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Abstract

Understanding physical configurations and how these can emerge from
the underlying gauge theory is a fundamental problem in modern
particle physics. This thesis investigates the study of these configurations
primarily focussing on the need for gauge invariance in constructing
the gauge invariant fields for any physical theory. We consider Wu’s
approach to gauge invariance by identifying the gauge symmetry preser-
ving conditions in quantum electrodynamics and demonstrate how Wu’s
conditions for one-loop order calculations (under various regularisation
schemes) leads to the maintenance of gauge invariance. The need for
gauge invariance is stressed and the consequences discussed in terms of
the Ward identities for which various examples and proofs are presented
in this thesis. We next consider Zwanziger’s description of a mass term
in Yang-Mills theory, where an expansion is introduced in terms of the
quadratic and cubic powers of the field strength. Although Zwanziger
introduced this expansion there is, however, no derivation or discus-
sion about how it arises and how it may be extended to higher orders.
We show how Zwanziger’s expansion in terms of the inverse covariant
Laplacian can be derived and extended to higher orders. An explicit
derivation is presented, for the first time, for the next to next to leading
order term. The role of dressings and their factorisation lies at the
heart of this analysis.

i



ii



Contents

1 Introduction and Motivation 1

1.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Gauge Invariant Calculations 5

2.1 Abelian Gauge Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Renormalisation . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Consequences and Examples of Gauge Invariance . . . . . . . 14

2.2 Wu’s Regularisation Scheme . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Verification of the Ward Identity in Wu’s Scheme . . . . . . . 23
2.2.2 Wu’s Identities in Dimensional Regularisation . . . . . . . . . 27
2.2.3 Wu’s Identities in the Pauli Villars Scheme . . . . . . . . . . . 29

2.3 Derivation of Wu’s Identity . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Non-Abelian Gauge Theory 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Lie Groups and Representations . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 SU(2) Gauge Theory . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Relation between Representations . . . . . . . . . . . . . . . . 40
3.2.3 Yang-Mills Lagrangian . . . . . . . . . . . . . . . . . . . . . . 43
3.2.4 Higher Representations . . . . . . . . . . . . . . . . . . . . . . 46
3.2.5 Product and Commutator in Lie Algebra . . . . . . . . . . . . 51

3.3 Dressing Approach to Gauge Invariance . . . . . . . . . . . . . . . . . 53
3.3.1 Charged Fields in Abelian and non-Abelian Theory . . . . . . 53
3.3.2 The Residual Abelian Gauge Structure . . . . . . . . . . . . . 55
3.3.3 Gauge Transformations of the Vector Potential . . . . . . . . . 57

3.4 Physical Field Strength Fµν . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.1 Relation between Fµν and F h

µν . . . . . . . . . . . . . . . . . . 59
3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Gauge Invariant Mass terms 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Mass Terms in Abelian and non-Abelian theory . . . . . . . . . . . . 62

iii



4.3 The Gauge Covariant Inverse Laplacian . . . . . . . . . . . . . . . . . 64
4.3.1 Properties of the Inverse Covariant Laplacian . . . . . . . . . 66

4.4 Role of Strings in Dressing . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.1 Factorising the Gauge Covariant Dressing . . . . . . . . . . . 83
4.4.2 Decomposition of the Green’s function K(x, y) . . . . . . . . . 86

4.4.2.1 Decomposition of K1(x, y) . . . . . . . . . . . . . . . 87
4.4.2.2 Decomposition of K

2
(x, y) . . . . . . . . . . . . . . 87

4.4.3 Calculation of TL and LL components . . . . . . . . . . . . . 90
4.5 The Role of the Dressed Field Strength . . . . . . . . . . . . . . . . . 93

5 Zwanziger’s Expansion 95

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Recovering Zwanziger’s Expansion . . . . . . . . . . . . . . . . . . . . 95

5.2.1 Q to Order F 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.2 P to Order F 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Calculation to Order F
4
of Y2 and Z2 . . . . . . . . . . . . . . . . . . 101

5.4 Calculation of Y
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4.1 Cancellation of LL and TL terms . . . . . . . . . . . . . . . . 104

5.4.1.1 Cancellation of TL components . . . . . . . . . . . . 104
5.4.1.2 Cancellation of LL components . . . . . . . . . . . . 109

5.4.2 Collection of TT components . . . . . . . . . . . . . . . . . . 110
5.5 Calculation of Z2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Conclusions and Outlook 122

A Calculation Techniques in QED 127

A.1 Feynman Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.2 S-Matrix Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
A.3 Gamma Matrix Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 130
A.4 Analysis of Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B One-Loop Integrals 133

B.1 Feynman Parameterisation . . . . . . . . . . . . . . . . . . . . . . . . 133
B.2 Derivation of Formula for Wu’s Identity . . . . . . . . . . . . . . . . . 135

C The Dressed Potential 138

C.1 Decomposition of v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

D Properties of Lie Algebra 142

D.1 Product and Commutator in Lie Algebra . . . . . . . . . . . . . . . . 142
D.2 Discussion of Ambiguities in Transverse Field . . . . . . . . . . . . . 143
D.3 Field Strength (F h

µν)
a in the Adjoint Representation . . . . . . . . . . 144

D.4 Calculation of A
(1)T

µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
D.5 Cancellation of LL and TL components . . . . . . . . . . . . . . . . . 146

iv



List of Figures

2.1 Full photon propagator. . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 One-loop correction to the photon propagator. . . . . . . . . . . . . . 10
2.3 Vertex function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Example of Ward identity. . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Strings describing the positronium state (e+e−). . . . . . . . . . . . . 82

B.1 The k0 integration plane . . . . . . . . . . . . . . . . . . . . . . . . . 134

v



vi



Acknowledgements

At this point I want to take the opportunity to thank everyone who supported
me in one way or the other in the completion of this thesis.

First of all I would like to thank my supervisor, Professor David McMullan, for
his invaluable support, guidance and inspiration throughout my PhD. His dedicated
supervision and unique knowledge has made my research in Plymouth a valuable
learning experience. I would also like to thank my second supervisor, Dr. Martin
Lavelle, for his constant support especially in the completion of this piece of work.
I am also very thankful to Dr. Kurt Langfeld and Dr. Tom Heinzl for always being
there to answer my questions and suggesting ways out of my problems.

I am grateful to Plymouth University for the financial support during the research
work. A great thank you to everyone in the School of Computing and Mathematics
for providing such a friendly and warm environment. Special thanks to my friends
and fellow colleagues, in particular to Yanwei Lu, Merfat Raddadi, Golnaz Shahtah-
massebi and Christopher Harvey, whose friendship has made my time in Plymouth
so special.

Last but certainly not the least I have to mention the unparalleled support
from my family for their love and support. I would like to thank my husband,
Nitin, for believing in me and making me strong and positive in the most difficult
circumstances, my parents, for having the determination and motivation to make
the most of some very difficult times, my elder sister and younger brother for the
support and encouragement- this thesis is dedicated to my family!!

vii



viii



Author’s Declaration

At no time during the registration for the degree of Doctor of Philosophy has
the author been registered for any other University award without prior agreement
of the Graduate Committee.

This study was financed with the aid of an Overseas Research Scholarship (ORS)
and Graduate School Scholarship (GSS-PGR) from the Plymouth University.

Relevant scientific seminars and conferences were attended at which work was
presented. Various papers were prepared for publication.

Publications:

Scientific Papers
The Factorisation of glue and mass terms in SU(N) gauge theories.
Martin Lavelle, David McMullan and Poonam Sharma.
Phys. Rev. D 85, 045013 (2012).

Covariant Laplacian and the Volkov fields.
Martin Lavelle, David McMullan and Poonam Sharma.
(In preparation.)

Presentations given:

Poster Presentation on Volkov States and the Volkov Propagator.
Rutherford Appleton Laboratory, UK.
15-17 December 2010.

Gauge Invariance and Regularisation.
Plymouth University, UK.
2 July 2009.

Conferences attended:

Christmas Meeting of the High-Power Laser Science Community.
Rutherford Appleton Laboratory, UK.
15-17 December 2010.

PROTTEC Summer School.
University of Plymouth and University of Exeter, UK.
21-25 June 2010.

Annual Theory Meeting.
University of Durham, UK.
18-20 December 2008.

ix



Word count of main body of thesis: 23,800

Signed:...................................

Date:...................................

x



Chapter 1

Introduction and Motivation

1.1 The Standard Model

The standard model of particle physics must rank as one of the greatest achievement

of the 20th century. It was formulated in the 1970’s and tentatively established

by experiments in the early 1980’s. Despite the word model in its name, it is

a comprehensive theory that identifies the basic particles and specifies how they

interact and gain mass. Everything we know with confidence about particle physics

is included in the standard model. It is a relativistic quantum field theory based on

the principles of special relativity, quantum mechanics and local gauge invariance.

In this chapter we give a brief introduction of the standard model focussing primarily

on the role of symmetries and in particular, that of gauge invariance. For a more

comprehensive study we refer the reader to textbooks and resources [1–9]. A detailed

historical account is given in the book by Pais [10].

The standard model describes the three fundamental forces of nature, the elec-

tromagnetic, strong and weak forces and the interactions amongst the particles that

experience these forces. Although all the matter in the universe is held together by

gravity, it is not yet understood as a quantum theory and is thus not part of the

1



2 Chapter 1. Introduction and Motivation

standard model [11, 12]. Each of the forces in the standard model can be described

in terms of matter fields, quarks and leptons, interacting via force-carrying fields.

Generally, the language of standard model is quantum field theory (QFT) [13–19]

which is a many-body theory where the number of particles involved in an inter-

action (or collision) is not conserved. It is used to describe the particles not as

discrete entities but in terms of mathematical entities, called fields. Particle inter-

actions are in large part dictated by the symmetry principles which are described

by the Lagrangian. A theory was developed in the early 1930’s that was relativis-

tically invariant and quantised which explained the electromagnetic interactions of

electrons e− and photons γ. This theory, the quantum version of Maxwell theory,

is called Quantum Electrodynamics (QED). It is a gauge theory with symmetry

group U(1) which is specified by its set of field variables and its Lagrangian density

L(ψ(x), Aµ(x)) where the particles, electron and photon participating in the interac-

tions now become fields, ψ(x) and Aµ(x). The photon which is the quantum of light

is now described in terms of the vector field (potential) Aµ(x) where the label µ is

a space-time vector with four values at each point. However photons have only two

degrees of freedom corresponding to its polarisation states. This implies that there

are unphysical components to Aµ that require some mechanism to remove them.

In much the same way the spinor fields, ψ(x) that enter the Lagrangian cannot

be identified with the charged particles because of the gauge symmetry and hence

require gauge invariance [20–23] to properly define them. The rest of the standard

model is obtained by extending the gauge principles to produce theories of the other

fundamental forces.

All physical quantities and electromagnetic fields must be gauge invariant. The

distinctive nature of gauge invariance is based on the symmetry transformations

being local. For a local symmetry, the element of the symmetry group U = eiθ(x) is
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a function of space-time coordinate xµ whereas for a global symmetry a fixed group

element θ that is independent of x acts on fields at different space-time points. One

of the important consequences of gauge invariance in these quantum field theories

are the Ward identities [24, 25]. These are relations between, for example, vertex

functions and propagators which play a key role in the proof of renormalisability

of this theory. Such Ward identities1 will be discussed in more detail in the next

chapter of this thesis in the context of QED.

Throughout this thesis our aim will be to understand how to construct gauge

invariant objects.

1.2 Overview of Thesis

The next chapter describes the tools needed to analyse gauge invariance in an

abelian gauge theory and deals with the perturbative calculations to one-loop. This

allows us to then present a new regularisation scheme originally introduced by Wu.

We apply Wu’s scheme to calculate one-loop integrals in QED which are summarised

explicitly. Chapters 3, 4 and 5 deal with how the principle of gauge invariance can be

applied to construct gauge invariant mass operators. Chapter 3 is divided into two

parts. The first part briefly reviews non-abelian gauge theory and the Lie algebra

which is needed for calculations in the following chapters. A brief introduction to

Yang-Mills theory is presented along with the study of various representations of

the Lie algebra. In the second part of that chapter the general idea of the dressing

approach is introduced which is then used to construct gauge invariant configurations

and the physical field strength. The relations between two different gauge invariant

field strengths in non-abelian Yang-Mills theory are discussed. Chapter 4 deals with

1More generally in non-abelian theories, these type of identities are often known as Slavnov-
Taylor identities [26].
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the covariant Laplacian and some of its properties are discussed. This then allows us

to introduce, understand and derive Zwanziger’s expansion in Chapter 5. Chapter

6 summarises the conclusion and outlook.



Chapter 2

Gauge Invariant Calculations

2.1 Abelian Gauge Theory

In this chapter we will study the simplest gauge theory, which is the U(1) gauge

theory that describes quantum electrodynamics (QED). This chapter is divided into

two main sections. In the first we will give a brief description of the QED Lagrangian

and the perturbation theory with emphasis on the machinery required to produce

one-loop integrals in QED. However as we will see the integrals involved are plagued

by various divergences so to make them finite various regularisation schemes are

adopted. We describe the renormalisation technique which is used to remove these

divergences and discuss the consequences of gauge invariance, in terms of Ward

identities. Along the same lines, in the second section we will discuss the impact of

gauge invariance in field theory which has recently been proposed byWu [27] in terms

of various regularisation independent identities. Wu introduced these identities in a

very general context and claimed that they are all that is needed in order to maintain

gauge invariance. We will investigate these identities in QED and see their role in

deriving the Ward identities. We will then investigate the origin of these identities.

Quantum electrodynamics is the theory of light interacting with charged matter

5



6 Chapter 2. Gauge Invariant Calculations

i.e. photons and leptons where the photons are described by the quantised Maxwell

field Aµ(x) via the Lagrangian density,

LM(x) = −1

4
Fµν(x)F

µν(x) with the field strength Fµν = ∂µAν − ∂νAµ , (2.1)

and leptons (electrons, muons etc.) are identified with the quantised Dirac field

ψ(x) with the Lagrangian density,

LD(x) = ψ̄(x)(iγµ∂µ −m)ψ(x) , (2.2)

where γµ are the usual γ matrices. The interaction between these two sectors of

QED is determined by the Lagrangian

L = −1

4
FµνF

µν + ψ̄(iγµ∂µ −m)ψ − eψ̄γµAµψ

= −1

4
FµνF

µν + ψ̄(iγµDµ −m)ψ ,

(2.3)

with the requirement that the Dirac field in (2.2) possess local symmetry. Note that

in (2.3) as compared to (2.2) we have replaced γµ∂µ by γµDµ where Dµ = ∂µ+ ieAµ

is called the covariant derivative. The necessity of introducing the covariant

derivative is that it transforms covariantly

Dµψ(x) → e−ieθ(x)Dµψ(x) , (2.4)

under the local gauge transformations

ψ(x) → e−ieθ(x)ψ(x) , (2.5)

Aµ(x) → Aµ(x) + ∂µθ(x) , (2.6)
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where θ(x) now depends on each space-time point. So, the coupled Dirac equation

is:

(iγµDµ −m)ψ = 0 . (2.7)

The new interaction term in (2.3) may be written as

ψ̄γµAµψ = jµAµ , (2.8)

with jµ = (ρ, j) where ρ and j are the charge and the current densities. The inter-

action term thus describes the coupling of the gauge field Aµ to the Dirac current.

The conservation of current

∂µ j
µ(x) = 0 , (2.9)

follows from the equations of motion. The existence of a conserved current is a

direct consequence of Noether’s theorem [28] which states that we get a conserved

current under a global symmetry, see e.g. [29, 30]. This current is the Noether’s

current associated with the global gauge transformations i.e. those θ which do not

depend on space-time position.

Because of gauge invariance, there are complications when we quantise the

theory. A naive quantisation of the Maxwell theory fails for a simple reason: the

photon propagator does not then exist. This is because the canonical momenta for

the temporal component of the gauge fields vanish. If Aµ(x) is the vector potential

then the momentum πµ conjugate to Aµ(x) is

πµ =
∂L

∂Ȧµ(x)
= −F 0µ , (2.10)
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and the momentum π0 conjugate to A0(x) is

π0 =
∂L

∂Ȧ0(x)
= 0 , (2.11)

which vanishes implying that A0(x) is not a dynamical field. This means that this

gauge theory is a constrained system. However, the momentum πi conjugate to

Ai(x) is

πi =
∂L

∂Ȧi(x)
= −F 0i = Ei , (2.12)

which imposes Gauss’ law and is now an additional constraint on the system. The

physical consequence of this is that the potential Aµ which is used to represent the

photon with four degrees of freedom now really has two degrees of freedom that

corresponds to the two photon transverse polarisation states. Gauge invariance is

the redundancy in this covariant description of the physics. We undo this “over-

counting” (at least in the abelian theory), by gauge fixing which corresponds to

adding a term to the Lagrangian to break gauge invariance. Physical quantities are

gauge invariant and, hence, should not depend on the choice of gauge.

Using this procedure we now have to modify the Lagrangian density (2.3) by

adding an extra term such as −1
2ξ
(∂µA

µ)2 where ξ represents a real arbitrary constant

parameter known as the gauge fixing parameter. Therefore the Lagrangian density

gets modified and we have:

L = −1

4
FµνF

µν + ψ̄(i/∂ −m)ψ − eψ̄ /Aψ − 1

2ξ
(∂µA

µ)2 , (2.13)

where we define /∂ = γµ∂µ and /A = γµAµ. This additional term, called the gauge

fixing term, breaks gauge invariance and allows us to define the propagator for the

gauge field. Other choices are allowed but this Lorentz class has the advantage of
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being covariant.

The photon propagator (of momentum q) for an arbitrary value of ξ is given by:

iDµν(q) =
−i

q2 + iǫ

(

gµν + (ξ − 1)
qµqν
q2

)

. (2.14)

Naively, physics should not depend on ξ. However for different values of ξ we have

different gauges and some of these have distinct computational advantages i.e.

when ξ = 0, the gauge is called the Landau gauge,

when ξ = 1, the gauge is called the Feynman gauge and this is the gauge we will

be working in. The propagator1 in this gauge is:

iDµν(q) =
−igµν
q2 + iǫ

. (2.15)

Given the Lagrangian density (2.13), how can we perform calculations in QED?

The most widely used route to calculate the perturbative predictions of any process

is to identify the Green’s function of the theory with the corresponding Feynman

diagrams [31]. For any process we can draw a diagram, in terms of Green’s func-

tions and extract mathematical expressions from them. For example, the two-point

Green’s function or propagator gives the amplitude for a particle to travel from one

place to another in a given time. The probability amplitude for particle interactions

are calculated using Feynman diagrams in momentum space that are illustrated in

Appendix A.1. In order to relate general Green’s functions to the physical results

in field theory one makes use of the LSZ (Lehmann Symannzik Zimmermann) des-

cription of the S-Matrix formalism. The details of that method can be found in

Appendix A.2.

1To avoid singularities and impose the correct causal structure we make use of iǫ prescription.
However, this will often be suppressed in our calculations.
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As a typical example of a calculation in QED let us consider the full photon pro-

pagator represented by a series of graphs shown in Fig. 2.1. The diagram illustrates

iDµν = + + · · ·iΠµν

Figure 2.1: Full photon propagator.

that the full photon propagator can be described by the sum of a tree level diagram

and the contribution from the radiative corrections written in the form:

iDµν(q) = iD(0)
µν (q) + iD(0)

µρ (q)(iΠ
ρσ(q))iD(0)

σν (q) + · · · , (2.16)

where the bracketed superscript refers to the power of the coupling. In Feynman

gauge the full propagator (2.16) can be written as

iDµν(q) = −igµν
q2

+
(

− i
gµρ
q2

)

(iΠρσ(q))
(

− i
gσν
q2

)

+ · · · ,

= −igµν
q2

+
(−i
q2

)

(iΠµν(q))
(−i
q2

)

+ · · · ,
(2.17)

where iΠµν(q) denotes the photon polarisation tensor at one-loop also called the

vacuum polarisation (with external photon lines omitted). The Feynman diagram

for this is given by Fig. 2.2. Now applying Feynman rules to the one-loop graph of

p + q

p

q q

Figure 2.2: One-loop correction to the photon propagator.
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Fig. 2.2 we obtain:

iΠµν(q) = −e2
∫

d4p

(2π)4
tr
(

γµ
1

/p−m
γν

1

/p+ /q −m

)

, (2.18)

If we simplify the integrand (2.18) using the properties of gamma matrices

as summarised in Appendix A.3, then we find that the integration over the loop

momentum involves integrands such as:

∫

d4p

(2π)4
1

(p2 −m2)[(p+ q)2 −m2]
. (2.19)

At large momentum p, this integral clearly diverges as the integrand tends to 1/p4

and
∫

d4p

(2π)4
1

p4
∼ ∞ . (2.20)

We call this an ultra-violet (UV) divergence where the loop-momentum p takes

arbitrary large values (that is, they come from region when p → ∞). In the same

way we can have infra-red (IR) divergences which are associated with the massless

fields such as the photon, which come from the region where p → 0 when external

lines are on-shell. Similar stories hold for the one and higher loop contributions to

the electron propagator and to the three point vertex as well. To make sense of

these divergences we have to regularise our integral which is the next topic.

2.1.1 Regularisation

The most important feature required from a regularisation is that it should maintain

the basic symmetry principles of the theory, such as gauge invariance, translational

invariance, Lorentz invariance [32, 33] etc. Many regularisation methods have been

introduced over the years. For example:
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(1)Cut-off Regularisation : Here we set an upper bound ‘Λ’ to the loop

momentum and then take the limit Λ → ∞ at the end of the calculation. This is a

very direct method that is easy to understand but it leads to the violation of gauge

invariance because of the cut-off parameter. Therefore this method is not convenient

in dealing with the theories that have local symmetries.

(2)Pauli-Villars (PV) Regularisation : In Pauli Villars regularisation [34], the

propagator is modified by the addition of a fictitious field of mass M > m i.e.

1

p2 −m2
→ 1

p2 −m2
− 1

p2 −M2
, (2.21)

where the limit,M tends to infinity, is taken at the end of a given calculation. Gauge

invariance is preserved in abelian theories but this method becomes problematic

when non-abelian theories are considered.

(3)Dimensional Regularisation : This is one of the most popular regularisation

schemes as it maintains gauge invariance even in non-abelian gauge theories.

Dimensional regularisation consists in modifying the dimensionality of integrals like

(2.19) so that they become finite. The idea is to treat the loop integral as integrals

over D-dimensional momenta with D = 4−2ε where the limit ε→ 0 is taken at the

end of a calculation. For example, the following integral

∫

d4p
1

(p2 +m2)2
≈

∫ Λ dp

p
≈ ln Λ , (2.22)

has a logarithmic (log) divergence when we put an upper cut-off Λ, in the momentum

integral to regulate it. However, in D-dimensions the integral is modified as

∫

d4−2εp

p4
∼

∫

dp

p1+2ε
, (2.23)
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where we have effectively increased the power of p in the denominator making the

integral finite. Space-time is then viewed as D-dimensional and UV singularities

reveal themselves as pole terms in ε. We summarise the prescription for this scheme

in Appendix A.4.

2.1.2 Renormalisation

We have seen above various ways to regularise our integrals. In order to remove the

infinities appearing in loop integrals we must develop a way such that these infinite

integrals make sense in perturbation theory. This method is called renormalisation2

which was systematically developed in QED by Freeman Dyson [38] in 1948. The

discussion of these infinities has been in terms of bare fields and bare parameters

appearing in the Lagrangian (2.13). The main idea of renormalisation is to correct

the original Lagrangian of QED by an infinite series of counterterms. The original

Lagrangian which is a function of (m, e, A, ψ) is not the physical Lagrangian but a

bare Lagrangian

Lb = ψ̄b(i/∂ −mb)ψb − ebψ̄bAµbγ
µψb −

1

4
FµνbF

µνb − 1

2
(∂µAµb)

2 , (2.24)

consisting of the parameters (mb, eb, Ab, ψb) that are not measurable and hence are

infinite. The UV divergences [39] in our calculations show up if we try to express

our results in terms of the parameters of the bare Lagrangian. In order to save this

situation we adopt the method of renormalisation so that the result of any physical

quantity expressed in terms of new parameters in any perturbation theory is finite.

This method enables us to pass from the bare theory to finite predictions. In order

to achieve a well defined theory for QED and the non-abelian Yang-Mills theory, all

2The idea that gauge theories are renormalisable was first put forward by G.’tHooft [35–37] and
Veltman [36] in 1973.
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we have to do is, relate the bare parameters to the physical (renormalised) ones by

multiplicative factors called renormalisation constants z1, z2, z3, zm as:

ψb =
√
z2ψr z2 = 1 + δ2 , (2.25)

Ab =
√
z3Ar z3 = 1 + δ3 , (2.26)

mb = zmmr zm = 1 +
δm

m
, (2.27)

eb =
z1

z2
√
z3
er z1 = 1 + δ1 , (2.28)

where δ1, δ2, δ3, δm are counterterms. These counterterms will compensate for the

UV divergences (but there are still finite terms left). In some cases all the necessary

counterterms can be obtained by modifying the parameters that appear in the origi-

nal Lagrangian. Thus, when counterterms are added to the bare field the Lagrangian

(2.24) becomes:

L = −1

4
(F µν

r )2 + ψ̄r(i/∂ −m)ψr − eψ̄rγ
µψrArµ −

1

2
(∂µAµr)

2

− 1

4
δ3(F

µν
r )2 + ψ̄r(iδ2 /∂ − δm)ψr − eδ1ψ̄rγ

µψrArµ .

(2.29)

To complete the specification of the renormalised theory we need to fix the four

unknown constants. There are various renormalisation schemes such as the MS

scheme [40] , MS scheme [41] or the on-shell scheme that one can use to specify

these constants. For the calculations presented in this chapter we shall use the

on-shell scheme as this scheme gives the route to S-Matrix calculations in QED.

2.1.3 Consequences and Examples of Gauge Invariance

As seen earlier the principle of gauge invariance under local phase transformations

completely specifies the interaction between a fermion and the gauge boson. This
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symmetry leads to Ward identities in QED which are a reflection of the continuous

symmetries present in the system. As we have seen earlier that classically, charge

is conserved, so the Ward identity is this claim at the quantum level. For a com-

prehensive study on Ward identities we refer the reader to go through the following

references [30, 33, 42–46].

The Ward identity is an identity which describes physically possible scattering

processes with S-matrix elements and thus have all their external particles on-shell.

To understand this we assume that there is an arbitrary QED process with the

amplitude M(q) that involves an external outgoing photon with momentum q and

the polarisation vector ǫ∗µ(q). This process can be written as

M(q) = ǫ∗µ(q)Mµ(q) , (2.30)

where we have factorised the ǫ∗µ(q) dependence and Mµ(q) is the rest of the

amplitude. However we have seen earlier that the interaction term jµAµ in QED is

responsible for the creation of external photons. Therefore the amplitude Mµ(q) (in

momentum space) can be defined by including the fourier transform of the matrix

element (of the Heisenberg field) of the Dirac vector current as:

Mµ(q) ∼
∫

d4x eiq·x〈f | jµ(x) | i〉 , (2.31)

where i, f are the initial and final states which include all the particles (except the

photon in question). Now if we do the scalar product of qµ into (2.31), that is,

qµMµ(q) ∼
∫

d4x eiq·x∂µ〈f | jµ(x) | i〉 , (2.32)

where we have used the equivalence of qµe
iq·x with −i∂µeiq·x in momentum (Fourier)



16 Chapter 2. Gauge Invariant Calculations

space and also integrated by parts.

Using the current conservation equation (2.9) we have for (2.32)

qµMµ(q) = 0 , (2.33)

which implies that the classical conserved vector current introduced in (2.9) is in

fact conserved at the quantum level.

The first example of the use of the Ward identity [47] is seen when we regulate

a divergent loop integral in high order processes. The Ward identity allows us to

properly determine the exact form of the photon propagator. If Πµν(q) is the sum

of all 1-particle-irreducible insertions into the photon propagator with momentum q

then according to the Ward identity

qµΠµν(q) = 0 . (2.34)

By Lorentz invariance the only tensors that can appear in Πµν(q) are g
µν and qµqν .

This constraint allows us to make the following decomposition

Πµν(q) = (q2gµν − qµqν)Π(q
2) , (2.35)

where Π(q2) is regular at q2 = 0. To see this we write the exact photon two point

function (2.17) as

iDµν(q) = −igµν
q2

+
(−i
q2

){

i(q2gµν − qµqν)Π(q
2)
}(−i

q2

)

+ · · ·

=
−i
q2

(

gµν −
qµqν
q2

)

+
−i
q2

(

gµν −
qµqν
q2

)

Π(q2) +
−iqµqν
q4

+ · · ·

=
−i

q2(1− Π(q2))

(

gµν −
qµqν
q2

)

+
−iqµqν
q4

+ · · · .

(2.36)
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For any S-matrix calculation the terms proportional to qµ or qν vanish when the

propagator is coupled to external charges jν or currents owing to current conserva-

tion. Hence we can summarise (2.36) as,

ijνDµν(q) =
−igµν

q2(1−Π(q2))
jν . (2.37)

The exact propagator has a pole at q2 = 0 which implies that the photon has zero

mass and receives no correction from higher orders.

Suppose we consider a theory with massive vector bosons [48] then the propagator

in momentum space is defined as:

iDµν(q) = −i(gµν − qµqν/m
2)

q2 −m2
. (2.38)

If we wished to calculate the photon propagator from (2.38) then we must set m = 0,

which is problematic for the numerator part. This is where the Ward identity comes

into use according to which any term in the photon propagator that is proportio-

nal to qµ or qν does not contribute to S-matrix element and can be ignored thus

contributing to the photon propagator (2.15). Physically, what this identity means

is the longitudinal polarisation of the photon which arises in an arbitrary ξ gauge is

unphysical and disappears from the S-matrix.

Using current conservation also leads to a Ward identity in the vertex function

Γµ(p1, p2; q) represented by Fig. 2.3. The effective vertex captures the full electro-

magnetic properties of a spinor with one incoming (with momentum p1) and one

outgoing electron (with momentum p2) interacting with an external photon with

momentum q = p2 − p1 6= 0. Thus for the fermion-boson vertex of quantum electro-



18 Chapter 2. Gauge Invariant Calculations

~q

p1

p2

≡ Γµ(p1, p2; q)

Figure 2.3: Vertex function.

dynamics at tree level we have

ieqµΓ
µ(p1, p2; q) = ieqµγ

µ = ie(p2 − p1)µγ
µ

= ie(/p2 −m− /p1 +m)

= ie
[

S−1
0 (p2)− S−1

0 (p1)
]

,

(2.39)

where S−1
0 (p) = (p/−m) is the electron self energy at tree level. However in the limit

when q → 0 we obtain

lim
q→0

Γµ(p1, p1) = ieγµ , (2.40)

which describes an interaction of the spinor with a static potential, measuring

electric charge.

The result (2.39) can be generalised to all orders of the perturbation theory for

which we consider Fig. 2.4 that contains on the left hand side, the three-point vertex

function and on the right hand side the exact electron propagators evaluated at p1

and p2. We can now write the amplitudes for both the sides of Fig. 2.4 in which

case the Ward identity is:

S(p2)[ieqµΓ
µ(p1, p2)]S(p1) = e[S(p1)− S(p2)] . (2.41)

To further simplify this equation we multiply the left and right hand side by the
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~q = p2 − p1
p1

p2

qµ = −e·

p1

p1

p2

p2

Figure 2.4: Example of Ward identity.

Dirac matrices S−1(p2) and S
−1(p1) which gives:

iqµΓ
µ(p1, p2) = [S−1(p2)− S−1(p1)] . (2.42)

The Ward identity can be used to obtain the general relation between the fermion

two point function (self-energy) and the vertex function in QED which states the

equivalence of the renormalisation scale factors, z1 for vertex and renormalisation

scale factor, z2 of self energy to all orders i.e.

z1 = z2 . (2.43)

This implies that if there are divergent parts in the fermion self-energy graphs at

higher order, then they must equal those present in the vertex correction graphs at

the same order. This relation guarantees the exact cancellation of infinite rescaling

factors. As a consequence of (2.43), equation (2.28) reduces to

er =
√
z3eb , (2.44)

which clearly illustrates that the charge renormalisation is not dependent on fermion

self energy or vertex modifications but originates from the photon self energy effects.
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More discussion and examples of the use of Ward identities will be in the later

sections of this chapter.

2.2 Wu’s Regularisation Scheme

In order to evaluate loop integrals in Feynman diagrams one makes use of the Feyn-

man parameterisation method (details of which are included in Appendix B.1). This

method enables us to reduce loop integrals in Feynman diagrams into irreducible

loop integrals, which are generally of the form

∫

d4p

(2π)4
1

(p2 −M2)n
, (2.45)

where p is the loop momenta, M2 are mass-factors which depend on Feynman para-

meters and n is a parameter which takes into account various processes. By power

counting in four dimensions, when n = 1 we have quadratic divergences, when n = 2

we have logarithmic divergences and for n > 2 the integral converges.

There are various techniques available to make the quantum field theory finite

and physically meaningful. However, not all of regularisation schemes preserve all

symmetries of the original theory. In particular, the construction of a regularisation

which respects the non-abelian gauge symmetry has turned out to be a difficult

task. As seen earlier, although dimensional regularisation is the most popular gauge

symmetry preserving regularisation however it is nice to have alternatives. This

has been considered by Wu [49, 50] where he introduced a set of regularisation

independent consistency conditions which confirms the gauge invariance of one-loop

graphs in QCD.

In this section we will introduce Wu’s identities and describe the set of consis-

tency conditions which he claims ensures the gauge invariance for all one-loop graphs
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in the non-abelian theory. We will consider the abelian theory and try to unders-

tand Wu’s identities. Using Wu’s consistency conditions our first approach will be

to verify the Ward identity in an arbitrary regularisation scheme. Once this is achie-

ved we will then verify that Wu’s identities hold in various regularisation schemes

such as dimensional regularisation and Pauli Villars both of which respect gauge

invariance in QED. To study Wu’s regularisation method we will first verify that

the Ward identity (2.34) holds in QED. It is also seen that with the use of Wu’s

conditions, the one-loop calculations can be performed rapidly.

To investigate the gauge symmetry preserving conditions in QCD at one-loop,

Wu considered a set of irreducible loop integrals that are evaluated from the one-loop

Feynman diagrams. These integrals (in his notation) are given by:

I−2α =

∫

d4k

(2π)4
1

(k2 −M2)2+α
, (2.46)

I−2αµν =

∫

d4k

(2π)4
kµkν

(k2 −M2)3+α
, (2.47)

I−2αµνρσ =

∫

d4k

(2π)4
kµkνkρkσ

(k2 −M2)4+α
, (2.48)

where the number −2α in the subscript labels the power counting dimension of

energy momentum with α = −1, 0, 1, · · · . In the above equations M2 is a mass

factor that depends on the Feynman parameters and the external momenta. For

different values of α these integrals take different values.

For α = −1, we have quadratically divergent integrals:

I2 =

∫

d4k

(2π)4
1

(k2 −M2)
; I2µν =

∫

d4k

(2π)4
kµkν

(k2 −M2)2
; (2.49)

I2µνρσ =

∫

d4k

(2π)4
kµkνkρkσ
(k2 −M2)3

. (2.50)
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If α = 0, we get logarithmically divergent integrals:

I0 =

∫

d4k

(2π)4
1

(k2 −M2)2
; I0µν =

∫

d4k

(2π)4
kµkν

(k2 −M2)3
; (2.51)

I0µνρσ =

∫

d4k

(2π)4
kµkνkρkσ
(k2 −M2)4

. (2.52)

Finally, when α = 1, the integrals converge:

I−2 =

∫

d4k

(2π)4
1

(k2 −M2)3
; I−2µν =

∫

d4k

(2π)4
kµkν

(k2 −M2)4
;

I−2µνρσ =

∫

d4k

(2π)4
kµkνkρkσ
(k2 −M2)5

. (2.53)

Wu introduced a set of consistency conditions which he claims ensures the gauge

invariance of the above mentioned one-loop graphs in QCD and he further claims

that these conditions are regularisation independent. These expressions require a

regularisation prescription, I → IR which must preserve gauge invariance. In gene-

ral there are six regularisation-independent consistency conditions which maintain

gauge invariance and satisfy Ward identities.

• For quadratically divergent one-loop integrals

IR2µν =
1

2
gµνI

R
2 , (2.54)

IR2µνρσ =
1

8
g{µνρσ}I

R
2 . (2.55)

• For logarithmically divergent one-loop integrals

IR0µν =
1

4
gµνI

R
0 , (2.56)

IR0µνρσ =
1

24
g{µνρσ}I

R
0 . (2.57)
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• For convergent one-loop integrals

IR−2µν =
1

6
gµνI

R
−2 , (2.58)

IR−2µνρσ =
1

48
g{µνρσ}I

R
−2 . (2.59)

where we have used the notation

g{µνρσ} ≡ gµνgρσ + gµρgνσ + gµσgρν . (2.60)

The above conditions are the regularisation-independent consistency conditions for

maintaining the gauge invariance of theories. In our calculations we will use the two

conditions (2.54) and (2.56).

2.2.1 Verification of the Ward Identity in Wu’s Scheme

In this subsection we will show that the first Ward identity, qµΠµν(q) = 0, holds

when Wu’s conditions are used. We start with the photon self energy (2.18) to

obtain

iΠµν(q) = −e2
∫

[d4p]

(2π)4
tr
(

γµ
1

/p−m
γν

1

/p+ /q −m

)

= −e2
∫

[d4p]

(2π)4
1

(p2 −m2)

1

{(p+ q)2 −m2}

× tr
(

γµ(/p+m)γν(/p+ /q +m)
)

.

(2.61)

Note that in the above equation square brackets indicate any regularisation scheme

that respects Wu’s identities. Using properties of traces we get:

tr
[

γµ(/p+m)γν(/p+ /q+m)
]

= 4
[

2pµpν + pµqν + pνqµ− gµν(p
2+ p · q−m2)

]

. (2.62)
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For the denominator, making use of the Feynman parameterisation introduced in

Appendix B.1 we have,

1

(p2 −m2)[(p+ q)2 −m2]
=

∫ 1

0

dx
1

(

(p2 −m2)x+ (1− x)[(p + q)2 −m2]
)2 .

(2.63)

Consider the denominator:

(p2 −m2)x+ (1− x)[(p + q)2 −m2] = p2 + q2 + 2p q −m2 − 2p qx− q2x

= (p+ x̄q)2 + q2x̄x−m2 ,

(2.64)

where x̄ = 1− x.

On substituting (2.64) into (2.63) we find:

1

(p2 −m2)[(p+ q)2 −m2]
=

∫ 1

0

dx
1

(

(p+ x̄q)2 + q2x̄x−m2
)2 . (2.65)

After inserting (2.65) into (2.61), the expression for iΠµν(q) becomes:

iΠµν(q) = −4e2
∫

[d4p]

(2π)4

∫ 1

0

dx

[

2pµpν + pµqν + pνqµ − gµν(p
2 + p · q −m2)

]

(

(p+ x̄q)2 + q2x̄x−m2
)2 .

(2.66)

The above expression contains two terms in the integrand which can be evaluated

separately, that is, for the first part we define

Iµν =

∫

[d4p]

(2π)4

∫ 1

0

dx
2pµpν + pµqν + pνqµ

(

(p+ x̄q)2 + q2x̄x−m2
)2 . (2.67)



25 Chapter 2. Gauge Invariant Calculations

Making use of the shift, p+ x̄q → p, we have for this part

Iµν =

∫

[d4p]

(2π)4

∫ 1

0

dx
2(pµ − x̄qµ)(pν − x̄qν) + (pµ − x̄qµ)qν + (pν − x̄qν)qµ

(

p2 − (m2 − q2x̄x)
)2

=

∫

[d4p]

(2π)4

∫ 1

0

dx
2pµpν − 2x̄(pµqν − qµpν) + 2x̄x̄qµqν + pµqν − 2x̄qµqν + pνqµ

(

p2 − (m2 − q2x̄x)
)2 .

(2.68)

The terms odd in p have been dropped since they give zero, so we find

Iµν =

∫

[d4p]

(2π)4

∫ 1

0

dx
2pµpν + 2x̄x̄qµqν − 2x̄qµqν

(

p2 − (m2 − q2x̄x)
)2

=

∫

[d4p]

(2π)4

∫ 1

0

dx
2pµpν − 2xx̄qµqν

(p2 −M2)2
,

(2.69)

where M2 = m2 − q2x̄x. Identifying the integral above with the identities (2.49)

and (2.51) we can rewrite equation (2.69) as,

Iµν =

∫ 1

0

dx[2I2µν − 2xx̄qµqνI0] . (2.70)

Now we evaluate the second part of (2.66) defining

Jµν =

∫

[d4p]

(2π)4

∫ 1

0

dx
gµν(p

2 + p.q −m2)
(

(p+ x̄q)2 + q2x̄x−m2
)2 , (2.71)

and use the shift, p+ x̄q → p. This yields:

Jµν =

∫

[d4p]

(2π)4

∫ 1

0

dx
gµν((p− x̄q)2 + (p− x̄q)q −m2)

(

p2 −M2
)2 . (2.72)
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where M2 = (m2 − q2x̄x). Expanding (2.72) we find linear terms in p vanish and

we are left with,

Jµν =

∫

[d4p]

(2π)4

∫ 1

0

dx
gµν(p

2 + x̄x̄q2 −m2 − x̄q2)
(

p2 −M2
)2

=

∫

[d4p]

(2π)4

∫ 1

0

dx
gµν(p

2 + x̄x̄q2 + xx̄q2 − xx̄q2 −m2 − x̄q2)
(

p2 −M2
)2 ,

(2.73)

where we have added and subtracted the xx̄q2 term.

Hence,

Jµν = gµν

∫

[d4p]

(2π)4

∫ 1

0

dx
1

(p2 −M2)
+
q2x̄(−x+ x̄− 1)

(p2 −M2)2

= gµν

∫

[d4p]

(2π)4

∫ 1

0

dx
[ 1

(p2 −M2)
− 2xx̄q2

(p2 −M2)2

]

= gµν

∫ 1

0

dx[I2 − 2xx̄q2I0] .

(2.74)

In (2.74) we have written the integrals I2 and I0 using Wu’s notation (2.49) and

(2.51). Combining (2.70) and (2.74) and substituting in (2.66) we get:

iΠµν(q) = −4e2
∫ 1

0

dx[2I2µν − 2x̄xqµqνI0 − gµνI2 + 2xx̄gµνq
2I0] . (2.75)

Substituting Wu’s first identity (2.54) into (2.75) we find

iΠµν(q) = −4e2
∫ 1

0

dx[21
2
I2gµν − 2x̄xqµqνI0 − gµνI2 + 2xx̄gµνq

2I0]

= −8e2q2
∫ 1

0

dx x̄xI0q
2
(

gµν −
qµqν
q2

)

.

(2.76)

Extracting the transverse projector, Pµν = gµν −
qµqν
q2

in (2.76) we obtain

iΠµν(q) = −8e2q2Pµν

∫ 1

0

dx x̄ xI0q
2 , (2.77)



27 Chapter 2. Gauge Invariant Calculations

from which it is immediately obvious that qµΠµν = 0. Therefore, we have seen that

the first Ward identity holds in an arbitrary regularisation scheme which satisfies

Wu’s identity.

In the next section we will verify Wu’s identity using various regularisation

schemes. To start with we will first check that Wu’s consistency conditions hold

in dimensional regularisation and the PV scheme. A cut-off scheme does not main-

tain gauge invariance and hence Wu’s identities should not hold in that scheme.

2.2.2 Wu’s Identities in Dimensional Regularisation

As described earlier in Section 2.1.1 the method of dimensional regularisation [9]

is the most effective method that preserves the symmetries of QED and also of a

wide class of more general theories. In this subsection we will verify some of Wu’s

identity using the method of dimensional regularisation. The momentum integrals

will be solved in Euclidian space using (B.8) from Appendix B.1. We want to show

that (2.54) is obeyed i.e.

∫

dDk

(2π)D
kµkν

(k2 −M2)2
=

1

2
gµν

∫

dDk

(2π)D
1

(k2 −M2)
. (2.78)

To prove this we start with the left hand side where the integral I2µν is a second-order

rank tensor that is just proportional to gµν i.e.

I2µν ∝ gµν

= A gµν .

(2.79)

In the above equation A is a constant that can be determined by contracting the
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above expression by gµν on both sides such that:

A =
1

D
gµνI2µν

=
1

D

∫

dDk

(2π)D
gµνkµkν

(k2 −M2)2

=
1

D

[

∫

dDk

(2π)D
1

(k2 −M2)
+M2

∫

dDk

(2π)D
1

(k2 −M2)2

]

,

(2.80)

where we have added and subtracted M2. To evaluate the above integrals we make

use of (B.8) to obtain

∫

dDk

(2π)D
1

(k2 −M2)
=: I2 = − i

(4π)
D

2

Γ
(

1− D

2

)

(M2)
D

2
−1 , (2.81)

and
∫

dDk

(2π)D
1

(k2 −M2)2
=

i

(4π)
D

2

(

1− D

2

)

Γ
(

1− D

2

)

(M2)
D

2
−2 . (2.82)

Inserting these into (2.80) we find:

A = − i

(4π)
D

2

1

2
Γ
(

1− D

2

)

(M2)
D

2
−1

=
1

2
I2 .

(2.83)

Therefore,

I2µν =
1

2
gµνI2 . (2.84)

We have thus proved that Wu’s first identity hold in dimensional regularisation at

one-loop. The other identity (2.56) follows in much the same way.

More generally it is found that in D-dimensions Wu’s conditions (2.54)-(2.59)

follow some pattern (as shown in Appendix B.2) which corresponds to the formula

Inµν =
gµν

2(n− 1)
In−1 , (2.85)
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for n ≥ 2 where

Inµν =

∫

dDk

(2π)D
kµkν

(k2 −M2)n
and In =

∫

dDk

(2π)D
1

(k2 −M2)n
. (2.86)

In the next section we will verify that Wu’s identities hold in the PV scheme.

2.2.3 Wu’s Identities in the Pauli Villars Scheme

In the PV scheme we modify, say a fermionic propagator of massM by assuming that

there are fictitious fermions of mass Λi. These fictitious particles are the contribution

from some other generalised Pauli Villars fields which have large masses compared

to the original mass M of the propagator. In this method we subtract off the same

loop integral but with a much larger mass. To see how Wu’s identities work in the

PV scheme we will start with a simple example. We want to show that Wu’s identity

(2.56) holds in the PV scheme i.e.

∫

[d4k]

(2π)4
kµkν

(k2 −M2)3
=

1

4
gµν

∫

[d4k]

(2π)4
1

(k2 −M2)2
, (2.87)

where square brackets indicate any regularisation scheme that respects gauge in-

variance which in our case is the PV scheme. It is clear that the above integrals

contain a logarithmic divergence. Starting with the right hand side of (2.87) we

expand the integrand in inverse power of k2:

∫

[d4k]

(2π)4
1

(k2 −M2)2
=

∫

d4k

(2π)4

[ 1

(k2 −M2)2
+
∑

i

Ci

(k2 − Λ2
i )

2

]

=

∫

d4k

(2π)4

[ 1

k4
(

1 +
2M2

k2
+

3M4

k4
+ . . .

)

+
∑

i

Ci

k4
(

1 +
2Λ2

i

k2
+

3Λ4
i

k4
+ . . .

)

]

,

(2.88)
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where Ci are the coefficients. In (2.88) we find that both the integrals contain

logarithmic divergence and the higher terms are UV finite. The only condition for

the integral to be finite is:

1 +
∑

i

Ci = 0 . (2.89)

We now consider the left hand side of (2.87) where we rewrite kµkν in terms of k2:

∫

[d4k]

(2π)4
kµkν

(k2 −M2)3
=

1

4
gµν

∫

[d4k]

(2π)4
k2

(k2 −M2)3
,

=
1

4
gµν

∫

d4k

(2π)4

[ k2

(k2 −M2)3
+
∑

i

Cik
2

(k2 − Λ2
i )

3

]

=
1

4
gµν

∫

d4k

(2π)4

[ 1

(k2 −M2)2
+

M2

(k2 −M2)3

+
∑

i

Ci

(k2 − Λ2
i )

2
+
∑

i

CiΛ
2
i

(k2 − Λ2
i )

3

]

,

(2.90)

where we have added and subtracted M2 and CiΛ
2
i . Combining the first and third

terms of (2.90) using the first line of (2.88) we have

∫

[d4k]

(2π)4
kµkν

(k2 −M2)3
=

1

4
gµν

∫

[d4k]

(2π)4
1

(k2 −M2)2

+
1

4
gµν

∫

d4k

(2π)4

[ M2

(k2 −M2)3
+
∑

i

CiΛ
2
i

(k2 − Λ2
i )

3

]

=
1

4
gµν

∫

[d4k]

(2π)4
1

(k2 −M2)2
+

1

4
gµν

(M2

M2
− Λ2

i

Λ2
i

)

.

(2.91)

The last two terms cancel to yield:

∫

[d4k]

(2π)4
kµkν

(k2 −M2)3
=

1

4
gµν

∫

[d4k]

(2π)4
1

(k2 −M2)2
, (2.92)

i.e.

I0µν =
1

4
I0gµν , (2.93)
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Hence Wu’s identity is shown to hold in the PV scheme. All of the Wu’s identity

have been checked in this way.

2.3 Derivation of Wu’s Identity

So far we have verified Wu’s consistency conditions and seen how they preserve gauge

invariance for the regularised irreducible loop integrals in the abelian theory. In this

section we will show the origin of these identities. We will see how these identities

can be derived within the context of any regularisation that respects translational

invariance. We will start with the derivation of Wu’s first identity (2.54) written in

the form:
∫

[d4k]

(2π)4
kµkν

(k2 −M2)2
=

1

2
gµν

∫

[d4k]

(2π)4
1

(k2 −M2)
. (2.94)

To derive the above identity we consider the following integral,

K =

∫

[d4k]

(2π)4
log(k2 −M2) , (2.95)

where square brackets indicate that we are working in the dimensional regularisation.

We extend the dimension from D = 4 → 4− 2ε and obtain

K =

∫

dDk

(2π)D
log(kλk

λ −M2) . (2.96)

Under momentum translation kλ → k
′

λ = kλ + αλ, the above equation becomes:

K = K(α) =

∫

dDk

(2π)D
log

[

(kλ + αλ)(k
λ + αλ)−M2

]

. (2.97)
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Differentiating with respect to αµ

∂K(α)

∂αµ

=

∫

dDk

(2π)D
2(kµ + αµ)

[

(kλ + αλ)(kλ + αλ)−M2
] , (2.98)

and again with respect to αν we obtain:

∂2K(α)

∂αµ∂αν

=

∫

dDk

(2π)D

{

−4(kµ + αµ)(kν + αν)
[

(kµ + αµ)(kµ + αµ)−M2
]2

+
2gµν

[

(kµ + αµ)(kµ + αµ)−M2
]

}

.

(2.99)

Because of translational invariance K is independent of α, so setting α = 0 in the

above equation we end up with,

∫

dDk

(2π)D
kµkν

(k2 −M2)2
=

1

2
gµν

∫

dDk

(2π)D
1

(k2 −M2)
, (2.100)

or

I2µν =
1

2
gµνI2 . (2.101)

Thus Wu’s first identity is derived as being a consequence of translational invariance

in dimensional regularisation.

To derive Wu’s second identity (2.56) we consider the following integral

J =

∫

dDk

(2π)D
1

(k2 −M2)
=

∫

dDk

(2π)D
1

(kλkλ −M2)
, (2.102)

which under momentum translation gives:

J = J (α) =

∫

dDk

(2π)D
1

[

(kλ + αλ)(kλ + αλ)−M2
] . (2.103)



33 Chapter 2. Gauge Invariant Calculations

Again differentiating twice with respect to α we obtain:

∂2J (α)

∂αµ∂αν

=

∫

dDk

(2π)D

{

8(kµ + αµ)(kν + αν)

[(kµ + αµ)(kµ + αµ)−M2]3

− 2gµν
[(kµ + αµ)(kµ + αµ)−M2]2

}

.

(2.104)

Setting α = 0 (because of momentum translation) in (2.104) we find,

8

∫

dDk

(2π)D
kµkν

(k2 −M2)3
= 2

∫

dDk

(2π)D
gµν

(k2 −M2)2
, (2.105)

or

I0µν =
1

4
gµνI0 . (2.106)

Thus, Wu’s second identity can also be seen in dimensional regularisation to be a

consequence of translational invariance.

2.4 Concluding Remarks

In this chapter we have shown that Wu’s conditions must be satisfied for regularised

loop integrals to preserve gauge invariance. Since Ward identities are a consequence

of gauge invariance, Wu’s conditions must also satisfy Ward identities that we have

seen above. It is easily shown that dimensional regularisation and PV scheme sa-

tisfy these consistency conditions. But these identities do not hold in the cut-off

regularisation as it breaks gauge invariance. We have focussed on the role of gauge

invariance and have seen the connection between translational invariance and Wu’s

conditions in dimensional regularisation. We prefer dimensional regularisation over

other methods as it ensures gauge invariance and the validity of the Ward identity

to all orders of perturbation theory. Since gauge invariance is independent of the
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number of space-time dimensions, it is by construction a gauge invariant regularisa-

tion. Although Wu’s approach provides a set of identities needed to maintain gauge

invariance, we have seen it is simply a consequence of translational invariance in the

momentum integrals.



Chapter 3

Non-Abelian Gauge Theory

3.1 Introduction

The extension from the abelian to the non-abelian theory introduces many complica-

tions into the identification of physical variables. The photon fields Aµ in the abelian

theory now become the gluon fields Aa
µ in the non-abelian gauge theory with colour

index a. Unlike the abelian theory, the field strength for the non-abelian fields is not

gauge invariant which raises the question of how to identify physical field strengths.

As we will see in this chapter, there are two possible routes that one can consider

to construct gauge invariant expressions for the field strength. The interplay

between these field strengths will play an important role in the construction of gauge

invariant configurations in the later chapters.

To understand the nature of non-abelian theories we need to study some of the

properties of the groups on which they are based and that will be outlined in this

chapter. Some new identities will be explored which will provide the necessary

background material for the rest of the thesis. Following this we will review the

role of dressings in constructing gauge invariant configurations. This will allow us

to construct two gauge invariant field strengths. We will show a factorisation which

35
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relates the two field strengths. This will be main equation needed in the construction

of a non-abelian mass like term.

3.2 Lie Groups and Representations

Informally a Lie group is a group whose elements depend in a continuous and

differentiable way on a set of real parameters. It is described as a smooth space

upon which there is a continuous product which satisfies the normal group properties

[51–56]. Therefore a Lie group is at the same time a group and a smooth finite-

dimensional manifold.

More concretely we can view a given group through its representation. A

representation of a group G is a mapping, U of the elements of G onto a set of linear

operators. That is, to each element g of the group G we associate a matrix U(g)

acting on a vector space such that the group product g1g2 is fully captured by the

matrix product:

U(g1g2) = U(g1)U(g2) . (3.1)

Many of the key structures for a given group G are revealed by the collection of

infinitesimal transformations close to the identity, that is the tangent space at the

identity. This is the Lie algebra of the Lie group which can also be studied through

its representation. Given the Lie algebra of such vector fields, the group structure

is summarised in the commutator properties of the elements of the Lie algebra, that

is,

[ta, tb] = fabct
c , (3.2)

which is the abstract commutator of the vector fields t and a, b, c ranges over the

dimension of G. In (3.2) the factors fabc are the structure constants of the group
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G that are anti-symmetric and satisfy the following Jacobi identity

fabpf pcq + f bcpf paq + f capf pbq = 0 , (3.3)

which follows from the cyclic permutation of the commutators. The Jacobi identity

must be satisfied in order for a given set of commutation rules to define a Lie

algebra. For the group SU(2) the structure constants fabc are simply given by the

antisymmetric Levi-Civita symbol ǫabc.

Just as we can talk about a representation of the group we can similarly talk

about a representation of the Lie algebra, ta → T a, where the vector fields ta are

now represented by the matrix fields T a and thus is a representation if and only if

we have the matrix commutator

[T a, T b] = fabcT
c . (3.4)

There is a close connection between the representation of the group (3.2) and the

algebra (3.4) and this is captured by the exponential mapping from the Lie algebra

to the group, which, in the context of a specific representation, is just the matrix

exponential. Every Lie group G has an associated Lie algebra g that is related to it

via the exponential map. For example, suppose θ is an element of the Lie algebra g,

θ = θata , (3.5)

then this is represented by θ = θaT a ∈ g. The exponential map relates the algebra

element to the group element by, g = eθ which, in terms of our representation is

U(g) = e(θ
aTa) , (3.6)
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where the exponential here is just the usual matrix exponential.

There is a rich theory of such groups and their representations, but for this thesis

we shall focus on the special unitary groups SU(N) that is defined to be the subgroup

of the unitary group U(N) which in the fundamental representation consists ofN×N

unitary matrices with determinant +1. The Lie algebra associated with the group

SU(N) is denoted by su(N) and is the vector space of complex, anti-hermitian n×n

matrices with null trace. With this in mind, the indices a, b, c etc will range over

the dimension of the group which for us will be 1, · · · , N2 − 1. The representations

are well understood for these groups.

The smallest (irreducible) representation is called the fundamental representa-

tion and it is described in terms of N -dimensional traceless anti-hermitian matrices

(T a)ij , (3.7)

where the indices i, j etc. range from 1, · · · , N . There are (N2 − 1) linearly inde-

pendent N ×N anti-hermitian traceless matrices T a.

Another important representation that can be constructed for any Lie algebra

is called the adjoint representation [57] which consists of generators of the algebra

written in the form:

(T a)bc = −fabc , (3.8)

where the structure constants fabc correspond to the representation matrices. That

this is a representation, follows from the fact that it satisfies the Lie algebra (3.4).

Conventionally, the generators are normalised according to

tr (T aT b) = Crδ
ab , (3.9)
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with Cr the normalisation constant in any arbitrary representation r to which T a

belong. For the non-abelian theory the structure constants are not equal to zero

i.e., there are non-zero commutation relations between the generators of the gauge

group.

3.2.1 SU(2) Gauge Theory

The simplest example of a Lie group is the SU(2) group that is a 3-dimension

manifold, S3, and plays an important role in the standard model. For the group

SU(2), the representation matrices:

U(g) := eθ = eθ
aτa , (3.10)

are unitary, where, for the fundamental representation, the matrix element, (T a)ij =

(τa)ij and i, j range over (1, 2). Note that each τa is a traceless unitary 2 × 2

matrix with U † = e−θ, UU † = U †U = 1 and detU = etr θ = 1 as required. This

representation satisfies the following properties:

[τa, τb] = ǫabcτc , (3.11)

tr (τaτb) = −1

2
δab , tr (τa) = 0 , (3.12)

and

τ †a = −τa . (3.13)

The infinitesimal generators, τa, of the Lie algebra of SU(2) are related to the Pauli

matrices, σa by

τa = −1

2
iσa with a = 1, 2, 3 , (3.14)
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where

σ1 =







0 1

1 0






, σ2 =







0 −i

i 0






, σ3 =







1 0

0 −1






. (3.15)

At this stage we introduce a very useful identity called the Fierz identity for the

fundamental representation of the group SU(N) that is found in [58, 59]:

[τa]ij[τ
a]kl = −1

2

(

δilδjk −
1

N
δijδkl

)

, (3.16)

where we are summing over the Lie algebra index a = 1, · · · , N2 − 1 and

i, j, k, l = 1, · · · , N .

For the group SU(2) the above identity leads to

[τa]ij[τ
a]kl = −1

2

(

δilδjk −
1

2
δijδkl

)

, (3.17)

where now the Lie algebra index a takes the values from 1, · · · , 3 and i, j, k, l = 1, 2.

The derivation of these identities is relatively straightforward and follows from the

fact that the right hand side can be constructed only out of the δij tensors. With

this in mind, equation (3.17) can be written as

[τa]ij [τ
a]kl = αδijδkl + βδikδjl + γδilδjk , (3.18)

where fixing the constants α, β, γ and using the trace properties of matrix τa we

can easily verify the result (3.17).

3.2.2 Relation between Representations

After the introduction of the Lie algebra for the fundamental and the adjoint

representations we shall now try to understand how they are related. Suppose we
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start with the fundamental representation, SU(2), that is, U(g) = eθ
aτa is a 2 × 2

special unitary matrix and (τa)ij are given by (3.14). As is well known from quantum

mechanics, the adjoint (3-dimensional) representation in terms of orthogonal 3 × 3

matrix is denoted by

R(g) = eθ
aTa

, (3.19)

with detR = 1 where T a are the appropriate 3× 3 matrices for this representation.

Given these representations, however, our claim is that we can also construct

R(g) directly from the fundamental representation via the representation matrix

Rab(g) = −2 tr (τaU(g)τbU
−1(g)) , (3.20)

where Rab has the properties that the elements are

• Real, R†
ab = Rab ,

• Orthogonal, RRt = RtR = 1 or RabRcb = δac;RbaRbc = δac .

The superscript † and t in above represents the complex conjugate and transpose of

Rab matrix. These equations are straightforward to prove. To verify that (3.20) is

a representation of the group we need to verify that (3.1) holds, that is,

Rab(g1g2) = −2 tr {τaU(g1g2)τbU−1(g1g2)}

= −2 tr {τaU(g1)U(g2)τbU−1(g2)U
−1(g1)}

= −2 tr {U−1(g1)τaU(g1)U(g2)τbU
−1(g2)}

= −2{U−1(g1)τaU(g1)}ij{U(g2)τbU−1(g2)}ji

= −2{U−1(g1)τaU(g1)}ij{U(g2)τbU−1(g2)}klδilδjk

= 4{U−1(g1)τaU(g1)}ij{U(g2)τbU−1(g2)}kl[τc]ij[τc]kl

(3.21)
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where in the last line we have used the result (3.17). Using the trace property

Rab(g1g2) = 4tr {U−1(g1)τaU(g1)τc}tr {U(g2)τbU−1(g2)τc}

= 4tr {τaU(g1)τcU−1(g1)}tr {τcU(g2)τbU−1(g2)}

= Rac(g1)Rcb(g2) ,

(3.22)

and hence we see that (3.20) is a representation. Here we have constructed the

adjoint representation of the group by using the fundamental representation results.

However earlier we talked about the adjoint representation of the Lie algebra

given in terms of structure constants (3.8) so it is useful to verify that this also

follows from the adjoint representation construction of the group. In other words the

question that needs to be addressed now is, ‘What does the adjoint representation

look like at the algebra level’? To answer this we expand (3.19) infinitesimally for

the bc component

Rbc = (eθ)bc = δbc + θa[T a]bc , (3.23)

where [T a]bc are the generators of the symmetry (rotation) group that we need to

evaluate. In (3.20) we now make an expansion for U infinitesimally to yield:

Rbc := −2 tr {τb(1 + θ)τc(1− θ)} = −2 tr (τbτc)− 2 tr (τb[θ, τc]) +O(θ2)

= δbc − 2 θatr (τb[τa, τc]) +O(θ2) .

(3.24)

Using the identification, ǫabc = −2 tr {τa[τb, τc]} and hence, comparing with (3.23)

we find

[T a]bc = −ǫabc , (3.25)

where ǫabc is the structure constant for SU(2). This thus confirms the general result

(3.8). So in the adjoint representation the structure constants make up the basis of
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the Lie algebra. The relation (3.25) is obeyed by the structure constant of any Lie

group SU(N), where these structure constants obey the Jacobi identity (3.3).

Now that we have studied the properties of the groups and their algebras we can

move on to construct the Lagrangian for the non-abelian Yang-Mills theory.

3.2.3 Yang-Mills Lagrangian

We now want to generalise the transformations (2.5) and (2.6) to the case when U(x)

belongs to a non-abelian group G, and so construct a Lagrangian invariant under

local gauge transformations. We will limit ourselves to the case when G =SU(N).

We start by generalising equation (2.5) to a set of fermionic fields ψi that transform

in a fundamental representation of SU(N) as

ψi(x) → ψU
i (x) = Uij(x)ψj(x) . (3.26)

If we suppress these internal indices for the fermionic fields we have for (3.26):

ψ(x) → ψU(x) = U−1(x)ψ(x) , (3.27)

where U(x) = egθ is the group element with θ = θa(x)τa. Note that we are denoting

the group element by U(x) instead of U(g) where we are suppressing g and writing x

locally i.e. U(g) → U(g(x)) = U(x). Going through the same procedure as in QED

local gauge invariance is preserved when the replacement ∂µ → Dµ = ∂µ+gAµ (with

g the coupling constant, the analogue of ie in QED) is made in the Lagrangian of

the fermionic fields. The matrix covariant derivative Dµ(x) acting on the fermionic

fields then transforms as

Dµψ(x) → (Dµψ(x))
U = U−1(x)Dµψ(x) , (3.28)
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where Aµ(x) are the vector fields that can be written using the matrix notation in

the fundamental representation as

Aµ(x) := Aa
µ(x)τ

a . (3.29)

In the above equation Aa
µ = −2 tr (Aµτ

a) are the components of the vector potential.

In this way the set of gauge fields Aa
µ, enters the Lagrangian with the transformation

properties (in matrix form as)

Aµ(x) → AU
µ (x) = U−1(x)Aµ(x)U(x) +

1

g
U−1(x)∂µU(x) , (3.30)

that ensures the correct transformation for the covariant derivative. In deriving

(3.30) from (3.28) we have made use of the result, (∂U)U−1 = −U(∂U−1) where

U(x) is an element of group SU(N) for each point x in space-time. The result (3.30)

is the non-abelian generalisation of the result (2.6). If we expand (3.30) as a power

series in the coupling

U(x) = egθ = 1 + gθ +
1

2
g2θ2 + · · · , (3.31)

and

U−1(x) = e−gθ = 1− gθ +
1

2
g2θ2 + · · · , (3.32)

then Aµ is seen to transform as

Aµ(x) → AU
µ (x) = Aµ(x) + ∂µθ(x) + g

(

[Aµ, θ] +
1

2
[∂µθ, θ]

)

(x) + · · · . (3.33)

To introduce the dynamics in a gauge invariant manner we introduce the anti-
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symmetric field strength tensor Fµν(x) written in the form

Fµν(x) = ∂µAν(x)− ∂νAµ(x) + g[Aµ, Aν ](x) , (3.34)

with components

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcA

b
µA

c
µ . (3.35)

This is not gauge invariant but transforms as

Fµν(x) → U−1(x)Fµν(x)U(x) , (3.36)

in contrast to QED where Fµν is gauge invariant. As a consequence of (3.36) we find

that the trace, tr (FµνF
µν) is gauge invariant and provides the non-abelian analogue

of (2.1) for the kinetic term of the gauge fields. Using this we arrive at the gauge

invariant Yang-Mills Lagrangian

LYM = −1

2
tr (FµνF

µν) =
1

4
F a
µνF

µνa , (3.37)

where we have used the normalisation condition (3.9). The quadratic part in the

kinetic term describes the free propagation of the gauge fields, however there are also

cubic and quartic terms that describe self interactions of the gauge fields yielding

three and four point vertices. This means that gluons interact themselves via the

colour force. When the Lagrangian of the matter field is added to the Yang-Mills

Lagrangian, the resulting Lagrangian is given by

L = ψ̄(i /D −m)ψ +
1

4
F a
µνF

µνa , (3.38)

which is by construction invariant under the gauge transformations (3.27) and (3.30).
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3.2.4 Higher Representations

In the Standard Model one usually considers the matter fields to be in the funda-

mental representation and the gauge fields in particular, the field strength transform

according to the adjoint representation of the group. What we want to see now is

how this formulation works in higher representations. That is, we want to clarify

the relation between the fundamental and the adjoint representation in terms of the

tensor products and then understand how to build up higher tensor product repre-

sentation of the adjoint representation fields. It must be stressed that in our discus-

sion we will frequently switch between the matrix notation and component notation.

We saw earlier from (3.26) how the N -component vector ~ψ = {ψj, j = 1, . . . , N},

defined both in the component and matrix notation transformed according to the

fundamental representation of the group.

The word “tensor product”refers to one of the ways of constructing a bigger

vector space out of two or more smaller vector spaces. It is also called Kronecker

product or direct product. For example, if we start with two vector spaces, U that

is m dimensional with the basis {~e1, ~e1, . . . , ~em} and W that is n dimensional with

the basis {~f1, ~f1, . . . , ~fn} then the tensor product of these two vector spaces is mn

dimensional denoted by ~ei⊗ ~fj . Let us recall from quantum mechanics the fact that

a combined system V , consisting of the sub-systems represented by Hilbert spaces

V1 and V2, is represented by the tensor product V = V1 ⊗ V2. The operators M1 on

V1 and M2 on V2 can be combined to give the operator

M =M1 ⊗ I+ I⊗M2 , (3.39)

which acts on the combined system V1 ⊗ V2 where I is the identity element. We

can now extend this to study the tensor product of Lie-algebra representation. In
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our case, V1 = V2 = g, that is, the system corresponds to the Lie algebra and

M1 = M2 = (T c)ab, that is, the operators correspond to the adjoint representation

matrices. If we consider a representation of the Lie algebra g then we can construct

more representations using the machinery from the Lie algebra. Because tensors

furnish representations of the group, we can therefore derive higher representations

by taking tensor products of the fundamental representation.

In our theory the gluonic fields F a
µν are the basic fields and we want to view

them as being embedded in higher representations. For example, if we define a Lie

algebra valued field strength tensor Fµν = F a
µντ

a in the fundamental representation

then the components of the field strength, F a
µν = −2 tr (τaFµν) transform in the

adjoint representation of the group as

F a
µν → −2 tr (τaU−1FµνU)

= −2 tr (τaU−1τ bU)F b
µν

= (U−1)abF
b
µν ,

(3.40)

where (U−1)ab = −2 tr (τaU−1τ bU) is an adjoint representation matrix.

Suppose we now start with our field strength in the adjoint representation

F ab
µν := F c

µν(T
c)ab = 2F c

µνtr ([τ
c, τa]τ b) . (3.41)

We want to identify how this field strength transforms. Applying the cyclic property

of the trace, tr ([A,B]C) = tr ([B,C]A), to (3.41) we find F ab
µν = 2 tr ([τa, τ b]Fµν).
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This then transforms as

F ab
µν → 2 tr

(

[τa, τ b]U−1FµνU
)

= 2 tr
(

[τa, τ b]U−1F c
µντ

cU
)

= 2F c
µνtr

(

[UτaU−1, Uτ bU−1]τ c
)

= 2F c
µνtr

(

[Uτ bU−1, τ c]UτaU−1
)

= 2F c
µν [Uτ

bU−1, τ c]ij(Uτ
aU−1)kl δil δjk ,

(3.42)

where in the fourth line we have again used the cyclic property of the trace. Using

(3.16) we can replace the Kronecker delta functions by fundamental representation

matrices

F ab
µν → −4F c

µν [Uτ
bU−1, τ c]ij(Uτ

aU−1)kl([τ
d]ij[τ

d]kl)

= −4F c
µν tr

(

[Uτ bU−1, τ c]τd
)

tr
(

UτaU−1τd
)

= 2F c
µν tr

(

[τ c, τd]Uτ bU−1
)

(U−1)ad

= 2F c
µνf

cde tr
(

τ eUτ bU−1
)

(U−1)ad

= −2F de
µν tr

(

τ eUτ bU−1
)

(U−1)ad

= F de
µν(U

−1)be(U
−1)ad

= (U−1)ad (U
−1)be(Fµν)

de .

(3.43)

Therefore we find that the field strength can be viewed as a matrix adjoint repre-

sentation and in this representation its transformation is,

F ab
µν → (U−1)abde F

de
µν , (3.44)

where

(U−1)abde = (U−1)ad(U
−1)be . (3.45)
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Up to now we have given the transformation rules but have not yet identified what

representation we are dealing with. In order to find the representation matrices for

(3.44) we expand the left hand side of (3.45) infinitesimally to obtain

(U−1)abde = (1− θ)abde = δadδ
b
e − θk(T k)abde +O(θ2) . (3.46)

In the same way we apply an infinitesimal transformation to the right side of (3.45)

and obtain

(U−1)ad(U
−1)be = (1− θ)ad(1− θ)be = (δad − θad)(δ

b
e − θbe)

= {δad − θk(T k)ad}{δbe − θk(T k)be}

= δadδ
b
e − θkδad(T

k)be − θk(T k)adδbe +O(θ2) .

(3.47)

Now comparing (3.46) and (3.47) to order θ we find

(T k)abde = (T k)adδbe + δad(T
k)be , (3.48)

which are the representation matrices for the tensor product of the adjoint represen-

tation with itself. This then exposes what is the underlying mathematics of these

constructions and thus allows us to generate higher order representations.

We can now generalise the above procedure to higher order and build up higher

representation matrices by taking the tensor product of the tensor product. In order

to find the representation matrices for this field we first derive a very important result

that will be used in our calculations. From equation (3.40) we know that the matrix

valued field F ab
µν := F k

µν(T
k)ab transforms as

F ab
µν → (U−1)klF

l
µν(T

k)ab , (3.49)
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and similarly the transformation for this field from (3.43) is

F ab
µν → (U−1)ad (U

−1)beF
l
µν(T

l)de . (3.50)

Comparing (3.49) and (3.50) we obtain a very important result

(U−1)kl(T
k)ab = (U−1)ad (U

−1)be(T
l)de , (3.51)

which is used in the construction of higher representations.

Suppose

F abcd
µν := F k

µν(T
k)abcd = F k

µν{(T k)acδbd + δac(T
k)bd} , (3.52)

is a matrix in the tensor product of the tensor product where the lower case roman

letters range over the dimension of the group. In order to find the representation

matrix for the field F abcd
µν we now return to (3.52) and apply the gauge transformation

(3.40) to yield

F abcd
µν → (U−1)klF

l
µν{(T k)acδbd + δac(T

k)bd}

= F l
µν{(U−1)kl(T

k)acδbd + δac(U
−1)kl(T

k)bd}

= F l
µν{(U−1)am(U

−1)cn(T
l)mnδbd + δac(U

−1)bm(U
−1)dn(T

l)mn} ,

(3.53)

where in the last line we have used (3.51). Using the result δbd = (U−1)bg(U
−1)dhδ

g
h

and δac = (U−1)ag(U
−1)chδ

g
h in (3.53) we get

F abcd
µν → F l

µν{(T l)mn(U−1)am(U
−1)cn(U

−1)bg(U
−1)dhδ

g
h

+ (T l)mn(U−1)ag(U
−1)chδ

g
h(U

−1)bm(U
−1)dn}

= F l
µν{(T l)mn(U−1)am(U

−1)cn(U
−1)bg(U

−1)dhδ
g
h

+ (T l)gh(U−1)am(U
−1)cnδ

m
n(U

−1)bg(U
−1)dh} ,

(3.54)
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where in the second term we have replaced m ↔ g and n ↔ h as these are dummy

variables. Taking the common factors from (3.54) we have

F abcd
µν → F l

µν{(U−1)am(U
−1)bg(U

−1)cn(U
−1)dh}{(T l)mnδgh + δmn(T

l)gh}

= F l
µν{(U−1)am(U

−1)bg(U
−1)cn(U

−1)dh}{(T l)mg
nh}

= (U−1)abcdmgnhF
mgnh
µν .

(3.55)

We can now build up the representation matrix for the transformation (3.55) which

using (3.48) is given by

(T k)abcdmgnh = (T k)abmgδ
c
nδ

d
h + δamδ

b
g(T

k)cdnh . (3.56)

We can therefore build up higher representations using the tensor product of the Lie

algebra. These transformation rules will be used in the later sections for the dressed

fields and in the construction of the gauge invariant field strength F h
µν .

3.2.5 Product and Commutator in Lie Algebra

A key property that we have noticed from the above is that the product in the

adjoint representation is equal to the commutator in the Lie algebra. This is a very

useful property for us as it can be used to generate higher order representations.

Suppose we consider the (N2 − 1) × (N2 − 1), matrix valued field in the adjoint

representation, Aab := Ac(T c)ab, then the action of this matrix field on some

(N2 − 1)× 1 column vector B can be represented as

(AB)a := AabBb = Ac(T c)abB
b = 2AcBbtr ([τ c, τa]τ b) = 2AcBbtr (τa[τ b, τ c])

= −2 tr ([A,B]τa) = [A,B]a ,

(3.57)
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where in addition to the cyclic property of the trace we have also used that

tr ([τa, τ b]τ c) = tr (τa[τ b, τ c]). Therefore we find that the product in the adjoint

representation equals the commutator in the Lie algebra.

Equation (3.57) can now be generalised to the tensor product of the adjoint

representation. If we now consider an (N2−1)2×(N2−1)2 tensor, Aab
cd := Ak(T k)abcd

then using (3.48) the action of this tensor on some (N2−1)2×1 matrix valued field

Bcd is given by

(AB)ab = Aab
cdB

cd = Ak{(T k)acδbd + δac(T
k)bd}Bcd = AacBcb + AbdBad

= AacBcb − BacAcb

:= [A,B]ab ,

(3.58)

where in the last line we have replaced index d by c as d is a dummy variable.

Similarly for the higher order representations if we define a tensor valued field with

eight indices, Aabcd
efgh := Ak(T k)abcdefgh then the action of this tensor on another tensor

with four indices Befgh := Bl(T l)efgh can be written as

(AB)abcd := Aabcd
efghB

efgh = Ak(T k)abcdefghB
l(T l)efgh

= AkBl{(T k)abefδ
c
gδ

d
h + δaeδ

b
f(T

k)cdgh}(T l)efgh

= AkBl{(T k)abef(T
l)efcd + (T l)abgh(T

k)cdgh} .

(3.59)

In the second term of the last line we use the result (T k)cdgh = −(T k)ghcd to get

(AB)abcd = AkBl{(T k)abef(T
l)efcd − (T l)abgh(T

k)ghcd}

= (A)abef(B)efcd − (B)abgh(A)
gh
cd := [A,B]abcd .

(3.60)

Now equipped with the basic structures of Lie algebras we can discuss the idea of

how we can construct gauge invariant objects using the dressing procedure.
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3.3 Dressing Approach to Gauge Invariance

In this section we will study how gauge invariant charged particles can be constructed

in gauge theories. We will use gauge invariance as the guiding principle in the

construction of dressings [60, 61] appropriate for charged particles. We begin with

the description of charged fields in the abelian theory and then later extend it to

the non-abelian theory.

3.3.1 Charged Fields in Abelian and non-Abelian Theory

In general, if we talk about the properties of physical particles, we know they carry,

in addition to mass and spin, additional quantum numbers such as isospin, electric or

colour charge. In Chapter 2 we followed the normal route of, for example, identifying

the electron with the Dirac spinor field ψ in QED. The local gauge transformations

as we saw earlier in (2.5), for the matter field is

ψ(x) → e−ieθ(x)ψ(x) . (3.61)

So if e is switched off, then the Lagrangian fermion is locally gauge invariant. In

the LSZ formalism it is assumed that at times long before and after any scattering

process the fields entering or emerging from the vertex do not interact with each

other any more i.e., at times t = −∞ and t = +∞ the electrons are so far apart

such that an interaction between them is negligible. However due to the long range

nature of interactions (which implies that the potential between static charges slowly

falls off as e2

r
) these interactions may not be ignored. Their negligence gives rise

to IR divergences. What we can conclude from here is that since the coupling

cannot vanish asymptotically the matter field ψ is not gauge invariant and is never

physical. These matter fields do not create or annihilate charges as they are not
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gauge invariant in the remote past or future. Also as we cannot neglect interactions

asymptotically, ψ(x) is not a good asymptotic state [62–64]. Additionally one of the

important requirements for a physical field as we have seen in Chapter 2 is that it

must satisfy Gauss’ law. The matter field ψ(x) does not satisfy Gauss’ law because

Gauss’ law generates local gauge transformations.

In order to dress an electron [65–67] we assume that we surround the electron

with the electromagnetic cloud

ψD(x) = exp
(

ie
∂jAj(x)

∇2

)

ψ(x)

= h−1(x)ψ(x) ,

(3.62)

which is locally gauge invariant and non-local (due to the factor 1
∇2 ). This dressing is

more generally called Coulombic dressing. This choice of dressing has an appealing

feature that the commutators of the electric and magnetic fields with (3.62) yield the

electric and magnetic fields which we expect of a static charge. Individually, neither

the matter field nor the dressing h−1(x) are gauge invariant but together, they

describe a gauge invariant physical charge. This was first suggested by Dirac [68]

who pointed out that the above dressing is a member of the set of composite fields:

ψf (x) ≡ exp
(

− ie

∫

d4zfµ(x− z)Aµ(z)
)

ψ(x) , (3.63)

which are locally gauge invariant for any fµ so long as ∂µf
µ(w) = δ(4)(w) holds.

Now we want to apply this dressing approach to quarks where we replace the

electromagnetic coupling constant ‘ie’ with ‘g’ and introduce colour indices for the

gauge fields. In the non-abelian theory the physical fields must be invariant under

local gauge transformations defined in (3.27) and (3.30). But these fields cannot be

identified with the observables as they do not carry colour charges. To get a gauge
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invariant picture of the fermions in non-abelian theory we dress them as

ψh(x) = h−1(x)ψ(x) , (3.64)

which is the non-abelian analogue of ψD. In the above equation the dressing h−1,

transforms as

h−1(x) → h−1(x)U(x) . (3.65)

Now that we have all the ingredients needed we can now apply them in the constuc-

tion of physical gluonic configurations and as we shall see this will reveal an abelian

gauge structure within the non-abelian gauge theory.

3.3.2 The Residual Abelian Gauge Structure

In a pure gauge theory the vector potential Aa
µ is the basic buliding block from which

all other physical configurations are constructed. In order to build gauge invariant

gluonic configurations we first construct a dressing field h−1 out of the gauge fields

which transforms as (3.65). Using this dressing a gauge invariant gluonic field is

given by

Ah
µ := h−1Aµh+

1

g
h−1∂µh , (3.66)

along with a physical field strength

F h
µν := h−1Fµνh . (3.67)

There is a lot of freedom in the choice of the dressing and this reflects the specific

physical situation being studied. In this thesis, we shall focus on the dressing that

arises from requiring that ∂µAh
µ = 0, and refer to this as the Landau dressing. For

earlier work on this, see, [69, 70] and for a detailed discussion of how the dressings
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are related to gauge fixings we refer the reader to references [71–75]. We take space-

time to be Euclidian so that the Laplacian � = ∂µ∂µ has a unique Green’s function

when acting on fields that vanish at infinity.

Using the perturbative expansion

v = gv1 + g2v2 + g3v3 + · · · , (3.68)

the dressing h−1 can be expanded in powers of the coupling as

h−1 = ev = egv1+g2v2+g3v3+···

= 1 + gv1 + g2
(1

2
v1v1 + v2

)

+ g3
(1

6
v3
1
+

1

2
v1v2 +

1

2
v2v1 + v3

)

+ · · · ,
(3.69)

where v = vaτa. Similarly,

h = e−v = e−gv1−g2v2−g3v3+···

= 1− gv
1
+ g2

(1

2
v
1
v
1
− v

2

)

− g3
(1

6
v3
1
− 1

2
v
1
v
2
− 1

2
v
2
v
1
+ v

3

)

+ · · · .
(3.70)

Solving the Landau condition on the dressing leads to a perturbative solution. In

(3.68) we find that (summarised in Appendix C)

v
n
=

1

�
∂µAµ

n−1
, (3.71)

where the first few terms are given by

Aµ
0
= Aµ , Aµ

1
= [v1 , A

µ] +
1

2
[∂µv1 , v1 ] , (3.72)

and

Aµ
2
= [v

2
, Aµ] +

1

2
[v

1
, [v

1
, Aµ]] +

1

2
[∂µv

1
, v

2
] +

1

2
[∂µv

2
, v

1
]− 1

6
[v

1
, [v

1
, ∂µv

1
]] . (3.73)
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The resulting dressed potential (3.66) can then be written in the manifestly trans-

verse form as

Ah
µ =

(

gµν −
∂µ∂ν
�

)

Aν , (3.74)

where we have introduced a generalised potential Aν such that

Aν = Aν + gAν
1
+ g2Aν

2
+ · · · . (3.75)

This potential Aν plays the role in the non-abelian theory of the abelian potential

in QED as it allows us to define a gauge invariant transverse field. Its identifica-

tion reveals an abelian structure within the SU(N) gauge theory under the gauge

transformation property (3.33) which will be discussed next.

3.3.3 Gauge Transformations of the Vector Potential

Because of the fact that we have a transverse projector on Aν in (3.74), and that

Ah
µ is gauge invariant at any order of perturbation theory we find Aν has a very

simple gauge transformation property. To show this we note that at lowest order in

coupling, Aν transforms as

Aν → (Aν)
U = (Aν)

U + g(Aν
1
)U + · · · . (3.76)

The vector potential, Aν and the dressing, v1 transform as

Aν → (Aν)U = Aν + ∂νθ + g
(

[Aν , θ] +
1

2
[∂νθ, θ]

)

+ · · · , (3.77)

and

v1 → vU
1
= v1 + θ + g

∂ν

�

(

[Aν , θ] +
1

2
[∂νθ, θ]

)

+ · · · , (3.78)
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which when applied to (3.76) yields

Aν → (Aν)U = Aν + ∂νθ + g
(

[Aν , θ] +
1

2
[∂νθ, θ]

+ [v1 + θ, Aν + ∂νθ] +
1

2
[∂ν(v1 + θ), v1 + θ]

)

+ · · ·

(3.79)

Further simplification leads to

Aν → Aν + ∂νθ +
1

2
g
(

[v1 , ∂
νθ] + [∂νv1 , θ]

)

+ · · · . (3.80)

The above equation clearly illustrates the transformation of the generalised potential

in the form

Aν → Aν + ∂νΘ , (3.81)

where, to lowest non-trivial order,

Θ = θ +
1

2
g[v

1
, θ] . (3.82)

Thus from (3.74) we see that Ah
µ is gauge invariant. We will henceforth refer to Aν

as an abelian potential but we stress that this is in a non-abelian Yang-Mills theory.

3.4 Physical Field Strength Fµν

Now that we have constructed the abelian potential Aµ (3.75) it is natural to define

a physical field strength Fµν as

Fµν = ∂µAν − ∂νAµ

= ∂µA
ν − ∂νA

µ + g
(

∂µAν
1
− ∂νAµ

1

)

+ g2
(

∂µAν
2
− ∂νAµ

2

)

+ · · · ,
(3.83)
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which is of abelian form but gauge invariant in the non-abelian theory due to (3.81).

However, given the dressing, recall that the directly dressed field strength (3.67) can

be written as the field strength of the dressed potential (3.66)

F h
µν = ∂µA

h
ν − ∂νA

h
µ + g[Ah

µ, A
h
ν ] . (3.84)

In the free theory the two field strengths (3.83) and (3.84) agree but at higher order

in the coupling they differ.

3.4.1 Relation between Fµν and F h
µν

After finding the two fields strengths (3.83) and (3.84) in the previous section we

will now investigate the relation between them. A natural expectation might be that

they are the same. To check this we substitute the value of Ah
µ (3.74) into (3.84) to

obtain:

F h
µν = ∂µ

{(

gνρ −
∂ν∂ρ
�

)

Aρ
}

− ∂ν

{(

gµρ −
∂µ∂ρ
�

)

Aρ
}

+ g[Ah
µ, A

h
ν ]

= ∂µAν − ∂νAµ + g[Ah
µ, A

h
ν ] .

(3.85)

Using the definition (3.83) in (3.85) we can write the field strength factorisation as

F h
µν = Fµν + g[Ah

µ, A
h
ν ] . (3.86)

We thus find that the two field strengths are clearly not the same. These play a key

role in constructing the mass like term that we will study in the next chapter.
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3.5 Concluding Remarks

To recap this whole chapter we have demonstrated various properties of Lie algebras

and derived new results that will be needed in the rest of the thesis. We have

stressed on the role of the dressing from which other physical gluonic configurations

are constructed. There has been lot of work on how the dressing principle can be

used to construct quarks and gluons perturbatively [76,77]. Outside of perturbation

theory this is not possible due to the Gribov ambiguity, see [78–80]. At small

distances it is, however possible to perturbatively define the quarks and gluonic

configurations [81–83]. As well as constructing the gauge invariant states, dressings

can be used to calculate the inter-quark potential and to study the stability, creation

and annihilation of particles in gauge theories [84].



Chapter 4

Gauge Invariant Mass terms

4.1 Introduction

The gauge theories (both abelian and non-abelian) have one of the striking features

that the gauge fields in these theories are massless. Adding a naive mass term

such as A2 to the Lagrangian breaks gauge invariance. This is consistent with the

degrees of freedom but leads to the difficulties in establishing renormalisability of

the interacting theory for massive photons. However, not to be put off by this, there

has been a lot of interesting debate on the construction of the gauge invariant mass

terms that are generated in the gauge invariant expansions [85–88]. In the abelian

theory there are various ways to obtain a gauge invariant mass term [89], however

in non-abelian gauge theories it is not so straightforward. In a pure gauge theory

indeed there has been a resurgence of interest in this over the past 10 years [90–97].

This can be traced in part to a seminal paper by Zwanziger [98] where the gauge

invariance of this construction of mass operator was addressed. This mass term has

been used up and exploited in several publications, see for example, [99–104].

In Zwanziger’s description of the A2 mass term, an expansion is introduced in

61
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terms of the powers of the field strength (following his notation):

|Ah|2 = −1

2

(

Fµν ,
( 1

D2
Fµν

))

+
(( 1

D2
Fµν

)

,
[ 1

D2
DαFαµ,

1

D2
DβFβν

])

−
(( 1

D2
Fµν

)

,
[ 1

D2
DβFβρ,

1

D2
DρFµν

])

,

(4.1)

where gauge invariance is maintained order by order by the use of the inverse

covariant Laplacian. Although Zwanziger introduced this expansion he did not

offer a derivation or explain how it may be extended to higher orders. It is also not

clear how unique the construction is.

In this chapter we will see how gauge invariant mass terms can be constructed

in QED and the non-abelian Yang Mills theory. We shall try to write mass terms

in terms of the field strength in both the theories. After this we shall introduce the

gauge covariant Laplacian along with its inverse and summarise its main properties.

In addition to the field strength decomposition introduced in the previous chapter

there is another factorisation at play, that of the dressed field into transverse and

longitudinal components which underlies various expansions seen in the literature.

The difference between the decomposition and factorisation will later give us insight

into Zwanziger’s expansion.

4.2 Mass Terms in Abelian and non-Abelian theory

In QED the dressed field (3.66) is simply the transverse field A
T

µ where

A
T

µ =

(

gµν −
∂µ∂ν
�

)

Aν . (4.2)
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This can be used to construct, a gauge invariant mass-like term

M2 =

∫

d4x A
T

µ(x)A
T

µ(x) . (4.3)

From equation (4.2) we can write the transverse vector potential as

A
T

µ(x) =
1

�
∂νFνµ(x) . (4.4)

Using this we have for (4.3)

M2 =

∫

d4x A
T

µ(x)
1

�
∂νFνµ(x) . (4.5)

Integrating by parts and using the fact that Fνµ is antisymmetric we end up with

M2 = −
∫

d4x ∂νA
T

µ(x)
( 1

�
Fνµ

)

(x) = −1

2

∫

d4x Fµν(x)
( 1

�
F µν

)

(x) , (4.6)

which is the mass term generalisation for the abelian theory.

In much the same way, in a non-abelian theory a mass term can be written as

M2 =

∫

d4x Aha
µ (x)Ah a

µ (x) = −1

2

∫

d4x Fa
µν(x)

( 1

�
Fµν

)a

(x) . (4.7)

Here we see that the generalisation of the QED mass term (4.3) to the non-abelian

theory is accomplished by replacing the QED field strength Fµν by the physical field

strength Fµν (3.83). Having seen the role of this field strength Fµν , we now want

to identify the role of the dressed field strength F h
µν . Its role is not immediately

obvious, and we will first need to discuss the approach of Zwanziger to the mass

term.

Another possible generalisation of the right hand side of (4.6) which maintains
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gauge invariance is to use the non-abelian field strength Fµν but replace the inverse

Laplacian 1/� with the gauge covariant inverse 1/D2. This is essentially the first

part of Zwanziger’s approach to the mass term [98] as given by the first term of the

expansion (4.1). What we will show in the next sections is how this is carried out

in practice and then how the central role of the dressed field strength F h
µν emerges.

This will then allow us to understand the relationship between the non-abelian mass

term (4.7) and the gauge covariant Laplacian approach of Zwanziger.

4.3 The Gauge Covariant Inverse Laplacian

Before discussing how the inverse to the gauge covariant Laplacian is defined per-

turbatively, we first recall how the inverse to the normal Laplacian, �, is defined.

Acting on an element f(x), from a suitable class of test-functions we define

1

�
f(x) :=

∫

d4y K0(x, y)f(y) , (4.8)

where K0(x, y) is the Green’s function for the Laplacian which in the Euclidian

setting we can write as

K0(x, y) = −4π2 1

(x− y)2
. (4.9)

The Green’s function satisfies �xK0(x, y) = δ4(x − y) which ensures that (4.8) is

the inverse Laplacian. Note that the subscript x in the Laplacian signifies which

variable it acts upon.

To generalise this we consider the operator found by replacing the derivative ∂µ

by the covariant derivative Dµ = ∂µ+gAµ. That is, we consider the gauge covariant

Laplacian

D2 := DµDµ = �+ g(∂·A+ 2A·∂) + g2A2 . (4.10)
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To construct the Green’s function we need to identify the space of functions that

this operator acts on. Given that this is a matrix operator it will act on vectors in

the appropriate representation of the gauge group. To signify this we will write the

functions as the column vector f . The cases we will be interested in are when the

vectors are in the fundamental, adjoint or tensor product of these representations

but for the moment we will not specify the representation.

We now write

1

D2
f(x) =

∫

d4y K(x, y)f(y) , (4.11)

where K(x, y) is a matrix Green’s function and require that

D2
xK(x, y) = δ4(x− y) . (4.12)

This is solved perturbatively by letting K(x, y) have the expansion

K(x, y) = K0(x, y) + gK1(x, y) + g2K2(x, y) + · · · . (4.13)

We then find thatK0(x, y) is the free Green’s function (4.9) times the identity matrix

as expected while

�xK1(x, y) + (∂·A+ 2A·∂x)K0(x, y) = 0 , (4.14)

and in general for n ≥ 2

�xKn(x, y) + (∂·A+ 2A·∂x)Kn−1(x, y) + A2Kn−2(x, y) = 0 . (4.15)

These equations can be solved in an iterative fashion resulting in

K1(x, y) =

∫

d4z
{

∂ρzK0(x, z)Aρ(z)K0(z, y)−K0(x, z)Aρ(z)∂
ρ
zK0(z, y)

}

, (4.16)
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K2(x, y) =

∫

d4z
{

∂ρzK0(x, z)Aρ(z)K1(z, y)−K0(x, z)Aρ(z) ∂
ρ
zK1(z, y)

−K
0
(x, z) Aρ(z)Aρ(z) K0

(z, y)
}

,

(4.17)

and in general for n ≥ 2

Kn(x, y) =

∫

d4z
{

∂ρzK0(x, z)Aρ(z)Kn−1(z, y)−K0(x, z)Aρ(z)∂
ρ
zKn−1(z, y)

−K
0
(x, z)A2(z)Kn−2(z, y)

}

.

(4.18)

In the next subsection we will review some of the properties of the inverse covariant

Laplacian 1/D2 and provide proofs of results that will be needed in the later part

of thesis.

4.3.1 Properties of the Inverse Covariant Laplacian

It should be noted that the gauge covariant Laplacian D2 in (4.11) has been shown

to have a right inverse 1/D2 in the sense that

D2
( 1

D2
f
)

(x) = f(x) . (4.19)

One can in an analogous way, see that the left inverse 1/D̃2 exists for D2 that is,

( 1

D̃2
D2f

)

(x) = f(x) . (4.20)

Equations (4.19) and (4.20) can be shown by first starting with the construction of

the right inverse that can be written from (4.11) and (4.12) in the form

D2
( 1

D2
f
)

(x) =

∫

d4y D2
xK(x, y)f(y) , (4.21)
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where K(x, y) is defined in (4.13). Similarly we can define the left inverse 1/D̃2

( 1

D̃2
D2f

)

(x) :=

∫

d4y K̃(x, y)D2f(y) = f(x) , (4.22)

that can be expanded in a power series as in (4.13) to give

K̃(x, y) = K̃0(x, y) + gK̃1(x, y) + g2K̃2(x, y) + · · · . (4.23)

Proceeding in the same way as above we find for n ≥ 2

K̃n(x, y) =

∫

d4z
{

∂ρz K̃n−1(x, z)Aρ(z)K̃0
(z, y)− K̃n−1(x, z)Aρ(z)∂

ρ
z K̃0

(z, y)

− K̃n−2(x, z)A
2(z)K̃0(z, y)

}

.

(4.24)

An inductive proof will then show that order by order we have

Kn(x, y) = K̃n(x, y) . (4.25)

which we shall proceed to verify next.

When n = 0, 1 it is straightforward to see that

K0(x, y) = K̃0(x, y) and K1(x, y) = K̃1(x, y) . (4.26)

Assuming that the result holds true for the (n − 1)-th term, that is, Kn−1(x, y) =

K̃n−1(x, y), using this we should now be able to verify (4.25). We start with Kn(x, y)

(4.18) and use Kn−1(z, y) = K̃n−1(z, y) and Kn−2(z, y) = K̃n−2(z, y) to obtain

Kn(x, y) =

∫

d4z
{

∂ρz K̃0(x, z)Aρ(z)K̃n−1(z, y)− K̃0(x, z)Aρ(z)∂
ρ
z K̃n−1(z, y)

− K̃0(x, z)A
2(z)K̃n−2(z, y)

}

.

(4.27)
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In the above equation we use the identification

K̃n−1(z, y) =

∫

d4w
{

∂µwK̃n−2(z, w)Aµ(w)K̃0(w, y)− K̃n−2(z, w)Aµ(w)∂
µ
wK̃0(w, y)

− K̃n−3(z, w)A
2(w)K̃0(w, y)

}

.

(4.28)

and the result for K̃n−2(z, y) to obtain

Kn(x, y) =

∫

d4z d4w
{

∂ρz K̃0(x, z)Aρ(z)
(

∂µwK̃n−2(z, w)Aµ(w)K̃0(w, y)

− K̃n−2(z, w)Aµ(w)∂
µ
wK̃0(w, y)− K̃n−3(z, w)A

2(w)K̃0(w, y
)}

−
∫

d4z d4w
{

K̃
0
(x, z)Aρ(z)∂

ρ
z

(

∂µwK̃n−2(z, w)Aµ(w)K̃0
(w, y)

− K̃n−2(z, w)Aµ(w)∂
µ
wK̃0(w, y)− K̃n−3(z, w)A

2(w)K̃0(w, y
)}

−
∫

d4z d4w
{

K̃0(x, z)A
2(z)

(

∂µwK̃n−3(z, w)Aµ(w)K̃0(w, y)

− K̃n−3(z, w)Aµ(w)∂
µ
wK̃0

(w, y)− K̃n−4(z, w)A
2(w)K̃

0
(w, y

)}

.

(4.29)

Interchanging z and w for all the integrals in the above equation we have

Kn(x, y) =

∫

d4z d4w
{

∂ρwK̃0(x, w)Aρ(w)
(

∂µz K̃n−2(w, z)Aµ(z)K̃0(z, y)

− K̃n−2(w, z)Aµ(z)∂
µ
z K̃0(z, y)− K̃n−3(w, z)A

2(z)K̃0(z, y)
)}

−
∫

d4z d4w
{

K̃0(x, w)Aρ(w)∂
ρ
w

(

∂µz K̃n−2(w, z)Aµ(z)K̃0(z, y)

− K̃n−2(w, z)Aµ(z)∂
µ
z K̃0(z, y)− K̃n−3(w, z)A

2(z)K̃0(z, y)
)}

−
∫

d4z d4w
{

K̃
0
(x, w)A2(w)

(

∂µz K̃n−3(w, z)Aµ(z)K̃0
(z, y)

− K̃n−3(w, z)Aµ(z)∂
µ
z K̃0(z, y)− K̃n−4(w, z)A

2(z)K̃0(z, y)
)}

.

(4.30)
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Noting that Aµ(z)K̃0(z, y) is common to the first, third and fifth line and that

Aµ(z)∂
µ
z K̃0(z, y) to the second, fourth and sixth line we have

Kn(x, y) =

∫

d4z d4w
{(

∂ρwK̃0
(x, w)Aρ(w)∂

µ
z K̃n−2(w, z)− K̃

0
(x, w)Aρ(w)∂

ρ
w∂

µ
z K̃n−2(w, z)

− K̃0(x, w)A
2(w)∂µz K̃n−3(w, z)

)

Aµ(z)K̃0(z, y)
}

−
∫

d4z d4w
{(

∂ρwK̃0(x, w)Aρ(w)K̃n−2(w, z)− K̃0(x, w)Aρ(w)∂
ρ
wK̃n−2(w, z)

− K̃
0
(x, w)A2(w)K̃n−3(w, z)

)

Aµ(z)∂
µ
z K̃0

(z, y)
}

−
∫

d4z d4w
{(

∂ρwK̃0(x, w)Aρ(w)K̃n−3(z, w)− K̃0(x, w)Aρ(w)∂
ρ
wK̃n−3(w, z)

− K̃0(x, w)A
2(w)K̃n−4(w, z)

)

A2(z)K̃0(z, y)
}

.

(4.31)

Taking the derivative ∂µz common from the first braces

Kn(x, y) =

∫

d4z d4w
{

∂µz

(

∂ρwK̃0
(x, w)Aρ(w)K̃n−2(w, z)− K̃

0
(x, w)Aρ(w)∂

ρ
wK̃n−2(w, z)

− K̃0(x, w)A
2(w)K̃n−3(w, z)

)

Aµ(z)K̃0(z, y)
}

−
∫

d4z d4w
{(

∂ρwK̃0(x, w)Aρ(w)K̃n−2(w, z)− K̃0(x, w)Aρ(w)∂
ρ
wK̃n−2(w, z)

− K̃
0
(x, w)A2(w)K̃n−3(w, z)

)

Aµ(z)∂
µ
z K̃0

(z, y)
}

−
∫

d4z d4w
{

∂ρwK̃0(x, w)Aρ(w)K̃n−3(z, w)− K̃0(x, w)Aρ(w)∂
ρ
wK̃n−3(w, z)

− K̃0(x, w)A
2(w)K̃n−4(w, z)

)

A2(z)K̃0(z, y)
}

.

(4.32)

Identifying the term inside the first and second braces with the term Kn−1(x, z)
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and the term inside the last braces with Kn−2(x, z) we obtain

Kn(x, y) =

∫

d4z
{

∂µzKn−1(x, z)Aµ(z)K̃0(z, y)−Kn−1(x, z)Aµ(z)∂
µ
z K̃0(z, y)

−Kn−2(x, z)A
2(z)K̃0(z, y)

}

.

(4.33)

Using the result, Kn−1(x, z) = K̃n−1(x, z) and Kn−2(x, z) = K̃n−2(x, z) in the above

equation we obtain

Kn(x, y) =

∫

d4z d4w
{

∂µz K̃n−1(x, z)Aµ(z)K̃0(z, y)− K̃n−1(x, z)Aµ(z)∂
µ
z K̃0(z, y)

− K̃n−2(x, z)A
2(z)K̃0(z, y)

}

= K̃n(x, y) .

(4.34)

A related and very useful result is that

tr

∫

d4x
〈

f(x)
( 1

D2
g
)

(x)
〉

= tr

∫

d4x
〈( 1

D2
f
)

(x) g(x)
〉

. (4.35)

For fields in the adjoint representation we introduce the appropriate colour indices

such that K(x, y) → Kab(x, y) and this identity is equivalent to the result that

Kab(x, y) = Kba(y, x) . (4.36)

Note that when we are explicit about the matrix indices in the Green’s function as

in Kab(x, y) we mean that we have an expansion

Kab(x, y) = δabK
0
(x, y) + gKab

1
(x, y) + g2Kab

2
(x, y) + · · · , (4.37)
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where, for example,

Kab
1
(x, y) =

∫

d4z
{

∂ρzK
ac
0
(x, z)Acd

ρ (z)Kdb
0
(z, y)−Kac

0
(x, z)Acd

ρ (z)∂ρzK
db
0
(z, y)

}

,

(4.38)

and Acd
ρ is the potential in the adjoint representation whence Acd

ρ = −Ae
ρf

cde. We

will now use induction to show that (4.36) holds to all orders, that is,

Kab
n (x, y) = Kba

n (y, x) . (4.39)

Starting with n = 0 it is quite obvious that

Kab
0
(x, y) = Kba

0
(y, x) , (4.40)

because we are allowed to change the indices (ab) and the coordinates (x, y).

For n = 1 we need to show that Kab
1
(x, y) = Kba

1
(y, x). We start with the left

hand side defined in (4.38) and use (4.40) along with the property, Acd
ρ (z) = −Adc

ρ (z),

to find

Kab
1
(x, y) = −

∫

d4z
{

∂ρzK
ca
0
(z, x)Adc

ρ (z)Kbd
0
(y, z)−Kca

0
(z, x)Adc

ρ (z)∂ρzK
bd
0
(y, z)

}

.

(4.41)

Swapping the terms ∂ρzK
ca
0
(z, x) with Kbd

0
(y, z) in the first integrand and similarly

the terms Kca
0
(z, x) with ∂ρzK

bd
0
(y, z) in the second we get

Kab
1
(x, y) = −

∫

d4z
{

Kbd
0
(y, z)Adc

ρ (z)∂ρzK
ca
0
(z, x)− ∂ρzK

bd
0
(y, z)Adc

ρ (z)Kca
0
(z, x)

}

= Kba
1
(y, x) .

(4.42)

Next we verify that Kab
2
(x, y) = Kba

2
(y, x). With the definition of K2(x, y) already
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introduced in (4.17) but now carrying indices (ab) we start with the left hand side

Kab
2
(x, y) =

∫

d4z
{

∂ρzK
ac
0
(x, z)Acd

ρ (z)Kdb
1
(z, y)−Kac

0
(x, z)Acd

ρ (z) ∂ρzK
db
1
(z, y)

−Kac
0
(x, z) Acd

ρ (z)Ade
ρ (z) Keb

0
(z, y)

}

=

∫

d4z
{

− ∂ρzK
ca
0
(z, x)Adc

ρ (z)Kbd
1
(y, z) +Kca

0
(z, x)Adc

ρ (z) ∂ρzK
bd
1
(y, z)

−Kca
0
(z, x) Adc

ρ (z)Aed
ρ (z) Kbe

0
(y, z)

}

,

(4.43)

where we have used (4.40) and (4.42) in addition to, Acd
ρ = −Adc

ρ . At this stage

we make use of the inverse properties of the covariant Laplacian in the first two

integrands to yield

Kab
2
(x, y) =

∫

d4z
{

− ∂ρzK
ca
1
(z, x)Adc

ρ (z)Kbd
0
(y, z) +Kca

1
(z, x)Adc

ρ (z) ∂ρzK
bd
0
(y, z)

−Kca
0
(z, x) Adc

ρ (z)Aed
ρ (z) Kbe

0
(y, z)

}

.

(4.44)

Rearranging the above equation we find

Kab
2
(x, y) =

∫

d4z
{

∂ρzK
bd
0
(y, z)Adc

ρ (z)K
ca
1
(z, x)−Kbd

0
(y, z)Adc

ρ (z) ∂
ρ
zK

ca
1
(z, x)

−Kbe
0
(y, z) Aed

ρ (z)Adc
ρ (z) Kca

0
(z, x)

}

,

(4.45)

and hence

Kab
2
(x, y) = Kba

2
(y, x) . (4.46)

To summarise we have seen that

Kab
0
(x, y) = Kba

0
(y, x) , Kab

1
(x, y) = Kba

1
(y, x) , Kab

2
(x, y) = Kba

2
(y, x) . (4.47)
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Assuming that the result holds true for the (n− 1)-th term, that is,

Kab
n−1(x, y) = Kba

n−1(y, x), using this we should now be able to verify that

Kab
n (x, y) = Kba

n (y, x) , (4.48)

where writing (4.18) with appropriate colour indices we have

Kab
n (x, y) =

∫

d4z
{

∂ρzK
ac
0
(x, z)Acd

ρ (z)Kdb
n−1(z, y)−Kac

0
(x, z)Acd

ρ (z)∂ρzK
db
n−1(z, y)

−Kac
0
(x, z)Acd

ρ (z)Ade
ρ (z)Keb

n−2(z, y)
}

.

(4.49)

Similarly the right hand side of (4.48) can be written as

Kba
n (y, x) =

∫

d4z
{

∂ρzK
bd
0
(y, z)Adc

ρ (z)Kca
n−1(z, x)−Kbd

0
(y, z)Adc

ρ (z)∂ρzK
ca
n−1(z, x)

−Kbe
0
(y, z)Aed

ρ (z)Adc
ρ (z)Kca

n−2(z, x)
}

.

(4.50)

To verify (4.48) we start with (4.49) and apply the following properties

Kac
0
(x, z) = Kca

0
(z, x), Kdb

n−1(z, y) = Kbd
n−1(y, z), Acd

ρ (z) = −Adc
ρ (z) , (4.51)

to get

Kab
n (x, y) =

∫

d4z
{

− ∂ρzK
ca
0
(z, x)Adc

ρ (z)Kbd
n−1(y, z) +Kca

0
(z, x)Adc

ρ (z)∂ρzK
bd
n−1(y, z)

−Kca
0
(z, x)Adc

ρ (z)Aed
ρ (z)Kbe

n−2(y, z)
}

.

(4.52)

Using the properties of the inverse covariant Laplacian in (4.52) we obtain
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Kab
n (x, y) =

∫

d4z
{

− ∂ρzK
ca
n−1(z, x)A

dc
ρ (z)Kbd

0
(y, z) +Kca

n−1(z, x)A
dc
ρ (z)∂ρzK

bd
0
(y, z)

−Kca
n−2(z, x)A

dc
ρ (z)Aed

ρ (z)Kbe
0
(y, z)

}

.

(4.53)

Now swapping Kbd
0
(y, z) with ∂ρzK

ca
n−1(z, x) in the first integrand andKca

n−1(z, x) with

∂ρzK
bd
0
(y, z) in the second integrand we obtain

Kab
n (x, y) =

∫

d4z
{

−Kbd
0
(y, z)Adc

ρ (z)∂
ρ
zK

ca
n−1(z, x) + ∂ρzK

bd
0
(y, z)Adc

ρ (z)Kca
n−1(z, x)

−Kbe
0
(y, z)Aed

ρ (z)Adc
ρ (z)Kca

n−2(z, x)
}

= Kba
n (y, x) .

(4.54)

We now need to clarify the gauge transformation properties of the inverse covariant

Laplacian. In Chapter 3 we discussed the gauge transformation property (3.28) of

the covariant derivative. Under a gauge transformation, the covariant Laplacian

transforms as

D2
x → U−1(x)D2

x U(x) , (4.55)

where U(x) is the group element in the appropriate representation that we used to

define the covariant derivative. From (4.55) and the fact that K(x, y) is the Green’s

function for both the left and right inverse of the Laplacian action (4.19) and (4.20)

it follows that the associated transformation of the Green’s function K(x, y) is

K(x, y) → U−1(x)K(x, y)U(y) . (4.56)

In terms of the adjoint representation,

Kab(x, y) → (U−1)ac (x)K
cd(x, y)Ud

b (y) , (4.57)
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and for the tensor product of adjoint representation

Kab
cd (x, y) → (U−1)abef (x)K

ef
gh(x, y)(U)

gh
cd(y) . (4.58)

This means that if we have a field B which transforms in the adjoint representation

then so will
1

D2
B, i.e.,

( 1

D2
B
)a

(x) → (U−1)ab(x)
( 1

D2
B
)b

(x) . (4.59)

While if we have a tensor product of the adjoint representation we get

( 1

D2
B
)ab

(x) → (U−1)abcd(x)
( 1

D2
B
)cd

(x) = (U−1)ac (x)(U
−1)bd(x)

( 1

D2
B
)cd

(x) . (4.60)

The terms on left side of (4.59) and (4.60) can be written as

( 1

D2
B
)a

(x) =

∫

d4y Kab(x, y)Bb(y) , (4.61)

and
( 1

D2
B
)ab

(x) =

∫

d4y Kab
cd(x, y)B

cd(y) , (4.62)

where for such gauge invariant fields Bab = −fabcBc. It is not immediately obvious

that the inverse covariant Laplacian preserves the Lie algebra structure displayed in

these equations that is in order for

( 1

D2
B
)ab

(x) = −fabc
( 1

D2
B
)c

(x) , (4.63)

we require

f ecdKab
cd(x, y) = fabcKce(x, y) . (4.64)
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Note that in the above equation, Kab
cd(x, y) are the fields in the tensor product of

the adjoint representation

Kab
cd(x, y) = δac δ

b
dK0(x, y) + gK1

ab
cd(x, y) + · · ·+ gnKn

ab
cd(x, y) , (4.65)

where to the lowest order,

K1

ab
cd(x, y) =

∫

d4z
{

∂ρzK0(x, z)(Aρ)
ab

cd
(z)K0(z, y)

−K0(x, z)(Aρ)
ab

cd
(z)∂ρzK0(z, y)

}

,

(4.66)

K2

ab
cd(x, y) =

∫

d4z
{

∂ρzK0(x, z)(Aρ)
ab

c′d′
(z)K1

c′d′

cd (z, y)

−K0(x, z)(Aρ)
ab

c′d′
(z) ∂ρzK1

c′d′

cd (z, y)

−K0(x, z) (Aρ)
ab

c′d′
(z)(Aρ)

c′d′

cd
(z)K0(z, y)

}

,

(4.67)

and in general for n ≥ 2

K
n

ab
cd(x, y) =

∫

d4z
{

∂ρzK0(x, z)(Aρ)
ab

c′d′
(z)K

n−1

c′d′

cd
(z, y)

−K0(x, z)(Aρ)
ab

c′d′
(z)∂ρzKn−1

c′d′

cd
(z, y)

−K0(x, z)(Aρ)
ab

c′d′
(z)(Aρ)

c′d′

e′f ′(z)Kn−2

e′f ′

cd
(z, y)

}

.

(4.68)

Note that the potential in this representation is (Aρ)
ab

cd
= (Aρ)

e(T e)abcd with the

representation matrix, (T e)abcd = (T e)acδbd + δac(T
e)bd = faecδbd + f bedδac defined in

the previous chapter (3.58).

The fields Kce(x, y) in (4.64) are in the adjoint representation which have an

expansion as (4.37) such that to the lowest order,

Kce
1
(x, y) =

∫

d4z
{

∂ρzK0(x, z)(Aρ)
ce(z)K0(z, y)

−K0(x, z)(Aρ)
ce(z)∂ρzK0(z, y)

}

,

(4.69)
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Kce
2
(x, y) =

∫

d4z
{

∂ρzK0(x, z)A
cd
ρ (z)Kde

1
(z, y)

−K
0
(x, z)Acd

ρ (z)∂ρzK
de
1
(z, y)

−K0(x, z)A
cd
ρ (z)Ade

ρ (z)K0(z, y)
}

,

(4.70)

and in general for n ≥ 2

Kce
n (x, y) =

∫

d4z
{

∂ρzK0
(x, z)Acd

ρ (z)Kde
n−1(z, y)

−K0(x, z)A
cd
ρ (z)∂ρzK

de
n−1(z, y)

−K0(x, z)A
cd
ρ (z)Adf

ρ (z)K
fe
n−2(z, y)

}

.

(4.71)

However from (4.64) if the fields are described in terms of Kn
ab
cd(x, y) and K

ce
n (x, y),

it is to argue by induction that generally,

f ecdKn
ab
cd(x, y) = fabcKce

n (x, y) , (4.72)

or equivalently,

f ecd(Aρ)
ab

cd
= fabc(Aρ)

ce . (4.73)

Let us now show this by induction. We start with n = 0 such that left hand side of

(4.72) is

f ecdK0

ab
cd(x, y) = f ecdδac δ

b
dK0(x, y) = f eabK0(x, y) , (4.74)

and the right hand side is

fabcKce
0
(x, y) = fabcδceK0(x, y) = f eabK0(x, y) . (4.75)

For n = 1 we need to verify that f ecdK1

ab
cd(x, y) = fabcKce

1
(x, y). Note that, for the

proofs we will use the condensed notation and focus on the colour content whereby

we ignore the irrelevant nested integral. For example, K1

ab
cd(x, y) (4.66) has four
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indices which enter the right hand side as (Aρ)
ab

cd
. Suppressing the coordinates (x, y)

we now start with the left hand side to find that the colour content of f ecdK1

ab
cd is

given by

f ecd(Aρ)
ab

cd
= f ecdAg

ρ(f
agcδbd + f bgdδac)

= (f ecbfagc + f eadf bgd)Ag
ρ ,

(4.76)

where we have used (3.58) in the first line and only written the colour indices

structures. The index d in (4.76) is a dummy variable so denoting it by a new

variable c and using the Jacobi identity we obtain

f ecd(Aρ)
ab

cd
= −f cabf gceAg

ρ = fabcAce
ρ . (4.77)

For the right hand side we find form (4.69) that Kce
1
(x, y) has two indices which

enter as Ace
ρ , that is, the colour content of fabcKce

1
is given by

fabcAce
ρ , (4.78)

which is similar to (4.77).

Hence,

f ecdK1

ab
cd(x, y) = fabcKce

1
(x, y) . (4.79)

Now let us show this also forK2

ab
cd(x, y). Note that K2

ab
cd(x, y) (4.67) has four indices

which enter the right hand side in different ways. The first two terms on the right

side contain (Aρ)
ab

c′d′
K1

c′d′

cd up to a derivative on the second term. However, the third

term involves the colour structure (Aρ)
ab

c′d′
(Aρ)

c′d′

cd
. To show (4.72) holds for n = 2

we take into account both the combinations and show that they agree. Suppressing

the coordinates we start with the left hand side of (4.72) for n = 2 given by (4.67)
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and take the first combination for f ecdK2

ab
cd into account to give

f ecd(Aρ)
ab

c′d′
K1

c′d′

cd = (Aρ)
ab

c′d′
f c′d′cKce

1
. (4.80)

Note that we have only written the colour indices structures and used the result

(4.79) for the last term. Now using (4.73) we find the colour content of f ecdK
2

ab
cd is

given by

fabc′(Aρ)
c′cKce

1
= f c′abKc′e

2
, (4.81)

where in the last step we have identified (Aρ)
c′cKce

1
with the first combination in

(4.70). Because c′ is a dummy variable, we have

f ecdK2

ab
cd(x, y) = f cabK2

ce(x, y) . (4.82)

Now using the second combination arising from the third term in (4.70) and writing

the relevant colour content for f ecdK2

ab
cd we obtain

f ecd(Aρ)
ab

c′d′
(Aρ)

c′d′

cd
. (4.83)

In the above equation the terms f ecd and (Aρ)
c′d′

cd
can be contracted using (4.73) as

f ecdK2

ab
cd = (Aρ)

ab

c′d′
f c′d′c(Aρ)

ce = (Aρ)
c′cf c′ab(Aρ)

ce . (4.84)

In the last step we can identify the colour content of the terms (Aρ)
c′c(Aρ)

ce with

the combination from the third term in (4.70) f c′abKc′e
2
. Because c′ is a dummy

variable we obtain

f ecdK2

ab
cd = fabcKce

2
. (4.85)

Now that we have verified that the result holds for n = 0, 1 and 2, so in the



80 Chapter 4. Gauge Invariant Mass terms

inductive step we assume it is true for the (n− 1)-th term, that is,

f ecdKn−1
ab
cd(x, y) = fabcKce

n−1(x, y) , (4.86)

and using this we can verify (4.72). As above Kn
ab
cd(x, y) (4.68) has four indices

which enter the right hand side in different ways. The first two terms on the right

side contain (Aρ)
ab

c′d′
Kn−1

c′d′

cd up to a derivative on the second term and the third

term involves the colour structure (Aρ)
ab

c′d′
(Aρ)

c′d′

e′f ′Kn−2
e′f ′

cd . We start with the left

hand side of (4.72), suppress the coordinates (x, y) and use the first combination in

Kn
ab
cd(x, y) to write the colour content of f ecdKn

ab
cd as

f ecd(Aρ)
ab

c′d′
Kn−1

c′d′

cd = (Aρ)
ab

c′d′
f c′d′cKce

n−1 , (4.87)

where we have used (4.86). The terms (Aρ)
ab

c′d′
f c′d′c in the above equation can be

replaced using (4.73) as

f ecdKn
ab
cd = (Aρ)

c′cfabc′Kce
n−1 = fabc′Kc′e

n = fabcKce
n , (4.88)

where we have replaced c′ by c as c′ is a dummy variable.

Next we shall verify (4.72) using the other combination. As above we now use

the second combination in Kn
ab
cd(x, y) (4.68) where the terms enter as a product

(Aρ)
ab

c′d′
(Aρ)

c′d′

e′f ′Kn−2
e′f ′

cd . We start with the left hand side of (4.72) and write the

relevant colour content of f ecdKn
ab
cd as

f ecd(Aρ)
ab

c′d′
(Aρ)

c′d′

e′f ′Kn−2
e′f ′

cd = (Aρ)
ab

c′d′
(Aρ)

c′d′

e′f ′f
ce′f ′

Kce
n−2 , (4.89)

where again we have used the result (4.86) for (n− 2)-th term. Using the property
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(4.73) we find the above to be equal to

(Aρ)
ab

c′d′
Kce

n−2(Aρ)
e′cf c′d′e′ = f c′ab(Aρ)

c′e′(Aρ)
e′cKc′e

n−2 , (4.90)

where using (4.71) we identify the colour content of last term to be equivalent to

f c′abKce
n . The result thus works to all orders by induction.

These properties allows us to use K(x, y) as a dressing for fields defined at

different points x and y. In particular if we consider the field strengths F a
µν at

the two points, then working in the adjoint representation we will have the gauge

invariant configuration:

〈

F µν(x), K(x, y)F µν(y)
〉

:= F a
µν(x)K

ab(x, y)F bµν(y) . (4.91)

Integrating this expression gives

− 1

2

∫

d4x F a
µν(x)

(

1

D2
F µν

)a

(x) := −1

2

∫

d4x d4y F a
µν(x)K

ab(x, y)F bµν(y) , (4.92)

which is the gauge invariant generalisation of the abelian mass term (4.6) proposed

in [98] by Zwanziger. Indeed the term on left hand side of (4.92) is the first term in

the non-abelian expansion of the mass operator introduced by Zwanziger in equation

(4.1). In the next sections we will make clear the relationship between this gauge

invariant result (4.92) and the non-abelian mass term described in equation (4.7).

4.4 Role of Strings in Dressing

In this section we will briefly introduce strings which are often chosen to be the

more useful candidates to construct gauge invariant composites of charged fields, for

example the mesonic states. These constructs can be understood perturbatively by
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x y
Γ

Figure 4.1: Strings describing the positronium state (e+e−).

the path ordering. In general, at least in the perturbative regime, such dressings

factorise into simple dressings for each individual fermion. This was suggested by

Cahill and Stump [105,106] who stated that the dressing of a quark-antiquark system

that corresponds to an ultra-heavy meson can be done through a cloud of glue such

that the system

ψ̄(x)K(x, y)ψ(y) , (4.93)

is gauge invariant. We now construct a positronium like state by attaching a string

between the two fermions at points x and y as shown in Fig. 4.1.

ψ̄(x) exp
(

− ie

∫ x

y

Aµ(z)dz
µ
)

ψ(y) . (4.94)

In fact, this state is clearly gauge invariant for an arbitrary contour taken from x to y.

However, the contour dependence is difficult to interpret physically. We now make

the usual decomposition of the vector potential into transverse and longitudinal

components

Aµ = A
T

µ + ∂µ

(∂ · A
�

)

. (4.95)

This follows from the fact that the dressed potential can be written in a gauge

invariant form. Substituting the decomposition (4.95) into (4.94) we find that (4.94)
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factorises to give

ψ̄(x) exp
(

− iev1(x)
)

exp
(

− ie

∫ x

y

A
T

µ(z) dz
µ
)

exp
(

iev1(y)
)

ψ(y) , (4.96)

which can be written in the form

ψ̄(x)h(x)M(x, y)h−1(y)ψ(y) , (4.97)

where h−1 is the abelian dressing constructed out of the longitudinal components

of the potential. In (4.97) M(x, y) is a separately gauge invariant and contour

dependent contribution to this dressing constructed from the transverse potential.

We thus see that string type dressings can be factorised into the product of two

separately gauge invariant states one of which is highly excited as the fields are

localised along the string and this contains all of the contour dependence.

4.4.1 Factorising the Gauge Covariant Dressing

What we want to show now is that the dressing Kab(x, y) in (4.92) has a similar

factorisation into the adjoint dressing needed to compensate for the field strength

gauge transformations and a gauge invariant core. Before showing this we need to

look in more detail at the dressing (3.67) used to make the gauge invariant field

strength F h
µν .

We have seen from equation (3.67) how the dressed field strength F h
µν is defined

directly in the fundamental representation in terms of the fundamental dressing h.

It is useful to see how this is defined in the adjoint representation. To do this we

need to look at F h
µν in terms of its components, that is,

(F h
µν)

a := −2 tr (F h
µντ

a) = (h−1)abF b
µν , (4.98)
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where (h−1)ab is the dressing in the adjoint representation and can be written in

terms of the fundamental dressing as,

(h−1)ab = −2 tr (τah−1τ bh) . (4.99)

Equivalently, in the adjoint representation we can directly define

(h−1)ab = (ev)ab , (4.100)

where now v = vcT c and (T a)bc = −fabc are the adjoint representation matrices

of SU(N). The adjoint dressing (h−1)ab in (4.99) now transforms under a gauge

transformation as

(h−1)ab → −2 tr (τah−1Uτ bU−1h) = −2(h τah−1)ij(Uτ
bU−1)ji

= −2(h τah−1)ij(Uτ
bU−1)klδilδjk

= 4(h τah−1τ c)ii(Uτ
bU−1τ c)jj

= {−2 tr (τah−1τ ch)}{−2 tr (τ cUτ bU−1)} .

(4.101)

Note that in going from the second to the third line we have made use of (3.16). It

is easy to check that this becomes the gauge transformation

(h−1)ab → (h−1)acU cb , (4.102)

where U cb = −2 tr (τ cUτ bU−1) is the adjoint representation of the transformation.

Clearly we can mimic the gauge transformation property (4.56) of the gauge cova-

riant Laplacian by the factorised dressing hac(x)K0(x, y)(h
−1)cb(y). What we now

want to understand is how this factorisation emerges from the full dressing Kab(x, y).
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That is, in analogy with the factorisation of the mesonic dressing (4.97), how is the

reduction

− 1

2

∫

d4x F a
µν(x)

( 1

D2
F µν

)a

(x) → −1

2

∫

d4x F ha
µν (x)

( 1

�
F hµν

)a

(x) , (4.103)

achieved in terms of the transverse/longitudinal decomposition of the component

fields.

To this end we identify

− 1

2

∫

d4x F a
µν(x)

( 1

D2
F µν

)a

(x) = −1

2

∫

d4x F h a
µν (x)

( 1

�
F hµν

)a

(x) +Q , (4.104)

where

Q = −1
2

∫

d4x d4y F a
µν(x)Qab(x, y)F µν b(y) , (4.105)

and

Qab(x, y) = Kab(x, y)− hac(x)K0(x, y)(h
−1)

cb
(y) . (4.106)

By construction the operator Q is gauge invariant as it is the difference of two gauge

invariant terms. This means that we must have

Qab(x, y) → (U−1)ac(x)Qcd(x, y)(U)db(y) , (4.107)

under a gauge transformation. Using the perturbative expansions for the various

dressings we can write

Qab(x, y) = gQab
1
(x, y) + g2Qab

2
(x, y) + g3Qab

3
(x, y) + · · · , (4.108)

which induces an expansion in the operator Q
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Q = gQ1 + g2Q2 + g3Q3 + · · · . (4.109)

Note that this is not strictly an expansion in the coupling since the field strengths

in the definition (4.105) will also induce powers of the coupling in the Qi terms.

From this it is important to note that it is the sum of all the terms in (4.109) that

is gauge invariant, individual terms are not. To make this point clear let us expand

both the terms of (4.106) perturbatively to order g2 where we make use of (3.69)

and (3.70) to yield

Qab(x, y) = δabK0(x, y) + gKab
1
(x, y) + g2Kab

2
(x, y)

−
{

δabK0(x, y) + g
(

K0(x, y)
(

vab
1
(y)− vab

1
(x)

)

)

+ g2
(

K
0
(x, y)

(1

2
vac
1
(x)vcb

1
(x) +

1

2
vac
1
(y)vcb

1
(y)

)

− vac
1
(x)K0(x, y)v

cb
1
(y) +K0(x, y)

(

vab
2
(y)− vab

2
(x)

)

)}

+ · · · .

(4.110)

Note that in the above equation Kab
1
(x, y) and Kab

2
(x, y) are respectively linear and

quadratic in the potential and contain both transverse and longitudinal components

of the potential.

4.4.2 Decomposition of the Green’s function K(x, y)

In this section we will find the decomposition of K(x, y) perturbatively. We will first

evaluate the transverse and longitudinal components to order g forK1(x, y) and later

extend it to order g2 for K2(x, y). The calculation of K1(x, y) is straightforward but

calculating K2(x, y) is not trivial so we will present the details. Note however that

we will initially drop the colour indices for simplicity but restore them in the later

part of our calculations.
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4.4.2.1 Decomposition of K1(x, y)

In order to decompose K1(x, y) we substitute, Aρ(z) = A
T

ρ (z) + ∂ρv1(z) into (4.16)

to obtain:

K1(x, y) =

∫

d4z
{

∂ρzK0(x, z)
(

A
T

ρ (z) + ∂ρv1(z)
)

K0(z, y)

−K0(x, z)
(

A
T

ρ (z) + ∂ρv1(z)
)

∂ρzK0(z, y)
}

.

(4.111)

After integrating by parts over z we obtain the desired decomposition

K
1
(x, y) := K

T

1
(x, y) +K

L

1
(x, y) , (4.112)

where

K
T

1
(x, y) =

∫

d4z
{

∂zρK0(x, z)A
T

ρ (z)K0(z, y)−K0(x, z)A
T

ρ (z)∂
ρ
zK0(z, y)

}

, (4.113)

is the transverse component and

K
L

1
(x, y) = K0(x, y)

(

v1(y)− v1(x)
)

, (4.114)

the longitudinal component to order g respectively.

4.4.2.2 Decomposition of K2(x, y)

In a similar way we now decomposeK2(x, y) into transverse-transverse (TT), transverse-

longitudinal (TL) and longitudinal-longitudinal (LL) components. To see how this
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works, we start with the definition of K2(x, y) (4.17) written in the form:

K2(x, y) =

∫

d4z
{

∂zρK0(x, z)Aρ(z)K1(z, y)−K0(x, z)Aρ(z) ∂
z
ρK1(z, y)

−K0(x, z) Aρ(z)Aρ(z) K0(z, y)
}

.

(4.115)

Making the substitutions Aρ(z) = A
T

ρ (z) + ∂ρv1(z) and K1(z, y) = K
T

1
(z, y) +

K
L

1
(z, y) with K

L

1
(z, y) = K

0
(z, y)(v

1
(y)− v

1
(z)) in (4.115) we obtain

K
2
(x, y) = K

TT

2
(x, y) +K

TL

2
(x, y) +K

LL

2
(x, y) . (4.116)

In the above equation the TT components are given by

K
TT

2
(x, y) =

∫

d4z
{

∂zρK0(x, z)A
T

ρ (z)K
T

1
(z, y)−K0(x, z)A

T

ρ (z) ∂
z
ρK

T

1
(z, y)

−K0(x, z) A
T

ρ (z)A
T

ρ (z) K0(z, y)
}

= −
∫

d4z
{

2K
0
(x, z)A

T

ρ (z) ∂
z
ρK

T

1
(z, y)

+K0(x, z)A
T

ρ (z)A
T

ρ (z)K0(z, y)
}

,

(4.117)

where for the first line of (4.117) we have integrated by parts w.r.t. z and have used

that ∂ρzA
T

ρ (z) = 0. In a similar way the contribution from the TL and LL terms is:

K
TL

2
(x, y) = K

T

1
(x, y)v1(y)− v1(x)K

T

1
(x, y)

+

∫

d4z
{

∂ρzK0(x, z)[v1(z), A
T

ρ (z)]K0(z, y)

−K0(x, z)[v1(z), A
T

ρ (z)]∂
ρ
zK0(z, y)

}

,

(4.118)

and
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K
LL

2
(x, y) = v1(x)v1(x)K0(x, y)− v1(x)K0(x, y)v1(y)

+

∫

d4z
{

(∂zρK0
(x, z))K

0
(z, y)v

1
(z)(∂zρv1

(z))

−K0(x, z) (∂
z
ρK0(z, y))v1(z)(∂

z
ρv1(z))

}

.

(4.119)

We notice that the integrand in equation (4.119) is of the form (∂AC −A∂C)B∂B

where A = K0(x, z), B = v1(z) and C = K0(z, y) and can thus be evaluated using

the following identity:

{

(∂A)C−A(∂C)
}

(B∂B) = −1

2

{

(�A)C−A(�C)
}

B2−1

2

{

(∂A)C−A(∂C)
}

[∂B,B] ,

(4.120)

where B(∂B) = 1
2
∂(B2) + 1

2
[B, ∂B]. Substituting (4.120) into (4.119) we finally

write the LL components as

K
LL

2
(x, y) =

1

2
v1(x)v1(x)K0(x, y) +

1

2
K0(x, y)v1(y)v1(y)− v1(x)K0(x, y)v1(y)

+
1

2

∫

d4z
{

∂ρzK0(x, z)K0(z, y)−K0(x, z)∂
ρ
zK0(z, y)

}

[v1 , ∂
ρv1 ](z) .

(4.121)

Above we have identified the mixed transverse/longitudinal contribution for the

Green’s function to various orders in the coupling. To order g in coupling from

(4.113) and (4.114), this decomposition is straightforward such that the first term

in the expansion (4.108) is given by

Qab
1
(x, y) = Kab

1
(x, y)−

(

vab
1
(y)− vab

1
(x)

)

K0(x, y) , (4.122)

which is simply the transverse part of Kab
1
(x, y), see equation (4.16), as it should

be to maintain gauge invariance at this order written in the form
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Qab
1
(x, y) =

∫

d4z
{

∂ρzK0(x, z)(A
T

ρ )
ab(z)K0(z, y)−K0(x, z)(A

T

ρ )
ab(z)∂ρzK0(z, y)

}

.

(4.123)

In contrast, the next term in the expansion (4.108) is not purely transverse and not

immediately related to the next terms in the expansion of the Laplacian, that is,

Qab
2
(x, y) 6= K

TT ab
2

(x, y) . (4.124)

Indeed Qab
2
(x, y) will itself have a decomposition into transverse-transverse (TT),

transverse-longitudinal (TL) and longitudinal-longitudinal (LL) components

Qab
2
(x, y) = QTT ab

2
(x, y) +QTLab

2
(x, y) +QLLab

2
(x, y) , (4.125)

which reflects the fact that it is the sum of gQab
1
(x, y) + g2Qab

2
(x, y) which now

behaves properly under the gauge transformations (4.107) to this order. Therefore

to order g2 we need to calculate

Qab
2
(x, y) = Kab

2
(x, y)−

{

K
0
(x, y)

(

v
2
(y)− v

2
(x)

)

− v
1
(x)K

0
(x, y)v

1
(y)

+K0(x, y)
(1

2
v1(x)v1(x) +

1

2
v1(y)v1(y)

)}ab

,

(4.126)

where in addition to Kab
2
(x, y) calculated in terms of TT, TL and LL components,

from (4.117), (4.118) and (4.121) there is also the contribution of T/L terms arising

from v2 present in the above equation. Showing this whole set of calculations in one

go would not be an easy task so we shall break the calculations into various steps.

4.4.3 Calculation of TL and LL components

In order to calculate the TL and LL components in (4.126) we first need to find

the decomposition of v2 into T/L components. Details of this decomposition are
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included in Appendix C.1. We integrate (C.14) to obtain the TL components

v
T

2
(x) =

∫

d4z K0(x, z)[∂ρv1 , A
T

ρ ](z) . (4.127)

In a similar manner the contribution to the LL components from (C.15) leads, upon

integration, to the following terms

v
L

2
(x) =

1

2

∫

d4z K
0
(x, z)∂zρ [v1

, ∂ρv1
](z) . (4.128)

Note that in (4.127) and (4.128), the superscripts T and L on v
2
denote specifically

the transverse-longitudinal TL and longitudinal-longitudinal LL contribution from

the dressing. Hence to order g2 the total contribution to TL component is obtained

by substituting (4.118) and (4.127) into (4.126) to yield:

QTLab
2

(x, y) =
{

K
T

1
(x, y)v1(y)− v1(x)K

T

1
(x, y)

}ab

+

∫

d4z
{(

K0(x, z)−K0(y, z)
)

K0(x, y)[∂ρv1 , A
T

ρ ](z)

+
(

∂zρK0(x, z)K0(z, y)−K0(x, z)∂
z
ρK0(z, y)

)

× [v1 , A
T

ρ ](z)
}ab

,

(4.129)

and similarly the total contribution to LL component is found by substituting (4.121)

and (4.128) into (4.126) to yield

QLLab
2

(x, y) =
1

2

∫

d4z
{(

∂ρzK0(x, z)K0(z, y)−K0(x, z)∂
ρ
zK0(z, y)

)

−K0(x, y)
(

∂zρK0(x, z)− ∂zρK0(y, z)
)

× [v1 , ∂ρv1 ](z)
}ab

.

(4.130)
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We now return to (4.123) where using (4.105) we find the first term in the expansion

Q1 = −1

2

∫

d4x d4y F a
µν(x)Qab

1
(x, y)F µν b(y) . (4.131)

It is now clear that Q1 is gauge invariant to lowest order in the coupling (where

Fµν → Fµν and A
T

µ → A
T

µ) but at higher order it changes.

In order to make this term in the expansion fully gauge invariant, Zwanziger

essentially proposed the replacement

A
T

ρ (z) =
1

�
∂β(∂

βAρ − ∂ρAβ)(z) → 1

D2

(

DβF
βρ
)

(z) , (4.132)

so that the first term in the expansion of the operator Q becomes gauge invariant.

At lowest order in the coupling this does not change Q1 but clearly it contributes

new terms at higher order. To understand how this works and hence how to extend

Zwanziger’s result, we first need to make precise how the non-abelian mass term

(4.7) is related to Zwanziger’s term (4.92). This will be the topic we turn to next.

Then we will see how to implement Zwanziger’s resummation of that result to yield

a term by term gauge invariant expansion of the mass (4.6).

To order g2 the TL and LL components in (4.129) and (4.130) must be killed

by the TL and LL extension of Qab
1
(x, y). We call this expansion the Zwanziger

expansion where we want each term to be fully gauge invariant and written in terms

of the field strength. We need to understand the Zwanziger expansion and at all

stages check the gauge transformations.
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4.5 The Role of the Dressed Field Strength

Having identified the role of the field strength Fµν (3.83) in defining a non-abelian

mass term (4.7), and having defined the gauge covariant inverse Laplacian thus

allowing for a precise definition of the Zwanziger term (4.92), we now connect these

descriptions by identifying the common role played by the dressed field strength F h
µν

(3.84).

Already we have seen in (4.104) that the factorisation of Zwanziger’s gauge

invariant expression (4.92) gives a term analogous to the mass term (4.7) but with

the dressed field strength playing the role of the Fµν field strength. Now using the

field strength factorisation equation (3.86) we shall find a similar decomposition to

(4.104) in the non-abelian mass term (4.7).

Indeed we see that

− 1

2

∫

d4x Fa
µν(x)

( 1

�
Fµν

)a

(x) = −1

2

∫

d4x F ha
µν (x)

( 1

�
F hµν

)a

(x) + P , (4.133)

where, using (3.86) the gauge invariant term P is given by

P =
g

2

∫

d4x d4y ([Ah
µ, A

h
ν ])

a(x) δabK0(x, y) (F
h
µν)

b(y)

+
g

2

∫

d4x d4y (F h
µν)

a(x) δabK0(x, y) ([A
h
µ, A

h
ν ])

b(y)

− g2

2

∫

d4x d4y ([Ah
µ, A

h
ν ])

a(x) δabK0(x, y) ([A
h
µ, A

h
ν ])

b(y) .

(4.134)

As before we can introduce a perturbative expansion of this operator:

P = gP1 + g2P2 + g3P3 + · · · . (4.135)

However, just as in the corresponding expansion (4.109) for Q, it is useful not to
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strictly expand in the coupling but to allow in (4.135) for the field strength terms

Fµν to be kept together. This means, for example, that

P1 =

∫

d4x d4y F a
µν(x) δ

abK0(x, y) [A
T

µ , A
T

ν ]
b(y) . (4.136)

We again stress that although P is gauge invariant, individual terms like P
1
, P

2
are

not. Equations (4.104) and (4.133) allow us to finally clarify the relation between

the mass term (4.7) and Zwanziger’s expression (4.92). Eliminating the common

factor constructed out of the dressed field strength F h we see that the mass term

(4.7) can alternatively be written as

M2 = −1

2

∫

d4x F a
µν(x)

( 1

D2
Fµν

)a

(x) + P −Q , (4.137)

where the operators Q and P are defined to all orders in perturbation theory by

(4.105) and (4.134).

This succinct formula does not though fully describe Zwanziger’s proposed ex-

pansion of the mass term as the individual terms in the operators Q and P are not

gauge invariant. We shall see in the next chapter how to resum these expressions so

as to maintain gauge invariance of each term in a new expansion of the operators

Q and P. This will allow us to generate Zwanziger’s expression (4.1) and then go

beyond it.



Chapter 5

Zwanziger’s Expansion

5.1 Motivation

Having derived (4.137) we shall now see how to resum the expressions (4.109) and

(4.135) so as to maintain gauge invariance for each term in the new expansions for

the operators Q and P. This will enable us to derive Zwanziger’s expansion first

to low orders and then for the next to next to leading order term. In Chapter 4

we successfully recovered the first term in Zwanziger’s expression (4.1) which is

quadratic in field strengths and represented by the first term of (4.137). In this

chapter our starting point will be to recover the next term, i.e. that which is cubic

in the field strengths. Later we will extend to higher orders to obtain the quartic

terms in the field strength. We will note ambiguities in this construction.

5.2 Recovering Zwanziger’s Expansion

We want to extend from (4.109) and (4.135) to the resummed expansions

Q = gY1 + g2Y2 + g3Y3 + · · · , (5.1)

95
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and

P = gZ1 + g2Z2 + g3Z3 + · · · , (5.2)

where each term in these expansions will be separately gauge invariant by construc-

tion. Note that in these expressions we are not formally expanding in the coupling

but, as we will see, each term is more properly characterised by the power of the field

strengths used to construct them with Y1 and Z1 both cubic in the field strengths.

5.2.1 Q to Order F 3

In order to recover Zwanziger’s expression for the term Y1 we first need to rewrite

(4.123) by introducing appropriate colour indices as

Qab
1
(x, y) = −

∫

d4z
{

∂ρxδ
acK0(x, z)(A

T

ρ )
cd(z)δdbK0(z, y)

− δacK0(x, z)(A
T

ρ )
cd(z)∂ρyδ

dbK0(z, y)
}

.

(5.3)

Then, to impose gauge invariance, we need to make the replacements (4.132) and

∂ρxδ
acK0(x, z) →

(

Dρ
xK(x, z)

)ac
, δdbK0(z, y) → Kdb(z, y)

δacK0(x, z) → Kac(x, z), ∂ρyδ
dbK0(z, y) →

(

Dρ
yK(z, y)

)db
.

(5.4)

Applying these to (5.3) we find

Yab
1
(x, y) = −

∫

d4z
{

(

Dρ
xK(x, z)

)ac
( 1

D2
DβF

βρ
)cd

(z)Kdb(z, y)

−Kac(x, z)
( 1

D2
DβF

βρ
)cd

(z)
(

Dy
ρK(z, y)

)db
}

.

(5.5)

Using (4.131) the above equation becomes



97 Chapter 5. Zwanziger’s Expansion

Y1 =
1

2

∫

d4x d4y d4z
{

F a
µν(x)

(

Dρ
xK(x, z)

)ac
( 1

D2
DβF

βρ
)cd

(z)Kdb(z, y)F µνb(y)

− F a
µν(x)K

ac(x, z)
( 1

D2
DβF

βρ
)cd

(z)
(

Dy
ρK(z, y)

)db
F µνb(y)

}

.

(5.6)

Using the properties of the inverse Laplacian given by (4.39) and integrating (5.6)

with respect to both x and y we end up with

Y1 = −
∫

d4z
1

D2

(

DρF
µν
)c

(z)
1

D2

(

DβF
βρ
)cd

(z)
( 1

D2
F µν

)d

(z) . (5.7)

Following (D.1) this can be written as

Y1 =

∫

d4z
( 1

D2
F µν

)d

(z)
[ 1

D2

(

DβF
βρ
)

,
1

D2

(

DρF
µν
)

]d

(z) , (5.8)

which is fully gauge invariant and agrees with the corresponding term in Zwanziger’s

expansion (4.1). Before proceeding further it is important to show that Yab
1
(x, y)

(5.5) has the following gauge transformation property to all orders,

Yab
1
(x, y) → (U−1)ac(x)Ycd

1
(x, y)Udb(y) . (5.9)

To show this we consider the first integrand in (5.5)

Yab
1
(x, y) =

(

Dρ
xK(x, z)

)ac( 1

D2
DβFβρ(z)

)cd

Kdb(z, y) , (5.10)

and apply the transformations (4.57) and (4.60) to yield

Yab
1
(x, y) →

{

(U−1)ac
′

(x)(Dρ
xK(x, z))c

′e′(U)e
′c(z)

}{

(U−1)cdmn(z)

×
( 1

D2
DβFβρ(z)

)mn}{

(U−1)df
′

(z)Kf ′d′(z, y)(U)d
′b(y)

}

.

(5.11)
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In the above equation the term in the second braces can be written using (3.45) as

(U−1)cdmn = (U−1)cm(U−1)dn. Since (U)e
′c(U−1)cm = δe

′m and (U)nd(U−1)df
′

= δnf
′

,

we find

Yab
1
(x, y) → (U−1)ac

′

(x)
(

Dρ
xK(x, z)

)c′e′

δe
′m
( 1

D2
DβFβρ(z)

)mn

δnf
′

Kf ′d′(z, y)(U)d
′b(y)

= (U−1)ac
′

(x)
(

Dρ
xK(x, z)

)c′e′( 1

D2
DβFβρ(z)

)e′f ′

Kf ′d′(z, y)(U)d
′b(y)

= (U−1)ac
′

(x)Yc′d′

1
(x, y)(U)d

′b(y) ,

(5.12)

which has the same transformation as (5.9). In the same way the second integrand

in (5.5) transforms as (5.9).

5.2.2 P to Order F 3

Now that we have found the final expression for Y1 we return to (4.136) and follow

the same route to find Z1 . In (4.136) inserting colour indices in an appropriate way,

we have

P1 =

∫

d4x d4y F a
µν(x) δ

abK0(x, y) [A
T

µ , A
T

ν ]
b(y) , (5.13)

where in addition to (4.132) we make the replacement δabK0(x, y) → Kab(x, y) to

obtain

Z1 =

∫

d4x d4y F a
µν(x)K

ab(x, y)
[( 1

D2
DαFαµ

)

,
( 1

D2
DβFβν

)]b

(y) . (5.14)

Using (4.36) and also the property (D.1) we integrate (5.14) w.r.t x to obtain:

Z1 =

∫

d4y
( 1

D2
Fµν

)b

(y)
[( 1

D2
DαFαµ

)

,
( 1

D2
DβFβν

)]b

(y) . (5.15)
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This is our final expression to order F 3 for Z1 . It is gauge invariant. Having obtained

the values of Y1 (5.8) and Z1 (5.15) we can now write the expression for the mass

term to order F 3. For this we substitute (5.8) and (5.15) into (4.137) to get

M2 = −1

2

∫

d4x F a
µν(x)

( 1

D2
Fµν

)a

(x)

+ g

∫

d4x
( 1

D2
Fµν

)a

(x)
[( 1

D2
DαFαµ

)

,
( 1

D2
DβFβν

)]a

(x)

− g

∫

d4x
( 1

D2
Fµν

)a

(x)
[ 1

D2

(

DβFβρ

)

,
1

D2
(DρFµν)

]a

(x) + · · ·

(5.16)

This is the expected expression for the mass term to order F 3 and was obtained

by Zwanziger in [98], see equation (4.1) . Each line in the above expression is fully

gauge invariant.

As far as we are aware, although this result has appeared in many places in

the literature, no derivation has been presented. Note, though, that the expression

(5.16) is not unique. We have made two choices which effect the results and that

will lead to different expansions while still maintaining gauge invariance. The first

was our choice of derivative used in the expression for Qab
1
(x, y) as seen in (5.3) as

compared to (4.123). It is trivial to see that we could alternatively write

Q̃ab
1
(x, y) = −2

∫

d4z δacK0(x, z)(A
T

ρ )
cd(z)δdb∂ρzK0(z, y) , (5.17)

where we have simply integrated by parts and used the result that ∂ρxK0
(x, z) =

−∂ρzK0(x, z). But under the covariant trick ∂ρxK(x, z) 6= −∂ρzK(x, z) and hence we

get a different gauge covariant expression following this route:

Ỹ1 =

∫

d4z
( 1

D2
F µν

)d

(z)
[( 1

D2
DβF

βρ
)

, Dρ

( 1

D2
F µν

)]d

(z) . (5.18)

Another choice arose from the identification (4.132) of the gauge covariant extension
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to the transverse field. We could alternatively identify

A
T

ρ (z) = ∂β
1

�
(∂βAρ − ∂ρAβ)(z) → Dβ

( 1

D2
F βρ

)

(z) , (5.19)

and this will lead to a new gauge invariant expression in the expansion of the mass

term. Indeed following (5.19) we would now get

˜̃Y
1
=

∫

d4z
( 1

D2
F µν

)d

(z)
[

Dβ

( 1

D2
F βρ

)

,
( 1

D2
DρF

µν
)]d

(z) , (5.20)

and combining these two choices we would have a term of the form

˜̃̃Y
1
=

∫

d4z
( 1

D2
F µν

)d

(z)
[

Dβ

( 1

D2
F βρ

)

, Dρ

( 1

D2
F µν

)]d

(z) . (5.21)

Indeed combinations of these would be equally valid.

In much the similar way these choices when applied to P1 (5.13) lead to the

following possibilities:

Z̃1 =

∫

d4y
( 1

D2
Fµν

)b

(y)
[

Dα
( 1

D2
Fαµ

)

,
( 1

D2
DβFβν

)]b

(y) , (5.22)

˜̃Z1 =

∫

d4y
( 1

D2
Fµν

)b

(y)
[( 1

D2
DαFαµ

)

, Dβ
( 1

D2
Fβν

)]b

(y) , (5.23)

and

˜̃̃Z
1
=

∫

d4y
( 1

D2
Fµν

)b

(y)
[

Dα
( 1

D2
Fαµ

)

, Dβ
( 1

D2
Fβν

)]b

(y) . (5.24)

The specific choice used in (5.8) and (5.15) reflects our aim to derive precisely

Zwanziger’s form of the expansion. However, other choices might have advantages

in specific applications.
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In Appendix D.2 we show that the expressions (4.132) and (5.19) are not the

same and hence the possible extensions listed above are genuinely different gauge

invariant expressions for the non-abelian mass term.

5.3 Calculation to Order F
4
of Y2 and Z2

We have so far seen how the mass term can be expressed in powers of the field

strengths. Using this we have been able to recover Zwanziger’s expression (4.1) in

terms of the quadratic and cubic powers of the field strengths F 2, F 3 and also ex-

posed the ambiguities in this expression. What we want to do now is, for the first

time, construct the next terms in this expansion which will be quartic in the field

strengths F 4. In our notation, from (4.137), (5.1) and (5.2), this will correspond

to Z2 − Y2 . Just as before we collect these gauge invariant operators once we have

identified the transverse residue of the operator at the appropriate order. To calcu-

late Y
2
and Z

2
we need to reinstate the higher order modifications we introduced

by hand earlier in going from Q1 → Y1 and P1 → Z1 . This means that we should

view this process as the identification of, for example,

Q = gQ
1
+ g2Q

2
+ · · ·

= gY1 + g
(

Q1 − Y1

)

+ g2Q2 + · · · ,
(5.25)

so that now g2Y
2
is the gauge invariant extension of g

(

Q
1
− Y

1

)

+ g2Q
2
. This

will only work if this term is only constructed out of the transverse field so that

we can use the replacements such as (4.132). For the F 3 expression (5.3) this was

relatively straightforward as we have seen that Qab
1
(x, y) was purely transverse, but

we have also seen that Qab
2
(x, y) is not as it contains mixed transverse-longitudinal

components (4.125). What we now need to ensure is that in the O(g2) parts of the
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combination g
(

Q1 − Y1

)

+ g2Q2 only the transverse components survive. That is,

g
(

Qab
1
(x, y)− Yab

1
(x, y)

)TL

+ g2QTLab
2

(x, y) = 0 , (5.26)

and

g
(

Qab
1
(x, y)−Yab

1
(x, y)

)LL

+ g2QLLab
2

(x, y) = 0 , (5.27)

leaving just the contribution from TT components. This is a strong statement of

the underlying gauge invariance of this expansion since we have seen that Y1 is

ambiguous. What we claim is that the ambiguities exposed in the previous section

only contributes to the TT components.

In exactly the same way, for the second contribution to the mass term (4.137),

we can write

P = gP
1
+ g2P

2
+ g3P

3
+ · · ·

= gZ1 + g
(

P1 − Z1

)

+ g2Z2 + · · · ,
(5.28)

where again g2Z2 will then be identified with the gauge invariant extension of g
(

P1−

Z1

)

+ g2P2 assuming there are no residual LL or TL parts. The verification that

only transverse fields survive is non-trivial and is the next topic.

5.4 Calculation of Y2

We have already seen there are ambiguities at the F 3 level, so to make precise how

the calculations are performed to order F 4 we will adopt the expansion chosen by

Zwanziger (5.8). In order to calculate Y
2
, the gauge invariant extension of g

(

Q
1
−

Y1

)

+ g2Q2 , we consider the difference between each of the terms in (5.3) and the

expression (5.5) by reinstating the higher order modifications. This will allow us to
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obtain the expression g(Qab
1
(x, y)−Yab

1
(x, y)). Once this has been achieved we then

apply the decomposition technique to the fields in the obtained expression which

generates new terms (in the potential and the Green’s function) with mixed T/L

components. These can now be isolated as TT, TL and LL components. Because we

are interested in calculating the order g2 contribution we need to take into account

the contribution from the term Qab
2
(x, y) (4.125). However as we have seen earlier

Qab
2
(x, y) is not purely transverse as it contains mixed T/L components given by

(4.129) and (4.130). We need to remove these TL and LL components so that only

TT fields survive. Equation (5.3) is our starting point where we use (4.132) to obtain

Qab
1
(x, y) = −

∫

d4z d4w
{

∂ρxδ
acK

0
(x, z)

(

K
0
(z, w)∂βfβρ(w)

)cd
δdbK

0
(z, y)

− δacK0(x, z)
(

K0(z, w)∂
βfβρ(w)

)cd
∂ρyδ

dbK0(z, y)
}

,

(5.29)

where K
0
(z, w) is the Green’s functions for the inverse Laplacian. Similarly we write

(5.5) as:

Yab
1
(x, y) = −

∫

d4z d4w
{

(Dρ
xK(x, z))ac

(

K(z, w)DβFβρ(w)
)cd

(z)Kdb(z, y)

−Kac(x, z)
(

K(z, w)DβFβρ(w)
)cd

(z)
(

Dy
ρK(z, y)

)db
}

.

(5.30)

We now consider the difference between each of the terms in (5.29) and (5.30) by

reinstating the following modifications

∂ρx −Dρ
x → −gAρ(x), ∂βw −Dβ

w → −gAβ(w), ∂ρy −Dρ
y → gAρ(y),

δdbK0(z, y)−Kdb(z, y) → −gKdb
1
(z, y), fβρ − Fβρ → −g[Aβ, Aρ],

K0(z, w)−K(z, w) → −gK1(z, w), δacK0(x, z)−Kac(x, z) → −gKac
1
(x, z) .

(5.31)
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to obtain

g(Qab
1
(x, y)− Yab

1
(x, y)) =

∫

d4z
{

Aρ(x)K0(x, z)A
T

ρ (z)K0(z, y) +K0(x, z)A
T

ρ (z)Aρ(y)K0(z, y)

+ ∂xρK1(x, z)A
T

ρ (z)K0(z, y)−K1(x, z)A
T

ρ (z)∂
y
ρK0(z, y)

+ ∂xρK0(x, z)A
T

ρ (z)K1(z, y)−K0(x, z)A
T

ρ (z)∂
y
ρK1(z, y)

}ab

+

∫

d4z d4w
{

∂xρK0
(x, z)K

1
(z, w)∂βfβρ(w)K0

(z, y)

+K0(x, z)K1(z, w)∂
βfβρ(w)∂

z
ρK0(z, y)

+ ∂xρK0(x, z)K0(z, w)Aβ(w)fβρ(w)K0(z, y)

+K0(x, z)K0(z, w)Aβ(w)fβρ(w)∂
z
ρK0(z, y)

+ ∂xρK0(x, z)K0(z, w)∂
β
w[Aβ, Aρ](w)K0(z, y)

+K
0
(x, z)K

0
(z, w)∂βw[Aβ, Aρ](w)∂

z
ρK0

(z, y)
}ab

.

(5.32)

5.4.1 Cancellation of LL and TL terms

Having obtained (5.32) for the extended Zwanziger term we now want to extract

the LL and TL terms from (5.32). We then add this contribution to (4.129) and

(4.130) to verify that (5.26) and (5.27) hold. Note that in this procedure we expect

all LL and TL components to vanish.

5.4.1.1 Cancellation of TL components

As a first step we consider (5.32) and take into account those terms that lead to the

contribution of TL fields. For this we decompose the potential and Green’s function

appearing in the integrands into transverse and longitudinal components and collect

only terms with TL fields.



105 Chapter 5. Zwanziger’s Expansion

g(QT ab
1

(x, y)− Yab
1
(x, y)) =

∫

d4z
{

A
L

ρ (x)K0
(x, z)A

T

ρ (z)K0
(z, y) +K

0
(x, z)A

T

ρ (z)A
L

ρ (y)K0
(z, y)

+ ∂xρK
L

1
(x, z)A

T

ρ (z)K0(z, y)−K
L

1
(x, z)A

T

ρ (z)∂
y
ρK0(z, y)

+ ∂xρK0(x, z)A
T

ρ (z)K
L

1
(z, y)−K0(x, z)A

T

ρ (z)∂
y
ρK

L

1
(z, y)

}ab

+

∫

d4z d4w
{

∂xρK0(x, z)K
L

1
(z, w)∂βfβρ(w)K0(z, y)

+K0(x, z)K
L

1
(z, w)∂βfβρ(w)∂

z
ρK0(z, y)

+ ∂xρK0(x, z)K0(z, w)A
L

β (w)fβρ(w)K0(z, y)

+K0(x, z)K0(z, w)A
L

β(w)fβρ(w)∂
z
ρK0(z, y)

+
(

∂xρK0(x, z)K0(z, y) +K0(x, z)∂
z
ρK0(z, y)

)

×K0(z, w)∂
β
w

(

[A
T

β , A
L

ρ ](w) + [A
L

β , A
T

ρ ](w)
)}ab

.

(5.33)

Recall that what we want to show is g(Qab
1
− Yab

1
(x, y))

TL

+ g2QTLab
2

(x, y) = 0, for

the TL component. The terms in the first braces of (5.33) are straightforward as we

simply replace A
L

ρ (x) → ∂ρv1(x) and K
L

1
(x, z) → K0(x, z)(v1(z)− v1(x)). Therefore

the first six terms in (5.33) after simplification leads to

{

v1(x)K
T

1
(x, y)−K

T

1
(x, y)v1(y)

}

+

∫

d4z
(

∂xρK0
(x, z)K

0
(z, y)−K

0
(x, z)∂yρK0

(z, y)
)

[

v
1
, A

T

ρ

]

(z)
}ab

.

(5.34)

After this reduction if we incorporate QTLab
2

(x, y) (4.129) we find the first and the

last line of (4.129) cancel with (5.34) leaving the contribution from the second line

of (4.129). For now we consider the final six terms in the second braces of (5.33).

In particular, the last two terms are given by
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∫

d4z d4w
{(

∂xρK0(x, z)K0(z, w)K0(z, y) +K0(x, z)K0(z, w)∂
z
ρK0(z, y)

)

× ∂wβ

(

[A
T

β , ∂ρv1
](w) + [∂βv1

, A
T

ρ ](w)
)}ab

.

(5.35)

Integrating using by parts w.r.t. w we find

−
∫

d4z d4w
{(

∂xρK0(x, z)∂
w
βK0(z, w)K0(z, y) +K0(x, z)∂

w
βK0(z, w)∂

z
ρK0(z, y)

)

×
(

[A
T

β , ∂ρv1 ](w) + [∂βv1 , A
T

ρ ](w)
)}ab

.

(5.36)

Using the following identity

[A
T

β , ∂ρv1
](w)+ [∂βv1

, A
T

ρ ](w) = ∂wβ [v1
, A

T

ρ ](w)+∂
w
ρ [A

T

β , v1
](w)− [v

1
, fβρ](w) , (5.37)

in (5.36) we find

−
∫

d4z d4w
{(

∂xρK0(x, z)∂
w
βK0(z, w)K0(z, y) +K0(x, z)∂

w
βK0(z, w)∂

z
ρK0(z, y)

)

×
(

∂wβ [v1
, A

T

ρ ](w) + ∂wρ [A
T

β , v1
](w)− [v

1
, fβρ](w)

)}ab

.

(5.38)

We now integrate using by parts w.r.t. w that yields six terms

∫

d4z d4w
{(

∂xρK0(x, z)�wK0(z, w)K0(z, y)

+K0(x, z)�wK0(z, w)∂
z
ρK0(z, y)

)

× [v1 , A
T

ρ ](w)

+
(

∂xρK0(x, z)∂
w
β ∂

w
ρ K0(z, w)K0(z, y)

+K0(x, z)∂
w
β ∂

w
ρ K0(z, w)∂

z
ρK0(z, y)

)

× [A
T

β , v1](w)

+
(

∂xρK0
(x, z)∂wβ K0

(z, w)K
0
(z, y)

+K0(x, z)∂
w
βK0(z, w)∂

z
ρK0(z, y)

)

× [v1 , fβρ](w)
)}ab

.

(5.39)
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The first two lines of (5.39) can be simplified further to obtain

∫

d4z
{(

∂xρK0(x, z)K0(z, y) +K0(x, z)∂
z
ρK0(z, y)

)

[v1 , A
T

ρ ](z)
}ab

. (5.40)

However the third and fourth line of (5.39) require more work. We first inte-

grate by parts over w and replace ∂xρK0(x, z) → −∂zρK0(x, z) and ∂wρ K0(z, w) →

−∂zρK0(z, w). Then we integrate by parts over z to finally get

∫

d4z
{(

K0(x, z)K0(x, y)−K0(x, y)K0(y, z)
)

[A
T

β , ∂
z
βv1 ](z)

}ab

, (5.41)

which cancels with the second line of (4.129). Upto now we have seen that all the

TL components of Qab
2
(x, y) (4.129) have vanished in contrast to the contribution

from g(Qab
1
−Yab

1
(x, y))

TL

leaving the contribution from (5.40), the last two lines of

(5.39) and the first four terms in the second braces of (5.33). What we want to see

now is the cancellation of these survivors among themselves. To achieve this we first

consider the first two terms in second braces of (5.33) and introduce explicit colour

indices in the form

∫

d4z d4w
{

(

∂xρK0(x, z)
)ac

(

K
L

1
(z, w)∂βfβρ(w)

)cd
(

K0(z, y)
)db

+
(

K0(x, z)
)ac

(

K
L

1
(z, w)∂βfβρ(w)

)cd
(

∂zρK0(z, y)
)db

}

.

(5.42)

The above equation contains the Green’s function for the inverse Laplacian

(K
L

1
(z, w)∂βfβρ(w))

cd that now contains fields in the tensor product of the adjoint

representation with itself that is

(

K
L

1
(z, w)∂βfβρ(w)

)cd

= K
L

1
(z, w)cdef

(

∂βfβρ
)ef

(w)

= K
0
(z, w)

[(

v
1
(w)− v

1
(z)

)

, ∂βfβρ(w)
]cd

,

(5.43)
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where we have made use of (3.58). Upon substituting this into (5.42) one finds

∫

d4z d4w
{

∂xρK0(x, z)K0(z, w)
[(

v1(w)− v1(z)
)

, ∂βfβρ(w)
]

K0(z, y)

+K0(x, z)K0(z, w)
[(

v1(w)− v1(z)
)

, ∂βfβρ(w)
]

∂zρK0(z, y)
}ab

.

(5.44)

Expanding the commutators and using the definitionA
T

ρ (z) =
∫

d4w K0(z, w)∂
βfβρ(w)

we integrate the above expression w.r.t. w to get

∫

d4z d4w
{(

∂xρK0(x, z)K0(z, y) +K0(x, z)∂
z
ρK0(z, y)

)

K0(z, w)
[

v1 , ∂
βfβρ

]

(w)
}ab

−
∫

d4z
{(

∂xρK0(x, z)K0(z, y) +K0(x, z)∂
z
ρK0(z, y)

)

[

v1 , A
T

ρ

]

(z)
}ab

.

(5.45)

The last line of the above equation cancels with (5.40) leaving the contribution from

the last two lines of (5.39), the first line of (5.45) and the third and fourth lines in

second braces of (5.33) which need to be simplified further. We now consider the

third and fourth lines of (5.33) where introducing appropriate colour indices and

using the longitudinal decomposition of the vector potential we have

∫

d4z d4w
{

(

∂xρK0
(x, z)

)ac(

K
0
(z, w)∂βv

1
(w)fβρ(w)

)cd
(K

0
(z, y))db

+ (K0(x, z))
ac
(

K0(z, w)∂
βv1(w)fβρ(w)

)cd
(∂zρK0(z, y))

db
}

.

(5.46)

The above equation contains fields as products in the adjoint representation which

upon using the property (3.57) becomes a commutator in the Lie algebra written in

the form

∫

d4z d4w
{

(

∂xρK0(x, z)
)ac
K0(z, w)

[

∂βv1(w), fβρ(w)
]cd

(K0(z, y))
db

+ (K0(x, z))
acK0(z, w)

[

∂βv1(w), fβρ(w)
]cd

(∂zρK0(z, y))
db
}

.

(5.47)
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Integrating by parts over w results in the following four terms

−
∫

d4z d4w
{

∂xρK0(x, z)K0(z, w)
[

v1(w), ∂
βfβρ(w)

]

K0(z, y)

+K0(x, z)K0(z, w)
[

v1(w), ∂
βfβρ(w)

]

∂zρK0(z, y)

+ ∂xρK0(x, z)∂
β
wK0(z, w)

[

v1(w), fβρ(w)
]

K0(z, y)

+K0(x, z)∂
β
wK0(z, w)

[

v1(w), fβρ(w)
]

∂zρK0(z, y)
}ab

,

(5.48)

where the first two lines cancel with the first integrand of (5.45) and the last two lines

cancel with the last integrand of (5.39). Thus we have successfully been able to show

the cancellation of the TL components. For the remainder of the calculations to be

presented in this chapter we shall implement the same idea to show the cancellation

of the LL terms (5.27).

5.4.1.2 Cancellation of LL components

Using the same strategy as for the TL components we will show that no LL com-

ponents survive that is we will verify that (5.27) holds. To show this we return to

(5.32) and extract only those terms that contribute to the LL components. They

are found to be the last two lines of (5.32).

∫

d4z d4w
{

∂xρK0(x, z)K0(z, w)∂
β
w[A

L

β , A
L

ρ ](w)K0(z, y)

+K0(x, z)K0(z, w)∂
β
w[A

L

β , A
L

ρ ](w)∂
z
ρK0(z, y)

}ab

.

(5.49)

Substituting A
L

β = ∂βv1 and A
L

ρ = ∂ρv1 into (5.49) and integrating the above equa-

tion by parts w.r.t. w we get

−
∫

d4z d4w
{

∂xρK0(x, z)∂
β
wK0(z, w)[∂βv1, ∂ρv1 ](w)K0(z, y)

+K0(x, z)∂
β
wK0(z, w)[∂βv1 , ∂ρv1 ](w)∂

z
ρK0(z, y)

}ab

.

(5.50)
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Using the identity

[∂βv1 , ∂ρv1 ](w) =
1

2

(

∂βw[v1 , ∂ρv1 ](w) + ∂ρw[∂βv1 , v1](w)
)

, (5.51)

1

2

∫

d4z
{

(

− ∂zρK0(x, z)K0(z, y) +K0(x, z)∂
z
ρK0(z, y)

)

[v1 , ∂ρv1 ](z)

+
(

− ∂ρzK0(x, z) + ∂ρzK0(y, z)
)

K0(x, y)[∂ρv1 , v1 ](z)
}ab

.

(5.52)

Now taking into account the longitudinal component, QLLab
2

(x, y) (4.130) we find

the terms are the same but carrying opposite signs. Hence g(Qab
1
− Yab

1
(x, y))

LL

+

g2QLLab
2

(x, y) = 0.

After the successful cancellation of the longitudinal fields the next task is to col-

lect the transverse components and then reinstate the fields to get the contribution

to order F 4.

5.4.2 Collection of TT components

In order to calculate the next order contribution to the TT components we need to

reinstate the higher order modifications. Recall that what we want to calculate is

the contribution from g
(

Qab
1
(x, y)− Yab

1
(x, y)

)TT

+ g2QTT ab
2

(x, y). The contribution

from g2QTT ab
2

(x, y) has already been defined in the previous chapter and is given by

(4.117). However the contribution from g
(

Qab
1
(x, y) − Yab

1
(x, y)

)TT

is obtained by

making the following replacements in (5.29) as

∂ρx → −gAT

ρ (x), δacK0(x, z) → −gKT ac
1

(x, z), K0(z, w) → −gKT

1
(z, w),

∂βw → −gAT

β (w), fβρ → −g[AT

β , A
T

ρ ], δdbK0(z, y) → −gKT db
1

(z, y) .

(5.53)
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Thus the total contribution to order F 4 for the TT components is

g(QT ab
1

(x, y)−Yab
1
(x, y)) + g2QTT ab

2
(x, y) =

∫

d4z
{

2A
T

ρ

ac
(x)Kce

0
(x, z)A

T

ρ

ed
(z)Kdb

0
(z, y) + 2∂xρK

T ac
1

(x, z)A
T

ρ

cd
(z)Kdb

0
(z, y)

−Kac
0
(x, z) A

T

ρ

ce
(z)A

T

ρ

ed
(z) Kdb

0
(z, y)

}

+ 2

∫

d4z d4w
{

∂xρK
ac
0
(x, z)(K

T

1
(z, w)∂βfβρ(w))

cdKdb
0
(z, y)

+ ∂xρK
ac
0
(x, z)(K0(z, w)A

T

β (w)fβρ(w))
cdKdb

0
(z, y)

+ ∂xρK
ac
0
(x, z)(K

0
(z, w)∂βw[A

T

β , A
T

ρ ])
cd(w)Kdb

0
(z, y)

}

.

(5.54)

So far we have been able to identify all of the TT components involved in the

calculation for Y2. However, if we look at the structure of the integrands involved

in (5.54) we see that these can still be simplified. The terms in first braces of (5.54)

are straightforward so we will simplify them later in this section, however, for now

we will simplify the first line in second braces given by

2

∫

d4z d4w
{

∂xρK
ac
0
(x, z)(K

T

1
(z, w)∂βfβρ(w))

cdKdb
0
(z, y)

}

, (5.55)

where

K
T

1
(z, w) = −2

∫

d4u {∂zλK0(z, u)A
T

λ (u)K0(u, w)} . (5.56)

Note that in (5.55), K
T

1
(z, w) has four indices so using (D.2) and integrating w.r.t.

w (5.55) becomes

− 4

∫

d4z d4u
{

∂xρK
ac
0
(x, z)Kce

0
(z, u)[A

T

λ , ∂λA
T

ρ ]
ed(u)Kdb

0
(z, y)

}

. (5.57)

where we have used the result that
∫

d4w K0(u, w)∂
βfβρ(w) = A

T

ρ (u). After this
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simplification we now return to the last two lines in (5.54) where we use the property

(3.57) to obtain

2

∫

d4z d4w
{

∂xρK
ac
0
(x, z)Kce

0
(z, w)[A

T

β , fβρ]
ed(w)Kdb

0
(z, y)

+ ∂xρK
ac
0
(x, z)Kce

0
(z, w)[A

T

β , ∂βA
T

ρ ]
ed(w)Kdb

0
(z, y)

}

.

(5.58)

Upon combining (5.57) and (5.58) we obtain

− 2

∫

d4z d4w
{

∂xρK
ac
0
(x, z)Kce

0
(z, w)[A

T

β , ∂ρA
T

β ]
ed(w)Kdb

0
(z, y)

}

. (5.59)

To summarise, the terms in second braces of (5.54) have been reduced to one term

(5.59) and hence (5.54) is given by

g(Qab
1
−Yab

1
(x, y))

TT

+ g2QTT ab
2

(x, y) = A(x, y) + B(x, y) + C(x, y) +D(x, y)

=

∫

d4z
{

2A
T

ρ

ac
(x)Kce

0
(x, z)A

T

ρ

ed
(z)Kdb

0
(z, y) + 2∂xρK

T ac
1

(x, z)A
T

ρ

cd
(z)Kdb

0
(z, y)

−Kac
0
(x, z) A

T

ρ

ce
(z)A

T

ρ

ed
(z) Kdb

0
(z, y)

}

− 2

∫

d4z d4w
{

∂xρK
ac
0
(x, z)Kce

0
(z, w)[A

T

β , ∂ρA
T

β ]
ed(w)Kdb

0
(z, y)

}

.

(5.60)

Note that in above we have denoted the four terms byA(x, y),B(x, y), C(x, y),D(x, y).

As seen in Chapter 4 using (4.105) we can construct the operator g2Y2 by sand-

wiching (5.60) between the two field strengths. This means that we should now

calculate

Y2 := −1

2

∫

d4x d4y F a
µν(x)

{

A(x, y) + B(x, y) + C(x, y) +D(x, y)
}

F µν b(y)

= A+ B + C +D
(5.61)

The calculation of (5.61) is non-trivial. We will consider all four terms of (5.61) and
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show in turn how we obtain our final expression. Note that in equation (5.60) terms

like K
T

1
(x, z) need further simplification. We start with the first term of (5.61)

A = −
∫

d4x d4y d4z F a
µν(x)

(

A
T

ρ

ac
(x)Kce

0
(x, z)A

T

ρ

ed
(z)Kdb

0
(z, y)

)

F µν b(y) , (5.62)

and integrate w.r.t. y to yield

A = −
∫

d4x d4z F a
µν(x)

(

A
T

ρ

ac
(x)Kce

0
(x, z)A

T

ρ

ed
(z)

)

( 1

�
F µν

)d

(z) . (5.63)

Using property (3.57) the last two terms become a commutator

A = −
∫

d4x d4z F a
µν(x)A

T

ρ

ac
(x)Kce

0
(x, z)

[

A
T

ρ ,
1

�
F µν

]e

(z) , (5.64)

which when integrated w.r.t. z yields

A = −
∫

d4x F a
µν(x)A

T

ρ

ac
(x)

( 1

�

[

A
T

ρ ,
1

�
F µν

])c

(x) . (5.65)

Again using the property (3.57) we have

A = −
∫

d4x F a
µν(x)

[

A
T

ρ (x),
1

�

[

A
T

ρ ,
1

�
F µν

]

(x)
]a

. (5.66)

At this order of coupling we can straight away rewrite the above result by using the

substitution 1/� → 1/D2 in addition to (4.132) to obtain

A = −
∫

d4x F a
µν(x)

[( 1

D2
DσF

σρ
)

,
1

D2

[( 1

D2
DτF

τρ
)

,
( 1

D2
F µν

)]]a

(x) . (5.67)

Now we consider the second term B of (5.61) to obtain

B = −1

2

∫

d4x d4y
{

F a
µν(x)(2∂

x
ρK

T ac
1

(x, z)A
T

ρ

cd
(z)Kdb

0
(z, y))F µν b(y)

}

. (5.68)
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Using the definition of K
T ac
1

(x, z) as in (5.56) we have for (5.68)

B = 2

∫

d4x d4y d4w d4z
{

F a
µν(x)

(

∂xρK0(x, w)A
T

λ(w)∂
w
λK0(w, z)

)ac
A

T cd
ρ (z)

×Kdb
0
(z, y)F µνb(y)

}

.

(5.69)

Writing the colour indices explicitly leads to

B = 2

∫

d4x d4y d4w d4z
{

F a
µν(x)(∂

x
ρ )

aa′Ka′b′

0
(x, w)A

T b′c′

λ (w)

×
(

(∂wλK0(w, z)
)c′c

A
T cd
ρ (z)Kdb

0
(z, y)F µνb(y)

}

,

(5.70)

where now the partial derivative ∂xρ acts on the field strength F a
µν(x) to give

B = −2

∫

d4x d4y d4w d4z
{

Kb′a′

0
(w, x)(∂xρFµν)

a′(x)A
T b′c′

λ (w)

× (∂wλK0(w, z))
c′cA

T cd
ρ (z)Kdb

0
(z, y)F µνb(y)

}

.

(5.71)

Using the property (4.8) we integrate the above equation w.r.t. x and y to yield

B = −2

∫

d4z d4w
{( 1

�
∂ρFµν

)b′

(w)A
T b′c′

λ (w)(∂wλK0(w, z))
c′cA

T cd
ρ (z)

( 1

�
F µν

)d

(z)
}

.

(5.72)

The last two terms in above become a commutator using (3.57)

B = −2

∫

d4z d4w
{( 1

�
∂ρFµν

)b′

(w)A
T b′c′

λ (w)(∂wλK0(w, z))
c′c
[

A
T

ρ ,
( 1

�
F µν

)]c

(z)
}

,

(5.73)

where now integrating the above equation with respect to z gives

B = −2

∫

d4w
{( 1

�
∂ρFµν

)b′

(w)A
T b′c′

λ (w)
(

∂wλ
1

�

[

A
T

ρ ,
1

�
F µν

])c′

(w)
}

. (5.74)

Again using the property (3.57) in above yields
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B = −2

∫

d4w
{( 1

�
∂ρFµν

)b′

(w)
[

A
T

λ , ∂
w
λ

1

�

[

A
T

ρ ,
1

�
F µν

]]b′

(w)
}

. (5.75)

Translating (5.75) in terms of covariant derivative and using (4.132) we obtain

B = −2

∫

d4x
( 1

D2
DρF

µν
)a

(x)
[( 1

D2
DσF

σλ
)

, Dλ

1

D2

[( 1

D2
DαF

αρ
)

,
( 1

D2
F µν

)]]a

(x) .

(5.76)

In much the similar way the third term of (5.61) can be simplified to yield

C =
1

2

∫

d4x
( 1

D2
F µν

)a

(x)
[( 1

D2
DσF

σλ
)

,
[( 1

D2
DαF

αρ
)

,
( 1

D2
F µν

)]]a

(x) . (5.77)

The fourth term of (5.61) is given by

D = −
∫

d4z d4w
( 1

�
∂ρFµν

)c

(z)Kce
0
(z, w)[A

T

β , ∂ρA
T

β ]
ed(w)

( 1

�
Fµν

)d

(z)

= −
∫

d4z
( 1

�
∂ρFµν

)c

(z)
( 1

�
[A

T

β , ∂ρA
T

β ]
)cd

(z)
( 1

�
Fµν

)d

(z)

= −
∫

d4z
( 1

�
∂ρFµν

)c

(z)
[ 1

�
[A

T

β , ∂ρA
T

β ],
1

�
Fµν

]c

(z) .

(5.78)

Performing the substitutions in terms of covariant derivative yields

D = −
∫

d4x
( 1

D2
DρF

µν
)a

(x)
[ 1

D2

[( 1

D2
DαF

αβ
)

, Dρ

( 1

D2
DτF

τβ
)]

,
( 1

D2
F µν

)]a

(x) .

(5.79)

Finally substituting the expressions A−D back into (5.60) we obtain:

Y
2
= −

∫

d4x F a
µν(x)

[( 1

D2
DσF

σρ
)

,
1

D2

[( 1

D2
DτF

τρ
)

,
( 1

D2
F µν

)]]a

(x)

− 2

∫

d4x
( 1

D2
DρF

µν
)a

(x)
[( 1

D2
DσF

σλ
)

, Dλ

1

D2

[( 1

D2
DαF

αρ
)

,
( 1

D2
F µν

)]]a

(x)

+
1

2

∫

d4x
( 1

D2
F µν

)a

(x)
[( 1

D2
DσF

σλ
)

,
[( 1

D2
DαF

αρ
)

,
( 1

D2
F µν

)]]a

(x)

−
∫

d4x
( 1

D2
DρF

µν
)a

(x)
[ 1

D2

[( 1

D2
DαF

αβ
)

, Dρ

( 1

D2
DτF

τβ
)]

,
( 1

D2
F µν

)]a

(x) ,

(5.80)
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which is gauge invariant as required.

5.5 Calculation of Z2

Using the same strategy as for Y2 we can in a similar way calculate Z2 , the gauge

invariant extension of g
(

P1 − Z1

)

+ g2P2 . We have seen earlier that in order to

obtain Z1 , (5.14), we made use of the following replacements

(F h
µν)

a → F a
µν(x) , Ah

µ → A
T

µ , Ah
ν → A

T

ν , (5.81)

in (4.134). Now that we have obtained Z1 we also have the choice of writing the

commutator in the adjoint representation where using (3.57) we find

[Ah
µ, A

h
ν ]

b = (Ah
µ)

bc(Ah
ν)

c . (5.82)

Hence to lowest order (4.134) can be written as

P
1
=

∫

d4x d4y (F h
µν)

a(x) δabK
0
(x, y) (Ah

µ)
bc(y)(Ah

ν)
c(y) . (5.83)

It is to be noted that we are not strictly expanding in the coupling but we are allowing

for the field strength terms to be kept together. The above equation contains the

field strength (F h
µν)

a in the adjoint representation and more details on its expansion

can be found in Appendix D.3. The next task is to reinstate the higher order

modifications by making the following replacements in (5.83)

(F h
µν)

a → −gF c
µν(v1)

ca , (Ah
ν)

c(y) → g(A
(1)T

ν )c(y) , (Ah
µ)

bc(y) → g(A
(1)T

µ )bc(y) ,

(5.84)



117 Chapter 5. Zwanziger’s Expansion

to obtain

gP1 =

∫

d4x d4y
{

− F d
µν(x)(v1)

da(x) δabK0(x, y)(A
T

µ)
bc(y)(A

T

ν )
c(y)

+ F a
µν(x) δ

abK0(x, y)(A
(1)T

µ )bc(y)(A
T

ν )
c(y)

+ F a
µν(x) δ

abK0(x, y)(A
T

µ)
bc(y)(A

(1)T

ν )c(y)
}

.

(5.85)

We will return to these terms later but for now we will consider (5.13) which can be

written in the equivalent form as

P1 =

∫

d4x d4y d4w d4u F a
µνδ

abK0(x, y)
(

K0(y, w)∂
αfαµ(w)

)bc(

K0(y, u)∂
βfβν(u)

)c
.

(5.86)

Using (4.61) and (4.62) we find

P1 =

∫

d4x d4y d4w d4u F a
µν(x)δ

abK0(x, y)δ
bc
deK0(y, w)

(

∂αfαµ
)de

(w)

× δcfK0(y, u)
(

∂βfβν
)f
(u) .

(5.87)

We clearly see that the above equation is an expansion in coupling to lowest orders.

However to calculate Z2 we need to reinstate the higher order modifications by

making the following replacements

δcfK0(y, u) → −gKcf
1
(y, u) ,

(

∂βfβν
)f
(u) → −g

(

∂β [Aβ, Aν ]
f + [Aβ, fβν ]

f
)

(u)

(

∂αfαµ
)de

(w) → −g
(

∂α[Aα, Aµ]
de + [Aα, fαµ]

de
)

(w)

Kab
0
(x, y) → −gKab

1
(x, y), δbcdeK0(y, w) → −gK1

bc
de(y, w) ,

(5.88)

to (5.87). It is the extension of the difference between gauge invariant expression

(5.14) and (5.87) in addition to g2P2 that will correspond to g2Z2 that is,
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g
(

P1 − Z1

)

= −
∫

d4x d4y
{

F a
µν(x)K

ab
1
(x, y)(A

T

µ)
bc(y)(A

T

ν )
c(y)

}

−
∫

d4x d4y d4w
{

F a
µν(x)δ

abK
0
(x, y)K

1

bc
de(y, w)

(

∂αfαµ
)de

(w)(A
T

ν )
c(y)

}

−
∫

d4x d4y d4u
{

F a
µν(x)δ

abK0(x, y)(A
T

µ)
bc(y)Kcf

1
(y, u)

(

∂βfβν
)f
(u)

}

−
∫

d4x d4y d4w
{

F a
µν(x)δ

abK0(x, y)δ
bc
deK0(y, w)

×
(

∂α[Aα, Aµ]
de + [Aα, fαµ]

de
)

(w)(A
T

ν )
c(y)

}

−
∫

d4x d4y d4u
{

F a
µν(x)δ

abK0(x, y)(A
T

µ)
bc(y)δcfK0(y, u)

×
(

∂β [Aβ , Aν ]
f + [Aβ , fβν ]

f
)

(u)
}

.

(5.89)

Again we want to show that all the TL and LL terms from (5.89) when added to

(5.85) cancel. The details of this cancellation are included in Appendix D.5. The

surviving gauge invariant terms are then given by

g
(

P1 −Z1

)

+ g2P2 = G +H + I + J +K

= −
∫

d4x d4y
{

F a
µν(x)δ

abK0(x, y)
1

�

(

[A
T

α, ∂
αA

T

µ ]
bc + [A

T

α, fαµ]
bc
)

(y)(A
T

ν )
c(y)

+ F a
µν(x)δ

abK
0
(x, y)(A

T

µ)
bc(y)

1

�

(

[A
T

β , ∂
βA

T

ν ]
c + [A

T

β , fβν ]
c
)

+ F a
µν(x)K

T ab
1

(x, y)(A
T

µ)
bc(y)(A

T

ν )
c(y)

}

−
∫

d4x d4y d4w
{

F a
µν(x)δ

abK0(x, y)
(

K
T

1
(y, w)∂αfαµ(w)

)bc

(A
T

ν )
c(y)

}

−
∫

d4x d4y d4u
{

F a
µν(x)δ

abK0(x, y)(A
T

µ)
bc(y)

(

K
T

1
(y, u)∂βfβν(u)

)c}

.

(5.90)

The commutators in the first line of (5.90) can be combined together to obtain

G = −
∫

d4x d4y
{

F a
µν(x)δ

abK
0
(x, y)

1

�

(

2[A
T

α, ∂
αA

T

µ ]
bc − [A

T

α, ∂
µA

T

α]
bc
)

(y)(A
T

ν )
c(y)

}

,

(5.91)
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and using (3.57) we have

G = −
∫

d4x d4y
{

2F a
µν(x)δ

abK0(x, y)
[ 1

�

[

A
T

α, ∂
αA

T

µ

]

, A
T

ν

]b

(y)

− F a
µν(x)δ

abK0(x, y)
[ 1

�

[

A
T

α, ∂
µA

T

α

]

, A
T

ν

]b

(y)
}

.

(5.92)

The second integrand of (5.90) can be evaluated in a similar way to obtain

H = −
∫

d4x d4y
{

2F a
µν(x)δ

abK
0
(x, y)

[

A
T

µ ,
1

�

[

A
T

β , ∂
βA

T

ν

]]b

(y)

− F a
µν(x)δ

abK0(x, y)
[

A
T

µ ,
1

�

[

A
T

β , ∂
βA

T

ν

]]b

(y)
}

.

(5.93)

For the third integrand we see that the last two terms become commutator and we

also introduce the value of K
T ab
1

(x, y) to give

I = 2

∫

d4x d4y d4w
{

F a
µν(x)

(

∂xλK0(x, w)A
T

λ(w)K0(w, y)
)ab

[A
T

µ , A
T

ν ]
b(y)

}

. (5.94)

Writing the colour indices explicitly in the above equation leads to

I = 2

∫

d4x d4y d4w
{

F a
µν(x)∂

x
λδ

acK0(x, w)(A
T

λ)
cd(w)δdbK0(w, y)[A

T

µ , A
T

ν ]
b(y)

}

,

(5.95)

where now using the property (3.57) we obtain

I = −2

∫

d4w
{( 1

�
∂λFµν

)c

(w)(A
T

λ)
cd(w)

( 1

�
[A

T

µ , A
T

ν ]
)d

(w)
}

= −2

∫

d4w
{( 1

�
∂λFµν

)c

(w)
[

A
T

λ ,
[ 1

�
[A

T

µ , A
T

ν ]
]]d

(w)
}

.

(5.96)

Likewise we now do the expansion for the fourth integrand where we see that

K
T

1
(y, w) carries colour indices written in the form

J = −
∫

d4x d4y d4w
{

F a
µν(x)δ

abK
0
(x, y)K

T

1

bc

ed
(y, w)(∂αfαµ)

ed(w)(A
T

ν )
c(y)

}

.

(5.97)
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Using the property (D.2) we obtain

J = 2

∫

d4x d4y d4w d4u
{

F a
µν(x)δ

abK0(x, y)∂
y
λK0(y, u)(A

T

λ )
bc
ed(u)K0(u, w)

× (∂αfαµ)
ed(w)(A

T

ν )
c(y)

}

.

(5.98)

Integrating the above equation w.r.t. w and u leads to

J = 2

∫

d4x d4y
{

F a
µν(x)δ

abK
0
(x, y)

( 1

�

[

A
T

λ , ∂λA
T

µ

])bc

(y)(A
T

ν )
c(y)

}

. (5.99)

Using (3.2.5) we finally get

J = 2

∫

d4x d4y
{

F a
µν(x)δ

abK
0
(x, y)

[ 1

�

[

A
T

λ , ∂λA
T

µ

]

, A
T

ν

]b

(y)
}

. (5.100)

In a similar way the fifth integrand can be simplified and we obtain

K = 2

∫

d4x d4y
{

F a
µν(x)δ

abK
0
(x, y)

[

A
T

µ(y),
1

�

[

A
T

λ , ∂λA
T

ν

]]b

(y)
}

. (5.101)

Putting all the terms from G to K together we find that the first integrand of

(5.92) and (5.93) cancels with (5.100) and (5.101). In addition to this, to order g2

there is also the contribution from the term P2 defined in (4.134) such that the net

contribution is given by

g
(

P1 −Z1

)

+ g2P2 =

∫

d4x d4y
{

F a
µν(x)δ

abK0(x, y)
[ 1

�

[

A
T

α, ∂µA
T

α

]

, A
T

ν

]b

(y)
}

+

∫

d4x d4y
{

F a
µν(x)δ

abK0(x, y)
[

A
T

µ ,
1

�

[

A
T

β , ∂βA
T

ν

]]b

(y)
}

− 2

∫

d4w
{( 1

�
∂λFµν

)c

(w)
[

A
T

λ ,
[ 1

�
[A

T

µ , A
T

ν ]
]]d

(w)
}

− 1

2

∫

d4x d4y
{

[A
T

µ , A
T

ν ]
a(x) δabK0(x, y) [A

T

µ , A
T

ν ]
b(y)

}

.

(5.102)
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At this order we can simply perform the substitutions to the above result to get the

contribution to order F 4 and obtain

Z2 =

∫

d4x
( 1

D2
Fµν

)a

(x)
[ 1

D2

[( 1

D2
DσF

σα
)

, Dµ
( 1

D2
DτF

τα
)]

,
( 1

D2
DρF

ρν
)]a

(x)

+

∫

d4x
( 1

D2
Fµν

)a

(x)
[( 1

D2
DσF

σµ
)

,
1

D2

[( 1

D2
DρF

ρβ
)

, Dν
( 1

D2
DτF

τβ
)]]a

(x)

− 2

∫

d4x
( 1

D2
DλF

µν
)a

(x)
[( 1

D2
DαF

αλ
)

,
1

D2

[( 1

D2
DσF

σµ
)

,
( 1

D2
DρF

ρν
)]]a

(x)

− 1

2

∫

d4x
1

D2

[( 1

D2
DσF

σµ
)

,
( 1

D2
DρF

ρν
)]a

(x)
[( 1

D2
DτF

τµ
)

,
( 1

D2
DαF

αν
)]a

(x) ,

(5.103)

which is manifestly gauge invariant. Hence we see that the non-abelian mass term

has an expansion in terms of the gauge invariant combinations of the field strengths,

M2 = −1

2

∫

d4x F a
µν(x)

( 1

D2
Fµν

)a

(x) + g(Z1 − Y1) + g2(Z2 − Y2) + · · · , (5.104)

where Z1 − Y1 corresponds to Zwanziger’s expression (4.1) and Z2 − Y2 are the

new terms given by (5.80) and (5.103). These expansions are not unique and have

ambiguities as discussed in Section 5.2. What we have presented here are the terms

closest in form to the Zwanziger expansion (4.1) but other ways of representing these

gauge invariant quantities exist.



Chapter 6

Conclusions and Outlook

In this thesis we have investigated the role of gauge invariance in understanding the

physical configurations of gauge theories and how it can be used to construct gauge

invariant objects. In the first chapter we gave a brief introduction to the standard

model of particle physics, highlighting on the role of symmetries in any gauge theory.

The mathematical formalism needed to describe these particles and their interactions

is encoded by field theory. We then reviewed the role of symmetries in field theory

primarily focussing on the internal symmetries which underly our descriptions of the

forces of nature. They lead to conservation laws and to a variety of relations among

Green’s functions, referred to as Ward identities. These symmetries are important

in particle physics. The consequences of gauge invariance were then discussed briefly

in terms of Ward identities.

In Chapter 2 we have introduced gauge theories. For the abelian gauge theory

we stated the Feynman rules (in Appendix A.1) that are derived from the QED

Lagrangian and explained the regularisation procedure. To perform loop calcula-

tions in QED, we showed how using dimensional regularisation with D = 4 → 4−2ε

the divergences are exposed as pole terms in ε. Dimensional regularisation is often

preferred over other methods as it ensures gauge invariance and the validity of the
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Ward identity to all orders of perturbation theory. To absorb the singularities and

obtain an UV-finite Green’s function we introduced the concept of renormalisation,

preference being given to the on-shell scheme. Various examples on the use of the

Ward identity were then discussed which included constraining the tensor structure

of the vacuum polarisation of the theory. Regularisation independent consistency

conditions initially proposed by Wu in QCD [49] which preserve gauge invariance

were our next topic. We have seen that in order to maintain gauge invariance for any

regularisation, Wu’s conditions (2.54)-(2.59) must always hold. The Ward identity,

qµΠµν(q) = 0, was verified in Wu’s scheme where an arbitrary regularisation scheme

was used. Later Wu’s conditions were verified in both dimensional regularisation and

Pauli-Villars. We noted the connection between translational invariance and Wu’s

integrals in dimensional regularisation. In the end it was shown that all of Wu’s

identities can be derived using translational invariance. Since gauge invariance is

independent of the number of space-time dimensions, dimensional regularisation is

by construction a gauge invariant regularisation. However, it has its own drawbacks.

An extension of our work would be to test other methods which should work using

Wu’s approach. These can be applied, perhaps, to physical process in three dimen-

sions where divergences get worse. The infrared problem which is not considered by

Wu is another possible extension.

Non-abelian gauge theories were introduced in Chapter 3 where properties of

Lie groups were discussed and various representations presented. Considering the

gluonic fields, F a
µν in the fundamental representation we have shown how they trans-

formed in the adjoint representation of the group. We then built up tensor product

representation for the fields in the adjoint representation. We generalised this proce-

dure to higher order and therefore, built up higher representations by taking tensor

product of the tensor product. Some new identities were derived in Section 3.2.5
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that were key for later chapters of the thesis. This was then followed by a descrip-

tion of how physical configurations can be constructed in a gauge theory using the

dressing procedure as a guiding principle. Using the dressing approach we have ex-

plored a wider class of physical gluonic configurations in SU(N) gauge theories. We

have seen that a physical particle corresponds to an appropriately dressed, gauge

invariant field. This is a description of a matter field dressed by an electro-magnetic

field. In particular, this dressing procedure explored an abelian gauge structure

within the non-abelian gauge theory thus allowing for the succinct description of

the mass term. Because of the fact that the non-abelian field strength is not gauge

invariant we used two possible routes to construct gauge invariant expressions for

the field strength. The first choice was to use the dressing procedure as discussed in

Section 3.3 which allowed us to define the dressed field strength F h
µν (3.84) and the

other was the construction of an alternative field strength Fµν (3.83) that was of

an abelian form but gauge invariant in the non-abelian theory. It was the interplay

between these two field strengths that played an important role in the construction

of the mass term that was the core of our calculation.

In Chapter 4 we investigated how such mass terms can be constructed in SU(N)

gauge theories. We have introduced Zwanziger’s expansion [98] where gauge inva-

riance is maintained order by order by the use of the inverse covariant Laplacian.

The expansion (4.1) has been given by Zwanziger but no derivation or discussion

was provided. We have presented some of the properties of the inverse covariant

Laplacian and provided the proofs of the results in Section 4.3.1. The important

role of dressings lies at the heart of our analysis and has a significance beyond this

application. This enabled us to factorise the dressed mass into the product of two

separate gauge invariant structures written in terms of field strengths (4.7). Howe-

ver Zwanziger’s first term in (4.1) does not factorise out. So working in the adjoint
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representation we then identified the central role of the dressing and have shown how

the dressed field Kab(x, y) (4.92) factorises into the product of two separate gauge

invariant states (4.103). This then allowed us to decompose Zwanziger’s expansion

into the sum of an adjoint dressing and an operator Q

− 1

2

∫

d4x F a
µν(x)

( 1

D2
F µν

)a

(x) = −1

2

∫

d4x F ha
µν (x)

( 1

�
F hµν

)a

(x) +Q , (6.1)

which were separately gauge invariant. This last operator, as we have seen, had

a perturbative expansion where the first order term Qab
1
(x, y) (4.123) was purely

transverse, however the second order term Qab
2
(x, y) (4.126) was not, as it contained

mixed transverse/longitudinal components. Using the field strength factorisation

we have then shown how the non-abelian mass term can be decomposed into the

sum of an adjoint dressing and the gauge invariant term P as

− 1

2

∫

d4x Fa
µν(x)

( 1

�
Fµν

)a

(x) = −1

2

∫

d4x F ha
µν (x)

( 1

�
F hµν

)a

(x) + P . (6.2)

These two descriptions were then connected by eliminating the common factor

constructed to give the mass term

M2 = −1
2

∫

d4x F a
µν(x)

( 1

D2
Fµν

)a

(x) + P −Q , (6.3)

where the operators P and Q are calculated to the lowest orders in perturbation

theory.

Using this succinct formula we then, in Chapter 5, recovered Zwanziger’s expan-

sion up to cubic in the powers of field strength. This however exposed ambiguities in

the whole construction. In Section 5.3 we then derived for the first time, an explicit

expression that was quartic in the field strengths that corresponded to Z2 − Y2 see
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equation (5.103) and (5.80). While this was relatively straightforward at the F 3 level

however at the F 4 level the presence of mixed transverse/longitudinal components

made this derivation non-trivial. Using the same procedure as for F 3 we identified

the transverse residue of the operator at an appropriate order by ensuring that no

TL or LL components survive. Reinstating the higher order modifications for both

Y2 (5.80) and Z2 (5.103) and performing the substitutions at this order we arrived

at our result.

The methods used in this thesis, we feel, can give us much insight into the

construction of gauge invariant configurations that, we hope, can be applicable to a

wider area. We may be able to use these ideas to construct dressings for hadronic

states which may have a good overlap with the ground state.



Appendix A

Calculation Techniques in QED

A.1 Feynman Diagrams

Feynman diagrams are a form of shorthand representation that tell us the calculation

necessary for an interaction process. This is a key technique in field theory that

helps in calculating scattering amplitudes [44] in various processes. Energy and

momentum are conserved during every interaction and hence at every vertex. In

a Feynman diagram, the propagator always occurs as an internal line. However

the wave functions representing the physical particles are always represented by the

external lines which are introduced later. We present here some of the Feynman

rules for QED.

Feynman rules:

(1) Fermion (Dirac) Propagator:

−→

p
i

p/ − m + iǫ

127
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(2) Photon Propagator (Feynman gauge):

−→

q
−igµν

q2 + iǫ

(3) Vertex:

µ

−→ ieγµ

(4) For every closed fermionic loop multiply by a factor of -1.

(5) Integrate over every independent momentum with the measure
d4p

2π4 .

(6) Include symmetry factors.

These Feynman diagrams are used to calculate the cross-sections of the various

interactions generally represented by the elements of S-matrix.

A.2 S-Matrix Formulation

In this formalism, |i〉 denotes an initial state long before the scattering occurs,

ti = −∞. The particles do not interact. Long after the scattering has occured,

tf = ∞, the particles result into many different final states |f〉. The S-Matrix by

definition relates state at t = −∞ to that at t = ∞ by the simple relation:

|φ(t = ∞)〉 = Ŝ|φ(t = −∞)〉 . (A.1)
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The transition probability that after scattering the system is in state |f〉 at t = ∞

is given by:

|Sfi|2 = |〈f |φ(t = ∞)〉|2 = |〈f |Ŝ|φ(t = −∞)〉|2 . (A.2)

To pass from Feynman diagram to S-Matrix elements there is a simple algorithm.

One does the following in the order given:

• Amputate all external legs, that is remove all external propagators (or equiva-

lently, multiply each external leg by the inverse propagator).

• Put all the external momenta onshell.

Then on the fermionic legs that have been cut off, for particles with momentum p

and spin s, multiply by

• u(p, s) for an incoming electron −→
u

• ū(p, s) for an outgoing electron −→
ū

• v̄(p, s) for an incoming positron −→
v̄

• v(p, s) for an outgoing positron −→
v

On the amputated photon legs, for photons with momentum k and helicity λ,

multiply by

• ǫµ(k, λ) for an incoming photon −→
ǫµ

• ǫ∗µ(k, λ) for an outgoing photon −→

ǫ
∗

µ
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These rules provide iM and the transition amplitude is, Sfi = −i(2π)4δ4(pf − pi)M

=
(

sum of all connected, amputated Feynman diagrams with pi incoming and pf

outgoing
)

.

The probability of transition from initial state to final state is |Sfi|2. Thus

Feynman diagrams depicted earlier are used for computing amplitude Mfi for an

arbitrary process in QED. In order to calculate unpolarized cross-section for QED

processes the general procedure is:

1. Draw the diagram of desired process.

2. Use the Feynman rules to write amplitude Mfi

3. Square the amplitudeM2 and average or sum over spins using the completeness

relations.
∑

s

us(p)ūs(p) = /p+m. (A.3)

∑

s

vs(p)v̄s(p) = /p−m. (A.4)

4. Evaluate the traces using trace theorems; collect terms and simplify.

5. Specialize to a particular frame of reference and draw a picture of kinematic

variables in that frame. Express all 4-momentum vectors in terms of E and θ.

6. Plug M2 into cross section formula i.e. dσ
dΩ

and then calculate dσ by integration.

A.3 Gamma Matrix Algebra

When we evaluate integrals in D dimensions we encounter expressions with the

gamma matrices γµ involved and the Clifford algebra is then D dimensional.

• {γµ, γν} = 2gµν, γµγµ = D, γµγν = gµν , a/a/ = a2, a/b/ + b/a/ = 2a.b



131 Appendix A. Calculation Techniques in QED

• γµa/b/c/γµ = −2c/b/a/ + (4−D)a/b/c/

• γµa/b/γµ = 4a.b− (4−D)a/b/, γµa/γµ = (2−D)a/ .

One can also calculate the traces of γ matrices

• tr (1) = 4, tr (any odd no. of γ′s) = 0, tr (γµγν) = 4gµν , tr (a/b/) = 4a.b

• tr (a/b/c/d/) = 4
(

(a.b)(c.d)− (a.c)(b.d) + (a.d)(b.c)
)

.

The definition of γ5 in 4-dimension is

• γ5 = iγ0γ1γ2γ3 with [γ5, γν ] = 0 .

In D 6= 4 dimensions, the definition of γ5 is more complicated, but in this thesis

we did not need to use γ5.

A.4 Analysis of Dimensions

We are working in momentum space in four dimensions and can determine the

dimension of a field by analysing the free action

S =

∫

d4x L , (A.5)

where dimension of Lagrangian [L] = 4 and the dimension of coupling constant

[e] = 0. However in D dimension since [L] = D and using [/∂] = 1, [m] = 1 we find,

[ψ] = D−1
2

and [A] = D−2
2

.

Considering the interaction term Lint = ψ̄eγµψAµ one can easily find the dimen-

sion of coupling constant in D dimension which varies as

[e] → µεe, ε =
4−D

2
, (A.6)
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where e is dimensionless and µε is the new scale1 that carries all the information

about dimensions. In D dimensions the vertex is modified as ieγµ → ieµεγµ.

1The arbitrary mass parameter µ is introduced to maintain the coupling constant dimensions
of the integrals.



Appendix B

One-Loop Integrals

B.1 Feynman Parameterisation

To evaluate the loop integrals that contain the products of denominators of the form

D = (p2−m2).[(p+q)2−m2] Feynman introduced the following identities to combine

these products into one single denominator

1

AB
=

∫ 1

0

dx
1

[xA+ (1− x)B]2
, (B.1)

1

ABC
= 2

∫ 1

0

dx x

∫ 1

0

dy
1

[(A− B)xy + (B − C)x+ C]3
, (B.2)

where the integration parameters x and y are called Feynman parameters.

All the momentum integrals are calculated in Euclidean space as it makes sure

that all the poles disappear in the propagators. The type of integrals that we would

be encountering will be of the form:

Ir(a) =

∫

dDk

(2π)D
1

(k2 − a2 + iǫ)r

=
1

(2π)D

∫

dk0
∫

dD−1k
1

(k20 − k2 − a2 + iǫ)r
.

(B.3)
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To do this integration we will use integration in the plane of the complex variable

k0. The deformation of the contour corresponds to the so called Wick’s rotation i.e.

k0 → ik0E , k = kE ,

∫ ∞

−∞

dk0 → i

∫ ∞

−∞

dk0E . (B.4)

which is shown in the corresponding diagram of Fig. B.1.

Rek0

Imk0

Figure B.1: The k0 integration plane

Going from Minkowski space to Euclidean space the integral becomes:

Ir(a) =
i

(2π)D

∫ ∞

−∞

dk0E

∫

dD−1kE

1

(k0E
2 − k2

E − a2 + iǫ)r

=
i

(2π)D

∫ ∞

−∞

dk0E

∫

dD−1kE

(−1)r

(k0E
2
+ k2

E + a2 − iǫ)r
,

(B.5)

where kE = (k0E,kE) =⇒ k2E = k0
2
E + k2

E ( i.e. while going from Minkowski space to

Eucledian space we end up with all positive diagonal terms).

Ir(a) =
i

(2π)D

∫

dDkE
(−1)r

(k2E + a2 − iǫ)r

=
i

(2π)D
(−1)r

∫

dkE kD−1
E dΩD−1

1

(k2E + a2 − iǫ)r
,

(B.6)
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where dΩD−1 is the solid angle. Making use of the relation between solid angle Ω

and gamma Γ functions
∫

dΩD−1 =
2(π)

D

2

Γ(D
2
)
, (B.7)

we end up with1:

Ir(a) =
1

(2π)D

∫

dDk
1

(k2 − a2 + iǫ)r

= (−1)r
i

(4π)
D

2

Γ(r − D
2
)

Γ(r)
(a2 − iǫ)

D

2
−r .

(B.8)

B.2 Derivation of Formula for Wu’s Identity

In this appendix we will show how to obtain equation (2.85) that can be used to

generate all of the Wu’s identities. To start with we first rewrite Wu’s identites

(2.49), (2.51) in dimensional regularisation as

∫

dDk

(2π)D
kµkν

(k2 −M2)2
=

1

2
gµν

∫

dDk

(2π)D
1

(k2 −M2)
,

∫

dDk

(2π)D
kµkν

(k2 −M2)3
=

1

4
gµν

∫

dDk

(2π)D
1

(k2 −M2)2
.

(B.9)

The above equations follow some pattern so the equation for nth term can be written

as:

∫

dDk

(2π)D
kµkν

(k2 −M2)n
=

1

X
gµν

∫

dDk

(2π)D
1

(k2 −M2)n−1

Inµν =
1

X
gµνI

n−1 ,

(B.10)

where we have identified the above integrals with the Wu’s identities. In (B.10) X

is a constant that we want to evaluate for which we contract (B.10) by gµν on both

1In going from (B.6) to (B.8) we have dropped the subscript E over the momentum kE .
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sides to obtain:

gµν
∫

dDk

(2π)D
kµkν

(k2 −M2)n
=
D

X

∫

dDk

(2π)D
1

(k2 −M2)n−1
, (B.11)

where D = gµνg
µν. Adding and subtracting M2 in the above equation we obtain:

∫

dDk

(2π)D

{ 1

(k2 −M2)n−1
+

M2

(k2 −M2)n

}

=
D

X

∫

dDk

(2π)D
1

(k2 −M2)n−1
. (B.12)

Let now R be an arbitrary integral defined in the form:

Rn =

∫

dDk

(2π)D
1

(k2 −M2)n
. (B.13)

Substituting the above equation into into (B.12) yields:

(

1− D

X

)

Rn−1 = −M2Rn . (B.14)

Using (B.8) we evaluate integrals Rn−1 and Rn to obtain

Rn−1 = (−1)n−1 i

(4π)
D

2

Γ(n− 1− D
2
)

Γ(n− 1)
(M2)

D

2
−n+1 , (B.15)

and

Rn = (−1)n
i

(4π)
D

2

Γ(n− D
2
)

Γ(n)
(M2)

D

2
−n . (B.16)

Substituting the integrals (B.15) and (B.16) into (B.14) and using the properties of

gamma function we obtain

1− D

X
=
n− 1− D

2

n− 1
, (B.17)



137 Appendix B. One-Loop Integrals

which upon simplification yields:

X = 2(n− 1) . (B.18)

Hence (B.10) becomes:

Inµν =
1

2(n− 1)
gµνI

n−1 , (B.19)

which is similar to (2.85) as discussed in Chapter 2.



Appendix C

The Dressed Potential

Using the equation for the dressed potential (3.66) and imposing the Landau condi-

tion ∂µAh
µ = 0, one can calculate the power of the perturbative expansion to various

orders in coupling. To start with we write the dressed vector potential in the form,

Ah
µ = h−1Aµh+

1

g
h−1∂µh . (C.1)

Substituting the values of h−1 and h from (3.69) and (3.70) we have,

Ah
µ =

{

1 + gv1 + g2
(

1
2
v21 + v2

)

+ g3
(

1
6
v31 +

1
2
v1v2 +

1
2
v2v1 + v3

)}

× Aµ

{

1− gv1 + g2
(

1
2
v21 − v2

)

− g3
(

1
6
v31 − 1

2
v1v2 − 1

2
v2v1 + v3

)}

+
1

g

{

1 + gv1 + g2
(

1
2
v21 + v2

)

+ g3
(

1
6
v31 +

1
2
v1v2 +

1
2
v2v1 + v3

)}

× g
{

− ∂µv1 + g∂µ
(

1
2
v21 − v2

)

− g2∂µ
(

1
6
v31 − 1

2
v1v2 − 1

2
v2v1 + v3

)}

= Aµ − ∂µv1 + g
{

[v1, Aµ] +
1
2
[∂µv1, v1]− ∂µv2

}

+ g2
{

1
2
v21Aµ + v2Aµ +

1
2
Aµv

2
1 − Aµv2 − v1Aµv1 − 1

6
∂µ(v1v

2
1)

+ 1
2
(∂µv1)v2 +

1
2
v1(∂µv2) +

1
2
(∂µv2)v1 +

1
2
v2(∂µv1)− ∂µv3

+ 1
2
v1∂µv

2
1 − v1(∂µv2)− 1

2
v21(∂µv

2
1)− v2(∂µv1)

}

.

(C.2)
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Using the identity,

∂µ(AB) = (∂µA)B + A(∂µB) , (C.3)

in (C.2) we find Ah
µ reduces to,

Ah
µ = Aµ − ∂µv1 + g

{

[v1, Aµ] +
1
2
[∂µv1, v1]− ∂µv2

}

+ g2
{

1
2
v21Aµ + v2Aµ +

1
2
Aµv

2
1 −Aµv2 − v1Aµv1 − 1

6
v21(∂µv1)

+ 1
2
(∂µv1)v2 − 1

2
v1(∂µv2)

1
6
(∂µv1)v

2
1
1
6
v1(∂µv1)v1 +

1
2
(∂µv2)v1

− 1
2
v2(∂µv1) +

1
2
v1(∂µv1)v1 − ∂µv3

}

= Aµ − ∂µv1 + g
{

[v1, Aµ] +
1
2
[∂µv1, v1]− ∂µv2

}

+ g2
{

1
2
v1[v1, Aµ]− 1

2
[v1, Aµ]v1 + [v2, Aµ] +

1
2
[∂µv2, v1]

+ 1
2
[∂µv1, v2]− 1

6
(∂µv1)v

2
1 +

1
3
v1(∂µv1)v1 − 1

6
v21(∂µv1)− ∂µv3

}

.

(C.4)

Further simplification gives,

Ah
µ = Aµ − ∂µv1 + g

{

[v1, Aµ] +
1
2
[∂µv1, v1]− ∂µv2

}

+ g2
{

[v2, Aµ] +
1
2
[v1, [v1, Aµ]] +

1
2
[∂µv1, v2]

+ 1
2
[∂µv2, v1]− 1

6
[v1, [v1, ∂µv1]]− ∂µv3

}

.

(C.5)

Imposing Landau condition, ∂µA
h
µ = 0 in (C.5) yields

0 = ∂ · A−�v1 + g
{

∂µ
(

[v1, Aµ] +
1

2
[∂µv1, v1]

)

−�v2
}

+ g2
{

∂µ
(

[v2, Aµ] +
1
2
[v1, [v1, Aµ]] +

1
2
[∂µv1, v2]

+ 1
2
[∂µv2, v1]− 1

6
[v1, [v1, ∂µv1]]

)

−�v3
}

.

(C.6)
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We can solve for v1,v2 and v3 to obtain

v1 =
1
�
∂ · A

v2 =
1
�
∂µ

(

[v1, Aµ] +
1
2
[∂µv1, v1]

)

v3 =
1
�
∂µ

(

[v2, Aµ] +
1
2
[v1, [v1, Aµ]] +

1
2
[∂µv1, v2]

+ 1
2
[∂µv2, v1]− 1

6
[v1, [v1, ∂µv1]]

)

,

(C.7)

and in general for n ≥ 1 we find

v
n
=

1

�
∂µAµ

n−1
. (C.8)

This is the perturbative expansion for the dressing used in Chapter 3.

C.1 Decomposition of v2

In this section we show the decomposition of v2 into transverse (4.127) and longitu-

dinal (4.128) components that has been used in Chapter 4. In the abelian theory it

is easy to understand the decomposition of the vector potential into transverse and

longitudinal components, however in the non-abelian theory this decomposition is

not straightforward due to the presence of coupling constant g to various orders. In

the non-abelian theory, the transverse vector potential is given by

Ah
µ(x) = Aµ(x)− ∂µv1(x) + g

(

Aµ
1
(x)− ∂µv2(x)

)

+ · · · . (C.9)

In the above equation, we find to order g, a contribution from two terms namely

Aµ
1
(x) = [v1 , A

µ](x) +
1

2
[∂µv1 , v1](x) , (C.10)
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and

v2(x) =
1

�
(∂ · A1)(x) . (C.11)

Note however that in (C.10), Aµ
1
carries mixed longitudinal and transverse compo-

nents in the vector potential Aµ that can be decomposed as

Aµ
1
(x) =Aµ

1

T

(x) +Aµ
1

L

(x) , (C.12)

where

Aµ
1

T

(x) = [v1 , A
µT

](x) and Aµ
1

L

(x) =
1

2
[v1 , ∂

µv1 ](x) , (C.13)

are respectively the transverse and longitudinal component of Aµ
1
. Using this we

can find the longitudinal and transverse contribution for v
2
defined in (C.11) such

that the transverse component is

v
T

2
(x) =

1

�
∂ · AT

1
(x) =

1

�
[∂µv1 , A

µT

](x) , (C.14)

and

v
L

2
(x) =

1

�
∂ · AL

1
(x) =

1

2�
∂µ[v1 , ∂µv1 ](x) , (C.15)

is the longitudinal component. One can explore how these decompositions can be

carried out to higher orders but for the calculations presented in this thesis we shall

only consider the decomposition to order g2.



Appendix D

Properties of Lie Algebra

This appendix explains various definitions and the properties used in the calculations

presented in Chapters 4 and 5.

D.1 Product and Commutator in Lie Algebra

We can set up a dictionary between our construction of mass term and Zwanziger

via the modification

( 1

D2
B
)ab

(x)Cb(x) =
[( 1

D2
B
)

(x), C(x)
]a

, (D.1)

( 1

D2
B
)ab

cd
(x)

( 1

D2
C
)cd

(x)Db(x) =
[( 1

D2
B
)

(x),
( 1

D2
C
)

(x)
]ab

Db(x)

=
[[( 1

D2
B
)

(x),
( 1

D2
C
)

(x)
]

, D(x)
]a

,

(D.2)

and

( 1

D2
B
)ab

(x)
( 1

D2
C
)bc

(x)Dc(x) =
( 1

D2
B
)ab

(x)
[( 1

D2
C
)

(x), D(x)
]b

=
[( 1

D2
B
)

(x),
[( 1

D2
C
)

(x), D(x)
]]a

.

(D.3)

These relations have been used explicitly in deriving the Zwanziger’s next order

leading term.
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D.2 Discussion of Ambiguities in Transverse Field

Here we show that the expressions (4.132) and (5.19) are not unique. We start with

(4.132) and use the perturbative expansion to order g

1

D2

(

DβF
βρ
)

(x) :=

∫

d4y K(x, y)(DβF
βρ)(y)

=

∫

d4y
{

K0(x, y)∂
y
βF

βρ(y)

+ g
(

K1(x, y)∂
y
βF

βρ(y) +K0(x, y)Aβ(y)F
βρ(y)

)

}

=

∫

d4y
{

− ∂yβK0(x, y)F
βρ(y)

+ g
(

− ∂yβK1(x, y)F
βρ(y) +K0(x, y)Aβ(y)F

βρ(y)
)

}

.

(D.4)

In the similar way (5.19) can be expanded perturbatively to order g to yield

Dβ

( 1

D2
F βρ

)

(x) := Dx
β

∫

d4y K(x, y)F βρ(y)

=

∫

d4y
{

∂xβK0(x, y)F
βρ(y)

+ g
(

Aβ(x)K0(x, y)F
βρ(y) + ∂xβK1(x, y)F

βρ(y)
)

}

.

(D.5)

Now we look at the difference between (D.4) and (D.5) to obtain:

1

D2

(

DβF
βρ
)

(x)−Dβ

( 1

D2
F βρ

)

(x)

= g

∫

d4y
{

K0(x, y)
(

Aβ(y)−Aβ(x)
)

F βρ(y)
}

+ g

∫

d4y d4z
{

K0(x, z)∂
z
λK0(z, y)− ∂zλK0(x, z)K0(z, y)

}

× ∂zβAλ(z)F
βρ(y) +O(g2) .

(D.6)

This is clearly not zero.
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D.3 Field Strength (F h
µν)

a in the Adjoint Repre-

sentation

In this section we derive the equation used in the calculations for the derivation of

Z2 introduced in Chapter 5.

(F h
µν)

a := −2 tr (τaF h
µν) = −2 tr

{

τa
(

Fµν + g[v
1
, Fµν ]

)

)
}

= F a
µν − 2g tr

(

τa[v1 , Fµν ]
)

= F a
µν − 2gvb

1
F c
µν tr

(

τa[τ b, τ c]
)

= F a
µν − gF c

µν(v1)
ca .

(D.7)

D.4 Calculation of A
(1)T

µ

Using (4.4) we can write the dressed vector potential to all orders as

Ah
µ =

1

�
∂νFνµ , (D.8)

where substituting Fνµ = ∂νAµ − ∂µAν = fνµ + g(∂νAµ
1
− ∂µAν

1
) in (D.8) we obtain

to order g

Ah
µ =

1

�
∂ν

{

fνµ + g(∂νAν
1
− ∂µAν

1
)
}

=
1

�
∂νfνµ + g

( 1

�
∂νf (1)

νµ

)

.

(D.9)

The dressed vector potential can also be written in a manifestly gauge invariant way

to order g as

Ah
µ = A

T

µ + gA
(1)T

µ . (D.10)



145 Appendix D. Properties of Lie Algebra

Comparing (D.9) and (D.10) we get

A
(1)T

µ =
1

�

(

∂νf (1)
νµ

)

=
1

�
∂ν

(

∂νAµ
1
− ∂µAν

1

)

, (D.11)

where Aµ
1
= [v1 , A

µ] + 1
2
[∂µv1 , v1]. In order to calculate A

(1)T

µ we need to evaluate

∂νAµ
1
and ∂µAν

1
given by

∂µAν
1
= [∂µv1 , A

ν ] + [v1 , ∂µA
ν ] + 1

2
[∂µ∂

νv1 , v1] +
1
2
[∂νv1 , ∂µv1 ] , (D.12)

and

∂νAµ
1
= [∂νv1 , A

µ] + [v1 , ∂νA
µ] + 1

2
[∂ν∂

µv1 , v1] +
1
2
[∂µv1 , ∂νv1 ] . (D.13)

Substituting (D.12) and (D.13) into (D.11) we have

A
(1)T

µ =
1

�
∂ν

(

[∂νv1, A
µ]− [∂µv1 , A

ν ] + [v1 , fνµ] + [∂µv1 , ∂νv1 ]
)

. (D.14)

In the above equation, decomposing Aµ into transverse and longitudinal components

we obtain

A
(1)T

µ =
1

�
∂ν

(

[∂νv1
, A

T

µ ] + [∂νv1
, ∂µv1

]− [∂µv1
, A

T

ν ] + [v
1
, fνµ]

)

=
1

�

{

[�v1 , A
T

µ ] + [∂αv1 , ∂
αA

T

µ ] + [�v1 , ∂µv1 ] + [∂αv1 , ∂α∂µv1 ]

− [∂α∂µv1 , A
T

α] + [∂αv1 , fαµ] + [v1 , ∂
αfαµ]

}

,

(D.15)

which is used in Chapter 5.
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D.5 Cancellation of LL and TL components

In this appendix we will show that all the TL and LL terms from (5.89) when added

to (5.85) cancel. To begin with we shall now work on each integrand of (5.85) and

(5.89) and identify the TL and LL components. We hope to be able to show that

g(P1 − Z1) + g2Z2 has no LL or TL contribution so that the remainder is just TT

and hence can be identified as the next gauge invariant term in the expansion of

mass term in addition to P2 .

We start with (5.85) and substitute (D.15) into the second line of (5.85) to obtain

the T/L decomposition

∫

d4x d4y
{

F a
µνδ

abK0(x, y)
1

�

(

[�v1 , A
T

µ ]
bc + [∂αv1 , ∂

αA
T

µ ]
bc + [�v1 , ∂µv1]

bc

+ [∂αv1 , ∂α∂µv1 ]
bc − [∂α∂µv1 , A

T

α]
bc + [∂αv1 , fαµ]

bc

+ [v1 , ∂
αfαµ]

bc
)

(y)(A
T

ν )
c(y)

}

.

(D.16)

We now consider the fourth line of (5.89). From the colour indices involved in the

expression our suspicion is that the fourth line of (5.89) and (D.16) should cancel.

For this we integrate the fourth line of (5.89) with respect to w and obtain

−
∫

d4x d4y
{

F a
µν(x)δ

abK0(x, y)
1

�

(

∂α[Aα, Aµ]
bc+[Aα, fαµ]

bc
)

(y)(A
T

ν )
c(y)

}

, (D.17)

The above equation contains commutators which needs to be simplified. These

commutators have the structure

∂α[Aα, Aµ] + [Aα, fαµ] = [A
T

α, ∂
αA

T

µ ] + [�v1 , A
T

µ ] + [∂αv1, ∂
αA

T

µ ] + [A
T

α, ∂
α∂µv1 ]

+ [�v1 , ∂µv1 ] + [∂αv1 , ∂α∂µv1 ] + [A
T

α, fαµ] + [∂αv1 , fαµ] .

(D.18)
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Note that in the above equation the commutators [A
T

α, ∂
αA

T

µ ] and [A
T

α, fαµ] contain

TT components while the remaining ones consist of the LL and TL components.

Substituting (D.18) into (D.17) gives

−
∫

d4x d4y
{

F a
µν(x)δ

abK0(x, y)
1

�

(

[A
T

α, ∂
αA

T

µ ]
bc + [�v1 , A

T

µ ]
bc

+ [∂αv1 , ∂
αA

T

µ ]
bc + [A

T

α, ∂
α∂µv1 ]

bc + [�v1 , ∂µv1 ]
bc

+ [∂αv1
, ∂α∂µv1

]bc + [A
T

α, fαµ]
bc + [∂αv1

, fαµ]
bc
)

(y)(A
T

ν )
c(y)

}

.

(D.19)

Combining (D.16) and (D.19) we find most of the terms cancel giving the overall

contribution

∫

d4x d4y
{

F a
µν(x)δ

abK0(x, y)

× 1

�

(

[v1 , ∂
αfαµ]

bc − [A
T

α, ∂
αA

T

µ ]
bc − [A

T

α, fαµ]
bc
)

(y)(A
T

ν )
c(y)

}

.

(D.20)

In the above equation the first term carries TL components and the other two

terms are TT. The TL components need to be removed as we want the terms to be

gauge invariant. We will return to this equation later, what we want to show now

is the cancellation of the terms arising from the last line of (5.85) with the terms

from the last line of (5.89) after making suitable decompositions. Putting both the

integrands together and applying the same methodology as in (D.20) we find most

of the longitudinal terms cancel leaving the following terms

∫

d4x d4y
{

F a
µν(x)δ

abK
0
(x, y)(A

T

µ)
bc(y)

× 1

�

(

[v1 , ∂
βfβν ]

c − [A
T

β , ∂
βA

T

ν ]
c − [A

T

β , fβν ]
c
)}

.

(D.21)

Similar to (D.20) we find here that the first term has TL components and the last

two terms TT components. We hope to remove the extra longitudinal fields by

taking into account the contribution from the other left over terms, that is, the
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first line of (5.85) and the first three lines of (5.89). To accomplish this we return

to (5.85) and consider the first line, but there is not much to be done here as it

is already in its simplified form. However we want to remove this term which we

suspect will be canceled by the first line of (5.89) which contains the field Kab
1
(x, y).

Applying the decomposition Kab
1
(x, y) = K

T ab
1

(x, y)+ δacK
0
(x, y)(vcb

1
(y)− vcb

1
(x)) in

the first line of (5.89) we obtain

−
∫

d4x d4y
{

F a
µνK

T ab
1

(x, y)(A
T

µ)
bc(y)(A

T

ν )
c(y)

+ F a
µνδ

adK0(x, y)
(

vdb
1
(y)

)

(A
T

µ)
bc(y)(A

T

ν )
c(y)

− F a
µνδ

acK0(x, y)
(

vcb
1
(x)

)

(A
T

µ)
bc(y)(A

T

ν )
c(y)

}

.

(D.22)

The last line of this equation cancels with the first line of (5.85) leaving a contribution

from the first two lines of (D.22).

We still need to simplify the second and third lines of (5.89) which would then

allow us to cancel the remaining longitudinal/transverse terms. Starting with the

second line of (5.89) and decomposing the K1

bc
de(y, w) into the transverse and lon-

gitudinal components

−
∫

d4x d4y d4w
{

F a
µν(x)δ

abK0(x, y)
(

K
T

1
(y, w)∂αfαµ(w)

)bc

(A
T

ν )
c(y)

+ F a
µν(x)δ

abK0(x, y)K0(y, w)
[

v1(w), ∂
αfαµ(w)

]bc
(A

T

ν )
c(y)

− F a
µν(x)δ

abK0(x, y)K0(y, w)
[

v1(y), ∂
αfαµ(w)

]bc
(A

T

ν )
c(y)

}

,

(D.23)

where K1(y, w) = K
T

1
(y, w) + K0(y, w)

(

v1(w) − v1(y)
)

as in (5.43). In order to

compare with the other equations we rewrite the second and third integrand of
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(D.23) as

−
∫

d4x d4y
{

F a
µνδ

abK0(x, y)
1

�

[

v1 , ∂
αfαµ

]bc
(y)(A

T

ν )
c(y)

− F a
µνδ

abK0(x, y)
[

v1 , A
T

µ

]bc
(y)(A

T

ν )
c(y)

}

.

(D.24)

The first line of this equation cancels with the first term of (D.20). Using the same

analysis the third line of (5.89) when expanded contributes to the following

−
∫

d4x d4y
{

F a
µν(x)δ

abK0(x, y)(A
T

µ)
bc(y)

1

�

[

v1 , ∂
βfβν

]c
(y)

− F a
µν(x)δ

abK
0
(x, y)(A

T

µ)
bc(y)

[

v
1
, A

T

ν

]c
(y)

}

−
∫

d4x d4y d4u F a
µν(x)δ

abK0(x, y)(A
T

µ)
bc(y)

(

K
T

1
(y, u)∂βfβν(u)

)c
.

(D.25)

Here the first line cancels with the first term of (D.21). We now collect all the

remaining terms from (D.22), (D.24), (D.25) to yield

−
∫

d4x d4y
{

F a
µν(x)δ

acK0(x, y)
(

vcb
1
(y)

)

(A
T

µ)
bc(y)(A

T

ν )
c(y)

− F a
µν(x)δ

abK0(x, y)
[

v1 , A
T

µ

]bc
(y)(A

T

ν )
c(y)

− F a
µν(x)δ

abK
0
(x, y)(A

T

µ)
bc(y)

[

v
1
, A

T

ν

]c
(y)

}

.

(D.26)

It is not quite obvious that they will cancel. However, working in the adjoint re-

presentation as we have seen earlier the commutator in the Lie algebra becomes the

product in the adjoint representation which allows us to write

[v1 , A
T

ν ]
c = (v1)

cd(A
T

ν )
d , [v1 , A

T

µ ]
bc = (v1)

bd(A
T

µ)
dc − (A

T

µ)
bd(v1)

dc . (D.27)

Inserting these into (D.26) we find all the terms cancel. We have thus been successful

in achieving our task of cancelling the LL and TL components.
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