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A N INVESTIGATION INTO T H E DEVELOPMENT OF ENGINEERING 
STUDENTS' C O N C E P T U A L UNDERSTANDING OF MATHEMATICS 

by 

W E N D Y M A R Y M A U L L 

Followmg widespread concern over an apparent decline in the mathematical skills of 
engineering students, this study employed survey and observation methods to investigate 
the ways in which engineering students understand mathematical concepts, and to 
compare these with the concepts held-by students of mathematics. 

It was found that the engineering students employ a different vocabulary from 
mathematics students in discussing mathematics, and that their understanding of 
mathematical concepts develops differently from mathematics students both in response 
to teaching (which appears to be a transitory effect) and as their experience gives 
meaning to the ideas in life outside study. These findings are important in two ways. 
We need to make the mathematics teachers of engineering students aware of the 
language and concepts of their students so that the possibility of mutual 
misunderstanding is reduced, and we as educators need to help engineering students to 
make these connections in order to ground their mathematics in reality and to use 
mathematics an Instrument for understanding the world. 

Compared with the classical mathematical modelling paradigm and the classical 
empirical modelling paradigm, the method used by engineering students was found to be 
a hybrid based on the Identification of the type of problem and the application of a "pre
existing law. 

Some misconceptions concerning the behaviour of beams In bending were found to be 
widely held, by respondents with a range of levels of experience. Whereas the particular 
misconceptions are not Important in themselves. It Is salutary to realise that expertise in 
one area of study does not necessarily Inoculate one against misconceptions In a closely 
related area. 

A software package was written using the context of mathematical modelling to help 
students relate concepts In calculus to physical situations. This package was found not 
to engage the students sufficiently to provoke cognitive change, and suggests that a 
higher degree of Interactivity Is needed. 
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1. An investigation into engineering students' conceptual 

understanding of mathematics. 

1.1 Introduction: historical background 

The proceedings of the first IMA conference on the Mathematical Education of 

Engineers in Loughborough in 1995 (Mustoe & Hibberd; eds, 1995) were published 

with a chapter entitled "Conclusions after a decade of decline" (O'Carroll, 1995). 

This conference was followed by the publication of a series of reports from 

distinguished and interested bodies, having titles such as The Changing Mathematical 

Background of Undergraduate Engineers (Sutherland and Pozzi, 1995), Tackling the 

Mathematics Problem, (LMS/IMA/RSS, 1995), Mathematics Matters in Engineering, 

(IChemE/ICE/IEE/IMC/IMechE/LMS/IMA, 1995) and A Mathematical 

Foundation, (SEO/EC/SCSST, 1996). The overall opinion was that the 

mathematical skills of undergraduate engineers had declined over the previous 10 

years. Sadly, there was no way of testing the hypothesis scientifically as the previous 

generation of undergraduate engineers had evolved into practising engineers, 

accountants, personnel managers, etc., and, in some cases, lecturers, and were not 

available for direct comparison with the current cohort. 

Instead, the opinions of current lecturers were canvassed (Sutherland and Pozzi, 

1995). They felt that standards had declined, and that there were multiple causes for 

this decline. Overall, they felt that the standard of mathematics taught in schools was 

lower. Secondly, as the number of university places in engineering subjects had 

increased, the demand for those places had declined, and so the overall ability of 

students entering engineering courses had been diluted. Thirdly, the proportion of 

students entering with qualifications other than A level mathematics and physics had 

increased as universities attempted to make up the shortfall in traditional entrants. 
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increased as universities attempted to make up the shortfall in traditional entrants. 

The question of the long-term stability of engineering lecturers' perceptions was 

neither raised nor investigated. (Crowther, 1997a, examines "the general opinion of 

university lecturer... that standards in mathematics have dropped substantially in 

recent years" and finds "very little empirical evidence in support of this allegation".) 

Different solutions were suggested. For some, a change in the philosophy of teaching 

mathematics in schools was the answer. For others, more regulatipii of school 

mathematics and an insistence on the "gold standard" of the A level was called for. 

The Engineering Institutions proposed to set a strict entry requirement to 

engineering degree courses (Engineering Council, Competence and Commitment, 

1995, Engineering Council, SARTOR, 1990; IMarE, 1995), or else an externally set 

examination at the end of the first year. A mathematical core for the European 

Engineer was devised (Barry & Steele, 1992), building on an earlier proposal (OECD, 

1966), and incorporating for the first time a summary of the mathematics the 

prospective student should have covered before embarking on undergraduate study. 

An alternative strategy proposed by contributors to some of the reports was to accept 

the changes in mathematical skills of the entrants to degrees and to alter the emphasis 

in engineering degrees from mathematical skills to the appropriate use of computers, 

and the development of communications skills and other competences felt to form 

part of a new engineering core (for example, Challis & Gretton, 1997; Sutherland & 

Pozzi, 1995 p7 paras 19&23). The question of the effects of computing on 

engineering mathematics, both on its content and on teaching methods, was touched 

on in almost all the reports mentioned above, including the OECD report of 1966. 

The computer aided education of engineers was the subject of another conference, 

(Fames & Johnson (eds), 1994) with delegates demonstrating their wares, or 

describing the ways in which they were using C A L materials, with claims for 
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improvements in performance, or reduction of time needed to cover a given slice of 

material. Because most engineering educators are engineers first and educators 

second, many brought a quasi-scientific approach to their research, while a few 

researchers from a primarily education or psychological background used a more 

phenomenological epistemology (for example, Brown, 1994). 

A l l this takes place against the background of a decline in the number of students 

taking A level matherriatics, a. decline in the proportion of those taking niathematics 

also taking physics, and a decline in the proportion of those gaining A level 

mathematics who go on to study mathematics or technological subjects at university. 

(Hirst, 1996) 

Before leaving this section I would like to quote from another report. 

"This report discusses the results of an enquiry into the niathematical 
backgrounds and needs of engineering undergraduates and the methods 
universities adopt to meet these needs... The students in the enquiry have 
taken a large variety of A level mathematics syllabuses (61 identifiable ones)... 
Several themes recurred in discussions with university teachers of 
Mathematics or Engineering. The two major difficulties seemed to be (i) the 
diversity of students' mathematical backgrounds and attainments at the start 
of the university course; (ii) the general lack of confidence and accuracy in the 
routine processes of algebra, trigonometry and straightforward calculus... 
10.6% of the students have Ordinary or Higher National Certificate or 
Diploma qualifications... The opinion at some universities was that the 
academic weaknesses of these students (especially in mathematics) were on the 
whole a handicap to them throughout their university courses. Others 
thought they had advantages in more applied skills, in design, and in 
awareness of the demands of the real world which compensated for these 
deficiencies, provided that they survived the first year of university.'' 

The Universities referred to here were all "old" universities since the report was 

written in 1978 when the changes anticipated were the results of the expansion of 

comprehensive schooling (Heard, 1978). The quotation could easily have been taken 

from any of the recent reports on the subject. 
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1.2 The study 

In Plymouth, a small observation study appeared to indicate that engineering students 

•were using mathematics differently from students of mathematics, particularly in a 

mathematical modelling context. One aspect of this difference was the vocabulary 

employed by the two groups of students. This was felt to be particularly interesting 

given that practising engineers use mathematics almost exclusively in a modelling .' 

context. Given that most of the lecturers who taught engineering mathematics were 

mathematicians by origin, the question arose whether the students and their lecturers 

were literally speaking different languages when It came to mathematics. 

A questionnaire was developed which was applied to a range of respondents at 

different stages of an engineering career, and at different stages of a mathematics 

degree course. The responses showed up some patterns of ways of thinking about 

mathematical objects, and the written comments revealed some of the respondents' 

attitudes towards mathematics. 

At the same time, the question of whether the use of computer software could be 

helpful In teaching engineering mathematics, which was raised In many of the 

reports, was addressed. It was quickly realised that writing computer courseware Is 

highly Intensive In effort. The package which was finally produced was considerably 

less ambitious than that which had at first been envisaged. 

In the study a variety of research methods (participant observation, survey, 

component analysis, content analysis and Interviews) was employed. The methods 

are described In the sections to which they apply. Finding research methods 

appropriate to a variety of situations was Interesting and challenging, and the process 

of choosing appropriate methods helped to clarify the philosophical perspective of 

this study. 
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13 Philosophical standpoint 

Experience with-teaching had led to the conviction that a small-scale experimental 

procedure was unrealistic. No two groups of students are the same, and all groups of 

students react differently to what is nominally the same learning experience. Thus 

the scientific condition of repeatability is not fulfilled. At the same time the 

experinienter is intimately involved in the procedure, so the condition of 

independence of the observer is breached. It may be true that over large numbers the 

individual differences even one another out, and a scientific, experimental approach 

may be justified, but in this study the numbers were chosen to be small. 

Checkland et al (1983) point out that the assumptions underlying classic scientific 

method include that the data should be independent of the observer, that the data and 

the research process should be mutually independent and that experimental 

conditions should always be controlled. The method becomes unsuitable when 

• the processes in any one organisation are unique 

• the facilities for controlled experimentation are unavailable 

• the observer becomes an actor 

• the causation is complex and interactive 

• it is invalid to break down wholes into simple parts. 

A l l these factors are present in the study of students' experience of learning. In 

addition, the students are human beings and are thus aware, as the apparatus of an 

experiment in physics is not. In medical experiments the placebo ejBFect is well 

known. The technique of double blind trials, where neither the patient nor the local 

experimenter knows who is receiving the control or experimental treatment, has been 

evolved to take this into account. In other fields it is less easy to hide from subjects 

that they are receiving experimental treatment. 
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Thus the scientific paradigm was inadequate for this study. For the engineer in me,, 

this was a serious blow. The determinism of the scientific paradigm,, and the 

reductionism possible in dealing with the rational, physical world, are part of the 

underlying philosophical basis of engineering. Fortunately, another component of 

the engineer's philosophy is pragmatism: when one theory is inadequate, then 

another approach may be more appropriate. Various authors (Hirst, 1972, Burrell 

and Morgan, 1979, Sokal, 1997) point out that different epistemologies are 

appropriate when dealing with the physical world and with the social world, that the 

way we experience the social world is qualitatively different from the way in which 

we experience the physical world. 

The work of Perry (e.g., 1981, 1988) was also helpful in finding an epistemological 

standpoint. He followed a group of students through their careers at Harvard, 

interviewing them at intervals and extracting from the interviews indications of their 

relationship to knowledge and the way it changed. On entry, many had a strongly 

positivist epistemology, and believed that they would learn the truth because they 

were going to be taught by the best experts there were. Gradually it dawned on 

students that their teachers did not necessarily agree with one another or with 

authority expressed in textbooks. This realisation caused the students to move 

through a series of positions including complete multiplicity (that everyone had their 

view and there was no way to decide what was right), via realising that some views 

were more defensible than others to a position of commitment in the face of 

ambiguity. 

When an author (for example Laurillard, 1993, 43-46) describes this process in a 

treatise on university education, we suspect that there is a dual purpose: not only to 

open the mind of the reader to the processes of development in students, but also to 

provoke reflection and epistemological change in the reader. 
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This thesis concerns the teaching of mathematics to engineering students, their 

understanding of mathematical ideas, and ways of modifying that understanding. For 

this reason, epistemologlcal questions arise at least three levels. 

Firstly, the nature of mathematics itself. Is mathematics a pre-existing absolute entity, 

there to be discovered, or is it an evolving social invention, the product of human 

minds? A subsidiary point is the nature of engineering mathematics: are all kinds of 

mathematics essentially identical, or is engineering mathern.atics importantly different 

in some ways? 

At a second level, because we are dealing with leaming mathematics, we must ask 

how we believe individuals learn. Is knowledge accumulated by transmission: 

osmosis from a higher to a lower concentration, or built by the individual on the 

basis of accumulated interpreted experience, or is it formed by negotiation and 

discussion between peers as a way of making sense of shared problems? At the same 

time, we must also examine whether all individuals may be regarded as essentially 

similar, or whether important individual differences intervene. 

Finally, as a researcher, how have I approached the process of extracting empirical 

material and organising it into a coherent thesis? Is that empirical data a reflection of 

a single objective truth, independent of the observer, and measurable with 

instruments, or is it material which might be interpreted in many ways, but out of 

which a consistent sense may be built? 

These are the background questions which set the framework in which the research is 

carried out. In the end, the "both-and" approach of hermeneutic philosophy seemed 

to make more sense than an "either-or" strong objectivist or subjectivist position. 

This approach emphasises the alternation between being part of the system studied 

(subjective understanding) and seeing the system as a separate entity upon which one 
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may operate (objective explanation). Understanding and explanation are continually 

evolving and developing as one meets obstructions which were not accounted for by 

one's former mental model. The model will never be a complete match with reality, 

but learning and experience refine the model arid improve the match (Brown, 1997). 

1.4 Research question 

The result is that an interpretivist paradigm has been adopted as appropriate for this 

study. The research question has become "how do engineering students interpret 

mathematical entities?", which has been translated into Vinner's (1991) terms "what 

are their concept images}" through the subsidiary questions "what is the mode of the 

image?" and "what is the depth of the image?". This question is important because as 

Arzarello et al (1995) point out "it may happen that the teacher and the student use 

the same words which correspond to very different meanings in their heads; a 

genuine comedy of errors is thus generated: the pupil and the teachers enter into a 

vicious circle which is difficult to break". 

Vinner points out that concept images are not stable over time, indeed that learning 

must involve changing images, so the next question is "how do the concept images of 

engineering students develop?" and "is this development particular to engineering 

students, or do, for example, students of mathematics, show the same development?" 

Finally, we ask "what is the result of a particular intervention, the use of a specially 

written computer program, on that development?". Of course, all these questions are 

asked in the spirit, not of finding the correct answer, but of finding an interpretation 

consistent with experience, and on which future action may be based. 
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2. What is the nature of mathematics? 

2.1 Introduction 

In the introduction, we saw that we needed to look at background questions in three 

areas: the nature of jnathematics, the process of learning mathematics and the 

approach to research. These questions frame the theoretical structure supporting the 

specific research questions. In this chapter, we address the nature of mathematics and 

particularly the nature- of engineering ihatheinatics, and the aspects of mathematics 

which are important to the engineer are underlined. These are not identical to the 

priorities of the mathematician. 

Having examined some of these issues, "we will be in a position to look more closely 

at students using mathematics in mathematical modelling of physical systems in 

chapter 3. 

2.2 The nature of mathematics 

I propose that mathematics, and particularly engineering mathematics, can be seen 

from two broadly opposed viewpoints: behaviourist and cognitivist. 

Behaviourists believe that as the workings of the mind cannot be directly known, 

they cannot be meaningfully discussed. They frame learning as change in behaviour, 

and concentrate on the acquisition of skills. Learning outcomes are stated as 

sentences beginning with "The student shall...", and continuing with a verb such as 

recall, state, define (low level skills), apply. Interpret, analyse (high level skills). 

A behaviourist paradigm leads to the setting of specific learning objectives which may 

be tested, a formal curriculum and syllabus which may be regarded as stable for all 

time, the notion of standards and criterion referencing, and an absolute and Platonic 
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view of mathematics as pre-existing reality discovered by diligent investigation. This 

attitude tends to resist the adoption of new techniques such as the use of technology 

to aid in mathematical performance. 

The cognitive paradigm proposes that although the mind may not directly be 

observed, there is some meaning in framing models or metaphors for the ways in 

which it w.orks. As well as skill development, concept formation and the ways in 

which things are understood are interesting to the cognitiyist. The title; of this thesis, 

containing as it does the words "conceptual understanding", betrays that the author 

has more sympathy with the cognitivist viewpoint. 

From this point of view mathematics is complex in nature, similar to a language with 

social and private aspects, constantly growing and changing, but stable enough for 

shared concepts to have shared meaning at least for a time. Some of the important 

skills are meta-mathematical skills: verbalising mathematics, convincing others, 

problem solving. These will be of lifetime use, even when the mathematical content 

alters. For the engineer, mathematical prostheses (devices which amplify the capacity 

of the individual to perform tasks) such as calculators and computer algebra systems 

may take over where the log tables and slide rules of earlier generations left; off. Such 

devices are similar to Connell's (1997) notion of Intelligence Amplification (lA). 

2.3 Product or process? 

There is in many of the descriptions and definitions of mathematics a tension 

between the view of mathematics as a collection of skills and practices, the product of 

mathematical thought, and mathematics as a creative problem-solving activity, the 

process of mathematical thought (Tall, 1991). Tall regrets that the former tends to be 

taught, rather than the latter. The products of mathematical thought, the body of 
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mathematical knowledge appears to the student to be fixed and static, whereas a 

process is by its nature dynamic. • • 

The idea of mathematics as a competence, a set of skills which can be listed and ticked 

off as they are mastered, belongs strongly to the behaviourist school of thought, but 

still seems to prevail in much engineering mathematics education. Challis and. 

Gretton (19.97) challenge the idea that the engineering mathematics syllabus can be 

presented as a list of mathematical topics to be mastered, and propose that broader 

skills such as the formulation of a problem, choosing the appropriate means to solve 

it, and convincing oneself and others about the results, should be developed. Brown 

(1997) argues that mathematics Is intrinsically changing and developing, like a 

language, and that the use of criterion referenced assessment In mathematics is an 

attempt to freeze It Into a static form based on a behaviourist paradigm which belies 

the true nature of the subject. 

2.4 Discovered or invented? 

The Platonic or realist school of thought regards mathematics as pre-existing truth 

which Is there to be discovered (Godino and Batanero, 1996). On the other hand, a 

pragmatic theory of meaning takes the view that mathematical objects arise from the 

problem-solving activity of the community of mathematicians, and are thus 

Inventions of human activity. 

"We may ask whether i, the square root of -1, was discovered or Invented. There was 

a period when Its existence was debated. It turned out to be useful, and to behave 

according to a simple set of rules, arid so it became part of the accepted mathematical 

structure. 
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Even if a mathematical entity does not obey all the standard rules, it may be so useful 

that new rules are invented to allow its existence.. For exarnple, zero does not obey 

the cancellation law (3x0=4x0, while 39̂ 4) but it is so useful that a special rule (you' '. 

cannot divide through by zero) allows its continued existence. 

If mathematics is pre-existing and discovered, then once found it is immutable and 

infallible. If invented then it is open to negotiation, revision and change. 

Mathematical learning can be compared to mathematical research in that the 

participant in either activity is venturing out into unknown territory, and extending 

their own personal boundaries of experience. The difference lies in the type of 

terrain they encounter. For the researcher, it is truly terra incognita, where dragons 

or treasure may be revealed behind the next obstacle to be overcome. For the 

learner, there is the certainty that the land is well-trodden, and that signposted paths 

will exist, should they not stray from the way indicated by their guides. For the 

researcher, mathematics is there, to be created: for the learner, it is already there and is 

to be discovered. 

2.5 Social or individual? 

"Clearly the acceptance of a theorem by practising mathematicians is a social 
process which is more a function of understanding and significance than of 
rigorous proof." 

(Hanna, 1991, p58) 

The importance of social acceptance of mathematical ideas may easily be 

demonstrated. 

In 1742 Goldbach conjectured that all even numbers may be expressed as the 
sum of two primes (taking 1 as prime where necessary)... Goldbach also stated 
that every odd number may be expressed as the sum of three primes. In the 
form given it by Edward Waring (which excludes 1 as prime) this assertion 
also remains an unproven conjecture. 

(Mahoney, 1972) 
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The definition of a prime number has changed froni a number which is only divisible 

by itself and unity (in which case 1 is a prime, number) to a number which has exactly 

two factors, itself and unity (in which case l i s not a prime number). The effect of 

this is to make the initial form of Goldbach's Conjecture untenable, at a stroke as it 

were. A hypothesis which may have been true has suddenly become,palpably untrue 

by a social, mathematical decision. 

The social nature of mathematics calls for the need for relative stability in the way 

mathematics is expressed, otherwise we would not be able to use common symbols to 

communicate meaning. However since mathematics is constantly being added to and 

changed, the meanings of the symbols (the referents corresponding to the signs) shift 

subtly over time and place, according to the context in which they are found. Thus 

1 +1 = 2 in integer arithmetic; 1 +1=0 in modulus 2 arithmetic and 1 +1 = 1 in logical 

terms. (As Eddington, quoted in Rose, 1988, put it, "We used to think that if we 

knew one, we knew two, because one and one are two. We are finding that we must 

learn a great deal more about 'and' ".) Alternatively a single statement may be made 

in different symbolic terms, (the signs corresponding to a single referent) again 

depending on context, such as A+B=C, AuB=C, or AvB = C, and the same entity 

may be expressed as Vi, 0.5, 2'\ or 50% depending on context. 

Most statements in mathematics may be regarded as either true or false, and~this is 

often seen as an intrinsic property of the statement itself. Ernest (e.g., 1991) argues 

that the objectivity of a mathematical statement arises from its acceptance by the 

community of mathematicians. This can only be so if the truth is not intrinsic 

within the statement itself but depends on whether rules may be agreed which make 

it either true or false. Thus a statement such as p=ln(-l) will be true if rules are 
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agreed which make it true, just as rules can be agreed which make 1 + 1=0 true in 

context. • 

On the individual side, it is clear that mathematics is an activity carried out by 

individual humans. The questions they tackle may be either problems which are 

agreed by the community to be interesting, for example Fermat's last theorem, or 

subjects which they have arrived at themselves: why did rounding the last decimal 

places in the weather data cause the calculation to diverge so dramatically from the 

unrounded solution? Even in the most individual cases, mathematicians draw from 

the results of others and converse with others. 

2.6 Hirst and Forms of knowledge 

Hirst could probably be classified as a proponent of academic rationalism. He argues 

(e.g., 1972) for a liberal education in which the learner learns to think like a 

mathematician, a scientist, a moralist, etc., through a process of apprenticeship. This 

equips the civilised person to understand that there are different ways of thinking 

which are appropriate to the tackling of different types of question: that a moral 

question cannot sensibly be approached in a scientific mode of enquiry. 

For Hirst, mathematics is a form of knowledge. He defines a form of knowledge as 

a distinct way in which our experience becomes structured round the use of 
accepted public symbols. The symbols thus having public meaning, their use 
is in some way testable against experience and there is the progressive 
development of series of tested symbolic expressions. 

The public meaning of the symbols acknowledges the social nature of knowledge; the 

testing against experience its private nature and.the progressive development its 

mutability. 
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He describes certain distinguishing features which can be seen in the various forms of 

knowledge: . " • 

1. They each involve certain central concepts that are peculiar in character to 
the form. For example, those of... number, integral and matrix in 
mathematics... 

2. In a given form of knowledge these and other concepts that denote, if 
perhaps in a very complex way, certain aspects of experience, form a 
network of possible relationships in which experience can be understood. 
As a result the form has adistinctive logical structure. For example, the 
terms and statements of mechanics can be meaningfully related in certain 
strictly limited ways only... 

3. The form, by virtue of its particular terms and logic, has expressions or 
statements (possibly answering a distinctive type of question) that in some 
way or other, however indirect it may be, are testable against experience.... 
in accordance with particular criteria that are peculiar to the form... The 
sciences depend crucially upon empirical, experimental and observational 
tests: mathematics depends upon deductive demonstrations from certain 
sets of axioms... 

4. The forms have developed particular techniques and skills for exploring 
experience and testing their distinctive expressions... The result has been 
the amassing of all the symbolically expressed knowledge that we now have 
in the arts and the sciences. 

He distinguishes the forms of knowledge from fields of knowledge which may draw 

their content from different forms to inform a unifying subject matter. For example, 

geography "the study of man in relation to his environment" would be an example of 

a theoretical field of knowledge, and engineering a practical one. 

In summary he proposes two types of classification of knowledge: 

1. Distinct disciplines or forms of knowledge (subdivisible): mathematics, 
physical sciences, human sciences, history, religion, literature and the fine 
arts, philosophy, morals. 

2. Fields of knowledge: theoretical, practical (these may or may not include 
elements of moral knowledge). 

Mathematics is thus a form of knowledge which has a high internal consistency, a 

way of thinking and relating to experience. Moreover, because each form of 

knowledge involves the use of symbols and the making of judgements in ways which 

cannot be expressed in words and can only be learnt in a tradition, it must be learnt 
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from a master on the job. Note that in (4) above, Hirst distinguishes between the 

amassed body of symbolically expressed knowledge, which is the result of applying 

the techniques for exploration and testing, and the form of knowledge, which 

includes that amassed knowledge. This means that for instance, although a 

knowledge of mathematics includes factual knowledge, the essence of the discipline is 

not, for Hirst, contained therein. 

Engineering will need to contain some mathematical knowledge, but Hirst argues 

that all students should study all the forms of knowledge, in order to know how and 

when to apply an appropriate way of thinking in context, and that engineering would 

be a field in which the forms of knowledge would be applied. 

2.7 Postmodernist mathematics 

Godino and Batanero (1996) take as a fundamental notion the type of problem that 

different people are trying to solve. Mathematics has a "triple nature... as an activity 

for solving socially shared problems, as a symbolic language, and as a logically 

organised conceptual system". 

Another fundamental notion within their view is that of the institution. 

"An institution is constituted by the people involved in similar problem-
situations. The mutual commitments with the same problems imply the . 
carrying out of shared social practices which are also linked to the institution 
whose characterisation is to be contributed." 

"We call people within society who are engaged in solving new mathematical 
problems a mathematical institution. They are therefore the producers of 
mathematical knowledge. Other institutions (macro-institutions) involved in 
"mathematical situations" are the users of mathematical knowledge (applied 
mathematicians, technicians, scientists and other professionals), teachers and 
mathematics educators (teaching institutions)." (Authors' emphases) 

(Godino and Batanero, 1996) 

Mathematical activities are characterised by: "mathematical objects" (numbers, 

operations); symbolic representations in the statement of the question and in their 
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carrying out; symbolising, formulating, validating and generalising, described by 

Freudenthal (.1991) as "matheniatizing". These correspond to Hirst?s central 

concepts, relationships and tests against experience, and techniques, and skills (see 2.6 

above) 

The institution agrees meanings for mathematical objects, which may evolve over 

time, according to their usefulness in solving the mathematical problems on which 

the mathematical institution is working. (See for example the prime number, 

discussed above.) Mathematical objects are attributed signs, such as names or written 

symbols, which may also vary with time or place. Individuals also assign personal 

meanings to these signs, and may be said to understand the objects insofar as their 

personal meanings match the institutional meanings. This set of relationships can be 

mapped onto a classical semiological diagram. (Ogden and Richards, 1923): 

A A : Sign: mathematical 
symbol 

B: Concept (reference): 
personal meaning 

C : Significatum (referent): 
institutional meaning 

C 

Figure 2-1: Relationship between sign, concept and referent, Ogden and 

Richards, 1923. 

The relationship between the sign and the referent: the institutional or agreed 

meaning is moderated by a third entity: the concept or personal meaning. 

For example, the plus sign + is a sign. Its full mathematical meaning, that Is all the 

things which the mathematical community understand by the plus sign, In all 

contexts. Is the referent, and my own personal understanding of Its meaning, which Is 

a subset of that full meaning, with dominant and subordinate images, is a concept. In 
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fact I hope that my concept is a subset of the full meaning. It may contain elements 

which are not part of the referent, which could then be described as misconceptions. 

Arzarello et al (1995) describe how an inadequate relationship between a symbol 

(sign) and its sense leads to a pupil and teacher using the same words corresponding to 

different meanings "in their heads" 

In addition, the institutional meaning of a given object in a teaching institution will 

be a subset or a sample of the full institutional meaning, and care must be taken In 

choosing the sample that the full institutional meaning Is hot distorted or lost In 

teaching. 

Learning may be conceived as the process of construction and appropriation 
of viable conceptual networks by a progressive adjustment of a subject's 
cognitive structure to the structure of the institutional meanings. 

(Arzarello et al, 1995) 

The study of the teaching/learning processes In the mathematics classroom 

corresponds to the study of the effects on the personal meanings of "shocks" of 

didactic sequences carrying elements of meaning. 

Within this analysis, "the centre of attention for didactic research should not be the 

student's mind, but the cultural and institutional contexts In which teaching takes 

place". 

Brown (1997) (p70) suggests that "whilst there may be some over arching system of 

mathematics understood collectively by the community of mathematicians, we can 

never survey this holistically in a neutral way... Meaning Is only created as signs are 

combined In stories that arise within the activities performed." That Is, each person 

creates meaning according to the contexts In which they encounter signs and 

Interpret them according to their experiences and Interpretation of those experiences. 

18 



In the same way, he suggests, in language the relationship between signifier (word) 

and signified (thing to which the word refers) is unstable in the long term, as both the 

signifier and the signified can change. In order for words to be useful in 

communicating meaning there has to be stability in the short term at least, so that the 

meaning of a word may be inferred from its context. However the context of a word 

is normally other words, each of which may be unstable. Like language, mathematics • 

exists in a tension between stability, so that statements may continue to have 

meaning, and instability, as new meanings, relationships and entities are forged. 

Knowledge exists in the tension between understanding, where we are embedded in 

the experience, and explaining, where we are separate ourselves from the experience 

in order to articulate that which we have understood. 

In the field of literary criticism. Culler (1982) explains that "all readings are 

misreadings": that is that no reader can fully recapture the intended meaning of the 

author but imposes on the reading a unique set of experiences and interpretations to 

create a new meaning. Progress occurs when a "strong misreading" of an existing 

"text" takes place. That is, an existing entity is "misunderstood" creatively, or 

understood in a way not intended by the originator, such that a rich new reading is 

created. So the hieroglyphic "alphabet" of the Egyptians was adopted as a phonetic 

consonantal alphabet by the Phoenicians and Hebrews, and subsequently as a full 

vowel and consonant alphabet by the Greeks. Each step was a "misuse" which 

yielded greater functionality. 

This "creative misunderstanding" is important in mathematical creativity: 

Ironically for a discipline touted as precise, the student of mathematics has to 
develop a tolerance for ambiguity... Sometimes distinctions are better left 
blurred, e.g. the various roles of the minus sign and the use of f(x) as both the 
function and the value of the function at x... At the same time, when there is 
danger that genuine confusion might develop, the student must learn to 
become conscious of looseness and to apply the necessary amount of rigour. It 
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is tliis judgmental aspect of reasoning, so essential in mathematics education, 
that must be communicated to students. ' " . 

Hanna (1991, p 61) 

2.8 Summary 

It was said of Gauss: he is like a fox who obliterates his tracks with his tail. He 

presented his conclusions, coniplete and perfected, without a clue as to the struggle 

which had led to them. This is how rnathematics is often presented to the world in 

its public face, without ambiguity or uncertainty. Ambiguity however is a spring of 

creativity, as Is unsatisfied need. 

In analogy with language, mathematics has both stability and flow, a social and a 

private aspect. 

2.9 Mathematics for the engineer 

2.9.1 According to writers of reports: a tool, a language, a competence 

The OECD Report Mathematical Education of Engineers" (OECD, 1966), states that: 

Mathematics Is very Important In the training of engineers for the following 
reasons: 
i) It provides a training In rational thinking and justifies confidence in the 

value of such thinking; 
iij It Is the principal tool for the derivation of quantitative information 

about natural systems; 
iii) It Is the "second language" of human discourse and parallels natural 

language by providing a means of communication for Ideas, as evidenced 
by the contents of technical papers; 

iv) It facilitates the analysis of natural phenomena; 
v) It Is Important In assisting the engineer to generalise from experience; 
vi) It trains the Imagination and inquisltlveness of the student If properly 

taught; 
vii) It Is a training for adaptation to the future. 

(OECD, 1966, p i 1-12) 
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Barry and Steele (1992) reprint the list in a report for the Societe Europeenne pour la 

Formation des Ingenieurs (SEFIQ (with the substitution of "an education" for "a 

training" in the last point) and add: 

viiij Mathematics provides the language for formulating a model for computer 
analysis. 

ixj Mathematics provides the means of understanding how a computer works 
and the computing process itself, and the means of assessing the accuracy of 
computer output. 

Items ii), iv), and vii) relate to the development of professional communication and 

computational skills appropriate to an engineer. The remaining items identify 

mathematics as central to the intellectual formation process of the engineer. 

(Barry and Steele, 1992, pl5) 

The SEFI analysis assembles the notions of "tool", "language" and "training in 

rigorous rational thought" which we see in the prefaces quoted below. 

Hermeneutical views are characterised by a circular movement encompassing 
a succession of alternative perspectives, for example between seeing language 
as embedded In what I am doing and seeing It as a separate labelling device. 
Differences In views of language held by such writers are essentially to do with 
the way they choose their home base on this spectrum and how far they stray 
from this base. Through seeing mathematics as functioning like a language, 
such a home base can similarly characterise the view held of mathematics. 

(Brown, 1997, pp 218-9) 

Brown's view of the Implications of seeing mathematics as a language has been 

discussed above. 

Mathematics Matters In Engineering (IMA, 1995) states that "mathematics forms a 

key competence in engineering... One key area of cornpetence required by most 

engineers Is mathematics, for It Is difficult to be innovative In engineering without 

such competence", (pi) This recognises that engineering Is an Innovative discipline, 

but not that the mathematics of Innovation Is sometimes itself Innovative. In order 

to Innovate it may be more important for the engineer to be capable of learning and 

applying new mathematics than to have acquired all the mathematical competences 
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conceivably necessary for a career during the course of a degree. Cox et al (1995) 

consider that the attitudes of engineers towards mathematics are at least as important 

as the exact content of the engineering mathematics course, since there is simply not 

time to teach undergraduate engineers all the mathematics they will need to know in 

their careers. 

2.9.2 According, to writer of textbooks 

Writers of mathematics textbooks sometimes allow a glimpse of their underlying 

assumptions in the prefaces they write. Here are a few samples gleaned from the 

prefaces of books written specifically for engineering users of mathematics. Without 

exception, writers of textbooks over the period refer to the student as he, which is 

defensible in a period when such students were overwhelmingly male, but jars a little 

on modern ears. 

We would like to suggest two particular areas of concern which we feel should 
be reviewed from time to time by every analyst. The first is to maintain an 
awareness of the limitations of any mathematical model resulting from the 
various approximations imposed during the modelling process... Changes in 
engineering curricula and... improvements in teaching mathematics at the high 
school level... have increased the mathematical requirements for engineering 
students... [and] raised the level of mathematical rigor (sic). It was decided not 
to trade off the valuable physical applications for increased rigor in this 
edition. 

(LA Pipes & LR Harvill, Applied Mathematics for Engineers and Physicists, 
1970) 

In a work of this nature, full rigorous proofs cannot be given, but the 
assumptions made have been carefully stated and wherever the existence of a 
rigorous proof is assumed, some indication of this assumption is given. 

(BH Chirgwin & C Plumpton, A Course of Mathematics for Engineers and 
Scientists, 2"'' edition, 1970) 

A technologist who is taught mathematics purely as a series of techniques is 
on firm ground only as long as those techniques remain relevant; in his 
subsequent career he will encounter many quicksands where the new 
techniques he needs are out of his reach. The answer, in our opinion, is to 
stop treating the technologist as a second-class citizen, entitled to use 
mathematics but never to understand; we must allow him, indeed expect him, 
to come to terms with the fundamentals of the subject. 

(M Bruckheimer et al, Mathematics for Technology: a New Approach, 1971) 
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The typical student for whom this book is intended is likely to look upon 
mathematics as a means to an end. We feel that it is nevertheless unfortunate 
if, as all too often happens, his mathematical armoury consists merely of a 
collection of unrelated techniques which he uses under appropriate (and 
possible inappropriate) circumstances. 

(RJ Goult et al. Applicable Mathematics: a Course for Scientists and 
Engineers, 1973) 

The emphasis is on the practical side of the subject and the more theoretical 
aspects have been omitted.... Although mathematical rigour has not always 
been emphasised in the programmes, they can serve as an introductory text for 
students [of mathematics]... giving... some idea of how mathematics.is used in 
other subjects. 

(AC Bajpai et al. Mathematics for Engineers and Scientists, 1973) 
The text is primarily designed to assist engineering undergraduates and their 
teachers, but we hope it may also prove of value to students of other 
disciplines who use mathematics as a tool... We have tried to give equal 
emphasis to both the analytical and the numerical aspects of engineering 
mathematics, so that the reader is encouraged to make use of whatever 
mathematical tool is best for the problem he has in hand. 

(AJM Spencer et al. Engineering Mathematics Vol 1,1977) 
Mathematics is an essential tool for the engineer and applied scientist and 
mathematics is often up to one third of an engineering student's curriculum in 
the third year. 

(JS Berry and P Wainwright, Foundation Mathematics for Engineers, 1991) 
While formal proofs are included where necessary to promote understanding, 
the emphasis throughout is on providing the student with sound mathematical 
skills and with a working knowledge and appreciation of the concepts 
involved. 

(KA. Stroud, Engineering Mathematics, 1995) 
Mathematics is the language of engineering. 

(A Croft et al. Introduction to Engineering Mathematics, 1995) 
Mathematics is the language of engineering... 

(L Mustoe, Engineering Maths (sic), 1997) 
Many authors have not been quoted, as they have simply listed the scope of the 

various chapters of the text In their preface, or stated the syllabuses to which the 

contained material corresponds, but among those who do make mention of their 

underlying approach, the Ideas which emerge are the appropriate degree of 

mathematical rigour and mathematics as a tool for the technologist. 

When we examine engineering mathematics text books, we discover they vary In two 

dimensions: those which are designed as an aid to learning, such as programmed texts. 
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and those which are designed primarily as a reference: and those which treat the 

mathematics by mathematical topic without reference to application versus those 

which work through extended examples. 

Programmed text Traditional 
textbook 

Reference work 

Through 
applications 

Berry, Northcliffe 
& Humble 

Noble 

With applications Mustoe' Croft et al 

Bajpai et al 

James et al 

Application free Stroud Weltner 

fable 2-1: classified examples of text books 

A telephone survey of universities offering degrees in mechanical or general 

engineering was carried out in February 1996. Lecturers were asked what 

mathematics text books were recommended to their first year students. The replies 

are tabulated in Table 2-2. It will be seen that at the time Stroud and James et al 

dominated the market. These texts are instrumental in outlook, with Stroud 

regarding engineering mathematics as a collection of skills to be acquired by drill and 

practice. 

University Title Author 
Bath Engineering Mathematics Stroud (1995) 
Birmingham Engineering Mathematics 

Introduction to Engineering 
Mathematics 

Stroud 
Croft, Davison & 
Hargreaves (1995) 

Brighton Engineering Mathematics Stroud 
Bristol Modern Engineering 

Mathematics 
James et al (1992) 

Cambridge Advanced Engineering 
Mathematics 

Kreyszig (1993) 

Modern Engineering 
Mathematics 

James 

Advanced Modern Engineering 
Mathematics 

James et al (1993) 

Table 2-2: Texts recommended to first year mechanical engineering 

undergraduates, February 1996 
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Central England Engineering Mathematics 
Modern Engineering 
Mathematics 
Introduction to Engineering 
Mathematics 

Stroud 
James 

Croft etal 

Central Lancashire Engineering Mathematics Stroud 
City Advanced Calculus 

Mathematical Methods for 
Science Students 
Engineering Mathematics 
Engineering Mathematics 

Spiegel (1974) 
G Stephenson 1973) 

Stroud 
Bajpai, Mustoe & 
Walker (1989) 

Coventry Introduction to Engineering 
Mathematics 

Croft etal 

Durham Advanced Mathematics for 
Engineers & Scientists 
Engineering Mathematics 
Further Engineering 
Mathematics 

Spiegel 

Stroud 
Stroud (1990) 

Greenwich Modern Engineering 
Mathematics 

James 

Hertfordshire Learning Mathematics through 
DERIVE 
Foundation Mathematics for 
Engineers 
Modern Engineering 
Mathematics 

Berry, Graham & 
Watkins (1996) 
Berry & Wainwright 
(1991) 
James 

Humberside Engineering Matherhatics Stroud 
Imperial Mathematical Methods for 

Science Students 
Mathematical Techniques 
Engineering Mathematics 

Stephenson 

Jordan & Smith (1994) 
Stroud 

Kingston Introduction to Engineering 
Mathematics 
Engineering Mathematics 

Croft et al 

Stroud 
Lancaster Modern Engineering 

Mathematics 
James 

Liverpool John Moores Engineering Mathematics Stroud 
Loughborough Engineering Mathematics 

Mathematics for Engineers & 
Scientists 
Modern Engineering 
Mathematics 

Stroud 

Weltner et al (1986) 

James 
Luton BTEC National M2 & M3 

Mathematics for Technicians 
Greer & Taylor (1989) 

Manchester 
Metropolitan 

Modern Engineering 
Mathematics 

James 

Table 2-2 (Continued): Texts recommended to first year mechanical engineering 

undergraduates, February 1996 
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Manchester Modern Engineering 
Mathematics 
Engineering Mathematics 

James 
Stroud 

UMIST Engineering Mathematics Stroud 
Middlesex Engineering Mathematics 

DERIVE Manual 
Stroud 

Nottingham Modern Engineering 
Mathematics 
Engineering Mathematics 

James 

Evans (1992) 
Oxford Brookes Engineering Mathematics Stroud 
Oxford Advanced Engineering 

Mathematics 
Mathematical Methods for 
Physical Science 
Engineering Mathematics 
Mathematical Methods for 
Science Students 
Modern Engineering 
Mathematics 
Mathematical Methods in 
Science & Engineering 

Kjreyszig 

Riley (1974) • 

Spencer (1997) 
Stephenson 

James 

Heading (1970) 

Plymouth - Engineering Mathematics Stroud 
Portsmouth . Engineering Mathematics Stroud 
Sheffield Hallam Locally written material 

Foundation Mathematics 
Introduction to Engineering 
Mathematics 

Booth 
Croft et al 

Sheffield Further Elementary Analysis 
Engineering Mathematics 

Porter 
Stroud 

South Bank Mathematics for Technicians 
Engineering Mathematics 

Greer & Taylor (1989) 
Stroud 

Southampton Mathematics for Engineers & 
Scientists 
(And for weak students) 

Weltner etal (1986) 

Stroud 
Sussex Introduction to Engineering 

Mathematics 
Modern Engineering 
Mathematics 
Engineering Mathematics 
Advanced Engineering 
Mathematics 
Engineering Mathematics 
Further Engineering 
Mathematics 

Croft et al 

James 

Evans 
Klreyszlg 

Stroud 
Stroud 

Warwick Locally written material 
Westminster Engineering Mathematics 

Calculus 
Stroud 
J Stewart (1988) 

Table 2-2 (Continued): Texts recommended to first year mechanical engineering 

undergraduates, February 1996 
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2.9.3 Mathematics as sensemaking: the making of meaning 

Tall (in Tall, ed, 1991, p256) states "The evidence is that students of a wide range of 

abilities prosper when they can give meaning to ... ideas." Matos and Carreira (1997) 

describe learning as "an activity where students give meaning to ideas, problems, 

mathematical and non-mathematical concepts". 

Schoenfeld (1991, cited in Wilson et al, 1993) proposes that school mathematics -

concerns highly unrealistic situations, and that the main preoccupation is that the 

student solves the problem, rather than understanding it. Wilson's co-author Teslow 

gives a personal account of his experience of mathematics as sensemaking in the 

context of his engineering experience. This involves the application of mathematics 

to real problems whose solutions have practical applications and whose 

implementation will have ramifications in the real world. 

In order to be useful in sensemaking, mathematics, must be a unified body of 

knowledge, rather than neatly compartmentalised. It must be active and accessible 

rather than inert knowledge which can be recalled but is not applied. For the 

engineer, mathematics is a tool, consisting of both algorithms ("a sure-fire method 

that always leads to a solution.of a particular problem") and heuristics ("rules-of-

thumb that may solve a problem, but do not guarantee a solution") of when to apply 

the proper algorithm. Schoenfeld found it easy to teach algorithms, but difficult to 

teach the heuristics. It is possessing the appropriate heuristics which distinguishes the 

expert from the novice (Wilson et al, 1993). 

Lave (1996) suggested that learning should be examined from the perspective of 

"becoming who we are going to be", a form of socialisation. Engineering students 

sometimes complain "I don't see the relevance of this" (Appleby, 1995, Coxhead, 

1997). They are studying engineering in order to become engineers. It is not always 
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clear to them that the mathematics they study is relevant to being an engineer, as we 

shall see from some of the comments in the questionnaires in .chapter 6. 

2.9.4 Precision and approximation 

Within engineering practice, calculations are made from two quite different 

methodological standpoints, and this is rarely made explicit to students. Engineering 

precision and approximation are different from their mathematical namesakes. 

In the domain of approximate calculations a safety factor will generally be applied, to 

ensure the result falls on the desired side of a limit, either a maximum or a minimum. 

Classically the strength of a structure and its deflection under load fall into this 

category. The exact answer does not matter, since the whole structure will be over-

designed to allow for unforeseen misuse and deterioration. 

In precision applications, the calculation must eliminate uncertainty as far as possible, 

since either over- or under- estimate has undesirable consequences. Such calculations 

often concern the fit of components, or accurate timing. In an axial compressor, 

running at design speed, if there Is a gap between the tips of the blades and the casing, 

air will leak through and the efficiency will be Impaired. On the other hand. If the 

tips of the blades rub on the casing then the ensuing friction causes overheating and 

. possibly fire. The calculation of the change of dimensions of the rotor and casing 

must beas accurate as possible. 

The requirements for accurate calculation do not always coincide with where 

mathematics Is exact. Numerical solutions are sometimes needed. In mathematical 

modelling applications the assumptions made to allow for mathematical exactness 

may be unjustified in the context of the application. In these cases, the aspirations of 

the engineer and the mathematician do not coincide. Mathematics becomes a tool. 
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rather than an end in itself, and the mathematical purist may wince at some of the 

things the engineer does. 

Story: a professor of engineering ran into a colleague of mathematics one day. "So 

glad to see you, old chap," said the engineer, "I've been using some new theory in 

bridge design, and getting some really interesting results, but the maths is a bit 

beyond me. Would you cast your eye over it for me?" The mathematician frowned. 

"Can't possibly work," he muttered, "Assumptions all wrong", and away he shuffled.-

A while later, they met again. "Are you sure about my new theory?" asked the 

engineer plaintively, "I've been testing models, and they seem to hold up really well". 

"It's no good," growled the mathematician, "Only valid in the trivial case where all 

the variables are real and positive". 

An important difference between mathematics per se and an engineer's mathematics is 

that in pure mathematics it is normal and permissible to add x to x" while in 

engineering mathematics adding (length) to (length )̂ is generally a sign of an error. 

The mathematics of the mathematician deals with dimensionless numbers or entities 

which stand proxy for numbers, while the engineer manipulates values of physical 

quantities with meaningful dimensions. There is thus a cultural problem for the 

student; in mathematics classes it is permissible to add x to x, but elsewhere one may 

only add ELJC to x", where K has the dimension of x. 

2.10 Conclusions 

2.10.1 On intellectual rigour 

It appears that one of the principal characteristics of mathematics is its intellectual 

rigour, and that in teaching mathematics to engineering students one of our aims is to 

teach them to think clearly. On the other hand, one of the complaints about 
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engineering students is that they lack feeling for mathematics and whether the 

answers they produce are correct or not. (Sutherland & Pozzi, 1995) We have to 

decide whether we regard mathematics for the engineer as a mental discipline (Hirst, 

1972) or as a tool (for example, OECD, 1965, Barry & Steele, 1992, and others). 

Given that engineering students suffer from crowded timetables, we have to be clear 

about the aspects of mathematics we want to develop in our students. This may be 

different from the mathematics we want to teach to mathematics students, and it will 

be important to make that explicit, so our expectations are realistic. 

We may have to sacrifice rigour in mathematics and develop clear thinking in 

alternative ways, while attempting to enhance students' feeling for mathematics 

through the use of prostheses such as computer algebra and graphics calculators 

(Challis and Gretton, 1997), and the use of modelling from an early stage. (Cross, 

1983) 

2.10.2 On the finality of mathematics 

Mathematicians are in the business of building mathematics. They are contributing 

to the growing and changing collection of mathematical structures. Mathematicians 

need to have the sense that mathematics is incomplete and may be challenged in order 

to motivate the making of new mathematics. I was told by a colleague that the most 

memorable point of his engineering degree course was when his lecturer reached a 

stage when he said "and that is as much as we know", and he realised that beyond was 

still inviting exploration. 

There is a sense in mathematics that it is not open to negotiation: that to a given 

question there is one correct answer and any other is simply not right. That however 

is largely due to the sort of questions which are asked in "mathematics", and the rules 

of the game that are set in the "mathematics" which engineers are currently taught. 
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In mathematical modelling of real complex situations the room for negotiation is 

wide. It is more difficult to assess work in which there is not a correct answer. 

Engineers are also driven by the motivation of satisfying incompleteness, to do 

things, to make things work, even if the gap to be filled is the provision a part for a 

machine rather than a new mathematical solution. (Shaw, 1989) 
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3. Observation of mathematical modelling in practice 

3.1 Introduction 

Having discussed the nature of niathematics in chapter 2, and suggested that there is a 

difference between engineering mathematics and that of mathematicians, we may now 

turn to observe some novices using mathematics and reflect upon the way they construct 

a mathematical model. We shall also compare the approaches taken by some 

mathematics and engineering students to the same problem, and conclude that there is 

some difference in the ways in which they are "doing mathematics". The students on 

whom we shall concentrate are final year students who have been well acculturated into 

their respective subject. In chapter 13 we shall examine two basic paradigms of 

mathematical modelling, and a hybrid third approach which appears to be adopted by 

engineering students. 

3.2 What is observation? 

Observation is a descriptive technique, that is, behaviour is observed and described. If 

behaviours are counted and then analysed statistically, it becomes a quantitative 

approach: if they are simply observed and described, it remains qualitative. In this case 

the observation is qualitative, as the sample in terms of numbers and of the time for 

which they were observed is small. The advantage of using a small sample is that it is 

possible to enter into greater depth and detail in the analysis, and this is gained at the 

expense of loss of breadth. 

3.2.1 Strengths of observational methods 

Observation is the first step in any investigation: to establish that there is a phenomenon 

to be investigated in the first place, and then to try to establish its nature. Before any 
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rules of gravitational attraaion can be considered, it must first be observed that an 

object which is released will fall. Observation is first necessary to establish that, theory 

derives from reality rather than fantasy. It is the guarantee of empiricism in the 

scientific method. (Cohen and Mannion, 1994, p26) 

Observation in the social sciences is based on the case study: rather than manipulating 

variables to determine, their causal significance in an experimental manner, the 

investigator observes the characteristics of a single unit (Cohen and Mannion, 1994, 

pl06). The picture gained in this manner is richer than the measurements obtained from 

an experimental study, and it is argued that experimentation, in order to reduce the 

number of variables to a controllable level, impoverishes the study to something well 

below the norm of human social experience. 

3.2.2 Weaknesses of observational methods 

In participant observation, there is the danger that the observer becomes too immersed 

in the culture of the group being observed, and becomes "subjective, biased, 

impressionistic, idiosyncratic and lacking in the precise quantifiable measures that are 

the hallmark of survey research and experimentation". (Cohen and Mannion, 1994, 

pllO) 

There are questions of internal and external validity. Internally, to what extent were the 

observations coloured by the researcher's expectations? Externally, to what extent are 

any observations applicable to other cases? Phenomenological techniques refer to the 

epochs or bracketing of one's prejudices and understanding as far as possible what the 

subject says and does rather than what the observer expects that person to say and do, 

(Cohen and Mannion, p29, p293) and also to the circle of understanding where a sense of 

the whole (interview, case,study, observation) informs the understanding of the parts, 

and at the same time the sense of the whole is composed of the totality of the 
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understanding of the parts. External validity may be checked by some form of 

triangulation, for exarnple by verification against the more skeletal understanding gained 

from surveys. 

The recording of observations is time-consuming and relies on the memory of the 

observer. If the observations are recorded on video or audio tape, they must still be 

transcribed or otherwise annotated. -

3.3 Observation within this study 

Two types of observation were used: non-participant observation, where the observer 

obtrudes as little as possible into the behaviour of the subjects, and participant 

observation, where the observer is a part of the behaviour observed. 

Three sets of observation were carried out in this study: the first was of a class of 

mathematics undergraduate students (mixed first and second years) modelling the 

cooling of a cup of hot water, the second was a comparison of final year niathematics 

and final year mechanical engineering students modelling the flow of water from a tank 

under gravity, and the third was the testing of the courseware written as part of this 

study. In this account, "WMM is the author and researcher. 

The testing of the courseware falls more conveniently into a later chapter, so I shall 

describe here the observations in the early part of the study. 

3.4 Cold tea 

3.4.1 Introduction 

As the class of 18 students observed here were taking part in a scheduled class, 

observation was combined with some teaching, as the occasion arose. The technique 

could thus be described as participant observation. The class split themselves into four 
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groups, which I have labelled A, B, C and D, and interviews were carried out the 

following Week with two of the groups of students who took part in the modelling class. 

The first session took place between 11am and 1 pm, Groups D and B participated in an 

interview session the following week. 

The problem was stated as shown in Figure 3-1. 

Modelling - cold tea 

Joe drinks China tea. The Chinese method of making tea is to pour 
boiling water on tea leaves in a mug, either bone china or enamelled 
steel if you can afford it, ora jamjar if you can't. (You learn the skill of 
filtering out the tea leaves with your teeth.) 

As you leave the tea to infuse, it cools down. Model the way the 
temperature varies with time. 

Chinese tea mugs have little lids (and so do jamjars - you can screw the 
lid on and carry it around without spilling any). What difference does 
having a lid on make to the way the tea cools? 

Figure 3-1: the cold tea problem 

3.4.2 Observations 

In describing the modelling process, I have adopted the stages described in the Open 

University Mathematical Modelling diagram, a structure which will appear at many 

points in this thesis. 

O Specify > ,'© Setup 
the real a model 
problem i [ 

,'© Formulate \ 
the mathematical j 

[ problem i 

0 Compare. | [ 0 Interpret ,' O Solve the ) 
with reality the j ̂  j mathematical [ 

r ! solution I ! problem i 

»] O Write a report j 

Figure 3-2: OU flowchart analysing the process of mathematical modelling, 

(Tunnicliffe, 1981, p5) 

35 



There was of course a lot that happened in the room that I did not see, and a lot that I 

saw but did not have time to note down. The notes are therefore very selective. 

3.4.2.1 Initial approach 

Two different initial approaches were evident: three of the four groups (all first year 

students) began by finding hot water, cups and thermometers and obtaining some 

empirical data, whereas the group of second year students (who pointed out to me that 

they were second years) stated thafthey knew the answer, and wrote that they were 

assuming that dT/dt=K{T-T^ and that T„,=20°C (having estimated the room 

temperature: they did not use a thermometer). Whereas the former groups may be 

regarded as working down the right hand side of the MEI modelling diagram (see Figure 

13.3 in chapter 13), the latter may be interpreted as a novice approach to problem 

solving (Mestre, 1994), that is to "resort to formulaic approaches". 

3.4.2.2 Using technology 

The data produced was plotted on graphics calculators. DERIVE and Omnigraph were 

available on computers in the room, and students also attempted to use these programs 

to plot data, one group to the extent of using Omnigraph to plot spline curves of 

temperature against time. Students from one group also played "Risk" on a nearby 

computer. 

Some problems associated with using graphics calculators to plot the data were: 

• the graphic definition is low 

• the screen is very small 

• the angle of view is narrow (so the straightness of a line cannot be judged by looking 

along it), and a group of students cannot all see the screen at once 

• straight lines with small slopes are plotted as staircases 
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• students felt they were achieving something by performing regressions: on the data 

when they did not know what it was they were doing. 

The calculator did prove useful when a group used it to obtain the intercept and slope of 

a graph of ln(r-T,„) against time, once they had established that that was what they 

needed to do. 

3.4.2.3 Making assumptions 

In making assumptions, students did not appear to appreciate that making assumptions 

had implications for the mathematics they would set up, thus: 

(Group C) Si: We must assume all the diameters are the same. 
S2: It makes no odds. 

SI: You can't have millions of arbitrary constants floating about. 

But there was no discussion of what difference a change in diameter would have made. 

(Group A) Assume boiling water poured into cold cups. 

The model did not allow for a transient effect of the cup warming up. 

It appeared more as though making assumptions were a part of the ritual of 

mathematical modelling, and so they were arbitrarily making some, rather than 

analysing the implicit assumptions they were making and how things may be changed if 

they were otherwise. This may have been due to the students not taking time to 

understand the problem, but instead diving into the experiment. 

3.4.2.4 Set up mathematics: solve mathematics 

Two possible models were considered by the students: linear and exponential. 

"Is it linear?" Groups A, B and D 

The first impulse of the students was to assume that the relationship would be, at least to 

a first approximation, linear. Some students were firmly wedded to the notion that 

linear is best and were prepared to sacrifice some of the empirical data to achieve this. 
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(Group B Time = 11.40) S3: The graph (on a graphic calculator) looks as though it 
would be linear if you lose the ends. 
S4: You can't just lose the ends. 
S5: Just do a graph and see what we get. • 
(Time = 12.15) S4: It looks not linear. 
S5: Could be a bit exponential. 

"If it isn't linear then it must be exponential." 

For group B these two possible models existed side by side for a while (see below). Since 

an exponential model does fit the data quite well, that solution schema works on this 

occasion. On reflection. It Is possible that for soirie students a misconception may have 

been reinforced by this experience. 

Some students, once the notion of an exponential had been mooted, decided quickly on 

appropriate steps to check the model. 

(Group A Time = 11.40) S6: You can just about see the curve (on calculator scatter 
plot) 
S7: When shall we stop measuring? 

(Group A Time = 12.00) S6: We think it isn't linear. 
S7: It looks exponential. 
WMM: How would you check to see if it's exponential? 
S6: We could draw a log graph. 
S7: Log both- no, just temperature against time. 
S6: Do we use basee or 10? 

Some students, although they clearly knew about exponential relations In theory, used 

inappropriate tools and needed more guidance towards checking their model. 

(Group D Time = 12.12) S8: It cools faster without a lid. 
WMM: What do you think about the shape of the graph? 
S8: This one looks exponential. 
WMM: How might you check if you think it's exponential? 
S9:A log plot. 
S8: Can we use Omnigraph? 

(Time = 12.35) Students plotting spline curve of temperature against time on 
Omnigraph. They had also calculated linear and exponential regressions on a 
graphics calculator. 
WMM: What is the form of an exponential equation? 
S9:y=^e 
WMM: What happens if you take logs? 
S9:ln(y)=x 
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So what should you plot to get a straight line if it's an exponential? 
S9: Natural log ofy against x 
WMM: What is your y? 
S9: Temperature 
WMM: And your x? 
S9: Time. So we plot log temperature against time. 

3.4.2.5 Investigate implications 

An inappropriate model gives rise to a prediction of unlikely behaviour. The students 

are-willing to be challenged and to modify their model, but it was not until 12.15 that 

they were ready to discuss how to see if data fitted an exponential model. 

(Group B Time = 11.55) S3: Both (cooling curves for mugs with and without lids) 
look linear. 
WMM suggests looking along line to see if there is a curve. In fact this is difficult on 
LCD display because of narrow angle of view. 
WMM: What will happen at room temperature if it is linear? 
S4: It will go on getting cooler. 
WMM: Does water do that? 
S4:1 don't think so! 
WMM: Do you think that "It looks linear over this range" is a good enough model? 

3.4.2.6 Refining the model 

This group might be regarded as having successfully produced a mathematical model for 

the cooling of the mug of water. They have produced a first model which they refine 

and from which they can now obtain numerical constants. 

(Group A Time = 12.20) S7: The log thing looks nearly like a straight line. 
S6: We stopped too early. 
WMM: What does the temperature tend towards? 
S6: Room temperature. 
S7: So we could take away room temperature. 

(Time = 12.40) S7: The graph of log(T TJ is straight, (data plotted on graphic 
calculator) 
WMM: Did you find the constants from it? 
S7: No-here they are. Gradient is-0.0245. Intercept is 4.184. So temperature is 
4.184-0.0245t.. No. ln(T-TJ = something minus something times time, (some 
manipulation on paper) (T•T„J=Ke°'°^^^ where K=e'^'^^ 

However, the model they have arrived at is more useful for prediction than for 

understanding, since they had not realised why it is important that the liquid is stirred, 

for example, although this is stated in their assumptions. 
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3.4.2.7 An alternative model 

Group C: we know the answer. This group was unwilHng to let anybody see the way 

they were working, but this seemed to be what they did. 

11.10 Assuming that dT/dt=K(T-Tj and T^=20C 
I think that the students separated the variables and integrated the differential equation 

to give ln(T-T,„) = Kt, forgetting to add a constant. Taking antilogs then gave {T-T^ = 

Rearranging would then give T = e^^ + T^. 

11.35 (T„j measured as 24C.) 
11.40 T=e°-°'''''+25 
We could plot it on DERIVE 
No, I'll use my calculator 

The constant was obtained by putting corresponding values of Tand t into the 

equation. I do not know why T„j is now 25. 

11.50 (loading experimental values into calculator) We'll work them all out and take 
the average of the lot. 

For each pair of values for Tand t, a corresponding value of K was calculated. The idea 

was to take the mean of al l these values. The students were very resistant to a more 

conventional way of proceeding. Clearly the values they obtained did not fall within a 

narrow range. 

11.55 We've got a duff model 
But life isn't exact. 
The exponents don't agree. 

When the model was felt to be inadequate, the students blamed their assumptions. 

12.05 We assume the room temperature was constant, but it wasn't- I'm feeling 
sweaty with all these people in here. 
Anyway the readings aren't 100% accurate. 

These, interestingly, were the students who had said early in the session: 

We're all second years. Second years have learnt to argue. 

Finally, they tried a completely different approach. 
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p^ime = 12.50) I'm trying to do this by dimensional analysis, but I don't seem to be 
getting anywhere. Could you show me how to do the last bit? 
.'(Result obtained is dT/dt= T/tffVA^''^) . 
Attempt todiscuss why there is a better way to tackle it-but they want to rush ojf (end' • 
of lesson). 

3.4.3 Analysis a la Perry 

The first year students may be compared to Perry's (1981) early stages: looking for the 

correct answer, responding positively to authority, whereas group C was showing signs 

of "our way is as good as your way" relativism. From this point of view their thinking 

has progressed, although it makes working with them more difficult. 

3.4.4 Interviews 

Sadly neither group A nor group C came for interview the following week. In my notes 

on the session (31 May, after reflection) I have written "It will be interesting to see how 

reflective different groups are prepared to be and how this is a function of their 

perceived success in the exercise". Group A seem to have made the most direct progress • 

through the exercise, groups B and D had moderate success, and group C did not appear 

to engage with it at all. 

Both groups B and D stated that they had expected the curve to be exponential: students 

in group D had seen a similar curve in A level physics, and some in groups B and D had 

seen one in GCSE physics. 

Both groups used a graphic calculator for logging the data and plotting a cooling curve, 

and both groups suggested that they could have used DERIVE, when asked what other 

resources they could have used. In group D's case, this was part of a list of possibilities, 

not all of which seemed realistic (e.g. Minitab). 

Group D, when asked how they went about the modelling, assumed that I meant the 

experiment, and both groups, when asked how they could improve the model, made 
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comments on their experimental procedure. A student in group B, half joking, said 

"The maths model was perfect". There was thus some confusipn between the idea of a; 

mathematical model and the system it describes. 

An interesting final comment from group D, implying that they, having studied physics, 

"went right". 

You could try it with a group who haven't learnt about it in Physics and see how they 
go wrong.. 

3.5 The cascade problem 

A Cascade o f Wate r Tanks 

Tank A 

Tank B 

Tank C 

The diagram shows three tanks 

Initially tank A is full of water and B and C are empty 

In the final state tanks A and B are empty and C is full 

At some intervening time the volume in B is at a maximum. 

Construct a mathematical model to predict when this will 

happen and what the maximum volume will be. 

Figure 3-3: The cascade problem 

The question was stated on paper (see Figure 3-3) and shown to 2 groups of students; 

final year mathematics and final year mechanical engineering. The students were filmed 

on video as they worked and the tapes transcribed. They showed striking differences of 

approach. (The transcriptions are included in Appendix A) 
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3.5.1 Use of written work to support discussion. 

Both groups used their workings to share and discuss, that is there was a social aspect to 

the work in both groups and the documents they produced were used by both groups as 

a support for discussion. However the mathematics group produced pages of equations, 

while the engineering students produced pages of sketches of apparatus and curves. • 

Another difference apparent between the written notes produced is the-use of numbers. 

The mathematics students descended into numbers only to record the data from the 

experimental runs. The engineering students produced, as well as the results of two 

experimental runs, a page of numerical calculations to predict the time (or rather the 

mass flow rate, hence the time) when the maximum volume in B would occur. 

It is argued by Osborne (1983) that although number appears to be abstract, they appear, 

in the minds of the pupils, to be tangible, or concrete. The use of numbers thus argues 

that the engineering students are happier to stay in the concrete type of thought. 

3.5.2 Early insights. 

Both groups at an early stage had the insight about the volume in B being a maximum 

when flow in = flow out, but while the engineering students linked this immediately to 

"head", the mathematics students did not mention that the height would be the same for 

another 13 minutes. It appears that the idea of flow rate being dependent on height (as 

opposed to being a function of height, a more abstract notion) is less firmly embedded in 

the mathematics students. 

Both groups then went on to discuss whether the maximum height in B would be half 

the initial height in A, and then dismissed the idea,.as during the time taken to reach the 

maximum, liquid would have flowed out of B. Neither group, apparently, used this to 

fix an upper bound for the value of the maximum volume in B. 
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3.5.3 Focus 

The. engineering students remained focused throughout on the quantity they hiad been 

asked to find: the time and level of the maximum in the middle tank. This fixation 

made it difficult for them to break the task into steps. Such a goal focus is characteristic 

of a novice problem-solving technique (Mestre, 1994). 

The mathematics students were more focused on the task of building a mathematical 

model, which meant first modelling the flow in a simple system-with.two tanks and 

then extending the result, and although they did not finally build that model, they 

seemed satisfied in the end that they could have done it, and left the session fairly happy. 

The engineering students were dissatisfied that they had not completed the task to their 

satisfaction, and the final comment caught on the tape was: 

Adrian: Some of the others in our year would've sorted it. 

3.5.4 Vocabulary and concept set. 

It is clear from the tapes that the mathematics students "spoke mathematics" far more 

fluently than the engineering students. Their ability to read out mathematical 

expressions and to follow what was being read out was striking. The engineering 

students hardly spoke In mathematical terms and certainly not In mathematical 

expressions. 

The mathematics students used the term "function of" freely, while the engineering 

students preferred "depends on". The engineering students used "head" and "mass flow 

rate" which separated the Ideas of depth of liquid and rate of change of depth. Both 

groups seemed uncertain as to the propriety of regarding height, volume, and mass of 

liquid as Interchangeable variables (to within a multiplying constant). 

The mathematics students generated a wide range of suggestions to describe the flow: 
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Jason: Viscous, incompressible and irrotational. (laughter) 
Ann: We've got a Newtonian flow, have we? 
Jason: Yeh, I'm sure it doesn't matter. 
Ann: Of course it matters. We've got to have those things written down. 
Anthony: This is where we've got the Navier-Stokes equations. 
Derek: Irrotational is it? 
Anthony: Bernoulli's equation 
Derek: Newtonian flow 
Jason: Assume negligible viscosity. 

The engineering students plotted a graph to describe the flow.. 

Jolyon: Should it be linear? Because it's proportional to v isn't it? Dunno if that's.. 
Ordinate scale is volume. 

After some silence: 

WMM: What sort of relationship does it look like? 
Adrian: There isn't any shape showing clearly there. I thought it tends to be linear. 
WMM: What does the graph represent? 
Jolyon: It relates the amount of volume to how long it's been going. 
WMM: So what does the slope of the graph represent? 
Adrian: The rate of flow 
WMM: So.. 

After some circular argument: 

WMM: Well, do you think it's- It's clearly not independent of the height, so you could 
write down an equation that says the flow rate is a function of the height. And what 
sort of function do you think that is? Do you think it might be? 
Jolyon: Well, it's obviously not linear, from those results. 
WMM: No- yes- if it were a straight line it would be independent of height. So you 
know it's some sort of function of the height. 
Adrian: We thought it might be some sort of square. 
WMM: How would you test what the relationship between flow rate and height is? If 
you're suggesting it's a quadratic, how would you test if it's a quadratic? 
Jolyon: Surely you'd have that by seeing the results. 
But we don't really know what's going on- we're not really sure what's happening' 
between., each container. So up to now we've only done experimental - and what 
we've got there - doesn't really show enough - doesn't really tell us enough about the 
flow rate against the height of the water. 

Ironically, "some sort of square" is a good description of the shape of the graph, 

although the engineering students do not test this. In the Bernoulli equation, v 

represents velocity, which is proportional to flow rate, however that is measured. 
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The biggest difference was in the way students generated equations. The mathematics 

students wrote down their basic assumptions in equation form and continued from 

there. The engineering students found their equations from a formula sheet or card, and 

not by seeking to build new equations for themselves, although they were willing to 

manipulate and re-arrange the formulae thus obtained. In all the engineering students' 

written material there was no differential coefficient, although rh appeared as a variable. 

It is not clear whether they had made a strong connection between m and dm/dt, or any 

differential coefficient. 

In fact I think there is a basic difference here between the idea "is a function of", begging 

the question "what function?", and "depends on" which does not so clearly lead to the 

question "how?". 

The mathematics students expressed the volumes in A and B as Vj and V2, and the rate 

of change of volume in B as dV2/dt, which enabled them to see the problem in terms of 

differential equations from the start. The engineering students used m to express mass 

flow rate (which is standard engineering practice) and identified pgh as the appropriate 

group to express pressure, so they measured the depth of the liquid. This choice of 

variables and notation does not immediately suggest a solution strategy. 

Taken together, the words chosen to describe the relationship and the variables chosen 

by the two groups of students characterise their different approaches to the modelling 

problem, i.e. "dK2/dt is a function of Vjand V-f and " / « depends on pg/?" express 

different ways of seeing the situation which lead to different ways of dealing with it. 

3.5.5 Experimental technique. 

There appeared to be unspoken agreement between the engineering students that the 

initial conditions should be the same for each run. They were more experienced in 

running experiments. When it was pointed out to them that the rubber tubes on the 
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taps may have had an effect, they set up the whole apparatus to run without tubes. On 

the other hand they did not seek to verify the model they were using (Bernoulli's 

equation) for the simple case of a single tank, but remained focused on the overall task of 

predicting when the maximum would occur in the middle tank. 

The mathematics students used the top two vessels, to verify the relationship between h 

and So/dt. They appeared to have more direction in that they had.an idea what they 

wanted to measure. The engineering students did not appear confident of the 

relationship between mass How rate and 6h/dt. They wanted to set up a constant head, 

steady flow apparatus, so they could collect and measure the volume (thus mass) flowing 

in a given time. The mathematics students used the distance dropped by the liquid level 

in equal time intervals as a proxy for flow rate, to plot against the mid-height in the 

interval- a much more sophisticated approach. 

3.5.6 Starting to run the apparatus. 

At the start of the session, a bottle of pink colouring was pointed out to the students as 

useful for making the liquid more visible. There was no water in the apparatus, so in 

order for the dye to be useful, the students would have to fill it with water themselves. 

It was felt that this would give implicit permission to the students to use the apparatus. 

Although one mathematics student wanted to run the apparatus at the start, she was 

strongly discouraged by her fellows, and they did not use the apparatus until they felt 

capable of making predictions of what would happen. Even when they did run it, it was 

at the insistence of this same student. The engineering students appeared to need explicit 

permission to try the apparatus in the context of what they felt to be a mathematical 

modelling exercise, but once having used it, they did so repeatedly (5 times). 
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3.5.7 Physical modelling. 

The mathematics students were much more uncertain of the underlying physics than the 

engineering students, despite having a wide repertoire of possible ready-built models 

(Bernoulli, Navier-Stokes, Newtonian). They suggested that h (height of liquid) should 

be measured from the centre of the earth. They appeared to be using the concept of 

potential energy In a vague way to describe the problem^ and relating this to the pressure 

at a given depth. Like the students In the cold tea example above, the mathematics 

students made the assumption there was a linear relationship between the variables (In 

this case volume and rate of change of volume) which led them to assume an exponential 

relationship between time and volume. Although this led them to implications which 

they could see were wrong, the students were not happy to challenge that initial 

assumption. It seems that the Ideas of linear and exponential relationships are deeply 

Ingrained In mathematics students. 

The engineering students had the notion of "head", which Is again an energy concept, 

but thought that the height should be measured from the minimum liquid level reached 

In the carboy, so did not relate measuring the depth from the point at which liquid was 

at atmospheric pressure. 

In the diagram, the outlet Is shown at the very bottom of the tank, so that the point at 

which there Is no flow because there Is no water and the point at which there Is no flow 

because the pressure diJBference is zero coincide. In the apparatus, the flow stops.because 

the water flow is cut off by a lip. The mathematics students had a concept ready to fit 

this (Heavislde), but did not Incorporate It Into their model. 

3.5.8 Spotting discrepancies between theory and practice. 

During the first session, with the mathematics students, the difficulty arose that the 

rubber tubes which had been to prevent splashing In fact effectively lowered the outlet 
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of the tanks by some 20 cm, and introduced pipe friction losses. This led to an 

unexpectedly near-linear relationship between flow rate and measured height of liquid. 

The engineering students saw straight away that this was not what they had expected, 

but had to be led gently to resolving the discrepancy. The mathematics students did not 

see the difference until they verified their assumptions about the relationship between 

dV/dt and V. They needed some leading to decide to see-what happened when the tube 

was removed, and I am not sure that they understood why it made the difference it did. 

The mathematics students ran the apparatus twice as given, looking to see the height of 

the maximum." They did not notice that the flow out of the top vessel was not a 

"decreasing function", as they had predicted. The engineering students noticed after the 

first run that the flow rate was almost uniform, and not as they had expected. (This 

shows that they had stronger expectations than the mathematics students of the way the 

apparatus would behave.) They were quick at this point to seek outside help (i.e. from 

me). This behaviour Ramsden and Entwistle (1981) would regard as syllabus-bound. 

The mathematics students, having generated their own model, also checked out its 

implications and so discovered they had made, amongst other things, algebraic errors 

leading to nonsensical predictions. However they attributed all their nonsensical 

predictions to algebraic errors, rather than to their original assumption. 

3.5.9 Other apparatus. 

Neither group used the DERIVE set up on a nearby PC for them. Each group used a 

calculator; the mathematics students to calculate the log values needed to plot a graph, 

the engineering students to manipulate numbers to get a value out of a formula. 

Although the engineering students had a graphics calculator, they did not use its 

graphics facility. 

WMM: Did you use the graphics facility on your calculator? 
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Adrian: No I didn't.. It's a bit of a mystery.. It's all right when you've got the 
equation toplot and you can pick off the minimums and maximums, but when 
you've got a set .of results to put in I'm not too sure what to use. 

3.5.10 Plotting results. 

Neither group plotted graphs of results without prompting, although squared paper was 

available to (and indeed written on by) both groups. (The squared paper was provided 

as it could be used for plotting graphs, without making It obvious that that was what It 

was for, and so prompting the behaviour.) This was despite the numerous sketch curves 

drawn by the engineering students. The mathematics students, despite their more 

uncertain experimental technique practically, took scatter on a plot of results In their 

stride, and joked about trying to fit a curve to all the points. The engineering students 

plotted fewer points, and tried to draw curves which passed through all of them. They 

seemed to regard plotting a graph as more of a calibration exercise. 

3.6 Conclusions 

3.6.1 On mathematical modelling 

Two types of mathematical modelling were seen In the first modelling exercise (cold 

tea). Most students used the empirical method, assuming they would fit the data to 

either a linear or an exponential model. One group started from a theoretical position, 

but did not manipulate the assumed relationship correctly or successfully match the 

experimental data to their model. 

3.6.2 On mathematics and engineering students 

The ways in which the two groups of students tackled the cascade problem were 

different enough to suggest It would be worth while designing and applying a 

questionnaire to try to trace the development of differences between students on the two 
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courses. In particular the differences in vocabulary suggested that in mathematics the 

engineei-ing students might be speaking a different languagefrom their lecturers, who are 

in general mathematicians. Arzarello et al (1995) suggest that students and teachers may 

be using the same words which correspond to different meanings in their respective 

heads, and that the invented meanings often have their own justifications. In this case 

we have different words being used to frame the same problem, which would compound 

the communication problem. 

The engineering students' approach to modelling seemed biased towards empirical 

modelling, but slightly different, in that they relied on a ready-built model being 

available (Bernoulli). This reliance on the availability of models also appeared in the 

comments on the questionnaires, and is apparent when students ask "what is the 

formula?". 

The engineering students were far more aware of the physical side of the model. When 

the apparatus did not behave as predicted, they were disturbed that something was 

wrong. They took care to set up the same initial conditions for each run. They 

suggested modifications to improve the apparatus, such as a height gauge and a flow 

meter. The theoretical world appeared more real to most of the mathematics students. 

Sadly, it seems that while the mathematics students had been taught mathematical 

modelling, the engineering students had managed to avoid it. 

Despite software (DERIVE and Excel) being available and running on computers next to 

the experimental area, neither group used them. Neither group used advanced calculator 

functions, such as graphing functions. The mathematics students were even a little wary 

of using the clock function In MS Windows. Mathematical modelling and the use of 

technology were not, In other words, synonymous for either group of students. 
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3.6.3 On observation 

As a method of collecting empirical mateirial, observation proved to be rich if time-

consuming. 

Participant observation combined with taking notes was difficult and stressful. As noted 

in the chapter, much occurred which was not observed, and much was observed which 

was not recorded. The contemporaneous notes md subsequently recorded reflections 

are all the evidence which remains of the observations. Another researcher will have to 

depend upon the record of events translated through the observation of a third party. 

The use of video recording meant that watching the sessions again after a period of time 

brought out new aspects, especially as the first session could be watched again from the 

perspective of comparison with the second. It was hard as an observer at the time to set 

aside one's preconceptions, and easier to do so as one was separated from the immediacy 

of the experience. However there is a cost in time, convenience and video tape in such 

a recording. 

The transcripts of the recordings are less rich than the recordings themselves, but will be 

easier and quicker for another researcher to read than sitting through the recordings 

themselves, as well as more easily reproduced, more transportable and more accessible. 

As the transcripts have been word processed, they are available for such techniques as 

frequency analysis, a more quantitative approach. Again these advantages have been 

gained at the cost of the time taken in the processing. 

52 



4. Research method: questionnaire design and administration 

4.1 Introduction 

In chapter 3 I have described how engineering and mathematics students were observed 

carrying out a mathematical modelling task. I proposed that there was enough 

difference in the ways they were "doing.mathematics" to make it interesting to carry out 

a wider survey into the mathematical ideas of engineering students and mathematics 

•students, and if possible to compare how those ideas differed across subject studied and 

with the level of experience. 

In this chapter, the theoretical background is surveyed: the practical process of design 

and administration, and the results are described and discussed in the subsequent 

chapters. This is a convenient point to review the third background issue mentioned in 

the introduaion: the overall epistemology of the research project. We shall then discuss 

the dimensions of mathematical ideas which are addressed in the design of the 

questionnaire, namely the depth and mode of representation, which when combined 

make up the concept image (Vinner, 1991, 65-81) 

4.2 Social science 

Burrell and Morgan (1979) characterise two extreme positions of approach to social 

science, summarised in Figure 4-1. 

The objectivist approach regards social science as essentially the same as the natural 

(physical) sciences, and holds that it is the task of the social scientist to determine the 

underlying laws governing social behaviour. The subjectivist view is that the social 

sciences are essentially different from the physical sciences, and that social reality is 

constructed by individuals. Social science is thus concerned with understanding the 

ways in which people explain the social world to themselves. 
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The subjectivist 
approach to social 
science 

The objectivist 
approach to social 
science 

Nominalism ontology Realism 

Anti-positivism epistemology Positivism-

Voluntarism human nature Determinism 

Idiographic methodology Nomothetic 

Figure 4-1: A scheme for analysing assumptions about the nature of social science 

(Burrell and Morgan, 1979) 

This difference naturally leads to differences in the ways in which investigators approach 

research. For the objectivist, reality is hard and quantifiable. The researcher is an 

observer, able to measure and determine positive relationships between real variables. 

Human behaviour is determined by external circumstances. Research is concerned with 

determining the circumstances which control human behaviour and the relationships 

between them, and the laws which relate these. This is a nomothetic methodology. 

From the subjectivist point of view, the social world consists of mental objects (words, 

hence nominalist), having no accessible counterpart in external reality. Kmowledge 

about the social world is personal, so the researcher must become involved with the 

subjects as more than an observer (the antipositivist view). Human behaviour is 

voluntary, and subject to the operation of free will, and research consists of 

understanding and describing the behaviour of the individual {idiographic). 

These are two extreme and somewhat caricatured views, and like most studies, the 

present work adopts a stance somewhere between the two. 

Thus an objectivist study would have been concerned with student behaviour, rather 

than students' mental constructs, and would have set up an experimental pre-test post-

test design with randomised control and experimental groups where possible, and would 
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probably have been concentrated on the skills demonstrated by students in solving 

problems. The observation phase would have been tharacterised by counting 

manifestations of behaviours, and the statistical analysis of those behaviours would have 

been regarded as of great importance. 

A purely subjectivist study would have involved few subjects, and would have been 

concerned with eliciting their constructs of the'target concepts, through observation, 

interviews, and qualitative methods. ^ • - , 

As mentioned in the introduction, the hermeneutic point of view as promoted by, for 

example. Brown (1997) allows for both of these sets of ideas to be considered in a "both-

and" attitude. In a social system, such as a learning environment, we must spend time 

subjectively experiencing what it is like to be part of the system in order to understand 

the system and how it works. To explain the system, we must view it objectively, and 

see it as something separate from us on which we operate. A good example of this is 

riding a bicycle. No amount of explanation of how to ride a bicycle can take the place 

of actually riding the bicycle oneself in order to know what it feels like and how to do 

it. However in order to put the experience in place, to learn to do it better, and to 

connect it with other knowledge, such as reading road signs, one must get off the 

bicycle, and read the Highway Code. 

4.3 This study 

Models are useful for description, prediction or understanding. At a first stage, our 

model of engineering students' mathematical understanding is descriptive. "We may then 

attempt to use this description to understand why engineering students differ from 

mathematics students, and finally predict the implications of these differences. 

The first stage of description started In the comparison of the two groups of students 

carrying out the cascade exercise. That stage was purely qualitative. In order to 
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quantify the differences to sorne extent, we now turn to the questionnaire. In terms of 

the modelling-flow chart, the observations fell into the box "Understand problem", and 

the process of designing the questionnaire is the "Simplify and make assumptions". In 

the objectivist conception of social reality, (Cohen and Mannion, 1994, plO), 

"abstraction of reality especially through mathematical models and quantitative analysis" 

is the paradigm of methodology, ff this conception were held to in this study, then the 

next stages would-be to set up mathematics and solve mathematics. The aim of the 

• questionnaire would be to provide a statistically rigorous analysis of the differences 

between the Ideas of mathematics and engineering students and the way these develop. 

In fact my basis for Interpreting social reality Is much more subjectivist: that the world 

exists, but that different people construe It In very different ways, and that we are In 

search of the ways which, overall, the different groups of students make sense of 

mathematics In particular In the context of their studies, their overall experiences and 

their aspirations. 

Thus the questionnaire shows patterns of responses from different students. "We may 

use analytic techniques to simplify these patterns (for example, factor analysis, statistical 

techniques), but In the end the reality Is the students' beliefs, and not the model. 

Haney (1984) is highly critical of the objectivist point of view in the context of 

discovering how individuals think and reason. He points out that the most useful tests 

were designed with a practical purpose In mind, rather than for generating statistics: 

BInet's "Intelligence" test was originally Intended to determine which pupils in a 

Parisian nursery school would benefit from remedial teaching. Tests measure an 

artefact of the process rather than the process Itself. He suggests that for research 

purposes it would be preferable to use a more subjectivist paradigm, and talk to 

Individuals about they way they solve given problems. 
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4.4 Surveys 

Cohen and Manriion (1994) describe surveys as perhaps the most commonly used ' 

descriptive method in educational research. The data-gathering technique employed in 

this case was self-completion and postal questionnaires, using a form of attitude scales. 

The sampling was non-random, using captive groups of students where possible, to 

maximise the return rate. The object was to survey the whole population of students at 

the appropriate stage of their studies on given courses at Plymouth. No students from ' 

other types of university were surveyed, and this would form the basis of an extension 

to the present project. 

Surveys were carried out over groups of respondents, from mechanical engineering and 

mathematics backgrounds, at various stages In their academic careers, at the beginning 

and end of their first years, during their final years, and in the case of engineering, 

during postgraduate studies and after some 20 years of engineering experience. 

4.5 Aspects of experimental design in the questionnaire 

The present study differs from a classic experiment In that It relates to students' 

concepts, rather than their skills, or their attitudes. It was found during the observation 

stage that engineering and mathematics students appeared to be consulting different 

concepts to tackle the modelling task, which led to the questions of how these concepts 

differed, whether the differences could be measured or demonstrated, and how. The 

study did not allow for a complete cohort study to be carried out, particularly as many 

engineering students spend a year In Industry, leading to a four-year degree course. 

Cohen and Mannion (1994) describe various types of experimental and quasi-

experimental design. The features of these research methods are the Inclusion of pre-and 

post-tests, and the use of control groups. 
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The experimental approach in education reflects an objectivist paradigm which this 

researcher finds problematic. In scientific experiments, the control is intended to be 

identical to the experimental sample in all but the experimental variable. In educational 

research, no two groups can be regarded as identical: each individual has a different 

history and brings unique characteristics to the study. To make all the other conditions 

Identical, the two groups would be taking the same course at the sarne institution with" 

the same tutors. It Is Impossible to prevent transfer of experience between the two . 

groups. Practice with one group would affect the tutors's treatment of the other group, 

transferring practices which work with one group to the other group. Students talk to 

each other and sometimes work together outside classes. Students have been known to 

compare coursework, and to attend sessions they were not supposed to. If they perceive 

some possible Interest or benefit. 

With these caveats In mind, the following construal may be made. The questionnaire 

applied to the first year students may be regarded as a quasi-experimental design: the 

mathematics students are a non-randomly selected control group and the questionnaire 

Is given as a pre-and post-test. The experimental treatment Is thus the first year of an 

engineering course, compared with the first year of a mathematics course. 

The questions raised by this design concern internal validity and external validity. 

(Cohen and Mannion, 170-171) 

4.5.1 Threats to internal validity: 

History: effects of external events. The use of a simultaneous control group Is intended 

to minimise the possibility of external events producing effects which may be mistaken 

for the effects of the treatment. Since the control and experimental groups were not 

randomly assigned. It is possible that external events would affect members of the two 

groups differently. 
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Maturation: the natural maturing of the students over the passage of time is an integral 

part of the phenomenon being studied. 

Statistical regression: since the scores in the questionnaires are preferences not test scores, 

regression is not an issue. 

Testing: it is possible that the pretest sensitised the students to the issues raised by the 

questionnaire, but it was such a small part of their overall experience this was thought to 

be unlikely. The students in the postgraduate group who had reached a more 

introspective stage of development would be more likely to be influenced in this way. 

Instrumentation: the questionnaire is a novel instrument, and part of the purpose of the 

study was to test it. 

Selection: the mathematics students may have been sufficiently different from the 

engineering students to begin with not to act adequately as a control group. On the 

other hand, since the aim of the study is to demonstrate to mathematicians who teach 

mathematics to engineering students that engineering students do have different ideas 

about mathematics, then mathematics students do act as an appropriate comparison 

group. 

Experimental mortality: in both groups there were fewer respondents at the end of the 

first year than at the beginning. However it is not claimed that the two groups'were 

randomly selected: in fact it is probably significant that the students do differ right from 

the start of their courses. 

4.5.2 Threats to external validity 

Failure to describe independent variables explicitly: the independent variables to be 

investigated were the mode and depth of students' concept images of mathematical target 

concepts, in the context of engineering mathematics applications. 
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Lack of representativeness of availableand target populations: the students were sampled 

by availability. The results of the questionnaire indicate that the findings may not be 

applicable to people who graduated from "old" universities some 20 years ago. A 

further stage of the study would be to reapply the revised questionnaire across the 

current population of students in Plymouth and at other universities. 

Hawthorne effect: the questionnaire impinged very slightly'on the students' experience of 

their studies. It" is unlikely that they were aware of being a group under study, or that. 

any such awareness affected their attitude to their studies. Only the final year 

engineering students expressed curiosity about the outcomes of the research to the 

researcher. 

Inadequate operationalizing of dependent variables: there is always a question as to how 

near responses to a questionnaire come to the actions of a respondent in a "live" context. 

However the questions were designed to look like the context of engineering 

mathematics problems, so that the images consulted by the students in answering the 

questionnaire would be like those consulted in tackling such problems. 

Sensitization to experimental conditions: the students were riot told that they would be 

retested, and the tests were far enough apart that the students should not have 

remembered their previous responses unless those responses were particularly vivid to 

them for some reason. 

Interaction effects of extraneous factors and experimental treatments: such extraneous 

factors might include the staff of one school becoming involved in an IT initiative and 

changing their teaching style accordingly, industrial action, external examinations, 

epidemics, or extreme weather conditions. As far as we could ascertain, no events of 

this sort took place during the period of the experiment. 
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Overall it was felt that the threats to external validity were probably stronger than the 

threats to internal validity, and particularly that should an appropriate opportunity 

arise, once the questionnaire had been tested internally, groups of students from other 

universities similar to and different from Plymouth should be tested. 

4.6 Concept images and cognitive styles 

In designing the questionnaire, the aim was to try to elicit from the respondents the way 

they think of certain mathematical ideas to themselves: their concept images. • The 

concept image differs from a formal definition, in that it is that which is constructed by 

the individual and may be held in the form of words, pictures, a set of rules or 

procedures, or any other form in which an idea can be held. For example, if one were 

simply to ask "What is diJBFerentiation?", the respondent may treat this as a test of 

memory, and try to recall the learnt definition. It is proposed by Vinner (1991) that the 

concept definition is rarely consulted when a concept is evoked in a cognitive process. 

Some indirect way of accessing the concept image must be used. 

As a person learns more about a subject, and practises the associated skills, their concept 

images change and develop, and their cognitive skills mature. In particular, the 

relationships between concepts become richer and differently organised, and the 

concepts are understood at a deeper level. 

The concept image may be held in a variety of modes, which may depend on the 

cognitive style of the respondent. It has been suggested by many researchers from Galton 

(1883) onwards that individuals vary in the extent to which they visualise or verbalise in 

their thinking. Tall (1991, p6) recounts his discovery of different modes of thinking: "It 

was some considerable time later that the realization dawned that not all students shared 

the geometric point of view." 

61 



4.7 Concept definition and concept image 

A concept name when seen or heard is a stimulus to our memory. Something is 
evoked by the concept name in our memory. Usually, it is not the concept 
definition, even in the case where the concept does have a definition. It Is what 
we call a "concept Image". 

(Vinner, p68) 

Vinner equates the acquisition of a concept with the formation of a concept Image for It. 

"To understand, so we believe, meaiis to have a concispt Image: Certain meaning should' 

be associated with the words." (1991, p69) Everyday concepts such as cat, blue, table, 

have meaning without being easy to define. "The concept Image is something non

verbal associated In our mind with the concept name. It can be a visual representation... 

a collection of Impressions or experiences. [These representations] can be translated Into 

verbal forms. But it Is Important to remember that these verbal forms were not the first 

things evoked In our memories." (1991, p68) 

In the semiological terms of chapter 2, the concept name here corresponds to the sign, 

the definition to the significatum or referent, that is the Institutional meaning, and the 

concept Image to the concept or reference, the personal meaning. 

The concept image Is open to modification through experience, particularly when 

conflict occurs and as a wider variety of cases is encountered. Vinner explored students' 

concept Images of "function", "tangent" and "limit", by asking them, for example, to 

draw the tangent to a curve at a non-typical point. It became clear that there was a 

conflict between the concept image and the concept definition which students had not 

attempted to resolve, since the definition had not been consulted In answering the 

questions. He proposes two didactic rules: 

(1) to avoid unnecessary conflicts with students. 

(2) to Initiate cognitive conflicts with students when these conflicts are necessary 
to enhance the students to a higher Intellectual stage. (This should be done only 
when the chance of reaching a higher Intellectual stage Is reasonably high.) 
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These rules presuppose that the teacher (or lecturer) is aware of (a) the concept image(s) 

held by the students, and .(b) that this may not coincide with his or her own. He states 

"if... the students are not candidates for higher mathematics then it is better to avoid the 

conflicts". 

An example of an unnecessary conflict was given in the context of children learning 

multiplication. (Graham D, 1997) They had learnt that three boxes "of two objects, 

making six objects, could be written as 3(2)->6. Their teacher then went on to rewrite • 

this as 3x2->6. One day the teacher was absent and the school head took the class. The 

head developed 3(2)->6 as 2x3->6 (that is, two objects times three boxes make six 

objects). The children were devastated. This conflict may be found examined in 

Anghileri (1989). 

4.8 Cognitive skill level discrimination: depth of representation 

4.8.1 Encapsulation 

The reasoning behind the design of the questionnaire was highly influenced by Royer et 

al (1993): Techniques and procedures for assessing cognitive skills. In this paper the 

development of a cognitive skill is described after Anderson (1982) as taking place in 

three stages: a declarative stage, a knowledge compilation stage and a procedural stage. A 

strong distinction is made between the behaviourist and cognitivist conceptions of a 

cognitive skill. For the behaviourist, a cognitive skill is a packet of information which 

may be acquired and demonstrated by performing a specified task. In contrast, the 

cognitivist view sees a cognitive skill as a capability which undergoes qualitative and 

quantitative change during its development. The novice may be able to demonstrate the 

skill, but the way in which it is performed, is quantitatively and qualitatively different 

from the way in which an expert would work. 
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The declarative stage is the state of knowledge of a novice who can answer questions 

about the skill, and demonstrate it slowly, having to think consciously about each step. 

The novice uses fail-safe strategies, and transferable problem-solving techniques. A 

novice may be able to perform to a high enough degree of accuracy to fulfil a mastery 

learning criterion test, but the performance is inefficient, low in fluency, and requires a 

high level of concentration. It is proposed that the .novice stores declarative knowledge' 

in relatively small chunks, which are retrieved from memory and interpreted to carry 

out the task. 

In the knowledge compilation stage, it is suggested that these chunks or steps are first 

collapsed into a single larger step, where one step leads into the next without time being 

needed for recall between each. This speeds up the performance and reduces the load on 

the memory for its performance. Secondly, these steps are proceduralised: their 

performance becomes automatic. The skill takes on the nature of a stimulus-response 

performance, without conscious processing being needed. 

The procedural stage takes the automatically performed procedures and selects between 

good and poor rules: good rules are strengthened and poor ones weaken and fade away. 

The performance becomes fast, automatic, and efficient. This is the condition of the 

expert, who performs apparently without effort. 

The development has taken place in two dimensions: the relationships between the steps 

of the skill and the structure of the skill have been internalised, and the whole skill has 

thus been consolidated so that the declarative or verbalised knowledge is squeezed out. 

The expert can imagine relationships between inputs and outputs to the system as a 

whole, without having to make a conscious effort to follow the transformations within 

the process. 
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The notion of encapsulation is expressed in different ways by different authors to . 

express the way knowledge is chunked as an expertise is devieloped: for example, Tali's 

procept CTall, 1995 specifically refers to procepts as encapsulation), Anderson's (1982) 

knowledge compilation, and Schoenfeld's (1985) heuristics and algorithms. Morgan (1990) 

found that engineering students were competent at routine (algorithmic) mathematics 

but weak at non-routine (heuristic) problem-solving. 

4.8.2 Interconnectedness 

Another idea which is mooted in Royer et al is the change in knowledge organisation 

and structure, and the depth of problem representation which occur as a skill is 

mastered. A novice holds knowledge corresponding to a skill as a set of unrelated or 

loosely related facts (at the information level). (Disessa, 1987, describes the nature of 

naive beliefs in physics as scattered islands or a patchwork, rather than a coherent 

theory.) As the skill is developed, these become highly interrelated (held as knowledge), 

and strong and weak relationships are differentiated. An expert would detect deep 

similarities between problems and reject superficial ones, while a novice would be 

distracted by the surface structure. These changes in particular would, it was hoped, be 

evidenced in the differences in responses between students at different stages in their 

learning careers. 

4.8.3 Personal meaning 

As a mathematical concept matures, it not only gains in interconnectedness with other 

mathematical concepts, but also with non-mathematical ideas: that.is it becomes part of 

one's toolkit for interpreting reality, in Hirst's terms (Hirst, 1972). The mathematical 

concept may be used in making sense of one's world. This is referred to by Teslow (in 

Wilson et al, 1993) as sensemaking. 
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At the same time the real world interpretation makes sense of the mathematical concept. 

(Schliemann, 1985, Lave, 1996) 

Mathematics as sensemaking would predict the increasing use of the descriptions of 

differentiation and integration. 

4.8.4 Skills and concepts 

Royer et al deal both with knowledge as exemplified by skills, and as embodied in 

concepts. Skills are relatively accessible by asking people to perform tasks •which 

employ the skills and observing (and even measuring) the outcomes. Concepts on the 

other hand remain very private and may only be deduced from the ways their use 

informs an individual's interpretation of the world. If asked directly what so-and-so 

means the individual may (a) lie, either to try to please the questioner, or because the 

private world is being invaded, (b) produce the definition as the learned response to that 

question, while not consulting the definition in normal use of the concept, (c) be unable 

to verbalise the concept, through lack of appropriate vocabulary or because the concept 

is held in non-verbal form, or (d) answer accurately. It is difficult to tell from a response 

what type it is. 

Concepts are the objects on which skills operate, and skills may themselves become 

collapsed into concepts, just as a mathematical function may become the object of 

another operation such as integration or the variable in a differential equation. This 

duality, and the mental versatility and tolerance for ambiguity it implies is explored in 

the book Advanced Mathematical Thinking (Tall, ed, 1991) which is referred to in 

several places in this chapter and chapter 2. 
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4.9 Cognitive style discrimination: mode of representation 

Three modes of representation were thought appropriate: visual, verbal and algebraic. 

The verbal and visual representations correspond to the axes of a well-known research 

instrument, the Verbaliser-Visualiser Questionnaire (WQ). (See, for example, Kirby et 

al, 1988) 

4.9.1 Visual imagery in mathematics 

The usefulness of visual imagery in mathematics is unresolved. Tall (1991, pl8) suggests 

that: 

Visual ideas without links to the sequential processes of computation and proof 
are insights which lack mathematical fulfilment. On the other hand, logical 
sequential processes without a vision of the total picture, are blinkered and 
hmiting. It is therefore a worthy goal to seek the fruitful interaction of these 
very different modes of thought. 

We use the metaphor of vision to describe a hoHstic appreciation: "seeing the big 

picture", "a snapshot view", or an "overview" of a situation. Tail's vocabulary in the 

above quotation is very visual: "insights", "vision", "total picture", "blinkered", and even 

"seek" represent a visual metaphor, that of the different modes of representation being 

integrated in a holistic notion (view) of mathematics. 

Poincare (cited in Tall, ed, 1991, Chapter 1) suggested that there are two types of 

mathematical minds: one kind preoccupied by logic, the other guided by intuition. He 

observes the same differences in his students: 

Some prefer to treat their problems 'by analysis', others 'by geometry'. The first 
are incapable of seeing in space, the others are quickly tired of long calculations 
and become perplexed. 

This distinction would be interpreted in the Jungian framework of the Myers-Briggs 

analysis as the difference between the strictly logical Thinking style and the more 

intuitive Feeling style, (see MacCaulley, 1976, and chapter 10 of this thesis) 
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At the same time, Poincare recognises that both types of thinking are needed in solving 

problems: in the Foundations of Science (1924), he describes how miathematical 

creativity for him consists often of a first period of conscious effort, followed by an 

unconscious stage in which the intuition works, then a second conscious time of work 

in which the intuitive insight is cleaned, polished, verified and made presentable. 

On numerical applications of visual imagery, Galton suggested that abput 5% of people 

have a mental image of a number line. Ernest (1983) found that 65% of teacher training 

college staff had an internalised image of a number line, but few had non-straight line 

patterns. These few, he speculated, were Galton's 5% whose internal number lines were 

spontaneously generated: the others had been taught to use such imagery by the use of 

physical number lines in teaching. 

Presmeg (1986) found that visualisers were under-represented among high mathematical 

achievers, and suggested that the vividness and particularity of a visual image affected 

students' ability to generalise mathematically. She quotes Galton as saying in 1880 

An over-readiness to perceive clear mental pictures is antagonistic to the 
acquirement of habits of highly generalised and abstract thought and if the 
faculty of producing them was ever possessed by men who think hard, it is apt to 
be lost by disuse. The highest minds are probably those in which it is not lost, 
but subordinated, and is ready for use on suitable occasions. 

Thompson (1990) discusses visual imagery and the ways that individuals differ in the 

extent to which they use such imagery. Even when learner and teacher both visualise 

vividly, if they have different images for a given concept then the teacher's use of visual 

imagery in teaching may not help the learner. He raises the question whether strong 

visualisers or verbalisers should be encouraged to stick to their strengths or whether all 

students should be encouraged to become versatile in their use of thinking style. 
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4.9.2 Need for versatility 

Several writers suggest that it is necessary under certain circumstances to challenge 

learners' preferred styles of thinking. The circumstances under which students' ways of 

thinking should be challenged may be regarded as similar to Vinner's criteria for 

challenging students' concept images. 

Perry (1981, 1988) finds that cognitive development through tertiary education'involves 

a shift in ways of thinking, often initiated through conflict, and Kolb (1981) also 

emphasises the need to work in ways which may run against our preferences in order to 

learn. Laurillard (1979) feels that students are versatile in their styles of learning, and 

Hirst's view of a liberal education (Hirst, 1972) is one in which the student learns to 

think like a mathematician, a historian, a moralist, etc., in order to gain a rounded 

perspective of knowledge. 

4.9.3 Engineering and mathematics students 

It was suggested by Crowther (1997b) that engineering students see themselves as visual 

people, and the engineering and mathematics students in the mathematical modelling 

exercise seemed to differ in the use of visual material, in the form of sketches, as a means 

of communication. The engineering students made sketches, for example of the 

expected shape of the graph of height against time: the mathematics students also passed 

around pieces of paper, but theirs had equations written on them. 

It was thought probable that the engineering students would show a preference for 

pictorial or diagrammatic representations over algebraic ones: it would be interesting to 

see whether mathematics students would also show the same preferences, or whether 

either would prefer word descriptions and explanations. 
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4.10 Conclusions 

The aspects of the concept image which the questionnaire will be designed to investigate 

will be 

• preferred modes of representation (verbal, visual or algebraic); 

• depth of representation (novice versus expert, through encapsulation, 

interconnectedness and personal meaning); 

• preferred representation in abstract "mathematical" context and applied "mechanics" 

context. 

The survey will investigate 

• evolution of the concept image with experience 

• differences between engineers' and mathematicians' concept images. 
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5. The questionnaire: the practical process of design. 

5.1 Introduction 

The questionnaire was designed in stages, with each stage being tested. As the design 

became elaborated, the testing became more extensive. The concepts described in the 

previous chapter, that is depth and mode of representation were taken into account in 

designing the questions and the options for response. In this chapter the.specific design 

decisions are outlined and conclusions on the process of questionnaire design and 

administration are drawn. 

5.2 Design of pilot questions 

The first question to be written (Figure 5-1) involved a differential equation (DE), with 

four responses being suggested, each of which bore a similarity to the target at a different 

level. These were: appearance, method of approach (separable variables), simple 

function oix on RHS, exponential result. The aim was to test the respondents' depth of 

problem representation. Respondents were asked to choose the most similar option to 

the target. The question was tested on a number of colleagues and students, and as all 

options were chosen, all were retained as feasible responses. 

It was realised that by asking respondents to put the options in order rather than to 

choose just one the question would yield four data points with three degrees of freedom 

rather than just one. Some ambiguities in the question were also eliminated by altering 

its wording and layout (Figure 5-2). 

The first mechanics-type question to be written (Figure 5-3) concerned a mass bouncing 

in damped harmonic motion. The aim here was to try to elicit the mode in which 

respondents represented the motion to themselves: visual, verbal or algebraic; whether 

an unfamiliar graphical representation would be acceptable, simply because it was visual. 
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given tliat the engineering students in the modelling exercise had so used sketches to 

communicate with one another; and how familiarity with the analysis of the problem 

would change the acceptability of the algebraic responses as the engineering course 

proceeded. 

2 dy X 

— =e 
dx 

dy y-
& = 
dy 
—r- = mx + c dx 

dy 
dx = '^' 

dy y-
& = 
dy 
—r- = mx + c dx 

dy 
dx = '^' 

Which of the equations in the right-hand column is most Hke the 
differential equation in the box? 

Why did you choose that one? 

Figure 5-l:Original D E question 

dx 

Arrange the equations below according to how like you think they are to 
the differential equation above. 

dx 

^ 

c) —=mx + c 
dx 

d) ^ = my 
dx 

Figure 5-2: D E question from pilot questionnaire 
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A mass suspended from a spring and dashpot is pulled' 
down from its equilibrium position and released. Which of 
the following b6st describes to you what happens next? 

Why did you choose that one? 

. Damped harmonic response 

y+ky+<£i^y=0 

y=Ae'^cos(oi . . • . . 

The mass bounces up'and down, going less far each time, until it settles bacic to its 
original position. 

dy/dt 

Figure 5-3: Original dynamics question 

6 possible ways of representing the motion were offered: 2 diagrammatic, 2 algebraic and 

2 verbal: and respondents were asked to rank them in order of preference. This gave the 

advantage of increasing the number of data items per question, from one to a possible 

maximum of five (because when the first five have been chosen the last one Is fixed) 

where all six options were put In order. As It will be seen, not all respondents did 

always manage to put all the options in order. 

This question was also tested on colleagues. Again, some constructive comments led to 

modifications in the layout and wording of the question and the options, but overall the 

concept of the question seemed successful, and It was adopted. 
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5.3 Pilot questionnaire 

Based on these questions, four others were designed, to give a total of three on 

"mathematical" topics: differential equations (DEs), integration, and differentiation, and 

three on "mechanics" topics: beam bending (a statics standard case, which should be met 

during the first year of a mechanical engineering degree), damped oscillation (a standard 

case in dynaniics, normally met after the first year in a mechanical engineering degree), 

and acceleration of a pinball (a non-standard case in dynamics, which should however be 

a familiar experience to most students). 

Care was taken in framing the questions to try to avoid language which might suggest a 

"correct" answer mode: e.g. visual metaphor, ("picture", "envisage", "show") which 

would perhaps prejudice students towards a pictorial representation; "describe" or "tell" 

which suggest a verbal response, etc. This led to an impoverished vocabulary for setting 

the questions and it was a challenge to try to find ways of setting the questioiis to 

minimise repetitiveness but at the same time to ask respondents to carry out a very 

similar task each time. 

In setting out the responses, an attempt was made to put the options suspected to be 

most popular away from middle positions which are those most apt to draw random 

choices. 

Pictorial and diagrammatic representations and word descriptions were used whenever 

they could be used without violating the sense of the question, to increase the apparent 

"friendliness" and accessibility to people who had not studied the subject, for example, 

students in the early years of their course, and to accommodate those with a strong 

preference for that mode of response. 
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The rubric on the front page refers to the question posed on p46 of "Know your own 

IQ" (Eysenck, 1962), which runs as follows: • • 

Underline the odd-man-out. 

house igloo bungalow ojBFice hut 

Ans: Office (People don't live in an office.) 

Although there is officially a correct answer to the question, each of the others could 

defensibly be chosen, depending on the particular classification system privately adopted 

by the respondent. 

The questionnaire was laid out as a booklet of eight pages. The cover which contained 

the personal details could be detached completely and stored separately from the 

questions and responses. 

The information requested about the student was: 

Name: so that responses from the same student at the beginning and end of the 

first year could be matched, without warning the students at the start of their 

first year that a retest was planned. 

Course: to distinguish between engineering and mathematics students. 

Year: to distinguish between first and final year students 

Date: to distinguish between the papers from the start of the first year and those 

from the end. 

The questions were printed so that only one was visible at a time, to prevent visual 

comparisons between one set of options and the next, so that the response to one 

question was not coloured by expectations from the pattern of responses to the last. 

The pilot questionnaire was tested on various groups of students: second year Computer 

Systems and Networks (CSN) degree students (n=4), final year mechanical engineering 

students (n=13). Teaching Company Associates (TCAs) (engineering graduates working 
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in local firms while studying for a higher degree at the University) (n= 12), mathematics 

degree final year students (n=5), and anybody else who was willing to try it. ' 

These students were selected so as not to contaminate the sample for the main test, but 

to be similar groups to the ones it was hoped to test. 

5.3.1 Administration methods 

Three methods of administration were used: . • 

a) in class group, or at a gathering for an end-of-year photograph: the questionnaire was 

given and collected in presence of experimenter. The response rate was high, as may 

be expected, but the responses were poor in comments. 

b) by mailshot. The:7response rate was lower, but those returned were rich in 

coihments. The questionnaire had stated it was a pilot study and explicitly asked for 

comments. As only well motivated students replied, they were less typical than the 

first group. 

c) distributed to TCAs via the Teaching Company Centre. The response rate was high, 

and the responses were richer in comments than the class groups. 

From the responses to the pilot questionnaire, it was concluded that the respondents had 

understood most of the questions, and that there were no other options which 

respondents had seen as important but missing. 

5.4 Main questionnaire 

As a result of the responses to the pilot questionnaire, two changes were made. The 

questionnaire is included as Appendix B of this thesis. 
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Two options were added to the differential equation question so that it had the same 

number as the others (i.e. six). This then meant that a first choice option was scored 5, 

as in the other questions. 

The questions were re-ordered to put the differential equation question last, as some 

respondents had indicated that the question had put them off answering the rest. The 

questions now alternate mechanics/mathematics, and increase in sophistication of the • 

concepts addressed. ' 

It was planned to administer the questionnaire to a matrix of groups: 

Mechanical engineering Mathematics 

la: start of 1st year 

lb: end of 1st year 

3: final year 

4: staff 

Table 5-1: Proposed questionnaire distribution 

Ideally, one would follow a cohort of mathematics and engineering students through 

their courses, seeing how each individual evolved in his or her views over time. 

Unfortunately the length of a degree course is as much as, or even more than the length 

of a PhD project, especially given that engineering students often spend a year working 

on a project in industry, so this was not practical. It was possible to test the same group 

at the beginning and the end of their first year, and other groups were used as a proxy 

for the final year. 

It was hoped to test the final year students in their final semester, but the course 

structure made access to them difficult, and so it was decided that the best compromise 

was to test as late as possible before Christmas in the final year. 

Two other groups were also tested: Teaching Company Associates (TCAs), who are 

graduates (principally engineering graduates) now working in industry but following a 
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MSc course in Management of Technology, and a small number of second year 

mathematics students who were studying a course module with a-majority of third year 

mathematics students. A l l of this latter group had also been surveyed at the start of their 

first year, but not all at the end of their first year. 

5.4.1 Administration methods 

Three administration methods were again used: for first year students of both 

mathematics and engineering, a class group was tested at the beginning anid end of the 

academic year, and for the final year students both mailshot and class group methods 

were used. It would have been ideal to use the same administration method for all 

groups, so as not to select for the most highly motivated group members by using a 

mailshot. However the TCAs do not generally meet in class groups, they were again 

contacted via the Teaching Company Centre. 

Difficulties were encountered in finding an appropriate opportunity for administering 

the questionnaire to a class group of final year students: the modular system meant the 

whole year group was together for very few sessions, and the workload of the final year 

students was felt by their teaching staff to be too high to allow the researcher to 

administer the questionnaire during one of these sessions. 

As the response to a mailshot was poor, some teaching staff responsible for modules 

taken by a subset of the mathematics and the mechanical engineering final year students 

kindly gave access to their class groups. 

Administering the questionnaire to a class group takes about 20 minutes, including an 

explanation of what it is about. The introduction emphasises to the respondents that a) 

while they may feel that one option is obviously best, others may find a different option 

obviously best: b) it is helpful to teachers to discover that students don't all think the 

same way they do. 
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5.4.2 Confidentiality 

Students were asked to write their namesonthe cover, which was removed and stored' 

separately from the responses. The booklets were numbered as they were returned in an 

arbitrary, non-alphabetical, order. A code was used in which the last two digits referred 

to an individual within a group, and the first one or two denoted the group. "Where a 

group of students was tested twice, the students responding twice were assigned the same 

pair of final digits at each session, so questionnaires from the same respondent could be 

compared. 

Again student names are on the cover which can be removed and stored separately. For 

students seen more than once, the names need to be traceable. The 3-digit code then has 

the appropriate 1st digit for the series with the last 2 digits the same on both occasions 

for the student. 

5.4.3 Design faults in questionnaire 

Larger numbers of responses were now involved, and a design fault in the questionnaire 

became evident: it was difficult to translate a list of letters in order into a numerical 

ranking. In any future studies, it is recommended that the options be given Likert-style 

scales for marking, with points ranging from "exactly matches my idea" to "not 

remotely like my idea". This would have the advantage of evoking scores for the 

unpopular options in Question 6, for example, where many respondents chose one 

response only. 

Other design faults also revealed themselves: 

a) The two new responses to DE question may be directly derived from the target 

equation, leading students to make comments that these are "correct" and the others 

are wrong. 
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b) The set of options to the pinball question Is weak, as may be seen from the table In 

section 5.6. The depth of representation Is.riot-addressed explicitly and the choice of 

modes of expression is not clear. The question could be Improved by Including, for 

example, a velocity-time or velocity-displacement graph, and a velocity-time or 

velocity-displacement expression. 

c) The beam bending question may be made iriore accessible to mathematics students by 

Including an expression making It rnore explicitly a boundary value problem In 

differential equations. 

d) It may also be better to create diagrams In E X C E L which produces drawing objects, 

which print more clearly than bitmapped Images created In DERIVE. 

5.4.4 Other comments 

Most of the class groups tested gave few comments, as they had little time for reflection. 

It was hoped that It would be possible to compare the overall responses of the 

mathematics staff and the engineering staff with those of the students to pick up. In 

particular, the match or mismatch between, mathematics staff and engineering students. 

Unfortunately the rate of staff response was very poor, and given that the group size was 

small, useful comparisons could not be made. 

5.5 Content of individual questions: 

When the context allowed, a variety of modes of representation, verbal, diagrammatic 

and algebraic, was presented. Options were also chosen to represent different depths of 

representation, as described below. 
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5.5.1 Question 1 

The question concerns the bending of a beam (Figure 5-4). This is a standard case in"the 

mechanics of soUds and Is often used as an application to illustrate the use of end 

conditions In the solution of differential equations. The mechanical analysis forms part 

of the first year engineering syllabus. No Indication of the process of arriving at the 

shape of the bent beam was given. 

(a) Is a statement In words of what may be expected to happen. It Is completely non

technical, and would be comprehensible to anyone who has never studied mechanics. 

(b) is the slightly unexpected result of a calculation of the deflected shape. The point 

under the load may be expected to be that with the greatest deflection: In fact It Is the 

point where the rate of change of slope, that Is the curvature. Is greatest. It would be 

recognisable after an engineering analysis of beam bending. 

(c) Is a statement In algebraic terms that the bending moment at any point Is 

proportional to the curvature of the beam: the curvature however is expressed as the 

second derivative of displacement. 

(d) is again a statement in words, but It Is the technical abstraction of the case, as it might 

be described In a beam-bending problem. 

(e) contains two statements In Integral form about the changes In shear force and 

bending moment along the beam. They should also be recognisable after an 

engineering analysis of the topic. 

(f) Is a diagram of the type students would draw In solving the Idealised case. 
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A plank 1.5 m long is placed on two bricks very near its ends. A bar of 
gold is placed across it 0.5ni from one end. Rank the following according 

to how well they represent this to you. 

(a) 

The beam bends under the weight o f the 
gold bar. 

(b) Deflected shape 

t ^ ^ ^ ^ 

Bending Moment M=k^ 

(d) 

A simply supported beam with a point load 
at one-third span. 

(e) 

Shear Force S=JFcLx: 

Bending moment M= Sdx 

(0 
TJr Load mg 

Reaction 2mg Reaction mj ^ 
3 3 

Figure 5-4: Question 1 from main questionnaire 

5.5.2 Question 2 

Differentiation is the lowest level of calculus concept, and the first to be taught. It is 

hoped that if there is a maturing of the concepts it will be shown first in the ideas 

conneaed with the derivative. 

However the notion of differentiation depends on the philosophically difficult idea of 

the limit or infinitesimal which teachers themselves may have trouble in dealing with. 

Hence the idea may be taught as the "slope of the tangent" and this, being a vivid image 

couched in convincingly mathematical terms, may well be hard to shift. 
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dx • . 
All of (a)-(f) can be associated witli the statement above. Please arrange 
them in order of how closely they are linked to it iii your mind. 

(a) 
f(x} is the slope of the tangent to a graph of 

y against X 

(b) 

(c) 

dy/dx tells you how quickly something is changing. 

/ ' W = l i m u , - . , ) - . o ^ ^ ^ 

As you zoom in more and more closely to a small 
section of the curve, it seems to straighten out. The 

slope of the tiny straight section is dyldx at that point. 

(0 

Figure 5-5: Question 2 from main questionnaire 

(a) is the expression in words of a common view of the meaning of the derivative, 

avoiding the problem of the "vanlshingly small". 

(b) Is the Idea of the derivative as the gradient of a locally straight curve, expressed 

pictorlally. This Is Tail's (1990, cited by Robert and Schwartzenberger, In Tall (ed) 

pl36) archetypal example of a mathematical idea which is meaningful to students at 

their current state of development yet contains the potential to grow Into a fully 

fledged mathematical concept. 

(c) Is a statement in words of the practical significance of the derivative, (depth of 

problem representation) 
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(d) is the derivative expressed as a hmit in algebraic terms: it may be regarded as a 

.miathernatical definition.; 

(e) contains the same idea as (b) but expressed in words. 

(f) contains the same idea as (a) but as a diagram. 

5.5.3 Question 3 

The second "mechanics" question concerned a standard case of a mass bouncing on a 

linear spring with linear viscous damping. This would be covered by second year 

mechanics teaching. Moreover, the problem represents a common application of the 

harmonic form of differential equation, which should be familiar to students of 

mathematics. The situation is commonly experienced in applications such as vehicle 

suspensions, so should be accessible to non-engineers and non-mathematicians as well. 

The phase plane diagram was included as an unusual example of a diagrammatic 

representation which would not be appealing at a superficial level. 

(a) is a non-technical, verbal description. 

(b) is a standard description of the motion as a differential equation, using dot notation, 

which would be met in an engineering analysis of the case. 

(c) is a phase plane diagram of the motion. It gives a vivid visual depiction of the motion 

to one who can read it. Phase plane diagrams tend to be more familiar to electrical, 

control and robotics engineers than mechanical engineering students, (unfamiliar 

visual representation) 

(d) is the solution to the differential equation in (b). It is the algebraic expression of the 

curve plotted in (f). 

(e) is a general technical term for the class of cases of which this is a member. 
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(f) is a graphical depiction of the position of the mkss as it varies with time. 

A mass suspended from a spring and dasiipot is pulled down from its 
equilibrium position and released. Which of the following do you think best 
describes what happens next? 
Please arrange the answers in order of how well you think they describe the 
movement of the mass (best first, worst last). 

(a) The mass bounces up and down, 
going less far each rime, unril it settles 

back to its original posirion. 

. (b) y+ky+(ii^y=0 

(c) 
Velocity (dy/d(| 

Oisplaccment 

(d) y= Ac ~ cos CO / 

(e) Damped harmonic response 

(0 
displacement [y] 

A 
l\ r\ rs _ 

/ \ y ^ time (IJ 

Figure 5-6: Question 3 from main questionnaire 

5.5.4 Question 4 

Integration is a higher level concept In calculus, and usually taught later than 

differentiation. It was thought that mathematics students rnay have a more mature 

image of the concept than engineering students, as it is used more intensively In 

mathematics than In engineering courses. 

Again the notion of the limit may be avoided by use of a graphical Interpretation: that of 

the area under the curve. In itself this is not unproblematic, because the area between 

the X-axis and the function when Its value falls below zero must be interpreted as a 

negative area, a beast never encountered In nature. However this approach follows 
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almost inevitably from describing the derivative as the slope of the tangent to the curve, 

and does have the advantage of being susceptible to a concrete interpretation in the sense 

that it may be drawn on the black- (or white-) board, and gives rise to word problems of" 

the type "What is the area of a lay-by... T\ 

The options were intended to sort the responses at two levels: firstly by giving the 

choice of different modes of representation, and secondly by giving a variety of depths 

of representation. 

q=\xdx 
(a)-(f) may all be associated with this statement Please arrange them in 

order of how closely they fit the way you think of i t 

(a) 
q is the area under the curve y=x. 

(b) 

(d) 
The integral tells you how things build up. 

(e) 
y 

(f) 

Figure 5-7: Question 4 from main questionnaire 

(a) is the expression in words of a common view of the meaning of integration in 

general, (verbal-visual preference) 

(b) is the solution of the integration expressed algebraically. It suggests that integration 

is a process to be performed. 
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(c) is the solution in (b) expressed graphically. 

(d) is a statement in words of a practical significance of the integral, (depth of problem 

representation) 

(e) is the graphical expression of the same idea as in (a) (verbal-visual preference) 

(f) is an algebraic expression of the integral, as the inverse of differentiation, (depth of 

problem representation. Relatedness to differentiation) 

5.5.5 Question 5 

The question concerns an application of mechanics (dynamics) which, although it is not 

a standard case, should be a familiar physical situation to most students. It was designed 

to test whether there was any change In students' views of the physical world with their 

Increased mathematical knowledge. In particular, it would be interesting to see if 

engineering students Interpreted the world In a different applied mathematical way to 

mathematics students. 

(a) Is a statement about potential energy as an equation In words. 

(b) Is another energy statement using a well-known integral expression. 

(c) Is a statement about energy In algebraic terms, supposed to be equivalent to 

Vimt'̂  (that Is kinetic energy) = kx^ (that is potential energy stored in the spring). 

On further reflection, It became clear that the equation is meaningless,since the 

instantaneous x In (dx/dt) Is not the same as the Instantaneous x in Vi kx^. As 

questionnaire had already been administered It was left to stand. 

(d) Is a standard statement about the change In momentum. In formi similar to (b). 

(e) is a platitude In mechanics, expressed algebraically. 

(f) Is a non-technical statement In words expressing what should be a common 

experience of pinball machines. 
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In a pinball game, a ball is fired by releasing a taut spring behind it, 
propelling the ball out at speed. Arrange the following in order of how 

." well they describe this to you. • 

(a) 
Energy stored in spring = '/i Force x Extension 

(b) 

Energy imparted to ball = JFdx 

(c) 

2 " 
dx 

4 - ' 

(d) 

Change in momentum = XFdt 

(e) 

F - ma 

(0 
The further you pull back the spring, the faster the 

ball will go 

Figure 5-8: Question 5 from main questionnaire -

5.5.6 Question 6 

These options were designed to try to distinguish between respondents' depths of 

representation of a simple differential equation. 

(a) is similarly solved by separating variables, and its solution is also an exponential 

growth. 

(b) is the next stage in solving the equation given: it is an equivalent statement. 

(c) has a superficial similarity of appearance, but its solution is an exponential decay. 

(d) like the given equation, has a linear function in x on the RHS. 
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Arrange the differential equations below according to how 
similar ybu think they are to the one above. 

(a) 

2<fy X 

ax 

(b) 

jdy =je''dx 

(0 

dx 

W) 

dy 
—=mx+c 
dx 

(e) 

dx' 

(0 

dy 
=my 

dx 
Figure 5-9: Question 6 from main questionnaire 

(e) Is the differential of the given equation, but has an Identical RHS. Its solution will 

have an extra arbitrary constant. 

(f) looks unlike the given equation, but its solution Is also an exponential growth. 

5.6 Conclusions 

The Issues mentioned in the conclusions to chapter 4 are addressed In these questions as 

follows. The depth of representation of the target concepts has been explored In various 

ways according to the topic. 
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option Mode of representation Depth of representation 

la verbal novice 

lb . visual . • output of expert mental model 

Ic algebraic deeper than le 

Id verbal encapsulated 

le algebraic superficial 

If visual input to mental model 

2a verbal novice 

2b visual "scientific" 

2c- verbal personal meaning 
2d algebraic "mathematical" 

• 2e verbal "scientific" 
2f visual novice 

• 3a verbal novice 

3b algebraic input of mental model 
3c visual deeper than 3f 
3d algebraic output to mental model 
3e verbal encapsulated 
3f visual superficial 

- 4a verbal novice 
4b algebraic process (superficial) 
4c visual process (superficial) 
4d verbal personal meaning 
4e visual novice 
4f algebraic relatedness to differentiation 

5a verbal formula/superficial 
5b verbal/algebraic input to mental model 
5c algebraic superficial 
5d verbal/algbraic formula/irrelevant 
5e algebraic novice 
5f verbal novice 

6a algebraic method and outcome (depth) 
6b algebraic process 
6c algebraic superficial (appearance) 

6d algebraic structural (depth) 

6e algebraic similar appearance 

6f algebraic depth 

Table 5-2: Classification of questionnaire options 
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6. The Questionnaire: responses and interpretation 

6.1 Introduction 

Having examined the theory behind the design of the questionnaire and the practical 

process of designing and administering it, in this chapter the responses to each question 

are summarised and compared according to the subject studied by the respondents and 

their level of experience. As well as the numerical data of the scores accorded to each 

option, we have the comments of the respondents to help in interpreting the ideas which 

are being expressed, and some themes which emerge from those comments are explored. 

The responses to the first two questions in particular are examined in some detail as they 

produced some interesting and unexpected results. 

6.2 Interpretation of the responses 

This questionnaire cannot be regarded as a precise instrument determining a scientific 

truth: although the analysis appears quantitative, asking respondents to rank the options 

in order of preference is more qualitative in spirit. As Vinner points out, concept image 

is context-dependent and changing. The results of the questionnaire must be regarded as 

indicative. Ideally, the same group of people should have been followed in a cohort 

study, but by surveying different groups at different stages of their careers a range of 

experience was sampled. Some of the changes in preferences must be attributed to the 

non-matching of the groups of respondents. 

The results show some evolution of ideas over a period of learning, some of which are 

relatively slow and seem to relate to a maturing process, and others which are more 

rapid and may be related directly to teaching. A n unexpected result was that some 

misconceptions concerning the bending of beams were revealed, which raise some 

interesting questions about the effect of holding misconceptions in general. 
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In general the ordered responses give an indication of the relative popularity of the 

options, and the comments reveal more about why respondents ihade those choices. 

Although there are many interesting comments which may be made about the responses 

of the mathematics students, in this chapter as in others I shall restrict remarks on them 

to a comparison with engineering students, given that the reason for including them in 

this study was as a comparison group. 

The comments made by respondents have been quoted where they illustrate or 

illuminate a point. In some cases common themes emerge in the comments, either on a 

particular question or on the questionnaire overall. 

6.3 Revealing misconceptions 

The questionnaire was not designed with the object of revealing misconceptions (or 

mental models which do not match the institutionally accepted version), but assuming 

that most respondents' concept Images would lie within the range of essentially 

acceptable, but naive to more sophisticated options given. 

These models may be revealed when people make statements which do not coincide 

with the predictions of the accepted or institutional meaning of the concept. 

It was not expected that any of the questions would arouse particularly strong feelings In 

respondents. The rubric to the questionnaire explicitly stated that there were no trick 

questions, but some respondents still objected so strongly to two of the given choices In 

the question on bending that they wrote comments about them. 

6.3.1 The beam will not bend at all, or whether it bends depends on its 

thickness 

Option (a) stated "The beam bends under the weight of the gold bar". This was 

Included particularly so that respondents who had never seen an analysis of the case 
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would not feel that the questionnaire was dealing with matters above their heads, and It 

was thought It Would be popular with first year students at the start of their first year. 

Some respondents made comments such as the following. 

(a) Nobody says It actually bends, so automatically assume rigidity, (final year maths 
student) 

(b) Not a- cos depends on thickness of plank (mathematics student, start of first year) 

(c) It depends on how thick the plank is (a), (mechanical engineering student, start of 
first year) 

(d) How thick is the plank? How heavy Is the bar of gold? (second year computer 
systems engineer, pilot study) 

(e) I feel a bit uncomfortable not knowing the weight of the gold or the thickness & 
width of the plank, (engineering lecturer) 

(f) I assume the deflection is minimal, (practising engineer) 

(g) 'a' may not be very valid- The deflection may be so small as to be negligible, 
(practising engineer) 

There Is a graduation from assuming absolute rigidity to wondering whether the 

assumption Is valid under the circumstances. 

6.3.2 The point of greatest deflection must be under the load 

Option (b) was a diagram of the deflected shape. 

(a) b looks like the bar would be In the middle, (engineering student, start of first 
year) 

(b) b Is wrong (final year mechanical engineering student) 

(c) I would rather have a drawing but (b) looks wrong, (final year mechanical 
engineering student) 

(d) not keen on (a) (too simplistic) and (b) (wrong?) (mathematics student, start of 
first year) 

(e) b Is useless! (matherriatics student, end of first year) 

(f) b Isn't quite right, but I've assumed poetic license with the artist! (practising 
engineer) 

(g) b (slightly changed) (see Figure 6-1) (experienced mathematics and mechanics 
teacher) 

(h) I don't recognise any of the equations and (b) doesn't look quite like what I'd 
expect! (postgraduate, A level maths, degree In Business Administration) 

(i) My first thought is 'how can I get the gold bar'! My second is that the diagram at b 
is not drawn correctly, (practising engineer) 
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• ib) Deflected shape 

Figure 6-1: Modified diagram of shape of beam 

6.3.3 Why do people think these things? Mental models of physical 

problems 

These ideas do not come out of thin air, but are based on the mental models that the 

respondents hold. These models are not directly accessible to investigators, but the 

comments that have been given are predictions these respondents have made of the 

behaviour of the system according to their mental models. Given the predictions, it is 

possible to deduce the nature of the models. Anzai and Yokoyama (cited in Royer et al, 

1993) classify models as experiential, correct scientific or false scientific. Experiential 

models, which are derived directly from experience, do not have any technical or 

scientific content. The statement "The beam bends..." was intended to appeal to this 

type of model. A correct scientific model is a set of scientific concepts and relations that 

are correct and sufficient to capture problem information. Such a model would 

characterise the bending in terms of bending moment and shear force, loads and 

reactions, displacements, stresses and strains. False scientific models are those which 

contain scientific concepts and relations, but incorrectly characterise the problem. It is 

this type of model which is shown in the comments quoted above. 

6.3.4 Planks are, or may be, rigid. 

The first set of comments represent the view of rigidity as the natural state of a beam, 

given that this is a frequently made assumption in statics problems. This is sometimes 

held at the same time as the concept that the deflection of a beam does depend on its 
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dimensions, its loading, and, not specifically mentioned by our respondents, the material 

stiffness (Young's modulus) of the beam, which we see in 6.3.1 (b)-(e) above. It is 

perfectly possible to hold two opposite views on a physical phenomenon as long as they 

are not brought into direct conflict. The point is that these quantities do not affect 

•whether a beam will bend, but how much it will bend: as comment 6.3.1 (f) points out, 

the bending may be negligible, but negUgible is still not the same as non-existent. 

Perkins & Simmons (1988) regard this as a defect of priority among concepts: the novice 

treats "rigidity" as a more important concept than "springiness", while the expert sees 

"springiness" as the more powerful explanatory tool. 

6.3.5 The deflection must be greatest under the load 

This idea may come from one of several sources: 

(a) "Weightless strings and point masses 

(b) The lowest point is the lowest (potential) energy position 

(c) Shear dominated deflection 

6.3.5.1 Point masses versus solid bodies 

The first stage of modelling that students encounter in mechanics is of the idealised 

world of point masses, weightless strings and infinite bodies of infinite stiffness. In such 

a world, the nearest approximation to our weight on a beam is a weight hung on a loose 

horizontal string, one-third of the way between its points of suspension. For horizontal 

equilibrium, the weight would have to fall so that both parts of .the string are under 

tension, pulling the string into an asymmetrical V-shape. 

6.3.5.2 Potential energy 

The powerful idea of potential energy being minimised would seem to mean that the 
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weight must be at the lowest possible point, which must be the lowest part of the beain. 

The lowest part of the beam must thus be under the weight". 

6.3.5.3 Shear dominated deflection 

"When beams are designed to use material to perform as efficiently as possible in bending, 

the notion of putting as much as possible into top and bottom flanges connected by a 

thin web emerges, and we have an I-beam. The stiffness of the I-beam in bending is 

greatly enhanced, but its stiffness in shear is related simply to the cross-sectional area. In 

extreme cases, the deflection due to shear, normally negligible, can dominate, so that the 

load is close to the lowest point of the beam. This would not happen in the case of a 

plank lying between two bricks. 

It would be speculative to suggest which of these is the principal source of error, but it is 

suspected from experience that for the students at least the notion of weightless strings 

and point masses is the most important. 

6.3.6 Discussion 

The questionnaire was not designed to pick up incorrect mental models, but rather to 

tease, out how people were holding mental representations of some engineering and 

mathematical concepts. Nevertheless it appears to have brought out into the open some 

alternative representations which we may not have discovered in teaching or discussion. 

We should ask ourselves how important these misconceptions are in the scheme of 

things. To most people they are probably never going to matter. To those to whom 

they will make a difference, they will probably discover in time that they have been 

mistaken. However, particularly for those people who objected to the shape drawn in 

(b), the revelation comes as a shock. A comfortable assumption has been shaken, and It 

Is unpleasant. 
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These results were presented at a conference (Mathematical Education of Engineers, 

Loughborough, 1997, see Maull & Berry, 1997). One delegate commented that aero 

modelling with balsa developed an intuitive understanding of this type of bending. It 

was also pointed out that in most cases the objective in engineering is to reduce 

deflections to the negligible. 

6.4 Preferences 

Every option in every question was placed first by at least one respondent. This reflects 

(a) the diversity of the responses and (b) either that every option proposed was a possible 

first preference or that some people were answering at random. 

A n individual response to a single question consisted of a list of up to six letters, each 

representing an option, in order of decreasing preference. These lists were converted 

into scores, with the first being given a score of 5, the second 4, and so on, with the sixth 

choice and any unchosen options being given a score of zero. For a group of 

respondents, the scores for each option for each question were summed and normalised 

so that a score of 5 would mean that every respondent in a group had put a given option 

first, and zero would mean that everyone in that group had either put that option last or 

nor placed it. 

These results were then summarised as shown in the accompanying charts. From these 

we can see the relative popularity of each option in any group, and the ways these 

change as people progress through their course or through life. The results were also 

tested using one-way A N O V A , to find the significance of the differences at different 

experience levels within each subject group and between the subject groups as a whole. 

For each group the mean score for each option is shown with the standard deviation in 

parentheses. Many of the options tested inconclusively, but those which yield results at 

a confidence of better than 5% are remarked upon. For a variable to distinguish 
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significantly between two groups, the difference between the means has to be large 

compared to the variance within the groups. Because the spread of popularity of each 

option is wide, even when the means shown on the charts are different, the statistical 

significance may be low. 

As Hair et al (1984) point out, statistical and practical significance are not the same 

thing. In a class of nine pupils, four may be boys, and there is no statistical significance. 

If in a class of thirty the same is true the fact is statistically significant. However the 

practical significance is the same when It comes to making up a boys' football team. 

6.4.1 Question 1 

mean 5 
score 

option 3 
oO- X . . . ^ 

1 x'---'•" 

•A--1C 
--x--1d 

—X—le 
• O - I f 

eng eng eng eng prac 
la 1b 3 grads eng 

mean 
score 4 

option 3 ¥••••;;.• • x -

i -o- la , 
...a.-ibi 
| . . ^ . . 1 c : 

->c--1e 
. . 0 - 1 f 

mat 
1a 

mat 
lb 

mat 
3 

Figure 6-2: Responses to question 1 

The most Interesting aspect of Question 1 was the misconceptions which It uncovered, 

which are discussed In the first part of this chapter. The changing popularity of some of 

the options may reveal a response to teaching. 
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la lb Ic Id ' le I f 
The beam Deflected Bending Simply Shear force Loading 

bends shape moment supported = ,BM = diagram 

Mean Rank equation beam 

Engineering 1.95 3.18 • 1.20 2.98 0.85 4.05 
at entry (1.65) (1.65) (1.16) (1.37) (1.10) (1.36) 

Engineering 1.91 3.39 1.70 2.17 1.39 3.91 
end of 1st year (1.98) (1.27) (1.61) (1.56) (1.34) (1.38) 
Engineering 1.75 3.25 1.10 3.90 0.90 3.15 

final year (1.77) (1.94) (1.07) (1.21) (0.97) (1.38) 
Engineering 1.67 3.73 1.73 2.67 0.93 • 3.60 
postgrads (1.80) (1.53) (1.28) (1.72) (1.03) (1.40) 
Practising 2.13 3.87 0.53 3.40 0.93 4.20 
engineers (0.99) (1.25) (0.92) (0.74) (0.96) (1.08) 
Engineers 1.89 3.40 1.27 2.99 0.99 3.82 

overall (1.67) (1.57) (1.27) (1.46) (1.11) (1.36) 
Significance .9433 .5618 .0386 .0014 .4277 .1040 

within engineers 
Mathematics 2.35 2.95 1.24 ' 3.20 1.12 3.31 

at entry (1.75) (1.74), (1.26) (1.66) (1.44) (1.51) 
Mathematics 2.81 3.26 1.41 2.44 1.04 3.56 

end of 1st year (1.82) (1.58) (1.37) (1.67) (1.26) (1.45) 
Mathematics 2.14 2.79 0.86 2.27 0.79 3.79 

final year (1.88) (1.93) (1.03) (2.02) (1.25) (1.48) 
Mathematicians 2.45 3.01 1.23 2.85 1.05 3.45 

overall (1.78) (1.71) (1.26) (1.75) (1.36) (1.49) 
Significance .4241 .6458 .4189 .0760 .7047 .5152 

within 
mathematicians 

Significance .0215 .0892 .8368 .5377 .7209 .0587 
between subject 

groups 

Table 6-1: Responses to question 1 

Overall, options la (The beam bends..) was preferred significantly more by the 

mathematicians than by the engineers as a group. Options Ic (Bending moment 

equation) and Id (A simply supported beam...) distinguish between the levels of 

experience of the engineers, with the practising engineers rejecting option Ic more than 

other engineers and the final year engineers having a stronger preference for option Id 

than any other group. 

6.4.1.1 Responses to teaching 

In the responses from the engineering students in particular, some options show jumps 

in popularity, either up or down, during the course of the undergraduate degree. These 

jumps coincide with intervals in which teaching on particular subjects occurs, and these 
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jumps may be interpreted as evidence of responses to teaching. Thus in Q l , option (d), 

"A simply supported beam with a point load at one-third span" represents technical 

language with which the students would have become familiar between the end of the 

first and the early part of the final year. 

We find comments on Question 1 such as: 

• The equations in c and e mean nothing to me-as I have not studied them yet. 
(engineering student, start of first year) 

• ..the mathematical definitions are starting to make more sense, (engineering student, 
start of first'year) 

• We've only just started. Ask again in a few weeks! (engineering student, start of first 
year) 

• No idea, may be true, tell ya later, (engineering student, start of first year) 

• b, f & d are the only ones that mean anything to me as I've not come across the 
others yet. (engineering student, start of first year) 

and after studying simple bending: 

• Due to the intensity of learning mechanics during the first year (engineering student, 
end of first year) 

Other examples are: 3(b), the differential equation j> + ^ + cô >' = 0, which also 

increases in popularity over the course of the second year of teaching, and 6(b) which 

changes place with 6(e) as the students gain in confidence in integration. 

6.4.2 Question 2 

In general, the mathematics students prefer the statement about the tangent at all three 

stages, and their next favourite option is the corresponding diagram. 

For the mathematics students, the third favourite option is the statement about "things 

changing", whereas for the engineering students, the "things changing" statement 

overtakes the other two. Although the last set of responses (practising engineers) seems 

to contradict this trend, the respondents in this group were different in a number of 

ways from the respondents in the first four: they were all from old universities and had 
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been trained by the Ministry of Defence, and they were considerably older than the rest 

of the respondents, so their education had been conducted under a different regime. 

eng eng eng eng prac 
l a l b 3 grads eng 

mean 
score 

for 
option 

/̂S::::'-

-2a 
--Q- -2b 
• A - •2c 
-x- -2d 
•x-•2e 
-o- -2f 
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Figure 6-3: Responses to question 2 

Mean Rank 2a 2b 2c 2d 2e 2f 
Slope of Zoom in How Limit As you Tangent 
tangent diagram quickly expression zoom in diagram 

changing 
Engineering 3.50 2.13 2.40 0.93 2.25 3.03 

at entry- (1.66) (1.26) (1.86) (1.42) (1.63) (1.67) 
Engineering 4.13 2.13 2.43 0.52 2.30 3.43 

end of 1st year (1.10) (1.55) (1.56) (1.08) (1.06) (1.47) 
Engineering 3.90 2.15 3.05 0.80 2.15 3.00 

final year (1.25) . (1-46) (1.70) (1.32) (1.42) (1.45) 
Engineering 3.06 2.47 3.47 0.73 1.40 3.20 
postgrads (1.91) (1.51) (1.81) (1.10) (1.24) (1.32) 
Practising 3.26 2.20 3.00 " 1.00 2.27 3.20 
engineers (1.79) (1.86) (1.46) (1.51) (1.49) (1.32) 
Engineers 3.61 2.19 2.74 0.81 2.13 3.15 

overall (1.57) (1.46) (1.74) (1.30) (1.43) (1.49) 
Significance .2033 .9562 .2111 .7765 .3256 .8561 

•within engineers 
Mathematics 4.36 1.51 2.56 2.00 1.45 3.05 

at entry (1.01) (1.45) (1.58) (1.59) (1.23) (1.46) 
Mathematics 3.41 1.89 2.96 2.07 1.44 3.22 

end of 1st year (1.47) (1.53) (1.51) (2.04) (1.48) (1.28) 
Mathematics 3.86 1.79 2.64 1.93 1.29 3.29 

final year (1.66) (1.25) (1.91) (1.59) (1.38) (1.43) 
Mathematicians 4.02 1.66 2.69 2.01 1.43 3.15 

overall (1.31) (1.44) (1.60) (1.71) (1.31) (1.40) 
Significance .0062 .5045 .5721 .9655 .9105 .8015 

within 
mathematicians 

Significance .0437 .0091 .8106 .0000 .0003 .9405 
between subject 

groups 

Table 6-2: Responses to question 2 

The engineers prefer options 2b (Zoom in diagram) and 2e (As you zoom in...) more 

strongly than the mathematicians and dislike options 2a (The slope of the tangent...) and 
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2d (Limit expression) considerably more than the mathematicians do. No options 

distinguish significantly between the different levels of experience of the engineers. On 

Option 2b (Zoom in diagram) the differences between the engineering groups are small 

enough to say that they their preference is the same to p > 95%. 

Some interesting comments were made in response to this question: 

• A n engineering graduate commented that he had really only understood the idea of 
the differential as the rate of change in his "year out" in industry. 

• My extra learning has taught me that dy/dx= gradient which I now understand as a 
rate of change in bus[iness] environment. (Engineering postgraduate) 

The above comments tend to confirm that the greater popularity of option 2c among 

engineering final year and postgraduate students is a matter of development and 

maturing, and not a statistical quirk of the group of students responding. 

• I seem to use both (c) and (f) as models for dy/dx. I see them as 1 equally closely 
associated but quite different ideas. (Engineering postgraduate) 

As Vinner points out, the concept image depends on context. This respondent shows he 

recognises two of the options as equally closely related to the target concept. 

• Words first to get an idea of the problem. Then a "diagram". Then some maths = 
Greek! (Engineering postgraduate) 

• As an engineer I tend to represent problems like this first verbally, then graphically, 
and as a last resort mathematically... This is because my mathematics skills are not 
brilliant and I need to reference («c) back to old notes for these types of problems. 
(Engineering postgraduate) 

Engineering students told Crowther (1997b) that they like to visualise. This 

questionnaire showed all the groups of students surveyed preferred diagrammatic 

representation in the "mechanics" questions, but in general they preferred verbal 

representations in the "mathematics" questions. 

The theme of needing to or being able to refer back to notes or a textbook for 

mathematics is also one which recurs in the comments of engineering, students, and is 

discussed in the chapter on mathematical modelling. 
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In the integration question, there is a corresponding option to the "things changing" 

statement, which is "The integral tells you how things build up". This remains the least 

popular option, but grows steadily across the first four groups of engineering 

respondents. 

6.4.3 Question 3 
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Figure 6-4: Responses to question 3 

Options 3a (The mass bounces..) and 3c (Phase plane diagram) are preferred by the 

mathematicians as a group significantly more than by the engineers. Options 3e 

(Damped harmonic response), and 3f (Displacement diagram) are preferred significantly 

more by the engineers. Option 3b (Differential equation) Is preferred very significantly 

more by final year engineers than by first year and practising engineers. 

Option 3b shows a "learning jump" between the'end of the first and the final year In the 

engineering students. This Is particularly interesting given that the differential equation 

looks very mathematical, and students In their final year often claim to be out of touch 

with mathematics. I am beginning to suspect, given this and some comments quoted 

later In this chapter, that engineers cease to regard something as mathematics once they 

have incorporated it Into their "engineering" knowledge. 
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Mean Rank 3a 3b 3c 3d 3e 3f 
The mass Differential Phase plane Solutioii Damped Displacement 
bounces equation diagram equation harmonic diagram 

response 
Engineering 3.38 0.58 1.70 • 1.05 3.10 4.63 

at entry (1.51) (0.71) (1.09) (1.01) (1.32) (0.49) 
Engineering 3.17 0.65 1.48 1.52 3.52 4.39 

end of 1st year (1.53) (0.83) . (1.24) (1.56) (0.90) (0.66) 
Engineering 3.25 2.35 0.95 1.40 2.65 4.20 

final year (1.74) (1.50) (1.00) (1.70) (1.23) (0.95) 
Engineering 2.27 1.77 1.07 1.53 3.53 4.20 
postgrads (1.87) (1.33) (1.16) (1.51) (1.51) (0.94) 

Practising engineers 3.53 0.60 1.53 1.47 3.40 4.33 
(1.36) . . (1.12) (1.19) • (1.30) (0.83) (0.82) 

Engineers 3.19 1.06 1.42 1.33 3.20 4.41 
overall (1-.61) (1.26) (1.15) (1.37) (1.22) (0.74) 

Significance within .1843 .0000 .1156 .6216 .1106 .1720 
engineers 

Mathematics 4.20 0.87 2.18 1.20 1.96 4.13 
at entry • (1.39) (0.98) (1.20) (1.30) (1.50) (0.70) 

Mathematics 3.56 1.07 2.26 1.74 2.04 4.26 
end of 1st year (1.87) (1.24) (1.10) (1.38) (1.53) (0.81) 
Mathematics 3.29 1.21 1.93 2.00 2.64 3.86 

final year (1.94) (1.58) (1.21) (1.61) (1.74) (0.86) 
Mathematicians 3.89 0.98 2.17 1.47 2.08 4.13 

overall (1.65) . (1.15) (1.17) (1.39) (1.55) (0.76) 
Significance within .0833 .5436 .6876 .0759 .3389 .2752 

mathematicians 
Significance .0022 .6223 .0000 .4607 .0000 .0071 

between subject 
groups 

Table 6-3: Responses to question 3 
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Figure 6-5: Responses to question 4 

104 



Mean Rank 4a 4b 4c 4d 4e 4f 
Area under Integration Integration How things Area under Opposite of 

curve done done diagram build up curve diagram differentiation 
Engineering 3.98 2.40 2.20 0.80 2.58 1.98 

at entry (1.53) (1.66) (1.52) • (0.94). . • (1.71) (1.72) 
Engineering • 4.17 3.00 2.48 0.65 2.70 1.74 

end of 1st year (1.11) (1.68) (1.34) (0.88) (1.58) (1.63) 
Engineering 3.25 2.70 2.00 1.40 2.60 2.05 

final year (1.62) (1.89) (1.56) (1.57) (1.60) (1.70) 
Engineering 4.00 2.00 1.60 1.53 2.53 2.67 
postgrads (1.36) (1.77) (1.55) (1.68) (1.77) (1.50) 

Practising engineers 4.80 2.40 1.80 1.80 2.87 1.27 
(0.56) (1.30) (1.32) (1.42) (1.46) (1.53) 

Engineers 4.00 2.52 ' 2.09 • 1.11 2.64 1.94 
overall (1.40) (1.68) (1.47) (1.29) • (1.62) (1.66) 

Significance within .0239 .4358 .3926 .0142 .9779 .2161 
engineers 

Mathematics 3.53 4.25 1.09 0.85 2.25 1.98 
at entry (1.15) (1.28) (1.47) (1.08) (1.54) (1.47) 

Mathematics 3.63 3.11 2.33 0.93 2.48 2.52 
end of 1st year (1.45) (1.78) (1.52) (1.21) (1.65) (1.50) 
Mathematics 3.86 3.21 2.71 0.43 2.21 2.43 

final year (1.03) (1.67) (1.82) (0.65) (1.22) (1.65) 
Mathematicians 3.60 3.78 2.15 0.81 2.31 2.20 

overall (1.22) (1.58) (1.55) (1.07) (1.51) (1.51) 
Significance within .6634 .0023 .1688 .3375 .7908 .2666 

mathematicians 
Significance .0320 .0000 .7845 .0780 .1372 .2415 

between subject 
groups 

Table 6-4: Responses to question 4 

The engineers as a group prefer option 4a (The area under the curve..) significantly more 

than the mathematicians, and 4b (Integration carried out) significantly less. The growth 

in popularity of option 4e (How things build up) among engineers is statistically 

significant, but on option 4f (Area under the curve diagram) the preferences of the 

engineers at different stages are significantly identical. 

As mentioned above, option 4d (The integral tells you how things build up) increases 

slowly but steadily across all the levels of experience of the engineering respondents, 

including the practising engineers. Option 4f, that integration is the opposite of 

differentiation, has a similar popularity profile to option 2c (how things build up), with 

growth across the first four sets of engineers, and a drop in. the practising engineers. 

These two options were intended to indicate (4f) an increase in the inter-relatedness of 

concepts with maturity, and (4d) an increase in the meaning of concepts with maturity. 
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The profiles of option 4b (integration done) is rather different in the two sets of 

respondents. There is an interesting difference of phase between engineering and 

mathematics students. Most of the mathematics students entered university fresh from 

their A level studies, having recently been introduced to integration. Its high popularity 

with the first group of mathematics students reflects this. The greatest popularity of this 

option with engineers falls at the end of their first year, reflecting that many engineering 

students are first acquainted or are reacquainted with integration over the course of that 

year. 

6.4.5 Question 5 
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Figure 6-6: Responses to question 5 

On reflection, it was felt that questions 5 and 6 were not well designed and that the 

responses to these questions were not in general very revealing. 

Option 5c distinguishes significantly statistically between the levels of experience of the 

engineers. The popularity of this option rise in the first three groupsthen falls again. 

The shape of this polygon looks a little like a learning peak, but it is difficult to see the 

practical significance. 
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Mean Rank 5a 5b 5c 5d 5e 5f 
Energy Energy K.E. = P.E. Change in F=ma The further 
stored imparted to equation momentum you pull 

equation • ball =lFdx =|Pdt back... 
Engineering 3.38 1.48 0.58 1.85 3.30 3.83 

at entry , (1.46) (1.15) (1.20) (1.27) (1.45) (1.52) 
Engineering 3.22 1.78 1.00 1.70 3.61 3.48 

end of 1st year (1.09) (1.41) (1.24) (1.49) (1.78) (1.62) 
Engineering 2.90 2.20 1.60 1.90 3.75 2.60 

final year (1.52) (1.15) (1.57) (1.44) (1.59) (2.09) 
Engineering 2.87 2.00 1.07 1.97 2.93 3.40 
postgrads (1.19) (1.36) (1.58) (1.55) (1.94) (2.20) 
Practising 3.40 2.27 0.40 1.07 3.00 3.87 
engineers (1.76) (1.33) (1.30) (0.80) (1.56) (1.36) 
Engineers- 3.20 1.84 0.89 1.73 3.35 3.49 
. overall (1.41)- (1.28) (1.38) (1.34) (1.63) . (1.76) 

Significance .6207 .1456- .0436 .3513 .4819 .1185 
within engineers 

Mathematics 2.89 1.6364 0.60 1.84 3.82 3.65 
at entry (1.37) (1.28) (i;oi) (1.42) (1.33) (1.61 

Mathematics 3.37 2.22 1.22 2.33 2.96 2.74 
end of 1st year (1.44) (1.22) (1.53) (1.41) (1.74) (2.19) 
Mathematics 2.79 1.64 1.57 2.57 3.50 2.71 

final year (1.19) (1.15) (1.91) (1.45) (1.83) (2.20) 
Mathematicians 3.01 1.8 0.92 2.08 3.53 3.26 

overall (1.37) (1.26) (1.37) (1.44) (1.56) (1.92) 
Significance .2685 .1243 .0216 .1330 .0647 .0639 

within 
mathematicians 

Significance .3411 .8269 .8681 .0651 .4247 .3745 
between subject 

groups 

Table 6-5: Responses to question 5 

6.4.6 Question 6 
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Figure 6-7: Responses to question 6 

This question was the most closely related to those used by Chi et al (1981, cited by 

Royer et al, 1993) in their investigations of the differences between expert and novice 
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concepts. Apart from the rich crop of comments it evoked from respondents the 

• question did not appear to produce very useful results. 

Mean Rank 6a 6b 6c • 6d 6e 6f 
Jdy=le'=dx dy=e • dy = mx+c d^y = dy = my 

dx dx dx dx^ dx 
Engineering 1.50 2.70 2.10 1.03 3.65 0.88 

at entry (1.36) (1.90) (1.89) (1.42) (1.92) (1.14) 
Engineering 1.83 3.87 2.52 1.70 3.13 1.61 

end of 1st year (1.59) (1.39) (1.81) (1.33) (1.82) ((1.53) 
Engineering 1.65 3.80 2.35 1.05 2.50 1.05 

final year . (1.32) (1.91) (1.81) (1.67) (1.85) (1.23) 
Engineering 1.60 3.80 1.87 1.93 2.93 1.07 
postgrads (1.80) (1.74) (1.60) (1.62) (1.94) (1.16) 
Practising 1.33 3.87 1.20 1.20 2.13 0.87 
engineers (1.54) (2.03) (1.32) (1.26) (2.20) (1.51) 
Engineers 1.58 3.43 2.08 1.31 '3.04 1.08 

overall (1.46) (1.86) (1.77) (1.48)̂  (1.97) (1.30) 
Significance .8732 .0426 .2145 .1679 .0687 .2704 

within engineers 
Mathematics 2.00 3.18 2.51 1.35 3.53 1.25 

at entry (1.36) (1.63) (1.87) (1.43) (1.90) (1.28) 
Mathematics 1.37 4.00 1.96 1.59 3.52 1.78 

end of 1st year (1.39) (1.24) (1.60) (1.50) (1.63) (1.63) 
Mathematics 1.50 4.86 1.07 1.43 3.36 1.79 

final year (1.51) (0.36) (1.27) (1.16) (1.60) (1.72) 
Mathematicians 1.75 3.66 2.15 1.43 3.50 1.48 

overall (1.41) (1.53) (1.78) (1.40) (1.77) (1.46) 
Significance .1256 .0003 .0201 .7595 .9489 .2185 

within 
mathematicians 

Significance .4053 .3502 .7888 .5589 .0824 .0378 
between subject 

groups 

Table 6-6: Response to question 6 

The engineers at entry prefer option 6b significantly less than the other engineers, and 

the engineers as a group dislike option 6f more than the mathematicians. 

The two options (b and e) which were added to this question to bring the number of 

options up to six like the other questions proved to be the most popular with all groups 

of respondents. Because they were obtainable from the target expression some 

respondents felt that the other options were "incorrect", despite the strong statement in 

the rubric, and in the introductory talk, that there were no wrong answers and that the 

questionnaire was not a test of any kind. 
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Apart from the strength of some of the comments, it is notable that there is not 

complete consistency in the options felt to be "correct". This is a good example of 

where a group of students may be holding concept images different from one another 

and from their lecturer, and for communication to be affected by the different meanings 

ascribed by the various parties to supposedly public symbols. 

• (a, c, d, f) are all wrong. (Practising engineer) 

• This one I found most difficult- only b seemed "right" (Practising engineer) 

• beyond e, no obvious similarity. (Practising engineer) 

• b is sol. of example, f has got right form, c is wrong (I think!), e is next derivative, d 
& a are probably wrong as well. (Practising engineer) 

• b = ok. f impossible. (Final year engineering student) 

• The last 3 [d, f, c] have nothing to do with it. (Final year engineering student) 

• Latter ones [f, d, e, c, a] are not related (Final year engineering student) 

• a, c and d are not ranked- they're all very different to the given equation. (Final year 
mathematics student) 

• e, d, c have no relationship with the original, although as pictures it is possible to see 
a likeness. (Final year mathematics student) 

• b, e - rest false! (engineering lecturer) 

• c, b. Rest don't figure (in my eyes) (mathematics lecturer) 

• Only b looks good. A l l the others look equally wrong. (Engineering postgraduate) 

• f, b. Only those! (mathematics student, start of first year) 

• f is wrong, surely? (a) opposite to above question, (mathematics student, start of first 
year) 

• e. Don't like the others, (mathematics student, start of first year) 

• e. I can't Immediately see any similarity in any of the others, (engineering student, 
start of first year) 

• [first preference c] No real link In many cases (engineering student, start of first year) 

• d Is rubbish, rest are nothing like above, (mathematics student, start of first year) 

• b is the only correct one. (engineering student, start of first year) 

• e, b are the only true ones. The others don't even rank, (engineering student, start of 
first year) 

• e, b. Both true statements. [Implies that the other options, unlisted, are untrue] 
(engineering student, start of first year) 

• e first as it is a true statement. [Implies that the other options, unlisted, are untrue] 
(engineering student, start of first year) 
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Some respondents did riot distinguish between "wrong" and. "right" answers- all the 

responses were "wrong" for them. 

• None are similar. (Final year engineering student) 

• Don't really understand the question as all the answers are different from the sample. 
(Final year engineering student) 

• A l l dissimilar (Engineering postgraduate) 

• none really (mathematics student, start of first year) 

• None of them look like the top one. They have all got a similar amount of 
dissimilarity, (final year engineering student, pilot study) 

• None equivalent, (mathematics postgraduate, pilot study) 

Some respondents found the word 'similar' (or 'like' in the pilot study) problematic. 

• Nasty one- what do you mean by similar?! (Mathematics lecturer) 

• Not a particularly clear one this- what does 'similar' mean? (Engineering lecturer) 

• This question doesn't make much sense to me... I guess that 'similar' is not well 
defined, but perhaps that's the point! (Engineering lecturer) 

• "What do you mean by similar, the same result, played with, what? (engineering 
student, start of first year) 

• By 'like' do you mean form or value? (Engineering postgraduate, pilot study) 

• As an engineer, I find the word.'like' in the question confuses the issue. (Engineering 
postgraduate, pilot study) 

• 'Like' what is that, is it exactly the same relationship i.e. the same equation or does it 
mean the same order of differential equation. Confusing, (final year engineering 
student, pilot study) 

Some students early in their careers are tentative, but seem to look forward to learning 

more. The engineering students at the start of their first year were the only group to 

prefer option 6e over 6b overall. The change is probably because the first year of the 

degree is the first time some students encounter differential equations. 

• slightly beyond me; only sure about e. (mathematics student, start of first year) 

• after e, all the rest are guesses, (mathematics student, start of first year) 

• Not familiar with logs etc so mainly guess, (engineering student, start of first year) 

• e first, can't really say about the others yet. (engineering student, start of first year) 

• only just started differentiation so do not fully understand it. (engineering student, 
start of first year) 

Some engineering respondents were reminded of how much mathematics they had 

forgotten, or how little they had used. This point was also made in the OECD report 
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(1966) where most of the respondents reported using nothing more than simple algebra 

in their engineering careers. 

• This makes me realise how long ago I did my engineering maths course and how little 
I've used it since!!! (Engineering postgraduate) 

• I can not remember much about my degree only VA years ago. I can remember most 
of the chatty explanation or lab work. (Engineering postgraduate) 

• I can't remember how differentiation works so I have guessed based on what I can 
remember. (Engineering postgraduate) 

• I think I've forgotten everything! This is sadly honest but I hope it helps. (Final year 
engineering student) 

• I have managed to forget differential equations for the past 40 years with great 
success! (Practising engineer) 

• Having not used calculus for 18 years, I'm guessing here. (Practising engineer) 

• b,? I would be guessing the remainder. (Practising engineer) 

• It's not easy to admit it but it's so long since I even looked at simple equations such as 
this there is no rationale behind my list. (Mathematics lecturer) 

• Differential Equations for engineers are on a need to know basis. For exams I needed 
to know: now I don't. (Engineering postgraduate, pilot study). 

• I've not done anything like this since my first year, hence I've forgotten it all. (final 
year engineering student, pilot study) 

6J Mode of representation 

Crowther (1997b), after interviewing some eighty engineering students, found them to 

feel that they learn best from visual or previously understood concrete mathematical 

examples. The preferences expressed by the students in this investigation tend to agree 

with this. Diagrams such as lb. If, 2f and 3f were consistently popular choices with 

both engineers and mathematicians. Comments such as : 

• Pictures represent a thousand formulae! (physics graduate, pilot study), 

• Representation is preferably visual for me (practising engineer), 

• I prefer to visualise the effect and then calculate the how and why. (engineering 
graduate, pilot study) 

• (pinball question) I used f to visualise the problem. Once the problem was sorted In 
my mind I then put the mathematics around the picture In my mind, (engineering 
graduate, pilot study) 

• (Ql) I can understand (number crunch) e & c, but I prefer to visualise d & f. 
(engineering graduate). 

• (Ql) b, f is how I think about the problem, visualise, (engineering graduate) 
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• graphical representation shows response and allows visual comparison against others, 
(engineering graduate) _ . ' : • .' 

• I always have a graph in my ihind first, then I really think about the problem, 
(engineering graduate) 

• I would rather have a drawing... (final year engineering student) 

• Visible representation important (final year engineering student) 

show the respondents thinking of themselves as visual people. 

Some diagrammatic options, however, were not popular. 

In question 2 option (a), the statement "/'(x) is the slope of the tangent to. a graph oiy 

against x" was the most popular with all students and in-question 4 the most popular 

response was (a), the statement "q is the area under the curve y=x" although diagrams 

were available as options. 

In question 3 the phase plane diagram was among the least popular, although a 

respondent on the pilot study commented "Never seen c before. It's good if that is a 

valid representation of the problem" (final year engineering student, pilot study). In 

question 4 options (c) and (e) were less popular than option (a) quoted above and in 

question 2 option (b) remained in the middle of the field. 

In other words, although the respondents declare themselves to be visual people in 

general, options such as 2(a) and 4(a) which are sentences which are virtually drilled.into 

learners of mathematics at an early stage are hard to dislodge as the correct and 

automatic response, and an unfamiliar graphical representation is not generally-

acceptable, for example: 

• c shows nothing unless you specifically studied the subject, (final year engineering 
student) 

• b, c and d do not convey the meaning at all well unless you have a detailed 
understanding, (final year engineering student) 

• Unfamiliar with c (engineering graduate) 

• I have never come across answer c. (engineering postgraduate, pilot study) 

• c, d, b don't mean much to me. (engineering postgraduate, pilot study) 

• c means nothing to me (engineering postgraduate, pilot study) 
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• I have never come across a representation of this type of question as shown in figure 
c. (final year mechanical engineering student, pilot study) ' . • 

but on the other hand, the representation is valued by those to whom it is familiar: 

• c defines/represents both velocity and displacement whereas f represents only y with 
time, (engineering postgraduate, pilot study) 

• f perfectly describes for me a damped osc. c is what I would use next because it gives 
more better {sic) information, (first year computer systems engineering student, pilot 
study) 

and also by some who, though not. having seen the representation, can see it has ' 
possibilities: 

• Never seen 'c' before. It's good if that is a valid representation of the question, (final 
' year engineering student, pilot study) 

We also find comments such as: 

• Words first to get an idea of the problem. Then a 'diagram'. Then some maths = 
Greek! (engineering graduate, not a Greek student) 

• as an engineer I tend to represent problems like this first verbally, then graphically, 
and as a last resort mathematically, (engineering graduate) 

• Written and graphical solutions seem easier (final year engineering student) 

which show the respondents representing themselves primarily as verbal, then as visual 

thinkers. 

6.6 Attitude to mathematics 

In addition to the above comments on their feelings about mathematics, some 

respondents made some more trenchant observations on the relation of mathematics to 

the engineer. 

• Having not used calculus for 18 years, I'm guessing here (practising engineer) 

• I have managed to forget differential equations for the last 40 years with great success! 
(practising engineer) 

• I can't remember how differentiation works (so I've guessed) (engineering graduate) 

• I've never really seen a link between the maths and the results of engineering and 
understanding, (engineering graduate) 

• Not mathematically inclined (engineering graduate) 

• (Q6) This makes me realise how long ago I did my engineering maths course and how 
little I've used it since!!! (engineering graduate) 

• I was never very good at integration. Couldn't learn the tricks, (engineering lecturer, 
pilot study) 
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• Differential equations for engineers are on a need to know basis. For exams I needed 
to know, now I don't! (engineering graduate, pilot study) 

•" (differential equations question) I may be an engineer but to be quite honest, formulas 
like that are a complete waste of-time and energy, (final year engineering student, 
pilot study) 

• I am more practical than academic and I hate maths! (engineering graduate, pilot 
study) 

• I don't know much about maths. A l l I know is about big bits of metal, Cheyy- V8's 
and Holley carburettors. The only maths I can do is what the magic calculator can 
do. (final year engineering student, pilpt study) . . • • • 

It is worth bearing in mind that all the engineering graduates surveyed are enrolled on a 

course of postgraduate study, either MPhil, MSc or MBA, so they cannot be regarded as 

study-phobic. 

Almost identical statements come from a student who was interviewed in the evaluation 

of the courseware as reported in chapter 15. 

• "Well, given a reference, I'm happy enough with understanding the calculus- I've 
forgotten all the transforms myself. 
When you use them a lot you know them, you just click them in, but I've forgotten 
all that. 

• My maths is very rusty-1 haven't been using it for a year and I haven't had to use it 
so far this year. 

• I haven't been using any maths for the last year being on placement so my maths is 
very rusty. 

• I'm trying to avoid mathematics this year. 

These comments may be summarised as: 

• Mathematics is found in books, 

• Real engineers don't use mathematics in their jobs, 

• Mathematics is something you learn for exams and then forget. 

These comments are reflected in the overall low popularity of algebraic forms of 

options: 1(c) and (e), 2(d), 3(b) and (d), 4(f), 5(c), and the short lists in the responses to 

Q6. 

Another aspect of the attitude to mathematics is that the engineering respondents regard 

themselves quite strongly as practical, applied people. In addition to the last two 
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comments quoted from the questionnaires above, we have remarks such as the 

following,, showing a feeling that engineering knowledge is applied knowledge. 

• • Only the old fashioned mechies are likely to know what a dashpot is. And anyone 
who has worked on a Stromberg carburettor, (engineering lecturer, pilot study, 
response to mass-spring-damper question) 

• "When you hit a big bump at 80 mph in your 5.0 litre "V8 Landrover, it goes 'bang' 
and it launches to the moon. When it lands it goes 'bang' again, (final year 
engineering student, pilot study, response to mass-spring-damper question) 

• Derivative of y is what? Derivative of x is what? Are they voltages, decibels, time, 
frequency or APPLES? (final year engineering student, pilot study, in-response to 
differentiation question, in which the word 'derivative' does not appear) 

6.7 Depth of representation 

Changes may occur as a direct response to teaching, or else as a result of use and 

familiarisation, resulting in the maturing of concepts. This would be characterised by a 

greater meaningfulness of concepts, a greater richness of associations between concepts 

and an encapsulation of the concepts. 

6.7.1 Growth in meaning 

In Q2, option (c) states that dy/dx tells you how quickly something is changing. This 

option gains steadily in popularity after the first year in the engineering groups, but not 

in the mathematics groups. A n engineering graduate commented, having completed the 

questionnaire, that he learned to understand the differential as a rate of change during 

his year of industrial experience, and that was when the idea gained meaning for him. 

Other comments from the questionnaires on this option are: 

• My extra learning has taught me that dy/dx = gradient which I now understand as a 
rate of change in a business environment, (engineering graduate) 

• c is the overriding image in my mind, (engineering graduate, pilot study) 

• c is how I subvocalised the question, (engineering graduate, pilot study) 

In the engineering graduates, (c) is the most popular option, but in the practising 

engineer group it has just been overtaken again by (a), the slope of the tangent. 

115 



i 



The corresponding option in Q4, "The integral tells you how things build up" 

(option(d))" is the least popular option with both engineering and niathematics 

undergraduates, but whereas its popularity decreases from the first to final year 

mathematics students, among the engineering groups its popularity increases steadily. 

This could be interpreted as a steady increase in the meaningfulness of the concept in 

engineering applications, and its lag compared with the corresponding option 2(c) may 

be explained by the wiay integration depends as a concept on that of differentiation. 

Understanding of integration follows that of differentiation: individual making of 

meaning in integration also seems to follow that in differentiation. 

6.7.2 Richness of association 

Changes in popularity across the first four groups of engineers tested and across all three 

groups of mathematicians can more confidently be attributed to development, since 

their experiences of higher education have all been comparatively recent, and similar. 

Comparisons with the practising professional engineers are more problematic as these 

latter graduated in general in 1978, and from old universities, so their experience of 

higher education was different from the younger groups. "Where we see a trend across 

the first groups not continuing into the last group, we cannot predict whether the 

present engineering graduates are likely to show the same characteristics in, say 15 years' 

time. 

An example of this sort of trend is option 4(f), the integral interpreted as the inverse of 

differentiation. There is a steady increase in popularity across the first four groups 

which I would like to interpret as an increase in the depth of representation as the 

concept of integration becomes more related to that of differentiation. 
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6.7.3 Encapsulation 

It seems that one of the ways in which knowledge changes as expertise is developed is-

that the concepts become more richly related, and that groups of related concepts are 

chunked together within a group. The richness of association has been discussed above; 

the chunking together or encapsulation follows from that stage. Several authors refer to 

this process in different ways, SQ for instance we have Tail's procept (Tall specifically 

refers to procepts as encapsulation in Tall, 1995), Anderson's knowledge compilation 

(1982, see Royer et al, 1993) j Schoenfeld's heuristics and algorithms (1985), and Bandura's 

schema construction {1977). The interest in concept images in this case is to discover the 

indexical image: that is the image which is used by the individual as a label which evokes 

the schema as a whole. In semiological terms, we are looking for the most powerful 

signifier for the concept. 

We also see that respondents may be aware of having more than one evocative image, 

depending upon context. 

In the responses to the questionnaire, the options which appear to relate to 

encapsulation are Id ("A simply supported beam...") and 3e ("Damped harmonic 

response"), where the given case is expressed as a particular instance of a class whose 

general solution is known. 

6.8 Conclusions 

6.8.1 On the analysis of the results. 

The questionnaire yielded two types of empirical materials. The data on preferences was 

basically quantitative, although quantitative data about a qualitative subject (such as 

preferences) is a problematic entity. Some statistical analysis on this data was possible, 

and some more will be examined in the chapter on component analysis, but the small 
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size of some of the groups (particularly after the first year groups) meant that interesting 

results were not statistically significant enough to make strong-statements about them; 

One reason why it was difficult to obtain large numbers of responses from the final year 

students is that it was difficult to locate groups being taught together, as they tended to 

have opted for different module choices in the final year. In the first year it was much 

easier to find large groups of students being taught together. The decline in numbers of 

responses from the first to the final year is thus not solely due to dropout from the 

degree courses. 

The analysis of the themes brought out by the comments is basically qualitative, 

although it is possible to perform quantitative analysis such as comparison of the 

frequency with which themes are mentioned. Again there are not really enough 

responses here to justify such an undertaking. 

. 6.8.2 On the mathematical representations of engineering students. 

The engineering students, although in general they appear to regard themselves as visual 

people, seem to prefer verbal representations of mathematical concepts. This may be 

because they truly do prefer verbal representations, or may be because their individual 

visualisations are idiosyncratic and do not coincide with the diagrams presented to them. 

In "mechanics" questions the diagrammatic representations are the preferred option. As 

Presmeg (1986) and Tall (in Tall, ed., 1991) point out, visualisation is not generally 

encouraged in tackling mathematics problems, and so there are few standard 

mathematical diagrammatic representations. Mathematical pictorial representations are 

private. 

In mechanics problems. In contrast, drawing a diagram is the first stage of the standard 

solution procedure. A well as being "approved by authority", mechanics diagrams have 

standard, public forms which are easily recognised by students and reproduced by the 
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designers of questionnaires. 

In all the questions, there was a scatter of preferred options. Although we can generalise 

about a group having a preferred option, very rarely was that option preferred by the 

whole group. In some cases, an option which was preferred by some members of a 

group was strongly rejected by others. 

6.8.3 On the questionnaire. 

Different questions yielded different types of results. 

Question 1 revealed two unexpected sets of misconceptions. The rigidity misconception 

is well known, but the wrongly estimated shape of the bent beam is not well 

documented. The practical importance of the misconception is probably slight, given 

that the people who hold it have presumably never had an experience which would 

cause them to change their minds. It is also a reminder that misconceptions are a part of 

the mental luggage of most of us. 

Questions 1, 4 and 6 also showed changes in responses as a result of teaching. This is an 

encouraging result, in that such changes could be seen at all. New learning can be seen 

as a sharp peak in the popularity of an option, shortly after its acquisition, which falls 

off afterwards. 

Question 2, and to some extent question 4, showed changes in the engineering students' 

responses as a result of experience. Learning" through experience is shown as a gradual-

rise in the popularity of an option, without there necessarily being a drop afterwards. 

These changes (in response to teaching and to experience) did not appear in the same 

way in mathematics students' responses, so it may be concluded that they were 

particular to the engineering students and not part of the general process of maturation 

through a university degree course. It is not suggested that there are no changes in 
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mathematics students' mathematical ideas: the target concepts used in this study were 

chosen tQ be particularly appropriate to .engineering students rather than to niathematics 

students. 

.Question 3 showed strongly polarised reactions to a graphical representation, the phase 

plane diagram. Among those who were familiar with it, and perhaps some who were 

not, it was a popular option. Amongst most of those who had studied the topic of 

damped harmonic motion without using the representation it was strongly rejected. 

One of the themes emerging from the comments was the increased confidence with 

which options were rejected by those who had studied a subject. 

Question 6 produced comments from students which revealed some attitudes to 

mathematics: that mathematics has correct and incorrect answers, that most 

mathematics is not really relevant to engineers and that mathematics can be found by 

looking in the appropriate texts. 
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7. Component and factor analysis 

7.1 Introduction 

The interpretation of the responses in the previous chapter depended on considering the 

set of responses to each question as a separate entity. In order to look for patterns in 

responses from question to question, we may turn to component analysis. This is an 

analysis of the correlations between variables: it does riot claim to address causal 

- relationships but rather seeks to identify patterns in the relationships between variables. 

In this chapter we will review the theory and process of component and factor analysis, 

and in the next chapter we will examine the results of component analysis on the 

responses to the questionnaire. 

7.2 Factors in statistics 

The idea of factors enters into statistics in two distinct ways. In the first, the factors are 

already known, and their interaction is the object of interest: for example in the 

treatment of crops, the factors may be irrigation and use of fertilisers, or in mathematics 

teaching, the use of an explorational approach and the employment of graphic 

calculators. Experiments are designed such that the factors are applied and controlled 

for separately and in combination, and then the results from the different treatments are 

compared. It would be possible to divide the students who responded to the 

questionnaire into (a) mathematicians and engineers, and (b) first years (early and end) 

and final years, and regard those as treatment factors, and devise a criterion for 

examining their within-group and between-group variances. 

On the other hand, it may be impossible to carry out such controlled experiments, but 

nevertheless it may be felt that the patterns of correlation of experimental variables are 

showing that some underlying factors are operating. Under such conditions one may 
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try to induce the nature and relative importance of such factors through techniques 

known as factor or component analysis. It is in this second sense that we are interested 

in factors here. 

7.3 Objectives of component and factor analysis. 

As stated in the introduction, when it is suspected or hoped that underlying a number of 

variables there exists some simpler structure, component or factor analysis can bemused 

to induce what those components may be. 

Component analysis may also be used to identify variables in a. set of data which are 

essentially measuring the same thing, and which may give undue weight to that 

component when the variables are being used to group cases, as they may be in market 

research. For example, if out of a set of ten variables, two cases matched exactly on 

seven, but were different on three, it would be tempting to say that the two cases were 

very similar. If however component analysis revealed that these seven variables all 

loaded heavily on a single component, but that the other three were unrelated, then the 

two cases would in fact be identical on one variable out of four, and their perceived 

similarity would be much lower. 

A central aim of factor analysis is the "orderly simplification", to use Buri;'s 
phrase, of a number of interrelated meastires. 

. (Child, 1970, pi) 

The main purpose of PCA [principal component analysis] (or F A [factor 
analysis]) is to reduce a system of correlated variables to a smaller number of new 
variables which, one way or another, will be of use in dealing with a multivariate 
problem. 

Jackson, 1991, p424) 
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Factor analysis techniques can meet any of three objectives: 

. 1. Identify the structure of relationships among either variables or respondents... 

2. Identify representative variables from a much larger set of variables for use in 
subsequent multivariate analysis. 

3. Create an entirely new set of variables, much smaller in number, to partially 
or completely replace the original set of variables for use in subsequent 
techniques. 

(Hair et al, 1984, pp 368-371) 

It is always tempting to seek to simplify to find structure and order in data and it is one 

of the criticisms of'component analysis that it may show up spurious relationships 

which are a mere coincidence. On the other hand, if variables which have no apparent 

reason for loading on the same component turn out to do so, there may be a reason for 

it. For example, if shoe size, longevity and IQ load significantly on the same 

component, this may be a statistical vagary, or may reflect some other phenomenon 

such as early nutrition. The analysis itself will not distinguish between the possible 

explanations. 

7.4 What is component analysis? 

Component analysis Is a method of treating data to reduce Its complexity In an orderly 

and reproducible mariner. In order to extract some meaning and pattern. 

Factor analysis Is a generic name given to a class of multivariate statistical 
methods whose primary purpose Is to define the underlying structure In a data 
matrix. Broadly speaking. It addresses the problem of analyzing the structure of 
the interrelationships (correlations) among a large number of variables by 
defining a set of underlying dimensions, known as factors. 

(Hair et al, p366) 

The underlying idea Is described graphically by Alt (1990) and by Child (1970) in similar 

terms. A set of cases Is characterised by the scores of each measured on a set of variables. 

The correlations between the variables may be presented in a matrix. The terms in this 

matrix lie In the range -1< r < 1. If these values are regarded as the cosines of angles. 
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then the variables may be portrayed by vectors whose spatial relationship is defined by " 

the cosines of the angles between them. These vectors lie in a space of.up top 

dimensions, where p is the number of variables. (If any three vectors happen to be 

coplanar, the number of dimensions needed is reduced.) 

The "trick" in component analysis is to define a set of axes in, this space which better 

describes the space than the set of vectors arranged within it, and then to interpret what 

the axes, that is the factors or components, represent. 

The axes defined in a component analysis also correspond to the eigenvectors of the 

matrix under consideration. The largest eigenvalue corresponds to the first axis to be 

extracted, which is in the direction of the resultant of the vector variables. When all the 

(geometrical) components in this direction are subtracted from the variable vectors, the 

next axis is determined as the longest axis of the residuals, and so on. 

The size of the eigenvalue indicates the amount of the total variance which is accounted 

for by the component. The sum of the values of the eigenvalues is the same as the 

number of variables, and the number of components. However, certain criteria may be 

used to disregard the smaller eigenvalues, and thus to reduce the effective number of 

variables. The correlation between a variable and a component (the cosine of the angle 

between the variable vector and the axis) is-known as the loading of the variable on the 

factor or component. 

The analysis thus far will extract what are known as the principal factors or 

components. The next stage is to "rotate" the axes to try to optimise the loadings of the 

variables on the factors or components. Various techniques exist which seek to optimise 

the rotation according to different criteria but the most commonly used appears to be 

V A R I M A X , which attempts to align the axes so the sum of the squares of the loadings 

of the variables on the axes is maximised, subject to the axes remaining orthogonal. This 

124 





is then used to identify clusters of variables which appear to vary together, and use them 

to deduce the existence of the component which underlies: and affects them all. 

If instead of the self-correlations on the diagonal of the correlation matrix, an estimate of 

the "communality" of the variable is used, the axes are called factors. If the self-

correlation is used, the axes are called components. The distinction between factor and 

component analysis is discussed in 7.6 below. . 

7.5 How it works: practical considerations 

7.5.1 How many variables? 

Hair et al ̂ 373) recommend that the number of variables should be minimised while 

keeping five or more variables per proposed component if a given model is being tested. 

Component analysis is of most use in finding patterns of correlated variables, and a 

component consisting of a single variable will not show up strongly. 

7.5.2 Sample size 

A sample size of less than 50 is not recommended, and at least 100 is preferable. In 

general the sample should have at least five times as many observations as variables, and 

a ten-to-one ratio is more acceptable. Hair et al (p373) point out that with 30 variables 

there are 435 correlations in the component analysis. At a .05 significance level some 20 

of these may be deemed significant and appear in the component analysis by chance. 

Increasing the cases-per-variable ratio should minimise the chances of over-fitting the 

data. 

125 





7.5.3 Suitability of data. 

Given the above consideration, the data correlation matrix must havis. enough significant 

correlations to justify using component analysis. Hair et al (p374) recommend that 

component analysis should only be used if a "substantial number" of correlations greater 

than .30 can be found in the matrix. Alt (1990, p66) also recommends the use of .30 as a 

cut-off value. This represents a significance, of better than .01 for a sample size of 100. 

Other tests which the data should satisfy are the Bartlett test of sphericity, and the 

Measure of Sampling Adequacy (MSA). 

The Bartlett test calculates the statistical probability that the correlation matrix has 

significant correlations among at least some of the variables (see also Jackson p33 for the 

procedure of the test). The hypothesis is that the last (p-M) eigenvalues are equal, where p 

is the number of variables and k is the number of components to be retained. As the 

sample size is increased, the test becomes more sensitive to detecting correlations among 

the variables. 

The MSA is another measure used to quantify the degree of intercorrelations amongst 

the variables and the appropriateness of component analysis. The index ranges from 

zero to one and may be interpreted as follows: 

.90 or above, marvelous; .80 or above, meritorious; .70 or above, middling; .60 or 
above, mediocre; .50 or above, miserable; and below .50, unacceptable. 

(Hair et al, p374) 

Changes which cause the MSA to increase are: increased sample size, higher average 

correlations, increased number of variables and smaller number of components 

extracted. 

Individual MSAs may be calculated for each variable, and any which fall in the 

unacceptable range should be discarded before component analysis is carried out. In 
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their illustrative example, however (p393). Hair et al discard only enough low-scoring 

variables to bring the overall MSA above .50, while retaining two others whose 

individual scores are below .50. They regard the data set as acceptable because the 

overall MSA is over .50 and over half the correlations off the diagonal are significant at 

the .01 level. 

Jackson (p41) refers to Hotelling's "sand and cobblestone" theories of the mind, with 

regard to test batteries. A "cobblestone" situation is where a, few components fairly well 

characterise the data. "Sand" means that there are many low correlations and the major 

resultant components are small with some possibly indistinguishable. A "sand" situation 

is probably not suitable for this type of analysis. 

7.5.4 Correlations translated into angles between vectors. 

The variables may be regarded as vectors and the correlations between them as the 

cosines of the angle made by any two vectors. Thus If the correlation Is 1, the vectors 

are parallel and In the same direction, a correlation of -1 means the vectors are parallel 

but opposite, and zero means the vectors are at right angles. A correlation of 0.707 puts 

the vectors at 45°. 

The next stage In component analysis is to create a set of vectors whose directions are 

determined by the angles between them. It would be unusual for the angles to allow 

three vectors to lie In one plane, and In general we have as many dimensions as variables. 

In addition to the set of vectors, the analysis needs to define a set of axes by which to 

orient them. 
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7.5.5 How many components? 

Once the eigenvalues of the variable correlation matrix have been extracted, the decision 

must be taken as to how many of them are significant. There are several tests which 

may be used to determine this. They include the Scree test, the eigenvalue size test and 

proportion of variance explained. 

The Scree test is a graphical technique due to Cattell. The values of the eigenvalues 

(roots) are plotted against their corresponding root number. The term scree refers to the 

pile of rubble at the base of a cliff. The retained roots will correspond to the cliff and 

the rejected ones the rubble. The last few roots are much smaller than the first ones and 

are nearly equal in value. The scree test criterion is that the components up to and 

including the first of these should be accepted. The problem with the scree test is that 

the break between the cliff and the scree is not always well-defined, and in some 

applications there may be several breaks. This then means that personal judgement is 

needed to decide where to draw the line. 

Another criterion is that eigenvalues less than unity should be rejected. This 

corresponds to the mean root size for component analysis, and the argument is that any 

component rejected by this criterion will have a smaller root than the contribution of 

the average variable. Jackson (p47) describes this criterion as being widely used in the 

fields of psychology and education. 

Extracting components up to a given proportion of variance explained is not 

recommended by Jackson (p44), as "there is nothing sacred about any fixed 

proportion". Hair et al (p378) give the values for this criterion as varying between 95% 

in the natural sciences and up to 60% in the social sciences. 

Other reasons for choosing a given number of roots include the suspicion for extrinsic 

reasons that it is appropriate, or that the smaller roots consist of uncontrollable inherent 
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variability. There is no single accepted criterion for selecting the number of roots to 

extract. 

Hair et al (p378) point out that the first components will be those which are 

homogenous throughout the whole sample. Variables that are better discriminators 

between the subgroups in an inhomogenous sample will load on later components, 

which may not be selected according to. the above criteria. If the analyst is interested in 

identifying the components which discriminate between the subgroups, then extra, 

components should be extracted, which may be rejected in a later rerun of the solution if 

they do not prove useful. 

7.5.6 Interpreting the coinponents 

The first step in identifying what a component represents is to see which variables load 

significantly on it. Hair et al (p385) give a table (Table 7-1) by which to select the 

significant component loadings based on sample size. 

Component loading Sample size needed 
for significance at .05 

level 

.30 350 

.35 250 

.40 •200 

.45 150 

.50 120 

.55 100 

.60 85 

.65 70 

.70 60 

.75 50 

Table 7-1: Dependence of significance on sample size (Hair et al, 1984) 

However, they state that researchers often use a rule of thumb and work on practical 

rather than statistical significance. In this case component loadings less than ±.30 are 

ignored, and loadings of ±.50 are considered practically significant. As the loading is the 
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correlation between the variable and the component, the square of the loading is the 

amount of the variance of the variable accounted for by the component. Thus a loading 

of .5 means that the component accounts for a quarter of the variance of the variable. 

Loadings of the order of .80 are not typical and of are great practical significance. 

Some of the variables which load significantly on a component will be positive and some 

negative. 

7.5.7 From principal components to factors. 

The analysis has in fact been a principal components analysis. The axes we have found 

were defined by the eigenvectors of the correlation matrix, and were the principal axes 

of the space defined by the variables. These axes are unique, defined by the correlation 

matrix, and two researchers analysing the same data would arrive at the same set of axes. 

For this reason they are preferred by some researchers, as they are independent of the 

analyst, and so may be regarded as objective. Other researchers prefer to use factor 

analysis proper, which requires some subjective judgement, to define axes which may be 

more meaningful. For a discussion in depth of the differences and similarities between 

the methods, see Jackson Chapter 17 (pp 388-424) "What is factor analysis anyhow?". 

7.6 Relationship between factor analysis and principal components 

analysis. 

There are two basic models which can be adopted in factor solutions. They are 
known as the_^ctor analysis and the component analysis models. Without being 
too technical, the distinction is that in factor analysis some account is taken of 
the presence of unique variance whereas in component analysis the Intrusion of 
unique variance Is Ignored. In a component analysis the unique variance becomes 
merged with the common variance to give hybrid "common" factors containing 
small amounts of unique variance; but not enough in the first few important 
factors, according to some authorities, for us to be worried about the overall 
picture obtained from the analysis. 

(Child, p36) 
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The 'names' principal components analysis and factor analysis are frequently 
used in a fairly loose fashion in survey research to the extent, that when 
researchers have actually carried out a.prihcipal components analysis they often 
report that they have carried out a factor analysis. The reason for this is that the 
two procedures are quite similar, or, put another way, the differences between 
them are not immediately obvious. 

(Alt, p48) 

In most applications, both component analysis and common factor analysis 
arrive at essentially identical results if the number of variables exceeds 30 or the 
communalities exceed .60 for most variables. 

(Hair et al, p367) 

The method of principal components is primarily a data-analytic technique that 
obtains linear transformations of a group of correlated variables such that certain 
optimal conditions are achieved. The most important of these is that the 
transformed variables are uncorrelated. 

(Jackson, pi) 

P C A explains variability, F A explains structure or correlations. P C A is trying to 
reduce the diagonals of S [the sample covariance matrix], while FA is reducing 
the off-diagonals. 

(Jackson, p391) 

The term "factor analysis" is commonly used to describe any data analysis technique 

which seeks to distil a reduced number of variables to replace the experimental variables. 

Principal components analysis is however a computationally simple method which 

yields a unique solution. This makes it easier to use than factor analysis proper. 

Factor analysis requires that the self-correlations be replaced.by communalities, which 

have first to be estimated, and then a solution iterated towards. The communalities are 

estimates of the shared or common variance among the variables. The difference 

between the value of the communality and unity is an estimate of the error and the 

variance specific to that variable. The estimating of the communalities may lead to 

problems, as the iteration may lead to a value less than zero or greater than one, which is 

not allowed, and the Iteration process Itself may not converge after an acceptable 
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number of repeats. The first estimate of communality is often the largest value in each 

row of a correlation matrix (except of course the unity value on the diagonal). 

Another distinction lies in that in factor analysis the number of factors extracted affects 

the value of the estimated communalities, which in turn alters the matrix whose roots 

are being extracted. Thus the first root of a two factor solution will be different from 

the first root of a three solution, and so on. In. component analysis the matrix is not 

affected by the number of roots extracted, and so subsequent components simply . 

supplement the existing ones. The sum of the squares of the communalities equals the 

total proportion of the variance accounted for by the factors extracted. Various factor 

analysis methods are available in SPSS. They are described in Jackson pp 398-405. 
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8. Component analysis of the questionnaire data 

8.1 Introduction 

In chapter 7, the process of component analysis was described. The process was 

applied to the responses to the questionnaire to investigate the patterns of responses, 

particularly between responses to different questions. The responses to a question 

consisted of ordering the six options, which means that a degree of correlation 

between the options for any one question Is forced. It would not be surprising If the 

analysis threw up components consisting of responses to one question. Components 

showing correlations between options from different questions will be more 

interesting and more practically significant. 

The components derived from the analysis are then examined to find a possible 

interpretation of what each may represent, and the scores on each component for 

each group of respondents are found. Finally the component scores are used to 

determine canonical discriminant functions to see how far these scores can be used to 

sort the respondents back Into their original groups. 

It Is recognised that the questionnaire was not designed with component analysis In 

mind and this leads to the components being difficult to Interpret. This analysis leads 

to a redesign of the questionnaire which Is proposed in the next chapter. 

8.2 Typology and taxonomy 

It has been suggested that classification systems can be divided Into typologies and 

taxonomies (e.g. Meyer, Tsui and Hinings, 1993). Typologies start with theoretical 

considerations, predicting the groups into which individuals should be expected to 

fall, based on the known or expected available possibilities: for example, age groups, 

gender and previous education may be criteria according to which a theoretical 
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typology of students niight be built up. A taxonomy is a more empirical system 

based on observation and experience: the individuals are grouped according to 

characteristics -which appear upon observation. A particular group of students may 

be characterised, for example, by whether they ask many or few questions in class, or 

none at all. Either method of classification may yield similar groupings of 

individuals, while being, methodologically very different. 

A typological classification of the respondents may be made by dividing respondents 

into engineers and mathematicians, and by experience. The component analysis of 

the questionnaire results may however be regarded as resembling a taxonomy, as it 

may be used to classify the respondents according to observed features. We may then 

compare the results of the two types of classification. 

8.3 The analysis: in brief 

The questionnaire was not designed for comppnent analysis, and the number of 

variables is rather lower than the ideal five per component expected. These 

components were expected to correspond to the three modes of representation: 

verbal, visual and algebraic, to depth of representation, and to whether the question 

was a "mathematics" or "mechanics" question. 

At the same time the options were not designed to fall neatly into groups to 

correspond with expected components, with at least one option per expected 

component per question. However there was felt to be enough resemblance between 

some of the options to attempt a component analysis to see if any sense could be 

made out of it, with the caveat that one should beware of over-interpreting the 

components. 

Questions five and six were omitted from the analysis, on the grounds that they were 

felt to be unsatisfactory questions, and that they had no graphical options. This left 

134 





24 variables, and with 209 respondents the requirement of at least five respondents 

per variable was well fulfilled. Unhke many types of statistical analysis, component 

analysis copes well with a non-homogenous sample. The components which 

distinguish between clusters in the sample tend to have srrialler eigenvalues than 

components which are common to all clusters. 

The analysis was carried out using SPSS. The Bartlett Test of Sphericity yielded a 

value of 1301.2, significant at P < .00001, but the Measure of Sampling Adequacy 

(MSA) was only .23845 which falls short of the 0.5 value recommended by Hair et al 

(1984). This was an indication that the correlations between the options were not 

high in general, and that the data was not ideally suited to component analysis. 

However the solution recommended, that is to eliminate the variables with the 

lowest MSA values, would result in an unacceptably small number of variables 

considered, so the analysis was continued, but the results would be regarded with 

some caution. 

The scree test criterion indicated that a break point came at the tenth eigenvalue, 

accounting for 67.3% of the variance. The components were rotated using 

V A R I M A X to give ten components. At this level, none of the components was 

represented by less than two variables with a loading of 0.4 or greater, which was felt 

to be a satisfactory result. The "eigenvalues greater than 1" criterion also indicated 

that 10 factors should be extracted. 

The "sign" of the components has been left as SPSS designated, although some of the 

components would be more easily described with their polarity, reversed. This is 

mentioned at the appropriate points in the chapter. 
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Component Scree Plot 

5 7 

Component Number 

T5 1? 21 25" 

Figure 8-1: Component Scree Plot 

Component 
-> 

Optional' 

1 2 3 4 5 6 7 8 9 10 

3d 
3b 
3a 
2d 
2e . 

.78248 

.63327 
-.62050 
.55223 
-.45074 

.48014 

le 
Ic 
la 

.81308 

.79398 
-.47404 .47143 

4b 
4e 

-.72814 
.69476 

3f 
4a 

-.66201 
.54664 -.44838 

2c 
2f 
4d 

-.85996 
.60372 
-.52471 

3c 
3e 

-.75997 
.61661 

2a 
2b 

.77162 
-.63377 

4f 
4c 

-.79630 
.67916 

l£ -.77005 

lb 
Id. .40077 

.79043 
-.59284 

Table 18-1: Loadings of options on components 
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8.4 What do these components represent? 

The components were investigated to see (a) what they might represent and (b) how 

well they separated the respondents into either engineers and mathematicians or more 

and less mature practitioners. Options which load negatively on a component are 

shown in brackets. 

8.4.1 Component 1 

Option Loading 
3d y = ae~^ coscot .78248 

3b y + ky + (o^y = 0 .63327 

(3a) The mass bounces up and down, 
going less far each time, until it 

settles back to its original position. 

-.62050 

2d .55223 

(2e) As you zoom in more and more 
closely to a small section of the 

curve, it seems to straighten out. 
The slope of the tiny straight 
section is dy/dx at that point. 

-.45074 

Table 8-2: Loadings on component 1 

This component would be better described with its polarity reversed. It loads 

positively on unpopular options and negatively on more popular options. It is one of 

the more significant components because it brings together options from more than 

one question. It is also interesting that the options are from a "mathematics" question 

(Q2) and a "mechanics" question (Q3). 

The two most "wordy" options on the questionnaire are opposed to the most 

"algebraic" in the questions being analysed.' A positive score on this component 

would indicate comfort with algebra and dislike of informal verbal description. The 

mathematicians score more highly on this option as their level of experience 

increases, and the engineers seem to become more comfortable with the algebraic 
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notation as they progress, having preferred the verbal descriptions throughout their 

first year. However the practising engineers are less happy with the algebra, .and 

score similarly to the first year engineers. This phenomenon (the practising engineers 

resembling the first year students) recurs in this analysis, for example In components 

2, 5, 6, 7 and 8. 

Mean score for 
Component 1 
±1 standard 

deviation 
2 

Subject studied 

a Mathematicians 

N= 55 40 27 23 14 20 15 15 
At entry Final year Practising engineers 

End of 1st year MSc students 

Level of experience 

a Engineers 

Figure 8-2: Scores on component 1 

8.4.2 Component 2 

Option Loading 
le Shear force S = j Fdx 

Bending Moment M = IS 6x 
.81308 

Ic 
Bending Moment M = k^-^ 

dx 

.79398 

(la) The beam bends under the weight of 
the gold bar. 

-.47404 

Table 8-3: Loadings on component 2 

This option contains the two expressions which the engineers would meet for the 

first time in the course of their first year of study, and which mathematicians would 

probably not meet. Thus the score for the engineers jumps up over the course of the 

first year and then subsides to what might be regarded as its natural level. The 
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"jump" in postgraduate engineers is less easy to explain, but again the practising 

engineers resemble the first year engineers. A l l the variations are fairly small 

compared with those for component 6, for example. The component contains 

options from one question only. 

2.0 

Mean score for 
Component 2 
+1 standard 

deviation i Q 

Subject studied 

• Mathematicians 

Q Engineers 
N= 55 40 27 23 14 20 15 15 

At entry Final year Practising engineers 
End of 1 st year MSc students 

Level of experience 

Figure 8-3: Scores on component 2 

8.4.3 Component 3 

Option Loading 
(4b) 

(integration carried out) 

-.72814 

4e 

(area under curve diagram) 

.69476 

Table 8-4: Loadings on component 3 

This component contains options from question 4 only. It loads oppositely on two 

options which are different both in mode and in underlying concept. 
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The "integration carried out" option was most popular with the mathematicians on 

entry, and is different both in mode and in embodied concept from the "area under 

curve" diagram. At all levels of experience the engineers seem to prefer the diagram, 

particularly the postgraduates and practising engineers. The tendency to the negative 

among the undergraduate engineers may be due to sustained practice in integration 

during the degree course, with a positive trend afterwards as less is done. 

2.5 

Mean score for 2.0 
Component 3 
±1 standard 

deviation 

N= 55 40 27 23 14 20 15 15 
At entry Final year Practising engineers 

End of 1st year MSc students 

Level of experience 

Subject studied 

Q Mathematicians 

o Engineers 

Figure 8-4: Scores on component 3 

140 





8.4.4 Component 4 

Option Loading 
3a Tlie mass bounces up and down, 

going less far each time, until it 
settles back to Its original position. 

.48014 

la The beam bends under the weight 
of the gold bar. 

.47143 

displacement (y) • 

^ time(/) 

(displacement-time diagram) 

-.66201 

4a q Is the area under the curve y = x. .54664 

Table 8-5: Loadings on component 4 

This component contains options from three questions: "mechanics" questions 1 and 

3, and "mathematics" question 4. 

It loads positively on verbal options and negatively on a diagrammatic option. It 

appears to be a verbal-versus-vlsual component for mechanics questions, and also a 

shallow-versus-depth component, as the options on which It loads positively all 

decrease with level of experience. For the mathematicians the component scores are 

almost constant with level of experience: for the engineers the scores rise almost 

steadily- with a slight drop between the end of the first year and the final year of the 

degree. This drop may be due to a "new learning" peak (see conclusions to chapter 6) 

in that the damped harmonic motion graph would be relatively new material to 

engineering students In their final year. This option loads negatively on this 

component. 
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Mean score for 
Component 4 
+1 standard 

deviation 5 

N= 55 40 27 23 14 20 15 15 
At entry Final year Practising engineers 

End of 1 St year MSc students 

Level of experience 

Subject studied 

a Mathematicians 

o. Engineers . 

Figure 8-5: Scores on component 4 

8.4.5 Component 5 

Option Loading 
(2c) dy/dx tells you how quickly 

something is changing. 
-.85996 

2f y m 
.60372 

(tange 
X 

nt diagram) 
(4d) The integral tells you how 

things build up. 
-.52471 

Table 8-6: Loadings on component 5 

This component brings together the two "sensemaking" options from the 

"mathematics" questions and opposes them to an option which is different both in 

mode (diagram as opposed to verbal) and content (graphical interpretation as opposed 

to sensemaking). Given the orientation of the component (sensemaking is negative) it 

is not surprising that the engineering respondents tend to show a decreasing score on 

this component. The peak for engineering students at the end of their first year looks 
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like a "new learning" peak, but unless the diagram is met for the first time by the 

students during their first year, which seerns unlikely. It Is difficult to say what has 

caused it. 

1.5 

1.0 Mean score for 
Component 5 
±1 standard 

deviation 5 

0.0 

-.5 

-1.0 

-1.5 

-2.0 
N= 55 40 27 23 14 20 15 "15 

At entry Final year Practising engineers 
End of 1 st year MSc students 

Level of experience 

Subject studied 

o Mathematicians 

• Engineers 

Figure 8-6: Scores on component 5 

8.4.6 Component 6 

Option 
(3c) Velocity (dy/dx) 

Displacement 
(y) 

(phase plane diagram) 
3e 

Loading 
-.75997 

Damped harmonic response -61661 

Table 8-7: Loadings on component 6 

This is another option In which the practising engineers resemble the first year 

engineers more than they do the postgraduate engineers. There Is a clear trend across 

the first four groups of engineers away from the phase plane diagram and towards the 

concise verbal option. Some of the practising engineers and the postgraduates have 
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met the phase plane diagram in their studies, which could account for their not 

rejecting it as strongly as the undergraduates., 

2.0 

Mean score for 1.5 
Component 6 
±1 standard 

deviation 

Subject studied 

o Matliematicians 

• Engineers 
N= 55 40 27 23 14 20 15 15 

At entry Final year Practising engineers 
End of 1 st year MSc students 

Level of experience 

Figure 8-7: Scores on component 6 

8.4.7 Component 7 

Option Loading 
2a f'(x) is the slope of the tangent to a .77162 

graph of y against x. 
(2b) 3 

X 

-.63377 

(zoom in diagram) 

Table 8-8: Loadings on component 7 

The two options which load on this component are radically different 

representations of the derivative, one of which (2a) is commonly taught and the other 

(2b) is taught in, for example, SMP A level. The two options are also in different 

modes of representation. 

The greatest difference between the engineers and the mathematicians is at entry, 

where the mathematicians prefer the "slope of the tangent" option quite strongly. 
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2 

Mean score for 
Connponent 7 
+1 standard 

deviation 

-1 

-2 
Subject studied 

a Mathematicians 

• Engineers 
N= 55 40 27 23 14 . 20 15 15 

At entry • Final year Practising engineers 
End of 1 st year MSc students 

Level of experience 

Figure 8-8: Scores on component 7 

8.4.8 Component 8 

Option Loading 
(4Q -.79630 

(integration is tlie reverse of 
differentiation) 

4c .67916 

(integration carried out diagram) 

Table 8-9: Loadings on component 8 

Both these options come from- question 4, and show both different underlying 

concepts and different modes of representation. It is not possible to say which is 

more significant. It is possible that the peak in this component in engineering 

students at the end of their first years is a "new learning" peak associated with 

teaching about integration over the course of the first year. The practising engineers 

are very Uke the end of first year engineers in this component. 
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2.0 

Mean score for 15 
Component 8 • 
±1 standard 

deviation 

N= 55 40 27 23 14 20 • 15 15 
At entry Final year Practising engineers 

End of 1 st year MSc students 

Level of experience 

Subject studied 

• Mathematicians 

•. Engineers 

Figure 8-9: Scores on component 8 

8.4.9 Component 9 

Option Loading 
(4a) q is tlie area under the curve y = x. -.44838 

(If) Ixjadmg -.77005 

Reaction 2in|i Reaction mg 

(loads diagram) 
Id A simply supported beam with a 

point load at one-third span. 
.40077 

Table 8-10: Loadings on component 9 

This component does not seem to represent a diagrammatic-verbal opposition, but it 

does contrast naive and more mature concepts. 

I suspect that the low scores in this component for the engineers in their first year are 

a "new learning" peak, representing covering integration (end of first year) and beam 

bending (beginning of first year). It is difficult to say why the postgraduate and 

practising engineers drift back towards the first year level. 
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2.0 

Mean score for i 5 
Component 9 
±1 standard 

deviation 

N= 55 "40 27 "23 14 '20 15 15 
At entry Final year Practising engineers 

End of 1 st year MSc students 

Level of experience 

Subject studied 

_o Mathematicians 

o Engineers 

Figure 8-10: Scores on component 9 

8.4.10 Component 10 

Option Loadi in 
lb Deflected shape .79043 

Deflected shape 
(Id) A simply supported beam with a -.59284 

point load at one-third span. 

Table 8-11: Loadings on component 10 

This component opposes two options from question 1. The options are different in 

both mode and concept. Option Id was intended to be a form of encapsulation: the 

summary of the target concept as a member of a class of standard solutions. The 

deflected shape is somewhat unexpected, and may be more acceptable to more 

experienced engineering students. 
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2.0 

Mean score for 1.5 
Component 10 

±1 standard 
deviation 

Subject studied 

o Mathematicians 

• Engineers 
N= 55 40 27 23 14 20 15 15 

At entry " Final year Practising engineers 
End of 1 st year MSc students 

Level of experience 

Figure 8-11: Scores on component 10 

8.5 Discussion 

8.5.1 Canonical discriminant functions 

Given that the data is classified already according to the typology of subject studied 

and level of experience, the values obtained for the component scores for each 

respondent may be used to test how good a match the taxonomy of the component . 

analysis is to the typology. 

A form of regression analysis is used to obtain coefficients for linear equations in the 

component scores which best classify the cases back into their actual groups. Cases 

which are wrongly classified indicate overlap of the groups which cannot be resolved 

using the given variables. 

When such an analysis of the respondents was performed with SPSS using the 

component scores as the variables, the reclassification shown in Table 8-12 was 

obtained. 
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Predicted Group Membership . 
Actual No. of maths maths maths erig eng eng post prac 
Group Cases entry end 1st final entry end 1st final grad eng 

•yr. yr. eng 
maths 55 43 5 0 3 3 0 1 0 
entry 78.2% 9.1% 5.5% 5.5% 1.8% 
maths 27 10 10 0 3 1 1 2 0 
end 1st 37.0% 37.0% 11.1% 3.7% 7.4% 
maths 14 3 1 8 1 0 0 1 0 
final 21.4% 7.1% 47.1% 7.1% 7.1% 
eng 40 • 5 1 0 24 2 2 .r 5 

entry 12.5% 2.5% 60% 5% 5% 2.5% 12.5% 
eng 23 1 0 0 9 12 0 0 1 

end 1st 4.3% 39.1% 52.2% 4.3% 
eng 20 1 0 0 3 3 11 1 1 
final 5.0% 15.0% 15.0% 2.0% 7.0% 6.7% 

postgrad 15 2 0 1 2 0 2 7 1 
eng 13.3% 6.7% 13.3% 13.3% 46.7% 6.7% 
prac 15 2 0 0 3 2 0 1 7 
eng 13.3% 20.0% 13.3% 6.7% 46.7% 

Table 8-12: Comparison of predicted with actual group membership 

Each row shows the number and pecentage of the members of an actual group 

classified in each predicted group. A perfect classification would be a diagonal array 

with 100% in each diagonal cell (shown in bold). 

The percentage of "grouped" cases correctly classified is 58.37%, that is 122 cases; the 

number of cases where la mistaken for lb, or vice versa, in the correct subject is 26. 

Thus 148 or 70.8% of cases were almost correctly classified. This indicates that the 

overlaps between the groups are small. Although the components do not 

individually distinguish well between types of respondent, it appears that in 

combination they do. 

Of particular interest is that 5 of the engineering students at the beginning of their 

studies were classified with the practising engineers, and five of the practising 

engineers were classified with the first year engineers. This seems to indicate either 

that the practising engineers regress to mathematical Ideas of the type they held at the 

start of their studies (See the comments In chapter 6 from practising engineers on 
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trying to avoid mathematics) or that this group was originally so different from the 

Plymouth students that any comparison is invalid. 

Another interesting point is the overlap between the first year mathematics and 

engineering students. Of the first year mathematics responses, ten are mis-classified as 

first year engineering responses, and of the first year engineering responses, seven are 

mis-classified as first year mathematics responses. This overlap Indicates that the two 

groups are not completely disparate, but that there Is a degree of similarity between 

them. Either they have not been socialised Into their subject groups, or those 

students who have chosen the "wrong" subject have not yet dropped out. 

Clumping the groups together by subject studied gives Table 8-13. 

Predicted Group Membership 

Actual 
groups 

Mathematics 
Engineering 

Mathematics Engineering ' 
80 (44.1) 16 (51.9) 
13 (51.9) 100 (61.1) 

Table 8-13: Comparison of predicted with actual groups: (subject studied only) 

(Figures in brackets show expected random redistribution) 

The proportion of cases wrongly classified by subject studied was 13.9%. The value 

of for this distribution is close to 108, and the value needed for significance at the 

0.1% level for three degrees of freedom Is only 16.27. Hence the reclassification could 

be regarded as successful. Testing the significance at a finer level is problematic as the 

expected class sizes drop below five, at which point the calculation of % Is Invalid. 

8.5.2 The components 

The component analysis produced components which were interesting in two 

different ways: those which could be interpreted easily and those which distinguished 

significantly between groups. Component 5 fulfils both these criteria: It seems to 

represent an assignment of meaning to calculus ideas and It distinguishes significantly 
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between final year engineers and mathematicians in particular. It was satisfying that 

the two verbal options which load significantly on this component were associated by 

the analysis, and gave some confidence in the analysis. 

Six of the components loaded on options from one question only. These were 

components 2 and 10 which loaded on question 1, component 7 which loads on 

question 2, component 6 on question 3 and-components 3 and 8 on question 4. These 

all oppose different modes of representation, either algebraic and verbal (component 

2), algebraic and diagrammatic (Components 3 and 8), or diagrammatic and verbal 

(components 6, 7 and 10). These components were particularly difficult to interpret 

when they loaded on only two options (components 3, 6, 7, 8 and 10). 

In components 1, 2, 5, 6, 7 and 8 the practising engineers' scores seemed to revert to 

being like the first year engineering students'. This phenomenon would explain the 

way that the canonical discriminant function analysis failed to distinguish between 

these groups. Why the groups are similar is a question which requires further 

investigation to answer sensibly. 

8.6 Conclusions 

8.6.1 On the analysis 

Component analysis brought out some interesting features from the questionnaire 

results. In some ways the engineers and mathematicians appeared to be similar, in 

others they started different and became more similar, and others they started similar 

and diverged. 

The canonical discriminant function separated the groups of respondents with a fair 

degree of success, apart from the practising engineers and the engineering students at 

the start of the course. This result Indicates that It would be useful to survey some 
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University of Plymouth engineering graduates some 5-10 years into their careers to 

see if they also "regress" . 

Some of the components were easy to identify as meaningful: others, particularly 

those which loaded significantly on only two options, were difficult to interpret. 

This shows up the importance of having enough variables per component in the 

analysis. -

8.6.2 On the suitability of the data 

The results were not strictly suitable for component analysis, so the features 

identified must be regarded with caution. In particular the Measure of Sampling 

Adequacy (MSA) for the sample as a whole and for all the options except those to 

Question 1 was below the recommended level of 0.5. 

The number of components chosen was a compromise between accounting for 

enough of the variance of the sample (more components) and having enough options 

per component to identify the component (fewer components). As Hair et al (1984) 

point out, this is a matter of judgement, and ten components coincided with a break 

point on the scree plot, accounted for more than 50% of the variance and did not 

create any single-variable components. In addition, the rotation using SPSS 

converged within 25 iterations, and thus it was possible to perform the analysis with 

this number of factors. 

8.6.3 On the questionnaire 

The analysis has shown another way in which the questionnaire may be improved, 

namely by increasing the number of questions and by more consciously aiming the 

options towards particular components. This will be taken into account when 

redesigning Questions 5 and 6 in particular. 
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9. Revised questionnaire 

9.1 Introduction 

The component analysis described in the last chapter and the experience of 

administering the questionnaire described In chapter 5 showed that there were 

shortcomings In the questionnaire. On the basis of those results, and of the theory 

described in the previous chapter, the questionnaire was re-examined critically, and each 

question revised to follow a common format. In this chapter a set of six revised 

questions is proposed. 

Questions 1-4 are largely as before, with minor adjustments, except that the Invited 

response Is In the form of a 5-point Likert scale for each option. This has two benefits: 

It should make data Input easier and it makes the six scores for the options for a given 

question Independent. The diagrams have also been redrawn to improve the quality of 

the lines. 

It was felt that the use of a Likert-type scale would reduce the number of extreme ratings 

(as respondents tend to avoid the extreme ends of such a scale) and so with a smaller 

number of values for each variable, the Internal correlations would be higher and the 

number of factors would be reduced. 

There are now 36 variables which It Is hoped will be suitable for component analysis. 

This would allow for up to 7 components at a rate of 5 variables per component. The 

components which are anticipated are: mechanics/mathematics type question, depth of 

concept, algebraic mode, verbal mode and diagrammatic mode: that is five probable 

components. 

The space for comments has been retained as some of the comments returned by 

respondents have been so illuminating at various stages of the research. 
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The adjustments are as follows. 

9.2 Question 1: beam bending (statics) 

Option Ibj the deflected shape diagram: the load arrow now touches the line of the 

beam. A colleague suggested that he found this easier to understand. The consistently 

unpopular option le, two expressions giving the relationship between shear force, 

bending moment and applied loads in an integral format, is replaced by a pair of 

equations for the deflection of the beam, analogous to option 3d. 

9.3 Question 2: differentiation 

Option 2e, the "As you zoom in..." statement was an unpopular option which gave the 

question three verbal options with only one algebraic. It was replaced with a simple 

algebraic option expressing the idea that integration is the reverse of differentiation, 

analogous to 3f. 

9.4 Question 3: mass/spring/damper system (dynamics) 

Option 3c, the phase plane diagram was again an unpopular option. It was replaced 

with a diagram of the mass, spring and damper, which gave a simple diagrammatic 

representation, of the type which one might draw in beginning to solve the case, and 

analogous to option If. 

9.5 Question 4: integration 

Option 4b, the solved integral has been replaced with a statement of the integral as a 

limit, analogous with 2d. 
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9.6 Question 5: pinhall (unfamiliar kinematics) 

The options to question 5 were completely revised. Option 5b, a diagram of the forces 

acting on the ball while in contact with the spring, was given as analogous with options 

If and 3c. Option 5c is a statement about the motion of the ball using some technical 

language, analogous to options Id and 3e. Option 5d is a differential equation describing 

the motion of the ball while in contact with the spring, analogous to Ic and 3b. Option 

5e is a displacement-time diagram analogous with options lb and 3f. Option 5f is a 

simple statement in non-technical language about the behaviour of the system analogous 

with la and 3a. 

9.7 Question 6: differential equation: exponential growth 

Question 6 was also completely revised. Instead of six algebraic options there are now 

two algebraic, two diagrammatic and two verbal options, to match all the other 

questions. They have also been designed to match the options in questions 2 and 4. 

9.8 Revised questions 

The complete set of revised questions appears on the following pages. 
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9.8.1 Question 1 

A piank 1.5m long is placed on two bricks very near its ends. A bar of gold 
is placed across it 0.5m from one end. Score the following according to how 

well they represent this to you. 

(a) The beam bends under the 
weight of the gold bar. Nothing 

like it 
• • • 

Exactly 
right 

• • 
(b) Deflected shape 

Nothing 
like it 
• • 

Exactly 
right 

• • 

Nothing 
like it 
• • • 

Exactly 
right 

• • 
(c) 

Bending Moment M=k Nothing 
like it 
• • • 

Exactly 
right 

• • 
(d) A simply supported beam with a 

point load at one-third span Nothing 
like it 
• • • 

Exactly 
right 

_• • 
(e) 

o 

Nothing 
like it 
• • • 

Exactly 
right 

• • 
Load mg 

Nothing 
like it 
• • 

Exactly 
right 

• •• 
Reaction 2mp Reaction 

Nothing 
like it 
• • • 

Exactly 
right 

• •• 

Comments 
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9.8.2 Question 2 

4y 
dx 

All the below may be associated with the statement above. Please score them 
according to how closely they are linked to it in your mind. 

f(x) is the slope of the tangent to 
a graph of _y against x. 

Nothing Exactly 
. like it right 
• • • • • 

(b) 3 

X 

Nothing 
like it 
• • • 

Exactly 
right 

• • 

('^^ dy/dx tells you how quickly 
something is changing. 

Nothing 
like it 
• • • 

Exactly 
right 

• • 
(d) 

X j - X , 

Nothing Exactly 
like it right 
• • • • • 

(e) y=lf(x)6x 
Nothing 
like it 
• • • 

Exactly 
right 

• • 
(f) 

Nothing 
like it 
• • • 

Exactly 
right 

• • 
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9.8.3 Question 3 
A mass suspended from a spring and dashpot is pulled down from its 

equilibrium position and released. Please score the following according to 
how they best match this for you. 

(a) The mass bounces up and down, 
going less far each time, until it 

settles back to its original 
position. 

Nothing 
like it 

• • • 
Exactly 

right 

• • 

(b) y + ky = (O^y = 0 Nothing 
like it 

• • • 
Exactly 

right 
• • 

(c) 

telm 

Nothing 
like it 
• • • 

Exactly 
right 

• • 
(d) y = Ae~^ coscot Nothing 

like it 
• • • 

Exactly 
right 

• • 
(e) Damped harmonic response Nothing 

like it 
• • • 

Exactly 
right 

• • 
(f) displacement 0') 

A A - -
Nothing 
like it 

Exactly 
right 

• • • • • 
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9.8.4 Question 4 

(f) below may all be associated v 
according to how closely the 

rdjc. 

/ith this statement. Please score them 
!y fit the way you think of it. 

(a) q is the area under the curve 
y = x. 

Nothing Exactly 
like it right 
• • • • • 

(b) ^ = lim(a,^o)E^^ Nothing Exactly 
like it right 

• • • • • 

Nothing Exactly 
like it right 
• • • • • 

The integral tells you how things Nothing ' Exactly 
buildup, like it right 

• • • • • 
(e) y 

Nothing 
like it 

Exactly 
right 

X • • • • • 

(f) 
— = x 
dx 

Nothing 
like it 

• • • 
Exactly 

right 
• • 

Comment? 
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9.8.5 Question 5 

In a pinball game, a ball is fired by releasing a taut spring behind it, 
propelling the ball out at speed. Score the following according to how well 

they represent this to you. 

(a) y ^ Yoj cosinusoidal motion 
y > yo; parabolic motion. 

Nothing 
like it 

.. • • • 

Exactly 
right 

• • 
(b) 

. mg 

Nothing 
like it 
• • • 

Exactly 
right 

• • 
(c) The ball is accelerated against 

gravity by the spring until the 
spring reaches its equilibriuni 

position, then rolls up and down 
the slope under gravity. 

Nothing 
like it 
• • • 

Exactly 
right 

• • 

(d) my = k(yQ - y) - mgsinQ 
while in contact with the spring. 

Nothing 
like it 
• • • 

Exactly 
right 

• • 
(e) Displacement 

y 

(cq" position 
ofspring) 

Nothing 
like it 
• • • 

Exactly 
right 

• • 

Displacement 

y 

(cq" position 
ofspring) 

T ime / 

Nothing 
like it 
• • • 

Exactly 
right 

• • 
(f) The flirther you pull back the 

spring, the faster the ball will go. Nothing 
like it 
• • • 

Exactly 
right 

• • 
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9.8.6 Question 6 

—=x 

Score the options below according to how closely they resemble the way you 
think about this equation. 

(a) dx 
dt Nothing 

like it 
• • 

Exactly 
right 

• • 
(b) Exponential growth Nothing 

like it 

• • • 
Exactly 

right 
• • 

(c) 
dl 

/ 

/ix Nothing 
like it 

• • • 
Exactly 

right 
• • 

(d) 
x = Nothing 

like it 

• • • 
Exactly 

right 
• • 

(e) X 
x = ke' / 

t 

Nothing 
like it 

• • • 
Exactly 

right 

• • 
(f) The quantity x is snowballing at 

an ever-growing rate. Nothing 
like it 
• • • 

Exactly 
right 

• • 

Comments 
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10. Engineering Students 

10.1 Introduction 

In the previous chapters, it has been shown that there do appear to be differences 

between the engineering and mathematics students studied. In the past, other 

researchers have looked at different aspects of differences between engineering 

students and other groups to see what makes them, special. This choice has been 

motivated by various reasons. 

Engineering students are perceived as being "different". Engineering is an. applied 

discipline, and engineering students want to "be engineers" rather than to "study-

engineering". It is also, despite Finniston (1980), predominantly seen as masculine. 

(See Galbraith, 1992; Wilson et al, 1993; Ethington, 1988; Hackett et al, 1992). 

Most universities have engineering students, and in some places (Cambridge, for 

example) this is the largest single group of students in the university. Thus 

engineering students are accessible to many investigators, whereas students of say, 

Sanskrit, are harder to come by. These two reasons make engineering students a 

popular control group to compare with other disciplines, (e.g., Mikellides, 1989; 

Galbraith, 1992) 

Engineering as a discipline is perceived by some as important for the social and 

economic welfare of the nation, in maintaining and improving the physical 

infrastructure and the health and innovation of manufacturing industry. The 

Finniston report pointed out a possible future shortfall in engineering graduates in 

the UK, and despite an expansion in the number of university places for engineering 

students, In autumn 1995, 11.3% of employers were having problems recruiting 

engineering graduates (Careers Research and Advisory Service, CRAG, 1996, p82). 
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10.2 The engineering student 

Students of engineering liave something of a reputation for being an extreme type, or 

a breed apart. Numerous studies seem to confirm this stereotype, for example by 

using engineering students as a comparison group (see for example, comparison with 

elementary teaching students (Galbraith, 1992), architectural students (Mikellides, 

1989), commerce and social science students (Guimond and Palmer, 1990)). In her 

study of "the young worker at college" Venables (1967) found that engineering 

students even differed physically from the run of students. 

The young engineers were predominantly muscular in body build: many more 
people who were either long and thin, or fat, turn up in the University 
population (p53)... Most students in mechanical engineering expressed a 
preference for a muscular build and those who were only marginally in this 
category tended to see themselves as more muscular than they actually were 
(pl61). 

Venables (1967) 

Where personality is concerned, Crowther (1997b) describes the majority of 

engineering students as "phlegmatic, practical"people" who "consequently... show 

steady, reliable and extremely practical characteristics". 

10.3 Learning Style. 

It is the general experience of teachers that students respond differently to the same 

lessons. Students are individuals, and apart from any differences in ability, they bring 

their own history, and their own preferences to learning. These preferences are 

broadly summarised as personality types or styles, and when they affect the way 

students learn or approach learning, they may be called learning styles. 

In this section are described three different measures of personality types portraying 

engineers as an extreme type when compared to students of other subjects. The 

measures are independent and do not come from the same family tree. 
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10.3.1 Kolb's Experiential Learning Model 

Kolb (1981) devised a model of experiential learning in which learning is conceived as 

a four-stage cycle. Concrete experience (concrete stage) is the basis for observation 

and reflection (reflective stage) from which an idea or theory is formed (abstract 

stage). The implications of the theory can be tested (active stage), leading to new 

concrete experiences (concrete stage again). 

Concrete 
. Experience 

Active Reflective 
Experimentation Observation 

Abstract 
Conceptualisation 

Figure 10-1: Kolb's Experiential Learning Model 

Effective learners need to develop skills in all four areas, but as two pairs of polar 

opposites of capabilities are needed (concrete-abstract and active-reflective) learners 

will tend to be better at one part of each pair than the other. These characteristics 

can be regarded as lying on a pair of orthogonal axes, and individuals characterised 

according to the quadrant into which they fall. 

The instrument devised by Kolb for measuring learning style differences along the 

two basic dimensions is a self-descriptive inventory called the Learning Styles 

Inventory (LSI). The earlier form of LSI consisted of groups of four adjectives. 

Respondents were asked to rank these in the group according to how accurately they 

felt the adjectives described them. A later revision consisted of sentences starting in 

such ways as "I learn best when..." with respondents ranking the four alternative 

endings for each sentence. 

Thus he describes four types of learners. (Table 10-1) 
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Preferred styles Key strengths Preferences 

Convergers active 
experimentation 
and abstract 
conceptualisation 

Concrete application of ideas. Prefer to solve problems 
which have a single right 
answer and to deal with 
things rather than people 

Divergers concrete experience 
and reflective 
observation 

Viewing a concrete situation 
from many perspectives, and 
generating ideas 

Interested in people and tend 
to be imaginative 

Assimilators abstract 
conceptualisation 
and reflective 
observation 

Producing theoretical models Less interested in people than 
ideas, and less interested in 
practical applications than in 
the soundness of theories 

Accommodators concrete experience 
and active 
experimentation 

Carrying out plans and 
experiments: more at home 
•with taking risks than people 
with the other three learning 
styles 

Doers:when the theory does 
not match the evidence, they 
will tend to discard the 
theory 

Table 10-1: Kolb's classification of learning styles 

Kolb administered his Learning Styles Inventory to a sample of 800 practising 

managers and undergraduate students In management, and related their learning styles 

to their undergraduate major subject. He found that although they shared a common 

occupation, their learning styles were strongly associated to their undergraduate 

educational experience. He found that only two groups of managers fell into the 

abstract/active convergers quadrant: nurses and engineers. Business majors appeared 

as concrete/active accommodators, human scientists as concrete/reflective divergers, 

and mathematicians, physical scientists and economists as abstract/reflective 

assimilators. He then turned to data produced In other studies. 

Biglan (1973) had administered questionnaires to faculty members In the University 

of Illinois, asking them to group together subject areas on the basis of similarity, 

without any labelling of the groupings. Biglan Identified dimensions to account for 

the similarity groupings. He found that the dimensions accounting for the greatest 

variance In the data could be described as hard-soft and pure-applied. Kolb identifies 

these with his abstract-concrete and reflective-active axes, and finds striking 

similarities between the distribution of Biglan's subject areas and his college majors of 

managers on these axes. For example, engineering falls Into the hard/applied 
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quadrant, accounting and finance (reckoned as equivalent to business) into 

soft/applied, human sciences in the soft/pure quadrant, and mathematics and physical 

sciences in the hard/pure area. 

Finally Kolb analysed the results of the data collected by the Carnegie Commission 

on Higher Education in their 1969 study of representative American colleges and 

universities. Some 32,963 questionnaires from graduate students in 158 institutions 

and 60,028 from faculty members In 303 institutions had been tabulated, and he 

found proxies for his axes in the degree of consulting work carried out by the faculty 

(active/reflective axis) and the importance of mathematics or humanities as 

prerequisites for students in their faculty (abstract/concrete axis). When faculties 

were plotted against these axes, he found, once again, that engineering fell in the 

abstract/active quadrant, human sciences in the concrete/reflective area, and 

mathematics and natural sciences in the abstract/reflective quadrant. Subjects in the 

concrete/active area included law, medicine, education and architecture, not covered 

in his original survey. 

He concluded that different faculties do indeed have different cultures, and that what 

constitutes knowledge in fact varies widely from one to another. From his analysis, 

engineering stands as an extreme group, removed from mathematics and natural 

sciences, in its dominant philosophy, theory of truth, inquiry strategy, typical 

inquiry method, how knowledge is portrayed, and basic units of knowledge. 

Correspondingly, it Is studied by students with different priorities, skills and 

personalities. Above all, students with preferred learning styles which do not match 

those of their faculty become unhappy, alienated, and likely to drop out. 

Brown and Hayden (1989), in a study on two different types of higher education 

Institutions, administered Kolb's Learning Style Inventory to 222 students of arts 

(liberal arts, fine or applied arts), science (mostly coiriputer science or mathematics), 
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and business, plus 16 engineering students from one of the institutions. They found 

that, in Kolb's classification, 0% of the engineering students were accommodators 

(compared with 39% of science students), 31% divergers (39% in science), 25% ' 

assimilators (14% In science), and 44% convergers (7% In science). (The distribution 

of the engineering students Is not significantly different from an even distribution at 

the 5% level, using a x^test.) The other subject group most closely resembling the 

engineering students were business students at the same Institute of Technology, 

where the view of education was narrow, seeking to prepare students for careers. The 

authors comment that the group of engineering students particularly well supported 

Kolb's theory. Overall, convergers were the smallest group at either Institution, so 

engineering students differed as a group not only from the science (computer science 

and mathematics) students but from the student body taken as a whole. 

10.3.2 Myers-Briggs Type Indicator 

McCauUey (1976) used the Myers-Briggs Type Indicator (MBTJQ, based on Jung's 

analysis of personality types, to ascribe classifications to 3362 students across 17 fields 

of study at the University of Florida. She found that on almost all the criteria within 

the Indicator, engineering students occupied extreme positions, and that the results 

were statistically significant at the 1% level or better. For example, 63% of 

engineering students preferred introversion to extroversion, compared to 48% of the 

total student sample, and exceeded only by pharmacy, where 69% preferred 

Introversion. Of physical sciences students, 51% preferred Introversion. 

Extroversion is that attitude where attention flows out to the objects and people of 

the environment, and Introversion Is where "energy flows from the object back to the 

subject". In the population in general 25% prefer introversion. 
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On the perceiving (sensing/intuition) axis, engineering students occupied a moderate 

position, 51% preferring intuition, compared to 53% of the total sample, and 66% of 

physical science students. This was the only axis on which engineering students did 

not differ widely from the whole sample. Sensing and intuition are two different 

ways of perceiving. Sensing is perceiving through observation, and grounded in what 

is observable and real. Intuition depends on the "mind's eye", through which one 

sees also relationships between events, and also imaginatively. The general 

population is evenly divided in its preferences on this axis. 

The judgement axis in Jung's theory is divided into thinking and feeling. Thinking is 

the application of rules of cause-and-effect and objective analysis, and feeling is a way 

of prioritising which takes into account the human side of problems, and their 

solution. Of the engineering students, 53% preferred thinking, compared with 55% 

of physical science students who preferred feeling, and 63% of the whole sample who 

preferred feeling. No other group of students had a majority of thinkers. 

The final preference in the typography is between perceiving and judging. In a 

judging attitude, we take in just enough information to make a decision. In a 

perceiving attitude, we are in no hurry to decide, but take in all there is to know 

about a situation. Engineering leads the field with 63% of students preferring 

judgement, while the whole sample is evenly balanced, and 58% of physical science 

students prefer judgement. 

As a whole, engineering students can be characterised as thinking judging (TJ) types, 

described by McCaulley as the most tough-minded of the types,, although, as she 

points out, there are people of every type studying engineering. They also differ 

from physical science students, who are markedly more intuitive, less introverted, 

more inclined to feeling, and less judging. Unfortunately, mathematics students, with 

whom engineering students are often compared, did not feature in this survey. 
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10.3.3 Approaches to Studying 

Ramsden and Entwistle (1981) carried out a survey of 2208 students from 66 

departments of Engineering, Physics, English, History, Psychology and Economics in 

British higher education institutions. They investigated student attitudes to learning 

and their perceptions of their departments. Their study is thus one of attitudes rather 

than an underlying style. The results for engineering students (as compared with 

students of the other five disciplines in the study) were as shown in Table 10-2. 

APPROACHES TO STUDYING 
Meaning. Orientation 
Deep approach 
Inter-relating ideas 
Use of Evidence 
Intrinsic Motivation 
Reproducing Orientation 
Surface Approach 
Syllabus-boundedness 
Fear of Failure 
Extrinsic Motivation 
Achieving Orientation 
Strategic Approach 

Active questioning In learning 
Relating to other parts of the course 
Relating evidence to conclusions 
Interest in learning for learning's sake 

Preoccupation with memorisation 
Relying on staff to define learning tasks 
Pessimism and anxiety about academic outcomes 
Interest In courses for the qualifications they offer 

Disorganised Study 
Methods 
Negative Attitudes to 
Studying 
Achievement Motivation 
Styles and Pathologies 
Comprehension Learning 
Globetrotting 
Operation Learning 
Improvidence 

Awareness of Implications of academic demands made by 
staff 

Unable to work regularly and effectively 

Lack of interest and application 

Competitive and confident 
Readiness to map out subject area and think divergently 
Over-ready to jump to conclusions 
Emphasis on facts and logical analysis 
Over-cautious reliance on details 

PERCEPTIONS OF COURSE 
Formal Teaching methods Lectures and classes more important than individual study 

Assessment standards and ends of studying clearly defined 
Heavy pressures to fulfil task requirements 
Perceived relevance of course to careers 
Well-prepared helpful committed teachers 
Discretion of students to choose and organise own work 
Friendly staff attitudes and preparedness to adapt to 
students' needs 
Quality of academic and social relationships between 
students 

Table 10-2: Engineering students' attitudes to studying (Ramsden & Entwistle, 

Clear Goals and Standards 
Workload 
Vocational relevance 
Good Teachiiig 
Freedom in Learning 
Openness to Students 

Good Social Climate 

low 
low 
highest 
low 

moderate 
highest 
highest 
highest 

high 

high 

moderate 

highest 

low 
moderate 
highest 
high 

highest 
highest 
highest 
highest 
lowest 
lowest 
moderate 

moderate 

1981) 

Engineering students, according to this analysis, were motivated to study by the 

desire to gain the qualification offered. (This agrees with Crowther's 1997b finding 
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that engineering students are motivated by short-term goals.) Since this was their 

aim, they followed the rules in a rational manner, depending on the staff to set targets 

and standards and to define the matei-ial to be learnt. Peers are more important as 

competition than as a social group, and staff are the taskmasters rather than sharers in 

a community of learners. Knowledge is important as a means to the end of becoming 

an engineer. 

10.4 Socialisation 

It may profitably be asked how much of the difference is due to the type of teaching 

and the taught material the students have encountered during their degree course, and 

how much is due to the personality differences between the types of students who 

choose mathematics or engineering degrees in the first place. McCaulley (1976) 

argues that the initial differences between students in different departments are 

emphasised as they continue through the course. She points out the importance of 

peer socialisation, and there is also the effect of adopting the tone and attitudes they 

associate with members of their chosen professional group, namely the staff, and in 

the case of engineering students, professionals they have met in their work experience 

year. 

Guimond and Palmer (1990) found evidence of socialisation when they explored the 

ways that students in commerce, engineering and social science attributed the causes 

for poverty and unemployment. First year students in the three groups were 

indistinguishable in their beliefs: in the third and fourth years they had diverged 

strongly, with social science students blaming "the system" more, commerce students 

less, and engineering students the same as in the first year. They argue that the 

differences among upper year students are a result of differences in the socialisation of 

students in the subject groups. 
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White (1972) points out that Durkheim's insight (1956) was that education must be 

socialisation. The knowledge and culture handed on in education falls into two 

categories: that which all members of the given society should possess, arid that which 

is specifically suited to the individual's place in the society, or their future occupation. 

Whereas White argues that this second category is of dubious morality in the teaching 

of children, in the context of the education of a young adult who may be deemed to 

have chosen a profession, by virtue of having chosen a vocationally titled degree 

course, this objection disappears. Indeed one may say that it is proper for an 

engineering student to be taught not only the subject matter of engineering, but also 

the manner of being an engineer. 

Clark (1994) suggests that acculturation to the profession is an integral part of 

professional preparation, through appropriate mentorship. 

Cooper and Millar (1991) investigated the personality types of faculty and students in 

a business school, and found the intuitive style to predominate among faculty and the 

sensing style among students. That is, the students preferred a concrete approach, 

and the faculty an abstract approach. McDermott (1991) suggests a similar mismatch 

occurs in physics: that lecturers in physics tend to teach in an abstract way, to save 

students the effort of making their own generalisations, forgetting that they had 

learnt from the particular to the general, the concrete to the abstract, and indeed 

gained intrinsic motivation therefrom. 

Brown and Cross (1992), using the Gough and Heilbrun (1980) adjective checklist 

(ACL) found differences between the engineering students they tested and the 

previously measured norm for engineers In the population. The students were more 

sociable and outgoing than their practising counterparts, and had a more global 

approach to problem-solving. They suggest that the population of engineering 
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students may have changed, but other explanations could be that not all engineering 

students enter the profession, those unsuited by personality moving elsewhere, or 

that there is an overall evolution of personality, perception and cognition as observed 

by Perry (e.g. 1988) 

10.5 Conclusions 

Overall, we can probably conclude that engineering students do have a different 

personality profile from mathematics or physical science students, and that this will 

be reflected in their preferred learning style. It would be wise to respect this 

difference when trying to teach the mathematics and physical science which form an 

important part of the engineering syllabus. In particular they differ from the 

lecturers who teach them In these subjects, particularly In their motivation, and 

lecturers should bear In mind Vinner's criteria (see Chapter 5): that a student's mental 

constructs should be confronted if In doing so a valid educational purpose Is served, 

and otherwise that the teacher should teach in accordance with those constructs. 
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11. Epistemological orientations, paradigms of curriculum, and 

leariiing theories 

11.1 Introduction 

The study described so far has concentrated on characterising engineering students 

and the ways in which they think of and do mathematics, particularly in comparison 

with mathematics students. As was stated in the Introduction (chapter 1), alongside 

the concern expressed in the various reports for the standard of mathematics skills of 

engineering students was a hope that the use of computer courseware would be 

helpful in improving the situation. It was proposed therefore that a piece of 

courseware should be written to help engineering students reinforce their 

mathematical concepts through the use of a mathematical modelling framework. 

In chapters 12 and 13 the research relating to mathematical modelling and the design 

of computer courseware will be discussed, but at this point it is apposite to summarise 

some of the underlying theories which inform the design of any teaching materials. 

11.2 Epistemological orientations, paradigms of curriculum, and 

learning theories 

What is education? how do we learn? and what do we believe about learning? These 

are closely linked but not identical questions. The reasons for teaching mathematics 

and indeed the definition of what mathematics is will vary with the curriculum 

paradigm adopted. The way it is taught will depend on the leaming theory held by 

the teacher, and the expectations held by the learner will depend on their theory of 

learning and their epistemological orientation. 
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In addition, these internal structures will affect our view of the nature of 

mathematics, and the reasons why anybody, and specifically engineering students, 

should need (or want) to learn mathematics! 

We must remember though that the internal world of the learner is not directly 

knowable (the behaviourists' main argument), so that everything we say about the 

learning process is a description of a model of that process, and that no model can 

contain all truth. Sonietimes one model will be more useful, sometimes another, and 

sometimes aspects of several may be combined to suit a particular purpose. In 

particular as the learner becomes more mature and graduates from novice to expert in 

a given field the learning process may change, and different models are needed. 

11.3 Epistemological orientations 

What is the nature of knowledge itself.̂  How is it acquired, and who decides what is 

knowledge? 

Three basic epistemological orientations are outlined in Table 11-1. 

11.3.1 Transmission model 

My narne it is Benjamin Jowett: 
I'm Master of Bailliol College. 
If a thing is knowledge I know it. 
And what I don't know isn't knowledge. 

(anon, 19c) 

This Clerihew shows a particular attitude to the possession of knowledge: that 

Authority has the right to define knowledge. Thus it is possible in this orientation to 

define a canon of works in literature, music, and the fine arts which are Important; a 

definitive history curriculum based on, for instance, battles and dates, which any 

child may be expected to quote; and a mathematics curriculum consisting of a list of 

topics which one should master at given ages. It is typified by questions of the type 

"what is the main export of Ceylon?" (answer, tea). 
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Model Knowledge Learning Sense of authority Corresponding 
learning theory, 
curriculum 
paradigms 

Transmission Static and objective. 
Knowing is closed, 
linear paradigms. 
Quantity and 
breadth and 
mastery of the 
content is 
emphasised 

Transmitted from 
teacher or text to 
student. A linear 
and simple action. 
Can be tested 
through 
achievement tests 

Teacher-centred-
Teaching Is 
emphasised and the 
learner dependent 
on the teacher. 
Teacher Is 
responsible for 
deciding the 
learning outcomes 
and the design of 
the learning 
environment 

Behaviourism, 
Liformation 
processing 

Curriculum as 
technology 

Transaction Dynamic and alive. 
Knowing is based 
on learning 
strategies. Quality 
of learning 
emphasised 

Through the 
Interaction between 
the learner and 
his/her 
environment. 
Co-operative 
activities, problem 
solving and higher 
order thinking. 

Student-centred. 
Learners are 
responsible with the 
teacher for their 
own learning. 
Teacher has control 
of the situation but . 
is not authoritarian. 

Pask's 
conversational 
learning 

Situated learning 

Social learning 

Experiential 

Transformation Dynamic and 
changing, 
contextual: a 
construction of the 
community of 
learners 

Construction of 
knowledge by the 
learner. 

Community of 
learners. 
Visible authority 
does not exist. 
Teacher uses the 
power of the 
environment when 
new knowledge is 
created: 
transformed. 
Complexity, 
openness and 
creativity are 
emphasised. 

Post-modernism 

Curriculum for 
personal relevance 

Table 11-1: Epistemological orientations (from Brody, 1991, in Berry and 

Sahlberg) 

Since knowledge is defined by the establishment, that which is known by groups 

outside the establishment (such as folklore, scientific theories which diverge from the 

accepted view, or alternative interpretations of history) is not knowledge. 

Kjiowledge is monolithic and not open to discussion or interpretation. Knowledge is 

possessed by the learned, and may be passed from them to the unlearned. This view 

of knowledge, however, is static, and does not allow for changes such as the 

emergence of new branches of science or mathematics, or discoveries In history or 

biology. As Cox et al (1995) put It: "twenty years ago it was just possible to provide 
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a fair proportion of the class with both the fundamental concepts [of engineering 

mathematics] and the most useful methodology. It is now questionable whether one 

can do either with even those topics taught twenty years ago, not to mention the new 

topics now required." 

Where the matter to be learned is a skill which can be built up through drill and 

practise, which will be tested by performing the skill to a given degree of speed and 

precision and especially where the skill can be broken down into a set of subskills 

which can be learnt separately and then combined, then this niodel is highly 

appropriate. 

According to Perry (1981), the naive learner looks to authority to "tell me what I 

need to know", and moving to a more mature model of learning is a painful process 

involving the loss of old certainties. To this extent the learning of skills through the 

transmission method may provide the cognitive equivalent of comfort eating: a 

temporary flight from complexity into certainty where working diligently and 

following the rules brings rewards. However in the large part of tertiary education 

we are seeking to make the student an independent learner and they should not rely 

on this form of learning. 

11.3.2 Transaction model 

The emphasis moves from teaching to learning, but the teacher is still in charge, 

setting the agenda. The teacher's model of reality is the one which the student seeks 

to acquire. This is predicated on the greater experience and deeper understanding of 

the teacher. Experts teach novices to become like them. 

Cox et al (1995, cited above) argue for the teaching of prototype methods within 

engineering mathematics, so that engineers will be able to understand the concept of 

transforming variables and functions by reference to Laplace transforms as a 
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prototype, or operator methods by reference to the Z)-operator. They conclude "it is 

suggested that we move away from the contents-based methodology for curriculum 

design and instead base it around the interweaving of engineering objectives and the 

reasons for which mathematics is included." This is a strategic view of mathematics 

learning for the engineer, where the concepts of, for example, "transform" or 

"operator method" are built through learning particular skills, so that the student will 

recognise what is happening when analogous methods are performed by a computer. 

Conceptual understanding is a construct of the transaction model, whereas the 

transmission model emphasises declarative and procedural knowledge. The student 

builds understanding of concepts through relating one concept to others. A well 

understood concept leads the student to make predictions which match those the 

teacher would make, and to be able to use and apply the concept as the teacher would 

define appropriately. The teacher can conclude that the student's mental model of 

the concept matches the model generally accepted as correct. 

In the conversational model, (Pask, advocated by Laurillard, 1993) the student and 

the teacher exchange predictions about behaviour of a system according to their 

mental models of the system. When the student's predictions convince the teacher 

that the two models match well enough, the teacher concludes that the student has 

"understood" the system. This process depends on the teacher understanding the 

system and the possible variations of models well enough to predict where differences 

may occur, in order to explore the student's predictions in those sensitive areas. The 

system may be anything from a physical system to a mathematical process to a 

language to a set of social circumstances. 

Vinner (1991) defines understanding as the possession of a concept image. When the 

concept is mentioned, some image is evoked in the student's mind, and the concept 

means something to the student. The image need not be the same as that which the 
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teacher has, and indeed if the student's image does not overlap with the teacher's then 

the student's understanding may be said to be faulty. 

According to Perry's (1981) analysis, most university students should be able to cope 

with being responsible for their own learning under the direction of the teachers. 

Questions and protests about the relevance of material (especially mathematics in 

engineering, see Cox et al, 1995; Coxhead, 1997) are characteristic of Perry's 

Oppositional students. 

In this model, the teacher defines the space which the learner explores, and sets the 

rules which bound the student's freedom. 

11.3.3 Transformation model 

The transformation model is a more radically "democratic" view, in that learning is a 

process shared by the community of learners. 

This model may be regarded as particularly appropriate in the context of research in 

Higher Education, where learning is a shared process. Perry (1988) describes a 

mature relationship of the learner to knowledge as when Authority becomes 

"resource, mentor and potentially colleague in the consensual estimation of the 

interpretation of reality". 

The model may also apply well to situations of mutual tutoring where students work 

together to make sense of coursework, laboratory work (see Brown, 1994), lecture 

notes or reading. Under these conditions the students will normally be operating 

within each other's zones of proximal development, and in an ideal position to help 

one another. Clark (1994) also hypothesises that since the knowledge of the expert is 

different in kind from that of the novice, and not just in degree, someone who is 

closer developmentally to the learner "may serve as a better touchstone for the 

student's own reflection". 
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Authority is no longer a potential colleague, aluthority has become a colleague. 

According to Perry (1981), if the learner is not mature enough in position then being 

confronted with a teacher who presents this model will bring pain, incomprehension 

and rage. The learner must have developed beyond an "anything goes" multiplicity 

in order to cope with the ambiguities of this model. 

Perry points out that there may be a disjuncture between a learner's position in 

different areas of development, as well as a transfer ("decalage") of maturity.. A 

mature student who has accepted commitment (in the face of ambiguity) in settling 

down, finding a spouse, choosing a home, may still seek for the old certainties in 

learning mathematics. 

In this model the attitude of the learner to mathematics is not that mathematics is a 

reflection of absolute truth, but that it is an activity with rules by which one agrees to 

abide. This attitude is well beyond the grasp of most engineering students. 

11.4 Learning theories 

Some learning theories which have currency at present are summarised in Table 11-2. 

As with epistemological orientations, many teachers and designers of learning 

materials are not consciously aware of the learning theory to which they subscribe. 

I have related these learning theories to the three epistemological orientations 

discussed above. Epistemological orientations are instrumentalised through learning 

theories: that is, given what we believe about knowledge, learning theories tell us 

how we might go about sharing the knowledge we have with others. Again, given 

that different epistemological orientations may be useful for different purposes, so we 

can see that different learning theories may also be useful in different applications. 
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The mind Knowledge Leaming Teaching 
Transfer models 
Behaviourism 
(Skinner) 

black box behaviour training, 
• reinforcement 

control of the 
learning 
environment 

Information 
processing 
(Gagne) 

computer object to be 
transferred 

acquisition of 
rules, concepts 
and procedures 

mapping expert's 
cognitive map 
onto learner 

Transaction mode s 
Constructivism 
(Piaget, Skemp, 
Ausubel, et al) 

Inner 
representation of 
outer reality 

residing in the 
individual mind 

internal 
construction of 
meaning 

negotiated 
construction of 
meaning 

Experiential 
(Kolb) 

a cycle of 
experience, 
observation, 
hypothesis • 
formation, and 
hypothesis testing 

guiding learner 

Social learning 
(Bandura) 

scripts and 
behaviour 
patterns 

observation and 
rehearsal, 
apprenticeship, 
acquiring 
characteristics of 
admired others 

modelling: the 
significant other 

Situated learning 
(Collins, Brown 
& Newman...) 
(also known as 
cognitive 
apprenticeship) 

develops from 
the complex 
Interaction of 
students with 
techriology, 
people and the 
other 
Information 
available In a 
situation 

enculturation, 
perceptual 
attunement: 
social 
construction of 
knowledge 
through discourse 

guide students' 
attention to the 
invariant features 
which are 
meaningful across 
a class of 
situations: 
planning the 
assistance 
students will need 

Connectlonism 
(Papert) 

brain (mind/ 
body dualism 
eliminated): a 
material machine 

pre-symbolic, 
pre-
representational: 
socially and 
environmentally 
distributed 

inseparable from 
performance: 
acquisition of 
meaningful 
patterns 

providing 
examples and 
experiences from 
which patterns 
may be abstracted 

Transformation models 
Post-modernism 
(Hlynka, 
Faulconer) 

being-in-the-
world: 
Interactions and 
relationships are 
the starting point 
for understanding 
the human 
condition. 

interpretation of 
the text which Is 
life: not a one- to-
one 
representation 
corresponding to 
an external 
reality. 

the interpretive 
process 

being another 
member of the 
social group 

Table 11-2: Learning theories (elaborated from Wilson et al, 1993) 

In the context of being an engineering student, several processes may be occurring at 

once. A lecturer may model to a student (social learning) how to behave while giving 

drill-and-practice exercises (behaviourist) while the student learns how to recognise 

different problem types (connectionist). 
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A naive view of postmodernism relates it to Perry's (1988) Multiplicity where 

anything goes because we have no way of choosing between interpretations. A liiore 

sophisticated view would be related to his Relativism and Commitment, where it is 

recognised that different interpretations are possible, but some are more defensible 

(and useful) than others. 

11.5 Paradigms of curriculum 

What we teach and how we teach it is influenced strongly by our beliefs about what . 

education is and what it is for. These questions affect the way we choose our 

intended learning outcomes and the way we assess what has been learnt. They affect 

how we allocate marks in assessing student work: giving credit for effort, originality, 

suitable method of working or correct answer. 

These beliefs and values are rarely tested, and seem to be taken for granted, but 

individuals having different views on the meaning of education may run into conflict 

and fail to work together with catastrophic consequences. This applies particularly 

when the individuals are in a learner-teacher relationship. If the expectations on 

mark allocations differ, the teacher may be seen as an unfair marker, and then if 

negotiations do not explore why the marking scheme is as it is, the teacher is seen as 

imposing a decision in a power relationship. Another possible result of such a clash is 

that the learner decides he or she is learning nothing, or not what he or she wants to 

learn, or that he or she is very uncomfortable in a particular class. At least the 

teacher should be aware of this possible source of conflict, so as to decide whether to 

confront it, or avoid it. 

One way of classifying the different systems of belief about the purposes of education 

(curriculum paradigms) has been proposed by Eisner (1974, cited in Helsel, 1987). 
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Helsel recommends this classification as comprehensive, succinct and dividing 

curricular orientations into distinct and mutually exclusive categories. 

These can be characterised as in Table 11-3. 

Curriculum 
paradigm 

Education Learning The student Paradigms of 
learning theory 

development of 
cognitive processes 

The human mind 
organises reality via 
cognitive . 
structures. 
Education is the 
development of 
higher levels of 
structure 

Learning is the 
raising of cognitive 
structures to higher 
levels of 
functioning by the 
development of 
metacognition. 

An active, 
purposive 
individual In his or 
her own learning 
and development 

Constructlvist 

curriculum as 
technology 

Prescribed skills 
and knowledge are 
to be instilled into 
the student. 

Learning is 
measured by the 
achieving of 
prescribed 
measurable 
behaviours on the 
part of the student. 

A passive being to 
be conditioned to 
respond with 
desired behaviours 
to stimulus-
response patterns 

Behaviourist, 
Information 
processing, mastery 
learning 

curriculum for 
personal relevance 

To develop a 
human's higher 
needs, motives and 
capacities. 

Learning is 
becoming a better, 
more fully 
developed person. 

A unique 
individual with a 
singular perspective 
that should serve as 
the basis for his or 
her interpretation 
of the curriculum 

Upper levels of 
Maslow's hierarchy 

curriculum for 
social relevance-
social adaptation 

A mechanism for 
meeting the critical 
needs of society. 

Learning Is 
acculturation and 
socialisation. 

A passive recipient 
who is schooled to 
take a place in the 
existing social order 

Social learning 

curriculum for 
social relevance-
social 
reconstruction 

To emancipate 
people from 
oppressive social 
conditions such as 
economic 
structures, 
linguistic biases or 
political 
inequalities 

Learning is 
pollticlsation. 

An individual 
committed to 
involvement in 
constructive social 
redirection and 
renewal 

Social learning 

academic 
rationalism. 

The fullest possible 
evolution of the 
learner's mental 
capacities. 

Learning is 
becoming a learned 
and cultured 
person. 

A rational being 
who is expected to 
command essential 
facts and skills that 
undergird the 
intellectual 
disciplines of 
Western culture. 

Liberal education 

(Eisner) (Maull) (Helsel) (Maull) 

Table 11-3: Paradigms of curriculum (elaborated from Helsel, 1987) 
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11.6 Applicahility of the paradigms to engineering education 

11.6.1 development of cognitive processes 

This paradigm probably should form the dominant motivation in engineering 

education. We ask the students to be active, to take responsibility for learning, as 

they will have to take responsibility for their actions in future life. However the 

students, at least to begin with, tend to adopt an attitude more in line with skills 

acquisition (curriculum as technology) and socialisation (curriculum for social 

relevance- social adaptation). As Ramsden and Entwistle (1981) point out, 

engineering students tend to adopt a passive attitude to their learning. 

11.6.2 curriculum as technology 

Where teaching takes the form of training with drill-and-practice exeircises, tests 

which closely resemble exercises performed during the course and examinations 

which ask students to reproduce learnt material, we see evideiice for this paradigm. It 

is held by many students in their early studies and if we define the syllabus through 

learning outcomes and competences this again reflects that paradigm. 

11.6.3 curriculum for personal relevance 

The development of the self is rarely emphasised in engineering education. 

11.6.4 curriculum for social relevance- social adaptation 

As engineering studies are regarded by many students as a preparation for a career in 

engineering, a social relevance curriculum paradigm is implied from the student point 

of view: the student expects to be equipped to play his or her part in society as an 

engineer. The student asks "what use is this?", meaning not "to me as a human adult" 
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but "to me as an engineer". The question of socialisation of engineering students was 

discussed in chapter 10. 

11.6.5 curriculum for social relevance- social reconstruction 

This is probably applicable in a context such as "green engineering", where the aim is 

to empower the students to take part in the enterprise of changing the face of 

engineering. In mainstream engineering education the aim is more to produce a 

socialised individual who will be a productive employee. 

11.6.6 academic rationalism. 

On the whole, this paradigm Is probably foreign to engineering education. Although 

the engineer would accept the notion of being a rational being, the rest of the 

paradigm would be unacceptable on two counts. Firstly: that the engineer is 

pragmatic rather than academic and secondly: that the Intellectual disciplines of 

Western culture, whereas they profit from the great engineering achievements of the 

past 200 years (for example, roads, railways, gas, electricity and water supplies) 

consistently undervalue these achievements in contrast with those of artists and 

"Intellectuals". 

11.7 Endnote 

A contrasting view is that taken by Perkins & Simmons (1988): their "first order 

theory of instruction" states that "people learn much of what they have direct 

opportunity and some motivation to learn, and little else". This Is not quite as 

permissive as it may seem: although they proclaim that Instructional style Is 

subordinate to opportunity and motivation (which makes learning sound like a 

criminal activity), they Insist that the Instruction should address all their four frames 

or dimensions of knowledge (content, problem-solving, epistemic and inquiry) 
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11.8 Conclusions 

Different learning theories and so on have useful ideas to offer, depending on the 

material to be taught, the prior knowledge of the students and their cognitive 

development, and the context in which they are learning. "Whereas none of the 

theories mentioned above should be dismissed out of hand, none of them is complex 

enough to contain a model of an entire human being. Romiszowski's (1986) model 

(mentioned in chapter 12) on the other hand, which attempts to unify many of these 

theories, has become too complex to be immediately useful. 
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12. Computer aided learning (CAL) and computer aided instruction 

(CAI) 

12.1 Introduction 

In the last chapter it was pointed out that there are many: ways of framing how 

students learn. In the field of designing courseware this is typified by the tension 

between the terms C A L and CAI. From the semantic point of view it. is meaningless 

to speak of instruction without considering whether learning is taking place, and so 

from this point of view, as well as from a general philosophical bias towards 

considering the experience of the student as the most important part of the education 

process, I prefer the term C A L . This implies that the evaluation of the product 

should be carried out from the students' point of view rather than as an artefact in 

itself. 

12.2 Medium and message 

In 1983, Clark proposed that media should be regarded as mere "vehicles" in which 

knowledge was "delivered" to learners, and that discussion of the effects of media on 

learning should be suspended. Kozma (1991) replied that this analysis regarded the 

learner as the passive recipient of knowledge, rather than actively collaborating with 

the medium to construct knowledge. Different media of delivery meant that students 

learnt the same materials in different ways. The question of whether the computer 

delivers to a passive recipient or helps an active learner is the philosophical difference 

between the use of the terms computer aided instruction (CAI) and computer aided 

learning (CAL), although advocates of the C A L paradigm may use terms such as CAI 

and CBI (computer based Instruction). 
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123 Competing models: CAL and CAI 

Instructional design is a term used for the design of teaching materials and teaching 

strategies. Romiszowski (1986, p59) defines instruction as "a goal-directed teaching 

process which is pre-planned". Although Laurillard (e.g., 1987) argues for the 

adoption of a less didactic model of the teaching-learning model, in general the 

concern is mainly with the accurate transmission of accepted knowledge from the 

teacher to the learner: in other words the term "instructional design" embodies a 

transmission model of learning although not all practitioners accept the model. For 

exarnple. Plowman (1989) states "Learning theories are embedded in the design of 

interactive video whether the designer has incorporated them intentionally or not... 

Most designs seem to rest on the belief that the student's mind is a tabula rasa and the 

knowledge in the program exists in a vacuum which is to be transferred straight from 

screen to mind without any other mediation than the occasional input via the 

keyboard... Most design manuals tend towards instruction based on drill and practice 

and simple branching designs." Reviewing users of computers in schools, Kurland 

and Kurland (1987) found there was an ideological struggle between Skinner-based 

behaviourist CAI advocates and Piagetian-developmentalist L O G O advocates. 

Despite Wildman's (1981) contention that the 1970s had been the era of development 

of cognitive theory, which had supplanted the previous dominance of the 

behaviourists, Hannafin and Carney (1991) found that instructional practice was still 

dominated by behavioural strategies focusing on imposed methods which elicit the 

desired response. They suggested that cognitive psychology based strategies, 

presumed to increase the depth of processing, would improve the quality of encoded 

knowledge. They conclude that "it is the learner, not the designer, who mediates the 

possibilities of lesson strategies and activities". Hennessy and O'Shea (1993) also 
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found that students attribute their own meanings to simulations and that they may 

refuse to accept the challenges thrown by the simulation. Smith (1988) points out 

that it is a commonly accepted view in semiotics that the interpretation of a text is 

handed from the author to the reader, and that any text is open to other readings than 

those intended by the author. For example, in a lesson where the teacher was using a 

program intended to teach the -hidden complexities of simple conversations, the 

children thought they were being taught to use the computer. Burton (1997) 

describes learning as a "process of meaning making by learners not of being handed 

meaning by their teachers" which means that any "new piece of information is 

encountered and understood" heterogeneously by members of a class. 

Julie (1991) also argues for the use of the computer in helping the student form semi-

concrete concepts, at a level between concrete and abstract, for example by the use of 

images. The computer may thus be used as an introductory device rather than for 

drill on concepts already taught. 

Clark (1994) considers instructional design in the context of professional education. 

He contrasts the instructional view of professional education as accumulation of 

competencies with the perception of a four-fold nature of that education: 

"acculturation to the profession, development of associated competencies, thinking 

about the competencies and thinking about thinking about the competencies". 

From the above, I conclude that many designers of C A L material tend towards a 

didactic and transfer model of learning, although there is a stream of criticism of this 

model. This may be because people who are interested in writing programs use a 

private metaphor of computer programming for human learning. 
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12.4 Lessons from Interactive Video 

Much work on instructional design is based on interactive video (TV), which failed to 

have the impact that was expected in schools or universities, (see Norris et al, 1990) 

Other work assumes much lower computer capabilities, such as displays and 

processing speeds, than are now available. However the conclusions which have been 

reached are sometimes applicable to the new generation of computer-aided learning 

(CAL) packages. For example, Plowman (1988) points out that IV has the authority 

of the TV (It must be real!), and the illusion of control over the disk, although users 

cannot really add their own contributions. She cautions against the use of multiple 

choice questions with the implication that the only questions worth asking are those 

with a correct answer. 

Megarry (1988) speculated that the future of CD technology would be different from 

the "false dawn" of videodisk, given the commitment of Phillips and Sony to work 

from a common standard, the fallout benefits from CD audio technology, such as 

cheaper pressing and mass-production of CD readers in the audio context, the small 

physical size of CDs, and their all-digital format. 

The advice in the literature tends to fall into two categories: that based on a 

developed learning theory, which is prescriptive (e.g. Romiszowski, Laurillard) and 

that which is based on avoiding hindrance, such as "do not make writing so small it is 

illegible", and more sophisticated equivalents. A smaller third stream is led by 

Malone (1981) who looked for intrinsic motivation factors in computer games and 

sought to apply the principles of challenge, fantasy and curiosity to CAI. (see for 

example Middleton, 1995) 

Most research into the effectiveness of C A L / C A I takes the form of a classical 

experiment. Brown (1994), however, argues that it is impossible to control for 
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learning in this way, particularly since each piece of courseware has involved 

innumerable design decisions, some of which will be helpful and others of which will 

hinder use, and that learning results from a rich variety of interactions between 

individuals and their environment. He proposes that evaluation should be carried out 

by observing users in action and by debriefing and discussion. 

Dick (1981), with some foresight, warned that although the videodisk combined with 

the computer was being hailed by some as the "ultimate teaching machine", the' 

experience of the 1970s should show that there was always another development 

coming down the road. 

12.5 Freedom to roam 

A n important aspect in the design of courseware is the order in which material is 

presented, and who decides that order. The material in a film or television 

programme is accessed in strict sequential order: material on tape or disk may be 

skipped, fast-forwarded, paused or- rewound. Material on a computer may be 

accessed in random order to be decided by the program or the user, or by a 

combination of the two. 

Bartolome (1992) proposed a scale of measuring the degree of interactivity of a 

system: (Table 12-1) 

The level chosen depends on the instructional paradigm (levels 1 and zero are linked 

by the authors to behaviourism), the sophistication and the age of the students, and 

the nature of the material taught. 
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Level zero Computer completely in control 
0.0 No motor activity called for 
0.1 Motor activity called for: e.g. press the return button 

Level 1 System chooses the next information given as a result of the learner's 
previous responses 

Level 2 Learner chooses next information given 
2.1 From a menu 
2.2 Some help given in choice 
2.3 Directed choice 

Level 3 Learner chooses what is shown next and how it is shown 
Level 4 Learner also chooses source of information 

Table 12-1: Bartolome's classification of degrees of interactivity (1992) 

Gagne (e.g. 1981) specified that instruction should follow a prescribed order of events: 

orientation, presentation, sequence, encoding and retrieval, and he gives a 

comprehensive guide In tabular form of appropriate strategies for each stage according 

to the type of learning outcome. The order of presentation is to be strictly controlled 

by the author. Bartolome (ibid.) warns that this can cause frustration. At the 

opposite pole, designers of hypertext systems Impose a very loose ordering on the 

material. Users are free to follow or Ignore links, and to find their own path through 

the material. This looser structure is felt to reflect better the relational structure of 

human knowledge, but the freedom of "hyperspace" can bring a feeling of 

disorientation (Frau et al, 1992). 

12.6 Learning theory-based research. 

Laurillard (1987) has elaborated Pask's conversational model of learning as applied to 

courseware design. She has compared different methods of teaching with Ideal 

computer-assisted learning environments and summarised the results In a table (Table 

12-2). 

193 





I 1 „ g f l l l ^ 

o -52 „ =3 t i i — o ^ -C "C "C .2 o o. a,j3 

1 ^ g IS I I I ^ ^ ^ 5 5s 
1 T can describe conception 

2 S can describe conception 

3 T can redescribe in light of S's 
conception or action 

4 S can redescribe in light of T's 
redescription or S's action 

5 T can adapt task goal in light of 
S's description or action 

6 T can set task goal 

7 S can act to achieve task goal 

8 T can set up world to give 
intrinsic feedback on actions 

9 S can modify action in light of 
intrinsic feedback on action 

10 S can adapt actions in light of T'i 
description or S's redescription 

11 S can reflect on interaction to 
modify redescription 

12 T can reflect on S's action to 
modify redescription 

• • 0 0 0 0 •/ •/ 0 

0 0 0 •/ 0 •/ • •/ •/ 

0 0 0 0 0 0 0 0 o' 0 •/ •/ •/ V •/ . 0 

0 0 0 • •/ 0 0 0 •/ 0 0 0 

0 0 0 0 0 0 0 0 0 0 •/ •/ 0 .0 0 0 

0 •/ • 0 0 • •/ •/ 0 0 0 V 

0 0 0 >/' 0 0 0 0 

0 • 0 0 •/ 0 0 0 0 

0 0 0 0 0 •/ 0 •/ 0 0 0 • 

0 0 0 0 0 0 •/ •/ 0 0 0 

0 0 0 0 • 0 •/ 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 12-2: Media comparison chart (Laurillard, 1993) 

This may be contrasted with the view taken by, for example, Romiszowski (1986) in 

"Developing Auto-Instructional Materials". (Romiszowski attempts to integrate most 

theories of learning up to the present day in an overarching theory which looks 

rather like Kolb's, whom he does not reference, which takes 13 pages of dense tables 

to expound.) It may be seen from Romiszowski's diagram (Figure 12-2) that his 

model is not a simple one. 
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Action Active 
Experimentation 

Feeling-
Concrete 

Experience 

Abstract 
Conceptualisation 

Tliinking 

Reflective Watcliing 
Observation 

Figure 12-1: Kolb's cyclical learning model (see Kolb, 1981) 
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\ 
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3 PROCESSOR 

Figure 12-2: Romiszowski's learning model (see Romiszowski, 1986) 

Both these models owe much to hermeneutical Ideas, and In particular Ricoeur's (for 

example 1981) hermeneutic circle. Ricoeur (quoted by Brown, 1997) suggests that the 

Individual switches between seeing the world as something of which he Is a part and 

something which he can objectify and act on (that is between active experimentation 

and passive reflection. In Kolb's terms). 

Instructional design tends to be linked with Ideas such as mastery leaming, where the 

student Is expected to develop a high degree of mastery of the material In a unit of 

instruction (that Is, to be able to answer, say 90% of questions on the material 

correctly In a post-test) before proceeding to the next stage. The terms "Stimulus" 

and "Response" also tend to appear in Instructional Design literature. Romiszowski 

states that In Instructional design there should be three types of communication 
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channel between learner and instructor: these may be labelled stimulus, response and 

reinforcement or feedback. (p89) 

Instructional design is driven by learning objectives which may be stated and verified, 

and tends to be reductionist, in that it is easier to test sub-units and low-level skills 

such as recall facts or reproduce a given performance than higher level ones such as 

synthesis or evaluation. Thus instructional design tends to be accompanied by 

quantitative research, with pre-tests to check that the subjects have the prerequisite 

knowledge and not the knowledge to be transmitted before exposure to the 

instruction, and post-tests to determine to what extent the requisite knowledge has 

been transmitted. This research then determines the effectiveness of the material in 

achieving the stated aims of the instruction. Again it is more difficult to quantify the 

acquisition of higher level skills, so the research tends to concentrate on lower-level 

skills. 

Gagne's theory of instruction states that instructional design should comprehend five 

phases, namely orientation, presentation, sequence, encoding and retrieval. 

Romiszowski is heavily influenced by Gagne in his lesson planning in this respect. 

Much of the research in the "avoiding impediments" falls into the presentation aspect 

of design. 

Gotz (1991) concludes that 

"interactive learning programs often break down as a result of an inaccessible 
didactic construction whose media potential is only partially exhausted. Rigid 
user and limited interaction possibilities lead to the assumption that the 
foundation of learning programs lies more in informatics than it does in 
didactics. A stronger reliance on pedagogical aspects appears to us to be more 
desirable." 
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12.7 Avoiding impediments to learning 

Merrill (1988) suggests guidelines for good instructional design under three headings: 

instructional design, screen design, and human factors. 

12.7.1 instructional design 

Avoid merely putting text on the screen: avoid mere page turning. 

Avoid generality rich but example poor presentations. Each idea should be 
presented by a generality, examples and practice. 

Avoid remember only practice. 

Use attention focusing devices to relate examples to generalities and to point 
out critical characteristics of the illustrative material. 

Promote active mental processing by asking rhetorical questions and engaging 
the student in a conversation which requires constructed (as oppose to 
multiple choice) responses to which we do not provide right-wrong feedback 
but rather an anticipation of a reasonable reaction. 

Provide expository examples as well as practice 

Merrill (1988) 

12.7.2 screen design 

No scrolling for educational programs. 

The student should control text output. Never erase critical information until 
the student indicates readiness to proceed OR provide a way for the student to 
repeat dynamically presented information. 
Use dynamic displays in which timing of text output, inverse text, flashing 
and animation are used for stress and emphasis. 

Dark letters on a light screen will appear less confined and more natural to the 
student 

Leave plenty of white space and erase information when it is no longer 
needed. 

Use short lines and separate natural phrases or Ideas on each line. 

Do not full justify text on the screen. 

Do not present Information In all upper case except for emphasis. 

Use a variety of text styles to indicate different kinds of messages. 

Merrill (1988) 
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12.7.3 human factors 

Provide a way for the student to sldp to the major sections of the program in 
order to preview, review or repeat portions of the material. 

Provide some kind of location indicator so that the student knows where he 
or she is in the total program. 

Allow the student to "turn" the pages by going back to the last page, repeating 
the current page or going forward to the next page. 

Minimise unnecessary typing by using a pointing device wherever possible. 

Monitor the student's activity and provide advice when poteiitially 
decremental action is taken. In most cases, provide a mechanism for the 
student to override the advice. 

Allow the student to select how many examples they need to study. 

Provide optional help, do not force every student through the most detailed 
presentation. 

Provide a means of escape from any lengthy activity but advise the student 
about the consequences of such an escape. 

Provide adequate directions, including all the options available to the student. 
If possible, list the available options on the screen or make them accessible 
with the press of the [7] key. Use the most natural procedure. 

Plan disk access to avoid long waits while the computer retrieves information. 

Merrill (1988) 

Dahl (1990) gives the following rules of thumb for writers of C A L packages.. 

Be consistent. The same user action should always lead to the same result. 

The user should be in control. The user should choose his/her actions. 

Give feedback. 

Let the user re-enter erroneous input. 

Cope with inputs like dividing by zero. 

Allow experienced users to use shortcuts. 

Keep displays simple. Do not put too much on screen at once. 

Allow the user to cancel terminal actions (that is, to decide against quitting). 

Dahl (1990) 

12.7.4 Screen design 

These guidelines are reinforced by Sweeters (1985), Madge et al (1986) and Sandals 

(1987) who also emphasise the importance of using space freely, consistent use of 
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screen areas, the use of overlays to add bits of information at a time, and the need to 

choose colours carefully. 

12.7.5 Graphics 

Perhaps one of the most significant points to come from the research is the 
overuse of graphics. Graphics which are not instructional or which seek to 
clarify an already clear process should be avoided... Unnecessary graphics can 
impede the course of learning by slowing the pace of the course and 
distracting the student. 

Use graphics to clarify difficult concepts. 

Use a combination of different kinds of graphics: flowcharts, graphs, maps, 
realistic pictures and analogical pictures. 

(Madge et al, 1986) 

Present blocks In this order: graphics (so they don't distract from the text); 
text; directions... 

Consider using a graphic on each display. Consider employing all the 
following types of graphics: realistic (portrays an instance or example of a 
concept. A realistic graphic); analogic (relates a concept to more familiar, 
similar things. A more far-fetched but personal graphic); logical (a highly 
schematised visual such as a flow-chart, graph or map. A n abstract but logical 
representation). 

(Sweeters, 1985) 

The origin of the classification of graphics Into representational, analogical and logical 

appears to be Knowlton (1966). 

Clarke (1992) surveyed the use of graphics In CBL packages, and found the 

distribution shown In Table 12-3. He found these results to be In agreement with an 

American study (Alesandrlnl, 1985), and suggested that graphics were used by 

designers as optional extras and that most graphic screens consisted of a small image 

with supporting text. 
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Industrial Commercial Basic Training Overall 
training training education teachers 

Packages surveyed 10 13 5 6 34 
Amount of text (%) 45 67 70 67.5 64 
Amount of graphics (total) (%) 55 33 30 32.5 36 
Representational graphics (%) 33 15 16 22.5 22 
Analogical graphics (%) 2 3 1 2.5 2 
Logical graphics (%) 20 15 13 7.5 12 

Table 12-3: Use of graphics in CBL packages (Clarke, 1992) 

Kozma (1991) in a review of the learning effects of different media, finds a consensus 

that pictures have positive effects under certain circumstances. 

The use of pictures with text increases recall, particularly for poor readers, if 
the pictures illustrate information central to the text, when they represent 
new content that is important to the overall message, or when they depict 
structural relationships mentioned within the text. 

Kozma (1991) 

He suggests that the combination of text with pictures presents the learner with two 

symbol systems (verbal and pictorial) and "facilitates the construction of the textbase 

[a collection of summary-like statements which represent the gist of the text] and the 

mapping of it onto the mental model of the situation." Likewise Spencer (1991) 

suggests that illustrations convert information from uni-modal to bi-modal form. 

Media which combine both modal forms and both storage systems will be most 

effective. Dwyer and Dwyer (1987) stress the importance of the time during which 

the learner interacts with the material and rehearses information. If the time is short, 

there will be no rehearsal and the information is not elaborated upon and transferred 

to long-term memory. If the time is adequatej and the rehearsal requires some form 

of action, such as taking notes or writing an answer, then the elaboration has time to 

take place, and the material will be remembered. Translation from a visual mode of 

presentation to a verbal mode for storage can also provide the time and rehearsal 

needed for transfer to long-term memory. 
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Sweller et al (1990) on the other hand suggest that "instructional material that 

requires learners to mentally integrate disparate sources of mutually referring material 

(e.g., text and diagrams)... interferes with learning by misdireaing attention and 

imposing a heavy cognitive load". They propose that text and diagrams should be 

presented as a united entity, and that text should be added to diagrams at the point at 

which new entities are added to the diagram, in order to reduce the load of switching 

between diagram and text. 

Goldenberg (1988) suggested that students could find some visual representations 

confusing, for example the interpretation of whether a straight line had been moved 

up or to the right depended on the slope of the line and the shape of the window. 

Demonstrating the effects of changing the value of a parameter before having firmly 

established the difference between a parameter and a variable had the effect of making 

the notion of the variable very hazy. 

12.7.6 Animations and sounds 

It is tempting to exploit the possibilities of the medium by using animations and 

sounds to enliven the courseware. However various researchers warn against this, as 

students find inappropriate sounds and animations distracting, (see for example. 

Sandals, op cit, Malone, op cii) 

Millheim (1993), for example, suggested the following guidelines for the use of 

animation in C A L material. 

Develop simpler animations rather than complicated ones. 

Design animation so that important information can easily be perceived. 

Include options for varying the speed of an animated presentation to provide 
emphasis at various points during the sequence. 

Use animation that relates directly to important objectives or features within 
an instructional lesson. 

Use animation when the instruction includes the use of motion or trajectory. 
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Use animation when the instruction requires visualisation, particularly with 
spatially-oriented information. 

Use animation sequences to show otherwise invisible events. 

Use coaching techniques that assist the learner in interpreting the simulation 
as well as free time before of after an animation sequence to allow for better 
understanding. 

Use interactive, dynamic graphics. 

Use animation to gain a learner's attention or increase motivation. 

Avoid overuse of animation since it can-be distracting to learners. 

Avoid use of animation with novices who may be less able to attend to 
relevant details or cues within the sequence. 

Millheim (1993) 

12.7.7 Use of video 

Graham (1991) suggests that video footage can overcome the difficulty of bringing 

"real" problems into the classroom and is more engaging than computer simulation. 

The footage however should be shot under the direction of a scientist since panning, 

zooming and cutting make it difficult if not impossible to take meaningful 

measurements from the film. Applications such as weightlifting (as an example of 

sports science), motorcycle racing and cell division are suggested as appropriate. 

Gautreau et al (1987) add that film of cars colliding with a wall and rebounding and 

two cars crashing (of the sort shot for vehicle safety tests) may be analysed and 

conclusions drawn about force and momentum. Measurements of the acceleration 

due to gravity on the moon can be made from a video sequence, their overall 

conclusion being that the use of video adds reality to a standard exercise. 

12.8 Matching instruction to learner 

Dick (1981) predicted that if the increased complexity available in teaching 

technology were to be used effectively "it will require instructional design models 

which emphasise detailed alternative strategies of instruction for different types of 
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learner". Plowman (1989) describes such a system, and a possible means of picking 

one's strategy according to preferred learning style, but points out that even sorting 

learners according to two dimensions would require four different scripts. One 

difficulty with matching the instruction to the learner is that there are so many ways 

of categorising learners. The evidence that a prescriptive technique exists for 

successfully matching learner to material is at best sketchy. 

Several authors have explored the effects of matching or mismatching the instruction 

with the learner in various ways. Carlson (1991), for example, found that students 

with a deductive style had difficulties when clear instructions were not given: 

students with an inductive style were thought to prefer creating their own concepts 

after considering many examples but did not have as much difficulty as mismatched 

deductive students. No significant difference was found in the content learnt, but the 

sample size was relatively small (53 students). 

Using the Myers-Briggs Type Indicator (MBTI, see Chapter 10) to categorise 

students, Matta and Kerri (1991) found that sensing and introverted individuals 

tended to learn Lotus 123 better in an IV context than in a classroom, but their 

results were inconclusive. They eliminated individuals with significant prior 

experience of IV, programming and Lotus 123 which may have removed some 

personality types preferentially. Conwell et al (1987) postulated that Intuitive 

Thinking (NT) types would like a teaching style emphasising theory and logic, and 

Sensing Feeling (SF) learners would prefer factual knowledge and subjective 

experience. They found no significant differences in the change of scores on the pre-

and post-tests between learners who were matched to the teaching style and those 

who were mismatched. Cooper and Millar (1991) found that in a college of business 
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the teaching staff tended to be Intuitive types and the students were predominantly 

Sensing types, and proposed that this clash of styles could be source of dissatisfaction. 

The field-dependent (FD) field-independent (FI) dimension of cognitive style is 

supposed to measure whether individuals rely primarily upon an external frame of 

reference (FD) or an internal frame (Fl) in processing information. FI students are 

thought to use a more hypothesis-testing approach to problem solving, and FD 

students to prefer observation to gather information. Garlihger and Frank (1986) 

conducted a meta-analysis and review of studies on the effects of matching and 

mismatching teacher and student styles on this dimension, and found the overall 

effects were minimal. MacGregor et al (1988) studied 59 students in a remedial 

algebra class. Of these students, 44 were found to have an FD style, 14 intermediate 

and only one a field-independent style. They found CAI to be of more benefit to FD 

students than to those having an intermediate style: however the largest effect was 

that of the instructor. Abouserie et al (1992) found that FD university students had a 

more positive attitude to C A L in physiology than FI students, but that neither style 

nor attitude correlated significantly with achievement in the subject. The C A L type 

used was very structured, and the research begged the question whether a more 

hypertextual style would have appealed to FI types. 

The Gregorc Style Delineator, which has two axes, concrete-abstract and sequential-

random, was used by Lundstrom and Martin (1986) to determine the style of 132 

psychology students. The effect of the teacher's preferred style was then investigated 

on the students' learning. They found no significant effects, and suggested that 

students were able to use their non-preferred style when the situation demanded it. 

Riding and Douglas (1993) suggest that whereas cognitive style is stable, and may be 

described on two dimensions,, verbaliser/imager and wholist/analytic, cognitive 
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strategies are flexible and depend on circumstances. They found that even verbalisers 

recall material better when pictures are included in the text, and imagers recall much 

better when they have pictures to recall. Even when students are able to form 

mental visual images, Presmeg (1986) found that these images were discarded when 

the student was habituated to a procedure: that visualisation was used as a mnemonic 

aid. 

Not all authors used cognitive or learning styles as a way of categorising learners. 

Malone (1981) found that girls did not like the fantasy of throwing darts at balloons 

to indicate their answers while boys did. He suggested that in such a context students 

should be allowed to chose their own fantasy. 

Prosser (1987) suggested that prior subject knowledge was as important as study style 

in determining how students learnt. Students with prior knowledge in the general 

area of the new knowledge already had a framework into which to incorporate new 

learning. Students without prior knowledge had to depend on rote learning. Moran 

(1991) went further, suggesting that the student's prior knowledge in a domain and 

metacognitive skill were the predominant factors in learning and that the self-analysis 

provoked by learning styles research, leading to metacognition, was probably its most 

valuable result. 

Jones (1993) suggests that full-time students find IV gave an interesting variation in 

delivery, whereas people in full-time employment tended to regard IV as television, 

and took a more relaxed attitude to material delivered through it. 

Taking a developmental view of the young adult student. Perry (1988) describes the 

transformation of the relationship of the learner to knowledge. Authority, from 

having been the source of all knowledge becomes a resource, mentor and potential 

colleague in the consensual interpretation of reality. Students at different positions in 
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their journey will react differently to different styles of courseware, and the passage 

between positions in this development of meaning do not occur simiiltaneously in all 

the students in a classroom. 

12.9 The role of the teacher/instructor/tutor 

As mentioned above, MacGregor et al (1988) found the most important factor in 

determining the success of students was the instructor in whose group they found 

themselves. In other studies, for the sake of repeatability, the role of the tutor was 

deliberately minimised for the experiment. More recent authors have started to 

explore the importance of the teacher in learning with C A I / C A L materials, as the 

dream of the "perfect teaching machine" has faded. 

Kurland and Kurland (1987) in the conclusion to their review paper, state that "The 

teacher remains the single most important instructional agent in the classroom, 

therefore students must respect and listen to their teacher." For Gotz (1991), 

however, whose vision is that of a drop-in independent learning centre, the role of 

the instructor has disappeared entirely. 

The general consensus is that the teacher's role is to assess the individual student's 

weaknesses and misunderstandings (Mackie 1992), to assess the knowledge and the 

needs of the individual and whether the system can meet them, to choose appropriate 

topics for the user, to decide the appropriate level of depth and channel for 

information, to provide connective tissue to join topics (Midoro et al, 1988) to guide 

the student's attention to features of the situation that are invariant and therefore 

meaningful across a class of situations, to plan the assistance students will need 

(Young 1995). In other words, the instructor is the best interface to match the 

individual student to appropriate instruction. 
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According to Jones (1993), the major key to the success of IV is the commitment of 

the tutor. This paragon should be familiar with contents and means of delivery, 

decide best format for delivery, decide what supporting structure is needed and decide • • 

how to evaluate effectiveness of learning. 

For Laridon (1990 a, b), the instructor must have the same learning paradigm as the 

courseware, and that paradigm will determine the roleas it. has done historically. 

12.10 Computers in engineering education 

Computers have been used as teaching aids for mathematics for engineers in a number 

of ways (see Maull et al, 1995). These include the following. 

a) the computer as a dumb tutor in a drill and practice session, providing a stream of 

questions and responding right or wrong as appropriate. The student is fed 

examples until he/she demonstrates an ability to perform which satisfies a pre-set 

criterion. This is often seen in the context of a mastery learning didactic paradigm, 

(e.g. Rae, 1993) 

b) intelligent tutoring where the program attempts to diagnose the particular 

misconceptions held by the student and difficulties held by the student according 

to his/her responses to mathematical questions. This Is still in Its Infancy, but see, 

for example, Laurillard 1987, Khasawneh, 1994. 

c) programming, where the student designs and writes programs to solve particular 

classes of mathematical problem. The argument is that "the student thereby. 

develops a deeper understanding of the process Involved by analysing it logically 

and reproducing It In terms of code. (e.g. Adams & Stephens, 1991) 

d) the application of in-house produced software which solve particular classes of 

mathematical problems, to enable students to check their solutions against the 
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computer's, and facilitate self-marking of exercises, (e.g. Coull & Simmonds, 

1988) •• 

e) the use of commercially available software to scaffold the student's exploration of 

mathematics by showing the solution to problems the student Is not yet able to 

tackle by hand and demonstrate their relationship to maths already known. See, 

for example, Kutzler, 1994. Lawson (1995) points out that there are competing 

learning objectives In this context: using the package.and understanding the 

mathematical contents of the worksheet. 

the use of software to perform tedious calculation so that results can quickly be 

obtained and generalised. For example, the plotting of a family of curves to 

explore the effect of varying parameters, (e.g. Watkins, 1993) 

g) the use of spreadsheets to perform Iterative calculations and to find approximate 

numerical solutions In a manner transparent to the student. See for example, Lee 

et al 1987, Arganbright, 1993, or Fraser &; Thorpe, 1994. 

h) microworlds and simulations where hypotheses can be explored and tested by the 

student in a mutually safe (unthreatenlng and unbreakable) environment. See for 

example, DeCorte, 1994, Abel, 1990, Whitelock et al, 1993, LIndstrom et al, 1993. 

I) use of a simulation language suchas STELLA to allow students to create their own 

simulations. The assumptions made in the simulation are made explicit, and the 

students can check the behaviour of their models against their experience of 

reality. 

j) use of the computer to drive recorded teaching material, for example on Interactive 

video or CD. 
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k) hypertext or hypermedia environments to be explored by the student.in pursuit of 

information. 

m)Hve production of audio-visual material in the course of and in support of lectures. 

(e.g.Marshman &Ponzo, 1987) 

Smith (1992) surveyed the use of computers across 72 departments of engineering and 

classified the use according to 18 categories. 16000 studerits in the survey used the 

computers for an average of about 20 hours each per year. The overall use in student 

hours for some of the categories is shown below. The difference between 

"instructional" type software and software tools puts the arguments about this 

software firmly in context. In the study of engineering, computers were used as tools 

for doing, not tools for learning. 

Category Student-hours 
Hypermedia 180 

IV 300 
C A D / C A M 36632 
Spreadsheets 43405 

Word processing 52806 

Table 12-4: Use of computers by engineering students (Smith, 1992) 

On the other hand, as Smith points out, "the prospect of being able to replace the 

drudgery of supervising tutorial examples classes must be highly attractive to most 

academics". 

12.11 Choice of authoring package 

Serious thought was given to the package which would be used to author the package, 

and of those available the best contenders were Authorware, Visual Basic and 

Director. 
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Authorware is specifically intended for the authoring of courseware and is 

recommended by Beevers et al (1992) as a package for authoring mathematical C A L 

materials. The design process consists of the building of a flowchart which imposes a 

sequence on the contents. The flowchart may be made to branch according to the 

student's responses to questions: either feedback to right/wrong answers, or 

according to the student's preferences. The courseware, is intended to be interactive 

to the extent that the computer's responses at each stage depend on those 

programmed to anticipate the student's input. The student, however, has no control 

over the path through the material: the sequence is determined by the program. This 

corresponds to either an imposed sequence, or a limited adaptive design. (Hannafin & 

Phillips, 1987) 

Visual Basic is a sophisticated general-purpose package for designing packages to run 

in a Windows environment. The screen design has a very Windows "feel" in that the 

objects created and manipulated by the package such as buttons, scroll bars and 

windows have a similar appearance to those encountered in familiar Windows 

packages such as Word, Excel, etc. Programs are event-based, in that the objects on

screen react to events such as clicking on buttons or scrollbars, or typing in a 

response in a box. The mathematical facilities of Basic mean that it can be used to 

generate drill and practice examples and to calculate correct answers, and it can also 

be programmed to take into account previous right/wrong answers when generating 

subsequent questions. The package may be used to write adaptive programs, sensitive 

to learner differences, or indeed programs with an imposed sequence or with total 

student freedom. (Hannafin & Phillips, 1987) 

Macromind Director is an authoring package for animation, presentation and 

interactive multimedia. It can be used to build either linear, sequential or branching 
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packages or programs allowing random access at any point through an indexing 

mechanism, or indeed a mixture of the two. It can incorporate different media into 

presentations: sound, images, movies or animations, and can also be scripted to allow 

for interactivity. It has no inbuilt facility for such things as collecting a student's 

scores in tests, or drawing graphs, but these could be written. Buttons and other 

control features within a Director movie have to be designed by the author from 

scratch, giving great freedom, but more work than Visual Basic. Its particular 

strength from our point of view lies In designing "hot" areas of the screen which can 

be scripted In various ways to control the flow of the program. 

The final package considered was HyperCard, which runs on Macintosh computers 

only, and only In black and white. It Is extremely flexible, and has been used to write 

successful hypertextual multimedia packages. In the end the availability of Director 

and a suitable PC on which to run It, together with the colour facility of Director 

and the author's greater familiarity with the PC led to the choice of Director as 

authoring package. 

12.12 Conclusions. 

From the wealth of literature, the following overall conclusions were drawn. 

What Is learnt depends largely on the individual student. Important factors are the 

student's prior knowledge and metacognitive skills, and the meaning attributed to the 

package by the student. 

Whereas drill and practice exercises are regarded as an efficient means for the 

development of skills, particularly simple skills. It was felt that in the context of 

enriching concepts a more hypertextual format was appropriate. 
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There is little evidence that any measured factor is a good predictor of how well a 

given student will learn with a given package, and iris probably better to allow the 

student leeway in deciding how to proceed through the package, while ensuring that 

there is enough structure to ensure the student does not feel lost. 

The working of the package should be transparent to the student, that is the student 

should not be expected to understand hoW it works except as a metaphor. 

Appropriate graphics will include realistic illustrations to allow the student to orient 

the new learning within existing knowledge and symbolic illustrations to structure 

the new learning. Animation and sound will be used sparingly. 
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13. Mathematical modelling 

13.1 Introduction 

We have seen in chapter 2 how mathematics has been construed and interpreted by 

different authors. In the present chapter, we concentrate on one aspect: the 

application of mathematics through mathematical modelling. Modelling is the 

context in which most engineers use mathematics in their working lives, and it was 

found from the results of the questionnaire (see chapter 6) that the greatest maturing 

of engineering students' mathematical concepts occurred when they were seen in the 

context of their applications. Since the aim of the courseware was to promote such a 

maturing of concepts, it was felt that presenting them in the context of mathematical 

modelling might achieve that aim. The engineering students who were observed 

carrying out a modelling exercise (reported in chapter 3) did not appear to be making 

a connection between setting up and solving mathematics and modelling a physical 

system. The way that the modelling structure was presented and used in the 

courseware will be described in the next chapter. 

The particular relevance to most engineers is in the modelling of physical systems 

although statistical modelling is of increasing importance in production engineering. 

13.2 What is mathematical modelling? 

It may fairly be said that every mathematical formulation of a general law is a 

mathematical model, whether it is a physical law such as Hooke's law, an economic 

law or a population law. Each of these models has been obtained by a modeUing 

process. Even when individual values for some property or quantity (number of fish 

in a tank, extension at a given load) may be measured, the process of interpolation to 
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give intermediate values is itself a modelling process, involving the making of 

assumptions about the situation. 

Mathematical modelling is distinguished from pure mathematics in that the questions 

it addresses are based in some way in the real world (see Figure 13-1, McLone, 1984). 

It dijBFers from classical applied mathematics in that the modeller has to build the 

connection between the real world and the mathematical world without necessarily 

the blueprint of an existing law as a guide. It is the activity of the authors of laws. 

(Whether the laws were invented or discovered is too big a question to argue here.) 

Figure 13-1: McLone, 1984 

13.3 Mathematical modelling and engineering 

It is generally agreed that mathematical modelling is important for the engineer. This 

reflects the idea that mathematics is a tool for the engineer, and a language for the 

description of real or potentially real entities (for example stresses in bridges, flow in 

pipes, traffic flows) in abstract terms. 

Modelling and engineering applications 
There is a cornerstone requirement for engineers to model and to be able to 
solve modelled problems. Most writers agree that mathematical modelling is 
perhaps the most constricted psychological bottleneck in the entire 
mathematical learning process and that the debate upon how to teach it is likely 
to continue and may never be resolved. Opinions among educators are not 
surprisingly divided between those who favour a top-down approach followed 
by skill learning to those who feel .that skills are paramount and that the 
teaching of modelling is vague and wasteful. ... Many forms of modelling are 
essential to engineer formation. 

SEFI, 1992, pp 20-21 
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To engineers, mathematics is a way of expressing physics and engineering 
precisely. It is rare that one needs mathematics pure and simple. One finds 
then that in looking for exaniples where mathematics is needed one is 
frequently encountering the simultaneous need for physical understanding. 

IChemE/ICE/IEE/IMC/IMechE/LMS/IMA, 1995, pl3 

In the particular context of engineering education, mathematical modelling has at 

least four important aspects: modelling is the way that practising engineers use 

mathematics, so engineering students need to be able to do it;.and seeing mathematics 

used in context enables students to see its relevance, which is a strong motivating 

factor to help them overcome reluctance to tackle a subject seen as difficult. A third 

aspect is that if the subject matter is seen as relevant, the mathematics lecturer is then 

seen as someone who teaches useful mathematics, an attitude which spills over into 

other parts of the mathematics syllabus. Finally, as Shaw (1989) points out, the 

building of a satisfactory mathematical model may be the source of great satisfaction, 

the creative "eureka" experience. 

13.4 The process of mathematical modeUing 

The process of mathematical modelling Is normally described In terms of stages. 

Authors vary In the way they divide the stages, and In the extent to which they 

Include formulation and verification stages. 

Mathematical models 
The application of mathematics to physical problems Involves three stages: 
a) Idealization of a physical situation and formulation In mathematical terms 
b) Manipulation of the mathematical symbolism 
c) Interpretation of the results In physical terms. 
In a particular pilot questionnaire which we sent to about 100 engineers we 
asked which of these three stages they found most difficult, and 70 per cent said 
the formulation of the problem. A contributory reason may be that much 
mathematics teaching stresses the manipulative aspect (b) above at the expense 
of the model building aspect (a) and In addition fails to relate different models 
to each other. 

OECD, 1966, p33 

Mathematical models... 
There are three essential steps In the solution of a problem In applied 
mathematics. In the first step the problem Is stated In mathematical terms. This 
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means that the relevant variables are identified and that mathematical 
relationships are identified between them, either by using physical laws or 
empirical evidence, or by hypothesis. The second step consists of the solution 
of the mathematical relationships, either by standard mathematical techniques, 
or, If these prove Intractable, by numerical methods with the aid of a computer. 
Finally, In the third step, the solution Is expressed In a form which enables one 
to Interpret It and draw physical conclusions from it. 

Jaeger & Starfleld, 1974, p i 

More recent publications tend to describe the process in diagrammatic form. Some 

follow flow chart conventions with activities In boxes joined by arrows, while others 

put nouns in boxes and label the arrows with verbs to describe the process by which 

one moves from one state to another. Whatever the convention, the diagrams have a 

strong family resemblance, as can be seen from the following sections. 

Specify the 
real problem 

Extract the essential 
characteristics, and 

state the assumptions 
made 

Formulate the 
mathematical problem 

Redefine the model 
If necessary, 
modifying the 
assumptions 

Interpret the 
solution and compare 

with reality 

Solve the 
mathematical problem 

Write a report. 
Use the model to 
explain, describe 

or predict 

Figure 13-2: Hart & Croft, 1988 

13.5 Modelling paradigms 

There may be said to be two types of models: those ihtended to predict behaviour 

and those Intended to lead to understanding behaviour. For the first type, an 

acceptable degree of precision over the field considered is more important than 

describing the general shape of the behaviour, whereas for the second, it is the general 

shape which allows one to describe the phenomenon and the processes underlying It, 
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although the model may need parameters to be determined before.it is useful for 

prediaion. 

To some extent corresponding to these two motivations for modelling, there are two 

dominant paradigms of mathematical modelling, shown by the two sides of the MEI 

mathematical modelling flowchart. (Figure 13-3) (MEI, 1994). 

3M 
REPRESENT THE 

PROBLEM 
IN MATHEMATICAL 

FORM 

i 
4M SOLVE THE 

MATHEMATICAL 
PROBLEM TO PRODUCE 

THEORETICAL 
RESULTS 

5M SELECT 
INFORMATION FROM 

EXPERIENCE, 
EXPERIMENT 

OR OBSERVATION 

6M 
COMPARE 

WITH THEORETICAL 
RESULTS 

A PROBLEM 

MAKE SIMPLIFYING 
ASUMPTIONS TO ALLOW 

WORK TO BEGIN 

REVIEW 
ASSUMPTIONS 

THE 
MODELLING 

CYCLE 

THE 
EXPERIMENTAL 

CYCLE 

NO 

7 
IS THE 

SOLUTION 
O F T H E PROBLEM 
. SATISFACTORY^ 

•) 

YES 

8 
END 

3E 
DESIGN 

AN 
EXPERIMENT 

4E 
CONDUCTAN 

EXPERIMENT AND 
DERIVE PRACTICAL 

RESULTS 

I 
SE 

GIVE A 
THEORETICAL 

INTERPRETATION 
OF RESULTS 

6E 
DETERMINE 

ACCURACY OF 
SOLUTION OF 

PROBLEM 

6E 
DETERMINE 

ACCURACY OF 
SOLUTION OF 

PROBLEM 

Figure 13-3: MEI mathematical modelling flowchart (MEI, 1994) 
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The right-hand path (3E-6E) represents the empirical paradigm, which suggests that 

data is collected, and its form is studied. A curve fitting exercise allows the modeller 

to suggest the law obeyed by the data, and the thoughtful modeller may then suggest 

the origins of the parameters. The weakness of this paradigm is that a real 

phenomenon has to exist and to be observed in order for data to be collected before it 

is fitted. Its strength lies in the motivation of having observed the phenomenon and 

seen what it really does, allowing'the mathematics to be seen as relevant and 

meaningful. Empirical models are often employed for prediction rather than 

understanding since they do not probe the underlying relationships of the 

phenomenon observed. 

The other (represented by the left-hand path, boxes 3M-6M) is the theoretical 

paradigm, which suggests that the processes underlying the phenomenon be studied, 

appropriate laws suggested, and the laws compared with the data obtained. This 

paradigm is also analogous to classic scientific method, where a hypothesis is stated, 

and its implications considered, then a crucial experiment is devised and carried out 

to test whether the implied consequences come to pass. 

It is suggested (e.g., Tunnicliffe, 1981, p l l ) that the latter paradigm is appropriate 

where the model is intended to enhance understanding of a physical situation, and 

this is the paradigm that is used in the case studies described in the package and in this 

thesis. 

However it is important to remember that the bases of physical science were 

descriptive, that for instance our understanding of, for example, gravity is empirical, 

and all our models of gravitational attraction derive from observation rather than an 

understanding of the physical processes at work. The same has been true of many 
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other areas where the technology (this is how the thing behaves, so we can use it) has 

led the science (this is why the thing behaves this way). 

The two paradigms may also be compared with Kolb's (1981) learning cycle. The 

empirical paradigm may be said to begin with concrete experience, and the theoretical 

with abstract conceptualisation. Ideally, as in the MEI diagram, the whole circuit 

should be completed, but often the students are kept on one side or other of the 

laboratory/classroom boundary (my addition to diagram). 

Concrete 
Experience 

Active 
Experimentation 

Laboratory 

Classroom 

Abstract 
Conceptualisation 

Reflective 
Observation 

Figure 13-4: Kolb's experiential learning diagram (Kolb, 1981) 

13.6 The theoretical paradigm 

The whole structure of the courseware in this project is based on the Open 

University (OU) mathematical modelling flowchart. (Berry & Houston, 1995, 

Tunnicliffe, 1981, possibly derived from Penrose, 1978) This flowchart employs the 

theoretical paradigm, but as we shall see, it is not sufficient to look at the flowchart to 

know what paradigm Is being used. 
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fO Specify • \ f © Setup \ ,'© Formulate ) 
I the real a model the mathematical ] 
I problem [ i problem i 

^zjoz^ ;:::JOZ^ 
© Compare ', © Interpret ;̂ {O Solve the ;̂ 

with reality the mathematical j 
I I solution I I problem i 
/ I ' \ I 

O Write a report } 

Figure 13-5: O U flowchart analysing the process of mathematical modelling, 

(Tunnicliffe,. 1981, p5) 

In the O U unit on animal populations, Tunnicliffe introduces data at the start to 

demonstrate how animal populations may change over time, as many students may 

not be familiar with the phenomenon. This Introduction of data then leads to a 

discussion of an empirical, curve-fitting model, before theoretical models are 

Introduced. This can lead to confusion In the students' minds as to what Is being 

described in the flowchart. 

13.6.1 Two worlds 

Galbraith and Haines (1997) modify the O U flowchart, promoting "Refining model" 

to a box of Its own, and putting all the mathematics In the same box. They divide the 

universe Into the real world and the mathematical world, where "Formulating 

model" and "Evaluating solution" lie on the Interface between the worlds. This 

notion of the modelling cycle moving between the real world and the world of 

theory, then back again, is a useful one, but their interest is in the mathematical part 

of the cycle, which means that they consider neither the way that mathematics Is 

extracted from the real world, nor how the model Is evaluated. 
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Real World 

Refining 
Model 

Report 

Evaluating 
Solution 

Mathematical World 

Real World Formulating Solving 
Problem Model —>• Mathematics 

Interpreting 
Outcomes 

Figure 13-6: Galbraith and Haines, 1997, after O U flowchart 

13.6.2 States and stages 

Ikeda (1997), after Burghes and others, proposes a different diagram, showing five 

states (in the boxes) and four stages in the process. The real problem is recognised as 

outside the modelling loop, but affecting it at the level of the classroom model and 

the "Real solution". The "states" in this model correspond to the arrows in the O U 

flowchart, and the "stages" to the boxes. There may be a slight difficulty with 

language in this diagram: "real solution" implies that the solution is unique, and "real-

world solution" would probably be a better term. 

(1) To mathematise 
* to clarify a real problem 
* to generate variables 
* to select variable 
* to set up conditions 

Real Classroom Mathematical 
Problem Model Model 

•̂ 4) To validate * to look back 
and modify 

Real 
Solution 

(3) To interpret 

(2) To solve 
mathematically-

Mathematical 
Solution 

Figure 13-7: Ikeda, 1997, after Burghes et al 
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"When the diagram is transformed, by turning the boxes into arrows and vice versa, it 

looks more familiar; The arrow for "real problem" is awkward, but Ikeda does not 

label the arrows on his diagram showing the relationship between the "real problem", 

the "classroom model" and the "real solution". On the other hand the activities in the 

boxes clearly correspond to the boxes in the corresponding positions in the O U 

flowchart. 

(1) Mathematise * Generate variables 
* Clarify a real problem * Select variables * Set up conditions 

Mathematical model 
y. , 

. . (2) 
Solve mathematics 

Figure 13-8: Ikeda diagram transformed for comparison with O U diagram 

13.6.3 Iteration 

Moscardini et al (1984) emphasise the iterative nature of the process, but make the 

process appear more linear than the O U flowchart. The "advancement of 

understanding" arrow implies that if an iteration loop means that the modeller moves 

back to the left to adjust the model, understanding is thereby retarded. They also de-

emphasise the validation stage by implication, since its box is both smaller and less 

full of detail than the other stages. 

Classroom model 
Real Mathematical 

solution (3) solution 
Interpret solution 

Real problem 
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ANALYSIS OF PROBLEM 

Objectives 

/ \ 
Aim Concepts 

Purpoi 

ADVANCEMENT OF UNDERSTANDING 

MODEL OF PROBLEM 

Assumptions 

/ \ 
Concepts Relations 

V if' 
Mathematical 

representations 

ANALYSIS. OF MODEL 

Reductiorjĵ  
Crude Stead) 

nujnerics stat| 

Partial special 
insrghts i^ses 

Non̂ dimensionalisation 

SOLUTION OF MODEL 

Parameter estimation 

/ 
Technique Sensitivity 

! ^ analysis 

Intemal.validation 

UNSUCCESSFUL 

SUCCESSFUL 

IMPLEIVIENTATION OF 
SOLUTION TO 

ORIGINAL PROBLEM 

Figure 13-9: Moscardini et al, 1984 

13.6.4 Eight-box diagram 

Reality Interpretation 

1. 
Understand 

problem 

(7.) 
Write report 

6. 
Compare with 

reality 

Abstraction 

2. 
Simplify and 

make 
assumptions 

5. 
Investigate 
implications 

Mathematics 

3. 
Set up 

mathematics 

4. 
Solve 

mathematics 

Figure 13-10: Modified mathematical modelling flowchart 

This is the diagram on which the structure of the programme Is based. It is virtually 

identical to the classic O U diagram, except that box 0 acknowledges that reality Is 

outside the mind of the modeller, and that the modelling starts with something 

slightly different, that Is the modeller's understanding of the problem. This box may 

validly be criticised as its contents are a noun, rather than a verb. No suitable verb 

presented Itself during the writing of the programme. 
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13.7 Empirical modelling 

In studying Figure 13-11 we see the famihar-sbunding stages of Simplification 

(simplify and make assumptions), Mathematization (set up mathematics), 

Transformations (solve mathematics). Interpretation (investigate implications) and 

Validation (compare with reality). (Oddly, both the verbs which label their arrows 

and most of the nouns in the boxes take "-ation" forms which leads to some 

ambiguity.) 

REAL 
WORLD 

ABSTRACT 
WORLD 

Simplification 

/ Problem 
Formulation 

Mathematization 

Solution 
within the 

model 

Transformations 

Mathematical model 
(Equations, graphs, 

etc) 

Figure 13-11: The N C T M Standards' (1989) characterisation of mathematical 

modelling (after Hodgson and Harpster, 1997) 

However, reading of Hodgson and Harpster's article makes it clear that the 

Mathematization stage consists for them of collecting data and finding a graph of an 

equation which fits the data. Thus although the diagram appears to describe 

theoretical mathematical modelling, just as the Open University diagram does, in fact 

the empirical paradigm is being expressed. 

The difference between the two paradigms is blurred by the need for students who 

are not familiar with a certain application to watch it happening in order to work out 
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what are the underlying mechanisms or processes before attempting to make a 

theoretical model. The major difference is that this is a watching without measuring: 

no data should be collected at this stage and the observation should be qualitative 

rather than quantitative. Unfortunately resources may determine that only one visit 

to the phenomenon can be made, and data collection and observation must be 

combined. In that case it should be made clear to. students that the data should not be 

used until the stage of "compare with reality". 

The empirical modelling paradigm is rarely explicitly expressed, except in the MEI 

flowchart in Figure 13-5. However, observation of engineering students has shown 

that the way they try to deal with mathematical modelling is to believe in the 

empirical paradigm. 

13.8 Modelling behaviour of engineering students 

When asked how they would find the flow rate of the water in the cascade exercise, 

the engineering students said: 

Adrian: What you'd do is to set it up with a variable input into it and we'd have to 
maintain the water in litres for the flow rate. Maintain it at say five litres and 
measure the water coming out the bottom in a given time. 

When it was suggested that marking the height of the water on the side of the tank at 

regular time intervals might be a reasonable approach the reply from the students was 

not encouraging. 

Jolyon: Very hard to achieve I suppose. 

The way in which they seek to mathematise is to find a ready-made model. The data 

can be compared with the results recorded by a previous engineer in the form of an 

empirical relationship. This can be found by looking in the appropriate place, either 

a textbook or notes. 
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Jolyon: Well I expected perhaps to go into the same equations for steady flow theory, 
that sort of thing which I know we've done - in previous years - without our notes and 
that sort of thing. Engineers don't remember equations: We go and look them up in 
books. We don't derive things from first principles and - we tend to anyway - just to 
take it from the vantage of theory, and then applying it. 

WMM: So did you find it hard that you were actually being asked'to create the 
equations? 

Adrian: Well, yes, if you like 

Jolyon: Though we could probably do it with a book in front of us. 

WMM: Is it something you were asked to do ever in the course? 

Adrian: Well I'd say if we ever did have this we'd have more ofa formula to start 
• with. 

folyon: Well we generally work through the theory which they tend to like, make us -
the teachers - try to understand it, and then like - apply the results. It's very rare that 
we do anything from first principles like this. 

I remember that we did in HITECC.. - we did a mathematical model and the 
particular one I did was the optimal speed of rotation of a tumble drier and that 
worked well and we actually took that from equations and then Tony sort of 
encouraged us to do it and we sort of had it - centrifugalforce against centripetalforce 
and acting against gravity - sort of worked out from there, rather than doing it 
practically. So I would perhaps have expected to go on to some equations - but just 
doing it practically shows what happens but you can't always do things practically like 
building a bridge.. 

Adrian: You can build models though. 

And 

Jolyon: I felt that the maths side of it lets us down a bit on what we've done in the 
course. 

Adrian: Unless it's like what a lecturer said if you can sort offeel you can remember 
what he did in the second year it's quite easy but everyone just sort of forgets it. You 
know you can do it and you know you can look it up how to do it. 

For engineering respondents to the questionnaire a similar message came through: 

• My mathematics skills are not brilliant and I need reference back to old notes. 
(Engineering graduate)' 

• If I saw these in real life, I have a good book I can look things up in. 
(Engineering lecturer, pilot study) 

• I would probably only get as far as (f) before I looked in a book. (Engineering 
graduate, pilot study, beam bending question) 

For these students the process appeared to be as shown in Figure 13-12. 
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Figure 13-12: The engineers' modelling cycle 

(1) Identify the type of problem 

Jolyon: We've done a similar thing as an exercise.. Practical. Quasi-static flow which 
was based totally around this. How long it takes a container of water to empty into 
another one- And if we knew that for each container- over a period of time- and 
compared the times- then (sketching the whole thing is we would probably get a graph 
where the two coincide - where the two would be a maximum. 
folyon:(Pointing to taps) We have to assume that the flow rate through here is going to 
be the same as the flow rate through here. There's roughly the same difference in head, 
diameter of tube. 
Adrian: As the pressure varies, the flow is going to be changing. 
folyon: Inside the tubes a steady flow job is developed. It's a maximum 
Adrian:(Drawing) What we're interested in is in., maximum volume in B is this one 
here. 

(2) Find the appropriate theory 

Adrian: Trying to go back to basic principles here 

Jolyon:(Studying tanks) What if we apply Bernoulli to the area between each tank? 
Both pi vl is going to be equal. 
folyon: (Tikes out calculator and from it a formula card) Cause I've got Bernoulli's 
law on here. 

(3) Eliminate unnecessary terms 

Adrian: fPzking calculator card again) Looking to see what I can get rid of 
Adrian: This thing actually cancels out. doesn't it, because you take that away from 
each side and divide through 
folyon: You want this squared and then 
Adrian: Yes it's just rearranged, isn't it. 

(4) Set up an experiment 

WMM: How could we test your intuitions? 
folyon: Fill it up: we'd just do it. 
WMM: Well why not? 
folyon: I thought the idea was to get a mathematical model of it rather than just sort of 
measure it. 
WMM: It might be helpful to test your intuitions. 
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Jolyon: Yeh 
Adrian: Come on then, let's fill it up. 

(5) Feed the data back into the theory 

Adrian reading data and plotting. Sketches in line 
Jolyon: Should it he linear? Because it's proportional to v2 isn't it? Dunno if that's..' 
Ordinate scale is volume. 
Adrian: The volume's the same. It's the time that's changing. 
folyon: You change the volume as well. You lose it out the tap. As time goes on, you're 
losing volume and pressure. 
Adrian: Well? 
Jolyon: The top doesn't vary but it does vary here (indicates tap) because of the head. 
folyon: If that's the case, what comes out of the bottom has gained by the top one. 
You'd also lose the bottom one at a linear rate. 
Adrian: Any tips? 
WMM: "What sort of relationship does it look like? 
Adrian: There isn't any shape showing clearly there. I thought it tends to be linear. 
WMM: What does the graph represent? 
Jolyon: It relates the amount of volume to how long it's been going. 
WMM: So what does the slope of the graph represent? 
Adrian: The rate of flow 
WMM: So.. 
Adrian: So when the slope is nought there's no volume in... 
WMM: Cause you've still got about 20 mm of drop there: when it's empty - in inverted 
commas - you've still got about 20 mm of drop there. So • and so can you deduce some 
sort of relationship between the flow rate and the height of the water? 
Adrian: The higher the water the greater the flow rate 
WMM: That sounds reasonable. So you've got that there is a relationship between flow 
rate and the height of water. What do you think that relationship might be. 
Adrian: Well, the slope of the line. 
WMM: Well, do you think it's- It's clearly not independent of the height, so you could 
write down an equation that says the flow rate is a function of the height. And what 
sort of function do you think that is? Do you think it might be? 
folyon: Well, it's obviously not linear, from those results. 
WMM: No- yes- if it were a straight line it would be independent ofheight. So you 
know it's some sort offunction of the height. 
Adrian: We thought it might be some sort of square. 
WMM: How would you test what the relationship between flow rate and height is? If 
you're suggesting it's a quadratic, how would you test if it's a quadratic? 
Jolyon: Surely you'd have that by seeing the results. 
But we don't really know what's going on- we're not really sure what's happening 
between., each container. So up to now we've only done experimental - and what 
we've got there - doesn't really show enough - doesn't really tell us enough about the 
flow rate against the height of the water. 

(6) Evaluate the parameters 

Adrian using calculator. 
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Adrian: This could he some big pig.. Which kids us. The maths bother me. I make it 
point three three., nought point three three. Ah here it is..' The max., 
Adrian: That's the maximum innit.. The maximum level. So when point nought 
three mass flow rate occurs.. what time that occurs., is the time when it hits the 
maximum. 
folyon: So we could... if we had an equation for that line, we could differentiate that 
and find a maximum, couldn't we? 
Adrian: Yes, but it's.. 
folyon: Which is what we're after. 
Adrian: Mmm. 
folyon: But it still doesn't explain why it stays at that level 
Adrian: How long does it take to get to that point there, then it stays there? • 
Jolyon: Not particularly.. Take the.. Determine half empty.. 
Adrian: It's not so bad. (Writing on a paper he doesn't seem to have left with me) 
Four and a half, that occurs.. ( Using calculator) Two and a half, will occur.. 
Adrian: one and a half. 
folyon: So? 
Adrian: The time that occurs. The time that occurs... So we're saying that our 
maximum height be reached.. How high was it do you reckon? 
Jolyon: (looking at carboy) Two - twoish 
Adrian: Two point two. (using calculator) Point three o five., so.. 
Jolyon: Between those two values 
folyon: You're saying after 69 seconds that makes that a maximum. 
Adrian: Yep that is my prediction, 
folyon: It's incredibly dodgy I reckon. 

Although in the early stages one student suggested they should consider the tanks 

separately, as the session progressed, they remained fixed on the question asked: that 

is, when the water level would be maximum in the second tank. In contrast the 

mathematics students had realised that in order to understand the flow with input 

and output in the second tank they had to understand the simpler case of the top tank 

first, and spent a considerable time working on that. 

Crowther's (1997b) finding that engineering students like to be taught mathematics 

using familiar, understood applications reflects an empirical modelling attitude: the 

data has been found, now we can fit some mathematics to it. 
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A different group of final year Manufacturing Systems Engineers, discussing 

mathematical modelling, reflect the same views: that you choose the appropriate 

model from a relatively narrow selection, and plug in the parameters. (Martin is a 

German student, and his English is good but not perfect.) 

Martin: Usually finding the formula is never really a big problem. You choose out of 
the seven, tick one that must be right, and then you have the problem that.. 
John: Good old engineering guess (laughter) 
Martin: It is the only one which has all the variables I know or any of those must he the 
one. But where we get all the factors from if there is no letter 
John: You can look them up 
Martin: Then we can find them or how to guess them. 
I found that sometimes that is a big problem. 
And so usually you get told by a lecturer the wall has a T of 20 or something, and then 
you get your.. 
fohn: Yeh, the data that's stored you can get that out of reference books. 
You get all different k values and C values and you can.. 
Martin: When you are starting to find those it can be quite a long wait. Might be even 
longer than finding the right equations and solutions. You get from simple 
mathematics into a high mathematics problem in finding them. 
fohn: No, you look them up. 
Martin: But the conductivity of this wall [gestures] is not written down in a book. You 
have to.. 
John: But you know what the wall is made of, you know how thick it is, so you can go 
and look that information up in tables. 
Martin: It goes quite a few steps back. 

One student does wonder about where the models come from before they appear in 

the reference books, but does not seem to have a clear grasp of the mathematical 

modelling cycle. A model reflects the assumptions on which it is founded, and a 

static strength model will not predict dynamic behaviour such as resonance. 

"Compare with Reality" does not imply that we have to build the real bridge, but 

that we can check the implications of the model against the behaviour of other real 

structures. 

Gareth: What if the model is such a situation that we can't actually get and physical 
data from it? Like it hasn't been created, building a bridge? 
John: Then you have to measure it. 
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Gareth: How? 
John: Seems obvious. From what Martin was talking about, conductivity values, you 
can measure those. 
Gareth: If it's for an unknown. 
John: I mean if it's for an unknown thing, if the material hasn't been invented yet then 
fair enough you can't look it up but you can't measure it either, but what are you 
modelling on something that's not known? 
Gareth: You might be doing a feasibility study or something. 
John: But then you'd know the properties of the material you're looking at or you'd be 
looking at specific properties. You'd be working from the back end to try to identify 
what specific properties you 're looking for from the material, wouldn't you? • 
Gareth: It's just that this step here where it says "compare with reality", you may not be 
able to do that. 
I mean I'm sure that when they built that bridge in America which destroyed itself 
when it reached resonance. (The Tacoma Narrows Bridge) 
fohn: It begins with a Tdoesn't it? 
Martin: The swinging.bridge. 
Gareth: They couldn't compare with reality until they'd built it. You could do all 
your modelling- that's where I'm saying the assumptions are very.. 
fohn: The assumptions are there, aren't they. They me. assumptions. 
These things don't actually happen just the same as you think. The only way is you can 
simplify it so that at this level you can solve the mathematics. 

13.9 Conclusions 

Various authors, for example Mustoe (1992), SEFI (1992), IChemE et al (1995), have 

argued for the importance of teaching mathematical modelling explicitly to 

engineering students, although they differ in how and when it should be done. 

However, in most engineering courses most of the elements of the modelling cycle 

are taught, but in isolation. In structures, mechanics, fluids and thermodynamics, for 

example, general physical laws are taught, assuming that the phenomena to which 

they apply are familiar to students. In mathematics, techniques which are useful for 

manipulating the algebraic expressions are taught, without generally referring to the 

laws themselves. Mathematics appears to be external to the student: it comes from a 

formula sheet. In chapter 6, particularly in the comments made by engineering 

respondents, we see this idea manifested strongly. In the practical side of the course. 
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the laws are again quoted, experiments are carried out and their results compared 

with the theoretical predictions, but It Is often a case of calibrating apparatus or 

trying to make one's results agree as closely as possible with theory rather than 

checking the validity of the theory. 

In other words, if In an experiment (or a demonstration, because it Is Intended that 

the results will be what the designers expect) the results disagree with theory this-is a 

matter of sloppy technique, not faulty theory, and the real world Is less valid than the 

theoretical world. Engineers, though, believe in the real world, which means that 

experiments join mathematics In the fantasy world of academic study. 

What Is not often taught Is how to recognise when theory is not valid, and how to 

refine or reformulate the model to cope with that, nor how to set up mathematics for 

a variant on a familiar situation. 

A case in point Is that there are two expressions generally in use to calculate the 

effects of gravity on a body. F = mg, the "linear law" Is valid close to the earth's 

surface where the acceleration due to gravity may be regarded as a constant. F = 

GMm/r, the "Inverse square law" applies when variations in the distances between 

the bodies vary significantly. The linear law Is a special case of the inverse square law 

where M and r are sensibly constant. However it is normally taught as a fact that the 

linear law is true, and not that It Is a model. 

Finally, we should point out that since any given situation may be modelled In 

different ways (such as the linear law and the Inverse square law of gravitational 

attraction), students may take different approaches to a problem and arrive at similar 

conclusions (Graham E, 1997). A model which Is simple to use and gives accurate 

predictions Is a useful model, whatever the modelling approach taken. 
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14. Design of the courseware 

14.1 Introduction 

The specific design of this software involved decisions about style and about content. 

The literature concerning principles of style has been reviewed in chapter 12, and 

chapter 13 explores the niathematical modelling principles which have informed the 

structure of the package. In this chapter the details of the design of the package are 

discussed. 

14.2 Overall principles 

Given that the engineering students responding to the questionnaire showed a 

preference for verbal explanation when tackling mathematical subjects, it was decided 

to include plenty of verbal explanation. Despite the students' dislike of algebra, 

mathematical ideas would have to be expressed in algebraic form, but diagrams and 

graphs would be used to reinforce or support the mathematical ideas wherever . 

possible. 

Some of the conclusions from Chapter 12 concerning package design are reiterated 

below. 

• Whereas drill and practice exercises are regarded as an efficient means for the 

development of skills, particularly simple skills, it was felt that in the context of 

enriching concepts a more hypertextual format was appropriate. 

• There is little evidence that any measured factor is a good predictor of how well a 

given student will learn with a given package, and it is probably better to allow the 

student leeway in deciding how to proceed through the package, while ensuring 

that there is enough structure to ensure the student does not feel lost. 
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• The working of the package should be transparent to the student, that is the 

student should not be expected to understand how it works except as a metaphor. 

• Appropriate graphics will include realistic illustrations to allow the student to 

orient the new learning within existing knowledge and symbolic illustrations to 

structure the new learning. 

• Animation and sound will be used sparingly. 

This courseware is still a prototype, and aspects of the design which did not work are 

naturally open for negotiation. 

143 Structure, and embedded metaphor 

The whole structure of the courseware is based on the Open University mathematical 

modelling diagram, (see, e.g., Tunnicliffe B, 1981) 

,'0 Specify )̂ f © Setup [ © Formulate 
] the real a model 
I problem i | 

\ the mathematical 
I problem 

I © Compare )̂ ', © Interpret )̂ ,' O Solve the 
I with reality the mathematical 
{ I [ solution I [ problem 

-••[o Write a report ] 

Figure 14-1: A flowchart analysing the process of mathematical modelling, 

(Tunnicliffe, p5) 

The diagram is slightly modified as shown in Figure 14-2 to an eight-box diagram. As 

the modeller moves from left to right in the first part of the cycle, the model becomes 

progressively more abstracted from reality. In the second part, the modeller moves 

back from mathematics through interpretation to the real world where the report 

exists. 
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0. 
Reality 
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Write report 

Interpretation 
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6. 
Compare with 

reality 

Abstraction 

2. 
Simplify and 

make 
assumptions 

5. 
Investigate 
implications 

Mathematics 

3. 
Set up 

mathematics 

4. 
Solve 

mathematics 

Figure 14-2: Modified mathematical modelling flowchart 

These boxes are treated as rooms In a multi-storey building, where the ground floor Is 

an Introduction to modelling, and the successive floors are mathematical models of 

increasing mathematical and modelling subtlety. The user moves from room to room 

around the building. Any room can be accessed from the home page, which shows 

the diagram and a panel analogous to a lift panel In which a modelling example (or 

floor number) may be chosen. Rooms are also accessed from the previous room by 

proceeding through the model (around the floor). 

14.4 Navigation 

The home page Is accessible from any point in the package via a single mouse click on 

the appropriate button. This was felt to be an Important orientation feature, so the 

user would always be able to "get home" easily. The exit button is always available. 

In the same way, but In that case there Is a check screen to ensure the user really 

Intends to quit, rather than terminating the program as a result of an accidental 

mouse click in the wrong place. The navigation buttons are arranged along the 

bottom of the screen. Buttons for functions which are not available are greyed out. 
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Figure 14-3: Home page 

14.5 Contents 

The contents of the package are an introduction to modelling, explaining briefly what 

happens in each stage, and a series of six case studies in which a physical situation is 

subjected to the mathematical modelling process. 

For simplicity a single feedback loop has been shown on the diagram, but in real 

modelling there may be many, as mentioned below. 

14.5.1 Box 0. Reality 

Reality cannot be put onto a monitor screen, so any attempt to put it there is 

somewhat artificial. In our case it was felt that the best compromise was to use a 

photograph of the object, and then move on swiftly to the next section. 
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14.5.2 Box 1. Understand problem 

This is the point at which the modeller makes contact with the real problem. It is 

stated what the problem is and what physical processes are understood to be 

involved. The real problem becomes conceptualised by the modeller, so passing from 

the real world into the world of ideas. 

14.5.3 Box 2. Simplify and make assumptions 

The physical processes which are being considered generally obey laws which require 

some aspects of reality to be ignored. The physical conditions cannot be completely 

modelled, or even known, so assumptions will have to be made. The conceptualised 

problem is idealised. 

The assumptions are simply presented as a list, because the order in which they are 

made is not strictly relevant. 

14.5.4 Box 3. Set up mathematics 

The physical laws which are assumed to pertain to the problem are expressed in 

algebraic form, and the quantities involved are classified as known or unknown; 

constants, variables or parameters. From the idealisation is abstracted an expression 

or set of expressions which is purely algebraic in form, and which is amenable to 

mathematical manipulation. At this stage It may be found that more assumptions 

have to be made, for example about the relationships between the quantities 

considered. 

14.5.5 Box 4. Solve mathematics 

The mathematical system obtained In the previous phase (In these case studies, a first 

order differential equation) Is solved. There Is no reference needed to the physical or 
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other significance of what is going on: now we are in the purely mathematical world. 

The end result of the iphase is another mathematical expression or set of expressions, 

but this time they are ready to be interpreted in physical terms. It may be found that 

the physical situation leads to a mathematically indeterminate or insoluble situation. 

Then either more assumptions may need to be made, or a different physical model 

(understanding the problem) adopted, or the mathematics framed differently (set up 

mathematics). 

14.5.6 Box 5. Investigate implications 

The next phase consists of looking at the mathematical model produced in the 

previous phase and seeing what it predicts. "What sort of relationship between the 

variables does it imply? What are the effects of varying the parameters? What are the 

relative sizes of the effects? Do these seem reasonable? At this stage we are moving 

from the abstract mathematics back to our mental model of reality. If the 

implications are not reasonable, then we need to look back through the previous 

stages to determine at what point things need to be altered. It may be that the model 

is valid only over a limited range, if a constant value was assumed for a parameter. 

14.5.7 Box 6. Compare with reality 

Here the model is compared with real data. The program contains real data for each 

model to be measured against, either in the form of photographs or measurements 

taken in a real experiment. How well do the two match? Is the overall shape of the 

model consistent with real data? How confident do we feel in extrapolating from the 

known into the untested? In this phase the conceptual model moves back into 

contact with the real world. 
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14.5.8 Box 7. Write report 

It is suggested that the report should be written for a variety of reasons. These 

include recording the process for oneself and others to follow in future, clarifying for 

oneself what has been done, and helping oneself to remember by the act of verbalising 

the process. The report exists now as an entity independent of the modeller, and the 

circle back into the real world has been completed. Because it is real it cannot exist in 

the software any more than the reality which is being modelled, so the title is in 

brackets. 

14.6 Case studies 

The contents of the different levels are summarised below. A l l the cases are 

applications of first order differential equations. This decision led to the exclusion of 

some visually appealing material,, such as resonance, but it was felt that for reasons of 

consistency and simplicity it was better to limit the scope of the program. As will be 

seen, even first order equations required some algebraic subtlety in the higher level 

examples, (e.g. numbers 4 and 6) 

14.6.1 Level zero: introduction to modelling 

The stages above are described in the context of a hypothetical model of a roller-

coaster ride. 

14.6.2 Level 1: the suspension bridge 

Assuming that the weight per unit length of the decking is uniform, the analysis 

predicts that the shape of the chain will be a parabola. 

A selection of photographs, both suspension and arch, are included so the model can 

be checked against reality. The user is asked why the analysis should be applicable to 
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a lightweight compression arch bridge. A n over-the-deck arch is included so that the 

transition between the two types is smoothed. 

This model does quite accurately match reality, so there is no need to adjust it. 

14.6.3 Level 2: the cup of coffee 

Rather than simply stating Newton's exponential law, the problem is treated as a 

conduaion problem, a special case of diffusion through a membrane, with the 

thermal energy of the coffee as a reservoir. This leads to assumptions such as the 

liquid being stirred to keep it at constant temperature throughout. 

The classic Newtonian expression T = T^ (1+ Ce"̂ *) is obtained, and compared with 

the results of an experiment carried out with a real cup of hot water. The results are 

found to agree fairly well, but a better agreement emerges when the value of room 

temperiature is adjusted upwards. An explanation, that there is a boundary layer 

effect, is suggested. 

14.6.4 Level 3: the water tank 

This is the first of a set of three circuits around .the cycle. The way in which water 

flows out of a tank with a hole in the bottom is found to follow a parabolic law, and 

this agrees well with results from an experiment. However it is suggested that this 

does not match the normal way in which water is drawn from a tank, which is 

through a pipe. The program then leads the user onto the second circuit in modelling 

example 5, the tank with a pipe. 

14.6.5 Level 4: the freely hanging chain 

The modelling of the catenary is less straightforward than that of the suspension 

bridge, as the weight per unit span of the chain varies along its length. Solving the 
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differential equation is algebraically subtle, though not mathematically difficult. The 

expansion of sinh(x:) is compared with the equation for a parabola, catenary curves 

with different values of the parameter may be compared with parabolae, and 

photographs of freely hanging chains may be measured to compare with the predicted 

shape, 

14.6.6 Level 5: the tank with a pipe 

As a first step, the pipe is treated as an extra depth of water, which leads to another 

parabolic model. However, this does not compare well with experimental results, 

and another circuit is proposed. (Level 6) 

14.6.7 Level 6; the tank with pipe losses 

The losses in the pipe are assumed to be proportional to the speed of the water in the 

pipe. This leads to an expression which is a quadratic in (dy/di). This type of 

differential equation is not often covered in engineering mathematics courses. A 

solution in terms of a parameter which happens to be the same as dy/dt at any given 

moment is proposed. The predictions for the flow put of the tank depend on which 

term in the expression for y predominates. If there is negligible pipe loss, the same 

parabolic solution as in the previous loop is found. If the pipe loss term 

predominates then the solution is an exponential decay. This latter is found to match 

the experimental results, and so it is accepted as a valid solution. 

14.7 Form: how the advantages of the medium were employed 

Transitions between sections are shown as passing from one "room" to another 

through a screen suggesting a pair of doors. This makes more explicit the progress 

through the modelling cycle, and also confirms to the user who has arrived at the 

section from the "home" screen that they have arrived at the expected point. 
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Introduction to 
ModeUing 

x-r- r 

Figure 14-4: Transition page 

In all the levels, text is built up in sections, allowing the user to progress at an 

appropriate pace. The new text is shown in black, and previous text in dark grey, so 

it is clearly visible, but it is obvious what is new and what old. A l l the text on the 

screen at one time is related. When a page is full, important equations are kept visible 

by scrolling them from the position in which they originally appear on the screen up 

to the top. This emphasises the continuity of the algebra. 

> c 
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The suspension bridge 
Modelling example 1 

Figure 14-5: Page with text and diagram 

At many stages in the design process, animated sequences were discarded as being 

possibly distracting and adding nothing in terms of helping understanding. A few 

animated features were included where it was felt that they enhanced understanding. 

One example is the black line PQ in the figure above which is drawn from P through 

Q as an animation. 

14.7.1 Level zero 

No "special effects" were used in this level. 

14.7.2 Level 1: the suspension bridge 

One of the major advantages of software over plain text is that it makes it possible to 

build diagrams progressively, showing the sequence of drawing them, which may be 

done on a board or overhead projector, but not in a traditional text. This technique 
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is employed to portray the successive abstraction from a profile of a suspension 

bridge to a diagram from which it may be deduced that the gradient at a point is 

proportional to half the distance from, the centreline. See Figure 14-5 above. 

A collection of photographs of bridges is included and each photograph may be 

overlaid with a grid so the user can take measurements of the shape of the bridge. 

Figure 14-6: Photograph with measuring grid overlaid 

14.7.3 Level 2: the cup of coffee 

Animation is used to depict the different ways in which heat is lost from the cup, and 

that the coffee is stirred. 
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Figure 14-7: Animated screen 

Tlie graph showing the effects of changing the initial temperature is animated to show 

that the effect of starting at a lower excess temperature is to move the curve to the 

left. 

14.7.4 Level 3: the water tank 

The diagram of the water emptying from the tank is animated. 

In the "set up mathematics" section, some of the terms are coloured red. Running the 

cursor over these terms causes a window to open with an explanation of the terms. 

This allows a faster user to run through without interruption, hut a slower user will 

be able to stop and see the explanations. 
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Figure 14-8: "Hot words" help facility 

14.7.5 Level 4: the freely hanging chain 

A graph showing the shape of the freely hanging chain compared with a parabola has 

a set of radar buttons which allow the catenary parameter to be set at different values 

and the differences between the curves to be compared. At small values of the 

parameter, the two curves the difference is minimal. 
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Figure 14-9: Comparison of parabola and catenary 

Photographs of freely hanging chains with the suspension points at a range of 

distances apart can be overlaid with a measuring grid to obtain data to compare with 

the model's predictions. 

14.7.6 Level 5: the tank with a pipe 

No "special effects" were used at this level. 

14.7.7 Level 6: the tank with pipe losses 

As the equations were built up in the "set up mathematics" section, a box on the 

right-hand side of the screen was used as a window to explain and comment on the 

progress in the left-hand column. The idea was to allow slower users to read the 

right-hand column, to help them understand what was going on, while faster users 

could skip through If they were able to follow the left-hand column. 
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Figure^l4-10: Commentary in right-hand column 

14.8 Conclusion 

As part of the research conducted Intermedia was used to provide access to 
information for two undergraduate courses. The results were inconclusive for 
the students but there was clear evidence that those responsible for authoring 
underwent significant changes in thinking style. (Begoray, 1990) 

One of the most powerful parts of the experience of authoring the package in this 

project was the manipulation of equations as bitmapped objects, and the metaphorical 

cutting and pasting operations involved. Rearranging the mathematical objects on 

screen and substituting terms became very meaningful. It would have been good to 

have found a way to allow students to share that experience. Again, building the 

mathematical models included in the package was an opportunity to understand the 

processes involved and make them explicit. 
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15. Evaluation of the courseware 

15.1 Introduction 

Rigorous evaluation procedures are available and have been described by, for example 

Cronbach, 1988; Alkin, 1988 and Laurillard, 1988. By this stage in the project, 

however, we had come to feel that mathematical modelling skills Were best learnt by 

carrying out mathematical modelling, and that the concepts of mathematical 

modelling were also probably best developed in the context of reflection on those 

skills, and In discussion with peers and teachers. The best that could be hoped for is 

that the courseware might provide a useful Introduction to the subject, especially as It 

tries to establish a mathematical rather than an empirical pattern for modelling. 

The software described In Chapter 14 was therefore evaluated by asking some final 

year engineering students to come and use it, and to comment upon it afterwards. 

They were video recorded. In the case of one group of students, operating the 

courseware, and In both cases being interviewed. 

Jed, a final year mechanical engineering student, used the package by himself, and 

went conscientiously through all the models. He Was Interviewed by himself 

Immediately after using the package. 

John and Gareth, mature students In the final year of the Manufacturing Systems 

Engineering (MSE) degree, looked at three models together with Martin, who is a 

German student also following this final year course. The U K students had taken a 

common first and second year course with the mechanical engineering students. The 

group of three was then Interviewed together over a buffet lunch. 

The video recordings were transcribed and the complete transcription may be found 

In appendix C 
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15.2 Style 

Some aspects of the package were viewed positively by the students. 

15.2.1 Overall impressions 

The students were generally positive about the program overall. Gareth appreciated 

the sense of reality given by the inclusion of photographs. Jed compared the package 

favourably to a lecture. 

WMM: What did you feel about it aesthetically, about the look of the program? 
Gareth: I thought it was quite good, yeh, with the imported graphics, like the 
picture of the bridge. It was nice to see something in reality, that you're actually 
modellingfrom, so that picture just sets the scene, doesn't it? You can see the 
bridge, see the cable, everything. 

Jed: It's a lot more interesting -, it's easier to grasp than standing in front of 
someone who's telling you about it. 

15.2.2 Commentary 

In general the students felt that the level of commentary was terse but adequate. 

WMM: What about the level of the commentary- of the explanation that was going 
on? 
fed: I thought that was quite good. 
WMM: Did you feel it was too high a level, too low a level? 
Jed: I felt it was about right. 

John: Well it was the beauty of that was the explanations were very short and 
simple. In a lot of books they're so verbose about what they're trying to talk about, 
when you analyse it, figure out what they're saying they could have said it in about 
four words: "This does not work". 

15.2.3 Navigation: the home page structure 

The students understood the underlying structure well, although they had some. 

criticisms. 

WMM: The homepage worked as a way of navigating? 
fed: Yep. You can base yourself from there. That worked quite well. 

Jed:.Perhaps on some of the longer modules, for instance investigate implications or 
compare with reality I thou^t it could perhaps do with a page numbering system 
or some sort of scrolling system: For instance I got about halfway through, I 
wanted to pop back and look at this page but you have to go right back and go 
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through it again. ' ' ' 
/ felt some sort of scrolling system perhaps would he useful. 

WMM: Did you find using the home page 'easy to operate? 
John: It was the same as doing it on the Internet. Might be nice if you put a 
bookmark in it, so you could bookmark where you are in it so if you if were 
disturbed in the flow of concentration, you could bookmark. You could then go 
back exactly to that point. 

The criticisms seem to centre around the difficulty of going directly to a page In the 

middle of a section. The suggestion made to Jed, of "tabs" along the sides of the pages 

would seem to answer the problem. • 

Jed also had some detailed suggestions to Improve the navigation: that the arrow keys 

on the keyboard could also be used for moving through the program, and that the 

"skip" and "back" buttons could be switched to match the "next" and "prev." 

buttons. 

15.2.4 Pace 

The two groups had different interpretations of "pace". Jed understood it to inean 

the rate at which the mathematics was explained; John, the rate at which the page was 

turned. 

Jed: It went through too quickly for me because I haven't been using it but I think 
if I'd just come out of the maths modules that would be fine. 

fohn: It went as fast as you wanted to click the button. 

15.2.5 Help 

Red "hot" words were the preferred help style. 

Martin: Click on the red word and then it comes up as the easiest way, like 
Internet. If you have to go to a help menu on the right hand side, click down 
several points, keep going, it would.. 

fed: I quite liked the red word although the danger of that is people might be lazy 
and just not do it, seeing they ought to be able to figure it out and skip past it. 
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15.2.6 Specific points 

Jed appreciated the way the new text on'each screen was shown inhlack while the 

existing text faded to dark grey. 

Jed: I like the way the text changes between the active and the inactive. It keeps in 
focus else it ends up being just a big screen of words. 

15.3 Content 

15.3.1 The case studies 

Were the case studies appropriate? Gareth and John felt that if the package was given 

to second year students they might find the applications unsophisticated. 

Gareth: In the second year is where you do quite a lot of thermodynamics work, 
although the coffee cup was there it's not really at the level of a second year degree 
student. 
John: Yeh, I thought something about most of that. 
Gareth: You're going into gas turbines and steam plants and things like that so 
that kind of work was done a long time ago, i.e. foundation year, first year, so if 
you're pitching it at second years I think that you should be looking at an example 
of say, a gas turbine engine would be more appropriate. 
Gareth: fust trying to think what would be more apt, really. Trying to think of 
examples we did last year. Can I think of one? 
John: Waterflowing through a tank? There was a very basic case study- the tank 
was straight, constant cross sectional area equal all through, then you could have 
another one with changing volume, a changing cross-sectional area rather. 

Jed, however, felt that the case studies were suitable. 

WMM: What did you feel about the context? Did you feel the case studies were 
relevant? 
fed: Yes I thought they were quite useful: the case studies. They were suitably 
practical. 
WMM: You didn't think they were.. Did you feel your intelligence was being 
insulted by any of them? 
Jed: Not really, no. I haven't been using any maths for the last year being on 
placement so my maths is very rusty. 
WMM: Is there anything you've come across in your course that you feel would 
make a good case study? 
fed: A good model, mmm. 
Nothing that springs to mind, but I think those are good choices, the way they cross 
over to the water tank with the hose and the hose with losses. 
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15.3.2 Level of mathematics. 

John arid Gareth felt that the level of mathematics was appropriate for students early 

in their engineering courses. They had not looked at the later models, however, in 

which such unappetising items as a quadratic in (dy/dt) appear. 

John: I think it should be aimed at first year because they've already... That's more 
ofan introduction.. They've already done a lot of the stuff that's in that book • 
before they get into the second year. It would be like, regressive, if you like. It 
would be better if that were introduced earlier rather than later on. 
Gareth: I mean even to the point where-on the foundation year, you're doing 
differentiation at that stage and I think it's a key point to get across that this is a 
tool used by engineers to model situations which they are trying to overcome. 
Cause you can get lost in the maths without seeing the relevance to the real world 
in which we're living. Whereas that's quite good with the explanations like the 
coffee cup and the bridge and things like that, why we actually use differentiation. 

Jed did not seem to have engaged with the mathematics content. Dwyer and Dwyer's 

(1987) research, as described below, appears to be relevant here as well. Because the 

interactivity is low, Jed has not spent enough time in contact with the information, 

either in transforming it or in some psycho-motor activity, to elaborate it, and it has 

just washed over the surface. 

WMM: The level of the maths varies quite a lot from the first one through it. 
Whereabouts do you feel happiest? 
Jed: Well, given a reference, I'm happy enough with understanding the calculus-
I've forgotten all the transforms myself. When you use them a lot you know them, 
you just click them in, but I've forgotten all that. My maths is very rusty-1 haven't 
been using it for a year and I haven't had to use it so far this year. 

fed: I sort of tended to follow what was going on without actually examining the 
maths. I understood what was happening without doing the sums as it were in my 
head. 

15.4 Discussion 

15.4.1 Learning processes 

Although the details are different, both John's and Gareth's strategies for learning 

incorporate a transformative element: translation into John's own words, 

transformation into Gareth's pictorial form. This elaboration reflects Dwyer and 
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Dwyer's (1987) findings on the depth of information processing and the effect on 

students' ability to acquire and retrieve information. They found"that when students 

converted information from the visual to the verbal mode, and performed such 

physical activity as taking notes or writing an answer down, the interaction between 

the learner and the information was extended long enough for in-depth information 

processing to take place, which would make the student more likely to be able to 

recall the information in the long term. 

John: I learn by writing things down. I can write everything down in my own 
words. In my notes you have to translate.. But then you know that because you 
had all my notes. I can write them up in my own words. 
Gareth: I know if I'm studying for an exam I'll just get one big sheet of paper and 
put like what it is in the middle and then just draw it an all around do various 
shapes, like somebody's goals then I'll draw a set ofgoals and then when I try to 
remember it... 

Jed also liked the idea of a suggestion for spending time on a model, because he 

implies that in general lectures are too rushed to have time to think. 

Jed: I liked particularly - There was particularly in that section, the bridge I think 
it was, there were suggestions for something to think about that sort of came over-
further investigations you can do. I particularly liked that because often when 
you're being taught the lecturer's desperate to get through the subject so they don't 
have time to stop and talk about that. That's quite useful - keep people thinking 
hopefully. 

15.4.2 On the effects of using the package 

What happened to the students as they were using the package? 

The most encouraging aspect was that the MSE students were provoked into a 

spontaneous discussion of the nature of modelling. This discussion seemed to start 

with a semi-audible comment by Gareth that the model of the coffee cup predicted 

that the coffee would never reach room temperature, but that of course it would in 

reality. At that level he had engaged enough with the program to test it against his 

internal model and to begin a conversation with it. 
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Jed was conversing with the program in that he wanted togo back and see what had 

gone on earlier, because he wanted-an easier w:a7 of going back than provided by the 

buttons. On the other hand, he did not engage with the mathematics, as he says: "I 

sort of tended to follow what Was going on without actually examining the maths. I 

understood what was happening without doing the sums as it were in my head." I 

suspect that the MSE students did not engage with the mathematics either, since, they 

dismissed that aspect as simple, and suggested ways of forcing users to work through 

by including multiple choice questions at that point. 

The idea of using such a stratagem raises other points. The part of the modelling 

process which is the most challenging for engineers is the transition between the real 

world and mathematics, that is simplifying and abstracting the mathematical problem 

(OECD, 1966, as quoted in chapter 12). This is the part of the cycle in which it is 

most important for users to engage. It is also the part in which correct answers are 

most difficult to define (see Graham E, 1997). If some form of what appears to be 

assessment is included, then students will concentrate on the part that is assessed 

(Hargreaves, 1997). 

In the package ias it stands, there was some engagement with the "investigate 

implications" shown by Gareth's comment. This was an intrinsic engagement, as no 

extrinsic provocation such as self-testing was present. If such a provocation is 

included elsewhere in the package, in order to force engagement in parts with less 

intrinsic interest, it will down-play the perceived importance of the parts which do 

have intrinsic interest. It would be difficult to include self-testing of a simple multiple 

choice type in the most important and difficult part of the cycle, that is the 

simplification and abstraction stages. We have seen in chapters 3 and 12 that these are 

the stages that engineering students find the most difficult. 
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In summary, as Connell (1997) observes: 

Typically what is done is to model expert performance, which does not 
include all the muck and. mess which the expert went through to develop it.. 
The learner in such a system is presented with what represents the end-level 
trace of an incredibly complex act of meaning construction. It is little wonder 
that so many students tune out of [integrated learning system] programs. 

15.5 Conclusions 

15.5.1. On the package 

One of the rules of Instructional design is that the author should know who the 

package Is aimed at. In this case the target was "engineering students". This proved 

to be far too vague: the students did not feel that it was addressing their needs, 

although we saw in chapter 3 that their analogues had been unable to produce a 

model of the cascade problem. 

The interactivity suggested by John reflects a behaviourist paradigm, verging on 

mastery learning, where the aim Is to find the correct answer. The stage at which he 

suggests It should be used: "can you perform this integration?" Is probably not the 

most critical point of the cycle, and the object of the program Is to build up a concept 

of the modelling cycle through repetition, showing how the same stages apply 

although the model may change and refinement may be necessary at different stages. 

This Is what Jed Identifies as 'Hhe homogeny of the principles behind modelling.. The 

principles behind it." 

It is recognised that the package needs more Interactivity built Into it, and that this 

should be made more obviously available. The group of students did not look at the 

bridge pictures, because the button leading to those pictures was not in the same place 

as the "next" button. A better approach to interactivity may be to interleave a page 

asking the student to score the package on how well the student feels they have 

understood it so far, which they cannot pass until they have completed it. The 
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student would be asked to reflect on their understanding but the context would be 

that it was the package arid not the student under test. 

On reflection, the place for this sort of package is probably in the context of a 

teacher-led course, and not in isoktion. This reflects the findings of various 

researchers. Heard's (1978) engineering student respondents wanted more teacher 

contact. Brown (1994) found that the role of the teacher was very important to 

engineering students in the context of a computer supported mechanical engineering 

course, Ramsden and Entwistle (1981) found that engineering students were 

dependent on teachers to direct them what to do and Crowther (1997b) suggests that 

engineering students gain motivation from teacher-centred instruction rather than 

working independently. 

15.5.2 On engineering students 

The subject of mathematical modelling appears not to have been taught explicitly in 

the engineering degree course. The students seem to have incompatible ideas on what 

mathematical modelling is. Martin, ahhough he has followed the German rather 

than the English education system up until now, reflects the pattern suggested in 

chapter 13 quite strongly. He suggests that there are about seven basic formulae, 

from which you choose the appropriate on by deciding the variables you have and 

the ones you need, and then the most difficult part for him is determining the 

parameters. John has more of a grasp that setting up the equations is involved, but 

when he describes how a report should be written he makes reference to using ready-

made models (Bernoulli, specific gravity). Jed also felt that he would have problems 

locating the variables, though he would know where to go to for modelling. This 

suggests a similar view to Martin's except that Martin may keep the formulae he 

needs in his memory. Jed's attitudes to mathematics shown by this interview are that 
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he would like to avoid mathematics, he has not used mathematics during his year in 

industry, and that he would be able to look up what he needs. These reflect the 

attitudes found in the comments on the questionnaire in chapter 6. 

Neither group were able to suggest applications which would make good case studies 

(the water tank was effectively dealt with in model 3), although Gareth felt that 

second year students would be looking at gas turbines. This also suggests that none, of 

the students had been in.contact with mathematical modelling during their degree 

course (since the foundation year). 

Both groups pointed out that students (particularly engineering students) would not 

go out of their way to use such a package, unless (John felt)'they felt that It 

specifically addressed a model they might need for an assignment. This reflects 

Ramsden and Entwistle's (1981) view of engineering students as syllabus-bound. 

15.5.3 On a possible redesign 

It would be possible to redesign the package on a more open plan, showing a 

representation of the thing to be modelled and then making suggestions for possible 

modelling strategies. However, as Graham (E, 1997) points out, students will 

approach the same problem in different ways and the diagnostics required would be 

highly sophisticated. We conclude that the best use of the package would be as an 

introduction to modelling, but .that the level of the mathematics. If not of the algebra 

involved. Is probably too high for many first year engineering students. 
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16. Conclusions and suggestions for further study 

16.1 Introduction 

The important outcomes of this study include the design and use of an instrument to 

investigate the concept images of engineering students; the subsequent mapping of 

these concept images and the description of the engineers' mathematical modelling 

cycle. Previous research on. concept images has not addressed the mode in which the 

concept images are held,"(see for instance Vinner, 1991). Research on the 

mathematics of engineering students has concentrated either on their mathematical 

skills and declarative knowledge (see for example Sutherland & Pozzi, 1995; 

Crowther, 1997a) or on their attitude to mathematics (see for example Shaw & Shaw, 

1995,1997; Crowther, 1997b). 

16.2 Concept images: mode and depth 

The responses to our questionnaire provide some evidence that the engineering 

students did hold different concept images from the mathematics students and that 

there was a development in their concept images which was not detected in the 

mathematics students. These differences are described in the sections below. 

It is not implied that mathematics students' concept images do not develop, but 

rather that the research was designed to concentrate on concepts more central to 

engineers than to mathematicians. These results are an original contribution to ou 

understanding of the development of engineers' concept images in that published 

research has concentrated on the mathematical skills and declarative knowledge of 

engineering students. 
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16.2.1 Mode of image 

Although many engineering students would describe themselves as visual people 

(Crowther, 1997b), the diagrammatic options on the questionnaire were only popular 

with them in a "mechanics" context. In a "mathematics" context, respondents 

preferred verbal options where these were available. This could have one of several 

causes. It may be because they their visual representations were private and did not 

coincide with the given options, since drawing a diagram Is not a standard step in 

tackling mathematics questions. It may be that they have not engaged enough with 

the mathematical.concepts to form visual images, or It may be that the verbal mode Is 

their preferred mode In conceptualising mathematics. The distance in iconlclty 

between an abstract mathematical Idea and a slightly less abstract representation In 

words Is less than that between the mathematical Idea and a visual representation. 

16.2.2 Depth of image . 

The change between a novice's and an expert's concept system can be characterised 

on three dimensions by (a) an Increased perception of the concepts as meaningful, (b) 

an Increased linkage and richness of relationships between concepts and (c) an 

encapsulation or clumping of concepts (Royer et al, 1993). These aspects are 

discussed below. 

We found evidence of two different ways in which engineering students' concept 

Images appeared to mature and deepen. The first was a response to teaching, where 

the pattern of preferences changed after a topic had been taught, but reverted to the 

"baseline" pattern after a time. The second type of change was a response to 

experience, where the change was more gradual, but the pattern did not seem to 

revert. 
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The practising engineers proved a dijfficult group to account for, because in many 

ways their concept images were more similar to those of first year engineeiring 

students than those of postgraduate engineers. Possible explanations might be that 

because of their age they had undergone a different school and university experience 

from current students, being older than the current students; or that they were 

intrinsically dissimilar people, having been a group of Ministry of Defence sponsored 

students who had all attended "old" universities and who were now working largely 

as managers. 

16.2.3 Growth in meaning 

Oiie aspect of maturing of a concept was shown by the growth in popularity among 

engineering students of the options where a mathematical concept was expressed as a 

sentence describing what "it tells you". Growth in meaning may be seen as 

proceeding in two directions: making a relationship between the mathematical 

concept and the outside world, so the worldis interpreted through mathematics (see 

Wilson et al, 1993), and seeing how that concept had meaning particularly in a work 

situation (see for example, Lave, 1996), so mathematics is interpreted in terms of the 

everyday world. 

16.2.4 Richness of association 

Some small evidence of an increasing richness of association between mathematics 

concepts was found in the engineering students, in that an option which portrays 

integration as the reverse of differentiation gained in popularity. This was not an 

aspect which the questionnaire was designed to explore so it was interesting to find it. 

Although the process of integration is taught as being the reverse of the process of 

differentiation, the students in the early part of their studies did not identify the 
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relationship in the same way that they readily chose the description of integration as 

"the area under a curve". This development may be related to the.'application of 

integration in areas such as hydraulics and stress analysis where a total force may be 

equated to the sum of the stresses across an area. 

16.2.5 Encapsulation-

There was some small evidence that the fengineering students' mechanics concepts . 

were becoming encapsulated across'the course: This was shown when options which 

used a general heading under which the particular case might be classified increased in 

popularity. The statement describing the beam as simply supported with a load at 

one-third span, and the description of the mass-spring-damper system as performing 

damped harmonic motion both increased in popularity over time among the 

engineering students. 

16.2.6 Comparison with mathematics students 

We believe from the results of this study that the mathematical development of 

engineering students is different from that of mathematics students, particularly in 

the way in which they give engineering meaning to certain mathematical concepts. 

At entry, there were strong similarities between the mathematics and engineering 

students' patterns of responses but by the final year the groups had diverged. This 

confirmed the differences observed between the mathematics and engineering 

students carrying out the cascade modelling exercise. 

There is evidence in the literature that engineering students are socialised into ways of 

thinking and behaving, and we may ask whether the difference found stems, from 

socialisation, from the interactions between students and their peers, lecturers and 

other professional contacts, or whether there is also a second acculturation :process 
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through their discovery of what is useful in the context of their study and work. 

16.2.7 Summary 

We believe that the study has for the first time shown changes in engineering 

students' mathematical concepts as they progress through their studies. These 

changes are not shown in mathematics students, the virtual control group, so they 

may be thought of as .specifically engineering changes. It was unexpected that the 

engineering students seemed to have verbal concept images in mathematics, but 

pictorial ones in a mechanics context. 

163 Implications for teaching 

An important element of engineering mathematics which we have demonstrated is 

the growth of meaning of mathematical concepts in external terms. This creates gains 

in three fields: the students have more attachment points for their concepts, the 

students have intrinsic motivation to develop their understanding since it relates to 

their chosen studies and the students are able.to apply their mathematical knowledge 

In the engineering fields to which they are appropriate. 

If this growth In meaning Is seen as both a valuable and intrinsic part of engineering 

mathematics, then Its development should be encouraged as early as possible in the 

engineering mathematics curriculum. As present It appears to occur mainly during 

the students' "year out" while they are in contact with mathematics as It Is embedded 

In engineering experience. In order to accelerate its development then mathematics 

should be experienced as embedded within engineering at an early stage of the degree 

course, and this Implies that mathematical modelling should be used as a context for 

the use of mathematics at an early stage in the course. 
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16.4 Engineering students' attitudes to mathematics 

Attitudes to mathematics form another aspect of the internal mathematical world of 

engineering students and some were expressed by engineering students in the 

questionnaire responses, the modelling exercise and the courseware evaluation 

interviews. They may be summarised as follows. 

1. Mathematics is found in books:-.it is external to an engineer, 

2. Mathematics is not really relevant to engineers, • . 

3. Mathematics is something you learn for exams and then forget, 

4. Mathematics has right and wrong answers. 

Of these attitudes, the first two seem to refer to mathematics in general, and the 

second two to mathematics as a part of the university syllabus. 

16.4.1 Mathematics as external 

Engineering students appear to regard mathematics as something external to them, 

which they would find in books or notes. When mathematical skills and concepts 

become internalised as part of other processes and conceptual structures, we suspect 

that they are no longer regarded as being mathematics. O'Kane (1995) makes the 

claim that "all fundamental concepts in engineering science have been given their 

most precise expression by mathematicians working in Rational Mechanics", and that 

engineers do not recognise the mathematical content of their everyday concepts. 

Engineers find meaning in mathematics when it meets their experience: for example, 

the derivative as a rate of change, which has more meaning to an engineer than the 

more abstract notion of the slope of the tangent. There is a development in the 

extent to which such concepts become meaningful to engineers, but this appears to 

relapse while they are in practice. This aspect would be worth further research. 
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16.4.2 Mathematics as not relevant to engineers 

The engineering students observed" were not using mathematics as a way of describing 

or interpreting experience (cf. Hirst, 1972). They say they do not use mathematics 

when they are working in industry. They even claim to try to avoid mathematics. 

These claims should be seen in the light of the proposal that once something is seen as 

useful to the engineer it ceases to be regarded as mathematics.. 

Separation from mathematics is probably a disadvantage in the practice of engineering 

and may also rob the engineer of a source of satisfaction: successful mathematical 

modelling (Shaw, 1989). Although mathematical modelling is now a recommended 

part of the engineering core (IChemE et al, 1995) it is as a short course which we feel 

does not capture the essence of the subject: I recommend that it should be integrated 

into the mathematics of the engineering course from early on, as Cross (1983) does 

for most mathematics courses. 

16.4.3 Mathematics as something you learn for exams and then forget • 

Engineering mathematics has been variously described as a tool, a language and a 

competence. "We feel that to regard mathematics as a competence implies that it is a 

skill which may be acquired in order to pass a test of competence, and then ignored. 

A language is a better metaphor for engineering mathematics, as it implies a living 

entity which is used to communicate content about something else, and which is 

subject to change as usefulness dictates. A tool is a metaphor of mixed usefulness. 

On the one hand a tool is external to the user rather than internal like a language. 

On the other it implies usefulness, and being a means to an end. 

Even some authors who insist on rigour in engineering mathematics defend this as a 

way of teaching intellectual rigour to engineering students (implying that intellectual 

rigour is not present in their other subjects, which implies that without mathematics 
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engineering would have no intellectual rigour) and not as an intrinsic part of the 

mathematics needed. 

We have sympathy with the authors (Cox et al, 1995) who recommend that sample 

transformation and operator methods, for example, be taught to engineering students, 

and that students should become proficient with symbolic algebra systems since there 

is simply not time in the engineering mathematics course to teach all the mathematics 

an engineer may require. 

On the thorny question of relevance, there is an argument which says "if you can't 

find an engineering application for this piece of mathematics, so you can teach it in 

the context of that application, why are you teaching it to engineering students?". 

The counter-argument is that learning a new application and new mathematics 

simultaneously is too hard: in general it is easier to teach the mathematics first and 

then to teach an application which will use the mathematics later. Crowther (1997b) 

suggests that any three-dimensional, practical or easily visualised application would 

help engineering students to give meaning to mathematical concepts. 

16.4.4 Mathematics has right and wrong answers. 

This opinion is dangerous in engineering students as it causes a false expectation of 

mathematical modelling. The ability to construct and use mathematical models is a 

vital piece of engineering knowledge. It is the way that engineers use mathematics in 

their professional lives, and it allows engineering students to give content and 

meaning to mathematical concepts. However mathematical modelling is an 

intrinsically messy process, and the critical property of a model is not its correctness 

but its usefulness (or "fruitfulness"; see Gilbert et al, 1998). Again I suspect that a 

process which produces messy answers is regarded by engineers as not mathematics. 
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The model used in this study for mathematical modelling has been a modification of 

the Open University flow chart (Figure 16-1). ' 

Reality 

(7.) 
Write report 

Interpretation 

1. 
Understand 

problem 

6. 
Compare with 

reality 

Abstraction 

2. 
Simplify and 

make 
assumptions 

5. 
Investigate 
implications 

Mathematics 

3. 
Set up 

mathematics 

4. 
Solve 

mathematics 

Figure 16-1: Modification of O U modelling flowchart 

The mathematics taught to the engineering students in this study does not appear to 

be directed towards making them proactive mathematical modellers, but more to 

allowing them to follow the mathematical arguments used by others in constructing 

well-known physical laws (or "formulae"), and to manipulating the formulae once 

given. These formulae then become the basis for the engineer's modelling process, 

which appears to be different from both classical mathematical modelling and classical 

empirical modelling. The process is described in Figure 16-1, a new model, 

reproduced from chapter 13. 

I O Identify the 
type of 

problem 

; © Evaluate the 
parameters 

© Find the 
appropriate 

theory 

; ©Feed the data 
r: back into the 

I © Eliminate 
unneccessary 

terms 

theory 

: 0 Set up an 
experiment 

": O Write a report 

Figure 16-1: The engineering modelling process 

I would argue that the critical part of mathematical modelling lies in the central part 

of the O U diagram: in the "interpretation" and "abstraction" streams, where the 

possibility for individual variation is the greatest (Graham E, 1997). This was 
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intended to be the focus of the courseware: extracting the mathematics from the real 

world situation and interpreting the model in terms of how well it matched reality. 

It is all too easy to show students a polished model of reality, but the engineering 

student needs to be aware of the process of building the model and then of 

interpreting it in terms of the real world. Part of the problem is the desire of the 

teacher or the professional to present the learner or other audience with the final 

product of their reasoning, without showing any of the scaffolding with which it was 

built (see, for example, McDermott, 1991; Gauss's habit of destroying his working 

notes), which is related to the absolutist view of mathematics, in which the struggle of 

the mathematician to produce the final knowledge is of no interest. This is analogous 

to mathematics being regarded as a theatrical performance in which only the final 

event is of interest, or a building which stands after the scaffolding has been removed. 

However if mathematics is regarded as an endeavour, the process of building is 

important, so that it may be replicated with variations to arrive at an extension of the 

edifice. On the other hand, slavishly following the same process will not lead to any 

growth in knowledge: the message is not "this is the way mathematics is done" but 

"this is the way we did this bit of mathematics". 

16.5 The courseware 

The courseware failed to engage the students, by presenting a picture of how the 

model had been built rather than allowing them to take part in the building process. 

The interactivity proposed by the students suggested that they were expecting a right-

wrong type of answer, because to them mathematics has right and wrong answers. 

Writing the courseware was an experience which produced cognitive change in the 

author. When it was tested it proved to have been too loosely aimed. Although the 

case studies are the practical or easily visualised type of applications recommended by 
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Crowther (see above), and the mathematics is deceptively simple, some o£ the 

manipulation, for example in the-catenary and in the tank with pipe losses, is 

probably more subtle than many engineering students would appreciate. 

The main shortcoming with the courseware is that it did not engage the students in 

the modelling process, and this is probably due to its book-like appearance, that it 

presented the process in too polished a guise, and that did not allow students to 

participate In the decisions taken. It is probably an indication of the lack of 

engagement of the students with the courseware that they did not recognise the 

subtlety of the manipulation. 

I see such courseware as being useful at two points in the engineering mathematics 

course: as an introduction using the simpler cases in the first year and as a recap to 

refresh the memories of final year students coming back from a year away from 

study. The courseware will need some modification before it is practically useful, to 

invite more engagement in the simplification and abstraction sections. 

16.6 Research methods 

Several research methods were used in this study: observation, survey, content 

analysis, factor analysis and interview. This spread of methods allowed a degree of 

triangulation in the study, although all were approached qualitatively, rather than 

quantitatively. The study was overall narrow and in depth rather than broad and 

shallow in scope, which is an approach which gives a rich qualitative picture in 

general. 

16.7 Misconceptions we all may have 

One of the questions in the questionnaire provoked strong comments from 

respondents of all levels of experience. These responses gave evidence of two 
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widespread misconceptions, one of whicli is the well-known case of rigidity given 

priority over stiffness, and the other of which, described for the first time, appears to 

be the priority of the behaviour of a string over the bending behaviour of a beam. 

The conclusion I draw from these misconceptions and their widespread distribution 

is that they probably represent a widespread distribution of other misconceptions 

which most of us are carrying about with us, which are presently causing very little 

harm, and which would be dispelled if we were to run into the phenomenon in 

practice. However it is a useful memento mori, as it were, to remember that we may 

all be fallible, as well as mortal. 

16.8 Questions arising from the research 

Three new questions are now begging to be answered. 

The first is whether the effects I have observed in this study, of the changing concept 

images of engineering students and the increasing difference between engineering and 

mathematics students, may be found in other universities and whether they may be 

found again at Plymouth. This is a question of confirming the findings for other 

groups of students, and broadening the scope of the study. 

Given that the effects are confirmed, the question arises why the practising engineers 

appear to have reverted to a similar state to students at entry. This would be a matter 

of tracing engineers at different stages of their professional lives and trying to 

document the process of regression if it indeed happens. 

Finally, I mentioned in chapter 6 the suspicion that engineers cease to consider 

concepts mathematical as they find them useful or comprehensible. This process is a 

topic which would be appropriate to investigate through a questionnaire which could 

be designed while applying the lessons learnt during this study. 
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APPENDIX A: TRANSCRIPTIONS OF RECORDINGS OF 
STUDENTS PERFORMING CASCADE MODELLING PROBLEM 

30 Jme 1994. Two final year mechanical engineering students. 3 vessel problem 
Students have the apparatus set up with tubes but no water on a table in the window of 1 
Rowe St. The camera is operated by a student from Media lab arts degree. 
Tape 1 
Note: there are inaudible passages on the tape where the students are muttering to 
themselves or to one another, but there are also long periods of silence as they study 
pieces of paper or the apparatus. 

Time on 
tape 

00:12 

Speaker 

W M M 

01:00 

Adrian 

W M M 

Early stages 
02:07 

03:11 

03:54 

04:22 

05:37 
05:41 

06:21 

06:55 

08:10 

Adrian 

Jolyon 

Jolyon 

Adrian 

Jolyon 

Adrian 

Adrian 
Adrian 
Jolyon 

Adrian 

Jolyon 

Adrian 

Jolyon 

Jolyon 

The situation today is that Tye asked you to come and do a mathematical 
modelling problem to help me in my research into teaching maths to 
engineering students. 

The problem is this: you have three vessels as described on the sheet. Tank 
l(sic) emptying into tank B and tank B into tank C. Clearly the level of fluid in 
each tank will vary. So the question is to determine.. To predict when the level 
of fluid in the middle tank is greatest and what that greatest volume is. So... 
Are you happy with that? 
1 think so, yes. 

So what 1 intend to be doing is to be taking notes, really, of the things you are 
doing, to watch you doing this and intervene if necessary. I hope not to 
intervene at all. 

The pink little bottle has got some pink fluid in it which you can dye the water 
to make it a bit more visible. And it's got phenolphthaleine in it which is 
laxative so please don't drink it. (laughter) OK, thank you 

Right. (Students settle down to look at sheet) 
O K So how does the water go to exit 

There's a certain amount before it actually goes in there, so we've only got so 
much head. 
Adrian sketching diagram. 

(Pointing to taps) We have to assume that the flow rate through here is going to 
be the same as the flow rate through here. There's roughly the same difference 
in head, diameter of tube. 

As the pressure varies, the flow is going to be changing. 

Inside the tubes a steady flow job is developed It's a maximum 

(Drawing) What we're interested in is in., maximum volume in B is this one 
here. 
Shall we go home?(Laughter) 
A wild guess 

(Sketching) Well I'd have thought the answer is something like- do that Do it 
experimentally, start with that 

(Drawing vertical arrow on sketch) See that distance 

The pressure on there is mgh 

We could do with the air really 
That could give us some help because we obviously need ... 

What if we split it up so we've got the initial tank of water. We need to know 
how long it's going to take for each litre of period of water.. So you can take.. 

The formula card appears 
08:54 Adrian Trying to go back to basic principles here 

Jolyon (Studying tanks) What if we apply Bernoulli to the area between each tank? 
Both pi v l is going to be equal. 

10:20 Jolyon (Takes out calculator and from it a formula card) Cause I've got Bernoulli's law 
on here 

Adrian Ha Smart! 
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10:50 Jolyon Use this equation just to see 
11:10 (Adrian picks up card and studies it) 
11:34 Adrian Quite a smart formula 

Jolyon Yeh 

12:28 

13:02 

13:22 
* 

13:50 

14:11 

Jolyon reaches a physical understanding and makes a prediction in general terms 
11:58 Jolyon See we just don't want mass flow rate, we want to (believe) the formula as well 

Jolyon (Sketching) cause somewhere on the line we're going to have to plot this .. 
Time 

Adrian It's a matter of differentiation then I suppose. 
Jolyon We've got - say volume over here. Initially very small and it's going to rise 

quite quickly initially because nothing's coming out the bottom. 
Adrian Yeh but i f you look at this diagram you're assuming that.the exits are at the 

bottom. 
Adrian So it appears for me you're going to have a high flow rate which soon moves 

off dunnit? 
Jolyon There will come a point when the level in the top.. The two flow rates are going 

to be equal when we've got the same head in it after which it will start going 
down 

Adrian Yeh, yes right 
Adrian The time it takes for this to half empty, these two will have the same volume 
Jolyon No because some will be coming out at the same time. When that's half empty 

you'll still have.. 
Adrian (Point to tap in tank B) Yeh. I'd say we were assuming this was level. Not the 

initial volume at the bottom. 
Jolyon Yeh.. You'll see what's there. When that's half empty that isn't going to be 

half full. 
Adrian No they're the same size. 
Jolyon Yeh, but it' 11 be flowing out of them as well. 
Adrian Yeh 

* Jolyon You'll get a point when they are at the same level but not when that's half 
empty. Probably some time after that. 

Some attempts to manipulate the formula 
15:16 Adrian Got some stuff over here 
15:36 Jolyon You've got the other here which is ( ) you don't have to ( ) the maths while 

we do this 
Adrian No that's going to vary as time goes on, isn't it. ( ) wit respect to time but 

actually.. 
Jolyon Yes 

16:10 Jolyon I'm just trying to get the flow rate coming out of the bottom then we can use it. 
Adrian Yep 

17:11 Adrian We're going to have to assume the losses. There will be because of the 
coefficient of viscous.. Velocity is going to be zero, pi is going to be zero 

Jolyon h2 is zero, hi will be... 
18:37 Adrian We need pressure to... 

Jolyon (Pointing) That's zero 
19:30 Adrian (Taking calculator card again) Looking to see what I can get rid of 

Refocusing 
21:50 Adrian Where is this taking us? What are we trying to get out of this? 

Jolyon Flow rates for varying heights of water 
Adrian Then that will be the same at the bottom as well 
Jolyon Like I said, what's coming out of the bottom is the same as the top one. 
Adrian (Writing) We know g 
Adrian Did you do that plot with steady flow? 

23:30 Jolyon (Laughing) Two years ago 

More manipulation: capitulation 
24:15 Adrian This thing actually cancels out. doesn't it, because you take that away from 
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26:00 

each side and divide through 
Jolyon You want this squared and then 
Adrian Yes it's just rearranged, isn't it. 
Jolyon Well .do you fancy giving us any pointers then, because we're not getting 

anywhere. 

WMM 
Jolyon 
Adrian 

Filling the tanks 

Intervention 1: permission to play 
26:23 WMM Have you got any intuitions about what you think might happen? 

Jolyon We've done a similar thing as an exercise.. Practical.. Quasi-static flow which 
was based totally around this. How long it takes a container of water to empty 
into another one- And if we knew that for each container- over a period of time-
and compared the times- then (sketching) the whole thing is we would probably 
get a graph where the two coincide - where the two would be a maximum. 

27:10 WMM How could we test your intuitions? 
Jolyon Fill it up: we'd just do it. 
WMM Well why not? 

• Jolyon I thought the idea was to get a mathematical model of it rather than just sort of 
measure it. 
It might be helpful to test your intuitions. 
Yeh 
Come on then, let's fill it up. 

27:52 Adrian (Pointing at tap level of tank B) We want to fill this one up so it.. 
28:50 Adrian If you just fill it up to the five litre mark. 

Jolyon That's spot on, mate. 
Adrian When it's empty it's still got all that 
Jolyon Shall we fill this one (tank B) to there? To this line first? 

A gap in recording. The students are now sitting looking puzzled and unhappy 
30:00 Adrian The liquid is leaving the top container at a uniform mass flow rate . Of what 

volume. 
Jolyon So? 
Adrian So 
Jolyon No different pressure either. I'm not so sure about this formula anyway 
Adrian That must be it most likely. The time that.. 
Jolyon All I can say is it seemed to reach a maximum near the first taking water, albeit 

very slowly. 

Intervention 2: How did the apparatus differ from the thing you are trying to model? 
WMM attempts a Socratic dialogue. 

32:28 WMM Can I come in here? 
You found that it didn't do what you expected it to do. And you found that it 
emptied at virtually a uniform rate. 

Jolyon Well, yeh it did 
WMM which was not what you were expecting. Why do you think it did that? 
Adrian The difference in height was causing pressure difference 
WMM Yep 
Adrian But it isn't enough to vary- say if the thing was 10 metres high then you 

would've got enough pressure difference to matter. 
Jolyon It would have been more visible, wouldn't it? 
WMM What I'm questioning really is: what the height is. What are you measuring the 

height from? 
Adrian From the top. From the level it it's at now to the level it was beforehand. 
WMM Well, that's the change in height- but what's the significance of zero height in 

the physical significance of height? 
Jolyon Well we were taking the height from the floor to each one. 
WMM What's the sig, um, what is it about hO that's , I mean I'm asking really what's 

• the physical significance of h. 
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Another tack 
33:12 

36:14 

37:06 

37:41 

WMM Does the apparatus match the diagram? 
Adrian (Looking at diagram) Um- no apparatus will exactly match the diagram but you 

can assume it's being just by putting the bottom amount of water in the vessels. 
WMM , So you've got a little lip, but what else is the difference between the apparatus 

aild the diagram. 
Jolyon Well nothing apart from what's left in the bottom of the container. 
Adrian Water is forced down into here instead of horizontally 
WMM So it's got no horizontal velocity. What about.. What is it that's affected by h 

apart from the flow rate? 
Adrian The pressure 
WMM The pressure, yup. hO is the place where the pressure is equal to atmospheric 

pressure. So here is it apart from at the surface of the liquid that water's at 
. atmospheric pressure? • 

Jolyon It's at atmospheric pressure when it leaves this tube. 
WMM Exactly, yes. 
Adrian So pressure at entrance and exits to the tube is the same then. 
WMM Is it? 
Jolyon At the water surface it is. 
WMM Well it's the same at the water surface and at the point where it leaves, cause 

that's what's driving the flow. 
Jolyon Yes but where the water's higher the pressure's getting to be different there 

than 
WMM Yes. So could you adjust the apparatus to make it more similar to the diagram.. 

so it matches better? 
Adrian By taking the rubber.. 
Jolyon We could take the rubber off but I mean then I don't see any difference. Cause 

you still., whether atmospheric pressure's going- to be here or there (indicating 
top and bottom of tube) but the restriction-

Adrian I'm not sure it's going to make any difference 
WMM Do you think that taking.the pipes off will make a significant difference? 
Adrian Some difference, yes, but not.. 
Jolyon You haven't got any losses in the tube then, have you. 
Adrian So you increase the flow rate leaving the tap 
Jolyon I suppose the pressure's less because you've got the head of water fi-om the tap 

to the bottom of the tube. 
Jolyon (Removing rubber tubes) One way to find out. 

We set up the apparatus again 
Students empty tank C into tank A. 
We don't need to do that (As Adrian drains tank B) 
May I suggest you sit it on something- the middle carboy.. I think you'll also 
need to sit the bottom carboy on something. 
That won't affect the top one? 
No 
(Middle carboy sitting on spool) 
You hold it (the bottom carboy) 
(Jolyon trying to spot when the level in B hits a maximum, holding bottom 
carboy. Level in top carboy starts at 5 litres)) 
Ready 
Yes 
Keep your eye on that. Three two one go 
It's taking longer. A lot longer 

43:45 Jolyon It's constant. It's staying that way 
44:00 Adrian Right then that's a lot better 

Doesn't significantly change the result of this but it's changed the top one. This 
one's still at a maximum- well from about then on 

Jolyon 
WMM 

Jolyon 
Adrian 

Adrian 

Adrian 
Jolyon 
Adrian 
Jolyon 
Jolyon 
Adrian 
Jolyon 

A dialogue: how much have things changed or improved? 
45:45 Adrian Right. That performed more as we expected: The first litre at 21, the second 24, 
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46:30 

47:44 

48:04 

48:48 

the third 31 and the fourth 41. That was more how we expected it to go, wasn't 
it? 

Jolyon • So what did you say initially it was? 
Adrian Initially it was virtually constant for a time: first litre too 22, the second 24, the 

third 31 and the fourth 41. So that was more how we expected it to go, wasn't 
it? From the top. 

Jolyon I suppose so. 
Adrian Initially it was virtually constant time really. First litre took 22, second 24, 

third 31 and the fourth 41, so that was more what we expected, yes? 
Jolyon (Pointing at tank B) Cause the difference with the tube was less. 

Jolyon I seem to remember that somewhere: the thing we did was vary the length of 
that tube. 

Adrian It has changed it a lot, hasn't it? 
Jolyon The thing' is still reaching a maximum with the amount of water at the top. 
Adrian So when you said it was a maximum, yep, was it a noticeable maximum or did 

it sit at that level for a long time? 
Jolyon It went up to just over 2 then hovered around there- couldn't really notice 

anything until the last little bit when it started dropping again. 
Jolyon That's assuming the sizes of these are the same. 
Adrian Yes. They are the same, aren't they 

49:20 

50:26 

53:11 
53:35 

Tape 2 
Time on tape 

00:01 

00:29 

00:45 

Jolyon 

Adrian 

Jolyon 

Adrian 

Jolyon 

Speaker 
Adrian 

Jolyon 

Adrian 

The difference between this and the previous to compare- the pressure 
differences between there and there- and this one between there and there. 
I'd say the maximum is an interesting point where it starts losing more than it's 
gaining. 
Well I would have thought it's obviously (mu) that's wrong and it's starting 
losing more than gaining at this level (B) is the level in there (A) i.e. over 
halfway down. 
1 expect the level in there (BO got up to there too soon and only the last bit (A) 
will start dropping. 
I f it was the same out of here and out of here this level (B) wouldn't change at 
all. 
Adrian looks at papers. Jolyon looks at apparatus. 
Jolyon takes a sheet of paper 
End of tape. 

So the maximum is going to occur on that when it starts emptying more than 
it's gaining - yeh- first of all its gaining water more than it's emptying, and it 
rises. 
I mean if that's the case - if you're saying that - then why is it still at a 
maximum when that's nearly empty? 
There's not much in it. It's not really visible. I would agree that should be the 
case 

Intervention 3: Plot a graph? 
01:35 WMM Can 1 intervene? 

Adrian You certainly can 
WMM May 1 make a suggestion? Have you used all the information that you've 

actually got? 
01:47 Jolyon I think so 

WMM Well it appears to me you could try plotting the er the figures you got fi-om the 
top one emptying and that might lead you down an interesting road. 

Jolyon Shall we make a note of each.. 
WMM You've got the times it took to go past each little mark in the top one. That 

may lead you down an interesting road. 
02:50 Adrian Shall we plot the time? 

Adrian draws 
Jolyon takes paper and sketches 
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Break in film 

Is there a linear relationship?' 
04:41 Adrian reading data and plotting. Sketches in line 

Jolyon Should it be linear? Because it's proportional to isn't it? Dunno if that's.. 
Ordinate scale is volume. 

Adrian The volume's the same. It's the time that's changing. 
Jolyon You change the volume as well. You lose it out the tap. As time goes on, 

you're losing volume and pressure. 
Adrian Well? 
Jolyon The top doesn't vary but it does vary here (indicates tap) because of the head. 

06:20 Jolyon If that's the case, what comes out of the bottom has gained by the top one. 
You'd also lose the bottom one at a linear rate. 

Intervention 4: What's the relationship between height and flow rate? 
08:00 Adrian Any tips? 

What sort of relationship does it look like? 
There isn't any shape showing clearly there. I thought it tends to be linear. 
What does the graph represent? 
It relates the amount of volume to how long it's been going. 
So what does the slope of the graph represent? 
The rate of flow 
So.. 
so when the slope is nought there's no volume in 
Cause you've still got about 20 mm of drop there: when it's empty - in 
inverted commas-you've still got about 20 mm of drop there. So-and so 
can you deduce some sort of relationship between the flow rate and the height 
of the water? 
The higher the water the greater the flow rate 
That sounds reasonable. So you've got that there is a relationship between 
flow rate and the height of water. What do you think that relationship might 
be. 
Well, the slope of the line. 
Well, do you think it's- It's clearly not independent of the height, so you 
could write down an equation that says the flow rate is a function of the 
height. And what sort of function do you think that is? Do you think it might 
be? 

10:47 Jolyon Well, it's obviously not linear, from those results. 
No- yes- i f it were a straight line it would be independent of height. So you 
know it's some sort of function of the height. 
We thought it might be some sort of square. 
How would you test what the relationship between flow rate and height is? If 
you're suggesting it's a quadratic, how would you test i f it's a quadratic? 

12:23 Jolyon Surely you'd have that by seeing the results. 
But we don't really know what's going on- we're not really sure what's 
happening between., each container. So up to now we've only done 
experimental - and what we've got there - doesn't really show enough -
doesn't really tell us enough about the flow rate against the height of the 
water. 

10:15 

Adrian 
WMM 
Adrian 
WMM 
Jolyon 
WMM 
Adrian 
WMM 
Adrian 
WMM 

Adrian 
WMM 

Adrian 
WMM 

Jolyon 
WMM 

Adrian 
WMM 

Jolyon 

You can only measure flow rate under steady flow conditions. 
13:07 WMM So you carried out an experiment to.. How would you try an experiment that 

would give you a sort of.. the relationship between height and flow rate? 
13:40 Adrian What you'd do is to set it up wit a variable input intoit and we'd have to 

* maintain the height in litres for the flow rate. Maintain it at say five litres and 
measure the water coming out the bottom in a given time. 

14:18 Jolyon Do the same for four, three, two and one litre which would probably give us a 
more accurate result. 

WMM Could you not do something simpler than that? (Laughter) 
14:40 WMM Well, as the water's running out, it's actually, successively, at every height 
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15:15 •Adrian 
Jolyon 

16:08 WMM 
Jolyon 

16:08 WMM 

Adrian 
Jolyon 

\TM WMM 

Jolyon 
18:23 Adrian 

that you've got there. So, um, i f you can work out a way of er estimating or 
um.. 
You want to getthe flow rate for each thing of water., each.. 
Yeh - that's what the volume is.. Water in .. how much it is. 
So what would help you then? rather than just measuring each litre.. 
Well, just maintain the height of the er water in the top. 
What if you were, for example, to er time the time it took to go from 5.2 to 4.: 
litres? 
We haven't got enough calibration on the.. 
It'd give you a rough guide I suppose 
Students study papers. 
Another approach might be to mark - to put a scale on the side of the carboy 
and mark at regular time intervals. So you get slightly more points in there. 
Very hard to achieve I suppose. 
I thought we could keep the head the same. 

A relationship between flow rate and height in litres. 
19:00 

19:55 
* 

20:43 

Jolyon 
Adrian 

Jolyon 
Adrian 
Jolyon 
Adrian 

Jolyon 

Adrian sketching and jotting. Jolyon looking at the tanks 
Adrian uses calculator 
That's not constant is it? 
No, it's not constant is it. 
The first could be the height for ranges. 
So if we say that was between four and five, then we assume that that occurs 
at four and a half. 
What are those for? 
(pointing) between the scales - the graduation - yep 
Oh I see, OK. 
If we say it takes ( ) seconds to empty that, then the average between the two 
is going to be what comes up on our screen. So now we know the mass flow 
rates at various levels 
So what will that give us? So.. 
Adrian doing some more writing and I cannot find a sheet looking like the one 
he was working on. 

Trying to come to terms with tank B 
23:30 Adrian So we know that this has got to be less than that. What we want is the volume 

in terms of the height - yeh? 
Jolyon Then the volume is turning up - yup. So is the height. 
Adrian Just writing the two to make a table. 
Jolyon Although effectively you've got to take a line.. 
Adrian If we see this reasonably.. It starts gaining 
Jolyon It's also losing. 

It's losing.. 
It's not losing at the rate it comes out of here otherwise it wouldn't gain.. 

Adrian So the rate it's gaining is overtaken by the.. 
Jolyon You'd think they were equal here 
Adrian Yeh.. 

Adrian drawing the graph of mass flow rate against height. 

27:38 Jolyon Turning there., flowing in at that rate. That's what's coming in the water., if 
it takes that form., flowing less volume as time goes on., right? 
Coming out., at the bottom one., but it's happening slower because we 
assume there's already water in here in fact that might even vary sometimes. 
So if you can those two that's why it seems to reach that height and stay there 
till it's almost empty. 

28:52 Jolyon Perhaps we're going to get a simple output. 
Jolyon sketching graph. 

30:00 Adrian Outstanding - guestimation. 
Jolyon Does it prove anything? 
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32:12 

Adrian We can specify the mass flow rate at any height 
Jolyon We need to know that in terms of h though. Cause what's going to happen 

here (points at tap level) if h is going to go up. 
Adrian It's going to - some height and mass flow rate. So in the lower container it's 

gaining at this rate but it's losing at that rate until we get to a point.. 
Jolyon But as it carries on it doesn't seem to reverse. 
Adrian No 
Adrian It gets me up that these. That the two nozzles that aren't... 
Jolyon I'm sure you'd notice it because it limits and just stays there until it's going to 

be empty. 

Struggling to come to terms with the implications of water flowing in and out at 
different rates. 

32:30 

33:20 

33:28 

33:50 

34:45 

36:20 
36:30 

38:20 
39:30 

40:15 
40:30 

Adrian 

Adrian 

Adrian 

Jolyon 

Adrian 
Jolyon 
Adrian 
Jolyon 
Adrian 
Jolyon 
Adrian 

Adrian 
Jolyon 
Adrian 

Jolyon 
Adrian 
Jolyon 
Jolyon 
Adrian 
Jolyon 
Adrian 
Jolyon 

Adrian 
Adrian 
Adrian 
Jolyon 

It comes in at this flow fate. It goes out at that flow rate. 
Adrian using calculator. 
This could be some big pig.. Which kids us. The maths bother me. 
I make it point three three., nought point three three.. 
Ah here it is.. The max.. 
That's the maximum innit. The maximum level. So when point nought three 
mass flow rate occurs .. what time that occurs., is the time when it hits the 
maximum. 
So we could... if we had an equation for that line, we could differentiate that 
and find a maximum, couldn't we? 
Yes, but it's.. 
Which is what we're after. 
Mmm. 
But it still doesn't explain why it stays at that level. 
How long does it take to get to that point there, then it stays there? 
Not particularly.. Take the.. Determine half empty.. 
It's not so bad. (Writing on a paper he doesn't seem to have left with me) 
Foui- and a half, that occurs.. ( Using calculator) Two and a half, will occur.. 
one and a half.. 
So? 
The time that occurs. The time that occurs... So we're saying that our 
maximum height be reached.. How high was it do you reckon? 
(looking at carboy) Two - twoish 
Two point two. (using calculator) Point three o five., so.. 
Between those two values 
You're saying after 69 seconds that makes that a maximum. 
Yep that is my prediction. 
It's incredibly dodgy I reckon. 
Well, let's do it again then, try it. 
But going by that, that doesn't say it's going to stay a maximum height, does 
it? 
No. 
Unless we calculate what the volume is 
You trying it? 
I suppose we are - can at least 

A frustrating experimental run. Adrian sees the behaviour of tank B for the first time, 
and is not impressed. Adrian interprets in terms of improving the apparatus. 

41:00 Students set up apparatus again. Jolyon pours fluid from tank C into A and 
holds tank C in his lap. They adjust the starting levels of fluid. It seems to be 
less pink than it had previously been. 

41:30 Adrian It's on five litres. 
Adrian Do you want to mark it every so often? 
Jolyon I'd say we're not fussed about it this morning. 
WMM If you want to mark it every so often I can give you some stuff to do that. 
Jolyon Yeh, we could 
WMM Do you want to mark it every so often? 
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Adrian 
42:30 

WMM 

Jolyon 
Adrian 
Jolyon 
Adrian 
Jolyon 
Adrian 
Jolyon 

43:45 Adrian 
44:14 Jolyon 
44:30 Jolyon 

44:38 Jolyon 
44:47 Jolyon 

Adrian 
45:08 Jolyon 
45:20 Adrian 

Jolyon 
Adrian 

Jolyon 
45:37 Adrian 

Yeh 
Adrian puts transparent tape on middle carboy 
You might want to mark some sort of register on there, then take it off and er 
Adrian puts rnarks at tap level, and sits next to Jolyon. 
So you're saying sod the top one then. 
Hm? 
Just let the top one go. 
Well, yeh. That's going to be the same as last time, innit? 
Yeh 
OK 
Ready, steady, go. 
Adrian marks level on middle carboy at intervals. 
We'll mark at one and a half and then.. 
Thirty 
About two and a half now.. That's stopped dead at the maximum innit Still 
going up though.. -
Three and a quarter 
The max. 
Constant at.. No.. 
See, it's still got something.. 
Three and a quarter 
It's going a bit now thank goodness 
What we could do with is something up front here that stands out and shows 
that.. I don't know how we can do that. 
Take it off the kettle through there. 
Yeh 

Adrian insists on a cliange in experimental procedure. 
46:15 Adrian How about we try to mark it, say every ten seconds or something - and see 

how long it takes to reach that maximum, yeh? 
Jolyon But you can't tell when it gets to the maximum, because.. 
Adrian Well, yeh, I think that's the best thing, innit? 
Jolyon Shall I fill it up again then? 

46:40 Adrian Yeh 

Adrian feels his estimate is vindicated. 
Students fill up the apparatus as before 
Yeh so if you just call out every ten seconds, then I'll put a mark on it. 
Do you want another piece of tape? 
No 
It'll be all right. 
Every ten seconds 
That's all right 
You're going to go by your watch, right? 
I f you like 
You say when 
five, four, three, two, one - here we go.. 
Can't get it (the tap on the top tank will not open) 
five, four, three, two, one - go.. Here we are 
Jolyon call out the time at ten second intervals: Adrian marks on the tape on 
tank B. After "sixty" Adrian does not mark the tape 
(Pointing at the marks) Ten, twenty, thirty, forty, fifty, sixty seconds. 
So 69 is., just a lucky guess only. 
Ah! (Stands up) Proofl 

47:36 
47:51 

48:02 

48:37 

48:50 

50:25 

Adrian 
WMM 
Adrian 
Jolyon 
Adrian 
Jolyon 
Adrian 
Jolyon 
Adrian 
Adrian 

Adrian 

Adrian 
Jolyon 
Adrian 

Adrian attempts to improve technique further. 
50:55 Adrian (Putting metre ruler into tank B) Get this thing wet. 

Run the water down that we'll have a far better level: not going to be 
splashing as much is it? Try it-one more time? 
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Jolyon So we'll get a maximum height, you reckon? 
Adrian Well yes cause if we do it every ten seconds 
Jolyon. you can see the end where the water starts dropping back from where it's 

went. 
Adrian No, why I want to put that in there is to stop the water splashing so much so 

we've got a more.. Yeh? 
51:55 Adrian Pouring onto the ruler, should run down a bit smoother.. 
52:40 Jolyon Is this the fifth time?-

Adrian Something like that 
53:20 Jolyon (Holding tape against tank B) Stick it by the side, d'you reckon? 
53:37 Tape ends 

Tape 3 
Another experimental run. 

00:08 

01:40 

03:00 

Adrian Five, four, three, two, one, go. 
Jolyon calling out at 10 second intervals: Adrian marking level on tank B. 

Jolyon So all we've got to do is draw a line up to yoiir curve. 
Adrian Yeh, when it dips - it's max over two now. 
Jolyon We do the line up about two point two. 
Adrian It's about two really is the max you've got there. 
Jolyon Right - your answer's 69 seconds. 
Adrian Well more or less - we'll rework it a bit. 

Adrian uses calculator again. 

04:08 Adrian About 76 - 76 seconds. 
Jolyon Same time. 
Adrian Well, there we go. So that's how we estimated the time. 

What will the maximum volume be? 
04:45 Jolyon We don't need to know that, do we? 

Adrian (Reading from sheet) What will the maximum volume be? 
Jolyon The thing is, doing it practically, we know what the maximum volume is.. 

05:17 Adrian Two point two litres 
Jolyon It was a'bit over that... 
Adrian What else do we know? 

We debrief. 
05:58 

06:14 

Adrian How's that? 
WMM Fine 

Do you mind if we have a bit of a debrief? 
Adrian Sure 
Jolyon We can't prove anything though 
WMM The., you seem to have gone about it in a very pragmatic way. 
Adrian Yep 
WMM There's nothing wrong with that 
Adrian That's what I thought because you said like to mathematically model it but 

then to use the experimental results 
Jolyon It's a bit dodgy 
Adrian what was getting back to the point of mathematically modelling things.. 
WMM Right.... 

The idea was that we gave the identical question to some maths students to -
some maths, just graduated students so it was fair to give them an identical 
question. 
What I've been really interested to see is the way - the different way you've 
tackled it. Completely different way you've tackled it 
They didn't touch the apparatus until an hour in - so it was completely 
different - and they went in and they set up equations - making assumptions 
about the function that the flow rate was a function of height - making 
assumptions about that- working it through - going about the whole thing 
mathematically - in fact they made the assumption that dh/dt is proportional to 
h and if you go into it and carry out the experiment you find out it's 
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09:09 

09:50 

10:40 

11:42 

12:27 

12:59 

proportional to the square root of h so you can then set up a differential 
equation which will -er- which will predict the shapes of the curves . You get 
that dh/dt is a constant times the square root of h: you shuffle it around and 
integrate both sides and you get functions out which you can check by doing 
log plots - and that was one of the things I was inviting you to do when I was 
asking you - could you check if this was a quadratic - did you suggest it was a 
quadratic? 

Adrian Yep 
WMM So that was what I was inviting you to do - so I found it very interesting -1 

found it extremely interesting that you tackled this in a completely different 
way 

Jolyon Didn't expect to tackle it this way, though. 
Adrian I mean like obviously there was a minimum and a maximum in the realms of 

differentiation or like, but its so long since we've done i t in maths, a year ago. 
WMM Really? What was Jolyon going to say about not expecting to tackle it this 

way? 
Jolyon Well I expected perhaps to go into the same equations for steady flow theory, 

that sort of thing which I know we've done - in previous years - without our 
notes and that sort of thing. Engineers don't remember equations. We go and 
look them up in books. We don't derive things from first principles and - we 
tend to anyway - just to take it from the vantage of theory, and then applying 
it. 

WMM So did you find it hard that you were actually being asked to create the 
equations? 

Adrian Well, yes, i f you like 
Jolyon Though we could probably do it with a book in front of us. 
WMM Is it something you were asked to do ever in the course? 
Adrian Well I'd say if we ever did have this we'd have more of a formula to start 

with. 
Jolyon Well we generally work through the theory which they tend to like, make us -

the teachers - try to understand it, and then like - apply the results. It's very 
rare that we do anything from first principles like this. 

Jolyon I remember that we did in HITECC - we did a mathematical model and the 
particular one I did was the optimal speed of rotation of a tumble drier and 
that worked well and we actually took that from equations and then Tony sort 
of encouraged us to do it and we sort of had it - centrifugal force against 
centripetal force and acting-against gravity - sort of worked out fi-om there, 
rather than doing it practically. So I would perhaps have expected to go on to 
some equations - but just doing it practically shows what happens but you 
can't always do things practically like building a bridge.. 

Adrian You can build models though. -
WMM Was it a surprise to you when the first time, you ran it you got a practically 

constant flow rate out of there? 
Adrian Yeh 
Jolyon Yeh I didn't realise about that - about coming out of the tube which I could 

relate to because the steady flow stuff we did we had a tube which ran down 
and we had to find the time it takes to empty a basin full of water and that was 
dependent on the hill.. But to derive tat from the equations I probably 
couldn't do 

WMM Did it give you any insight into questioning the apparatus? 
Jolyon I think it's all right for what it is. Basic shape is the same. You have to make 

some assumptions that these are the same. Probably no loss.. 
Adrian Did you put those rubber tubes on there on purpose? 
WMM I'll explain the histoiy of those rubber tubes. I put them on there for the maths 

students without thinking about it. to give you a nice steady flow and stop 
them splashing about all over the place and also to try to reduce the splash in 
the carboys and the maths students did an experiment with just the top one 
marking off the levels at intervals and the levels at intervals were - practically 
constant intervals and it was at that point I realised that there was a problem 
with the apparatus and I thought -1 thought about giving you the apparatus, 
without the tubes but I thought it was probably better to give it to.you with the 
tubes because it was the same starting position 
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13:55 Adrian The same 
WMM Also because I thought it was a really interesting - two really interesting 

things. One is that you can't always rely on the apparatus reflecting the same 
reality as the picture. 

14:12 Jolyon We should have beenableto work that out if we went through a series, of 
• . equations because that would have been a difference of head there. We'd 

have picked it up. 
14:25 WMM and the physical significance of h: that it's from free surface to free surface, 

and also that the pipe losses are more than compensated by the change in h. 
I'd guess if anything that the pipe would slow the flow down. 

15:20 Adrian It would do - yes theoretically there'd be a loss but with the additional height 
Jolyon It would be the same head. 
WMM So my intuition was the pipe would slow it down but in fact the extra head 

provided was a bigger influence. 
Adrian Yep 

15:30 WMM ' Than the pipe losses. I found that quite exciting. Have you any got other 
comments about it? 

Jolyon I felt that the maths side of it lets us down a bit on what we've done in the 
course. 

Adrian Unless it's like what a lecturer said if you can sort of feel you can remember 
what he did in the second year it's quite easy but everyone just sort of forgets 
it. You know you can do it and you know you can look it up how to do it. 

WMM Were there any other resources you'd have liked? Apart from your text books 
or your notes with it in 

Jolyon Well I would have done it mathematically but I mean you could get more 
accurate results with that - put flow meters on, that sort of thing. 

16:30 WMM So there wasn't anything like graphics packages- cause I left DERIVE on 
there in case you wanted it.. 

Jolyon Right well we needed to set up the equations to put something into it. 
16:49 WMM . Did you iise the graphics facility on your calculator? 

Adrian No I didn't.. It's s bit of a mystery.. It's all right when you've got the 
equation to plot and you can pick off the minimums and maximums, but when 
you've got a set of results to put in I'm not too sure what to use. 

Jolyon Silly really - we did better than this on HITECG and now it's four years later. 
W M M Can I just say you absolutely confirm my prejudice about what engineers are: 

stereotype engineers: that you're happy measuring things and carrying out 
tests and.. 

17:40 Adrian Yeh but the thing about doing it that way is like you say is if we'd done it 
purely theoretically and then used that equipment as it was first set up we'd 
have thought it was miles out and we' .have thought it was the theory that was 
wrong. 
Whereas we know 
We had to assume so much. 

Jolyon Doing this practically was only applicable to this. We do it in a reservoir: 
totally different. So that's where the theory would probably hold. 

18:18 Adrian I f you can get your hands on a model you can test it. 

We say goodbye and thank you. 
18:29 

18:58 

19:10 
19:10 

Tape ends 

WMM 

Adrian 
WMM 
WMM 
Adrian 
WMM 
WMM 
Adrian 

It's very kind of you 
Can you leave all your bits - all your paper here because they are very 
interesting. 
If you can read them, yes. 

. I think so, that's great. Thank you very much indeed 
Your watch has got zeros on it 
It must be midnight. 
A bit worrying.. 
That's been very helpful, thank you 
Some of the others in our year would've sorted it.. 
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Mathematical modelling with five final year maths students 
Single long tape: recorded in 1 Rowe St by cameraman from Hoe Centre studio. 
Note. There are unintelligible passages here students are all talking together, or are 
talking very quietly, but less silence than on the engineering students tape. • . . 
W M M is the author, RKP is. a colleague. 
Time Speaker • • ' ' Notes 

on tape 
00:30 

01:34 

03:16 

WMM This solution, by the way, is slightly laxative (laughter) So please 
don't get it on your fingers and lick it. It's just to colour the water. 

Ann Oh, right 
RKP Well, good afternoon, everybody and thank you very much for 

coming to take part in this. 
The problem which you've got in front, of you is you've got three 
tanks of water, one draining into another and that's draining into a 
third one. You start with the top one full and both of he other two 
empty and you set it draining. At some point - um - the water -um-
there's water in the middle tank - and then ultimately all the water 
will be in the bottom tank and the top two will be empty. The 
question is really when is the top tank at maximum volume and 
what will that maximum volume be. Now we've got some - there's 
some equipment there to let you do experiments, (laughter) 

Ann You mean the bottom one. 
others The middle tank (laughter) 
RKP Let me say that again.. 

In the initial state the top tank is full and the other two are empty. 
In the final state all the water has gone through into the bottom tank 
and the middle tank and the top one are empty. Sometime in the 
middle, the middle tank will have a maximum volume, the question 
is to produce a mathematical model which will describe when it is 
and how much of the volume is actually at the greatest in the middle 
tank. We've set up - put- arranged some equipment so you can do 
some experiments on this. The little medicine bottle there has got 
some pink liquid in it which can be diluted up to the requisite 
volume of water - with water and it will then give you a nice pink 
solution which we would prefer not to be spread over our nice green 
carpet, (laughter). 
There are two purposes for this thing this afternoon: and for both of 
which it's being videoed. We - from my point of view I'm hoping 
that we shall get out of it a video on how people attack a problem 
like this which can be used for teacher training - for inservice 
training courses for teachers. And we would hope that your 
afternoon could be condensed into fifteen - twenty minutes of the 
key points of when you have moments of inspiration when you're 
stuck and whatever. 

Ann So you' 11 just video out some bits. 
RKP You shouldn't - don't feel nervous about it. I f you make a whatsit 

just like I did then we'll just edit out. 
Jason Not so fun to watch at the end then (Laughter). 
RKP The other purpose which is closely related is that Wendy's PhD 

research is in how students learn differential equations and she will 
be sitting also taking notes, and seeing actually the processes you go 
through in solving this problem. You can talk as much, as you like 
among yourselves of course. If you are stuck I shall be working 
over there and you are welcome to come and ask me to give you 
help. Wendy will be there taking notes and you are welcome to ask 
her for help. But initially give yourselves a reasonable amount of 
time to get into the problem before asking for help. But then if you 
find you're getting nowhere, for goodness sake do ask, and we will 
of course do what we can to direct you. 
Well, good luck! 
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We begin our deliberations. 
04:28 Ann 

Jason 

Ann 

Jason 

Derek 

Ann 
Derek 

Ann 
Derek 

Ann 
Derek 

Jason 
Derek 

Anthony 
Ann 

Anthony 

Vicky 

Where do we start? 

It doesn't matter. I've got the formula. The flow rate is a function 
of the volume in that. 
The only thing that can affect that is-the diameter of -1 presume 
it's linear.. 
No, the height - I mean the height - the volume of - cause that 
affects the pressure at the tap. 

Since I think you've got the taps the same in both I mean that will 

not really come into it so I think it's just some function of volume 

in both bottles like, shouldn't it. 
You don't think the size of that the water's flowing out.. 
Yes but all the other things being the same, that won't change 
through the run of it. 
No - it's just a constant. 
No - so its the rate throughout is going to change as the volume in 
both bottles change. 

Due to the change in pressure or gravity or? 
Yes I think it's got to be the volume cause obviously when you-
start off the rate of flow in has got to be bigger than the flow out 
and that's 

What even with that's with the volume but like with the height 
Not unconnected - Yeh. Well no the height's going to come in 
So it's the point of gravity then? 
Yes it's gravity what's.. 
So we can think of a differential equation for each one or 
something? 

Doesn't seem enough liquid for it to.. 

Ann makes her first bid to try it out, while an expression relating flow rate and volume 
is proposed. 
06:12 Ann We could always put the liquid in and do it and see. 

Anthony No 

Ann You don't think you need to do it? Just sit there and look at it 
and.. 

Vicky You could actually put the pink liquid in and actually test it to see 
what the fits will be. 

Anthony If dvl/dt = kvl then that gets smaller.. 
Derek But if that is going to increase then it will increase and 
Vicky because it's otherwise then you'll need to 
Ann No you fill it up with water and put a bit of that in to turn it pink. 

Derek In the first instance then, for example, dvl/dt = -kvl 
Vicky oh, couldn't you do it for each tank? and then.. 
Derek dv2/dt 
Vicky yes 

07:10 

Complications emerge in the proposed model. The volume in the second tank is 
affected by a flow in and a flow out. 

Ann 
Anthony 

Derek 
Ann 

07:26 Anthony 

Derek 

Ann 
Derek 
Ann 

Derek 

Surely once it's going it's what's going in. 
You've got two lots flowing. 
That's the point 

You've got so much flowing into here until it gets upto this level 
and anything comes out. 
So what are you going to write for the second one because you've 

got stuff coming in and still going out? 

Well I've written down to start off dv2/dt =kvl which is the 

amount flowing in minus kv2 which is what's going out. 

Yup 

And that's 
But initially nothing's going to come out there is it? 
Well that's., that'., that's., not part of the model. I mean, look at 
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those diagrams there ( indicates sheet) You assume that to simplify 
it anythmg that any water that goes in there will.. 

Ann Any going in's. going out. 
Derek In other words the opening's right at the bottom. I mean I think 

we could refine that model.. 
Ann Okay, yep, mm 

The flow rates vary both with time and with the volume in the tank they are leaving. 
Derek But i f we're going to start thinking about it to start with.. You may 

as well start with the diagram you've got there.. Assume diat any 
water's going to affect the outflow. 
So if you're going to make the assumption that what's going in 
there's coming out, then you're never going to have anything more 
in there, are you? 
No, only if the rate of flow out is always going to be the same as 
what's flowing in. And i f it's, say, proportional to the volume, 
which is my first suggestion might be, then when you start off 
you're going to have a smaller volume in the second bottle, so 
your rate of outflow is going to be less,, and that's why the volume 
increases up to some point, and then when there's more in that than 
in that, then the rate of flow out will be greater than the rate of 
flow in , so you.. 
Yeh 
But um.. If we assume that this is going to be a decent model and 
solve it, then how are we going to test it? 
Fill it up 
But it's still going to be more than just those two equations there 
(takes paper from Derek) 
Well obviously 

08:36 

Ann 

Derek 

09:08 

Ann 
Derek 

Vicky 
Jason 

Derek 

The volume in the bottom tank is immaterial. 
Vicky 
Jason 

09:26 Anthony 

Jason 
Derek 
Ann 
Jason 

Anthony 
Jason 

10:01 Anthony 

Well, haven't you got one for the bottom one? 
Well, what you want is the maximum volume in there which is 
totally independent of the volume in the bottom one. 
Do you want to start with the bottom one. What happens in the 
bottom one? 
We don't need the bottom one 
Not much 
The bottom one's just going to collect the water 
So it won't go on the carpet (laughter) 
The volume in that's just related to the volume above. 
Yeh but that is also a function of that (laughter) 
(Passes notes to Ann) Well have a look at my notes and see what 
you think. (There are about 3 line on the page) 

Anthony is unhappy that the model does not include any physical reasoning. 
10:10 Anthony I don't know how I'm going to tie in v l and v2 to gravity 

Derek Well, that's probably a function of g, a constant. 
Ann Are vl and v2 your rates of flow in and out? 

Anthony We want to work out the force. It'll be from here., from the 
outflow 

Derek So that will be related to the max. 
Jason Under very high pressure it' II come out all the way out and go psst 

(describes parabola with his hand ) (laughter) 
Vicky But it couldn't do on this (pointing at tube) 

Anthony I f we write down the force 
Ann That's why there's the tubing. 

Anthony listen, listen. I f we write down the force for each amount of liquid 
for each time won't that be the same as the flow rate er 
differential? 

Derek You might be going too far back on that one. 

285 





11:04 Anthony Mmm 
Ann It's mgh 

Trying to solve the equations. 
11:08 Jason So v2 is irrelevant for that one. 

V2 won't matter 
So you just want to solve these two? 
Yeh we could I suppose. 
(Indicating top tank) That's just the change in.. 
I mean yeh like do we want to find the slope in one 
so that 
Let's assume v = e"' 
You're stating what? You're starting with the second one. 
That's the rate of change of volume of the second one equals um 
the rate of flow in which is dv/dt the rate there multiplied by the' 
flow. 
So what's v2? 
That's the volume in the second bottle. 
No it's not. You can't say it's v2 is this, like that, with a minus 
sign, can't be right, can it, cause you've got two flows. You've 
got the one going out and the one coming in. 

12:05 Jason That is minus dvl/dt. 
There's got to be two of these. 
Yeh. That's the other one. 
That's this one and dv2 is here. 
I hadn't thought of that. 

12:21 Anthony Um. 
12:29 Vicky So you've got something you can sub back in there. Is that what 

you want? 
Derek I can use v 1 as a .. no.. A maximum there just as.. 

Jason 
Derek 
Jason 
Derek 
Ann 

Derek 

Anthony 
Derek 

Anthony 
Derek 

Anthony 

Jason 
Anthony 
Derek 
Jason 

Anthony 
Anthony 

Vicky 

Investigating the implications. 

13:24 

Ann So your flow from the top one is a decreasing function. It's a 
maximum to start off with. 

Derek I'm staying when you start off the flow is a maximum out of there 
and it's just going to decay. 

Ann Yeh, 
Vicky It'll be an exponential. 
Derek Basically my assumption is that it's minus kvl . That'll give you 

an exponential. 
Vicky Yes, right 
Ann Presumably this one (tank B) is going to be the opposite what-do-

you-call-it. 
Vicky I don't know cause it's losing at the same time. But then it won't 

until it hits the stage where it's ( indicates lip). Hmm, it's not easy. 
Ann I imagine that the assumption is that it starts at the bottom. 

Vicky In which case it won't actually do it. It's not going to.be.. Oh, no 
all right. 

A prediction of when the maximum in the middle tank will occur, in terms of flow rates 
in and out. 

Ann See the rate of flow out of that's (top tank) going to be a maximum 
initially and the rate of flow out of this one (middle) is going to be 
a minimum. 

Derek Yeh 
Ann And there's going to be some point where they're equal. 

Derek Yeh but 
Ann And that will presumably be when it's at its maximum value. 

14:03 Derek That's when they're the same 
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Ann That's when you have your maximum 
Derek You get the maximum 
Derek Yeh, I guess that makes sense, because,, when the rate of flow in 

that (top tank) than the rate of flow out, it's increasing, and when 
the rate of flow out becomes greater than the rate of flow in, that's 
when it's going to start decreasing, so that will be the maximum. 

14:24 Derek Meaning what? 
14:40 Jason Yeh, like, i f you put that in there, it's going to be vt = e''. 

Ann You've got your time. 
Vicky What you want is your time at t, and then when you integrate out 

you'll want it. 
Derek I suppose we have to, like, practically solve this, yeh? So it's 

going to be when.. 

An exponential will not allow the tank to empty in finite time. 
15:10 Vicky Haven't we done something like this before? 

Derek Thing is.. 
Jason Well, with that function, we won't be going to reach zero until 

infinity. That won't be empty in finite time. 
Derek Can you construct a simple mathematical function which will 

actually do that? That's going to have something in to start with 
and is going to fall to zero? And actually be zero there? 

Ann Cause it's got to be a 
Derek Yeh, cause it's got to be a function of.. 
Ann Well I don't know if it's 

Is it a fimction of the volume or the depth., or what? 
15:55 Derek It's got to be some function of the volume itself, hasn't it? 

Ann Is it a function of the volume or a function of the height of the 
water? 

Jason The height of the water is directly linked to the volume anyway, 
isn't it? 

16:10 Derek Yeh, you mean the level. The height would mean.. 
Jason mm. Ifyou had the bottles a bit higher than the tube it's not going 

to make much difference. 
Ann Well, I wasn't thinking of changing it. 

Derek Yeh, well, if we rerun this a few times, I think what you're saying 
is the only thing we'll change is the volume in the two bottles, isn't 
it? 

Ann Instead of considering it as a volume, can't we consider it as a 
height? 

Vicky As in the depth of water. 
Ann I mean.. 
Jason You mean multiply by diameter? 
Derek Because diameter is going to remain constant anyway, to a decent 

approximation, so the height of the level is going to be equivalent 
to the volume. 

Vicky So surely it's even simpler to work in terms of height, rather than 
volume 

Derek Well yeh, that makes sense, yeh. 
17:03 Jason So instead of v we have h then. 

Vicky Well, yeh (laughter) 
Jason But v's easier to write than h. 
Derek Yes cause you've got two lines and.. 
Vicky But no, measuring-wise height is easier to work with. 
Ann Yeh, brilliant 

Derek Yeh, fair enough 
Vicky Anthony's brainstorming over there. 
Derek What's the force then? 
Jason rho - er - something like that then probably 
Ann It's pgh, isn't it, the pressure of the water? 
Jason Foul but 
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17:42 

18:00 

18:46 

Anthony 
Vicky 
Ann 

Vicky 
Derek 

Jason 
Derek 
Ann 

Derek 

Vicky 
Derek 

Ann 

19:16 Jason 

Thank you 
You must have to take into account gravity somewhere 
Yes, that's what 
But rather than this (paper with exponentials on) 
I think the volume would give you the pressure which with the 
gravity would give you the rate of outflow and so this is all 
probably.. I think it will be.. I think it's going to.. It'll come 
across.. 
What, the pressure? 
I think your concerns about g on that side.. 
Yeh but if you're assuming that everything is constant you're not 
going to get any change, are you? 
No I'm assuming the outflow is not constant and the main thing 
that's not constant is the volume in there. The rate of flow's 
proportional to the volume isn't it? The rate of outflow. 
As in the volume of the water. 
The volume of the water is directly linked to the mass of the water 
which is directly linked to the pressure. 
Yeh, that's what I'm saying. I know we keep talking about 
volume but the rate at which height is changing is the rate at which 
pressure's changing. Pressure is pgh. Rho's a constant, gravity's 
constant so the only thing that's changing in that is the height, i f 
you see what I mean. 
And as the height changes, the volume changes because the 
diameter and the pipe are constants so 

Discussion about dimensions. 
Anthony 

Jason 
Derek 
Ann 

Derek 
Jason 

Derek 

Well the diameter is constant, and we've got time over here so we 
must have t somewhere. 
Well no because no because K will have dimensions of one over t. 
Who brought him anyway? 
Say that again? 
We've written down dv/dt. 
Yeh so the constant has units of one over time. What about those 
other things we did? The wave equation where we got ĉ . That's 
got dimensions of length over time squared. 
mdv/dt=kv^ 

An interesting idea whicli is not followed up. 
Vicky Could we do it in terms of energy? Potential up there and then 

kitietic energy. Cause that's pgh, isn't it? Potential energy, mgh, 
that's what I mean. And then kinetic will be the rate it's going 
through it, anyway. 
Well, no, then you're going to know it's the same down here as it 
was up there. You're going to lose the same amount as was up 
there initially. 

An interesting fallacy, and an interpretation of its physical significance. A hint that it 
may not be correct. 
20:33 

21:00 

Jason 

Derek 
Jason 
Derek 
Jason 
Ann 

Derek 

Thing is you said it was going to be at its maximum when that 
equals that. That's not true basically. 
That's interesting, go on 
Which would mean 2kvl=kv2 
That's an interesting point, isn't it. 
That would give me v2=2vl. 
That flowing into there is going to be greater than that flowing out 
with the pressure difference so it flows in faster than it's flowing 
out. 
That's something, to check, isn't it? At some point the rate of flow 
out of this one is going to be equal to the rate of flow into this one 
and that's going to be .. 
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Vicky When they're the same. 
Ann When the height in that is the same as that on 
Jason But it can't be, can it? 
Derek. Yes you can. 
Jason But that would leadto us -oh- at that time. So it isn't.. . 
Derek So what you get is .. the maximum you've got in that is.. 

21:29 Ann At the start of it that is lower than that one anyway. So you've got 
to have more in there (middle tank) than in that one (top tank) for 
it to be balanced anyway. 

Derek That's an interesting result, isn't it? 
Jason So that's equal then. 
Ann You get to a point where the rate flowing into this one is the same 

as the rate of flow out in which case it's going to get to a constant. 
21:55 Jason Well, let's try something out. 

That that dv2.. V2... + Avis kvl... 
Ann The rate of flow in is equal to the rate of flow out until there's no 

more flow in and then it'll start decreasing. 
Vicky Except the very last bit. 
Ann The rate of flow in - to start with - is more than it is out. At some 

point it's going to be equal. The rate of flow in is going to equal 
the rate of flow out but it's going to be when there's more in this 
one because that ones higher anyway. 

Vicky So if you're increasing height, are you saying it's in terms of, well 
with respect to the ground or..? 

Ann Yeh, if you can take zero h as the floor that one's already got more 
height to start off with, haven't you? 

22:41 Vicky Yeh, but the.. 
Ann So any 

Vicky So you've got to measure the water then? 
Ann I f they're both half full, that one's still got more pressure by virtue 

of where it is, yeh? 
Vicky Yeh 
Ann Yeh So let's for the sake of argument say it's two-thirds or 

something there's got to be a point where more water in here than 
you have in there but the rates of flow are the same arid it's going 
to continue the same until that one's empty, and once that one's 
empty then this one will go down. 

22:56 Derek Have you got some rough paper so I can trace this out? 
Jason So v2 is that 
Derek So that means that that can't be right, can it? That's just a decay 

which means that it starts at a maximum. 

At last we agree to fill it up and see. 
Vicky I'm just wondering whether it would be easier to fill it up and have 

a look. 
23:24 Ann Well, that's what I said. 

Can we run this thing and see what it does? 
Derek Yeh, why not 
Ann Cause I predict that it's going to do:. It's going to get to some 

point, stop, remain level until that one's empty and then start 
draining into the bottom. 
(Looking at lip) Actually this isn't the same as what we've got 
because.. 
So it's not at a maximum.. It's going to have a level maximum 
rather than a... 
And it's going to remain at that point for., until that one's empty. 
It's going to come into here and go out of there at different rates 
until you get to a point when.the flow in is equal to the flow out, 
and it will remain at that point until that one's empty, and then it 
will go on draining into the bottohi. 

24:01 Anthony The hole's here. 
Ann Can we see if that'swhat it does? 

23:38 Anthony 

Derek 

Ann 
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Jason 
Vicky 

Derek expounds the 
24:20 Derek 

25:10 

25:29 

Ann 

Derek 
Jason 

Derek 
Jason 

Anthony 
Ann 

Derek 

Anthony 
Derek 
Ann 

Derek 
Ann 

Vicky 
Derek 
Jason 
Ann 

I'll getthe water. 
No but if you fill it up anyway it isn't going to matter. It's not 
going to affect it that much. It'll only affect it when it's really low. 

fallacious argument. 
Jason suggested this. You know I said that dvl/dt = - kv l , yes? 
dv2/dt = kvl - kv2, yes? Now Jason says that at - um - the time 
that's a maximum, those two are the same. 
So if we equal those we get - kvl = kvl - kv2, and otherwise, 
v2 = 2vl. Now this is only for one t so it won't be for any other 
point but what you're going to find is when two thirds of that are 
in there, that's when there's twice the amount in there as in there, 
that's.when the maximum will be. 
Well, as for two thirds, I couldn't have predicted \yhat it would be. 
I just guessed the two thirds like for argument, (laughter) 
But I believe it's going to., it's going to be a smooth curve. 
We want a volume in here that's., shall we do something decent in 
here like a three? 
Yes you do but.. 
Shall I drain it down to three then? 
Well, the tap's at one so really want about four, don't we? 
Do you want to get this (middle tank) so it's level.. So it's at the 
point where it's ready to flow out so we've actually physically got 
what we've got in the drawing. 
Yeh, fill it up so it's.. This tap is open is it all the time? (middle 
tank) 
Dunno- don't know where open is. 
Just make sure that this one's in first (tucks tube into bottom tank) 
As soon as it starts to.. 
No, that's closed.. 
Unscrew the top.. Take the lid off (applause as the water starts to 
flow) 
Here it comes out 
As soon as that starts coming out close that tap. 
Right, are we going to start, are we? 
Yeh. 

Having filled the apparatus, we discuss some more. 
26:55 Jason Right, so what are we going to say is happening? 

Derek So that's on one then, (middle tank) so we say that on one is equal 
to zero. 

Jason Right, so one is equal to zero 
Ann This is gradually going to fill up but the rate going out is going to 

be less than the rate going in. Then it will stay constant until that 
one's empty, and then it will start draining into the bottom one. 

Mathematical versus descriptive solutions, while the apparatus is running. 
27:17 

27:33 

27:55 

Derek 

Ann 
Jason 
Ann 

Ann 

Anthony 
Jason 
Ann 

Jason 

The problem I've got with that, Ann, is it's got to be modelled by 
some differential equation and so we've got to have.. It's got to be 
some functions.. 
I mean I might be wrong. I'm just saying.. 
We'll just do like., a Heaviside.. (laughter) 
Yeh, well., just see what happens. 
Jason opens tap. 
Unless at that particular point the rate of flow out becomes greater 
than the rate of flow in. 
Do you want to open that (middle tap) cause it's 
It's going to be maximum where these two volumes are the same., 
But is it going to remain at that or just goitig to be an instantaneous 
maximum? 
It's going to be when the two are the same then that's going to go 
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Ann 

up and that's going to go down, and then that's going to (scratches 
up and down on middle tank). As soon as they're the same, that 
one's on two point two. 
Are they going to be the same for an instant. Aren't the.. 

So what does happen? 
Jason Yeh - only for an instant. That one's at one point nine - that one's 

at one point eight. Right, They're both the same now. They won't 
stop like because.. 
That one's slightly higher anyway. 
Now that one's lower and that one's still about the same. 

28:30 Ann Is it - no - it's still increasing? 
It's not increasing. 
Yes it is. 
You look at the scale. It's not increasing. 
I can't see the scale. 
So it is staying the same. 
It's staying the same. No I think it's coming down now. 
It's coming down again now. 
I f we were to run this a couple of times, trying some 
characteristics, we're going to have to start with the same initial 
conditions. 
Yeh 
So what was it like? You started off, Jason, (laughter) 
Yeh 

28:58 Jason Oooh, about three point two, three point three.. 
Threeish, right then, bout that. Why don't you fill it up to four to 
start with then and keep it? 
Well I did fill it up to four but we drained half of it. 
Well you should have filled it up again, shouldn't you? 
Well, I know that now. 

28:42 

Ann 
Jason 
Ann 
Jason 
Ann 
Jason 
Vicky 
Ann 
Jason 
Ann 

Derek 

Ann 
Derek 
Ann 
Jason 
Derek 

Jason 
Derek 
Jason 

And how shall we interpret it? 
Ann I think we're agreed that it's at its maximum at the point when the 

flow in equals the flow out 
Jason It's at its maximum where they're both the same. 
Derek Cause what's wrong with this in that case.. 
Ann What's the same? 
Jason The volumes. 
Ann The volumes are the same? 

29:28 Jason But then that would be the same as the flow rate because we've 
done them both. 

Derek If the constants are different for each bottle.. 
Jason Yeh, We've assumed both constants. I f that constant - like- all it 

depends on are that hole. 
Anthony Is that (top) running now? 

Jason Yeh, they're both running now? 
30:01 Derek The constants.. The two taps. 

While we refill the apparatus and put the pink dye in. Getting the same initial 
conditions is important. 

Jason Right. I'll pour this up to the top bottle. 
Anthony Right, so that's about one litre. Don't drop i t 

30:27 Jason 1 don't reckon this is a good idea, actually. 
Ann Let's take it over the sink. 

Derek Cowards, (laughter) 
Ann Shall we put the pink dye in? 

31:12 Jason Will it help? 
Ann Yes, please. 

Derek So, Jason, will you dye the water? 
Jason So what did you want it on, Derek? 
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Derek Four. 
Jason adds more water. 

31:50 Ann Although it's slightly higher, that's not a factor. 
Vicky Oh no, not with respect with the bottom one. 
Ann But.. 

Vicky That is a maximum when that is the same as that you see. 
Ann So when the height is equal to that height it's going to be... 

32:02 Jason I f you want the pink dye in it's going to be more. (laughter) 
Ann Well put it in and drain it off 

Derek It's a bit low anyway. 
Vicky I f you put it in when you're at the sink then.. 
Ann I don't know how much of that you'll need. You might only need 

a little bit. you don't know how pink it is. 
Derek Is it poisonous,.Jason? 
Jason Drink it and I'll find out tomorrow, (laughter) 

Have a curry tonight 
Ann I don't think you'll need to with that. 

Derek Drink it and then check it. 
Vicky Oh look, it's going pink - - ish. 

32:50 Jason It's not very good, is it? 
Derek Oh, chuck the lot in 
Jason So what do we think is going to happen in this tank? 
Vicky I think the pink's going to get diluted. 
Jason Shall we start? 
Vicky What did you do that again for? 
Jason Yeh, well, I know we're going to do it again. 
Vicky Shall we test our theory while we've actually got a theory? 
Jason But do we know what our theory is? 

33:30 Vicky When we've got a theory. 
Derek Who's got a theory -• Ann? 
Ann We know it's a maximum when they're the same. 

Vicky Yeh, thetop and the middle on 
Derek And that makes sense, doesn't it? 
Ann Yeh. 

33:49 Vicky It's dripping. (Looks at top tap) Well, we've got one drip. 

Is there a problem with the model? 
34:10 Anthony I don't like these constants. 

Jason No? I reckon they're great but.. 
Anthony It's different constants. 

Ann Why is it different constants? 
Derek i fk is proportional tog.. 

Anthony It's going to be density over.. 
Jason (Sm i 1 ing). Cause the further you get from the centre of the earth, 

the less gravity is, and that one's (indicates difference in height of 
top two bottles, and laughs). 

Ann Yeh, that's what I was saying but I think you've got to take that as 
being negligible. 

34:28 Tape stops 

We list our assumptions. 
34:40 Anthony One: hole in the bottom. 

Jason Viscous, incompressible and irrotational. (laughter) 
Ann We've got a Newtonian flow, have we? 
Jason Yeh, I'm sure it doesn't matter. 

34:56 Ann Of course it matters. We've got to have those things written down. 
Anthony This is where we've gotthe Navier-Stokes equations. 
Derek Irrotational is it? 

Anthony Bernoulli's equation 
Derek Newtonian flow 
Jason Assume negligible viscosity. 
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And revise the original basis of our analysis. 
35:18 Ann" We've come to the conclusion that it's a maximum at the point 

where the flowr in equals the flow out; 
Jason Mmm. No 
Ann No? Well, it's maximum when the volume of water in here is 

equal to the volume of water in there. 
Derek Yep 
Jason Yep 
Derek As soon as there's more in there than there is in there then the flow 

out will be more than the flow in. 
Jason So it's got to have the maximum., the maximum has got to be 

when the two volumes.. 
Ann When the two volumes are equal. 
Jason' (writing) vl=v2. 

36:08 Derek Yep. So what we want to do then is to watch at that one closely 
and see when you reckon it starts coming down and then if he calls 
out see what the two volumes are then and if they're the same 
we're satisfied it makes sense. 

We discuss the apparatus again, and make a tentative prediction of the maximum 
volume in the middle tank. 

36:30 

37:25 

37:40 

Ann 

Anthony 
Derek 
Jason 
Ann 

Derek 
Jason 

Anthony 
Derek 

Anthony 
Jason 

Anthony 
Jason 
Derek 
Jason 

Derek 
Jason 
Derek 

Ann 
Derek 

Ann 
Derek 

I think they were but we can run it again and see. Does that sound 
sensible to you, Anthony? You're looking so.. 
It sounds very sensible. 
We want a quantum fluid, (laughter) 
So what are we looking for then? 
The point at which it's steady. 
The second bottle. 
Right. The top one's at four point one. 
1 don't know if it's useful we write down four point one. 
Hang on - is that tap open then? 
It isn't right on one, is it? (the middle tank) 
I mean those taps could easily affect the flow rates. We should 
change these around in a minute. 
That's on point seven. 
No, that's not on one. 
Those bottles look pretty much the same to me. 
That one's on nought point seven. That one's on four point one. 
So when they're the same what are they both going to be on? 
Midway between the two. 
Two eight won't they? 
They should be on two point four, right? (turns on tap) 
So Jason, watch the top bottle and see when you think is the 
maximum and put your finger on that point. I f you could call out 
as well. 
We could turn it off when it gets to that. 
No, you can't check it's right then can you, cause it will be at a 
level.. Cheat! 
I thought you could turn both taps off. 
What I suppose it's best to do is to follow it up there and when it 
gets below that to register where it is. 

We realise the prediction was based on a false assumption. 
Jason No, it's not going to get to two point four anyway. 
Ann What did you think? 

Vicky What numbers did you have? 
Jason Two point four's rubbish. Cause it's going out, isn't it. 
Derek Course it is. 
Jason Complete rubbish, that. 

38:11 Derek So keep your eye on that. When you think it drops, mark that and 
shout out and watch that aind.. 
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Jason What, and see when that's a maximum? 
Derek And keep an eye on that. 
Jason I think I might call it out actually. 

Anthony I think that's about nine 
Jason It's-falling now 
Derek No 

And that something else is wrong. 
38:42 Vicky I'm sure it's not gone as high as it was before. 

Jason Yes, I reckon it was there. 
Vicky Oh Crunchy! 
Ann It has, hasn't it? 

Vicky It hasn't hit 
Ann It went higher than that last time. 
Jason That's the peak diameter: it's less viscous, (laughter) 
Derek Did you have the same level of water in the top. To start.. 

39:03 Jason Yeh,!'about. 
No, we had a lot more, we had a lot more. 

Derek That's interesting because you'd expect i f there was more in that 
you'd expect that level to be higher at its maximum. 

Jason Yeh 
Derek Interesting, isn't it. 
Jason I mean it didn't get half as high that time. 
Vicky Yeh 
Jason It got to one point seven last time. 
Vicky Why was that? 
Jason And only got to about one point two 

39:31 Ann They wouldn't be.. The taps were both open the same.. 
Jason Yeh, but they won't be different. 
Derek You have to assume that makes no difference otherwise you're 

never going to work out.. 
Ann Yeh, but we need some consistency. 

Vicky Why did it go higher last time? 
Ann In our experiments? 

Derek So we have to assume that much (twisting gesture as if turning tap) 
doesn't make a lot of difference. 

Ann Why did it reach a higher level the last time we did it? 
Jason Cause no two things are ever exactly the same, (laughter) 
Ann Significantly higher level last time. 

Derek Heisenberg's principle. Cause when we were watching it 
something different happened, (laughter) 

40:11 Ann Yeh, oh 
Derek Forget the experiments. 
Jason Try something different. 
Vicky But did we conclude from that one that it was when that one as the 

same height as that one. No, we weren't watching, were we? 
(laughter). 

So what was wrong with the model? Was it the mathematical assumption? 
41:21 Jason Well, 1 don't see there's anything wrong with that. 

Derek I think we should run this again. 
Vicky I f anything it's just.. 
Jason Whatever we're saying is it doesn't get there in a finite time which 

is true, eh? because that will never get empty in a finite time. 
41:32 Derek (Points to volume below tap in top tank) That's a Heaviside 

function, isn't it though? 
Vicky That will never get empty with the thing at that height anyway, so.. 
Ann But we're modelling it as though it would. 

Vicky I'm just arguing their exponential thingummy. 
Jason I mean what we want is a linear function really, or a quadratic. 

41:57 Vicky The other thing's if you have two differently shaped things. That's 
why it's all working; 
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42:40 

43:10 

43:50 

45:00 

45:21 

45:50 

Ann 
Vicky 

Jason 
Jason 
Derek 

Derek 
Jason 
Derek 

Jason 

Derek 
Derek 
Jason 
Derek 
Jason 

Derek 

Anthony 
Derek 

Anthony 
Derek 
Ann 

Vicky 
Jason 
Derek 
Jason 

Derek 
Jason 
Ann 

Vicky 
Ann 

Yeh, I know but 
Cause we're saying if we just had two rectangular, jt'd be easier to 
measure. 
can we use that model... 
Now we've got to think about it. 
What.happened to the piece of paper Istarted writing on and other.-
people have taken and sort of worked on? (Jason passes paper) 
Thank you. 
It's got to be something more than dv/dt = -kvl. 
Yeh, I mean you can solve it quite simply and get an answer. 
Mmm 
Well it's probably an exponential because it's got to be something 
decreasing, isn't it? 
Yeh. . . . . . 
Yeh, but I mean.that doesn't have to be as such. -
You see there's something wrong in that, I mean that's right. 
You reckon v is that simple. 
I reckon the top one is that simple, but when you say that, that's 
obviously not true, because it's got to'go up and then sort of down. 
I f you start with these, i f you'll pardon me questioning your sort 
of.. Why should we assume that k in these two is both the same? 
Cause they are the same. 
Same bottle, same taps, yes? 
That's a good point actually because that's bigger than that. 
This is the third one. Why are we bothering with that? 
The things that affect the rate of flow out of that are exactly the 
same as the things that affect the rate of flow out of that. 
Yeh, unless.. 
They're solved all right, aren't they, Derek? 
Yeh. 
And the rate of change of the volume of this one (middle tank) is 
what's going out, which is what's coming in., what's coming in is 
dvl, so I can't see how it can be any different. 
Yeh 
But the.. But., minus k2v2. 
But the maximum height is the instant the rate of change equals the 
others. 
That's the middle one. 
Mmm. 

Was it the assumption about the conditions for a maximum? 
46:24 

47:26 

47:54 

Ann 

Vicky 

Ann 
Vicky 
Ann 

Vicky 

Ann 

Vicky 

Vicky 

Jason 
Ann 

The rate of change of that one's the same as the rate of change of 
that one. 
Yeh, the rate of change. But you've got to remember that one's 
also coming out as well. 
Yeh. 
So you've got.. 
So that's dvl and that's dv2. 
No if you - no, because you've got the volume, that's dvl, as that's 
changing, and that's dv2. 
But that doesn't really matter, because what you're interested'in is 
what's in here, aren't you. 
But i f you say dv2 equals something, you've got to say 
something's coming out, and you've got to take into account that 
something. 
But the problem is, we don't really.. You should be able to rewrite 
that in terms of v2 say, because you shouldn't need the volume in 
the third one. You shouldn't bother to look at that, should you.-1 
don't think you do - all you need to know is what it's losing there. 
So in effect we're looking at the change.. 
Do you reckon they're different constants or not? 
I can't see how they can be. 
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Jason It doesn't matter then. 
48:00 Ann Because the only things that are affecting them 

Derek The only thing that might make a difference is gravity and I think 
it's.negligible. 

Ann • It's not sufficiently different height to'make any difference. 
Derek The two bottles are the same. I think .we should assiime the two 

• taps are the same as we would.. 
Ann Yes we're assuming all those things are constant. 

Derek So the rate of outflow is only dependent on the volume in there. 
Ann Yeh. Mmm 

Jason has found a solution but does not find it convincing. 
48:42 Jason (showing paper) I mean it's that but that is still goiiig to decrease 

at all times. 
• "Vicky Let's have a look. You've got an exponential aigain, haven't you? 

Jason. Unless k is a.. No. Unless k changes between them two. But k 
' . . can't affect it that much. • -

49:34 Derek Jason, have you done it? 
Jason Yes, I know.. I've done it right though. 
Derek You agree with me, yeh? 
Jason But still unless k is at some time negative. 
Derek But no, k is constant, isn't it? But this is still.. You've got two 

decaying exponentials. That's no good. 
49:55 Jasori The only thing is, if kl is different. 

Derek If B is negative or something, then you'll get something like that. 
Jason Mmm, yeh. 

50:12 Derek Which is what you want, I think. I'm expecting that somehow. 
Jason e'° is always positive though, isn't it? So i f you've got a plus and a 

minus it's always going to be decaying, isn't it? Do you agree? 
Derek Yeh but what i f B or A, one of the constants is negative? 
Jason Yeh, but that's going to be positive, the e"̂ '', that's going to be 

positive so whatever there's plus or minus it's going to get smaller, 
isn't it? 

More discussion about constants 
50:58 Derek What are you suggesting? Is it anything in particular? 

Ann You see what you're saying your constant is.. 
Jason k 
Ann Yeh, but it's 

Derek Don't push it, whatever you do. 
Ann Yeh, but what is it? A box of eggs? What? 

Anthony It's a constant, like in maths. 
Jason It's a function of mark, time passed, protons, neutrons, electrons, 

viscosity, incompressibility, inviscid. 
Anil Gravity., (laughter) 

51:30 Jason I thought you two (Ann and Vicky) did a maths modelling project 
anyway. 

Ann Yeh, but. 
Jason Didn't you do this one? 

52:12 Derek Yeh because this is the total volume which is v l at t equals nought. 
The initial volume. 

Jason Theinitial volume vl at nought 
Derek So that's what A is therefore, vl at nought 
Jason Yeh 

Anthony Yeh 
Vicky So that's your model. 
Derek v2 at t equals nought is going to be zero. "Which is therefore going 

to be.. Therefore this is going to be the initial volume and B plus 
this is zero which gives you the initial point 

Ann In which one? 
Jason "What? In what way? 

52:50 Derek v2 of t is v2 minus kt So A equals minus 2kt I f B is negative and 
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equal in size to A then.. 
Ann How can B be negative?. 

Derek It is 
Jason Cause v2 at nought is nought and therefore you'vegot A plus B is 

nought, and A is vl at nought so B is v l at minus nought: 
53:20 Vicky Well no because it's minus 2kt 

Derek e'̂ *" is smaller in mod than e""", isn't it? 
Jason e to the.. Yes it is. 
Derek Which means therefore that v2 will go negative. 
Jason Mmm, well yeh.. perhaps we got all our things the wrong way. 
Derek Which is absolute rubbish. 
Jason Unless you do the.. Because you've got.. 

53:46 Vicky Yeh, it sounds surprising, doesn't it? 

Another interesting suggestion is. ignored. 
54:30 . Jason Make it a quadratic function. 

Vicky That's.. I'm not convinced.. ". 
Derek No, this has got to be wrong. I'm just writing down why this is 

wrong. 
Vicky Why 
Jason Cause Derek did it. 

55:04 Vicky Well the other thing is that we're saying at some point v2 equals 
v l . . v2 equals nought Just by looking at this (apparatus) At the 
maximum.. Which doesn't make sense. 

Derek What are you saying? 
Vicky Well from what you've got here, you're saying that at some point 

v2 is vl when v l is at the maximum.. 
Derek Yeh, so.. 
Vicky So for v2 to equal v l , you've got v l equals this (points to paper). 
Jason No, well 1 didn't think that was true anyway at the same time. 
Vicky That equals that 
Derek Yeh, I see what you're saying 
Vicky You're going to have B equals nought, which is a different 

solution from B equals.. 
Derek Yeh, you know what I'm saying is something's wrong here. 
Jason Yeh, there must be something wrong in your equations. 
Derek What i f the k's were different then? 
Jason Well if the k's were different you'd get v2 is Be-*'*''̂ ^*+ Ce"^ 

56:17 Jason Well, yes mate. So if kl and k2 were opposite sign, which they're 
not. 

Derek No it can't be. It's a simple physical relationship, (laughter) 
Ann You didn't say that 
Ann Pass me that 

Derek Get your own for God's sake! 
Vicky No - you've scribbled on this one. 
Ann. Don't look at mine! Your writing is very tidy today, Derek. 
Vicky It's very large today, Derek. 
Ann What are you doing? 
Jason It's not his paper. He writes small to save money, (laughter) 

57:07 Vicky They've done something wrong here - or it's wrong, or it's total 
rubbish. 

Jason The equation must be wrong. 
Derek Can I have a look at those equations. 
Jason I think they're right. 

57:22 Jason . The solution is right as well. 
Derek Right, well, I don't know. I'm just writing it down. 

57:50 WMM Roger's the man to ask if you're floundering. 
Jason Shall we ask for help? 

Anthony No way. No, no. 
Jason Ask his opinion 

Anthony No, we don't want help. We've got two hours to do it in. 
Jason Two hours! 
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58:20 
Vicky 
Derek 

Anthony 

Yeh, it's seven o'clock now. 
This is just me gobsmacked to see how we've all approached it 
differently. I f we'd had to think we'd have all gone to the library 
for similar questions. 
I think we'd have photocopied them, (laughter) 

Yet another interesting suggestion not followed up. 
59:20 Jason 

Anthony 
Jason 
Derek 
Jason 
Derek 

, Jason 
' Derek 

Anthony 
Jason. 

Ann 
Jason 

Why don't we look at pressure? 
No, you don't need to worry about pressure? 
Cause then you've got pressure is what pgh? 
Oh, that's far to technical. 
And pressure is force over area.. 
Oh dear, area.. 
And force is mass times acceleration.' 
Force is mgh, yeh? Area is the same and h.is what changes and so 
therefore you can.. 
But then you can measure that directly. 
Acceleration., acceleration., acceleration is what? Acceleration.. 
acceleration, and then you get a second degree equation, and you 
get two integrations.. 
mgh is potential energy. 
The boundary conditions are exciting.. 

Time for a break, but 
1:00:22 Ann 

RKP 
Derek 
RKP 

1:00:45 Ann 
Derek 
Ann 

Derek 
Vicky 
Jason 
Vicky 

Anthony 
Vicky 
Ann 

Jason 
Ann 

Derek 
Anthony 

Derek 

Jason 

we are unwilling to stop. We discuss textbooks and TV. 
I'll go and find you a book, Anthony. 
At this point you should have a cup of coffee. 
Hope there's some nice biscuits as well. 
Are you happy to take a break for a few minutes and have a cup 
of coffee? You've worked hard and I think we need a bit of time 
to let things mull over in your minds. 
(to Anthony) Have a book. 
Cheat 
It's a differential equations book. (laughter) 
How to solve differential equations. 
Page 63.. Page 63. It's got some interesting things on it. 
Bostock and Charles. It's a useless book that is 
Oh no, that's a good book that is. 
A useless twelve quid's worth 
That's what got me here. 
I know a lot of people say the only thing that's good for is 
propping up your bedroom table. 
At school they refused to use it. 
Really? 
It's brilliant 
We used it. 
You know, Jason, (unintelligible) Did you ever see that on 
television? It's obscene now. 
That's a personal opinion. It's brilliant. 

We retum to the matter in hand. Derek checks his maths. 
1:01:46 

1:02:22 

Derek 
Jason 
Derek 
Jason 

Derek 
Jason 
Derek 

Jason 

Show us your maths again. 
Which one? The separate ones? 
Yep, integral that, yeh 
Yep, 1 did two k's on that, kvldt. No, I did it.. Yeh, like you've 
done. No, hang on, what have you got there? Yeh, but v l , you 
know what v l is. It's Be'*"' 
Yeh 
And so you get your., the Be'"", yeh. 
We've got a constant A though. We can work it out in terms of 
A because we know what it is. 
It's not a B there, it's.. Yeh, and.. 

.-kit 

298 





Derek And you've got A there and you take it across.. And you get 
v2dt. 

Jason What, is that with a separate kl and k2 or not? 
Derek Um.. It's.not actually. 
Ann • I don't see how they can be different k. 
Jason All right then, it makes no difference. 
Ann Is that what you've just done, worked it out? 
Jason I mean if they're the same.. 
Derek That isn't the point. 
Jason If they're the same you still get two exponential fiinctions, you 

just get smaller and smaller. 
Derek I can't see any deductive step in there that's wrong, but this 

answer clearly doesn't work. 

Jason suggests that if the maths are correct and still make a wrong prediction, then the 
assumptions.must he wroiig. Derek suggests and discards an alternative. 

Jason So our assumptions are.-.wrongto begin with? 
Derek So I wanted to see if I made a mistake in the maths. It seems that 

I was all right. 
Ann We're saying we aren't changing anything but the volume 

flowing in and the volume flowing out. 
Derek Yes, obviously. 
Jason But apart from that.. 
Derek Some function of that and if it's just kv, I mean if it's kv^ or 

something. 
Ann Yeh 

Derek That makes it more complicated. 

An interruption about coffee follows. Then we retum to the subject. 
Derek Ann, can I have my piece of paper? 
Ann (returning paper) Yeh 

Derek I think I'll mark that with a big red pen. (draws ring on paper) 
Vicky What was that? 
Derek What do you make of that? 
Ann That is one of my favourite tricks. 

Derek It probably happened when I gave it to you. Just materialised 
when you handled it. 

Ann Yeh, I've just done that for you. (laughter) 
Vicky You've got nought equals b minus a? 

Anthony That means A equals B. 
Jason A equals B, which means? 
Vicky We've done something wrong somewhere. 
Ann How can a equal B? 

Jason Well, let's have a look at your Navier-Stokes equation. That's z. 
so that's like vz 

Anthony has been writing on the folded paper. He has a solution but does not like it. 
1:06:50 Anthony well, I've got a soluti'on but I think it's wrong. 

Jason Oh, yeh? 
Ann Come on then, show it to us, Anthony. 

Anthony No, cause it's.. 
Jason (reading) alpha e to the quarter t equals alpha over two.. 
Derek That doesn't go negative, does it? 

Anthony No, of course it doesn't 
Ann No, that doesn't 

Derek has a solution which looks promising. 
1:07:25 Derek (reading from a different piece of paper)When t is nearly zero, 

that's about one, and that's one so that means it starts off at A, 
which is rubbish, cause that's zero, isn't it, and that decreases. 
That's zero, this bracket starts at zero and goes up to one, and 
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this starts at one and goes down to zero, so that product is going 
to be something at a max, so this looics quite good. 

Ann Yes, that does, doesn't it. 
RJCP brings coffee. i. 

1:07:43_ Vicky No,.yeh, that looks good. 
, • Ann So what was your brainstorm there, Derek? 

• Vicky Something we said? 
Ann Did it in a different format? 

Derek No, I did it again and just sort of kept my signs consistent. 
An Not introduce a negative when you didn't want one. 

Vicky So if you diff it, and take it equal to zero, that should be where 
the maximum is, at that time. 

Derek Yeh 
Ann Go on then, try it, 

Derek ' dv2/dt equals minus kBe'*" plus two kAe'̂ "" 
Vicky Hey, where have you got your B from? 
Ann The B equals A apyway. 

Anthony B is minus A ' •• ' 
Derek B is.the constant you get when you integrate the second.. 
Jason So it's just minus A, isn't it, so you might as well just put minus 

A. 
Vicky Why don't you just put one.. Cause.. 
Derek So why don't I just write one? Okay. 
Vicky Oh, I see what you're doing. You're working on the premise this 

is easier to differentiate than that. (There are two different forms 
of the expression for v on the paper.) 

Derek I was just starting by differentiating that because I imagine I 
could have written that with one of those things with a bar across 
it but., (laughter) 
Shall I carry on or is it too exciting? 

Vicky Differentiating 
1:09:36 Break in film. 

Derek explains the thinking. 
1:09:40 RKP Okay, so what is your initial assumption about how your rate of 

flow., how your water, your liquid, flows out? 
Derek Well, we started working with the theory that the rate of flow is 

some constant times the volume in there which would lead us to, 
you know, work via some points that, as the water decreases so 
the flow out's going to decrease-so, so that in the second bottle 
the rate of flow out's going to be quite small because there isn't 
much water. 
It's going to be coming through at a greater rate than it's going 
out, so that the level will rise. 
Um, at some point there will be as much water in the second 
bottle as there is in the first; so that the rates of flow in and out 
will be the same, as there is then, is then less water in the first, 
that rate of flow will decrease and this will be higher as there 
increases the level of water, and of course that will then start 
dropping. 
So we worked on a differential equation that dvl/dt equals minus 
kvl , and it doesn't seem like that gives us a workable answer 
though the equations can be solved, so we don't think it like does 
the job 

1:11:11 RKP Why do you think it doesn't do the job? 
Derek Well, actually we worked but we got for the first part as I just 

mentioned dvl/dt equals minus kvl . In the second, dv2/dt equals 
kvl minus kv2. We assume the same constant in both, though 
that may not be correct. Working that out, we've actually got an 
answer for t, but 

Anthony For the maximum 
Derek For the maximum, but that gives an answer which doesn't depend 
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RKP 

Derek 
RKP 

Derek 

on the initial volume, so it can't be right. 
Yes, I suspect that your problem there is that i f you work out. i f 
you write out your algebra carefully you'll.find there's that 
you've got a fault there probably more than in the modelling. 
Of course there is.. Just... um (writing) 
Perhaps, because that should certainly give you an answer. 
Whether it's an answer that's actually physically right or not, you 
should certainly.. Those assumptions should lead you to a 
mathematical answer. 
The question I would ask you is, is it really true that um the rate 
of flow is proportional to the volume that's already there? 
That's a good point, um cause we just made our assumptions 
about what we could see and started trying to work it out and we 
didn't really list our. assumptions in any way. 

How can you test your assumptions? We struggle towards describing a simple 
experiment 
1:12:42 RKP How can you test your assumptions? 

Derek Umm 
Ann We need to time i t 

Derek Well, we didn't even think at all about measuring rate of flow 
depending on how much volume we've got, and that's something 
we could and probably should have done, yep. 

RKP What experiment actually would you do to determine that? 
1:13:03 Ann Put half the amount of water in there, and see how long it took to 

flow out, and then put once in there and see how long it took to 
flow out 

Jason You could time how long it took for like a litre to flow from there 
to there or something. 

Derek What we should do is simply empty one bottle into another and 
forget about the middle one. Just that'll make it much simpler 
and we can measure our assumptions to start with. 

Ann Mmm 
1:13:27 Jason Yeh, you could see how it depends on.. I mean you could do it 

both from four to three and from three to two and see if one's 
quicker than the other. 

Derek Yeh, and that would work.. 
RKP You can do it better than that, actually, can't you? You could.. 

You can give yourselves a bit of a scale there, you'll have to put -
make a scale on it and just read the volunfie that's in it against the 
time and graph it, and see if that's consistent with the model 
you've.. 

Jason Well, we could mark on there nought seconds, thirty seconds, a 
minute, and mark on it the time it's gone.. 

1:14:02 Ann Yeh, just see what's 
RKP And you're assuming it depends on the pipe, which it may or 

may not do 
Derek The height of water in there and the volume, they're pretty 

closely linked? 
RKP Oh yes, that's supposed to be straight-sided. 
Derek So it's a constant, sort of, area. 
RKP Yes, cause it's the height above the tap, isn't it? 
Ann We made that assumption. 

Derek We noticed the drawings have the water flowing from the very 
bottom, which is a simplification of the true problem. 

RKP I think that i f you work through what you've done, carefully, 
you'll get, you know, just make sure that the maths is right. 
You'll get an answer. The answer will depend on that initial 
assumption. You ought to be challenging that now. 

Ann Okay, well.. 
Derek Fine 

1:18:03 Ann I've got a second hand on mine. 
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Vicky Yeh, so have I 
Ann I don't actually have a stop watch or anything. 
Jason Well, we don't want to stop it. We'll just write on .the container 

and.. 

1:15:33 RKP repeats question for video. 

The first test to test the assumptions. 
1:16:02 Jason sticks, vertical strip of tape on top tank. 
1:16:19 Jason Shall I fill it up again? 

Ann Yep 
Jason Come on Ann (they carry jars to sink for refilling) 

.Break in tape . 
•1:17:04 Anthony When it's stopped moving around. 

Jason Just at the end. 
Anthony Is it ready to go then? 

Derek : That's not a maximum, is it. Just the rate of flow. 
Jason The top one isn't. 
Derek So ifyou... 
Jason What aboutthe meniscus? 

Anthony Why don't you lower it down to four? Why don't you lower it 
down to four and measure it from there? 

Ann Yes, measure it from.. 
Anthony Let it go to four. Let it go to four. 

Derek It doesn't matter. 
Ann We're just looking at the difference in heights. 

Derek It doesn't matter 
Anthony we don't want to fiddle with funny numbers. 

Ann The numbers don't matter. You'rejust looking at a physical.. 
Derek Just mark it every ten. 
Jason Who's looking at their watch? 

Anthony Is this one open? (middle tap) 
Jason Tell me to mark it on the minute. 
Vicky When it's convenient. 
Ann You want it every ten seconds. 
Jason Well call it and if it's too close I can't mark it. 
Derek Well, if it's too close we' II run it again, but try it for the moment, 

shall we? 
1:17:45 Jason Well, I'll do it every other ten if it's too quick. 

Vicky We' 11 start with ten seconds. 
Ann Okay it's coming up to the minute. Right.. 
Jason Now? 
Ann Mmm 
Jason Right, call out ten, 
Ann Ten, ten, ten, ten 

A glitch in timing. 
1:18:38 Vicky Do you want to stop because I'm sure you went ten too close. 

Jason Yeh, something's gone wrong here. We've got two tens far too 
close. 

Vicky You did two tens too close together. 
Jason They were about an inch apart and then we've got two about that 

far apart. 
Vicky I'll do it on mine. 

Anthony Why don't you use the stopwatch? • 
Derek I haven't got a stopwatch. 

1:19:00 Jason Something went wrong even i f it's not a stopwatch. They sort of 
went evenly and then we got., (removes tape from tank) 

Vicky It sounded like it was sort of five seconds, and then like.. 
Jason It did, yeh. 
Vicky Its cause you've got no numbers on yours, that's why. 

(Jason puts new strip of tape on bottle) 
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Derek Excuses made up. 
Anthony Are you going to fill it to the top? 

Jason • What? 
Vicky You'll have to fill it. 
Jason ' Better than emptying it. • 

Filling the apparatus 
1:19:34 

Derek 
Vicky 
Derek 
Jason 
Vicky 
Derek 

1:20:10 • Anthony 
Vicky 

. Jason 
Anthony 

Derek 
Anthony 

Derek 

Vicky 
Jason 

Anthony 
Vicky 
Derek 
Vicky 

1:20:38 Jason 
Derek 
Jason 
Vicky 
Derek 
Jason 
Derek 

Anthony 
Jason 
Derek 
Jason 
Derek 
Jason 
Derek 

1:22:08 Jason 
Ann 

Jason 
Derek 

again to rerun the test. 
Derek closes middle tap 
Bottle filling procedure again. 
It's open, isn't it? 
No, I just closed it. 
I shall do it here, (fill the bottle, as opposed to over the sink) 
Yeh 
Yeh, be daring. 
(points at computer) We could just look at the computer and.. 
I can't see it from here. 
What clock?" 
There's a clock on the computer. 
Yeh, I can call that. 
We'll just count the seconds down and you can mark it off. 
Or what we can do, Jason, is open it when you feel like it and 
when it starts running call out and I'll call out the tens from there. 
Oh no, do it from a reasonable sequence. 
Yeh 
Yeh, when you hear a little bit of a trickle. 
Well he can do it and look at it. 
Yeh, I will. 
No, he can. 
I can't see the clock from here. 
When you feel like it, Jason. Just call and I'll tell you when. 
Yeh, hang on. 
He can't even see it. He's too close to it. 
Zero, is it? 
Yeh 
Ten 
No, forget it. This one's not open, (middle tap) 
It doesn't matter, we're not marking that one. 
Mark. 
Exactly even at the moment. 
Mark., mark.. 
It's slowing down 
Mark., mark.. 
We missed one there, didn't we? 
No, he didn't. 
There's a bit of a gap. 
Mark 

A surprising result: the marks seem to indicate a steady flow rate. 
Anthony I don't think the apparatus is very usefiil. 

Jason Well I think what we can say from that is it's a constant. 
Derek You should have ten marks there. 
Jason (counting marks) One, two, three, four, five, six, seven, eight, 

nine, ten. 
Derek So.. 
Ann So if you break the flow it's not proportional. 

Vicky It does look constant. 
Jason It does look.. I mean these ones are a bit.. For the first it does 

definitely. Up to probably where it's going to be a maximum. 
Ann It will come out totally different 

Jason Well it's the slope we need. 
Break in tape. 
Close-up. Film of Jason marking tank as water runs out. 
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1:24:22 Break in tape. Back to assembled group. 
Derek Can you help us please. 
Ann It doesn't make that difference. • 

Intervention: Where-do yoii measure the depth of water from, if the flow rate is • • 
proportional to height? 

WMM Can I ask you a question about one of your assumptions? 
Derek Not another one. (laughter) 
Ann The assumption 

WMM You've assumed the pressure is equal to pgh, yeh? 
Ann Yeh 

WMM And what I'd like to ask you is where you're measuring h from. 
Ann Well, we're taking zero as the floor level, i f that's what you 

• mean. 
Derek (off camera) No, zero is here. 

Anthony Centre of the earth. 
WMM Why is zero there? 

Anthony No it's the centre of the earth we're taking as zero h. 
Jason No. 

Anthony No, it is 
Derek No, He's right, because.. 
Jason No, like anything there (top bottle) is like just a waste of space. 
Ann The diagram is that it's flowing from the bottom, isn't it? So 

you've taken the level where it starts flowing out the tap. You 
measure from there to the top where the water would be the 
height in that can, won't it? 

WMM What I'm trying to get at is where a better place to measure zero 
from might be. What in fact in your pgh does h stand for? 

Ann The height of the water in the can. 
WMM Does it equal.. Is it equal to the height of water in the can? 
Derek Yeh 
WMM What about the height of the water is it? 
Jason The height of where it's flowing from. 
WMM The height of where it's flowing from. Where is it flowing from? 
Derek There 
WMM Is it? Is that actually where it's flowing from? 
Derek Umm.. Ummm.. 
Jason Well, it's flowing out from the hole in the bottom. 
WMM It's flowing through the hole, and then what happens to it? 
Jason Goes down the pipe (points along tube with pen) 

Is there anything special about the place you measure the depth of water from? What is 
a point, time or space? 

WMM What's the magic about h equals zero? What is it that you're 
assuming happens at h equals zero? 

Ann There's no flow.. 
Jason No flow. 
WMM Well, no, sorry. At the position where the er level is zero. I'm 

expressing myself very badly. 
Ann There's no flow. 

WMM Umm.. What is it about umm 
Ann There's no change in the amount of water that's in the can. 

Derek has an explanation which does not seem to involve pressure, potential energy, or 
anything. 

Derek The reason we're measuring the height is because the volume's 
directly proportional to the height, and we think the volume is 
what forces the water out. So we're.. 

Ann We assumed the flow would change, 
Derek So we're just measuring the height of the liquid as one of the 

dimensions of the volume. We aren't really trying to equate it to 
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its pressure at a particular area, or potential energy, or anything. 
WMM I thought you.. A shame. 
Derek Because if it was pgh. 
WMM Yes, ' " . . 
Derek Relative to the centre of the earth, Nve discounted that because 

they are virtually the same relative to the centre of the earth. I 
think that's what you're trying to ask.. 

We establish that we have a constant flow rate, which is not what we expected. 
However this may be because we are not measuring accurately enough.. 

WMM No, it's not. That's not what I'm trying to ask. I'm trying to 
challenge basically why you think you've got very little 
difference in the size of your steps. 

Derek Er.. Jason's got a steady hand. . . 
WMM I'd 
Jason You mean they're almost all the same. 

-WMM They're almost all the, same, yes. 
Jason That means it must be a constant flow rate, then. 
WMM And why.. What is it about your measurement of h that might 

lead you to have a more steady flow rate than you might think 
you'd have, and what can you change to have a flow rate that 
varies more. 

Derek Ah! The centre of mass of it, because that doesn't rise that.. No, 
that wouldn't make any difference, would it? That would just be 
half all the time. 

Ann What I think you're trying to get at is if you're trying to measure 
it to the nearest tenth of a centimetre then they're identical but if 
you're trying to measure to something more accurate then they're 
not all the same. 

WMM Clearly I am asking the wrong questions here. 
Derek No, don't say that, just., (laughter) 

Let's talk about pressure.. 
WMM I must see if I can find a more constructive question. 

Would you agree that at the position from which you measure the 
height, the pressure in the water is equal to atmospheric pressure? 
yeh? 
Yeh 
Okay, you like that one? 
Okay, so at what point in your top bottle and its bits and bobs 
attached is the er pressure in the water equal to atmospheric 
pressure?-
At the top 
On the surface 
It is at the surface and where else? 
Here at the tap. 
Why at the tap? 
Cause it's got.. 
Well it's 
Actually it's here 

1:29:50 WMM (claps) Yes, yes, yes, it is. At that point where it leaves the hole 
it should beequalto.. 
Oh. 
So 
So we should be looking at the height from the bottom of the 
tube. 

WMM Yes 

Jason 
WMM 

Derek 
Jason 
WMM 
Jason 
WMM 
Derek 
Jason 
Derek 
WMM 

Ann 
WMM 
Vicky 

And we are not at all convinced we should. 
Derek It's the same amount of fluid. 
WMM You could try that. 
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Ann I can't see what difference that would make. 
. Jason Yes, but i f it's the height from there, from the bottom of the tube, 

it's still coming down equally, isn't it? • • . 
Ann - I was going to say, it's still going to drop at those intervals. 

WM'M Well, how about making., doing an experiment to see whether he 
length of the tubes makes any difference? 

Jason Like take the tube off 
WMM Could you? 
Derek We've only got two tubes the same length. 
WMM Yep, that sounds reasonable. 

1:30:32 Derek How do we adapt the model, then? How will that help us out 
with the maths? 

Vicky Is that tube actually longer than that one? 
Jason Minm, yep. Oh, we could changethen over. .No, try it vvithout' 

the tube first, see whathappens then. 
1:31:25 Jason You can't get the tubes back on 

WMM Ifyou get themwet they go.. -
Jason That's closed now, isn't it? (top tap) 
Derek Hope so. 

We try, although we get a bit wet and have to modify the apparatus a little. 
Jason So it's like.. I'll hold i t (fills top tank from bottom one in situ) 

1:32:10 Jason So what's this written on the side of this? Right, leave this one 
(middle tap) shut 

Ann Leave this one shut And.. I'll hold it (middle carboy) until I see 
where the flow's going. 

Jason No, no, no. As soon as it starts to come out properly we do this. 
Because we're going to mark it again, (removes previous tape) 

Ann We're going to mark it again. 
Jason Ten seconds 

1:32:37 Derek Um, I'm just wondering if here's afiinnel, though. 
Ann I'm just wondering if it's actually going to go in there without. 

Anthony I don't think it'll make a difference. 
Jason No, you don't want the tube on. 
Ann No, I know you don't, but I just want to make sure the water's 

gonna.. 
RKP (offers phone directory) Here, that may help it stop splashing a 

bit. 
(Anthony puts directory under middle bottle.) 

Derek You don't have a funnel, do you? 
Anthony I was just wondering- That's all I'm making sure of 

1:33:21 Jason Right, who's going to do the timing then? Who's watching the 
clock then? 

Derek I'll do it with my watch then? 
WMM revives clock on windows. 

Jason I'll start it on ten seconds 
Derek As you wish 
Ann Oh crickey (water splashes from tap) 

Anthony Forget it. 
Jason Right. I'll need a few more books. 

1:34:05 RKP (Bottle now sitting on empty wire spool, putting a book under 
spool) We' 11 get it right up there. 

Jason Clock. It's coming up to a minute, isn't it? 
Derek Seven, nine, zero. 
Jason Shout it out 
Derek Ten, mark, mark. 

Anthony Is it getting smaller at all. 
Derek Mark, mark, mark, mark, mark.. 
Jason Mmm, I think they're getting smaller, you know. 
Derek Mark 
Jason But they did last time we got towards the bottom. 
Vicky But is that significantly smaller, or.. 
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Derek Mark 
•Jason We'll make this one the last one; Ah, no you want to carry on. 
Derek Mark, mark 

Anthony Wasn't so many marks last time.-
Jason ' No, it's taking a longer time for some reason. 
Derek Mark 
Ann If it's flowing slower, you've got a shorter height. You notice 

the difference more, don't you. 
Derek Mark 

Anthony What did that prove? 
Jason Proves that it's 
Ann It is proportional, isn't it? Flowing through that pipe, 

Jason seemed to change it 
Ann^ • Is speeding up the flow, didn't it, because that took:a lot longer. 

Derek Why is that? 
Ann So it's slowing flower and you notice the difference a lot more. 
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A P P E N D I X B: M A I N QUESTIONNAIRE 
Rubric 

Please read this page first. 

Read the following question: 

Which is the odd one out? 

house office 

igloo flat 

Some people will choose house, because it has more than one storey. 
Some will choose office, because people don't live there. 
Some will choose igloo, because it is made of iqe. 
Some will choose flat, because it doesn't have an 'o' in it. 

There is no wrong or right choice here, but the way you answer gives a clue to the way you 
think. 

The six examples that follow are rather like this question. They are not intended to trick you 
into giving a wrong answer, but rather to see which of a choice of answers you prefer. 

For each example there is a list of six options. Please choose the one you think is the best fit, 
and then rank the rest from best to worst. If none of the answers seems to you to fit, then 
please.put a better one in the comments box. Otherwise please use the comments box to 
explain your order of choice, or for any other comments on the question. 

Please fill m the following details. I would like to know who you are for possible follow-up 
research, and nothing you write in this questionnaire will end up in your student records! 

Name; 

Course; 

Year; 

Date: 

Thank you for helping me with my research into 
the mathematical ideas of engineering students. 

Wendy Maull 
Centre for Teaching Mathematics 

Hathematics Leaming Questionnaire, September 1995 
bendy Maull, Centre for Teaching Mathematics 
Iniversily of Plymouth 
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Question 1 

A plank 1.5 m long is placed on two bricks very near its ends. A bar of 
gold is placed across it 0.5m from one end. Rank the following according 

to how well they represent this to you. 

(a) 

The beam bends under the weight of the 
gold bar. 

(b) Deflected shape 

(c) 

Bending Moment M=k 

(d) 

A simply supported beam with a point load 
at one-third span. 

(e) 

Shear Force S= Fdx 

Bending moment M= Sdx 

(f) 

I 
^ Load mg 

Reaction 2mg 
3 

Reaction 
3 

Answer 

Comments: 

Beam bending question 
Wendy Mauil, Centre for Teaching Mathematics, 10 November 1994 

309 





Question 2 

All of (a)-(f) can be associated with the statement above. Please arrange 
them in order of how closely they are linked to it in your mind. 

(a) 
f(x) is the slope of the tangent to a graph of 

y against x. 

(b) 

(c) 
dy/dx tells you how quickly something is changing. 

(d) 

/'(x)=lim(x2-xi)-.o ^^2_ZA 

_ 
As you zoom in more and more closely to a small 

section of the curve, it seems to straighten out. The 
slope of the tiny straight section is dyldx at that point. 

(0 

y 

X 

Answer: 

Commenis: 
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Question 3 

A mass suspended from a spring and dashpot is pulled down from its 
equilibrium position and released. Which of the following do you think best 
describes what happens next? 
Please arrange the answers in order of how well you think they describe the 
movement of the mass (best first, worst last). 

(a) The mass bounces up and down, 
going less far each time, until it settles 

back to its original position. 

(b) • y+ity+(O^y=0 

(c) 
Velocity (dy/dt) 

Displacement 
ly] 

(d) y - A e cos CO/ 

(e) Damped harmonic response 

(f) 
displacement (y) 

time (t) 

Answer: 

Commcnls: 
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Question 4 

xdx 
(a)-(f) may all be associated with this statement. Please arrange them in 

order of how closely they Fit the way you think of it. 

Answer; 

CommcnLs: 
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Question 5 

In a pinball game, a ball is fired by releasing a taut spring behind it, 
propelling the ball out at speed. Arrange the following in order of how 

well they describe this to you. 

(a) 
Energy stored in spring = Vi Force x Extension 

(b) 

(c) 

(d) 

(f) 

Energy'imparted to ball = Fdx 

1 
—m 
2 

^dx^ 
\dtj 

=-kx' 
2 

Change in momentum = Fdt 

(e) 

F = ma 

The further you pull back the spring, the faster the 
ball will go 

Answer: 

Commenis: 
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Question 6 

dx = e 

Arrange the differential equations below according to how 
similar you think they are to the one above. 

(a) 

dx dx 
(b) 

dy =^ e^dx 

(c) 

dx 
(d) 

dy 
—= mx+c 
dx 

dy 
—= mx+c 
dx 

(e) 

dx^ 

(f) 
dy 
^ ^my 
dx 

Answer: 

Comments; 
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APPENDIX C: TRANSCRIPTION OF INTERVIEWS WITH 
STUDENTS TO EVALUATE THE COURSEWARE PACKAGE. 
First evaluation interview with final year mechanical engineering student,- recorded 
by video in C T M , 2 Kirkby Place RlOl , directly after using the package by himself, 
November 1997 

Jed It's nice to use 
WMM So you like... 

Jed It's interesting enough to stand examination, which is nice 
I think perhaps keyboard alternatives, such as the two arrow keys for previous and next 
Indistinct 
Microphone and camera adjusted. 

'WMM What did you feel about the navigation? Did you find it easy to navigate round 
Jed I thought it was pretty good. 

Perhaps on some of the longer modules, for instance investigate implications or compare 
with reality I thought it could perhaps do with a page numbering system or some sort of 
scrolling system. For instance I got about halfway through, I wanted to pop back and 
look at this page but you have to go right back and go through it again. 
I felt some sort of scrolling system perhaps would be useful. 

WMM That's something to think about. 
The home page worked as a way of navigating? 

Jed Yep. You can base yourself from there. That worked quite well. 
WMM Do you have any comments: did you have any glitches: did anything go wrong? 

Jed Nothing went wrong. Well I think one of the pictures is inverse, is in negative 
WMM Is It? do you remember which one? 

Jed Intro to modelling: reality 
WMM Ah! It's just bad colour. Thanks 

Jed One thing I thought about the navigation was there are different numbers here. They 
don't really co-ordinate, moving from reality to understanding. I thought perhaps 
rather than have a whole page dedicated to just that if it just flashed up and fades into 
the next page perhaps. 

WMM Right 
Jed Rather than have to click again that just fades into the next. 

WMM What did you think about the introduction. The bit before you get to the home page? 
Jed Right, telling you how to navigate. Yes, that's clear. It just gives you everything there. 

Perhaps if these two [buttons] were swapped around to match those two.. 
W M M What did you feel about the context? Did you feel the case studies were relevant? 

Jed Yes I thought they were quite useful: the case studies. They were suitably practical. 
WMM You didn't think they were.. Did you feel your intelligence was being insulted by any of 

them? 
Jed Not really, no. I haven't been using any maths for the last year being on placement so 

my maths is very rusty. 
WMM What about the level of the maths? 

Jed What is the package aimed for? 
WMM It's aimed for giving concepts of differential equations in the context of mathematical 

modelling. So either you have looked at.. So you can either use it for introducing 
mathematical modelling to people who have done differential equations, yes, calculus, or 
for introducing calculus, differential equations to people who have done mathematical 
modelling. 

Jed Right- it seemed quite useful for that. It's a lot more interesting -, it's easier to grasp 
than standing in front of someone who's telling you about it. 

WMM The level of the maths varies quite a lot from the first one through it. Whereabouts do 
you feel happiest? 

Jed Well, given a reference, I'm happy enough with understanding the calculus- I've 
forgotten all the transforms myself. 
When you use them a lot you know them, you just click them in, but I've forgotten all 
that. 
My maths is very rusty-1 haven't been using it for a year and I haven't had to use it so 
far this year. 

WMM What about the level of the commentary- of the explanation that was going on? 
Jed I thought that was quite good 
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WMM Did you feel it was too high a level, too low a level? 
Jed I felt it was about right, 

WMM What about- did you feel that the mathematics was put in context or that there was a 
sort of break? 

Jed No- it seemed to go- to flow quite well really. 
WMM What about the pace- that it went too quicldy or that it took you through at a snail's 

pace? 
Jed It went through too quickly for me because I haven't been using it but I think if I had 

just come out of the maths modulus that would be fine. 
WMM I had at one point thought of building in another layer in which the maths went a lot 

more slowly so you could switch from one layer to another 
Jed Yes you could do that or even clickons for each page - just sort of little maths subpages 

come up- it could be-1 think for people from maths modules that's probably enough. 
WMM I think it's more aimed at somebody like you who's been out to try to encourage you to 

think mathematically; 
Jed Yes, mm, I see what you mean. I sort of tended to follow what was going on without 

actually examining the maths. 
I understood what was happening without doing the sums as it were in my head. 

WMM So were there any particular spots where you thought it was going really too fast. 
Jed No 

WMM Or conversely really too slow 
Jed No in general I liked the pace very much throughout. 

WMM There were different help styles used in one or two places where I was testing them out. 
One of them was where you had a red word.. 

Jed Yes, I noticed that, I quite liked that 
WMM Another was where I put - used a split screen - put a lot of commentary down the right 

hand side. 
Did you prefer either of those? 

Jed I quite liked the red word although the danger of that is people might be lazy and just 
not do it, seeing they ought to be able to figure it out and skip pat it. 

WMM So you haven't done any maths... Have you done any mathematical modelling in your 
course, ever? 

Jed Well, we did some basic stuff.. 
WMM Specifically as mathematical modelling? 

Jed Yes, it tended to be in the mechanics modules. Did we do some in the maths modules... 
I don't really remember. It was such a long time ago 

WMM Do you feel that you've learnt anything in using it? 
Jed Perhaps in the actual.. In each particular application. Learnt what you would use to do 

a coffee mug. But on the other hand I felt I was aware of the homogeny of the 
principles behind modelling.. The principles behind it. 
I would know where to go for modelling and what I would want to be looking at, just 
be inadequate in locating the actual variables. 

WMM Do you think you would find it useful to have something like that available? 
Jed I think it would be, really, yep. Just-1 don't know, you mean like on the network or 

something? 
I think it would, certainly to go and enlighten oneself as to what is possible 

WMM Do you think anybody else would use it? 
Jed Well, it's the same old thing, being a student, nobody's going to use it, but, I mean it 

might be if there's a tutorial session as part of a module, you know, go through this. It's 
relatively... it's not... Nobody's going to be turned off by it so it would be all right. 

WMM Would you like a copy? 
Jed I won't, Thank you, no; Thanks for the offer. I'm trying to avoid mathematics this 

year. 
WMM It has been suggested that there are two ways we might encourage people to try it out 

and test it. One way would be to invite people to have a go at it and then have some 
lunch, or another way would be to put it on disks so that people could take it away and 
have a play with it at home, and just give a quick fill-in questionnaire. What do you 
think of either of those two? 

Jed I think either would really be useful. I mean it's cheaper for you to send it away on 
disks. I guess everyone could go through it at their own pace. 

WMM What is nice, sometimes when you get people using something together is that you get • 
them talking to one another. 
Any other comments you would like to make? 
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Jed I liked particularly.. There was particularly in that section the bridge I think it was, 
there were suggestions for something to think about that sort of came over- further 
investigations you can do. I particularly liked that because often when you're being 
taught the lecturer's desperate to get through the subject so they, don't have time to stop 
and talk about that. That's quite useful... keep people thinking hopefully; 
On the one about the water tank when you're comparing it with reality it suggests you 
compare it with example five and it goes straight into it when you click "next". I don't 
know if that was intended but it doesn't seem to finish it. 

"WMM Yes the implication was that we'd modelled something but you can go round the cycle 
again in fact you can go round the cycle twice more. 

Jed Mmm, right. I like the way the text change between the active and the inactive. It 
keeps in focus else it ends up being just a big screen of words. 

WMM Do you feel the colours are easy or tiring or anything? 
Jed Generally I've heard yellow is supposed to be a tiring colour but I didn't find it to. be so. 

WMM Anything you particukrly liked? 
Jed The presentation- a nice package generally-1 like it all really. 

WMM Or anything you particularly didn't like? 
Jed No not really. I didn't like having to click through so many pages on some of them 

when you went back a few. 
It's just that some of the modules, I don't know how many pages, perhaps 10 pages, if 
you're in the middle it takes quite a while just to work your way back, but that's 
because I was skipping about a lot. 

WMM Well, that's fair enough because part of the idea is that you should be able to skip about. 
I'm not excessively keen on scroll bars. 

Jed No, they're difficult to apply. 
i mean certainly the type of scroll bar you get on a lot of Microsoft stuff are horrible. 
Perhaps you see better scroll bars on the Apple, like sort of sound editing. It's got that 
sort of scroll bar where you move it., (draws horizontal line). 

WMM I wonder if I could., because it's pages rather than scrolling up an down, put tabs up 
each side.. 

Jed You mean like a Filofax? 
WMM Yes, exactly, if that would be helpful? 

Jed Yes,, good idea. Yep it would just allow you to pick out pages and turn back. Also as a 
reference: 

WMM Which tell you how far you are through a section, whether it's a big one or a small one, 
yes that's a good idea. 
Is there anything you've come across in your course that you feel would make a good 
case study? 

Jed A good model, mmm. 
Nothing that springs to mind, but I think those are good choices, the way they cross 
over to the water tank with the hose and the hose with losses. 

WMM Because I was a bit concerned that there were only three basic applications in there. 
There's cooling, the water flow and the chain and the fact that there are three modelling 
cycles doesn't cover the fact that there are only three applications. 

Jed Perhaps but I mean it's a broad field and they are pretty typical examples, really... 
applications. 

WMM Do you think it would be helpful to put in something that said something more about 
the particular mathematics up front in the title? 

Jed In the title, you mean like thermal consideration? 
WMM Like exponential decay, non-exponential decay. 

Jed Yep, something like that you could grab if you're looking for something in particular. 
Right.. 

WMM Well, thank you very much. 
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Three final year Manufacturing Systems Engineering students (first two years in 
common with mechanical engineering students), at C T M in Kirkby Place. Martin is 
a German student with good if not perfect English. Gareth and John are mature 
students 
After the students have used the package together we discuss it over lunch. 

While using the package the students' only conversation is a spontaneous discussion 
of the nature of mathematical modelling. 
Gareth (inaudible) according to this the temperature will never be zero, that is room 

temperature. In actual real life it would at some time. 
Martin In a theoretical model we have to have some factors for the heat transfer and so on. 

Usually finding the formula is never really a big problem. You choose out of the seven, 
tick one that must be right, and then you have the problem that.. 

John Good old engineering guess (laughter) 
Martin It is the only one which has all the variables I know or any of those must be the one. 

But where we get all the factors from if there is no letter 
John You can look them up 

Martin Then we can find them or how to guess them. 
I found that sometimes that is a big problem. 
And so usually you get told by a lecturer the wall has a T of 20 or something, and then 
you get your.. 

John Yeh, the data that's stored you can get that out of reference books . 
You get all different k values and C values and you can.. 

Martin When you are starting to find those it can be quite a long wait. Might be even longer 
than finding the right equations and solutions. You get from simple mathematics into a 
high mathematics problem in finding them. 

John No, you look them up. 
Martin But the conductivity of this wall [gestures] is not written down in a book. You have to.. 
John But you know what the wall is made of, you know how thick it is, so you can go and 

look that information up in tables. 
Martin It goes quite a few steps back. 
Gareth What if the model is such a situation that we can't actually get and physical data from it? 

Like it hasn't been created, building a bridge? 
John Then you have to measure it. 

Gareth How? 
John Seems obvious. From what Martin was talking about, conductivity values, you can 

measure those. 
Gareth If it's for an unknown. 
John I mean if it's for an unknown thing, if the material hasn't been invented yet then fair 

enough you can't look it up but you can't measure it either, but what are you modelling 
on something that's not known? 

Gareth You might be doing a feasibility study or something. 
John But then you'd know the properties of the material you're looking at or you'd be 

looking at specific properties. You'd be working from the back end to try to identify 
what specific properties you're looking for from the material, wouldn't you? 

Gareth It's just that this step here where it says "compare with reality", you may not be able to 
do that. 
I mean I'm sure that when they built that bridge in America which destroyed itself 
when it reached resonance. 

John It begins with a T doesn't it? 
Martin The swinging bridge. 
Gareth They couldn't compare with reality until they'd built it. You could do all your 

modelling- that's where I'm saying the assumptions are very.. 
John The assumptions are there, aren't they. They arg assumptions. 

These things don't actually happen just the same as you think. The only way you can 
simplify it so that at this level you can solve the mathematics. 
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The students returned to silence and to perusing the package. 
We discuss the package over lunch. 
WMM Can I ask ybu please.. Do you, have any general comments about using the package? 

What level is it aimed at? 
" Probably second year engineering students. 

I think it should be aimed at first year because they've already... That's more of an 
introduction.. They've already done a lot of the stuff that's in that book before they get 
into the second year. It would be like, regressive, if you like. It would be better if that 
were introduced earlier rather than later on. 
I mean even to the point where on the foundation year, you're doing differentiation at 
that stage and I think it's a key point to get across that this is a tool used by engineers to 
model situations which they are trying to overcome. 
Cause you can get lost in the maths without seeing the relevance to the real world in 
which we're living. Whereas that's quite good with the explanations.like the coffee cup 
and the bridge and things like that, why we actually use differentiation. 
Would it have helped you at any point to have had access to something like that? 
Not as a solely teaching aid. Certainly as a backup to go there when you're not sure of a 
point to go and go over something again because you can see it clearly on a point. 
You still need the lecturer interface but as a backup to that to give the student extra 
individual tuition, that's an excellent aid. 
What about the fact that it's done very much In the context of mathematical modelling? 
YoudldHITECC', didn't you So you have been explicitly taught mathematical 
modelling. How about either of the other two? 
I did HITECC too. 
[to Martin] So have you seen specific mathematical modelling during your engineering 
course? 
I have done the same with problems like in that program but whenever I got a bit 
confused, a bit lost after the introduction. There was mathematics all over the place and 
In the end I could not see what I have really done. 
I knew about perhaps the bridge and that Is how It must be but when I have done It I 
was lost, and this gives a bit of an overview of the mathematics. It was not the first time 
I saw the modelling stages and the comparison with reality. 
It was a good thing. I really liked It. 
What did you feel about how easy it was to use and the structure of it? Was that 
helpful? 
Very simple to use, very clear Instructions. 
Is there a possibility that people are going to be looking for certain areas? Say they were 
given an assignment. Are they going to use that to find out how to do, so are they going 
to narrow the search into one area? Is that's why It's there, as an id to helping people to 
understand certain problems or just overall? 
It was a set of examples for setting mathematics in the context of mathematical 
modelling. 
Yeh, what I mean is what I was trying to say Is, say someone was set an assignment and 
It was a shell being fired from a gun and its motion through the air. Are they going to 
look on there and not find it and go on and look somewhere else, rather than getting the 
feeling of why the program is there, not just to help people in specific problems but to 
understand a greater range of Instances? (laughter) I know what I'm trying to say. 
I think what you're saying is there could be a tendency for students to leap to that to see 
if there Is an example where the maths has already been done for them to save them 

' work rather than them to sit down and actually work through the maths. A lot of 
students will say Ooh, It's on there. 
If you are doing usually you will not get the same example like a computer program, 
just for an example what could be the [Inaudible] of the same problem, you are going 
through the examples to see what you have to do then you are following the steps with 
your specific... 
But you know as well as I do, Martin, that there are enough students out there who 
look to find exactly the example they are looking for.. Hey presto, that's my work 
done, solved. 
But it doesn't say the equation steps are explained a bit, but in an assignment you have 
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HITECC: Higher Introductory Technology and Engineering Conversion Course, now known as the 
Engineering Foundation Year 
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to do more I would say. You have to do it with your specific numbers, at least. It's like 
the statistics at themoment, you have to do the whole assignment with your numbers, 
but at least you havfe done it once even if you just copied your numbers. 

John I'm not sayingyou shouldn't. What I'm saying is there are students out there who will 
' • ; go, that's it and. all I have to do is bung my numbers in and there's an answer, which 

isn't what it should be about. 
Martin But at least you-have to follow the steps to make it your assignment with your numbers. 
John Yeh, but all they'd be doing is putting their numbers in. 

Gareth They wouldn't be getting an understanding of the maths they were doing they would 
just say I put my numbers in. 

John It's learning by rote. 
Gareth Rather than actually learning how to differentiate the equations. 
Martin You can do It in every subject this way. 
John What I think you could do with it Is possibly Is when you're doing some of the 

mathematics, give options for.them to choose, say Is It this, or this, or this, a, b or c, and 
you press a, wrong, press b, wrong. At least It gives them an opportunity to see if they 
can do the differentiation themselves .̂ 

Gareth Make it a bit more interactive, rather than just following the steps. You may lapse Into 
next, next, next, very Interesting, what's next. 

John We were beginning to get Into that mode after doing three. If you've got the Interaction 
in there It would go somewhere to solving that. 

WMM What did you feel about it aesthetically, about the look of the program? 
Gareth I thought It was quite good, yeh, with the Imported graphics, like the picture of the 

bridge. 
It was nice to see something In reality, that you're actually modelling from, so that 
picture just sets the scene, doesn't It? You can see the bridge, see the cable, everything. 

John I don't know If you've been to the Business School and looked at any of the CAL things 
over there? 

WMM I haven't, no 
John Well they do.. Not only have you a similar sort of thing, it's not really any more 

interactive, you have the same options- there's also a couple of little tests at the end of 
each module to see if you've learnt what's going on. Not only that it's sound as well, so 
you put on a pair of headphones so you've got someone talking through the course so 
although you have It written down In black and white if you like on the computer 
screen you also have an overview sound so it's a discussion of what's going on as well. 
So that would be something you might consider Introducing as well. 

WMM Did you find the sound helpful? 
John Sometimes, yes. It's not that It reads off all the words that are written on the screen. 

It's related.. If you like, talks around the words that are written on the screen, rather 
than jiist saying the words that are on the screen. You can sit and listen and take notes 
from the words on the screen and listen to the general description of the tool as well. It 
takes a bit longer to go through because'you tend to listen to the description then take 
the notes, because it's based on the same sort of thing. 

Gareth Well it's a well-known fact, isn't it that people learn In different ways. Some people are 
visual learners and so maybe that just having a visual learning aid may appeal to some 
people whereas to others who don't learn visually it won't have the same impact on 
them. So if you had an audio as well, you know, that way It won't narrow the focus of 
people which are going to learn from it. 

John You are also giving them the option of taking the earphones off. You don't have to 
listen to it. 

Gareth There Is quite an extensive piece of work into how people learn and other things and 
visual is only one part of them. 

'WMM Did you find using the home page easy to operate? 
John It was the same as doing It on the Internet. Might be nice If you put a bookmark in it, 

so you could bookmark where you are in It so If you If were disturbed in the flow of 
concentration, you could bookmark. You could then go back exactly to that point. 

WMM Actually If you go "home" and then you click next you should normally go back to that 
place where you were. 

John Right. 
"WMM Which should normally act as a bookmark. 

The manipulation in the program was algebra and integration, no differentiation 
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You did find a glitch.. I thought I'd got rid of all of them, but there we go.. 
Did you have any comments about the content? We'vetalked about the level of the 
mathematics. 

John On your report writing, you haven't said you should write anything about the theory 
of the mathematics behind it, which when Iwas taught reports we .were told we should 
do as well. So if you were working on something like specific gravity ybu'shoiild do' 
some specimen calculations on the calculation of specific gravity and then do your 
calculations bfeside it as well so you say for.... I can't think of an example. 
'Well, normally what you have to do is to do the theory behind the mathematics, 
usually, rather than just doing mathematics you have to put the theory behind that level 
of mathematics- where has this mathematics come from. Is It something you've 
invented yourself or Is it something which someone else has come across, say 
Bernoulli's. Like the theory of Bernoulli's equation, and then you can relate in your 
discussion or in your mathematics where you've obtained these things from, these 
specimen calculations, but you haven't mentioned the need to put that theory stage in. 

Gareth He lost me there. 
"WMM What did you think about the particular case studies. Were they appropriate? 
Gareth You're pitching this at mechanical engineers? 
WMM Yes 
Gareth Just trying to think what would be more apt, really. Trying to think of examples we 

did last year. Can I think of one? 
John Water flowing through a tank? There was a very basic case study- the tank was straight, 

constant cross sectional area equal all through, then you could have another one with 
changing volume, a changing cross-sectional area rather. 

WMM If you go on up to number.. Numbers 3, 5 and 6 are linked. 3 is just a straight tank and 
5 is a first circle through putting oh a tube 

John Yes, we did that one. 
"WMM And 6 takes you into pipe loses, so that was how that one was developed. 
Gareth Yeh. In the second year is where you do quite a lot of thermodynamics work, although 

the coffee cup was there it's not really at the level of a second year degree student. 
John Yeh, I thought something about most of that. 

Gareth You're going into gas turbines and steam plants and things like that so that kind of work 
was done a long time agq, i.e. foundation year, first year, so if you're pitching it at 
second years I think that you should be looking at an example of say a gas turbine 
engine would be more appropriate. 

John What It would be nice to have Is say a module on that early on that early on In the first 
year where you do your levelling up mathematics course. Stick that on at the same time 
as that.. 
Would you run that In one session, two sessions, three sessions? 

Gareth There's a lot of scope In there, isn't there, to either go bigger or smaller, if you see what 
I mean. To go down to the foundation level and then that's the first Introduction to It 
and then in the first year they have a second go and In the third year - it gets 
progressively more In depth. 

WMM I was restricting myself to first order differential equations. In fact when you get up to 
the last one it actually gets pretty hairy. It starts out looking simple but.. 

Gareth Is this supposed to be used as a training- as an aid, isn't it? An educational aid. 
WMM Yes 
John I think It should be Introduced earlier on. The mathematics you are showing in that is 

covered In the first or second semester of the first year. 
Gareth Certainly If It's an educational aid I think you should have more interaction from the 

actual user, so rather than just reading through cause you can do that from a book. 
Why have a computer program when you can just read from a book? 

"WMM I agree about the amount of interactivity. The things that were there tat can't be put on 
are the animations, the built up diagrams, the overlays.. 

John Why can't you do that? 
"WMM You mean in a book 
John No 

"WMM That's what I've done that you can't put In a book. 
What about the pace. Did you feel it went too fast, too slow, about right? 

John It went as fast as you wanted to click the button. 
Gareth Yeh, again, a little more Interaction through the stages. Instead of just giving the 

answer, give a possible two or three answers would slow it down and then maybe that 
you would take a bit more of that in, would make you Instead as John says you get to a 
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stage where you are just clicking the button, seen that, seen that... 
John And have a little test at the end of each module to see if you've got the main concept of 

that module. Why not have a test, going back to this thing, it's only because I've been 
working on this CAL which is very similar to what you've been setting.. 
Those test are held centrally and you can see how you've progressed through . If you do 
particularly badly on a test you can do it again: you can take it up t four times. I think 
it's based on there are 10 questions in an end of section test, an end of section, end of 
paragraph test if you like. It will randomly select five of those but when you finish the 
whole chapter you then have another test that records how you've done on fifteen out 
of thirty questions or ten out of thirty possible questions and so you're being tested all 
the time how you've done and that can Identify to you " I didn't understand, I'd better 
go back and do that module again" which might be something you were well into. 

Gareth Yeh, and highlight to the actual users the areas they didn't really grasp the meaning of. 
Cause you might think "oh yeh, I got one or two questions wrong" but where you see a 
tally at the end and you think "oh, I didn't understand that as well as I thought I did". 

WMM Going back to the actual mathematical modelling itself which Is something you did in 
HITECC. Is it actually explicitly covered anywhere In your degree- apart from 
HITECC? 

John Not explicitly, no 
Gareth No, but then at first year degree level you're supposed to have covered the basics and 

have a concept of what mathematical modelling is about, surely, so do you need to? 
WMM Not in most A levels 
John Depends If you do pure or applied. If you do applied you do maths modelling. 

Gareth Shows how long since I was at school, and I never did A level maths either. 
WMM Would something like that be useful In the introduction of mathematical modelling? 
John Most definitely 

Gareth Yes, to give a feeling of what mathematical modelling is, rather than.. Why there is a 
need to do mathematical modelling. 

WMM You were talking about how you could go and look the formula up in a book. 
John Yeh! Well we weren't actually talking about looking the formula up, we were talking 

about.. 
Gareth Assumptions made • 
John Looking up variables, so you could determine the specific capacity of whatever 

substance It is you were working with. Now that's something you could look up in a 
textbook, which is what we were getting Into discussion with Martin. 

Martin I was thinking about for example the heat capacity of a wall Is something I can read out 
of a book but how much capacity or what is the energy of the fire to the wall, how can I 
calculate this? So finding the data for the example to make It like reality I had a candle 
and a small fire, how long will It take? How much power has the candle light? The 
wall and everything is described somewhere in a book. Finding altogether so you can 
apply your formula, that's what I found always quite difficult, not setting up the 
equation. 

John Perhaps If you had at the end of each section, right, a reference section to show people 
where different Information is available,'where they could find some of the information 
for it to be useable, so they could if they had an assignment go and look to that to give 
them a guide. It's not going to tell them look on page 13 of book 33a in the library on 
the second floor, but It will say these are the terms you should be considering. That 
might be useful perhaps. 

WMM There were at different point different sorts of "help"-1 don't know If you noticed... At 
one point there were things in red and if you ran the pointer over the thing In red it... 
At another point there was a column on the left hand side.. 

John Don't think we saw that one... (laughter) 
'WMM Okay, What sort of help styles did you find useful or most useful, or... 
Martin Click on the red word and then It comes up as the easiest way, like Internet. If you have 

to go to a help menu on the right hand side, click down several points, keep going, it 
would.. 

Gareth Again It may be how you learn things. If you are a visual learner if you have a show me 
key and you press that and then you have an option "how do I model a bullet", or 
something like that and then you press it and then It goes it shows you rather than 
having to read text and text and text sometimes. 

John Well It was the beauty of that was the explanations were very short and simple. In a lot 
of books. They're so verbose about what they're trying to talk about, when you 
analyse It, figure out what they're saying they could have said It in about four words: 
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"This does not work". 
Gareth If you can't work it out, buy a bigger calculator. 
WMM So you think you would have found that of use in your first year. 
John Yep • 

Gareth Yep- round at thelevelling up period as well, so that everybody then had an 
understanding of what mathematics modelling- so far as the engineering world was 
about. 

"WMM So again before you started tackling things like turbine engines. 
Gareth Yes, definitely 
John Should be done in the first year, beginning of the first year, or as soon as the mechanical 

side of it and the mathematical side of it is .. No we did integration and differentiation 
first level at foundation, didn't we? So you should be au fait with that. 
Yeh, right at the beginning. 

"WMM You did some differentiation., some differential equations in HITECC, didn't you? 
John Yeh, we had to do some mathematical modelling. I had to do one with a chain that was 

being dragged along the ground for a project in maths. Oh look- hanging chain- how 
useful that would have been. 

Gareth I seem to remember somebody not far away actually, who took me for a few lessons. 
MMM There's a theory in mathematical modelling that ether the mathematics or the 

application should be at least a year old. 
Gareth Run that one over again. 
"WMM There is a theory that either the mathematics or the application should be at least a year 

old. So you shouldn't have new mathematics and a new application. 
Martin This is useful • 
WMM So either you are familiar with the mathematics or with the application. 
John That's all very well and good but in the first year you're having to do some 

mathematical modelling In mechanics. That would be Ideal if you were an A level 
student and you'd done calculus at a level, If you were a foundation student, you'd done 
calculus on HITECC so you'd done calculus that is a year old. 
So your mathematics is a year old so that could be brought forward to the first year and 
done at the beginning at the first year to give people a chance of going through, rather 
than getting hung up trying to do... 
And that's all you... The only mathematics involved there is calculus. 
I don't know about you guys but when I was trying to set up and solve my first 
differential equations I was getting some mammoth things like I mean totally out of 
proportion because you weren't sure what It was you were actually looking for. 
Something like that would have identified the key points to point the way to what you 
were looking for and It would have been a help but the mathematics would have been a 
year old. 
Definitely, definitely. 

Gareth Have a word with Mansel'. (laughter) 
Have you had much feedback from lecturers and things? 

"WMM I haven't. You would be the second group of people who've tried it out. 
John Are you going to try It out on lecturers? 

Gareth That would be Interesting I think. 
John You may get a totally different perspective from the other side of the fence so to speak. 

"WMM The lecturer side is very much more guarded. 
John Students tend to want to find the easiest way round things, where lecturers want to 

make it look as complicated as possible, (laughter) My perception anyway. 
Gareth Well, we're not going to get Into that one, I don't think. 
WMM I did a questionnaire which I gave out to students and to lecturers at various stages, and I 

got back the questionnaires from students with a reasonable rate of return but with the 
lecturers it was.. They didn't want to... I don't know.. The lecturers were very much 
more guarded about returning the questionnaires. 

John I've been (inaudible) for my project. The company are also doing questionnaires for 
Investors in People, talking to the personnel manager up there, she said she only got 
20% reply rate from the questionnaire she sent out, and she said this was standard. 
When I was doing my sample interviews, I was asking all the operatives, had they filled 
In these questionnaires, purely for my own benefit. About 95% said they had. 
However about 92% said they still had them in their bags and they couldn't be bothered 

The mathematics lecturer who teaches the first year mechanical engineering students. 
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to hand them in. 
WMM The way I got the best return was going to a class and saying "Please fill these in now", 

but what I didn't get back then was some of the very percipient comments I got back 
when people held on to them a while. 
But one of the things that seemed to come out was that I gave various options of "what 
do you think differentiation is- what do you think differentiation tells you?" and maths 
and engineering students when they came in at the beginning of their first year said "it's 
the slope of the tangent". 

John I think we had this. I think we were one of your people 
Gareth Yeh, absolutely 
WMM At the end of the first year it was still the slope of the tangent. Mathematicians in their 

final year it was still the slope of the tangent. 
Engineers in their final year tend much more and then onto TCAs, Teaching Company 
Associates it was very much more "it tells you how something is changing". So there 
had been a sort of changeover in understanding. But I put in plenty of diagrams, and in 
some cases the diagrams were well chosen, people chose them a lot, and in other cases 
they went for verbal explanations which is very odd, because a researcher .called Kim 
Crowther went and interviewed about 85 prospective engineering students and they said 
they predominantly saw themselves as visual people. So there is a difference between 
how people see themselves and perhaps the way they answer things when they are not 
asked explicitly. 

Gareth I know I have very much a visual brain and only recently have I found that out but just 
by changing the way that you actually learn about something can increase how much 
you understand about it. 

John I learn by writing things down. I can write everything down in my own words. In my 
notes you have to translate.. But then you know that because you had all my notes. I 
can write them up In my own words. 

Gareth I know if I'm studying for an exam I'll just get one big sheet of paper and put like what 
It is in the middle and then just draw It an all around do various shapes, like somebody's 
goals then I'll draw a set of goals and then when I try to remember it... 
It was actually my girlfriend who's a teacher pointed this out and she showed me how to 
learn In this kind of way. She said she can see my eyes wandering around the sheet of 
paper as she asks me questions. I mean the piece of paper is not there, I'm just seeing it 
in my mind, she says It's quite amazing how people learn differently and then once you 
learn how you learn you can go on and learn even more, build on that. 

WMM There's a slight danger In locking too firmly into one way of thinking In that you get 
growth by challenging the way you tend to think and things where it makes your head 
hurt, are really causing you to grow and to come onto a different level, rather than just.. 
So there is a sort of dilemma whether you concentrate on teaching people the way 
which they find it easiest to learn or whether you sometimes confront people and move 
then out of that particular pattern, in order to force them onto another level. 

Gareth You may also force them away though 
WMM You have to do it deliberately. 
John We had a lecturer at college and he walked In one day, said "Hmm, assignment time". 

He threw a con rod down on the table, said "analyse that" and walked out. 
What could we do with that? 
This had thrown us because we hadn't been told what we had to do, we were just told 
"analyse that". A lot of people really took offence about It. I was student rep and it was 
the end of the course. They bitterly complained about this. It was absolutely... I'm not 
making any complaints about that because it wasn't about that... 
But he was effective in what he did because he mad you think. He wasn't... He didn't 
tell you how to do something . You had to figure It out what you were after. Then he 
came back the next day and started determining the centre of gravity, things like that. 
But you start., "oh, what do I do here?" 
We have to shoot now because we have a lecture. 
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TEACHING ENGINEERING MATHEMATICS THROUGH COMPUTER 
TECHNOLOGY. 
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ABSTRACT: In a recent report to the Engineering Council of the United Kingdom, "The 
Mathematical Background of Engineering Undergraduate Students" the authors point out 
that engineering students perceive that mathematics is difficult and irrelevant. This is a 
major barrier to any mathematical learning they may need, and it is suggested that it is a 
cause of reducing the mathematical content of some engineering degrees. 

INTRODUCTION 
The perception that engineering students have of mathematics as a difficult and irrelevant 
subject is not new and much has been done over recent years to alleviate the problem. The 
approach we propose in this paper is two-pronged; 
• the relevance by setting mathematics within a modelling context, which situates it 

firmly in reality, and 
• the difficulty issue is addressed by the use of computer algebra in a supportive 

environment. 
The importance of showing the relevance of mathematics within realistic engineering 
applications may seem obvious since the engineer does not use mathematics in isolation of 
applications. However it is surprising that in some courses mathematics is still taught 
without showing its relevance'. Mustoe' points out that useful and relevant applications 
can be shown, which is motivating and gives a context for situated cognition. Two kinds of 
scaffolding are thus available to the students: the mathematical scaffolding provided by the 
algebra package, and the familiarity of the setting. 
In addition, we need to be aware that some engineering students view and do mathematics 
in a slightly different way from students of mathematics. They have 
• possibly different concept images, 
• different symbol sets, 
• different attitudes to graphs. 
Furthermore there is a dichotomy between the 'ball-park/back of an envelope type' 
calculations and precision calculations, both needed and used by engineers. 

THE CURRICULUM 
An important question when designing the engineering curriculum is 'What mathematics do 
engineering students really need?' Most of the work that has been done in this field^ covers 
the scope of the mathematical skills and techniques which may or may not be exercised in 
the pursuit of engineering studies and career. Mathematics, however, is more than a 
collection of named skills and techniques. 
Dreyfus'* argues that advanced mathematical thinking includes the ability to switch fluently 
between modes of representation. This means switching between graphical, parametric, 
standard form, etc. This is what we expect of mathematicians. It may be that teachers who 
are mathematicians have had so much practice in this switching that they forget that it was 
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an acquired skill. Do we really need to train non-mathematicians in this sort of skill? Or 
do we need to recognise they do not yet have it and do not need to be taught it? 
The Implication is that it would be useful to determine the form in which these 
mathematical concepts (concept images) are held by engineering students in order to access 
them most effectively. As part of our research a series of questionnaires is being designed 
in an attempt to induce students and staff to tell us how they best represent physical 
situations. It sometimes surprises people to discover that the way they think of situations is 
not the only way but sometimes not even the most common way. This relates to notions of 
cognitive learning theory such as connecting new knowledge to existing knowledge. We 
do not always know what we do know, if it is not accessed properly through our own 
particular index system. 
For instance, a particular example is that a graphical representation of a physical situation 
is not thought of as being mathematically rigorous, and so may be scorned by pure 
mathematicians, but may nevertheless prove to be a highly effective way of communicating 
mathematics to engineering students. This is shown by the way engineering students . 
sketch graphs to show their expected solutions, and use these sketches to communicate with 
one another. Visualisation is not a skill which is much encouraged in mathematics 
students .̂ 

TECHNOLOGY IN LEARNING 
Computers have been used as teaching aids for mathematics for engineers in a number of 
ways. These include 
• the computer as a dumb tutor in a drill and practice session, providing a stream of 

questions and responding right or wrong as appropriate. The student is fed examples 
until he/she demonstrates an ability to perform which satisfies a pre-set criterion. This 
is often seen in the context of a mastery learning didactic paradigm*. 

• intelligent tutoring where the program attempts to diagnose the particular 
misconceptions held by the student and difficulties held by the student according to 
his/her responses to mathematical questions. This is still in its infancy'. 

• programming, where the student designs and writes programs to solve particular classes 
of mathematical problem. The argument is that the student thereby develops a deeper 
understanding of the process involved by analysing it logically and reproducing it in 
terms of code .̂ 

• the application of in-house produced software which solve particular classes of 
mathematical problems, to enable students to check their solutions against the 
computer's, and facilitate self-marking of exercises'. 

• the use of commercially available software to scaffold the student's exploration of 
mathematics by showing the solution to problems the student is not yet able to tackle by 
hand and demonstrate their relationship to mathematics already known'". 

• the use of software to perform tedious calculations so that results can quickly be 
obtained and generalised. For example, the plotting of a family of curves to explore the 
effect of varying parameters". 

• the use of spreadsheets to perform iterative calculations and to find approximate 
numerical solutions in a manner transparent to the student ' \ 
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• microworlds and simulations where hypotheses can be explored and tested by the 
student in a mutually safe (unthreatening and unbreakable) environment'̂ -. 

• use of a simulation language such as STELLA to allow students to create their own 
simulations. The assumptions made in the simulation are made explicit, and the 
students can check the behaviour of their models against their experience of reality. 

• use of the computer to drive recorded teaching material, for example on interactive 
video or CD. 

• hypertext or hypermedia environments to be explored by the student in pursuit of 
information. 

• live production of audio-visual material in the course of and in support of lectures'''. 
The philosophies and models of leaming employed in these different techniques are 
disparate, and the simple existence of computer use says nothing about the way the subject 
or the material are assumed to be seen by the student. 
The authors will discuss appropriate applications of some of these leaming aids in teaching 
mathematics to engineering students. 
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Students 
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. Abstract: A questionnaire designed to elicit from undergraduate engineers the 
way they thought about selected concepts in mechanics and calculus (their 
concept images) revealed some strongly held misconceptions about simple 
bending. Possible origins are described and some implications are discussed. 

1. Introduction 
Observation of final year mathematics and engineering students working on a 
mathematical modelling problem revealed differences in the way the problem was 
approached by the two groups. It appeared that not only did they have different levels 
of mathematical modelling skills, but that they understood and represented key 
mathematical concepts, particularly in the area of calculus, to themselves in different 
ways. 
A questionnaire was developed to elicit from students their mathematical concept 
images, in calculus and in some mechanics applications of calculus. After a pilot study, 
the questionnaire was applied to mathematics and mechanical engineering students at 
the beginning and end of their first year of study, to mathematics and mechanical 
engineering students in their final year of study, to students preparing for an MSc in 
Management of Technology, and to practising engineers. 
The resuhs of the project suggest that the ways that students hold such concepts are 
related to their mathematical skills, and that they do change and develop over the course 
of a degree programme. It is also suggested that engineering students should explicitly 
be taught mathematical modelling skills using applications where the mathematical 
content is familiar from an early stage in their degree course so that: 
• the skills which they will need are well established by the time the students enter 

engineering practice; 
• mathematics applications are seen and understood by the students as relevant to 

engineering studies; 
• mathematics concepts are developed by engineering students in ways that will be 

useful to them. 
In this paper we propose to explore one of the issues which has emerged from the 
responses to the questionnaire. 

2. Concept images 
The major premise of this research is that people hold concepts in different ways: they 
have different concept images [1] attached to the same concepts. These concept images 
may differ in mode, in sophistication, and in content. 
These concept images may be revealed when people make statements which do not 
coincide with the predictions of the accepted or institutional meaning of the concept. 

2.1 Mode of representation 
It was suggested that engineering students may tend to think more pictorially than 
mathematics students, and so in the questionnaire the options proposed included 
diagrams, verbal descriptions and algebraic expressions, some of which expressed 
equivalent representations, to test whether this was indeed so. The implications for 
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teaching would be that: 
• for easy teaching and learning one should appeal to the students' existing 

representations of concepts, 
• when it is necessary to make students change or extend their concept images, time 

and effort must be allowed for the process to take place. 

The idea of cognitive style is a construct of learning theory. It was first proposed by 
Galton [2] that individuals vary in their tendency to use visual or verbal representations 
of reality and of problems. This has led to such instruments as the Verbalizer-Visualizer 
Questionnaire (VVQ)[3] which seek to analyse an individual's preferences and to 
generalise from those preferences to make statements about the way that person relates 
to the world around. The whole notion of cognitive style has been criticised by various 
authors [4,5] but it seems that from earliest times philosophers have held different views 
as to whether one can think with or without mental pictures [6]. Mathematicians, too, 
differ in the way they construe problems before the final solution is presented to the 
world. (Poincare, cited in [7]) 

2.2 Depth of representation 
The second aspect we wished to explore'was whether students' concept images became 
more sophisticated as they proceeded through their courses. It is suggested by Royer et 
al [8] that as a cognitive skill is acquired by a learner, the depth of problem 
representation increases. Novices attend to surface features whereas experts tend to 
identify inferences and principles that subsume the surface features. The implication is 
that experts represent information as chunks by labelling (for example) a chess position 
in terms of familiar games or positions. This takes place after the cognitive skill is 
acquired at the level where students can explain what they are doing or answer 
examination questions on a topic. 
A partially understood concept cannot be used as fully as a deeply understood one. At a 
naive level, concepts tend to be simple, isolated, and fragmented. As mastery of a 
subject is developed, the concepts become richer, and more highly Unked. For example, 
the concept image of the derivative as the gradient of the tangent does not easily adapt 
to the derivative as a term in a differential equation, the derivative of a ftmction as a 
fimction in its own right, the derivative telling one how something is changing. A rich 
image is fliU of possible meanings. 
In particular, advanced mathematical thinking requires the ability to switch between 
representations [9,10] in order to work both intuitively and deductively on a problem. 
The implication for teaching is that students at an early stage will not be able to 
recognise the underlying structure of problems, but through practice their expertise, will 
develop, and this continues to happen after they have acquired the basis of the skill. 

2.3 Content of representation 
The content of a concept may vary both in quality and quantity. A concept may be 
susceptible to improvement if it is 
• correct as far as it goes but incomplete; 
• partly correct and partly in error; 
• firamed in non-technical terms. 
According to Vinner, a concept is acquired when a concept image is formed. 
Engineering and mathematics are not democratic subjects, where each person's concept 
image is as valid as any other. Using a slightly different framework[l 1], a concept is 
understood when an individual's private meaning matches the institutional meaning. 
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Students need to develop the correct contents to their concepts, and we need to know 
their current position in order to move thern to where we would like them to be. 
The questionnaire was not, however, designed with revealing incorrect images in mind. 

3. The bending of beams. 

Simple bending is part of the basic tool kit of the engineer. The equation — = •— = — 
y I r 

has been engraved on many hearts (with its more or less rude mnemonics), and the topic 
is part of the first year engineering syllabus, so a question on simple bending was 
included in the questionnaire to detect the effects of teaching on responses of 
engineering students. (Figure 1) . 
For the mathematics student, the bending of beams is sometimes used as an application 
of end conditions in the solution of differential equations, and the analysis underlies the 
whole concept of the spline curve. This made the question relevant to mathematics 
students in a slightly different way. In any case, it should not have come as a shock to 
any but those coming in at the start of their first year. 

A plank 1.5 m long is placed on two bricks very near its ends. A bar of 
gold is placed across it O.Sm from one end. Rank the following according 

to how well they represent this to you. 

(a) 
The beam bends under the weight of the 

gold bar. 

(b) Dcneaed shape 

(c) 

Bending Moment h{=k—^ dx 

A simply supponcd beam with a point load 
at one-third span. • 

s'hMT Force S=JFdK 

Bcjidin̂ moment M^jSdx 

(0 

^Reicliqa?inq 

Figure 1. Beam bending question 

4. Strong responses 
It was not expected that any of the questions would arouse particularly strong feelings in 
respondents. The rubric to the questionnaire explicitly stated that there were no trick 
questions, but some respondents still objected so strongly to two of the given choices in 
the question on bending that they wrote comments about them. 

4.1 The beam will not bend at all, or whether it bends depends on its thickness 
Option (a) stated "The beam bends under the weight of the gold bar". This was 
included particularly so that respondents who had never seen an analysis of the case 
would not feel that the questionnaire was dealing with matters above their heads, and it 
was thought it would be popular with first year students at the start of their first year. 
Some respondents made comments such as: 
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1) "Nobody says it actually bends, so automatically assume rigidity."(Final year maths 
student) 
2) "Not(a)- cos depends on thickness of plank" (First year mathematics student, start of 
first year) 
3) "It depends on how thick the plank is (a)." (First year mechanical engineering 
student, start of first year) 
4) "How thick is the plank? How heavy is the bar of gold?" (Second year computer 
systems engineer, pilot study) 
5) "I feel a bit uncomfortable not knowing the weight of the gold or the thickness & 
width of the plank." (Manufacturing engineering lecturer) 
6) " 'a' may not be very valid- The deflection may be so small as to be negligible." 
(Practising professional engineer) 
There is a graduation from assuming absolute rigidity to wondering whether the 
assumption is valid under the circumstances: 

4.2 The point of greatest deflection must be under the load 
Option (b) was a diagram of the deflected shape, 
1) "(b) looks like the bar would be in the middle." (engineering student, start of first 
year) 
2) "(b) is wrong" (final year mechanical engineering student) 
3) "I would rather have a drawing but (b) looks wrong" (final year mechanical 
engineering student) 
4) "not keen on (a) (too simplistic) and (b) (wrong?)" (maths student, start of first year) 
5) "b is useless!" (maths student, end of first year) 
6) "b isn't quite right, but I've assumed poetic license with the artist!" (practising 
engineer, graduated 1979) 
7) "b (slightly changed)" (see Figure 2) (experienced maths and mechanics teacher) 
8) "I don't recognise any of the equations and (b) doesn't look quite like what I'd 
expect!" (postgraduate, degree in Business Administration, A level maths) 

/fb) Deflected shape 

Figure 2. Modified diagram of deformed shape of beam. 

5. Why do people think these things? Mental models of physical problems 
These, ideas do not come out of thin air, but are based on the mental models that the 
respondents hold. These models are not directly accessible to investigators, but the 
comments that have been given are predictions these respondents have made of the 
behaviour of the system according to their mental models. Given the predictions, it is 
possible to deduce the nature of the models. Anzai and Yokohama (cited in [9]) classify 
models as experiential, correct scientific or false scientific. Experiential models, which 
are derived directly from experience, do not have any technical or scientific content. 
The statement "The beam bends..." was intended to appeal to this type of model. A 
correct scientific model is a set of scientific concepts and relations that are correct and 
sufficient to capture problem information. Such a model would characterise the bending 
in terms of bending moment and shear force, loads and reactions, displacements. 
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Stresses and strains. Incorrect scientific models are those which contain scientific 
concepts and relations, but incorrectly characterise the problem. It is this type of model 
which is shown in the comments quoted above. 

5.1 Planks are, or may be, rigid. 
The first set of comments represent the view of rigidity as the natural state of a beam, 
given that this is a frequently made assumption in statics problems. This is sometimes 
held at the same time as the concept that the deflection of a beam does depend on its 
dimensions, its loading, and, not specifically mentioned by our respondents, the material 
stifjmess (Young's modulus) of the beam, which we see in 5.1 (b)-(e) above. It is 
perfectly possible to hold two opposite views on a physical phenomenon as long as they 
are not brought into direct conflict. The point is that these quantities do not affect 
whether a beam will bend, but how much it will bend: as comment 5.1 (f) points out, the 
bending may be negligible, but negligible is still not the same as non-existent. 

5.2 The deflection must be greatest under the load 
This idea may come from one of several sources: 
1) Weightless strings and point masses 
2) The lowest point is the lowest (potential) energy position 
3) Shear dominated deflection 

5.2.1 Point masses versus solid bodies 
The first stage of modelling that students encounter in mechanics is of the idealised 
world of point masses, weightiess strings and infinite bodies of infinite stiffness. In 
such a world, the nearest approximation to our weight on a beam is a weight hung on a 
loose horizontal string, one-third of the way between its points of suspension. For 
horizontal equilibrium, the weight would have to fall so that both parts of the string are 
under tension, pulling the string into an asymmetrical V-shape. 

5.2.2 Potential energy 
The powerful idea of potential energy being minimised would seem to mean that the 
weight must be at the lowest possible point, which must be the lowest part of the beam. 
The lowest part of the beam must thus be under the weight. 

5.2.3 Shear dominated deflection 
When beams are designed to use material to perform as efficiently as possible in 
bending, the notion of putting as much as possible into top and bottom flanges 
connected by a thin web emerges, and we have an I-beam. The stifi5iess of the I-beam 
in bending is greatly enhanced, but its stiffness in shear is related simply to the cross-
sectional area. In extreme cases, the deflection due to shear, normally negligible, can 
dominate, so that the load is close to the lowest point of the beam. This would not 
happen in the case of a plank lying between two bricks. 
It would be speculative to suggest which of these is the principal source of error, but it 
is suspected that for the students at least 5.2.1 above is the most important. 

6. Discussion 
The questionnaire was not designed to pick up incorrect mental rnodels, but rather to 
tease out how people were holding mental representations of some engineering and 
mathematical concepts. Nevertheless it appears to have brought out into the open some 
alternative representations which we may not have discovered in teaching or discussion. 
We should ask ourselves how important these misconceptions are in the scheme of 
things. To most people they are probably never going to matter. To those to whom 
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they will.make a difference, they will probably discover in time that they have been 
mistaken. However, particularly for those people who objected to the shape drawn in 
(b), the revelation cornes as a shock. A comfortable assumption has been shaken, and it 
is unpleasant. • • ' 
Given that it has been shown that people do have different concept images attached to 
the same concept, it is germane to ask the following question. 

7. What is engineering mathematics? 
It appears that one of the principal characteristics of mathematics is its intellectual 
rigour, and that in teaching mathematics to engineering students one of our aims is to 
teach them to think clearly [12,13]. On the other hand, one of the complaints about 
engineering students is that they lack feeling for mathematics and for whether the 
answers they produce are correct or not [14]. We have to decide whether we regard 
mathematics for the engineer as a mental discipline or as a tool. Given that engineering 
students suffer from crowded timetables, we have to be clear about the aspects of 
mathematics we want to develop in our students. We may have to sacrifice rigour and 
develop clear thinking in alternative ways, while attempting to enhance students' feeling 
for mathematics through the use of prostheses such as computer algebra and graphics 
calculators, andthe use of modelling from an early stage. 
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