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Causal Induction from Continuous Event Streams:                    
Evidence for Delay-Induced Attribution Shifts

Marc J. Buehner1 and Jon May2

Abstract

Contemporary theories of Human Causal Induction assume that causal knowledge is 
inferred from observable contingencies. While this assumption is well supported by em-
pirical results, it fails to consider an important problem-solving aspect of causal induction 
in real time: In the absence of well structured learning trials, it is not clear whether the 
effect of interest occurred because of the cause under investigation, or on its own accord. 
Attributing the effect to either the cause of interest or alternative background causes is an 
important precursor to induction. We present a new paradigm based on the presentation 
of continuous event streams, and use it to test the Attribution-Shift Hypothesis (Shanks & 
Dickinson, 1987), according to which temporal delays sever the attributional link between 
cause and effect. Delays generally impaired attribution to the candidate, and increased 
attribution to the constant background of alternative causes. In line with earlier research 
(Buehner & May, 2002, 2003, 2004) prior knowledge and experience mediated this ef-
fect. Pre-exposure to a causally ineffective background context was found to facilitate 
the discovery of delayed causal relationships by reducing the tendency for attributional 
shifts to occur. However, longer exposure to a delayed causal relationship did not improve 
discovery. This complex pattern of results is problematic for associative learning theories, 
but supports the Attribution-Shift Hypothesis.

Keywords

causality, reasoning, time perception, continuity, induction, associative learning

The Journal of Problem Solving  volume 2, no. 2 (Fall 2009)

42

1Cardiff University; 2University of Plymouth 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Electronic Archive and Research Library

https://core.ac.uk/display/29817058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Causal Induction from Continuous Event Streams 43

 volume 2, no. 2 (Fall 2009)

Causal Induction from Continuous Event Streams

How do humans and other intelligent systems learn that one thing causes another? The 
approach most commonly endorsed in cognitive science is that unobservable causal 
relations may be inferred from observable evidence, in the form of contingencies (Allan 
& Jenkins, 1980; Cheng, 1997; Dickinson, 2001; Shanks & Dickinson, 1987; Pearl, 2000; cf. 
Hume, 1739, 1888; Rescorla & Wagner, 1972). In experimental psychology this assumption 
is reflected in standard causal learning paradigms, which employ discrete learning trials 
or summary information, explicitly indicating whether or not a cause and effect have co-
occurred on a particular occasion. Commonly, evidence pertaining to causal inference is 
classified according to contingency tables. Table 1 displays the simplest and most often 
used kind, one referring to a binary causal relation involving only one candidate cause c 
and one effect e, both of which only have two possible levels (present or absent). Entries 
in cell A include all trials where c and e occurred together, cell B refers to trials where c oc-
curred, but e failed to occur, cell C refers to occasions where e occurred in the absence of 
c, and cell D contains occasions where neither c nor e were present. Different theoretical 
approaches to causal induction, ranging from associative learning and Pavlovian con-
ditioning, to social psychological inference rules, from statistical and Bayesian decision 
models to computational theories of causal power, offer various solutions as to how such 
evidence could be interpreted with respect to the existence and strength of a causal rela-
tion between c and e (for an overview see Buehner & Cheng, 2005).

The theoretical advances generated from this rich body of research notwithstand-
ing, it may be grounded in an oversimplification of the learning and reasoning processes 
underlying causal cognition: Some everyday causes have immediate consequences, while 
others do not reveal their effects until later. In many cases the temporal structure of the 
causal relation is not immediately evident. Moreover, most causal induction tasks hardly 
ever present themselves as mere evidence-evaluation tasks. The world around us is a 

Table 1. A standard 2 x 2 contingency table.



The Journal of Problem Solving 

44 Marc J. Buehner and Jon May  

continuous flux of events and is not carved up into neat learning trials. If the assumption 
that causal inference proceeds by evaluating covariational data is correct, then the abil-
ity to decide whether a particular event constitutes an instance of cell A, B, C, or D is an 
important precursor of causal inference. Before one can evaluate covariational data, one 
first has to obtain this data. Traditional experiments bypass this problem by presenting 
pre-processed covariational information in the form of discrete learning trials or summary 
tables. In this paper we present an experimental design which circumvents artifacts arising 
from conventional paradigms, and use it to test the Attribution-Shift Hypothesis originally 
suggested by Shanks & Dickinson (1989). Before we lay out a detailed specification of this 
hypothesis and its predictions, it is necessary to first review relevant evidence and theories 
pertaining to the role of temporal spacing in causal induction in general.

The Detrimental Effect of Delay on Causal Learning

The evidence most relevant to the role of temporal spacing in causal induction comes 
from studies inspired by animal learning. Using free-operant procedures, Shanks and 
colleagues (Shanks & Dickinson, 1987; Shanks, Pearson, & Dickinson, 1989) have studied 
the effect of response-outcome delays on human causal judgments. Participants had to 
judge how strongly pressing a key caused a triangle to light up on a computer screen; a 
high contingency (.75) was no longer detected if the delay exceeded two seconds. This 
finding has subsequently been replicated many times (Reed, 1992, 1999, 1996; Buehner & 
May, 2002, 2003, 2004). The explanation for the detrimental effect of cause-effect delays 
proffered by Shanks and Dickinson is derived from the principles of associative learning: 
“the size of the increment in associative strength accruing from a pairing decreases as the 
contiguity is degraded” (Shanks & Dickinson, 1987 p. 231). Indeed, associationism often 
cites David Hume as one of its main philosophical influences (e.g., Dickinson, 2001), and 
Hume himself (1739, 1888) noted that regular succession (i.e., contingency) and contiguity 
are the main cornerstones of causal inference.

Einhorn and Hogarth (1986) agreed with this position, but argued that in situations 
where cause-effect contiguity is low, (mechanical) knowledge of how a cause may bring 
about a delayed effect should bridge temporal gaps. They cited many anecdotal examples 
of how humans readily infer delayed causal relations. However, in the absence of such 
knowledge, delayed cause-effect pairings might go unnoticed, or serve as poor evidence 
for a causal relationship. A corollary of Einhorn and Hogarth’s knowledge mediation hy-
pothesis is that successful causal inference requires a good match between the reasoner’s 
assumptions about the timeframe of the causal relation in question, and the time actu-
ally elapsing between cause and effect. If, for example, one expects the cause to produce 
its effect immediately, delayed pairings will not be seen as causal (Buehner & May, 2002; 
Buehner & McGregor, 2006). 

Buehner and May’s (2002) analysis of Einhorn and Hogarth’s (1986) argument 
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showed that there are two competing explanations for why causal estimates in studies 
such as Shanks et al.’s (1989) decreased as a function of the cause-effect delay. Shanks et 
al. noted that “subjects in judgment studies such as ours assume that the word ‘causes’ 
in the experimental instructions means ‘causes immediately.’ After all, they presumably 
have considerable experience of the immediacy of cause-effect relations in such electrical 
devices as computers” (1989, p. 155). Consequently, low causal ratings in delayed condi-
tions could reflect a mismatch between participants’ expectations and the evidence they 
perceived. In contrast, according to associationism, reductions in contiguity invariably 
bring about reductions in associative strength and thus decreased impressions of causal 
strength. A mismatch between expectations and experience falls outside the scope of 
simple associationism (see Miller & Barnet, 1993; and Savastano & Miller, 1998, for more 
refined associative models). Recent experimental work (Buehner & May, 2002, 2003, 2004) 
has shown that Shanks et al.’s finding might indeed have reflected a mismatch between 
participants’ assumptions about the timeframe of the causal relation in question, and 
the available evidence. If participants in Buehner and May’s studies were aware that the 
relation might imply a delay, action-outcome gaps of up to four seconds were no longer 
detrimental to causal learning. 

The Attribution-Shift Hypothesis

Associative learning theory provides a functional analysis of the role of delay in causal 
learning: The longer the temporal gap between cause and effect, the weaker the increment 
in associative strength accruing from each pairing. The knowledge-mediation hypothesis 
offers a rational, pragmatic explanation of why successful causal inference is (sometimes) 
possible, even when the relation involves a delay. It is incomplete, however, as it does not 
provide a functional analysis of the detrimental effect of delay in the absence of mediat-
ing knowledge, or the lack of such effects when knowledge is present. Since knowledge-
mediation falls outside the scope of associative learning theories, an alternative functional 
account is needed to flesh out the knowledge-mediation hypothesis.

One cognitive interpretation of the functional role of delay in causal induction is to 
propose that people adopt individual temporal thresholds, or windows, to decide when to 
attribute an effect to a preceding candidate cause, and when to attribute it to alternative 
causes. In other words, causes that produce delayed effects would not get credited with this 
evidence; instead, the evidence would be interpreted to indicate that the effect occurred 
on its own, or was produced by (unobserved) causes other than the one in question. This 
is illustrated by Figure 1, where a sequence of all four possible combinations of a cause C 
and an effect E (shown in 1a) can be interpreted as either evidence for four instances of 
completely contingent C-E combinations when a long temporal window is adopted (shown 
in 1b) or as evidence for a non-contingent sequence when a short temporal window is 
adopted (shown in 1c). In Figure 1c, an effect following the cause after a short delay falls 
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within the temporal window, and so is attributed to the cause, but effects following the 
cause after a longer delay fall outside the window, and so are not attributed to the cause, 
but to the constant background instead (and, as a corollary, the cause is seen as not having 
any effect). There are also many periods when the temporal window encompasses neither 
cause nor effect (the light dashed ovals in Figure 1c), in fact, more than represented by 
the structure shown in Figure 1a.

Expressed in terms of conditional probabilities, cause-effect delays might thus pro-
duce a shift in attribution away from P(e|c) toward P(e|¬c). Given that the cause-effect 
contingency P = P(e|c) - P(e|¬c) is a fundamental component in all current computational 
models of causal induction, such an attribution shift could readily explain why delays 
generally reduce causal ratings: temporal lags between cause and effect would effectively 
reduce the perceived contingency. 

It is worthwhile at this point to briefly expand on the relation between conditional 
probabilities and causality in probabilistic accounts, and how these relate to associative 
learning theories. According to probabilistic accounts of causality, the reasoner has separate 
representations of the two conditional probabilities P(e|c) and P(e|¬c) and uses these to 
compute a third representation, namely that of causality. In associative terms, the equiva-
lent to P(e|c) would be the association between the cause/background compound and 
the effect, and to P(e|¬c) it would be the association between the background alone and 
the effect; the representation of causality would be the (theoretical) associative strength 
of the cause alone, independent of the background. A hallmark feature of computational 
causal power accounts such as Cheng’s (1997) is that they can represent causal strength 
as an unbound variable, that is, they can generalize outside of the training context (i.e., 
background), and make valid predictions in a novel context with different background 
probabilities, a feature which most associative models lack (see also Marcus, 1998)

In a simple associative account, the functional role of delays in causal learning is re-
markably different to that of the Attribution Shift Hypothesis. Whereas the latter assumes 
that delayed pairings have the dual function of decreasing the subjective evidence for 
causal agency (with respect to the candidate cause), and at the same time increasing the 
subjective evidence of independent occurrence (due to unobservable causes), the latter 
argues that delayed pairings still accrue evidence for causal agency, but to a lesser extent 
than immediate pairings. More sophisticated associative models could employ “windows 
of associability,” which in effect would allow them to simulate attribution shift-like be-
havior, or indeed have temporal gradients of associability so that delayed effects accrue 
strength for the background either if the delay exceeds a threshold, or according to a 
gradient discounting function.

The hypothesis that temporal contiguity has a direct influence on perceived contin-
gency was first put forward by Shanks and Dickinson (1987) who also provided a prelimi-
nary test, again using an instrumental paradigm. As in their other studies, participants had 
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to evaluate how strongly pressing a key made a triangle flash on the computer screen. 
The novelty in this experiment, however, was that participants had to simultaneously 
judge the effectiveness of two keys in one experimental session, with the instruction to 
alternate pressing one and the other. In a control condition both keys A1 and A2 were 
subjected to an identical reinforcement schedule where P(e|c) was set to .75 and P(e|¬c) 
was .25 (how P(e|¬c) was operationalized is not specified, but presumably it was with 
reference to 1s periods), and presses on both keys, if reinforced, produced the effect im-
mediately. The crucial experimental condition employed the same probabilities, but only 
one key, A3, produced the effect (O) immediately, while the other, A4, produced it after a 
4 sec delay. As expected, participants rated A1 and A2 as very close to the actual P, and 
provided considerably lower ratings for A4; A3 received the highest ratings, and ratings 
exceeded the actual P (the report only contains descriptive analyses of the data). Shanks 
and Dickinson argued that:

If the effect of contiguity is mediated by a change in the perceived contingency, we 

should expect to have observed a decrement in the judgments not only for A4 but also 

for A3. According to this account, delaying the outcome for A4 does not just decrease 

the perceived P(O|A4) but also correspondingly increases P(O|¬A4). As these delayed 

outcomes were unlikely to have occurred in close association with A3, they should 

also have served to increment P(O|¬A3), thus reducing the perceived contingency 

for A3 as well as A4. (p. 235)

Unfortunately, Shanks and Dickinson (1987) did not provide data about the distribu-
tion of responses and outcomes across the 240 sec sampling period, so their interpreta-
tion at best remains speculative. The fact that A3 attracted ratings that were higher, both 
compared to the control conditions A1 and A2, and to the actual P, however, suggests 
that they were mistaken. A more plausible interpretation of their data is that at least some 
proportion of the delayed outcomes produced by pressing A4 were attributed to A3. In 
addition to decreasing P(O|A4), the delay appears to have also increased P(O|A3), which 
would have resulted in causal impressions higher than the programmed P.

The observational paradigm we present below is better suited to test the hypoth-
esis that cause-effect delays decrease causal ratings because effects are attributed to (a 
background of ) alternative causes rather than the candidate cause in question. It allows 
strict control of the evidence available to participants, thus overcoming the need for 
post-hoc interpretations and speculations about what they might have perceived. Also, 
a more direct test of the Attribution Shift Hypothesis would involve direct probes of the 
conditional probabilities P(e|c) and P(e|¬c). 

Predictions 

Simple Associative learning theory (AL) and the Attribution Shift Hypothesis (ASH) make 
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a number of contrasting predictions with respect to how delays influence what is learnt, 
though, as we shall see, supplementing AL with a window or gradient of associability 
allows it to make nearly identical predictions. We shall try, nonetheless, to tease the two 
theoretical positions apart empirically. According to ASH, any delay-induced decrease in 
causal learning should be accompanied by decreases in subjective impressions of P(e|c), 
and corresponding increases in P(e|¬c). According to AL, causal induction does not involve 
computation and subsequent interpretation of conditional probabilities. This is not to say 
that AL cannot represent probability learning. According to Lagnado & Shanks (2002), for 
example, associative representations of causal strength can serve as direct substitutes for 
probability estimates, even though logically the two are not equivalent. While this could 
explain a delay-induced decrease of subjective P(e|c)—since causal ratings are lower, 
probability estimates would also be lower, it is not clear how a corresponding increase in 
P(e|¬c) would come about, unless, as noted above, one postulates a window or gradient 
of associability. 

An extension from ASH suggests that sufficiently large shifts from P(e|c) to P(e|¬c) 
should produce negative subjective contingencies (even when the implemented contin-
gency is positive). According to ASH, this would result in the impression that the cause 
prevents an otherwise occurring effect. This prediction does not readily follow from AL, 
which merely predicts weaker or no causal attribution in the case of delays. Again, however 
a window or gradient of associability would allow it to predict that pairings involving delays 
that exceed the threshold for associability would then accrue associative strength for the 
background. If the background context has accrued more strength than the candidate 
cause, the cause would likewise be interpreted to prevent the effect. 

If ASH is correct in asserting that the function of delays is to shift attribution from c 
to alternative causes a, then any measures taken to reduce the credibility of a as a cause 
of e should reduce the detrimental effect of delay. One way how this could be achieved is 
to demonstrate that a fails to produce e. Once participants appreciate that a cannot be a 
cause of e, they might be less inclined to shift attribution away from c to a. An experimen-
tal implementation of this manipulation would involve Pre-exposure to the Unreinforced 
Background, a well established conditioning paradigm (e.g., Dickinson, Watt, & Varga, 1996). 
According to AL, such pre-exposure would likewise improve learning of delayed relations, 
through reducing the associability of the background context.

ASH and AL make dissociating predictions about what happens over the course of 
learning when the relation involves a delay. According to AL, delays reduce the size of the 
increment accruing from each pairing. This implies that evaluation of a delayed causal 
relation should improve over the course of training. More specifically, it should be possible 
to overcome, or at least alleviate the detrimental effect of delay by giving participants 
more experience with the relation. This prediction is unique to AL and does not follow at 
all from ASH: if delayed pairings serve as evidence for P(e|¬c), than experiencing more of 
these pairings will not have any beneficial effect. 
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General Method

In all three experiments, participants had to observe a continuous event stream in the 
form of a computerized representation of a tank driving across a military training range, 
and then had to evaluate whether sensor disks on the ground produced explosions when 
the tank rolled over them. The candidate cause thus was operationalized by the image of 
a tank rolling over the image of a disk, and the effect was an explosion happening on the 
tank. Depending on the experimental condition, explosions occurred either immediately, 
2s or 5s after the tank rolled over the disk. In line with earlier studies on the effect of delay 
on human causal learning (Shanks et al., 1989; Buehner & May, 2002, 2003, 2004), instruc-
tions to participants explicitly mentioned that the effect sometimes might occur on its 
own, even though in fact this never happened during any of the experimental conditions. 
In our experiments, we did this by instructing participants that aircraft flying out of sight 
high above the training range may drop radar-guided bombs on the tank. 

In all three experiments, participants viewed a continuous stream of events, which 
was not divided into clearly marked learning trials. Our strategy was to substitute a series 
of individual learning trials with short movie clips, where each clip can contain information 
about the presence or absence of the candidate cause and effect. We then spliced these 
movie clips together seamlessly to form one long movie. The end product viewed by par-
ticipants thus did have an underlying trial structure, which was of course fully controlled 
by the experimenter, as illustrated in Figure 1a. However, participants were unaware of 
the underlying trial structure that generated the stream. As a consequence, the decision 
about whether or not a cause and effect formed a co-occurring pair constituted part of the 
inference process, as it must do outside the laboratory. Although from the experimenter’s 
point of view, the underlying trial structure presented in Figure 1a constitutes no evidence 
for an association between cause and effect (all four types of trial occur twice, resulting in 
a contingency of 0), a participant could interpret this particular stream as showing that 
effects always follow causes, sometimes quickly but sometimes after a delay, and thus that 
there is a perfect association of cause and effect (Figure 1b). 

Apparatus

All aspects of the experiment were administered via computer, programmed with Macro-
media Director 7.0. The computer was programmed to deliver a continuously streaming 
film of a tank traversing a military training range. As in commercial animation, this appear-
ance was created by keeping the tank stationary in the middle of the screen, but moving 
a looped landscape continuously from left to right behind the tank. The tank moved up 
and down over a range of ten pixels, but remained stationary with respect to the hori-
zontal axis. On the bottom right corner of the tank was a light brown cloud of dust, again 
animated within a continuous loop. 

Figure 2 displays filmstrips taken from the experiment. We encourage readers to view 
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example stimuli available from <http://www.cf.ac.uk/psych/home2/buehner/stimuli/> to 
get an impression of the continuous nature of the stimuli. Underlying the surface appear-
ance of continuous motion was an underlying discrete trial structure. Each trial was built 
as follows. One second into each trial, an image of a disk placed on the ground entered the 
screen from the left. The software was programmed so that the disk would move smoothly 
along at the same speed as the landscape, thus creating the impression that the disk was 
stationary on the ground, and the tank was moving toward it. The disk moved behind the 
tank 1.67s after appearing at the left of the screen (subjectively, the appearance was that 
the tank rolled over the disk). The disk was no longer visible after meeting the tank. If the 

Figure 2. A film-strip of screenshots from the Experiments. The tank remains in the centre 
of the screen, moving up and down slightly, while the landscape scrolls past from left to 
right (note the positions of the clouds and trees in successive frames). When a disk appears 
(frame 2), it moves at the same speed as the landscape. The impression is of a camera pan-
ning to follow a tank moving from right to left across stationary disks. After the disk has 
met the tank, an explosion can occur (frames 3 to 5), with a puff of smoke and flame also 
moving along with the background.

trial was one without an effect, the tank met the disk, and nothing happened. If the trial 
was of a type where an effect occurred, it did so either immediately on the tank’s impact 
with the disk (0s), or after a delay of 2s or 5s. The effect consisted of a 1.5s long animation 
of an explosion, superimposed over, and partially occluding the tank. All trials lasted 10.17s, 
regardless of whether there was an explosion or not, and whether it occurred immediately 
or after a delay (i.e., trials ended 7.5s after the disappearance of the disk on no effect and 
immediate effect trials, 5.5s after the onset of an explosion on 2s delay trials, and 2.5s after 
the onset of an explosion on 5s delay trials). The length of trials (equal across all conditions 
of all experiments) of 10.17s thus consisted of 1s (disk appears) + 1.67s (disk disappears 
under tank) + 5s (maximum delay on effect present trials) + 1.5s (duration of explosion, if 
present) + 1s (inter-trial interval). Trials followed each other immediately and seamlessly, 
although, of course, the trial boundary was not apparent to the participant at all, and as 
far as they were concerned, the tank kept on traveling across the landscape.

Procedure and Cover Stories

For all three experiments, participants read instructions asking them to imagine that they 
were military officers sent on a training course to develop their observational skills in the 
context of anti-tank defense. They were told that they would observe a tank traversing 
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a military training range, and that aircraft flying high above and out of sight might drop 
radar-controlled bombs on the tank. It would not be possible to see the aircraft, nor any 
bombs; the only thing they could observe would be an explosion near the tank. Instruc-
tions further asked participants to concentrate on some special devices that had been 
placed on the range. In Experiment 1, participants were asked to evaluate whether the 
devices produce or prevent explosions near the tank, or whether they are unrelated to 
explosions. In Experiments 2 and 3, participants were asked only to evaluate whether the 
devices produce explosions. Participants were told to carefully observe the tank travers-
ing the training range, and to decide whether and how strongly the devices produced 
(Experiments 2 and 3), or produced or prevented (Experiment 1) explosions. Full instruc-
tions are included in Appendix A.

Participants in all three experiments then viewed a demonstration to familiarize 
themselves with the experimental materials. The demo consisted of three trials: one 
“empty” trial in which the tank traversed the field for10.17s; one in which the disk was 
present, but no effect occurred; and one in which the effect occurred in the absence of 
the disk. Participants were of course unaware of this underlying trial structure; from their 
perspective they saw the tank roll across the landscape for 30.5s (3 x 10.17s), with a disk 
appearing after 11.67s, the tank rolling over this disk after 13.34s, and 9.67s after this, at 
23s, an explosion occurring. Note that the missing trial from this practice sequence is the 
one in which a disk and an explosion were present: this was not used here because the 
delay between the two was varied in the main experiment, and so we did not want to 
create any expectations about its duration (the interval between the disk meeting the 
tank and the explosion in the demonstration was almost twice as long as the longest 
experimental delay). After viewing the demonstration, participants had the opportunity 
to ask clarifying questions, and then proceeded to the experimental movies. Each experi-
mental movie consisted of a number of short clips determined by the condition of the 
relevant experiment (see specific Design sections), arranged in random order and spliced 
together seamlessly.

After each movie participants had to rate whether and how strongly the devices 
produced (Experiments 2 and 3), or produced or prevented (Experiment 1) explosions; 
Experiment 1 employed a scale from –100 to 100, where –100 meant that rolling over the 
devices prevented explosions every time, and 100 meant that rolling over them produced 
explosions every time; 0 meant that the devices had no relation to whether or not explo-
sions happen. Experiments 2 and 3 used a scale from 0 to 100 with the two same labels as 
these points had in Experiment 1. Participants then had to answer two questions aimed 
at probing their subjective impression of the conditional probabilities P(e|c) and P(e|¬c): 
“Overall, how likely were explosions when the tank rolled over the devices?” and “Overall, 
how likely were explosions without the tank rolling over the devices?” Participants had 
to enter ratings on a scale from 0 to 100 where 0 meant that “explosions never happened 
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when a device was present/absent,” 50 meant that “explosions sometimes happened when 
a device was present/absent,” and 100 meant that “explosions always happened when a 
device was present/absent.” Once participants provided all ratings for a condition, they 
immediately proceeded to the next experimental condition, that is, the next movie. Overall, 
each experiment lasted about 20-25 minutes.

Figure 1 illustrates that the definition and operationalization of conditional probabilities 
is non-trivial in a continuous paradigm. Without discretely marked learning trials, it is not 
self-evident whether a given effect can be attributed to a preceding candidate cause or 
to the background of alternative causes. From the experimenter’s point of view, P(e|c) of 
course still has a definite value, since the continuous flow of events is determined by a 
probability schedule; for each occurrence of c, the schedule dictates the probability with 
which e will follow after the programmed delay. The participant’s evaluation of the evi-
dence depends crucially on the temporal window he or she is assuming to be operating 
for the causal relation in question. Whereas the hypothetically programmed structure in 
Figure 1a is intended to yield P(e|c) = .5, the subjective value of this conditional probability 
is .5 only if a short temporal window is assumed (Figure 1c); a long window (Figure 1b) 
yields a value of 1.0 for the same evidence (this is assuming that all effects occurring in 
the window are counted. Some temporal assumptions are of course more restrictive, in 
that immediate effects would not be attributed to the cause if a delayed mechanism is 
expected, cf. Einhorn & Hogarth, 1987).

The operationalization of P(e|¬c) on the other hand is difficult even from the experi-
menter’s perspective. While the schedule clearly controls the delivery of c (and thus allows 
controlled delivery of instances of e associated with c, i.e., rendering P(e|c) defineable), 
no equivalent control exists for ¬c events. In the absence of discrete trials, every granular 
unit of time that is not taken up by c itself (or c plus the temporal window attached to it) 
constitutes ¬c. It follows that ¬c is thus not quantifiable and therefore also cannot serve 
as the basis for the conditional probability P(e|¬c). Some readers might be tempted to 
argue that operationalization of P(e|¬c) is straightforward due to the discrete trial struc-
ture that is underlying our paradigm. It would indeed be possible to include trials where 
c is absent, and e could be programmed to occur on these trials according to the same 
probabilistic rules that determined the programmed value of P(e|c). In fact, we even in-
cluded one such trial in the demonstration phase that preceded each experiment (i.e., no 
disk, but an explosion). 

However, a moment’s reflection reveals that doing that would dramatically violate one 
of the fundamental assumptions underlying all contemporary models of causal inference 
from contingency information, namely that the composite of alternative causes a (other 
than candidate cause c) remains constant, irrespective of the presence of c (see Cheng, 
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1997). Assuming that a causes e to the same extent, both when c is present and when it is 
absent, allows one to use P(e|¬c) as a direct estimate of P(e|a). Knowing P(e|a) is essential 
for causal inference, in order to inform us how much of P(e|c) needs to be discounted as 
being caused by a (in the P model this discounting is achieved simply by subtracting the 
estimate of P(e|a) from P(e|c). Cheng (1997) provides a more normative form of discounting). 
Keep in mind that in a continuous paradigm, every moment of time that is not occupied 
by c (plus its window) by definition is ¬c. Attempting to provide information about P(e|¬c) 
by including¬c trials thus is not only a wasted effort, as there are already plenty, in fact 
countless instances of ¬c even if there is not a single ¬c trial; including such trials would 
effectively provide two different values for P(e|a), one that is relevant for the ¬c trials, and 
one that applies for the trials during which c does occur (i.e., the periods of time during 
such trials where c plus the attached window is not present; this latter value would be 0). 
In other words, including ¬c trials would render the evidence uninterpretable. 

In a continuous paradigm, the way to supply information about P(e|¬c) is to sched-
ule instances of e according to a set (random) rate, and thus independent of and not 
related to c, throughout the experiment. One could for instance program the apparatus 
to deliver an explosion with a probability of .1 every 2s, irrespective of whether or not or 
when c has occurred. We would than have information about the rate with which e occurs 
in the absence of c, but it is not clear how this information could be combined with the 
conditional probability P(e|c) to yield causal estimates (cf. Gallistel, 2002). It is, however, 
possible to provide information that P(e|¬c) = 0. To do so, one simply would never have 
any occurrence of e that is not associated with c. Crucially, one would not even need to 
include “empty” ¬c trials (although one could without doing any harm), since every unit of 
¬c time counts as evidence toward P(e|¬c). Throughout the experiment there are extended 
periods of time where e could happen due to alternative causes, but in fact does not (for 
instance 8.5s for each unreinforced trial, 7s for each trial with immediate reinforcement). 
There is no reason for participants to believe that on trials where e happens due to c, 
there could not be a second instance of e, due to a. Most of the studies investigating the 
influence of delay on causal learning have used P(e|¬c) = 0 (Shanks et al., 1989; Buehner 
& May, 2002, 2003, 2004), probably to avoid making the task too difficult for participants. 
We have chosen to keep with this tradition. In order to set P(e|¬c) = 0, we simply kept the 
background rate of e at zero. We did not include any “empty” ¬c trials.

Experiment 1

The first experiment tests whether our new paradigm replicates the basic findings es-
tablished in research using free-operant paradigms. Shanks and Dickinson (1987) have 
shown that both cause-effect contingency and contiguity influence impressions of causal 
strength. Buehner and May (2002, 2003, 2004) demonstrated that the impact of cause-



Causal Induction from Continuous Event Streams 55

 volume 2, no. 2 (Fall 2009)

effect contiguity is mediated by higher-level knowledge about the timeframe of the 
causal mechanism in question, so that delayed contingencies could be inferred if they 
were expected by participants, although any experience of an immediate contingency 
blocked this mediation. Experiment 1 employs variations in contingency, contiguity, and 
knowledge of mechanism to see whether the same complex pattern of results also emerges 
from a continuous paradigm. In order to directly test ASH, we collected subjective prob-
ability estimates in addition to causal ratings. Here the aim is to examine the relationship 
between participants’ estimates of P(e|c) and P(e|¬c). To avoid ambiguity, in this and all 
remaining experiments the effect never occurs due to alternative causes other than c, so 
any non-zero estimates of P(e|¬c) reflect misattribution, rather than overestimation.

An interesting corollary of Shanks & Dickinson’s (1987) attribution shift hypothesis is 
that (unexpected) cause-effect delays might render an objectively positive contingency 
subjectively negative. Consider a design where programmed P(e|c) = .5, and P(e|¬c) = 0. If 
cause-effect delays result in a full shift of attribution from P(e|c) toward P(e|¬c), subjective 
P(e|c) will be 0 and subjective P(e|¬c) will be .5, resulting in an overall subjective notion of 

P to be negative. This effect does not rely on a complete attribution shift, but would be 
obtained as long as more than half the instances contributing toward P(e|c) get subjec-
tively attributed to P(e|¬c). To test this corollary, we included the possibility of negative 
causal ratings, although all conditions employed positive contingencies.

Method

Participants

Twenty-three (16 female, 7 male; median age: 27 years) volunteers were recruited via 
the University of Sheffield volunteers’ e-mail distribution list and received £4 for their 
efforts.

Apparatus, Procedure, and Cover Story

The apparatus and procedure were as described in the General Method section. Knowl-
edge of Mechanism was manipulated between subjects with two different Cover Stories. 
Both sets of instructions provided the same general information as outlined in the General 
Method section. More specifically, they stated that participants had to observe whether 
devices placed on the training range harm or protect the tank when it rolls over them; 
alternatively, the devices could also have no function at all and thus be unrelated to ex-
plosions occurring near the tank. Instructions stated that the protective function of the 
devices would be to emit a jamming radio signal that interferes with the radar-tracking 
of the bombs that may be dropped by out-of-sight high-flying aircraft. The nature of the 
harmful function varied between cover stories. For the Mine group, instructions stated that 
the devices could be landmines that explode as soon as the tank rolls over them; for the 
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Sensor group, instructions stated that the devices could be sensors that triggered a radar-
controlled missile to be launched from several miles away to pursue the tank and explode 
on it. Instructions in both groups stated that regardless of which function the devices had, 
they would always look the same. Participants were asked to carefully observe the tank and 
to decide whether and how strongly the devices produced or prevented explosions.

Design

A combination of the within-subject factors Contingency, with the levels .5 and .75, and 
Delay, with the levels 0s, 2s, and 5s produced six experimental conditions per participant. 
The factor Cover Story, with the levels “mine” and “sensor,” was varied between participants. 
There were 16 learning trials per condition, and the candidate cause (disk) was present on 
all of them. Variations in Contingency were achieved by varying the total amount of trials 
with a scheduled explosion (i.e., 8 when Contingency was .5 and 12 when Contingency was 
.75). Variations in Delay were achieved by setting the cause-effect delay accordingly. The 
order of trials within each condition was randomized for each participant, and trials were 
presented seamlessly, effectively preventing participants from noticing the underlying trial 
structure. Based on earlier observations that prior experience of immediate or delayed 
causal relations in a within-subject design influences the parsing of subsequent delayed 
relations (Buehner & May, 2002, 2003), we thought it prudent to counterbalance whether 
participants experienced a delayed or immediate condition as their first condition. To this 
end, we created two counterbalanced Order conditions, 0s-first and 5s-first. Participants 
in the 0s-first group first saw the condition with Contingency = .5 and Delay = 0s, whereas 
participants in the 5s-first group first saw the condition with Contingency = .5 and De-
lay = 5s. The order of the remaining five conditions was randomized, so neither Delay nor 
Contingency were blocked.

Results and Discussion

Causal Ratings

An overall ANOVA (Significance level .05, with effect size 2 computed as a ratio of SS-
effect to SS-Total) on the causal ratings showed main effects of Contingency F(1,19) = 4.41, 

2 = .03, and Delay F(2,38) = 7.48, 2 = .09, but also of Order F(1,19) = 5.03, 2 = .03, and an 
interaction of these three factors F(2,28) = 3.58, 2 = .04. There was also a marginal effect 
of Cover Story F(1,19) = 4.20, 2 = .03, p = 0.055, and an interaction of Order and Cover Story 
F(1,19) = 6.01, 2 = .04. 

Overall, causal ratings were higher for the .75 than for the .50 contingency conditions, 
and ratings declined as the cause-effect delay increased. In three conditions, participants 
actually provided slightly negative ratings (of between -.09 and -.15), indicating that the 
disk was preventing explosions rather than causing them: all three of these were condi-
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Figure 3. Deviations of mean causal ratings from observed contingencies in Experiment 
1 broken down by Cover Story, Delay, and Delay Condition Order. Error bars indicate stan-
dard errors. Participants who read the Sensor cover story, and who then experienced the 
5 second delay condition first, consistently gave near normative ratings of causal strength, 
whereas other participants only rated the zero second delay condition as normatively 
causal.

Figure 4. Mean estimates of conditional probabilities in Experiment 1 broken down by 
Delay and Contingency. Error bars indicate standard errors. The two estimates are inversely 
related, r = –0.66, and as delay increases, P(e|c) declines and P(e|¬c) correspondingly in-
creases.
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tions involving the immediate Mine cover story and a cause-effect delay (the contingency/
delay combinations of 0.50/2s, 0.50/5s and 0.75/5s). Figure 3 illustrates the deviations of 
causal ratings from the experienced contingency (to allow the data to be collapsed over 
the two contingencies, which would produce different normative ratings). The exception 
to the trend of declining causal ratings with increasing delay is the group of participants 
who were instructed about the delayed nature of the causal mechanism and worked on 
a delayed condition first: they provided consistently high (and near normative) causal 
ratings for all conditions throughout the experiment and were largely unaffected by 
delays. Dividing the sample by Order, further ANOVAs showed only a main effect of Delay 
F(2, 18) = 8.79, 2 = .19, for the participants who experienced the zero second delay first, 
but only a main effect of Cover Story F(1,10) = 37.2, 2 = .13, for those who experienced 
the five second delay first.

Probability Estimates

Figure 4 displays participants’ subjective estimates of the conditional probabilities P(e|c) 
and P(e|¬c). An overall ANOVA on estimates of P(e|c) revealed main effects of Contingency, 
F(1,19) = 10.4, 2 = .04, Delay, F(2,38) = 18.7, 2 = .19, and a Contingency x Delay x Order 
interaction, F(2,38) = 6.94, 2 = .05. An ANOVA on estimates of P(e|¬c) revealed only a main 
effect of Delay, F(2,38) = 19.6, 2 = .22, and a marginal interaction of Contingency x Delay 
F(2,38) = 2.87, 2 = .03, p = 0.069. Estimates of the two conditional probabilities are clearly 
inversely related, and overall correlate r = –0.66. P(e|c) and the causal ratings are also closely 
related, r = 0.61, but P(e|¬c) and causal ratings are less strongly related, r = –0.37. The main 
effects of Delay on estimates of both P(e|c) and P(e|¬c) suggest that cause-effect delays 
did serve to decrease subjective impressions of contingency by reducing the perceived 
P(e|c) and at the same time increasing impressions of P(e|¬c), as originally hypothesized 
by Shanks and Dickinson (1987). 

The absence of any effects associated with Cover Story stands in contrast to the results 
from the causal ratings. We would have expected the effects of Delay to be modulated by 
Cover Story. The causal ratings show that participants who were led to expect a delayed 
causal mechanism and who then experienced a delayed condition first did bridge the 
temporal gap between cause and effect and rated delayed conditions as highly causal; 
it is somewhat puzzling then why this same subgroup of participants, like all other par-
ticipants, decreased their estimates of P(e|c) and increased their estimates of P(e|¬c) as 
the delay increased. One explanation could be that participants interpreted our question 
“Overall, how likely were explosions when the tank rolled over the devices?” as referring to 
the absolute temporal position of the explosions, rather than as to referring to whether or 
not explosions were causally associated with the tank rolling over the device. From such 
a perceptual perspective, it is of course rational to indicate that in the delayed conditions, 
explosions tended to happen when the tank was not rolling over the device, even if one 
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believed that the tank rolling over the device actually produced the later explosion. In 
retrospect, this question was ambiguously worded.

Summary

Overall, our observation-based paradigm replicated earlier findings: reductions of con-
tingency and contiguity impair causal judgments, and extended these findings beyond 
free-operant methods. The data from Experiment 1 support the attribution-shift hypothesis 
in two very distinct ways. First, estimates of P(e|c) and P(e|¬c) decreased and increased, 
respectively, as the cause-effect delay increased. Second, causal ratings generally declined 
below zero with a 5s delay, suggesting that participants had perceived a negative con-
tingency, i.e., P(e|c) < P(e|¬c), despite the fact that the programmed contingency in fact 
was always positive. As mentioned in the prediction section, simple AL models would not 
predict this pattern, but models supplied with temporal gradients or windows could.

Our manipulation of cover story significantly modulated the detrimental influence 
of delay on causal ratings, but only in participants who experienced a delayed condition 
at the beginning of the experiment. If instructions about a delayed causal mechanism 
were directly followed by evidence of immediate cause-effect pairings, in contrast, the 
instructions were disregarded and no longer had any beneficial effects throughout the 
experiment. Moreover, participants in the Sensor group, who expected a delayed relation, 
still rated the immediate 0s condition as highly causal. This result, taken together with 
our earlier findings about how knowledge mediates the timeframe of covariation assess-
ment in causal learning from free-operant paradigms (Buehner & May, 2002, 2003, 2004) 
suggests that delay assumptions induced via cover stories may not be plausible enough 
to be maintained across an entire experiment when clashing with evidence of immedi-
ate relations, at least in a computer-based design (See Buehner & McGregor, 2006, for a 
successful implementation of delay assumptions with a realistic physical apparatus). The 
subsequent experiments thus avoid manipulations of cover story and focused exclusively 
on previous experience.

Experiment 2

The probability estimates from Experiment 1 suggest that one way in which delays could 
interfere with optimal causal attribution is that people fail to attribute effects to causes that 
happened some time ago. Rather, people might attribute delayed effects to the context or 
background of alternative causes, as originally suggested by Shanks and Dickinson (1987). 
Both in Shanks and Dickinson’s original experiment and in our Experiment 1, there was 
ample rationale for participants to do so. After all, the instructions explicitly mentioned a 
constant unobservable alternative cause that might also produce the effect. 

One corollary from this attribution shift hypothesis is that discrediting the ability 
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of alternative causes to produce the effect should improve assessment of delayed causal 
relations to some degree. If participants think that the effect does not happen on its own, 
they might be more willing to accept a delayed relation between candidate cause and 
effect, compared to situations where alternative causes are easy to conjure. Support for 
this hypothesis from the animal learning literature comes from Dickinson, Watt, & Varga 
(1996), who showed that giving rats prior exposure to an un-reinforced background 
context similar to the subsequent experimental situation improved detection of delayed 
contingencies. Rats in their Experiment 1 had to learn that pressing a lever delivered a 
food reward after a certain delay, and responded more on this delayed schedule, if, prior 
to the experimental sessions, they had spent time in the experimental chamber without 
the opportunity to press the lever. A critical element for the success of this pre-exposure 
was that no reinforcements were delivered during this period. According to Dickinson et 
al., pre-exposure to the un-reinforced background served to minimize context condition-
ing. While the non-contiguous reinforcement in the experimental sessions might have 
established an association between the constant background context and reinforcement, 
the un-reinforced pre-exposure periods effectively lowered such associations.

Expressed in cognitive terms, pre-exposure serves to point out that the effect does 
not happen on its own or in association with any attributes of the experimental situation 
other than the manipulated attribute. This should in turn increase the tendency to at-
tribute delayed deliveries of the effect to an earlier occurrence of the cause (as opposed 
to a constant background of alternative causes). In Experiment 2, we tested the capacity 
of pre-exposure to improve human causal learning by adding a one-minute segment of 
the tank traversing the landscape, without rolling over any disks, and with no explosions 
occurring. 

Method

Participants

Twenty-three (19 female, 4 male) volunteers were recruited via the University of Sheffield 
volunteers e-mail distribution list and received £4 for their efforts.

Apparatus and Procedure

The apparatus and procedure were identical to Experiment 1, except that the instructions 
(common across all participants) did not discuss the nature of the sensors (preventive, 
neutral, or generative) or the timeframe associated with the sensors. Participants were still 
informed about the possibility of distant aircraft dropping smart bombs onto the tank. 
The instructions stated, however, that participants should concentrate on whether “special 
kinds of sensor” placed on the training range produced explosions when the tank rolled 
over them. One further change involved the nature of the rating scale, which now only 
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Figure 5. Deviations of mean causal ratings from observed contingencies from Experi-
ment 2 broken down by Pre-Exposure, Contingency, Delay, and Delay Condition Order. 
Error bars indicate standard errors. 

ranged from 0 to 100, thus no longer enabling participants to provide preventive ratings. 
See Appendix for full Instructions.

Design

The factors Delay (0s, 5s) and Contingency (.5, .75) varied within participants, Pre-exposure 
(yes, no) varied between participants. As in Experiment 1, we counterbalanced whether 
participants were exposed to a condition with 0s or 5s delay. To this end, the first condi-
tion always contained a .5 contingency, but whether it was paired with 0s or 5s delay was 
counterbalanced; the remaining three conditions were then presented in random order. 
As in Experiment 1, each condition comprised 16 learning “trials,” and the number of “re-
inforced trials” depended on the contingency implemented in that condition. Participants 
in the Pre-exposure group experienced a one-minute segment of the tank traversing the 
landscape (no disks, no explosions) immediately before their first experimental condition. 
This pre-exposure phase was seamlessly integrated into the first condition, and was not 
mentioned to participants in any way. This condition thus lasted 222.72s, while the others 
lasted 162.72s.
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Results and Discussion

Causal Ratings

As in Experiment 1, an overall ANOVA indicated a main effect of the counterbalancing 
factor Order F(1,19) = 4.95, 2 = .04, and several interactions. Dividing the sample accord-
ing to Order, further ANOVAs indicated that for those who experienced an immediate 
relationship in the first condition, there was a main effect of Delay F(1,10) = 44.9, 2 = .56, 
and an interaction of Delay x Contingency F(1,10) = 26.6, 2 = .06; while for those who expe-
rienced a delayed condition first there was a marginal effect of Delay F(1,9) = 3.66, 2 = .07, 
p = 0.088 and an interaction of Delay x Pre-exposure F(1,9) = 5.14, 2 = .10. Figure 5 shows 
that participants who experienced an immediate condition first always rated the delayed 
conditions as less normative than the immediate conditions, and rated the immediate 
conditions near normatively, irrespective of whether they had been pre-exposed to a 
causally inactive background at the beginning of the experiment. In contrast, participants 
who saw a delayed condition as the first condition were susceptible to the pre-exposure 
manipulation: delayed-first participants who experienced 60s of pre-exposure to the 
background context without causes or effects rated the 5s delay just as highly as the 0s 
delay, and in both conditions were only a little below normative ratings. Delayed-first par-
ticipants who did not receive pre-exposure, on the other hand, were negatively affected 
by cause-effect delays and rated contingencies paired with a 5s delay less normatively 
than the corresponding immediate (0s) contingencies. 

An exception to this pattern is the rating of the .50 contingency/5s delay condition, 
which was rated normatively (a mean causal rating of .49) by participants who were in the 
delayed-first order and who received no pre-exposure. This pattern also emerged in the 
probability estimates (see Figure 6). Keep in mind that for these participants, this condi-
tions would have been the very first condition they worked on. Buehner and May (2002, 
2003) have shown that delayed contingencies are rated higher when they are presented 
at the beginning of an experiment, before participants have had experience of immedi-
ate contingencies, compared to when they are presented later in the experiment, after 
participants have experienced an immediate contingency. The same effect seems to have 
been at work in this experiment.

Probability Estimates

Figure 6 displays participants’ mean probability estimates. The overall ANOVAs for the 
two probability estimates also indicated strong effects of Order (for P(e|c), F(1,19) = 12.4, 

2 = .07; for P(e|¬c), F(1,19) = 12.5, 2 = .09) and interactions, and so the sample was again 
split according to Order for further analysis. Those who had received an immediate con-
dition first showed effects of Delay (P(e|c), F(1,10) = 67.4, 2 = .59; P(e|¬c), F(1,10) = 52.5, 

2 = .57) and Contingency (P(e|c), F(1,10) = 7.06, 2 = .05); those who had received a delayed 
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Figure 6. Mean estimates of conditional probabilities in Experiment 2 broken down by 
Pre-exposure, Contingency, Delay, and Delay Condition Order. Error bars indicate standard 
errors.
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condition first showed an effect of Delay (P(e|¬c), F(1,9) = 7.17, 2 = .10), an interaction of 
Delay x Pre-exposure (P(e|c), F(1,9) = 5.47, 2 = .11), and a marginal interaction of Delay x 
Contingency (P(e|¬c), F(1,9) = 4.57, 2 = .07, p = 0.061).

Overall, as in Experiment 1, P(e|c) and P(e|¬c) were inversely related r = –0.79 and 
P(e|c) and causal ratings were highly related r = 0.89; while P(e|¬c) and causal ratings 
were now also strongly inversely related r = –0.77. Again, cause-effect delays have, in 
general, simultaneously lowered participants’ impressions of P(e|c) and increased their 
perceptions of P(e|¬c). The exception to this pattern are participants who experienced a 
delayed condition first and who had been pre-exposed to the background context, and 
those who experienced the .50 contigency/5s delay without pre-exposure. For these par-
ticipants, impressions of P(e|c) did not decrease, and ratings of P(e|¬c) did not increase 
with cause-effect delays.

Summary

Pre-exposure to the un-reinforced background decreased participants’ tendency to attri-
bute delayed effects to a background of alternative causes. This effect of pre-exposure is 
apparent in its modulation of the impact of delay on both causal ratings and probability 
estimates. Similarly to Experiment 1, its influence interacted with the counterbalancing, 
such that it was only effective in the participants who worked on a delayed condition first. 
If the pre-exposure phase was immediately followed by a contiguous, no-delay condition, 
the advantage was lost. One interpretation of this counterbalancing effect is that experi-
ence of an immediate cause-effect contingency created such a strong impression of con-
tiguous causality that subsequent delayed relations in contrast appeared non-causal. The 
knowledge gained from pre-exposure (i.e., that the background is incapable of producing 
the effect) was thus lost or overridden by subsequent experience of immediate relations. 
The effect of pre-exposure is commensurate with both AL and ASH.

Experiment 3

Associative accounts of human causal reasoning fundamentally challenge the notion 
that estimated causal strength is grounded on a computational process involving the 
conditional probabilities P(e|c) and P(e|¬c) (e.g., see Baker, Murphy, & Vallée-Tourangeau, 
1996; Shanks, Lopez, Darby, & Dickinson, 1996). Instead, estimates of causal strength are 
updated every time the candidate cause is present. Importantly, such models “impose a 
low memory load on the organism because experience is stored as a small number of 
associative strengths. (…) [and] information about past events is lost in the computation. 
In other words, these models do not have episodic memory” (Baker et al., 1996, p. 1). Fol-
lowing Shanks and Dickinson’s (1987) analysis, associative theories of causal induction 
should be able to account for the influence of cause-effect delays without recruiting an 
attributional shift from P(e|c) to P(e|¬c).
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One way in which associative learning theory can explain detrimental effects of 
delay is by simply allowing that delayed effects produce weaker increments of associa-
tive strength on any given learning trial: “the size of the increment in associative strength 
accruing from a pairing decreases as the contiguity is degraded” (Shanks & Dickinson, 
1987, p. 231). This assumption implies that detrimental effects of cause-effect delay can 
be overcome by prolonged training (Dickinson, 2001). A large number of weak increments 
or a small number of larger increments might produce similar judgments. If the effect of 
delay is limited to producing weaker increments on a trial-by-trial basis, one would even 
expect that judgments from delayed and contiguous schedules be identical at asymp-
tote, reflecting the maximum strength the stimulus can support. However, most theorists 
would argue that delays have a detrimental effect overall, above and beyond weakening 
the trial-by-trial increments, resulting in a lower level of asymptote (Ralph Miller, personal 
communication April 2003). Be that as it may, an associative analysis of causal judgment 
predicts that estimates of delayed causal relations should improve to some extent, as the 
amount of learning trials increases.

A knowledge-mediation account of human causal induction, on the other hand, 
would not predict improvements as the amount of experience with the schedule increases. 
Because the pattern of conditional probabilities does not change as learning progresses, 
it would be difficult for this account to explain any improvements. Knowledge-based 
theories could account for improvements based on prolonged learning only by drawing 
on reasoning mechanisms external to the causal induction process itself. Prolonged expo-
sure to the causal induction problem might, for instance, increase the chance of sudden 
insight into the delayed nature of the causal mechanism. If improvements were due to 
such processes, then causal ratings should improve as a step-function of learning trials, 
to reflect the sudden nature of the insight. Associative learning theory, in contrast, would 
predict gradual improvements, typically a negatively accelerated learning curve.

In Experiment 3 we tested whether prolonged experience with delayed causal rela-
tions directly improves causal ratings by manipulating the number of learning trials partici-
pants saw before they had to make a judgment. We departed from the common strategy, 
of studying acquisition functions by probing judgments at various points throughout one 
learning phase (e.g., Shanks, 1985, 1987), and instead manipulated the number of learning 
trials within participants. We chose this method for reasons of ecological validity. When 
asking participants for multiple judgments of the same relation across time, one implies 
that the relation changes over time (why else would one ask participants to update their 
beliefs?). We were only interested in how the overall assessment of delayed relations 
changed as a function of learning trials.
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Method

Participants

Twenty-four (11 female, 13 male) volunteers were recruited via the University of Sheffield 
volunteers e-mail distribution list and received £4 for their efforts.

Design, Apparatus, and Procedure 

The apparatus and general procedure were adapted from Experiment 2, with the pre-
exposure factor removed from the design and an additional manipulation of the number 
of learning trials per condition. The design employed the factors Delay (0s, 5s), and Length 
(16, 24, 32 learning trials), varied within participants, and Contingency (.5, .75) varied 
between participants. The total length of each condition thus was 162.72s, 244.08s, and 
325.44s for conditions comprising 16, 24, and 24 “trials,” respectively. As in the previous 
experiments, we counterbalanced whether participants worked on a immediate or delayed 
contingency as their first condition. Toward this end, we let all participants begin with a 
condition comprising 16 learning trials, but counterbalanced whether it was associated 
with 0s or 5s delay (to create a between subjects factor Order). The remaining five condi-
tions were presented in random order.

Results and Discussion

As in Experiment 2, the P(e|c) estimates were almost identical to the causal ratings, and 
overall they correlated r = 0.82, with P(e|c) and P(e|¬c) being inversely related r = –0.83. 
Causal ratings and P(e|¬c) correlated r = –0.64. In light of this, only analyses of the causal 
ratings will be reported. An ANOVA was conducted, with the between subjects factors of 
Contingency and Order and the within subjects factors of Delay and Length. 

The ANOVA revealed main effects of Contingency, F(1,20) = 6.44, 2 = .06 and Delay, 
F(1,20) = 25.4, 2 = .26, and interactions between Length x Order, F(2,20) = 8.92, 2 = .03, 
Length x Delay, F(2,20) = 3.85, 2 = .02, and Length x Delay x Order, F(2,20) = 3.76, 2 = .02. 
The Contingency effect reflected higher ratings given to the .75 contingency condition 
(mean = .52) than to the .50 contingency condition (mean = .38), and the Delay effect 
reflected higher ratings given to the 0s condition (mean = .60) than the 5s condition 
(mean = .31). 

Because of the interactions of the within participant factors with Order, the sample 
was split and separate ANOVAs conducted on each level of this factor, as in the previous 
two experiments. Both groups showed effects of Delay (0s first: F(1,10) = 12.0, 2 = .30; 5s 
first: F(1,10) = 15.4, 2 = .22), and the 5s first group also showed a main effect of Length 
F(2,20) = 8.45, 2 = .09 and an interaction of Delay x Length F(2,20) = 6.96, 2 = .07. Con-
tingency had a marginal effect in the 0s first group F(1,10) = 4.32, 2 = .09, p = 0.064, and 
there was a marginal interaction of Contingency x Delay F(1,10) = 4.19, 2 = .06, p = 0.068 
in the 5s first group. 
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These results are illustrated in Figure 7. The 0s delay conditions are rated by all par-
ticipants with causal strengths remarkably close to the actual contingencies, regardless 
of the number of trials used to build the movie clip used for the condition. The 5s delay 
conditions are not rated as normatively: only the condition with 16 trials, when rated by 
those who were experiencing it as their first condition in the experiment, received ratings 
approximating to the actual contingency. In subsequent conditions, with 24 or 32 trials, 
these same participants rated the 5s delay as less causal, which is the opposite pattern to 
that predicted by associative learning theory. 

We investigated the impact of Length on evaluations of delayed causal relations in 
more detail with a set of planned comparisons. We compared causal ratings from the 16 
and 32 trials conditions involving a 5s delay separately for each combination of Contin-
gency and Order. There was no difference in causal ratings after 16 and 32 trials of the .75 
contingency in participants who worked in the .75/0s condition first, t(5) = .89. However, 
ratings of the .75 contingency from participants who worked in the .75/5s condition first 
did differ significantly between 16 and 32 trials, t(5) = 3.71, with the 16 trial condition 
(M = 60.83) receiving higher ratings that the 32 trial condition (M = 15). Analogously, there 
was no difference in causal ratings after 16 and 32 trials of the .50 contingency in partici-
pants who worked in the .50/0s condition first, t(5) = 1.94; the difference in participants 
who worked on the .50/5s condition first was in the opposite direction to that predicted 
by an associative learning account, with 16 trials (M = 50) producing higher ratings than 
32 trials (M = 27.17), but this fell short of significance, t(5) = 2.25, p = .07. 

The differences between few and many learning trials in participants who first worked 
on a delayed contingency is consistent with results from Experiments 1 and 2, and our 
earlier work (Buehner & May, 2002, 2003), in that delayed conditions receive comparatively 
high ratings when presented at the beginning of an experiment, but lower ratings when 
presented later on, after participants have seen immediate conditions. Keep in mind that 
we implemented the counterbalancing of delay versus immediate first by fixing the first 
condition to always comprise 16 trials, and varying whether this condition was paired with 
0s or 5s delay. Participants who worked on a delayed condition first thus always began 
with the 16 trial/5s condition. Because this condition would not have been preceded by 
immediate conditions, it would be expected to produce comparatively higher causal rat-
ings than subsequent conditions (of greater length) involving the same delay. The effect 
of Length in Delay–first participants, while opposite to the pattern predicted by associative 
learning theory, thus need not be especially problematic for it. It may well be a method-
ological artefact. It remains the case, however, that the better learning of delayed relations 
with prolonged training was not apparent for Immediate–first participants, either. 

Another interpretation of the results allows a reconciliation with the associationism 
prediction: prolonged exposure could indeed gradually increase the cause-effect asso-
ciation, but in cases where the cause-effect gap is too large (i.e., the effect falls outside 
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the “window of associability,” see also General Discussion), these increases accrue for the 
background instead. In other words, rather than serving to increase causal ratings for the 
candidate, prolonged learning might paradoxically increase causal ratings for the back-
ground. A growing conviction that the cause happens “on its own” is then accompanied 
by decreasing ratings of the causal strength of the candidate cause. However, our results 
did not show the general negative effect of Length that this interpretation suggests. Apart 
from the Delay–first 5s conditions, no condition shows any change in ratings of causal 
strength as the amount of exposure increases.

Overall, then, Experiment 3 fails to provide evidence in support of the notion that 
prolonged exposure to delayed causal relations improves their assessment. This result casts 
doubt on the associative learning interpretation of causal inference that stipulates that 
cause-effect delays result in weaker trial-by-trial increments compared to contiguous pair-
ings. If this were the case, we should have found at least some form of improvement over 
learning trials. Instead, it appears that participants overall judged delayed contingencies as 
less causal than contiguous cause-effect pairings, and this impression persisted irrespective 
of the amount of experience with the relation. Thus, at least in humans, factors other than 
sheer amount of repeated exposure guide the discovery of delayed causal relations.

General Discussion

The Attribution Shift Hypothesis Reconsidered

We began this paper by explaining that one reason why disruptions in temporal contiguity 
might impair causal learning could be that delayed effects erroneously get attributed to 
a background of alternative causes, instead of to the candidate cause. In a probabilistic 
framework of causality, delays thus degrade subjective impressions of contingency though 
a decreased impression of P(e|c) combined with a simultaneous increase in subjective 
P(e|¬c). This notion, originally suggested (and simultaneously contested) by Shanks and 
Dickinson (1987), carries strong intuitive appeal and makes perfect sense from a com-
putational perspective. If one assumes that a causal learner strives for explanation, each 
occurrence of e needs to be explained. If, for whatever reasons, c fails to get credit for an oc-
currence, it follows that some alternative or competing cause a will be credited instead. 

One way to contest the attribution shift hypothesis in the face of evidence that 
shows impaired causal learning from delayed contingencies, is to maintain that delayed 
instances of e fall into an attributional black hole. In other words, one would have to claim 
that delayed es simply go unnoticed. Alternatively, one might argue that they are noticed, 
but that reasoners do not feel compelled to explain what caused them. A more principled 
suggestion was made by Shanks and Dickinson (1987). Their argument was that all cause-
effect pairings, whether immediate or delayed, accrue causal strength for the cause-effect 
association, albeit very small ones in the case of delays. Because the associationist frame-
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work they endorsed has no room for concepts such as conditional probabilities (unless 
they are interpreted as associative weights, i.e., treated as equivalent to causal strength, see 
e.g., Lagnado & Shanks, 2002), the notion that causal judgment is a function of subjective 
conditional probabilities is irreconcilable with this approach. Instead, causal judgments 
from delayed contingencies decrease not due to an attributional shift, but due to weaker 
increments per trial.

The combination from Experiments 1-3 in this paper, however, strongly supports the 
notion that delayed cause-effect pairings serve as evidence that the background causes 
the effect. Support comes in direct and indirect ways. Firstly, estimates of conditional 
probabilities P(e|c) and P(e|¬c) were sensitive to disruptions in temporal contiguity as 
predicted by the ASH across all experiments. Secondly, Experiment 1 showed that delays 
can render a programmed positive contingency subjectively negative, suggesting that 
participants thought that P(e|c) < P(e|¬c), an interpretation that is supported directly 
by participants’ estimates of these probabilities. Thirdly, Experiment 2 showed that pre-
exposure to a causally inactive background facilitates learning of delayed contingencies. 
The probability estimates collected in this experiment suggest that the effect of pre-
exposure was indeed to discredit the ability of alternative causes a to produce e, in other 
words to prevent an otherwise occurring shift from P(e|c) to P(e|¬c). Whereas most groups 
of participants in this experiment displayed the same delay-induced attributional shift, 
the subgroup of participants with successful pre-exposure was immune to it, suggesting 
that these participants evaluated the delayed contingencies correctly, because they did 
not erroneously attribute delayed effects to a. Fourthly, Experiment 3 clearly showed that, 
contrary to associationist principles, delays did not simply weaken the increment in as-
sociative strength accruing from each delayed pairing. If this had been the case, then we 
would have observed at least some improvement over prolonged training.

In sum, in the absence of compelling reasons to do otherwise, delayed effects get 
attributed to causes other than an objectively covarying prior event. We will next discuss 
other possible functions or conceptualizations of cause-effect delays.

The “window of associability” and temporal gradients

A common concept within the associative learning framework is the notion of a “window 
of associability.” This means that reinforcers can only update associative strengths of events 
that fall within a certain time window preceding the reinforcer. If an event falls outside 
this window (i.e., if the cause-effect delay is too long), then no reinforcement takes place 
at all (and presumably the context gains associative strength). A more refined version of 
this is to assume that the window is not fixed, but instead forms a gradient, such that the 
associability tails off according to some discounting function. The window of associability 
appears conceptually similar to ASH—after all it likewise suggests that delays impair causal 
learning not necessarily through weaker increments, but by undermining the CS’s gain of 
associative strength while simultaneously incrementing strength for the context.
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Under this assumption, the 5s delay we imposed in our experiments might generally 
have placed the tank rolling over the disk outside the window of associability for explo-
sions. Some manipulations, such as the instructions in Experiment 1 could have served to 
increase the size of the window, allowing associations between causes and effects to be 
formed for a subgroup of participants. Other manipulations, such as exposing participants 
to prolonged training, on the other hand, would not have beneficial effects under such an 
account. If the cause is outside the window of associability then it simply would not gain 
strength at all, not even a weak increment. 

The similarity between the window of associability and ASH breaks down when one 
considers the results from Experiment 2, however. There is no way that pre-exposure could 
serve to increase the window of associability; its role in associative terms is clearly specified 
as reducing context conditioning (cf. Dickinson et al., 1996). Presumably, a prerequisite of 
countering the impact of cause-effect delays with pre-exposure is that the candidate cause 
is within the window of associability of the effect in the first place. Otherwise, pre-exposure 
might well decrease the amount of context conditioning, but the candidate cause would 
still be outside of the window, and hence no associations could be formed. Thus, we have 
to accept that the delayed relations in Experiment 2 involved causes that were within the 
window of associability. Because the delayed relations in Experiments 1 & 3 employed the 
same delay, 5s, as in Experiment 2, they must likewise have been within the window of 
associability. Thus, the function of the cover story in Experiment 1 could not have been 
to increase the window of associability—the data from Experiment 2 force one to accept 
that for our experiments this window is at least 5s long, so cover stories were not needed 
to extend it. Instead, it appears more likely that their function was to guide attribution.

Furthermore, the failure of prolonged training to increase causal ratings in the delayed 
conditions cannot be explained by a too narrow window of associability. While ASH can 
account for the results from all experiments, the window of associability cannot.

The temporal coding hypothesis and rate estimation theory

For a long time, influential associative learning theories have embraced the concept 
of trial-based learning (e.g., Rescorla & Wagner, 1972; Pearce & Hall, 1980; Pearce, 1987). 
Consequently, the role of time in the formation of associations has been somewhat over-
looked. Notable exceptions to this trend are Miller’s temporal coding hypothesis (see for 
example Miller & Barnet, 1993; Savastano & Miller, 1998) and Gallistel & Gibbon’s (2000) rate 
estimation theory (RET). Miller strongly challenges the notion that the role of temporal 
contiguity is confined to influence the overall strength (or size of increments) in associa-
tive strength. Instead, he argues, time is an elementary component of the association. In a 
series of experiments, he demonstrated that animals acquire and retain information, not 
only about the strength of a CS-US association, but also about the temporal characteristics 
of this relation. 
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Gallistel and Gibbon’s (2000) model goes one step further and argues that associa-
tions in the original sense envisioned by Pavlov do not exist. Rather, they argue, organisms 
keep track of the timing of events and compute rates of occurrence relative to certain 
salient stimuli (e.g., US occurrence in the presence vs. absence of the CS). These rates are 
then compared and decision thresholds govern whether or not (and when) a conditioned 
response occurs. While Miller’s temporal coding hypothesis postulates that temporal 
information is an additional component acquired with associations, Gallistel and Gibbon 
argue that temporal information is all that is acquired.

It is beyond the scope of this paper to provide a detailed review of these theories, 
but we can at least ask whether and how well these important theoretical developments 
can account for our pattern of results in human causal reasoning. The temporal coding 
hypothesis could be used to explain the instructional effects we found in Experiment 1 
and elsewhere (Buehner & May, 2002, 2003, 2004). It would be difficult for standard as-
sociative learning theory to explain how the exact same physical stimulus combination 
(involving delayed cause-effect pairings) is seen as causal under one set of instructions, 
but not another. However, if temporal information were an integral part of the association, 
it could account for instructional effects: the nature of the instructions, and the mention 
of a delayed or immediate causal mechanism, could have served to provide in memory an 
existing association and concomitant timeframe for this association. It is less clear, how-
ever, that the temporal coding hypothesis would make predictions different to standard 
associative learning theory about pre-exposure (Experiment 2) and prolonged learning 
(Experiment 3).

Rate-estimation theory, on the other hand, could probably not account for the in-
structional effects of Experiment 1. It can, however, explain the beneficial effects of pre-
exposure to the un-reinforced background. Providing participants with additional time 
in the un-reinforced background is conceptually identical to increasing the inter-trial 
interval (ITI). According to RET, “increasing the average interval between trials increases 
the rate of acquisition” (Gallistel & Gibbon, 2000 p. 298). This can explain why participants 
in the pre-exposure condition of Experiment 2 have reached an acquisition criterion 
in the delayed condition, whereas the No pre-exposure participants have not. Gallistel 
and Gibbon’s analysis of delay and trace conditioning explains why delayed procedures 
usually result in retarded acquisition: these procedures usually increase the CS-US delay 
but do not increase the ITI accordingly. Gallistel and Gibbon show that an appropriate 
adjustment of the ITI removes the detrimental effect of delay. This is commonly referred 
to as time scale invariance. Because our procedure kept the ITI constant across conditions, 
RET, like standard associative learning theory, would predict delays to result in retarded 
acquisition. The results from Experiment 3 show no evidence of retardation, however. 
Delays simply lowered causal ratings irrespective of the amount of learning. Retardation, 
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in contrast, would imply that the detrimental effect of delay could be (at least to some 
extent) overcome by prolonged training.

One could argue that the 5s delay in our experiments simply lowered the overall 
strength of a possible association, in other words, effectively lowered the asymptote. The 
data from the 0s conditions of Experiment 3 suggest that participants had already reached 
asymptote after 16 trials. If a 5s delay depressed the asymptote, participants might have 
plausibly already reached (the lower) asymptote in the 5s conditions after 16 trials and 
any additional learning trials would not have had any scope for improvement. While this 
notion is possible in principle, it is hard to reconcile with the results from Experiment 2. In 
Experiment 2, all aspects of the experimental context were identical to Experiment 3, so 
there is no reason why a delayed sensor-explosion association should support different 
levels of strength in one rather than another condition. Yet, the pre-exposure participants 
in Experiment 2 provided causal ratings that were much higher than those from the no 
pre-exposure group, or those from participants in Experiment 3. If delays effectively lower 
the absolute strength of a possible association, and ratings in Experiment 3 reflect the 
maximum strength possible under this delayed schedule, we would not have observed 
increased ratings in Experiment 2. In sum, while RET might be able to account for the 
results in Experiment 2, its predictions with respect to Experiment 3 (which are identical 
to those of standard associative learning theory) could not be supported, and the effects 
we found in Experiment 1 fall outside of its scope. 

Knowledge-based Computation of Causal Power from Real-Time Data

We began this paper by criticizing contemporary accounts of causal learning, because they 
assume that these probabilities are readily available to the reasoner. Our critique does not 
discredit the approach altogether. We could show, however, that assessing the value of 
these probabilities is a fundamental prerequisite for the reasoning process. Once values 
for these probabilities have been obtained (either via direct and simplified information, 
as in the case of standard causal inference tasks, or via event parsing and segmentation of 
a continuous stream of events into causal and non-causal episodes, as in most real-world 
causal induction tasks, and in the experiments reported here), they can be fed into the 
causal reasoning engine. Our results have confirmed that degradations in cause-effect 
contiguity (such as delays) result in non-normative event parsing, in that delayed effects 
are not perceived as co-occurring with their causes, producing an incorrect assessment 
of the conditional probabilities, and also degraded causal ratings. 

A new class of models for causal learning that has recently been advanced is that of 
causal structure learning models (e.g., Griffiths & Tenenbaum, 2005). According to these 
models, the reasoner compares the likelihood that the observed data is generated from 
a system that entails a cause-effect link to that of a system that contains no such link. 
Crucially, the comparison takes into account all possible strengths that the purported 
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causal relation might have. The measure that is achieved, causal support, thus reflects a 
degree of belief in the existence of a causal relation. Naturally, the stronger the relation 
is, the stronger the belief would be, and evidence suggesting that the effect occurs on its 
own will weaken the belief. In this respect, these models capture similar ideas as those 
of probabilistic causal learning. They go beyond these models, however, in that they also 
predict that belief increases as a function of sample size—a feature that is notoriously 
lacking in probabilistic models. Another advantage of these models is that they are not 
limited to contingency data but can instead also accept rates as input, and, thereby could 
at least in principle account of effects related to cause-effect timing, though a detailed 
computational specification of delay effects is at present not implemented in these models. 
Note that allowing the models to accept rates also solves the problem of defining P(e|¬c) 
in continuous time, which we discussed in the introduction.

A persistent feature across all our experiments was the order effect we found. In gen-
eral, delayed relations were more positively evaluated when they formed the first evidence 
to be evaluated by the reasoner; delayed relations which had been preceded by immediate 
ones created lower causal impressions. Furthermore, manipulations aimed at overcoming 
the detrimental effects of delay (Instructions in Experiment 1, Pre-exposure in Experiment 
2) were successful only, if they were followed by a demonstration of a delayed relation at 
the beginning of the experiment; evidence of immediate relations at the beginning of 
the experiment destroyed the impact of these manipulations. Similar order effects have 
been reported before (Buehner & May, 2002, 2003), and most likely reflect the artificiality 
of a computer-based scenario simulating real-world causal learning. Instructions, however 
convincing they may seem, can only ever be just that, and participants will always know that 
what they are observing is a computer-generated sequence of events. On a computer, it is 
always possible that the simulated effect follows the simulated cause immediately (there 
is no physical causal mechanisms that takes time to unfold), and thus it is only rational for 
learners to pick up on that. Furthermore, once they have experienced immediacy, delayed 
pairings will appear less appealing, regardless of previous instructions or manipulations. 
Interestingly, structure learning models might—at least conceptually—account for such 
order effects: it is plausible to assume that a delayed regularity provides stronger evidence 
for a causal relation in the absence of any other evidence than when it is evaluated in light 
of previous experience of immediate regularities. Again, though, a detailed computational 
specification of order effects is at present lacking in these models.

Our results have also shown that higher level knowledge about a delayed mecha-
nism can correct contiguity biases. Hagmayer and Waldmann (2002) found that top-down 
knowledge in the form of temporal assumptions drives the segmentation strategies used 
to aggregate covariational data from unstructured lists. We have extended their results 
into a real-time scenario. That causal inference employs top-down components is by 
now widely accepted (e.g., see Waldmann, 1996; Buehner & Cheng, 2005). Ultimately, of 
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course, all (prior) knowledge is based on experience, and the burning question is how it 
is acquired in the first case, without initial top-down support. In the problems examined 
in this paper, the question is how hypotheses about the timeframe of causal relations can 
be extracted from continuous event streams. Temporal hypotheses are of course not the 
only example of causality related top-down knowledge that must have roots in a bottom-
up process. Another example concerns the postulation of causal mechanism, recruited to 
help distinguish between genuine and spurious causes (e.g., although Russell’s rooster 
crows reliably every morning before sunrise, we refrain from crediting it with causality 
because we know of no mechanism by which a bird could influence planetary motions). 
Lien & Cheng (2000) demonstrated that reasoners acquire (from statistical information) 
abstract categories of what is and is not causal, and use these categories to classify novel 
covariations as genuine or spurious. These abstract categories can be interpreted as an 
early form of knowledge of causal mechanism that allow subsequent hypothesis testing 
and strive for mechanistic explanation. The important lesson from Lien & Cheng for our 
purposes here is that they could show that top-down components (knowledge of mecha-
nism) influencing an essentially bottom-up process (causal learning from statistical data) 
can themselves be acquired by this very bottom-up process.

We speculate that top-down components guiding the parsing of events into causal 
and non-causal episodes may likewise be acquired by the very bottom-up process that 
they ultimately end up influencing. Experiment 2 successfully explored this hypothesis 
with an idea inspired by associative learning theory. Pre-exposure to a causally ineffective 
background is most likely not the only way for participants to acquire temporal assump-
tions. Future research might investigate the same problem from different angles, and 
apply ideas from areas such as artificial grammar (Reber, 1969) or statistical (Fiser & Aslin, 
2002) learning. Fiser and Aslin, for instance, have shown that people derive higher-order 
temporal structures from passive observation of very brief continuous event sequences, 
and can use these statistics for subsequent categorization tasks. Their results suggest that 
temporal contiguity should also play a role in statistical learning. For the human reasoner 
faced with the task of inferring relationships between events as they unfold in time: “What’s 
to come is still unsure: in delay there lies no plenty” (Twelfth Night, II:3).

Appendix

Instructions for Experiment 1

Imagine you are a military officer sent on a training course aimed at developing your skills 
in observing what happens on a battlefield. You already know that a lot of things are hap-
pening at once during combat, and it can be difficult to keep track of how effective and 
well functioning one’s equipment is. 



The Journal of Problem Solving 

76 Marc J. Buehner and Jon May  

The context in which you will be assessing the effectiveness of different kinds of 
equipment is anti-tank defence.

You will observe a tank traversing a military training range. Aircraft flying over the 
range may drop radar-controlled smart-bombs on the tank. These aircraft are very high 
above the training range, and you cannot actually see them, nor whether or when they’ve 
launched a smart-bomb to pursue the tank. All you can see is when an explosion happens 
near the tank.

Your concern is with some special devices that have been placed on the training 
range. 

These devices can have two different functions:
They can either be harmful for the tank, or they can protect the tank.

Section that was presented to the Mine group
In the harmful case, the devices are landmines. 
As soon as the tank rolls over them, they explode.

Section that was presented to the Sensor group
In the harmful case, the devices are trigger-sensors. 
As soon as the tank rolls over them, they trigger a rocket to be launched from several 

miles away to pursue and explode on the tank.

Both sets of Instructions continued:
In the protective case, the devices are jamming transmitters. 
As soon as the tank rolls over them, they emit a radio signal that interferes with the 

radar-tracking of the smart-bombs that the aircraft drop on the tank (i.e., they prevent 
bombs from exploding).

Alternatively, the devices may be malfunctioning and have no effect whatsoever on 
whether or not there are explosions.

Alternatively, the devices may be malfunctioning and have no effect whatsoever on 
whether or not there are explosions.

Regardless of which function the devices have, they always look the same.
It is your task in this training program to carefully observe the tank traversing the 

training range and to decide whether and how strongly the devices produce or prevent 
explosions when the tank rolls over them.

Instructions for Experiments 2 and 3

Imagine you are a military officer sent on a training course aimed at developing your skills 
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in observing what happens on a battlefield. You already know that a lot of things are hap-
pening at once during combat, and it can be difficult to keep track of how effective and 
well functioning one’s equipment is. 

The context in which you will be assessing the effectiveness of different kinds of 
equipment is anti-tank defense.

You will observe a tank traversing a military training range. Aircraft flying over the 
range may drop radar-controlled smart-bombs on the tank. These aircraft are very high 
above the training range, and you cannot actually see them, nor whether or when they’ve 
launched a smart-bomb to pursue the tank. All you can see is when an explosion happens 
near the tank.

Your concern is with special kinds of sensors that have been placed on the training 
range. It is your task in this training program to carefully observe the tank traversing the 
training range and to decide whether and how strongly the sensors produce explosions 
when the tank rolls over them.
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