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ABSTRACT

ROBUSTNESS AND PRECISION OF HOLOCENE PALAEOCLIMA TIC
RECORDS FROM PEA TLANDS USING TESTATE AMOEBAE

DAWN HENDON

This thesis represents the first attempt to use quantitative testate amoebae (Protozoa:

Rhizopoda) analysis to measure hydrological fluctuations in British peatbogs over the

Holocene. Changes in the fossil species assemblage are used to reconstruct the mean

annual water table records at different locations on mire surfaces using a transfer

function designed for application on oligotrophic peatlands. The transfer function was

found to provide more precise reconstructions for depth to water table than percentage

soil moisture. Multiple cores were extracted from three of the Border Mires; Coom Rigg

Moss and Butterburn Flow (both intermediate ombrotrophic bogs) and The Wou (a

minerogenic valley mire). Testate amoebae analysis of these cores was used to assess

the variability of hydrological change at three spatial scales, in an attempt to separate

autogenic and allogenic influences on site hydrology. The morphology of each mire

ensured a strong link between water and prevailing climate (precipitation-evaporation

balance).

At the micro-scale (1-10m), within the centre of a mire, microtopography explains

differences between the hydrological record for two cores. This is inferred because one

of the cores appears to have been the location of an insensitive hummock over much of

the period of accumulation. At the meso-scale (100-1000m), between the central mire

expanse and the mire margins, synchronous changes can be identified, but the edges

generally have lower water tables than the central portions of the mires. However, this

may be attributable to autogenic factors acting over the whole site, as well as to climate.

Between sites, at the macro-scale (1-10Iun), climatic influences can be clearly identified.

The climatic signal is strongest in the centre of the mire and is more consistent between

locations in the upper peats. If a hydrological shift is replicated in at least three cores

from at least two sites, a climatic signal can be inferred.

The testate amoebae preparation technique was also modified as part of this research to

provide cleaner slides for more efficient counting. Testate amoebae analysis provides a

new quantitative technique for reconstructing the palaeohydrology and from this,

inferred palaeoclimatic conditions of ombrotrophic peatlands.
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PART ONE

Introduction and background



CHAPTER ONE

Preface to the thesis

1.0	 Introduction

Work carried out in Canada (e.g. Warner, 1987, 1990; Charman and Warner, 1992,

1997; Warner and Charman, 1994), Finland (e.g. Tolonen, 1966, 1986; Tolonen et al.,

1985) and more recently Britain (Woodland, 1996; Woodland et al., 1998) and New

Zealand (Charman, 1997), has recognised the potential use of testate amoebae

(Protozoa: Rhizopoda) in reconstructing the hydrological conditions of peatlands. This

thesis is the first attempt to use quantitative analysis of subfossil testate amoebae to

measure hydrological fluctuations in British peatlands over the Holocene. A particular

focus of this work is to examine the reliability and replicability of the palaeo-

hydrological record derived from testate amoebae analysis.

Recent research established the relationship between faunal assemblages and peatland

hydrology, as expressed by the depth to water table and percentage soil moisture

(Charman and Warner, 1992; Tolonen et al., 1992, 1994; Woodland, 1996; Woodland et

al., 1998). The relationship between climate and testate amoebae is not direct, however,

there is an indirect link through mire hydrology. If the hydrological record derived from

testate amoebae analysis is replicable across a number of sites within a region, a climatic

signal may be inferred. Therefore, the quality of the palaeoclimatic record depends

upon the reliability of the climate-hydrology relationship, as well as the robustness of

the transfer function for hydrological reconstructions.

The use of testate amoebae analysis as a proxy palaeoclimatic record is based upon the

assumption of a direct coupling between peatland and climate for ombrotrophic mires

shown, for example, by Barber (1981). Due to the fact that ombrotrophic mires receive

moisture and nutrient inputs solely from precipitation, a direct relationship may be

assumed between climate and mire surface wetness. This assumption does not take into

account any possibilities of mire hydrology being influenced by internal dynamics such

as drainage or microtopography. In order for a palaeoclimatic signal to be inferred, the

influence of autogenic factors on mire surface wetness must be evaluated.

1



There are three steps to gaining palaeoclimatic information from fossil testate amoebae

from ombrotrophic mires:

a) characterisation of the species composition of a particular assemblage;

b) consideration of past hydrology by the study of autecology, by the application of a

modern analogue transfer function so that the palaeohydrological conditions can be

modelled;

c) assessment of whether hydrological shifts are replicated between sites, therefore

indicating that they may be climatic in origin.

Calibration (see Birks, 1995) of the fossil faunal assemblages using the modern

analogue transfer function developed by Woodland (1996) and Woodland et al. (1998),

provides quantification of the depth to water table and moisture conditions in which the

subfossil testate amoebae assemblages existed. This is a valuable new addition to other

methods of palaeohydrological reconstruction, the usefulness of which will be

determined by the level of precision with which bog wetness can be reconstructed from

different testate amoebae assemblages. This principally depends on the match or mis-

match between modern and fossil assemblages.

The terms testate amoebae, testaceans (e.g. Medioli and Scott, 1988), thecamoebians,

(e.g. Medioli and Scott, 1983), arcellaceans (e.g. Patterson et al., 1985) and rhizopods

(e.g. Tolonen, 1986) are often used synonymously. However, the term testate amoebae

is used predominantly in this text, as it best describes the organisms and, is the term

used most frequently in recent literature.

1.1 Aims

This study has three main aims from which to assess the use of testate amoebae analysis

as a palaeoclimatic reconstruction tool:

1) assessment of the replicability of the subfossil testate amoebae record from within

and between mires;

2) testing the robustness and precision of percentage moisture and depth to water table

reconstructions produced from testate amoebae analysis of Holocene ombrotrophic

peatlands;

3) separation of autogenically and allogenically forced hydrological signals, in order to

assess the technique as a proxy measure of palaeoclimatic change on peatlands.
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Intensive investigation of the spatial and temporal variability of the faunal record must

be reliable. There must be confidence in the data and the results should be concordant

when repeated. Many recent palaeoecological studies have assumed that one core from

a particular mire is representative of that mire as a whole (e.g. Chambers et al., 1997).

This assumption has not been rigorously tested in palaeoclimatic studies, and is

examined here using multiple testate amoebae records from three field sites.

The aim of the transfer function is to express the value of the environmental variable,

(e.g. depth to water table and percentage moisture), as a function of the biological data,

in this case, the testate amoebae assemblage. Modern relationships between species

optima, tolerance and hydrological parameters for testate amoebae were modelled

statistically by Woodland (1996) and Woodland et al. (1998). The resulting transfer

function may be used to calculate quantitative estimates of past hydrological conditions

from fossil data. Depth to water table and percentage moisture at the time of

biocoenosis can therefore be established. This is preferable to a qualitative assessment

of surface hydrology based on the presence or absence of taxa and relating that to the

literature on faunal ecological requirements.

Critically testing testate amoebae analysis is essential to establish its validity as a proxy

hydrological indicator. This depends not only upon the quality of the fossil data, but

also upon the transfer function that is used to calibrate the fossil assemblages. Analysis

of the data in this research involves testing the transfer function by looking at a wider

range of fossil conditions than in previous work. The moisture transfer function was

based on single-shot data, taken when the surface moss polsters used to construct the

calibration data set were collected. The water table transfer function was based on long-

term hydrological monitoring data and the sites used were therefore restricted to those

with established monitoring programmes. This causes a bias in the data set, since sites

with such programmes tend to be wet sites that are being managed for long term

conservation. The water table transfer function developed by Woodland (1996) and

Woodland et al. (1998) is potentially more useful than other transfer functions

developed for Canadian palaeohydrological reconstructions (e.g. Warner and Charman,

1994; Charman and Warner, 1997), as the reconstructions are based on mean annual

water tables rather than single-shot sampling.
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The application of the transfer function adopts a uniformitarian approach as it utilises

modern analogues to reconstruct palaeoenvironmental data. The accuracy of the

identification of the fossil assemblage will also influence the precision of the water table

models derived from the transfer functions. The use of a transfer function (Imbrie and

Kipp, 1971; Imbrie and Webb, 1981; Birks et al., 1990a) assumes that:

a) modern analogues exist for fossil taxa and that their response has not changed

significantly over the time of the fossil record;

b) the reference data set is not limited;

c) there is a homogenous modern data set, based on the same taxonomic criteria.

If these assumptions are not met, reconstructing past hydrological conditions using

testate amoebae, or any other proxy indicator, will not be robust.

1.2	 Hydrological forcing and peatland development

Lindsay et al. (1988) describe hydromorphology as the shape of a mire system that will

affect the area and surface flow of water. Mires can be divided into two broad groups,

minerotrophic and ombrotrophic. The former are influenced by telluric nutrient

enrichment from the surrounding area. The latter are nutrient poor, as water supply is

limited to precipitation alone. The terms fen and bog were coined by Tansley (1939) to

refer to minerotrophic and ombrotrophic mires respectively, in Britain. In this study, the

term mire is used to refer to any peatland, regardless of nutrient status. Ombrotrophic

mires can be divided into raised bogs and blanket bogs. Raised bogs are unique because

the water table is virtually independent of groundwater and depends solely on

atmospheric inputs for nourishment (e.g. Ingram, 1982). Blanket mires have a more

complex hydrological regime, as they may be composed of a combination of

ombrotrophic and minerotrophic peat, but receive most of their inputs from

precipitation. Intermediate mires are ombrotrophic peatlands with characteristics of

both raised and blanket mires. Minerotrophic mires, such as valley mires, receive inputs

from precipitation and also from the surrounding area in the form of runoff and

throughflow. Due to the topographic location of valley mires, it may be expected that

an exceptionally dry period will be required to significantly reduce mire surface

wetness. Since raised bogs have the simplest hydrological regimes, with bog surface

wetness independent of groundwater, the surface wetness should relate to prevailing

climatic conditions. Figure 1.1 is a simplified model of the hydrological factors

affecting ombrotrophic peat bog development. Allogenic factors are external, mainly
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climatic factors. For example, precipitation is the main source of input to ombrotrophic

bogs. Conversely, autogenic hydrological factors are self-produced or internal elements,

such as drainage, ground water flow, vegetation succession and the accumulation of

peat, which modify the hydrological regime. The relative importance of autogenic and

allogenic controls on peatland development is a debatable issue (e.g. Hu and Davis,

1995) and they are discussed in detail in Chapter Two.

Assessments of the subfossil testate amoebae assemblage at different levels within the

peat profiles can give an indication of changes in surface wetness at specific locations.

Local reconstructions of peat-surface wetness can be combined to reconstruct regional

changes in peat hydrology and by inference, changes in climate. The central parts of

ombrotrophic mires are the most useful in this context, as these are the locations where

surface wetness is likely to be closely linked to precipitation and evaporation, rather

than other site characteristics.

1.3	 Philosophy and palaeoecology

Considering the various sub-disciplines of physical geography as a whole, in recent

years according to Haines-Young and Petch (1986:201), "there have been very few

advances in theories about, or understanding of, the natural world". There is a

requirement therefore, to develop a more critical approach to physical geography, since,

"the theoretical framework seems not to have developed as in other disciplines"

(Haines-Young and Petch, 1986:201). In order to achieve this and for progress to be

achieved, a tradition of theorising, experimentation and the ability to recognise

problems needs to be developed.

Quaternary palaeoecology can be considered to be a descriptive historical science, the

results of which may be ambiguous or open to interpretation (Edwards, 1983), although

Huntley (1996) considers there to have been advances in both methodology and the

interpretation of Quaternary palaeoecological data in the past three decades. Quaternary

palaeoecology has developed from a long period of inductive activity (see for example,

an assessment of this in Edwards, 1983) and has recently acquired more vigorous and

deductive frameworks.
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Inductive studies begin not with hypothesis development and testing but by

identification of areas of ignorance by groups or individuals (Oldfield, 1993). Since the

1970s and the popularisation of Popper's (1972) theories, there has been a more

deductive approach. This requires identification of a conjunction of environmental

contexts, techniques and conceptual models that enable retrospective hypothesis testing.

However, the deductive framework is no guarantee against misinterpretation (Oldfield,

1993), indeed explanations can only be as strong as their weakest inferential link

(Edwards, 1983).

According to Haines-Young and Petch (1986), a scientific explanation should be

presented as a structured argument derived from a logical consequence. This is the view

of the rationalist who considers science to be ordered, logical and with judgements

based upon reasoning (deductive). Critical rationalism (Popper, 1972) has three main

principles:

a) of falsifiability, that a theory can only be refuted or corroborated,

b) of criticism, progress by examination,

c) demarcation, testing the theory in practice.

Hypothesis testing leads to three possible outcomes:

a) reject the theory,

b) reject the refuting evidence or

c) develop or modify the theory.

The data collection and interpretation in this thesis employ the three stages of the

approach of a rationalist, in that

1) working hypotheses were developed,

2) models generated and

3) realistic interpretation of those models were undertaken.

Testing the validity of testate amoebae analysis as a palaeoecological technique involves

critically testing and evaluating its utility. As such, this research addresses the concerns

of Haines-Young and Petch (1986), as it is an experimental exercise that is critical of

the technique used itself and of other similar techniques.
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1.4	 Thesis structure

Figure 1.2 sets out the thesis structure in the form of a flow diagram. The thesis is

divided into four sections. Part One, the introduction and background, contains this

preface to the thesis and a review of literature. The literature review is spilt into four

sections:

a) 'Peatland-climate relationships and response', which examines the nature of the peat

environment, peat formation and the coupled nature of climate and ombrotrophic mires.

b) literature concerning testate amoebae in the context of palaeoecological studies is

reviewed. This includes an introduction to the modern biology and ecology of testate

amoebae and their preservation and taxonomy. An understanding of these issues is

essential for interpreting the palaeoecological record.

c) the transfer function developed by Woodland (1996) is assessed as a tool for

reconstructing the surface wetness of mires from testate amoebae analysis.

d) descriptions of other palaeoecological techniques relating to this mode of study e.g.

plant macrofossils, humification and isotopic analysis.

Part Two, the research approach and methodology, contains two chapters focussing on

the field and laboratory methods. Chapter Three, 'Site selection and coring locations',

sets out the rationale for choosing each field site and the coring locations within each

site. Surveying data and depth profiles for each site are presented and discussed. The

sites are described in terms of conservation status, management practice, surface

vegetation, geology and hydrological status.

Chapter Four, 'Laboratory methods and data analysis' sets out the framework of the

laboratory-based experimental design. The methods used for testate amoebae and

pollen preparations and the rationale for sampling for radiocarbon dating are presented.

To date, there has been no standard technique for preparing testate samples, with each

worker adopting a different technique for extracting tests from peat. These techniques

are diverse, some based on pollen preparation techniques and others using a simpler

water-based preparation. Chapter Four (and Hendon and Channan, 1997) presents the

results of a series of experiments carried out in order to assess the suitability of the

variety of methods utilised in the literature in order to find the least damaging

preparation and to improve upon it. Taxonomic problems encountered during the

course of intensive testate amoebae analysis are discussed, as are possible solutions to

those problems. The lack of clear descriptions of species based on a large sample of
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individuals, in conjunction with adequate illustrations, on occasions made identification

of taxa difficult. This problem is currently being addressed by the development of an

identification guide to British peatland testate amoebae by Charman, Hendon and

Woodland (in prep.).

The computer packages used to manipulate, transform and display the data derived from

the testate amoebae analysis are also discussed in Chapter Four. TILIA and TILIA

GRAPH (Grimm, 1982) were used to calculate the percentages and concentrations of

the testate amoebae and pollen data and CONISS (Grimm, 1987), was used to construct

the dendrograms for zonation of the testate amoebae diagrams. A Multivariate Statistics

Package (MVSP) (Kovach, 1991) was used to transform the data into Cornell condensed

format for multivariate analysis. The CANOCO package (ter Braak, 1987-1992) was

used for Detrended Correspondence Analysis (DCA) of the fossil testate data and for

comparison of the match or mis-match between the fossil and the modern analogue data

set. WA CALD3 3.3c (Line and Birks, 1990; Line et al., 1994) was used to calibrate the

fossil data with the modern analogue transfer function developed by Woodland (1996)

and to construct the bootstrapped error estimates. Radiocarbon dates were calibrated

using CALD3 3.0 (Stuiver and Reimer, 1993a,b).

Part Three presents the results of laboratory analyses of the cores from each site.

Results include stratigraphical analyses of individual cores and zoned percentage testate

amoebae diagrams. Ordination plots for individual cores show the relationships of taxa

and samples within each core. Water table and moisture curves from the calibrated

testate amoebae data are presented and the relative merits of each are discussed. Pollen

diagrams for use as biostratigraphical correlation tools are presented and marker

horizons in the pollen profiles are used in conjunction with the radiocarbon dates for the

linear interpolation of sample ages.

Part Four contains the discussion and conclusion chapters. Chapter Eight consists of a

discussion of the methodological issues raised in this thesis, such as preparation

techniques, taxonomy and the robustness of the transfer function. Chapter Nine is the

main discussion chapter and includes assessment of the replicability of the testate

amoebae record within the mires and across a region at the three scales of study. Using

the multiple records of water table reconstructed from the fossil testate amoebae data, an

attempt is made to separate the allogenic and autogenic hydrological signals and shifts
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in mire surface wetness are related to other proxy climatic records. Conclusions and

recommendations for future work are made in Chapter Ten.
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CHAPTER TWO

Testate amoebae and their peatland environments

2.0	 Introduction

This chapter investigates the nature of the peatland as a physical and hydrological

environment, the interaction of mires with climate and the response to and record of

climate change from proxy indicators. The mire types used in this study are discussed in

detail, regarding their specific relationships with hydrology and their response to

allogenic and autogenic factors. The modern ecology, biology and taxonomy of testate

amoebae are discussed, in order that their fossils may be interpreted as

palaeohydrological indicators. The transfer function for hydrology from testate

amoebae in British mires, developed by Woodland (1996), is reviewed. The

relationships between climate, peat bogs, hydrology and testate amoebae assemblages

are considered. Other relevant proxy climatic indicators; humification, Sphagnum

macrofossils and isotopes, are also discussed.

2.1	 Peatland-climate relationships and response

2.1.1 Peatland distribution

Approximately 5.8% of land in Britain is covered in peat, with the majority concentrated

in the uplands of northern and western regions. Peatland distribution within the British

Isles is shown in a map compiled by Taylor (1983), (Figure 2.1). The spatial

distribution of peatlands is greatly influenced by the presence of the North Atlantic

Ocean which creates a relatively cool, temperate and maritime climate. This results in

high humidities, cloud cover and precipitation, all of which increase with altitude, to

produce a distinct type of upland climate in the north and west of Britain (Taylor, 1983).

Conditions are so oceanic in Britain that mire development is possible anywhere in the

country (Lindsay, 1995). These conditions are ideal for peat formation. As a high

percentage of these sites are ombrotrophic, the potential for palaeoclimatic studies is

great and a large number of sites are suitable for palaeoecological studies. The

distribution and development of fens and bogs are frequently presumed to be strongly

influenced by the interplay of regional climate, site geomorphology and history

(Almquist-Jacobson and Foster, 1995).
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Peat stratigraphy is claimed to yield a continuous climatic record (Barber, 1981) and is

potentially a global source of proxy climatic data (Chambers, 1993), due to the global

distribution of peat bogs. Maps in Gore (1983) and Chambers (1993) show that the

distribution of mires on a world scale is concentrated predominantly in the northern

hemisphere, in the Arctic, Boreal and Northern Temperate zones. In addition, there are

large areas of peatlands in the tropics, especially south east Asia, where raised mires

also occur. In the southern hemisphere there is little land in latitudes suitable for mire

formation and Gore (1983) concentrates on those found in Chile and Australasia. Bog

distribution in Western Europe is illustrated by Lindsay (1995) and shows that the area

of peatlands found in Britain is relatively small.

2.1.2 The role of Sphagnum in the peatland environment

The genus Sphagnum (bog-moss) forms part of the bryophyte group along with other

mosses (Musci) and the liverworts (Hepaticae). The class Sphagnopsida contains a

single order, the Sphagnales, within which there is one monogeneric family, the

Sphagnaceae (Smith, 1978; Daniels and Eddy, 1985). There are 40 species of bog-moss

in Europe, although most individual bogs contain less than ten species in varying

proportions (Barber, 1993). The Sphagnopsida are divided into six sections, Sections

Sphagnum, Acutifolium, Rigida, Squarrosa, Cuspidata and Subsecunda (Smith, 1978).

Section Sphagnum includes S. papillosum, S. imbricatum, S. magellanicum and S.

palustre. Section Acutifolia contains S. fuscum and S. rubellum, which are hummock

forming species. Section Cuspidata includes S. tenellum, S. cuspidatum and S.

recurvum, which are hollow forming species (Daniels and Eddy, 1985). Different

species of Sphagnum colonise different microhabitats in a hummock-hollow complex

and the variety of taxa and ecological niches on a bog is fundamental to the record of

climatic change found in peat. Bogs dominated by a single eurytypic taxon would not

show the sensitivity of other bogs where several species of Sphagnum interact as surface

wetness changes. Where several species interact and take over from one another as the

wetness of the bog surface fluctuates, the peat profiles are theoretically much more

sensitive records of climate change. For example, Bolton Fell Moss, Cumbria (Barber,

1981; Barber et al., 1994a,b).
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Figure 2.1	 Map of peatland distribution in the British Isles

(after Taylor, 1983; major deep peat deposits in Britain. Isopleths for
average number of 'rain days' 1901-1930 are shown)
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Sphagna are important plants in the formation of peat bogs. Peatlands are a unique

environment, where the Sphagnum community deposits a detailed record of its own

history in the form of plant macrofossils, in situ, as the lower part of each plant dies, but

remains preserved in the catotelm (Barber, 1985, 1993). Peat bogs exhibit a special

relationship with climatic variability owing to the reliance of Sphagnum on moisture for

growth. Sphagnum mosses grow apically from the capitulum, typically 2-3cm per

season and have no roots, so can survive on oligotrophic, nutrient-poor rainwater

(Hobbs, 1986). Mosses lack stomata and therefore cannot control evapotranspiration by

closing the stomata in the manner of vascular plants.

The maintenance of a high moisture content is achieved by the structure of the Sphagna,

since they posses empty (hyaline) cells, which are capable of absorbing water many

times greater than the dry weight of the plant. Sphagna grow above the ground water

table, making ombrotrophic bogs dependent on the effective precipitation in order to

sustain growth. Bog mosses also have a high Cation Exchange Capacity (CEC),

enabling the moss to extract nutrients such as potassium, calcium and magnesium from

the surrounding water and return hydrogen ions in exchange (Clymo, 1983). This

acidifies the water, which in turn contributes to the preservation of the plants and other

organic remains.

Excessive drying results in the bleaching of Sphagnum, which reflects more solar energy

and results in further moisture losses to evapotranspiration (Clymo and Hayward, 1982).

Backeus (1991) has shown that the moisture conditions in August of the previous year

represent the most important single factor controlling the growth of Sphagnum and that

temperature is not significant. In hummock-forming species of drier habitats, the

hyaline cells are larger than those in species occupying wetter habitats (Daniels and

Eddy, 1985). These factors all have important implications for the existence of testate

amoebae assemblages, as discussed in Section 2.2.5.

Raised bogs have been favoured for Sphagnum macrofossil studies because of their

ombrotrophic status resulting from the direct relationship between the mean water table

and effective precipitation. The plants lose mass as a function of the decay process, but

if the leaf-size, shape and diagnostic cellular details are still discernible the major parts

of the original community can be reconstructed (Barber, 1993). The relationship
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between testate amoebae and bog moss is discussed in Section 2.2.6 and the use of

Sphagnum macrofossils as palaeoclimatic indicators is discussed in Section 2.6.1.

2.1.3 Peat formation

Peat is normally autochthonous and is formed in situ, as a consequence of the

incomplete decomposition of organic matter, usually as a result of waterlogging. Peat

formation is a diagenetic process, involving the transformation of a living vegetation

assemblage to a death assemblage and then to a subfossil assemblage (Barber, 1981;

Clymo, 1983, 1984, 1991). Decay continues in deeper peats but is very slow (Clymo,

1984). In ombrotrophic systems, as long as there is a positive water balance, peat will

remain waterlogged and anaerobic, which inhibits the decay of organic matter. Ivanov

(1981) considers water supply to be the most important exogenic factor in determining

the development, maintenance and form of a mire and its relationship with the water

table.

Hydrology, topography and the permeability of the substrate are important factors

affecting peat development. The conditions under which peat begins to accumulate are

determined primarily by climate and topography (Hobbs, 1986). Peat initiation may

occur as a result of terrestrialisation (Hobbs, 1986; Lindsay et al., 1988; Lindsay, 1995).

This occurs due to the sedimentation of water bodies, which develop anoxic layers in

the bottom sediments and eventually become filled with peat, forming for example,

raised mires. Conversely, peat accumulation may take place as the result of the

paludification (swamping) of dry ground. Ground that was once dry becomes wet, often

due to increased precipitation and peat formation may be initiated. The deepest peats

tend to occur at the wettest sites with more permanent waterlogging and less

humification, which encourages more rapid peat formation (Ratcliffe, 1977a).

Allogenic and auto genic factors in mire formation

Mire development as a result of endogenous and exogenous influences has important

implications, as the separation of these hydrological signals is fundamental to the aims

of this study. There is a limited body of literature dealing specifically with autogenic

and allogenic inputs to the mire hydrological system (e.g. Winkler, 1988; Foster and

Wright, 1990; Hu and Davis, 1995). Wheeler (1992) and Belyea and Warner (1996)

discuss some autogenic and allogenic influences on the mire system, but these are not

16



necessarily hydrological factors. The relative roles of autogenic and allogenic controls

in peatlands remains a debatable issue (Hu and Davis, 1995) and the arguments are

complex and often contradictory.

Autogenic factors are those that result from internal bog dynamics and include

vegetation, microclimate, mire expansion, human impact and site drainage. Autogenic

processes affecting mire surface wetness occur as portions of the mire pass through

critical stages of bog development, which may be controlled by morphology, hydrology

or peat depth (c.f. Foster and Wright, 1990) and are responsible for changes in vertical

accretion, lateral expansion and the consequent shape of the peatland (Ingram, 1982;

Winston, 1994; Almquist-Jacobson and Foster, 1995). The upward growth of peat due

to autogenic factors usually takes place where there are only small vertical fluctuations

in the water table. The theoretical model developed by Almquist-Jacobson and Foster

(1995) combines internal bog dynamics with the external factors of local substrate,

regional temperature and moisture conditions. The model suggests that the geometry of

raised bogs will adjust to climate change regardless of the stage of bog development or

direction of climate change. Almquist-Jacobson and Foster (1995) conclude that all

aspects of mire development appear to be closely related to climate.

Conversely, it has been argued that in a suitable climate, autogenic processes are the

dominant factors controlling mire development (Walker and Walker, 1961; Tolonen et

al., 1985; Foster and Wright, 1990). Autogenic mechanisms may result in drier

conditions at mire margins as cooling and wetting (allogenic factors) will raise the water

table in central, flatter parts of the bog, due to a lower gradient in hydraulic potential

and will raise the water table later in marginal zones (Kilian et al., 1995) (see Section

2.1.7). According to Stoneman (1993), in raised bogs, autogenic forcing affecting bog

surface wetness only comes into effect once allogenic factors (principally climate), have

upset the equilibrium between bog hydrology and prevailing climate. Furthermore,

processes involved in returning the mire back to a state of equilibrium (principally

vegetation) are rather slow to operate, as surface wetness constantly changes and may be

further over-run by climate change.

Ombrotrophic mires also develop as a result of allogenic inputs, principally climate, as

raised mires and the shedding parts of blanket mires are locations where the peat profile

is most closely linked to the balance between precipitation and evaporation, rather than
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other site characteristics. The topography of a mire will affect the nature and strength of

vegetation and testate amoebae response to hydrological change, as it affects the

retention of impacting water. It is possible to distinguish between water-shedding and

water collecting sites, situated in convex or concave regions of the blanket mire system

respectively (Tallis, 1994, 1995). Barber (1981) hypothesised that climate played a

major role in peat formation due to the strength of allogenic forcing, but does not take

into account autogenic factors such as drainage. The study of multiple cores from a

single site is needed to evaluate this. Barber (1981) falsified earlier concepts of

autogenic cyclic changes in peatlands by showing that from macrofossil studies, surface

wetness patterns occur over entire strata. The layered stratigraphy of moderate relief of

many Atlantic bogs or 'flat' stratigraphy is considered by Barber (1994) and Barber et

al. (1994b) to be more useful and sensitive for climatic reconstruction than would be a

stratigraphy dominated by climatically-insensitive hummocks. Hummocks are shifting

features, so it is possible that the mid point between hummock and hollow may provide

the best record of climate, as shifts in the expansion and contraction of the hummocks

are likely to register there.

There is little agreement in the literature about the relative importance of these

mechanisms in the peat hydrological record. Broadly, an allogenic hydrological signal

would result in a shift in water table simultaneously across the bog in response to broad

scale climate change. Autogenic influences would result in more localised hydrological

changes in response to crossing critical thresholds of mire growth and expansion. The

separation of these signals is central to this study.

2.1.4 Internal mire morphology

Peat bogs are diplotelmic and are composed of two layers: the `acrotelm' and the

`catotelm' (Ivanov, 1981; Ingram, 1982; Clymo, 1984; Lindsay et al., 1988). The

acrotelm is the active, aerobic, upper peat forming layer (the top 10-50cm). In this zone

there is intensive exchange of heat and moisture between the peat and the atmosphere,

with frequent flux in the level of the water table resulting in fluctuations in the moisture

and heat content. The vertical stem structure of plant material near the surface

encourages rapid lateral flow and the acrotelm is a zone of water exchange (Lindsay,

1995). There is a high hydraulic conductivity and water yield and a rapid decline of
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both with depth. The transition from the acrotelm to the catotelm is gradual and may

take place over ten or so years (Clymo, 1991). In the catotelm, the inert layer, there is a

constant or little changing water content and a slow exchange of water to the

surrounding area. There is a low hydraulic conductivity in this zone. The catotelm is

anaerobic due to waterlogging, resulting in low decomposition rates. Bog growth is

limited by the balance between rates of peat input into and decay within the catotelm

(Clymo, 1984). This has important implications for the net rate of peat accumulation,

because, where input exceeds decay, peat accumulates.

Lindholm and Markkula (1984) found clear differences in the depth of the aerobic layer

between the hummock and hollows, as the aerobic layer closely follows the level of the

water table. If water levels in a pool-hummock system are lowered, then an open water

pool that partially dries out may be invaded by Sphagnum at the same time as Sphagnum

is being lost from the drying hummocks (Tanis, 1995).

2.1.5 Peat hydrology

Ingram (1983) and StreefIcerke and Casparie (1989) provide excellent overviews of peat

bog hydrology. According to Ivanov (1981), peat typically contains 88-97% water, 2-

10% dry matter and 1-7% gas by volume. The rate of peat accumulation depends upon

two factors: the wetness of the peat (Figure 1.1) and the quantity of heat that it receives.

The hydrology of ombrotrophic peat can be summarised as follows:

Precipitation = outflow + evaporation + retention

Retained water is important for creating an anaerobic environment suitable for peat

accumulation (Moore and Bellamy, 1974; Clymo, 1984, 1991). Water can be held in

the peat matrix: as intracellular water held in the organic matter, as interparticle water

that is tightly bound, or as interstitial water that is loosely bound, interparticle (mobile)

water (Lindsay et al., 1988). Evaporation may also occur in three ways; as interception,

with loss of moisture directly from the plant surfaces, leaves and stems; as transpiration

- loss from within the plants; and direct evaporation from the substrate, in this instance

from the peat (Ingram, 1983).
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The source of water is a useful criterion for the classification of mire types. Mire

development in all climatic regions is connected with the relationship between the water

budget components; precipitation, evaporation, seepage and their influence on the mean

position of the water table (Ivanov, 1981). The high rainfall that contributes to

ombrotrophic bog growth can create contrasting effects. High rainfall may result in

waterlogging that encourages peat accumulation by creating an anaerobic environment.

It can also induce 'flushing' in the acrotelm dome, which washes water rapidly through

the peat profile, thereby increasing the breakdown of organic matter (Lindsay et al.,

1988). The wettest part of a bog, other than the marginal lagg fen is found on the

highest part of the dome, the cupola.

2.1.6 Mire classifications

The classification of British peatlands is complex. Mires are often classified according

to the aim of the study, for example, Clymo (1983) distinguishes between:

a) the classification of the peat substance, i.e. age, colour, chemistry, botanical

composition, state of decomposition, cation exchange capacity and

b) the peat forming system, i.e. topography, hydrology of the area and bog

morphology.

Dierssen (1982) developed the criteria of mire classification according to both the peat

substance and the peat-forming system, following the work of Grosse-Braukmann

(1962, in Lindsay et al., 1988; Heathwaite et al., 1993). However, Moore (1984) argues

that the problem of classification is aggravated by the fact that most of the available

criteria, such as floristics, chemistry, peat and morphology are not discontinuous, but are

continuous variables and that the definition of discrete units is not possible. Because of

the interactions between these variables, only broad distinctions are made here.

Mire morphology

Morphology is the shape of the mire resulting from the accumulation of peat and is

influenced by topography, hydrology, climate, plant productivity and decomposition

rates and can result in, for example, a domed raised mire or undulating blanket bog.
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Winston (1994) has a rather more simplistic view, stating that because peat accumulates

beneath the water table, the shape of the peat body should reflect the shape of its water

table and thus the hydrology of the bog. The overall shape of the mire surface and the

small scale surface patterns of hummocks and hollows can show two very different

levels of morphological variation. Aario (1932, in Goode, 1973) called them

`Grossform' and `Kleinform' respectively. Four levels of the functional hydrology of

mires have been listed by Ivanov (1981). They are defined as "active features which

both control and are controlled by the underlying hydrology" (Lindsay et al., 1988:20).

Ivanov's (1981) division on the basis of functional hydrology, into macrotopes and

mesotopes correspond with Aario's (1932) Grossformen and the microtopes and

microforms of Ivanov correspond with the Kleinformen of Aario (1932). Figure 2.2

shows the hierarchy of the four levels of functional hydrology described by Ivanov

(1981).

Mire macrotopes

Macrotopes are considered to form where mires coalesce, therefore escaping the

immediate hydrological confines of each individual bog, e.g., two raised mire units

joined together. Most macrotopes are hydrologically complex, combining the

hydrological elements of the component mesotopes and microtopes. Each level of

hydrological interaction is dependent upon the other levels for stability.

Mire mesotopes

Mesotopes are mire units; bodies of peat that have developed into single, complete,

hydrological entities. Goode and Ratcliffe (1977) classify mesotopes according to the

topographic and hydrological (hydromorphological) features. e.g., a single raised bog, a

saddle mire or a valley mire.

Mire microtopes

Microtopes are an arrangement or combination of several surface features which

characterise ombrotrophic mires, e.g., hummocks and pools on a mire surface. The

surface patterns of boreal peatlands are examined in detail by SjOrs (1961).
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Macrotope

Mesotope
hydromorphology

Microtope
surface patterns

IMicroforms

Figure 2.2	 Functional hydrology (modified from Lindsay et al., 1988,

originally from Ivanov, 1981)

Microform Characteristics

1 Hummock mounds of Sphagnum < lm high, 1-2m diameter, vegetation lies 30-75cm
above mean water table

2 High ridge 10-20cm above water table, dominated by dwarf shrubs

3 Low ridge (lawn) Sphagnum-rich fringe to expanses of high ridge and hummock. 1-
10cm above mean water table

4 Sphagnum hollows (carpet) aquatic zone, composed of S. cuspidatum on an aqueous matrix. 0-
10cm below mean water table

5 Mud-bottomed
hollows

4-20cm below the water table, little vegetation, dry in summer

6 Drought-sensitive climatically sensitive, distinct from permanent pools, flooded for most of
pools the time, but will dry up in drought conditions. 20-50cm below mean water

table

7 Permanent pools pools several metres deep found only in watersheds, devoid of vegetation

8 Erosion channels gullies exposed as dry peat for most of the year

9 Erosion hags surface microtopography becomes accentuated due to erosion, blocks of
uneroded peat within a zone of severe erosion

10 Peat mounds uncertain status - >lm high hummocks in north and west only

Table 2.1	 Mire microforms on British peatlands

from Dierrsen (1982), Lindsay et al. (1985) and Lindsay et al. (1988)
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Lindsay et al. (1985) demonstrated a link between the range, nature, extent and intensity

of surface patterning on bogs and climate, because the most extreme forms of patterning

within a region display greater amounts of open water, with increased wetness of

climate. Microtope patterning is most pronounced in the areas of the mire expanse and

simplest at the margins, this may be a result of autogenic peat development (Section

2.1.3). At Alport Moor, a blanket mire in the southern Pennines, Tallis and Livett

(1994) found that microtopographic differentiation of the mire surface into hollows,

pools and hummocks resulted from varying rates of peat accumulation locally.

Mire microforms

Microforms are individual surface features, e.g., a single hummock. Lindsay et al.

(1985) and Lindsay et al. (1988) identified ten categories of microform within a

patterned microtope (Table 2.1). Few sites exhibit all of the microform features, most

have no more than three (Lindsay, 1995).

Ontogeny (ecological development)

The peat contains the record of the site's development- i.e., primary, secondary or

tertiary peat (Moore and Bellamy, 1974). Ontogeny also deals with the concepts of

topogeneous, soligenous and ombrogenous mires (Ratcliffe, 1977a) and du Rietz's

(1954) division of ombrotrophy and rninerotrophy, into rain and ground water-fed bogs.

It is important to distinguish between the ombrotrophy concept of du Rietz (1954) and

the contemporary ombrotrophic status of mires. Ombrotrophy relates to the genesis and

conditions which gave rise to the mire's development whilst the ombrotrophic status of

a mire is derived from being a meteorically-fed system from which it develops its poor

nutrient status. Ratcliffe (1977a) adopts a classification system based on major

topographic or structural mire types. Ombrogenous mires are subdivided into blanket

bogs and raised bogs. Topogeneous mires are divided into three main types: open water

transition and floodplain mires, basin mires and valley bogs. Soligenous mires or flush

bogs can occur in association with some of the other main types. The division into

ombrotrophic and minerotrophic mires is of great importance in this study.
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Geographic or topographic relationships

These are used to classify minerotrophic (fen) systems or to separate units within

blanket mire, e.g., saddle, plateau, raised bog, valley bog. The topographical location of

a mire is very important as it may influence mire initiation, for example, paludification

initiating a valley mire. Figure 2.3 shows some examples of topographic locations

found in western Europe.

Vegetation characteristics

The structure of vegetation influences the microclimate of the bog surface. Mires are

often classified according to the floristics of the bog. However, the floral elements need

to have clearly defined optima and limits to growth and many mire plant species have

relatively broad limits of tolerance that may hamper this method of classification. The

role of Sphagnum as a peat-forming species is discussed in Section 2.1.2. The

vegetation communities found in mires are discussed in detail by Rodwell (1991).

Palaeobotanical / palaeoecological features

Peat profiles contain multi-proxy records that can be used to reconstruct the

developmental sequence of the mire from its stratigraphy and microfossil content, e.g.

pollen, testate amoebae, coleoptera, isotopes and plant macrofossils. Heathwaite et al.

(1993) consider the palaeoecological record to be limited for assessing past climate

change, as it is almost impossible to isolate climatic influences on mire formation from

autogenic changes in mire hydrology, chemistry and biota, as the mire develops. The

application of testate amoebae analysis from multiple peat cores will address this

concern.

Soil chemistry and water relations

According to Lindsay et al. (1988), water chemistry is often used to reinforce

classifications based on floristic studies, rather than for classification on a primary basis,

for example, nutrient status - base poor = bog, base rich = fen. Goode and Ratcliffe

(1977) divided British mires into three broad trophic groups; oligotrophic (nutrient-

poor); mesotrophic (medium nutrient status) and eutrophic (nutrient-rich).
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paludification fen
. valley fen

floating vegetation mat
(quagmire)

soligenous sloping mire

ombro-soligenous saddle
raised mire

ombro-soligenous
raised mire

crest raised mire

asymmetrical raised mire

terrestrialised fen
(lake-infilled fen)

symmetrical raised mire

Figure 2.3	 Topographic locations of peat bogs (Heathwaite et al., 1993)
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These classifications are widely used. In this study, all three sites were

oligotrophic.Only three mesotope types are considered below in detail; this is only a

small proportion of the peatland variation found in Britain. A range of morphological

peat types is examined in detail by Ratcliffe (1977a), Taylor (1983), Wheeler (1984),

Hobbs (1986), Lindsay et al. (1988) and Lindsay (1995). Only those that are of

importance to this study are discussed below, namely, raised bog, blanket bog and valley

mire.

Raised bogs

Raised bogs are often formed as a result of terrestrialisation (Lindsay, 1995). Raised

bogs are ombrotrophic; their only source of water is precipitation as the mire surface is

isolated from the regional ground water table (Moore and Bellamy, 1974). Raised bogs

are usually limited in extent and definable by easily recognisable boundaries, such as a

drier, steeply sloping rand at the outer margin and an adjacent stream course or lagg at

the transition between the bog and the mineral soil (Gore, 1983; Heathwaite et al.,

1993). In an undisturbed state, the surface of a raised bog is domed, often rising in the

centre several metres above the underlying mineral soil. The coupling between climate

and raised bogs is a direct result of the peat cupola being raised above surrounding

ground water and adjacent land. Goode (1973) suggests that raised bogs develop over

approximately level terrain and that there is a graduation from the plateau type that has a

flat cupola to a convex raised mire. Concentric raised bogs often have a lagg at the edge

of the bog, accumulate convex masses of peat, can develop in both open and closed

basins and have a distinct surface pattern of concentric ridges and hollows. Eccentric

raised bogs have the apex of the cupola displaced from the centre of the mire and the

surface pattern consists of a regular alternation of ridges and hollows aligned parallel to

the contours of the bog surface (Moore and Bellamy, 1974). Because run-off rates are

low, raised bogs do not depend on such a high precipitation/evaporation ratio as blanket

mires (Ratcliffe, 1977a). Raised bogs are oligotrophic (nutrient-poor), as they are

isolated from the ground water and receive nutrients only from precipitation (Hughes

and Heathwaite, 1995; Lindsay, 1995).
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Blanket bogs

Blanket bogs are the most extensive mire type in Britain (Hobbs, 1986). Blanket mires

require an extreme oceanic climate, with relatively low temperatures and high

cloudiness controlling effective humidity. They develop where there is both a high

rainfall and a high number of rain days, together with minimum evaporation (i.e. cold

temperatures). They usually develop over impermeable soil or bedrock in the north and

west of Britain, where conditions are suitable for paludification (Moore and Bellamy,

1974; Lindsay et al., 1988; Charman, 1992). Blanket bogs have a more complex

hydrological regime than raised mires and may cover diverse topography, resulting in a

range of nutrient, hydrological and micro-climatic conditions (Moore, 1984; Hughes and

Heathwaite, 1995; Lindsay, 1995). Blanket bogs may be influenced both by meteoric

and telluric water supplies, but receive most of their input from direct precipitation.

According to Lindsay (1995), the thickness of blanket peats can vary from a few cm to

7-8m, but they are generally shallower than raised bogs. Blanket peals may grow over

quite deep basins effectively obscuring them from the surface (Charman, 1994). Where

topography is gentle, a hummock-hollow microtope similar to that of a raised mire may

develop. Blanket peats were thought to be relatively insensitive to climatic change and

too well humified to yield a climatic signal. This was because blanket peats develop in

areas with supra-optimal climate for peat growth, where relatively small changes in

climate are not registered sufficiently to produce a vegetation response (Tains, 1995).

However, Blackford and Chambers (1991, 1993, 1995) found that the blanket peats

previously thought to be too humified could yield a good climatic signal.

In northern England, where morphological features may not be clear, the distinction

between raised and blanket mire may be tenuous. An ombrogenous continuum may

develop, the components of which vary according to the relative importance of climate

and topography at any one point (Ratcliffe, 1977a). Lindsay (1995) discusses the

possibility of finding mires where climate and terrain are in a transitional state between

blanket and raised mires. These ridge-raised mires or intermediate mires have

characteristics common to both raised and blanket bogs. This continuum from lowland

raised bog to blanket bog is not sufficiently distinct to categorise in its own right, but

instead is classified according to the dominance of features typical to either raised or

blanket bog. According to Lindsay (1995), in Britain, this type of mire is uncommon, is

hardly found at all in England and Wales and is of only localised distribution in
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Scotland. However, it is a largely unrecognised status and is likely that more

ombrotrophic mires than is currently thought fall into this category, as they can not

clearly be divided into either raised or blanket mires.

Valley mires

Valley mires are elongate mires which develop in topographically restricted areas, such

as small, shallow valleys or channels that are not enclosed, but which have impeded

drainage. This means that movement of water along the main drainage axis is possible,

even though ground slope in that direction may be slight (Ratcliffe, 1977a; Wheeler,

1984). Topogenous mires such as valley mires, owe their origin, if not their

maintenance, to drainage water rather than direct precipitation (Walker, 1970). Wetness

is maintained by mineral groundwater flowing from above, or seeping laterally at the

sides. The origin of valley mires is often paludification (Taylor, 1983). Topogeneous

mires develop where local relief results in permanently high water tables (Ratcliffe,

1977a). Hobbs (1986) suggests that the morphology of valley mires may be varied and

complex. Moore and Bellamy (1974) and Wheeler (1984) point out that valley mires

have a wide base status range and can support a range of vegetation communities, from

Sphagnum to carr.

2.1.7 The history of peat stratigraphical studies

Peat stratigraphy

Peat bogs have been used as sources of proxy climatic data since the nineteenth century,

mainly using stratigraphical analysis (Blackford, 1993). Peat stratigraphic units were

regarded as directly resulting from and therefore indicative of, different climatic periods.

Blytt (1876) and later Sernander (1906) divided the Holocene into five climatically

distinct periods, on the basis of marked changes in peat bog stratigraphy (Table 2.2).

This classification is now regarded as too simplistic, as it does not adequately describe

long term climatic changes over the whole of north-west Europe.
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Approx. Age Period Climate Evidence

2,500 BP

5,000 BP

7,000 BP

9,000 BP

Sub-
Atlantic

Sub-
Boreal

Atlantic

Boreal

Pre-Boreal _

cold & wet

warm & dry

warm & wet

warm & dry

subarctic

poorly humified Sphagnum peat

pine stumps and humified peat

poorly humified Sphagnum peat

pine stumps and humified peat

macrofossils of subarctic plants

Table 2.2	 The Blytt-Sernander Scheme (After Lowe and Walker, 1997)

The cyclic regeneration model

Several theories of peat bog formation have been developed over the past century.

Perhaps the most prominent of these has been the 'cyclic regeneration model' of von

Post and Sernander (1910), refined by Osvald (1923) and popularised by Tansley

(1939). Backeus (1991) described this as 'a hypothesis that became an established

truth'. The theory was developed to explain the apparent lenticular features of humified

and unhumified peat observed in sections of raised mires. The hypothesis was that peat

bogs form self-perpetuating, autogenic systems and that the' vegetation and

rnicrotopographical mosaic of hummocks and hollows would alternate as peat

accumulation took place (Figure 2.4). Plant communities in hollows were thought to

deposit vegetation at a greater rate than dry hummock tops, which would eventually

become moribund. The hollows gradually fill and rise above the former hummocks,

thus reversing the original relationship, the hummocks becoming hollows (Barber,

1982). Osvald (1923) called the central areas of mire growth the 'Regeneration

Complex' and outlined possible vegetational successions and retrogressions.

This theory was disproved by a number of workers, including Walker and Walker

(1961) and Barber (1981), who argued that the alternation of hummocks and hollows

was not the typical sequence in most raised mires, but that hummocks maintain

themselves. Moore (1991) and others, now believe that the approximate positions of the

hummocks and hollows are maintained for long periods of time, with occasional

increases in pool abundance as a result of changing hydrological conditions at the mire

surface.
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Figure 2.4	 The cyclic regeneration model The succession of Sphagna species
forming the peat in a typical 'hollow-hummock' cycle (modified from
Tansley, 1939).

According to Johnson and Damman (1991), the species of Sphagnum bog mosses that

occupy the hummocks are more resistant to decay than those species that grow in wet

hollows and so their relative position is maintained. Aaby (1976) suggests that hollow

peat is likely to show a more detailed record of climatic change than hummocks, where

smaller variations in humidity are not registered. If mire water table ii a critical factor

in determining species composition [of vegetation], then an undulating mire surface,

which is not a fixed distance from the water table, can provide a much wider range of

niches for groups of species to inhabit (Lindsay et al., 1985). Barber's (1994) theory

that small impermanent pools are more sensitive to climatic change than large

permanent pools, may have important implications for the study of subfossil testate

amoebae in determining the palaeohydrological conditions of bogs, because the location

of the core extraction site will influence the assemblage of testate amoebae recovered

from the peat. Barber (1994) suggested that hollows with a diameter of 5-200cm may

become small pools at times of higher water levels. Such pools are shown by

stratigraphic analysis to be short-lived and are readily colonised by bog-mosses. Larger

pools act as buffers to a changing climate and there is no clear climatic signal shown in

the peat stratigraphy. Therefore, peat cores extracted from sites of small, impermanent

pools are likely to reflect climatic variations in greater detail in the testate amoebae

assemblage than those from either permanently wet or permanently dry locations.
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Recurrence surfaces

Historically, the view prevailed that the only climatic signal obtainable from peat

stratigraphy was from the recurrences surfaces, from the gross changes in peat

appearance. Recurrence surfaces were first identified by Granlund (1932) as distinct

horizons that separate dark, well humified peat from overlying less humified, light

Sphagnum peat, reflecting a change from warm/dry conditions to cold/wet conditions.

He attributed the change in humification to climatic change. Granlund (1932)

distinguished five such `Rekurrensytor' (RY), in the bogs of southern Sweden, at ca.

4300BP (RY V); ca. 3200BP (RY IV); ca. 2600BP (RY III); ca. 1600BP (RY II) and ca.

800BP (RY I). The most prominent of these being RY III, the Grenzhorizont. They

were called recurrence surfaces, since they were thought by Granlund (1932) and von

Post (1946) to represent a sequence of similar events, believed to be contemporaneous at

a number of different sites. Gore (1983) suggests that Godwin (1946; 1952) assumed

that Granlund's hypothesis that climate both controls and limits the height of raised

bogs must imply greater climatic wetness, although this was not the case. Barber (1981)

demonstrated from plant macrofossil analysis that different parts of mire surfaces

respond approximately synchronously to major shifts to wetter and/or cooler climate and

that these wet shifts correspond with climate change. The gross changes in stratigraphy

could also be due to the threshold in the mires's hydrological regime being breached,

while the climate slowly changed to a cooler and/or wetter state. Alternatively, there

may have been sudden climatic changes (Barber, 1985). Blackford (1993) does not

consider the study of recurrence surfaces from humification analyses to have provided

either precise or accurate proxy climatic data. Instead, the data obtained were of an

inaccurate age, with unspecific meteorological implications.

The Phasic Theory

Barber (1981:206-7) developed the Phasic Theory as a palaeoecological test of the

theory of cyclic regeneration:

"This theory states that raised bog growth is controlled overall by climate even down
to the level of relative areas of hummock and pool and that phase-shifts in peat
growth are a result of climatic shifts. Threshold factors may cause the operation of
the theory to differ from region to region and, to a lesser extent, from bog to bog, but
the factors of hydrology and drainage, life cycle of plants, size of pool etc. are all
subordinate to climate."
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Barber (1981) related the changing stratigraphy and Sphagnum macrofossil record to

known climatic variations in the last 800 years by comparing the peat-based records to

Lamb's (1977) summer wetness indices. Barber (1981) and Barber et al. (1994b) argue

that this theory also unifies the theories of recurrence surfaces and regeneration

complexes, the latter being a consequence of the former, so that by the process of pool

infill and hummock spread, the bog tends towards a drier state, until the next phase

shift.

The Ground Water Mound Theory

The ground water mound theory was developed by Ingram (1982) following work by

Childs (1969) and Ivanov (1981). The hypothesis is that the shape and size of raised

mires are controlled by soil physics and hydrology. Low hydraulic conductivity in the

catotelm is sufficient to account for the ground water mound as water-logged peat is

raised above the level of the local water table. During wet periods there is lateral

seepage from the acrotelm, but during dry periods the water table is lower in the

catotelm, which may cause irreversible changes in the catotelm peat (Clymo, 1991).

Soil physics and hydrology determine the shape of the raised bog in vertical section.

The model states that under a given climatic regime, a hemi-ellipse is the upper limit for

the acrotelm cupola to remain stable. This is a function of bog diameter and the volume

of precipitation the bog receives. The critical water balance of a mire is the driest period

through which the mire survives without irreversible desiccation, as the longest dry

conditions during mire development are major determinants of the final stable shape and

maximum height of the dome. The shape may alter to reflect climatic shifts (Lindsay,

1995). An individual raised mire may react to climate change with a time lag. Climatic

cooling/wetting will raise the water table in the central, flatter part of the bog first (due

to the lower gradient in hydraulic potential, Ingram, 1982) and later in the marginal

zones (Kilinan et al., 1995). Therefore, the palaeohydrological record derived from

testate amoebae should reflect drier conditions at the margins of raised bogs.

Armstrong (1995) suggests that Ingram's (1982) approach is limited, since he assumes a

uniform hydraulic conductivity throughout the profile. From field obsenarion„

Armstrong (1995) suggested that peat bogs generally have a decreased hydraulic

conductivity with depth and that although the predicted mire shape, using a varying

conductivity model, is similar to that used by Ingram (1982), the mire centres are higher

and less strongly convex. Baird and Gaffney (1996) disagreed with the premise that
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hydraulic conductivity shows an exponential decline with depth and instead hypothesise

that trapped methane gas bubbles block pores within the peat and cause a reduction of

hydraulic conductivity. Armstrong (1996) advocated the need for more field data

describing the internal structure of mires to measure the hydraulic conductivity both

horizontally and vertically.

2.2	 Testate amoebae as palaeohydrological indicators

Moisture is generally accepted as the most important limiting factor to the distribution

of testate amoebae (e.g., Beyens, 1984; Charman and Warner, 1992). This is because

they possess unprotected cell membranes which are at risk of desiccation during dry

periods. The tests of these fauna are well preserved in peat and are easily identified.

Deflandre (1953) considered testate amoebae to be cosmopolitan, but not ubiquitous and

this assertion still holds today. Testate amoebae can only be useful palaeohydrological

indicators if their modern distributions are known and understood. Most

palaeoecological work has used testate amoebae for the qualitative reconstruction of

past moisture conditions on bogs. This study adopts a quantitative approach and

follows the recent work of Charman and Warner (1992, 1997), Warner and Channan

(1994), Woodland (1996) and Woodland et al. (1998). In the following section, the

modern biology, ecology and taxonomy of testate amoebae are discussed, to put the

fossil studies into context.

2.2.1 The systematics of testate amoebae

Testate amoebae are microscopic (20-200 inn)unicellular organisms in which the

cytoplasm is enclosed within a discrete shell or test. The tests can be preserved in peat,

lake and soil deposits. Testate amoebae are abundant in peat with Heal (1962)

estimating 16,000,000 live tests in Sphagnum swards and approximately 20,000,000

dead individuals (empty tests) per m2, to a depth of 12cm.. This estimation would

however, depend upon the depth of peat sampled. Testate amoebae are an 'informal

polyphyletic group' (Medioli et al., 1990), one of the group of amoeboid protozoa and

fall within the classes Lobosea and Filosea in the Superclass Rhizopoda, within the

Subphyllum Sarcodina (Committee on Systematics and Evolution of the Society of

Protozoologists, CSESP, 1980) (Table 2.3). Protozoa are now regarded as a

subkingdom within the kingdom Protista, although previous classification schemes
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Phylum	 Sarcomastigophora

Subphylum	 Sarcodina

Superclass	 Rhizopoda

Class	 Lobosea

Subclass	 Testacealobosia

Order	 Arcellinida

	

Family	 e.g. Arcellidae, Difflugidae

Class	 Filosea

Order	 Gromiida

	

Family	 e.g. Euglyphidae

Honiberg & Balamuth, 1963

Schmarda, 1871

von Siebold, 1845

Carpenter, 1861

de Saedeleer, 1934

Kent, 1880

Leidy, 1879

Clapare-de & Lachmann, 1859

considered Protozoa to be a subkingdom within kingdom Animalia. This classification

updates that of Loeblich and Tappan (1964).

Table 2.3	 Systematics of the higher taxonomy of testate amoebae
(following CSESP, 1980)

2.2.2 The history of fossil testate amoebae studies

Tolonen (1986) outlines the history of testate amoebae analysis as indicators of

palaeohydrological change in peatlands and lakes. The first studies of fossil testate

amoebae were of those recovered from lacustrine sediments in Finland and Sweden

(Lindberg, 1899; Lagerheim, 1902, cited in Tolonen, 1986 and Warner, 1990). There is

also quite a large body of German lake work, for example SchOnbom (1962; 1965;

1967).

In Scandinavian peat stratigraphical studies, testate amoebae analysis has been used

since 1927 to attempt to show the moisture changes of bogs (Harnisch, 1927;

Steinecke, 1927). Steinecke (1927) claimed that tests composed of agglutinated

particles or siliceous plates disintegrate soon after death, because he found diatom

frustules at the surface and not at depth and from this inferred that they, along with the

tests gradually dissolve, with the exception of Amphitrema wrightianum which was

thought to have some mechanism for protecting itself. Harnisch (1927) proposed four

communities of tests that appeared to be related to the wetness of the site and hence

would be useful in interpreting past conditions. Granlund (1932) attempted to relate test

abundance to the humification level of the peat, inferring that the same factors destroyed
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tests as decomposed the peat. This has however, been shown to be incorrect, as in this

study, highly humified peat often yields a good concentration of tests. Tolonen (1966)

conducted a detailed study of bog development on an old raised bog in Southern

Finland, using stratigraphical description and testate amoebae analysis. Aaby and

Tauber (1975) and Aaby (1976) studied the testate amoebae recovered from Draved

Mose, Denmark. They attempted to relate the degree of peat humification to the testate

amoebae assemblage, but had rather limited results, possibly due to the method of

sample preparation (see Chapter 4, Section 4.1.2). More recently, Barber (1981)

counted testate amoebae in conjunction with pollen during his study of the stratigraphy

of Bolton Fell Moss. " The results were disappointing and were not consistent in

highlighting wet or dry phases in the bog's growth" (Barber, 1981:72). However, when

a preparation procedure is adopted that is designed specifically for testate amoebae

analysis (Section 4.1.2), the diversity and concentration of taxa recovered is much

greater and makes it easier to relate the assemblage qualitiatively to wet and thy phases

in the palaeohydrological record.

2.2.3 The range of testate amoebae research

Given the extent of research into various aspects of testate amoebae analysis from a

range of environments, there is a surprising paucity of information on subfossil testates

from peatlands, especially from Britain. Work undertaken in the past three decades

from a variety of depositional environments and from both modern and fossil studies, is

summarised in Table 2.4.

Most other subfossil research from peat bogs appears to be undertaken post hoc to other

aspects of palaeoecological research, in that tests are found on pollen slides and

considered interesting and are counted, even though it was not the aim of the project to

do so (e.g. Barber, 1981; Dwyer and Mitchell, 1997). This approach can lead to

problems, as will be discussed in the preparation procedure (Section 4.1.2).
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STATEAIM OF STUDY AUTHORS
Faunal distribution, south-west Ireland 	 modern
Biogeography, Arctic	 modern
Arctic moss and lichens	 modern
Aquatic ecology, Canadian High Arctic 	 modern
Aquatic subantarctic faunas	 modern
monitoring peat bog regeneration, Switzerland 	 modern
Modelling hydrological relationships New Zealand	 modern
Micro-environmental influences on faunas, Ontario, 	 modern
Canada
Developing a hydrological transfer function, peatlands, 	 modern
Canada
Testate amoebae and foraminifera from estuarine samples, modern
South Wales
Biogeography, eastern North American coast	 modern
Interstitial fauna from supralittoral zone, Aegean Sea, 	 modern
Greece
Atlantic sublittoral psammal (5-45m), Roscoff, France	 modern
Interstitial fauna from supralittoral zone, Roscoff, France 	 modern
Seasonal and spatial distribution in Sphagnum	 modern
Clonal cultures from soil samples, South Orkney Islands, 	 modern
Antarctic
Distribution of fauna in Sphagnum moss	 modern
Systematics of fauna from Sphagnum moss	 modern
Marine fauna from littoral sands, east coast of England	 modern
Morphology and ecology of soil inhabiting faunas	 modern
Fauna in Drepanocladus moss, Antarctic 	 modern
Fauna in Drepanocladus moss, Antarctic 	 modern
Biogeography, Brabant Island, Antarctic 	 modern
Distribution and ecology of fauna in continental Antarctica modern
Biogeography southern temperate and Antarctic zones 	 modern
Raised bog regeneration, Eastern North America
Peat mire fauna autecology, Southern Finland 	 modern
Ecology and multivariate analysis, Southern Finland 	 modern
Abundance and diversity of faunas 	 modern
Biogeography of Nebela in southern temperate and 	 modern
Antarctic zones
Developing a hydrological transfer function for British 	 modern
peatlands
Subboreal peatlands, Belgium

	
fossil

Hydrological reconstructions, peatlands, Svalbard
	

fossil
Testates as bioindicators Britain

	
fossil

Lacustrine sediments
	

fossil
Lacustrine palaeoclimatic reconstruction

	
fossil

Palaeolimnological studies
	

fossil
Overview of taxonomy, palaeoecology

	
fossil

Lacustrine studies, changing trophic status, Poland
	

fossil
Lacustrine studies, trophic status, Germany

	
fossil

Hydrological history of an ombrotrophic bog, Canada
	

fossil
Peatland palaeohydrological changes, Ontario, Canada

	
fossil

Lacustrine sediments, Eastern Canada 	 modern & fossil
Lacustrine and palaeolimnological studies, Canada 	 modern & fossil
Palaeolimnological research, Canada and North America 	 modern & fossil
Over view of testate amoebae anal sis 	 modern & fossil

Beyens & Chardez, 1984
Beyens & Chardez, 1995
Beyens et al., 1986
Beyens eta!., 1991
Beyens eta!., 1995
Buttler eta!., 1996
Charman, 1997

Charman & Warner, 1992

Charman & Warner, 1997
Charman eta!., 1998, in
press
Collins eta!., 1990

Golemansky, 1982
Golemansky, 1991
Golemansky, 1992
Heal, 1964

Heal, 1965
Meisterfeld, 1977
Meisterfeld, 1979
Ogden & CoOteaux, 1989
SchOnborn et al., 1987
Smith, 1974
Smith, 1986
Smith, 1987
Smith, 1992
Smith & Wilkinson, 1986
Tolonen eta!, 1985
Tolonen eta!.. 1992
Tolonen et al., 1994
Warner, 1987

Wilkinson, 1994
Woodland 1996
Woodland et al., 1998
Beyens, 1985
Beyens & Chardez, 1987
Channan & Hendon unpub
Ellison & Ogden, 1987
McCarthy et al., 1995
Medioli & Scott, 1988
Medioli et al, 1990
SchOnborn, 1984
Schtinborn, 1990a
Warner, 1991
Warner & Charman, 1994
Medioli & Scott, 1983
Patterson et al., 1985
Scott & Medioli, 1983
Tolonen, 1986

Table 2.4
	

A range ecological and palaeoecological testate amoebae studies
under taken in the past three decades
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2.2.4 Taxonomy

Following the argument of Finlay et al. (1996) regarding the biodiversity of ciliates

(Protozoa), the biological species concept is neither appropriate or practical for testate

amoebae. The higher taxonomic levels of testate amoebae (Table 2.3) are defined by the

morphology of the pseudopodia and the lower taxonomic levels can be recognised by

their test characteristics (Charman, 1998 in press). On the assumption that sexual

reproduction is rare (SchOnborn and Peschke, 1990), if a biological species concept is

adopted, then the logical conclusion is one of two extremes. Either all individuals are

separate species, or all are one species with a very wide morphological variability

(Medioli and Scott, 1983). The `morphospecies' concept is therefore adopted here as

has been done for ciliates (Finlay et al. 1996). Morphospecies is considered by Finlay et

al. (1996) to be a pragmatic definition of 'species', a collection of forms that all fit into

a defined range of morphological variation in forms that so far as is possible to tell, all

occupy the same ecological niche.

Medioli and Scott (1983, 1985, 1988) and Medioli et al. (1987) have considered the

state of the taxonomy of testate amoebae from palaeolimnological studies in detail.

Although many of the taxa recovered are not the same as those found in British

peatlands, the main tenets of their argument remain valid. The main taxonomic

difficulties in subfossil studies arise from the absence of some basic diagnostic features,

such as the pseudopodia and nuclei of specimens. These are soft parts and are lost

during the fossilisation process. Because these fauna are considered to be uniparental

(see Section 2.2.5 reproduction), they defy all concepts applicable to other organisms

with regular sexuality, since there is no way of objectively demonstrating the validity of

specific groupings (Medioli and Scott, 1988). Testate amoebae can only be considered

in terms of morphospecies, i.e., organisms which have a similar shape, as they can not

be considered to be species in the true sense, because most are formed from uniparental

reproduction. Other problems arise as a result of over-splitting (e.g. Deflandre, 1953) or

over-grouping of taxa.

The taxonomy of this group of organisms has long lacked uniform criteria, particularly

for the establishment of species and lower ranking taxa (Medioli and Scott, 1985).

Article 62 of the International Code of Zoological Nomenclature (IZCN) has only been

in place since 1901, post-dating most of the original publications. In part, the problems

arise because the original descriptions and figures are old and not always easily
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accessible, resulting in modern identifications being made without comparison to the

original texts.

Also, some new taxa were designated on the basis of a simple description without any

illustrations, which were published years later, often without further comment, for

example, the designation of Arcella globulus Ehrenburg, 1848, 1856, (Medioli and

Scott, 1985).

Testate amoebae from the Canadian palaeolimnological work have presented many

cases of morphological intergradation between main phenetic clusters, with rare

morphotypes being designated as distinct taxa. Where a continuum develops there is no

definite point to split the group and thus the division may take place on arbitrary

grounds (Medioli and Scott, 1983; Medioli et al., 1987). Figure 2.5 illustrates this with

an example from Deflandre (1928), showing the continuum of change for various

species of Arcella. Bobrov et al. (1995) call this 'shell polymorphism'. In a study of

three taxonomically remote taxa from isolated populations, Bobrov et al. (1995) found

that although testate amoebae are cosmopolitan in distributiOn, morphological

differences may exist in some taxa, in geographically isolated parts of their geographic

range.

Because the sites selected for this study are from a restriced geographical range,

problems relating to morphological variations of tests are unlikely to occur. Schtinbom

(1992a) related shell polymorphism of clonal cultures of Trinema and Euglypha to

different ecological factors. He commented that the size of tests may be ecologically

determined.
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Figure 2.5	 Figures of Arcella redrawn from Defandre (1928) in Medioli and Scott
(1983)

1- A. rotundata var. aplanata; 2- A. rotundata; 3 - A. rotundadta var. alta; 4 - A. atava; 5 - A.
hemispherica; 6 - A. hemispherica var. intermedia;7- A.gibbosa var. levis; 8 - A. vulgaris; 9 - A.
discoides var. pseudovulgaris; 10 - A. discoides; 11 - A. discoides var. scutelliformis

2.2.5 Biology and ecology

It is important to understand something of the biology and ecology of modern testate

amoebae so that the palaeoecological study of fossil samples can be interpreted

accurately.

The test

There are two basic mechanisms for test building, (e.g. Ogden and Hedley, 1980),

1) Autogenous or idiosomic test construction, where the organism secretes pre-formed

siliceous plates or a smooth proteinaceous secretion. Calcareous tests are sometimes

secreted too (e.g., Cryptodifflugia oviformis, Ogden and Hedly, 1980), although this

is rarer. Tests with idiosomic shell structure include Assulina muscorum, Euglypha

rotunda and Quadrulella symmetrica.

2) Xenogenous or agglutinated tests incorporate particles from the surrounding substrate

to construct the tests. Detritus may include mineral grains, diatom frustules, fungal

hyphae and even other testate amoebae. The nature of the agglutinated particles were

thought for a long time to be a valid diagnostic characteristic of some species, for

example, Difflugia bacillifera composed of diatom frustules and D. oblonga from

mineral particles. Heal (1964) thought that the absence of suitable detritus for test

construction would prohibit certain taxa from inhabiting hydrologically suitable sites.

However, Medioli and Scott (1983) and Medioli et al. (1987) found from laboratory

39



clonal cultures of the Difflugia tricuspis group, that when this supposedly

xenogenous taxon were deprived of particles, they produced daughter cells that were

autogenous. If this daughter test was supplied with particles, it would in turn

produce a xenogenous daughter. In a similar set of laboratory experiments, Medioli

eta!. (1990) found that carborundum powder could be used by the parent to make the

shells in the absence of more usual material. From these experiments, it may be

assumed that wild assemblages are no different and will also use the available

material, be it other testates, Sphagnum leaves and in modern populations, wood

shavings and glass fragments for test construction, if the site is hydrologically

suitable. Therefore, taxonomy based upon the nature of agglutinated particles is

dubious, as it appears that the testates will utilise whatever is available. However,

very few studies of this nature have been undertaken and the test construction does

indicate something about the environment in which the testate amoebae lived

(Section 2.2.6), as the material available for test construction may be limited by

environmental factors.

Cytoplasm

The cytoplasm is part of the protoplasm that is not located in the nucleus. It is

composed of the ectoplasm and the endoplasm, with the test enclosing the cytoplasm.

The plasma membrane separates areas of high and low osmotic pressure and water

molecules move through this semi-permeable membrane in order to equalise pressure.

In dry conditions, the organism loses water to its surroundings and in very wet

conditions the organism may drown, as it is unable to lose water. To overcome the

possibility of drowning, testate amoebae have contractuole vacuoles that swell up with

water (diastole) before collapsing to release the water (systole), (Sleigh, 1989).

Pseudopodia

Pseudopodia are flowing prolongations of cytoplasm extending through the

pseudostome which are used for locomotion and feeding. The structure of the

pseudopodia is often a main diagnostic feature for organising the macro-taxonomy of

testaceans (Medioli et al., 1990). Taxonomy based on the appearance of the

pseudopodia is not useful for subfossil studies, where soft parts have been lost. For

testate amoebae the pseudopodia are either filose, thin, pointed and often branching, or

lobose, finger-like, with rounded distal ends. The nature of the pseudopodia forms the
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distinction between the Filosea and Lobosea classes of testate amoebae, see Section

2.2.1. Plate 2.1 shows a Nebela sp. with pseudopodia extended.

Reproduction

Testate amoebae mostly reproduce by asexual binary fission, although sexual

reproduction has also been reported. SchOnborn and Peschke (1990) observed what

appeared to be sexual reproduction in clonal cultures of Assulina. In the ninth month of

a 15 month study, one occurrence of copulation was observed, the two parental

organisms uniting with their pseudostomes and forming a third test, into which the

cytoplasm of both parents flowed. The nuclei fused and the cytoplasm secreted a cyst

wall. SchOnborn and Peschke (1990) point out that this occurs only occasionally.

Mignot and Raikov (1992) observed meiosis from electron microscopy studies of

Arcella vulgaris. They conclude that testate amoebae can no longer be considered to be

entirely asexual. Reproduction predominantly by uniparental means has implications

for species definition and taxonomy (Section 2.2.4). From laboratory and field

observations, Heal (1964) suggested that there are less than ten generations of testate

amoebae per annum, depending on the species. Schiinbom (1992c) recorded between 9-

27 generations per annum in mosses, but was not able to conclude whether this was

representative or not. Small species such as Assulina muscorum have a higher turnover

than larger tests such as Nebela collaris. Tests are therefore unable to respond to

ephemeral hydrological conditions, but instead leave a record of general annual trends.

This does not pose a problem for palaeoecological work, since the practicalities of

subsampling a peat core would prohibit a finer resolution study. The relationships

between reproduction, active tests, encystment, dying and the decomposition of tests is

shown in Figure 2.6. In mosses, testate amoebae appear to have a low turnover of

biomass, but a high production of individuals (Schiinbom, 1992b,c).

Cysts

Encystment is a survival mechanism for inhospitable environments, whereby the

organism seals the aperture with a plug and the volume of the cytoplasm contracts by

dehydration. The cyst is capable of withstanding desiccation, freezing and the lack of

food. According to Medioli et al. (1990) this makes the faunas useful as

palaeoecological tools. However, the fact that the organisms can survive unfavourable

conditions means that they are not always as sensitive to environmental change as they

may be - the necrocoenoses community may have survived a range of conditions.
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Figure 2.6	 Population processes affecting test turnover
(Source: Lousier and Parkinson, 1981) a- encystment, b- reproduction, c- encystment, d- dying
of active testacea, e- dying of encysted testacea, f- predation on active testacea, g- predation on
encysted tests, h- decomposition of empty tests

It is therefore theoretically possible for a fossil assemblage to be composed of species

from two assemblages at the same stratigraphic level, i.e. those that were ideally suited

to the prevailing environmental conditions and those that had encysted due to unsuitable

conditions for their requirements. In practice however, once the peat has undergone

humification and compaction, any problems of this nature are likely to be negligible due

to the vertical zonation of tests in the acrotelm (Meisterfeld, 1977). .

Mortality

In order to assess whether the fossil assemblage represents the life assemblage, the

possibilities of predation on active and encysted forms and the decomposition of empty

tests should be considered. Lousier and Parkinson (1981) found that an aerobic forest

soil environment resulted in greater loss of tests through decomposition than is probable

in an anaerobic peatland, although very little work has been done to quantify this. The

degree of decomposition of the peat may have a direct influence on the rhizopod

assemblage, as greater decomposition will result in increased amounts of organic

detritus which is thought to affect assemblages, especially for test construction

(Tolonen, 1986). However, since humiflcation takes place in the transition between the

acrotelm and catotelm, below the limit which most species can inhabit, it is unlikely in

most situations.
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Plate 2.1	 Photomicrograph of a live Nebela with pseudopodia extended.
Test length 145gm
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Dispersal

Tests can be transported on the feet and in the faeces of birds. During dry periods when

tests have encysted, it is also possible that they may be transported by the wind (Medioli

et al., 1990). This may be a taphonomic problem that is encountered when the water

table of bogs is extremely low and the wind is strong enough to extricate the tests from

between the hyaline cells of the Sphagnum. However, it is unlikely that this would

cause major redistributions of the fauna on British peatlands where it is rare for bogs to

be dry enough for this to occur. Also, it is unlikely that any transported tests would

account for a significant fraction of the total tests in a single sample.

2.2.6 Environmental factors affecting testate amoebae

Test morphology, the length and breadth of the test and pseudostome diameter, is

affected by temperature, food supply and trophic level (Wanner and Meisterfeld, 1994).

Morphological features controlled by environmental conditions may be valid criteria for

separation, since taxa such as Difflugia oblonga and D. bacillifera, composed of mineral

grains and diatom frustules respectively, look similar but for their , composition. This

may be due solely to environmental factors controlling the availability of test building

materials.

Since the definition of a species is based only on morphological terms, any feature

which can clearly and consistently be identified is valid to separate taxa. Medioli et al.

(1987) highlight eight criteria that are traditionally used for the discrimination of testate

amoebae. Each of these is discussed as to why these criteria are questionable or

unacceptable taxonomic characteristics.

'The collar - Schtinborn (1962) found that the collars on a test may appear and

disappear cyclically. It may be that the presence or absence of collars is

environmentally controlled, that for example, the parent test with collars produces a

daughter test without collars due to a particular environmental factor. Thus,

distinguishing taxa on the basis of collars is valid ecologically.

'Shape - most species are described as being either ovoid, spherical or pyriform, with a

range of shapes for each species. The morphotype continuum, as discussed above,

should also be considered here. Ogden (1983) observed that some Difflugia spp. could
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be difficult to identify due to their irregular shape and the basic outline may be altered

by natural variations or by extraneous particles.

•Nature of test - Medioli and Scott (1983) and Medioli et al. (1987) demonstrated that

clonal cultures can change from xenogenous to autogenous depending on the

circumstances. There is no reason to believe that this may not also be the case for wild

populations in peatlands.

•Number of apertural lobes - the number of lobes a species has may vary within a

population.

•Size - there may be a wide overlap in size between species, leading to an arbitrary

dividing point. Heal (1963) found this with the Nebela tincta-collaris-bohemica

complex. Assulina spp. are often not separated (e.g. Aaby, 1976), as A. muscorum

ranges from 28-58gm and A. seminulum ranges from 60-90gm (size according to

Corbet, 1973). If all the Assulina spp. tests in a particular assemblage are of a size close

to that of the divide, then it is difficult to separate them. Similarly, there may also be

difficulties in separating Amphitrema stenostoma from A. wrightianum, as these taxa are

of a similar size range (45-97gm and 50-95pm respectively, size ranges from Charman,

Hendon and Woodland, in prep.), but are differentiated by the pseudostome that each

taxon has at both ends of the tests. The pseudostomes of A. wrightianum have distinct

collars, but these may sometimes be obscured by mineral particles, in which case it is

difficult to distinguish from the collarless A. stenostoma (Corbet, 1973). Bobrov et al.

(1995:126) noted that "caution should be exercised in establishing taxa which are based

on statistically significant differences in size". The dimensions of a test, its length and

aperture diameter are not usually sufficient to distinguish species. Thus, it may be valid

for a proportion of the genus, but not for all.

•Colour - colour may depend upon the nature of the test composition, especially the

agglutinate particles incorporated, which is a function of environmental conditions.

Some taxa have colour as one of the main diagnostic characteristics, e.g., Heleopera

rosea (red) and H. amethysta (purple).

•Presence/absence of zoochlorellae - not applicable in subfossil studies as the

zoochlorellae are lost in the fossilisation process.

•Number of nuclei - not applicable in subfossil studies as the nuclei are lost during the

fossilisation process.
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Despite these limitations, with careful examination testate amoebae can nevertheless be

accurately identified. Consistent criteria for identification may result in taxa being

grouped according to 'synonyms', 'species included' or 'aggregate species', the term

preferred by Finlay (1997) for a practical and workable identification system. Charman,

Hendon and Woodland are currently preparing a monograph specifically concerned with

the identification of the species of testate amoebae commonly found in British

peatlands. This aims to clarify the taxonomy, especially in a subfossil context, where

tests may be more degraded than modern specimens, rather than add to the confusion by

adding another complicated taxonomic paper to the literature. A combination of

photomicrographs and SEM images should provide better illustrative material than has

been available for accurate identifications to date. The taxonomic classification adopted

in this study follows that of Charman, Hendon and Woodland (in prep.).

Moisture

Moisture is considered by many workers as the most important limiting factor to the

distribution of testate amoebae (Tolonen, 1966, 1986; Tolonen et al., 1985; Warner,

1987; Charman and Warner, 1992, 1997; Warner and Channan, 1994; Woodland,

1996). The moisture conditions prevailing at the time of peat accumulation should be

reflected in the species of testate amoebae recovered from the peat and thus they may be

useful palaeohydrological indicators. The distinction between the moisture content of

peat and the depth to water table in peat is an important one, although the two are likely

to be correlated in practice. The water table is the top of the saturated zone in a soil or

peat in which fluid pressure in the voids is equal to atmospheric pressure. Moisture

reconstructions are a measure of the percentage of water contained within the sample of

peat. The moisture requirements of testate amoebae species may be associated with the

diminishing content of algae suitable as food within, for example, the pool to hummock

succession, as well as the thickness of the water film. In ombrotrophic sites,

fluctuations in moisture can be extreme (Lindholm and Markkula, 1984). Hummock

taxa must be more tolerant of such changes than hollow species, which are not subject

to such drastic changes. Heal (1961) derived a five-point scale for recording water

content, from submerged to dry. In practice this would lead to a certain amount of

subjectivity as it is open to interpretation as to what constitutes 'firm' or 'strong'

pressure required to squeeze the moss. Moisture may exhibit both a horizontal gradient

from pool to hummock and a vertical distribution within the moss (Meisterfeld, 1977;
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Beyens, 1984). The horizontal distribution from a pool to a hummock top is considered

to be a hydrophilous gradient to which Jung (1936) attributed semi-quantitative

moisture classes from I - VIII, to estimate the water content of the moss layers. The

corresponding rhizopod groups of de Graaf (1956) from hydrophilous to xerophilous

and the average water content of the substrate according to Meisterfeld (1977), classes I-

III, IV-VI, VII and VIII (as percentage wet weight), are also shown in Table 2.5.

Rhizopod Group
de Graaf, 1956

Class
Jung, 1936

Average Water Content
Meisterfeld, 1977

Hygrophilous

a-Hydrophilous

D-Hydrophilous

Xerophilous

I
II

III

IV

V

VI

VU
VIII

open water or submerged vegetation average water content >95%
floating vegetation, partly submerged partly at the surface; average
water content >95%
emerged vegetation, very wet, water drops
without pressure >95% average water content
wet, water drops with weak pressure, - 95% average water content

half - wet, water drops out with moderate pressure, 95-85% water
content
moist, water drops out with strong pressure average water content
80%
half - dry, a few drops with strong pressure <80% water content
dry, no water drops at strong pressure, <50% average water
content.	 ,

Table 2.5	 Moisture classes of testate amoebae
(after Jung, 1936; de Graaf, 1956; and Meisterfeld, 1977, cited in Tolonen, 1986;
Heathwaite et al., 1993)

Corbet (1973) defined xerophiles, hygrophiles and hydrophiles as follows:

Xerophiles - testate amoebae living in relatively dry habitats and able to withstand

desiccation. They are usually small species that can survive in the thin film of water in

drying moss. Xerophilous species (Trigonopyxis arcula, Bullinularia indica,

Hyalosphenia subflava) are often considered to be tyrophoxene, in that they inhabit the

dry margins, drained areas and disturbed regions of bogs (Tolonen, 1986; Warner 1987).

The present subfossil study and Woodland (1996) have shown this to be incorrect, as

they also inhabit the dry zones of virgin bogs,

Hygrophiles - testate amoebae living in moist plants, that are subject to desiccation less

frequently than xerophiles and normally inhabit an ample film of water in which the

tests can be spiky and can be carried upright without disturbing the meniscus,

Hydrophiles - inhabiting submerged mosses. These testate amoebae species are not

limited to the water film in Sphagnum. The largest species are usually found in very wet

habitats.

47



The classification of testate amoebae as xerophilous, hygrophilous, hydrophilous, or wet

and dry indicator taxa may be misleading. By definition, all testate amoebae require

water to survive and in inhospitable conditions they encyst. It is assumed that as with

other organisms, testate amoebae have a particular optimal value of a particular

environmental variable (with testate amoebae the environmental variable is moisture)

and cannot survive where the balance of moisture is too high or too low (sensu ter

Braak, 1987). All taxa tend to occur over characteristic, but limited ranges and are most

abundant at or near their environmental optimum (Birks, 1995). The Gaussian curve

(Gauch and Whittaker, 1981) is a simple model for unimodal relationships in ecology.

Perhaps a more realistic model is the over-lapping Gaussian curves, where the curves

are not perfectly Gaussian, but are skewed, bimodal etc. (Kent and Coker, 1992). The

statistical modelling applied to the testate amoebae data assumes this Gaussian

unimodal relationship and the relationship of taxa to an environmental gradient. Whilst

it may be considered to be a question of semantics, it may be more appropriate to

discuss testate amoebae in terms of a relative wetness scale. All peatland sites are wet

by normal standards, but there are degrees of wetness within this. However, the body of

literature divides them into 'wet' and 'dry' and it may add to the confusion by

developing a new relative wetness scale for test comparisons and descriptions.

Figure 2.7 shows the horizontal distribution of testate amoebae within a small forested

bog. The distribution of testate amoebae within a moss is a function of the availability

of food, detritus for test building and moisture, light and oxygen. The few centimetres

of difference in depth to water table that separate a bog pool and hummock may separate

micro-habitats that differ markedly in the degree of wetness of the Sphagnum and may

contain different rhizopod associations. The micro-topographic features of the bog

surface can therefore be examined by the use of testate amoebae analysis at raised bog

sites. If the water table goes up or down on a mire, it will also go up or down in all

microhabitats. Although a peat core taken from a hummock may show different

absolute ranges (i.e. drier) than a core taken from a hollow, the direction and magnitude

of change should be similar. Some species are restricted to either dry or wet conditions

while other taxa exhibit a greater tolerance range. The stenotypic taxa are more useful

in palaeoecological studies than the eurytypic taxa, as they are more useful indicator

species for particular conditions.
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Figure 2.7	 Horizontal distribution of testate amoebae

The moisture gradient corresponds to moisture classes I-vm (Table 2.5). The species on the
extreme left is Trigonopyxis arcula and on the far right, Nebela carinata (after SchOnborn,
1962).

Warner (1987) found that the concentration of tests was greatest at dry sites. Species

diversity was found to increase in proportion to moisture and community eveness was

found to be greatest in moderately dry sites.

Table 2.6 shows the hydrological parameters of species of testate amoebae derived from

the literature. The list is constrained by the documentation of the previous work, since

some taxa are defined on the basis of different criteria, for example, the qualitative

classification of wet, moderately wet and dry and the more quantitative classification on

the basis of the percentage water content of moss samples. Because this information is

derived from studies from various parts of the northern hemisphere, it is important to

have a modem analogue transfer function derived specifically from Britain to overcome

any problems that may result from other regions having slightly different ecological

tolerances, affinities or assemblages. For example, the Sphagnum peatlands of southern

Ontario typically contain faunas adapted to minerotrophic mires which have seasonal

and periodic drying and moisture fluctuations. The climate is humid and continental

(Warner, 1987). This differs greatly from mires in this study which are oligotrophic,

ombrotrophic and oceanic and illustrates the need for a transfer function created to

reflect the conditions found specifically in Britain. The data in this table will be used in

conjunction with the transfer function created by Woodland (1996).
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Relationship with vegetation

The testate amoebae occupy the hyaline cells between the Sphagnum leaves.

"The relationship between the bryophyte species and testate assemblage
does not necessarily imply a direct ecological link between these two
types of organisms, but it is explained by the fact that moisture conditions
primarily define the niches of different bryophytes, especially Sphagnum"
(Charman and Warner, 1992:2479).

However, very little work has been done to assess the relationships between testate

amoebae species and the host species of Sphagna and it was unfortunately outside the

scope of this project.

The feedback mechanisms of Sphagnum mosses have important implications for the

assemblages of testate amoebae, since the CEC of the moss acidifies the surrounding

water, thus affecting the pH (Channan and Warner, 1992), which has an important

ecological effect. Sphagnum moss as a peat forming material is discussed in Section

2.1.2.

Woodland (1996) discussed the relationship between hydrology, vegetation and testate

amoebae. She considered whether vegetation independently influences the distribution

of testate amoebae, or whether the inferred importance of vegetation is a result of a co-

dependence on hydrology and vegetation.

Figure 2.8A shows that where hydrology controls the vegetation assemblage which

influences testate amoebae, a direct link between testate amoebae and hydrology cannot

be made. Figure 2.8B shows that where vegetation and testate amoebae are

independently influenced by hydrology, a direct link between testate amoebae and

hydrology can exist. Woodland (1996) concluded that hydrology simultaneously, but

independently, influences testate amoebae and the host vegetation and that vegetation

probably exerts a negligible influence on testate amoebae distributions. It is likely

however that Sphagnum does exert some influence by its ability to retain moisture and

raise the water table level above the ground water table.
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Taxa Hydrological parameters Author
Amphitrema flavum

Amphitrema stenostoma

Amphitrema wrightianum

wet conditions
87.9-95.1% water content
>95% water content
bog pools - wet
water table optimum
water table optimum 10.27cm
bog pools
water table optimum 6.5cm
bog pools - wet
bog pools
95 % water content
90% water content, hydric taxa
water table optimum 4.07cm

Tolonen 1966
Tolonen eta!. 1985
Tolonen et al. 1992
Warner 1987
Warner & Charman, 1994
Channan & Warner, 1997
Heal 1961
Charman & Warner, 1997
Corbet 1973
Heal 1961
Tolonen et al. 1992
Warner 1989
Chamian & Warner, 1997

Arcella art rocrea

Arcella catinus

Arcella discoldes type

Arcella gibbosa
Amelia rotunda var aplanata

88.3-93.2% water content
hygrophilous taxa
85-90% water content
uncertain status
dry hummocks
90-95% water content
water table optimum 9.06
water table optimum 9.81cm
floating, submerged or very wet Sphagnum
>95% water content
very wet
water table optimum 8.98cm
water table optimum 0.91 cm
submerged Sphagnum
hydrophilous taxa

Tolonen eta!. 1985
Tolonen 1986
Tolonen eta!. 1992
de Graaf 1956
Heal 1961
Tolonen et aL 1992
Warner & Charnian 1994
aiamian & Warner 1997
Tolonen 1986
Tolonen et aL 1992
Warner 1987
Warner & Channan 1994
Charman 8c Warner 1997
de Graaf 1956
de Graaf 1956

Assulina muscorum

Assulina seminulum

dry hummocks - xerophile
xerophilous tendency
85-90% moisture content
hydro-xerophilous taxa
Cosmopolitan
water table optimum 42.53cm
water table optimum 17.44 cm
bog hummocks
70.8-95.1% water content
water table optimum 39.29cm
water table optimum 13.95cm

Heal 1961
de Graaf 1956
Tolonen et aL 1992
Warner 1987
Warner 1990
Warner & Charrnan 1994
Charman & Warner 1997
Corbdt 1973
Tolonen et aL 1985
Warner & Charm= 1994
Carman & Warner 1997

Bullinularia indica dry hummocks, xerophile
bog hummocks
relatively dry conditions
70.8-88.3% water content
xerophilous auca, optimum in dry hummock Sphagnum
xerophilous taxa, <85% water content

Heal 1961
Heal 1964
Tolonen 1966
Tolonen et aL 1985
Tolonen 1986
Tolonen et aL 1992

Centropyxis aculeata type

Centropyxis aerophila type

Centropyxis arcelloldes type

Centromis cassis

aquatic habitats
aquatic habitats
hydrophilous taxa
very wet conditions
water table optimum 24.35cm
water table optimum 6.18cm
water table optimum 2033cm
water table optimum 5.16cm
moderately dry sites, 78-89% water content
ponds, shallow peatland pools and very wet Sphagnum
soils
hydmphilous, submerged, wet and moist mosses

de Graaf 1956
Schtinborn 1962
Tolonen 1986
Warner 1987
Warner & Charman 1994
Channan & Warner 1997
Warner & Charman 1994
Charman & Warner 1997
Warner 1990

Warner & Charman 1994
de Graaf 1956

Corythion dub! urn	 type dry mosses
moderately dry conditions
dry mosses
water table optimum 47.5Icm
water table optimum 23.51cm

de Graaf 1956
Meisterfeld 1977
Schtinborn 1962
Warner & Channan 1994
Channan & Warner 1997

Cyclopyxis arcelloides type moderately dry, 78-89% water content
<80% water content
water table optimum 32.01cm
water table optimum 4.69cm

Warner 1987
Warner 1989
Warner & Channan 1994
Charman & Warner 1997

Cryptodifflugia oviformis

Cryptodifflugia sacculus

saturated - submerged to wet Sphagnum
top of dry bog hummocks
damp and wet mosses, standing water, aquatic plants
i.e., cosmopolitan
water table optimum 1.42cm

Heal 1964
Tolonen 1967

Hedley, Ogden & Mordan 1977
Charman & Warner 1997

Difflugia acuminata

Difflugia angulostoma

bog pools
hydrophilous
aquatic

Cash & Hopkinson 1909
de Graaf 1956
Cash & Hopkinson 1909
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Difflugia bacillariarum

Difflugia bactllifera

Difflugla brevicolla
Deb& globulosa
Difflugia leidyt
Deli& oblonga

Difflugia oviformiis
Difflugia rubescens

bog pools
bog pools
bog pools
hydrophilous
bog pools
very wet
water table optimum 2.I9cm
bog pools
aquatic habitats
>95 % water content
a hydrophilous taxa
water table optimum 11.00cm
water table optimum 5.25 cm
water table optimum 7.47cm
hydrophilous taxa

Corbet 1973
Heal 1961
Corbet 1973
de Graaf 1956
Heal 1961
Warner 1987
Charnian & Warner 1997
Heal 1961
de Graaf 1956
Tolonen eta!. 1992
de Graaf 1956
Warner & °unman 1994
Charman & Warner 1997
Charman & Warner 1997
de Graaf 1956

Euglypha rotunda type

Euglypha strtgosa
Euglypha tuberculata

damp & wet mosses, standing water
water table optimum 38.91cm
water table optimum18.41cm
bog hummocks - drier
water table optimum 36.55cm
water table optimum 14.43cm

Hadley & Ogden 1973
Warner & Charman 1994
Charman 8t Warner 1997
Heal 1961
Warner & Charman 1994
Charman & Warner 1997

Heleopera pet ricola

Heleopera sphagnI

Heleopera sylvatica

70.8-95.1% water content
95% water content
ecology variable and disputed
water table optimum 31.08cm
water table optimum 7.27cm
I3-hygrophilous taxa, moderately wet
70.8-95.1% water content
90-95% water content
moderately wet, 90-95% water content
drier mosses
water table optimum 23.37cm
water table optimum 23.22cm

Tolonen a al. 1985
Tolonen et al. 1992
Warner 1987
Warner & Charman 1994
Charnian & Warner 1997
de Graaf 1956
Tolonen et al. 1985
Tolonea et al. 1992
Warner 1987/1990
Tolonen 1986
Warner & Charman 1994
Charman & Warner 1997

Hyalosphenia ekgans

Hyalosphenia malts

Hyalosphenla papilio

bog hummocks

very wet-wet Sphagnum, a-hydrophilous
73.0-95.1% water content
95% water content
moderately wet, 90-95% water content
water table optimum 26.26cm
water table optimum 21.59cm

water table optimum 42.94cm
water table optimum 19.96 cm
very wet Sphagnum
wet Sphagnum in bog hummocks
88.3-95.1% water content
95% water content
moderately wet, 90-95% water content
>90% water content
moderately wet 90-95% water content
water table optimum 9.87cm
water table optimum 17.74cm

Corbet 1973
de Graaf 1956

Tolonen et a/. 1985
Tolonen eta/. 1992
Warner 1987
Warner & Charman 1994
aiannan & Warner 1997
Warner & Channan 1994
Charrnan & Warner 1997
de Graaf 1956
Heal 1961
Tolonen et a/. 1985
Tolman et a/. 1992
Warner 1987
Warner 1989
Warner 1990
Warner & Charman 1994
Charman & Warner 1997

Hyalosphenia subilava 71-93.2% water content moderately dry,
xerophilous, 78-89% water content
<80% water content -
characteristic of drained peatlands
water table optimum 49.92cm
water table optimum 22. 81cm

Tolonen et al. 1985

Warner 1987
Warner 1989
Warner & °Annan 1994
Charman & Warner 1997

Lesquereusia spiralis >95% water content Tolonen et al. 1992
Nebela barbata
Nebela collaris

Nebela carinata

Nebela dentistoma
Nebela flabellulum

Nebela griseola

Nebela lagentformis
Nebela marginata

hydrophilous uuta
p_hygrophilous taxa; moderately dry conditions
moderately wet, 90-95% water content
very wet Sphagnum
bog pools
>95% water content
water table optimum 1.09cm
water table optimum 9.07cm"
Sphagnum in bog hummocks
water table optimum 30.04cm
Sphagnum of drier hummocks
water table optimum 11.14cm
water table optimum 18.0Icm
Ot-hygrophilous taxa
water table optimum 6.89cm

de Graaf 1956
de Graaf 1956
Warner 1987
de Graaf 1956
Heal 1961
Tolonen et al. 1992
Charman & Warner 1997
Charman & Warner 1997
Corbel 1973
Channan & Warner 1997
Corbet 1973
Charman & Warner 1997
Channan & Warner 1997
de Graaf 1956
Charman & Warner 1997
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Nebela militaris

Nebela minor
Nebela patvula

Nebela tincta

wet Sphagnum of bog hummocks
drier mosses
dry hummocks, xerophilous
70.8-95.1% water content
85-90% water content
water table optimum 41.85cm
water table optimum 20.66cm
water table optimum 9.33cm
very dry conditions
water table optimum 27.58cm
water table optimum 6.98cm
dry hummocks
xerophilous, <85% moisture content
very wet
water table optimum 32.63cm
water table optimum 11.67cm

Corbet 1973
de Graaf 1956
Heal 1961
Tolonen et al. 1985
Tolonen et al. 1992
Warner & Charman 1994
Charman & Warner 1997
Charman & Warner 1997
Warner 1987
Warner & Channan 1994
Channan & Warner 1997
Heal 1961
Tolonen eta!. 1992
Warner 1987
Warner & Charman 1994
Charman & Warner 1997

Phryganella acropodia moderately wet,
90-95% water content

Warner 1987
Warner 1990

Pseudodifflugia fasicularis aquatic Cash & Hopkinson 1909
Placocista spinosa bog pools, very wet

bog pools
>95% water content
water table optimum 7.44cm

Corbel 1973
Heal 1961
Tolonen eta!. 1992
Charman & Warner 1997

Plagiopyxis callida water table optimum 9.40cm Charman & Warner 1997
Quadrulella synunetrica >95% water content

water table optimum 22.38
water table optimum 6.00cm

Tolonen et al. 1992
Warner 8c Charman 1994
Charman & Warner 1997

Sphettoderia knta 85-90% moisture content
moderately dry, 78-89% water content
water table optimum 5.86cm

Tolonen et al. 1992
Warner 1987/1990
Charman & Warner 1997

Trinema lineare hygrophilous taxa de Graaf 1956
Trigonopyxis arcula xerophilous taxa

dry hummocks, xerophilous
71-88.4% water content
85-90% water content
water table optimum 57.68cm
water table optimum 15.58cm

de Graaf 1956
Heal 1961
Tolonen et al. 1985
Tolonen et al. 1992
Warner & Carman 1994
Charman & Warner 1997

Rotifer: Bdelloidea
Habrotrocha angusticollis very wet to wet Sphagnum, a hygrophilous taxa

open water
95% water content, bog hollows, wet
56-97% moisture content for ombrotrophic sites
82-97% moisture content for minerogenic sites
water table optimum 36.76cn
water table optimum 3.66cm

•
de Graaf 1956
Tolonen 1966
Tolonen eta!. 1992

Warner & Chengalath 1991
Warner & Charman 1994
Charman & Warner 1997

Table 2.6	 Hydrological requirements of taxa from published studies

Figure 2.8 Possible environmental controls on testate amoebae assemblages
(source: Woodland, 1996)
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example, by climatic factors, makes taxonomical separation of closely related taxa

difficult.

Temperature

The surface temperature of a mire fluctuates during a 24-hour period, with heat lost

from the surface by evaporation from the moss as they lack stomata and cannot regulate

evapotranspiration (Section 2.1.2). Sphagnum are poor conductors of heat to the lower

layers, so at depth there is less temperature variation with a more constant low

temperature. Low temperatures have been seen to lengthen and higher temperatures

shorten, the generation times of testate amoebae (SchOnborn, 1992c).

Light

The capitula of the moss are closely packed together and so intercept the light. The

region for photosynthesis is therefore only a few centimetres from the surface. Some

taxa have symbiotic zoochlorellae, these include Hyalosphenia papilio, Placocista

spinosa, Amphitrema flavum and A. wrightianum. These are only capable of inhabiting

the surface layers of the Sphagnum as they are restricted by their light requirements

(Meisterfeld, 1977). Light may be a factor affecting generation times, but Schiinborn

(1992c) is not clear exactly how.

Oxygen

At the mire surface oxygen is in equilibrium with the air. At a depth of 20cm there may

be very little free oxygen and so living testates may be absent and empty tests abundant

(Corbet, 1973).

Water chemistry

The water chemistry of bogs includes the trophic status, DOC, C:N ratio, N in peat and

Ca of water. pH is probably the most important aspect of water chemistry affecting the

distribution of testate amoebae on bogs. Ogden and Hedley (1980) thought that the

distribution of testate amoebae may be limited by pH, as different groups of species

occur on acid moors and alkaline soils, with only a few taxa common to both.

Woodland (1996) found no clear relationship between testate amoebae and water

chemistry because of the very restricted range of pH values she measured in oligotrophic

bogs.
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Several studies have found pH to be an important factor affecting the distribution of

tests (Tolonen et al., 1992; Charman and Warner, 1992, 1997; Warner and Charman,

1994). pH is considered to be the second most important factor affecting the

distribution of testate amoebae after hydrology. In this study, all three sites are

oligotrophic, as this is a prerequisite for the application of the transfer function

developed by Woodland (1996).

Testate amoebae analysis is thought to be generally more successful in studies from

ombrotrophic bogs, as the tests tend to be 'pseudo-chitinous' and are relatively resistant

to humification and mineralisation (Tolonen, 1986; Heathwaite et al., 1993). The

genera of testate amoebae that inhabit minerotrophic bogs are mainly composed a
siliceous plates and mineral particles that are prone to dissolving in the decomposition

process. Tolonen et al. (1992) did not find Lesquereusia spiralis on any ombrotrophic

sites, suggesting that it prefers wetter and more minerogenic sites.

2.3	 Testate amoebae and palaeoecology

Testate amoebae are good hydrological indicators as individual species respond to

different hydrological conditions. Whether hydrology is strongly related to climate and

whether the fossil testate amoebae assemblages are good matches with modern analogue

assemblages is the main focus of this study. It is possible to calculate the levels of

effective precipitation received by a site by reconstructing the depth to water table level.

Modelled responses of modern testate amoebae to contemporary hydrology are used to

infer hydrological values for fossil assemblages. This uniformitarian approach utilises

regression and calibration to construct a transfer function. If it is possible to separate

the hydrological conditions resulting from climate change from those occurring due to

autogenic mire development, then testate amoebae will be considered to be extremely

sensitive palaeohydrological indicators. However, using testate amoebae as proxy

hydrological and hence proxy climatic indicators, may lead to errors at two stages of

analysis: firstly, in the reconstruction of the former test community - a taxonomic

problem and secondly, from inferring hydrological conditions based on the

reconstruction from transfer functions derived from modern assemblages.
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There are several assumptions that Lowe and Walker (1997) cite as being important in

order to derive meaningful information about past environments from fossil

assemblages:

a) environmental parameters governing present-day distributions of testate amoebae are

understood. Autecology was addressed by Woodland (1996).

b) present distributions are in equilibrium with their environmental controls, in this

case, primarily moisture and depth to water table.

c) former distributions were in equilibrium with environmental controls.

d) former distributions have analogues in the modern fauna. This will be established by

comparing the taxa found in this study to those found in the modern analogue study

by Woodland (1996).

e) the ecological affinities of the fauna have not changed through time.

0 the fossil assemblage is representative of the death assemblage and has not been

biased by differential decay. Tolonen (1986) equates the degree of correspondence of

the necrocoenosis to biocoenoses to the resistance of the tests against decomposition

and the down-washing of empty tests within the peat profile.

g) the taphonomy of the fossil assemblage can be established. Only on very rare

occasions are testate amoebae transported from their original location.

h) fossil remains can be identified to a sufficiently low taxonomic level to enable

uniformitarian principles to be applied.

Shell decay

According to Hoogenraad (1935), no change is expected from the transition from

biocoenoses to necrocoenoses, but the composition may change later as a function of the

disintegration of the test. Lousier and Parkinson (1981) found two patterns of test decay

from a forest soil. A linear pattern was found for taxa composed of agglutinated

particles and exponential decay for taxa composed of plates. Lousier and Parkinson

(1981) found that the aerobic nature of the forest litter encourages test decomposition.

Temperature had a negligible effect on test disappearance, but it was impossible to

distinguish between the effects of moisture content and biological activity. However,

the anaerobic nature of the peatland probably does not advance the decay of tests. No

studies have been undertaken looking specifically at test decay from peatlands, but

degraded, broken or fragments of tests have not been recorded in any of the published
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studies, or in this study. Consequently, test decay is not considered to be a serious

problem in fossil work on oligotrophic, saturated peats.

Further possibilities for test destruction occur during preparation. However, the

preparation of testate amoebae samples extracted from peat has been assessed and

modified by Hendon and Charman (1997) to minimise the loss of assemblage

components and retain a complete a fossil assemblage as is possible (Section 4.1.2).

2.4	 Transfer functions for palaeoclimatic reconstructions

A transfer function deals with a quantifiable relationship between a selected

environmental parameter and the distribution of taxa. The value of the environmental

variable is a function of the biological data (Birlcs, 1995). The quantitative

reconstruction of environmental variables from fossil assemblages involves two stages

of calculation, a) regression, where the response of the modem taxa to the

environmental variable are modelled and b) calibration, where the modelled responses

are used to infer the environmental variable value from fossil assemblages (ter Braak

and Barendregt, 1986; ter Braak and Prentice, 1988; Birks et al., 1990a; Line and Birks,

1990).

There are five ecological assumptions that need to be taken into account in quantitative

palaeoenvironmental reconstructions (Imbrie and Webb, 1981). These are that:

a) the taxa in the training set are systematically related to the physical

environment in which they live

b) the ecological variable to be reconstructed is, or is linearly related to, an

ecologically important variable in the system

c) taxa in the training set are the same as in the fossil set and their ecological

responses have not changed significantly over the time span represented by the

fossil data

d) the mathematical models of regression and calibration adequately model the

biological responses to the environmental variable of interest

e) environmental variables other than the one of interest, or their joint

distribution with the variable of interest, in the fossil set are the same as in the

training set
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Four statistical techniques used in creating regression and calibration transfer functions

were tested by Woodland (1996), each of which is discussed in detail by Birks (1995).

Weighted Averaging (WA) provides robust regression and calibration where the

response variables (testate amoebae), exhibit a unimodal response to the environmental

variable (Line and Birks, 1990). Partial Least Squares regression (PLS) assumes a

linear response of species to environment (ter Braak, 1985). Weighted Averaging

Partial Least Squares (WA-PLS) is a combination of WA and PLS (ter Braak and

Juggins, 1993) that can give up to 70% reduction in prediction error from data sets with

low noise, but only a small reduction from noisy data sets. Tolerance downweighted

weighted averaging (WA-Tol) can be used to give more weight to taxa that have narrow

tolerance ranges and that are considered to be more valuable in palaeoecological

reconstructions (Juggins, 1992).

Transfer functions have been used extensively in palaeolimnological studies. Different

statistical models have been shown to best model different environmental variables.

Diatom valves (Bacillariophyta) have most frequently been used to reconstruct lake-

water pH (e.g. Birks et al., 1990a,b; Korsman and Birks, 1996). WA was found to be

ecologically more robust, realistic and numerically accurate than other methods for the

reconstruction of pH from the Round Loch of Glenhead, south west Scotland (Birks et

al., 1990a). Korsman and Birks (1996) found that WA-PLS out-performed other

techniques for lakes with a high relative abundance of the most dominant diatom taxa

and a low sample heterogeneity. Diatoms have also been used as a direct record of

salinity and an indirect measure of water-level and climate change in the semi-arid

regions of North America. The chemistry of closed basins responds directly to changes

in the hydrological budget through evaporation and dilution of concentrated dissolved

salts (Juggins et al., 1994). WA was found to be the best method for this modelling this

data set.

Other fauna used to develop transfer functions include scaled cluysophytes (Pterygota:

Neuroptera) which are planktonic algae that are covered with taxon specific siliceous

scales. The distribution of scales has primarily been used to reconstruct lake-water pH

and also temperature, conductivity, phosphorous, metal concentrations and nutrient

levels in the Adirondack drainage lakes of New York (Cumming et al., 1992). WA-Tol

was found to produce better models than WA for chrysophyte taxa. The potential has

been recognised to develop a European transfer function using chironomid (Insecta:
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Diptera) distributions to reconstruct summer surface temperatures at a broad geographic

scale for the Late Glacial (Brooks et al., 1997). A WA transfer function derived from

modern chironomid data for the quantitative reconstruction of Late Glacial temperatures

has been developed for several sites in North America, but at present, climatic inference

from British data can only be discussed in relative terms.

Therefore, the potential use of transfer functions using microfossils is broad, but a range

of regression and calibration techniques must be evaluated to see which gives the best

Root Mean Square Error (RMSE). Depth to water table and percentage moisture

modelling from the testate amoebae data, need to have the model assessed for

correctness by validation. Good performance at model estimation and calibration does

not guarantee correct predictions (Power, 1993). If accurate and meaningful results are

to be obtained and used, it is necessary to know how much confidence can be placed in

the model results. The model is validated if it corresponds with the actual system.

Cross-validation involves dividing the data into two data sets, an estimation set and a

prediction data set. The estimation data set is used to estimate model parameters and to

assess the replicative validity of the resulting models. The predictive set is used

exclusively for predictive validation (Power, 1993). A good model will produce small,

uncorrelated predictive errors. The simplest cross-validation approach is jack-knifing

(Birks, 1995) and was used by Woodland (1996) and Woodland eta!. (1998).

2.5	 Testate amoebae transfer functions

Transfer functions have been developed by Charman and Warner (1997) and Warner

and Channan (1994) for testate amoebae analysis from mires in Canada. Warner and

Channan (1994) in a study from Northwestern Ontario, used single-shot hydrological

data to create a transfer function. WA calibration was used to reconstruct water table

depth from the fossil testate amoebae assemblage. The transfer function developed

from data from Newfoundland, Canada was based on single-shot hydrological data

(Charman and Warner, 1997). WA-Tol was found to be the best of the four models

tested, which is probably related to the high tolerance values of some taxa that have less

influence on reconstructed values. Channan and Warner (1997) comment that in order

to avoid problems with poor modern analogues, reconstructions should be based on

larger, more comprehensive data sets of modern fauna from a wider region.
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Woodland (1996) chose nine oligotrophic peatland sites from across the British Isles for

her study, constrained by the availability of sites with long-term mean annual water

table data. The restriction of the modern data set to oligotrophic mires means that the

transfer function derived is only applicable to fossil samples from oligotrophic peat. In

total, 207 surface moss polsters were taken from these sites. Of these, 163 samples with

good test concentrations were used to construct the transfer functions. The moss

polsters were divided into the green growing fraction of the Sphagnum moss and any

vascular plants and, the brown fraction containing the decomposing mosses and root

material above the compacted catotelm peat. This was done in order to obtain a sample

from the brown fraction which is representative of the 'death assemblage' and which

will ultimately form the fossil assemblage in the peat. The nature of the sites with long

term hydrological monitoring programs were towards the wetter end of the range of

hydrological variation found on British mires. This was because only wetter sites are

monitored for mire conservation purposes and this causes an inherent bias in the transfer

function.

Moisture was recorded at a single time when moss polsters for testate amoebae analysis

were collected. Water table levels on the sites selected by Woodland were monitored

over a long period, generally with at least three years data, as this removes the bias

created by single-shot sampling, allowing a more representative assessment of mean

annual water table levels and of other environmental optima. This approach also

allowed assessment of the most representative time of year should long-term monitoring

not be possible in the future. Separate water table and soil moisture transfer functions

were derived from the original data set because the relationship with mean annual water

table was considered to be a more reliable parameter on which to base

palaeohydrological reconstructions than one based on single-shot sampling of moisture

data.

Four regression techniques were evaluated by Woodland (1996) to construct the transfer

function. These were WA, WA-Tol, PLS and WA-PLS. The model that produced

predictions corresponding most closely with observed data was used as the transfer

function. In jack-knifed' validation, WA produced the lowest prediction errors for

water table, but was out-performed by WA-Tol for percentage moisture (Woodland et

al., 1998). RMSEP of predicted values using jack-knifing' showed that water tables

can be predicted to within ±3.9cm and soil moisture to within ±3.4%, assuming a good
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match between modern and fossil samples. Birks et al. (1990:274) considered WA to

be "ecologically more realistic, statistically more robust and numerically more accurate

than other methods".

Woodland et al. (1998) filtered out samples where the difference between observed and

predicted values exceeded 9cm and 5% for water table and soil moisture respectively.

This was done on the basis of RMSEP values and identification of outliers with unusual

values. For both transfer functions this amounts to one-fifth of the measured range in

the data set. Three samples were removed from the water table set and 29 from the soil

moisture data set. These outliers may be attributable to 1) samples from exceptionally

low water tables compared to the rest of the samples, 2) different water chemistry,

altered species composition or 3) assemblages related to unusual vegetation types rather

than hydrology.

Woodland (1996) pointed out that a large training set is required for derivation of

transfer functions - one limitation of her study is the limited number of samples taken

from a small number of sites, so that not all possible inicrotopographical variability

across these oligotrophic sites are represented. 38 taxa were used to develop the transfer

function, this is a small number in comparison to total assemblage it is possible to find.

Woodland tested the transfer function in a fossil context on a core from Bolton Fell

Moss. She found a wide species diversity (24 taxa) and found that very little

improvement was made by restricting the assemblage used in the transfer function to

those that are perceived to be better hydrological indicators.

Woodland (1996) recognised that sampling from sites where a long run of data exists is

crucial to minimise the distorting influence of unusual climatic events on calculated

species optima. Because the species moisture optima are calculated from single-shot

samples taken in the autumn, there is the possibility of samples being taken under such

unusual climatic events. The moisture reconstruction transfer function is therefore less

robust than the water table transfer function developed from long-term hydrological

data.
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2.6	 Other proxy-climatic indicators

Other proxy palaeohydrological indicators are discussed here. They all provide semi-

quantitative, or relative estimates of past mire surface wetness and as such are not as

robust as the palaeoclimatic signal derived from testate amoebae analysis. All are

potentially useful for multi-proxy studies in conjunction with testate amoebae analysis,

to compare nature of the palaeohydrological record and assess whether all proxies

produce the same hydrological signal.

2.6.1 Sphagnum macrofossils

The role of Sphagnum in the peatland environment is discussed in Section 2.1.2. Barber

(1981; Barber et al., 1994c) demonstrated that macrofossil assemblages from different

parts of the bog responded more or less synchronously to shifts to wetter and/or drier

climates and that these shifts could be correlated with records of climate change from

independent and documentary records. On this basis, the record of change in bog

vegetation contained in the peat profile is used to reconstruct changes in bog surface

wetness. This can be done because of the coupling of ombrotrophic bogs with climate

and it can be viewed as a proxy-climatic record. Bolton Fell Moss, Cumbria, is the

main site that Barber has studied for palaeoclimatic reconstructions using plant

macrofossils (Barber, 1981,1985,1994; Barber et al., 1994a,b,c). The proximity of

Bolton Fell Moss to the field sites in this study should enable a crude comparison of

reconstructed surface wetness curves from the curves derived from Sphagnum

macrofossils and testate amoebae. Bolton Fell Moss was also used by Woodland (1996)

as a site for the study of fossil testate amoebae as the transfer function derived was

applied and tested on a core from Bolton Fell Moss.

The Quadrat Leaf Count (QLC) method for Sphagnum macrofossil analysis (Haslam,

1987), used by Stoneman (1993), Barber (1994), Barber et al. (1994a,b,c) is a

compromise between the 5-point scale approach of Walker and Walker (1961) and

Barber (1981) and a more detailed method of Janssens (1983), (Barber et al., 1994a). A

comprehensive account of the methodology is presented in Barber et al. (1994a). The

species assemblage is reconstructed by firstly estimating the main components of

washed peat samples, then identifying the Sphagna to as low a taxonomic level possible.

Results are normally plotted in a hydrophilous sequence from relatively dry

(Unidentified Organic Material, UOM) to very wet, e.g. Sphagnum section Cuspidata.
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For recent periods, the macrofossil record has been compared with Lamb's High

Summer Wetness indices. Lamb (1977) used a diverse array of historical records to

reconstruct summer wetness/dryness and winter mildness/severity trends for Central

England from AD 1100 to 1850 (Barber et al., 1994c). This reflects only general trends

in climate change and can only be used with the caveat that there are inherent problems

with this type of documentary reconstruction.

The macrofossil data have been subject to various multivariate analyses which are

explained in depth in Barber et al. (1994b). Barber and co-workers concluded that all

the techniques used confirmed that the data possess a coherent and robust structure and

that variations in the data were related to bog water table and through that to climate.

The data presented in all of the aforementioned publications are only quantified in

relative terms, of dry, wet and very wet. No indication is given of how dry the

xerophilous Sphagnum communities actually are, or how wet the hydrophilous

communities are. The shifts in the reconstructed hydroclimatic diagram (for example

Bolton Fell Moss, Barber et al., 1994b) using Dupont's (1986) weight averaged

ordination is limited. Each taxon is given an 'indicator value' along a wet-dry axis and,

although this may allow comparisons between sites as to the response of taxa to climatic

forcing, it would be difficult to compare this type of data to another proxy climatic

indicator, for example, the reconstructed water table curves derived from the fossil

testate amoebae. This is because the comparison would be between a curve of relative

wetness to percentage moisture content or depth to water table.

Stoneman (1993) and Stoneman et al. (1993) attempted to quantify the Sphagnum

macrofossil record by constructing a calibration or training set. However, it was found

that one of the major taxa which once formed the bulk of Holocene peat was now

virtually extinct over a large extent of its former range, thus making a calibration set

unworkable. It is difficult to assume a uniformitarian approach to palaeoecological

reconstructions if the niche of a taxon has changed and the other taxa in the assemblage

have had to readjust their ecological niches to adapt to this change. The

palaeoecological evidence suggests that Sphagnum imbricatum ssp. austinii once had a

wide niche with respect to water table. The high hummocks on which S. imbricatum

ssp. austinii are found today are the only places where it can effectively out-compete

other Sphagna and can only survive if conditions are oceanic enough to prevent

desiccation. S. rnagellanicum appears to have out-competed the lax form of S.
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imbricatum and today occupies the position that S. imbricatum once did. Relating

present ecology to past ecology in this context is therefore difficult.

2.6.2 Other plant indicators

The woolly hair moss Racomitrium lanuginosum may be a useful proxy climatic

indicator on blanket bogs. Racomitrium has distinctive leaves which are well preserved

in blanket peats. Its occurrence in the peat profile may represent a clear signal relating

to the water balance of the mire system as a whole (Tallis, 1994, 1995). Where

Racomitrium is present, it delimits a zone of climatic change, marking shifts from a dry

to a wet climate. It requires an unusual set of circumstances, a wet climate, producing

high atmospheric humidity and a dry bog surface with low overall water tables. The

combination of these circumstances may often be of short duration as a result of a

change to a wetter climate after a prolonged period of drier climate, which allows the

temporary spread of Racomitrium before being replaced by Sphagnum.

Tallis (1997) has also used Empetrum nigrum (crowberry) pollen as a proxy indicator of

lower summer water table levels on blanket peats in the southern. Pennines. Empetrum

favours well drained situations such as hummock tops and is a good indicator, as it has

only very locally dispersed pollen.

2.6.3 Isotopic fractionation

Isotopic studies are used in many areas of palaeoclimatic research, but have only been

used in limited ways on peats (e.g. Aucour et al., 1996), being more commonly used in

ice core studies. Ombrotrophic raised bogs are useful for reconstructing variations in

temperature and precipitation over the Holocene, as the main source of input to the mire

hydrological regime is precipitation. Peat is a useful medium for this type of isotopic

study as it contains so many other proxy climatic indicators against which to compare

the isotopic data. Those that complement testate amoebae analysis in

palaeohydrological studies are outlined below.

...16The stable isotopes of oxygen, 18u/ 0 and hydrogen isotopes 2H/1 H (2H = deuterium,

1 1-I = hydrogen), can be used in palaeoclimatic research (Bell and Walker, 1992). These
180/160 and 21-1”/ 1,isotopes are fundamental constituents of water, but the ratios of 	 H vary
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over time as changes in the water state occur. This is controlled primarily by

temperature, because, on evaporation the water vapour becomes deficient in the heavier

isotopes 180 and 2H relative to the water source (precipitation) and these are recorded in

the peat. Palaeoclimatic inferences are based on the relationship between 180 and 2H,

the composition of plant cellulose and the isotopic composition of the plant, its water

sources and relative humidity (Aravena and Warner, 1992).

Fractionation is a complex function of climate and plant-physiological parameters (van

Geel and Middledorp, 1988), because the isotopic ratio is taxa-dependent, as different

species have inherently different isotopic compositions (Brenninkmeijer et al., 1982;

Dupont, 1986; Dupont and Mook, 1987; Price et al., 1997). Vascular plants have a

greater isotopic enrichment of leaf water ( 180 and 2H) compared to the water adhering to

the apical growth tips of Sphagnum (Brenninkmeijer et al., 1982; van Geel and

Middledorp, 1988). Furthermore, the plant cellulose which contains the isotopic record

may be difficult to extract, especially from highly humified peat.

In addition to the problems posed by species with different isotopic compositions, an

added complication is caused by an indirect effect of temperature fluctuations. During

warm periods, the vegetation on ombrotrophic bogs tends to be dominated by taxa

favouring dry conditions, for example the Ericales, which, when independent of climatic

influences, has a relatively high 2H11H ratio. During periods of oceanicity, where

relative humidity is high and temperature low, bog plants flourish which favour

relatively wet conditions, for example, Sphagnum imbricatum and S. papillosum which

have relatively low 2H/1 H ratios. Thus 2H is influenced by climate and also by the

vegetation assemblage, which is an indirect function of climate. Variations in the 2H/1H

ratio from the influence of plant species changes, may be larger than direct temperature

induced variations (van Geel and Middledorp, 1988). Other complications may result

from varying lengths of growing season in different climatic periods which may affect

the 2H/1 H ratio. Dupont (1986), also points out that the isotope record is latitude

dependent. During climatic change, temperature differences at higher latitudes are

greater than those at lower latitudes. Study site location has to take this into account

when isolating temperature as a palaeoclimatic variable.

Hummock-top species of Sphagnum may yield lighter isotopic values than hummock-

margin species, which is consistent with hummock-top species photosynthesising under
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a lower water content and with a lower external diffusion resistance. A large range of

13C values were recorded in hollow samples which may lead to inaccurate climatic

interpretations (Price et al., 1997). Conversely for 180, the heavier oxygen isotope

enriched values are found in hummock Sphagnum indicating that photosynthesis in

hummock taxa is more affected by evapotranspiration than adjacent taxa in hollows

(Aravena and Warner, 1992).

Dupont (1986) and Dupont and Mook (1987) attempted to account for these problems

by calculating the relative abundance of each taxon in every sample. The 2H1 1 H ratio

can then be corrected for taxa-dependence 2H variations and a temperature record

derived. Van Geel and Middledorp (1988) advocated the selection of one or two taxa to

measure the 2H ratios in order to provide a more useful and less complicated

palaeoclimatic record. However, the practicalities of selecting sufficient material for

analysis are probably too great, especially in humffied peats.

White et al. (1994) attempted to reconstruct past variations in atmospheric carbon

dioxide by using 13C /12C ratios in mosses and sedges in peat. Unlike sedges, mosses do

not posses stomata and are therefore unable to regulate their uptake of CO 2 and H20.

The 8 13C of mosses depends on the atmospheric CO 2 concentration and available water.

The 8 13C of sedges from the same peat sample can be used to remove the water signal,

leaving a proxy record of past variations in CO2. This type of study is therefore only

suitable when the peat is composed of readily separable moss and sedge, which may not

always be the case and may be difficult to separate when it does exist, if the peat is

highly humified.

Both of these applications of isotopic studies are potentially useful, but their precision in

calculating palaeoclimatic conditions is complicated by species assemblages of the peat

composition in both cases. In studies where isotopes are used to reconstruct variations

in temperature and precipitation, it can be difficult to isolate temperature from other

variables because of these taxa-related complications.

2.6.4 Humification

Humification analysis is the study of the degree of decomposition of peat and provides a

link between peat stratigraphy and past climate change. According to Aaby and Tauber
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(1975), the degree of humification depends upon the surface humidity of the mire at the

time of deposition. Poorly humified peat forms when the water table of a mire is high,

creating anaerobic conditions which do not favour the breakdown of organic matter.

Peat will become humified if the dry season is longer or drier and the water table is low,

producing aerobic conditions. If this trend is prolonged, the peat stratigraphic record

should contain a transition to more humified peat.

Humic acids are produced by the decomposition of vegetative matter. As the peat

decomposes, the proportion of humic acid increases. Blackford and Chambers (1993)

identified four categories of techniques for establishing the degree of humification of

peat:

a) visual examination and classification, stratigraphic analysis, for example, von Post

(1924) scale, Troels-Smith (1955) classification and the Blytt-Sernander scheme.

These are visually subjective assessments. The von Post scale is more detailed than

the Troel-Smith five point scale, from 1, yellow-light brown peat, often with

undamaged Sphagnum leaves, to 10, blackish-brown peat, with totally destroyed

organic matter. One limitation of the von Post scale is its reliance on the presence of

Sphagna. The assessment is limited in peats where Sphagnum is absent.

b) measurement of physical properties, for example, bulk density and fibre content. As

decomposition takes place, large fibres are broken down and the bulk density and

proportion of mineral material increases.

c) measurement of chemical properties. This is a complex area. Humified material has

a higher CEC, a higher nitrogen content and greater calorific content than

undecomposed plant matter (Mathur and Farnham, 1985, in Blackford and

Chambers, 1993). The processes involved are as yet not fully understood.

d) chemical extraction of soluble material, using sodium hydroxide to extract the humic

acids which are produced by the decomposition of organic material.

Charrnan (1992, 1994) used a form of visual determination to estimate relative

humification values. This involved sieving peat and measuring the depth of water

required to obscure a black cross on a white background. Humification was expressed

as a reciprocal (per cm) of water depth, where high values represent high humification.

This is an imprecise method and Blackford and Chambers (1993) found that analysis of

fibre content and NaOH extraction show greater variability in humification than is

possible by visual assessment of the stratigraphy or by the sieving method. The NaOH
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method adopted by Blackford (1990), Blackford and Chambers (1991, 1993, 1995) and

Chambers et al. (1997), was developed by Overbeck (1947) and modified by Bahnson

(1968). It is a colorimetric determination of an alkali extract of the peat, since the light

absorbed is proportional to the amount of humic matter dissolved. Colorimetric

measurements of continuous samples can, according to Blackford and Chambers (1993)

provide a robust and replicable record. Well humified peats yield a low percentage

transmission as there is a high content of humic acids. Poorly humified peats have a

high percentage transmission due to the lower humic acid content of the peat. This

provides a semi-quantitative estimate of past climate, with higher transmission values

being indicative of and proportional to, but not an exact measure of, lower humification

(Blackford and Chambers, 1993).

The alkali-extraction of humic acids is more suitable than analysis of the fibre content of

a peat, because of the differential response of plants in an assemblage with a changing

species composition. In addition to this, Coulson and Butterfield (1978) pointed out

that the nature of the original plant material is of great importance in determining the

rate of decomposition, as species such as Eriophorum vaginatum and most Sphagnum

spp. have particularly low decay rates. Woody material is likely to take longer to

breakdown than soft, fleshy plant matter.

Local reconstruction of peat-surface wetness can be combined to reconstruct regional

changes in peat hydrology and by inference, changes in climate. These curves can be

supported by other microfossil evidence from the peat, for example, testate amoebae

analysis. Blanket bogs were originally thought to be of little or no use in proxy climatic

reconstructions, but at least one synchronous change has been shown in humification

records across broad regions of the British Isles (Blackford and Chambers, 1991). The

application of humification techniques to well humified blanket peats may show marked

variations in stratigraphy. Aaby and Tauber (1975) do not recommend comparing

ombrotrophic peats with minerogenic peats, since suspended particles from the latter

may disturb the light transmission making comparisons impossible.

The semi-quantitative estimate of humification from which past climatic conditions can

be inferred does have a number of limitations. Not being able to apply it to minerogenic

sites is a limitation in the context of this study, since it precludes comparisons between

the ombrotrophic and minerogenic sites. Most of all, the semi-quantitative nature of it
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is limiting as it is only a relative measure of past mire surface wetness, (i.e., wet, dry,

moderately wet), expressed as percentage transmission. It is not possible to determine

from humification analyses exactly how wet 'wet' is and so it may be considered to be

imprecise. There are no confidence intervals generated on the data which makes it more

difficult to compare humification data from several profiles. Also, it is not clear

whether the wet/dry shifts are of uniform size on the percentage humification scale and

exactly what these are in terms of percentage moisture content/depth to water table or

some other scale. However, it may be interesting to compare results from humification

analysis to the quantitative mire surface wetness reconstructions from the testate

amoebae analysis, this work is currently in progress (Charman, Hendon and Packman,

unpublished data).

Charman, Hendon and Paclanan are using the testate amoebae data from the micro-scale

analysis, cores CRM I and CRM IV, to compare to humification data and Sphagnum

macrofossil analyses from the same cores. One of the main limitations of this study is

that the samples taken for humification analysis were of a larger size than those used for

testate amoebae analysis and hence the humification data provides an estimate over a

longer period of peat accumulation than the testate data. Humification and Sphagnum

macrofossil analyses are also not contiguous, as sampling was undertaken subsequent to

peat being sent for radiocarbon dating. However, initial results show a good

relationship between testate amoebae and humification and a good degree of

synchroneity between two methods. This kind of muti-proxy approach may help to

alleviate the problems of unquantified relative estimates of surface wetness, but the

approach must be further refined so that samples are more comparable.

2.7	 Conclusions

This chapter has dealt with a wide range of topics, from the peatland system and its

response to climate and internal dynamics, testate amoebae as palaeohydrological

indicators and the ecological and biological context of testate amoebae. Other proxy

palaeohydrological indicators have also been discussed and their relative merits

compared to those of testate amoebae analysis. Biological transfer functions used in

palaeoecological studies in general have been discussed and in particular, the transfer

functions developed by Woodland (1996) for reconstructing mire hydrological
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conditions from testate amoebae data have been evaluated, as this is of prime

importance to this study.

Relationships between climate, peat, Sphagnum, hydrology and testate amoebae are

important. Peatlands are an ideal environment for the colonisation and preservation of

testate amoebae. Bogs that are dominated by Sphagnum moss are readily colonised by

testate amoebae and hydrology in particular will affect the testate amoebae assemblages

recovered from peat profiles. Once the relationship between testate amoebae and

hydrology has been established, it may be possible to infer a climatic signal from the

analysis of multiple cores from across a region.

Both isotopic fractionation and humification analysis are to a certain extent taxa-

dependent. Different species have differing isotopic compositions and different taxa

have varying decomposition rates. Both humification and plant macrofossil analysis

link palaeohydrology and climate on ombrotrophic bogs. Neither give true quantitative

values in terms of ecologically or climatically meaningful variables. Testate amoebae

are potentially useful in combination with humification and/or plant macrofossils to give

a more sensitive and quantifiable record, especially where there is a tnacrofossil record

of a limited number of taxa.

Part Two, the research approach and methodology is divided into two chapters. Chapter

Three sets out the rationale for choosing field sites and coring locations. Site

morphology is an important criterion for field site selection and multiple coring at each

site is essential in order to test the replicability of the testate amoebae record. Chapter

Four sets out the laboratory and data analysis methods adopted in this study. The

transfer function developed by Woodland (1996) will be applied to cores extracted from

these sites in Part Three.
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PART TWO

Research approach and methodology



CHAPTER THREE

Site selection and coring locations

3.0	 Introduction

This chapter sets out the rationale for field site selection and coring locations. Three

sites with distinct morphologies and separate hydrological systems were selected for

study. This was in order to assess the replicability of the long term hydrological record

derived from the testate amoebae analysis from multiple peat cores, compared within

and between sites. From this it should be possible to assess the influence of climate on

the testate amoebae record, by separating the allogenic hydrological signal that is found

synchronously in the testate record both within a bog and across the region, from more

localised autogenic hydrological signals. Field sites are examined separately and are

described in terms of conservation status, mire morphology and peat type. Survey data

are presented for each site and the coring locations at each site are discussed.

3.1	 Scales of study

Barber (1981) considered there to be three prerequisites for site requirements in order to

relate peat deposits to climate change. These are a) that ombrotrophic mires have

developed under climatic influence alone, b) the peat deposit should be deep enough for

long time scales to be studied and, c) for peat accumulation to have been rapid enough

to give a detailed resolution of events within this temporal range. The first assumption

is one that has never been fully tested. It has been assumed that allogenic factors alone

influence the growth and expansion of ombrotrophic mires. However, it is likely that

autogenic processes generated by internal bog dynamics also influence the development

of mires, the theories behind which were discussed in Section 2.1.3. Field sites were

required that fulfilled the second and third criteria and allowed the testing of the first.

One of the main aims of the project was to explore the spatial and temporal variability

of the palaeohydrological record from several morphologically distinct peatland sites in

one region of Britain. The variety of mire morphologies and their relationships with

hydrology and response to climate change were discussed in Chapter Two. Two
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ombrotrophic sites and a minerogenic valley mire were required within the same

climatic district and therefore within a restricted geographical area. Two ombrotrophic

mires were required to enable testing of the replicability of the hydrological record

within and between the sites. An extensive series of mires with a variety of

morphologies occurs in northern England on the Cumbria/Northumberland border and

are known as the 'Border Mires'. These were chosen to ensure that as far as possible,

the sites have been influenced by the same climatic regime throughout the Holocene.

The variability of the palaeohydrological record was considered at three spatial scales,

shown in Figure 3.1. The macro-scale considers variability between sites from cores

extracted from the mire centres at a distance of between 1-10km. At a macro-scale,

climate is one of the most important factors in controlling mire surface wetness, as a

result of the relationship between precipitation and evaporation. Autogenic factors

derived from regional groundwater systems may also influence mire development at the

macro-scale and the record of climatically determined mire surface wetness may be

confused by meso- and micro-scale processes.

At the meso-scale, between 10-1000m, mire expansion and development are key factors

as cores were extracted from the centre and edges of the mires. The distance the meso-

scale is studied at will depend on the size of the mire. As the central area increases in

size and height relative to the rest of the bog it has two effects on the fossil record.

Firstly, the bog becomes more ombrotrophic; the central domed area is less likely to be

influenced by surface runoff and ground water. Secondly, there are less likely to be

major spatial differences in the record of the upper peats, as the area is larger and

hydrologically more stable. For these reasons, the palaeohydrological record is more

likely to be strongly related to climate in the upper peats than at depth down the cores.

Vegetation succession, microclimate and human impact may also affect mire

development at the meso-scale. Meso-scale studies allow comparisons to be made

within each site, between the centre and edges of the bog and enable attempts to be

made to separate the climatic signal within the testate amoebae record from that caused

by autogenic mire development.
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Vegetation is also likely to be an important influence at the micro-scale (1-10m).

Microclimate, management, succession and competition may result in local differences

in vegetation. Vegetation differences may affect evapotranspiration and therefore,

surface wetness, as well as being a product of it. Microtopographical features (Lindsay

et al., 1988) are also a feature of many ombrotrophic mires. Cores extracted from up to

10m apart from the central portion of the same site allow high precision studies of the

replicability of the hydrological record derived from testate amoebae analysis, so that

any errors obtained at a broader (macro) scale can be quantified and evaluated and taken

into account in the reconstructions of surface wetness. The theories surrounding

allogenic and autogenic mire development were discussed in Section 2.1.3.

From the chosen sites, it should be possible to separate hydrological changes that are

climatically-forced or allogenic, from those that result from autogenic factors relating to

mire morphology, such as internal drainage. If the overall pattern of change in the

direction, rate and magnitude of the water table and moisture level fluctuations shown in

the surface wetness reconstructions is the same at each site, then it is likely that climatic

forcing is the major influence on hydrological change. If however, the hydrological

record is different at each site, or within each site, then autogenic factors such as site

development and morphology are likely to be the major contributors to surface wetness.

3.2	 Rationale for field sampling

A number of cores were extracted from each site, to enable testing of the temporal and

spatial variability of the palaeohydrological records of the peatlands. This is not

something that has routinely been carried out in palaeoecological studies. For example,

the use of Sphagnum macrofossils to reconstruct past surface water conditions on bogs

has never properly been verified as a palaeoecological technique by multiple core

studies. Barber (1981) analysed 20 profiles from Bolton Fell Moss and by comparing

that with the work of Smith (1985) and Wimble (1986), Barber et aL (1994a) concluded

that extracting a single core from a site is representative of that site as a whole. This

was a rather ad hoc assessment, lacking in verifiable experimental design. Whilst

multiple coring from one site is an option, Barber (1994) regards it as time consuming

and thus has relied on the replicability of the data collected by Moore (1977) and Smart

(1982) which he considers to have shown a good degree of synchroneity. Since neither

of these studies has a 14C chronology, temporal comparisons are weak, but show only
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similar gross directional changes. As Smart (1982) points out, mire surface features are

three dimensional, which does result in stratigraphic profiles which are not identical.

Smart (1982) also adds a note of caution, suggesting that apparently synchronous levels

in the profiles do not necessarily represent contemporary surfaces because of differential

decay and compression of peat. While some degree of replicability between cores can

be shown at a broad scale (e.g. Svensson, 1988), for higher precision studies, it is

necessary to know exactly what the differences are so that this source of error can be

quantified and included in surface wetness reconstructions. Tallis (1994) recommends

the use of closely spaced multiple cores to compensate for chance variation in the

abundance of Sphagnum macrofossils over short distances so that the general patterns of

change can be determined. The location of core extraction must be 'climatically

sensitive'. Therefore it is recommended that the core is not taken from a complacent

rnicrotope such as persistent hummock or from an area subject to drainage at the bog

margin, since subtle climatic fluctuations would not register. Heathwaite et al. (1993)

consider it essential to examine a large number of profiles from the same mire in order

to exclude local influences, especially around the marginal area.

In this study, cores were extracted from the centre of each site, since this area is likely to

be the most strongly related to climate. Two closely spaced cores were extracted from

the centre of Coom Rigg Moss to enable a micro-scale comparison of the hydrological

record. Cores were extracted from the centre of the mires to minimise complications

from marginal drainage changes resulting from natural bog bursts or human cutting

activity (cf. Barber et al., 1994a). The central core and two marginally located cores

from each mire will also be used to gauge the influence of meso-scale processes on site

hydrology. At a macro-scale, inter-site analysis is possible, as the sites are located

within 10km of each other. Macro-scale comparisons will be made by comparing the

centrally located cores from all three sites. These cores should provide sufficient

evidence of spatial variability across each site at the three spatial scales.
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3.3	 The Irthinghead Mires

There are over 60 border mires in Northumberland and Cumbria defined by English

Nature as the Border Upland Natural Area (Merricks, 1995). The Irthinghead Mires

(part of the Border Mire complex), of the Kielder Forest were selected for study, as

there is a remarkable range of morphological mire types within a relatively small area, in

an undamaged state:

"it is an outstanding complex, not only because of the high
intrinsic scientific value of the mires, but also because of the
potential which the area has for research into the relationship
between vegetation, hydrology and mire dynamics" (Ratcliffe, 1977a:225).

The Irthinghead Mires are composed of eight mires forming an aggregate Site of Special

Scientific Interest (SSSI) and an internationally important wetland under the Ramsar

Convention (1996 amendments). The Ramsar Convention on Wetlands of International

Importance Especially as Waterfowl Habitat (1971) was the first iiitemaiimai

convention dealing solely with habitat (Ball and Bell, 1994). All sites have to be

designated SSSIs before becoming RAMSAR sites. Five sites were originally

designated as the Irthinghead Mire complex by Ratcliffe (1977b), these were;

Butterburn Flow, Coom Rigg Moss, Felicia Moss, Haining Head Moss and Hummel

ICnowe Moss. Three other sites were designated post-publication of the Nature

Conservation Review (Ratcliffe, 1977b). These were The Wou, Falstone Moss and

Gowany ICnowe Moss (Burlton, 1996). Of these, three mires were chosen for detailed

study, namely, Coom Rigg Moss (CRM) and Butterburn Flow (BBF) which are

ombrotrophic macrotope complexes, consisting of raised mire and blanket mire areas

which coalesce. The third site is The Wou (TW) a rninerogenic valley mire, (Figure

3.2). Table 3.1 sets out details of the conservation history and status of each site and the

sites are described in detail below.

Several previous studies have been carried out in the Kielder Forest area (Chapman,

1961, 1964a,b, 1965; Smith and Charrnan, 1988; Charman and Smith, 1992). These

have primarily been concerned with present day ecology and surface vegetation

(Chapman and Rose, 1991) and the effect of the surrounding conifer plantations on the

hydrology of the bogs (Smith and Charman, 1988). Planting began in 1926, although

most plantations were established between 1945-1960, creating an "island of bogs in a

sea of forest" (Smith and Channan, 1988; Channan and Smith 1992). A total of 38,388
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Figure 3.2 Location map of the field sites. Only peatlands sampled in
this study are shown
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hectares of the Kielder Forest were planted with 69% sitka spruce (Picea sitchensis),

15% Norway spruce (Picea abies), 9% lodgepole pine (Pinus cortorta), 3% Scots pine

(Pinus sylvestris) and 4% other species (Smith and Charman, 1988; Burlton, 1997). The

remaining 11,090 hectares, mostly the upland blanket mires that were too wet to

afforest, were left unplanted. The area was ploughed and cross-drained prior to

planting. Trees were planted in straight lines with no deciduous trees at the edges to

break the visual impact of the conifers and very few gaps were left between stands

(Burlton, 1995). Crops are felled on a 45-year cycle, so felling has recently commenced

in many areas. Clear-felling has been undertaken to harvest the crop of trees but the

management plan also includes 'restructuring' measures to clear relatively small blocks

of trees to reduce wind-throw and increase habitat diversity for better silvicultural

practice (Burlton, 1996). Broad-leaved trees are being planted along water courses and

the overall practice should improve conditions for bog conservation.

In the 1980s, the Forestry Commission became a multi-purpose agency, with

conservation and recreation becoming an integral part of forest management (Burlton,

1997). Since 1987 there has been an inter-agency approach to bog and forest

management. The Border Mires Committee was formed, comprised of English Nature

(North East and North West), The Northumberland Wildlife Trust, Forest Enterprise,

Newcastle University and the Northumberland National Park. A number of 'first aid'

measures has been instigated in an attempt to improve the conditions for the bogs.

These include ditch-blocking to raise the water table level and spruce removal from the

mires surfaces.

Lowe (1993) redefined the hydrological boundaries of 48 bogs in the Border Mire

Complex in Northumberland. This excluded Butterburn Flow, as it lies just within the

Cumbria border. The maps presented by Lowe (1993) show the current open area and

former mire extent and the area that is presently forested. The maps also show the

input/catchment slopes that may have an impact on the edge and lagg area of sites and

which may indirectly be affected by the forested area. Peat depths of less than lm were

considered to be outside of the mire boundary. According to Burlton (1995), these

definitions of the hydrological boundaries of the mires under the remit of Forest

Enterprise will contribute to those sites being preserved in perpetuity.
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Geology and hydrology

The underlying bedrock geology of the area is the Scremerstone series of the Lower

Carboniferous period. There is a succession of shales, sandstones, thin bands of

limestone and many small coal seams overlain by glacial drift (Chapman and Rose,

1991; Merricks, 1995; Burlton, 1997). The impermeable nature of these strata makes

them ideal for peat formation. The average annual rainfall in this area is 1270mm and

the average monthly evapotranspiration (Pet) never exceeds precipitation (Newson and

White, 1993). The high precipitation and relatively undamaged bog surfaces are

important factors in maintaining the water table at or very near the surface throughout

the year (Merricks, 1995).

3.4	 Surveying

Levelling is necessary for determining sub-peat topography and is not used for depth

correlation between cores. Levelling mires can be difficult since the surface can be

prone to compaction. Since surveying data is primarily used for determining substrate

topography within each site, a relative depth scale was used, rather than absolute values

relative to Ordnance Datum, since there was no benchmark height visible from the sites.

The sites were surveyed at 30m intervals across transects using a hand operated Kern

Level to record the surface topography of the bogs (Aaby, 1986). The underlying

sediments were probed to give an approximate indication of sediment depth. In several

places, the clay beneath the peat was reached, so the diagrams of the bog profiles are

sediment depth probes, not peat depth probes. The actual peat depth is known only at

coring locations from stratigraphic analyses. These diagrams (Figures 3.4, 3.5, 3.8, 3.9,

3.11-3.14) give an indication of bog morphology and were used in the selection of

locations for coring, typically at the deepest points for central cores, so that the longest

possible record could be obtained.

The diagrams of the bog profiles are all plotted relative to a zero point at a known

location. This means that the relative, not actual, ground surface and profile depths are

shown. Point zero was the starting point of each survey, so that the longest possible

distance could be surveyed without moving the level.
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3.5 Coom Rigg Moss (CRM)

Grid Reference: NY 690 795 Northumberland.

Coom Rigg Moss lies 40 km north-east of Carlisle, within the Northumberland National

Park. It is an area of 39.6 hectares and Lowe (1993) classified it as a watershed saddle

mire. Chapman (1961, 1964a,b) and Ratcliffe (1977b) consider the site to consist of

several raised bog units united by blanket bog and it can therefore be considered a mire

macrotope. This study concentrates on the raised bog at the eastern edge of the site.

Coom Rigg Moss has sediments from oligotrophic fen peats through to ombrotrophic

Sphagnum peat at the surface. The watershed lies between the River Irthing to the south

and Chirdon Burn to the north. Figure 3.3 shows the surveying transects and coring

locations. The site maps for all three locations show forest areas as in 1993, but these

will now be altered, due to clear-felling of the forestry plantation.

Conservation status

The site was scheduled as a SSSI in 1959 under the National Parks Act, 1949 (Table

3.1). The site was the first notified of the Border Mires in 1959, was made a National

Nature Reserve (NNR) in 1960 and was renotified as a SSSI in 1983, under the 1981

Wildlife and Countryside Act. Coom Rigg Moss is proposed as a constituent part of the

'Border Mires: Kielder to Butterbum' Special Area of Conservation (SAC), (Merricks,

1995). Coom Rigg Moss was incorporated into the composite Kielder mires SSSI in

1995 (Burlton, 1996). The bog is managed by English Nature (North East Region), but

is owned by Forest Enterprise, Kielder District.

Vegetation

The bog was almost entirely surrounded by conifer plantations, until felling began in the

early 1990s. Between 1954-1957, the land surrounding Coom Rigg Moss was planted

with sitka spruce and lodgepole pine. According to Smith and Charman (1988), the

land to the north of Coom Rigg Moss was planted in the 1950s and the area to the south

in the 1970s. In 1974, the land to the south of the bog was planted with lodgepole pine

(Merricks, 1995). The surface is undamaged by burning, peat cutting or drainage and is

one of the small number of unplanted areas within the Wark Forest. The surface

vegetation is as near to a natural climax vegetation type as is found in the British Isles
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(Merricks, 1995), formed as a result of Sphagnum peat accumulation under climatic

conditions where precipitation exceeds evaporation. The vegetation is dominated by

Calluna-Sphagnum-Erica tetralix communities (Ratcliffe, 1977a). However, Chapman

and Rose (1991) and Charman and Smith (1992) state that there has been a change in

both the structure and the composition of vegetation in the mire since the area was

planted with conifers. Chapman and Rose (1991) found that over a 28 year period

(1958-1986) there was an increase in moorland species at Coom Rigg Moss, noticeably

Deschampsia flexuosa (wavy hair-grass), Mylia anomola, Pleurozium schreberi and

Polytrichum commune. There was an associated decline in ombrotrophic species such

as the bog-mosses Sphagnum magellanicum and S. papillosum and Drosera rotundifolia

(round-leafed sundew), Narthecium ossifragum (bog asphodel) and Andromeda polifolia

(bog rosemary). Another possible factor in the changing composition of vegetation at

Coom Rigg Moss is that this site was grazed at low levels by sheep until the 1950s.

However, according to Merricks (1995) deer grazing on the site has almost certainly

increased since the forest was planted.

Hydrology

Coom Rigg Moss has only a small surrounding catchment area, with soil water now

affecting only marginal areas of bog, the greater part of the surface being ombrotrophic

(Chapman, 1965). The recent vegetation changes at Coom Rigg Moss are possibly a

direct result of afforestation on bog hydrology, since there will have been increased

interception and evapotranspiration in the forest adjacent to the bog, reducing the water

supply to the bog edges (Chapman and Rose, 1991). The area surrounding the mire that

was afforested was ploughed and cross-drained prior to planting. The central area of the

bog is a shedding system that is dependent on rainfall, so afforestation should only

affect marginal areas. One open pool and several moss-filled hollows are present to the

south west of the site.

Past management

Until 1994, the only management practice was the hand-weeding of self-sown conifers

from the mire surface. In 1994, approximately 20 plywood dams were installed on the

northern edge of the bog to encourage higher water table levels by impeding drainage as

a conservation measure. Removal of failed or poor crops from the northern edge began
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in 1994 and continued in 1995 (Merricks, 1995). Parts of the western edge of the bog

were clear-felled in 1996.

Coring at Coom Rigg Moss

The ombrotrophic section on the eastern side of this bog identified by Chapman (1964a)

is of most interest to this study and it is there that the field work was conducted. Figure

3.6 shows the map from Chapman (1964a) that presents the bog surface as a dotted line.

This agrees with the Nature Reserve boundary designated by Ratcliffe (1977b) and

Lowe's (1993) management unit for Coom Rigg Moss. The solid line represents the

former extent of the mire and is similar to the boundaries presented by Lowe (1993) for

the input/catchment zone of the mire. The grid lines coincide with the 100m lines of the

National Grid, with castings labelled from A-0 and northings from 1-12. Chapman

(1964a) found two distinct peat types, the first above hollows in the drift and the second

above ridges running beneath the bog. This study concentrates on the former, with a

sequence of fen peat, overlain by brushwood peat and above that a Sphagnum-

Eriophorum peat. The raised bog is composed of a succession from initially

minerotrophic basin conditions to ombrotrophic conditions. Work concentrated on the

upper, ombrotrophic peat. Transect 1, the south-north transect, lies between castings H

and I of Chapman (1964a) and as can be seen from his diagram, constitutes one of the

deepest areas of the site. Transect 2, the east-west transect, lies just to the north of

Chapman's transect 8 and the basic morphology is similar. Stratigraphical, ecological,

chemical and hydrological studies of the site's development have been carried out on the

site by Chapman (1964a,b, 1965). Figures 3.4 and 3.5 show the depth profiles of the

sediments at Coom Rigg Moss. The east-west transect was perpendicular to the south-

north transect.

The diagrams showing profile depth relative to ground surface and coring locations have

a large vertical exaggeration. In reality, the slope angle would be very small. The line

showing profile depth is roughly equivalent to the interface between the peat and the

underlying late-glacial clay. This slope may have influenced the initial formation of the

peat bog by encouraging runoff. However, because of the cohesive characteristics of
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clay, mineral inputs from the clay to the peat from the runoff may have been slight.

Hydrogen bonding between the clay particle surfaces and water causes cohesion and the

tendency for clay particles to stick together (Brady, 1990). Initial runoff may have had

an autogenic influence on primary fen peat development but will have been less

significant, once ombrotrophic peat development was initiated.

At Coom Rigg Moss, the initial plan was to extract five cores; two from the edges of the

bog and cores from three points within a hummock-hollow complex, i.e. a core from the

hummock top, one from the centre of the hollow and a core at a mid-point between.

The rationale for this was that the horizontal and vertical distribution of the testate

amoebae assemblage within a single micro-topographical feature could be examined, as

suggested by Beyens (1984). However, this was not possible, as the hummock-hollow

topography was not pronounced enough for this to be practical. Instead, two cores were

extracted within 10m of each other from the centre of the raised section of the bog, to

enable the replicability of these cores to be studied in a micro-scale comparison.

Figure 3.6
	

Map of surface features at Coom Rigg Moss. (Source: Chapman, 1964a)

88



The first core from Coom Rigg Moss (CRM I) was extracted in November 1994 from

the centre of the bog. The top metre of peat was extracted with a Wardenaar sampler

(Wardenaar, 1987), giving a substantial monolith, 10x10x100cm. A wide bore Russian

corer was used to extract the rest of the profile contiguously, as described by Barber

(1984). The three other cores from Coom Rigg Moss, cores CRM II-1V, were extracted

in April 1995 using the Russian corer only. These cores were extracted using parallel

holes, so that each core has a five centimetre overlap with the adjacent cores. This was

done to ensure that the nose of the corer did not compact the underlying peat, to

guarantee a complete stratigraphic record and so that there was a large volume of peat

from which to take samples for radiometric radiocarbon dating. Core CRM I was not

extracted from the transect, but approximately 10 metres to the west of it. Core CRM 11

was located 480m along the transect, CRM HI 30m along the transect and CRM IV was

extracted from 360m along the transect.

When extracted, core CRM I was wrapped in foil, sealed in cling film, placed in lengths

of wide diameter guttering and sealed in plastic bags. Subsequent cores were wrapped

in non-PVC clingfilm, placed in guttering and sealed in `Layflat' to prevent desiccation.

Dry peat samples tends to make tests brittle and prone to fracture (Warner, 1990). The

cores were wrapped in this manner to reduce any possibility of this. All samples were

returned to the laboratory, refrigerated at 6°C and were subsequently frozen for long

term storage.

3.6 Butterburn Flow (BBF)

Grid Reference: NY 678 771 Cumbria

Butterburn Flow is located in East Cumbria and is considered to be the most important

Sphagnum-rich blanket mire outside Scotland. "The Flow contains one of the most

extensive undamaged Sphagneta in Britain, of a type once widespread in the Scottish

Borders and the Pennines, but now rare and still diminishing" (Ratcliffe, 1977b:225). It

is the largest of the Irthinghead Mires. The current open conservation area is 365

hectares, the conservation unit afforested area is 91 hectares. Only 7.6% of the

conservation unit provides 'input', as the catchment area of the mire is only 34 hectares,

(White, 1994). Figure 3.7 is a site map of Butterburn Flow and shows transect and
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coring locations. Butterburn Flow is not included in the evaluation of the hydrological

boundaries of the Border Mires by Lowe (1993). The hydrological boundary for

Butterburn Flow is taken from White (1994).

Conservation status

Butterburn Flow was originally notified as a SSSI in 1959 and renotified in 1982/4.

Butterburn Flow was included as a constituent "Border mires: ICielder to Butterburn

Special Area of Conservation" (SAC) in 1995. Butterburn Flow is managed by English

Nature, North West Region, but is located within the Kielder Forest, owned by Forest

Enterprise, Bellingham (Table 3.1).

Vegetation

The surface is dominated by Sphagnum-rich facies. Drosera anglica (great sundew), D.

rotundifolia (round-leafed sundew) and Andromeda polifolia (bog rosemary) are

abundant (Ratcliffe, 1977b). The bog asphodel Narthecium ossifragum is also found at

this site. Near Butterburn Road on the western edge of the site, the vegetation is

dominated by Molinia caerulea, but it is still wet under foot (White, 1994). Barber

(1981:51) notes that there are two fairly distinct areas of vegetation which both seem

undamaged by drainage or peat cutting. South of the Lawrence Burn, which flows west-

east into the River haling, the bog is dominated by closely spaced hummocks. The

water table is high and the upper peat has a tendency to be sloppy in both the hummocks

and channels, which may pose a problem when coring in this area. To the north of the

Lawrence Burn there is a slightly undulating Sphagnum lawn which proved to be the

most useful for testate amoebae analysis. Microtopographic surface patterns are not

well developed at Butterburn Flow (Lindsay et al., 1988), although there are small linear

hollows scattered across the deepest parts of the site.

The bog is grazed and there is some damage to surface vegetation. The peat has been

compressed by the All Terrain Vehicle (ATV) used by the grazier to round up stock.

Grazing exclosures were set up in September 1988 by Charman and Smith (1992) in

conjunction with Forest Enterprise in order to monitor the long term effects of grazing,
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as this is the only mire in the area still grazed by sheep. The Garron tracked vehicle

used to transport the exclosure posts caused considerable damage to the bog surface.

Robinson (1993) notes that the exclosures were constructed in 1988 and the tracks

caused by the Garron were still clearly visible in aerial photographs taken in 1991.

Transportation in such a manner across a bog has been recognised as a mistake and is

unlikely to be repeated.

Hydrology

Butterburn Flow is bounded by the River Irthing to the north and east. To the south, the

Butterburn Flow SSSI is bounded by plantations of the Spadeadam Forest, but the

hydrological boundary extends considerably further south (Burlton, 1996). The

Lawrence Burn drains into the River Irthing at the northern end of the sites. Wreay Sike

and Black Sike flow into Stour Cleugh to the south (White, 1994).

Coring at Butterburn Flow

Figures 3.8 and 3.9 show the depth profiles for Butterburn Flow. There is another

section of ombrotrophic peat in the south of the bog (GR. NY 684 766), that may also

have been suitable for study, but due to time limitations, it was not possible to probe this

site and compare it to the area that was cored. Three cores were extracted from the

Sphagnum lawn to the north of the Lawrence Burn in September 1995, using the parallel

hole method. As at Coom Rigg Moss, two cores were extracted from the edges of the

mire and one from the centre. Extraction of a core from point zero on south-north

transect (Figure 3.8) was not possible due to a ridge to the south that may have

introduced surface run-off to the peat, making the ombrotrophic nature of the peat

doubtful. Also, the profile was not very deep at this point, making the potential record

short. The west-east transect (Figure 3.9) shows that although the profile depth at 120m

west was greater than 7.50m (the depth here could not be measured accurately due to

lack of probing poles), the surface peat at this point was severely eroded due to a

tributary of the Lawrence Burn forming in the area and so could not be sampled. BBF I

was extracted from 180m on the south-north transect, where the west-east transect

crosses it. BBF II was extracted from 180m on the west-east transect. BBF fil was

extracted from 390m on the south-north transect.
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3.7 The Wou (TW)

Grid Reference: NY 675 700 Northumberland

The Wou is located three miles north of Greenhead near the River h-thing within the

Northumberland National Park, Northumberland. In contrast to the majority of

peatlands in the Irthinghead Mire catchment, which are blanket bogs, The Wou is an

oligotrophic valley mire. The site has as an area of 178 hectares (439 acres) of which

136 acres cover the slope and floor of a long east-west basin. Figure 3.10 is a site map

and shows coring locations and transect sites. The SSSI boundary shows the mire

management unit, the hydrological boundary shows the input/catchment zone of the

mire (after Lowe, 1993).

Conservation status

This site was designated a Nature Reserve in 1968 and a SSSI in 1984 (Table 3.1). The

Wou was incorporated into the composite ICielder Mires SSSI in 1995 and was accepted

as an addition to the Irthinghead Mire composite post-publication of the Nature

Conservation Review and is thus not referenced in Ratcliffe (1977b). This site is also

on the RAMS AR list as a wetland of international importance. The Nature Reserve

consists of a large area of grazed acid grassland; valley mire and associated open water

and ombrotrophic bog. Two small raised mires are located at the south west end of the

site between The Wou and Ealan's Drain. The undisturbed poor-fen, raised mire and

open water structure are unique in Northumberland (Northumberland Wildlife Trust,

1993). The Wou is managed by the Northumberland Wildlife Trust (NWT).

Vegetation

The dominant surface vegetation of the bog is a carpet of bog-moss, mainly Sphagnum

recurvum. In bog pools and wet hollows Eriophorum angustifolium (common cotton

grass) is frequent and there are flushes of Carex rostrata (bottle sedge), Juncus effusus

(soft rush) and Men yanthes trifoliata (bog bean) (Nature Conservancy Council, NCC,

1984). The Wou also has rare sedges such as Carex curta (white sedge), C. limosa

(mud sedge) and C. magellanica (bog sedge), (NWT, 1993). The area is too wet to

support conifers and the site has never been drained or planted.
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The adjacent forestry may be affecting the water table but since there are no trees close

to the mire, the effect is likely to be insignificant (NWT, 1993).

Hydrology

The Wou poor-fen lies between and is related to in-flowing streams on the eastern and

south-eastern edges of the site and the out flowing Crammel Burn, a tributary of the

River Irthing at the west end.

Coring at The Wou

Four transects were taken across the widest part of The Wou (Figures 3.11-3.14), at the

base of Black Rigg. Figure 3.10 shows the location of these transects on the bog

surface. Cores from The Wou were extracted in September 1995. Cores TW I and DI

were extracted at the bottom of the slope from Black Rigg, Thurwell Common, from Om

on south-north transect I (Figure 3.11) and 15m on south-north transect ll (Figure 3.12)

respectively. This was to enable examination of slope processes such as run-off that

might affect the minerotrophic nature of the test assemblages. Core TW II was

extracted from the centre of the site, from 60m along west-east transect I (Figure 3.13).

It was not possible to extract the top 30-90cm of this core, since due to the extreme

wetness of the peat, no material was retained in the coring chamber. The dotted lines on

the west-east transect II (Figure 3.14) represent hypothesised depths as coring poles

were unavailable to probe to a greater depth.

Peat development in cores TW I and M was probably affected by runoff from Black

Rigg to the south of the mire. Peat formation in TW 11 may have been more influenced

by throughflow along the valley bottom along the east-west axis towards what is now

Ealan's Drain. The Wou will have been more affected by autogenic influences than

either Butterbum Flow or Coom Rigg Moss due to its hydro-geomorphology, from

runoff and through flow from the valley catchment. This is also reflected in the

stratigraphy of core extracted from The Wou (Chapter 7).
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3.8	 Site synthesis

The three sites selected have distinct morphological characteristics. Butterburn Flow

and Coom Rigg Moss are both intermediate ombrotrophic sites, between raised and

blanket mires and The Wou is a minerogenic valley mire. Testate amoebae analysis

from the multiple cores extracted from these sites enabled an assessment of the

replicability of the hydrological record both within individual sites and across a wide

area. The testate amoebae records from these sites have been evaluated at three spatial

scales (Table 3.2). At the micro-scale, a high precision study of the replicability of the

testate amoebae record has been undertaken over a short distance. At the meso-scale,

cores extracted from the centre and edges of the mires, have been used to attempt to

separate the autogenic and allogenic hydrological signals influencing mire development.

At the macro-scale, the hydrological records have been compared to assess whether

major hydrological fluctuations occur on a regional basis. All of the sites are

oligotrophic and so the transfer function developed by Woodland (1996) is applicable to

all of the cores.

Scales of Study Core Combinations

MICRO-

MESO-

MACRO-

CRM I & CRM IV

CRM I CRM II CRM III & CRM IV

BBF I BBF II BBF & III

CRM I CRM IV BBF I & TW II

Table 3.2	 Core combinations and scales of study

The following chapter sets out the various laboratory procedures applied to the peat

cores and the subsequent data analysis used in order that the hydrological record of the

peat bogs derived from testate amoebae analysis can be established.
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CHAPTER FOUR

Laboratory methods and data analysis

4.0	 Introduction

This chapter is divided into two sections. Part one discusses the palaeoecological

techniques adopted in this study, the justification for using each of them and their

usefulness and application. The procedures for stratigraphical description, subsampling,

testate amoebae preparation and analysis, pollen preparation and analysis and

radiometric radiocarbon dating are set out. The results of a set of experiments

undertaken in an attempt to improve upon existing testate amoebae preparation

techniques are presented. The taxonomic problems encountered in testate amoebae

analysis are illustrated and discussed. Part two sets out the rationale for using each

method of data analysis and presentation.

4.1	 Laboratory methods

Cores from Coom Rigg Moss and Butterbum Flow were held in cold storage (6°C) until

initial laboratory processing and were subsequently frozen. Cores from The Wou were

frozen and thawed before subsampling. Dried samples tend to make tests brittle and

prone to fracture and samples should be stored wet and refrigerated, or frozen (Warner,

1990). Frozen storage is preferable for test preservation (Tolonen, 1986). However,

freezing may distort the stratigraphy if the peat is water-saturated and the cores are

rigidly held (Aaby, 1986). Cores were held in wide diameter guttering so that there was

room for expansion and contraction of the cores on freezing and thawing. The peat

water content decreased by draining on removal from the mire which reduced the

possibility of the stratigraphy being distorted by freezing. Peat cores were cleaned and

the stratigraphy of each was recorded, following the sediment description system of

Troels Smith. The stratigraphical descriptions for each core are presented in Chapter 5

(Coom Rigg Moss), Chapter 6 (Butterbum Flow) and Chapter 7 (The Wou).
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4.1.1 Rationale for subsampling

The cleaned, uncontaminated cores were subsampled at 5cm intervals in the top metre

of each profile and at 10cm intervals throughout the rest of the cores. More closely

spaced sampling was undertaken in the top metre of each core, since on ombrotrophic

bogs, the sites should become more dependent upon precipitation over time. As the

central cupola becomes less influenced by runoff and groundwater, the surface rises

above and independent of, the water table and becomes more strongly influenced by

climate (Section 2.1.3). The climatic record should thus be more evident in the upper

peats than at depth down the cores, where the climatic signal is more likely to be

masked by autogenic factors. Closely spaced samples, at 5cm intervals, were also later

taken around the samples that were radiocarbon dated. These coincided with the major

fluctuations in the species assemblages and the reconstructed water table curves. Each

sample was lcm thick. Subsamples of this size were taken to ensure enough material

for and the accuracy of, replicate samples for the testate amoebae and pollen analysis.

Whilst closely spaced sampling would have been desirable throughout each core, it was

not possible to process the large number of samples that this would have generated.

This resolution of sampling provides data of a quality high enough to both assess the

replicability of the testate amoebae record and separate the hydrological signals

indicated by the reconstructed water table and moisture curves. Assuming an

accumulation rate of 1 cm per 10 years, sampling yields a resolution of 100 years for

lower samples (between two samples) and 50 years for upper samples back to circa

1000AD. There are better instrumental and independent climatic data for the last 1000

years against which to compare the testate amoebae data, for example, Lamb's climatic

indices (Lamb, 1977).

Horizons where the concentration of tests was too low to count are left blank. For

individual cores, testate amoebae diagrams are plotted relative to depth (cm). The

diagram of fossil testate amoebae shows changes in fauna composition as peat

accumulated.

At present there is no single key for the identification of testate amoebae. Instead,

several sources were used in conjunction, with careful cross-referencing. The main

texts include Grospietsch (1958), Corbet (1973), Ogden and Hedley (1980), Ogden

(1983) and Ellison and Ogden (1987). Ogden (1980, 1983, 1984) and Ogden and
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Hedley (1980) use SEM photographs to illustrate the tests but often comparison of the

image to that seen under the microscope is difficult. For routine counting with light

microscopy, the photomicrographs give a better representation of the test. Fine structure

characteristics observed under SEM are not seen during routine counting and are

therefore less useful. Microscope slides borrowed from the Penard Collection held at

the British Museum (Natural History) have been invaluable to confirm identification of

several species and have been used to develop a photographic reference collection of

testate amoebae.

4.1.2 Testate amoebae preparation procedure

The method used to process peat for testate amoebae analysis is a new, modified

technique, based on that of Warner (1990), who developed the method of Tolonen

(1986) for laboratory processing, to produce samples suitable for quantitative analysis.

Evaluations of the variety of preparation procedures for testate amoebae samples

extracted from peat are set out in Hendon and Charman (1997) and below.

Preparation experiments

The aim of the following experiments was to attempt to quantify the impact of different

procedures on the concentration and species composition of the faunas. Improvements

to the testate amoebae preparation procedure that is currently used were also sought, in

order to make the microscope slides cleaner and therefore make counting more efficient.

Descriptions of methods for preparation and counting of testate amoebae are varied,

although Tolonen (1966, 1986) provides the closest to a standard procedure.

Techniques which have been used are divisible into two groups; those based on pollen

preparation and those which are chemically less intensive and specifically for testate

amoebae analysis. Studies based on pollen preparations offer time savings, in that

pollen grains and testate amoebae can be counted simultaneously, but they may not

provide the most reliable data. Also, many such studies only include testate amoebae

analysis because tests happen to occur on pollen slides and testate amoebae analysis is

included in studies in a post hoc way. Separate preparations specifically for testate

samples have been generally recommended because of the suspicion of differential

damage from chemical techniques (Tolonen, 1986). However, no attempt has been
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made to assess the level of damage from each chemical preparation or to adapt

preparation procedures for more humified peats where large amounts of fine organic

material can make counting difficult by obscuring smaller tests. This section describes

the results of previous work and reports results of experimental preparations based on

different treatments.

Previous work

Tolonen (1966, 1986) modified the method of Grospietsch (1955, 1958) and variants of

this procedure have been widely used in the preparation of modern samples (Tolonen et

al., 1992, 1994; Warner, 1987, 1990; Woodland, 1996). The technique is simple, with

disaggregation of the sample in boiling water followed by sieving through a mesh. The

main difference in previous preparation techniques has been the size of the mesh used to

sieve samples. Warner (1987, 1990) and Tolonen et al. (1992) used a coarse sieve; a

'kitchen tea strainer', with a mesh size of 750 gm. This is rather large, as most peatland

tests are not greater than 2001im. Some species of Difflugia (e.g. D. oblonga and D.

claWfonnis) do exceed 2001.tm (Ogden and Hedley, 1980), but Woodland (1996) found

that sieving with a 300inn mesh provided far cleaner microscope slides without the loss

of tests.

Although a number of palaeoecological studies have used this kind of preparation

technique (Tolonen, 1966; Van der Molen and Hoekstra, 1988; Warner, 1990, 1991;

Warner and Channan, 1994) most studies have based analysis on slides prepared for

pollen analysis (e.g. Aaby and Tauber, 1975; Aaby, 1976; Barber, 1981; Smith, 1985;

Wimble, 1986; Van Geel and Middledorp, 1988; Van der Molen et al., 1995; Dwyer and

Mitchell, 1997). Most of these studies are undertaken because testates are found on

pollen slides and look interesting, rather than their analysis being integral to the initial

aims of the study. Results from these studies have been viewed with varying degrees of

enthusiasm.

Tolonen (1986:652) stated that "a rather common practice is to count rhizopod

frequencies as a percentage of some basic pollen sum in connection with pollen

analysis". This approach is of limited value; firstly, there is selective destruction of the

tests in the chemical treatment necessary for pollen preparations, although he did not
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quantify this destruction. Secondly, the process of accumulation of pollen grains is

quite different from the 'local' moss-inhabiting testate amoebae. The main taphonomic

difference is that testate amoebae are found in situ, only on rare occasions their presence

may be the result of being blown by the wind during exceptionally dry periods (Medioli

eta!., 1990).

Aaby and Tauber (1975) and Aaby (1976) used testate amoebae in conjunction with

humification analysis on peat extracted from Draved Mose, Denmark. Tests were

counted "routinely, together with pollen and spores, leaving only two species intact after

chemical treatment" (Aaby and Tauber, 1975:3). According to Aaby (1976:281)

"Population frequencies (of testate amoebae) reinforce indications of past changes in the

water regime of the bog, as reflected in the humification curve". Barber (1981:72) was

less enthusiastic, suggesting that in a macrofossil-based study, little information could

be gathered from testate amoebae counted on pollen slides. Only two taxa were

recovered from his samples from Bolton Fell Moss, Cumbria.

Wimble (1986) counted testate amoebae along with pollen to "save time". Although no

HF treatment was used, only a few species were recovered. The results were not

straight forward and he recommended more detailed analyses. Wimble (1986)

expressed the results as absolute concentrations of tests per cm3 of peat and calculated

this from the exotic pollen data.

Van Geel and Middledorp (1988) counted testate amoebae along with any other

recognisable palynomorphs found in pollen preparations. Three species of testate

amoebae were found, along with spermatophores of Copepoda and various fungal

spores. Van der Molen and Hoelcstra (1988) used a combination of pollen preparation

and water based preparation in their study. Eleven species were recovered from the peat

treated with the testate amoebae preparation, whilst only two species were recovered

from the pollen preparation. In the light of this they recommend separate rhizopod

analysis if reliable results were required (Van der Molen and Hoekstra, 1988).

However, Van der Molen et al. (1995) did not use separate testate amoebae analysis for

their work on the hummock-hollow complexes on raised bogs in the Irish Midlands and

only six species were counted from pollen slides.
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The two taxa most commonly found in pollen preparations are Amphitrema flavum and

Assulina spp. This may be either due to their resistance to chemical treatment or the

fact that these taxa are easy to identify. Plate 4.1 illustrates Amphitrema flavum, Plate

4.2 illustrates Assulina muscorum and Plate 4.3 Assulina seminulum. These species are

also illustrated in van Gee! (1978); A. flavum (Type 31A), Assulina muscorum (Type

32A) and A. seminulum (Type 32B). The only other testate species identified by van

Geel (1978) is Hyalosphenia subflava (Type 46). Since this is a text which is used to

identify unknown microfossils, it would seem that these are readily identifiable from it,

whereas other testates that may be in these pollen samples are more likely to be

overlooked. The recovery of these taxa is likely to cause significant bias in the

interpretation of peat bog hydrology. A. flavum is an indicator of wet conditions, with

>95% peat water content (Corbet, 1973; Tolonen, 1966; Tolonen et al., 1992; Warner,

1987). A. muscorum is regarded as a cosmopolitan species (Warner, 1990), while A.

seminulum indicates relatively dry conditions, with a peat water content of between 78-

89% (Tolonen et al., 1992; Warner, 1987) (Table 2.6). In addition, despite the assertion

of Aaby (1976, above), it is possible that the entire complement of these taxa does not

survive the pollen preparation process and that fluctuations in the resultant curves

merely represent minor differences in preparation timing and peat type;

Methods

A peat core from 70-100cm depth was extracted with a wide-bore Russian corer from

Coom Rigg Moss in November 1994, close to the location for core CRM L This depth

was used in order to be below the acrotelm-catotelm boundary and within the well

preserved ombrotrophic peals. Five replicates of each of six subsamples were taken at

five centimetre intervals. Each set of replicates was subjected to a different preparation

procedure (Table 4.1). The peat was of uniform stratigraphy between 70-100cm

consisting of partially decomposed Sphagnum peat with stems preserved and some

Eriophorum remains [Troels-Smith description - fig 4; strf 4; elas 2; sicc 1; humo 2;

Tb3 (Sphag); Th l Eriophorum angustifolium].
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Plate 4.1	 Photomicrograph of Amphitrema flavum Archer 1877

Typically 45-70gm long

Plate 4.2	 Photomicrograph of Assulina muscorum Greef 1888
Typically 46-58Rm long

Plate 4.3	 Photomicrograph of Assulina seminulum Ehrenburg 1848
Typically 60-68[m long



The methods used in these experiments were chosen to reflect the range of preparation

techniques used in published work and as potential methods which would exploit some

of the advantages of pollen preparation, while avoiding some of the more damaging

procedures. All samples were prepared with 1 cm3 peat and one Lycopodium tablet

(Stockmarr, 1971), to calculate concentrations, mounted in glycerol and counted at x400

magnification. For each sample, 200 Lycopodium spores were counted. Raw count data

are presented in Table 4.2. Percentage data are shown in Figure 4.1. Raw count data

are equivalent to concentration data as the same number of Lycopodium spores were

counted in each sample. The rotifer Habrotrocha angusticollis was included in the

count.

Preparation A is a modification of Tolonen (1986), with the .smaller sieve size (30011m),

discussed above plus a micro-sieve (151.tm) to remove fine detritus and improve slide

clarity. Preparations B, C and D are standard pollen preparations (Moore et al., 1991),

with variations in alkali treatment and acetylation periods. Preparation B includes a

3001.m sieve rather than the standard 180gm sieve used in pollen preparation, to see if

additional testates were recovered. Preparation E is a simple KOH digestion. KOH

alone can produce reasonable pollen slides from certain peats (Moore et al., 1991),

although the quality of pollen grains and spores may not always be as good as when the

samples are acetolysed. This technique may therefore be suitable for pollen and testate

amoebae analysis.

Treatment A B C D E

Boiling water (10 mins)

10% NaOH (10 mins)

+

-

-

+

-

-

-

+

-

-

10% KOH (10 mins) - - + - +

Acetylation (10 mins) - + - - -

Acetylation (3 mins) - - + + -

Sieve (300i.un) + - + .. +

Sieve (1801.un) - + - + -

Micro-sieve (15gm) + - - - -

Table 4.1	 Summary of treatments for sample preparation,

+ indicates treatment carried out
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Figure 4.1 Testate amoebae percentage diagrams from five preparations A-E.

A: modified Tolonen (1986), B: NaOH + 10 min acetylation + 180[un sieve, C: KOH +
3 min acetylation + 3001.tm sieve, D: NaOH + 3 Min acetylation + 180gm sieve, E:
simple KOH digestion + 3001.m sieve.
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Results

Table 4.2 presents raw count data. Table 4.3 summarises the counts from each of the five

treatments in terms of the taxa represented and Figure 4.1 presents percentage diagrams.

The taxonomy presented here varies slightly from that in Hendon and Charman (1997) as

the taxonomy has been modified in line with Charman, Hendon and Woodland (in prep.).

The percentage diagrams are a useful representation of the sorts of differences which

would occur in conventional presentation of results from different procedures. However,

this can be misleading, as for example, Hyalosphenia subflava comprised less than ten

percent of sample 3 in preparation A, although 22 tests were counted. However, in

preparation C, on the same sample only four tests of this species were counted, but this

comprised almost 20% of the total count. For this reason, the raw counts are better for

comparing the different types of preparation procedure.

Pollen preparations B-D

In all three pollen preparation experiments with acetylation, only approximately one fifth

of the potential tests were recovered, when compared to the testate amoebae preparation

(A). An acetylation time of ten minutes may be slightly more destructive than a three

minute acetylation, but a significant number of tests and half the potential diversity of

species are still destroyed even with this less harsh treatment. Whether NaOH or KOH is

used for the deflocculation of peat prior to acetylation does not appear to affect the

outcome, as preparations C and D have very similar results at the same length of

acetylation. In these samples the mesh size does not appear to make any significant

difference because none of the larger species of testate amoebae are present; with other

peat samples it is likely to do so. A 300pm mesh is recommended over 180pm where the

loss of tests is more likely.

All three of these treatments show a loss or large reduction in the species Arcella gibbosa,

Difflugia pristis type, Euglypha rotunda, Heleopera petricola, Nebela flabulellum and

Cyclopyxis arcelloides type. Of these, the loss of D. pristis type is especially severe as it is

present consistently and in high concentrations in preparations A and E. The contrast

between preparations E and B-D confirms that acetylation is the most damaging treatment

and may particularly affect agglutinated taxa such as D. pristis type.
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Taxa A B
Treatment

C D E

Amphitrema flavum + + + + +
Amphitrema wrightianum + - + + +
Arcella discoides type + + + + +
Arcella gibbosa + - - +
Assulina muscorum + + + + +
Assulina seminulum + + - + +
Difflugia pulex + + + + +
Cyclopyxis arcelloides type + - + - +
Difflugia pristis type + - - +
Euglypha rotunda type + -
Heleopora petricola + - - +
Hyalosphenia subflava + + + + +
Nebelaflabulellum + -
*Habrotrocha angusticollis + - + + +
Amphitrenta stenostoma - - - - +
Bullinularia indica - - - - +
Cent ropyxis aculeata type - - -' +
Trigonopyxis arcula - - +

Total no. counted in 6 samples 835 123 146 150 1744
Total no. taxa 14 6 8 8 16

Table 4.3	 Summary of taxa recorded in six samples from the five preparation
treatments. The taxa are identified to species level except where
named as a 'type', when more than one species may be represented.
Taxonomy follows Charman, Hendon and Woodland (in prep.).
*Habrotrocha angusticollis is a rotifer.

The loss of some taxa is not a problem, as long as their absence is not used in

reconstructions of water tables and moisture content. However, for those species present

in moderately high concentrations, it is evident that concentrations are reduced (e.g.,

Amphitrema flavum). Moreover, when percentage diagrams are compared (Figure 4.1),

preparations B-D give very different results to those in preparations A and E. Surviving

taxa are over-represented (Arcella discoides type, Amphitrema flavum and Assulina

muscorum) and some trends in the diagram are changed. For example, an increasing curve

in A. flavum (Preparation A) appears as a reducing curve in preparations B-D. Although

counted totals are low, this suggests that testate amoebae counts from such preparation

procedures are unlikely to be reliable.

Preparations A and E

The results from preparations A and E are comparable based on the concentrations and

total number of taxa recorded and are clearly superior in terms of the quality of the record.
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However, there are a number of important and surprising differences between the results

of the two procedures. The species assemblage of both sets of preparations are similar,

although four species present in preparation E are absent from preparation A and two

species present in preparation A are absent from preparation E. However, these are all

taxa which have very low counts (<3% of total) and these differences are probably an

artefact of the count totals used. Normally counts of 150 tests are achieved, as this has

been shown to represent the fauna adequately (Woodland, 1996). Using 200 Lycopodium

as a count total means that some counts fall below this criteria. The patterns of change in

the percentage diagrams are almost identical, with the exception of a larger count of D.

pristis type in the basal sample of preparation E. This appears anomalous and could be

due to a real difference in the samples, as biostratigraphic change may not be exactly

horizontal in the core. Homogenisation of the samples prior to splitting into replicates

would have avoided this problem.

The most striking difference between the preparations is that concentrations in E are

almost twice those of A. This is perplexing, as preparation A is theoretically the least

damaging of the procedures. The most likely explanation is that KOH treatment disperses

the sediment more effectively than disaggregation in boiling water. As a result, a

significant amount of tests are retained on the 300pm sieve reducing the overall

concentration counted in preparation A. From comparison with the KOH treatment, this

does not appear to affect taxa differentially. Both procedures appear to yield good quality

data but the counting of treatment E was hampered by poor test preservation. Tests

appeared damaged and many features were altered or removed. This did not result in a

total impediment to identification but problems could occur in some species assemblages

where identification is more difficult. In addition, where original preservation is poor,

further damage may make identification impossible.

Conclusion

These preparation experiments demonstrated clearly that both the concentration and

number of testate amoebae taxa recorded in samples subjected to conventional pollen

analysis will be severely reduced. Whether expressed as concentration or percentage

diagrams, the data are unlikely to represent real changes in the fossil record. Large

changes in species assemblages may be detected, but it seems unlikely that relatively

subtle fluctuations in abundance will be found. To avoid the selective destruction of
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testate amoebae species and the destruction of as much as 80% of the potential

assemblage, it is recommended that tests are never counted in conjunction with pollen

analysis. Of the species found in every type of preparation, it is interesting to see that A.

flavum and A. muscorum are present in each type of pollen preparation, albeit under-

represented when compared to the water based preparation. There is no correspondence

between the nature of test construction and the level of test destruction from chemical

treatments.

The remaining treatments both give good results for these particular samples. However,

the KOH treatment may produce unacceptable damage in some cases and makes

identification of tests more difficult. The introduction of back-sieving with a 15pm mesh,

after sieving with a 300pm mesh, to remove fine fraction detritus, humic acids, salts and

other colloids greatly improves the clarity of the microscope slides. In this study, it has

been especially useful in highly humified peats, which tend to produce slides with a large

proportion of fine detritus. Although it is not possible to quantify the level of

improvement, small tests such as D. pulex that are often masked by detritus are far easier

to count after micro-sieving. Generally, the counting is more efficient without any

addition to the length of the preparation procedure. The time taken to micro-sieve is

compensated for by the reduced length of time taken to centrifuge the samples in order to

be left with the concentrate. The procedure below, modified from Tolonen (1986),

Warner (1990) and Woodland (1996) is therefore recommended as being the most

efficient and accurate for work with subfossil testate amoebae. This method was adopted

in the research described in this thesis.

Preparation procedure

1 Subsample peat core and place a known weight (e.g., 2g) in a 250m1 beaker.

2 Add three tablets of the inoculum Lycopodium clavatum L. (Stockman.,1971) as an

exotic marker to give quantitative rhizopod analysis.

3 Boil the samples in 150m1 distilled water for 10 minutes and stir occasionally to

disaggregate the peat.

4 Wash each sample through a coarse sieve (300p.m mesh) to remove the coarse

detritus and back-sieve through 15p.m mesh to remove the fine fraction detritus with

distilled water. Retain material between 15pm and 300p.m.
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5 Wash the remains of each sample into centrifuge tubes and centrifuge at 3000rpm

for five minutes.

6 Pour off supernatant and stain the concentrate of tests with two drops of safranine-O,

wash twice with distilled water.

7 Store the concentrate in glycerol, in stoppered vials.

8 Smear a small drop of concentrate onto a microscope slide and cover with a 50mm

coverslip, seal with clear nail varnish. A new pipette is required for each sample to

avoid contamination (Tolonen, 1986).

Mounts are made with microscope slides rather than counting from a petri-dish (e.g.

Medioli and Scott, 1983; McCarthy et al., 1995), as all of the smaller species are

unlikely to be picked out from a petri-dish. The method recommended by Scott (pers

comm.) involves wet sieving through a 45tim sieve (631.1m sieve, Medioli and Scott,

1983) to remove organic detritus and picking from an open petri-dish. This is a suitable

technique for lacustrine samples with large tests, but most peatland taxa are too small

(<631.un) to be identified under a low-power microscope. Recent work on saltmarsh

faunas shows a large increase in diversity and concentration of tests when the <63gm

fraction is analysed and compared to the >63iim fraction (Charmati et al., 1998, in

press).

The counting of the tests was undertaken along systematic transects on an Olympus

Microscope at x400 magnification, under plain transmitted light and at x1000 under oil

immersion for difficult tests. Warner (1990) recommended a minimum count of 200

tests per level and no less than 100 to achieve a reasonable representation of the

diversity of species in the fossil fauna assemblage. However, Woodland (1996) found

that counts of 150 tests were sufficient to gain a representative sample of the fauna.

This number was achieved by recording the number of individual tests and taxa counted

per sample and plotting these data cumulatively. The plots show a large increase in

species diversity early in counting, but as the number of individuals counted increases,

the species diversity stabilises. Counts in excess of 150 tests are unlikely to identify

additional species that would be significant to the assemblage. In this study, 150 tests

per level were counted, or one thousand Lycopodium innoculum, where the

concentration was too low to make the former possible. The rotifer Habrotrocha
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angusticollis was included in addition to the testate amoebae counted, as this is

considered to be an indicator of extreme wetness (de Graaf, 1956; Tolonen, 1966).

However, H. angusticollis was left out of all data processing, as there is no modern

analogue value for it.

4.1.3 Pollen preparation procedure

Skeleton pollen analysis was undertaken on all cores to enable biostratigraphical

correlation of the radiocarbon dates within the sites. Correlation is based on assemblage

biozones characterised by particular pollen taxa. The temporal dimension involves the

study of the biostratigraphy of each core, the spatial correlation involves comparing the

cores within and between the sites. Pollen samples were taken every 20cm and at higher

resolution (every 5cm) at the anthropogenic Pinus rise (APR) at the top of each profile.

Assuming an accumulation rate of 10 years per centimetre, there is ca. 200 years

between pollen samples, which is a low resolution but provides an indication of the

major changes in vegetation history. One hundred and fifty land pollen (TLP) were

counted at each level along with aquatics and spores. Preparation followed Moore et al.

(1991) and taxonomy followed that of Stace (1995).

4.1.4 Taxonomic problems

The taxonomy of testate amoebae is not straightforward (Meisterfeld, 1979). There has

been a lack of clear, recent guides to identification, with publications based on modern

specimens not fossil material. The identification guides that have been published are

often not ideal for routine counting, with the line drawings of Ellison and Ogden (1987)

often lacking crucial detail and the SEMS used by Ogden and Hedley (1980) and Ogden

(1980, 1983, 1984) often difficult to translate for use during light microscopy.

Descriptions of extant taxa are confused and descriptions of the same species by

different authors can be contradictory, with similar or identical specimens given

different names. This leads to inconsistency. Furthermore, early publications with the

original notifications of species are often difficult to come by and can be confusing as

they refer to old names for some species which have either changed or transferred to

other genera. In addition to this, some notifications of new species are given with scant
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notes and without illustrations. This has on occasions led to over-splitting of taxa on the

basis of poor descriptions, for example, Decloitre (1962, 1976) and Gauthiere-Lievre

and Thomas (1958).

These problems which arose during the this study have been addressed by the

compilation of a practical and comprehensive guide to testate amoebae which should

provide a reliable means of identification that can be consistently repeated by several

workers (Charman, Hendon and Woodland, in prep.). The main taxonomic issues

encountered prior to the preparation of the identification guide are discussed below.

During the course of routine counting of testate amoebae, a species was recovered in

large numbers that could not be identified using any of the literature held in the

laboratory at that time. The taxon was thought to belong to either the genus Difflugia,

Cryptodifflugia or Pseudodifflugia, but no record could be found of it in any texts, or in

the Penard slide reference collection held at The British Museum (Natural History). The

test is elongate to ovoid, 50-70gm in length and is at least 1.5 times as long as broad

with a small, terminal mouth. The test has a curved aboral region, is composed of

agglutinated particles and is red or dark brown in colour, with occasional black

fragments at the margins. Organic cement fragments and organic matter are visible.

Plates of this taxon are shown in Plates 4.4 and 4.5. Plate 4.4 shows an example that

has a slightly diffuse mouth. Plate 4.5 shows a specimen with a more pointed aboral

region and a slightly constricted aperture. This illustrates the variations within the taxon

and raises the question as to whether they are the same species, showing a natural

continuum of variations, as discussed in Section 2.2.4 (sensu Medioli and Scott, 1983),

or whether they are separate taxa.

Photomicrographs and microscope slide samples of this taxon were sent to seven

academics who have each published extensively on testate amoebae recovered from peat

bogs and lacustrine sediments. Suggested identifications included Pseudodifflugia spp.,

Difflugia oblonga, D. bacillifera D. pristis and Cryptodifflugia paludosa. One person

could not offer any suggestion as to what the identification of this species was. Two

people suggested Pseudodifflugia spp. as a possibility. One researcher suggested that

the samples were of both D. oblonga and D. bacillifera in different communications.

Another researcher could only confirm that it was probably a species of Difflugia.
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Plate 4.4	 Difflugia pristis type a Penard 1902. Typically 51-58).tm long

Plate 4.5	 Difflugia pristis type b Penard 1902. Typically 51-581.tm long
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D. oblonga was discounted as it is generally 100-150jim in length, pyriform, about 2-3

times as long as broad, rounded posteriorly and tapering to the aperture. The test is

usually coated with opaque mineral particles (Grospietsch, 1958; Gauthier-Lievre and

Thomas, 1958; Corbet, 1973; Ogden, 1983). From this description it is clear that the

specimens recovered are not D. oblonga.

D. bacillifera is a pyriform taxon, 120-180gm in length and is coated with diatom

frustules (Grospietsch, 1958; Gauthier-Lievre and Thomas, 1958; Corbet, 1973; Ogden,

1980). Again, the specimens recovered do not fit this description.

The Pseudodifflugias (including: P. fasicularis, P. fulva, P. gracilis and P. horrida) are

a problem to identify to species level, due to poor taxonomic treatment of the group

(Warner, pers, comm.). The most likely species is P. fulva as it is ovoid, agglutinated

and yellow to light brown. However, the length of the shell was considered too small,

as it is only 15-30gm (Ogden and Hedley, 1980).

Cryptodifflugia paludosa is not included in the key for the Cryptodifflugias (Page,

1966), but since the generic term is applied to taxa with pseudopodia intermediate

between lobose and filose, it is unhelpful for fossil studies. The suggestion that the

specimens were of Cryptodifflugia paludosa Golemansky was discounted when samples

were sent to Golemansky, who denied that they were C. paludosa, since it is only found

in the littoral zone, not in peat or moss (Golemanslcy, pers. comm.) and who suggested

that they were D. pristis.

The suggestion that the species is Difflugia pristis has been accepted after finding the

original authority, Penard 1902 (page 254). Penard (1902) describes the test as ovoid,

from 45-651.un length. The xenosomes are composed of quartz fragments and droplets

of siliceous material. The mouth is terminal, rounded and relatively small.. This species

is now regarded as part of the Difflugia pristis type by Charman et al. a (in prep.) which

also contains D. fallax and the taxa recorded as D. angulostoma and D. pulex by

Woodland (1996).

This illustrates well one of the major problems with the taxonomy of testate amoebae.

The range of possible names that may be attributed to the same species suggests that

internationally, the identification of species is not uniform, in some cases the
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identification being far removed from the original authority. The application of a

transfer function to a species assemblage identified from the range of literature available

is therefore likely to contain large variations and inherent errors. It is important that

taxa in the fossil data set are identified consistently with the taxa in the training set. If

the same taxa are found in both data sets but are named according to different

nomenclatures, the reconstructed hydrological models will not accurately reflect mire

surface wetness at the time of peat accumulation. This view is supported by Tolonen

(pers. comm.) who is concerned about 'serious weaknesses in the taxonomic

uncertainties among many genera'. The guide by Charman et al. a (in prep.) should

greatly assist with solving this problem, at least for oligotrophic peatlands in the British

Isles. These problems are not the same for all genera. Difflugia is particularly bad, but

the Amphitremas and Nebelas are agreed on by almost all workers.

Table 4.4 is included in this chapter, since it puts into context taxa found in this study in

relation to the taxonomic classification of Charman, Hendon and Woodland (in prep.).

These taxa are found in the cores extracted from Coom Rigg Moss, Butterbum Flow and

The Wou, and the data are presented in Chapters Five, Six and Seven respectively. The

use of these descriptions of the hydrological requirements of the taxa found in this study

must be approached with caution, since the methods adopted in each study vary and the

mires are from vary different and not necessarily directly comparable locations. The

Canadian work (e.g. Warner 1987; Warner and Charman 1994; Charm= and Warner

1997) is from continental mires, which, from their locations are expected to be drier

than the oceanic mire types found in Britain. This may affect the tolerance ranges of the

testate amoebae found in these varying sites and this should be remembered when using

this information for interpreting the results.

Zones in the testate amoebae diagrams in Chapters Five-Seven can be interpreted

qualitatively on the basis of published information. Interpretations on this basis can

only be very broad, since the data are derived from studies on both oceanic and

continental bog testate amoebae assemblages that may have different ecological

requirements, tolerances, or affinities (Section 2.2.5). Taxa have been classified

according to varying criteria in Table 2.6 and Table 4.4. Some taxa. have been classified

as 'wet', 'moderately wet' and 'dry', whilst others have been classified on the basis of

the percentage water content of the moss polsters from which they were collected.
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AuthorPeat water content / habitatTaxa Included *Taxonomic Group

Amphitrema flavum

Amphitretna stenostoma

Amphitrema
wrightianum

wet conditions
87.9-95.1% water content
95% water content
bog pools - wet
water table optimum 15.04cm
water table optimum 10.27cm
found with A. wrightianum
bog pools
water table optimum 6.54cm
bog pools - wet
95% water content
90% water content, hydric taxon
water table optimum 4.07cm

Tolonen 1966
Tolonen et al. 1985
Tolonen eta!. 1992
Warner 1987
Warner 8c Charrnan 1994
Charman & Warner 1997
Corbet 1973
Tolonen 1986
Charman & Warner 1997
Corbet 1973
Tolonen et al. 1992
Warner 1989
Charrnan & Warner 1997

Arcella art rocrea

Arcella catinus type A. catinus

A. arenaria

Arrella discoides type

A. rotunda var aplanata

Tolonen 1986

de Graaf 1956
Warner & Charnrian 1994
Channan & Warner 1997
Tolonen 1986

Tolonen 1986
Tolonen eta!. 1992
Warner 1987
Warner & Charman 1994
Charman & Warner 1997
de Graaf 1956

hydrophilous

uncertain status
water table optimum 9.06cm
water table optimum 9.81cm
xerophilous

submerged or very wet Sphagnum
>95% water content
very wet
water table optimum 8.98cm
water table optimum 0.91cm
hydrophilous

Arcella vulgaris

Assulina muscontm Corbet 1973
de Graaf 1956
Tolonen et at 1992
Warner 1987
Warner 1990
Warner & Channan 1994
Charman & Warner 1997

Assulina seminulum

Bullinularia indica

common - both bog and fen
Sphagnum
xerophilous tendency
85-90% moisture content
hydro-xerophilous taxon
cosmopolitan
water table optimum 42.53
water table optimum 17.44cm
hygrophilous
bog hummocks
water table optimum 39.29cm
water table optimum I3.95cm
xerophilous
bog hummocks
xerophilous Um,
hummock Sphagna
xerophilous taxa, <85% water content

de Graaf 1956
Corbet 1973
Warner & Charman 1994
Gutman & Warner 1997
de Graaf 1956
Heal 1964
Tolonen 1966
Tolonen 1986
Tolonen et al. 1992

Centropyxis aculeata
type

de Graaf 1956
SchOnbom 1962
Tolonen 1986
Warner 1987
Warner & Charman 1994
Charman & Warner 1997
de Graaf 1956Centropyxis cassis type C. cassis

C. aerophila type

C. aerophila vat
sphagnicola
C. aerophila var
sylvatica

Warner & Chamian 1994
Carman & Warner 1997

aquatic habitats
aquatic habitats
hydrophilous taxa
very wet conditions
water table optimum 24.35cm
water table optimum 6.18cm
hygrophilous, submerged & wet
mosses
water table optimum 20.53cm
water table optimum 5.16cm

Cyclopyxis arcelloides

tYPe

C. arcelloides moderately dry, 78-89% water
content
<80% water content
moderately dry, 78-89% water content
ponds, shallow reatland pools and
very wet Sphagnum soils -
water table optimum 32.01cm
water table optimum 4.69cm

Warner 1987
Warner 1989

Warner 1990
Warner & Channan 1994
Carman & Warner 1997

Centropyxis eutystoma

C. minuta

Phtyganella acropodia Warner 1987

Warner 1990

SchOnbom 1962

Meisterfeld 1977

moderately wet, 90-95% water
content
moderately wet, 90-95% water
content
dry mosses

moderately dry conditions
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Difflugia acuminata

Difflugta bacillifera

Difflugia globulosa

Difflugia lanceolata

Difflugia leidyi

Difflugia lucida

Difflugia oblonga type

Difflugia pristis type

Difflugia pulex

Difflugia rubescens

D. oblonga

D. prints

D. angulostoma

Cryptodifflugia
paludosa
D. fallax

bog pools
hydrophilous taxon
Sphagnum pools
hydrophilous taxa
bog pools
water table optimum 2.19cm
aquatic habitats

bog pools

very wet Sphagnum
water table optimum 11.00cm
water table optimum 5.25cm

aquatic

hydrophilous

Cash & Hopkinson 1909
de Graaf 1956
Cash & Hopkinson 1909
de Graaf 1956
Corbet 1973
Channan & Warner 1997
de Graaf 1956

Cash & Hopkinson 1909

de Graaf 1956
Warner & Charman 1994
Channan & Warner 1997

Cash & Hopkinson 1909

de Graaf 1956

Euglypha rotunda

Euglypha strigosa

Euglypha tuberculata

damp & wet mosses
water table optimum 38.91cm
water table optimum 18.41cm
bog hummocks

water table optimum 36.55cm
water table optimum 14.43cm

Hedley & Ogden 1973
Warner & Charman 1994
Charman & Warner 1997
Heal 1961

Warner & Channan 1994
Chamian & Warner 1997

Heleopera petricola

Heleopera rosea

Hekopera sphagni

Hekopem sylvatica

very wet Sphagnum
ecology variable and disputed
ecology variable and disputed
95% water content
water table optimum 31.08cm
water table optimum 7.27cm
bog hummocks and drier Sphagnum

0-hygrophilous taxon

drier mosses
water table optimum 23.37cm
water table optimum 23.22cm

de Graaf 1956
Tolonen 1986
Warner 1987
Tolonen et al. 1992
Warner & Charman 1994
Quinlan & Warner 1997
Jung 1936

de Graaf 1956

Tolonen 1986
Warner & Charman 1994
Charmhn & Warner 1997

Hyalosphenia elegans

Hyalosphenia papilio

Hyalosphenia subflava

very wet to wet Sphagnum, a-
hydrophilotts
bog hummocks
95% water content
moderately wet, 90-95% water
content
water table optimum 26.26cm
water table optimum 21.59cm
very wet Sphagnum
wet Sphagnum in bog hummocks
95% water content
moderately wet, 90-95% water
content
>90% water content moderately wet,
90-95% water content
water table optimum 9.87cm
water table optimum 17.74cm
moderately city, 78-89% water
content,
<80% water content
water table optimum 49.92cm
water table optimum 22.81cm

de Graaf 1956
Corbet 1973
Tolonen et al. 1992
Warner 1987
Warner & Charman 1994
Charman & Warner 1997

de Graaf 1956
Heal 1961
Tolonen et aL 1992
Warner 1987
Warner 1989
Warner 1990
Warner & Chairman 1994
Charm= & Warner 1997

Warner 1987
Warner 1989
Warner & Chum= 1994
Chamian & Warner 1997

Lesquereusia spp. hydrophilous de Graaf 1956

Nebela barbaruia

Nebela carinata

Nebela collaris

Nebela flabellulum

Nebela griseola

Nebela marginata

hydrophilous taxon

wet or very wet Sphagnum
bog pools
water table optimum 1.09cm
moderately dry conditions
moderately wet, 90-95% water
content
Sphagnum in bog hummocks
water table optimum 30.04cm
very wet to aquatic Sphagnum
water table optimum 11.14cm
a-hygrophilous taxon
water table optimum 6.89cm

de Graaf 1956

Jung 1936
Heal 1964
Charman & Warner 1997
de Graaf 1956
Warner 1987

Corbet 1973
Channan & Warner 1997
Heal 1964
Charman & Warner 1997
de Graaf 1956
Charnian & Warner 1997
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Nebela militaris

Nebela parvula

Nebela thick,

Nebela tubulosa

drier mosses
wet Sphagnum of bog hummocks
water table optimum 41.85cm
water table optimum 20.66cm
very dry conditions
water table optimum 27.58cm
water table optimum 6.98cm
xerophilous, <85% moisture content
very wet
water table optimum 32.63cm
water table optimum 11.67cm

de Graaf 1956
Corbet 1973
Warner & Charman 1994
Charman & Warner 1997
Warner 1987
Warner & Charman 1994
Charrnan & Warner 1997
Tolonen eta!. 1992
Warner 1987
Warner & Channan 1994
Charman & Warner 1997

Placosista spinosa bog pools
water table optimum 7.44cm

Corbet 1973
Channan & Warner 1997

Pseudodifflugia
fasicularis

aquatic Cash & Hopkinson 1909

Sphenoderia lenta a-hygrophilous - wet Sphagna
85-90% moisture content
moderately dry, 78-89% water content
moderately dry, 78-89% water content
water table optimum 5.86cm

de Graaf 1956
Tolonen eta!. 1992
Warner 1987
Warner 1990
Charman & Warner 1997

Trigonopysis arcula xerophilous taxa
water table optimum 57.68cm
water table optimum 15.58cm

de Graaf 1956
Warner & Charman 1994
Charman & Warner 1997

1 Trinema lineare hygrophilous taxa de Graaf 1956
0

Table 4.4	 Taxa found in this study compared to taxa classifications in
*Charman et al. (in prep.) and their hydrological requirements

Some qualitative information about taxa is contradictory or ambiguous. For example,

Nebela militaris was found to occur in 'drier mosses' (de Graaf, 1956), whilst Corbet

(1973) found it in 'wet Sphagnum of bog hummocks'.

The classification of Charman, Hendon and Woodland (in prep.) contradicts some

qualitative information about certain taxa, but has been classified in this way to create a

workable identification system for fossil material from British mires.

Cyclopyxis arcelloides type, including C. arcelloides, Centropyxis eurystoma, C. minuta

and Phryganella acropodia have been varyingly described as taxa from moderately dry,

78-89% water content (C. arcelloides, Warner, 1987; 1990), very wet Sphagnum soils

(C. arcelloides, Warner and Charman, 1994), moderately wet, 90-95% peat water

content (Phryganella acropodia, Warner, 1987; 1990) and dry (Phryganella acropodia,

SchOnborn, 1962; Meisterfeld, 1977). Bearing these limitations in mind, the testate

amoebae diagrams can be loosely described from these qualitative data. Hydrological

data from Woodland (1996) are not included in these descriptions since the data are

used in the hydrological reconstructions of depth to water table and percentage moisture

content.
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Taxa with no, or poor, modern analogue values are discussed in Chapter Eight. These

include, Hyalosphenia subflava and Difflugia pulex. The term 'modern analogue value'

is referred to throughout, because where taxa have no modern analogue value in the

transfer function, it does not necessarily mean that these species have no modern

analogue in contemporary mire surfaces, just that they were not found in the samples

used to create the transfer function by Woodland (1996). If a wider range of sites was

sampled, it is likely that those taxa currently omitted from the transfer function could be

assigned optima and tolerance values.

4.1.5 Radiocarbon dating

Radiocarbon dating was used to date significant changes to the species assemblage of

testate amoebae and large fluctuations in the water tables. A total of 29 dates were used

to establish a firm chronology both within each site and between the sites. Originally, it

was envisaged that eight dates would be required from the central core from each of the

three sites. This would be used as a 'master core', with the other cores being correlated

using the pollen spectra. The difficulties of radiocarbon dating recent peats may be

compensated for by the use of pollen markers, especially the pine rise due to large scale

planting on country estates around 1800AD and changes in farming practices (Oldfield,

1963; Barber, 1981). The use of master cores was amended, since the pollen spectra

were difficult to correlate clearly apart from at a few depths (see Chapter 5, Section

5.5.1). In addition, since only one core from The Wou, core TW II, was analysed fully

due to extremely poor test preservation and concentration in places, it was felt necessary

to re-evaluate the dating strategy and concentrate instead on Coom Rigg Moss and

Butterbum Flow, with only two dates allocated to The Wou to enable basic correlations.

Radiometric dating was chosen as there was enough material for bulk dating after

material had been removed for other analytical procedures. Samples were wrapped in

the field as described in Section 3.2. Cores were either kept in cold storage (6°C) or

frozen. After sub-sampling for testate amoebae analysis most cores were refrozen.

Samples for dating were 5cm thick, with the exception of CRM I 40-42cm which was

only 2cm thick due to being extracted from the Wardenaar sampler and TW II 100-

115cm which was 15cm long because the core extracted was exceptionally thin.

Average weight was ca. 150g and it was assumed that with 95% water content and 50%
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carbon content, each sample would yield approximately 3.75g carbon. Samples were

taken following the guidelines of Pilcher (1991) and were sent to the NERC

Radiocarbon Laboratory, East ICilbride, wrapped in foil and sealed in plastic. Pre-

treatment of raw samples prior to isotope analyses involved digestion of the raw

samples in 2m1 HC1 at 80°C for 24 hours. Samples were then washed free of acid,

filtered and dried to a constant weight in a drying oven (NERC Radiocarbon Laboratory

preparation protocol).

Calibration of ' 4C dates

The 14C age may be calibrated to an approximate calendar year using the CALEB 3.0.3c

program of the Quaternary Isotope Laboratory, University of Washington (Stuiver and

Reimer, 1993a,b). Calibration is undertaken to reduce distortion of chronologies and

interpretation due to variations between calendar and radiocarbon ages, which is a result

of variable "C production through time (Bartlein et al., 1995). The accepted value from

the calibration of radiocarbon ages is the median point, which is a way of averaging the

data, although the actual age of the sample may fall anywhere within the range. The

process of calibration acts to increase the range of possible error within each age while

converting the measure of 14C in a sample to an approximate calendrical age (Shore et

al., 1995).). 2a confidence limits are given in Calibrated Years BP (Table 4.5).

Once dates have been calibrated, the term Calendar Years is not used here. Instead,

dates are referred to as Calibrated Age BP (Before Libby's 1950) because Calendar

Years implies a level of accuracy which is spurious. Radiocarbon ages tend to be

younger than calendar ages over most of the past 20Ka (Bartlein et aL, 1995) and there

are problems of relating events in a radiocarbon dated profile with events of known

calendar age (Dumayne et al., 1995).

Interpolated age per sample

There are two main ways of estimating the age of samples from the radiocarbon dates,

these are; a) to interpolate linearly between dates, thereby accepting that the peat

accumulation rate can vary throughout the profile and assuming that the radiocarbon

dates are correct. This assumes that the location of the dates are points of major change

in the rate of peat accumulation. Or, b) to fit a linear or polynomial regression line

between the dates. This does not allow for non-systematic variation in accumulation

rates, but accepts that the radiocarbon dates are not always accurate by spreading the
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error evenly about the points, giving less emphasis to individual dates. Use of a linear

regression line also puts too much emphasis on the end dates. For BBF I, the linear

regression on median calibrated radiocarbon ages gave an R 2 value of 0.9989, i.e.,

greater than 95% confidence and therefore better than linear interpolation between

adjacent points. Similarly, the R2 value for linear regression of dates for CRM I was

0.9729 and for CRM IV was R 2=0.9924. However, it was decided to use linear

interpolation between adjacent dates c.f. Bennett (1994), since it was felt necessary to

take into account variations in the peat accumulation rate for the hydrological

reconstructions to be interpreted more accurately. Accumulation rate estimates are

however, crude.

The linear interpolation of median calibrated radiocarbon ages and anthropogenic Pinus

rise (APR) from which the estimated ages of each sample were calculated are presented

for each core, in Chapters, Five, Six and Seven. The calibrated age BP was plotted at

the mid-point from which the date was taken, i.e., for date CRM I 40-42cm, the date

was plotted at 41cm for linear interpolation of sample ages. This spreads the estimated

ages evenly about the radiocarbon dates. The axes cross at zero years BP (1950) with

post-1950 dates plotted as minus figures. Sample ages are estimated by calculating the

gradient of the line between adjacent pairs of dates and using the equation of the line,

set out for each core to calculate the approximate calibrated age per sample. Sample

ages for levels below the basal date are extrapolated from the deepest date. Water table

reconstructions and TILIA diagrams are plotted against the median calibrated age,

converted to approximate calendar years BC/AD.

It is necessary to establish the error in the data to a) establish the reliability of the

results; b) enable comparisons of results within sequences or between profiles; and c)

help to identify points in the data collection and analysis process that are the main

sources of error and attempt to avoid or mitigate these sources (Bennett, 1994). Errors

on individual estimates of age are calculated by interpolating between the maximum and

minimum calibrated ages. These are plotted as ranges, since the actual sample age may

fall anywhere within the maximum and minimum range from the calibrated radiocarbon

date. This is, however, approached with caution, since calculating errors on estimated

ages involves inherent errors at several stages of the calculation.
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Programs such as DEP-AGE (Maher, 1992), are available to create age-depth plots

which can calculate sample ages by fitting a variety of exponential, linear and cubic

spline regressions and estimate the age of each sample depth by interpolation. This

involves extrapolation of ages to the base of the core beyond the last date. Deposition

time is calculated from the gradients between adjacent pairs of points and interpolated

ages read off for intermediate depths. This technique is superficially crude (Bennett,

1994), but provides a reasonable estimate for both ages and accumulation. However,

the method takes no account of errors on radiocarbon ages and is inadequate when

confidence intervals on ages are obtained. A linear age-scale can also be generated from

inputting 14C ages to the testate or pollen data in TILIA (Grimm, 1982). This was not

done since the interpolation carried out is either linear or polynomial, i.e., is equivalent

to that described above.

Potential sources of error in radiocarbon dating

Other problems that need to be taken into account are that the size of the peat sample

taken for radiocarbon dating will affect the accuracy of the date. The smaller the sample

dated, the greater the effect of any contaminant present (Shore et al., 1995). Most

samples in this study were 5cm long, with the exception of CRM 1 ,40-42 which was

only 2cm long and TW II 100-115 which was 15cm long. CRM I 40-42 will have less

potential for error being a shorter sample, but the date for TW II 100-115 will be

averaged over a greater size of sample. A 5cm sample, assuming at least 10 years peat

accumulation per centimetre spans a minimum period of 50 years, which cannot result

in a precise date being obtained. There are also potential errors from carbon

contamination, changes in atmospheric carbon composition, decomposition of plant

material and the movement of older carbon up the water column, (e.g. Methane gas).

Carbon may be partially derived from rotting organic matter not from the atmospheric

carbon. Inwash of older organic carbon detritus giving the risk of the 'reservoir effect'

in dated samples (Olsson, 1986) is unlikely to be a problem on ombrotrophic mires but

there is a potential risk of this occurring in runoff and through flow entering a valley

mire.
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Site Core Laboratory
Code

Depth
(cm)

Conventional
Age "C yr BP

8 13C %o Calibrated Age at
20 confidence

max. median min.
BBF BBF I SRR-5991 40-45 385 ± 45 -23.9%0 533 479 303

BBF I SRR-5992 100-105 1220 ±45 -27.4%0 1263 1067 952
BBF I SRR-5993 170-175 2325 ± 40 -27.2%0 2358 2329 2144
BBF I SRR-5994 300-305 3625 ± 45 -27.5%0 4077 3867 3696
BBF I SRR-5995 440-445 5070 ± 45 -27.2%0 5918 5843 5646
BBF I SRR-5996 550-555 6210 ± 45 -27.4%0 7204 7143 6887
BBF I SRR-5997 710-715 8225 ±45 -27.7%0 9367 9184 8959

BBF II SRR-6108 50-55 540 ±40 -27.3%o 633 521 471
BBF II SRR-6109 120-125 1875 ±40 -28.6%o 1872 1719 1570
BBF II SRR-6110 250-255 4560 ±45 -28.4%o 5317 5250 4876

BBF III SRR-6111 50-55 690 ± 40 -27.8%o 672 644 534
BBF III SRR-6112 130-135 2045±40 -27.7%o 2104 1939 1824
BBF III SRR-6113 280-285 5695 ±45 -29.6%o 6523 6409 6295

CRM CRM I SRR-5998 40-42 270 ± 45 -23.7%o 492 306 0
CRM I SRR-5999 130-135 1370 ± 40 -26.9%o 1328 1278 1162
CRM I SRR-6000 200-205 2500 ±40 -27.8%o 2740 2471 2345
CRM I SRR-6001 290-295 3550 ± 40 -27.0%o 3924 3824 3634
CRM I SRR-6002 355-360 4585 ±40 -27.8%o 5442 5285 4988

CRM II SRR-6003 45-50 375 ±45 -25.5%o 517 461 292
CRM II SRR-6004 180-185 1340 ± 45 -27.1%o 1309 1263 1068
CRM II SRR-6005 270-275 2215 ± 40 -27.8%o 2330 2143 1994

CRM III SRR-6006 110-115 1285 ± 40 -28.99roo 1278 1161 981

CRM IV SRR-6007 30-35 250 ±45 -25.4%o 461 291 0
CRM IV SRR-6008 160-165 1665 ± 45 -27.0%o 1692 1528 1359
CRM IV SRR-6009 220-225 2255 ± 40 -26.3%o 2347 2307 2074
CRM IV SRR-6010 330-335 3325 ± 40 -27.0%o 3681 3474 3378
CRM IV SRR-6011 385-890 3965 ± 40 -27.0%o 4521 4407 4156

TW TW II SRR-6012 100-115 265 ±45 -27.4%o 433 286 0
TW II SRR-6013 220-225 1340 ±40 -28.4%o 1296 1235 1064

Table 4.5	 Radiocarbon Dates from Butterburn Flow, Coom Rigg Moss and
The Wou. Dates supplied by the NERC Radiocarbon Laboratory,
East Kilbride and calibrated using CALEB 3.0.3c (Stuiver & Reimer,
1993a,b)
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4.2	 Data analysis and presentation

4.2.1 Introduction

Data analysis was undertaken that enabled testing of the technique of testate amoebae

analysis in terms of the replicability of the records and error estimation of the modelling.

This entailed various stages of data analysis, a) data display; b) ordination; and c)

application of the transfer function. Data analysis and display are discussed by Grimm

(1988). Robust statistical methods for regression and calibration are required that

adequately model the complex relationships between modern taxa and their environment

(Birks, 1995). According to Gauch and Whittaker (1981), a robust method is one which

gives results that are only mildly affected by sample error or noise i.e., a small

perturbation of sample points in random directions, and removal or addition of a small

number of samples.

Multivariate numerical techniques permit simultaneous analysis of several levels of data

and thus facilitate their simultaneous interpretation (Prentice, 1986; Grimm, 1988; Kent

and Coker, 1992; Kovach, 1995). The data processes are split into various categories;

classification, ordination and calibration. Classification involves grouping the

individual samples into classes on the basis of their attributes in order to look for

patterns and order in the data set (Kent and Coker, 1992). The robustness of

classification according to Kent and Coker (1992: 280) is that:

"the effectiveness of a method of classification should not be dependent
on the properties of a particular data set, the technique should perform
well in most applications".

The best classification is one which enables a clear ecological interpretation to be made.

Numerical classification by a variety of algorithms is used to clarify relationships among

taxonomic samples.

4.2.2 Testate amoebae data

TILIA (Grimm, 1982) was used to calculate percentages and the concentrations (tests

per unit volume of sediment), of individual horizons from the raw count data. Rotifer

counts were not included in calculations as there is no modern analogue value for them.

These data were displayed using TILIA GRAPH (Grimm, 1982). Percentage diagrams

were chosen to display data rather than concentration diagrams, since most counts
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achieved the objective of 150 tests per level. Total test concentration curves for each

sample are also presented. Where the test concentration was too small to enable

counting, the horizons are left blank. TEMA diagrams in the form of histograms are the

most appropriate form of graph with which to present the data, as the testate

assemblages between sampling intervals are not known. Taxa are presented in

alphabetical order.

Zonation

Assemblage zones were added to aid interpretation and discussion of the diagrams. In

this context, an assemblage zone is taken to be a body of sediment whose fossil content

constitutes a natural assemblage that is distinguishable in biostratigraphic character from

adjacent strata (Gordon and Birks, 1972). CONISS, Constrained Incremental Sum of

Squares Cluster Analysis, (Grimm, 1987) using percentage testate data only, was used to

construct dendrograms to aid zonation. Clusters are constrained so that they only

contain stratigraphically adjacent horizons. This is an agglomerative method that is

satisfactory for zonation since the clusters are built up locally. Another advantage of

this hierarchical method is that relationships among zones are easily examined (Grimm,

1987). The use of numerical methods to subdivide diagrams into zones is favoured by

Birks and Birks (1980). This avoids subjective bias and gives consistent and repeatable

results. Zonation `by eye' and by numerical methods often agree, but there may be

occasions where zonation by eye makes more sense ecologically than the zonation

indicated by the dendrogram.

Dendrograms illustrate the hierarchical relationships defined by analysis (Gauch and

Whittaker, 1981). The clusters may be determined by cutting the dendrogram at a given

height, but this may be arbitrary. Although the dendrogram construction is objective,

zonation and interpretation are still largely subjective and require visual inspection for

sensible ecological interpretations.

Confidence limits can be displayed on the testate amoebae diagrams to aid their

interpretation, this allows assessment of the precision of the data. Nomograms for

calculating the 0.95 confidence limits of the data (Maher, 1972) could have been used.

However, there are often problems in evaluating the precision of percentage diagrams,

as several factors can result in imprecise data; poor test preservation, inadequate

preparation techniques and misidentification. Assuming good preservation, adequate
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preparation (Hendon and Charman, 1997) and competent identification, the results

depend upon the number of tests in the counts. Confidence intervals make it easier to

recognise levels where significant changes take place and ignore minor fluctuations

whose confidence intervals overlap. This was not utilised in this study since the water

table models have confidence intervals calculated for each sample from bootstrapped

error estimates.

Ordination

Ordination can show trends in data and subtle relationships better than cluster analysis

(Kovach, 1995), although they are complementary as they show different aspects of the

same data. Ordination techniques are commonly used to reduce the variation in

community composition to the scatter of samples and species in an ordination diagram

(ter Braak, 1988). Detrended Correspondence Analysis (DCA) developed from the

FORTRAN program DECORANA (Hill, 1979; Hill and Gauch, 1980) available in

CANOCO (Canonical Correspondence Analysis, ter Braak, 1988), is an effective

indirect ordination technique that solves the problems of the 'arch effect' and

compression of end points at the end of the first axis associated with Correspondence

Analysis (CA). (see Peet et al., 1988 for a discussion of this). DCA is used to calculate

a) ordination for all the species in a core, b) for individual species, c) for samples in a

core and d) for samples from combinations of cores. DCA "is exceptionally robust"

(Hill and Gauch, 1980) and is effective at smoothing noise. On a DCA sample plot, the

greater the distance between any two points is a reflection of a smaller degree of

similarity in the species composition, (Gauch and Whittaker, 1981; Kent and Coker,

1992).

Eigenvalues and percentage cumulative variance explained are presented for each

ordination analysis. Eigenvalues represent the relative contribution of each component,

or axis, to the explanation of the total variation in the data. The size of the eigenvalue

indicates the importance of the axis in explaining the variation in the data set (Kent and

Coker, 1992). In a sample ordination, the cumulative percentage variance is a measure

of how much variation in the species data is explained along the axes of the ordination.

Ordination plots for modern and fossil samples, plotting fossil samples as 'passive', are

included to show the 'match' or 'mis-match' between the two data sets. The

reconstructed hydrological curves result in a Root Mean Square Error of Prediction
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(RMSEP) for Weighted Averaging (WA) of ±3.9cm for water table and for Tolerance

downweighted weighted averaging (WA-To!) of ±3.4% for moisture reconstructions,

only if the overlap between modern and fossil samples is 'good' (Woodland, 1996;

Woodland et al., 1998). The degree of match or mis-match will affect the robustness of

the hydrological curves. The better the match between modern and fossil samples, the

more robust the reconstruction.

Recent discussion of ordination techniques has centred around the order of data entry

and that the random rearrangement of data entry was shown by Tausch et al. (1995) to

change ordination and classification results based on reciprocal averaging. Podani

(1997) and Oksanen and Minchin (1997) further discuss this, concluding that much of

the instability described by Tausch et al. (1995) occurs on axes 3 and 4. For DCA, the

main source of instability is an order-dependent bug in the procedure for non-linear

rescaling. To correct this bug requires stricter convergence criteria for stable DCA

ordinations. To check the ordination plots created using CANOCO (ter Braak, 1987-

1992), the programs CEPSHUFL and SOLCOMP (Olcsanen and Minchin, 1997) were

used and no significant variations were found in the results discussed in this study.

Transfer function

The background to and development of the transfer function used to construct depth to

water table and percentage moisture content curves from testate amoebae data is

discussed in Chapter Two.

Seven taxa found in the fossil data set are not included in the modern analogue transfer

function. These are; Diffiugia acuminata, D. lanceolata, D. lucida, D. pulex,

Lesquereusia spiralis, Pseuododifflugia fasicularis and Sphenoderia lenta. D. pulex is

the only taxon that is found in abundance in all cores, so the lack of an analogue may

affect the robustness of the transfer function. There is qualitative information about the

hydrological requirements of D. acuminata, L spiralis, P. fasicularis and S. lenta

(Tables 2.6 and 4.4).
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Bootstrapped error estimates (Efron and Gong, 1983; Birks, 1995) on predicted values

allow generation of 95% confidence intervals on reconstructed water table and moisture

curves using WA CALIB 3.3 (ter Braak and van Dam, 1989; Line and Birks, 1990;

Birks et al., 1990a; Line et al., 1994). One thousand bootstrap cycles were performed

on each data set. It is important to be able to assess the reliability of individual

reconstructed values for each fossil sample. Bootstrapping is also a means of estimating

sample specific root mean squared errors of prediction for individual fossil samples

(Birks, 1995). Confidence intervals are important for comparison of water table curves

within and between sites, to establish the reliability of the results and to identify points

in the process of data collection and analysis that are the main sources of error (c.f.

Bennett, 1994).

The depth to water table and moisture optima and tolerance diagrams for individual taxa

in the transfer function occurring in >10% of the total data set from Woodland et al.

(1998), are presented in Figures 4.2 and 4.3. These show the rank of taxa from the

'wettest' (Arcella discoides type) to the 'driest' (Bullinularia indica) and illustrates the

concept of a 'relative wetness scale' as discussed in Section 2.2.6, as none of the taxa

illustrated exist in truly 'dry' conditions, but all have tolerance ranges which are

relatively wet.

Problem taxa

Problem taxa are regarded as those with either a poor, or no modem analogue value.

These include the seven taxa listed above, that occur in the fossil data set, but not in the

modern analogue data set. It also includes Hyalosphenia subflava, which has a modem

analogue value, but which is probably biased towards the wetter end of the

reconstruction, because all of the samples for the transfer function were extracted from

very wet sites. This problem is discussed further in Chapter Eight, where more realistic

optimal values for the depth to water table and percentage moisture requirements for H.

subflava are considered and the other no-analogue value taxa discussed.

Poor-analogue taxa, mainly H. subflava, but also Bullinularia indica and Nebela

collaris, are regarded as poor because they have broad tolerance ranges (Figure 4.2).

This is a result of low abundance of these taxa present in only a small number of

samples in the training set. As a result of this, where the percentage occurrence of H.
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Figure 4.2 Optima and tolerance values for taxa with >10% abundance in the
water table transfer function (Woodland et al., 1998)
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Figure 4.3 Optima and tolerance values for taxa with >10% abundance in the
moisture transfer function (Woodland et al., 1998)
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subflava is high, the confidence limits on the hydrological reconstructions are wide.

Several of the taxa found in the fossil data set were not found in the training set - these

are no-analogue value taxa, principally Difflugia pulex and also Pseudodifflugia

fasicularis. These taxa are not used in the hydrological reconstructions. In the

computations, if there is 25% H. subflava, 25% Amphitrema flavum and 50% D. pulex,

the water table is calculated on the basis of 50% H. subflava and 50% A. flavum. The

confidence intervals are not affected by D. pulex per se, since there is no value for it.

The reliability of the estimates is doubtful however, because there is no equivalent

modern assemblage and the number of individuals used in the calculation is halved.

4.2.3 Pollen Data

Percentage pollen diagrams are presented using 'MIA and TELIA GRAPH (Grimm,

1982), as discussed above for testate amoebae data. Aquatics and spores were not

included in percentage or concentration calculations. SLOTDEEP (Maher, 1992) could

have been used for down core correlation of the taxa to aid biostratigraphic correlation.

Constraining the pollen data by the radiocarbon dates would have invalidated its use as

an independent biochronological marker. The main use for the pollen is to accurately

date the anthroprogenic Pinus rise (APR), since it is known that conifer planting began

in the Kielder Forest in 1926 and continued until 1960. The APR has been set at 1930,

as this probably marks the initial rise above background Pinus levels. None of the other

pollen marker horizons could be accurately correlated or be dated sufficiently to use as

biochronological markers.

4.3	 Conclusions

This chapter has set out the laboratory procedures used to derive the testate amoebae

data and in particular looks at the issues surrounding test preparation and taxonomy.

The rationale for choosing the locations of radiocarbon dates in order to obtain a well

constrained chronology for each core are discussed in Section 4.1.5 and the problems

surrounding radiocarbon dating are also examined. The programs used for data analysis

are discussed, the results of which will be presented in Part Three.

Part Three contains the results of the stratigraphic, testate amoebae and DCA analyses.

Depth to water table and moisture curves from calibration of the testate amoebae data

135



using the transfer function developed by Woodland (1996) are presented for each core.

The interpolated 14C ages for each sample are shown and the testate amoebae diagrams

are presented against age.
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Coring site results



CHAPTER FIVE

Coom Rigg Moss -

Testate amoebae and palaeohydrology

5.0	 Introduction

This chapter presents the results from the four peat cores extracted from Coom Rigg

Moss and is divided into two sections. The first section sets out results from individual

cores plotted against depth. These results include: core stratigraphy, the testate amoebae

records and ordination analyses of modern and fossil testate data. Ordinations of

species assemblages and sample relationships for each core are also presented.

Hydrological reconstructions of depth to water table and percentage moisture for each

core derived from the testate amoebae data, calibrated Using the transfer function

developed by Woodland (1996) are presented. The second part of this chapter

establishes the chronology for each core, using a combination of pollen marker horizons

and radiometric radiocarbon dates. Pollen marker horizons were used as additional

chronological markers for events with known dates attributable to them. The

chronologies are used for inter-core comparisons in Chapter Nine.

5.1 Coom Rigg Moss Core I (CRM I)

Field techniques and the rationale for extracting cores from particular locations were

discussed in Chapter Three. CRM I was extracted from the centre of Coom Rigg Moss

in November 1994. In total, four metres of peat were extracted from CRM L

Laboratory preparation and data processing procedures were set out in Chapter Four.

5.1.1 Stratigraphy

The stratigraphy for CRM I is presented in Table 5.1. The stratigraphy for CRM I

concurs with the peat description in Chapman (1964a), classified as Sphagnum-

Eriophorum peat (see Chapter Three). Chapman (1964a) considered this to be a 'raised

bog' profile, with Sphagnum-Eriophorum peat overlying brushwood and fen peat. This

is typical of raised bog development, showing a succession from open water to fen and

finally to Sphagnum bog and being governed by both climatic and topographic factors.

Macro-fossil analyses of CRM I (Charman, Hendon and Packman, in prep.) confirmed

this stratigraphic description. Stratigraphic boundaries coincided with zone boundaries
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from the testate amoebae assemblages at 55.5cm and 250cm (Section 5.1.2). Below

250cm, the peat contained Eriophorum vaginatum, above this level, the peat was

composed of very well humified Sphagnum. The stratigraphy suggests that the peat is

very ombrotrophic from approximately 280cm.

Depth (cm) Sediment Description
0.- 8.5 fig 1; strf 0; elas 4; sicc 2; humo 0; Tb4 (Sphag). undecomposed Sphagnum

papillosum
8.5 - 28 fig 4; strf 0; elas 3; sicc 1; humo 1; Tb3 (Sphag); Til l . Sphagnum peat, leaves

preserved
28 - 31 nig 2; strf 0; elas 4; sicc 1; humo 1; strat 0; Tb4 (Sphag). fresh, undecomposal

Sphagnum moss, light green in colour
31 - 34 nig 3; strf 0; elas 2; sicc 1; humo 2; Tb (Sphag)2; Th 2 Eriophorum angustifolium
34-55.5 fig 3; strf 1; elas 2; sicc 1; humo 2; Tb3 (Sphag); Th l Eriophorum angustifolium
55.5 - 77.5 fig 3; strf 1; elas 2; sicc 1; humo 1; Th3 (Sphag); Tb l ; Tr ericoid roots and

Eriophorum angustifolium dominant
77.5 - 100 fig 4; strf 1; elas 2; sicc 1; humo 2; Tb l (Sphag); Th3 Eriophorum angustifolium
100 - 140 fig 4; strf 1; elas 2; sicc 1; humo 2. Tb3 (Sphag); Th l Monocoi fragments

throughout, Eriophorum. well humified peat matrix
140 - 190 fig 4; strf 0; elas 3; sicc 1; humo 3; Tb3 (Sphag); Th l . well humified peat matrix

some indistinct monocot. fragments
190 -212 fig 4; strf 0; elas 2; sicc 1; humo 4; Sh. very well humified Sphagnum peat
212 - 220 fig 4; strf 1; elas 2; sicc 1; humo 3; Tb (Sphag) 3 112 ; Th 112. well humified Sphagnum

peat, with partially decayed monocot fragments
220 -250 fig 4; strf 0; elas 3; sicc 1; humo 4; (Sh). very well humified peat, plant structure

hardly discernible, or completely absent
250 - 268 nig 4; strf 1; elan 1; sicc 1; humo 2. Tb (Sphag) 3 ; Th l ;very wet peat, Well humified

peat matrix, but with fairly well preserved, large monocot. fragments Eriopho rum
vaginatum, 'felted' 268 - 280cm

268 - 280 nig 4; strf 1; elan 1; sicc 1; humo 2; Tb (Sphag)2; Th2; very well humified peat matrix
with monocot. fragments - Eriophorum vagina turn

280 - 310 nig 4; strf 0; elan 2; sicc 1; humo 4; (Sh) very well humified peat
310 - 340 fig 3; strf 0; elan 1; sicc 1; humo 3; Tb (Sphag)3 ; Th l ; (ericoid roots at 340cm)
340 -400 nig 4; strf 0; elan I; sicc 1; humo 3; Tb (Sphag )4; Th. well humified peat, ericoid

roots and Betula fragments
400-418 nig 4; strf 0; etas 1; sicc 2; Sh4 +As. silt

Table 5.1	 Stratigraphic description of CRNI I using the Troels-Smith
(1955) sediment description system

5.1.2 Testate amoebae

Of the four metres of peat extracted from CRM I, the top 370cm proved suitable for

testate amoebae analysis, (Figure 5.1). From 380-400cm, slides were scanned, but the

concentration of tests was poor. This may have been because conditions were
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unsuitable for test colonisation, because tests had been completely destroyed in the

humification process or because there was too much material on the slides obscuring

them in the woody peat. The rationale for the subsampling strategy was set out in

Section 4.1.1.

Testate amoebae preparation procedures followed that set out in Section 4.1.2, with the

exception that the samples for CRM I were not micro-sieved with a 15gm mesh. This

core was analysed prior to the preparation experiments that were undertaken as a direct

result of the poor quality of the microscope slides from CRM I.

Data processing and presentation follows that set out in Chapter 4 (Section 4.2). A total

of 33 taxa were found in CRM I. CRM I was divided into zones on the basis of the

dendrogram constructed using CONISS (Grimm, 1987) (Table 5.2). A division was

made between Zones IV and V because there was a greater diversity of taxa in Zone V,

including species which only occurred in this zone. It is however, a lower order division

than the other zones from this core. The boundary between Zone II and Zone DI

corresponds with a change to more highly humified peat above 190cm than below. The

boundary between Zone IV and Zone V also corresponds with a stratigraphic boundary

at 55.5cm. The peat below 55.5cm was less humified and contained wood fragments.

Above this level, the peat was more humified. CRM I was cored contiguously, so

changes in stratigraphy may have been missed, since changes in Ethology are seldom

horizontal and may have been found with overlapping cores from adjacent holes.

However, from field and laboratory stratigraphy of these peats it was difficult to

distinguish clear boundaries without further procedures such as humification analysis.

Broadly, less humified peat (humo 0-2), at the top of the core corresponded with the

occurrence of taxa that may be interpreted as wet indicator species. In the middle of the

core, the highly humified peat contained a limited faunal assemblage dominated by

Hyalosphenia subflava that may qualitatively be interpreted as a dry indicator species

(Table 4.4). At the base of the core, where the peat was less well humified (humo 3-4),

Difflugia pristis type dominated.
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Zone Depth (cm) Major taxa Zone description
V 0-57.5 Amphitrema spp.

Assulina spp.
Difflugia pristis type

Nebela spp. and Euglypha spp. appear for the first time
in this zone and Heleopera spp achieve their greatest
representation in the profile. There is a greater
diversity of Difflugia spp., with D. bacillifera, D.
globulosa, D. lucida and D. oblonga type joining D.
pristis type and D. pulex. Amphitrema spp. and
Assulina spp. decrease to the top.

IV 57.5-132.5 Amphitrema spp. There is an increase in the number of taxa in this zone.
Assulina spp.
Difflugia pulex
Diffiugia pristis type

Amphitrema spp. are well represented as are Assulina
spp. Cyclopyxis arcelloides type is present in this
zone. The zone is dominated by D. pristis type and D.
pulex. There is a decrease in the abundance of D.
pulex to the top.

III 132.5-195.5 Difflugia pristis type
Difflugia pulex
Hyalosphenia subflava

This is a transitional zone where H. subflava decreases
from 70% at the base to 5% at the top of the zone. At
the top, Amphitrema spp. and Assulina muscomm are
present, prior to a major rise in Zone IV. D. pristis
type and D. pulex are present throughout.

II 195.5-297.5 Hyalosphenia subflava
Difflugia pristis type
D. pulex

This zone is dominated by H. subflava which increases
in abundance to over 90%. D. pristis type is present at
circa 10% abundance. Taxa also present throughout
this zone are D. pristis type, D. pulex and Assulina
muscorum. From 260-265cm, there is a peak in
Amphitrema flavum to 35% and D. pulex (32%) and a
corresponding drop in H. subflava abundance. Test
concentration decreases to the top, possibly related to
an increase in humification.

I 297-370 Assulina muscorum
Dijflugia pristis type

H. subflava and D. pristis type are abundant. D. pulex
and Trigonopyxis arcula are present at the base. At

Difflugia pulex
Hyalosphenia subflava

320cm and 330cm, the concentration of tests was too
low to count. Test concentration is low at the base of
the zone.

Table 5.2	 Zone descriptions for CRM I based on testate amoebae assemblages
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Zone I 297.5-370cm This zone may be regarded as moderately dry because of

the presence of Hyalosphenia subflava (<80% peat water content, Warner, 1987;1991)

and Trigonopyxis arcula, a xerophilous taxon (de Graaf, 1956) at the base of the zone.

Difflugia pristis type and D. pulex are found throughout the entire depth of this core and

other cores in this study and they may be regarded as cosmopolitan species. The other

taxon found in this zone, Assulina muscorum, is generally regarded as cosmopolitan

(Warner, 1990).

Zone II 195-297.5cm Zone 11 is dominated by H. subflava indicating dry

conditions, with a depth to water table optimum recorded by Warner and Charman

(1994) and Charman and Warner (1997) from Canadian studies as 49.9cm and 22.8cm.

Test concentration decreases towards the top, corresponding with an increase in H.

subflava and a decrease in Difflugia pulex.

Zone III 195-132.5cm This is a transitional zone ranging from extremely dry at

the base, as reflected in the dominance of H. subflava, to wetter or cosmopolitan taxa

such as Amphitrema flavum and Assulina muscorum nearer the top. These taxa, along

with a high abundance of Difflugia pristis type and D. pulex suggest that the top of this

zone is moderately wet.

Zone IV 57.5-132.5cm Zone IV is moderately wet, with a much greater diversity

of taxa. Amphitrema spp. are well represented in this zone, which prefer 90-95% peat

water content, bog pools and the wetter parts of hummocks (Tolonen 1966; Tolonen et

al., 1992; Warner, 1987, 1991). The presence of Cyclopyxis arcelloides type is difficult

to interpret, as discussed above. Other major taxa, D. pristis type and D. pulex may

reflect a cosmopolitan assemblage.

Zone V 0-57.5cm Very wet conditions are indicated in the lower part of this

zone, although the surface samples (0-10cm) may reflect drier conditions. The presence

of Arcella discoides type suggests very wet to submerged Sphagnum, with a water

content greater than 95% (Tolonen, 1986; Tolonen et al., 1992; Warner, 1987).

Amphitrema spp. are well represented at the base of this zone, but decline towards the

top, perhaps reflecting a dry shift towards the surface. The peak in Difflugia globulosa

at 25cm may imply aquatic conditions (de Graaf, 1956). There is no information in the

literature about the hydrological requirements of D. lucida. The increase of Heleopera
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sylvatica towards the top of this zone may also reflect drier surface conditions, as

Tolonen (1986) found it in drier mosses. The xerophilous taxa, Nebela tincta and

Trigonopyxis arcula also increase towards the top of the zone (de Graaf, 1956; Tolonen

eta!., 1992).

5.1.3 Ordination

Fossil and modern ordination

Figure 5.2 presents an ordination plot of fossil and modern samples using Detrended

Correspondence Analysis (DCA). Fossil samples are plotted as 'passive' i.e., they are

not included in the ordination process, but are overlain on the modern ordination.

On the ordination plot, the greater the distance between samples the greater

dissimilarities between samples in the species composition. Fossil samples falling

outside of the modern sample range will have poor modern analogues. The ordination

of modern samples have eigenvalues of axis 1 - .379 and axis 2 - .321. Most of the

fossil samples fall within the range of the modern samples. However, in the bottom

right-hand corner of the plot, there is a more complex relationship. There is a gradation

from samples that match well, those that nearly match, to those that fall outside the

modern plot. Samples 160, 170, 300, 340-370cm from CRM I do not overlap modern

samples and therefore have poor analogues. These samples have high abundances of

Difflugia pristis type. There is a clump of fossil samples that overlap each other

including 200cm, 230cm, 290cm. These are samples which contain high values of

Hyalosphenia subflava. Since Figure 5.2 shows that there are fossil samples where the

match with modern samples is poor, this will affect the robustness of the hydrological

reconstructions, as the quality of the reconstruction is dependent on a good match

between modern and fossil samples.

Sample ordination

Sample ordination for CRM I is presented to show the association of fossil samples

within the individual core. Figure 5.3 shows a DCA ordination plot of samples from

CRM I. Axis 1 has an eigenvalue of .652 and axis 2 has an eigenvalue of .232. The

percentage variance for axis 1 is 26.8 and for axis 2 is 9.6. 63.6 percent of the variation

is therefore unexplained and may be attributable to other factors.
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AMP FLA Amphitrema flavum EUG TUB Euglypha tuberculata
AMP STE Amphitrema stenostoma HEL PET Heleopera petricola
AMP WRI Amphitrerna wrightianum HEL ROS Heleopera rosea
ARC ART Arcella art rocrea HEL SPH Heleopera sphagni
ARC CAT Arcella catinus HEL SYS Heleopera sylvatica
ARC DIS Arcella discoides HYA ELE Hyalosphenia elegans
ARC VUL Arcella vulgaris HYA PAP Hyalosphenia papilio
ASS MUS Assulina muscorum HYA SUB Hyalosphenia subflava
ASS SEM Assulina seminulum LES SPI Lesquereusia spiralis
BUL IND Bullinularia indica NEB BAR Nebela barbarata
CEN CAS Centropyxis cassis type NEB CAR Nebela carinata
CYC ACU Cent ropyxis aculeata type NEB COL Nebela collaris
CYC ARC Cyclopyxis arcelloides type NEB FLA Nebelaflabellulum
DIF ACU Difflugia acuminata NEB GRI Nebela griseola
DIF BAF Difflugia bacillifera NEB MAR Nebela marginata
DIF GLO Difflugia globulosa NEB MIL Nebela militaris
DIF LAN Difflugia lanceolata NEB PAR Nebela parvula
DIF LEI Difflugia leidyi NEB TIN Nebela tintca
DIF LUC Difflugia lucida NEB TUB Nebela tubulosa
DIF OBL Difflugia oblonga type NEB VIT Nebela vitraea
DIF PR! Difj7ugia pristis type PSE FAS Pseudodifflugia fasicularis
DIF PUL Difflugia pulex SPH LEN Sphenoderia lenta
DIF RUB Difflugia rubescens PLA SPI Placosista spinosa
EUG ROT Euglypha rotunda TRI ARC Trigonopyxis arcula
EUG S7'R Euglypha strigosa TRI UN Trine= lineare

Table 5.3	 Species codes for taxa included in DCA ordination analyses
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Sample distribution falls into four clusters which are related to profile depth, with

several scattered outliers. Samples from Zone I, the basal zone, which are dominated by

Difflugia pristis type are located at the top of the plot. Samples from Zone II, which

contain high values of H. subflava are clustered on the far right side of the plot.

Samples from Zone V containing high abundances of Amphitrema flavum and Assulina

muscorum are located on the left side of the plot. Zone IV which is characterised by

Difflugia pristis type, D. pulex and Hyalosphenia subflava is clustered in the centre of

the plot. Samples from the acrotelm are outliers. These samples contain a richer

diversity of taxa, most of which are only found in those samples. They are not,

therefore, strongly associated with other samples.

Species ordination

Species ordination plots are presented to determine whether axis 1 is related to a

hydrological gradient and to show the distribution of taxa along that gradient (Figure

5.4). Axis 1 (eigenvalue = -.652) appears to be related to the hydrological gradient, with

taxa such as Hyalosphenia subflava, Trigonopyxis arcula and Bullinularia indica,

which are known to be indicative of low water tables on the right hand side of the

diagram. D. pulex and D. pristis type are plotted in the same region of the ordination

plot as the dry indicator species, suggesting that they also tolerate drier conditions.

Clusters at the top and bottom of axis 2 appear to be mixtures of both very wet taxa and

taxa from the mid-hydrological range. This would suggest that another, unknown factor

is affecting the distribution of species along axis 2.

Fifteen taxa have less than 5% abundance in every sample in which they were found.

These species are plotted as crosses to indicate that they are less significant in the

ordination than those taxa with greater than 5% abundance in every sample in which

they occur. The majority of taxa with <5% abundance in every sample in which they

occur are located on the negative side of axis 2.
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5.1.4 Hydrological reconstructions

Water table reconstruction

The transfer functions were discussed in detail in Chapters 2 and 4. Figure 5.5 shows

the water table reconstruction for CRM I constructed using the transfer function

developed by Woodland et al. (1998).

The base of the water table reconstruction at 370cm is -6.5cm below surface. A large

part of the assemblage is composed of Difflugia pulex (42%) which accounts for the

wide spread of confidence limits at this point. Between 360-340cm, the water table

mean fluctuates between -4.9cm to -7.6cm below the surface. Sample 350cm (-4.9cm

below surface) is the wettest sample in the lower half of the core. Samples 330cm and

320cm had test concentrations which were too low to count. Between 295-270cm, the

water table falls, reaching a mean low of -16.2cm below surface. This corresponds with

the testate amoebae assemblage being dominated by Hyalosphenia subflava. There is a

rise in the water table level between 265-260cm, to -6.6cm. The narrow confidence

limits in this area reflect the robustness of the reconstruction when the taxa, dominated

by Amphitrema flavum, Assulina muscorum and Difflugia pristis type, have good

modern analogues. Above this, from 255cm to 135cm, is hydrologically stable, without

much variation in the depth to water table. This is related to the abundance of H.

subflava and D. pulex which dominate the testate assemblage. At 200cm, the mean

water table curve reaches its lowest point of the core at -16.2cm. The curve shows a

trend of increasing wetness towards 135cm, which may be attributable to the occurrence

of A. flavum, but generally, the reconstruction of the water table in this part of the core

is not very robust as the assemblage is dominated by D. pulex which does not have an

analogue value. The quantity of D. pulex in a faunal assemblage has the greatest effect

on the size of the confidence limits around the mean water table curve. Basing the

reconstruction on the low numbers of other taxa that were found here results in a

complacent curve with wide confidence limits which probably does not reflect the true

nature of the hydrological record at this point.

The section of the reconstruction from 130cm to Ocm shows a greater degree of

variation. The reconstruction is more robust, with closer confidence limits, reflecting

much wetter conditions. There is a much more diverse faunal assemblage upon which

to base the reconstruction and, although most samples are dominated by Delugia pule-r,
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except at the surface, the remainder of the assemblage have good analogues. At 10cm

depth there is a dry shift to -8.39cm, which corresponds with peaks in Heleopera

petricola and Trinema lineare, which have water table optimums of -8.06cm and -

9.43cm respectively. The 16% abundance of Difflugia lucida at 5cm depth is not

included in the reconstruction as it is not in the transfer function. The surface sample

shows slightly drier conditions.

Wet areas of the reconstruction curve have smaller confidence limits on the mean curve

than drier parts of the curve, because of better analogue values in wetter sections of the

curve. Between 255-135cm and 295-270cm, the reconstructions are dominated by

Hyalosphenia subflava which has a poor analogue because of its large tolerance range

and results in wider confidence intervals.

Moisture reconstruction

The moisture reconstruction for CRM I using the WA-Tol transfer function of

Woodland et al. (1998) is presented in Figure 5.6. From the base of the core at 370cm,

mean percentage soil moisture is 91%. The wide confidence limits at the base are

associated with the abundance of Difflugia pulex. Mean percent soil moisture declines

to 88.8% at 355cm. Between 330cm and 320cm there are no values due to

exceptionally low test concentrations. There is an increase in moisture content at 265-

260cm to 95% moisture. This is associated with a peak in the abundance of

Amphitrema flavum. From 240cm to 190cm, the curve is relatively complacent with

around 89% moisture, this is associated with the dominance of Hyalosphenia subflava,

which results in wide confidence limits between these depths. The reconstruction is not

particularly robust in this area of the curve because of the taxa included in the transfer

function. At 180cm, there is a wetter fluctuation to 92.5% and above this, to 140cm,

there is a trend of increasing wetness. At 135cm, there is a sharp decline in the

percentage soil moisture which is associated with a peak in H. subflava and D. pulex,

that explains the wide confidence limits around this trough. There is a greater degree of

variation in the reconstructed moisture curve from the surface to 130cm. From 35cm

(96% moisture) to Ocm (81% moisture) the pattern is one of a trend of increasing

dryness to the surface. The surface sample attains the driest mean value of the entire

core.
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5.2 Coom Rigg Moss Core II (CRM II)

Core CRM II was extracted so that with CRM III from the northern edge of the mire

(Section 5.3) and cores CRM I and CRM IV, it could be used to assess autogenic

influences on mire hydrology and thus help to separate the climatic signal from the two

central cores. The marginal cores are also used to assess the replicability of the testate

amoebae record from different locations on the mire. The rationale for subsampling was

similar to that for core CRM I, with closely spaced sampling in the top metre of the core

at 5cm intervals and at 10cm intervals for the rest of the core. Closely spaced samples

were also taken either side of radiocarbon dates. Testate amoebae preparation

procedures followed that set out in Section 4.1.2. Micro-sieving was carried out on all

of these samples.

5.2.1 Stratigraphy

Stratigraphical description follows that of Troels-Smith (1955) and is set out in Table

5.4. The stratigraphy of CRM II agrees with that of Chapman (1964a), as the peat is

predominantly Sphagnum-Eriophorum peat, which suggests that the peat was

ombrotrophic throughout its development. CRM 11 was extracted close to Chapmans

(1964a) grid reference 18 (Figure 3.6).

Depth (cm) Sediment Description
0. 13

13 - 20
20 . 50
SO . 74
74 . 120
120 155
155 - 180
180 - 205
205 - 230
230 - 280

280 - 330

fig 1; strf 0; elas 4; sicc 2; humo 0. Tb 4 fresh, undecomposed Sphagnum cuspidatum,
Molinia caerulea, Erica tetralix.
fig 2; strf 0; elas 3; sicc 1; humo 1. Tb 3 Thl partially decayed Sphagnum
fig 3; strf 0; elas 2; sicc 1; humo 1. Tb4 Tr Sphagnum leaves preserved.
fig 3; strf 1; elas 3; sicc 1; humo 1. Tb4 Sphagnum peat
nig 4; strf 1; elas 3; sicc 1; humo 2. Tb4Sphagnum peat, mostly leaves preserved.
fig 4; strf 0; elas 1; sicc 1; humo 3. Tb 4 well humified Sphagnum peat
nig 4; strf 0; elas 1; sicc 2; humo 2. Tb (Sphag)4 Tr ericoid roots
fig 4; strf 0; elas 2; sicc 1; humo 3. Tb 4 Tr
nig 4; strf 0; elas 2; sicc 1; humo 4. Tb 4 plant structure hardly discernible.
nig 4; strf 0; elas 1; sicc 1; humo 4. Sh Tr Th +. occasional monocot fragments.
Eriophorum and ericoid roots

_ fig 4; strf 0; elas 0; sicc 2; humo 4. Sh 3 Th l Monocot. fragments Eriopho rum

Table 5.4	 Stratigraphic description of CRM II using the Troels-Smith
(1955) sediment description system
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5.2.2 Testate amoebae

Sample preparation and data presentation follows that of CRM I and was set out in

detail in Chapter Four. Core CRM 11 was 330cm in length, of which the top 280cm was

suitable for testate amoebae analysis (Figure 5.7). Slides below 280cm were scanned to

determine whether deeper parts of the core had countable concentrations of tests.

Samples at 290cm and 300cm had concentrations which were too low to count and from

310-330cm tests were almost completely absent. This reduction in concentration is

probably related to the highly humified peat at the base, or may have been because

conditions were not suitable for test colonisation when the peat was accumulating.

Thirty four taxa were counted in this core and are presented in alphabetical order.

Zone I begins at 280cm, which corresponds with a change in stratigraphy to wetter peat,

with a slightly different composition to the overlying material. The top of Zone I,

245cm, does not correspond with changes in stratigraphy. The stratigraphic record

changes at 155cm to more humified peat above. This level also marks a change in the

assemblage composition, from Zone HI to Zone IV. Other zone boundaries are

asynchronous with stratigraphic changes.

The testate amoebae assemblage zones (Table 5.5) can be interpreted qualitatively on

the basis of hydrological information about them found in the literature (Tables 2.6 and

4.4).

Zone I 245-280cm This zone is dominated by Hyalosphenia subflava and

Difflugia pulex, with a peak in Amphitrema flavum at the top of the zone. These taxa

indicate that the conditions were moderately dry when the peat accumulated. H.

subflava has been found in surface samples with 78-89% water content (Warner, 1987)

and A. flavum has been found in samples with water contents between 87.9-95%. The

overlap in water conditions suggests that these two species occur in the same conditions,

although H. subflava is regarded as a dry indicator species and A. flavum is considered

to be a species more indicative of wet conditions.

Zone H 192.5-245cm This zone is dominated by D. pulex and H. subflava which

represent dry conditions. Trigonopyxis arcula is also present in this zone which is also

a xerophilous taxon (de Graaf, 1956).

154



z

ev:v4.41/4 I LIM'

II
iliiii1111 1 11111 hill 

	

IttrCte,.	

X.:/1151,
Stbe, et'et,

	

Nte4:SY	

	

SIN.1,94;31,.°P'k	

stz!,•Pts.

"s.z.

No;

:b*

	NZ$;	

	

ivzst	

41/4
ik

	

irci\ 	

:1‘tko

s‘k:§
\\),

irc 4.4

	

41,\\+4,+	
\*.\

"441k,_

4, N. hi il IAA 

	

dt$.	 g

IMMO=1111111	 1nu •
IPS MO 14111•11111•1111111n11 ION

111111111111111111111111111MW

155



Zone Depth (cm) Major Taxa
_

Zone description
VI 0-27.5 Arcella discoides

type, Heleopera spp.
There is a high diversity of taxa in this zone; no one
taxon has overall dominance. Arcella discoides type,
Nebela spp. and Trigonopyxis arcula achieve their best
representation in this zone. Difflugia pristis type and
D. pulex decrease towards the top. Heleopera spp.
increase in abundance to the top. The highest
concentration of tests in this profile occurs at 20cm.

V 27.5-67.5 Amphitrema spp.
Cyclopyxis arcelloides
type, Difflugia pulex

There is greater species diversity in this zone than in
the deeper zones. Amphitrema spp. dominate this
zone, with A. wrightianum declining sharply to the top.
Difflugia pulex also decreases in abundance to the top.
Heleopera spp. are present in significant numbers for
the first time in this zone

IV 67.5-155 Amphitrema flavum This zone has a similar faunal assemblage to Zone III.
Difflugia pulex
Hyalosphenia subflava

Hyalosphenia subflava increases to the centre of this
zone to 64% abundance at 120cm. This trend is
curtailed by the peak of Amphitrema flavum at 110cm
with 52% abundance. Cyclopyxis arcelloides type
increases to the top.

III 155-192.5 Amphitrenza flavum
Difflugia pulex

Difflugia pulex and Amphitrenzaflavum are the major
taxa found in this zone, along with small amounts of
Assulina muscorum and Difflugia pristis type.

II 192.5-245 Difflugia pulex The only taxa found in large numbers in this zone are
Hyalosphenia subflava Difflugia pulex and Hyalosphenia subflava

I 245-280 Amphitremaflavum This zone is characterised by high abundances of
Difflugia pulex Difj7ugia pulex and Hyalosphenia subflava.
Hyalosphenia subflava Amphitrenza flavum is present from 250 to 265cm

Table 5.5	 Zone descriptions for CRM II based on testate amoebae

Zone HI 155-192.5cm This zone has high values of Amphitrema flavum and A.

wrightianum which are indicative of wet conditions. Assulina muscorum has a

cosmopolitan distribution.

Zone IV 67.5-155cm Zone IV is also dominated by D. pulex. The other taxon

with a high abundance in this zone is H. subflava, except at 110cm where there is a

large peak in the abundance of A. flavum and A. muscorum. This implies that the

general trend in this zone is of dry conditions with a transitory wet phase, followed by

drier conditions.

Zone V 27.5-67.5cm The greater species diversity in this zone indicates wetter

conditions (Warner, 1987). The presence of all three Amphitrema spp. suggests wet

conditions as the three indicate 95% water content or bog pools (Tolonen et al, 1992;
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Warner, 1987, 1991). The abundance of Cyclopyxis arcelloides type could either

represent moderately dry conditions with 78-89% water content (Warner, 1987, 1991) or

shallow peatland pools (Warner and Charman, 1994).

Zone VI 0-27.5cm The bottom of Zone VI is extremely wet, as indicated by

the high abundance of Arcella discoides type which is found in floating, submerged or

very wet Sphagnum, with a water content greater than 95% (Tolonen, 1986; Tolonen et

al., 1992; Warner, 1987). The surface samples imply fairly dry conditions, although

some of the literature regarding the taxa found in these samples is contradictory. Nebela

tincta was found by Tolonen et al. (1992) to be a xerophilous taxon with <85% moisture

content. Warner (1987) however, found N. tincta in very wet conditions. Similarly, N.

militaris has been found in drier mosses (de Graaf, 1956) and the wet mosses of bog

hummocks (Warner, 1987). Heleopera petricola increases in abundance to the top of

Zone I, but its ecology is 'variable and disputed' (Tolonen, 1986; Warner, 1987). The

presence of H. sylvatica indicates dry mosses (Tolonen, 1986). Interpretation of this

zone is therefore complicated, but the presence of H. subflava and the decrease in

abundance of A. discoides type shows that at the base of the zone, conditions were very

wet and became much drier towards the surface.

5.2.3 Ordination

Modern and fossil

The modern and fossil ordination plot for CRM II with fossil samples plotted as

'passive' is very similar to that for CRM I and is presented in Figure 5.8. Most of the

fossil samples lie within the spread of modem samples although samples dominated by

Difflugia pulex, such as 170cm, 180cm in the top centre and samples 220cm, 230cm and

270cm in the bottom right hand comer of the plot, are slightly removed from the modern

samples. These samples do not have a particularly good match with modem samples

and this will affect the robustness of palaeohydrological reconstructions.

Sample ordination

Figure 5.9 shows the sample ordination plot for CRM IL There is a good relationship

between sample depth and hydrology, with wetter surface samples plotted closest to axis

2 and the deeper samples whose species composition indicates drier conditions plotted

along axis 1. The surface samples (Zone VI) are removed from the main cluster of
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samples on the far left of the diagram. The mid-core and basal samples are not easily

separated but there is a gradual progression of samples from the surface zones on the left

side of the plot to basal zones on the right side of the plot.

Species ordination

Figure 5.10 shows the species ordination for CRM H. Taxa found only in the surface

samples are grouped to the left of Axis 2. There are three outlier species - Hyalosphenia

subflava, H. papilio and Delugia pulex. Eighteen taxa occur in less than 5% abundance

in every sample in which they occur. These species are less significant in the ordination

than those species that have greater abundance. There is no obvious pattern to the

distribution of less significant taxa.

5.2.4 Hydrological reconstructions

Water table reconstruction

The water table reconstruction curve for CRM 11 using WA and with outlier samples

removed from the modern analogue data set is presented in Figure 5.11. The base of the

curve is -10.5cm below the ground surface. The water table declines to -16cm at

270cm. At 260cm, the water table rises to -6cm below the ground surface and is

associated with the peak in Amphitrema flavum and a corresponding decline in

Hyalosphenia subflava in the faunal assemblage. From 250cm to 195cm, the

reconstructed water table curve is relatively complacent, with wide confidence limits,

greater than 4cm either side of the mean. This is because the dominant taxa in the

reconstruction between 250cm-195cm, are H. subflava and Difflugia pulex. Between

195cm and 160cm the water table rises to just below the ground surface. The water

table fluctuates from -6cm to -2cm below the ground surface. This is one of the wettest

areas of this core. The confidence limits between 195-160cm are very narrow,

indicating that this part of the reconstruction is robust. Between 150cm to 120cm, there

is a slight decline to drier conditions and the water table reaches a low point of -14.8cm

at 120cm depth in the peat core. At 110cm there is a dramatic rise in the water table to -

4cm below ground surface. This is very wet and is associated with a peak in A. flavum.

The close confidence limits at this point indicate a good match between the fossil

samples and the modern analogues, resulting in a robust reconstruction. At 100cm, the

water table level drops back to -14cm below surface.
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Above this to 45cm, there is a trend of increasing wetness, with some fluctuation. The

mean water table reaches a high point of -2cm below surface at 25cm peat depth,

associated with a peak in Arcella discoides type. From 25cm depth to Ocm, the mire

surface, there is a trend of deeper water tables and drier conditions. The surface sample

has a moderately dry value of -8.8cm, which is reflected in the faunal assemblage.

Moisture reconstruction

The percentage moisture curve is presented in Figure 5.12. The minimum

reconstruction curve, on the right side of the mean curve, shows much less variation

than the maximum curve.

At the base of the moisture reconstruction for CRM II, 280cm, the mean percent

moisture is 92.7%. The moisture value decreases to 90.7% In both samples 270cm and

265cm. The wide confidence limits around these basal samples are associated with the

dominance of Hyalosphenia subflava. The soil moisture value rises to 94% at 260cm,

associated with the high representation of Amphitrema flavum and Assulina muscorum.

Between 195cm and 250cm, the curve is relatively complacent, with a slight trend of

decreasing moisture content. The mean moisture content varies from 89.5% to 92.5%

moisture content.

Interestingly, the maximum value between the depths shows much greater variation than

the minimum value, which is less variable at 94% moisture content. Between 190cm to

185cm there is a dramatic fluctuation from much wetter (95.5%), to drier (91.5%)

returning to wetter conditions at 180cm. From 180cm to 120cm, there is a trend of

decreasing moisture content, although this part of the reconstruction is dominated by

Deugia pulex. From 120cm to 55cm peat depth, the curve fluctuates gently, with a

trend of increasing moisture content. Fluctuations are of between 2-3% between each

pair of adjacent samples. The maximum confidence limits fluctuate more here than the

minimum values. Between 55cm and 15cm there are dramatic fluctuations of between

7-13% between adjacent samples in the reconstructed moisture curve. The lowest point

is 82% moisture content at 35cm and the highest value is 97% moisture content at 50cm

depth. From 15cm (82%), there is a drop in moisture content to 80.7% at 5cm depth,

before it rises to 83% moisture content at the surface (Ocm).
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The 'dry' indicator species H. subflava produces a moister reconstruction than the wet

indicator taxa at the top of the core where H. subflava is scarce. This is probably

because there is a greater diversity of taxa at the top of the core, which have better

modern analogues than the less diverse assemblages at the base of the core. H. subflava

also has a higher ranking position with regard to moisture than it has for water table in

the optima and tolerance data for the transfer function from Woodland et al. (1998),

presented in Chapter Four. At the top of the core, there is significantly less D. pulex

and, since this is one of the taxa that causes most problems in reconstruction due to the

absence of a modern analogue, the reconstruction nearer the surface has more

confidence and is more robust than the reconstructions at depth. The reconstructions

where the curve is dominated by H. subflava are more biased to wetter conditions.

5.3 Coom Rigg Moss Core HI (CRM III)

Core CRM ill was extracted from the northern mire margin in April 1995, using a wide

bore Russian corer. The location of core CRM LH is shown on Figure 3.3. CRM DI,

with CRM II are used to analyse the replicability of the testate amoebae record within a

mire and to separate the allogenic climatic signal from autogenic hydrological signals

resulting from mire development and expansion.

Depth (cm) Sediment Description
0- 3.5

3.5 -8
8-18
18 -23
23 - 30
30 -55
55 - 65
65- 100
100 - 130
130 - 181
181 - 187

fig 2; strf 0; elas 4; sicc 1; humo 0. surface vegetation Sphagnum cuspidatum, S.
capitifoilum, Polytricum commune, Vaccinium oxycoccus
nig 4; stf 0; elas 1; sicc 1; humo 3. Tb4 Sphagnum peat
nig 3; strf 1; elas 1; sicc 1; humo 2. lb3 Thi Eriophorum
nig 2; strf 1; elas 3; sicc 1; humo 1. partially decayed Sphagnum moss
fig 3; strf 1; elas 1; sicc 1; humo 3. Tb 4 Sphagnum peat
fig 2; strf 1; elas 1; sicc 1; humo 2. Tb4 partially decayed Sphagnum moss
nig 3; strf 0; elas 1; sicc 1; humo 2. Tb 4 Ti'
nig 4; strf 0; elas 1; sicc 1; humo 3. Tb 4 T1+ ericoid roots present
fig 4; strf 1; elas 0; sicc 1; humo 4. Tb 4 Th+ well humified Sphagnum peat
fig 4; strf 0; elas 0; sicc 3; humo 4. Sh2 Th2 T1+ ericoid roots present & Eriophorum

_ nig 2; strf 0; elas 0; sicc 3; A4, G+ brown clay, with small sand fraction

Table 5.6	 Stratigraphic description of CRM III using the Troels-Smith
(1955) sediment description system
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Zone Depth (cm) Major Taxa Zone description
II

I

0-62.5

62.5-140

Amphitrema flavum
Cyclopyxis arcelloides
type
Difflugia pristis type
Hyalosphenia papilio

Cyclopyxis arcelloides
type
Difflugia pulex
Hyalosphenia subflava

A. flavum and H. papilio decrease from the base
to the top. C. arcelloides type and D. pristis type
increase to the top. Pseudodifflugia fasicularis is
present for the first time in this profile, from 20cm
to 10cm. Test concentration was too low to count
at 5cm.

H. subflava decreases gradually to the top. C.
arcelloides type and D. pristis type are both
present throughout this zone.

Table 5.7	 Zone descriptions for CRM III based on testate amoebae

5.3.1 Stratigraphy

Sediment description for CRM lII is shown in Table 5.6. Peat depth is 181cm. The

basal 6cm (181-187cm) is composed of brown clay with a small amount of sand. The

upper part of this profile is typical of ombrotrophic peat.

5.3.2 Testate amoebae

The top 140cm of the core was suitable for testate amoebae analysis (Table 5.7). Test

concentration from 140cm to 160cm was too low to count and in samples 170cm and

180cm tests were almost completely absent. Sampling strategy, preparation and data

processing was similar to that for cores CRM I and CRM ll (Section 4.1.2). The testate

amoebae diagram (Figure 5.13) is divided into two zones. A third zone could be

constructed at 112.5cm to reflect the greater abundance of Hyalosphenia subflava below

112.5cm. However, this was not justifiable since the species assemblage is so similar to

the assemblages to the depth of 62.5cm. The division between Zones I and II

corresponds with a change in stratigraphy. At 65cm depth, the peat changes colour from

nig 3 above 65cm to nig 4 beneath. The peat below 65cm is more humified (humo 3)

than the peat directly above it. The base of Zone I does not correspond directly with a

change in stratigraphy. Thirty three taxa were counted in this core.
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Zone I 62.5-140cm Zone I is characterised by the abundance of three taxa;

Cyclopyxis arcelloides type, D. pulex and H. subflava. These taxa, along with the

presence of Trigonopyxis arcula and Nebela militaris suggest dry conditions with minor

wetter phases at 110cm and 85cm indicated by the presence of A. f7avum and A.

wrightianum.

Zone II 0-62.5cm Zone 11 has a very diverse fauna, with 32 taxa present.

This leads to a complicated interpretation on the basis of the qualitative information

available about the taxa in the literature. The presence of high abundance of the

Amphitrema spp., Arcella spp., Centropyxis aculeata type and Hyalosphenia papilio

indicate very wet or aquatic conditions. Conversely, Cyclopyxis arcelloides type and

Nebela collaris indicate a moderately dry environment. At the base of this zone, the

taxa suggest very wet conditions, with a lower water table towards the top of the zone,

although the presence of Pseudodifflugia fasicularis in the middle may contradict this,

as according to Cash and Hopkinson (1909) it is an aquatic taxon. The surface sample

(Ocm) with an assemblage composed of Assulina muscorutn, C. arcelloides type,

Heleopera sylvatica, H. subflava, Nebela collaris, N. flabellulum, N. militaris, N. tincta

and Trigonopyxis arcula overwhelmingly suggests much drier conditions.

5.3.3 Ordination

Modern and fossil

The ordination plot for modem samples with fossil samples plotted as 'passive' is

presented in Figure 5.14. Samples 115, 120, 130 and 140cm from the fossil data set are

clustered in the bottom right corner of the plot, removed from the spread of modem

samples. These fossil samples contain high abundance of H. subflava which do not

have a good match with modem samples and therefore will limit the strength of the

hydrological reconstructions.

Sample ordination

Samples from Zone I are clustered at the base of the plot, justified to the right (Figure

5.15). Samples from Zone Il are clustered to the left side of the plot. Axis 1 appears to

be related to depth, with two samples; Ocm and 25cm lying separate from the other

samples from Zone H.
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Species ordination

Fourteen taxa contain less than 5% abundance in every sample in which they were found

(Figure 5.16). There is no distinct pattern to the distribution of less significant samples,

with them scattered throughout the plot. Hyalosphenia subflava is an outlier, located on

the far right of the plot. The most closely associated taxon is Difflugia pulex. Euglypha

rotunda and Difflugia bacillifera are also outlier taxa.

5.3.4 Hydrological reconstructions

Water table reconstruction

The water table reconstruction for CRM DI is presented in Figure 5.17. The basal

sample of this core has a mean reconstructed water table .value of -14cm. The wide

confidence limits at the base of the core are associated with the dominance of H.

subflava which has a poor modern analogue. There is a trend of increasing wetness to

65cm, with a low water table at 115cm of -15cm, rising to -8cm at 110cm peat depth.

Between 85-80cm, there is a high reconstructed water table of -5cm below ground

surface. The water table level falls again at 70cm to -10.7cm. From 60-45cm, the

reconstructed water table produces a very wet curve of up to -2cm below surface. At

15cm there is a wide spread of confidence limits, with a mean value of -4.7cm, a

maximum of -7.5cm and a minimum value of -1.5cm. This is attributable to the peak in

D. pristis type which has a wide tolerance range. The surface sample (Ocm) has a

moderately dry reconstructed water table value of -8.8cm.

Moisture reconstruction

The reconstructed moisture curve for CRM DI (Figure 5.18), shows wide fluctuations in

the percentage moisture for each sample throughout the core. At the base of the core,

from 140cm to 115cm, the mean moisture value is ca. 90%. At 110cm peat depth, the

mean soil moisture value peaks at 95%. From 65cm to the surface of the core, there are

dramatic fluctuations in the level of moisture content, with fluctuations of up to 10%

between two adjacent points. At 50cm, the highest mean moisture value of 95.5% is

achieved. These large fluctuations may be attributable to the presence of

Pseudodifflugia fasicularis in this part of the core, which is not included in the modern

analogue transfer function. The surface sample, Ocm, is the driest, with a mean value of

82%.
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Figure 5.17 Mean water table reconstruction CRM III, with 2a bootstrapped
error estimates shown as thin lines. Assemblage zones marked.
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5.4 Coom Rigg Moss Core IV (CRM IV)

Core CRM IV was extracted from the centre of the mire in April 1995. Core CRM IV is

used in conjunction with CRM I for micro-scale analysis of the replicability of the

testate amoebae record (Chapter Nine). The location of core CRM IV is shown in

Figure 3.3.

5.4.1 Stratigraphy

The stratigraphy of CRM IV is presented in Table 5.8. The stratigraphic description of

CRM IV concurs with that of Chapman (1964a) as a Sphagnum-Eriophorum peat.

Ericoid roots are often associated with more humified peat and macroscopic remains of

Eriophorum spp. are common. CRM IV was extracted close to Chapmans' (1964a) grid

reference 16. The presence of wood fragments below 230cm corresponds to Chapman's

(1964) classification of brushwood peat. Above this depth, it is typical of ombrotrophic

peat.

5.4.2 Testate amoebae

Subsampling, sample preparation, data processing and presentation follows that adopted

for cores CRM I, CRM 11 and CRM B1 Below 400cm, test concentration was poor.

Thirty taxa were found in CRM IV (Figure 5.19). The testate amoebae profile has been

divided into four assemblage zones (Table 5.9). The base of Zone I does not correspond

with a change in stratigraphy. The top of Zone I, at 345cm, is asynchronous with a

change in stratigraphy at 355cm. The top of Zone m at 67.5cm, corresponds with a

stratigraphic change at 66cm. Above 66cm, the peat was lighter in colour and less

humified than below this level.

Zone I 345-400cm This zone is dominated by Difflugia pulex. Between 85-

90cm, the peak in Amphitrema flavum suggests wet conditions of up to 95% water

content. The peak in Habrotrocha angusticollis, a rotifer, at 85cm, where over 40

individuals were counted also indicates wet conditions as de Graaf (1956), Tolonen

(1966) and Tolonen et al. (1992) have found Habrotrocha to be a wet taxon inhabiting

open water or bog hollows.
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Zone II 207.5-345cm Zone 11 is characterised by a high representation of H.

subflava and D. pulex. This probably represents dry conditions, (Table 4.4), except at

320cm and 260cm where the peak in A. flavum suggests wetter conditions.

Zone III 67.5-207.5cm This is a transitional zone, representing drier conditions at

the base, as indicated by the abundance of H. subflava. The taxa at the top of the zone

are typical of much wetter conditions reflected by the increased abundance of A. flavum

and A. wrightianum. D. pulex decreases in abundance to the top of this zone. A.

muscorum is well represented in this zone and is regarded as a cosmopolitan taxon

(Warner, 1990).

Depth (cm) Sediment Description
0- 10

10- 14

nig 3; strf 0; elas 3; sicc 1; humo 2. Tb2 Th2 surface vegetation, Erica tetralix,
Sphagnum tenellum, Juncus efflisus, Molina caerulea,
nig 2; strf 0; elas 3; sicc 1; humo 2. Tb2 Th2. partially decayed Sphagnum,
Eriophorum vaginatum

14 - 36 fig 3; strf 1; elas 2; sicc 1; humo 2. Th3 Tbl . Eriophorum vaginatum and Sphagnum
leaves, ericod roots

36 - 41 nig 2; strf 1; elas 1; sicc 1; humo 2, Tb l Th3 Sphagnum stems preserved, Eriophorum
angustifollium

41 - 55 fig 3; strf 1; elan 1; sicc 1; humo 2. Th3 Sh l Eriopho rum angustifollium
55 - 66 nig 2; strf 0; elan 3; sicc 1; humo 1. Th4 Eriophorum angustifolium
66- 70.5 fig 3; strf 1; elan 2; sicc 1; humo 2. Th3 Tbl Sphagnum stems preserved, Eriophorum

angustifolium
70.5 - 81 nig 2; strf 0; elan 1; sicc 1; humo 4. Sh3 Tbi highly humified peat, Eriophorum

angustifolium
81 . 105 fig 3; strf 1; elan 1; sicc 1; humo 3 Tb3 Thl leaves preserved, Eriophorum

angustifolium
105. 130 fig 4; strf 0; elan 1; sicc 1; humo 3. Tb2 Sh2 Th+ With Eriophorum vaginatum
130- 140 nig 4; strf 0; elan 0; sicc 1; humo 3. Sh3 Tbi well humified peat with Eriophorum

vaginatum
140. 150 nig 4; strf 0; elan 0; sicc 1; humo 3. Sh2 Th2 well humified peat with Eriophonim

vaginatum
150 .230 nig 4; strf 0; elan 0; sicc 1; humo 4. Sh3 Thi ericoid roots in highly humified peat

matrix
230 - 255 fig 4; strf 0; elan 0; sicc 1; humo 4. Sh4 Tr Th+ roots and woody fragments present

in highly humified peat matrix
255 - 280 fig 4; strf 0; elan 0; sicc 1; humo 4. Sh4 Th+ ericoid roots present
280 - 330 fig 4; strf 0; elan 0; sicc 1; humo 4. Sh4 very humified peat, plant structure hardly

discernible
330 - 355 fig 4; strf 0; elan Cr, sicc 1; humo 4. Sh4 Th+ T1+ ericoid roots and woody fragments

present in highly humified peat matrix
355 -380 fig 4; strf 0; elan 0; sicc 1; humo 4. Sh very well humified peat, plant structure hardly

discernible
380 - 430 fig 4; strf 0; elan 0; sicc 2; humo 4. Sh4 Th+ T1+ highly humified peat with presence

of roots and woody fragments
430 - 455 nig 4; strf 0; elan 0; sicc 2; humo 4. Sh3 Th1 T1+ ericoid roots and woody fragments

present in highly humified peat matrix
455 - 500 fig 4: strf 0; elan 0; sicc 2; humo 4. Sh very humified peat, plant structure hardly

discernible
500 - 555 fig 4; strf 0; elas 0; sicc 2; humo 4. Sh4 T1+ Betula roots

Table 5.8	 Stratigraphic description of CRM IV using the Troels-Smith
(1955) sediment description system
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Zone Depth (cm) Major Taxa Zone description
IV 0-67.5 Amphitrema spp.

Assulina muscorum
Cyclopyxis arcelloides
type Difflugia pristis
type

This zone is dominated by Amphitrema spp. at the
base which are then replaced by a more diverse
assemblage comprised of A. muscorum, C.
arcelloides type, Euglypha spp. and Heleopera spp.
Test concentration increases to the top

III 67.5-207.5 Amphitrerna spp.
Difflugia pristis type

There is a greater diversity of taxa in this zone than
in the proceeding zones. The zone is dominated by

Difflugia pulex
Hyalosphenia subflava

D. pulex. H. subflava values fluctuate in this zone,
reaching a maximum abundance of 76% at 165cm
but below 25% in the rest of the zone and declines
towards the top. At the top there is a rise in the
abundance of A. flavum. A. wrightianum, C.
arcelloides type which corresponds with the decline
in H. subflava.

II 207.5-345 Amphitrema flavum This zone is characterised by the high abundance of
Difflugia pristis type
Difflugia pulex
Hyalosphenia subflava

H. subflava. There are peaks in A. flavum at 320cm
and 260cm which correspond with troughs in the
abundance of H. subflava. A. wrightianum and A.
stenostoma increase towards the top. D. pulex and
D. pristis type are present throughout.

I 345-400 Amphitremaflavum
Assulina muscorum

This zone is dominated by D. pulex throughout, with
high abundances of A. muscorum and D. pristis type.

Difflugia pristis type A. flavum is abundant in the lower part, the peak of
Difflugia pulex 70% abundance corresponds with a peak in

abundance of the rotifer Habrotrocha angusticollis
with over 40 rotifer tests counted in sample 385cm.

Table 5.9	 Zone descriptions for CRM IV based on testate amoebae

Zone IV 0-67.5cm The faunal assemblage in this zone is complicated to

interpret. The overall conditions are wet or moderately wet, with high values of

Amphitrema spp. The presence of Assulina seminulum, Bullinularia indica and

Trigonopyxis arcula suggest very dry conditions, although these taxa are found in

relatively small numbers. D. pristis type and D. pulex are well represented and the

absence of information about D. pulex hinders interpretation of this zone. The presence

of Arcella discoides type at the top of the zone suggests very wet conditions (Tolonen,

1986; Tolonen et al., 1992; Warner, 1987).

178



5.4.3 Ordination

Modern and fossil

Figure 5.20 shows the ordination plot for CRM IV, with fossil samples plotted as

'passive' over the modern ordination. More fossil samples are peripheral to the modern

ordination plot than in the other three cores from Coom Rigg Moss. Samples 65-55cm

and 200cm, from the fossil data, are peripheral to the modern data set. These samples

are dominated by A. flavum and A. wrightianum. Samples 260cm, 385cm and 390cm,

also dominated by A. flavum, form part of the gradation from modern to fossil samples.

In the bottom right corner, there is another group of fossil samples that are removed

from the spread of modern samples. Samples 165cm, 220cm, 255ccm, 265cm, 270cm,

330cm are dominated by H. subflava. Samples 350cm, 370cm and 380cm are

dominated by D. pulex and D. pristis type. The samples that lie outside the spread of

modern samples are unlikely to have reliable reconstructed values, since they are not

'good matches' with the transfer function data set.

Sample ordination

Samples at 5cm and 10cm are removed from the main cluster of points, indicating that

they have different taxon compositions (Figure 5.21). There are no strong relationships

between the zones and sample distribution, except that samples from Zones I and II are

mostly clustered to the right side of the plot and from Zones III and IV to the left side.

Species ordination

Core CRM IV has an axis 1 eigenvalue of .559 and an axis 2 eigenvalue of .264 (Figure

5.22). There is a broader spread of taxa about Axis 2 in core CRM IV than in other

cores from Coom Rigg Moss. H. subflava is located on the far right side of the plot in

close proximity to D. pristis type and D. pulex. Sixteen taxa occur with less than 5%

abundance in every sample in which they were found. These species are of less

significance to the ordination than those taxa that have greater abundance and most are

located on the negative side of axis 2.
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5.4.4 Hydrological reconstructions

Water table reconstructions

Figure 5.23 shows the reconstructed water table for CRM IV using the WA model.

CRM IV has a much more sinuous hydrological curve than the others cores from Coom

Rigg Moss. The base of the core has a mean value of -4.4cm below ground surface.

Between 390-380cm, the water table rises to -2.7cm below ground surface, at 380cm

there are wide confidence intervals around the reconstructed mean (max -9.8cm; mean -

5cm; min -0.3cm) associated with the abundance of D. pulex. Between 340-330cm,

there is a low water table reaching an extreme of -16.5cm below surface at 335cm. H.

subflava dominates the faunal assemblage at this point, which accounts for the wide

confidence limits.

Between 265cm and 255cm, there are wide confidence intervals and deep water tables

of -13.5cm and -15.5cm respectively. These are associated with the dominance of H.

subflava in the testate amoebae assemblage. At 260cm there is a high water table of

-3.4cm associated with a peak in A. flavum. At 200cm, there is a very high

reconstructed water table with narrow confidence limits with a maximum of -3cm, mean

of -1cm and minimum value of -0.5cm. This is very wet and is associated with high

abundances of Amphitrema spp. From 200cm to 100cm, the faunal assemblage is

dominated by D. pulex, which accounts for the wider confidence limits between these

depths. At 165cm, there is a peak in H. subflava resulting in a drier reconstructed value

at this level. However, for the reasons discussed earlier, this is unlikely to be a

representative reconstructed value.

The top metre of peat has narrower confidence limits than at depth down the core. This

is because there is a greater diversity of taxa in the top metre, where more taxa have

analogue values with narrow tolerance ranges. The curve fluctuates markedly in the top

metre. Between 35-30cm the water table has a high reconstructed value of -2cm. From

15cm to the surface, there is a trend of lowering water table. At 15cm depth, the water

table is -3cm, this drops to -6.7cm at Ocm. As with the other cores at Coom Rigg Moss,

CRM IV exhibits drier surface conditions than the immediately underlying samples.
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Moisture reconstructions

The moisture reconstruction for CRM IV is presented in Figure 5.24. The basal sample

at 400cm has a mean reconstructed moisture value of 94%. From 385cm to 340cm, the

moisture content of the peat drops to 90%. The wide confidence limits between these

points are related to the high abundance of D. pulex. The moisture content rises at

320cm to 95% associated with a peak in A. flavum. The moisture content drops from

310cm to 265cm and rises to 95% again at 260cm. This peak also coincides with a peak

in A. flavum. From 190cm to 100cm, the curve is relatively complacent, fluctuating

between 92-95% moisture content. The top metre of the curve is more sinuous than at

depth down the core. Between 65cm to 55cm, the mean reconstruction peaks at 97%

with very narrow confidence limits, which is also related to large peaks in A. flavum.

From 10cm peat depth, with a moisture value of 93%, the moisture level drops at the

surface to between 82-83% moisture. This is the driest reconstructed value for the

entire core.
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5.5	 Chronology

5.5.1 Pollen

Pollen sampling rationale and preparation procedure were set out in Chapter Four. The

aim of pollen analysis was to provide a biostratigraphic correlation to be used in

conjunction with the radiocarbon dates. The initial sampling interval chosen was 20cm

to give a general indication of major changes in the pollen spectra. The surface 20cm

was counted at closely spaced intervals of 5cm, for a more detailed examination of

recent peat accumulation. The pollen spectra are difficult to correlate clearly apart from

a few depths. At Coom Rigg Moss, there are three horizons identified as

biostratigraphic zones. Table 5.10 sets out these pollen marker horizons, which are also

shown on the pollen diagrams, Figures 5.25 - 5.28.

Core A B C

CRM I 17.5 70 310

CRM II 17.5 70 -

CRM III 2.5 70 -

CRM IV 17.5 90 350

Table 5.10 Changes in pollen spectra and depths for the four Coom Rigg Moss
cores. A-C represent changes noted on the diagrams and described
in the text.

Position A refers to a clearly identifiable rise in Pinus pollen which relates to large scale

forestry planting of the Kielder Forest. Planting began in 1926 and comprised 69% sitka

spruce, 9% lodgepole pine and 3% Scots pine (Section 3.3). Between 1954-1957 the

land surrounding Coom Rigg Moss was planted with sitka spruce and lodgepole pine

and in 1974, the land to the south of the bog was planted with lodgepole pine (Smith

and Channan, 1988; Merricks, 1995). The pollen horizons therefore form a useful

chronological maker for this period. Position B relates to the final decline in Alnus

pollen to below 5% TLP and is clearly identifiable in all profiles, It is also characterised

by a rise in Plantago lanceolata. Position C marks the point at which a rise in

Cyperaceae occurs, together with a decline in Alnus and a smaller rise in Poaceae in

cores CRM I and CRM IV (Figures 5.25 and 5.28), but is not detected in CRM II and
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CRM TR (Figures 5.26 and 5.27). These three markers provide a limited comparison

between cores, but it is not possible to provide reliable chronologies for all cores on this

basis.

The best marker is position A, the anthropogenic Pinus rise (APR) which dates from

1926 and was used as an additional chronological marker in conjunction with the

radiocarbon dates to calculate the sedimentation rate and age of each sample. Although

planting on the land immediately surrounding Coom Rigg Moss did not take place until

the 1950s, the APR is assigned the date 1930 (20BP) because it is likely that the initial

rise in Pinus above background levels took place soon after planting, with a further rise

in Pinus levels as more of the forest was planted.

5.2.2 Radiocarbon ages

Conventional radiocarbon ages were calibrated using CALD3 3.0.3c (Stuiver and

Reimer, 1993a,b). This is set out in Chapter Four, Section 4.1.5. Figures 5.29-5.31

show the location of calibrated 14C ages BP in relation to depth of core, with 2a

confidence intervals for each date, for cores CRM I, CRM II and CRM IV. The APR is

also marked on these diagrams. There are no confidence limits for the APR. Linear

interpolation for CRM DI is not presented, since there was only one radiocarbon date

from this core, between 110-115cm (Table 4.5) and there were no samples between the

APR (2.5cm) and the next testate amoebae sample. However, estimated ages were

calculated on the same basis as the other cores, by extrapolating from the date at

112.5cm to the surface at 1995 and from the date, at the same gradient, to the base of the

core. This is rather simple, but for such a short core, of which only the top 140cm

contained testate amoebae, it was not justifiable to assign this core more radiocarbon

dates which would have improved the accuracy of sample-age estimation.
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Figure 5.29 Coom Rigg Moss I - linear interpolation of sample ages. Solid line
- median linear interpolation from radiocarbon dates and APR,
dashed lines - 2a confidence limits on

Figure 5.30 Coom Rigg Moss II- linear interpolation of sample ages. Solid line
- median linear interpolation from radiocarbon dates and APR,
dashed lines - 2a confidence limits on
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Figure 5.31 Coom Rigg Moss IV - linear interpolation of sample ages. Solid line
- median linear interpolation from radiocarbon dates and APR,
dashed lines - 2a confidence limits on

Table 5.11 sets out the estimated accumulation rates for CRM I, calculated by taking the

mid-point between radiocarbon dates and dividing by the years from that sample to the

surface (1995) at that point. From the base of the peat core to 297AD, the peat

accumulation rate is ca. 12.5 years per centimetre. At 85cm depth, the accumulation

rate is 10 years per centimetre and in the surface layer, the acrotelm, the accumulation

rate is approximately 2.5 years per centimetre. This is because the undecomposed

Sphagnum moss has not undergone compaction. Accumulation rates for CRM ll and

CRM DI are not presented as these cores do not have chronologies which are as well

constrained as CRM I and CRM IV.

Depth (cm) Year BC/AD year/cm
0-40 1901AD 5

40-130 1177AD 10

130-200 163BC 12.5

200-290 1161BC 12.5

290-355 2505BC 14

Table 5.11 CR111 I accumulation rate (yr/cm)
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Depth (cm) Year BC/AD year/cm
0-30 1939AD 4

30-160 969.5AD 10

160-220 65BC 11

220-330 914BC 11

330-385 1949BC 11

Table 5.12
	

CRM IV accumulation rate (yr/cm)

Figure 5.31 shows the linear interpolation of sample ages from the radiocarbon dates for

CRM IV. The gradient of the line indicates the rate of peat accumulation for this core.

This shows that CRM IV, although deeper than CRM I, is younger at the point where

the testate amoebae assemblage first occurs. CRM I is shallower where testate amoebae

no longer have a countable concentration and the peat is older than CRM IV at that

depth. Figures 5.32-5.35 show the percentage testate amoebae chronologies for cores

CRM Ito CRM IV.

Table 5.12 shows the approximate accumulation rates for CRM IV. At the base of the

core, to 65BC, peat accumulation is about 11 years per centimetre. Above this, to

970AD, accumulation is about 10 years per centimetre and in the acrotelm,

accumulation is about 4 years per centimetre due to the uncompacted Sphagnum moss.

5.6	 Conclusions

The top 1 m to 1.5m of each core from Coom Rigg Moss have better hydrological

reconstructions than at depth down the cores. This is because in the upper peats there is

a greater diversity of taxa, more of which have good modem analogues. Sampling for

the modem analogue transfer function was carried out by Woodland (1996) on sites with

conservation status that had long-term hydrological monitoring regimes. These sites are

generally wetter which causes the bias in the analogue data set. The wet phases in the

palaeohydrological record have better reconstructions than the dry sections. There are

three taxa that dominate the testate amoebae assemblage which have either no, or poor

modem analogues. Poor modem analogues are regarded as those taxa with large

tolerance ranges or inaccurate optima values, when compared to published data.
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Their dominance in the testate record affects the robustness of reconstruction at Coom

Rigg Moss. Generally the water table reconstructions derived from WA provide better

models, with closer confidence intervals than the moisture reconstructions derived from

WA-To!. Due to this, only the water table reconstructions will be used in the

chronological assessment of the testate record.

The results from these cores are to be used in Chapter Nine to separate autogenic 'noise'

from allogenically forced hydrological signals from the water table reconstruction

curves. The reliability and replicability of the testate amoebae record will also be

considered at three scales of study (see Figure 3.1). At Coom Rigg Moss, micro-scale

comparisons are made between the central cores CRM I and CRM IV. This will enable

likely 'errors' in the record obtained at the macro-scale from single cores to be

quantified. Meso-scale comparisons between all four cores extracted from Coom Rigg

Moss will allow separation of hydrological signals resulting from mire expansion and

development from the regional climatic signal. This is achieved by comparing the two

cores from the mire margins, CRM II and CRM 111, with the two central cores. Cores

CRM I and CRM IV will also be discussed further in Chapter Nine in a macro-scale

comparison with the central cores from Butterburn Flow and The Wou.
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Chapter Six

BUTTERBURN FLOW -

Testate amoebae and palaeohydrology

6.0	 Introduction

This chapter presents results from the three cores extracted from Butterburn Flow.

Presentation of this chapter is similar to Chapter Five, in that the first section presents

results from individual cores plotted against depth. Results include; profile stratigraphy,

testate amoebae diagrams and ordination analyses of modern and fossil samples to

assess the degree of 'match' or `mis-match' between the modern analogue transfer

function and fossil data. Hydrological models using the transfer function are also

presented. As with the results from Coom Rigg Moss, the hydrological reconstructions

for depth to water table are more robust than those for percentage moisture and these

will be the focus for discussion. The second part of this chapter puts the testate

amoebae record into chronological context. Sample ages are presented from linear

interpolation of pollen marker horizons and radiocarbon dates. Chronologies are used

for inter-core comparisons in Chapter Nine.

6.1 Butterburn Flow Core I (BBF I)

730cm of peat was extracted in 32 sections from the centre of the northern end of

Butterburn Flow (Figure 3.7 for core location). Cores were extracted in September

1995, from adjacent holes. The rationale for subsampling was similar to that for Coom

Rigg Moss. Samples were taken every 5cm in the top metre of peat and at 10cm

intervals for the rest of the core. Closely spaced samples were also taken around

radiocarbon dates.

6.1.1 Stratigraphy

Stratigraphical description for BBF I is set out in Table 6.1. The presence of Sphagnum

and Eriophorum macrofossils suggests that the mire was ombrotrophic throughout its

development.
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Depth (cm) Sediment Description
0 -3 fig 3; strf 1; elas 3; sicc 1; humo 1; Tb 3 ; Th l . surface vegetation - Molinia caerulea,

Eriophorum vaginatum, Calluna vulgaris, Erica tetralix, Drosera rotundifolia,
Sphagnum magellanicum

3 - 5 fig 2; strf 0; elas 4; sicc 1; humo 0; Tb4; unhumified Sphagnum moss
5 - 23 nig 3; strf 1; elas 4; sicc 1; humo 2; well decomposed peat matrix with stems preserved,

Menyanthes seeds
23 - 26.5 fig 1, strf 1; elas 1; sicc 2; humo 1; TV/ light green matrix with undecomposed fibrous

material
26.5 -30 fig 3; strf 2; elas 2; sicc 1; humo 2; Tb 4 Sphagnum moss
30 - 45 fig 2; strf 1; elas 2; sicc 1; humo 2; Tb 4 ; good preservation of Sphagnum stems
45 -48 fig 3; strf 1; elas 1; sicc 1; humo 2; plant structure well decayed
48 -58 fig 3; strf 3; elas 1; sicc 1; humo 2; Tb3 ; Th l ; well preserved stems in a humified peat

matrix
58 - 70 fig 2; strf 1; elas 0; sicc 1; humo 3; Tb4; with Sphagnum stems
70 - 95 fig 4; strf 1; elas 0; sicc 1; humo 4; Tb 4; with Sphagnum stems
95 - 106 fig 3; strf 2; elas 2; sicc 1; humo 2; Tb4; Th+; large fragments of Eriophorum 'felted'

together
106 - 130 nig 4; strf 1; elas 1; sicc 1; humo 3; Tb4; well humified peat matrix with preserved stems
130 - 150 nig 4; strf 1; elas 1; sicc 1; humo 3; Tb4; Th+ Sphagnum peat
150 - 180 nig 4; strf 1; elas 1; sicc 1; humo 2; Tb4; Th+ Sphagnum peat
180 - 200 nig 4; strf 1; elas 1; sicc 1; humo 3; Tb4; Th+; woody rootlets and monocots.
200 - 230 fig 4; strf 0; elas 0; sicc 1; humo 4; Tb4; + TI roots
230 -255 fig 4; strf 0; elas 0; sicc 1; Sh; Th+ plant structure hardly discernible
255 - 268 nig 4; strf 0; elas 0; sicc 1; Sh4 very well humified peat
268 -330 nig 4; strf 0; elas 0; sicc 1; humo 4; Sh Th+
330 - 375 nig 4; strf 0; elas 0; sicc 1; Sh4 very well humified peat
375 - 405 nig 3; strf 1; elas 1; sicc 1; humo 3; Th 4 well humified peat with rootlets
405 - 455 nig 4; strf 1; elas 1; sicc 1; Sh; Th+ Eriophorum
455 - 490 nig 4; strf 0; elas 1; sicc 1; humo 4; Th+; Ti' (rootlets)
490 -530 fig 4; strf 0; elas 1; sicc 1; Sh4 very well humified peat
530 - 550 fig 3; strf 1; elas 2; sicc 1; Sh3; Ti1 well humified peat with wood fragments
550 - 605 nig 4; strf 0; elas 1; sicc 1; Sh4; Tr well humified peat with occasional wood fragments
605 - 630 fig 4; strf 1; elas 0; sicc 2; Sh4; TI+
630 - 680 fig 4; strf 1; elas 0; sicc 2; humo 4 Sh3 TI+ Th+
680 - 730 fig 4; strf 1; elas 0; sicc 2; humo 4; Sh 3 Thl T1+ (monocots)

Table 6.1	 Stratigraphic description of BBF I using the Troels-Smith
(1955) sediment description system
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6.1.2 Testate amoebae

Sample preparation and data presentation was explained in Chapter Four. Core BBF I

was 730cm deep, of which 715cm was suitable for testate amoebae analysis (Figure

6.1). Forty one taxa were found in this profile. Three samples at depths 180cm, 300cm

and 700cm had test concentrations too low to count. The testate amoebae record has

been divided into six zones, set out in Table 6.2. These zones generally correlate well

with changes in stratigraphy.

Above 680cm, the peat contains less sedge peat than below it (Table 6.1). This

correlates well with the bottom of Zone 11 which is related to a large rise in the

abundance of Difflugia pulex. The zone change at the top of Zone II, at 565cm, is below

the stratigraphic change to a more homogenised sediment at 550cm. The change in the

testate amoebae assemblage at the top of Zone DI has been placed 10cm below the

stratigraphic change, although the dendrogram indicates that the zone may be put at

375cm, the level of stratigraphic change. The zone boundary has been set at 385cm

because it matches a sharp decline in Amphitrema flavum and an increase in Assulina

muscorum and Difflugia pristis type at this level. The zone boundary at the top of Zone

IV at 252.5cm correlates well with stratigraphic changes at 255cm to peat containing

small amounts of highly hurnified sedge peat.

The boundary for the top of Zone V is 15cm below the stratigraphic change from peat of

humo 2 beneath the stratigraphic boundary and of humo 3 above. The dendrogram also

indicates that the zone change at this point may be at 155cm, but the testate amoebae

assemblage suggests that the zone change should be at 165cm by the sharp decline in the

abundance of Hyalosphenia subflava and a steep rise in D. pulex.

The top of Zone VI at 82.5cm is just below the stratigraphic change at 70cm. This

correlates with the decline of both H. subflava and D. pulex and the increase in

Amphitrerna spp. and Assulina spp. The base of Zone VDT (32.5cm) also correlates with

stratigraphic changes at 30cm. Above 30cm, the peat is light in colour and unhumified.

Below 30cm, the peat is darker in colour and more humified.
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Zone Depth (cm) Major taxa Zone description
VI 0-72.5 Amphitrema spp., Arcella

discoides type, Assulina
muscorum

35 taxa were found in this zone. The Amphitrema
spp. and A. muscorum dominate, but decrease
towards the top. Some taxa, such as Difflugia
bacilhfera, D. leidyi, D. oblonga, D. penardi and
the Nebela spp. are only found in the surface 5cm.

72.5-165 Difflugia pristis type
Difflugia pulex,
Hyalosphenia subflava

D. pulex dominates this zone. H. subflava is less
abundant than in Zone IV and the Amphitrema
spp., A. discoides type, Assulina spp. and
Cyclopyxis arcelloides type all increase in
abundance to the top.

165-252.5 Difflugia pulex,
Hyalosphenia subflava

This zone is dominated by H. subflava, which
increases in abundance towards the top of this
zone. D. pulex decreases to the top, as does A.
muscorum. 11 taxa were found.

ifi 252.5-515 Amphitrema flavum,
Assulina muscorum,
Difflugia pristis type,
Difflugia pulex

Difflugia pulex dominates this zone. Amphitrenza
flavum and Assulina muscorum have alternately
high and low values. There is an isolated peak in
Hyalosphenia papilio at 440cm. Assulina
senzinulum and Trigonopyxis arcula are present in
small numbers throughout.

•
515-645 Assulina muscorum,

Cyclopyxis arcelloides
type, Difflugia pulex,
Nebela militaris

C. arcelloides type and N. militaris decrease to the
top. A. muscorum increases to the top.
Trigonopyxis arcula is present in low values
throughout.

645-715 Amphitremaflavum,
Assulina muscorum,
Cyclopyxis arcelloides
type, Difflugia pulex,
Hyalosphenia papilio,
Nebela collaris, Nebela
militaris,

19 taxa were found in this zone. C. arcelloides
type and D. pristis type increase in abundance to
the top. N. militaris decreases to the top. A.
MUSCOrum is present throughout. The rotifer
Habrotrocha angusticollis was found in abundance
in this zone. Data are absent for 700cm, due to
extremely low test concentrations. Concentrations
increase to the top.

Table 6.2	 Zone descriptions for BBF I based on testate amoebae assemblages
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The zone changes for BBF I generally correlate very well with changes in stratigraphy.

However, not all changes in stratigraphy are reflected as strongly in the testate amoebae

assemblage. These zones are interpreted qualitatively using the data in Table 4.4.

Zone I 645-715cm The species assemblage indicates neither wet nor dry

conditions. A. flavum and Hyalosphenia papilio suggest wet conditions, whilst

Cyclopyxis arcelloides type, Nebela militaris and Trigonopyxis arcula indicate dry

conditions. However, the rotifer Habrotrocha angusticollis, which has up to 20

individuals per sample at the top of this zone corresponds to very wet conditions (de

Graaf, 1956; Tolonen, 1966; Tolonen et al., 1992; Charman and Warner, 1997), or

alternatively, a depth to water table level of 36.8cm (Warner and Channan, 1994)

indicating that it prefers less wet conditions. Wetness and dryness indices are

predominantly determined from ombrotrophic bogs, not from minerotrophic systems

represented in basal peats and this hampers the interpretation of basal samples.

Zone II 515-645cm This zone is characterised by high values of D. pulex

throughout. The other taxa in the assemblage, C. arcelloides type, Nebela militaris and

Trigonopyxis arcula suggest dry conditions. A. muscorum is a . cosmopolitan taxon

(Warner, 1987).

Zone LH 252.5-515cm This zone has a similar species assemblage to Zone II.

The drier indicator taxa, such as C. arcelloides type decrease in abundance to the top of

the zone. The higher abundance of Amphitrema flavum in this zone indicates wetter

conditions than Zone II, as does the peak in H. papilio at 440cm, which prefers very wet

Sphagnum of between 90-95% water content (de Graaf, 1956; Heal, 1961; Tolonen et

al., 1992; Warner, 1987, 1991).

Zone IV 165-252.5cm H. subflava dominates this zone indicating dry conditions.

The water table optimum for H. subflava has been recorded as 22.8cm and 49.9cm

(Charman and Warner, 1997; Warner and Channan, 1994). Only 11 taxa were found in

this zone, which is the smallest number of taxa of any zone in this profile and, together

with the dominance of H. subflava, suggests that this is the driest zone.

Zone V 72.5-165cm	 This is a transitional zone, but is dominated throughout by

D. pulex. H. subflava decreases to the top of the zone, indicating that it is drier at the
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bottom of the zone than at the top. The Amphitrema spp. and Arcella discoides type

increase in abundance to the top of the zone implying very much wetter conditions.

Zone VII 32.5-82.5cm The three Amphitrema spp. increase in abundance to the

top of this zone A. muscorum and A. seminulum decrease in abundance from the base of

the zone to the top, pointing to more hygrophilous conditions at the base and

hydrophilous at the top.

Zone VI 0-72.5cm Thirty five taxa were found in this zone. The Amphitrema

spp. dominate this zone, suggesting very wet conditions with >95% water content, or

bog pools (e.g. Tolonen, 1966; Warner, 1991). Arcella discoides type is well

represented at the top and the presence of a variety of Difflugia spp., Heleopera

petricola and Nebela griseola all indicate wet to aquatic conditions. The large number

and composition of taxa in this zone, represent very wet conditions.

6.1.3 Ordination

Modern and fossil ordination

Figure 6.2 is an ordination plot of the samples from the modem analogue transfer

function and the fossil data set for BBF I, plotted as passive samples. Many of the fossil

samples are concentrated in the bottom right comer of the plot There is a gradation of

those fossil samples which fall totally outside the modern samples and those which are

peripheral to them. The eigenvalue for Axis 1 = .379 and for Axis 2 = .321. Samples

30, 35 and 290cm lie outside the modern plot at the top, these levels are dominated by

Amphitrema flavum and A. wrightianum. In the bottom right corner of the plot, samples

170cm, 200cm, 220cm, 230cm are dominated by H. subflava and samples 130cm,

150cm and 430cm are dominated by D. pulex. These samples do not have good matches

with the modern analogues and therefore will not have robust reconstructed values.

Samples such as 265cm and 50cm lay within the spread of modem samples and should

therefore have better reconstructed hydrological values.

Sample ordination

The sample ordination plot for BBF I is presented in Figure 6.3. The diagram shows

strong bifurcation parallel with the first axis which suggests that the environmental
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factors on both axes influences the distribution of samples. Axis 1 has an eigenvalue of

.526 and axis 2 has an eigenvalue of .383. Sample 170cm closest to axis 2, is

dominated by H. subflava. Other samples close to 170cm, 190cm and 220cm contain

dry indicator taxa and are dominated by H. subflava. Samples furthest from axis 2, at

the top of the plot, such as 690cm are dominated by wet taxa, e.g., Hyalosphenia papilio

and A. flavum. Samples 5cm and 25cm, at the base of the plot, are also dominated by

wet taxa. Samples from Zone VI are clustered at the base of the plot and from Zone I at

the top of the plot. Zone IV samples are clustered close to Axis 2. Samples from Zones

II and IR are mixed in the centre of the plot. Axis 1 is therefore a hydrological gradient

from dry on the left side, to wet on the right side. Axis 2 also exerts a strong influence

on the distribution of species which correlates with depth, separating the very deep Zone

I samples from the shallow Zone VI samples.

Species ordination

The ordination plot for taxa (Figure 6.4) follows a similar pattern to the sample

ordination plot (Figure 6.3) for BBF I. Twenty species with less than 5% abundance in

every sample in which they occur are plotted as crosses. These species are less

significant in the ordination than the species indicated by circles.. H. subflava is an

outlier located on the far left of the plot. In the bottom right corner of the plot is a

cluster of species that are predominantly found in the top of the core, in Zones V and VI.

These are principally wet taxa and most have <5% abundance in every sample in which

they occur. The middle of the plot contains taxa such as Assulina muscorum and A.

seminulum which have a more cosmopolitan distribution. Species located at the top of

the plot, in a diagonal line, are drier taxa such as Bullinularia indica and Trigonopyxis

arcula.

6.1.4 Hydrological reconstructions

Water table reconstruction

The transfer function is described in detail in Chapter Four. Figure 6.5 shows the water

table reconstruction for BBF I. The water table curve is derived from the WA model

(Woodland et al., 1998).
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At 715cm peat depth, the reconstructed water table value is -6.3cm below the mire

surface. Between 690cm and 680cm, the water table falls from -5.3cm to -8.3cm. At

660cm, there is a relatively high water table of -4cm, associated with the high

representation of Cyclopyxis arcelloides type. From 650cm to 600cm, the mean

reconstructed curve is relatively hydrologically stable, fluctuating between -5cm and -

7cm. These samples fall within the modern ordination plot (Figure 6.2) and hence the

good match between modern and fossil data sets explains the narrow confidence limits

between these samples. At 560cm, there are wide confidence intervals around the mean

reconstructed value (-8cm to -0.9cm). Approximately half of this sample is D. pulex,

which is not included in the transfer function and this accounts for the unreliable

reconstruction. From 540cm to 460cm, the mean reconstructed curve is sinuous,

fluctuating between -2.7cm and -7.8cm between adjacent points. At 460cm, there is a

wet mean reconstructed value of -2.7cm, associated with high values of A. flavum.

However, the sample contains 59% D. pulex, which, since it has no modern analogue

value, casts doubt on the accuracy of this reconstruction. There is a trend of slight

lowering of the water table from 460cm to 370cm. At 370cm, the water table has a

mean value of -8.8cm.

At 330cm, the mean reconstruction has wide confidence intervals, with a maximum

value of -9.4cm, a mean value of -6cm and a minimum value of -2.6cm. 290cm has a

high water table of -2.5 related to the abundance of A. flavum. This sample falls outside

the modern ordination plot (Figure 6.2).

From 250cm, there is a trend of lowering of the water table, from -12cm at 250cm peat

depth, to -16.5cm at 200cm peat depth. Between these samples are high values of H.

subflava. At 170cm peat depth, the mean water table is -15cm, rising to -5cm between

150-160cm peat depth. At 140cm, the water table drops back down to -10cm.

There is a trend of increasing wetness towards the top of the core. At lm peat depth, the

reconstructed value is -2.9cm. Between 85cm peat depth and the mire surface, the water

table fluctuates between -4.7cm and -1.3cm. These levels have narrower confidence

intervals, as most samples have a greater proportion of the species with good modern

analogue values. 15cm peat depth has the wettest value of the entire core at -1.3cm,

associated with a peak in Arcella discoides type and high values of A. flavum. The

surface sample, Ocm, has a mean water table of -3.9cm.
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Moisture reconstruction

Figure 6.6 is the moisture reconstruction for core BBF I derived from WA-To!, with

outlier samples removed. The moisture reconstruction is more variable than the water

table curve and has wider confidence intervals about the mean, probably due to single-

shot sampling of moisture data, rather than the mean annual water table data.

The basal sample at 715cm has a mean moisture value of 92.7%. At 690cm, there are

wide confidence intervals, with a minimum moisture content of 89.2%, a mean of

92.6% and a maximum of 96%, this is a deviation of 3.4% from the mean. This sample

falls within the spread of modern samples (Figure 6.2). Between 620-600cm the curve

is complacent with a mean of ca. 91%. From 590-555cm, the mean rises to an average

of 93%. Between 540cm and 490cm, the mean curve fluctuates between 91% and 94%

between adjacent pairs of points.

At 390cm, there are wide confidence intervals, deviating 5% either side of the mean.

This sample is composed largely of A. flavum and D. pulex. There is a trend of

increasing moisture content to 290cm, which has a reconstructed value of 96%. From

290cm to 190cm, there is a trend of decreasing moisture content, reaching a low of 89%

at 200cm. This sample contains 94% H. subflava and, since this species has a poor

analogue value, this moisture value is probably an overestimate of its true moisture

content. The wide confidence intervals, deviating 5% from the mean also implies a lack

of confidence in the reconstruction at this level.

At 160cm, the moisture content rises to 95.8%. This is a reflection of the presence of

the Amphitrema spp. and Assulina spp., but since the sample also contains 62.6% D.

pulex, this may also not be an accurate reflection of palaeomoisture content. From

70cm to 55cm, there is a trend of increasing moisture content. Between 60cm and 55cm

the palaeomoisture value was 96%. The surface 30cm has wide fluctuations between

adjacent pairs of points, with an overall trend of decreasing moisture content. At 30cm,

the palaeomoisture value was greatest at 97.5% and at 15cm, lowest at 84.6%.

The pattern of the moisture reconstruction concurs with that for the water table, except

for the top metre. The top metre has far greater fluctuations in moisture content and

implies a fall which is not seen in the water table reconstruction.
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All of the samples, except for the top metre, are likely to have poor reconstructed values

for both moisture content and depth to water table, since samples below lm are either

dominated by D. pulex which has no modern analogue value, or H. subflava which has a

poor modern analogue value. This results in the core having very wet values

throughout, with the result that the water table level or moisture content does not drop

significantly when the samples contain a large proportion of xerophilous taxa such as H.

subflava. The top metre therefore has a more accurate reconstructed hydrology than the

rest of the core.

6.2	 Butterburn Flow Core II (BBF II)

Butterburn Flow Core ll was extracted from the eastern edge of the northern part of the

mire (Figure 3.7) in September 1995. 2.74m of peat was recovered. Laboratory

preparation and data processing procedures are set out in Chapter Four.

6.2.1 Stratigraphy

The stratigraphy for BBF II is set out in Table 6.3. Sediment description follows Troels-

Smith (1955). At the base of the core, the peat contains clay and woody material. The

peat is ombrotrophic. This is indicated by the presence of Sphagnum and Eriophorum.

6.2.2 Testate Amoebae

Of the 274cm of peat extracted, tests were counted to 270cm, with the exception of

260cm which had a test concentration which was too low to count (Figure 6.7). A total

of 29 taxa were found in this core. This profile has been divided into five species

assemblage zones (Table 6.4).

The base of the core was composed of grey clay. The diffuse boundary between clay

and peat occured at 272cm. The boundary between the top of Zone I and base of Zone II

does not correspond with a stratigraphic change. At 215cm, the zone boundary, there is

a marked fall in Assulina muscorum, Cyclopyxis arcelloides type, Difflugia pulex,

Trigonopyxis arcula and a rise in the abundance of Hyalosphenia subflava. The top of

Zone ll also does not correspond directly with a change in stratigraphy. The change in

species assemblage occurs at 135cm and the stratigraphic change to slightly more
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humified peat occurs at 118cm. The species assemblages found in Zones II and DI are

similar, but a division has been made at 135cm since there is a greater abundance of H.

subflava in Zone II and a greater abundance of D. pulex in Zone III. At 35cm peat

depth, the boundary between Zones IV and V, the stratigraphy changes to less humified

peat above, corresponding with a change in testate amoebae assemblage to wetter

indicator taxa.

The zones for BBF II (Table 6.4) are described qualitatively according to the data set out

in Table 4.4.

Zone I 215-270cm The basal sample 270cm is composed of 96%

Pseudodifflugia fasicularis, which was regarded by Cash and Hopkinson (1909) as an

aquatic species, although this may not be a reliable source. This is found just above the

boundary with the clay. P. fasicularis is composed of minute mineral particles so the

location of BBF 11 on a slight slope (Figure 3.9) probably provides test-building

material, as well as suitable hydrological conditions that may not be found in other

locations. Trigonopyxis arcula decreases to the base of the core as H. subflava

increases. These taxa indicate dry conditions, but the presence of the rotifer

Habrotrocha angusticollis and A. flavum implies that conditions were wetter at 250cm.

Depth (cm) Sediment Description
0 - 2.5 fig 2; strf 1; elas 4; sicc 1; humo 1; 2Tb ; — 2.in Sphagnum magellanicum, Molinia

caerulea, Menyanthes seeds
2.5 . 35 fig 3; strf 2; elas 4; sicc 1; humo 1; Tb 3; Thl ; unhumified peat, root matrix
35 - 57 nig 3; strf 1; elas 3; sicc 2; humo 2; Tb 3; Thl Sphagnum peat with stems
57 -75 fig 4; strf 1; elas 3; sicc 2; humo 3; Tb 4; plant structure well preserved
75 - 100 nig 4; strf 1; elas 2; sicc 1; humo 4; Tb 4; well humified peat matrix with Sphagnum

stems
100. 118 nig 4; strf 1; elas 1; sicc 1; humo 4; very well humified peat matrix
118 .200 fig 4; strf 0; elas 0; sicc 1; Sh plant structure hardly discernible
200 - 225 nig 4; strf 0; elas 0; sicc 2; Sh very well humified peat
225 -268 fig 4; strf 0; elas 0; sicc 2; Sh Th+; Birch roots and Eriophorum stems
268 -272 nig 3; strf 0; elas 0; sicc 2; Sh; Ag+; well humified material with clay
272 - 274 nig 2; strf 0, elas 0; sicc 3; Ag4 Sh+ confirmed base - peaty clay

Table 6.3	 Stratigraphic description of BBF II using the Troels-Smith
(1955) sediment description system
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Zone Depth (cm) Major taxa Zone description
V 0-35 Amphitrema spp.,

Cyclopyxis arcelloides
type, Difflugia pristis
type, Heleopera spp.

Twenty-five taxa were found in this zone. D. pristis
type is the most abundant taxon. The Amphitrema
spp. decrease in abundance towards the top, as does
D. pulex. C. arcelloides type and Heleopera
petricola are well represented throughout.

IV 35-62.5 Amphitrema spp
Difflugia pulex,
Hyalosphenia subflava

This is a transitional zone, similar in species
composition to Zone II. H. subflava decreases in
abundance to the top, as D. pulex increases in
abundance. Between 55-60cm, there is a peak in the
abundance of Amphitrema spp.

III 62.5-135 Difflugia pulex,
Hyalosphenia subflava

This zone is similar to Zone II. H. subflava
decreases to the top. Arcella discoides type is
present for the first time in this zone.

II 135-215 Difflugia pulex,
Hyalosphenia subflava

This zone is characterised by high values of H.
subflava of between 55 - 99% abundance throughout
this zone. Eight taxa were found.

I 215-270 Difflugia pulex,
Difflugia pristis type
Pseudodtfflugia
fasicularis,

P. fasicularis dominates the base of the core,
attaining nearly 100% representation, but then
disappears. There are no data for 260cm due to poor
test concentration. Assulina muscorum, D. pristis
type and D. pulex increase from 250cm towards the
top of the zone. C. arcello ides type and
Trigonopyxis arcula decrease in abundance from

— 250cm to the top.

Table 6.4	 Zone descriptions for BBF II based on testate amoebae assemblages

Zone II 135-215cm This zone is dominated by H. subflava which suggests dry

conditions of less than 80% water content throughout this zone. At 180cm, the

assemblage represents slightly wetter conditions, as indicated by the presence of A.

flavum and A. wrightianum.

Zone III 62.5-135cm Zone DI is dominated by H. subflava and D. pulex

indicating dry conditions. The top of the zone has increased species diversity, with

increasing Amphitrema spp and Arcella discoides type. This indicates wetter mire

surface conditions.

Zone IV 35-62.5cm The Amphitrema spp., Assulina muscorum and D. pristis

type dominate the base of the zone, representing very wet to aquatic conditions. The top

of the zone is more difficult to interpret, since it is dominated by up to 80% D. pulex.
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Zone V 0-35cm The major taxa in this zone are D. pristis type and C.

arcelloides type, which, according to Warner and Charman (1994) and Charman and

Warner (1997) have a water table optimum that varies between 32.0cm and 4.7cm. The

Amphitrema spp. indicate that the base of the core has very wet conditions with 95%

water content (Tolonen et al., 1992). These are replaced by A. discoides type which are

also indicative of very wet conditions - of floating, submerged or very wet Sphagnum

(Tolonen, 1986). Heleopera petricola also indicates very wet conditions. The overall

species assemblage implies very wet to aquatic conditions. However, the presence of

Bullinularia indica and Trigonopyxis arcua, which are both xerophilous taxa, also

suggest drier conditions.

6.2.3 Ordination

Modern and fossil ordination

There are a large number of samples from BBF II which fall outside the modern samples

in the bottom right corner of the plot (Figure 6.8). This mis-match between modern and

fossil samples will affect the robustness of the hydrological reconstructions.

The sample at Ocm has an unusual assemblage, with high values of Heleopera spp.

Samples at 65cm, 75cm, 85cm, 90cm, 100cm, 120cm, 140cm, 160cm, 170cm and

190cm contain high values of H. subflava and D. pulex which have poor and no modem

analogue values respectively. Samples at 50cm, 210m, 230cm and 240cm contain large

amounts of D. pulex so these levels will also have poor reconstructed values. Sample

270cm will have a very poor reconstructed value, since Pseudodifflugia fasicularis has

no modem analogue value. Thus, a large number of samples in BBF 11 will not have

accurate hydrological reconstructions and the reconstructed curves are likely to be

biased towards wetter reconstructed values.

Sample ordination

Figure 6.9 is presented with sample 270cm removed. This sample was an outlier,

containing 95% P. fasicularis. Samples containing high values of D. pulex and H.

subflava from Zones 11 and IDI, are grouped together on the far right of the plot.

Samples from Zone V which contain greater abundances of wetter indicator taxa are

located on the left side of the plot, close to axis 2. This suggests that axis 1 is an
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hydrological gradient, from very wet on the left side, to drier conditions on the right side

of the plot.

Species ordination

Sample 270cm, containing 95% P. fasicularis, has been removed from this ordination

plot since it was an outlier. No other sample from this core has a similar faunal

assemblage (Figure 6.10). H. subflava and D. pulex are located on the right side of the

plot. The eigenvalue for axis 1 is .871 and for axis 2 = .176. Fourteen taxa have been

plotted as less significant taxa, indicated by a cross. These species have less than 5%

abundance in every sample in which they occur and do not make a significant

contribution to the ordination. Most of these low abundance taxa are located on the

negative axes. The percentage variance explained by the first axis is 33.3% and 40% is

explained by axis 2, which leaves 60% unexplained by the first two axes.

6.2.4 Hydrological reconstructions

Water table reconstruction

The water table reconstruction for BBF Ill is presented in Figure 6.11. The base of the

core at 270cm has a reconstructed value of -4cm, but this is highly unreliable, since it

was composed of 95% P. fasicularis that has no modern analogue value. From 250cm,

the water table drops from -5cm below the surface to -9.5cm below the surface at 220cm

peat depth. From 210cm to 65cm peat depth, the mean curve is relatively complacent,

fluctuating only slightly between -14 and -16cm below the surface. This is related to the

assemblage dominance of H. subflava. At 55cm, there is a high reconstructed water

table value of -3cm with narrow confidence intervals. This is associated with an

increase in species diversity and a greater number of taxa with good modern analogues,

such as A. flavum and A. wrightianum. From 50cm to 15cm, the water table rises from

-11cm to -2.5cm. The high water table at 15cm is related to the peak in Arcella

discoides type, which has the highest water table value at -3.4cm, of the taxa included in

the transfer function by Woodland et al. (1998). The water table falls to the surface

sample, which has a mean water table value of -7cm.
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Moisture reconstruction

Figure 6.12 shows the reconstructed moisture curve for BBF II using WA-Tol with

outlier samples removed. As with the water table reconstruction, sample 270cm is not

plotted, as it is independent of other data and little confidence can be placed in the mean

value of 81% moisture, as there is no analogue value for Pseudodifflugia fasicularis.

From 250cm, the peat moisture content falls from 93% to 89.7% at 200cm. The wide

confidence intervals associated with these levels are related to the broad tolerance range

of H. subflava (Section 4.2.2). At 180cm, there are narrow confidence intervals and a

mean moisture content of 93%. This is associated with the presence of A. flavum and A.

wrightianum which are wet indicator species with good analogues. From 170cm to

65cm peat depth, the mean moisture curve is complacent, between 89-90%. The

maximum curve is also complacent, but the minimum curve shows a greater degree of

variability. At 55cm peat depth, the maximum value is 99% moisture content, the mean

is 95%. From 20cm to the surface, the mean moisture content falls from 95.8% to 81%,

associated in the decline in Amphitrema spp. and Arcella discoides type and a rise in D.

pristis type.

6.3	 Butterburn Flow Core III (BBF III)

Butterburn Flow Core DI was extracted from the northern edge of the northern part of

the mire in September 1995. Figure 3.7 shows core location. 348cm of peat was

extracted. Laboratory preparation and data processing procedures are set out in Chapter

Four.

6.3.1 Stratigraphy

Table 6.5 shows the sediment description for BBF DI according to Troels-Smith (1955).

The presence of Sphagnum and Eriophorum macrofossils suggests that this is an

ombrotrophic peat.

6.3.2 Testate amoebae

The profile was cored to the depth of 348cm, of which 341cm was peat. From 341cm to

348cm, the core was composed of grey clay which was devoid of tests. Tests were

counted to 340cm (Figure 6.13).
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Depth (cm) Sediment Description
0 -2 fig 3; strf 0; elas 4; sicc 1; humo 0; Tb 4; undecomposed Sphagnum moss, Calluna

vulgaris
2 - 6.5 nig 2; strf 0; elas 4; sicc 1; humo 0; Tb 4; undecomposed Sphagnum moss
6.5 - 26 fig 3; strf 1; elas 1; sicc 1; humo 2; Tb 4; partially decomposed Sphagnum peat
26 - 37 nig 2; strf 1; elas 2; sicc 1; humo 2; Tb 4; partially decomposed Sphagnum peat
37 - 51 nig 3; strf 1; elas 2; sicc 1; humo 2; Tb 4 partially decomposed Sphagnum peat
51 -76 nig 4; strf 1; elas 3; sicc 1; humo 3; Tb 4 well humified Sphagnum peat
76 - 125 nig 4; strf 0; elas 0; sicc 1; Sh Th+ (Phrag)
125 - 150 nig 4; strf 0; elas 0; sicc 1; Sh Th+ roots and Eriopho rum
150 - 200 nig 4; strf 0; elas 0; sicc 2; Sh Th+ well humified peat matrix with roots
200 -300 nig 4; strf 0; elas 0; sicc 1; Sh Th+ roots and Eriophorum
300 - 341 nig 4; strf 1; elas 0; sicc 2; humo 3 Sh,+ Th l birch roots and Eriophorum
341 -348 nig 3; strf 0; elas 0; sicc 3; As 4 Th+; grey clay - confirmed base

Table 6.5	 Stratigraphic description for BBF III using the Troels-Smith
(1955) sediment description system

Zone Depth (cm) Major taxa Zone description
III 0-42.5 Amphitrema spp.,

Difflugia pristis type
There is a greater diversity of taxa at the top of this
zone than at any other point in the core. Difflugia
pulex decreases from the bottom to the top. The
Heleopera spp. increase to the top, as does
Pseudodifflugia fasicularis.

II 42.5-195 Difflugia pulex
Hyalosphenia subflava

This zone is characterised by high values of Difflugia
pulex and H. subflava. H. subflava decreases to the
top. Amphitrema wrightianum occurs for the first
time.

I 195-340 Assulina muscorum,
Cyclopyxis arcelloides
type, Difflugia pristis
type, Difflugia pulex,
Nebela militaris,
Trigonopyxis arcula

The four major taxa found in this zone, A. muscorum,
Cyclopyxis arcello ides type, Difflugia pristis type
and D. pulex dominate the assemblage. Other taxa
found in small numbers throughout the zone include
Nebela milharis and Trigonopyxis arcula. The basal
sample, 340cm, contains Arcella catinus,
Hyalosphenia papilio and N. parvula. The rotifer
Habrotrocha angusticollis is also well represented.

Table 6.6	 Zone descriptions for BBF III based on testate amoebae assemblages
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Thirty five taxa were found in this core, which has been divided into three faunal zones

(Table 6.6). The boundary between Zones I and II corresponds with the rise in

Hyalosphenia subflava. The basal sample from Zone I, 340cm, is very different from

the other samples in this zone and may be regarded as an outlier. There are no changes

in faunal composition that correspond with major stratigraphic boundaries.

Zone I 195-340cm The species assemblage of xerophilous taxa, for example,

Cyclopyxis arcelloides type, Nebela militaris and Trigonopyxis arcula suggests that this

zone is dry (Table 4.4). The basal sample contains 25% Nebela parvula which,

according to Warner (1987), inhabits very dry conditions. 340cm also contains 18.6%

Arcella catinus, which is the driest indicator species found by Channan and Warner

(1992) from sites in northeastern Ontario and 28% Hyalosphenia papilio, which prefers

very wet conditions. This complicates interpretation. This sample is from the

minerogenic transition and, since wetness and dryness indices are predominantly

determined from ombrotrophic bogs, not from minerotrophic systems, the assemblages

from the basal peats are difficult to interpret.

Zone II 42.5-195cm This zone is dominated by H. subflava which prefers

<80% water content (Warner, 1991), or a water table optimum of up to 49.9cm (Warner

and Charman, 1994) and D. pulex. There are two wetter parts, at 80-85cm and 130-

135cm, where the Amphitrema spp increase in abundance and H. subflava decreases.

Zone III 0-32.5cm This zone has a greater diversity of species many of which

prefer very wet conditions. The Amphitrerna spp. are abundant at the base and Arcella

discoides type and Pseudodifflugia fasicularis occur as the Amphitrema spp. decline., All

of these taxa prefer very wet to aquatic conditions. This is the wettest zone of BBF III.

6.3.3 Ordination

Modern and fossil ordination

Figure 6.14 shows that fossil samples are clustered in a similar pattern to BBF II in the

bottom right corner of the ordination plot. Outlier samples 70, 75, 80, 100, 110, 120,

150, 160 and 170cm all contain large amounts of H. subflava and D. pulex. These

samples will not have robust hydrological reconstructions as they fall outside of the
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modern ordination plot. The lack of adequate analogue values for these taxa is

discussed in Chapter Eight. Even samples that fall within the spread of modern samples

may not have good reconstructions. For example, sample 50cm depth contains 20% A.

f7avum, 57% D. pulex and 23% other taxa. Even though 43% of the species assemblage

have modern analogue values, the reliability of the reconstruction will be affected

because 57% of the assemblage has no analogue value.

Sample ordination

The sample ordination for BBF Ill is presented in Figure 6.15. This figure is presented

to show the relationship between samples within the core. Sample 340cm is an outlier,

as it is the only sample that contains high values of Arcella catinus, Hyalosphenia

papilio and Nebela parvula. Samples from Zone DI are clustered at the bottom of the

ordination plot, as axis 2 is related to the depth of samples in the profile. Basal samples

are located at the top of the plot and surface samples located at the base of the plot.

Samples from Zone II that contain high values of Hyalosphenia subflava and Difflugia

pulex are clustered on the far left of the plot, while samples from Zone I are clustered

along the top. Axis 1 exerts the greatest influence on the distribution of samples with an

eigenvalue of .499, Axis 2 has an eigenvalue of .307.

Species ordination

Seventeen species with less than 5% abundance in all samples in which they occur are

plotted as crosses, as they have less influence on the ordination than those samples

plotted as solid circles (Figure 6.16). Most of the taxa with less significance to the

ordination are plotted in the bottom right corner, on the negative side of axis 1. H.

subflava is plotted in isolation on the far right of the plot.

6.3.4 Hydrological reconstructions

Water table reconstruction

The water table reconstruction for BBF DT using WA is presented in Figure 6.17. The

base of the core at 340cm has a depth to water table value of -4.5cm. From 340cm to

230cm, the water table fluctuates from -7.7cm to -5cm. The confidence intervals are

narrow in this part of the reconstruction because of the high values of Assulina
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Axis 1	 Eigenvalue = 0.499 24.5% cumulative variance

Figure 6.16 Species ordination for BBF M. Taxa with <5% abundance plotted
as crosses, refer to Table 5.3 for species codes
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muscorum (optimum -7.4cm), Cyclopyxis arcelloides type (optimum -5cm), Difflugia

pristis type (optima -7cm), Nebela militaris (optimum -7.9cm) and Trigonopyxis arcula

(optimum -7.8cm). These taxa have similar optima values and relatively narrow

tolerance ranges. From 200cm to 140cm, the water table falls from -5.9cm to -11.2cm.

Between 135-130cm, the water rises to -6cm and is associated with peaks in the

Amphitrema spp. The water table falls between 120-100cm to -13.7cm. This trend of

lower water table is interrupted at 90cm, when the water table rises to -3cm. Again, this

is associated with a peak in the Amphitrema spp. The depth to water table drops back to

-15cm at 75cm peat depth. From 40cm, with a water table depth of -4.6cm, the water

table level drops gently to -5.7cm at the surface.

Moisture reconstruction

The moisture reconstruction for BBF DI using WA-Tol with outlier samples removed is

presented in Figure 6.18. The basal sample, 340cm, has a mean reconstructed moisture

value of 93.8%. From 330cm to 190cm, the curve is relatively complacent, fluctuating

between 90-92% soil moisture content. At 180cm, the moisture level increases to a

mean of 97.3%. The minimum reconstructed value is 95.3% and maximum 99.3%.

Although the confidence intervals are narrow at this point, the robustness of the

reconstruction is questionable since 42% of the species assemblage is D. pulex and 20%

is H. subflava (see Chapter Eight). From 170cm to 40cm, the curve is sinuous, with a

maximum moisture value of 95.6% at 90cm peat depth and a minimum value of 88% at

130cm. In the top 35cm, the moisture content of the peat drops dramatically from 94%

at 35cm to 85.9% at the surface. This shows a far greater degree of variability than the

same depth range in the water table reconstruction.
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6.4	 Chronology

6.4.1 Pollen data

Pollen sampling rationale and preparation procedures are set out in Chapter Four. As at

Coom Rigg Moss, the aim of pollen analysis was to provide a biostratigraphic

correlation to be used in conjunction with the radiocarbon dates. The surface 20cm was

counted at 5cm intervals to give a detailed record of recent pollen accumulation. The

rest of the core was sampled at 20cm intervals, so that major changes in pollen spectra

could be identified. Four horizons are identified as marker horizons. These horizons

are set out in Table 6.7 and are shown on the pollen diagrams for Butterbum Flow,

Figures 6.19-6.21.

Core A B CD
BBF I 25 70 310 430
BBF II 25 50
BBF III 25 55

Table 6.7	 Changes in pollen spectra and depths for the three
Butterburn Flow cores. A-D represent changes noted
on the diagrams and described in the text

These horizons are equivalent to those found at Coom Rigg Moss and therefore,

position A relates to the anthropogenic Pinus rise (APR) that relates to large scale

afforestation of the Kielder Forest which commenced in 1926. Land directly adjacent to

the northern end of Butterburn Flow was not forested, but the APR provides a useful

chronological marker above background levels. Position B, the decline in Alnus pollen

to below 5%TLP is clearly identifiable in all three profiles. Position C, which marks the

point at which a rise in Cyperaceae and a small rise in Poaceae occurs together with a

decline in Alnus and is only found in BBF I. The Elm Decline is also found only in BBF

I and is shown at horizon D at 430cm (Figure 6.19). The Elm Decline took place

between 5300-5000BP in northern Europe (Bell and Walker, 1992) and the pattern and

chronological spread of the elm decline does not easily fit any hypothesis such as greater

coolness, wetness or continentality (Huntley and Birks, 1983). Since this decline is

found only in BBF I, it is not used as a chronostratigraphic marker horizon. Marker

horizons A and B provide a limited comparison between the cores from
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Figure 6.22 Butterburn Flow I - linear interpolation of sample ages. Solid line
- median linear interpolation from radiocarbon dates and APR,
dashed lines - 2a confidence limits on

Figure 6.23 Butterburn Flow II- linear interpolation of sample ages. Solid line
- median linear interpolation from radiocarbon dates and APR,
dashed lines - 2a confidence limits on

242



Figure 6.24 Butterburn Flow III - linear interpolation Of sample ages. Solid line
- median linear interpolation from radiocarbon dates and APR,
dashed lines - 2a confidence limits on

Butterburn Flow. The APR is assigned the date 1930, since it is likely that the initial

rise above background Pinta levels took place soon after planting.

For BBF I, as for the cores from Coom Rigg Moss, the APR is used as an additional

chronological marker in conjunction with the radiocarbon dates to calculate

sedimentation rate and the age of each sample. The APR has a date of 20BP (before

1950).

6.4.2 Radiocarbon data

Conventional radiocarbon ages were calibrated using CALIB 3.0.3c (Stuiver and

Reimer, 1993a,b), as set out in Chapter Four. Figures 6.22-6.24 shows the location of

calibrated 14C ages BP in relation to the depth of core with 2a confidence intervals for

each date from BBF I, BBF II and BBF III. The solid line represents the median linear

interpolation of sample ages, the dashed lines represent the maximum and minimum

linear interpolation of sample ages (Section 4.1.5). The APR is marked for each core.

There are no confidence limits on the APR.

Table 6.8 presents the estimated accumulation rates for BBF I. From the base of the

core to 297AD, peat accumulation rate was approximately 12.5 years per cm. Peat
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accumulation is approximately 11 years per centimetre between 297AD to 1201AD.

The acrotelm peat accumulation is ca. 2.5 years per centimetre. Accumulation rates for

BBF II and BBF DEE are not presented as these cores do not have chronologies as well

constrained as BBF I, which would result in cruder estimates of peat accumulation.

Figures 6.25 to 6.27 show the testate amoebae assemblages for BBF I-BBF 111 against

age.

Depth (cm) Year BC/AD year/cm
0-40 1943AD 3

40-100 1201AD 11

100-170 297AD 12.5

170-300 1118.5BC 12.5

300-440 2870BC 12.5

440-550

1

4513BC 12.5

550-710 6181BC 12.5

Table 6.8
	

BBF I accumulation rate (yr/cm)

6.5	 Conclusions

The top 1 m to 1.5m of each core from Butterbum Flow has better hydrological

reconstructions than at greater depth down the cores because the upper peats have a

greater diversity of taxa in the assemblage and more of these have good modem

analogue values. The modern analogue transfer function was developed from samples

from wet peat bog conservation sites with long-term monitoring programmes, which

biased the hydrological models to better reconstructions for wetter taxa. Most

designated conservation sites are wet as these are perceived to be of more conservation

value than drier sites, which could have yielded better analogue values for dry taxa. The

consequences for the robustness of the reconstructions are discussed in Chapter Eight.

Macro-scale comparisons between BBF I and the central cores from Coom Rigg Moss

and The Wou are discussed in Chapter Nine, as are the separation of allogenic and

autogenic hydrological signals.
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Chapter Seven

THE WOU -

Testate amoebae and palaeohydrology

7.0	 Introduction

This chapter presents the results from The Wou. TW II from the centre of The Wou was

analysed first and, because of the poor test concentrations, extremely poor quality slides

and differences between the testate amoebae assemblages from l'W II and the cores

from Coom Rigg Moss and Butterburn Flow, it was decided not to pursue testate

amoebae analysis of the two marginal cores at The Wou any further. Hence, there are

no testate data for either TW I or TW DI The first section.of this chapter presents the

stratigraphy for all three cores and testate amoebae record, ordination analyses and

hydrological reconstructions for TW IL The second section of this chapter describes the

results for TW 11 against age. The rationale for coring at The Wou is set out in Chapter

Three.

7.1 The Wou Core I (TW I)

TW I was extracted from the bottom of the slope from Black Rigg, from Om on south-

north transect I (Figure 3.10). 405cm of peat was extracted. The stratigraphy of core

TW I is set out in Table 7.1. The peat below 175cm is woody, above this the peat

contains well humified moss peat.

7.1.1 Stratigraphy

Minerogenic peat is highly variable. The stratigraphy of TW I (Table 7.1) describes a

core which contains a higher proportion of woody peat than was found in the

ombrotrophic peats (e.g. Table 5.1, Table 5.8).
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Depth (cm) Sediment description
0 -3 fig 1; strf 0; elas 4; sicc 1; humo 0; fresh, undecomposed Sphagnum recurvum moss
3 -23 nig 1; strf 1; elas 4; sicc 1; humo 1; very well preserved Sphagnum moss
23 - 30 fig 2; strf 1; elas 3; sicc 1; humo 2; Tb 4; Sphagnum peat with occasional monocots,

plant structure partially decayed, though distinct
30 - 50 fig 3; strf 3; elas 3; sicc 2; humo 2; Tb 4 Th+; fairly well Immified Sphagnum matrix with

some Ericaceous roots
50- 100 fig 3; strf 3; elas 3; sicc 1; humo 2; Tb 4 Th; moss peat with roots
100 - 125 fig 4; strf 2; elas 3; sicc 1; humo 3; Tb 4 well humified moss peat
125 - 175 fig 4; strf 1; elas 2; sicc 1; humo 3; Tb 4 Th* (monoct) well humified moss peat
175 - 225 fig 4; strf 1; elas 1; sicc 2; humo 4; Tb 3; T1 1 ; highly humified peat with woody fragments
225 - 243 nig 4; strf 1; elas 1; sicc 2; humo 4; Tb 2: T1 1 ; Th l highly humified moss peat with roots and

wood
243 - 250 fig 4; strf 2; elas 3; sicc 2; humo 3; Tb 4 well humified moss peat
250 - 294 fig 4; strf 1; elas 2; sicc 2; T13; Sh l woody peat with Substantia humosa
294 - 332 fig 4; strf 2; elas 1; sicc 2; T1 4 Sh* woody peat with Substantia humosa
332 - 338 nig 4; strf 3; elas 1; sicc 2; T1 3 ; Til l Sh+ woody peat with roots
338 - 350 nig 4; strf 2; elas 0; sicc 2; T14 Sh* woody peat
350 - 405 fig 4; strf 2; elas 1; sicc 3; Th 4 Sh*; felted monocot. fragments

Table 7.1	 Stratigraphic description for TW I using the Troels-Smith (1955)
sediment description system
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7.2 The Wou Core II (TW II)

Core TW II was extracted from the centre of the site, from 60m along west-east transect

I. Sediment to a depth of 497cm was extracted. Sediment from 33-90cm was not

retained in the corer as it was too wet to sample.

7.2.1 Stratigraphy

Table 7.2 shows the stratigraphy of TW II. This core contains a high proportion of

sedge peat and several layers of silt and sand. This indicates that the peat accumulation

has been heavily influenced by groundwater and runoff processes.

Depth (cm) Sediment description	 .
0 - 6 nig 2; strf 0; elas 4; sicc 3; humo 0; unhumified Juncus effusus, moss
6 - 13 fig 3; strf 1; elas 3; sicc 2; humo 2; 2Tb	 — 2;

; in Sphagnum and reeds
13 - 33 fig 3; strf 2; elas 3; sicc 2; humo 1; Th 3; Tbi Eriophorum peat
33 -90 not sampled, material not retained in corer
90 - 126 fig 4; strf 1; elas 3; sicc 1; humo 2;Tb2.. — 2;1. n Sphagnum and Eriophorum
126 - 199 fig 2; strf I; elas 3; sicc 1; humo 2;Tb 3; Th l ; well humified Sphagnum peat with monocot

fragments
199 -209 fig 4; strf 1; elas 1; sicc 1; humo 3; Tb 4 Th+ well humified moss peat
209 - 225 fig 4; strf 0; elas 1; sicc 1; humo 4; Sh. highly humified peat
225 - 241 fig 3; stef 1; elas 2; sicc 1; humo 3; Tb 3; Th i Tr well humified moss peat with roots and

wood fragments
241 - 286 fig 3; strf 2; elas 2; sicc 1; humo2; Tb 2; Th2 (monocot.) unhumified moss and Eriophorum

peat
286 -300 nig 4; strf 1; elas 1; sicc 1; humo 3; Th 3; Ti' Tb+ humified Eriophonun peat with wood
300- 325 nig 3; strf 2; elas 2; sicc 1; humo 2; Th4 Tb+ unhumified Eriophontm peat
325 -362.5 fig 4; strf 1; elas 1; sicc 1; humo 3; T14 Tb+ T1+ woody peat
362.5 - 365 fig 3; strf 0; elas 3; sicc 2; Ag 3 Shl peaty silt
365 - 368 fig 4; strf 1; elas 1; sicc 1; humo 4; Sh highly humified peat
368 - 369.5 fig 2; strf 0; elas 3; sicc 2; Ail grey silt
369.5 - 394 nig 4; strf 0; elas I; sicc I; Sh2; Ag2 silty peat
394 -424.5 fig 4; strf 1; elas 1; sicc 1; Sh4 Tr Ag+ highly humified matrix with silt and roots
424.5 .448 fig 4; strf 1; elas 1; sicc 2; Sh4 Th.* Ga+ highly humified matrix with sand and wood
448 - 455 nig 4; strf 0; elan 1; sicc 2; Sh4 Tr Substantia humosa with wood
455 - 480 fig 4; strf 1; elan 0; sicc 3; Sh3; Thl Gs+ highly humified matrix with sand and roots
480 - 497 fig 4; strf 1; elan 0; sicc 3; humo 3; Tb 2; Th2 well humified peat, drier

Table 7.2	 Stratigraphical description for TW II using the Troels-Smith (1955)
sediment description system

7.2.2 Testate amoebae

Of the 497cm of sediment extracted from TW II, the top 270cm was analysed for testate

amoebae, (Figure 7.1). Samples were taken at 10cm intervals and slides were scanned

to 310cm, but test concentration was negligible below 270cm. The surface sample is

missing, as are samples from 33-90cm. The surface sample was composed of Juncus
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stems and was not suitable for testate analysis. The testate record is missing from

230cm, 250cm and 260cm, due to extremely low test concentrations. The material from

which testates were recovered was composed primarily of moss peat. Below 286cm, the

peat contains large amounts of Eriophorum, from which no tests were recovered.

Between 368-369.5cm, there is a band of grey silt and from 424.5cm, the sediment

contains sand grains. Zone I, from 270cm to 195cm does not correspond with changes

in stratigraphy. Three horizons, at 230cm, 250cm and 260cm are missing from this

zone. Zone II spans the depth from 195cm to 125cm. At 125cm, there is a stratigraphic

boundary, the peat below 125cm contains sedge, the peat above does not. Zone HI,

spans the depth from 125cm to 10cm. From 90cm to 33cm, there is a gap in the

diagram due to the material not being retained in the corer. Below 13cm, the peat

contains a greater proportion of Eriophorum than above 13cm. Thirty-eight taxa were

found in TW II, of which 32 were found in Zone II. Slides from TW II were difficult to

count due to low test concentrations. The inclusion of fine mineral particles which were

retained after micro-sieving also obscured tests.

Zone Depth (cm) Major taxa Zone description
III 10-125 Centropyxis cassis type

Cyclopyxis arcelloides
type Pseudodifflugia
fasicularis Trinema
lineare

This zone is dominated by, C. cassis type, C.
arcelloides type and T. lineare all of which
increase in abundance to the top. The Nebela
spp. are well represented. No material was
retained in the corer between 33-90cm depth.

II 125-195 Amphitrema wrightianum
Centropyxis cassis type

32 taxa were found in this zone, which is
characterised by the dominance of A.
wrightianum and C cassis type. A. flavum is
well represented at the base

I 195-270 Centropyxis cassis type
Cyclopyxis aculeata type
Cyclopyxis arcelloides
type Pseudodifflugia
fasicularis

Seven species of Difflugia were found in this
zone. Amphitrema spp. increase to the top. P.
fasicularis is the dominant taxon, reaching 53%
abundance at 210cm. The concentration of tests
increases to the top.

Table 7.3	 Zone descriptions for core TW II based on testate amoebae
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Zone I 195-270cm Zone I contains large amounts of Pseudodifflugia

fasicularis, which was regarded by Cash and Hopkinson (1909) as an aquatic taxon.

The presence of the Amphitrema spp. indicate wet conditions, as does Difflugia

rubescens which was classified by de Graaf (1956) as a hydrophilous taxon and

Hyalosphenia papilio, which is also found in very wet Sphagnum with >95% water

content (e.g. Warner, 1987). The species assemblage in this zone indicates wet

conditions.

Zone II 125-195cm The dominance of Amphitrema wrightianum in this zone

suggests wet conditions. A. wrightianum was found to have an optimum depth to water

table value of -4.07cm from Canadian work (Charman and Warner, 1997). The other

species in the assemblage, A. flavum, Centropyxis cassis type, C. aculeata type and H.

papilio also indicate very wet to aquatic conditions.

Zone III 10-125cm The lack of material between 90-33cm divides the zone,

although the species assemblages are very similar. The abundance of P. fasicularis at

the base of this zone suggests aquatic conditions, which appears to become more

hygrophilous towards the surface, as indicated by the abundance of Trine= lineare (de

Graaf, 1956).

7.2.3 Ordination

Modern and fossil ordination

Figure 7.2 shows the ordination plot of modern samples from the transfer function, with

fossil samples from TW II plotted as 'passive'. This is to show the degree of 'match' or

`mis-match' between the two data sets. Four outliers from the modem data set have not

been plotted. Most of the fossil samples fall in the middle of the modem ordination

plot, between the two groups of modem samples. Samples 100cm, 110cm, 120cm and

270cm, which contain high percentages of P. fasicularis, do not have good matches with

the modem analogue data set, since this taxon is not in the transfer function. Samples

20cm, 30cm, 180cm and 190cm fall within the spread of modem samples. These

samples have good modem analogue values.
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Sample ordination

The ordination plot of samples from TW II is presented in Figure 7.3 to show the

association of fossil samples within the core. Samples from Zone I are clustered at the

top of the plot, those from Zone 11 are clustered at the base of the ordination plot. The

samples from Zone 111 are located close on the left side of the diagram. Axis 1 has an

eigenvalue of .454 and axis 2 has an eigenvalue of .203.

Species ordination

Figure 7.4 shows the species ordination plot for TW II. Seventeen taxa contain less than

5% abundance in every sample in which they occur. The less significant taxa are

scattered throughout the range of more significant taxa. The distribution of taxa about

the axes does not show an obvious hydrological gradient since wet, dry and

cosmopolitan taxa are adjacent to one another throughout the plot. However, the centre

of the plot does contain a greater proportion of wetter taxa such as Difflugia bacillifera,

D. globulosa, D. oblonga and Heleopera petricola.

7.2.4 Hydrological reconstructions

Water table reconstruction

Figure 7.5 shows the reconstructed water table model for TW II, using WA with outlier

samples removed. Samples 270cm and 240cm at the base of the core are not presented

since they are isolated data points. Both samples have reconstructed water tables of ca.

-3.5cm. From 220cm to 90cm, the water table curve varies between -1.6cm at 180cm

peat depth and -5.4cm at 200cm peat depth. This is not a large variation in the

reconstructed water table value over 130cm. At 30cm peat depth, the reconstructed

value is -7.6cm, which falls to -9.4cm at 20cm and then rises to -7.6cm at 10cm. The

confidence intervals are close at all points in the reconstruction, with a maximum depth

of -2.5cm and a minimum value of -0.8cm at the highest reconstructed point in the water

table at 180cm and a maximum value of -12.4cm and a minimum value of -6.3cm at the

lowest point in the water table at 20cm.
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Moisture reconstruction

The moisture reconstruction for TW II is presented in Figure 7.6. Samples 270cm and

240cm are not presented but both have reconstructed moisture values of 95%. At

220cm, the sample has the lowest reconstructed value of the entire core at 85% soil

moisture content. This rises to 95% between 210-200cm peat depth. Between 180cm to

160cm, the mean value is between 96-97% moisture content, this drops to 87.7% at

150cm peat depth. The moisture content of the peat rises from 92.5% at 130cm to

95.9% at 90cm. From 30cm to 10cm, the moisture content rises from 87% to 92%. The

confidence intervals on the reconstruction are widest in this part of the core due to the

small number of occurrences of Trinema lineare in the transfer function. This affects

the strength of the reconstruction dominated by this taxon.

7.2.5 Other microfossils

In addition to the testate amoebae found in TW II, many horizons had abundant

specimens of desrnids. These desmids were not routinely counted, but their presence in

samples from The Wou may provide useful insights into the palaeoecological

conditions, because, from a qualitative estimate, there was a greater abundance of

desrnids in horizons with poor test concentrations. Line and Brooks (1980) and

Kouwets (1984) were used to identify the desmids as Euastrum spp. and which were

thought to be the vegetative semi-cells, which indicate pools on the bog surface

(Wilmhurst, pers. comm). Desmid vegetative cells have very little resistance to decay

and hence there has been very little palaeoecological work carried out on them - the

zygospores are thought to be more likely to be recovered from peat, as they are the more

resistant form of the life cycle (Andresen, pers. comm.). Work is currently in progress

at the University of Wisconsin in Madison, looking at desmids from a

palaeolimnological perspective (Winkler, pers. comm.). A multi-proxy approach to

reconstructing mire surface wetness reconstructions may be appropriate at some sites

using the rotifer Habrotrocha angusticollis (sensu Warner and Chengalath, 1991)

desmids and diatom frustules that are found both included in test construction and free

on slides. The rotifers may however, not be found in sufficiently high numbers to be

used as an effective palaeoecological tool. These other microtossils may be important

hydrological indicators, especially where testate concentrations are poor.
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Figure 7.5	 Mean water table reconstruction TW II, with 2a bootstrapped
error estimates shown as thin lines. Assemblage zones marked
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Figure 7.6	 Mean moisture reconstruction TW II, with 2a bootstrapped
error estimates shown as thin lines. Assemblage zones marked
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7.3 The Wou Core III (TW III)

Core TW III was extracted from the bottom of the slope from Black Rigg, from 15m on

south-north transect H. 410cm peat was extracted using a wide-bore Russian corer. The

stratigraphy of core TW DI is presented in Table 7.4. No further analyses were carried

out on TW III due to poor test concentrations from TW II.

7.3.1 Stratigraphy

Depth (cm) Sediment description
0 - 2.5 nig 2; strf 3; elas 4; sicc 3; humo 0; fresh Sphagnum moss, Polytrichum
2.5 - 8 nig 3; strf 1; elas 3; sicc 3; humo 1; Th3 (Phrag); Tbl
8- 10.5 fig 4; strf 1; elas 2; sicc 3; humo 2; Tb4 Th+ plant structure well preserved
10.5. 19 fig 3; strf 1; elas 3; sicc 3; humo 1; Tb4; unhumified moss peat
19 - 23 fig 4; strf 2; elas 2; sicc 3; humo 2; Tb 2; Th2 moss and mbnocot peat
23 -50 fig 3; strf 2; elas 2; sicc 2; humo 3; Tb4, well humified peat matrix with stems preserved
50 - 75 fig 4; strf 2; elas 2; sicc 2; humo 3; Tb 4 well humified peat, plant structure hardly

discernible
75- 100 fig 4; strf 1; elas 1; sicc 1; humo 3; Tb 4, very well humified peat matrix with some stems

preserved
100 - 130 nig 3; strf 1; elas 1; sicc 2; humo 4; Sh Th+ very well humified peat matrix with some stems

preserved
130- 170 fig 4; strf 0; elas 0; sicc 1; Sh no macroscopic structure
170- 175 nig 4; strf 0; elas 0; sicc 1; Sh Tr highly humified peat with roots
175 - 186 fig 4; strf 2; elas 1; sicc 1; TI Sh+, birch roots, large wood fragments
186 -215 nig 4; strf 1; elas 1; sicc 1; Sh Tr highly humified peat with roots
215 - 233 nig 3; strf 2; elas 1; sicc 1; humo 3; Th4 Sh+ Eriophorum peat
233 - 281 fig 4; strf 2; elas 1; sicc 1; humo 4; Sh T1+ very humifial peat with woody
281- 325 fig 3; strf 2; elas 1; sicc 1; humo 3; Th2; Sh2 T1+ Tb+ monocot. leaves and woody roots
325 -350 fig 3; strf 2; elas 1; sicc 2; humo 3; Th2: 112 wood and root
350 .410 ni . 4; strf 1; elas 1; sicc 1; humo 4; Sh TI + Th+, birch roots

Table 7.4	 Stratigraphic description for TW III using the Troels-Smith (1955)
description system

261



7.4	 Chronology

7.4.1 Pollen

Pollen analysis was undertaken on TW II at 20cm intervals. Preparation and

subsampling techniques were set out in Chapter Four. The lack of material between

30cm and 90cm means that marker horizon A, the anthropogenic Pinus rise (APR) and

marker horizon B, the final decline in Alnus pollen to below 5%TLP found at Coom

Rigg Moss and Butterburn Flow, are not clearly identifiable at The Wou. Therefore

biostratigraphic correlations based on the pollen spectra (Figure 7.7) are not possible for

core TW II.

7.4.2 Radiocarbon ages

Two radiocarbon dates were assigned to T'VV II to enable temporal correlation with the

Coom Rigg Moss and Butterburn Flow records. Dates were taken at the upper and

lower limit of the complete testate record from TW II. The peat sample for the lower

date from TW II was 15cm long. This was because the core extracted at this depth was

very thin, with a minimal amount of material retained in the corer. The deeper date was

5cm long. Figure 7.8 shows the calibrated radiocarbon dates in relation to the depth of

the core, with 2cs confidence intervals. Because of the nature of the pollen data, there is

no additional chronological marker for the APR. The linear interpolation was explained

in detail in Chapter Four. The actual age of the sample may lie anywhere between the

maximum and minimum range of the calibrated dates (as presented in Figure 7.8). The

testate amoebae data are presented in Figure 7.9, plotted against age.
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Figure 7.8	 The Wou II - linear interpolation of sample ages. Solid line
- median linear interpolation from radiocarbon dates, dashed lines -
2cr confidence limits

7.5	 Conclusions

Data from The Wou are of limited use due to poor test concentrations from the central

core, 1'W II. Owing to this, it was decided not to carry out fuither research on the

marginal cores TW I and TW III, which were likely to have even lower concentrations

due to the location of these cores at the foot of the slope from Black Rigg. The testate

amoebae assemblage from The Wou contained a markedly different range of taxa than

the cores from the ombrotrophic sites Coom Rigg Moss and Butterbum Flow. Three

taxa were found in The Wou that were not recovered from the other sites: Difflugia

lanceolata, D. rubescens and Sphenoderia lenta. Centropyxis cassis type,

Pseudodifflugia fasicularis and Trinema lineare were found in far greater quantities in

TW II than in any other core from either Coom Rigg Moss or Butterbum Flow.

Despite the fact that several taxa do not have modern analogue values, because of the

poorer representation of taxa such as Difflugia pulex and Hyalosphenia subflava and a

greater proportion of the assemblage with good modern analogue values, the water table

and moisture reconstructions for TW ll have close confidence intervals. The poor test

concentration and loss of material made the count difficult and not worth further
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pursuing, which is unfortunate, since where there is testate data, the reconstructions are

more robust than the those from the two other sites.

Other microfossils, such as desmids and rotifers, may provide additional hydrological

information that could be used to interpret sites such as The Wou, which lack a viable

testate amoebae record.
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PART FOUR

Discussion and conclusions



CHAPTER EIGHT

Reconstruction and Robustness

8.0	 Introduction

Chapter Eight consists of a discussion of the methodological issues raised in this thesis.

These include a discussion of the preparation procedures for testate amoebae analysis

used in this study, compared to those used in similar studies. Possible improvements to

the current technique are also suggested. The major part of this chapter deals with the

robustness of the transfer function used to reconstruct hydrological models, developed

by Woodland (1996). As shown in Chapters Five, Six and Seven, there is not always a

good match between fossil taxa and the taxa included in the modern analogue transfer

function, which influences the robustness of the hydrological reconstructions derived

from calibration of the fossil testate amoebae. Individual species are examined in detail

and the possible reasons for poor, or no modern analogue values for 'dry' taxa are

discussed. Discussion of the methodological issues raised in this study are presented

here to put Chapter Nine, the main theoretical discussion, into context. Issues addressed

here influence the nature of the discussion in Chapter Nine, for as long as weaknesses in

the hydrological modelling are acknowledged and are consistent in all cores, it can be

assumed that the direction and rates of change in the hydrological reconstructions are

reliable, but that the magnitudes of change are underestimated for dry shifts.

8.1	 Sample preparation

As part of this research, the preparation of testate amoebae samples from peat used in

recent publications were evaluated. Whilst the addition of a 151.im mesh to micro-sieve

samples (Section 4.1.2 and Hendon and Charman, 1997) has improved the quality of

slides, further improvements may be possible by refining the upper mesh size used to

remove large fraction organic and mineral particles. Woodland (1996) reduced the

mesh size from 7501.im (Warner, 1987) to 30011m, which was the mesh size adopted in

this study (Chapter Four). However, the size range of taxa recovered were <200Lim

length, with the exception of Difflugia oblonga which can range from 90-240gm

(maximum recorded dimensions from Charman, Hendon and Woodland, in prep.).

Individuals from the upper end of this range are rare and do not form a significant part
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of the faunal assemblage. Most larger tests encountered are: Bullinularia indica (140-

1501.tm), Centropyxis aculeata (116-14811m), Difflugia bacillifera (130-200i.tm), D.

lanceolata (140-160m) and Nebela flabellulum (76-150gm length, 86-160gm breadth).

The mesh size could therefore be reduced to 200i.tm without significant loss of tests

from samples analysed here, which would remove large detritus and significantly

improve the quality of the microscope slides. Although tests larger than this have been

recorded, they are infrequently encountered and do not appear to make up a significant

proportion of the species assemblage from British oligotrophic peats. Smaller tests such

as Difflugia pulex (15-301.im length) would also be easier to see, as this taxon is often

masked by organic detritus and can make up a large proportion of the species

assemblage from ombrotrophic peats (Section 8.3.1). The current use of large mesh

sieves (e.g. 7501.1m, Warner, 1987) may be one reason that D. pukx has not been

recorded in other studies of peatland testate amoebae.

The environment from which the samples were extracted must also be taken into

account and a preparation technique suitable for that material adopted. Charman et al.

(1998, in press) have also modified the preparation technique for saltmarsh testates

counted in conjunction with foraminifera, by counting the 15-63pm fraction in addition

to the >63 p.m fraction. Previous studies in these environments have only counted the

>631.tm fraction (e.g. Scott and Medioli, 1983). Channan et al. (1998, in press) found

that the species richness increases from two in the >63Am fraction, to 36 in the <6311m

indicating that smaller taxa are far more abundant than previously thought. The

concentration also increases from 116 per cm 3 counted in the >63i.trn fraction, to 65,600

per cm3 in the <63gm fraction. This illustrates the need for experimenting with mesh

sizes and for not disregarding a particular size fraction, simply because it has not been

routinely counted before.

There is also a necessity to strike a balance between the abundance of tests recovered

and the ability to count tests on the slides. For example, Preparation E (Chapter Four,

section 4.1.2) yielded a greater concentration of tests but these were more degraded and

therefore more difficult to identify than those found in Preparation A, the water-based

study. It would appear that KOH treatment increases the number of tests in the

concentration by up to a half, probably by being more effective at dispersing the

sediment than water. However, the tests are far more degraded, with many features
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altered or completely removed, which makes counting inefficient and may hamper

identification where the original test preservation is poor.

Slides from the minerogenic site, The Wou, frequently contained large amounts of

mineral material that masked tests and made counting difficult. The reduction of the

mesh size to 2001.1m may help to improve the quality of such slides by removing a

greater proportion of detritus, but it should be accepted that samples from certain

locations will have tests obscured, because it is impossible to remove all of the mineral

particles without destroying tests. These slides are difficult to count and it is impossible

with current techniques to improve slide quality from such sites. Testate slides may

never be as clean as pollen slides, since the preparation experiments presented in

Chapter Four have shown that no chemical preparations are suitable for removing

detritus without either affecting test concentration or preservation.

8.2	 The transfer functions

The transfer functions for depth to water table and percentage moisture were developed

by Woodland (1996) and Woodland et al. (1998), using surface men polsters from nine

undamaged peatland sites in the British Isles with long-term hydrological monitoring

programmes, to ensure the availability of mean annual water table data. The study used

a cross-section of UK ombrotrophic mires, but dry peatlands were not well represented

since the wettest sites are of the highest conservation value and dry areas, such as the

edges of bogs, have often been cut away, or are not the focus of monitoring

programmes. Since the study sites are predominantly wet, drier indicator taxa are not

well represented in the modem analogue transfer functions.

The transfer function for moisture from WA-Tol is less robust than the transfer function

for water table from WA. This is because the transfer function for moisture was based

on single-shot sampling at the time of moss polster extraction for testate analysis.

Thirty samples were excluded from the moisture training set which deviated over 5%

from predicted values. Only three samples were filtered out of the water table training

set, with a >9cm deviation between observed and predicted values. The moisture curves

have larger bootstrapped error estimates at 2a than the water tables, due to the large

tolerance ranges of most taxa. These large tolerance ranges are a result of error in the

measurement of moisture due to the single-shot sampling and results in less confidence
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in the reconstructions. For this reason, moisture reconstructions are not used for

comparisons at the three scales of study (Chapter Nine). These are based solely upon

the more precise water table transfer function.

One of the five assumptions of quantitative palaeoenvironmental data (Imbrie and Kipp,

1971; Imbrie and Webb, 1981; Birks et al., 1990a), is that the taxa in the training set are

the same as in the fossil data set. The degree of match or mis-match between the

regression and calibration data sets will affect the robustness of the resultant

hydrological curves; the better the match between modern and fossil samples, the more

robust the reconstruction. Thus, some samples do not have good reconstructed values.

Birks et al. (1990a,b) overcame the problem of poor analogue taxa in pH

reconstructions using diatoms by using only taxa present in both the modem and fossil

data sets in the calibration. This approach has been adopted in this study, but it does

cause problems in these data sets, where over 80% of some samples have no, or poor

analogue values.

Birks et al. (1990b) also recognised the need to improve the modem analogue training

set for diatoms used in pH reconstructions. Channan and Warner (1997) recommend

that in order to avoid problems of poor analogues, reconstructions should be based on

larger, more comprehensive data sets of modern testate amoebae fauna from a wider

region. The major limitations of the training set found in this study are discussed below.

8.3 No-analogue taxa

A total of seven taxa found in the fossil data set were not found in the modem training

set, these are listed below. However, because certain taxa were not found in the surface

samples collected by Woodland (1996), it does not necessarily mean that they do not

have modem analogues at other sites not sampled by Woodland as part of her study.

Difflugia acuminata
Difflugia lanceolata
Difflugia lucida
Difflugia pulex
Lesquereusia spiralis
Pseudodifflugia fasicularis
Sphenoderia lenta
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Lesquereusia spiralis and Sphenoderia lenta occurred only in samples from The Wou.

L. spiralis occurred in five samples, all with less than 10% total abundance and S. lenta

was found in two samples, with <5% total abundance. Difflugia lanceolata was only

found once outside The Wou, with a 1% occurrence at 35cm, CRM II These taxa

therefore occur in the greatest abundance in the minerogenic site and their presence may

be attributed to site morphology and geochemical conditions at The Wou. The Wou is

an oligotrophic valley mire and, although the transfer function was designed for

application on oligotrophic mires, The Wou receives water from the valley catchment in

addition to precipitation, which may account for the greater abundance of mineral

particles and different faunal assemblage.

Published ecological information for taxa found in this study (Table 4.4), show that

Difflugia acuminata, D. lanceolata, L spiralis and Pseudodifflugia fasicularis occur in

bog pools or aquatic conditions (Cash and Hopkinson, 1909; de Graaf, 1956) and S.

lenta has been classified as a 'moderately dry' taxon, found in situations with 78-90%

water content (de Graaf, 1956; Warner, 1987, 1990; Tolonen et aL, 1992). There are

few published hydrological data or habitat descriptions for either D. lucida or D. pulex.

Gauthier-Lievre and Thomas (1958) comment that D. lucida is clearly less aquatic than

other species of Difflugia, but this is not quantifiable when the relative wetness of other

species of Difflugia are not given.

Of the taxa which have no modern analogue values, D. pulex and P. fasicularis occurred

in the greatest abundance and therefore the lack of analogue values for these taxa have

the greatest effect on the hydrological reconstructions. Both D. pulex and P. fasicularis

were notified as new species by Penard (1902) and have only rarely been mentioned in

the literature since.

8.3.1 Difflugia pulex Penard 1902

There has been some confusion over the taxonomy of Difflugia pulex. The description

of D. pulex found in Ogden (1983) does not agree with the original description in

Penard (1902), as a sharply pyrifonn test, composed of chitinous material and small

siliceous particles. Instead, Ogden (1983) illustrates specimens where the shape of the

test is obscured by diatom frustules and is heavily coated with siliceous xenosomes.

The length of test identified by Ogden (1983) (28-431.un), is also larger than that
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described by Penard (1902) (length 22-25gm), or found in this study (Plate 8.1). The

small size of D. pulex (22-251.Lm length, Cash and Hopkinson, 1909; 15-301.1m length,

this study and Charman, Hendon and Woodland, in prep.), means that samples prepared

with a large mesh-sieve may include too much organic or mineral detritus on the

microscope slide for it to be easily seen. In studies such as Warner (1987), where a

7501im mesh was used to sieve samples, taxa of this size have been hidden, which may

account for the lack of data for this species. This may explain the reason why it was

found in great abundance in the cores in this study, but has not been documented in

previous work. There is however, a decline in the abundance of D. pulex towards the

top of the cores and since most previous work has concentrated on the modern ecology

and distribution of testate amoebae, the presence of this species in the fossil and not the

surface samples may also be a function of changing conditions over time. D. pulex may

no longer have a widespread distribution in contemporary mire surfaces. Also,

taxonomic treatments and referencing in most studies have not been as rigorous as they

might have been. Most taxa are identified from subsequent taxonomic treatise which

may have introduced discrepancies from the original species descriptions, for example,

Ogden (1983).

Since there are no hydrological data regarding D. pulex in the literature, (Penard, 1902

describes the taxon, but gives no details of habitat requirements) and the taxon was not

found in samples used to construct the modern analogue transfer function, the only

method of estimating the approximate hydrological requirements of this taxon is to plot

the abundance of D. pulex against the reconstructed water table depth derived from the

analogue taxa in each horizon in which D. pulex was found. Figure 8.1 presents these

data from individual cores from this study. The data from all of the cores combined are

presented in Figure 8.2. This is not an ideal method of assessing the hydrological

requirements of this taxon, since it involves plotting the abundance of D. pulex for each

sample against the mean water table value, constructed with D. pulex omitted. There

are problems of circularity in this argument, but it is the best method available at

present. Any conclusions cannot be used explicitly to reconstruct water tables in these

same cores. The modelled water tables ranges of all the fossil data are presented in

Figure 8.3. The water table estimates for samples containing D. pulex are subject to a

systematic error and it is not possible to arrive at a reasonable estimate for water table

optima for D. pulex from this study. The abundance of D. pulex and other no/poor

analogue taxa in these samples will affect the robustness of the reconstructions since a
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large amount of D. pulex will result in a poor match between the modern and fossil data

sets.

Figure 8.1 shows the relative abundance of D. pulex plotted against inferred depth to

water table for each sample in which it was found. Abundance ranges from 1% in

several samples, to a maximum of 79% in sample 40cm, BBF II. Sample 150cm core

CRM II contains 75% D. pulex. This sample also contains 13% Hyalosphenia subflava,

a poor analogue taxon (Section 8.4.1), (optimum -14.95cm). In this extreme example,

only 12% of the sample has good modern analogue values, with 4% Amphitrema flavum

(optimum -4.6cm), 1% Assulina muscorum (optimum -7.5cm) and 7% Difflugia pristis

type (optimum -7.1cm), (optima values from Woodland, 1996), resulting in an

unreliable reconstruction. Most cores show that D. pulex is associated with a wide

range of reconstructed water table depths in varying abundances. There is no pattern of

a particular abundance level being associated with a specific water table depth. Cores

CRM II, CRM IV, BBF I and BBF II all reach greater than 70% abundance of D. pulex

in some samples and, for these samples in particular, the reconstructed water tables will

be based on a limited fauna only. Core TW II has a much smaller reconstructed water

table range and far lower abundances of D. pulex. This taxon is far less significant in

samples from TW II and will therefore have less effect on the reconstructions.

Figure 8.2 shows the relative abundance of D. pulex against water table depth for all

cores combined. In total, 90% of the samples with testate amoebae concentrations high

enough to count contained this taxon. Samples containing D. pulex are not restricted to

a small range of water table levels, but instead are spread between -1.3cm to -16.5cm.

This cosmopolitan distribution may reflect the true distribution of D. pulex but it is more

likely to be an artefact of the water table levels calculated from the analogue taxa. Most

samples containing D. pulex are found in the 4-6cm water table class. D. pulex may

actually have a lower water table optimum, but since the 'drier taxa' are poorly

represented in the transfer function, the distribution of D. pulex suggested in the

majority of plots may be wetter than their actual value. There is generally a decline in

abundance towards the top of the cores which correlates with wetter reconstructions, as

seen in the testate amoebae diagrams (e.g. Figure 5.7). However, this is not obvious

from the scatter plots presented here. Table 8.1 shows weighted averages (WA)

fordepth to water table for D. pulex for each core. The WA data show that BBF II has

the deepest WA value for D. pulex at -11.08cm. TW II has the wettest value at -5.77cm.
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% abundance of D. pulex plotted against the reconstructed water table value for
each sample where it occurs. N= number of samples containing D. pulex.
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The data from The Wou are limited, since the site is wetter overall than Coom Rigg

Moss or Butterburn Flow and D. pulex occurred in lower abundance levels than was

found in all other cores. The WA data for cores from Coom Rigg Moss and Butterburn

Flow all have values in the middle range of water table reconstructions, restricted by the

limits of the transfer function.

Analyses of the ordination plots presented in Chapters Five - Seven (e.g. Figures 5.4,

5.10, 6.10, 6.16 and 7.4), show those taxa with which D. pulex is most closely

associated. Taxa that are close to D. pulex in the ordination plots are likely to have

similar hydrological requirements and therefore offer a subjective assessment of the

hydrological tolerances of D. pulex. D. pulex is closely associated with Hyalosphenia

subflava in seven of the eight species ordination plots, with the exception of core TW IL

Other taxa associated with D. pulex, from the cores from Coom Rigg Moss and

Butterburn Flow, are Assulina muscorum, Bullinularia indica and D. pristis type. These

taxa are all found in the lower half of the range of water table optima from Woodland et

aL (1998), presented in Figure 4.2. This means that the associates of D. pulex are at the

'drier' end of the hydrological scale. Taking the subjective evidence together, D. pulex

is likely to have a drier analogue value than is suggested by plotting its abundance

against the reconstructed water table values.

The taxa from The Wou which are most closely associated with D. pulex, are

Lesquereusia spiralis and Nebela militaris. However, since abundance was far less

from this site and it is not ideal for application of the transfer function for reasons

discussed in Section 8.2, these results are not particularly informative.

Core WA
CRM I -7.51
CRM II -9.38
CRM DI -9.07
CRM IV -7.79
BBF I -6.55
BBF II -11.08
BBF DI -8.48

1 TW II -5.77 i

Table 8.1	 Weighted averages for Difilugia pulex depth to
water table (cm) for each core
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Figure 8.2 Difflugia pulex response to hydrology, all sites combined -
percentage abundance against reconstructed water table depth, N
equals the total number of samples containing D. pulex.

Since the water table plots from which the weighted average values are derived are

constructed from assemblages from which D. pulex is omitted, conclusions cannot be

drawn with any degree of certainty. However, with the data currently available, D.

pulex appears to be fairly cosmopolitan, but occurs in the greatest abundance with

'drier' taxa such as H. subflava, B. indica and Trigonopyxis arcula.

8.3.2 Pseudodifflugia fasicularis Penard 1902

Pseudodifflugia fasicularis also has no modem analogue value. P. fasicularis is a small

taxon <351.tm length and 2511m breadth. The test outline is pyriform, with a short neck

and a collar around the terminal aperture composed of mineral particles. The test is

transparent or colourless and is composed of mineral xenosomes. Plate 8.2 is a

photomicrograph of this taxon. There is no mention of the habitat requirements of P.

fasicularis in the literature, except for Cash and Hopkinson (1909), who say only that it

is an aquatic taxon. Penard (1902) describes this taxon, but does not give details of its

habitat requirements.
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P. fasicularis was found in five of the eight cores in this study: CRM DI, CRM IV, BBF

I, BBF II, BBF DI and TW H. The maximum occurrence was 95% abundance in sample

270cm from BBF II, although this was highly unusual. The sediment at this level

contains small amounts of clay, which is probably the source of mineral material for test

construction (Table 6.3, BBF II stratigraphic description). Cores containing P.

fasicularis, with the exception of TW II, have most occurrences in samples in the

surface 50cm. In CRM III, most specimens were found in samples 15cm, 25cm and

35cm, which may be because this core was located at the base of the slope at the

northern edge of the mire, representing a source for the minerogenic material used for

xenosomes. TW II has the greatest number of samples containing P. fasicularis,

attaining >50% in samples 210cm and 220cm. As a minerogenic valley mire, The Wou

is likely to have mineral particles flowing along the long axis of the mire, thus providing

suitable material for test construction.

The species ordination plots as listed above, show that the Heleopera spp. are closely

associated with P. fasicularis. In CRM DI (Figure 5.16), P. fasicularis is close to

Difflugia lanceolata and Heleopera sylvatica. D. lanceolata is also a no-analogue value

taxa and the only hydrological information for it is from Cash and Hopkinson (1909),

who regarded it to be an aquatic taxon. H. sylvatica is found in 'drier mosses' (Tolonen,

1986), (Table 4.4). The ordination plot for species from CRM IV (Figure 5.22), shows

that P. fasicularis is closely associated with H. sylvatica and Trinema lineare, which de

Graaf (1956) classified as a hygrophilous taxon. The species ordination plot for BBF II

(Figure 6.10) is presented with sample 270cm, containing 95% P. fasicularis removed,

since it was an outlier sample with no other horizon containing a similar faunal

assemblage. The species ordination plot for BBF DI (Figure 6.16), demonstrates that H.

rosea and H. petricola are closely associated with P. fasicularis. Table 4.4 shows that

H. petricola requires very wet conditions (de Graaf, 1956; Tolonen et aL, 1992), but

other workers consider its ecology to be variable and disputed. H. rosea was recorded

by Jung (1936) in bog hummocks and drier Sphagnum. This results in a complicated

picture of the conditions required by P. fasicularis as the hydrological requirements of

the associated species are variable and sometimes disputed. Until a transfer function is

constructed that samples a suite of mires with a wider range of hydrological conditions

and faunal assemblages, it will not be possible to assign this taxon optimum and

tolerance values.
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It may be that the primary response of P. fasicularis is not to hydrology, but that it

requires specific minerogenic, nutrient or some other common factor to thrive. More

work is needed to establish this.

8.4	 Poor-analogue taxa

Section 8.2 discussed the general problems with the development of the transfer

function by Woodland (1996). Because undamaged, wet sites were sampled to

construct the transfer function, taxa that tolerate wetter conditions have better modern

analogue values than those taxa such as Bullinularia indica, Nebela collaris and

Hyalosphenia subflava at the drier end of the range (Figures 4.2 and 4.3). The nature of

the sites sampled for the transfer function means that only part of the environmental

gradient in which testate amoebae can survive has been sampled. It is probable that the

optima and tolerance ranges for some of these taxa extend further along the

environmental gradient. The calculated optima for these taxa are therefore probably

biased to the wetter end of their range of tolerance as the transfer function gives the

optimum value derived from the sites sampled, not the optimum value that may be

derived from a suite of sites covering the full hydrological range of any taxon. There are

two possible reasons for poor modem analogues; a) that there were only a few

occurrences of a particular taxon in the modem data set, or b) that they occurred at low

abundances in the modem data set. As a result, their lack of a modem analogue value

has been referred to throughout this thesis. The optima and tolerance ranges of the main

taxa (>10% abundance) from the modem analogue transfer function, from Woodland et

al. (1998) were presented in Figures 4.2 and 4.3.

The weighted averaging calibration used to construct the water table models depends

upon a unimodal response of taxa to an environmental variable (ter Braak and Prentice,

1988; Birlcs 1995) (Section 2.4). Figure 8.4 shows a Gaussian species response curve,

where in this example, the environmental gradient is hydrology. On ombrotrophic bogs,

testate amoebae with an optimum close to that of the depth of the water table will be

most abundant. Therefore species with small tolerance ranges are better ecological

indicators, as they can be used to model the palaeohydrological conditions more

precisely. Figure 8.4a shows the theoretical distribution of a species if the whole of the

hydrological gradient is sampled, with the WA optimum corresponding to the greatest
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abundance of that species. If only part of the actual hydrological range is sampled, the

optimum derived will be biased in that direction (Figure 8.4b). Plot 8.4c shows an even

more extreme example of this. The response of testate amoebae to hydrology shown in

Figures 8.4b and 8.4c is more likely to model the species response in the transfer

function as only part of the potential hydrological range has been sampled. Plot 8.4d

shows a more realistic response of species to hydrology, where each species has

different requirements for growth and responds individually to the environmental

conditions. Kent et al. (1997) point out the limitations of showing the response of

multiple species to a single environmental gradient. In reality, multiple species respond

to multiple environmental gradients. Thus, for testate amoebae, the major

environmental factor affecting species distribution is hydrology, but other factors such

as pH may also be influential. Also, the range of research on this distribution of

vegetation reviewed by Kent et aL (1997) suggest that a skewed, bimodal or `plateau'

shaped response is probably more realistic than the classic bell-shaped Gaussian

response. For example, Austin (1990) predicts that there will be a greater degree of

skewness as plant species curves move towards either end of the environmental

gradient. This means that for testate amoebae in response to hydrology, `very wet' or

'very dry' taxa at the extremities of the hydrological gradient will be more skewed than

moderately wet species distributed in the middle of the hydrological range. However,

this theory requires further validation and is subject to debate (Kent et aL, 1997).

8.4.1 Hyalosphenia subflava Cash & Hopkinson 1909

The mkin taxon likely to be affected by the problems outlined above is Hyalosphenia

subflava (Plate 8.3), which has a relatively broad tolerance range in the training set. It

occurs in a small number of samples with low abundance in the training set (Woodland,

1996), but is present in a large number of samples, sometimes with high abundance in

the fossil data set. Of the 363 samples counted for testate amoebae analyses in this

study, 52% contained H. subflava. Samples containing large abundances of this taxon

are likely to have unrepresentative reconstructed water table depth when calibrated with

the modem training set. This assertion is supported by comparison of these data to other

studies. H. subflava has been found in most studies of modem faunas on ombrotrophic

peatlands from Canada (e.g., Tolonen et al., 1985; Charman and Warner, 1992, 1997;

Warner and Charman, 1994) and from New Zealand (Charman, 1997).
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This section uses data from some of these studies in an attempt to establish a more

accurate estimate of water table optima.

Cores CRM I, CRM 111, CRM IV, BBF I and BBF 11 all have samples which contain

between 80-100% abundance. The range of water table classes which samples from this

study fall into are more restricted than from published studies. This is a restriction

imposed by the constraints of the transfer function bias to wetter analogue taxa and to

the circular argument around the abundance and optimum of this taxon. There is

greatest abundance in the lowest water table samples and a decreasing abundance in

wetter samples, suggesting that the preference of this taxon is to dry locations.

In an objective assessment of the taxa most closely related to H. subflava in the species

ordination plots presented in Chapters Five-Seven, it can be seen that it is closely related

to Difflugia pulex in seven of the eight cores studied, with the exception of TVV II. In all

of the species ordination analyses from Coom Rigg Moss and Butterbum Flow, H.

subflava is located at an extreme of axis 1, as an outlier. From the position of this taxon

on the extremity of axis 1, it is possible to say that there are no other taxa with exactly

the same hydrological requirements. The most closely associated taxon is D. pulex for

which there are no published hydrological data (Section 8.3.1).

Figure 8.5 shows the hydrological response of H. subflava derived from several studies.

The raw data are not published, but have been obtained from the authors and analysed as

part of this research. H. subflava plots la and lb present hydrological data from British

oligotrophic mires. Woodland et al. (1998) filtered out samples from the transfer

function where the difference between observed and predicted values exceeded 9cm and

5% for water table and soil moisture respectively. This resulted in three samples being

removed from the water table transfer function and 30 samples from the moisture

transfer function. The three samples removed from the water table data set have the

deepest water tables of the entire range. They were removed as they represented a

discontinuity in the hydrological gradient. The deepest sample in the regression data set

is -19cm depth to water table, whilst the outlier samples had values of -23.4cm, -40.2cm

and -45.8cm. Only one outlier, the sample with depth to wafer table value of -40.2cm

contained H. subflava (22%). All of the other occurrences of H. subflava in la have less

than 12% abundance and a water table depth of >-16cm. However, not all samples from

dry sites will contain similar faunas. Three of the 30 outliers from the moisture data set
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The moisture plots for H. subflava (Figure 8.5, lb-4b) show that the British data set has

a moisture range of between 80-100%, with the majority of samples found between the

range 90-100% (Woodland, 1996). The moisture range of samples from northeastern

Ontario (Charman and Warner, 1992) (Figure 8.5, 2b), is from 15% to 93%. This is a

large range, but the majority of the samples contain between 60% to 90% soil moisture

content. Plot 3b has one sample that has a moisture value of 40%, the other six samples

are between the range of 77-91% peat moisture content. The samples from

Newfoundland (Charman and Warner, 1997) had one anomalous sample, with a

moisture value of 68%, the other samples contained between 80-95% moisture content.

These plots show that 57% of samples containing H. subflava contained between 80-

100% soil moisture content and 68% of samples contained 75-100% moisture content.

These plots indicate that H. subflava inhabits moister conditions in the UK than in other

areas. Again, this suggests that the full range of moisture optima conditions have not

been sampled in the UK.

The range of sampled values for each data set must be considered in order to ascertain to

what extent the distributional differences are a result of sampling bias or to what extent

they are real. If the differences are due to sampling bias, the use of non-UK data may be

considered in the interpretation of fossil data from the UK. If the differences are real,

then consideration must be given to why there might be differences in optima between

the regions. The data collection from Warner and Charman (1994) and Charman and

Warner (1997) were single-shot and had low abundances of H. subflava.

Location Water table
optimum

Tolerance
(cm)

No.
samples

Author

British oligotrophic	 oceanic
mires

-14.95cm 13.95 20 Woodland, 1996

North-eastern Ontario,	 continental -39.21 cm 1.26 52 Charman &
Canada Warner, 1992

North-western Ontario 	 continental 49.92cm 15.91 7 Warner &
& Minnesota, Canada Charman, 1994

Newfoundland, Canada 	 oceanic -22.81cm 15.98 21. Charman &
Warner, 1997

Table 8.2	 Published estimates of Hyalosphenia subflava WA optima and
tolerance values
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The distributional differences from these data sets may represent bias due to single-shot

sampling and the sample taken may be unrepresentative compared to mean annual data.

The mean annual data from northeastern Ontario (Charman and Warner, 1992) is the

data set most likely to represent real differences, although the dominance of water table

depths of -41cm remains inexplicable at present.

The difference in hydrological optima for H. subflava may also be related to regional

differences. Table 8.2 shows the WA estimates of H. subflava optima and tolerances

from the four studies. Tolerances are a measure of the variance of the water table data,

similar to a standard error, but based on the effective number of occurrences (Charman

and Warner, 1997). The British data set has the highest water table optimum for H.

subflava at -14.94cm. The lowest water table optimum is -49.9cm from northwestern

Ontario (Warner and Charman, 1994). The British and Canadian data sets are likely to

be different, since the British sites were all oceanic and most of the Canadian sites were

continental. Thus, the Canadian data will result in drier reconstructed values, since the

mires were in drier locations. Only in the NE Ontario data set (Channan and Warner,

1992) and the single-shot sample from northwestern Ontario/Minnesota (Warner and

Channan, 1994), do abundances of H. subflava reach levels comparable to the 50%+

found in the fossil data from this study. Therefore, these are the nearest analogues at

present.

The water table value for H. subflava in the British modern analogue data set is likely to

be an under-estimate of its actual optimum and tolerance range. It would appear that

only part of the hydrological range has been sampled, resulting in an optimum value that

is in fact part of the tolerance range. The principal of this can be seen in Figure $.4 b

and c, where the theoretical distribution shows that the optimum is related to the sample

range. In order to derive a more realistic optimum value for H. subflava from published

studies, samples should be comparable to the fossil data set in terms of sample location,

i.e., oceanic; mode of data collection i.e., mean annual data for water table depth and

have a similar level of abundance in the training set (Section 8.2). All of the published

studies have far lower occurrences, both in terms of the number of samples containing

H. subflava and the percentage occurrence in those samples, than in the fossil data set.

None of the published studies consist of both mean annual data from oceanic sites and,

therefore, it is not possible to derive a realistic optimum value from these data. Added

to this, following the argument of Gehrels and van de Plassche (in press), the possibility
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of regional variability between assemblages necessitates the establishment of local

training sets for valid palaeoecological interpretations.

To obtain a more robust analogue value for this taxon and the other taxa with poor

analogues, drier sites in Britain are required with long-term hydrological data. Studies

of such sites will hopefully result in better optima values for xerophilaus taxa and may

result in taxa being found that cannot tolerate the conditions found in the wet study sites.

Work is currently in progress (Woodland, pers. comm.) to address this problem.

8.5	 Taxonomic issues

The issues raised as taxonomic problems in Chapter Four (Section 4.1.5), have been

addressed by Charman, Hendon and Woodland (in prep.). The identification guide

provides a comprehensive dichotomous key for the identification of fossil tests from

British oligotrophic peats and seeks to provide a reliable way of identifying fossil

specimens that can consistently be repeated between several workers. The present

taxonomic state, where species that are similar or identical have been assigned different

names, results in confusion. Other genera have also been over-split, resulting in

inconsistent identification.

The species descriptions given in Charman. Hendon and Woodland (in prep.) contain

lists of synonyms and similar taxa that cannot consistently be separated. Original

authorities are given for the first time a species was described, even if it was

subsequently moved to a different genus and, if a species has been renamed, the

secondary authority is also given. This shows the evolution of the nomenclature

changes in the literature, which should minimise future confusion. Photomicrographs

are presented for each taxon and SEM images are used to illustrate variations in test

construction. This key will inevitably change over time, as more sites are sampled for

testate amoebae analyses and a greater range of fossil material is collected. The guide

does, however, address the taxonomic problems that have arisen during the course of

this research and should serve to provide a more workable and consistent identification

of fossil testate amoebae in future research. It is recommended that in future work,

references of original authorities are clearly given and described. Previous work has

often relied on secondary identification sources and this has contributed to the confusion

over taxonomy.

288



Some of the nomenclature used in Woodland (1996) has changed, because of the

taxonomic reclassification by Charman, Hendon and Woodland (in prep.). For example,

the taxon recorded as Difflugia angulostoma by Woodland is now recorded as Difflugia

pristis type. The reclassifications of taxa are shown in Table 4.4. The nomenclature

used in the transfer function (Woodland et al., 1998) is consistent with that used in this

study.

Woodland's (1996) concerns about the possibility of differential decay rates of tests,

have been shown to be largely unfounded. Some tests may be degraded or broken, but

since the species composition change over time, variations in faunal assemblages are

more likely to be attributable to habitat conditions changing, rather than to test

degradation. Spinose tests such as Centropyxis aculeata may have some or all of the

spines broken from the posterior region, but this should not hamper identification, since

the number of spines is not a diagnostic feature (Charman, Hendon and Woodland, in

prep.). The siliceous plates that the Nebela spp. are composed of are often not apparent

in the fossil forms, which means that determination of whether the plates overlap or not

can sometimes be difficult. The Nebelas are distinguishable on other features such as

size, the presence of pores or a marginal keel, so the ability to see the plate structure acts

as confirmation rather than a crucial diagnostic feature. Thus, on the basis of the

research described in this thesis, the degradation and decay of tests is not considered to

be a problem.

8.6	 Conclusions

The methodological issues raised during the course of this study indicate that there are

several improvements that can be made to increase the robustness of palaeohydrological

reconstructions from peatlands using testate amoebae. The sieve mesh size could be

reduced to 2001.tm to remove a greater proportion of detritus from the microscope slides.

This will improve their quality and enhance counting. Smaller taxa such as Difflugia

pulex should then be easier to see. However, the clarity of testate amoebae slides is not

comparable to that achieved after chemical preparations for pollen analysis. Without

such chemical processes, detritus remains, sometimes in large quantities, but to remove

this would also entail the loss or degradation of large parts of the faunal assemblage.

Reduction of mesh size should be kept under review since some sediments may contain

larger taxa.
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The transfer function could be substantially improved by expanding the hydrological

range of the bogs sampled to include sites at the drier end of the range. Analysing moss

polsters from drier parts of bogs should increase the number of taxa included in the

transfer function and should enable optimum and tolerance values to be calculated for

those species that currently have no or poor analogue values. This would also improve

the precision of existing analogue values by more accurately identify optimum values

for some taxa. However, this requires long-term hydrological monitoring programs to

be established on dry mires, which is currently not undertaken as such sites are

perceived to be of lower conservation value than wet mires. There is a possibility that

this type of work can be undertaken in conjunction with a research project at Liverpool

John Moores University that is looking at the restoration of cut-over bogs (Charman,

pers. comm.). Drier taxa are likely to be abundant on the surface of cut-over mires as

these sites are drained prior to milling. Monitoring the water table fluctuations of such

sites would provide an ideal opportunity to extend the current hydrological range of the

training set taxa.

The mis-match between the regression and calibration data sets affects the robustness of

the resultant hydrological curves, as the lack of adequate modem analogues for taxa at

the drier end of the hydrological range creates a systematic error. Some samples do not

have good reconstructed values and, although it is likely that the direction and rate of

change in the hydrological reconstructions are reliable, the magnitudes of change are

underestimates for dry shifts.

Charman, Hendon and Woodland (in prep.) have largely addressed the taxonomic issues

raised by the study of fossil testate amoebae from oligotrophic peatlands, by

systematically examining the literature from original citations to the present and

comparing descriptions of taxa. A set of criteria for consistent, repeatable identification

of fossil specimens has been compiled that should eliminate ambiguous identification

for the taxa described within it. This work is subject to change as and when further

species are found which are not currently included.

The methodological issues discussed in Chapter Eight must be considered in Chapter

Nine, as they affect the interpretation of the data. The water table records are compared

at the three scales of study and are used to assess within site and between site variability.

These studies are used to separate autogenic hydrological signals from climatic inputs
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and guidelines are given for the use of testate amoebae analysis as a proxy climatic

indicator.
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CHAPTER NINE

Replicability of palaeohydrological reconstructions

9.0	 Introduction

The main aim of this study was to evaluate the spatial and temporal variability of the

palaeohydrological record derived from testate amoebae analysis of peatlands. The mire

types included two intermediate oceanic ombrotrophic mires and a minerogenic valley

mire. In order to fulfil the aims, three scales of study were adopted (Figure 3.1). At the

micro-scale (1-10m), two closely spaced cores extracted from the centre of an

ombrotrophic mire were studied. The meso-scale (100-1000m) involved comparisons

between the main elements of a mire, i.e. the central mire expanse and mire margins.

Four cores from Coom Rigg Moss, two from the centre and two from the mire margins

and three cores from Butterbum Flow (one central and two marginal) were analysed to

evaluate meso-scale variability. At the macro-scale (1-10km), analysis involved

comparisons of the central cores from all three morphologically distinct and

hydrologically separate sites. In this study, the macro-scale comparison cores were

extracted from sites within a limited geographical district and hence should have been

influenced by the same climatic regime throughout the Holocene. Therefore, if climate

is the only control on surface wetness, it would be expected that all cores would show

the same changes through time.

Palaeoclimatic reconstructions for peatlands are based upon the idea that ombrotrophic

sites are directly coupled to climate, as their sole source of nutrients and moisture is

from precipitation. Decreasing precipitation or increasing temperatures cause a fall in

water table level and vice versa. For testate amoebae, the drying out or wetting of the

mire surface is reflected in the species composition and therefore calibration of the fossil

faunal assemblages with a modern analogue transfer function is used to reconstruct past

mire surface wetness (Section 2.5).

Barber (1981) claimed to demonstrate from one site, Bolton Fell Moss, that climate

plays a major role in peat formation and postulated that autoge -nic factors that affect site

hydrology, such as drainage, the life-cycles of plants and pool size, are all subordinate to

climate. The shifts identified by Barber as 'wet shifts' give only a general idea of

hydrological, and hence, climatic change. This provides a broad indication of changes
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in mire surface wetness, but smaller shifts are not detected. The use of a single site to

infer climate change is questionable, since major stratigraphic changes replicated at only

one site may in reality be the product of internal autogenic factors, albeit acting over a

large part of the mire expanse. The three levels of study investigated here provide a

'nested' approach which enable an assessment of the relative contribution of allogenic

hydrological influences, derived mainly from climatic inputs and the autogenic

hydrological signal, resulting from internal bog dynamics, in controlling testate amoebae

faunas and hydrology over long time scales.

Multiple cores from several sites were required to evaluate the relative contribution of

both allogenic and autogenic hydrological influences. If the overall pattern of change as

measured by the direction, rate and magnitude of change in the water table

reconstructions are the same at each site, it is likely that climatic forcing is the major

hydrological influence. If the water table record is different at each site, autogenic

processes such as mire development and morphology are likely to be the principal

contributors to surface wetness. Closely spaced cores from the centre of the same mire

are used to assess the replicability of the water table record over a short distance. This

micro-scale study allows quantification of errors at the broader scales of study, although

it may be an under-estimate of these. If the micro-scale cores have a similar record, it is

likely that the same hydrological inputs have influenced the testate record. At the meso-

scale, if the main cores are the same and the edges are different, it is likely that internal

bog dynamics have influenced the water table record at the mire margins. A shift in the

direction of the water table will be regarded as climatic if it is replicated across the

region at the macro-scale of study.

9.1	 Error estimation in chronology and water table reconstructions

Water table reconstructions are compared at three scales of study. Since the moisture

reconstructions are less robust than those for depth to water table, they are not discussed

further here. The reasons for this are fully explained in Chapters Four and Eight.

Evaluation of the replicability of the water table records at each scale of study involves

comparison of the rate, magnitude and synchroneity of the reconstructed water table

curves from all cores in a variety of combinations (Table 3.2). If the major shifts in the

hydrological reconstructions are coincident within the confidence limits (cf. Bennett,

1994) of the interpolated 14C chronology, they may be regarded as synchronous changes.
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Assessment of the replicability of the water table reconstructions are made within the

confidence limits of inferred water tables derived from bootstrapping (Section 4.2).

The water table curves are plotted at the calibrated median interpolated age, but the

actual date may fall anywhere within the calibrated age range (Stuiver and Reimer,

1993a,b) (Section 4.1.5). Linear interpolation of sample ages was adopted, since using

the R2 regression line between dates would have put too much emphasis on the end

dates (i.e. basal date and uppermost date), even though linear regression produced

excellent R2 values (e.g. 0.9989 for BBF I) and the differences calculated between linear

interpolation and R2 regression were minor. Any estimate of 20 error for interpolated

ages does not take into account errors from the interpolation process i.e. that the

interpolation line and equations may be incorrect and, that the possible range of ages are

not precise, but are estimates.

Stuiver and Reimer (1993a) recommended that calibrated radiocarbon ages are rounded

to the nearest 10 years, since rounding to the nearest year may be too precise in some

instances. However, because it is recognised that the actual date of peat accumulation

may fall within a range, the dates have been rounded to the nearest year and plotted at

this point.

The smaller the confidence limits that are calculated on the 14C chronologies, the more

precise the reconstruction. Pilcher (1991, 1993) defines the precision of a date as the

closeness of the confidence intervals. He also describes the accuracy of a date as being

as close to the date of the actual event as is possible. Precision of dating is also

addressed by Baillie (1991) and Oldfield et al. (1997). Baillie (1991) identifies the

problems of smearing, where a truly synchronous event may have gone unrecognised by

dating and is smeared into a 'period' and conversely, where loosely dated events may be

'sucked-in' and used to explain a wide spread of observations. Both are potential

problems in the comparison of water table curves in this study.

An improvement to the chronology would have been to take smaller size samples for

dating to reduce the period of peat accumulation and hence the confidence intervals on

each date. However, Shore et al. (1995) point out that the smaller the sample dated, the

greater the effect of any contaminants contained within it. The width of the sample is an
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important factor (c.f. Pilcher, 1993) since a sample 5cm in length may represent 50-75

years peat accumulation. This will affect the precision of the radiocarbon date.

The range of radiocarbon ages within which the water table curves fall allows

assessment of events within an error range. This provides a more realistic basis for

interpretation, rather than interpreting the water table curves against only the median

age. Because the relationship between "C and calendar age is not linear, 2a errors vary

considerably between different radiocarbon ages, even if the laboratory counting error is

the same. Where interpolated ages are being compared, the precise 2a error is

impossible to determine, but a conservative estimate would be that the error due to

calibration will be at least as large as the largest error of the dates used for interpolation.

The confidence intervals on the water table values are derived from bootstrapped error

estimates of the mean water table reconstructions, taking into account the tolerance

ranges of the taxa in each species assemblage (Sections 2.5 and 4.2). This is an advance

on the work of Woodland (1996), who tested the transfer function in a fossil context on

a short core from Bolton Fell Moss, but did not calculate 95% confidence intervals on

the mean water table by bootstrapping. At present, the transfer function used to

reconstruct palaeohydrological records from testate amoebae analysis results in

assemblages dominated by fauna at the drier end of the 'wetness scale' having

underestimates of the depth to water table. The direction of change is accepted, but the

magnitude of change in dry shifts appears to be too small on the basis of information

available about particular taxa from other studies (Section 8.2). This limitation is

acknowledged, but since all assemblages based on drier taxa are similarly affected,

direct comparisons should be possible. The low water table areas will be particularly

subject to refinement when the transfer function is re-developed and analogues are

found for taxa such as Diffiugia pulex, that currently do not have values. Improvement

of the estimate for optimum and tolerance ranges of poor-analogue taxa, such as

Hyalosphenia subflava, may also improve the match between parts of the cores and give

more realistic estimates of dry shifts.

In the following discussion of the water table curves, wet and dry shifts are defined as

directional changes of varying magnitudes and are assigned the date at the point where

the direction of change begins. Each shift is labelled with a letter code for comparing

changes at the various scales of study. Because of the sample spacing (10cm at >lin
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depth and 5cm at <1 m depth), the exact point of wet or dry shift may not be precisely

located and this may be another reason for slight age differences between similar shifts

in each core.

These studies are used to test the suitability of testate amoebae analysis as a

palaeohydrological indicator. Testate amoebae analysis can only be regarded as a useful

proxy-climatic indicator if the records are reliable and replicable in a number of cores

from several sites. The confidence intervals on both the water table depths and age

ranges of samples are important for comparing the records at the various scales of study.

9.2	 Micro-scale comparisons

A micro-scale (1-10m) comparison was undertaken to see if cores from the centre of a

mire have replicable water table records. In palaeoecological studies it is often assumed

that a single core from a mire is representative of the site as a whole and no account is

taken of local variations (e.g. Barber et al., 1994a; Stoneman, 1993) (Section 3.1).

Barber (1994) regarded multiple coring from one site to be time-consuming and relied

on the replicability of the data collected by Moore (1977) and Smart (1982) which he

considered to have shown a good degree of synchroneity. However, these studies do not

have radiocarbon chronologies and are compared on the basis of depth. Smart (1982)

points out that mire surface features are three dimensional which results in stratigraphic

profiles that are not identical. She also suggests that apparently synchronous levels in

the profiles do not necessarily represent contemporary surfaces because of differential

decay and the compression of peat. This study has shown that comparisons against

depth are an unreliable substitute for well constrained chronologies (Section 9.3.2) and,

since synchroneity can only be discussed in terms of time not space, Barber's reliance

on these data seems to be doubtful. While some degree of replicability between cores

has been shown at a broad scale (e.g. Svensson, 1988), for quantitative studies it is

necessary to know exactly what the differences in magnitude and timing of shifts are, so

that this source of error can be calculated and included in surface wetness

reconstructions. Tallis (1994) recommends the use of closely spaced multiple cores to

compensate for chance variations in the abundance of Sphagnum macrofossils, so that

the general patterns of change can be determined.

296



Cores CRM I and CRM IV were extracted approximately 10m apart, from the centre of

Coom Rigg Moss, to provide an assessment of the replicability of the hydrological

record. These closely spaced cores within the central portion of the mire were used to

assess the heterogeneity of the water table record over a short distance.

At the centre of the mire the sole source of water is precipitation, it is therefore the most

likely location for a strong climatic signal from the peat record. However, other factors

affecting ombrotrophic mire development; vegetation succession and structure,

microtopography and microclimate, are superimposed upon the climatic hydrological

signal (Figure 3.1). The expansion and contraction of microtopographical features may

be recorded in the peat stratigraphic and testate amoebae records and therefore the study

of closely spaced cores enables quantification of this source of error so that it may be

taken into account in the interpretation of broader scales of study.

Coom Rigg Moss is a low relief bog with no pronounced hummocks or hollows and a

greater uniformity would be expected here than at many sites with more obvious micro-

topographic features. Chapman and Rose (1991) suggested that there has been some

loss of microtopographical variation such as shallow pools over the deeper areas of peat

since the late 1950s. This is attributed to afforestation adjacent to the site. The plot for

the first two axes of the Detrended Correspondence Analysis (DCA) sample ordination

for CRM I and CRM IV is presented in Figure 9.1 and shows the degree of overlap

between the species assemblages in these cores. Outliers Ocm and 10cm were removed

from CRM I and outliers 25cm, 30cm, 80cm and 85cm were removed from CRM IV.

There is a good degree of overlap between the cores which suggests the faunal

assemblages are similar in general terms.

Figure 9.2 shows the reconstructed water tables for CRM I and CRM D/ from 4000BC,

with a larger scale comparison of the past 1500 years presented in Figure 9.3. The basal

section of CRM I does not have an equivalent age section in CRM D/. The base of

CRM I (370cm) has a median age of 3572BC. There is a gap in the record between

2898BC and 2223BC, which represents the beginning of the continuous record from

CRM I. The gap was caused by exceptionally low test concentrations at 320cm and

330cm. The base of CRM IV has a median age of 2669BC. The age ranges of the basal

25cm of CRM IV (375-400cm) all fall within the confidence limits of the basal sample

of the continuous record from CRM I (310cm = 2383-2049BC).

297



0

Cd

•

•
•

•

•

•

1	 6F-
•	

R •
•

§
• •fl

•	 1
a	 ti	 • •
•	 .	 n•

I/
ER 4 "

41fi
•	 g

R E •
13 ••11.
•	 • g

R	 •

S

• a
:	 a

a	 s	 : I	 ,:-) §
:	 .4•	 2

•
• •

p 1 g
R 11;

9	 g4	 ii	 •	 P-
R § El 	 • 2
• • •	 R	 2a	 ; r_

:	 .

mem emenwno %cm	 t91.0 enienuo613	 Z RxV

298



There is divergence in the water table reconstructions at base of these cores but the

records converge at ca. 2000BC (point A), with both mean water table and age error

estimates coinciding: CRM I = -8.3cm, falling to -16.1cm; CRM IV =-6.5cm, falling to -

14.30m. This dry shift is coincident in both cores, suggesting a lowering of the water

table across the central mire surface. Above this (point B), both cores have a wet shift

from a mean water table of ca. -16cm in both cores to -7.5cm at ca. 1460BC.

From 1235BC to 629AD in CRM I, the hydrological curve indicates a low and stable

water table, possibly suggesting a persistent feature such as a hummock. The equivalent

time period for CRM IV (1391BC to 446AD), exhibits a much more fluctuating curve,

where the mean water table shows a greater degree of variation. However, there are

only three points in CRM IV that do not overlap within the confidence limits of the

water table curve of CRM L These are thy shifts at points C1 (-3.4cm (861BC) to -

15.7cm (808BC)), at C2 (-4.6cm ( 702BC) to -11.6cm (543BC)) and, at D (-1.8cm

(65BC) to -10.5cm (65AD)). The latter two initially high water tables are associated

with peaks in Amphitrema flavum in the testate amoebae record, which are probably

associated with microtopographical variations on the mire surface. Directional, but

minor shifts are present in CRM I (C -14.9cm to -16cm; D -12.6cm to -13cm) but are

more pronounced in CRM IV (Ci -3.4cm to -15.7cm; C2 -4.6cm to -11.6cm; D -1.8 to -

10.5cm). It is probable that CRM IV occupied an intermediate position between

hummock and hollow at this time and that CRM I was a hummock and therefore drier

and less sensitive to hydrological fluctuations. The greater degree of fluctuation in the

water table record for CRM IV is unlikely to be attributable to errors in the chronology

or sample spacing, as the magnitude of the shifts are so large.

The curves from 500AD are presented separately in Figure 9.3 so that hydrological

fluctuations over the historical period can be seen clearly and with higher temporal

resolution. This corresponds to the wetter section of the reconstructions and hence

should be more robust, as there are better analogues for taxa at the wetter end of the

scale of wetness (Section 8.2).

At ca. 630AD, there is a wet shift in both cores (point E), but this directional change

may have begun earlier in CRM IV at point E1 (-14.4cm (386AD) to -8.5cm (446AD)).

In CRM I (629AD), the water table rises from -11.9cm to -4.7cm at 699AD. Point E2 in
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CRM IV (636AD) rises from -9.3cm to -5.1cm. This wet shift (point B2, CRM IV) is

within the age range and confidence limits of the water table reconstructions for both

cores.

Point F represents a dry shift. In CRM I the depth to water table falls from -3.1cm

(805AD) to -5.7cm (911AD). In CRM IV at 826AD, the depth to water table falls from

-4.4cm to -8.5cm at 874AD. The dry shift is of a larger magnitude, over a shorter time

period in CRM N,, but this point exhibits a good degree of similarity within the

confidence intervals for timing and water table depth.

Point G also represents a dry shift. In CRM I the water table falls from -2.5cm at

1123AD to -6.4cm at 1177AD. In CRM N,, the water table falls from -2.4cm at

1159AD to -4.0cm at 1207AD. This dry shift is similar in timing and magnitude in both

cores.

At ca. 1260AD, there is a wet shift in both cores from -6.9cm to -3.5cm in CRM I

(1283AD) and from -5.1cm to -1.3cm in CRM IV (1255AD) (point H). The lower

water table in CRM IV is probably related to microtopographical variations because

CRM I is a drier location, but direction and magnitude of change are similar.

Point I marks a wet shift. In CRM I at 1602AD, the water table rises from -6.1cm to -

3.4cm at 1656AD. In CRM IV at 1540AD the water table rises from -5.1cm to -3.0cm

at 1588AD. Although the median age of this event is slightly later in CRM W, the age

ranges of the dates have a good degree of overlap (CRM I 1421-1899AD; CRM IV

1371-1819AD).

Point J represents a major dry shift in the early 20 th century. In CRM I the water table

was -2.9cm at 1900 and falls to -8.4cm in 1957. In CRM IV, the water table falls from -

4.6cm in 1885 to -6.7cm in 1958 (Table 9.1). In CRM I. the drop in water table appears

to be more extreme than that in CRM IV, but the confidence limits of the

reconstructions overlap. Species diversity increases in the surface zone and the surface

reconstructions may be complicated due to vertical zonation of living tests in the

acrotelm (Meisterfeld, 1977).
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From 500BC to the present, there is a better match between both the mean water table

reconstructions and the median calibrated radiocarbon age. This may be because the

fauna in these sections of the cores are characteristic of wetter conditions and hence

have better analogues and more robust reconstructions. Sites should also become

'more' ombrotrophic over time as they become totally dependent on allogenic inputs

such as precipitation and are less influenced by factors such as runoff. From 130cm peat

depth, cores CRM I and CRM IV have similar ages. The top metre of CRM I and CRM

IV are closely related in age, although errors in the radiocarbon dating of recent peats

must be considered. Samples at 100cm depth in CRM I and CRM IV both have a

median interpolated age of 1017AD. Both have fairly high water tables of -5.7cm and -

3.7cm for CRM I and CRM IV respectively.

The accumulation rates for both cores CRM I and CRM IV (Tables 5.11 and 5.12) show

that periods of more rapid peat accumulation correspond with the rise in water table

levels at point E. In CRM I, the accumulation rate increases from an average of 12.5

years per centimetre to 11 years per centimetre after point E. In CRM N,, the

accumulation rate increases from 11 years per centimetre to 10 years per centimetre after

E. The radiocarbon dates were taken at these depths (CRM I 1307 135cm; CRM IV 160-

165cm - Table 4.5) because of major changes in the composition of the species

assemblages at these depths.

The water tables show that CRM IV is a wetter site by about lcm on average throughout

the depths of the cores. This is probably due to the micro-elevational differences

between the core locations, but the important point is that the relative changes in the

direction and rate of water tables fluctuation are similar.

Pollen and hydrology at the micro-scale

Vegetation is an important influence on the micro-scale palaeohydrological record.

Microclimate, management practices, competition, succession and structure may all

result in local differences in vegetation composition, which may affect evapo-

transpiration and therefore surface wetness. Comparison of the pollen spectra for cores

CFtM I and CRM IV can be used to evaluate the significance of the vegetation history

on the micro-scale palaeohydrological record.
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The pollen spectra for CRM I and CRM IV are generally very similar, although they are

relatively crude, as pollen analysis was undertaken for correlation purposes only

(Figures 5.25 and 5.28). Age estimates on the pollen spectra are approximate, as sample

spacing is 20cm below the anthropogenic Pinus rise, which represents ca. 200 years

between samples. The pollen spectra suggest that differences in the vegetational history

of the two cores are not a major influence on the palaeohydrological record.

The Cyperaceae (sedge) rises in CRM I and CRM IV both correspond with the increased

occurrence with Hyalosphenia subflava in the same horizons. These horizons (310cm

and 350cm for CRM I and CRM IV respectively) occur asynchronously, at 2223BC and

1821BC. There is no overlap in the age ranges of these samples, but there is only a 51

year difference between the minimum age of the CRM I date and the maximum age of

the CRM IV date. This suggests that the lack of age range overlap may be related to

sampling resolution rather than a real difference in age. The association of Cyperaceae

pollen, a species group which prefers wet or aquatic conditions (Stace, 1995) and the

testate amoebae H. subflava, a taxon favouring drier conditions appears to be

contradictory, although 'drier' conditions for testate amoebae may still be regarded as

relatively wet (see discussion of relative wetness in Section 4.2.2). Cyperaceae pollen is

likely to be composed of Scirpus cespitosus (Deergrass), Eriophorum vaginatum

(Cotton Grass, Hare's Tail) and E. angustifolium (Common Cotton Grass), as found in

the stratigraphic record (Tables 5.1 and 5.8) and, according to Tanis (1994), its presence

may be evidence for open-water conditions. This is probably an over-simplification,

since Cyperaceae is such a broad group. Tallis (1994) considers high Cyperaceae values

to indicate either expanses of bare peat, resulting from the erosion of low-lying areas of

the mire surface, or the drying out of open water pools by lowering of the general water

table. There is no evidence of surface bagging in the stratigraphy of Coom Rigg Moss

and the Pennine peats studied by Tanis (1994) are from rather different system types to

that found at Coom Rigg Moss. In the conditions found in cores CRM I and CRM Di,

with an increasing xerophilous faunal assemblage, drying out of open water pools is a

more likely cause.

The Ericaceae record is high throughout both cores. The Ericaceae are likely to include

Erica tetralix (Cross-leaved Heath) an indicator of wettish conditions and Calluna

vulgaris, which prefers drier conditions. These were not differentiated in the pollen

record and so interpretation of the ericads in terms of hydrology is limited.
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The anthropogenic Pinus rise (APR) corresponds to the lowering of the water table in

the 20th century (Point J, Figure 9.3). This may be coincidental, but is possibly related

to the drying of the bog surface resulting from greater interception of precipitation by

adjacent trees, losses through the uptake by tree roots and by evapotranspiration.

Marginal areas are probably more affected than the centre of the mire (Chapman and

Rose, 1991), although Coom Rigg Moss is a relatively small bog. This will be

evaluated in the meso-scale analysis, Section 9.3.

Conclusions for micro-scale comparisons

This study of the replicability of two closely spaced cores from the centre of the mire

show that generally, there is a good degree of homogeneity between the hydrological

reconstructions. The magnitudes of change in the depth of water table are sometimes

different, but the directions are very similar for the last 1500 years. Minor fluctuations

are not replicated, probably due to a combination of autogenic influences and a lack of

modern analogues for taxa such as Difflugia pulex and a poorer analogue than is

potentially available for Hyalosphenia subflava (Section 8.4.1). CRM I has a mean

water table generally lower than CRM IV by about lcm. CRM IV contains a greater

abundance of D. pulex in association with H. subflava than CRMI and this may result in

a better reconstruction for CRM I, because although H. subflava has a poor analogue

value, it is better than none at all. The main directional changes in water table appear to

correlate well, with wet and dry shifts occurring synchronously within the range of

radiocarbon ages.

The hypothesised model of factors affecting ombrotrophic water table depth (Figure

3.1), shows that the four major factors at the micro-scale are vegetation, succession,

micro-climate and microtopography. At Coom Rigg Moss, since the planting of the

Kidder Forest, there have been marked changes in both the structure and composition of

mire surface vegetation (Chapman and Rose, 1991). This is likely to have contributed

to the fall in water table depth in the 20 th century. Prior to this, vegetation succession

and its relationship with microtopography was probably of greater importance to mire

surface wetness.

The main period where the water table records do not match is between about 1200BC

and 600AD. Based on Barber's (1981, 1994) hypothesis of expanding and contracting

hollows, it is possible that CRM IV occupied a marginal position between hummock

305



and hollow for this period and therefore exhibits more fluctuation than CRM I. CRM I

was probably the location of a hummock during this time, showing a less sensitive

record of water table depth. Subsequently, both cores are equivalent micro-topographic

locations. There is a good match between hydrological reconstructions at the micro-

scale and major variations appear to be forced by large scale changes in peat surface

wetness.

9.3	 Meso-scale comparisons

At the meso-scale (10-1000m), cores are compared between the central mire expanse

and the margins of the same mire. The distance between cores will be dependent on the

size of the mire. The variability of the palaeohydrological record within a site is

influenced by mire expansion, which is a major factor affecting mire development

(Figure 3.1). Mire expansion is influenced by human impact, vegetation succession,

topography and micro-climate. Vegetation differences may be present due to

competitive interactions and micro-climate. Two comparisons of this kind have been

made at Coom Rigg Moss and Butterbum Flow.

93.1 Coom Rigg Moss

The marginal cores CRM II and CRM DI were 450m apart (Figure 3.3), so the distances

between the cores are well within the limits established as the meso-scale. CRM I was

located approximately 10m to the west of CRM IV.

Figure 9.4 is a DCA ordination plot of the sample depths for all four cores from Coom

Rigg Moss, with samples in the age range 500BC to present. This represents the time

span where the cores from Coom Rigg Moss overlap. Samples 205cm to 370cm

inclusive have been removed from the ordination analyses for CRM I and samples

250cm to 400cm inclusive have been removed from CRM IV as the median age of these

samples exceeds 500DC. Axis 1 is related to depth and therefore, also to hydrology, as

the wetter samples are generally found closer to the surface and samples with a lower

water table are found at depth. The samples from the four cores overlap and therefore

the faunas contained in the samples are comparable in general terms.
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The water table reconstructions for 500BC to the present from the four cores from

Coom Rigg Moss are presented in Figure 9.5. Comparisons between cores CRM I and

CRM IV were discussed in detail in Section 9.2.

Core CRM II has a much more variable hydrological signal than either CRM I or CRM

IV. The base of CRM II at 226BC overlaps with the confidence intervals for water table

depth and age ranges in CRM I and CRM IV at this time.

Point D marks the first shift in water table that is replicated in cores CRM I, CRM II and

CRM N. The peat in CRM DI is not old enough to have recorded this event. The dry

shift marked by point D is more similar in CRM II and CRM IV than in CRM L In

CRM II the water table falls from -6.0cm at 22AD, to -14.4cm at 125AD. In CRM IV,

the drop is from -1.8cm at 65BC, to -10.5cm at 65AD. The overlap in the age range of

this event is good and the magnitude of change is similar in both cores (ca. 8.5cm), but

there is no overlap in the 2a confidence intervals on the water table reconstructions.

CRM il is a drier site at this point and the closeness of the confidence intervals in both

cores at this point indicates that the reconstructions are robust. The confidence limits

for point D in CRM I overlap with CRM II, but CRM I is also drier than CRM IV - there

is no overlap between these cores. Between 0-500AD, CRM ll has a reasonably stable

hydrological record and although the mean water table is lower than that for either CRM

I or CRM IV, the confidence intervals of both cores overlap.

Point E marks the base of a pronounced wet shift in all four cores. In CRM II the water

table rises from -15.5cm at 565AD, to -3.5cm at 614AD. In CRM I the water table rises

from -11.9cm to -4.7cm between 629AD and 699AD. Taking E2 as the wet shift in

CRM IV, as this spans the same time period as the wet shifts in the other cores, the

water table rises from -9.3cm to -5.1cm between 636-684AD. This event has a median

date that is slightly later in CRM DI, from 762AD to 816AD and the water table rises

from -15.2cm to -8.4cm. The age ranges of this event overlap for every core but better

simultaneity may have been recorded by reducing the sample intervals. Cores CRM II

and CRM DI have mean water tables that are lower than CRM I or CRM Di, but the

confidence intervals do overlap in all four cores at point E. This is a major event that is

replicated across the mire surface. The lower water tables in the marginal cores suggest

that there is some internal mechanism affecting water table depth. At particular

locations, the shift to a wetter mire surface would appear to be caused by
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some factor influencing the entire mire surface. This could be climatic in origin, or it

could be mire expansion or internal drainage, for example, if an outflow from the mire

was blocked.

This wet phase persists until point F, when there was a dry shift. CRM II and CRM DI

are markedly drier than CRM I or CRM IV, where only a slight dry shift is registered in

both cores (CFtM I -3.1cm to -4.9cm; CRM 11 -3.4cm to -10.5cm; CRM HI -8.9cm to -

11.3cm; CRM IV -4.4cm to -8.5cm). The marginal cores, CRM II and CRM B1, have

water table ranges which overlap with each other, but not with the hydrological curves

from the centre of the mire. This dry phase continues until 1266AD for CRM 11 and

1352AD for CRM III, where the water table levels rise to a similar depth to CRM I and

CRM IV.

In the middle of the drier phase, there is a synchronous wet peak evident in all four cores

(point G), prior to a return to low water table conditions. The wet peak occurs between

1120-1160AD in all cores. The two central cores have mean water tables approximately

2cm wetter than that attained at the mire margins (CRM I -2.5cm to -6.4cm; CRM I -

4.3cm to -14.4cm; CRM DI -4.4cm to -10.7cm; CRM IV -2.4cm.to  -5.1cm). There is a

greater magnitude of drop in the water table levels in the marginal cores than at the mire

centre. The fall in water table could be climatically forced, as it is evident across the

mire surface or could also be related to changes in the drainage of the mire. This idea

will be tested in Section 9.5, the macro-scale comparisons.

Point H represents a wet shift. The rise in water table is synchronous in all four cores at

ca. 1280AD. The median age of the initial wet shift in CRM II is more closely related

to the wet shifts in the other cores than the slightly later shift at 1385AD. The rise in

water table is between 3-4cm in all cores, although CRM DI has a lower water table,

where the confidence intervals do not overlap with any of the other cores.

There is a synchronous rise in water table level at point I between 1540-1600AD. The

rise is of between 2-3cm in all four cores and the confidence limits of the

reconstructions are close at this point and overlap, showing a good degree of

replicability in this part of the core. This magnitude of rise in CRM II takes place over a

longer period of time. With closer sampling intervals at point I, the rise in water table
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may be more precisely located. However, this is a synchronous rise, of similar

magnitudes across the mire surface.

Core
—

Year Water Table (cm) Year 1Water Table (cm)

CRM I 1901 -2.9 1995 -6.4

CRM II 1893 -4.0 1995 -8.9

CRM III 1888 -5.1 1995 -8.8

CRM IV 1885 -4.6 1995 -6.9

Table 9.1	 Reconstructed mean water tables at CRM core locations prior
to and since the planting of the Kielder Forest

There is a synchronous fall in water table levels across the mire surface in the early- to

mid-20th century (Table 9.1), which is marked by point J on the water table curves. The

fall is not as dramatic in CRM III because sample 55cm, which is contemporaneous, had

a testate amoebae concentration that was too low to count.

A qualitative assessment of the species assemblages shows that the species composition

of the marginal cores is different from those found in the central cores. This suggests

that different assemblages can produce similar records of surface wetness and that better

analogues for taxa at the drier end of the wetness scale could result in more dramatic

variations between the drier, marginal cores and the wetter, central cores. The direction

and rate of change is modelled accurately, but the magnitude of change for dry shifts are

underestimates. The CRM II record suggests marginal locations can be sensitive, as it is

in many ways more similar to the water table record of CRM IV, which is thought to

represent a marginal position between hummock and hollow, than to CRM DI, the other

marginal core.

Pollen and hydrology

The Cyperaceae rise in CRM I and CRM IV (Figures 5.25 and 5.28) was discussed in

Section 9.2. The Cyperaceae rise occurs in the centre of the mire more than 3000 years

before it is registered in marginal locations. The Cyperaceae rise is synchronous in

CRM II and CRM III (Figures 5.26 and 5.27), suggesting that conditions suitable for

colonisation occurred at the same time at either end of the mire. There are, however,
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problems relating to the lack of differentiation between the various species that

comprise Cyperaceae, but a crude assessment may be that the hydrological records

(Figure 9.5) show that it is drier at the edges of the bog than in the centre. The testate

amoebae record in the same horizons as the Cyperaceae rise for both CRM II and CRM

III show an increase in the abundance of Amphitrema flavum, a wet indicator taxon and

follows the decline in abundance of Hyalosphenia subflava.

The APR correlates with lower water tables at the edges by 2cm more than in the centre

of the site. Table 9.1 presents water table levels prior and subsequent to the planting of

the Kielder Forest and shows that the fall in water table depth was slightly greater in the

marginal cores than in the mire centre. CRM I and CRM IV fell by 3.5cm and 2.3cm

and CRM ll and CRM DI fell by 4.9cm and 3.7cm. The edge effect of the forestry

plantation on mire surface wetness is likely to have been greater than in the mire centre,

due to increased interception, uptake and evapotranspiration.

9.3.2 Butterburn Flow

The rationale for the meso-scale study at Butterbum Flow was the same for that at

Coom Rigg Moss. The influence of mire expansion and development on the testate

amoebae record and water table models can be evaluated from a multiple core study and

the relative influence of autogenic and allogenic inputs assessed. The topography of a

mire will affect the nature and strength of the testate amoebae and vegetation response

to climate change, as it affects the retention of water. Butterbum Flow is an

intermediate ombrotrophic mire and three cores were extracted from the northern part of

the site. Coring locations were shown in Figure 3.7.

Figure 9.6 is a DCA plot of meso-scale comparisons for Butterbum Flow. For BBF I,

only samples from the surface to 650cm (6437BC) are plotted as these have an

equivalent age range in cores BBF II and BBF Bl. Outliers at 270cm and 340cm were

removed from BBF II and BBF III respectively. There is a good degree of overlap

between the samples from these cores, which suggests that the faunas contained in the

samples are comparable. Depth is related to hydrology, With wetter samples at the

surface and drier samples at deeper points in the core.
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The period between 6500-3000BC is shown only in cores BBF I and BBF DI. Some

fluctuations occur in BBF I which are not registered in BBF M. This is probably

attributable to sampling resolution. The record for BBF I had much denser sample

spacing than BBF DI (Figures 6.25 and 6.27), because the record in BBF I extends over

a greater depth (650cm) than BBF DI (350cm). Therefore, the same sampling interval in

BBF DI is stretched out over a longer period of time, which results in a less sensitive

record than for BBF I. Confidence intervals overlap and some major shifts are

replicated i.e. there is a dry shift after 4000BC and a wet shift at ca. 3000BC. In BBF I,

this period is dominated by Diffiugia pulex, which has no analogue value. A dominant

taxon in BBF DI is Cyclopyxis arcelloides type, which has very narrow tolerance range

(Figure 4.2) and hence should result in a reliable reconstruction. Another factor which

may also result in a less sensitive record for BBF RI is the microtopographical location

of the core, BBF DI may have been a complacent location over this period in a similar

way to CRM I. The lack of variation in the water table record may also be attributable

to core location at the centre and edge of the mire. BBF I was located in the central part

of the mire and is therefore more likely to have a strong climatic signal in the peat

record.

The water table reconstructions (Figure 9.7) show that point K marks the beginning of a

wet shift that is found in all three cores from Butterbum Flow (BBF I 1697-1358BC;

BBF 11 1711-1337BC; BBF DI 1848-1588BC). The magnitude of change is similar in

all three cores but there is no overlap in the confidence intervals of the water tables

between any of the cores. BBF II has a significantly lower water table (rising from -

15.8cm to -12.9cm) than BBF I and BBF M by 10cm and 7cm respectively. BBF I has

the highest water table rising from -6.3cm to -3.8cm. This event is replicated across the

mire but the differences in size of the wet shift probably indicate some internal

mechanisms controlling the depth to water table across the mire. Point K is followed by

a dry shift.

Point L marks the start of a dry shift that is evident in BBF I and BBF DI at ca. 815BC,

but is not evident at the same time in BBF II, probably due to the sampling intervals,

since the dry shift occurs about 500 years too early in BBF 11 at 1405BC. The

confidence intervals of the water tables for BBF I and BBF DI show a good degree of

overlap with BBF I falling from -10.1cm to -16.5cm and BBF DI falling from -10.6cm

to -12.8cm.
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Point M marks the beginning of a dry shift which is pronounced in BBF I and BBF IQ,

but is barely registered in BBF IL This may again be related to sample spacing, or it

may be that BBF 11 is a less sensitive location where the change in water table level

found in the other two cores has not registered. The age ranges of this point overlap

well at the BC/AD boundary.

Figure 9.8 shows the high temporal resolution meso-scale water table comparisons for

Butterburn Flow from OAD. Point N marks the beginning of a wet shift. The wet shift

occurs synchronously in BBF I and BBF DI and slightly later in BBF IL There is a 7cm

rise in water table level in BBF I and BBF DI and a 5cm rise in BBF IL The confidence

intervals of BBF I and BBF m overlap, but there is no overlap with BBF II, which has a

significantly lower water table.

At point 0, a dry shift, the age ranges of BBF I and BBF DI overlap, but there is no

overlap with BBF II (BBF I 778-1079AD; BBF II 1123-1307AD; BBF DI 604-811AD).

The fall in water table level is approximately -3cm in all cores and occurs first in BBF

m and last in BBF II. This may be a truly asynchronous event, but this is unlikely since

the magnitude of shift is similar in all three cores and the lack of overlap in age ranges is

less than 50 years in BBF I, but is >300 years in BBF III This suggests that the lack of

overlap is related to either sampling intervals or lack of precision in the chronologies.

Thus it may be a climatically-induced event, or may be related to a change in surface

wetness across the whole mire surface, attributable to an internal mechanism such as

drainage.

Point Q marks the fall in the water table level at the beginning of the 20 th century

(Figure 9.8) (Table 9.2). The fall is 2-3cm in all three cores and may be associated with

the planting of the Kielder Forest. However, the forest was not planted in such close

proximity to Butterburn Flow as it was at Coom Rigg Moss and the fall in water table

may actually be due to reduced precipitation. This could be associated with climate

change, with climatic amelioration after the Little Ice Age and 20th century warming (c.f.

Bradley and Jones, 1993) (Section 9.7).
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Core Year Water Table (cm) Year Water Table (cm)

BBF I 1799 -1.7 1995 -3.9

BBF II 1787 -4.4 1995 -7.2

BBF III 1816 -4.2 1995 -5.7

Table 9.2	 Reconstructed mean water tables at BBF core locations prior
to and since the planting of the Kielder Forest

At Butterbum Flow, the testate amoebae record extends much further down the cores

than at Coom Rigg Moss. In all three cores, the depth of peat without a countable

testate amoebae record was less than 15cm to the base. Test preservation was better at

the base of the Butterbum Flow cores than the base of the Coom Rigg Moss cores. The

basal dates for the cores from Butterbum Flow are also more representative of early peat

development, since the testate amoebae record extends further down the profile and so

the water table records are representative of the entire peat profile, whereas at Coom

Rigg Moss the water table record does not extend to the base of the profiles. Therefore,

the age of the basal peats is unknown, as peat was dated only to the base of the water

table record. Basal peat at Coom Rigg Moss may be similar in age to that at Butterbum

Flow but this is impossible to tell.

In BBF DI, tests were counted to 340cm, but the peat was of similar age to deposits at

BBF I which was 715cm deep. Peat accumulation was therefore slower at BBF DI, with

less peat over same time range. This may have been influenced by topography. There is

a need therefore to have a greater density of sample spacing at BBF m to get the same

level of detail of hydrological fluctuations. The water table record from 6500-3000BC,

that is found only in cores BBF I and BBF III, also shows a remarkable degree of

similarity. BBF I shows a greater level of variation, which may be attributable to

sample spacing, but the shifts in water table direction match well and the confidence

intervals overlap in time and space.

9.4	 Within-site variability

The aim of comparing cores at the meso-scale was to evaluate significance of the

internal mire dynamics by comparing cores from the centre of the mire to the mite

margins. There are changes that occur in the same direction at the same time, but there
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are some large differences, especially at Butterbum Flow. This discussion explores the

reasons for these differences with reference to the hypothetical model of factors

affecting ombrotrophic mire surface wetness, Figure 3.1. There is a limited body of

literature dealing specifically with autogenic and allogenic inputs to the mire

hydrological system (e.g. Payette, 1988; Winkler, 1988; Foster and Wright, 1990; Hu

and Davis, 1995). Wheeler (1992) and Belyea and Warner (1996) discuss some

autogenic and allogenic influences on mire systems, but these are not necessarily

hydrological factors. The relative roles of autogenic and allogenic controls in peatlands

remains a debatable issue (Hu and Davis, 1995) and the arguments are complex and

often contradictory.

CORE

<

AB

> <

CDEF

< > < <

GHI

> >	 <

J

CRM II + + + + + +	 +

CRM I + + x x + + + + +	 +

CRM IV + + + + + + + + +	 +

CRM M + + + + +	 +

K L MN 0 P . Q

BBF H + + + +	 +

BBF I + + + + + +	 +

BBF M + + + + + +	 +

Table 9.3	 Wet and dry shifts in the meso-scale core comparisons,
where A-J are codes for CRM cores and K-Q are codes for
BBF cores. x indicates very minor shift, > indicates wet shifts
and < indicates dry shifts.

The wet and dry shifts which have been noted in the previous section (Table 9.3) are

discussed here in the context of allogenic and autogenic hydrological inputs to the mire.

The alignment of shifts between Coom Rigg Moss and Butterbum Flow implies

synchroneity as they occur within similar time-spans.

Human impact is unlikely to be a major factor affecting mire surface wetness at either

Coom Rigg Moss or Butterbum Flow. At Coom Rigg Moss, the mire was subject to

low level grazing and autumn burning to remove dead grass up until the 1950s. The

conditions that existed in the area prior to the expansion of sheep farming in the 17 th and
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18 th centuries are unknown (Chapman and Rose, 1991). At Butterburn Flow, sheep

grazing still occurs at low intensities. These factors have been considered with respect

to changes in the vegetation composition at Coom Rigg Moss by Chapman and Rose

(1991). Neither site has been subject to peat cutting and no marginal bog bursts are

evident in the stratigraphic record, so the complete record of peat accumulation is

assumed to have been recovered.

There is a remarkable degree of similarity between the four cores from Coom Rigg

Moss. Shifts A, B and C occur only in cores CRM I and CRM IV since the records

from CRM II and CRM DI do not extend back far enough to record these shifts. There

are no major shifts which occur only at the margins or only in the mire expanse.

The meso-scale study at Coom Rigg Moss appears to agree to a certain extent with the

view of Kilian et al. (1995). They suggest that autogenic mechanisms may result in

drier conditions at mire margins, as cooling and wetting will raise the water table in

central, flatter parts of the bog due to a lower gradient in hydraulic potential and will

raise the water table later in marginal zones. The marginal cores, CRM II and CRM DI,

have mean water tables that are generally lower than the central cores, but the temporal

lag at the margins described by Kilian et al. (1995) is not evident at Coom Rigg Moss.

This may be because Coom Rigg Moss is not a classic raised mire site, but is an

intermediate ombrotrophic mire. However, the chronological precision may also not be

high enough to show this.

CRM II shows a similar degree of shift at point D as CRM IV, with CRM I exhibiting

only a very minor decrease in water table level. This fall in water table level appears to

occur across the mire surface, but CRM I is a less sensitive location. Point E represents

an increase in surface wetness across the mire, as this wet shift is found in all four cores.

A shift of such magnitude that occurs synchronously may be attributable to increased

inputs to the mire system, possibly allogenic. This will be discussed at the macro scale

(Section 9.5). An increase in surface wetness across the mire, which is the result of

autogenic factors, may occur due to blocked outflows or impeded drainage at more than

one point in the mire system.

Point F represents a dry shift across the mire surface, which may be attributable to better

drainage, as the largest drop in water table is in CRM II. H and G represent minor
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fluctuations that occur in all four CRM cores under relatively high water table

conditions. These small-scale fluctuations may be attributable to an increase in surface

patterning and microtopography, with an increasing abundance of hollows and pools

making up the surface pattern, although Ivanov (1981) suggested that surface patterns

are a source of hydrological stability rather than instability.

As the peatland spreads laterally, it tends towards a broader ellipse (Ingram, 1982). As

the central, flat part of the mire increases in size and height resulting in a 'more'

ombrotrophic fossil record, the domed area is less likely to be influenced by

groundwater and surface runoff. Spatial differences in the record of the upper peats are

also less likely, as the area becomes more hydrologically stable. The record is more

likely to be related to climate over time as shown by the assessment of the cores at the

micro-scale. The record in the upper peats, over the past 500 years, are more similar in

the CRM cores. Below 1500AD, CRM 131 maintains a similar record to CRM I and

CRM IV, but CRM II shows a greater degree of sensitivity to fluctuations.

At Butterbum Flow, the water table records for BBF I and BBF DI are more similar than

they are for BBF II. In all BBF cores, the water table is higher and less variable, but the

sample spacing means that the BBF records show less variation than may be evident

with a closer sampling interval. BBF II is persistently drier than cores BBF I and BBF

III. BBF II also shows a less sensitive water table record, with some fluctuations either

not evident or not as pronounced. This suggests that there are autogenic factors

affecting peat development at BBF II. There is a lack of contemporary surface micro-

topographic features on this part of Butterbum Flow. BBF ll was located on the banks

of the River Irthing. This may result in this location having better drainage than BBF

DI, which does not have such an extreme marginal location. Discharge across the mire

boundary and processes within the mire regulate flow towards the boundary (Ingrain,

1983).

Autogenic factors are those that result from internal bog dynamics and include,

vegetation, microclimate, mire expansion, human impact and site drainage. Autogenic

processes affecting mire surface wetness occur as portions of the mire pass through

critical stages of bog development, which may be controlled by morphology, hydrology

or peat depth (cf. Foster and Wright, 1990) and are responsible for changes in vertical

accretion, lateral expansion and the consequent shape of the peatland (Ingram, 1982;
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Winston, 1994; Almquist-Jacobson and Foster, 1995). The upward growth of peat due

to autogenic factors usually takes place where there are only small vertical fluctuations

in the water table. The theoretical model developed by Almquist-Jacobson and Foster

(1995) combined internal bog dynamics with the external factors of local substrate,

regional temperature and moisture conditions. The model suggested that the geometry

of raised bogs will adjust to climate change regardless of the stage of bog development

or direction of climate change. Almquist-Jacobson and Foster (1995) concluded that all

aspects of mire development appear to be closely related to climate. Hu and Davis

(1995) contradicted this point of view in a gross scale of study, by concluding that

allogenic influences should be interpreted as overlays of autogenic signals and that it is

important to account for the autogenic signal when using peatland palaeoecological data

to detect palaeoclimatic signals. Also, it has been argued . that in a suitable climate,

autogenic processes are the dominant factors controlling mire development (Walker and

Walker, 1961; Tolonen et al., 1985; Foster and Wright, 1990), since atmospheric water

supply is in excess.

Payette (1988) argued that autogenic succession may be identified only after external

factors and their associated vegetation events have been properly evaluated. From this

study of palaeohydrological records, there is a clear need to assess allogenic and

autogenic factors together to see which dominates the record. To do this, multiple cores

from multiple sites are necessary. It is not possible to separate these signals from one

core.

Winlder (1988) found synchronous hydrologic and vegetation changes in a broad scale

study from Washburn Bog and Hook Lake Bog after 6500BP. Pollen and plant

macrofossil analysis was used to show lower water levels at both sites. This suggests

that bog development is a function of climate and that bogs have developed as effective

moisture has increased. This is similar to the research at Caribou Bog, Maine by Hu and

Davis (1995), who found that the major transitions reflect the regional climatic history,

but that autogenic changes affecting hydrology probably also played a major role in

peatland development. These changes were mostly chronologically heterogeneous at

different localities in the peatland after 3500BP. The heterogeneity of shifts highlights

major difficulties in inferring palaeoclimates from peatlands, especially from a single

locality. The synchronous changes across the mire at CRM are therefore possible

indicators of a climatic influence on peatland development at Coom Rigg Moss but the
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replicability of hydrological shifts at the macro-scale (Section 9.5) will establish the

validity of this assertion.

There is no way of determining the exact cause of wet or dry shifts, as a number of

mechanisms are possible. At the micro-scale, the main differences appear to be

attributable to microtopography, related to the sensitivity of the core location. Meso-

scale factors causing wet or dry shifts may be related to hydraulic conductivity,

compaction and porosity. High water tables may be the result of impeded drainage or

blocked outflows and low water tables may be due to throughflow, surface runoff or

pipeflow (Ingram, 1983).

9.5	 Macro-scale comparisons

The macro-scale study is used to assess the replicability of the palaeohydrological record

between sites across a region, at a distance of between 1-10km. Cores from the central

expanse of the three sites, Coom Rigg Moss, Butterburn Flow and The Wou are used for

the macro-scale comparisons. The mires are hydrologically separate units. Central

cores are used as these normally have the longest record and the central area is thought

to be the most sensitive part of the mire to climate change. Climate is thought to be one

of the most important factors controlling mire surface wetness at this scale, operating

through moisture deficit, as a result of the relationship between precipitation and

temperature. Changes in mire surface wetness recorded synchronously at a single site

are not necessarily climatically forced but may be attributable to internal mire dynamics.

Major climatic changes can only be identified by replication at a number of different

sites. If the water table records are similar in two or three sites, it is likely that climate is

the dominant influence on peat development. If however, the water table records are not

comparable across the region, autogenic mechanisms are likely to be the dominant

influence on peat development. The autogenic factors affecting mire surface wetness at

this scale are mire morphology and internal mire drainage, which are both components

of the regional groundwater system (Figure 3.1).

Figure 9.9 is a DCA ordination plot containing all samples from CRM I, CRM IV, BBF

I and TW II with a median age within the past 5500 years. The water table record from
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TW 11 extends back as far as 285AD, but the continuous record presented here only

extends to 736AD. Plotting samples within the past 5500 years resulted in one sample

being removed from CRM I (370cm) and samples between 420-715cm being removed

from BBF I. All samples were retained for CRM IV and TW II.

There is a good degree of overlap between CRM I, CRM IV and BBF I, which suggests

that these cores contain similar faunal assemblages. The samples from TW II are found

further along axis 1, removed from the three other cores and have a larger scatter about

axis 2. TW II therefore contains a different faunal assemblage to those found in the

other cores. The second axis is related to sample depth, with the widest part of the

ordination plot dominated by surface and near-surface samples. This is also related to

hydrology, since the wetter samples are found closer to the surface and drier samples

found at depth down the cores.

Figure 9.10 shows the water table reconstructions from the central cores from the three

sites, cores CRM I, CRM IV, BBF I and TW II. Between 2505-2005BC, the confidence

limits of cores CRM IV and BBF I overlap, CRM I shows a falling water table as does

BBF I, but to a lesser extent. CRM I does not have a complete record at this point, due

to extremely low test concentrations in horizons 320cm and 330cm.

At point A, there is a synchronous fall in water table levels in CRM I and CRM N. The

record is incomplete in BBF I at this point, due to poor test concentrations in sample

300cm. The magnitude of the dry shift at point A was discussed in the micro-scale

comparisons, Section 9.2.

There is a synchronous rise in water table level at ca. 1530BC (point B). The good

match between the direction and rate of change at 1530BC in all three cores suggests

that this is a climatically induced change. The confidence intervals of the CRM cores

overlap at this point, but BBF I is a wetter site by approximately 10cm and the

magnitude of the wet shift is not as much as in the CRM cores. Immediately following

this peak in water table level, there is a fall of >6cm in all three cores.

Point C marks a dry shift. Point C in BBF I has a better degree of correlation with C I in

CRM I than C2, both occurring between 820-860BC. Conversely, the slight fall in
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water table in CRM I has a better match with C2 in CRM IV at ca. 640BC. To improve

the match of this dry shift in these cores, a more closely spaced sampling interval would

need to be adopted. CRM I has a much more stable mean water table level, although the

confidence intervals of all three cores overlap.

Point D marks a fall in the water table level after a significant wet shift. The age ranges

of this event show a good degree of overlap, although the median ages of the dry shift

are not the same (CRM I 336-15BC: CRM IV 151BC-144AD: BBF I 369BC-152AD).

CRM IV has the greatest magnitude shift, as the water table drops by 8cm. The

confidence intervals of CRM IV and BBF I overlap at this point, but CRM I has a

significantly lower water table level, where there is no overlap in confidence intervals

with the other cores at the macro-scale. This fall in water table, although present in

CRM I, is not as significant and this may suggest that this is either not a climatically

forced hydrological signal, or that there was a local factor overriding a climatic signal at

CRM L Section 9.2 discussed the possibility of CRM I being a less sensitive location

during this period, e.g. a hummock feature, which is borne out by this scale of

comparison. If a shift is replicated across two sites, it suggests that it is local factors

which are affecting the surface wetness at CRM I.

Between 0-500AD the confidence intervals of the three cores overlap, although the

mean water table level of CRM I shows a slight rise, while cores CRM IV and BBF I

both exhibit a drop in the depth to water table.

From 500AD to the present, the water tables for all four cores are presented separately

in Figure 9.11, in order to compare the more detailed hydrological record of the

historical period at a larger scale. Point E emphasises a marked increase in mire surface

wetness. The wet shift is synchronous in CRM IV and BBF I and is of similar

magnitude, occurring at 386-387AD in both cores, with a rise in water table level from -

14cm to -91-10cm in CRM IV and BBF I respectively. The wet shift occurs slightly

later in CRM I. The size of the shift is between -12cm to -5cm in all cores.

The water table record for TW II begins at 736AD. At 818AD, there is a slight fall in

water table level in TW II which corresponds to falls in water table level in the three

other cores, at 805AD in CRM I, 826AD in CRM IV and 956AD in BBF I. This is

marked as point F in Figure 9.11. The age ranges of this event show a good degree of
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overlap. The shifts are of similar magnitude in CRM IV and BBF I, falling from -4.4cm

to -8.5cm and -2.7cm to -9.2cm respectively. Cores CRM I and TW II also have similar

magnitudes of drop, from -3.1cm to -4.9cm in CRM I and from -4.0cm to -5.4cm in TW

II.

Point G marks the initiation of a dry shift found in all four cores. The median age for

this event occurs slightly earlier in TW II (1066AD) and later in the other cores - at

1123AD in CRM I, 1159AD in CRM IV and 1152AD in BBF I. The age ranges of this

dry shift overlap. The magnitude of change is between 2-2.5cm in CRM I. CRM IV and

BBF I and <lcm in TW II, but the confidence intervals of the water tables overlap in all

four cores.

H marks the low water table point prior to a slight wet shift. Point H has a median age

between 1231AD (TW II) to 1299AD (BBF I) and the age ranges of this event in all

cores show a good degree of overlap. The rise in water table is of the same magnitude

in BBF I and TW II, from -4cm to -3cm and is larger in CRM I (-7cm to -3cm) and

CRM IV (-5cm to -1cm). However, the confidence intervals for this event also overlap

in all four cores.

At ca. 1560AD, there is a low in water table level prior to a wet shift in CRM I, CRM

IV and TW II (Point I). BBF I does not show a drop in water table level at this point.

Point I occurs at 1602AD in CRM I, which is a median age approximately 50 years later

than in CRM IV (1540AD) and TW II (1561AD). A similar wet shift occurs earlier in

BBF I, with a median samples age of 1250AD (age range 1343-1404). Because the age

ranges overlap, it may be regarded as a synchronous event, which may be pin-pointed

more precisely with a closer sampling interval in BBF I and a more precise chronology.

There is a relative drop in water table levels in the 20 th century (Point J). In the mid-

1950s, the water table level of cores CRM I, CRM IV and TW II all fall, whilst

concurrently, the water table level of BBF I rises. This is due to the fall being based

only a single sample. There is no surface sample for TW II, due to sampling difficulties,

so it is not possible to comment on the relative wetness of the present mire surface at

The Wou.
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9.6	 Between-site variability

Climate is the only factor that can reasonably explain synchronous shifts in water tables

at this scale of study. Major climatic shifts are evident in all three sites showing a high

level of synchroneity in the timing of events and in the confidence intervals of the water

table reconstructions. The macro-scale comparison leads to the construction of

guidelines for the identification of climatically forced shifts. The directional shifts must

be of a similar magnitude, timing and rate of change and this should be replicated in at

least three cores from at least two sites. Replication is required from more than one site,

because if the shift is found in multiple cores, but only from within one site, it may be

internal autogenic factors that are dominating the hydrological signal. More than one

core is needed from at least one of the sites for the same reason. However, because it is

possible to core in insensitive locations such as CRM I, two cores from two sites may

also be acceptable for distinguishing a climatic signal. The wet and dry shifts found at

the macro-scale are tabulated in Table 9.4.

CORE

<

AB

> <

CD

< >

E

<

F

<

GHI

> > <

J

CRM I

CRM IV

+

+

+

+

x

+

x

+

+

+

+

+

+

+

+

+

+

+

+

+

BBF I + + + + + + + + +

TW II + + + + +

Table 9.4 Presence of wet and dry shifts in the macro-scale core
comparisons, x indicates very minor shifts, > indicates
wet shift and < indicates dry shifts

Using these critera for establishing climatically induced shifts it is possible to

distinguish climatic shifts at the macro-scale. Point A cannot be regarded as climatic

from the available data, since it is only evident in CRM I and CRM IV. It is unfortunate

that the sample for BBF I at this time (ca. 2000BC) had a concentration which was too

low to count. At 1500BC the rise in water table at point B appears to be climatically

induced since it occurs in CRM I and CRM IV and in BBF I. The rise in water table

may be attributable to increased precipitation and/or reduced evapo-transpiration.
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Core TW II from the valley mire, shows a surprising degree of similarity with CRM IV

and BBF I. The fact that change is registered at all is remarkable and suggests that

climate is an important influence even for valley mires. Generally, the hydrological

record from The Wou shows less sensitivity to hydrological fluctuations than the records

derived from the ombrotrophic mires. The major changes that are found synchronously

in CRM I, CRM IV and BBF I and that are therefore likely to be climatically forced, are

found in TW II, but the water table model derived from the valley mire is less sensitive

to smaller scale fluctuations. This is probably related to the morphology of the site,

because, as a valley mire, water collects along the long axis of the mire from the

surrounding catchment and this will mask all but the largest and most dramatic climatic

fluctuations. The ombrotrophic mires, receiving inputs mainly from precipitation have a

greater level of sensitivity to hydrological change. Whilst it is therefore possible to

derive a climatic signal from a valley mire, The Wou is not a sensitive site and

comparisons with the other sites are essential to determine whether small magnitude

fluctuations in the hydrological signal are likely to be related to climate, Because water

is derived from the valley catchment, an excessively dry period must be needed for a dry

shift to register in the proxy climatic record. However, there is a better match with the

taxa included in the transfer function (Figure 7.2) than the assemblages from Coom

Rigg Moss or Butterburn Flow, so it is possible that the smoother hydrological curve is

a better representation of events. More work is needed to evaluate this.

Ombrotrophic mires also develop as a result of allogenic inputs, principally climate, as

raised mires and the shedding parts of blanket mires are locations where the peat profile

is most closely linked to the balance between precipitation and evaporation, rather than

other site characteristics. The topography of a mire will affect the nature and strength of

vegetation and testate amoebae response to climate change, as it affects the retention of

impacting water. It is possible to distinguish between water-shedding and water

collecting sites, situated in convex or concave regions of the blanket mire system

respectively (Tallis, 1994, 1995). Barber (1981) falsified earlier concepts of autogenic

cyclic changes in peatlands by showing that from macrofossil studies, surface wetness

patterns occur over entire strata. It may be that autogenic factors are more important in

boreal regions with an excess of moisture (Barber, 1994) and it may be that the allogenic

and autogenic mires are necessarily mutually exclusive. Barber (1981, 1994)

demonstrated the strength of allogenic forcing at Bolton Fell Moss and interpreted pools

as hydroclimatic features responding to climatic variations. He considered the relative
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area of hummocks and pools on the mire surface to be climatically controlled. In dry

periods the relative area of hummocks increases and in moister periods pools form and

expand.

Comparing the water table records for Coom Rigg Moss and Butterburn Flow from

500BC to the present, the period for which there is the greatest overlap, it shows that the

BBF cores have a much less variable record of fluctuation. The less sensitive record at

Butterburn Flow is probably related to sample spacing, because the major trends are

similar, but the same depth of peat covers a longer period of accumulation. More

closely spaced samples are required to generate a similar degree of sensitivity to shifts in

water table level.

9.7	 Climate and peatland surface wetness

An allogenic hydrological signal should result in a shift in water table simultaneously

across the mire surface in response to broad scale climate change. Autogenic influences

would result in more localised hydrological changes in response to crossing critical

thresholds of mire growth and expansion. The separation of these signals is central to

this study. There is a remarkably good match between the water table records both

within and between sites. The possible reasons for these similarities and for the

differences, will be discussed in this section.

The horizons that are regarded as climatically forced were discussed in Section 9.5, the

macro-scale comparison. Several of the marked horizons identified in the water table

records can be compared to published information about climatic events. The three

main periods for which there is relevant information are the Dark Ages climatic

deterioration at ca. 600AD (point E), the Medieval Warm Period (point F) and The

Little Ice Age, which began 1400-1500AD (point I). This section compares data from

all of the water table curves.

9.7.1 Mire surface wetness before 500AD

Figure 9.12 presents the humification curve from a single core from Talla Moss, an

ombrotrophic blanket mire in Scotland (Chambers et al., 1997). This spans the period

3500BC to 1950AD and is equivalent to the time period of the macro-scale comparison
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of water table records shown in Figure 9.10. Chambers et al. (1997) identified four

main wet shifts from these data at ca. 3455BP (1405BC), ca. 2600BP (550BC), ca.

1930BP (20AD) and ca. 1095BP (855AD). Another wet shift was identified as

commencing at ca. 540BP. These inferred wet shifts are marked on Figure 9.12.

Climatic inferences were based upon comparison of the humification data with the

pollen record and the only wet shift for which climate was thought to be at least partly

responsible is at 1070AD. It is not clear how this shift was assigned a climatic

influence, when the data are not compared to other mires in the same region. The use of

humification data to infer climate means that a relative scale of wetness is derived that is

semi-quantitative. It is not clear whether the percentage humification scale implies

uniform size shifts in wetness and if it does, what these shifts are. There are no

confidence limits generated on humification data, which makes comparisons with other

similar data difficult. Humification data from only one core are presented, because of

this, it is impossible to determine whether all of the shifts are related to external forcing,

or whether the changes in mire surface wetness are related to autogenic mechanism.

Talla Moss is located approximately 60-80Iun to the north of the field sites used in this

study and by comparison to the water table curves from the macro-scale study, it is

possible to identify climatically determined shifts in mire surface Wetness.

Figure 9.13 shows a wetness curve derived from Sphagnum macrofossil analyses from

Bolton Fell Moss (Barber et al., 1994a), a Cumbrian peatland within ca. 20Iun of the

field sites used in this study. This curve spans a similar period to macro-scale water

table curves (Figure 9.10) and the Talla Moss humification data (Figure 9.12). This is

an oscillating curve, which is similar in many respects to CRM D/. It does however,

have the same limitations as the humification data, in that there are no confidence

intervals on the curve and the mire surface wetness is not quantified. Shifts A to F can,

nevertheless, be identified in this record and are marked on Figure 9.13.

At approximately 2000BC (4000BP), the water table curves from CRM I and CRM IV

show a significant fall in water table level. The humification curve from Talla Moss and

the curve derived from Sphagnum macrofossils from Bolton Fell Moss both suggest

decreased surface wetness at point A. Point B marks a significant wet shift at

approximately 1500BC, although this occurs slightly earlier in the macrofossil record.

Point C, at ca. 700BC represents a distinct dry shift, which is similar in timing in each

proxy-hydrological record. At the BC/AD boundary, there is a fall in mire surface
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wetness in CRM I, CRM IV and BBF I (Point D). The trend at Talla Moss and at

Bolton Fell Moss is similar to this. Point E is also evident at Bolton Fell Moss and

Talla Moss at ca. 600AD, marking the increased surface wetness of the Dark Ages

climatic deterioration (Section 9.7.2).

Thus, whilst some of the shifts indicated by the humification data are seen in the testate

amoebae data and may be related to climate, only one of the shifts identified by

Chambers et al. (1997) as climatic is replicated in the water table curves. This is shift

B, at ca. 1500BC (1405BC in the humification data). Whilst no one shift is specifically

identified by Barber et al. (1994a) as climatic, they assumed that the record held a

climatic signal. By comparison of these data to the multiple water table curves from

Coom Rigg Moss and Butterburn Flow and the humification analyses from Talla Moss,

the Sphagnum macrofossil record can be seen to contain a regional climatic signal. It is

only by comparison to these other data that this is apparent. There is no means of

comparing the magnitude of the changes in mire surface wetness as this is not quantified

in either the humification or macrofossil data.

The water table records (Figure 9.10), Sphagnum macrofossil data (Barber et al., 1994a)

and hurnification data (Chambers et al., 1997), all therefore show similar trends of

increasing wetness throughout The Holocene, proabably reflecting the late Holocene

climatic deterioration (Barber, 1985).

9.7.2 Dark Age deterioration

At ca. 600AD (CRM I: 629AD; CRM ll: 565AD, CRM DI: 762AD; CRM IV: 636AD;

BBF I: 567; BBF 11: 643; BBF Ifl:537AD) there is a wet shift in all cores (Point E). The

ages of this event overlap well and the direction and rate of change are similar in all

profiles. The magnitude of change varies in the cores, the largest shift (12cm) occurs in

CRM II, a marginal core and the smallest rise occurs in BBF II, also a marginal core.

The small shift in BBF II may be related to the initial low water table, which rose from

-17cm to -15cm. Other cores experienced mean shifts of between 3-7cm.

This wet shift coincides with the Dark Ages climatic deterioration (ca. 1,400BP/600AD)

as identified in humification analyses of five sites by Blackford and Chambers (1991).
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They could not determine from humification analyses whether the major influence on

climatic deterioration was the result of short-lived climatic cooling or more prolonged

wetness. This wet shift can also be identified in the humification analyses from Talla

Moss (Chambers et al., 1997) (Section 9.7.1). Barber (1985) also found an abrupt peak

in surface wetness at Bolton Fell Moss at 1400BP from Sphagnum macrofossil analysis.

Lamb (1977, 1995) points to documentary evidence that supports the idea of a climatic

deterioration in the mid-first millennium AD. This appears to be a major climatic shift,

replicated in a number of sites across the British Isles and identified using a variety of

palaeoecological techniques.

9.7.3 The Medieval Warm Period

The Medieval Warm Period (MWP), or Little Climatic Optimum (1000-1200AD, Lamb,

1965; 700-1300AD, Barber et al., 1994b; 900-1200AD, Mayes and Wheeler, 1997) was,

according to Barber et al. (1994b), a period of drier conditions in upland Britain, that is

reflected in surface wetness curves from peat bogs derived from Sphagnum macrofossil

analyses. Point F (Figure 9.11) correlates with the MWP, as all of the cores show a fall

in water table level at approximately this time. The water table level over this period is

variable and significantly higher than the previous three millennia.

According to Mayes and Wheeler (1997), the MWP is a period for which climatic

information is scarce. Blackford and Chambers (1995) present evidence for solar

forcing of climatic variability for the MWP and LIA from humification analyses of

blanket peats from western Ireland. They suggest that periods of reduced peat

decomposition, indicative of cooler or wetter climatic conditions, coincide with periods

of reduced sunspot activity and atmospheric 14C anomalies. This adds to the argument

that the shifts during the MWP and Little Ice Age evident in the cores were climatically

forced.

9.7.4 Little Ice Age

The Little Ice Age (LIA) refers to a period of cooler climatic conditions between the

Middle Ages and the warm period of the late 19 th - early 20th centuries (Grove, 1988).

The exact beginning and end of this event are uncertain, because, as for the MWP, the

dates given for the LIA vary from author to author (1550-1800, with a main phase
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between 1550-1700 Lamb, 1977; 1250-1920 Porter, 1986; main phase 1570-1730,

Bradley and Jones, 1993). Lamb (1995) suggests that the entire period of the LIA may

span from 1420, or even 1190 up to 1850 or 1900. It is therefore difficult to define this

period. Here, the LIA is taken to begin between 1400-1500 and extends to the end of

the 19 th century.

The term 'Little Ice Age' is considered to be a misnomer by many (e.g., Grove, 1988),

since lower temperatures were not experienced globally and is considered by some to

have been insignificant in scale. Bradley and Jones (1993, 1995) suggest that the term

LIA be used cautiously since the past 500 years was a period of complex climatic

anomalies, where both warm and cold periods were experienced that varied in

importance geographically. They showed that this was not one continuous period at all.

The period from 1550-1800 is characterised as a time of climatic variability, ranging

from severe winters to spells of warm and sunny weather in the summer, but where

storms were prevalent (Mayes and Wheeler, 1997). These factors suggest that real

evidence for a distinct climatic period is sparse and that the climate of the past 500 years

or so was more complex than the term 'Little Ice Age' implies.

The wetter and/or cooler climate of the LIA found in the peat humification record by

Blackford and Chambers (1991, 1995), are reflected in high water table levels in the

reconstructions and are marked as Point I in Figures 9.3, 9.7 and 9.10. The wetter

and/or cooler period between 1660-1720, identified by Blackford and Chambers (1995),

may correspond by the low water table point at L The water table level remains above

5cm depth throughout this period and continues until the early twentieth century.

Barber (1982) in study of Bolton Fell Moss from peat stratigraphy, found catastrophic

decline into the LIA, with virtual extinction of Sphagnum imbricatum. At Bolton Fell

Moss, the LIA is reflected in a peak of Sphagna that inhabit wetter niches (Barber et aL,

1994c).

Bradley and Jones (993) present records of summer temperature for the LIA from a

composite instrumental record. The summer temperatures for central England based on

instrumental records (Manley, 1959, 1974) and the composite temperature series for

Europe are presented in Figure 9.13. The 19th century was the coolest of past 200-300

years, with the 18 th century warmer than 19 th century. From composite European record,

temperatures were below average from the 1570s to 1690s, were warmer in 18th century

338



but fell again in 19th century. It is difficult to separate the cool or warm episodes of the

LIA identified by Bradley and Jones (1995) or Mayes and Wheeler (1997) with this

resolution (5cm sampling intervals) of testate amoebae record, as the fluctuations

experienced during the LIA were short-lived perturbations in effective precipitation.

However, a hydrological reconstruction based on contiguous lcm, or higher resolution

testate amoebae samples might give a decadal or bi-decadal record of sufficient

resolution to determine whether these events can be separated from the overall signal of

increased surface wetness derived from independent records of climate change. The wet

shift at point I and the dry shift at point J can be seen on the composite European record.

Comparison of Figure 9.14 with the water table records (Figure 9.11) shows however, a

rise in summer temperature in both the central England record and the composite record

for Europe in the early 1900s. This is supported by Briffa et al. (1994) who developed

the Monthly Palmer Drought Severity Indices (PDSI) 1892-1991 for Europe and south

east Asia. Prior to this, there was a lack of long-term analysis of moisture availability

across Europe. The PDSI is based on a simple water balance and considers both

moisture supply and demand and is derived using precipitation, evapotranspiration and

soil water status. The PDSI show that the 1930s and 1940s were exceptionally dry and

that 1943-1952 was the driest decade for which they have data. These data support the

theory that the fall in water table at point I (Q for meso-scale comparison of BBF cores)

was climatically forced, but it may also have been exacerbated by afforestation in the

Kielder Forest area.

9.8	 Testate amoebae and palaeohydrological reconstructions on peatlands

In the Light of the main findings of this study, discussion of testate amoebae as

palaeohydrological indicators can be divided into two main themes - problems and

potential. One of the major problems encountered during this study was the lack of

adequate modern analogues for xerophilous taxa - those at the drier end of the scale of

wetness. The reasons for this were discussed in detail in Section 8.2, but it means that

water table reconstructions below ca. 500AD, which are dominated by poor or no

analogue fauna, do not have as robust reconstructions as the water tables above 500AD.
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The sampling intervals adopted in this study were every 5cm in the top metre and

around the sampling points for radiocarbon dates and every 10cm below one metre peat

depth. This results in at least 100 years between samples at >1 m depth.

This sampling interval was adequate in order to fulfil the aims of this study, but

provides only general indications of the trends in water table shifts. More closely

spaced, ideally contiguous, sampling would reduce the time period between samples and

should more accurately locate the exact beginning and end of shifts and ensure that the

entire magnitude of shift is reconstructed. This is especially important for comparing

the water table models of the past 1500 years to documentary evidence and independent

instrumental records so that fluctuations occurring over a small time-scale are picked up.

Higher resolution (i.e. <lcm samples) would increase the precision of the water table

curves, but this may not always be possible. The quality of the data obtained must be

balanced against the time taken to count the samples.

The water table reconstructions are plotted as fractions of centimetres. There is a need

for a method of discussing minor shifts without being spuriously precise, as the actual

water table level may fall within the range indicated by the bootstrapped error estimates.

The taxonomic problems encountered in this study, resulting from inconsistencies in

species description and lack of clarity in the literature have been addressed by the

development of a dichotomous key to identification and comprehensive descriptions of

taxa found in British oligotrophic peatlands by Charman, Hendon and Woodland (in

prep.).

The potential for testate amoebae analysis and palaeohydrological reconstructions will

improve once the problems discussed above have been addressed. Testate amoebae

analysis has the advantage over other techniques for palaeohydrological reconstructions

of mire surface wetness, such as humification analysis and Sphagnum macrofossil

analysis, in that it is fully quantifiable (currently within the limits of the transfer

function). The use of bootstrapped error estimates for 95% confidence intervals means

that multiple cores can be compared within the potential range of water table calculated

from the optima and tolerances of the taxa contained within each assemblage. The

accuracy of these reconstructions may only be fully realised once detailed water table
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records for the past 1500 years have been compared to documentary evidence and

independent climatic records.

9.9	 Implications for palaeoclimatic studies on peatlands

Assessment of the utility of testate amoebae analysis as a proxy climatic indicator was

central to the aims of this study. Testate amoebae analysis from a single core can only

be regarded as a palaeohydrological signal, i.e. a record of past depth to water table from

the particular location that the core was extracted. For a palaeoclimatic signal to be

derived from testate amoebae analysis there is a need for multiple cores, from multiple

sites (Section 9.5) and, for the identification of shifts which are allogenically forced

rather than a result of internal mire processes. This premise applies equally to other

proxy climatic indicators.

Future palaeoclimatic reconstructions will therefore require a different approach from

that adopted previously and the research described here calls into question the validity of

some previous work. Climatic inferences based upon the data from a single core from a

single site must be questioned, since there is nothing to compare the record against in

order to distinguish fluctuations resulting from autogenic factors from allogenic factors.

Barber (1994) and Barber et al. (1994b) regard the layered stratigraphy of moderate

relief of many Atlantic bogs or 'flat' stratigraphy, to be more useful and sensitive for

climatic reconstruction than a stratigraphy dominated by climatically insensitive

hummocks. All of the cores used in this study were extracted from flat locations with

no obvious microtopographic features. Cores CRM I and BBF II illustrate well that

locations that have had stable or insensitive hydrological records in the past may have

much more sensitive records in recent peats. This suggests that it is impossible to tell

from the surface what the nature of the record will be at depth. The selection of

'sensitive' sites on the basis of microtopography is likely to be unreliable. Hummocks

are shifting features, so it is possible that the mid point between hummock and hollow

may provide the best record of climate, as shifts in the expansion and contraction of the

hummocks are likely to register there.

9.10 Conclusions
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• Water tables derived from testate amoebae analysis are quantitative records of mire

palaeohydrology. The 95% confidence intervals on both the chronology and mean water

table enable comparisons between the cores to be made within the potential water table

and age ranges.

• The comparisons at the micro-scale between CRM I and CRM IV and the

interpretation of those records suggest that microtopography is a major influence on the

hydrological records at this scale. A marginal position between hummock and hollow

may register small-scale fluctuations in mire surface wetness in more detail than an

insensitive hummock location. It is not possible to determine from contemporary mire

surfaces whether the peat record beneath is a sensitive record or not. This emphasises

the need for multiple cores from one mire to take into account the potential for

recovering a record from an insensitive location.

• There is a good degree of replicability at the meso-scale from both Coom Rigg Moss

and Butterburn Flow. However, the marginal locations generally have lower water

tables than in the centre of the mire.

• The water table records show a remarkable degree of replicability both within

individual sites and across the region. Major fluctuations are found in all four central

cores indicating that some shifts may be climatically forced in origin. In order to

determine whether the palaeohydrological records can be interpreted as palaeoclimatic

records, at least three cores are required from at least two sites. This is to ensure that

shifts resulting from autogenic influences can be separated from the replicable climatic

signals. The Wou, the valley mire, has a surprisingly sensitive palaeohydrOlogical

record and the fluctuations, although minor, are replicated at the other sites.

• There is a good match between shifts in the depth to water table found in this study

compared with the changes in mire surface wetness indicated by the Sphagnum

macrofossil record from Bolton Fell Moss (Barber et aL, 1994a) and the humification

data from Talla Moss (Chambers et aL, 1997). This suggests that climatic inferences

can be made from these data when multiple records are compared.

• From ca. 500AD, the water table records are more robust than prior to 500AD, as

there is a better match between the faunal assemblages in the transfer function and the
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fossil data. This is comparable to the period for which there is independent

documentary and instrumental data. Three main climatic events can be seen in the water

table data; the Dark Ages climatic deterioration, the Medieval Warm Period and the

Little Ice Age. In addition to this, comparisons with published data from other proxy-

hydrological studies suggest that shifts similar to those found in this study can also be

found in these data.
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CHAPTER TEN

Conclusions and future work

10.0 Introduction

This chapter aims to synthesise the data presented in this thesis and is divided into two

sections. The first section summarises the main conclusions of this research in the

context of the original aims. These conclusions are divided into methodological issues

and peatland hydrology and climate reconstructions. The second section discusses the

potential for future work that has arisen out of this study.

10.1 Original aims

The overall aim of this research was to establish the usefulness of testate amoebae

analysis as a palaeohydrological and palaeoclimatic technique by:

1) assessing the replicability of the testate amoebae record within and between mires;

2) testing the robustness and precision of percentage moisture and depth to water table

reconstructions produced from testate amoebae analysis of Holocene ombrotrophic

peatlands;

3) separating autogenically and allogenically forced hydrological signals, in order to

assess the influence of climatic change on peatlands.

10.2 Methodological issues

• In order to establish whether testate amoebae analysis could be a useful

palaeoclimatic indicator, the best possible preparation technique had to be utilised so

that the fossil data set was not impaired by the quality of the microscope slides. The

addition of a 151.tm mesh to back-sieve samples to the standard procedure removed

fine fraction detritus (Hendon and Charman, 1997). It is possible that reduction of

sieve size to 200p.m mesh, rather than the 300mm sieve that was used in this study

would improve slide quality further. Mesh size should be constantly reviewed

depending upon the environment and the type of material that testate samples are

collected from. The routine use of a small mesh sieve could result in the loss of

larger tests which would cause bias in the data set.
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• The percentage moisture transfer function was of limited use, since wider confidence

intervals were calculated than for the water table reconstructions. This is attributed

to the calibration being based on single-shot data, rather than mean annual data

(Woodland, 1996; Woodland et al., 1998). The depth to water table transfer function

was more robust than the moisture transfer function because it contains a larger

number of samples and taxa.

• The training set provided better analogue values for wet taxa than for drier taxa. This

was because the sites sampled to develop the transfer function were all wet areas of

undamaged extreme oceanic mire (Woodland, 1996; Woodland et al., 1998). The

potential full hydrological range of mires was not sampled and hence, seven taxa in

the fossil data set had no analogue values and two of the dominant taxa had poor

analogue values. It is likely that these taxa do have modern analogues, as specimens

were found in the surface samples of cores in this study, albeit in small amounts. The

lack of good modern analogues nevertheless affected the robustness of the water table

reconstructions, where no- and poor-analogue taxa dominated the faunal

assemblages.

• The current inadequate state of the taxonomy has developed from various workers

either over-splitting or grouping together taxa and this leads to confusion. A

dichotomous key developed by Charman, Hendon and Woodland (in prep.), has

addressed the main taxonomic problems encountered during this study and should

result in a clarified taxonomy that is consistent between workers. This key will

undoubtedly be subject to change if an increased diversity of taxa are found from a

wider range of mires. It is recommended that in future work, the original authorities

of taxa and any necessary notes on differentiating features are given to avoid any

ambiguity.

• The palaeohydrological record derived from testate amoebae analysis provides a

quantified value of the depth to water table and estimated error ages. The generation

of 95% confidence intervals from bootstrapping pr9vides a useful means of

comparing water tables within a possible range of water table depths. Wet and dry

shifts can be identified in the water table records and are defined as directional

changes of varying magnitudes. Dates are assigned at the point where the direction

of change begins. Because of the sample spacing adopted in this study, it is unlikely
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that the entire shifts i.e. extreme low point and extreme high point, have been picked

up.

10.3	 Peatland hydrology and climate reconstruction

• The micro-scale study showed that major patterns in the water table records from two

centrally located cores were broadly replicable. Variations in the water table records

were attributed mainly to microtopographic differences. One core appeared to have

been the location of a complacent hummock over much of the period of

accumulation. The other core appeared to have been located at the mid-point

between hummock and hollow and provided a more sensitive record of mire surface

wetness as this feature shifted.

• Within-mire studies at the meso-scale showed a good degree of similarity in the

water table records. The marginal cores tended to have lower water tables than the

central cores, but the patterns of change were similar across the mire surfaces. At

Butterburn Flow, the record was not as sensitive as it was at Coom Rigg Moss. This

was attributed largely to sample spacing, because where a shallow depth of peat had

accumulated over a long period, subtle changes were not picked up in this study.

From this scale of study, it was not possible to ascertain what caused wet or dry

shifts. Possible autogenic mechanisms can be postulated, such as impeded drainage

or blocked outflows for high water tables and pipeflow, runoff or outflow for low

water tables. It is not possible to infer a climatic signal from cores from a single site.

• The macro-scale study was used to assess whether a palaeoclimatic signal could be

derived from testate amoebae analysis. Central cores from three sites were analysed,

as these normally have the longest record of peat accumulation in a mire and should

be more sensitive to climatic inputs than marginally located cores. This assumes a

direct coupling of precipitation to ombrotrophic mires. In order to determine that wet

or dry shifts in the water table records are climatically influenced, at least three cores

from at least two sites within the same geographical region are required. This is so

that the allogenic hydrological signal can be separated from autogenic hydrological

signals that are a result of internal bog dynamics. Climatic shifts should be of the

same direction, of similar magnitude and synchronous in timing and rate of change.
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In total, nine shifts fulfil the criteria of climatically induced events. These are shifts B to

J (Table 9.4). Shifts in the water table records are comparable with events at the Dark

Ages climatic deterioration, the Medieval Warm Period and the Little Ice Age.

10.4 Future Work

Several potential areas for future research have arisen from this study:

• The current transfer function requires modification by the inclusion of drier sites with

long term hydrological monitoring programs. This should improve the training set

for so called xerophilous taxa and will provide analogues for some, or all of the taxa

that currently have no analogue values.

• Documentary evidence and independent records of climate change should be used to

calibrate and validate water table reconstructions from testate amoebae analysis. This

would help to clarify the link between mire surface wetness and climate. A multiple

short-core study should be undertaken, as a climatic signal should be inferred

following the guidelines set out above. The top ca. 1.5m covers approximately the

past 1500 years, from the Dark Ages climatic deterioration to the present. This

period also corresponds to the portion of water table reconstructions that have a more

robust and reliable water table model, due to better analogues than for taxa found at

depth in the cores. As instrumental records rarely span more than the last 150 years,

a study of high resolution, contiguous samples of approximately the top 25-30cm

peat would be required for a detailed enough record against which to compare the

testate amoebae data to the instrumental record. A record of this nature would

require 2I0Pb dating, as recent peats are outside the range of radiocarbon dating.

There is also the possibility of using tephra layers as marker horizons.

• The adoption of a multi-proxy approach using microfossils should be evaluated for

palaeohydrological reconstructions. Many testate amoebae samples contain diatoms,

desmids or rotifers. Samples rarely contain more than one type of additional

tnicrofossil and where test concentrations are poor, the other microfossils may

provide useful hydrological information. Diatoms should be analysed that have been

used as xenosomes in tests and that are valves in samples. Finding an analogue for

the rotifer Habrotrocha angusticollis is important, since it is abundant in some
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samples, although it may be found that it is not abundant in enough samples to obtain

an accurate analogue. Work needs to be undertaken to establish whether it responds

primarily to hydrology or some other factor. Little palaeoecological work has been

undertaken on desmids from peatlands, but they may prove to be useful where testate

amoebae concentrations are poor.

• A multi-proxy approach using testate amoebae analysis in conjunction with othes

palaeohydrological techniques will probably produce more accurate records. At

present, Sphagnum macrofossil and humification analyses provide semi-quantitative

results and, it may be possible to establish more reliable estimates of mire surface

wetness than is currently derived from these techniques if they are combined with

testate amoebae analysis. From a study such as this, it would also be possible to

establish whether there is a relationship between Sphagnum species and testate

amoebae. A multi-proxy record of this nature would evaluate the lag in response to

climate change of different proxies. Testate amoebae probably respond more rapidly

to climate change than plants, due to rapid generation times and turnover in

populations. Climatic change is normally gradual and testate assemblages should

eventually produce a more sensitive record of climatic change. than mosses, since the

faunal assemblages normally contain a greater number of species than are found in

Sphagnum macrofossil assemblages.
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Glossary

Technical terms are defined here in the context of this study. Clarification and
definition of terminology is essential where the meaning may not always be clear.

General Terms

Bootstrapping cross-validation used to derive Root Mean Square Estimate of
Precision (RMSEP) for individual fossil samples. Generating
95% confidence intervals

Calibration	 The opposite of regression. Modelled responses are used to infer

the past environmental variables from the composition of fossil
assemblages

Climate	 the characteristic pattern of weather elements in an area over a

long period (i.e. >30 years)

Climatic forcing	 changes in the global climate that have an effect on the allogenic

inputs to a mire system, e.g., volcanic activity and solar
irradiance

Complacent	 tranquil, flat, with little variation

Holocene	 Post-Glacial, the past 10Ka BP, a warm period

Indicator value	 the value of the environmental variable most preferred by a

species

Precision	 the degree of refinement of measurement (accuracy)

Regression	 The opposite of calibration. The modelling of the responses of

modern taxa to the environment, and involves the development of
a training set

Reliable	 sound and consistent, in which reliance or 'confidence' may be

put; yielding concordant results when repeated

Replicable	 repeatable, the state/condition/property of being experimentally

replicable

Robustness	 strong, valid

Shifts	 wet and dry shifts are directional changes of varying magnitudes

and are assigned the data at the point of change begins

Taxonomy	 the delimitation, nomenclature (naming) and classification of
groups, e.g. organisms, according to their morphology
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Allochthonous

Allogenic

Autochthonous
Autogenic

Blanket Bog

Bog

Catotelm

Cupola
Diplotelmic
Endogenous
Exogenous
Eutrophic
Fen

Intermediate
ombrotrophic mire
Lagg

Macrotope

Mesotope

Meteoric water
Microtope

Microform
Minerotrophic

Mire

Moisture
Oligotrophic
Ombrotrophic

Ontogeny
Paludification

Peatlands

Acrotelm

Polster
Primary peat

surface layer of bogs (typically the top 10-15cm) with actively

growing Sphagna, water permeable, with high hydraulic
conductivity. The peat-forming layer.

[peat] of sedimentary origin i.e., not formed in situ

hydrological forcing or development produced by factors or
influences external to the mire itself, e.g. climate - exogenous
[peat] formed in situ
hydrological forces resulting from internal processes in the bog,
e.g., the accumulation of peat modifying the hydrological regime;
internal drainage - endogenous
an extensive mire type over undulating terrain, not confined to
depressions and usually formed in response to a humid climate
formed of plant communities growing upon constantly wet acid
peat.
sub-surface layer of peat bog, constantly saturated and anaerobic
(below 15cm depth)
domed central area of a raised bog
composed of two layers, the acrotelm and catotelm
from within the system - autogenic
from outside the system - allogenic
mineral-rich nutrient status
minerotrophic mire usually having a wider range of vascular
plants than bogs, water is derived from outside their own
immediate limits
mires which fall between raised and blanket, a largely
unrecognised state
the wet marginal zone of a raised bog, where water flowing from
the mire mixes with runoff from the adjacent mineral soil
combined mire units e.g a blanket mire and a raised mire joined
together
a mire unit - a body of peat which has developed as a simple
hydrological entity
derived from atmosphere (see telluric water supply)
an arrangement or combination of several surface features, e.g.
hummocks and pools
an individual surface feature e.g. a single hummock
peat body whose water is derived from lakes or soil by
throughflow, e.g., valley mires
a generic term which includes ombrotrophic peatland types
(namely bogs) and xninerotrophic types such as fens.
percent water content , wet weight of peat
mineral - poor mire, poor in basic salts
mire fed exclusively from rainwatert producing oligotrophic
conditions, e.g., raised or blanket bog
developmental history of a bog
forming a mire system over what was previously grassland, forest
or bare rock, mire formation where ground that was once dry
becomes wet
surface sample of moss
formed in basins or depressions (Moore & Bellamy, 1974)
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Pluvials
Raised bog

eccentric -

concentric -

Rand
Reccurrence

Regeneration
complex
Secondary peat

Soligenous
mires
Telluric water

Terrestrialisation

Tertiary peat

Surfaces

Topogeneous
mires
Valley mires
Water table

phases of higher rainfall
convex cupola of ombrotrophic peat raised a few metres above
the level of the surrounding land, (German: Hochmoor);
primary peats developed with horizontal surface conforming with
the water levels in the basin, hummocks and hollows aligned
parallel to the contours of the bog surface
convex masses of peat in both open and closed basins, with
concentric surface patterns of hummocks and hollows
the margin or border of a raised bog
(Granlund, 1932) 'recurrence' from repetition in sequence of

similar climatic

events believed to be contemporary, causing striking change in

the conditions of peat formation across a number of bogs
(Rekurrensytor)

an area on a bog with supposedly cyclic process of bog growth
e.g., hummock - hollow - hummock .
developed beyond the physical confines of the basin or
depression (Moore & Bellamy, 1974)
formed where drainage water becomes localised along
tracks (e.g., flush mires)
derived from surrounding rocks and soils (see meteoric water
supply)
formation of a mire system by the infilling of a water body with
organic matter
peat that develops above the limits of the ground water table, the
peat holds a volume of water by capillarity above the level of the
main ground water
where local relief results in a permanently high water table in
depressions, e.g., valley mires
develop in small, shallow valleys or channels of minerogenic peat
top of saturated zone in a soil or peat, an equilibrium surface at
which fluid pressure in the voids is equal to atmospheric pressure

Testate amoebae

Autecology

Agglutinated

Biocoenosis
Cytoplasm
Encysted
Eurytypic
Extant
Filose
Hyaline
Hydrophiles
Hydric
Hygrophiles

study of ecology at the level of the species, environmental factors
to which taxa are sensitive enabling description of ecological
niche of organism
a test united as with glue (see xenosomic), material secreted by
the organism
life assemblage, association of organisms forming a community
part of the protoplasm which stores food materials
forming a cyst as protection against inhospitable conditions
species which can tolerate a wide range of conditions
still existing
pseudopodia thin, pointed and often branching
transparent test
testate amoebae inhabiting plants submerged in water
containing or using water
testate amoebae living in moist habitats, subject to desiccation
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less frequently than xerophiles
Idiosomic	 test formed of plates secreted by the cytoplasm
Lanceolate	 test tapering to a point in the aboral region (e.g. Difflugia

lanceolata)
Lobose	 pseudopodia finger-like with rounded distal ends
Meiosis	 reduction division
Morphospecies	 organisms which have a similar shape, but which can not be

considered to be species in the true sense because of uniparental
reproduction

Necrocoenoses	 death assemblage
Protoplasm	 living contents of a cell, consists of nucleus and plasma (cell)

membrane
Pseudochitin	 a proteinaceous or mucopolysaccharide material manufactured

within the cytoplasm
Pseudopodia	 flowing cytoplasm used for locomotion and feeding
Pseudostome	 mouth-like opening or aperture
Pyriform	 pear-shaped test
Spinose	 test with spines (e.g. Centropyxis aculeata)
Stenotypic	 species that show a clearly marked preference for a particular

environment
Subfossil	 where little or no chemical change has occurred subsequent to

death
Test	 shell or lorica enclosing the protoplasm of a testate amoebae
Tyrofoxene young, beginner, testate amoebae (e.g. Hyalosphenia subflava)

thought to colonise drained, disturbed or forested areas, but not
indigenous to living mires

Xenosomic	 tests constructed from material taken from the substrate e.g.,
mineral particles, diatom frustules or fungal hyphae (see
agglutinated)

Xerophiles	 testate amoebae living in relatively dry habitats, they must be
capable of withstanding desiccation
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