. 

Comparison of the NAROl counts with the maximum number of laminae in the 

steatigraphy suggests that errors in the counting of NAROl are up to 2.5% below (younger) 

the actual number of laminae, representing 43 years at the base of the sequence. The 

relationship between the maximum laminae count and the counts from the NAROl cores 

can be used to give an error estimate at any point down the core. 

Samples from further down the core were radiocarbon dated to try and tie the laminae 

chronology at depth. The resulting radiocarbon ages were very old in relation to the 

laminae age by approximately 14,000 years (Table 6.5). This indicates that there may be a 

source of old carbon feeding into the lake or that '̂*C is being removed from the lake 

system prior to sediment formation. These issues will be discussed further in the 

interpretation of the 8̂ ^C records from Nar later in this chapter. 

Table 6.5 AMS Radiocarbon ages from Nar Sediments 

Sample Laminae Laminae Sample Lab Code Pre-treatment Radiocarbon 
Depfli No. Age Dated Age 
(cm) (years BP) (years BP) 

Bulk Beta- Acid washes 14320 
Organic 168920 ±50 

162-164 555-575 508-528 matter 
Bulk Beta- none 23450 

carbonate 169096 ±120 
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6.3 Carbonate Stable Isotope Results 

Over the whole record (Fig. 6.6) 5^̂ 0 values range between +2.4 %o and -5.7 %o with an 

average value of -1.4 %o. There are three relatively large and rapid shifts, from positive to 

negative values between 486 and 561 AD (+2.4%o to -5.7%o) and between 1949 and 1987 

AD (+0.9%o to -4.8%o), and from negative to.positive values between 1393 and 1429 AD (-

4.3%oto+1.2%o). 

From the base ofthe record, at 276 AD, to 486 AD there is a trend to more positive values 

with a mean value of +0.7%o. 

Between 561 and 1393 AD 5*̂ 0 values have a mean of -2.7 %o. There is a trend to more 

positive values between 731 (-4.8 %o) and 861 AD (+0.3 %o) and then a retum to more 

negative values between 861 and 1036 AD (-4.8 %o). There then follows a further trend to 

more positive values until 1186 AD (-0.6 %o), 

The mean value between 1429 and 1949 AD is -0.6 %o. There is a long-term trend to more 

negative values between 1429 and 1687 AD (-2.4 %o), with a short excursion to more 

positive values reaching 1.0 %o in 1600 AD. Between 1687 and 1860 AD the general tiend 

is to more positive values. 

Between 1987 and 2001 AD the mean value is -3.8 %o, with a tiend to more positive 

values. 

O v̂ carbonate 

Ŝ Ĉcarbonate values (Fig. 6.6) range between +16.3 %o and +11.3 %o with a mean value of 

+14.1%o. As in the 5^̂ 0 record there are relatively large and rapid shifts in 5̂ Ĉcaibonate 

values. These occur between 496 and 556 AD (+15,7 %o to +11.8 %o), 196 to 816 AD 

(+12.8 %o to +14.6 %o), 1412 to 1417 AD (+13.2 %o to +15.4 %o), and 1971 to 1987 AD 

(+15.3 %oto+11.3%o). 
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Fig. 6.6 5'*0 and 5"C results firom carbonate laminae through the Nar core sequence (data 
in appendix 2). 
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From the base of the record until 496 AD values are fairly constant with a mean value of 

15.6 %o. 

Between 556 and 796 AD there is an excursion to more positive values (+13.6 %o in 691 

AD) with a mean value through the whole section of +12.5%o.The mean value between 816 

and 1412 AD is +13.5%o. Values become more negative between 816 and 1041 AD (+12.3 

%o) and then move towards more positive values again until 1180 AD (+15.4 %o). 

Between 1417 and 1971 AD there is a mean value of +14.5%o with a general trend to niore 

negative values between 1417 and 1686 AD (+12.8 %o) and then a general trend to more 

positive values until 1971. 

6.3.1 Interpretation of carbonate results 

There is considerable variability in both the 5̂ 0̂ and 5̂ Ĉcarbonate records and, because of 

the large number of possible controUing mechanisms on both data sets, as, discussed in 

Chapter 2, it is important to look careftiUy at the possible driving, mechanisms behind these 

changes. 

Carbonate mineralogy 

Both oxygen and carbon stable isotope ratios are affected by changes in carbonate 

mineralogy. For both oxygen and carbon isotopes aragonite has higher values (i.e. more 

enriched in the heavier isotopes) than calcite. The differences are due to different mineral-

water fractionation effects and are thought to be constant at all temperatures so an off set 

can be apphed (Kim and O'Neil, 1997; Grossman, 1984). 

There are large changes in the isotope records at times of calcium carbonate mineralogy 

change in the Nar sequence. 6̂ ^C values are enriched by approximately 1.89 %o in 

aragonite compared to calcite (Grossman, 1984). At Nar the rapid shifts in the 8"c record 

are of this magnimde (Fig. 6.8a) so can be explained entirely as a mineralogy change. 

However, there are other long term trends and larger shifts in the 6̂ ^C record that can not 

be explained by changes in mineralogy, as the full range in the 5̂ ^C record is 5 %o. 
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Fig 6.8a 5̂ Ĉ values through major changes in mineralogy. Showing the raw 
isotope data (black lines) and values corrected to calcite values (grey lines). 
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Fig 6.8b 5''0 values through major changes in mineralogy. Showing the raw 
isotope data (black lines) and values corrected to calcite values (grey lines). 
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Oxygen isotope values are 0.6 %o higher in aragonite in comparison to calcite (Grossman 

and Ku, 1986). A shift in the isotope record of this amount at times of changing 

mineralogy (Fig.6.8b) explains some of the variation in the isotope record. However, the 

changes in 6^^0 values are much more gradual than in the 6̂ ^C record and generally much 

larger than 0.6 %o. The doininant control on the oxygen isotope values through these times 

is therefore not the carbonate mineralogy. 

Although the shift in 5'̂ 0 values is generally more gradual than the change in 5̂ ^C there is 

still a shift in 6'^0, associated with the change in mineralogy between laminae 10 and 11' 

and between samples 1441-1445 and 1446-1450, that is larger than other change through 

the time frames plotted in Fig. 6.8. There is no equivalent shift associated with the change 

in mineralogy between laminae 587 and 588 altiiough there is a similar shift in the 6̂ 0̂ 

values earlier in the record, between laminae 603 and 604. A l l these large shifts occur as 

the isotope values change between values of ~-2.9%o and —4.7%o. This suggests there may 

be a hydrological threshold at Nar that is crossed at these points causing a rapid change in 

8̂ 0̂ values. 

In general calcite laminae tend to be associated with more negative isotope values (-1.6%o 

to -4.8%, mean -3.3%o; for those samples which underwent XRD analysis. Table 1) and 

aragonite laminae, which are probably formed in more evaporated waters, are associated 

with more positive values (-2.7%o to 0.6%o, mean -0.7%; Table 1). Laminae which were a 

mixture of both calcite and aragonite had a range of between -1.8%o and 0.3%o with a mean 

value of -1.8 %o. This suggests that there is at least some evaporative control on the isotope 

values of calcium carbonate in Nar Golii. 

6^^0:5^^C co-variation 

The CO-variation of oxygen and stable carbon isotope ratios has been used to interpret the 

hydrological setting of lakes back through time (Talbot, 1990). At Nar the two records co-

vary (r̂  = 0.74; Fig. 6.9), and this relationship holds throughout the record. (Fig. 6.10). Co-

varying records tend to be indicative of closed lake systems (Talbot, 1990) where lake 

water residence time, and the amount of evaporation, often has a key role to play in 

controlhng both oxygen and stable carbon isotope records. Evaporation preferentially 

removes ^̂ O from the lake waters whereas the increase in 6^̂ C values during evaporation 

may be due to three effects (Li and Ku, 1997). Firstly, a reduction of relatively negative 
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Fig 6.10 Cumulative sum of the square difference for carbonate 8̂ 0̂ and 8̂ ^C 
from the annually sampled section of the Nar sequence (thick line). The thin line 
represents a gradient of two, below which the cumulative sum will fall if the two 
data sets are positively correlated. Gradient of the Nar data; 0.36; i = 0.82; 
p =0.000. 
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6̂ ^C groundwaters compared to evaporatioii will increase 5̂ ^C values of the DIC pool as 

organic production preferentially removes ^^C from the system. Secondly, strong 

evaporation increases the CO2 content of the lake causing a net loss of preferentially ^^C 

enriched CO2, to the atmosphere. Thirdly, a drop in lake levels associated with increased 

evaporation may lead to mixing of the water colunm which would increase productivity 

and remove ^^C from the carbon pool. This third process is unhkely to have been as 

significant at Nar as the laminated sediments suggest the lake has been stratified 

throughout the sequence. 

These processes typically lead to large ranges in 5̂ 0̂ and 6"C values, as found at Nar and 

are typical of small closed lake systems that isotopically respond to changes in the 

precipitation: evaporation ratio (Leng and Marshall, in press.). 

Contemporary waters 

Modem lake waters from Nar are enriched in heavy isotopes compared to rainfall (Fig. 

5.9). This suggests that evaporation is an important driver of lake water isotope ratios (50 

in this lake. Values are more enriched in summer months than they are in spring (Table 

5.1) again suggesting that evaporation: precipitation (E: P) ratios are the dominant control 

on 5i as E: P is greater during the summer compared to the relatively wet winter and spring.' 

Lake hydrological and isotope mass balance calculations from the contemporary lake 

waters and recent meteorological data (Chapter 5) show that evaporation is responsible for 

40-60 % of the flux of water through the lake. This again would suggest evaporation plays 

an important role in lake hydrology and therefore in controUing 5i. 

Comparison with meteorological records 

Tables 6.6 to 6.9 highlight the significant (p<0.05) relationships from regression analyses 

between the Nar 5̂ 0̂ data and climate variables since 1926 (1927 for winter values, and 

only between 1965 and 1990 for precipitation values). Tables 6.7 and 6.9 compare 

smootiied climate variable with the isotope data. Smoothing was done using an 8 year 

weighted average, where the most recent year has a weighting of eight and the oldest year 

a weighting of 1 etc., as the hydrological budget indicates that the lake residence time is 

around 8 years and the most recent years are likely to have a larger influence on the 

system. Al l chmate data, apart from precipitation, are taken firom the Ankara records as 
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they are much longer than those from Derinkuyu, and there.is a strong relationship 

between most of the data sets from the two stations: 

Mui Temperature y = 0.9572x-29.847 R^ = 0.9023 

Average Temperature y = 1.0096x-2.5511 R^ = 0.9867 

Maximum Temperature y = 0.9703x - 10.654 R^ = 0.9823 

Relative Humidity y = 0.9563x-8.1119 R^ = 0.8028 

Precipitation y = 0.3385x+178.26 R^ = 0.1745 

where y = Derinkuyu andx = Ankara. 

Prior to regression analysis the oxygen isotope values were corrected to remove shifts in 

the isotope record due to changes in mineralogy i.e. 0.6%o was taken off the values from 

laminae below ten to give them a calcite equivalent isotope value. 

Tables 6.6 and 6.7 show the data from regressions using the full 6^^0 record. The age 

model established from the ^^^Cs-corrected ^^°Pb dates, where lamina no.6 is taken as 1991 

is used. Laminae numbers 1 to 5 are taken to represent 2001,1999,1997,1995 and 1993. 

Tables 6.8 and 6.9 show the results of regression between the laminae data and 

meteorological variables between 1926 and 1986, rempvingany effect of the large shift in 

the isotope record between laminae 10 and 11 that may not be fully explained by a 0.6%o 

correction due to mineralogy. This also allows comparison of calibrations over different 

time periods to see if any relationships found are constant with time. 

The full isotope record caUbrated with the raw meteorological data (Table 6.6) shows only 

one significant relationship, with summer relative humidity (r̂  = 0.15). Winter 

precipitation also shows a significant relationship, although the direction of this 

relationship suggests that it is an artefact of the data as increased precipitation would lead 

to more negative isotope values and therefore this relationship, although statistically 

significant, is theoreticaUy incorrect. In this, and the other calibrations, significant 

relationships are only highUghted where the relationships make theoretical sense. 

For the fuU record calibrated with the smoothed meteorological variables (Table 6.7) 

summer relative humidity again shows the strongest relationship with the isotope data (r̂  = 

0.54). Summer average and maximum temperatures also have significant relationships 
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Table 6.6 Regression relationships between the Nar 5 O record (corrected for mmeralogy) and 
Ankara annually and seasonally averaged meteorological variables between 1926 and 2001 
(Precipitation relationships are with Derenkuyu values beteen 1966 and 1990). Table shows p-
value, the dkection of the relationship, and the r̂  value. Significant (p<0.05) relationships shaded. 

Annual Spring Summer Autumn Winter 

0.020 0.240 0.267 0.762 0.301 

Min. Temp. - - - - -
6.3 0.6 1.9 0.0 0.1 

0.838 0.803 0.269 0.116 0.232 

Av. Temp - - + + -
0.0 0.0 0.3 2.2 0.7 

0.429 0.725 0.139 0.041 0.347 

Max. Temp + + + + -
0.0 0.0 1.7 4.6 . 0.0 

0.284 0.041 0.738 0.457 0.944 

Precip. + + - - + 

0.8 13.3 0.0 0.0 0.0 

0.362 0.674 0.071 0.000 

R.H. - - - + 

:0.7 0.0 3.3 24.2 

Table 6.7 Regression relationships between the Nar S'̂ O record (corrected for mineralogy) and 
smoothed (8 year weighted forward mnning mean) Aiikara annually and seasonally averaged 
meteorological variables between 1933 and 2001 (Precipitation relationships are with Derenkuyu 
values beteen 1973 and 1990). Values as m Table 6.5. 

Annual Spring Summer Autumn Winter 

0.002 0.001 0.340 0-375 0.021 

Min. Temp. . . . + . 

13.0 15.2 0.0 0.0 6.9 

Av. Temp 

Max. Temp 

Precip. 

R.H. 



Table 6.8 Regression relationships between the Nar 5'*0 record (corrected for mineralogy) and 
Ankara annually and seasonally averaged meteorological variables between 1926 and 1986 
(Precipitation relationships are with Derenkuyu values beteen 1966 and 1986). Values as in Table 
6.5. 

Annual Spring Summer Autumn Winter 

0.522 0.560 0.384 0.952 0.640 

Min. Temp. - - + + -
0.0 0.0 0.0 0.0 0.0 

0.470 0.927 ^ ^ ^ ^ 0.331 0.565 

Av.Temp + + '+ -
0.0 0.0 0.0 0.0 

0.439 0.790 0.104 0.425 0.715 

Max. Temp " + + + + -
0.0 0.0 2.8 0.0 0.0 

0.218 0.476 0.769 0.211 0.060 

Precip. + + + - • + 

3.0 0.0 0.0 3.3 13.0 

0.933 0.870 0.210 0.461 0.001 

R.H. - - - + 

0.0 o.d 1.0 0.0 15.9 

Table 6.9 Regression relationships between the Nar 5'*0 record (corrected for mineralogy) and 
smoothed (8 year weighted forward running mean) Ankara annually and seasonally averaged 
meteorological variables between 1933. and 1986 (Precipitation relationships are with Derenkuyu 
values beteen 1973 and 1986). Values as hi Table 6.5. 

Min. Temp. 

Av. Temp 

Max. Temp 

Precip. 

R.H. 

Aimual 

0.174 

1.7 

0.069 

+ 

4.4 

0.005 

+ 

12.7 

0.068 

17.5 

0.707 

+ 

0.0 

Spring 

0.004 

13.0 

0.374 

0.0 

0.278 

+ 

0.4 

0.905 

0.0 

0.299 

0.2 

Summer Autumn 

0.005 

+ 

42.9 

Winter. 

0.146 

2.2 

0.260 

0.6 

0.650 

+ 

0.0 

0.060 

+ 

4.9 

0.025 

+ 

27.8 

0.001 

+ 

17.6 
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although not as strong (r̂  = 0.25 and 0.28 respectively). There are also significant, but 

weak, relationships with auturrm average temperatures (r̂  = 0.11) and annual rainfall (r̂  = 

0.29). 

For the data between 1926 and 1986 (Tables 6.8 and 6.9) only summer average 

temperatures show any significant relationship when calibrated with the raw 

meteorological data, although it is very weak (r̂  = 0.07). With the smoothed climate data 

all summer variables show significant relationships, although precipitation relationships 

here are made with very few variables (n=14). The strongest relationships are with average 

and maximum sununer temperatures (r̂  = 0.57 and 0.49 respectively). 

Table 6.10 shows the corrected 6̂ Ĉcarbonate regression relationships with the smoothed 

meteorological data between 1933 and 2001; there are no significant relationships with the 

raw meteorological data. The only significant relationships are with summer average (i^ = 

0.24) and sununer maximum temperatures (r̂  = 0.16). 

Tables 6.11 shows the relationships between 6̂ Ĉcaibonate and the meteorological data 

between 1933 and 1986, prior to the shift in mineralogy and the large jump in Ŝ ^Ccaitonate 

values. .Again there are no significant relationships between the isotope data and the raw 

meteorological data. Significant relationships with summer average (r̂  = 0.29) and summer 

•maximum temperamres (r̂  = 0.21) are found as with the 1933 to 2001 record. The 

rcilationships with 5̂ ''Ccarbonate are with similar meteorological variables but not as strong as 

those with 6^^0. 

The stiongest relationships between the carbonate isotope data and the meteorological 

variables are therefore with summer temperatures and summer relative humidity (Fig. 6. 

11). There is a stiong negative relationship between temperature and relative humidity 

through the whole instrumental record (e.g. R H = 77.209-1.2414Tinax; r̂  = 0.81). Due to 

this relationship if either temperature or relative humidity has a stiong correlation with the 

Nar isotope records then the other will have the opposite relationship. It is unclear which of 

these factors may be contioUing the isotope record, as the relationship between the isotope 

data and one of these variables could be an artefact of the negative relationship between 

the two. 
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Table 6.10 Regression relationships between the Nar 6"C record (corrected for mineralogy) and 
smoothed (8 year weighted forward running mean) Ankara armually and seasonally averaged 
meteorological variables between 1933 and 2001 (Precipitation relationships are with Derenkuyu 
values beteen 1973 and 1990). Values as in Table 6.5. 

Annual Spring Summer Autumn Winter 

0.272 0.189 0.445 0.378 0.234 

Min. Temp. - - + + 
0.4 1.2 0.0 0.0 0.7 

0.250 0.914 0.124 0.218 

Av. Temp + - + -

0.6 0.0 2.2 0.9 

0.215 0.757 0.302 0.331 

Max. Temp + + + -

0.9 0.0 0.1 0.0 

0.147 0.602 0.878 0.172 0.205 

Precip. - - -• + + • 
6.8 0.0 0.0 5.4 3.9 

0.099 0.403 0.034 0.259 0.000 

R,H. + + •- + + 
2.8 0.0 5.6 0.5 33.6 

Table 6.11 Regression relationships between the Nar 5'̂ C record (corrected for mineralogy) and 
smoothed (8 year weighted forwardmnning mean) Ankara aimually and seasonally averaged 
meteorological variables between 1933 and 1986 (Precipitation relationships are with Derenkuyu 
values beteen 1973 and 1986). Values as m Table 6.5. 

Annual Spring Summer Autumn Winter 

• 0.787 0.196 0.055 0.210 0.886 

Min. Temp. - - + + -
0.0 1.3 5.1 1.1 0.0 

0.171 0.661 0.134 0.823 

Av, Temp + - + -
1.7 0.0 2.4 0.0 

0.138 • 0.924 0.250 0.865 

Max, Temp + + + + 

2.3 0.0 0.7 0.0 

0.211 0.655 0.199 0.156 0.176 

Precip. - - - + + 

5.0 0.0 5.6 8.3 7.0 

0.024 0.142 0.066 0.050 0.000 

R,H. + + - + + 

7.7 2.2 4.8 5.4 33.4 
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Fig. 6.11 The corrected Nar 6''0 record plotted with summer maximum 
temperature, smmner average temperature and summer relative hmnidity (both raw 
(points) and 8 year smoothed (line) meteorological variables are plotted). 
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Testing the relationships 

Possible errors in the chronology or a lag in lake response to climate change may affect the 

relationships observed above. Regression analyses were therefore carried out with the 8 

year smoothed sununer average and summer maximum temperatures between 1933 and 

1986 and the 8̂ 0̂ record from Nar, shifting the Nar record by 1 or two years either side of 

the direct comparison (where laminae 11 is taken to be 1986) to see if this made any 

difference to the regression relationships (Table 6.12). 

The strongest relationships are found when laminae no. 11 is taken to be 1985 rather than 

1986 (r̂  = 0.49 compared to r̂  = 0.55 for sununer maximum temperature). It is impossible 

to know whether this is due to errors in the chronology or because the lake is responding to 

the previous 8 years' climate rather than the previous 7 years' and the current year's 

climate. 

'Looking at the regression equations there is little difference between the relationships from 

the two different scenarios. When laminae 11 is taken to be 1986 Ŝ ^O = (2.06 x sum. av. 

temp.) - 45.5, when itis taken to be 1985 5^^0 = (2.11 x sum. av. temp.) - 47.1. 5^^0' 

therefore becomes enriched by ~2%o for each degree of temperamre change based on this 

correlation. 

Additionally, the ^̂ ^Cs age model may be wrong. Regression analyses run between 8 year 

weighted average summer meteorological variables and the Nar 5^̂ 0 data between 1933 

and 2001, taking the laminae counts as the only dating control with laminae number 1 

representing 2001 and laminae number 2 representing 2000 etc., shows different strength 

relationships than the relationships found with the ^ '̂Cs corrected varve chronology (Table 

6.13). Relative humidity and maximum temperature show steong and significant 

relationships with the Nar 6^^0 record using both chronologies although the relationship 

with relative humidity shows a stionger relationship with the varve chronology (r̂  = 0.61) 

compared to the ^̂ ^Cs corrected chronology (r̂  = 0.54). 

Summer climatic conditions have been shown to have the sttongest and most significant 

relationships with the Nar isotope records. Comparisons were therefore made with the 

different monthly values to see if one particular month had the most influence on this 

relationship. The 5̂ ®0 record was therefore compared to 8-year weighted average values of 

monthly data for summer average temperature and summer relative humidity (Table 6.14). 
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Table 6.12 Regression analyses with changing chronology for the Nar 5'̂ 0 data. Values as in 
Table 6.5. 

Lamina 11 = 1988 1987 1986 1985 1984 
Summer 
Average 
Temperature 

0.000 0.000 0.000 0.000 0.000 Summer 
Average 
Temperature 

+ + + + + 
Summer 
Average 
Temperature 53.3 5.1 56.5 57.9 55.2 
Summer 
Maximum 
temperature 

0.000 0.000 0.000 0.000 0.000 Summer 
Maximum 
temperature 

+ + + + + 
Summer 
Maximum 
temperature 43.3 54.6 49.2 55.0 53.4 

Table 6.13 Regression analysis between 8 year weighted average smnmer meteorological variables 
and Naf 5'̂ 0 record between 1933 and 2001 with no "^Cs correction to varve chronology. Values 
as in Table 6.5. 

Relative Humidity . Min. Temperature Av. Temperature Max Temperature 
0.000 0.004 0.098 0.000 

- - + + 
61.1 12.5 2.0 22.9 

Table; 6.14 Regression analyses with monthly meteorological values and the Nar 5 0 record. 
Values as in Table 6.5. 

(a) Monthly with.smoothed met data (1926 -2001) 

May June July August September 
Summer RH 0.864 0.075 0.002 0.000 0.343 Summer RH 

+ - - -
Summer RH 

0.0 • 3.5 12.4 31.3 0.0 
Summer Av. 
Temp. 

0.078 0.057 0.037 0.016 0.745 Summer Av. 
Temp. + + + + + 
Summer Av. 
Temp. 

3.4 4.2 5.3 7.5 0.0 

(Jo) Monthly with smoothed met data (1926 -1986) 

May June July August September 
Summer RH 0.032 0.032 0.678 0.003 0.546 Summer RH 

+ + + + 
Summer RH 

6.8 6.8 0.0 14.3 .0 
Summer Av. 
Temp. 

0.0001 0.0001 0.000 0.000 0.013 Summer Av. 
Temp. + + + + + 
Summer Av. 
Temp. 

19.1 19.1 30.6 35.7 9.6 
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For both meteorological variables, and in both the 1926 -2001 and 1926 -1986 cases, 

August values were shown to have the strongest relationships with the isotope records. As 

with the seasonal analyses, for the full record sununer relative humidity shows the 

strongest relationships, and for the shorter time frame summer average temperature shows 

the strongest relationships. 

Different smoothing of the meteorological data were also used, to see if the isotope 

relationships were stronger with more smoothed records, which may be the case if the lake 

has a longer residence time than estimated in Chapter 5. For the 1926 to 2001 record the 

strongest relationship between summer relative humidity and the 5̂ *0 record is when a 14 

yr. weighted average is used (r̂  = 0.62). For the average summer temperature record and 

the 5̂ 0̂ record between 1926 and 1986, r̂  values are 0.75 with a 14 year weighted 

average, and increase further with longer smoothing. However, from the calculated water 

balance the maximum residence time of the lake, with the current hydrological conditions, 

is limited by the amount of evaporation, as this is the minimum possible flux through the 

lake. For the lake in 2001 the residence time must be less than 13.5 years. With a 13 year 

weighted average the r̂  values for the two relationships are 0.61 and 0.74 respectively.-

Summary of meteorological comparisons 

From comparisons with meteorological data it can be shown that the Nar Golii 8̂ 0̂ and 

6̂ ^C records have strong and significant relationships with summer temperature and 

summer relative humidity. These relationships are strongest when the meteorological data 

are smoothed. The relationships are stronger with longer smoothing of the meteorological 

record suggesting the lake may be responding to more than the 8 years suggested as the 

residence time by the mass balance models in Chapter 5. 

Temperature and relative humidity influence both the amount, and isotope composition, of 

evaporation and these relationships would again suggest that the amount of evaporation is 

the dominant control on the lake Ŝ ^O record. 

Non-climatic factors 

As well as the climatic factors discussed above it is possible that there are non-cHmatic. 

factors controlling these two records. In particular changes in the groundwater regime may 

bring more or less water into the system. An increase in groundwater input would lead to 

more negative Ŝ ^O and 6̂ ^C values, and vice versa. This would be most likely to lead to 

116 



rapid shifts in the lake system, such as the rapid shift recorded between laminae 587 and 

588. However, it has been shown that the shift in 6^^C values here can be explained 

entirely by the change in mineralogy, suggesting that changes in groundwater input may 

not be the cause of these shifts. 

6.3.2 Additional controls on Ŝ ^Ccarbonate 

Apart from the strong co-variation with the 5^^0 record the most notable thing about the 

6^^C record is the extremely positive overall values, between +11.3 %o and +16.3%o. Most 

lake water 5^^C values range between values similar to rivers and groundwaters, ~ -10%o, 

to values associated with equilibration with atmospheric CO2, ~ +2%o (Valero-Garces et 

al., 1999). Groundwaters in the Nar catchment have 5^^C values between -14.3 and -

10.7%o, suggesting there are in-lake processes leading to the extremely ^^G-enriched 8-?C 

values of the lake waters. 

There are several possible controls which would lead to extremely positive values for 

8'̂ Ccarbonate and thcsc are discussed here in the context of the Nar lake system. 

Physical processes: Preferential degassing of ^^C eraiched CO2 from the hot springs may 

lead to a source of heavy 5^^C. However, the 5^^C values of the hot springs are similar to 

the normal springs in the catchment (Table 5.1), around -13%o, and this would suggest this 

is not the source of heavy 6^^C. Heating of the lake waters by the hot springs would also 

lead to increased CO2 degassing from the lake waters, again leading to a ^^C enrichment of 

lake water CO2. This would also lead to variations in the 5^*0: 5D relationship as observed 

in other volcanic lakes (Fig. 2.6). If Nar is compared to the other lakes in the region (Fig. 

6.12) there is no evidence that there is significant impact of the hot spring waters on the 

lake's evaporation regime. 

Additional to the above effects on the lake's carbon budget, the radiocarbon ages from the 

sediments suggest that there is a source of old carbon entering the lake. It is unlikely that 

this is due to old carbonate rocks as there are no carbonate rocks in the lake catchment or 

in the surrounding area, which is dominantly volcanic. It is possible that old groundwaters 

enter the lake, leading to this old carbon effect. Altematively, volcanic CO2 can be '̂̂ C-free 

and may therefore lead to an ageing effect for the radiocarbon dates (Olsson, 1986). 
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Fig. 6.12 Comparison of Nar waters to other lakes in the region (within the 
same rainfall regime as described by Turke§, 1995, Fig. 3.4). There is no 
evidence of extreme deviation from the Local Evaporation Line of the Nar 
waters due to geothermal heating. 
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Old groundwaters would not account for the positive 5̂ ^C values unless they had 

undergone the processes described above and were a constant factor through the analysed 

time period. Current groundwaters do not have the strongly positive 5̂ ^C values of the lake 

waters, suggesting in lake processes are responsible for these positive values. '̂̂ C-free 

volcanic CO2 is probably the best explanation for the old radiocarbon ages, however as 

discussed above does not account for the enriched 5̂ ^C values through increased degassing 

in the lake system. 

Biological processes: Diagenesis of organic matter from organic rich marine or lacustrine 

rocks produces CO2 emiched in ^^C and is commonly associated with carbonate 

precipitation (Valerp-Garces et al, 1999). However there are no organic rich geological 

units in the Nar region, which is dominated by volcanics, and the carbonates have been 

observed to be precipitated within the lake. 

High productivity can also lead to increased 6̂ ^C values, as ^^C is preferentially removed 

from DIC by organic matter, However the highest values recorded due to this process are 

around 6%o (Stiller and Kaufman, 1985), not enough to explain all the enrichmentin the 

Nar system. Where this does occur, it has been explained as a result of mixing following a 

fall in lake level (Li and Ku, 1997) causing increased nutrient supply to the surface waters. 

At Nar the sediment sequence is laminated throughout, even in cores taken at a current 

water depth of 15m. It is therefore likely that the lake has been stratified through the entire 

time frame analysed and therefore this would not lead to a sudden change in productivity. 

Values are also heavy throughout the record suggesting that whichever process is causing 

these values has occurred through all this time. However, the organic laminae at Nar are 

primarily composed of aquatic algae (see discussion below) which is incorporated into the 

lake sediments, thus causing removal of ^^C and leading to a ^^C enriched carbon pool. 

Methanogenesis can occur when anoxic conditions occur at the sediment-water interface. 

Metiiane has very light 6̂ ^C values, between -50%o and -100%o (Talbot, 1990), and as it is 

removed form the lake system leads to considerable ^^C enrichment of the DIC pool 

(Bridgwater et al 1999). At Nar the lake bottom waters are probably anoxic (see 

discussion in Chapter 5), and so this is a possible cause of the enriched 6̂ ^C values in this 

lake. As the lake sediments are laminated throughout the sequence anoxic bottom waters 

are likely to have been a constant feature of this lake through the last 2000 years, 

methanogenesis is therefore a plausible mechanism for the high 6̂ ^C values in this lake. 
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6.4 Organic laminae results 

Due to the amount of material it was not possible to analyse every dark laminae for 5*^C 

and C/N values, and in some cases there was only sufficient material to measure one of the 

two variables since they were measured separately. 

O ^organic 

Organic matter over the 900 years analysed (Fig. 6.13) had an average 5̂ ^Corganic value of -

22.4 %o. Values between 1097 and 1375 AD were more or less constant with a mean value -

of -23.0 %o. Values then increased until 1434 AD (-20.0 %o) before becoming more 

negative until 1538 AD (-24.9 %o). Between 1434 and 1960 AD there is a long term ttend 

•to more positive values, with a large shift to higher values between 1560 and 1620 AD.. 

Between 1960 and 2001 AD there is a trend to more negative values. 

C/N 

From 900 to 200 laminae (1097 to, 1797 AD) the C / N ratio of the organic matter in the dark 

laminae fluctuate between values pf 9 and 14 (with a mean value of 11.6; Fig. 6.13) with 

occasional spikes to high values of around 20. Between 1797 and 1895 AD laminae values 

steadily increase from around 10 to 17 and then retum to values of 9 from 1895 to 2001 

AD. 

6.4.1 Interpretation of organic results 

The C / N ratio depends on the composition of the organic matter. Lake algae have C / N 

ratios between 7 and 9 (Meyers and Teranes, 2001) whereas terrestrial plants generally 

have much higher values, with mean values above 17 for C3 plants and above 40 for C4 

plants (Fig. 2.8). 

The C / N data from Nar suggests that the majority of organic matter in the lake sediments is 

made up of algal matter and examination of thin sections under the microscope also show 

the organic laminae to contain many diatom frastules. Trends in the record, such as the 

increase in values between 1797 and 1895 AD, or the occasional spikes of higher values, 

could therefore be due to increased inwash from the catchment, an increase in catchment 

vegetation or macrophyte growth, or a combination of the two. However for most of the 

record the majority of the organic mater in the lake sediments is from lake algae. 
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Fig. 6.13 5^^Corganic and C/N results for the top 900 laminae from Nar Golii 
(data in appendix 2). 
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5 C values also depend on the make up of the organic matter, C4 plants have values 

between -10 and -15 %o, compared to values between -23 and -42 %o for C3 plants and 

lake algae (Meyers and Teranes, 2001; Boutton, 1991). Lake algae 6̂ ^C values depend on 

the of the DIC pool in the lake waters, which vary with changes in productivity or the 

degree of CO2 equilibrium (section 2.4). 

Plotting 5̂ ^C against C: N ratios (Fig. 6.14), compared to ranges of these values described 

in other smdies, suggests that the organic matter at Nar is a mixture of algae and C3 plants; 

it is also Ukely that there is some input from macrophytes. The majority of the data He 

closer to the range for algae. S^̂ C values appear to be niore positive than those found 

elsewhere, however from the modem lake waters and 5̂ Ĉcarbonate values, the DIC pool in 

this lake has been shown to have high Ŝ ^C values and this would account of the more 

positive values in the Ŝ ^Corganic values. Although contiols on 6̂ ^C at Nar may have a large 

non-climatic component it appears that tiie entire data set has been shifted and that the 5̂ ^C 

record may therefore still be interpreted as changes in productivity rather than changes in 

methane production. 

If the C: N curve is a proxy of in-wash driven by changes in precipitation it would suggest 

that there have only been large changes in the precipitation regime at Nar during the last 

200 years. In-wash of terrestiial vegetation requires catchment vegetation to be present; it 

may be therefore that only during the last 200 years has there been a significantly large 

amount of catchment vegetation, probably as the result ojf anthropogenic management, to 

niake an impact on the make up of the lake's organic matter. 

As the majority of the organic matter at Nar is made up of algae, the 6̂ ^C curve can 

therefore be interpreted largely as a proxy of palaeoproductivity (Leng and Marshall, in 

press) with more positive values representing higher productivity and more negative values 

representing periods of lower productivity. 
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Fig. 6.14 5 Corganic against C : N ratios from Nar, compared to ranges of plant 
types from previous studies (Meyers and Teranes, 2001; Leng and Marshall, in 
press; Fig. 2.8). Values from Nar lie above the normal ranges for algae and C3 
plants due to the ^^C enriched D I C pool at Nar. Samples between algal or 
terrestrial plant values are a mix of these two sources, or possibly from lake 
raacrophytes. 
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Comparison with meteorological records 

Tables 6.15 to 6.18 show the significant (p<0.05) relationships between meteorological 

variables and the C : N and Ŝ ^Cwganic records over the last 75 years. 

The strongest relationship for 6'̂ Corganic are with minimum temperatures, particularly with 

the 8 year smoothed annual (r̂  = 0.21) and spring (r̂  = 0.20) minimum temperatures 

(Table 6.16). The relationship is negative; increasing temperatures lead to more negative 

5^^C values. As increasing minimum temperatures would tend to be associated with 

increased productivity this suggests that as productivity increases O Corganic 

values 

decrease. Although increasing productivity will leave the D I C pool depleted in '^C, leading 

to more positive values, more organic matter will be produced and fall to the lake bed 

where if degraded wiU release ^^C back into the lake. For values to become more negative 

with increased productivity more ^^C must be released from the sediments than is taken out 

of the carbon pool by lake algae, therefore additional terrestrial organic matter would be 

required. At Nar the organic matter is also known to be preserved in the sediment and C / N 

ratios suggest input of terrestrial organic matter has reduced over the last 100 years. The 

relationship found with the meteorological data therefore does not seem theoretically 

possible. 

The steongest significant relationships with the C : N ratios is with spring pirecipitation with 

the unsmoothed meteorological data (r̂  = 0.16), showing tiiat increases in precipitation 

lead td higher C : N values, probably due to increased in-wash of catchment organic matter. 

As the stiongest relationship is with the unsmoothed meteorological data it suggests that 

the C / N record is more sensitive to annual chmate variabihty than the stable isotope 

proxies. As in-wash is also dependent on the amount of plant material in the catchment and 

catchment stabihty there are many non-climatic factors also influencing this record. 
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Table 6.15 Regression relationsliips between the Nar 5"Corganjc record and Ankara annually and 

seasonally averaged meteorological variables between 1926 and 2001 (Precipitation relationships 

are with Derenkuyu values beteen 1966 and 1990). Table shows p-value, the direction of the 

relationship, and the r̂  value. Significant relationships are highlighted. 

Min. Temp. 

Av. Temp 

Max. Temp 

Precip. 

R.H. 

Annual 

0.293 

0.2 

0.872 

0.0 

0.787 
+ 

0.0 

Spring 

0.052 

4.4 

0.235 

0.5 

0.552 

0.0 

0.576 
+ 

0.0 

0.891 
+ 

0.0 

Summer 

0.271 

0.4 

Autumn 
0.703 

0.0 

0.221 
+ 

0.8 

0.443 

0.0 

0.915 
+ 

0.0 

0.213 

0.9 

0.067 
+ 

3.8 

0.889 
+ 

0.0 

•0.230 

0.7 

Winter 

0.051 

4.6 

0.467 

Table 6.16 Regression relationships between the Nar 5̂ Ĉorganic record and smoothed (8 year' 

weighted forward mnnmg mean) Ankara aimually and seasonally averaged meteorological 

variables between 1933 and 2001 (Precipitation relationships are with Derenkuyu values beteen 

1973 and 1990). Values as m Table 6.5. 

Min. Temp. 

Av. Temp 

Max. Temp 

Precip. 

R.H. 

Annual 

0.272 

0.4 

0.745 
+ 

0.0 

0.250 

2.3 

0.577 
+ 

0.0 

Spring 

0.054 

4.5 

0.678 

0.0 

0.418 

0.0 

Summer 

0.088 

3.4 

0.204 

4.0 

0.878 

0.0 

Autumn 
0.838 

0.0 

msmim 

0.847 

0.0 

0.623 
+ 

0.0 

Winter 

0.103 

3.0 

0.751 
+ 

0.0 
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Table 6.17 Regression relationships between the Nar C: N record and Ankara annually and 
seasonally averaged meteorological variables between 1926 and 1986 (Precipitation relationships 
are with Derenkuyu values beteen 1966 and 1986). Values as in Table 6.5. 

Annual Spring Summer Autumn Winter 

0.224 0.155 0.613 0.164 

Min. Temp. - - - -

0.8 1.6 0.0 1.6 

0.273 0.607 0.952 0.781 0.104 

AY . Temp - - + + 

0.3 0.0 0.0 0.0 2.7 

0.490 0.913 0.740 0.374 0.058' 

Max. Temp - + + + -
0.0 0.0 0.0 0.0 4.2 

0.277 0.815 0.509 0.685 

Precip. + - -

.1-0 0.0 0.0 0.0 

0.187 0.226 0.323 0.070 

R.H. - - , - -

1.2 0.8 0.0 3.7 

Table 6.18 Regression relationships between the Nar C: N record and smoothed (8 year weighted 
forward miming mean) Ankara aimually and seasonally-averaged meteorological variables between 
1933 and 1986 (Precipitation relationships are with Derenkuyu values beteen 1973 and 1986). 
Values as in Table 6.5. 

Min. Temp. 

Av. Temp 

Max. Temp 

Precip. 

R.H. 

Annual 

0.757 

+ 

0.0 

0.185 

+ 

1.4 

0.594 

0.0 

Spring 

0.137 

2.2 

0.787 

0.0 

0.499 

+ 

0.0 

0.933 

+ 

0.0 

0.221 

0.9 

Summer 

0.270 

0.4 

0.108 

+ 

2.8 

0.085 

+ 

3.5 

0.835 

0.0 

Autumn 

0.481 

+ 

0.0 

0.052 

+ 

4.9 

0.635 

+ 

0.0 

0.994 

+ 

0.0 

Winter 

0.391 

0.0 

0.537 

0.0 

0.882 

0.0 

0.112 

+ 

9.1 

0.052 

+ 

5.0 
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6.5 Summary and comparison 

From the discussion above it can be shown that the 6^̂ 0 and 6̂ Ĉcarbonate records from Nar 

are controlled predominantly by evaporation during the summer months. 

The organic laminae, which are either deposited in spring or autumn, are made up largely 

of algae and the Ŝ ^Corganic record is therefore likely to be a record of changing 

productivity, although the exact controls on this system are unknown. 

For the top 900 laminae in the record relationships between the five proxy records can be 

compared (Fig. 6.15; Table 6.19). The 6̂ *0 and 5"Ccaibonaterecords co-vary and the 

controls on these records are discussed in detail above. The 6 Corganic recordalso appears 

to co-vary with these other two isotope records (r̂  = 0.30 for comparison with 5-^O). 

Although the Ŝ ^Corganic record is a lot noisier than the carbonate records the long-term 

trends are generally the same. This relationship suggests that when the lake is more 

evaporated and conditions are warmer o Corganic 

values are more positive. The opposite of 

the relationship found with the meteorological data, suggesting that high productivity is 

removing ^^C from.the lake DIC pool rather than adding to it. 

The C: N ratios, as discussed above remain more or less constant through the record, apart 

from during the last 200 years where there is an increase in catchment vegetation washed 

into the lake probably as a result of anthropogenic management. This suggests that through 

the last 900 years anthropogenic influences in the catchment have had littie impact on the 

lake system, although this may have to be taken into account when interpreting the record 

of the last 200 years. This may account for the different relationships found between the 

Ŝ ^Corganic rccord and meteorological records, during a time where catchment vegetation 

may have had a non climatic contiol, and during the longer term record where 

anthropogenic influence was limited prior to 1800 AD. 

The grey-scale record also shows stiong relationships with the 6^^0 and 5̂ ^C records (r̂  = 

0.50 and 0.45 respectively; Table 6.19). Some of this relationship is due to changing 

mineralogy of the carbonate laminae especially at times of rapid isotope change. The co­

variation through the rest of the record is not fully explained although is also partly due to 

the calcite: aragonite ratio in each lamina. 
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6^^0 ' 5''Corg. C/N,,,^,,, Grey Scale 

Fig. 6.15 Comparison of 5 proxy records from the top 900 lamiane from Nar Gdlu. 



Table 6.19 Regression relationships between proxy data sets from the top 900 lamiane from Nar 
Golii. p-values, the direction of the relationship, and r̂  values are shown. 

X values 
O v̂ carbonate O Vorcanic • C / N Grey scale 

0.000 0.000 0.000 0.000 
+ + + , + 

68.4 30.4 4.5 .50.3 
0.000 0.000 0.000 

K; 5 Ccarbonate + + + 
16.5 5.4 45.0 

CD 
CO 

5 Corganic 

0.617 

0.0 

0.000 
+ 

12.8 . 
0.000 

C / N + 
3.5 
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C h a p t e r 7 

BURDUR G O L U - CONTEMPORARY AND PALAEOLIMNOLOGY 

7.1 Location and general site description 

Lake Burdur is a large (approximately 30km long), deep, non-outlet lake in a northeast to 

southwest trending graben-like basin in the Taums mountain zone of southwest Turkey 

(Fig. 7.1a). The basin is tectonically active, with the last major earthquake in 1971. hi 1970 

the lake was 77m deep at its deepest point with a lake area of 237 km^. In 2002 the 

maximum lake depthwas 65m and lake area had reduced by 27% (182.5 km^), most likely 

due to the abstraction of in-flowing waters for irrigation (Fig.7.1b; Roberts et al., 2003). 

Lake volume in 2002 was approximately 3.77 x 10̂  m .̂ 

7.2 Catchment Geology 

The lake is surrounded by Quatemary deposits CFig. 7.2) that are particularly well exposed • 

on the southwest lake shore. Most of these deposits are sands and gravels formed in 

tombolos, beach ridges and Gilbert-type deltas. Debris-flow deposits and subaqeous slump 

stractures are also evident. OSL and radiocarbon dating of these sediments, between 62 

and 14 ka BP, suggests that the lake was up to 80m higher than current lake levels at 

different episodes during this time (Roberts et al., 2003). 

On the southeast shore Pliocene lacustrine sediments, including marls, outcrop along most 

of the length of the lake. At the north east end of the lake the pre-Quatemary geology is 

composed of upper Palaeocene to Eocene sandstones, conglomerates and hmestones (Fig. 

7.2). On the northwest shore the northem part if the catchment is composed of Ohgocene 

conglomerates and sandstones with a Mesozoic ophiohte complex outcropping to the 

south. The pre-Quatemary geology, as well as the Quatemary sediments, suggests a long 

history of lacustrine activity in the Burdur basin. 

The basin is controlled by a series of normal faults (Fig. 7.2) mnning parallel td each side 

of the current lake (Price and Scott, 1991 and 1994). Sequence stratigraphic analysis of 
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Fig. 7.1 a) Location of Burdur Golii and other locations mentioned in the text, b) Burdur lake area in 1970 and 2002. 



Quaternary lake sediments. Conglomerates and clays 

Pliocene lacustrine sandstones, claystones, marls and conglomerates 

Pliocene limestones 

Miocene limestones 

\ V \ Upper Paleocene - Eocene Sandstones, conglomerates and limestones 

Oligocene conglomerates and sandstones 

Mesozoic ophiolites 

Normal faults • k ^ k A Thrust Faults 

Fig. 7.2 Geology map ofthe region around Lake Burdmrshowing major geological units 
and major faults (after Price and Scott, 1994; §enel, 1997). 
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sub-lacustrine fades, via shallow seismic investigations, suggest movement of the eastem 

fault at, or towards, the end of the Pleistocene followed by a shift to movement of the. 

. westem fault. This shift in tectonic activity led to a change in the zones of active 

sedimentation within the lake (Roberts et al., 2003). . -

7.3 Climate 

Meteorological data are available from Burdur, the major town on the southeast.shore of' 

the lake (Fig. 7.1b), between 1929 and 1932 and from 1939 to the present day;' For the 

recent period <1980 to 2001) the wannest months of die-year are July and August (average 

temperatures are 24 to 25 °C), with January and Febraary (average temperatures 2 to 4 °C) 

the coldest OPig. 7.3). There is greater variability in winter temperatures compared with 

sununer values. The standard deviation of the maximum monthly temperatures for January 

and Febraary are 2.5°C and 2.0°C respectively compared to 1.1°C and 1.0°C for July and . 

August. 

Total annual precipitation averages 412 ± 78 mm (mean value ± la). January and 

December are the wettest months, accounting for 28 % of the annual total precipitation, 

with the driest two months, August and September, accounting for only 6 % of the annual 

total. However, there is considerable variabiUty in the monthly values (Fig. 7.4), especially 

in the December and January values. 

Evaporation was measured at Burdur, where the average value between 1935 and 1970 was 

1072.2 nun yr. (Meteoroloji Bulteni, 1974). The value recorded at nearby Beysehk was 

987.5 mm yr-\ 

These values give an aridity index (P/E) of 0.38. 

7.4 Lake Chemistry 

The pH and conductivity values suggest the lake is alkaline (pH ~ = 9) and saline, 

becoming more alkaline and more saline between 1999 and 2002 (conductivity was 32.2 

mS in September 1999 and 40.0 mS in July 2002; Table 7.1). Stable isotope values have 

remained very similar throughout the 4 years where measurements have been taken, 

although they were significantly lower during April 2002 probably due to spring recharge. 
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Fig. 7.3 Average monthly temperatures at Burdur between 1980 and 2001. Error 
bars show standard deviations from the mean through this time period (data from 
Turkish State Meteorological Service). 

Fig. 7.4 Average monthly values of precipitation at Burdur between 1980 and 
2001. Error bars show standard deviations from the mean through this time period 
(data from Turkish State Meteorological Service). 
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Table 7.1 Lake Burdur water chemistry measurements. 

Sample Temperature 
(°C) 

Conductivity 
(mS) 

pH 5'«0 5D 5'̂ C 
Location Depth (m) 

Temperature 
(°C) 

Conductivity 
(mS) 

pH 5'«0 5D 5'̂ C 

September 1999 
Lake edge 25.0 28,0 8.85 •• 
Lake centre • Surface 23.0 . 32.2. 8.86 3:96 12.1 / • 

15m 22.0 - 31.9 8.85 .-
July 2000 

Lake edge 28.5 29.52 8.88 4.1 12.1 0.0 
July 2001 

Lake centre Siuf ace 27.5 34.7 9.00 4.2 12.2 2.4 
10 24.6 33.6 8.82 
15 23.4 33.3 8.89 
20 19.4 32.9 8.86 4.0 10.5 1.3 
30 18.7 33.7 8.88 
40 16.4 32.3 8.88 
50 13.9 28.0 8.83 4.0 9.0 1.1 

AprU2002 
Lake edge 6.4 / / 3.6 9.2 -4.5 

July 2002 
Lake centre 0 27.6 40.0 9.09 3.9 10.5 -0.1 

10 23.3 39.8 9.03 
15 13.4 38.9 9.10 
20 10.0 37.7 9.11 3.8 10.3 -0.3 
30 8.8 38.1 9.16 
40 8.2 38.0 9.08 
50 7.4 38.0 9.07 3.8 10.3 / 
55 8.7 38.0 9.14 

Half way between 
centre and edge 29.2 38.9 8.96 3.8 10.8 -0.2 

Lake edge 29.4 39.7 8.95 3.9 12.1 -0.5 

Table 7.2 Burdur Gdlu major ion water chemistry (g/1) (Roberts, 1980). 

cr S04̂  CO/ Mĝ */Câ * Na-

3.43 6.94 0.32 b.io 4.72 0.04 
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Previously published isotope values of Burdur lake waters (Dinger, 1968). show that the 

lake has become enriched in ^̂ O between 1964 (8^^0 = + 2.2%o) and 2002 (+ 3.9 %o). 

There is a clear change in depth of temperature and conductivity (Fig. 7.5). However pH 

and stable isotope values do not show any significant changes through the water column. 

Na"̂  and S04 "̂ were the dominant major ions in the alke waters during the late 1970's 

(Roberts, 1980). 

The lake bottom waters appear to be anoxic. There is no evidence of benthic life from 

Glew cores recovered with the sediment water interface intact, and sediments change • 

colour from black to pale yellow and grey on contact with the air due to oxidation. 

7.5 Hydrology 

As for Nar Golii (Section 5.6) two methods for calculating water balance for Lake Burdur 

will be used, a water balance model and a stable isotope mass balance model. 

7.5.1 Water balance model 

For the steady state equation 

P + Si + Gi = E + So + Go. (7.1) 

the following values are known for Lake Burdur: 

P: 75,190,000 m^ of rainfall enters the lake directly from precipitation each year (lake area 

X mean annual rainfall). 

E: 195,676,500 m^ of water is lost from the lake each year through evaporation (annual 

evaporation x lake area). 

So: there is no surface runoff from the lake. 

From these figures it can be shown that 

Si + Gi - Go = 120,486,500 m^ (7.2) 
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7.5.2 Isotope mass balance modelling. 

As well as the water balance model discussed"above the stable isotope values of the lake 

must also balance such that • 

dV6i/dt = P5p + Si5si + GiSci - E5E - So6so - GO5GO (7.3) 

where the values 61, 5p, 6si, Soi, 6E, 6SO, 5GP are the isotope values, either 5^^0.or 5D, of the 

lake waters, precipitation, surface inflow, groundwater inflow, evaporation, surface 

outflow and groundwater outflow respectively. 

Lake Burdur has no surface outflow, lake waters leaving the lake through ground water are 

assumed to be the same value as all other waters within the lake such that 5GO = 5i. As 

precipitation will be the dominant control on river and mnoff inflow, as well as 

groundwater inflow it is assumed that 801 = 8si = 8p. 

Therefore for Lake Burdur 

dV8]/dt = P8p + Si8p + Gi8p - E5E - G081 (7.4) 

For the water balance estimates it is assumed that the lake is in a steady state such that 

dV8i / d t = 0. 

Therefore, 

P8p + Si6p + Gi5p = E8E + G081 (7.5) 

P and E are already known from measurements and the discussion above. 

81: lake surface waters between 1999 and 2002 have 8^^0 values of +4.0 ± 0.2 %o (Table 

7.1) 

8p: in a given yearthe average isotope ratio of waters entering the lake will be a weighted 

average of the values for each month. Isotope values from precipitation were recorded at 
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Kogbeyli (near Isparta), 25 km east of Lake Burdur (Fig. 7.1), between October 1989 and 

July 1992 (lAEAAVMO, 2001). The weighted average through this time is-9.4 %o. This 

compares to a value of -8.8 %o at Ankara from 1996,1997,2000 and 2001 monthly values 

(lAEAAVMO, 2001,2002; A. Dirican, pers. com., 2002). 

Estimates of the isotope values of in-flowing waters to a lake system can also be obtained 

from the intercept of the local evaporation line with the meteoric water line in 5D v. 5̂ *0 

space. For lakes in the same precipitation regime as Lake Burdur the L E L crosses the 

Isparta meteoric water hue at 6^̂ 0 = -8.5 %d (Fig. 7.6). The intercept with the Ankara 

meteoric water Hue is at 5^̂ 0 = -8.4 %o. 

These values are more positive than the weighted average of precipitation calculated for 

Burdur, -8.5 %o compared to -9.4 %o. The intercept of the LEL and MWL represents the 

total inflow of waters into the lake. As Burdur has a large catchment, river waters have 

time to evaporate before entering the lake and this may account for most of the differences 

between these values. 

A value of -8.5 %p for 6p will be initially used for the mass balance equation as it 

incorporates all waters entering the lake. 

8E: as for Nar Golii values of 6E can be calculated from two different equations. 

For 

6E = ((a*6{) - hSA - e)/ (1 - h + ê ) (Kebede et al, 2002) (7.6) 

a*: the equilibrium fractionation factor can be calculated 

1/a* = Oeq = exp (1137 T'^ - 0.4156 T"̂  - 2.0667 x 10"̂ ) (7.7) 

where T is the temperature of the lake surface water in degrees Kelvin (Majoube, 1971). 

T: as at Nar lake surface temperatures measured over a number of field seasons (Table 7.1) 

lie between the average and maximum monthly temperatures (Fig. 7.3). Lake surface 
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Fig. 7.6 Position of Burdur Golu (grey squares) on the local evaporation line 
(LEL), of other lakes (black diamonds) within the same precipitation regime of 
Tiirke§ (1996), compared to the Isparta meteoric water line (IMWL). 
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temperatures will therefore be taken to be the mean of the average and maximum air 

temperatures. This gives a value of 16.1°C for the mean annual lake surface temperature. 

h: for a relative humidity of 0.60 at an average air temperafare of 13.0°C, the normalised 

value of h at 16.1°C is 0.49. 

e*: can be calculated from a*. 

€k: for 6̂ .̂ 0 has been shown to approximate 14.2(l-h) (Gonfiantini, 1986):' 

8A: from 6A = 6p- e* (Gibson et al, 1999), 6 A = -18.7 %o. 

Therefore, from equation 7.10, 5E = -8.3 %o. 

From the Benson and White (1994) equation 

Revap = .[(RWaeq)-(RH/adRad)]/ [(l-RH)/aki„) +RH (1-/^)] (7.8) 

values of 5E range between -8.5 %o {fox fad = 0) to +6.7 %o (fad = 1). 

Values from both equations give values for 5E close to those for the in-flowing waters (6in). 

It has been shown that for a terminal lake with inflows equalling evaporative loss, the 

isotopic composition of the lake waters approach a steady state, such that 

8E = Sin (Kebede efaZ., 2002). (7.9) 

8^^0 values recorded through 4 years have shown very little variation suggesting that the 

lake has reached an isotopic steady state. However, very saline lakes, such as Burdur, have 

additional controls on the evaporative system. 

Dissolved salts decrease the thermodynamic activity of the water and also its evaporation 

rate. However, this effect is small and can be neglected in most cases (Gonfiantini, 1986). 

Experiments comparing the evaporation of distilled and salt waters show the salt waters to 

have a much shallower slope in 6D v. 5^^0 space (Gonfiantini, 1986). Looking at the local 
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evaporation line (Fig.. 7.6), Lake Burdur lies on at straight line with other lakes in the region 

suggesting that there is no dissolved salt effect on the evaporation of this lake. 

6E can therefore be taken to equal the isotopic composition of the input waters i.e. - 8.5 %o. 

Equation 7.4 can then be solved and from the result, simultaneously solved with equation 

7.2, it can be shown that: 

Go = Om^ • S i+ Gi = 120,486,500 m^ 

7.5.3 Summary of hydrological budget 

Based on the water and isotope mass balance models above, a summary of the physical 

characteristics of the Burdur hydrological system and the water flux through Lake Burdur 

at the present time (assuming a lake in steady state) is given below. 

Lake Area 182,500,000 m^ Precipitation 0.412 myr'̂  

Lake Volume 3,768,289,067m^ Evaporation 1.072 myr"̂  

Table 7.3 Summary of Lake Burdur hydrological budget. 

Amount Percentage 

Inputs 

Precipitation (m )̂ 7.5 X 10"̂  38 

Surface inflow and 

Groundwater (m )̂ 12.0x10^ 62 

Outputs 

Evaporation (m )̂ 19.6 X 10"̂  100 

Groundwater (m )̂ 0 0 

Total Flux (m̂ ) 19.6 X 10' 

Residence Time 19.3 

(years) 

Residence time was calculated from the volume divided by the total flux through the lake 

(Telford and Lamb, 1999). 
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7.6 Sediment lithology 

A number of Mackereth cores, up to 2m long, were obtained from Lake Burdur in the 

summer of 2002 (Fig. 7.7). After visual inspection of the stratigraphy in each core 

BUR02MAI was chosen for analysis as it was the least disturbed and, based on laminae 

counts, extended the ftirthest back in time. Through the rest of the chapter core , 

BUR02MAI is the source of the results unless otherwise stated. 

The sediment from the Burdur cores is composed of laminated clays (Fig. 7.8) and loss on 

ignition (Fig. 7.9) shows there is very little variation in the sediment composition through 

the core. Based on LOI the sediments are composed of approximately 12 % organic matter 

and 20 % calcium carbonate. The remaining material, i.e. non-carbonate, mainly clay 

minerals and quartz, accounts for the remaining 68 % of the sediment. The peaks in the 

carbonate curve correspond to the non-laminated parts of the record (Fig. 7.9), which may 

be turbidite, or mass flow, strucmres bringing material from the lake edge to the lake bed. 

These may also be the result of increased in-wash events bringing large amounts of 

catchment material, including hmestones, into the lake. 

XRD of the Burdur sediments shows three types of carbonate present throughout the 

sequence. Dolomite accounts for approximately 20 % of the carbonate in the sediment, 

with calcite and aragonite accounting for the remainder. It is hkely that the dolomite is 

allochthonous in origin, as dolomitic hmestones are found in the catchment. The amount of 

dolomite is also higher in samples froni the non-laminated sections of the core, thought to 

be associated with increased catchment in-wash (Fig. 7.9). Assuming that dolomite is not 

precipitating within the lake, the XRD results indicate that there are catchment-sourced 

carbonates throughout the sequence. 

It is unclear if the calcite and aragonite are precipitating in the lake waters or also being 

washed into the lake. SEM photographs of the sediment show no visible differences 

between the different layers creating the laminated appearance of the sediments. The 

sediments are composed of small (<5 /im) particles (Fig. 7.10) with no clear morphology. 

This may suggest that most of the sediments has been reworked from the catchment and 

there is limited, or no, calcium carbonate precipitation within the lake. 
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Fig. 7.7 Location of core sites in Lake Burdur. White lines show water depth (m). 
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Fig. 7.8 Photo of laminated clays from Lake Burdur. 

Fig. 7.10 SEM photograph of Lake Burdur sediments. 
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7.7 Chronology 

^^°Pb, ^^^Cs, and Am were measured through the top 26 cm of the core to provide an age 

depth model. ^^'Cs has three relatively well resolved peaks, at 1.5 cm, 4.5 cm and 9.5 cm 

(Fig. 7.11). Traces of "̂̂ ^Am at 9.5 cm suggest that this peak records the 1963 fallout 

maximum from the atmospheric testing of nuclear weapons. The more recent peaks 

probably record fallout from the 1986 Chemobyl reactor accident. 

Total ^^°Pb activity apparently reaches equilibrium with the supporting ̂ ^^Ra at a depth of 

around 10 cm (Table 7.4). Unsupported ̂ ^°Pb activities, calculated by subteacting ̂ ^^Ra 

activity from total ^^°Pb activity, decline more or less exponentially with depth, suggesting 

relatively uniform sedimentation in this section of the core (Appleby, 2003 pers. com.). 

^^°Pb dates calculated using the CRS dating model (Appleby et al. 1978) place 1986 at a 

depth of 2 cm, and 1963 at a depth of about 4 cm (Table 7.5), significantly different from 

the depths suggested by the ^^''Cs/^^Am record. Revised CRS model calculations (Table 

7.5) using the 1963 ^̂ ^Cs date as a reference point (Appleby, 2001) suggest that the 

apparent total ^^°Pb / ^^^Ra equilibrium at -10 cm may be due to a massive influx of 

sediment in the early 1960s that diluted the atmospheric flux virtually to zero. A smaller 

such event in the late 1980s may explain the ^̂ ^Cs double peak between 1.5 and 4.5 cm. 

The absence of any unsupported ^^^b below the 1960s event suggests this influx of 

material may have destroyed the earlier part of the record. Since the surface concentrations 

place the ^^°Pb dating horizon at about 1915, at normal rates of sedimentation, this would 

suggest the loss of ~7 cm (Appleby, 2003 pers. com.). However, there is no sedimentary 

evidence in any of the cores of removal of material due to a mass flow movement below 

9.5 cm and the stratigraphy in these cores can be traced across the basin. 

Additionally to the '^'Cs ages and ̂ ^°Pb age model a radiocarbon date was obtained from 

wood fragments found in core BUR02MB2 (Table 7.6). Correlation of this core with 

BUR02MAI via visible inspection of the steatigraphy and magnetic susceptibihty (Fig. 

7.12) allows the date, of 340 ± 40 radiocarbon years BP, to be placed at a depth of 36 cm in 

core BUR02MAI. 
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Table 7.4 Fallout radionuclide concentrations in Burdur Lake core BUR02MA1 

Depth Total Unsupported Supported ^^'^Cs '̂*̂ Am 
cm gcm'^ Bq kg-̂  + Bq kg-' + Bq kg-' + Bq kg-" ± Bq kg-' + 

0.5 0.3 148 13.8 108.6 14.2 39.4 3.5 57.9 2.8 0 0 
1.5 0.8 124 11.8 86 11.9 38.1 2.1 260.8 4 0 0 
2.5 1.3 95.3 7.7 55.5 7.9 39.8 2 153.9 2.9 0 0 
3.5 1.9 106.2 7 74.1 7.3 .32.6 1.7 76.8 2.4 0 0 
4.5 .2.5 94.6 7.4 63.4 7.6 31.2 1.8 137.5 2.7 0 0 
5.5 3 70.5 7.3 28.6 7.6 42 2 44.4 1.9 0 0 
7.5 4.4 43.6 5.4 13.7 5.5 29.9 1.1 20.8 1 0 0 
8.5 5.1 26 6 1.8 6.2 24.2 1.5 71 1.8 0 0 
9.5 5.8 42.9 4.4 10.9 4.6 31.9 1.1 87.5 1.6 1.3 0.5 
10.5 6.4 33.9 9.4 2.6 9.5 31.3 1.7 50.9 1.8 0 0 
11.5 7 40.4 5.6 3 5.8 37.4 1.4 10.1 1 0 0 
13.5 8 43.3 5.4 8.3 5.6 34.9 1.5 1.4 0.8 0 0 
15.5 9 25.6 6.2 -9 6.3 34.5 1.5 0 0 0 0 
17.5 10.1 29.1 4.1 -5.8 4.2 34.9 1.2 0 0 0 0 
19.5 11.2 24.5 4.7 -11.1 4.9 35.6 1.3 0.7 0.8 0 0 
21.5 12.5 31,6 4.6 -3.5 4.8 35.1 1.3 0 0 0 0 
23.5 13.9 20.3 3.8 -10.1 3.9 30.3 1 0 0 0 0 
25.5 15.2 16.8 4.2 -15.5 4.3 32.3 1.1 0 0 0 0 

20 

25 

30 J - — 

Fig. 7.11 ^ '̂'Cs profile through core BUR02MAI 
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Table 7.5 ^^°Pb chronology of Burdur Golu (core BUR02MA1) 

(a) Raw CRS model dates 

Depth Chronology Sedimentation Rate 
Date Age 

g cm"̂  y' cm AD y + g cm"̂  y' cmy'* ±(%) 
0.0 0.00 2002 0 
0.5 0.26 1998 4 2 0.067 0.13 16.1 
1.5 0.78 1991 11 2 0.067 0.12 17.9 
2.5 1.34 1983 19 3 0.081 • 0.14 20.0 
3.5 L91 1974 28 4 0.046 0,08 20.8 
4:5 2:47 1959 43 8 0.034 0.06 30.3 
5.5 3.05 1945 57 12 0.049 0.08 48.8 
7.5 4.35 1917 85 29 0.042 0.06 101.0 
8.5 5.12 1904 98 36 0.062 0.09 127.1 
9.5 5.76 1899 103 44 0.030 0.05 150.8 

(b) Corrected CRS model dates 

Depth Chronology Sedimentation Rate 

cm gcm"̂  
Date 
AD 

Age 
y ± g cm"̂  y-* cmy-' ±(%) 

0.0 0.00 2002 0 0 
0.5 0.26 1999 3 1 0.09 0.18 15.0 
1.5 0.78 1994 8 2 0.10 0.19 16.2 
2.5 1.34 1989 13 2 0.14 0.24 17.1 
3.5 1.91 1984 18 2 0.09 0.15 14.8 
4.5 2.47 1977 25 3 0.08 0.14 17.9 
5.5 3.05 1972 30 4 0.15 0.25 30.3 
7.5 4.35 1965 37 5 0.26 0.38 44.0 
8.5 5.12 1964 38 5 0.80 1.14 53.6 
9.5 5.76 1963 39 5 0.30 0.50 45.4 
10.5 6.35 1962 40 5 0.54 0.91 49.4 
11.5 6.95 1961 41 6 0.67 1.20 50.3 
13.5 8.02 1960 42 6 0.36 0.69 49.1 

Table 7.6 AMS Radiocarbon date from wood fragments in core BUR02MB2 (140cm 
depth). Calibration with INTCAL98 (Stuiver et al, 1998). 

Lab Code Conventional Radiocarbon Age 2 0 calibrated result 
Beta-17876 340 ±40 BP 1450-1650 AD 
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Fig. 7.12 Comparison of magnetic susceptibility profiles from core BUR02MB2 and BUR02MAI. Tie points from magnetic 
susceptibility (squares) and visual inspection of the cores (diamonds) are shown in inset. 
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Fig. 7.13 Comparison of ̂ '̂Cs and radiocarbon dates with laminae counts, a) Detail of recent sediments with ̂ °̂Pb 
chronology and Cs ages. 



The laminations in the core were also counted. If the laminae are plotted against depth and 

compared to the ^^°Pb chronology and ^̂ ^Cs ages it appears that the laminations are annual 

in nature (Fig. 7.13a). The radiocarbon dateis older than the laminae counts at 36 cni depth 

(Fig. 7.13) and has a large 2a range (1450 to 1650 AD), as it falls on a radiocarbon 

plateau. However as this age is taken from a wood fragment that will have been washed in 

to the lake, and may have taken tens of years to reach the lake bed, it should be taken as a 

minimum age only. 

Although there are some uncertainties with the dates obtained from this core there is no . 

sediinentological evidence of any hiatus in the core, and the laminae (varve) chronology 

fits with the ^ '̂'Cs and, more approximately, with the radiocarbon ages. The varve 

chronology will therefore be used as an age model through the remainder of this stody. 

7.8 Carbonate Stable Isotope Results 

5 O values vary between -0.6 and 0.9 %o through the core (Fig. 7.14). There is a trend to 

more positive values between the base of the core (0.1 %o) and 32 cm depth (0:9 %o), from 

around 1500 to 1730 AD. There is then a long-term trend to more negative values to the 

top of the core reaching -0.4 %<? at 0-1 cm, with occasional.rapid excursions to more 

positive values e.g. at 7 and 23 cm. 

Trends are less evident in the 5 C record (Fig. 7.14), which has a range of 2 %o, between 

0.1 and 2.1 %o. Again there are occasional rapid shifts towards more positive values at 6, 

18i 23 and 32 cm depth. In general there is a ttend to more negative values from 1.2 %o at 

44 cm, approximately 1570 AD, to 0.2 %o at 2 cm depth. 
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Fig. 7.14 5^̂ 0 and 8̂ ^C results from BUR02MAI. Lithology key the same as in 
Fig. 7.9 (data in appendix 2). 
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7.8.1 Interpretation of carbonate results 

Allochthonous Carbonate 

The carbonate mineralogy and sediment morphology suggest most of the carbonates in the 

Burdur sediments may have been reworked from outside the lake and the composition of 

the total carbonate in a given sample may therefore control the isotope value recorded. 

Comparing the 6 samples where the amount of each carbonate fraction could be estimated 

from the XRD analysis with the samples isotope values it would suggest that there is some 

contiol from the amount of dolomite in the sample, but the amount of calcite or aragonite 

does not affect the isotope value (Table 7.7). 

The rapid peaks in the carbonate isotope records at 6 cm and 32 cm correspond to peaks in 

the CaCOs curve from loss on ignition (Fig. 7.9). This suggests tiiat these positive 

excursions are associated with sudden increases in carbonate reaching the lake floor. These 

also correlate to the non-laminated parts of the stiatigraphy, which are probably mass flow 

events from the lake edge or times of rapid in-wash from the catchment. These may be 

caused by heavy rainfall events, however in Burdur they could also be due to tectonic 

events leading to mass flow movements or turbidite events. 

Dolomite is enriched in ^̂ O by 3-4%o with respect to coexisting calcite (Land, 1980) and 

increases in isotopically positive catchment dolomite would therefore explain the positive 

isotope excursions related to the non-laminated sections of the Burdur sediments. In 

addition, the samples were prepared for mass spectiometry using standard techniques for 

calcium carbonate i.e. calcite and aragonite. Magnesium carbonates, such as dolomite, may 

partially react during this process and differentially fractionate in each sample. The effect 

of dolomite on the recorded isotope value is therefore difficult to quantify. It has been 

suggested (Al-Asam et al, 1990) that the effect of the dolomite can be removed by 

limiting the reaction times of the sample in acid, prior to CO2 exttaction, although this is 

difficult with fine grained sediments such as those from Burdur. 

From lake water isotope values and lake temperamre data the value of calcite that would be 

precipitated in the lake waters can be calculated from the equation of Leng and Marshall 

(in press): 
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Table 7.7 Strength of regression relationships between the amounts of calcium 

carbonate minerals and stable isotope values (n = 6). 

Relationship r̂  p 

% Aragonite V. Ŝ ^C 0.0056 0.917 

% Calcite V. 5̂ ^C 0.0080 0.853 

% Dolomite v.S^^C 0.3545 0.246 

% Aragonite v. 5^̂ 0 0.0026 0.978 

% Calcite v.8^^0 0.0028 0.866 

% Dolomite v. 5̂ 0̂ 0.1437 0.443 

0.8 

0.6-

0.4 

0.2-

' 0.0 

5 
-0.2-

•OA 

-0.6-

-0.8 

y = 0.7529x-0.3396 
tf = 0.4809 

0.0 0.2 0.4 0.6 0.8 1.0 1 i 1.4 
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Figi 7.15 5̂ 0̂ V. 5̂ ^C forBUR02MAl (with sample 8 removed). 
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T( °C) = 13.8 - 4.48(5c-5w) + 0.08(5c-5wf. (7.10) 

Based on the values recorded from the surface waters in 2002 (Table 7.1) precipitated • 

calcite would have a value of +1.0 %o, this compares to a value of + 0.1 % for the surface 

sediments from Burdur. This suggests that there may be some degree of non-authigenic 

carbonate in the sample. E calcite was precipitated earlier in the year, at cooler lake water 

temperatures, or if aragonite was precipitated, the values would become more positive, 

moving away from the measured surface sediment samples. Additionally the surface 

sample contain dolomite which would tend to make the sample more positive. • 

From the previously published values of lake water isotope values (Dinger, 1968) and the 

measurements taken in this study (Table 7.1) lake waters are approximately 2%o inore 

positive in the period 1999 - 2002, compared to 1964 -1966. However, the surface 

sediment sample is only 0.12 %o heavier than the sample representing 1964-1966. 

The sediments do not represent present day lake water isotope conditions or changes in the 

lake water isotope composition through time. It is most likely, therefore, that the isotope 

record from Burdur reflects changing amounts of catchment in-wash, due to different 

amounts of dolomite being present in the core 

5̂ 0̂: 5"C co-variation 

With the raw isotope results there is a clear co-varying trend between the 5^̂ 0 and 5̂ ^C 

records although the relationship is fairly weak (i^ = 0.32). If some of the rapid excursions 

caused by the non-lacustrine dolomite are removed from the record the co-varying 

relationship becomes stronger (Fig. 7.15). Strong co-variation often occurs due td the 

climatic influences on the 6^^0 and records in closed lake basins (Talbot, 1990). As, 

from the discussion above, the isotope record is unlikely to reflect water balance but rather 

the amount of inwash into the lake, the co-variation here is most likely due to the samples 

with higher dolomite content having more positive 6̂ *0 and 5̂ ^C values and vice versa.. 

Comparison with meteorological records 

Although the source of carbonate in the Burdur sediments is mixed, and much of it may be 

sourced in the catchment, isotope profiles may still show relationships with meteorological 

variables, particularly if the isotope profiles are controlled by the amount of in-wash. 
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For comparisons between meteorological records and the 5 0 record, the meteorological 

record was averaged for the periods of time represented by each sediment sample. Direct 

comparisons of the two records showed no relationships at a 95% confidence Umit (Table 

7.8). The strongest relationship was with spring minimum temperature which explained 

22.1 % of the isotope variability with a 94 % confidence limit. 

Isotope sample 8, representing 1973 -1976, was removed from the dataset as it shows a 

strong positive shift thought to be due to non-authigenic carbonate. With this sample 

removed the only significant relationship is still with spring minimum temperature which 

in turn explains nearly 30 % of the isotope variability (Table 7.9). 

Plots of the spring and autumn minimum temperatures, the two stiongest relationships 

between 6̂ 0̂ and meteorological variables (Fig. 7.16), compared to the recent isotope 

record suggest there is not a stiong relationship and the relationship found may just be due 

to similar long term trends in the data set particularly between 1960 and 1990, where the 

minimum temperatures show a cooling tiend; There are no pattems in the meteorological 

variables that would fitwith the isotope profiles if they were shifted to account for a lag in 

the lake response to cUmatic changes. This suggests the isotope values of the carbonate 

analysed are not cUmatically contioUed. 

Comparison with lake level records 

Lake levels at Burdur have fallen dramatically during recent times, since the early 1970's 

lake level has fallen by 11.75 m in 30 years (0.39 m/year; Fig. 7.17), possibly due to 

removal of water for irrigation in the catchment (Roberts et al, 2003). This anthropogenic 

influence may mask any relationship between the isotope record and meteorological 

records. 

At Burdur the lake level should be a function of precipitation and evaporation, as there is 

no surface outflow from the lake and inflows from rivers and groundwaters will vary with 

the amount of precipitation. 

From equation 5.1 (E = [0.015 -F4 x 10"̂  T + W^z] x [480 (T + 0.006z)/(84 - A) - 40 + 2.3 

u (T - Td)]) changes in evaporation can be shown to follow temperatures. Fig. 7.18 shows 

the rise in lake levels between 1960 and 1970 correspond to a decrease in summer 

temperature. Temperatures start to rise steadily from the early 1970s, however from 1980 
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Table 7.8 Regression relationships between the Burdur 5'*0 record and averaged meteorological 
variables between 1941 and 2002. Table shows p-value, the direction of the relationship, and the 
value. 

Annual Spring Summer Autumn Winter 

0.184 0.060 0.663 0.127 • 0.288 

Min. Temp. + + + + + 
7.8 22.1 0.0 12.5 2.0 

0.528 0.341 0.496 0.475 0.669 

Av. Temp + . + + + + . 
0.0 0.0 o:o 0.0 0.0 

0.847 0.587 0.496 0.857 0.857 

Max. Temp + + - + + 
0.0 0.0 0.0 0.0 0.0 

0.653 0.700 0.305 0.736 0.385 

Precip. + + + - + 
0.0 0.0 1.4 0.0 0.0 

0.793 0.932 0.980 0.705 0.363 

R.H. + + - + + 
0.0 0.0 0.0 0.0 0..0 

Table 7.9 Regression relationships between the Burdur 6'̂ 0 record and averaged meteorological 
variables between 1941 and 2002, widi sample 8 removed. Values as in Table 8.3; 

Annual Spring Summer Autumn Winter 

0.115 0.711 0.110 0.231 

Min. Temp. + + + + 

15.3 0.0 15.9 5.4 

0.435 0.325 0.464 0.492 0.497 

Av. Temp + + - + + 

0.0 0.6 0.0 0.0 0.0 

0.828 0.658 0.418 0.554 0.668 

Max. Temp + + - + + 

0.0 0.0 0.0 0.0 0.0 

0.624 0.974 0.181 0.964 0.201 

Precip. + + - - + 

0.0 0.0 8.8 0.0 7.4 

0.848 0.998 0.825 0.727 0.241 

R.H. + - - + + 

0.0 0.0 0.0 0.0 4.8 
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Fig. 7.16 Sediment 5 O (a) and spring and autumn minimum temperatures (b) 
(the two strongest relationships for 6^̂ 0 v. climate data) between 1940 and 2000 
AD. 
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onwards lake levels fall at a much larger rate than would be expected from the relationship 

between temperature and lake level in the earher part of the record. 

Fig. 7.19 shows values of normalised precipitation - normalised temperature (as a proxy of 

P-E) compared to lake levels. There is a lag of 5 years between these two curves, 

suggesting a lag in lake response to climate change. Taking this lag into account the first 

20 years of the two records appear to show a strong relationship but this breaks down from 

1970. There are no rises in lake level associated with the increase in P-E during thelate , 

1970's and late 1990's. ' 

Both the above relationships, between temperature or P-E and lake levels, suggest that 

prior to 1970 lake levels can be related to cHmate change at Burdur. After 1970 the earlier 

relationships break down with lake levels becoming considerably lower than would be 

expected from the climate data. This suggests that since 1970 additional controls, most 

probably removal of inflowing waters for irrigation, other than climate have been 

influencing lake level, and possibly, therefore, the stable isotope record at Burdur. .• 

However prior to 1970, although it was probably still occurring, irrigation was not a large 

enough factor to have a significant effect on lake level changes. 

Since the early 1970's lake level has fallen at an average of 0.39 m/year, although between 

1989 and 1997 the lake fell faster at 0.67 m/year, which is very close to the value for E - P 

(0.66 m/year). suggesting there may have been no surface inflow into the lake during this 

time period. This is unlikely, even due to increased irrigation, as there are many rivers and 

steams that enter the lake. Lake levels therefore seem to have been falling faster than 

would be suggested by the hydrology. There may be additional non-climatic, non-

anthropogenic, controls on lake level, particularly tectonics. The basin is known to be 

heavily faulted and tectonically active and basin subsidence may therefore account for 

some of the recorded lake level change. 

A decrease in lake level could be caused by a relative increase in evaporation or decrease 

in input to the lake. From the isotope results above a decrease in in-wash would lead to 

more negative isotope values as increases in in-wash are marked by shifts to more positive 

values. 
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Fig. 7.17 Burdur lake levels between 1940 and 2001. 
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Fig. 7.18 Lake level and maximum summer temperature curves from Lake 
Burdur. Temperature curve, smoothed with a ten year running mean, is inverted as 
higher temperatures (increased evaporation) would lead to lower lake levels. 
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Fig. 7.19 Comparison of normalised P-E (normalised precipitation - normalised 
temperature) and lake level curves from Lake Burdur. 
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Fig. 7.20 Comparison of oxygen isotope values and lake level curve from Lake 
Burdur 
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Comparison of the isotope and lake level time series (Fig. 7.20 suggests there is no clear 

relationship between lake levels and isotope values recorded in the.sediment. 

7.9 Summary 

The complexity of the carbonate mineralogy in the lake sediments makes the isotope 

record very difficult to interpret. Increases in carbonate, and slight increases in the amount 

of dolomite, during the non-laminated sections of the core are marked by distinct shifts in 

isotope values. These may mark .extreme clihaatic episodes,or tectonic events, but do not 

tell a story of climatically contidlled lake hydrology. The lake sediments do not record the 

isotope variability recorded by changes in the lake waters and this suggests a large 

proportion of the lake carbonates are not precipitated within the lake. 

The work at Burdur highlights the complexity of lake stable isotope systems and the 

importance in fully understanding a lake system before interpretations of isotope 

palaeorecords can be made. Although the Burdur sediments contain carbonate,-and show 

variation through the record it is unlikely that this variability is due to cUmate. The work at 

Bmdur suggests that using bulk sedimentary carbonate is not a robust methodology if the 

source of the carbonate can not be pinpointed. Biogenic carbonate, from ostiacods or 

molluscs, would be a better isotope archive in this environment, and although no fossils 

were found in the cores for this study they are present in the older sediments around the 

lake edge. 
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C h a p t e r 8 

QUANTIFYING CLIMATE CHANGE 

For records of palaeoclimatic change to be useful to other scientific communities, such as 

climate modellers, or to put the recorded climate variability through the last century into 

context, it is necessary to .quantify records of past change. This requires understanding of ' • 

the modem processes controlling the palaeoarchive and the assumption that these controls-

have not changed significantly through time or, if they have, that changes can be 

sufficiently accounted for. This is particularly important when trying to quantify changes 

in climate from lake oxygen isotope records as there are many factors which control lake 

stable-isotope values (chapter 2). Even a single climate variable can have many effects on 

the lake isotope system. Temperature, for example, not only controls the fractionation 

between lake waters and precipitated carbonates but also affects the stable isotope value of 

precipitation entering the lake. Temperature also plays a large role in contiolUng the 

amount of evaporation and this may be the dominant effect in some lake systems, such as 

Nar and Burdur. It is therefore important that in quantifying climate change from these 

records all assumptions are stated, errors are carefully calculated, and the reconstmcted 

cUmate variable can be shown to have a stiong control on the isotope records through the 

instrumental time period. 

Many quantified reconstmctions are based on calibration of the palaeoarchive with 

recorded instiumental data either directly (e.g. tree ring precipitation reconstiiictions; e.g. 

D'Arrigo and Cullen, 2001) or via tiansfer functions (e.g. diatom salinity reconstmctions; 

e.g. Reed et at, 1999), taking the assumption that these modem relationships hold through 

time. Altematively, systems can be modelled (e.g. Benson and Paillet (2002) for lake 

isotope records) to show how climate must vary to force the archive system into the 

observed response. With the data firom this study both climate calibration and modelUng 

can be employed to try to quantify changes in Turkish climate through the last two 

millennia from the isotope record from Nar Golu. The record from Burdur is not 

understood sufficiently to be used for quantification. 
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8,1 Calibration with meteorological variables 

The Nar stable isotope record shows strong relationships with suiimier relative humidity 

and summer temperatures (chapter 6) between 1926 and 2001, the time period for which 

instrumental data are available. For the oxygen isotope record, corrected for changes in 

mineralogy, compared to the 8 year smoothed meteorological variables between 1933 and 

2001 (Table 6.6) the relationships are: 

• Summer RH = 45.23 - 0.98 6̂ .̂ 0 .r̂  - 53 J % (9.1)' 

Summer av. temp. = 0.13 5^̂ 0 + 22.11 ^ = 25.0 % (9.2). 

Summer max. temp. = 0.16 5̂ ®0 + 29.01 28.1 % (9.3) 

For the data between 1933 and 1986, prior to the change in mineralogy and therefore 

removing any possible errors caused by this correction (Table 6.8), the relationships.are: 

Summer RH = 45.78-0.76 6^̂ 0 r^=29.3% (9.4) 

Summer av. temp. = 0.28 6 ^̂ O + 22.01 r^= 56.5% (9.5) 

Summer max. temp. = 0.16 6^̂ 0 + 28.90 = 49.2% (9.6) 

For the remainder of the chapter only the strongest two relationships, with summer relative 

humidity for the full record and average summer temperature for the pre-1986 record, will 

be discussed in terms of quantification of the isotope record. 

It has been shown (chapter 6) that stronger relationships are found with these two 

meteorological variables if they are smoothed with a 13 year weighted average, the 

maximum lake residence time (chapter 5), compared to the 8 year smoothing in the above 

relationships. The following relationships result: 

Summer RH = 45.12-0.96 5̂ 0̂ r^=60.0% (9.7) 

Summer av. temp. = 0.27 5 ^̂ O + 22.06 = 73.3% (9.8) 
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Assuming uniformatarianism, these relationships, particularly 9.1,9.5, 9.7 and 9.8, can 

therefore be used to reconstruct chmatic variability in the past. 

Errors 

Although r̂  values give some idea of how much of the relationship is explained it is also 

necessary to quantify any errors. Standard deviations of the residuals from the regression 

relationships, between the recorded meteorological variables and stable isotope values, 

give an idea of the errors on the reconstmctions. Most of the recorded temperature and 

relative humidity values lie within the 2 standard deviation (2 a) error envelope (Fig 8.1, 

8.2), although extreme values in the meteorological records are not recorded by the lake 

sediment isotopes. 

Although the error range is smaller than the range of the recorded variables, for the 

summer relative humidity reconstraction (Fig. 8.1a) the error range is 5.38 % (4 o) 

compared to a range of 10.51 % for the recorded relative humidity, and for the temperature 

reconstoiction (Fig. 8.2a) the 4 a range is 1.05 °C compared to a recorded range of 1.77 °C, 

the reconstmctions have a much smaller range. The range of the temperature 

reconstraction is stiU just larger than the error range, 1.08 °C compared to 1.05 °C, 

however for the relative humidity reconstmction the range is less than that of the errors, 

5.20 % compared to 5.38 %. For this reconsfaiiction a flat hue, indicating no change, could 

therefore be drawn through the error window, even though there is a change of over 10 % 

in the recorded relative humidity through this time period. 

With the relationships from the 13 yr smoothed meteorological variables the errors are 

much smaller and in both cases are smaller than the range in the reconstraction, for the 

suromer relative humidity reconstraction the error range is 4.54 % compared to a range of 

4.90 % in the reconstraction (Fig. 8.1b). For the temperature relationship, the error range is 

0.7 °C compared to a range in the reconstraction of 1.04 °C (Fig. 8.2b). 

8.2 Modelling 

Modelling the lake response to climatic changes can help interpretation of isotopic changes 

through the sediment record (e.g. Benson and Paillet, 2001; Ricketts and Johnson, 1996). 

The simplest form of lake isotope model takes a well mixed lake system in equilibrium and 
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Fig. 8.1 Reconstructed summer relative humidity through the instrumental time 
period with 1 a (dark grey Unes) and 2 a (light grey Unes) errors from 
relationships with 8 year (a) and 13 year (b) smoothed meteorological variables. 
Grey squares show recorded sununer relative humidity. 
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Fig. 8.2 Reconstructed summer average temperature through the instramental 
time period with 1 a (dark grey lines) and 2 a (light grey lines) errors from 
relationships with 8 year (a) and 13 year (b) smoothed meteorological variables. 
Grey squares show recorded summer average temperature. 
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then forces one of the variables, keeping all others constant, to observe the lake system 

response. A steady state model for Nar can be built from the iintial hydrological variables 

calculated and estimated in Chapter 5. 

It has already been shown (equation 5.7) that at Nar 

dV5i/dt = P5p + Si5p + Gi5Gi - E5E - Go5, (9.9) 

which can-also be written 

d5i/dt = [(P8p + SiSp + GiSci - E5E - Go6,) - 5i dV/dt]A^ (9.10) 

Values of all these variables are known from the mass balance models used to estimate the 

lake hydrological budget (Chapter 5) and can therefore be. used as the initial values for the 

steady state model. As the model records changes in 5i all values for calculating 6E must 

also be known as 5E is a function of 6i. 

Model assumptions 

As the model also results in changes in volume the lake area will also change, thus 

changing the amount of evaporation and rainfall directly from and into the lake 

respectively. It is also assumed that Gp is proportional to the surface area of the lake bed in 

contact with the lake water, which will also therefore depend on volume. A relationship 

between volume, lake area, and lake bed surface area is therefore required. From the 

bathymetry values all these measurements can be calculated for different lake depths. 

However, there is no simple relationship between these values that can be transferred to the 

model, especially at values when the lake is deeper than currently observed, and at shallow 

depths. Lake areas and volumes calculated at different depths, compared with calculated 

surface areas show strong quadratic relationships (Fig. 8.3), however these curves would 

predict reductions in lake area at high volumes and do not intercept at (0,0). Log curves 

through the data points are probably a more realistic model of reality but do not fit the data 

well (Fig. 8.3). 

In the model the lake basin is therefore taken to be an oblate ellipsoid (a = b > c), as this is 

the nearest regular shape to the real lake basin. Changes in lake volume can then be used to 

calculate changes in lake area and lake bed surface area. 
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Fig. 8.3 Relationships between lake volume and lake area (a) and lake volume and 
lake bed surface area (b) from Nar. 
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As groundwater inflow is largely meteoric water (see discussion in chapter 5), SGI is taken 

to equal 6p. Groundwater inflow to a lake tends to be concentrated at the lake margin 

(Almendinger, 1990) and the amount of inflow is therefore also dependent on the area of 

the lake. Gi is therefore taken to be a function of lake area and the amount of precipitation. 

In the model 5p and R H are both taken to be proportional to temperature as the 

relationships between these variables and temperamre are known to be strong (Fig. 5.11; 

section 6.3.1). The amount of evaporation is also dependent on temperature (equation 5.2). 

Two steady state models are used, using the two different calculations of 6E from-Chapter 

5, Model 1 using the Benson and White (1994) equation 5.12, and Model 2 using equation 

5.10. Table 8.1 shows the initial calculated values for the contemporary lake compared to 

initial values of the models. To set up a model in equilibrium with values as close as 

possible to the modem lake system, slight adjustments had to be made to the temperature 

values. The values shown here represent the model having mn to an equilibrium state i.e. 

there is no change in lake volume or 8i with a residence time and other values very close to 

those estimated or measured from the modem lake. 

Model Results 

Using these initial values it is then possible to force the system to observechanges in 6i. As 

RH, E and 5p are functions of temperature, temperature and precipitation are the major two 

variables in the model. By shifting these values and mnning the model to equilibrium, new 

values for Sjare observed (e.g. Fig. 8.4). During changes in temperature minimum, average 

and maximum temperatures are all shifted by the same amount. 

Values do not go stiaight to equilibrium (Fig. 8.4). 6i values first shift to a maximum value 

before decreasing again to a new equilibrium state. In reality the lake is unlikely to reach 

its new equiUbrium state as each year values of P and T change. 

For changes to new values of T or P the initial value, after one year of change, the 

maximum value and the new equilibrium value can be compared. As a stiong relationship 

with relative humidity was found between the isotope data and instiumental climate 

records, the relationship between lake water 6^̂ 0 and relative humidity was also observed 

in the models. 
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Table 8.1 Comparison of initial model values and recorded values from Nar Golii. Values in 
column are described in Chapter 5. 

% % 
Reality Model 1 difference Reality Model 2 difference 

Volume 7692360.0 7862813.4 -2.2 7811372.7 -1.5 
5i -2.8 -2.4 15.5 -2.2 • 20.2 
Lake area 556500.0 564690.8 -1.5 562225.2 -1.0 
P 0.3 0.3 0.0 0.3 O.d 
P amount 178080.0 180701,1 -1.5 179912.1 -1.0 
5p -10.6 -9.8 7.6 -9.8 7.6 
k 0.3 0.3 0.0 0.3 0.0 
Catchment area 2408000.0 2408000.0 0.0 2408000.0 0.0 
Si 148120.0 147464.7 0.4 147662.0 0.3 

Gi 651677.0 651677.0 0.0 1010012.0 1010012.0 O.d 
-10.6 -9.8 7.6 -9.8 7.6 

E calculated 1140.4 1124.1 1.4 1124.1 1.4 
E measured 1.0 1.0 2.1 1.0 2.1 
E amount 570412.0 566380.5 0.7 563907.5 1.1 
5E -15.7 -15.2 3.0 -20.6 -20.2 2.1 
RE 1.0 1.0 0.0 
Aeq 1.0 1.0 
5A -21.0 -20.3 -20.3 3.5 
RA 1.0 
e* 10.5 10.5 
Ek 7,7 
sat vp lake 14.4 
sat vp air 11.4 
vp air 6.6 
h 0.5 
Go 407465.0 413462.3 -1.5 765800.0 773678.5 -1.0 

-2.8 -2.4 15.5. -2.2 20.2 
a 424.0 423.0 
b 26.0 20.9 19,7 20.8 19.8 
e 1.0 1.0 
Surface Area 1139544.0 1134568.4 
Tlake 285.8 285.5 0.1 285.5 0.1 
fad 0.0 0.0 
RH 0.6 0.6 -1.9 0.6 -1.9 
T average 9.2 8.9 3.5 8.9 3.5 
z 1363.0 1363.0 0.0 1363.0 0.0 
A 38.0 38.0 0.0 38.0 0.0 
u 3.2 3.2 0.0 3.2 0.0 
Td 6.9 6.5 5.8 6.5 5.8 
Tmin. 2.7 2.5 7.1 2.5 7.1 
Tmax. 16.0 15.8 1.4 15.8 1.4 

Inflovf 977877.0 979842.8 -0.2 1336212.0 1337586.1 -0.1 
Outflow 977877.0 979842.8 -0.2 1336212.0 1337586.1 -0.1 
Residence Time 7.9 8.0 -2.0 5.8 5.8 -1.4 
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Fig. 8.4 Change in lake water oxygen, isotope value with a change in average 
annual temperature from 8.85 to 9.85 °C in Model 1. 
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From the initial steady state (Table 8.1) the model was shifted to new values of T, holding 

P constant. The resulting numbers recorded .(Table 8.2) led to the following relationships 

between lake water isotope values and meteorological variables. 

For Model 1: 

For equilibrium values: T= 1.2234(5^^0) +11.853 (9.11) 

R H =-1.7494(5^^0)+ 53.792 (9.12) 

For initial shifts: T = 5.7449(5^^0) + 22.424 (9.13) 

R H = -8.2152(5*^0) + 38.675 (9.14) 

For Maximum shifts: . T = 0.8463(5*^0) + 10.859 (9.15) 

R H =-1.2102(5*^0)+ 55.213 (9.16) 

For Model 2: 

For equilibrium values: T = 1.1571(6*^0) + 11.497 (9.17) 
RH =-1.6546(5*^0)+ 54.301 (9.18) 

For initial shifts: T = 3.6112(5*^0) +16.882 (9.19) 

R H =-5.464(5*^0)+ 46.6 (9.20) 

For Maximum shifts: T= 1.9106(5*^0) + 10.893 (9.21) 

R H = -1.3022(5*^0) + 55.165 (9.22) 

Although the relationships for the initial shifts in isotope values differ, the two models 

produce very similar relationships for changes in equilibrium state and especially for the 

maximum change in 5i during any change. 

The model was then run holding temperatures constant and changing the amount of 

precipitation, again initial, maximum and changes in equilibrium state were recorded. 
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Table 8.2 Values of initial and maximum shifts and new equilibrium states for temperamre 
changes to steady state models. 

Model 1 

R H Tmax Tav Equilibrium Max. during change Initial cliange 

59.516 14.80 7.85 . -3.34 -3.56 -2.54 

58.086 15.80 8.85 -2.36 

56.656 16.80 9.85 • -1.57 -1.19 -2.19 

55.226 17.80 10.85 -0.90 -0.02 -2.01 

Model 2 

R H Tmax Tav Equilibrium Max. during change Initial cliange 

59.516 14.80 7.85 -3.20 -3.34 -2.50 

58.086 15.80 8.85 -2.23 

56.656 16.80 9.85 -1.38 -1.14 -1.96 

55.226 17.80 10.85 -0.61 -0.05 -1.66 
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For Model 1: 

For Initial shifts . P =-0.3459(5*^0) - 0.4987 (9.23) 

For Maximum shifts P =-0.0538(5*^0) + 0.2069 (9.24) 

For Model 2: 

-For Initial shifts: P =-0.2473(6*^0) - 0.2326 (9.25) 

For Maximum shifts P = -0.686(6*^0) + 0.0177 (9.26) 

In both models there is no simple relationship between changes in precipitation and new 

lake equilibrium values (Fig. 8.5). Increase in precipitation lead to more negative isotope 

values, however decreases in precipitation do not lead to any major change in the lake 

equilibrium values. This may be due to there being no change in the net flux through the 

lake with a decrease in precipitation i.e. the decrease in input = decrease in output due to 

reduction in lake volume, whereas with an increase in precipitation input becomes greater 

than output therefore leading to more negative isotope values. 

Isotopic values of lake waters respond in the model as suggested in chapter 6 for the 

controls on the Nar isotope record. Increasing temperatures, and the associated fall in 

relative humidity, lead to more positive isotope values, as does a decrease in the amount of 

rainfall. Decreasing temperatures and increasing relative humidity lead to more negative 

isotope values. 

Testing the models 

These relationships are based on changes from one initial steady state. Starting the model 

in different steady states, with different starting temperatures, the same exercise as above 

can be carried out to observe if the model behaves differently (Table 8.3). Whatever the 

starting value, equihbrium values for a given temperamre are the same in all cases. 

However the initial values, and maximum values, and the differences between the starting 

values and initial and maximum values, do change with differing starting temperatures. As 

conditions gets warmer, and less humid, the values of the initial shifts in the system get 

smaller and the maximum values during changes get larger, although at a much lower 
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Fig. 8.5 Equilibrium 5i values with changing values of precipitation in Model 1. 
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Table 8.3 Changes in initial and maximum sMfts and equilibrium oxygen isotope values 
(%o) from different initial states of Model 1. 

Tav 
Initial Original - Original -

Tav Equilibrium Max cliange Change initial max 
Start at 8.85 

6.85 -4.47 -4.76 -2.70 0.24 2.29 
7.85 -3.34 -3.56 -2.54 0.07 1.09 
8.85 -2.46 
9.85 -1.57 -1.19 -2;i9 -0.27 -1.28 

" 10.85 -0.90 . -0.02. -2.01 -6.45 .-2.45 
Start at 9.35 

7.35 -3.92 -4.30 -2.37 0.38 1.93 
8.35 -2.87 -3.14 -2.18 0.19 1.15 
9.35 -1.99 

10.35 -1.26 -0.85 -1.79 -0.20 -1.14 
11.35 -0.60 0.28 -1.59 -0.40 -2.27 

Start at 9.85 
7.85 -3.41 -3.87 -2.05 0.42 2.24 
8.85 -2.44 -2.74 -1.84 0.21 1.12 
9.85 -1.63 

10.85 -0.93 -0.52 -1.41 -0.22 -1.10 
11.85 -0.28 • 0.57 -1.18 -0.45 -2.20 

Table 8.4 Comparison of model relationships, for maximum shifts for a given climate 

change, and climate calibration relationships for the range of values in the Nar record. 

Relative Hum dity Average Temperature 
Climate Climate 
Calibration Model 1 Model 2 Calibration Modell Model 2 

-5.7 50.8 62.1 62.6 20.4 6.0 5.7 
-2 47.2 57.6 57.8 21.5 9.2 9.1 
-1 46.2 56.4 56.5 21.7 10.0 10.0 
0 45.2 55.2 55.2 22.0 10.9 10.9 
1 44.3 54.0 53.9 22.3 11.7 11.8 
2 43.3 52.8 52.6 22.6 12.6 12.7 

2.4 42.9 52.5 52.0 22.7 12.9 13.1 

Range 7.9 9.8 10.5 2.3 6.9 7.4 
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rate than the change in the initial shift. Siniilar pattems to those initially observed are 

found foir changes in.amounts of precipitation when the model has a lower initial 

precipitation value. As in Fig. 8.5 a reduction in precipitation makes no difference to the 

equilibrium lake water isotope value whereas increasing amounts of precipitation lead to 

more negative equilibrium isotope values. 

The relationships in the model can be compared to the relationships found from the isotope 

record climate calibration. Compared to. the calibration relationships with summer relative 

humidity (9.1) and siiminer average temperature (9.5) the closest relationships from the 

models are with the maximum shifts in 6i (Equations 9.15,9.16,9.21 and 9.22). Taking 

these relationships over the full range of the 5*̂ 0 record from Nar (-5.7 %o to 2.4 %o) the 

model relationships result in larger ranges of reconstmcted temperature, 6.9 °C compared 

to 2.3 °C for the climate calibration relationship, and relative humidity values, 9.8% 

compared to 7.9%, and the values are colder and more humid (Table 8.4). The 

• relationships from the model and the climate calibration are closer for relative humidity 

values than for temperamre. 

The difference in values between the model and the climate calibration relationships may 

be due to the different time periods represented by the model and the climate cahbration. 

The model is ran on yearly time steps, with annual average values, whereas the climate 

calibrations are based on summer chmate variables. 

Monthly steady state model 

To try and understand the effect of different seasons on the lake isotope system the models 

can be ran on monthly time steps using the average annual values of temperature and 

precipitation (Figs. 5.5 and 5.6). The models change to new equilibrium states where they 

change monthly, with the most negative values in May and the most positive in October 

(Fig. 8.6). The annual range in Model 1 is 0.75 %o compared to 1.14 %o in Model 2, the 

average values are more negative in Model 1, -1.48 %o, compared to -0.55 %o in Model 2. 

Both models predict aimual changes similar in range those observed in the field. A sine 

curve fitted to the recorded water isotope values from 2001 and 2002, with the most 

positive values in October and the most negative values in April and May, has a range of 

0.97 % QPig. 8.7). However both models predict values more positive than those recorded. 
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Fig. 8.6 Shifts from annual steady state model to monthly steady state model 
using average precipitation and temperature values from Derinkuyu. 
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Fig. 8.7 Modelled annual variability in lake vî ater isotope values. Compared to 
estimated values from recorded isotope values (*). 
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Dynamic Models 

The sensitivity of the models can be further tested by modelling variability through the 

instrumental time period, using the recorded instrumental data, and comparing the model 

output with the recorded isotope data. Lake water isotope values predicted by the model 

must be converted to values of carbonate, based on temperature and the predicted isotope 

value of the lake water (equation 5.15), for comparison with the measured isotope values 

from the sediments. The models are mn on annual or monthly time steps, and the 

carbonates measured represent lake waters and temperatures at only a particular time of the 

year, probably the early sununer. Thesfe factors must be taken into account when 

comparing the models to the recorded isotope variability. Summei: temperatures are 

therefore used for the carbonate calculations, whereas annual average temperamres are 

used for calculating changes in 81. 

Initial conditions for the model are generally unknown. Temperatures and recorded 

carbonate isotope values are known, and initial values of 61 can therefore be estimated. The 

iiutial volume of the lake is unknown and therefore can be changed until the model fits the 

data. 

Meteorological data is only available from Derinkuyu between 1965 and 1990, and the full 

data required for the model only between 1966 and 1989. Using this data Model 1 output 

only represents 38 % of the variability in the Nar isotope record through this time period, 

although the direction and magnitude of the change are correct. 

The models will only be useful for climatic reconstraction if one variable can be changed 

in the model and produce the measured response in the isotope values. If precipitation 

values are held constant between 1966 and 1990 in the model the relationship between the 

predicted and observed isotope values is sttonger (Fig. 8.8; r̂  = 0.55). In Model 2 r̂  = 0.36 

for the predicted versus observed isotope values suggesting that Model 1 is a better 

representation of the Nar system and will therefore be used from this point on. 

The better fit with the constant precipitation suggests that there is limited variability in 

input to the lake. In the model the amount of precipitation contiols the amount of surface 

inflow and the amount of groundwater inflow. If the model lake responds better to a 

constant input, of the average values of precipitation through the time period, this suggests 

that variability in precipitation may be buffered by movement through the catchment such 
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Fig. 8.8 Modelled and recorded carbonate isotope values between 1966 and 
1990 with constant precipitation. 
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Fig. 8.9 Modelled and recorded carbonate isotope values between 1926 and 
2001 with constant precipitation, models run with varying residence times 
compared to carbonate isotope values (black line). 
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that the resulting lake inflow is more or less constant. This also suggests that evaporation, 

and other temperature-related factors are the dominant control on the lake water isotopes as 

do variance in precipitation is required for the system to change as recorded. 

However, this model represents a very short time period and it is important that the model 

can also predict isotope values over longer time periods. Temperature data are available 

from Ankara between 1926 and 2001 and these values can be adjusted to values for 

Derinkuyu based on the relationships between the two data sets between 1965 and 1990 

(Table 6.9). For this period the model predicts only 22 % of the recorded variabiUty when . 

precipitation is kept constant (Fig. 8.9). 

Possible errors in the model 

Although the major shift in the isotope record between 1960 and the late 1980s is recorded 

by the model, the model does not account for the magnitude of the recorded isotope 

variabiUty, with a shift of only -1.4 %o compared to a shift of -3.5 %o recorded in the 

sediments. Part of this difference may be explained by the possible hydrological threshold 

in the Nar lake system, as discussed in chapter 6, although this would only account for 

~l%o of the difference. 

There are errors in the estimates of the hydrological conditions in Chapter 5, especially in 

the estimates ofthe amount of groundwater inflow and outflow- Changes in these values 

would alter the residence time of the lake. 

Changing the residence tinie makes Uttle difference to the range of oxygen isotope 

variability in the model. A new model, with a residence time of 11 years compared to 

approximately 8 years in the original model has a range of 1.5%o compared to a range of 

1.4%o for the original model between 1967 and 1986. The major difference between the 

models is the absolute values, with the longer residence time resulting in more positive 

carbonate isotope values. The 11 year residence time model predicts the recorded values of 

5**0 prior to the shift at 1960 whereas the 8 year residence time model predicts values post 

1990. This suggests that residence times may have shifted from 1960 to 1990 due to 

changes in the flux through the system. 

Annual precipitation at Derinkuyu has a long term decrease in values between 1966 and 

1990 suggesting there may have been an additional change in the lake hydrology during 
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this time resulting in increased groundwater inflow, or surface runoff leading to' an increase 

in flux into the lake. However rainfall trends are very localised in this region, the 

relationship with DeriiJiuyu and Ankara precipitation values has an r̂  value of only 

0.1745, and the relationship between Derinkuyu and Nev§ehir, only 25 km to the north has 

an r̂  value of 0.51. As Nar is a similar distance from Derinkuyu as Derinkuyu is from 

Nev§ehir it may be that there are significant differences between precipitation at Nar and 

Derinkuyu. It may be therefore that there was alocalisedincrease in precipitation at Nar 

between 1960 and 1990 causing the reduction in residence time of the lake.. 

The flux for the 11 year residence time model is 714801 mV'^ compared to 97877 m^yr'* 

for the original, 8 year residence time, model. If inflow into the lake was controlled only 

by precipitation, and not lake area, precipitation would have to change from 0.32myr"\ 

pre-1960, to 0.44 myr'*, post 1980, for the required change in flux to change the residence 

times and the associated isotope values. Altematively values could change from 0.23 myf* 

to 0.32 myr'*, depending if 0.32myr"* is taken to be the initial or final value of 

precipitation. In the dynamic model, where changes in influx are also dependent on 

changing lake volume, precipitation in the 11 yr residence time model has to change to a 

maximum value of 0.48 myr'*, and a steady state of 0.40 myf * to achieve the recorded shift 

in lake water isotope values (Fig. 8.10). The maximum precipitation at Derinkuyu between 

1966 and 1990 was 0.42 myr'* and the values of predicted precipitation change from the 

models are therefore in the order of the natural variability in precipitation in the Nar 

region. 

8.3 Reconstructions 

The models respond differently than the climate calibration relationships; specifically the 

model caimot reproduce the range in the recorded isotope values by changing only one 

variable. However, while the models do not predict changes of the same magnitude they do 

generate changes at the same time and in the same direction as the isotope record. This 

suggests that there may be a response in the lake system that amplifies the trends in isotope 

values picked out in the models. 

The relationships found with the meteorological data describe a more sensitive system than 

those explained by the model, although the relationships are in the same direction. There 
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Fig. 8.10 11 year residence time model with required change in 
precipitation (inset) to force observed change in Nar Golu carbonate 5**0. 
See discussion of differences, post 1985, in text. 
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are sufficient unknowns in the inodel that it is not possible to understand fully the lake 

isotope system and how it shifts at the magnitude observed in the carbonate record. 

Therefore, the sensitivity of the system as suggested by the climate calibrations may be 

broadly correct. The climate-isotope relationships can therefore be used to reconstmct how 

climate may have varied in central Turkey through the last 2000 years. 

The summer average temperature - isotope relationship is based only on calibration with 

the isotope record prior to 1986, when the mineralogy changed from aragonite to calcite. It 

would therefore be invalid to use this relationship to reconstiiict cUmate beyond the point 

in the record where the carbonate laminae shift from calcite to aragonite (c. 1400 AD). The 

summer relative hmnidity calibration can be used through the whole record. For 

reconstmctions the calibrations with the 13 year snioothed meteorological variables will be 

used as these are the stiongest relationships with the smallest errors. However this means 

• that the reconstincted climate record will also be similarly smoothed. 

The temperature reconstraction between 1410 and 1986 AD (Fig. 8.11) shows 1986 to be 

the coolest summer (21.3 °C) through the record, 1.2 °C colder than the warmest summer, 

1860 (22.5 "C). With tiie error envelope of 0.7 °C, 1860 could have been only 0.5 °C 

warmer and may have been up to 1.9 "C warmer. As well as these being the extieme years 

in the record the 1980s is the coldest decade (although only 6 years data are available), 

• with an average temperature of 21.5 °C, and the 1860s is the warmest decade, 22.3 °C. The 

next two warmest decades are the 1420's, 22.2 "C, and the 1930's, 22.2 °C, and these are 

the only three decades averaging over 22.2 °C. The second and third coldest decades are 

the 1640's, 21.6 °C, and the 1740's, 21.6 °C. There are only 3 decades averaging below 

21.6 °C. 

The summer relative humidity calibration was based on the 5**0 record corrected for 

change in mineralogy. The rest of the record must also therefore be corrected before this 

calibration is appUed for the climate reconstraction. Based on XRD of the carbonate 

laminae (table 6.1) a correction of -0.6%o is applied to the aragonite laminae between 1410 

and 1986 AD, 1398 andl400 AD, 856 and 861 AD, and firom 551 to the base of tiie record, 

276 AD. 
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Fig. 8.11 Temperature reconstruction between 1410 and 1986 AD. 
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Fig. 8.12 Relative humidity reconstoiction between 276 and 2001 AD 

187 



The reconstruction (Fig. 8.1-2) suggests that the sample representing 470 to 476 AD was 

the least humid period (43.4 %) inthe record with 561 to 565 AD the most humid (50.6 

%). Including the-errors, this suggests a shift in summer relative humidity of between 2.8 

% and 11.8 % in the space of 90 years. The 560's were the most humid decade in the 

record, averaging 50.2 %, with the 430's the least humid decade, averaging 43.7 %. During 

the last millennium 1860 was the least humid year, 44.2 %, and the period 1041 to 1045 

AD was the most humid. 

8.4 Summary 

The oxygen isotope record from Nar Golu shows strong and significant relationships with 

summer relative humidity and temperature suggesting that the isotope record is a proxy for 

evaporation largely driven by these meteorological variables. The relationships found from 

the climate calibrations can be used for the quantification of the palaeorecord if it is 

assumed that the relationships observed during the 20* century hold through time. 

The vahdity of these observed climate-proxy relationships can be checked by modelling 

the lake isotopic system and observing modelled changes during the instrumental time 

period. The models produce shifts in the isotope record in the same direction and at the 

same time as those recorded from the sedimentary carbonate although the model system is 

riot as sensitive as the real lake. By manipulating the models it can be shown that the model 

underestimates the change in flux associated with chmatic change, or else requires changes 

in more than one variable to force the system into the recorded state. 

Due to the complex nature of lake isotope systems, and the number of potential errors in 

the equations on which the models are based, it is assumed that the relationships observed 

from the cahbration of the oxygen isotope records against climate variables are broadly 

correct and that these can be used to quantify past climatic change. 
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C h a p t e r 9 

L A T E H O L O C E N E CLIMATE TRENDS 

The evidence from Nar Gdlii suggests that the 6**0 carbonate record is a record of summer, 

lake water isotope values driven largely by changes in evaporation due to variation in 

relative humidity and/ or temperatare. The record suggests that there have been wide 

variations in the amount of evaporation through the last 2000 years with periods of 

increased evaporation prior to 530 AD and between 1400 and 1970 which were probably 

associated with times of increased summer tempefatares and reduced relative humidity. 

The period between 530 and 1400 AD was a period of relatively less evaporation probably 

associated with lower sununer temperatures and higher summer relative humidity. 

9.1 Comparison with other records 

There is some evidence, ;from the modelling and sudden shifts in the 6**0 values (chapter 

8), that there may be some non-chmatic factors influencing the hydrology at Nar through 

the instmmental time period. This may have also been the case through the rest of the 

record. Comparison with other palaeorecords may show if the shifts recorded in the Nar 

record occur at the same time, and at the same magnitade, as climate changes suggested 

by other proxy records, or if events are unique to Nar and, therefore, possibly non-climatic. 

During the summer, the season represented by the Nar 6**0 record, Turkish climate is 

linked to Hadley cell circulation and variation in the African and Indian summer monsoons 

(chapter 3). The records from Nar are therefore most hkely to follow pattems observed in 

nearby sites and in other regions controlled by Hadley cell and monsoon variations during 

the summer months, and these will therefore be used in the comparative analysis that 

follows. 

9.2.1 Turkey and the Near East 

There are no other lake isotope records that span the last two millennia from Turkey or the 

Eastem Mediterranean region at a high resolution. Some records do include the late 
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Holocene but at a low resolution and with generally poor dating control, with none ofthe 

sites discussed below having any radiocarbon dates younger than 2000 years BP. 

The records from Zeribar (Stevens et al., 2001) and Golhisar (Eastwood et al, submitted) 

show a positive trend in isotope values through the last 2000 years, as observed in the Nar 

record between 500 and 1960 AD, but do not show the major negative shift observed in die 

Nar record at around 500 AD (Pig. 9.1). The record from Lake Van (Lemke and Sturm, 

1997) shows positive peaks at 600 and 1300 AD which may correspond to positive peaks 

in the Nar record at 476 and 1428. In this case the lower peak in the Van record at 1000 

AD would correspond to the smaller peak at Nar at 856 AD. The comparison of the Nar 

and Van records is of interest as both chronologies are based on varve counting, although 

the coarseness of the Van sampling intervals may account for some of the difference 

between the two records. 

The record from Eski Acigol (Roberts et al., 2001) appears to show the opposite tiends to 

Nar and Van, with negative peaks, at 469,748 and 1117 AD, that may correspond to the 

events discussed above. Altematively the negative peaks in the Eski Acigol record could 

correspond to the negative points in the Nar record at 561 and 1358 AD. This ambiguity 

highlights the difficulties in comparing records from sites with coarse sarhpling resolution 

and poor chronological contiol. 

The Nar record shows a much larger range in 6**0 values compared to the other lake sites 

(Fig. 9.1). Lakes under different hydrological conditions do show differences in the range 

of values, with large closed lakes and open lakes tending to show smaller ranges compared 

to small closed lakes (Leng and Marshall, in press). In addition open lakes wil l show more 

negative values than closed lake systems. For the lakes discussed here, lakes with more 

positive mean isotope values generally have slightly larger ranges (Fig. 9.2), although the 

Nar record has a range approximately 5%o higher than any of the other lakes suggesting 

there are additional contiols on this lake system (see below for further discussion). 

There are further late-Holocene isotope records, from non-lake archives, in the eastem 

Mediterranean region. A 5**0 record from planktonic foraminifera found in deep-sea cores 

off the Israeli coast (Schilman et at, 2001) has been interpreted as a record of changes in 

the evaporation/ precipitation ratio for the eastem Mediterranean basin. Large-scale tiends 

in the record are similar to those at Nar (Fig. 9.3) with the MWP showing a time of 
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Fig. 9.1 Comparison of Nar 5**0 record with other Turkish and Near East lake 
isotope records (all y-axis values are 5**0 %6), with possible correlations shown 
with dashed lines. 
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Fig.9.2 Range and mean value relationship for 5**0 values from lakes in Fig. 9.1. 
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dashed lines. 
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decreased E/P and showing more negative isotope values. A record of 6 O from a 

speleothem from Israel also spans the past 2000 years (Bar-Mathews et al, 1997). The 

largest shift in this record is to more negative values, interpreted as an increase in 

precipitation, around 1320 AD with periods of relatively lower rainfall either side of this 

wet period. This dry-wet-dry sequence may correspond to the decrease then increase in 

isotope values at Nar between 1429 and 1937 AD, a pattem that is also evident in the 

planktoiuc foraminifera curve. As with the lake records differences in sampling resolution 

and low numbers of dates through this time period make comparisons with the Nar record 

difficult. 

For comparison with these other low-resolution records the Nar sequence can be 

aggregated into samples representing 1cm slices of the core and then "sampled" at 

different resolutions to observe how differing sampling resolutions might affect inter-

record comparisons. In this exercise the core counts and depths from each counted section 

through the core are used to give a laminae v. age relationship; it is assumed that the 

laminae between two depths are of equal width. Average 6**0 values for each cm of the 

Nar sequence can then be calculated. Using this record it is possible to look at how the 

isotope variability from the original record would be represented at different sampling 

resolutions. The total amount of the original record explained by the records at different 

samphng resolutions can be estimated by giving values to equivalent depths in the original 

record to points lying between two samples in the re-sampled records. The new estimated 

values therefore lie along a stiaight hne between two sample points and there are the same 

number of observations in the original and new records. Regression analysis can then be 

used to give r̂  values, explaining the variability in the original data set explained by the 

new constracted data sets. 

For the full length record 81 % of the range from the original records is explained by a 

16cm sampling resolution record, there is some small variation in the mean value and the 

standard deviation of the record increases as the sampling resolution is increased (Table 

9.1). The 1 cm resolution record explains 95% of the variabihty in the original record, and 

the 16cm resolution record explains 68%. However, the full record is biased by the lower 

parts ofthe core where sampling resolution was at 5 laminae resolution and each sample 

represented approximately 1 cm of core akeady. 
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Table 9.1 Gomparison of Nar record sampled at different resolutions compared to the original 5 0 data set. 

Original Every era Every 2 cm Every 4 cm Every 8cm Every 16 cm 
Data Min -5.73 -5.73 -5.73 -4.93 -4.93 -4.93 Data 

Max 2.40 2.40 2.40 2.40 2.40 1.72 
Data 

Range 8.13 8.13 8.13 7.33 7.33 6.66 

Data 

Mean -1.38 -1.51 -1.50 -1.47 -1.48 -1.32 

Data 

SD 1.45 1.70 1.74 1.72 1.82 1.93 
Compared to 
Original 

Min (difference) 0.00 0.00 -0.80 -0.80 -0.80 Compared to 
Original Max (difference) 0.00 0.00 0.00 0.00 -0.68 
Compared to 
Original 

Range (percentage) 100.00 100.00 90.20 90.20 , 81.86 

Compared to 
Original 

Mean (difference) 0.13 0.12 0.09 0.10 -0.06 

Compared to 
Original 

SD (percentage) 117.52 • 120.49 119.17 125.77 133.76 

Compared to 
Original 

Variability 
Explained (R )̂ 0.946 0.926 0.886 • 0.833 0.680 



Table 9.2 Comparison of Nar record sampled at different resolutions compared to the annual part.of the original 6 0 data set. 

Original Every cm Every 2 cm Every 4 cm •Every 8cm Every 16 cm 
Data Min -4.77 -4.77 -4.09 -3.67. -3.67 -2.95 Data 

Max 1.61 1.40 1.40 0.91 0.90 0.90 
Data 

Range 6.38 6.16 5.49 4.57 4.56 3.85 

Data 

Mean -1.28 -1.20 -1.19 -1.18 -1.15 -0.97 

Data 

SD 1.26 1.31 1.29 1.25 1.38 1.47 
Compared to 
Original 

Min (difference) 0.00 -0.68 -1.10 -1.10 -1.82 Compared to 
Original Max (difference) -0.22 -0.22 -0.70 -0.71 -0.71 
Compared to 
Original 

Range (percentage) 96.63 86.04 71.71 71.56 60.32 

Compared to 
Original 

Mean (difference) -0.08 -0.09 -0.10 -0.13 -0.31 

Compared to 
Original 

SD (percentage) 103.69 102.24 99.28 109.49 116.44 

Compared to 
Original 

Variabilis 
Explained (R )̂ 0.919 0.895 0.845 0.777 0.577 



Looking at only the annually resolved part of the record (i.e. the last 900 years) the range is 

shown to reduce significantly with increased sampling resolution. Only 60 % ofthe range 

is explained by the 16cm resolution record (Table 9.2), although most of the range is 

reproduced at 1cm sampling resolution (97 %). In this case the mean value of the record 

also becomes more negative, reaching 0.3 %o more negative at 16cm resolution, with 

increased sampling resolution and the standard deviation of the record also generally 

increases (Table 9.2). In this case the 1cm record explains 92 % of the variability in the 

original, annual resolution, record with the 16cm resolution record explaining only 58 % 

(Fig. 9.4). 

The sampling resolution of the Nar sequence therefore accounts for some of tiie difference 

in the range of the Nar record compared to the other eastem Mediterranean lakes (Fig. 9.1). 

The 16cm resolution record has a range of 6,7 %, compared to 8.1 %o for the full record. In 

addition the Nar record is known to include changes in carbonate mineralogy from calcite 

to aragonite, and vice versa, which would cause a 0.6 %o shift in the isotope values. This 

reduces the range to 6.1 %. This is stiU, however, over twice the range of most of the other 

lakes. Additionally to the change in mineralogy, threshold shifts seem to appear in the Nar 

6**0 record during the most rapid shifts in the isotope system (chapter 6), and'these 

account for another l%o in the total range. 

As well as differences in the range of 8**0 values due to the sampling resolution, 

differences in the timing of events may be due to differences between radiocarbon and 

varve age models. The 1cm resolution record from Nar can be put against a theoretical 

radiocarbon chronology and compared to the annual record and varve chronology to 

observe how much difference these differences may make to event timings. 

Varve ages from 6 arbiteary depths through the core were compared to the radiocarbon 

calibration curve and radiocarbon ages given to these depths. As radiocarbon ages are 

associated with an error, an error of ± 40 years was arbitarily given to each of these 

radiocarbon ages. These ages, plus errors, were then cahbrated, using the OxCal calibration 

programme, and the resulting ages and errors (Table 9.3) recorded and used to create an 

age-depth model along with the * '̂Cs dates from the top of the core (Fig. 9.5). 
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Fig. 9.4 Comparison of Nar record with hypothetical record at a 16cm 
samphng resolution. 

Table 9.3 Hypothetical radiocarbon dates for the Nar record. 

Depth Varve Equivalent Calibrated Radiocarbon Age AD 
Age Radiocarbon 

(cm) AD Age (BP) (2 a range) 
107 1733 153 ±40 1660 -1805 1960 
149 1498 353 ±40 450 -1505 1640 

199.5 1204 867 ±40 1030 -1190 1260 
250.5 985 1066 ±40 890 -990 1030 
303 692 1262 ±40 660 -730 880 
356 412 1639 ±40 260 -390 540 
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Fig. 9.6 Comparison of 5**0 record from Nar plotted with varve chronology and 
hypothetical radiocarbon chronology. 
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Comparison of the isotope cm^es based on the two clironologies shows that there are 

significant differences between the timing of events through therecord (Fig. 9.6), although 

these differences in the two chronologies vary through the core. This is particularly true 

during the early part of the record where differences between the two records are 

approximately 100 years. These differences are a result of the polynomial age model drawn 

between the arbitrary dates, rather than large differences between the ages at the points 

where radiocarbon ages were taken. Comparisons of the different Turkish and Near East 

isotope records (Fig. 9.1) showed differences between equivalent events in the isotope 

stratigraphies in the order of 100 years, differences that may therefore be due to errors in 

core chronologies, particularly in age model reconstractiori, rather than differences in the 

timing of the events. There may also be additional errors in some of the dates from the 

other lake sites due to the incorporation of old carbonate from the catchment or volcanic 

processes (e.g. at Eski Acigol; Roberts etal, 2001). 

9.1.2 African Monsoon 

Comparison of the Nar oxygen isotope data with rainfall from the Sahel region of Africa 

(Hulme, 2003), which is under the influence of the African Monsoon, shows a strong 

correlation through the instramental time period (Fig. 9.7). There is an opposite 

relationship, with the Nar record becoming more negative, suggesting less evaporation, as 

the Sahel region becomes drier. 

Relatively high resolution records of lacustrine isotopic change through the late Holocerie 

exist firpm-North and East Africa (Vershuren et al, 2001; Holmes et al, 1997; Steeet-

Perrott et al, 2000) and, based on the relationship observed through the instramental time 

period, may be expected td show climatic shifts at the same time as the Nar record. The 

Kajemaram Oasis isotope record from Nigeria (Fig. 9.8) shows significant variability 

throughout the last 2000 years particularly c. 500 AD, where there is a rapid shift to more 

positive values. In general the isotope record from Kajemaram is interpreted by the authors 

as a water-balance proxy, and therefore a reflection of salinity (Holmes et al, 1997). 

However the shift at 500 AD does not match other salinity proxies in the core, suggesting 

there may be other reasons for this shift in isotope values. It was suggested that this shift 

may be due to changes in the 6**0 of precipitation, or the amount of precipitation due to a 

decrease in the westward tiansport of water vapour or a reduction in the intensity of 

convection (Street-Perrott et al, 2000). 
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Fig. 9.7 Relationship between the Nar 5**0 record and Sahel rainfall (Hulme, 
2003) through the instramental time period. 

201 



2000 

500 1000 
Year AD 

1500 2000 

Fig. 9.8 Comparison of Nar 6**0 record with African late Holocene lake records 
from Naivasha (Verschuren et al2001) and Kajemarum Oasis (Street-Perrott et 
al., 2002). 
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This positive isotope shift occurs at the same time as the largest shift in the Nar record, 

where values become more negative. The shift at Nar appears to be associated with a 

reduction in lake salinity as there is a shift from aragonite to calcite production at the same 

time in the core. Even if the Kajemarum record is not controlled by changes in water 

balance at this time, and the shift is enhanced by changes in values of precipitation, it does 

suggest that important climate shifts occurred at both sites during the 6^ century AD. 

Looking at the remainder of the two records there again seem to be opposite trends with 

the Kajemarum record becoming more negative between 750 and 1700 AD (the LIA), a 

time during which the Nar record becomes more positive (Fig. 9.8). 

During this period conditions also became wetter at Naivasha in Kenya (Fig. 9.8). The lake 

low-stand between 1000 and 1200 AD corresponds to a time of more negative isotope 

values in the Nar record. The lake-level fall prior to 1000 AD corresponds to a reduction in 

evaporation at Nar, and from 1200 to 1600 AD there is generally an increase in 

evaporation at Nar as lake levels at Naivasha rise. There is further evidence of increased 

monsoon rainfall in Africa during the LIA from records of Nile river discharge which was 

at its highest during the LIA compared to any other time during the last 1400 years 

(Kutzbach, 1987). 

9.2.3 Indian Monsoon 

Comparison of the Nar oxygen isotope record with Indian sununer monsoon rainfall 

through the instrumental time period (Parathasarathy et al., 1995) shows periods of reduced 

rainfall during Indian sununers in years of more negative isotope values at Nar, 

representing wetter or reduced evaporation conditions.(Fig. 9.9), although between 1850 

• and 1900 the trends in the records describe the opposite relationship. 

An annual proxy record of Indian monsoon variability through the past two millennia has 

been produced from varved marine sediments from the oxygen minimum zone in the 

northeastem Arabian Sea off Pakistan (von Rad et al., 1999). Varve thickness and turbidite 

events were measured (Fig. 9.10). Periods of increased varve thickness and large numbers 

of turbidite events are recorded between 1600 and 1900 AD (the LIA), 1000 and 1300 AD, 

and 100 and 900 AD and interpreted as times of increased summer monsoon precipitation 

and/or increased river mn off. In general these periods correspond to times of more 

positive isotope values, increased evaporation conditions, in the Nar isotope record. Varve 

thickness minima and reduced numbers of turbidite events recorded between 1300 and 
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Fig. 9.9 Comparison of Nar record with Indian monsoon rainfall index 
(Parthasarathy et al., 1995) through the instrumental time period (1820-
1998). 

204 



0 500 1000 1500 2000 
3.0 

0 500 1000 1500 2000 
Year AD 

Fig. 9.10 Record of varve thickness from offshore Pakistan as a proxy record 
of the hidian monsoon (von Rad et al., 1999) compared to 5**0 record from 
Nar Gdlti. 
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1600 AD and at 1000 AD are interpreted as periods of low precipitation and/or decreased 

river runoff. These times generally correspond to periods of more negative isotope values, 

or reduced evaporation conditions, in the Nar isotope record (Pig. 9.10). 

Denniston et al. (2000) record changes in the summer Indian monsoon from changes in 

mineralogy of a speleothem from cential Nepal. They note the largest change in 

mineralogy during thelast 2300 years at around 500 AD recorded by a change in 

speleothem mineralogy from aragonite, precipitated dming times of reduced monsoon 

precipitation and cave aridity, to altemating calcite and aragonite laminae, suggesting 

times of elevated summer monsoon precipitation and increased cave humidity. This 

corresponds to the largest shift in the Nar isotope record from positive to negative values, 

suggesting a shift to more humid conditions, and in the Kajemaram Oasis record where 

there is a shift to more positive isotope values. 

The varved marine sediments and Nepal speleothem therefore show opposite tiends to each 

other for Indian summer monsoon conditions around 500 AD. The speleothem record has 

been interpreted as a shift to more humid conditions, and the marine varve record suggests 

a decrease in precipitation at this time. However changes in the East Asian Monsoon occur 

at the same time and show shifts to wetter conditions (Morrill et at, 2003). As the Nepal 

cave site sits close to the boundary between Southwest and East Asian Monsoon influence 

it is possible that it has been influenced more by changes in the eastem monsoon. 

9.2 Climate Cycles 

Further evidence of climatic links between different proxy records, and with instrumental 

data, can be obtained from observing cycles in the records. Records showing variability at 

the same periodicities may be under the influence of the same forcing mechanisms. The 

annual 5**0 record from Nar, between 1096 and 1991 AD, shows dominant cycles at 60, 

85 and -135 years (Fig. 9.11; Table 9.4). The full record, witii the annual part ofthe record 

averaged at 5 year intervals to give consistent time steps, shows dominant cycles at 60, 85, 

-170, 365, and 512 years (Fig. 9.11; Table 9.4). The 5*̂ C annual record shows cycles at 

the same periodicities, at - 60 and - 138 years (Table 9.4) and the annual grey scale record 

through the whole of the Nar record shows cycles at -60, -80, -140,341, and 512 years 

(Table 9.1). 
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Fig. 9.11 Raw periodograms (Fourier Transform) from Nar Golu 5**0 data 
for annual record (a) and 5 year mean record (b), major peaks are labled 
with length of cycle in years. From cycles observed in 1000 perturbations of 
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Table 9.4 Dominant cycles observed in Nar Golu proxy data from spectral analysis. 

Proxy Cycles from Fourier 
Transform 

Cycles from Blackman-
Tuckey method 

8**0 annual 
(1096-1991) 

128.0, 85.3,60.2 143.4,58.8 

6̂ *0 5 year mean 
record (276 -2001) 

512.0,365.7,160,85.3,59.5 188.7, 85.4,59.8 

8"C annual 
(1096-1991) 

512.0,146.3,60.2 132.8,57.8 

Grey scale annual 
(1096-1991) 

204.8,146.3,93.1,78.8,60.2 58.8 

Grey scale annual 
(276-2001) 

512.0,341.0,227.5,146.3, 
60.2 

137.9, 83.4,60.8 

Table 9.5 Cycles found in Nar 8**0 records at different sampling resolutions. 

Sampling Resolution 
(cm) 

Cycles from Fourier 
Transform 

Cycles from Blackman-
Tuckey method 

1 512,160,142 715,162 
2 510,255,159,141 719,163 
4 427,160,135 719,163 
8 527,158 / 
16 527 / 

Table 9.6 Cycles observed in Indian monsoon rainfall index and Indian monsoon 
proxy records from spectral analysis using the same techniques as the Nar data. 

Data Cycles from Fourier 
Transform 

Cycles from Blackman-
Tuckey method 

Indian Monsoon 
rainfall 

64.0 65.2 

Marine varve 
thickness (1096-1991) 

102.4,68.3,60.2 112.0,65.2 

Marine varve 
thickness (276-1993) 

341.3,102.4 99.6 
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The annual nature of the Nar record gives strength to interpretations made from cycles 

found by spectral analysis. Using the same techniques as for the annual record, spectral 

analysis carried out on the hypothetical lower resolution Nar records show how the cycles 

that are found vary with different samphng resolution (Table 9.5). The cores were assumed 

to have undergone uniform sedimentation throughout the time period analysed, and only 

the data below 91 cm were used, as sedimentation rates have changed at the top of the core 

(Fig. 9.5). As the sampling resolution is increased the higher frequency spectra are not 

picked up, as would be expected, the lower frequency periodicities however do vary with 

changing sampling resolution and many are not picked up at all in the smoothed 

periodogram from the Blackman-Tuckey method. 

Cycles at the frequencies observed in the Nar record have also been observed in other 

records (O'Sullivan et at, 2002). For comparison with Nar, again it is important to 

compare records from the same region or those that may be influenced by the same climate 

pattems. Cycles have been observed in the proxy records of the Indian monsoon that relate • 

to the cycles observed at Nar. Agnihotri et al. (2002) report cycles of -188, -120 and -54 

years and a weaker cycle at -89 years from Indian monsoon proxies records from the 

Arabian sea, the latter two cycles are similar to the 85 and 60 year periodicities obseirved in 

the Nar data set although the Arabian sea data sets are not annually resolved, von Rad et al. 

(1999) report cycles at 750,250,125,96 and 56 years, as weU as some cycles at lower 

frequencies, from the varved marine sediments off Pakistan. The 56 and 125 year cycles 

broadly correspond to cycles found in the Nar record. Additionally, the Indian monsoon 

rainfall index has cycles of around 60 years that correlate to changes in the Nar record 

(Fig. 9.8). 

For comparison of the cycles in these data sets the data were re-analysed using the same 

methods as for the Nar record, so direct comparisons could be made (Table 9.6). The 

marine varve thickness record was analysed between 1096 and 1991 for direct comparison 

with the annual record from Nar, and then between 276 and 1993 AD for comparison with 

the whole record. Differences in the periodicities observed here and in the pubhshed record 

are due to the manipulation of the data set by von Rad et al. (2002) to remove the effects of 

turbidite events; here the raw data were used for the analysis. From the re-analysis of the 

data a clear -60 year cycle is observed in the Indian monsoon series, the marine varve 

thickness record and in the Nar isotope record. 
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The 60 year cycles run in phase through both the marine varve record and the Nar record 

although there seems to be a shift in the periodicities in the more recent parts of the record 

(Fig. 9.12). Looking at cycles in different time windows of 250 years in the two data sets 

through the last 900 years, i.e. long enough for 60 year cycles to be significant and during 

which time the Nar isotope data is at an annual resolution, it can be shown that the 

dominant cycles vary with time (Table 9.7). Although 64 year cycles are not present in all 

of the time windows analysed, where they are not, cycles are often found at multiples of 

64, at 16,32 and 128 years. In the latest 250 year window, 1700 to 1950 AD, there is a 51 

year cycle in the Nar 5**0 record and no dominant 64 year cycle. This 51 year cycle is also 

observed in the Indian monsoon proxy record between 1600 and 1850-AD and between 

1100 and 1350 AD suggesting there may be periods of time where the 64 year cycle is 

replaced by a cycle of shorter wavelength. 

9.3 Controls on climate change 

9.3.1 Temperature change 

From the Mann and Jones (2003) temperamre reconstmction the period 800 to 1400 AD, 

the Medieval Warm Period (MWP), is observed to be warmer than the periods preceding 

and following it. This is a time of more negative 5**0 values, suggesting reduced 

evaporation and cooler summers, in the Nar record (Fig. 9.13). The coldest periods in the 

Mann and Jones (2003) temperature reconstraction are the 6'*', and 15*, 17*, and 19* 

centuries (LIA), and correspond to the periods of the most positive isotope values in the 

Nar record, times of enhanced evaporation and warmer and less humid summers. 

This would suggest that at times of generally colder Northem Hemisphere chmate, summer 

evaporation was enhanced at Nar Golii, and during periods of relatively warm Northem 

Hemisphere climate summer evaporation was reduced. If the relationships from the climate 

calibrations are vahd through time this suggests that summer conditions at Nar behave in 

an opposite manner to Northem Hemisphere average temperatures. Over glacial-

interglacial time scales previous studies have suggested changes between cold and dry and 

warm and wet conditions (e.g. Roberts et al, 2001; chapter 3), rather than the warm and 

dry conditions suggested here. It may be the case, therefore, that in central Turkey the LIA 

was relatively dry and cold, thus resulting in increased evaporation and more positive 

isotope values, and conditions were relatively warm and wet, resulting in more negative 

isotope values, during the MWP. 
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Fig. 9.12 60 year cycles in Nar and Indian monsoon (von Rad et al., 1999) proxy records. 

Table 9.7 Dominant decadal scale cycles, of approximately 60 years, from the Nar 8**0 
record and the varved marine record of von Rad et al. (1998) during different time 
windows. 64 year cycles are highlighted in bold. 

Time Window 

(years AD) 

Cycles in Nar 5**0 record 

(years) 

Cycles in varved 
marine record (years) 

1100-1950 128, 85,57 68,60,24 
1100-1350 128,64,32 128,51 
1200-1450 128,32 64,36.6 
1300-1550 64 85.3, 64,32 
1400-1650 128,23,16 42.6 

1500-1750 128,64,42,32 85.3 

1600-1850 64 85,51,32,16 
1700-1950 51 64,16 
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Care must be taken when comparing.records based on different seasonal and spatial 

samphng intervals (Jones et al, 1998). The record from Nar is a record of summer 

conditions.from a single site, although reconstmcted temperature trends are hkely to be 

valid for the rest of central Anatolia. The temperature reconstraction of Mann and Jones 

(2003) is an average for the entire hemisphere, based on average annual temperamres. It is 

possible that cential Anatoha behaved opposite to tiie majority of the Northem Hemisphere 

during the past two millennia and that at Nar the summer conditions were reflecting 

average annual temperature tiends. Altematively, average temperatures may still have been 

cooler during the LIA in Turkey if winter conditions cooled more than summer conditions 

warmed, and vice versa during the MWP. This would suggest a change in seasonality in 

Turkey associated witii these global climate shifts. 

The major shifts in the Nar record, at c. 500 and c. 1400 AD, correspond, respectively, to 

changes from relatively cold to relatively warm, or warm to cold, periods of northem 

hemisphere annual average temperatures. This suggests that these temperatme shifts are 

causing changes in global circulation pattems which in tum affect hydrology in Turkey, 

India and Africa. However, the largest shifts in the Nar record, and the other summer 

monsoon proxies is at 500 AD, whereas the largest shift in the Mann and Jones (2003) 

temperature record in the last two millennia was c. 1400 AD. 

Over the last century variations in Sahel rainfall are highly correlated with the degree of 

contiast in seas surface temperatures (SSTs) between the northem and southem oceans. 

Cold northem oceans and warm soutiiern oceans are associated with dry years in the Sahel 

and viceversa (Stieet-Perrott et al, 2000). A recent drought in the Sahel region (Fig. 9.6) 

has also be hnked to freshening of the North Atlantic over the same time period (Stieet-

Perrott and Perrott, 1990). Disraption of the North Atiantic thermohaline circulation, that 

would occur if these waters were freshened, and reduced northem Atlantic SSTs would 

lead to enhanced dominance of the Hadley cell over the Sahel and would be associated 

with a decrease in both monsoonal and cyclonic moismre (Swezey et al, 1999). 

How these processes are linked to changes in Turkish and Indian monsoon climate is 

unclear. Raicich et al (2003) show clear hnks between African and Indian summer 

monsoon rainfaU and sea level pressure (SLP) in the Mediterranean basin through the 

instramental time period. However the data suggest that increased monsoon precipitation 

in India and Africa is associated with lower SLP in the eastem Mediterranean and 
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enhanced SLP in the westem basin. The data from Nar suggest that increased monsoon 

rainfall is linked to drier conditions in Turkey which would be associated with a 

dominance of high, not low pressure systetns. The stations used for the comparisons by 

Raicich et al. (2003) are all coastal stations and the high Turkish plateau may behave 

differently to the Turkish coast. Enhanced low pressure systems over Tibet, associated with 

increased monsoonal rainfall, may lead to stronger, north-easterly summer airflow over 

Turkey, sourced in relatively warm continental Eurasia (Kutzbach, 1987). This may 

explain the increased evaporation at Nar during times of increased Indian monsoon 

rainfall. 

9.3.2 Solar variability 

Cycles with periodicities similar to those found in the Nar and Indian monsoon records 

have also been observed in A*'*C records, a proxy of solar activity (Stuiver and Braziunas, 

1993,1995). A '̂̂ C represents the *'̂ C activity in the atmosphere, recorded by tree rings, and 

corrected back through time for '̂̂ C decay. Although some variability in the record may be 

due to variability in the Earth's magnetic field, influencing the amount of '̂̂ C produced in 

the atmosphere, centennial and sub-centennial, scale variability in *'*C production can be 

attiibuted to solar variability (Stuiver and Braziunas, 1995). 

Cycles have been found in the global A*'̂ C record at 512,356,143-149, 85-88 and 57-63 

years (Smiver and Braziunas, 1995), which correspond to cycles observed in the Nar and' 

Indian monsoon records (Table 9.1 and 9.3). This suggests that there may be some forcing 

influence from solar variabihty on decadal changes in tiie hidia -. Mediterranean -African 

sununer climate system. There is no clear cenmry scale relationship between the A '̂̂ C 

record and the Nar 6**0 record.(Fig. 9.14). The 512 year cycle is clear in the Nar sequence 

but less clear through the last two millennia in the A*'*C record. The decadal scale cycles 

are also unclear in the A '̂̂ C record as they are probably hidden in the longer scale 

variability and at a smaller scale. Re-analysis of the A*'*C data using the same specttal 

analysis techniques as for the Nar record (Table 9.8) show that the decadal scale cycles at ~ 

88 and -60 years also exist in the A '̂̂ C data. Cycles from all the records analysed in this 

chapter (Table 9.9) suggest there is a solar forcing mechanism behind at least the decadal 

variability in the Nar 6**0 record and Indian monsoon chmate system. 
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Fig. 9.14 Nar 5**0 record compared to A '̂̂ C residual plot (Stuiver and 
Braziunas, 1995), showing sine curve with a 512 year periodicity. 
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Table 9.8 Cycles observed in A '̂̂ C data sets from spectral analysis techniques used for the 
Nar data sets. 

Data Cycles from Fourier 
Transform 

Cycles from Blackman-
Tuckey method' 

A " C annual 170.7,73.14,51.2 / 
A^^C decadal 320.0,196.9,128,106.7, 

91.4,61.0 
/ 

A " C decadal residuals 640.0,320.0,213.3,128.0, 
106.7,56.9-

211.8,128.6,57.1 

Table 9.9 Comparisons of the cycles discussed in this chapter. Bold cycles are those 
pubhshed but not found when using the same techniques as were used for the Nar data. 

Nar 6̂ ?0 Nar8"C Nar Grey 
Scale 

Indian 
Monsoon 
Rainfall 

Indian 
Monsoon 

proxy 

Â Ĉ 

640 

512 512 512 500 512 

365.7 341 341 375 356 

320 

227.5 213.2 

204.8 196.9 

160 

143.4 146.3 146.3 147 

128 132.8 125 128 

102.4 106.7 

93.1 96 91.4 

85.3 78.8 85 

64 66 

60 60 60 60.2 57-61 
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9.4 Summary 

There is a clear link between summer cUmate variability in Africa, India and the Eastem 

Mediterranean basin through the last two miUennia. Increased monsoon rainfall in Africa 

and India occur at times of increased evaporation in the Cappadocian region of central 

Turkey. Major shifts in this system are associated with changes between relatively warm 

and cold states of Northem Hemisphere temperatures whereas decadal variability in the 

system, particularly cycles at ~ 60 year periodicity, may be controlled by solar variability. 
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Chapter 10 

CONCLUSIONS 

This study aimed to obtain high-resolution proxy records of climate change through the 

last 2,000 years from the Eastem Mediterranean region via records of lacustrine chemical 

variability, particularly changes in oxygen-isotope values, by: 

- obtaining lake cores with precise temporal control i.e. varves. 

- high-resolution sampling and analysis of these lake sediments. 

To further interpretation of the stable isotope records other geochemical proxies, including 

mineralogy and colour analysis, were also measured from the lake sediments. 

The thesis aimed to calibrate high-resolution lacustrine stable isotope records with 

instrumental chmate data, and study contemporary lake isotope systems, to increase • 

understanding of the controls on lake isotope dynamics in the Mediterranean region. 

Through the chmate calibration and from modelling lake oxygen isotope variabihty the 

thesis aimed to quantify proxy records of past climate variability. Comparison of the data 

obtained during this study was compared to previous work from the Eastem Mediterranean 

region and beyond to better understand changes in chmate through the last two millennia. 

10.1 High resolution records of stable isotopes from authigenic carbonate. 

Two varved lakes from Turkey were investigated to obtain high resolution records of 

climate change through the last two millennia. An annually resolved record for the last 900 

years was obtained from Nar Golu, a crater lake in the Cappadocian region of central 

Turkey, the longest annually resolved proxy chmate record from the Near East region 

(chapter 6). Records of 5**0, 5*̂ Ccarbonate, 5*̂ Corgamc, C/N ratios and changes in colour were 

measured. The 5**0 and 5*̂ Ccarbonate record were extended for a further 825 years, at a 5 

year bulk sample resolution, grey scale values were also recorded at an annual resolution 

through this time period. Authigeruc carbonates from a second varved lake sediment 

sequence. Lake Burdur, were also measured, at approximately a 5 year bulk sample 

resolution, through the last 500 years. 
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Both lakes showed changes in carbonate mineralogy through the bulk carbonate record. 

The mineralogy of the Burdur lake carbonates suggest that many of these sediments are 

sourced in the catchment and therefore do not reflect changing values of lake water isotope 

ratios (chapter 7). By contrast, the carbonates in Nar Golii have been shown to precipitate 

in the lake and this record can therefore be taken to reflect changing lake water isotope 

values. 

This difference between the sites demonstrates the importance of fully understanding the 

sedimentary environment within a given lake before climatic inferences can be drawn from 

lake stable isotope values. Sedimentary carbonates are not always suitable for stable 

isotope analysis and in lakes such as Burdur other archives, such as biogenic carbonate, 

need to be investigated, if available, to understand the isotope hydrology of the system. 

10.2 Controls on 8̂ *0 values in Mediterranean lakes 

The annual nature of the Nar Gdlii sediments allowed the 6**0 record to be calibrated 

against observational chmate variables between 1926 and 2001 to observe what the major 

driver behind the lake 8**0 record was. Strong correlations were found with summer 

temperature and relative humidity, particularly when the meteorological data were • 

smoothed (chapter 6). This suggests that the carbonate isotope record from this lake is 

primarily a record of summer evaporation. The strongest relationships were found with 

smoothed meteorological data suggesting that the residence time of the lake controls how 

responsive the proxy records are to annual climate variability. In addition, hypothetical re­

sampling of the Nar record at lower resolutions (chapter 9) demonstrated the amount of 

natural variability that may be lost in proxy records sampled at low resolution from non-

laminated sediments. At Nar only 58% of the full variability in the record was .explained at 

a sampling resolution similar to previous records from the region. 

Collection of sediment from traps and the sediment - water interface, and measurements of 

lake waters during different seasons of the year allowed the timing of carbonate 

precipitation to be established (chapter 5). Carbonates appear to precipitate in Nar during 

the early suromer, which confirms that the 8**0 record from Nar is likely to relate to 

summer chmate conditions, although conditions through the rest of the year will stiU 

influence the value of 5i. These relationships are likely to be important for other lake 
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stable-isotope systems in the region, although individual lakes should be investigated 

carefully to understand the principle driver behind isotope change in each system. 

10.3 Quantifying climate change 

The relationships for the chmate calibrations can be used to quantify past change in chmate 

if the assumption is made that the controls on the lake have been constant through time and 

that there are no significant hon-chmatic factors that influence the lake isotope system. 

Modelhng of the lake system (chapter 8) suggests that a change in water flux through the 

lake is associated with the shift in isotope values between 1960 and 1980 AD. The increase 

in flux required for this shift may be associated with an increase in precipitation during a 

period of cooling and increased relative humidity. This suggests that the P/E ratio and 

resultant changes in lake hydrological flux may be the most important drivers of lake 5**0 

values. Quantifying lake isotope records is problematic as often more than one variable, in 

this case both precipitation and evaporation, need to change to fully explain shifts in.the 

isotope record. Models are also based calculations containing errors and unknown 

variables. 

10.4 Late Holocene climate change 

The Nar record shows the largest shifts in. the. system c. 530 and c. 1400 AD and during the 

i960's to 1990's. The former two shifts are associated with changes in Northem 

Hemisphere temperatures between relatively warm and cold states and also correspond to 

the major shifts in proxy records of the Indian and African monsoon systems during the 

past two millennia (chapter 9). This suggests that climate is the dominant control on the 

Nar lake system, with changes in global temperature pattems causing shifts in summer 

atmospheric circulation over India, African and the Eastem Mediterranean. Between 276 

and -530 AD, and between -1400 and -1960 AD, summer evaporation was relatively 

enhanced at Nar Golu. 530 to 1400 AD was a period of reduced summer evaporation. 

At lower temporal resolution, decadal and century-scale cycles observed in the Nar record 

correspond to cycles found in proxy records of solar activity suggesting there is a solar 

forcing component to the Late Holocene climate pattems observed both at Nar and in the 

Indian monsoon region. 
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10.5 Future work 

The composition and seasonal resolution of the Nar sediment record make it an important 

resource for further palaeoclimatic study. Further isotope smdies could be carried out on 

other constituents in the core, e.g. 5**0 from diatom silica or organic cellulose (chapter 2), 

and this would lead to further understanding of lake isotope systems and the differences 

recorded by different isotope proxies. 

There is a relationship between the carbonate mineralogy and isotope values at Nar, which 

is reflected in the grey scale record of the carbonate laminae. Further investigation of these 

issues may enable a more detailed statistical relationship between isotope values and 

carbonate mineralogy to be established. Analysis of the digital core images, including 

laminae thickness, may also help in understanding this relationship and provide a further 

proxy for lake system change. 

A more in-depth study of the Burdur isotope-mineralogy relationship, including sampling 

of all the catchment carbonates, may lead to better understanding of 5**0 shifts in the 

Burdur sediments. Re-analysis of the carbonate stable-isotopes, after trying to remove the 

effect of dolomite (chapter 7), may produce a chmate proxy from these sediments although 

it is more hkely to be a proxy for changes in in-wash than changes in catchment P: E 

change. 

Identification of diatom species and changes in floral composition through the cores from 

both lakes would make an interesting comparison with the isotope records as an altemative 

indicator of sahnity. There are older sediments below those analysed in this study and there 

is, therefore, the potential to increase the length of the proxy records from Nar and Burdur 

further back into the Holocene. 
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APPENDIX I 

X R D RESULTS 

Standard XRD traces for calcite, aragonite, dolomite, and quartz Page n 

XRD traces for Nar carbonate laminae Page III 

XRD traces for Burdur samples Page VII 
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Appendix 2 

O T H E R RESULTS 

CD includes: Nar Golu 
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Carbonate laminae grey scale (Fig. 6.3) 
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