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Learning and Co-operation in Mobile Multi-Robot Systems 

Alexis John Kirke 

Abstract 

This thesis addresses the problem of setting the balance between exploration and 

exploitation in teams of learning robots who exchange information. Specifically it looks at 

groups of robots whose tasks include moving between salient points in the environment. 

To deal with unknown and dynamic environments, such robots need to be able to discover 

and learn the routes between these points themselves. A natural extension of this scenario 

is to allow the robots to exchange learned routes so that only one robot needs to learn a 

route for the whole tearn to use that route. One contribution of this thesis is to identify a 

dilemma created by this extension: that once one robot has learned a route between two 

points, all other robots will follow that route without looking for shorter versions. This 

trade-off will be labeled the Distributed Exploration vs. Exploitation Dilemma, since 

increasing distributed exploitation (allowing robots to exchange more routes) means 

decreasing distributed exploration (reducing robots ability to learn new versions of routes), 

and vice-versa. At different times, teams may be required with different balances of 

exploitation and exploration. The main contribution of this thesis is to present a system for 

setting the balance between exploration and exploitation in a group of robots. This system 

is demonstrated through experiments involving simulated robot teams. The experiments 

show that increasing and decreasing the value of a parameter of the novel system will lead 

to a significant increase and decrease respectively in average exploitation (and an 

equivalent decrease and increase in average exploration) over a series of team missions. A 

further set of experiments show that this holds true for a range of team sizes and numbers 

of goals. 
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Chapter I 

Introduction 

1.0 Multi-Robot Systems 

The field of robotics has evolved successively over the last half-century. Initially 

robots have been controlled by humans. Later robots which can control themselves have 

been introduced; and in recent years the idea of the robot controlling/interacting with other 

robots, or a Multi-Robot System (MRS), has begun to receive a great deal of attention. 

Self-controlled robots introduce the obvious benefits of autonomy, and Multi-robot 

systems also introduce a number of benefits. Some of these are given in [Arkin and Balch 

1997]: 

4P Distributed Action: Many robots can be in many places at the same time 

* Inherent Parallelism: Many robots can do many, perhaps different, things at the same 

time 

9 Divide and Conquer: Certain problems are well suited for decomposition and allocation 

among many robots 

* Simpler is better: Often each agent in a team of robots can be simpler than a more 

comprehensive single robot solution 
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Another three reasons to study multi-robot systems can be added, from [Parker 1996], 

[Beckers et al 1995] and [Dautenhahn 1995]: 

* Increased Robustness: Multiple robots increase reliability, since if one robot breaks 

down the other robots may still be able to finish the task 

* Emergence of ordered behaviour: The social insect model is an existence proof that 

many simple agents can exhibit complex group behaviour, i. e. perform a complex task 

together 

1, Social robotics: The population of autonomous mobile robots will grow rapidly in the 

near future, thus implying a necessity for studies of interaction and co-ordination 

strategies amongst them 

A number of potential applications have been suggested which can utilise the 

advantages of multi-robot systems. These applications include mine sweeping, multi- 

satellite defence systems, maintenance work and decommissioning in nuclear power plants, 

planetary exploration, lunar base construction, janitorial work, transportation of heavy or 

difficult loads, robot "platoons" (both on land and underwater), clean-up of toxic waste, 

search and rescue missions, and security, surveillance, and reconnaissance tasks. 

One further reason to study multi-robot systems is to facilitate the search for the 

emergence of human-like intelligence in individual robots. "Social" Intelligence is the 

intelligence required for an animal to deal efficiently with other members of its species. 

The Social Intelligence Hypothesis [Dautenhalm 1997] is a hypothesis from primate 

psychology that states that primate intelligence "originally evolved to solve social 

problems and was only later extended to problems outside the social domain. " This implies 
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that social intelligence may be a pre-requisite for human-like intelligence. Thus, if we hope 

to ever be able to produce truly autonomous robots with human-like intelligence, the 

studies of multiple robot interaction should run in parallel with single-robot research. 

1.1 Mobile Multi-Robot systems 

It will be noticed that the majority of applications listed in the last section required 

the use of mobile robots. As a result the vast majority of studies in multi-robot systems 

have concentrated on mobile robots. This thesis will also concentrate on mobile multi- 

robot systems. It will now be seen that there are two fundamental tasks a mobile robot can 

perform. 

1.1.1 Fundamental Abilities For Mobile Robots 

There are two fundamental types of abilities for mobile robots [Yoshimura, et al. 

1996]. The first is point-to-point motion - moving from position A in the space to position 

B. This would be needed in a transportation goal ("go to A and get a load to take to B"), or 

for a remote stationary goal ("go to B and press the red button). The second fundamental 

task is sweeping - moving so as to cover as much of the space as possible. This would be 

needed in mine sweeping, mapping unknown environments, or waste clearing. 

There have been approximately equal amounts of work done on multi-robot 

sweeping, e. g. [Goldberg and Mataric 1997] [Ichikawa and Hara 1996] [Yamaguchi and 

Beni 1996] [Fontan and Mataric 1996][Beckers et al 1995][Werger and Mataric 

1996][Unsal and Bay 1994] [Arkin 1992][Sugihara and Suzuki 1990], and on multi-robot 

point-to-point motion, e. g. [Alarni et al 1997][Premvuti and Yuta 1996][Li 1994][Wang 

and Premvuti 1994][Noborio 1994][Caloud et al 1990][Buckley 1989][Hennan and Albus 

1988][Erdmann and Lorano-Perez 1987]. This thesis will continue the trend of past work in 
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separating the two types of task and choosing to concentrate on one of them. Specifically it 

will look at the point-to-point task. (Though it will be seen later that sweeping tasks are 

needed when learning point-to-point tasks. ) It will now be seen that there are 5 basic types 

of point-to-point tasks. 

1.1.2 The Five Types of Interaction in Point-to-Point Tasks 

Looking at the past work above it is possible to divide the potential interactions of 

robots in point-to-point tasks into five varieties: 

1. TaskAssignment: Distributing point-to-point goals around the team so they are achieved 

efficiently e. g. [Brummit and Stentz 1996][Ohko et al 1993][Li 1994][Asama et al 

1992][Caloud et al 1990][Herman and Albus 1988][Elgimez and Kim 1990] 

2. Environment Resource Sharing: Sharing the space resource so as to avoid collisions or 

"traffic jams" while multiple robots perform separate point-to-point tasks, e. g. [Alami et 

al 1997][Premvuti and Yuta 1996][Aguilar et al 1995][Wang and Premvuti 1994b][Li 

1994][Ota et al 1994][Noborio 1994][Wang 1993][Caloud et al 1990][Buckley 

1989][Erdmann and Lozano-Perez 1987] 

3. Environment Information Sharing: Sharing by communication the map information that 

robots have about how to move between points e. g. [L6pez de Wntaras et al 

1997][Asaina et al 1992][Herman and Albus 1988] 
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4. Direct Imitation: Imitating each others' routes through physical following e. g. [Billiard 

and Dautenhahn 1997][Demiris and Hayes 1996][Bakker and Kuniyoshi 

1996][Dautenhahn 1995][Hayes and Demiris 1994] 

5. Robot Cues: Robots becoming stationary "beacons" which other robots can move 

towards, e. g. [Bison and Trainito 1996][Vainio et al 19961 

It can be seen that more work has been done on the first and second types of interaction 

than on the other three. The last three types are actually conceptually related. Environment 

Information-Sharing is a form of "remote" imitation, just as imitation is a form of 

physically-grounded information-sharing. Also a robot becoming a beacon causes other 

robots to "imitate" it in the sense that robots move towards it, i. e. move to the same point 

as the beacon robot has moved. The beacon robot is also providing information by 

communicating that "this is the place to be". 

1.1.3 Distributed Environment Information Sharing 

This thesis will be concerned with the third type of point-to-point task: enviromnent 

information sharing by communication. In particular it will look at distributed systems for 

map sharing. The only past work involving distributed systems for map sharing that I am 

aware of, [Asama et al 1992], does not detail or analyse the system involved. [Lopez de 

Mantaras et al. 1997][Herman and Albus 1988] give more detail about their sharing 

systems, but they are not distributed systems since they are based around a central agent. 

This concentration on distributed systems will be because they are more robust than 

centralised systems. 
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This disadvantage of centralised systems has been widely discussed and these 

discussions will be reviewed in the next chapter. However, the disadvantages of distributed 

map-sharing in map-learning MRS have not been highlighted or examined. 

1.2 Potential Problems of Map Sharing in Learning MRS 

As far as I am aware, no work has been done at all on the potential disadvantages of 

introducing map information sharing to distributed map-learning systems. [L6pez de 

MAntaras et al 1997][Herman and Albus 1988] involve systems for map-sharing in a 

learning MRS, but do not address any of the potential problems of map-sharing in the 

learning context. 

The primary original contribution of this thesis will involve highlighting a potential 

problem of map-sharing in learning MRS. Such a problem needs to be addressed because 

of the desirability of continuing to use learning and map-sharing MRS. So before 

describing the potential problem, the advantages of learning/map-sharing MRS over non- 

leaming MRS will be discussed. 

1.2.1 The Advantages of Learning in Mobile MRS 

An important use of mobile robot systems is their deployment in environments too 

hazardous or inaccessible to humans[Barnes et al 1997][Parker 1994], for example 

planetary exploration, nuclear plant decommissioning, disaster recovery, etc. If the robots 

are navigating autonomously, and the environment is too hazardous to have been mapped 

accurately by humans (or has become too hazardous to re-map since the last mapping by 

humans - leading to an uncertainty as to its current state) then the robots will need to 

develop their initial model through learning. In this case, a learning multi-robot system 

with enviromnent infonnation sharing has a clear speed advantage over a single learning 
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robot. It will take much longer for a single robot to learn a complete model of the 

enviromnent than for a number of robots to Icam a distributed model which they can share 

to achieve goals (since multi-robot systems are more efficient at sweeping tasks than a 

single robot). 

1.2.2 Learning in Dynamic Environments 

Another reason for the importance of learning is that the world is constantly 

changing; therefore for many tasks a mobile multi-robot system will not be able to cope 

unless it can deal with a dynamic environment. The robots' model of the environment must 

be constantly updateable through leaming. This idea suggests that robots need to be able to 

adapt to the environment at the same time as achieving goals. So learning and goal 

achievement need to occur simultaneously. This is known as On-line Learning. The name 

derives from the idea of not having to take an agent "off-line" from its task achievement 

when it needs to learn new information. Recognition of these advantages has led to most 

learning MRS involving on-line learning - e. g. [Sen 1996][Ota et al 1994][Parker 

1996] [Ueyama et al 1994] [Mataric 1994]. 

1.2.3 The Exploration vs. Exploitation Dilemma 

An important area of study in on-line learning algorithms is the Exploration vs. 

Exploitation Dilemma[Kaebling and Moore 1996][Thrun 1992]. This dilemma will be 

described in some detail, as it is directly related to the potential problems of learning in 

map-sharing MRS. 

The Exploration vs. Exploitation Dilemma concerns the trade-off between learning 

how best to achieve goals and achieving goals. Suppose an on-line learning mobile robot is 

introduced to a new enviromnent with a goal to get to a salient point, say A. Moving 

18 



randomly it finds and learns a route R from its introduction point, H, to A.. Suppose that at 

a later time it is at H and is given the goal A again, should it immediately follow the known 

route R to its goal? Or should it experiment with a different route in case it finds a shorter 

one? If there is a much shorter route and the robot sticks with R, then it is doing the task 

less efficiently than it could. But if it tries to find a shorter route r and fails, then it will 

have increased the time it takes to get to A, thus reducing efficiency. This trade-off is 

unavoidable, hence the label "dilemma". This dilemma implies that the relative importance 

of exploration and exploitation of knowledge for a particular set of tasks must be decided. 

1.3 The Distributed Exploration vs. Exploitation Dilemma 

Having addressed above the advantages of learning, particularly on-line leaming, in 

multi-robot systems, the potential problem mentioned in Section 1.2 will now be 

introduced. This problem is a multi-robot version of the Exploration vs. Exploitation 

Dilemma discussed in Section 1.2.2 above. This problem will be introduced through an 

example: 

Robots 1,2 and 3 are put in an unknown environment with goals to get to salient 

points A, B, C and D. Yhey start at a home position H (say a re-charger). "en they are 

given the goals they will try to find them - but since they have no knowledge of the space 

they will initially have to move randomly, keeping a lookoutfor goals, and learning as they 

go. Suppose Robot I finds A and then finds B, then it will have a map with routes H->A 

andA->B. Similarly, suppose Robot 2finds the routes B->C and C->D. Since I and 2 can 

share their maps with each other and with 3, all the robots can now achieve their goals 

without learning any more routes and return home until they are given more goals. Yhis 

will include Robot 3, which can achieve its goals without contributing any information to 
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the distributed map. In particular, because these routes are now available through 

communication, no robot will bother trying to learn them by experience, thus reducing the 

chance ofanother robotfinding a shorter more ejficient version. 

The only way to make robot 3 try to learn alternative shorter versions of a route is to 

withhold transmitting older versions of the route to it; but this will slow down goal 

achievement - thus leading to a dilemma. So the exploration vs. exploitation dilemma in 

multi-robot systems has two aspects: 

* The standard exploration vs. exploitation: how do individual robots balance their 

exploration of the enviromnent with their exploitation of their knowledge? 

9 The distributed exploration vs. exploitation problem: How do robots balance the quick 

achievement of goals through map-sharing with the learning of shorter routes by 

distributed learning? 

In the same way that the owner of a robot must decide on how to set its balance in the 

exploration vs. exploitation dilemma, so the owner of a robot team must decide how to set 

the balance in the distributed exploration vs. exploitation dilemma. 

1.4 The Original Contribution of this Thesis 

As a result of the introduction of on-line learning into mobile map-sharing multi- 

robot systems there is a new issue to deal with - the distributed exploration vs. exploitation 

dilenima. The identification of this issue is in itself an original contribution. However, the 
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main original contribution of this thesis is to address this problem, proposing and testing a 

method for the team owner to set the balance between exploration and exploitation. 

As far as I am aware this problem has not been addressed in past MRS work., The 

closest problem that has been studied previously is the Coverage/Interference trade-off in 

foraging tasks. By increasing the number of robots the coverage of the environment is 

increased, thus decreasing the time taken to find items to be foraged. However, studies 

have shown that increasing the number of robots too far can lead to too much interference 

between the robots, thus slowing down the foraging process[Arkin 1992][Beckers et al. 

1995]. Another related piece of work is [Mataric 1994] which touches on the single robot 

exploration vs. exploitation dilemma in a multi-robot sweeping-based task. 

1.5 Thesis Overview 

In this chapter the evolution of robotics towards multi-robot systems and the 

reasons to study such systems have been discussed. The thesis has focused on mobile MRS 

and listcd 5 basic tasks for a mobilc MRS, picking out the point-to-point map sharing task 

as a preferred area of study. The advantages of learning in such point-to-point tasks have 

been discussed, as has the importance of on-line learning in real world dynamic 

environments. The key contribution of the thesis was then introduced: a system for setting 

the trade-off between learning and task-achievement in learning MRS. 

This contribution is significant because learning, and particularly on-line learning, 

provides great advantages for MRS, and therefore the setting of the trade-offs in such 

learning is important. It was shown to be original because such trade-offs have never been 

discussed in the context of multi-robot systems - only the Coverage/Interference trade-off 

and single-robot exploration vs. exploitation problem has been addressed. 
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The next chapter (chapter 2-A Review of Multi-Robot Systems) will look at the 

ma or properties of mobile multi-robot systems and classify systems into sub-areas. It will i 

go on to look at some examples of mobile MRS, and related work in Multi-Agent Systems. 

Chapter 3 (Method) analyses the problem of the distributed exploration vs. 

exploitation dilemma and proposes a solution for setting the balance between distributed 

exploration and exploitation. It then introduces a simple robot model which this solution 

will be implemented on to be tested. 

Chapter 4 (Results and Discussions) details the experiments used to test the 

proposed solution, presents the results, and discusses the degree of success the solution 

shows. 

Chapter 5 (Conclusions and Future Work) reviews the thesis, and discusses 

possibilities for future work. 
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Chapter 2 

A Review of Mobile Multi-robot Systems 

This chapter consists of a review of mobile multi-robot systems and a brief review 

of related learning multi-agent systems (MAS). The review of MRS will first present an 

outline of Multi-Robot Systems, from simple "collective" systems to full communicating 

environment-learning peer-evaluating systems. It will then look at examples of these 

systems and how they relate to the system studied in this thesis. The review of Multi-Agent 

Systems will concentrate on two systems involving peer-evaluation. 

Multi-Robot Systems can be divided up into 2 main areas: Collective Robot 

Systems, and Model-based Systems. First Collective Systems will be examined. 

2.1 Collective Robot Systems 

The inspiration for "Collective" robot systems comes from two areas: behaviour- 

based robotics and differentiative societies. The first of these areas deals with the design of 

simple but effective robots, and the second with the fact that many simple agents can 

perform a complex group task. 

2.1.1 Behaviour-based Robotics 

In the Behaviour-based paradigm[Brooks 1990] a robot has a group of simple 

reactive behaviours. Each behaviour is triggered by a simple sense stimulus, and there is a 

hierarchy of behaviours - certain behaviours over-ride others (for this reason the 

architecture is called the Subsumption Architecture). One example is Brooks' robots "Tom 

and Jerry" which have three behaviours: Wandering, Following and Obstacle avoidance. 
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When no other behaviour is active, the robots wander around randomly. If an obstacle is 

encountered, the obstacle avoidance behaviour over-rides the wandering, and the robot 

avoids the obstacle. Then the wandering behaviour takes over again. If a moving object is 

detected, the robot follows the object, with the obstacle avoiding behaviour taking over as 

necessary. Such behaviour-based systems have exhibited limited intelligence, even though 

they have no model of the environment. In fact, it was a reaction against the use of explicit 

enviromnent-models that caused the popularity of behaviour-based systems. 

2.1.2 The Social Insect Model 

The second inspiration for Collective robotics comes from the Differentiative 

Societies of nature[Parker 1994]. Ant, Termite and some Bee and Wasp societies are 

Differentiative[McFarland 1993]. In these societies an individual insect has the best chance 

of propagating its own genes by ensuring the survival of particular relatives (e. g. a queen). 

Thus all insects work together for the good of the colony: "the individual exists for the 

good of society, and is totally dependent on that society for its existence. "[Parker 1994] 

This 'working together' is based on very simple, genetically hard-wired, local interactions. 

When many insects interact - even in this simple way - structured and "intelligent" 

behaviour can emerge. Examples are termite nest building, ant foraging and body 

collection[Beckers et al 1995], and bees searching out a food source[Kelly 19951. 

It will now be seen how the social-insect model and behaviour-based robotics are 

combined to inspire Collective Multi-Robot Systems, or Collective Robotics. 
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2.1.3 The Aim of Collective Robotics 

The aim of Collective robotics is to develop complex and useful behaviour in 

groups of behaviour-based and reactive robots, taking the stigmergy of differentiative 

insects as an existence proof that complex behaviour can emerge from such simple robot 

systems[Beckers et al 1995]. Such systems have the advantage that a number of behaviour- 

based robots can be built for the price of a single more complex intelligent robot[Brooks 

and Flynn 1989]. They are also directly testable using current robot hardware 

technology[Parker 1994]. 

2.1.4 Collective Robotics and Communication 

The simplest forms of Collective robot systems do not have communication 

between the robots. A more relevant (and general) concept in Collective robotics than 

communication is interaction. Robot A inter/acts with Robot B if Robot A's actions 

change (directly or indirectly) the results of Robot B's actions. Positive/helPful interaction 

is obviously fundamental to useful MRS - though many Collective robot systems are 

concerned with the minimising of negative interaction (also called "interference"), for 

example avoiding collisions and "bottle necks". 

Communication is a special case of interaction between a sender and a receiver, 

where the sender passes on information intentionally or by design. Without 

communication, robot B can interact with robot A in two ways: 

1. Directly: through Robot B's actions being affected by its awareness of robot A's actions 

(e. g. A's position or current action). [Parker 1994] 
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2. Indirectly: through Robot B being affected by the effect of robot A's actions on the 

environment [Beckers et al 1995] (this includes Robot B being directly physically acted 

upon by Robot A). 

The first of these is quite a complex problem, as without communication such deductions 

would require accurate sensory recognition systems. So the more common approach in 

non-communicating collective systems is approach 2. 

Non-communicating collective systems include [Goldberg and Mataric 

1997][Werger et al 1996][Yamaguchi et al 1996][Fontan et al 1996][Beckers and Mataric 

1995] [Arkin 1992][Sugihara and Suzuki 19901. Communicating collective systems include 

[Onsal and Bay 1994][Zhi-Dong et al 1994][Arkin et al 1993]. 

Having examined Collective Robot Systems, the second class of multi-robot 

systems will now be introduced: Model-based Systems. 

2.2 Robot Groups with Environment/Peer Models 

The approach of behaviour-based robotics is to not allow the robots explicit 

environment models as "the environment is its own best model"[Brooks 1990]. A robot's 

"understanding" of the environment is hardwired by the designer through reactive rules. In 

Collective Robotics this translates into "the envirorunent, peer and non-peer, is its own best 

model". So Collective robots, as well as having no explicit model of their environment, 

have no explicit peer-model, i. e. no model of the other robots in their "collective". 

The inspiration for explicit-model based systems is that they allow the robot more 

66control" over its own behaviour, leading to more flexibility. Rather than depending on a 

limited number of reactive behaviours, robots can select (and develop) behaviours based on 

more complex internal models. A significant proportion of model-based multi-robot 
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systems also involve some sort of peer-model to aid in co-ordinating planning and 

behaviour within the robot group. 

2.2.1 Integrative Societies and Robot Groups with Peer Models 

Peer-models are the basis of co-operation in the "Integrative" societies of 

nature[Dautenhahn 1995]. Integrative societies are the opposite of the Differential societies 

discussed at the beginning of the collective robotics section[Parker 1994]. Examples of 

Integrative societies are humans, wolves, and the breeding colonies of many species of 

birds[Parker 1994]. Unlike animals in Differentiative societies, animals in Integrative 

societies have the best chance of passing on their genes through their own 

survival [McFarland 1993]. Thus their motivations are "selfish": the group exists for the 

good of the individual (rather than the individual for the good of the group, as in ant 

societies). Therefore the basis of direct group interaction is Co-operation: accepting a 

short-term loss for the sake of another group member, but only because you are expecting a 

resultant long-term gain for yourself Such co-operation requires the ability to interact 

intelligently, that is it requires social intelligence. This social intelligence includes the 

ability to remember how successful past co-operation has been with different members of 

the group: in other words peer-modelling is vital in Integrative societies. Peer-modelling is 

not encountered in Collective Robotics, but is a significant aspect of model-based multi- 

robot systems. 

Despite this observation, Integrative societies cannot be described as the explicit 

inspiration of model-based multi-robotics, since not all model-based systems have peer- 

models, and those that do have peer-models do not necessarily interact in a truly co- 

operative way by the precise definition of the word[McFarland 1993]. 
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2.2.2 Integrative Societies and Co-operation 

It is important to note that the word "co-operation7 is used imprecisely in most 

multi-robot research. This is probably due to the relatively new nature of the field, and its 

lack of conventions. Many use it when in fact they merely mean "positive interaction" (for 

example the title "Co-operation without CommunicatioW'[Arkin 1992]). This is 

particularly ironic in stigmergically-inspired/collective systems, where it would imply that 

these artificial-differentiative societies are actually "co-operating". True co-operative 

behaviour is put into a robotic context in [McFarland 1993] by setting up a "closed robot 

ecology". At some point autonomous robots will be sent out to accomplish tasks in the real 

world, and therefore their ecological situation will be similar to our ecological situation. 

Hence it is argued in [McFarland 1993] that to study robot co-operation in the laboratory, a 

closed robot ecology must be produced. 

The "closed robot ecology" used in [McFarland 1993] is a system where robots 

which do not accept a short-term loss will die from lack of energy. The environment used 

for the "robot ethology" studies contains lights, switches that temporarily dim the lights, 

and recharging points for the behaviour-based robots. The lights actually drain power from 

the recharging points. Hence robots must continually dim the lights to ensure they can 

recharge. The system is set up so that one robot could not possibly accomplish the task. 

Thus the robots must interact positively, helping each other get to, and allowing each other 

access to, recharging points. When a robot wants access to a recharging point it will send a 

signal to the robot already on the charging point. The key aspect of this system is that the 

robots must co-operate to survive. This forni of interaction fulfils the ethological definition 

of co-operation: "helping another and experiencing a short-teim loss, but eventually 

achieving a long term gain as a result". The robots experience a short-term loss by moving 

28 



off the recharger for other robots. However, they have the long-term gain of the other 

robots helping them to "farm" the lights. 

This thesis will stick to the more helpfully precise convention of co-operation being 

"short-tenn loss followed by long-tenn gain", unless quoting other work. 

2.2.4 Categorising Model-Based MRS 

In the same way that Collective systems can be categorised into the 

communicating and non-communicating, so model-based systems can be categorised 

according to their approach to Co-ordination and Centralisation. 

2.2.5 MRS Co-ordination 

Looking first at multi-robot co-ordination, two types can be discerned from past 

work: 

1. The co-ordination of the sharing of the environment resource (e. g. movement space and 

tools) 

2. The co-ordination of the robots' personal resources (e. g. learned knowledge and 

effectors) 

The first of these has been particularly prevalent in studies of mobile model-based MRS. 

(In fact, even the negative-interference reducing systems of collective robotics, introduced 

later, can be seen as a way of co-ordinating the sharing of the enviromnent resource. ) It is 

also worth noting that there has been some work on more general environmental resource 

sharing[Wang 1993] (i. e. not necessarily "space", but actual items that are part of the 

environment, like tools[Premvuti and Yuta 1996]). However the sharing of "space" has 
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been much more widely studied as it is "the basic resource of a mobile robot. "[Premvuti 

and Yuta 1996]. 

2.2.6 MRS Centralisation 

Another division in model-based mobile robot work is that between multi-robot 

groups with some sort of central-station or "administrating agent" and those without. There 

is a lot of debate as to the advantages and disadvantages of central agents. The advantages 

include: 

9 Global view point for planning of interaction between robots (e. g. avoiding negative 

interaction[Alami et al 1997], assigning task to robot nearest to task site[Caloud et al 

1990]). 

9 Reduction of individual robot complexity [Leuth 1994] 

s Simplification of communication network [Zhi-Dong et al 1994] 

9 Easier synchronisation [Li 1994] 

However such a system tends to be dependent on a single agent, i. e. the central station. 

This leads to a number of disadvantages of central-stations: 

9 Lack of robustness, if station fails, the system may go down [Zhi-Dong et al. 19941 

9 Bottle-neck at the station: it requires sufficient processing-power for multiple 

robots[Zhi-Dong et al 1994] 

* Dependence on the station - robots must stay in contact with it and within its range 

9 Robots can only join the team if they can communicate with the controller 
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A large number of researchers have considered these disadvantages to be so compelling 

that there is actually a field of study called "Distributed Autonomous Robot 

Systems"(DARS) [Asama et al 1996][Asama et al 1994] which concentrates on 

decentralised-systems. The multi-robot system presented in this thesis is also a DARS 

system. 

2.2.7 A Categorisation of Model-based MRS by Co-ordination 

and Centralisation 

Table 1.0 overIeaf is a table which positions model-based work according to 

centralisation and co-ordination. 

2.3 Research Review in relation to the Thesis 

The above partitioning of mobile MRS into Collective and Model-Based systems is 

inspired by [McFarland 1993] (which refers to Collective and Co-operative systems) and 

[Parker 1994] (which partitions into "Swarm" and "Intentional" systems). However, the 

further partitions of conimunicating/non-communicating and co-ordination/centralisation 

are a contribution of the thesis. The only previous piece of work which has produced such a 

fine partition is [Cao et al 1997] but their partition is based on more abstract future research 

directions (or "axes') whereas the one in this thesis is a taxonomy of existing work. 

In Chapter 1 the concept of the distributed map-sharing mobile multi-robot system 

was introduced. Such a system would need five basic abilities: 

1. Random sweeping - to explore the enviromnent 

2. Point-to-point motion - to achieve particular goals in the enviromnent 

3. Environment learning - to learn the environinent as it is explored 
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4. Peer-models - to co-ordinate the transmission of map information 

5. Communication - to transmit map information 

Centralised Decentralised 

Environment- [Alami et al 1997] etc. [Wang and Premvuti 1994] 

resource [Aguilar et al 1995] [Noborio and Yoshioka 

Co-ordination [Li 1994] 1994] 

[Buckley 1989] [Ota et al 1994] 

[Erdmann and Lozano-Perez [Ueyama, et al 1994] 

1987] [McFarland 1993] 

[Wang 1993] 

[Premvuti and Yuta 1990] 

Robot-resource [Caloud et al 1990] [Stone and Veloso 19971 

Co-ordination [Herman and Albus 19881 [Mataric 1997] etc. 

[Brummit and Stentz 1996] [Demiris and Hayes 

[Nof 1991] 1996][Hayes and Demiris 

[Elgimez and Kim 1990] 1994] 

[Asama, et al 1991] [Parker 1996] etc. 

[L6pez de Mýtntaras et al [Dautenhalm 1995] 

1997] [Asada et al 1995] 

[Suzuki et al 1994] 

[Ohko et al 1993] 

Table 1.0 
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The thesis will now look at the past examples of work in multi-robot systems and divide 

them up into these 5 areas of ability. 

A piece of past work will be positioned depending upon which of these 5 areas it 

concentrates: sweeping, point-to-point motion, environment learning, peer models, or 

communication (to be found in Sections 2.4,2.5,2.6,2.7 and 2.8 respectively). Obviously 

some MRS will be relevant to more than one area, but they will categorised according to 

their main thrust or contribution. 

2.4 Multi-robot Sweeping 

The first of the 5 areas to be examined is Multi-robot Sweeping. In a multi-robot 

map learning system robots learn fromexperience by performing a group random sweeping 

task. However, much of the studies in sweeping behaviour are to be found in collective 

robotics. Examples of sweeping task systems in collective robotics include [Ichikawa and 

Hara 1994] where simulated robots are provided with wandering and obstacle/robot 

avoiding behaviours, and put into an enclosed space. The robot-avoiding behaviour leads to 

interaction amongst the robots which forces them to distribute themselves around the space 

and not collide. Robot A affects Robot B's environment by being part of the environment 

in a particular position, and forcing Robot B into obstacle avoidance. The ability of the 

robot team to cover the whole of the space in a search is measured using the "Space 

Coverage Ratio" (SCR). The space is divided up into small sections, and the SCR at a 

certain time is defined as the ratio between the number of element sections passed over by 

the robots and the total number of sections in the space. Experiments showed that the SCR 

increased as the number of the members of the robot team increased up to 10. This thesis is 

not really concerned with the efficiency of sweeping per se, more the efficient use of the 
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results of sweeping abilities - i. e. of robots maps. So robot avoidance behaviours are not 

implemented, and the robots simulated in this thesis can "move through" each other. 

More complex forms of coverage, involving robot groups forming into patterns, 

have been studied by [Sugihara and Suzuki 1990], [Yamaguchi and Beni 1996] and [10nsal 

and Bay 1994]. The robots have behaviours which enable them to form patterns such as 

circles, polygons, parabolae and sinusoidals. The fundamental contribution of the three 

systems is their use of distributed algorithms to form global patterns. They have no central- 

station monitoring the production of the pattern and controlling individual robots to 

produce the final desired pattern. Similarly, the system in this thesis uses a distributed 

algorithm. Such measures will be seen to be taken locally in an attempt to cause a global 

improvement. 

The lack of a central-station is very common in collective robot systems as the 

major central-station advantage is its global view, and collective systems usually use (like 

insects) local behaviour control. (A good discussion on the advantages and disadvantages 

of local and global control can be found in [Parker 1992]). 

2.4.1 Multi-Robot Sweeping with Foraging 

The robots in this thesis actually utilise multi-robot coverage to find specific goals 

and salient points. There is a large area of study in collective robots which looks at a 

related idea: the "foraging" task. In a foraging task, robots move out from a home position 

and sweep the space, attempting to find goals ("food"). These are actually moveable 

objects (usually pucks) which the robot must then return to its home position. 

[Arkin 1992] demonstrates that simulated robots can interact in foraging wit out 

inter-robot communication. He uses the concept of "Recruitment" from studies in ant 

behaviour; recruitment being "communication that brings nestmates to some point in space 
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where work is required. " Arkin claims that recruitment-like behaviour is possible in the 

absence of direct communication. He demonstrates this using simulated foraging. The 

"food" is actually an attractor for the robots (i. e. as they move closer to the "food", their 

motion will be more forced in the direction of the "food". ) When a robot reaches the 

attractor, it picks it up and carries it back home. However, the carried food remains an 

attractor to other robots. So these other robots are attracted to the carrying robot, and they 

are recruited into helping the carrying robot to transport the "food" more quickly. This 

system is also demonstrated to improve foraging time with multiple distributed "food" 

items. The positive interaction in these experiments is through many robots increasing the 

sweep coverage, and through robots changing the environment by affecting the position of 

the attractor (by carry it) thus causing other robots to move towards it and help carry it. 

2.4.2 Interference in Multi-Robot Foraging 

The foraging task is further studied in [Fontan and Mataric 19961. As was 

mentioned earlier, interaction is not always a good thing. The skill in collective robotics is 

to design behaviours to maximise positive interaction. Negative interaction, or 

interference, could cause robots to slow down a foraging task by always being in the way 

of each other (as in [Beckers et al 1995] or [Arkin and Hobbs 1992] where too many robots 

is shown to cause over-interaction). [Fontan and Mataric 1996] attempts to reduce this 

interference by an ethologically-inspired "Territoriality": having different robots forage 

different parts of the space, thus keeping them out of each others way. In this physically- 

implemented experiment, robots collect pucks and deposit them on the edge of the territory 

nearest to "home". 
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2.4.3 Interference Reduction through Arbitration 

[Goldberg and Mataric 1997] introduce two other ethologically-inspired methods 

on top of territoriality for reducing negative interaction: pack arbitration and caste 

arbitration. Pack arbitration involves robots "giving way" to each other in potentially 

negative interaction situations. Which robot gives way is decided by some form of 

"dominance hierarchy", for example the robot with the highest serial number. 

Caste arbitration involves dividing up the tasks between robots in such a way that 

they do not interfere with each others tasks. [Goldberg and Mataric, 1997] perfonn a 

physically-implemented foraging experiment and find the main cause of negative 

interaction is robots getting in each others way when trying to return pucks home. They 

find that the most efficient form of arbitration in this case is caste arbitration. One robot is 

set the task of remaining near home, and the other robots collect pucks and bring them 

back to this robot who retums them to home. 

2.4.4 Foraging Without a Home Location 

A slightly different foraging task (which doesn't have a set "home" location) is 

solved in a very efficient way by [Beckers et al 19951. They physically-implement a non- 

communicating collective system. It consists of a number of robots with IR sensors for 

obstacle avoidance, and a scoop which they use to push pucks along in front of them. The 

grippers have a sensor which tells them when they have caught 3 pucks. The robots are 

given three basic behaviours, with only one active at any time (so they are reactive robots, 

rather than subsumption architecture robots). 

When no sensor is active, the robot moves in a straight line (default behaviour) 

until an obstacle is detected, or three or more pucks have been picked up. If an obstacle is 
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detected, the robot activates obstacle avoidance behaviour (pucks are not obstacles). If 3 

pucks are detected, the robot releases the pucks from its scoop (puck-dropping behaviour). 

At the beginning of the experiment pucks are distributed randomly about the space. The 

fascinating result of these simple behaviours is that the robots collect all the pucks up into 

one neat pile. The optimum number of robots was found to be three. The robots in [Beckers 

et al 1995] interact with each other mainly by affecting the state of the environment by 

moving the pucks around. The authors make the interesting observation that Stigmergy is 

best regarded as an exploitation of the environment as an external memory resource. 

2.4.5 Foraging using Robot "Food Chains" 

[Werger and Mataric 1996] have produced another physically implementation of 

the enviromnent exploitation idea by producing Robot "Food" Chains for foraging tasks. 

[Arkin 1992] assumes that the robot can find its "food", and can find the home it must 

return the "food" to. In reality, these are complex recognition tasks. [Werger and Mataric 

1996] implement foraging by having a group of robots organise themselves into a chain 

stretching out from the home position. This organisation is produced using basic 

behaviours. Then foraging robots use the chain to navigate out from home, making circular 

foraging trips away from the chain to collect "food". They can then use the chain to 

navigate back to home and drop the "food". There is no communication involved here, the 

robots move out along the chain by touch, and the chain maintains itself by touch and 

beam-breaking. 

2.4.6 Foraging Conclusion 

It can be seen that a large number of studies into multi-robot sweeping have been in 

collective robotics. In fact the vast of majority of such studies have involved collective 
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robotics. The behaviour does not seem to have been explicitly studied in model-based 

multi-robot systems. The main concern in model-based MRS has been in point-to-point 

motion. This is the second of the five key areas mentioned in Section 2.4, and will now be 

addressed. 

2.5 Multi-robot Point-to-Point Motion 

The robots studied in this thesis randomly sweep the space so they can learn point- 

to-point routes. The actual error-free following of these point-to-point routes, although 

non-trivial in reality, is taken as given. The important aspect for this thesis is the 

exchanging of map information between robots, an aspect not studied in detail in model- 

based, or collective, MRS. 

The robots studied in this thesis have "route planning" that is limited to finding a 

route from their (or another robot's) memory which leads to their goal, and following that 

route. If these robots encounter any other robots while following a route it is assumed that 

there is some sort of algorithm for avoiding collisions while keeping true to the route. The 

effect of this is simulated in this thesis by having the robots "pass through" each other. 

However, if this system was implemented in hardware robots, more sophisticated 

route planning may be needed for point-to-point motion. There are two main problems to 

be addressed in multi-robot point-to-point motion: 

1. How do robots navigate around a space containing dynamic obstacles - i. e. other robots? 

2. How do robots deal with the situation where they discover midway that a given route is 

now blocked, or a goal has moved? 
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The interference-reducing work of collective robotics can be seen as a simple form 

of study into part of the first problem, i. e. collision avoidance. But full studies of the first, 

and second problem, have only been undertaken in model-based MRS. (This is for the 

simple reason that planning requires a model for prediction. ) In fact the majority of model- 

based studies address the first problem of multi-robot point-to-point motion, since this 

problem is unique to MRS. However later on an example is given of a system addressing 
I 

the second problem. First of all, collision avoidance with a central planner will be 

examined. 

2.5.1 Collision Avoidance with a Central Planner 

[Erdmann and Lozano-Perez 1987] examine a central-station based motion- 

planning problem for multiple robots in spaces with obstacles, by simulating the robots as 

moving 2D polygons. The planning method uses the most basic method of centralised 

multi-robot movement planning: robots are assigned priority, and motion-plans are 

assigned to robots in priority order (the system assumes the priorities are given). So if 

robot A has priority over robot B then Robot A's plan is made first, and then robot B's Plan 

is made treating robot A as a moving obstacle. 

[Buckley 19891 introduces a system of setting prioritizations in spaces sparsely 

occupied by obstacles, i. e. where the main obstacles are other robots. This prioritisation 

system attempts to maximise the number of robots which can move in a straight line from 

their start point to their goal by adjusting their speeds, thereby minimising the number of 

robots for whom time-consuming collision-avoidance planning is necessary. The default is 

Robot A has priority over Robot B if Robot A was following a plan first. However, this 

may not work if Robot A's line goes through the start point of robot B's plan just before 

robot B is due to leave there. In this case robot B should be given priority (as it is about to 
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get out of robot A's way anyway). Similarly if Robot A's line goes through the goal point 

of robot B when robot B is due to be there, robot A must have priority (so B doesn't jam up 

the route by sitting at its goal). This enforcing of straight line motion reduces the planning 

time, though not necessarily motion time. 

2.5.2 Reducing Central Planner Dependence 

[Alami et al 1997] [Alami et al 1997b] [Aguilar et al 1995] all discuss a mobile robot 

space-sharing system called the "Plan-Merging Paradigm". This paradigm is interesting as 

it results in behaviour similar to that in a centralised-planning system, but tries to do the 

planning in a distributed way (though is still needs a central station for "emergencies"). 

The robots are moving in an environment of corridors, intersections and rooms. Having 

individually made their own plans, robots use the plan-merging paradigm: they compare 

movement plans and refine collisions out of them. This paradigm is therefore exhibiting 

global control without the robots using the central station. However, the plan-merging 

paradigm will not always be successful, and when this happens the central station has to 

step in and do the planning itself 

Another system which has a central station but tries to avoid using it is [Li 19941. 

In this system robots plan their routes and define "safety zones". These indicate parts of 

the route leading to possible conflict ý (e. g. the part of the route that goes through an 

intersection). Robots can then broadcast safety zones and, if necessary, negotiate to avoid 

conflict using fixed rules. If they cannot resolve the conflict then a central station is called 

in to deal with the problem. The central station actually has another job: that of task 

allocation, but Li does not go into that aspect in any detail. 
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2.5.3 Blackboard Systems 

[Wang 1993] is the system which takes another step away from a central-station 

dependence. He introduces a system which although not centrally-dependent still uses a 

form of Blackboard. The Blackboard is a concept from Distributed Artificial 

Intelligence[Bond and Gasser 1988]: it is a single virtual board where agents can "pin up" 

messages which can be read by all other agents. 

Wang's system introduces a twist by giving each robot a "sign-board" which can 

only be read by a subset of agents. Each robot can only post to its own sign-board, and this 

sign-board can only be read by robots within a certain distance of the posting robot. 

Wang's robots are assigned priorities for enviromnental resources according to their serial 

numbers and when they last used the resource. Robots who have used the resource recently 

are given lower priority than those who haven't. Algorithms are given for dealing with a 

robot "road-way" intersection, and for dealing with corridors of length M robots which are 

only wide enough for I robot. There is also an algorithm for sharing a more general 

"Resource of Capacity M", i. e. a resource which only M robots can use at the same time. 

(This is an example of the "non-space" environment resource sharing mentioned at the 

beginning of this chapter. ) 

2.5.4 Deadlock in Point-to-Point Motion 

An important point about the algorithms in [Wang 19931 above is they are 

guaranteed to be "deadlock" free. Deadlock is an important concept in multi-robot systems, 

though not one that this thesis concentrates on. It is particularly important in distributed 

systems, which often have no global view of the environment or of other robots' positions 

in the environment (i. e. robots use only "local" information). Deadlock occurs when one or 

more robots get stuck in a state or a loop of states. An example may be two robots 
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following fixed paths. If their paths cross and they cannot get out of each others way, they 

will go into deadlock: both continuously trying to take the next move in their route but 

unable to. A similar problem could occur at an intersection where the algorithm is "move 

on if you are the first robot to arrive". Such an algorithm will enter deadlock if two robots 

arrive at the intersection simultaneously. 

[Wang 1993] is extended in [Wang and Premvuti 1994] to a full traffic regulation 

and control system for mobile robots, enabling them to share the environment resource in a 

more complex environment. The environment can consist of corridors, rooms and 

intersections. Algorithms are presented for local co-ordination, and deadlock detection and 

resolution. 

[Noborio and Yoshioka 1994] introduce a system for decentralised path-planning in 

an enviromnent where the only obstacles are other robots. The robot plans a straight line to 

its goal. If two robots meet on the way, they can avoid collision using an algorithm based 

on circular movements around each other. The robots infer each others behaviour, and 

choose their own behaviour as a result. This may be circling, or moving backwards or 

forwards. The behaviour is decided by a selection table, which has been carefully designed 

to avoid deadlock. This deadlock free characteristic is proved. 

[Premvuti and Yuta 1990] introduce a system called "modest co-operation"' which 

they implement on robots approaching a "road" intersection. The idea here is that the 

robots enter "modest co-operation" mode when they get close enough to the intersection. 

They slow down, run close to the left side of the road and exchange a high volume of 

infonnation with other robots around the intersection. They can then plan their routes 

through the intersection without collision. 
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2.5.5 Task Assignment for Point-to-Point Motion 

A more advanced point-to-point system is the GOPHER system[Caloud et al 1990]. 

The robots in GOPHER each have a fixed global model (a two-way "road map") of the 

environment and are set tasks by a Central Task Planning and Scheduling System (CTSP). 

The CTSP has a global view of the tasks to be perfonned in the enviromnent and the 

availability of robots to perform these tasks. (So in a sense the CTSP has simple "models" 

of the robots, though the robots themselves do not. ) The CTSP assigns tasks in a way 

similar to the Contract Net Protocol[Bond and Gasser 1988] (CNP) from Distributed 

Artificial Intelligence. The robots bid to do available tasks, and the CTSP chooses the best 

bid according to its information and the information provided in the bid (e. g. proposed plan 

and estimated execution time). It is not strictly a Contract Net Protocol system, as the 

Contract Net Protocol is distributed and needs no central station - different robots take on 

the roles of bidders and "auctioneers" at different times. An augmented version of the 

proper CNP will be reviewed in the section on multi-robot peer-modelling. 

The GOPHER system is the archetypal central station system. If the GOPHER 

central agent is removed, the whole system will cease to function. On the other hand, with 

a distributed (DARS) system, like the one in this thesis, any robot can be removed and the 

whole system will continue to function. Another fundamental difference between the 

GOPHER system and the system in this thesis is that the GOPHER system is primarily 

concerned with the Task Assignment Problem, an issue studied much in traditional 

Distributed AL This thesis is not concerned with the task assignment problem, but rather 

the task learning problem. 
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2.5.6 Point-to-Point Motion Re-planning 

All the route-planning systems described so far are designed to deal with a dynamic 

peer-environment (i. e. moving robots) but a fixed non-peer environment (the non-peer 

environment being non-robotic obstacles). They are limited in their adaptability as they 

have no way of re-planning when the non-peer environment changes in the middle of a 

task. 

[Herman and Albus 1988] sketch out a proposed replanner to solve this problem for 

MRS, but do not give any details or demonstration. [Brummit and Stentz 1996], however, 

actually demonstrate a simulated system for dynamic mission planning. If two robots have 

goals in an environment with obstacles, a central planner can plan the shortest non- 

colliding routes for these robots. However, if there is an enviromnent change while 

executing the plan, the plan may no longer be the quickest route. The central station has a 

global view of the environment, and the [Bnmimit and Stentz 1996] dynamic mission 

planner allows robots to feedback any environment changes while following a plan. The 

planner can then re-plan the robots paths from their current position to optimise the overall 

mission time. 

This system learns about changes in the environment and adapts its plans 

accordingly, but it is not strictly a environment modelling system. An environment 

modelling system not only adapts itself to changes in the environment, but also learns 

important aspects of its initial environment itself Such systems are the concern of this 

thesis. In MRS there are few other such systems, but examples will now be given as the 

third of the five key abilities is now examined: Multi-robot Environment Learning. 
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2.6 Multi-robot Environment Learning 

The work in this area which is of greatest relevance to this thesis is [L6pez de 

MAntaras et al 1997]. [L6pez de Mmtaras et al 1997] involves physically implementing a 

model-based MRS with a central-station where robots separately produce partial co- 

ordinate maps of the parts of the space they sweep (like the system in this thesis, they use a 

random sweep). The robots then return to the central station and upload their maps. The 

maps are then combined using fuzzy logic to produce a single central map. The idea is that 

individual robot map errors will be ironed out in the combination. Robots also upload 

information to each other when they meet. This means that if a robot cannot make it back 

to the central-station, its learned data may have been passed on to another robot it bumped 

into that does make it back. 

In the system studied in this thesis, data is never centrally combined - it stays in a 

distributed form. The main advantage of central combination is the removal of errors and 

uncertainty due to robot motor/sensory inaccuracies, an area which this thesis is not 

studying. However, the main difference between the [L6pez de Mintaras et al 1997] 

system and the system studied in this thesis is that [L6pez de MAntaras et al 19971 is 

concerned with mapping for the sake of mapping - i. e. without any point-to-point task 

achievement. Therefore it uses off-line learning, and hence the distributed exploration vs. 

exploitation dilemma is not a relevant issue for it. 

2.6.1 Semi-Distributed Models 

A further environment learning system which uses a form of topographical map, 

but that has a semi-distributed map, is [Herman and Albus 1988]. It proposes a group of 

Multiple Autonomous Underwater Vehicles (MAUV). The MAUV robots are based on a 

hierarchical system: at the mission level the task for the whole robot group is converted 
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into commands for a number of robot sub-groups. At the group level, these commands are 

then converted into tasks for individual robots. At the robot level, the tasks are converted 

into servo-commands etc. 

All robots in a group have environment models, and in small groups robots can help 

each other update their envirom-nent models, i. e. exchange map information. But in larger 

groups, to lower communication problems, there will be a group leader who has an 

environment model and does all the planning for other robots. Since all robots have some 

sort of (possibly inaccurate) environment model, inability to communicate with the central 

planning robot (due to destruction, or stealth) is not as important. Thus, although the 

MAUV system essentially has a central agent with environment model, it is more robust to 

the removal of that central agent and model. However, the MAUV system does not 

explicitly detail its algorithms for implementing multi-robot environment modelling, nor 

does it examine any issues relating to information exchange in learning robots. 

2.6.2 The ACTRESS System 

Another system which involves multi-robot environment learning but does not give 

details is ACTRESS[Suzuki et al 1994][Asama et al. 1992][Asama et al 19911. It is 

possibly the most ambitious multi-robot project to date, though quite how successfully it 

has been implemented is not known to this author. 

The ACTRESS system is made up of multiple robotic agents called robotors. Each 

robotor can make decisions for achieving a given goal, execute tasks, and communicate 

with other robotors. The emphasis here is on heterogeneous agents, i. e. some robotors are 

mobile robots, some are cranes, some are computers, etc. (The model used to test the idea 

in this thesis uses homogeneous robots, but should work with a heterogeneous team given 

the appropriate common communication protocol. ) 
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[Asama et al 1991] discusses the use of an environment manager in the ACTRESS 

system. Such a manager does not control robotors, but stores information about the 

environment which robotors send it during their tasks. Thus other robotors can use this 

information, so the robotors are using the central station as a medium for map sharing. This 

is similar to [L6pez de Mantaras et al 1997] but [Asama, et al 1991] does not detail how the 

maps are merged or transmitted. 

Other studies of ACTRESS include [Suzuki et al 1994] which concentrates on 

distributed task-assignment algorithms. A robot can send a request for physical 

collaboration in a task. It can also send a request to other robots for enviromnental 

information. Thus it is a map sharing system. However, no learning is involved, and the 

precise nature of the information transfer protocol is not discussed. The system is 

demonstrated on multiple box pushing, where robots can request help with pushing, and 

tell the helping robot how to get to the box to be pushed. 

2.6.3 Game Theory for Environment Learning 

Game theory is an area of mathematics much concerned with multi-agent 

interaction. A general study of possible applications of game theory to Multi-Robot 

Systems can be found in [Nof 199 1] (and a study of the relationship between the Prisoner's 

Dilemma Game and MRS will be presented in the section on multi-agent systems. ) 

However [Nof 199 1] does not supply any concrete approaches or tests for its ideas. 

[Elgimez and Kim 1990] looks at a more specific area of game theory and attempts 

to apply it to a specific problem by using environment-modelling. The [Elgimez and Kim 

19901 system is based in an environment of rooms and wide corridors, divided into two 

halves connected by a lift. A game theoretic concept called the "Shapley Value solution to 

an N-person game" is extended and used to develop deployment rules for the robots. The 
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robots are deployed to go and "deal witW' events occurring in different parts of the 

environment. The environment is divided up into areas, and the areas "play'a game" 

amongst each other to find which provides the most coverage for events; i. e. which area 

provides robots with a starting point that allows them to deal with as many events as 

possible, in as little time as possible. The areas are then ranked and deployment is decided 

using this ranking. 

The cnviromncnt learning here is not in terms of learning the way through the 

corridors, rooms and doors, but learning the relationship between the environment and the 

task assigrunent problem. The system leams which part of the enviromnents should be 

assigned to which robots. A closely related process is learning which robots to assign to 

which parts of the environment. To do this, a system needs models of robots as well as of 

the enviromnent. Specifically, if a robot is assigning tasks to other robots in its tearn, then 

it needs models of its peers to make well-informed assignment decisions. This is the fourth 

of the five key abilities given earlier in Section 2.3: Multi-Robot Peer-Models. 

2.7 Multi-robot Peer-models 

Peer-modelling will be used in the robots in this thesis to allow a robot team owner 

to set the balance between distributed exploration and exploitation. The precise details of 

how this is done will be discussed in the next chapter. In the meantime it suffices to say 

that the robots have very simple peer-models, consisting only of a single number 

representing each of their peers. 

2.7.1 Combining Peer and Environment Models 

An even simpler form of peer-modelling involves learning about the environment 

and peer-enviromnent with no ability to distinguish between the two. This is the approach 
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used in [Ota et al 1994] which introduces a strategy-making method that they apply to 

mobile-robot path selection. The enviromnent consists of two areas, A and B, with 2 

straight paths between the areas, 1 and 2. Fifty robots have to go from A to B and back 

again using the paths. They try to learn the best non-colliding strategy which allows them 

to do this. The robots' strategies consist of a number of tactics together with a probability 

that a tactic will be selected. The idea is that the robot tries out different tactics to move 

between A and B, and rewards the tactic according to how short the route it produces is. 

This "rewarding" involves increasing the probability that this tactic will be selected. (Such 

a learning system is called "reinforcement" learning[Kaebling and Moore 1996]). So the 

robots are developing models of which actions work best in the two path environment, 

given the behaviour of the rest of the group. 

2.7.2 Learning a Peer-model to Avoid Interference 

The system used in [Mataric 1997][Mataric 1996][Mataric 1994] also implements 

reinforcement learning to allow a team of robots to develop a foraging task while avoiding 

negative interaction with each other. The peer learning here is implicit in that robots have 

to learn about each others' behaviour in trying to minimise negative interaction. Mataric 

gives the robots a repertoire of simply implementable basic behaviours: safe-wandering 

(robots wander avoiding collisions), following, aggregation (gathers the robots), dispersion 

(spreads out the robots) and homing. Mataric demonstrates that these "atomic" behaviours, 

can be combined to produce more complex behaviours, such as flocking, foraging and 

docking (getting a group of robots to park along a boundary). The learning robots jointly 

model their foraging task, their group dynamics and their general environment by choosing 

different weightings of these behaviours. 
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These papers have two similarities with the system studied in this thesis. Firstly, the 

robots are designed for on-line learning so they can go on continuously improving their 

performance. Secondly, the robots implement a system that addresses part of the 

exploration vs. exploitation problem: the single-robot exploration vs. exploitation problem 

(the papers do not need to address the distributed exploration vs. exploitation problem 

since the robots do not directly aid each other). The robots use a system of progress 

estimators: "if a behaviour fails to make progress relative to the current goal, it is 

tenninated and another one is tried". 

2.7.3 Separating Peer and Environment Models 

The next step in artificial peer-modelling is for robots to be able to distinguish 

between their peers and with the rest of the enviromnent, so they can leam separate 

behaviours for dealing with them. [Ueyarna et al 1994] is such a system for collision 

avoidance amongst multiple robots moving through a space of obstacles towards their 

goals. The robots model their peers by developing "behaviour priorities". The robots have 

3 behaviours: "go to goal", "move away from obstacle", and "if robot ahead turn right" 

(they can tell the difference between robots and obstacles). The priorities of the behaviours 

is learned by a robot according to how successfully it gets to the goal without colliding. 

When two robots are placed in a space - each with a goal - and with single obstacle which 

blocks both their paths, it is found that before the robots have learned the correct behaviour 

priorities, they may be forced into each other (if the "turn right" behaviour is too low 

priority) or into an obstacle (if the "move away from obstacle" behaviour has too low 

priority). But after a few learning trials, they succeed in non-colliding navigation. 
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2.7.4 Peer-Models and Robustness 

A simple, but very practical, approach to peer-modelling is taken in the 

ALLIANCE system [Parker 1996][Parker 1996b][Parker 1995][Parker 1994][Parker 

1994b]. Robots in the system are endowed with "impatience": if Robot A does not get a 

task done quickly enough, then Robot B's impatience will increase to the point where it 

will take over Robot A's task. These levels of impatience are the robots' temporary 

dynamic models of each others' current state. This behaviour has the effect of increasing 

fault-tolerance/robustness in the system. Since an attractive application of multi-robot 

systems is their deployment in dangerous enviro=ents, robustness is a critical concept: 

systems must deal with robot malfunctions, and maybe even robot destruction. 

In ALLIANCE robots broadcast when they are starting a task. This allows other 

robots to avoid duplicating the task. Furthermore if other robots are not informed of task 

completion after a certain time (possibly due to malfunction), then they will take over the 

task. The impatience factor of other robots is matched by an acquiescence factor of the 

failing robot. If it spends too long doing a task, the robot will actually give the task up. 

ALLIANCE has been physically implemented on a simplified nuclear waste 

clearance problem, and a box pushing problem. It has also been demonstrated in simulation 

in a multi-robot janitorial team - robots that dust, empty bins, and clean the floor. Parker 

later extends the ALLIANCE system to facilitate the task assignment problem. In L- 

ALLIANCE the robots develop more permanent models of their peers (and themselves) by 

remembering how long their peers (and themselves) take to do different tasks. They use 

these models to select which the tasks they are best at, to allow their peers to do the tasks 

they are not so good at. 
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2.7.5 Peer Models and Artiflcial Social Intelligence 

[Dautenhalm 1995] studies peer modelling as a part of artificial social intelligence. 

Dautenhahn suggests that artificial social intelligence is not only necessary for truly co- 

operative behaviour amongst robots, but also for interaction between robots and humans. 

For robots to gain social acceptance they need to have the intelligence to fit in comfortably 

with society. Dautenhahn also introduces the idea that artificial social intelligence is a 

prerequisite for more general artificial intelligence. She then discusses the use of imitative 

learning between robots and proposes an experimental environment for studying social 

intelligence called the "Huegellandschafl" -a hilly landscape that robots try to take the 

path of least energy through. Robots can imitate other robots movement behaviours while 

trying to learn how to save energy. They will need to learn to recognise which robots 

provide them with suitably energy-saving behaviours. This will be seen to be similar to the 

system in this thesis, where robots only positively interact with robots that have been 

helpful in the past. 

[Dautenhahn 1997] implements a similar system where a "child" robot follows a 

transmitting "mother" robot around. The mother robot transmits different signals 

depending upon what "she" is seeing. The child robot then learns to associate these signals 

with its own sensory input, and thus learns the mother robot's "vocabulary". In the future, 

when the child wants to find the mother it observes what the mother is currently 

transmitting, and searches for the mother by trying to match its sensory input to that which 

it associates with such a transmission. 

Mobile-robot imitation behaviour has also been studied by [Demiris and Hayes 

1996][Hayes and Demiris 1994] in physical experiments. Robot imitation can be thought 

of as peer-modelling: the imitating robot is building an implicit model of the robot it is 

imitating which it can later be used to dictate its own behaviour. In [Demiris and Hayes 
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1996][Hayes and Demiris 1994] a robot follows a teacher robot through a maze, thus 

learning to navigate the maze. The robot learns to associate the actions it copies with what 

it is perceiving. 

2.7.6 Social Learning 

[Mataric 1994b] is inspired by social learning ideas from ethology. She 

concentrates on a physically-implemented robot group learning "social rules": i. e. 

behaviours that do not immediately benefit the robot, but do benefit the group as a whole. 

The robots learn to achieve the task of collecting pucks from a pile and bringing them 

home. They have two possible social behaviours: "yielding" and "communicating puck 

location". The first makes a robot stop obstructing another robot, the second tells robots 

where the puck pile is so they do not have to search for it. 

Neither of these behaviours directly benefit the yielding or communicating robot, 

thus there is no reason why it should ever learn them. Mataric overcomes this by using a 

form of reinforcement learning where rewards are shared. For example, when a robot gets a 

puck home it gets a "reward" which reinforces all the behaviours that enabled it to get that 

puck home. This "reward" is "shared" amongst the other robots, who therefore will 

reinforce any social behaviours they used to help the puck-returning robot. Thus the robots 

develop an implicit model of the environment and their peer-enviroranent through their 

leamed behaviours. 

2.7.7 Competitive Learning 

[Asada et al 1995] discusses social learning and imitative learning in relation to 

competitive leaming. Mobile robots can learn to efficiently perform tasks through 

competition with other robots. This highlights the point that seemingly negative interaction 
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can have positive future results for learning robots. It is important to draw a distinction 

between competitive learning (which Asada examines) and competing to be allowed to 

learn (which will be used later in this thesis to allow the setting of the balance between 

distributed exploration and exploitation). Competitive learning is learning that actually 

uses the dynamics of competition to mould a robot's models of the environment and other 

robots. 

A standard testbed for competitive learning has been proposed: robot soccer. 

[Asada et al 1995] discuss a multi-robot system which has been developed in stages: first a 

single robot learning to shoot a ball into a goal, and then a single robot learning to shoot 

the ball past a robot goal-keeper. They also introduce a method for stationary obstacle 

avoidance and robot collision avoidance. Thus the robot can avoid being blocked off by 

other robots. They use a system called LEM (Learning from Easy Missions) which allows 

the robot learning to develop in incrementally more competitive situations (i. e. faster 

opponents). 

Robot soccer as a model for competitive Icarning is also discussed in [Stone and 

Veloso 1997]. However, the paper does not directly implement competitive learning. 

Rather it argues that certain basic collaborative team behaviours, must first be developed. 

They simulate a neural network solution to the problem of one robot ("passee, ) 

accelerating the ball to another robot (the "shooter") who then "kicks" it into an open goal. 

[Balch 1997][Balch 1997b] actually implement a full learning robot soccer game. 

The behaviours consist of two possible perceptual states: "behind ball" and "not behind 

ball", and three possible actions to follow these states: "move to ball", "move to backfield" 

and "get behind ball". Individual robots use reinforcement learning to develop playing 

skills based on which actions to take in which sensory states. Balch also looks at measuring 

behavioural diversity in the team using a measure called "Social Entropy". The greater the 

Social Entropy in the tearn, the greater the diversity of learned behaviours. 
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2.7.8 Peer Models and The Contract Net Protocol 

Another multi-robot system which uses competition, but for task distribution rather 

than leaming is the LEMMING system[Ohko et al 1993]. Reference was made earlier to 

the Contract Net Protocol(CNP). In the LEMMING simulation the CNP is used in a 

simulated office environment. Robots' tasks consist of taking an item (e. g. a pencil or 

calculator) from one desk to another. A task to be done is broadcast by a robot and the 

other robots make bids to take on the task. These bids include the estimated time it will 

take a robot to do the task. Initially the task broadcasting robot will select the robot with 

the best bid (i. e. the smallest time estimate. ) 

When the chosen robot has done its task, it reports this to the task providing robot. 

The task provider then has information about the task, robots' bids on the task, and the 

actual performance of one of the robots in that task. It can use this information to decide 

which robot to award the task to in the future. It can also use it to limit its task offer: only 

directing it at those who are capable of doing the task. Thus the robots develop models of 

their peers abilities to do different tasks. 

A similarity measure is also employed, so that if a robot wants to offer a task which 

it has not offered before, it can estimate which robot(s) will be best at it. For example if 

Robot A has efficiently taken a Book from Desk 1 to Desk 2, and the new task is to take a 

Book from Desk 3 to Desk 2, then Robot A has a higher chance of being awarded the task, 

due to a book being involved. The LEMMING system is differentiated from the system 

studied in this thesis by the fact it is using peer-leaming to solve a task assigmnent (rather 

than task leaming) problem. 

[Asama et al 1992] also uses a forni of CNP for task assigmuent. It discusses the 

use of negotiation amongst robotors in the ACTRESS system for producing collaborating 
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teams. The agent requiring collaboration uses a negotiation system similar to the Contract 

Net Protocol: it broadcasts a request for collaboration to all agents. All agents that can help 

will make a bid. Those bidders that succeed by giving the best bids are used to make up the 

team. 

2.7.9 Peer Models and Robot Co-operation 

[Sen 1996] looks at the use of Utility measures in physical interaction - i. e. not task 

assigmnent or task learning, but actual task doing. Sen is concemed with examining the 

emergence of co-operation - i. e. how can selfish agents learn to help each other to their 

own advantage? 

[Sen 1996] introduces a mail-delivery system in which robots deliver mail picked 

up from a centre. Obviously if robot I is about to deliver some mail to a destination close 

to where robot 2 wants to deliver mail, then robot 2 can ask robot I to deliver its mail as 

well, thus saving system energy and allowing robot 1 to get on with another task. Then, in 

the future robot 2 may be heading for a destination where robot 1 wants to make a delivery, 

so robot 1 can ask robot 2 to reciprocate and make its delivery for it. Sen thus uses the 

word "co-operation" in the correct sense - short-term loss leading to long-term gain. 

In this system it is obviously key that robots reciprocate so that the group is used at 

full efficiency. To enforce reciprocity, Sen's robots use past helpfulness as a measure of 

future helpfulness - i. e. if a robot has been consistently helpful to me in the past then it is 

assumed that the robot may be helpful to me in the future. The robots co-operate in a 

probabilistical sense - i. e. if robot 2 has been helpful to robot 1 in the past then all we can 

say is that robot I is more likely to help robot 2. So robots are never guaranteed help or 

refusal, there is always a possibility of either. An equation for the precise probability of 

this help happening is provided by Sen. 
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The equation that robot 1 uses to judge whether or not to help another robot 2 

contains terms that decrease the probability of help the greater the energy cost of a task, 

and terms for checking that the energy robot I has used in helping robot 2 is approximately 

equal to the energy saving robot I has made from being helped by robot 2. The less helpful 

robot 2 has been to robot I (relative to how helpful robot 1 has been to robot 2) the lower 

the probability. This probability is a measure of future utility of robot 2 to robot I based on 

past experience. 

Sen uses a probabilistic decision mechanism because if robot 1 will absolutely not 

help robot 2 until robot 2 has helped robot 1, and vice-versa, then the robots are in a 

deterministic deadlock - neither will to ever help the other. However, the stochastic 

approach ensures that there is a chance of help even when robots have not previously 

interacted. Thus, as long as there are cases where robot I can do robot 2's task more 

cheaply than robot 2 (and visa-versa), co-operation will emerge as a result of this 

probabilistic reciprocity. 

[Sen 1996] has some similarities to the solution presented for the distributed 

exploration vs. exploitation dilemma in this thesis, but this relevance cannot be explained 

until the contribution has been introduced in the next chapter. In the meantime it is 

observed that Sen uses physical robot-resource sharing as opposed to informational robot- 

resource sharing co-operation studied in this thesis. 

2.8 Multi-robot Communication 

The fifth, and final, of the five key areas for distributed map-sharing mobile multi- 

robot systems is Communication. There have been few systems analysing on the effect of 

communication in MRS. 
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[Arkin et al. 1993] studies the improvements in efficiency in the simulated foraging 

task introduced in [Arkin 1992] when communication of behavioural-state is allowed 

between robots. Initially all robots search for "food". When a robot has found and is 

heading towards "food", or is carrying the "food" home, it broadcasts to all other robots 

that it is in this state. Other robots will move towards the closest robot to them which is 

broadcasting one of these states and will help it carry the "food" back home. The 

communication was found to speed up retrieval when compared to the co-operation 

without communication in [Arkin et al 1993]. An analysis was also done of negative 

interaction problems which produced a graph showing the optimal number of robots given 

the number of pieces of "food". 

Other work concerned with communication is [Dautenhahn 1997] (mentioned 

earlier) which develops a communication vocabulary between mother and child robots, 

[Ichikawa and Hara, 1994] which studies the formation of a robot communication chain by 

sweeping, and [Wang and Premvuti 1994] which introduces a broadcast system for multi- 

robot communication. It is this sort of broadcast system ([Wang and Premvuti 1994]) 

which is envisaged as being used in the system in this thesis. 

2.9 Related Work in Learning Multi-Agent Systems 

This chapter has so far reviewed topics from Multi-Robot Systems, and has related 

past NM work to the type of system studied in this thesis: Environment/Peer-modelling, 

robot-resource sharing DARS. MRS is actually a subset of an area of study called Multi- 

Agent Systems (MAS). MAS is a more general area of study than Multi-Robot Systems. A 

robot is itself an agent, but so is an organism, an adaptive email program, a computer virus, 

or an autonomous web search engine. Multi-Agent Systems is in fact a sub-area of 
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Distributed AI, whose other main area of study is DPS (Distributed Problem Solving) 

[Bond and Gasser 1988]. 

Much of MAS is not directly relevant to this thesis. However, two areas of 

Learning MAS are relevant, and they will be examined in the next 2 sections. Learning in 

multi-agent systems has only been studied more recently, with the only books so far 

published being [Weiss 1997] and [Weiss and Sen 1996]. The two areas of research in 

learning multi-agent systems which are of particular relevance to this thesis are 

Collaborative Interface Agents, and the Prisoner's Dilemma. Collaborative Interface 

Agents will be examined first. 

2.10 Collaborative Interface Agents 

[Lashkari et al 1994] introduce the concept of Collaborative Interface Agents using 

email clients. While the user is manually using the email client, the client/agent tries to 

analyse what actions a user takes with different types of received emails. For example does 

he delete them, store them in a certain folder or forward them. So when an email agent 

receives an email for its user, it checks to see if it can make a good prediction of an action 

to perform based on the nature of the email (e. g. the subject line, from line, or keywords), 

and suggest the action to the user if it can. 

If an email agent does not have enough past experience to make a confident 

prediction then it can ask other more experienced email clients for advice over the Internet. 

These other clients can tell the first client what action they would take (i. e. their user would 

probably take) if they received that email. The client can take a piece of advice and suggest 

it to the user. If the user agrees then the client makes a note of which other agent it received 

that advice from and ups its view of that agent's utility. 
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So as time goes on all email agents will develop a view of which other agents are 

most useful to them (i. e. which other agent's users have similar requirements to their 

users); thus enabling agents to pick which advice to take. The agents can also ask "trusted" 

agents for advice about which other agents to "trust", and can explore the population for 

possible new "partners" by making requests for answers to situations they already know 

the solution to. 

One reason that Collaborative Interface Agents are relevant to this thesis is because 

the "utility" measures which the agents use will be seen to be related to the system 

introduced in this thesis for setting the balance between distributed exploration and 

exploitation. A similar point was made about the utility measures in [Sen 1996], however 

Collaborative Interface Agents are even more relevant as they use informational agent- 

resource sharing (as opposed to the more common physical agent-resource or environment- 

resource sharing in MRS). 

According to [Lashkari et al 1994] agents requests may be refused if "the agent 

issuing the request may not have been helpful in the past, or may not be important 

enough" (though no explicit methods are described though for judging when an agent will 

accept a request for help). A similar line is taken in [Sen 1996], where agents only help if 

they've been helped in the past. The issue of "when to help" has been studied in the 

abstract in learning MAS through a game called theTrisoner's Dilemma"[Axelrod 1984]. 

2.11 The Prisoner's Dilemma 

This relationship between the Prisoners' Dilemma game and the robot systems 

studied in this thesis will now be analysed, as the Prisoners' Dilemma is a standard 

benchmark for co-operative behaviour. The analysis will take the form of describing the 

Prisoner's Dilemma in the context of mobile route-sharing MRS, and is itself a 
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contribution. The Prisoner's Dilemma is a simple game which captures some fundamentals 

of co-operative behaviour. It is usually used to study the emergence of co-operation (as in 

the [Sen 1996] mail delivery agents described earlier). It is so-named because it is usually 

described using an anecdote about two prisoners. However, a more relevant example will 

be given which will help to clarify the relationship between this game and this thesis. 

Suppose there are two robots RI and R2 who can learn an environment and 

transmit their learning. Furthermore assume that each robot must decide independently, 

before the two start learning, whether it is going to transmit a route to the other robot or 

not. The robot must then stick to this decision during learning. If it decides to be helpful 

then it will transmit a route to the other robot during learning. 

If the robots' task is for each robot to learn a full map of the environment (either by 

experience or transmission) then their energy consumption can be divided into 3 scenarios: 

1. RI and R2 decide independently to not share information. So they must both learn the 

whole environment, but do not use up any energy in transmitting routes. Denote the 

average amount of energy needed by a robot to learn the whole environment asp. 

2. RI provides R2 with information, but R2 does not provide RI with information. So R2 

does not need to learn the whole space and does not use energy transmitting routes. 

Denote the amount of energy used by R2 as t. However, RI needs to learn the whole 

space and use energy transmitting to R2. Denote this average amount of energy that Rl 

uses as s. 

3. Suppose Rl and R2 provide each other with routes. Then both need to use transmission 

energy, but neither need to use the full amount of energy to learn the whole 

enviromnent. It can be seen that in this situation RI and R2 will use the same average 

amount of energy r. 
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If, for a single robot, the energy used to learn the whole environment is denoted as L, the 

average energy saving made from help by another robot as Sav, and the average sum of 

transmission energy Trans, then the following equations apply: 

p=L 

t--L-Sav 

s--L+Trans 

r--L-Sav+Trans 

Then since Sav>Trans (since transmission energy is smaller than motor energy) it can be 

seen that t<, r<p<. s. If the "pay-off' for a robot is defined as the reciprocal of the energy it 

has to use (i. e. low energy use implies high pay-off), and the pay-off is denoted as the 

capital letter of the energy consumption, then it can be seen that 7ý>R>P>S. This ordering 

of pay-offs is the main characteristic that makes the interaction between the two robots a 

game of the Prisoner's Dilemma. 

2.11.1 Why The Prisoner's Dilemma is a Dilemma 

The Prisoner's Dilemma is a dilemma since robot I needs to decide whether to help 

the robot 2 or not. Suppose that robot I thinks that robot 2 is going to help it. Then the 

highest pay-off it can get is T, through not helping robot 2. Alternatively, if it thinks robot 

2 is not going to help it, then the highest payoff it can get is P, also through not helping 

robot 2. So the logical thing for robot 1 to not help robot 2. However, by that same logic, 

robot 2 will not help robot 1. So two robots playing this g=e will be forced to get the 2nd 

lowest payoff P, which is worse than the payoff R if they had both helped each other. 
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So really they should help each other, but what rational robot would take the risk of 

getting the lowest payoff S in the hope that the other robot would also help? This is the 

dilemma the robots find themselves in. In fact, to truly ensure this is a dilemma, Axelrod 

requires another condition along with Y>R>P>S. It must be ensured that the robots cannot 

get out of their dilemma by taking turns exploiting each other. This requirement translates 

as R>(T+S)12. A contribution in the form of a proof of this property for the 2 robot system 

is given in the appendix. 

2.11.2 The Iterated Prisoners' Dilemma 

As it stands, the Prisoners' Dilemma scenario is still very different to that presented 

in this thesis. However, Axelrod introduces the idea of the Iterated Prisoner's Dilemma, 

where multiple games are played by robots, and where the games do not have to be 

independent. Thus robots can develop models of each other, and try to work towards higher 

pay-offs. For example if robot I finds than robot 2 is optimistic (i. e. robot 2 helps more 

frequently than average) then robot I can become more optimistic itself so as to get more R 

pay-offs. 

However, if robot 1 finds that this optimism is irrational (i. e. robot 2 helps 

whatever) then it can go back to refusing to help - thus giving the maximum payoff T. 

However, if robot I finds that robot 2 is retaliatory, i. e. that it will not help if it is denied 

help for too long, then robot 1 will see the sense of sticking to a helpful policy. 

Axelrod in fact found that the agent that faired best overall in the IPD only needed a 

very simple peer-model -just the memory of its opponents last move. The agent's strategy, 

called TIT-FOR-TAT, was the strategy of never being the first to withhold help, and 

repeating its opponents response from the previous game. So a TIT-FOR-TAT agent will 

be helpful if the other agent is helpful, and unhelpful if the other agent is unhelpful. 
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However, such a policy was found to be inefficient when applied to an actual multi-robot 

problem, i. e. the mail-delivery robots in [Sen 1996]. 

2.12 Summary of the Review of Multi-Robot Systems 

In this chapter a detailed taxonomy of mobile MRS has been introduced and this 

thesis has been placed in the context of these as studying Enviromnent/Peer-modelling, 

robot-resource sharing DARS. This was followed by a look at two areas of Multi-Agent 

Systems which are of relevance to this thesis. 

It was seen that none of these past systems have looked at the negative effects of 

infonnation-sharing in learning MRS. The principal contribution of this thesis will be seen 

to have some relationship with certain studies in MRS and MAS involving utility 

measures. However, these past utility measures have been used to study the emergence of 

co-operation or the assigning of tasks, whereas this thesis will be using them to address the 

distributed exploration vs. exploitation dilemma. 
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Chapter 3 

Method 

3.0 Proposed Solutions 

In this chapter a approach will be proposed for a problem that information-sharing 

introduces to learning multi-robot systems: the Distributed Exploration vs. Exploitation 

Dilemma. 

3.1 The Distributed Exploration vs. Exploitation Dilemma 

The distributed Exploration vs. Exploitation dilemma comes about through robots 

reducing the amount they learn by experience by achieving their goals too quickly through 

information sharing. The distributed exploration vs. exploitation problem is concerned with 

learning the shortest routes, to be specific: the shortest direct routes to goals. If one robot 

learns a route to a goal, then all other robots in the team will use that route and not bother 

learning any new, potentially shorter, ones by experience. So to prevent this a robot must 

sometimes withhold from asking for the route from another robot which has the route to a 

desired goal. But if a robot never asks for routes it would be pointless having route-sharing 

robots. So when should a robot ask for routes and when not? The answer to this question 

depends on the precise balance between exploration and exploitation required in the team. 

What is needed is some method of simply adjusting this balance. Such a method would be 

an original contribution to multi-robot systems, and one is now presented. 

Robot i keeps a count rgi of the number of routes ending in found goals (i. e. as 

opposed to ordinary salient points) that it has learned by experience. Then, given say robot 

1, if robot I's count rg, is less than the group average E(rgi) robot I will refrain from 
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asking for routes to goals. Thus it will be forced to learn new routes-to the goals. This 

solution requires the construction of E(rg) through broadcast transmission with other 

robots. However there is actually a local approximation which requires no transmitted 

construction of E(rgi) at all. Such an approximation is obviously desirable for the energy 

saving and better scaling attributes, and so it will be seen that this approximation is key to 

the original contribution of this thesis. 

The first step to developing this local approximation will be to develop a global 

approximation to the E(rgi) method. This is done by observing that the distributed 

exploration vs. exploitation dilemma only occurs when the robot team have some common 

goals. When robots have common goals, there will be a significant amount of information 

interchange, and the number of routes a robot is able to contribute to the team will be 

related to the number of routes ending in goals it has. Thus the larger rgi (the number of 

goal-ending routes learned by robot i) is, the larger the number of routes robot i will 

contribute to the team. Suppose the number of routes a robot i has been able to transmit to 

other robots is equal to ci (i. e. the number of times it has been requested for a route ending 

in a goal and been able to answer that request). Suppose that the average routes all robots 

in the team have contributed is E(c). If c, is greater than or equal to E(c) then robot 1 will 

ask for routes, and if it is less then robot 1 will abstain from asking. Thus if robot I's 

contributions of goal-ending routes to the team is equal to or above average, it can ask for 

the route to a goal. But if it is below average it will not ask for the route, so forcing itself to 

learn more until it has contributed more routes. It is suggested that this will approximate 

the E(rgi) algorithm above. It is further suggested that the following is a local version of 

this approximation which will require no global construction of E(c). 

The first step to developing this local version is to make the robots "selfish", i. e. 

robot 1 will always be happy to request information, and in fact will request it whatever the 

state of its "contributed routes" count. It will be up to other robots to reject robot I's 
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request for information. A robot, say robot 2, can keep a count of how many useful routes 

C2,1 it personally has received from robot 1. Robot 2 will then locally calculate E(C2i)instead 

of the global E(c) above. For example, Robot 2 will reject robot I's request for a route if 

robot I's count, i. e. C2,1 Js lower than E(C2), So robot 2 will refuse to provide robot I with 

any more information until Robot 1 has provided it with enough routes ending in goals. 

The E(cji) "thresholds" can be seen as a distributed approximation of the single E(c) spread 

across the robot team, since if robot 1 does not provide the other robots with enough routes 

(relative to the number of routes the other robots have received) then the other robots will 

individually refuse robot I information. So the robots not only have a distributed model of 

the space, but also a distributed approximate model of robot I's count of goal-ending 

routes, which is used in a distributed way to ensure robot 1 is contributing routes, i. e. 

learning new routes ending in goals. Thus it is argued that this local version will on 

average approximate the global E(c) algorithm above, and hence will increase the number 

of routes to goals robots will leam to goals by experience. 

The above algorithm actually turns the robots interaction into co-operation. This is 

because a robot in a group using this algorithm will only help another robot if that other 

robot has helped it in the past. This past helpfulness is usually seen as a predictor for future 

helpfulness. Hence a robot using the system in this thesis will only help another robot if 

that robot is likely to help it in the future. In other words a robot will only accept a short- 

tenn. loss (transmitting information to another robot) if it is likely to receive long-term 

gains (having information transmitted to it, thus saving searching time). For this reason, the 

system presented in this thesis will be labelled Co-operative Learning. 

Co-operative Learning can be used to adjust the balance between distributed 

exploration and exploitation in the MRS as follows. The criteria for robot 2 refusing robot 

1 is C2,, <E(C2)*. If this is replaced by kC2,, <E(C2i), i. e. robot l's contributions to robot 2 are 

multiplied by a factor k in the decision inequality, then the larger k is, the harder it will be 
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for robot 2 to refuse robot 1, hence the more exploitation robot I can make of robot 2's 

information. Furthermore, the lower k is, the more likely it is robot I will be refused 

information about how to achieve its goals, and hence it will have to explore for further 

routes itself Thus by increasing k the tendency to exploit is increased, and by decreasing k 

the tendency to explore is increased. 

3.2 Contribution 

Co-operative leaming, presented in section 3.1, is proposed as a solution to the 

balance setting in the Distributed Exploration vs. Exploitation Dilemma problem. Results 

will be given later showing that co-operative learning will allow the setting of desircd 

levels of multi-robot exploration and exploitation. 

These results will come from using a simulated multi-robot system which is 

presented in the next section. 

3.3 The Robot Model 

This section is a description of the learning mobile robot model which will be used 

to test the system presented above. The model is a simplified representation of a mobile 

robot. Such simplification is considered justifiable since it is not individual robot hardware 

abilities that are being studied here so much as concepts in robot information exchange. It 

is suggested that the principles introduced in the previous sections can be applied to any 

mobile multi-robot system where robots want to encourage a more distributed model. 

It was mentioned in chapter 2 (Section 2.3) that the robots studied in this thesis 

have five basic abilities: random sweeping, environment learning, point-to-point motion, 

communication and peer-modelling. The models of these abilities will be examined one by 

one. 
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3.3.1 Random Sweeping 

The robot can move forwards and backwards one body-length, and rotate on its axis 

left or right 90 degrees. It is assumed that the robot can perform these movements perfectly 

each time; hardware systems are not yet so reliable [Nehmzow 19911. 

The robot uses on-line learning and so will only move if it has a goal. A goal is the 

requirement to fmd a discriminable sensory cue or salient point. If the robot achieves all its 

goals - i. e. finds all the required cues - it stops searching and remains still until given 

another goal. (For convenience, in future the distinction between a goal and a required 

salient point will be waived. For example, a block marked with a red letter X will be called 

a "goal", although the actual goal is to move to a block marked with red X. ) When a robot 

has a goal it will move randomly according to a distribution. The precise probability 

distribution is (0.66,0.16,0.16,0.02) for (Forwards, Right 90, Left 90, Backwards). Only a 

few other distributions were tried in preparing experiments, and this was found to give a 

satisfactory search of the space. A lot more effort could have been put into finding the 

optimal distribution for the class of environment used in the robot experiments; but such a 

study of the relationship between distribution, enviro=ent and coverage is beyond the 

scope of this thesis. Another topic that is beyond the scope of this thesis is robot avoidance 

in point-to-point motion. As was seen in the review of multi-robot systems in chapter 2, 

robot avoidance in point-to-point motion is a non-trivial issue, and, since such an issue is 

beyond the scope of this thesis, robots will simply be allowed to pass through each other 

like "ghosts" in point-to-point motion. Because of the on-line nature of the learning 

algorithm, no distinction is made between learning and goal-achieving. Thus the ability of 

the robots to pass through each other applies to sweeping as much as to point-to-point 

motion. This connection between the two also means that a full description of the sweeping 
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process cannot be given until the environment learning system has been described more 

fully. 

3.3.2 Environment Learning 

The robot has the ability to develop and recognise discriminable sensory cues, and 

to detect obstacles. The obstacles are white robot-sized blocks. A robot can detect an 

obstacle by contact, and will then cease trying to move into the obstacle. Discriminable 

cues would normally be developed through context[Denham and McCabe 1995]. For 

example a robot moving in an unknown environment, say a planetary surface, may see an 

unusual rock and decide to use it as a marker, or discriminable cue. It can then position 

other places it visits relative to this cue, and it can develop other markers to increase the 

resolution of its relative positioning system. If, however, the robot comes across another 

rock which is indistinguishable from the first rock, it will have to widen its context to 

differentiate the 2 rocks. For example it may see that the second rock is next to a small 

gully, so it can use "rock plus gully" as a discriminable salient point. In this model all of 

these abilities are assumed rather than implemented explicitly, and "discriminable salient 

points" are scattered throughout the environment. They are represented in the environment 

by coloured capital letters, and will be written in the form [A, red], [C, green] etc. Since a 

robot's goals are also cues, the goals will also be represented in the forra [A, red] or [C, 

green]. A robot is defined as having achieved a goal once it isfacing the goal (so a robot 

may have to rotate, even though it is adjacent to a goal). 

A novel learning algorithm is used based on [Denham and McCabe 1995] - the 

design of this algorithm is motivated by a desire for easy generalisation into multi-robot 

systems. When this algorithm is put in the context of multi-robot communication in section 

3.3.4, its generalisation advantages will become clear. The robot has a memory in the form 
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of a sequence memory. The sequences are of "Sensory-Action Pairs"[Denham and McCabe 

1995] (SAPs): an action taken (i. e. Forwards, Backwards, Right 90, Left 90) paired with 

the resulting sensory input of the space in front of it. So if a Robot moves forwards one 

body-length and becomes adjacent to and is now facing the cue [C, red], the appropriate 

SAP can be written as (forwards, [C, red]). Note that the robot can only see objects directly 

in front of it. Hence if the Robot had been facing the cue [C, red] but had been I step away 

rather than adjacent, then it would have stored (forwards, 0) where 0 represents an empty 

robot-sized space. 

When a robot recalls an SAP (action, sense) from its memory it does the following. 

It looks at the action part of the SAP. If it is the "null" action - i. e. the action part of the 

SAP is empty - then it randomly generates an action (according to the distribution 

mentioned earlier), performs this action and stores it in the empty action space. However, if 

there is an action already stored in the SAP, then it perfonns that stored action. After taking 

an action, random or stored, the robot compares its sense input with the stored sense input 

of the SAP. If the two do not match then it stores the new sense input. In cases where the 

sense part of the SAP is empty, i. e. it contains the "null" sense, the robot will always detect 

a mismatch - since no actual sense input will match with the "null" sense. 

A robot's memory simply consists of sequences of SAPs. A robot 

recalling/following a sequence of SAPs will simply perform the behaviour described in the 

above paragraph on each SAP in the sequence in order. For example, suppose a Robot 

follows the sequence: 

(forward, 0), (right, 0), (forward, 1), (left, [Aredl) 

(Here 0 represents a empty robot-sized space - i. e. no obstacle or cue; and I represents a 

robot-sized obstacle. ) The robot will move forwards and check it sees an empty space. If so 
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then it turns right, and checks once again it sees an empty space. It then moves forwards 

again. Suppose an obstacle has been removed, and the Robot now sees a blank space in 

front of it, then it will detect a mismatch and re-learn (forward, l) as (forward, O). It will 

then turn left and be facing [A, red], so it can now remove the goal [A, red] from its list of 

goals to be achieved. 

If the robot was following the empty sequence: 

(null action, null sense), (null action, null sense), (null action, null sense) 

then it would generate actions for each null action, and detect mismatches for each null 

sense. Thus it would store a sequence of three consecutive randomly generated movements, 

together with the sensory results of each movement. 

The above reaction to a sequence of empty SAPs is actually a random 

sweeping/goal-searching behaviour. Therefore a robot will always be following a sequence 

in its memory, as long as it has a goal. A robot does not move independently of its memory 

- its actions are totally bound to its leaming. So when given its first goal a robot will try to 

use its memory to find the goal: it will be following SASs of empty SAPs - i. e. SAPs with 

null actions and null senses. Thus the robot will move randomly ("motor babble") and store 

everything it sees (due to mismatch with the null sense). 

When the robot is following a pre-learned sequence, it will follow the actions stored 

in that sequence. However, it also has the ability to detect novelty: i. e. if it takes an action 

and gets an unexpected sense result -a mismatch - then it knows that the SAS is no longer 

valid, that the environment has changed in some way (c. f the obstacle removing example 

above). It will thus start relearning, ignoring all stored actions from this point - but keeping 

the earlier actions in the sequence - and just motor babbling. 
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3.3.2.1 Chunking 

A robot's SASs will be referred to as "chunks" since the robot's learning algorithm 

is inspired by a learning method called "Chunking" [Denham and McCabe 1995]. When 

given its first goal, a robot will look for a chunk that ends in that goal. It will not have one 

so it randomly selects a chunk. It will try to follow an empty chunk, thus moving randomly 

and learning. When the robot meets its first discriminable salient point (say [A, red]), it 

resets the chunk and sets the chunk's "head" - i. e. its first SAP - to (null-action, [A, red]). It 

then starts following the chunk from the second (empty) SAP. It will motor-babble until it 

reaches another discriminable salient point (say [B, red]). This chunk now contains the 

information necessary for the robot to move from red A to red B, i. e. if the robot is facing 

red A and follows this stored chunk, it will reach red B (assuming no motor inaccuracy or 

wheel slip). The robot leaves this chunk stored and, assuming [B, red] wasn't its goal, will 

follow another empty chunk trying to find its goal. It will set the head of this SAS to (null- 

action, [B, red]) and start following the empty SAPs (motor-babbling) until it finds and 

stores another discriminable salient point, say red C, after which it will move to another 

empty SAS. So it now has chunks for A->B and B->C. As this process continues the robot 

builds up a map of the environment based on the discriminable cues. 

A number of problems may occur during this mapping process. The chunks are 

limited to a finite size M, hence if a robot doesn't reach a discriminable salient point within 

M steps it resets (i. e. empties) the chunk and continues moving, leaming from where it left 

off, but storing from the beginning of the chunk. Another problem is circular chunks. To 

overcome this, if a robot has a chunk red A->red A then it resets this chunk and gives it 

head (null, [A, red]), following this reset chunk from its second SAP onwards. Finally, if 
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the robot reaches a discriminable cue C, but the chunk doesn't start with a discriminable 

cue, then it resets the chunk, putting C at the head, and starting from the second SAP again. 

3.3.3 Point-to-point Motion 

If a robot has a goal, it uses its memory to find the goal. If it is following an empty 

chunk, it is essentially using that chunk to achieve its goal by trying to reach the goal 

through random movement. A robot also uses chunks to reach its goal in a more 

deterministic way, or at least to increase the probability of reaching a goal. 

When a robot is searching for goals and reaches a discriminable salient point, it , 

checks to see if it can reach any of its goals from this point. A robot's goals are held in an 

ordered list, with goals at the beginning of the list getting first attention. Suppose a robot 

has a goal list (A, B) - i. e. it has goals A and B. When it reaches, say, C it selects the first 

goal in the queue, A, and searches its chunks to find if it has the chunk C->A. If it has then 

it can follow this chunk to A and achieve a goal. If not then it can check if it has a chunk 

C->B, following this to B if it has. 

But suppose the robot has neither of these chunks. It can still attempt to increase its 

probability of finding A and B by generating goals. When a robot is given a new goal it 

searches for all chunks ending in that goal. If such chunks exist, and the robot can find the 

beginnings of any of these chunks, then it can achieve its goal. So what it does is add the 

heads of these chunks as goals at the end of the list. For example, suppose the robot has 

chunks D->A, E->B, F->B, X->D, Z->D and is given goals (A, B). The robot selects the 

first goal in the list, A, and searches for chunks - it will find D->A and hence update its 

goals list to (A, B, D) since achieving D will enable it to achieve A. Next the robot selects B 

and will hence generate the goals E and F, leading to a goal list (A, B, D, E, F). The robot 

selects the next goal in the queue, D, and searches for chunks ending in that cue, generating 

74 



X and Z as goals, and leading to a list (A, B, D, E, F, X, Z). The Robot will then run through 

the rest of the goals in order - E, F, X and Z- but it can be seen that it has no chunks with 

these "tails" (i. e. ending in SAPs with these sense parts), so the goal generation will end 

here until the robot is given another goal. 

The aim of this goal generation is to increase the number of discriminable salient 

points that the robot can reach its original goals from, and thus increase the probability of 

the robot reaching its original goals. Suppose that the robot manages to find Z after it had 

done the above goal generation. Then it would have been able to achieve its goal by 

following Z->D->A. To facilitate this chaining of sequences, each goal has a "root". The 

root of a goal is its reason for existence - for example D exists as a goal because of A: D 

"has root N'. E exists as a goal because of B: E has root B. A exists for its own sake - 

hence it is said to have root A, or to be "auto-rooted". Thus the above goal list, including 

roots, can be written as 
(AA, BB, DA, EB, FB, XI), ZD). Roots are used as follows: if the robot 

reaches cue Z it can remove Z as a goal, but before it removes goal Z, it notes that Z has 

root D. So when it has removed Z as a goal, 'it knows it should search its memory for 

chunks ending in the root D. It will find such a chunk leading straight from its current 

position Z (it is certain this chunk exists because the production of ZD by goal generation 

proves it). The robot will then follow this chunk to D. Then before removing D as a goal, 

the robot notes that D has root A, and so will search for chunks ending in A. It will find 

such a chunk with a head at its current position and so will follow this chunk to A, 

removing A as a goal. The robot's goal list will now be (BB, EB, FB, XD). In fact, this is not 

quite true; the goal list will actually be (BBIEB, FB), XDwould have been removed for the 

following reason: when the robot removes a goal, it also runs through its goal list and 

checks that all roots are still goals; those goals whose roots are no longer goals (i. e. which 

are redundant) are deleted. So when the robot achieved goal DAit would have run through 

its goal list and removed X, This process avoids robots building up redundant goals. (The 
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robots also need to avoid building up potentially looping structures of goals and roots, e. g. 

(BB, EB, FB, EF). To avoid this, a goal cannot be added twice to the list, no matter what its 

root. ) So the robot will now be left with goal list (B, 3, EB, FB), and it can now move around 

searching for B, E or F. 

It was said earlier that goals were generated whenever a new goal was added. This 

statement needs to be clarified since goals are being added all the time during generation. 
II 

To be precise goal generation only happens when an auto-rooted goal is added. (Or, as will 

be seen in the next section, when an auto-rooted or non-auto-rooted goal is provided by 

another robot). Goals whose roots are not themselves are actually subgoals, and if their 

addition always led to a restarting of goal generation the robot could become deadlocked 

through infinite recursion. 

So the robot generates all subgoals relating to a goal in one go, when that new goal 

is added. However, when following these subgoals back to the goal, it processes each 

subgoal (i. e. searches for relevant sequences) independently, rather than using the subgoals 

to create a supersequence (a "sequence of sequences") and locking itself into following that 

supersequence. The independent processing ("distributed') approach to sequence- 

following is designed for use in a system of multiple robots. The reason for its importance 

in generalisation to multi-robot systems cannot be fully explained until the robot 

interaction system has been described - but to put it simply, the independent subgoal 

processing allows a robot to more simply take advantage of new chunks that other robots 

discover during the time it is following subsequences back to a goal. (There is actually 

another advantage, not related to multi-robot systems, which has to do with novelty 

detection. If the robot detects novelty while following a fixed supersequence, it will have to 

jump out of the process of following the pre-defined set of sequences, and concentrate on 

the single sequence it is following, trying to re-leam it. Thus this approach would require 

two robot states: learning and supersequence following. However, the robot model 
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presented here simplifies this - the robot is always following a sequence, whether it be a 

subsequence or non-subsequence, and (re-)leaming is just a special case of sequence 

following. ) 

3.3.4 Communication 

The purpose of the robot model design is to facilitate generalisation to a multi-robot 

system. In this multi-robot system, robots can interact in only one way: remote 

communication. It is envisioned that robots communicate using broadcast radio 

communication. A broadcast system is preferred as it scales better than a multi-channel 

system. It is assumed that a robot can send out a transmission with an identifier such that 

all the other robots in the receiving area (which is the whole simulation environment) will 

know who the transmission is from. It is also assumed that robots' broadcasts do not 

interfere; this can be achieved using the CSMA/CD-W protocol[Wang and Premvuti 1994]. 

Robots can broadcast Requests, Request Replies, Signals, and SAS's. 

An important assumption of the communication (in SAS and non-SAS systems) is 

that the discriminable sensory cues can be communicated in a form that is recognisable by 

all Robots, i. e. that two Robots understand what the transmitted sense [A, red] looks like to 

them. This is a non-trivial assumption and involves the robots developing some sort of 

common vocabulary. There has been some study into the development of 

vocabulary[Dautenhahn 1997] which suggests that this assumption may be reasonable, but 

such problems are beyond the scope of this thesis. 

3.3.4.1 Request for Goal Co-operation 

It has been mentioned that robots can broadcast Requests, Request Replies, Signals, 

and SASs. Robots can broadcast one type of request -a Request for Goal Co-operation 
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(RGC). The purpose of an RGC is to allow robots to share information about the 

environment. The syntax of an RGC is RGC(r, Q) where r is the robot's call sign, and Q is 

some discriminable sensory cue. A robot r with goals will send an RGC(r, Q) (Q being the 

first goal in its goal list) whenever it finds any discriminable salient point. A robot R 

receiving the broadcast will search its chunks for those ending with Q. It will then 

broadcast a series of replies rRGC(R, r, Q, q) which states that robot R is telling robot r that 

it has chunks going from qj to Q. If any of these are actually the cue that robot r is at, then 

robot r broadcasts a Cue Match Signal CM(R, r, Q, qi) to tell robot R to broadcast the SAS 

from q, to Q. (The system actually involves robot r comparing the lengths of sequences 

offered by different robots, and randomly selecting from the shortest ones. ) Robot r can 

then learn this sequence and follow it to Q. If robot r is not at a qi then it just adds the goals 

qj (with root Q) to its goal list - generating more goals locally afterwards if appropriate. If it 

later finds itself at one of the qj then before removing the goal qj, it will notice that qj has 

root Q and it will broadcast a CM on Q to get the SAS qi->Q. It can be seen that the RGC 

system is just a multi-robot version of the single-robot goal generation and subsequence- 

following system. In fact, a robot will always check if it has the relevant chunks itself 

before it bothers broadcasting to other robots. 

3.3.5 Implementing the Proposed System 

The proposed system for dealing with the distributed exploration vs. exploitation 

dilemma is implemented as follows. In a population of P robots, each robot j has a set of 

counters cji (i between 1 and P) which are initially set to 0. To see how this is used to 

implement the proposed solution, take two robots 1 and 2. Robot 2 increments C2., 

whenever robot I responds to an RGC positively (i. e. whenever robot I has a chunk that 

robot 2 has requested and broadcasts an rRGC). Then when robot 2 receives an RGC from 
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robot 1 it calculates E(c, ) over all i-i. e. the average number of times robots have 

responded to its RGCs with subgoals. If kC2,, <E(C2)* (where k is set according to the 

designer-desired balance of exploration vs. exploitation) then robot 2 ignores the RGC, 

otherwise it tries to answer the RGC. Robot 1 will treat robot 2 in a similar way whenever 

it receives an RGC from robot 2. 

When robot 2 receives a CM from robot 1, it will always respond (and visa-versa). 

This is because robot I will only send a CM to robot 2 if robot 2 has accepted an RGC 

from robot 1 in the past - i. e. if robot 1 has contributed sufficiently in the past. So the 

robots use a "my word is my bond" system - once robot 2 has generated a goal for robot I 

it will always provide the chunk for that goal. Without such a system, robots would 

constantly generating spurious goals. 

3.4 Summary of Method 

In this chapter various methods of setting the balance between Distributed 

Exploration and Distributed Exploitation in multi-robot systems have been addressed. It 

has been suggested that the most efficient approach is Co-operative Leaming, due to its use 

of local rather than global information. 

This chapter has also introduced a multi-robot model to be used for testing the 

effectiveness of the Co-operative Learning system. 
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Chapter 4 

Results and Discussion 

4.1 Experimental Testbed 

The experimental testbed was a two-dimensional space 93 by 33 robots in size. It 

consisted of 3 types of objects: obstacles, empty space, and salient points. There was a wall 

around the space made up of obstacle objects, and various structures were scattered around 

the space also made up of the obstacle objects. A picture of the test bed is given below: 

Figure 1.0 

The different coloured letters dotted around the space are the discriminable salient points, 

all I robot in size. They are represented by the letters 'A' to '0' in the colours red, blue, 

80 



green and yellow. So there are 15*4=60 discriminable salient points in a space of size 

93*53=3069. This gives a salient point/space ratio of 2%. 

All experiments started with a 15 robot team in a line across the top of the space. 

For each occasion, each robot would be given a number of goals, between 8 and 56. Robots 

would all be given the same goals since this is the worst case for the distributed exploration 

vs. exploitation problem. If robots have different goals, then they are less likely to learn 

from each other, whereas if they have common goals, it is possible for a robot to achieve 

all its goals while learning little itself by experience. 

Experiments were terminated when the 15 robots had achieved all their goals. Each 

result listed here is a mean from 10 trials. Due to the random searching component of 

exploratory behaviour in unknown enviromnents, each trial would be expected to exhibit 

different behaviour. Therefore the effects of co-operative learning would be expected to 

differ from trial to trial. So the most that can be said about the proposed solution is its 

average effect over a number of trials, and its mean deviation from this average. Since 10 

trials are done for each point, a West will be used to calculate confidence intervals for any 

average effects. 

The level of group exploration is measured by the average number of goal-ending 

routes robots learned by experience, rather than from other robots. The Map-Contribution 

of a robot to the team map will be defined as the number of goal-ending routes the robot 

has learned by its own experience. Thus a relatively high level of average map contribution 

across the team implies a relatively high level of exploration. The level of group 

exploitation is related to the amount of time it takes to achieve a mission (i. e. for all robots 

in the group to achieve their goals). Because the team uses random searching, the only 

deterministic influence on their mission time is the amount they are allowed to exchange 

information. Hence a lower rate of information exchange, i. e. a lower level of exploitation, 

would on average lead a longer mission time. 
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So the measure of success for co-operative learning will be if reducing k 

sufficiently has a 90% chance of increasing average map-contribution (i. e. increasing 

exploration), and increasing k sufficiently has a 90% chance of decreasing mission time 

(i. e. increasing exploitation). It is expected that because of the implicit dilemma, increasing 

exploration will also lead to an increase in mission time, that is a decrease in exploitation; 

and increasing exploitation will also lead to a decrease in map-contribution, that is a 

decrease in exploration. The reason for the 90% figure above is that the effects of k will all 

be examined at the 90% significance level. 

4.2 Experiment 1- Demonstrating the Distributed Exploration 

vs. Exploitation Dilemma 

The distributed exploration vs. exploitation dilemma concerns the fact that once one 

robot in a map-sharing group learns a route to a goal, all other robots will use that version 

of the route rather than trying to learn new - potentially better - versions. This effect is 

shown for a variety of numbers of common goals in figure 1.1, with 99% error bars. 

Figure 1.1 shows that the introduction of map sharing (i. e. increased exploitation) 

reduces the average map-contribution (the average number of new versions of goal-ending 

routes that are learned by experience per robot). However, it was also found that 

introducing map sharing also decreases the average route count per robot (a route does not 

have to end in a goal, just a salient point). Thus a decrease in goal-ending routes learned by 

experience would be expected anyway. So to confirm the direct effect of map sharing on 

exploration, the percentage effects on average map contribution are shown in figure 1.2. 

The effects in figures 1.1 and 1.2 are as a result of maximum exploitation between robots, 

since robots will always share information if asked. This is the equivalent of using co- 
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operame learning with an Infinite value for k. Experiments are now shown exanillinw, thc 

effects of finite values of k on the robot team. 
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4.2.1 Experiment 2- The Effects of Altering k 

Once again the experiments were run with a 15 robot team, each robot being given 

56 goals. Each robot's 56 goals were the first 14 letters of the alphabet in red, green, 

yellow and blue. Experiments were run for values of k between 0 and 4, moving up in 

increments of 0.5. The effects on average map-contribution per robot are shown in figure 

1.3 with 90% error bars. 

It can be seen that for values of k less than about 1.3 there will be an increase in the 

average map-contribution, indicating and increase in average exploration. Decreasing k 

from just under 1.5 to 0.5 leads to a rise in this increase, as does decreasing k from I to 0. 

However changing kjust in the range I to 4 will not lead to any significant change. 

The effects of k on mission time are shown in figure 1.4 with 90% error bars. It can 

be seen in figure 1.4 that for values of k less than about 1.9 there will be an increase in 

average mission time, indicating a decrease in average exploitation. Decreasing k from 2 to 

1 to 0, and from 1.5 to 0.5, decreases average exploitation at each decrease. However, just 

adjusting k in the range 4 to 1.5 has no significant effect, but decreasing k from 3 to 1.5 to 

I to 0.5 has a 70% probability of decreasing average exploitation each time. 

Looking again at figures 1.3 and 1.4, the [0,4] range for k can be divided into 3 

parts: 

e 10,1.51 Decreasing k can lead to a decrease in exploitation and an increase in 

exploration. 

* Decreasing k can lead to a decrease in exploitation but no increase in 

exploration. 
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[2,41 Decreasing k leads to no decrease in exploitation and no increase in 

exploration. 

So the effects of k are non-symmetric: decreasing k has more effect on decreasing 

exploitation (demonstrated by a larger increase in mission time) than on increasing 

exploration. The ideal situation would be the opposite, i. e. to get a smaller increase in 

mission time than in exploration. This would mean that robots would contribute more, but 

get their tasks done more quickly. 

This non-symmetry of the co-operative learning solution will now be analysed. 

Mission time is increased as k decreases because robots are withholding information. 

However, it would also be expected that withholding information would force robots to 

learn more by experience, and hence increase map-contribution. For some reason, when k 

is in [1.5,2] this is not true - decreasing k leads to robots being given information in such a 

way that their mission time is increased while their map-contribution is not. A possible 

explanation is as follows. Initially robots who have not contributed much to the team can 

be buffered by larger values of k. As other robot's contributions build up, this buffer may 

not be sufficient to disguise the unhelpfulness of the low-contributors. Also the higher 

contributors will benefit from a positive feedback effect - the more they contribute, the 

more they can get from others, thus the more they can contribute. So the gap between the 

low contributors and the high contributors will grow. During the initial buffering period 

robots will be provided with a number of routes "for free", thus decreasing exploration. For 

larger values of k this "for free" period may go on indefinitely. For smaller values of k this 

"for free" period may only last for a few requests. So for certain values of k "in the 

middle", the "for free" period will occur for a significant number of requests at the 

beginning of the mission. During the initial part of the mission, robots will not tend to have 

subgoals, and will hence be making requests for the initially given , or auto-rooted, goals. 
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So the routes received "for free" will tend to be routes to the "main" goals (these routes 

will begin with future subgoals). Once the "for free" period is over, robots will be spending 

much of their time searching for and requesting for routes to these subgoals, and to these 

subgoals' subgoals, the number of which can grow exponentially (since if a goal generates 

n subgoals, this can lead to 2' subsubgoals). The initial free period has little effect on the 

success of robots' request for subgoals. Hence a large chunk of the mission time will 

remain unchanged by the "free-lunch" effect, since it is spent looking for subgoals. 

However, although the robots are learning alot of subgoal-ending routes by experience, 

many of their (main)goal-ending routes will have been learned during the free periodfroni 

other robots. And since the map-contribution is affected mainly by "main" or auto-rooted 

goal-ending routes learned by experience, there will be less increase in map-contribution 

than in mission time, and hence less increase in exploration than decrease in exploitation. If 

this analysis is true then it may be that the asymmetry is a property of the environment 

learning algorithm rather than co-operative learning. Further experiments, involving the 

measuring the ratio of subgoals to goals, would need to be done to actually test this 

analysis. 

The above discusses the idea of an initial "for free" period for larger values of k. 

There will actually be a short "for free" period for all non-negative values of k. This is due 

to the initial 0 thresholds of the robots, caused by the fact that all robots will initially have 

received no routes. When a robot receives its first request, it will be willing to help since, 

even though its evaluation of the requesting robot will be 0, its threshold is also 0. The 

robot will continue being automatically helpful until one of its requests is successfully 

answered. Then its threshold will go above 0 and its "for free" period may be over 

(depending on the value of k). If k--O the "for free" period will end as soon as it receives it 

first route from another robot. But it is interesting to note that this for free period does exist 
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for k--O. So k--O does not indicate 0 exploitation. But 0 exploitation could be achieved by 

any negative value of k. 

The 0 threshold effect highlights an implication for low values of k. If k--0.5 and 

robot 1 has had 8 chunks given to it by separate robots during the initial "for free" period, 

then its threshold will be 8/14=0.57. However, if any of those 8 robots request a route from 

robot I now, they will not get it since k*1=0.5<0.57. They have effectively "priced 

themselves out of the market". There are a number of factors here: robot population, robots 

contributing, and size of k. The maximum number of routes a robot can be given during a 

"for free" period to avoid this effect is k*(population-1). So if it is required that a robot can 

receive a route from every robot in the population during the "for free" period , then the 

value of k must be 1. If it is only required that a third of the population can do this then 

k--0.33. Thus low values of k can reduce robot interaction in more ways than originally 

intended. 

Further on from this, if when k--0.5 and robot 1 has had 8 chunks given to it by 

separate robots during the initial "for free" period, and is therefore refusing requests from 

the 8 contributing robots, these 8 contributing robots will not be developing a true model of 

robot 1. This is because, even if robot I is increasing its map-contribution, the 8 robots will 

not know since robot I will not help them. This highlights an effect of co-operativc 

learning in developing peer models: robot's models of each other only develop through 

successful interaction. The lower k is, the harder it will be for robots to develop local 

models of each others' usefulness, since the less they will successfully interact. So 

decreasing k has two effects: it increases the size of the map contribution needed to get 

help from the team, and it makes the teams opinions of each other lower and less accurate. 

The lowness of the opinions will be offset somewhat by the fact that the threshold may be 

lower as a result. But the inaccuracy of opinions can lead to some robots be overvalued 
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relative to others, and thus pushing up the threshold and decreasing general interaction. 

This could contribute to the increasing slope as k decreases. 

This extra decrease in exploitation due to inaccurate models is similar to robots 

getting stuck in a non-optimal payoff D in the Prisoner's Dilemma, and also to the problem 

in [Sen 1996] of how to get selfish robots co-operating when they have insufficient 

information about each other. [Axelrod 1984] overcomes this problem using a TIT-FOR- 

TAT strategy. [Sen 1996] argues that the TIT-FOR-TAT strategy is ovcr-simplistic for 

multi-robot systems, and his more flexible utility measuring reciprocal algorithm uses a 

probabilistic co-operation decision to allow robots to develop models of each other, even 

when they have not been useful to each other in the past. Perhaps such a probabilistic 

decision mechanism could be used for the co-operative, learning in this thesis to temper the 

rate of decrease in exploitation and to reduce the 0 threshold "for free" period. So in the 

same way that robots use random searching to explore the non-peer environment, they 

could use a forrn. of random search in exploring the peer environment more fully, and 

perhaps reduce the standard deviations of the results above through a more consistcnt and 

thorough search. 

Sen's algorithm also has parameters for altering the probability distribution of the 

random search. These, like k, can be thought of as "co-operativity" parameters. The higher 

they are, the greater the chance of interaction; though of course Sen is not looking at 

reducing interaction for the sake of learning, since his robots only learn about each other, 

and the co-operation is physical (i. e. robot I does a task for robot 2 that it can do more 

easily than robot 2). Sen is using co-operation to maximise the advantages of the multi- 

robot scenario (parallel and more efficient achievement of goals) which avoiding the 

disadvantages (robots not contributing to the team achievement of goals). This is what this 

thesis is attempting to address, but in the context of multi-robot learning. 
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The is one final factor related to local approximations which may increase 

exploration. Robot 1 can only develop a model of robot 2 as long as robot 1 is making 

requests from robot 2. As more robots in the team achieve their goals, they will make less 

requests from other robots, thus towards the end of the mission time there will be robots 

who are unable to be seen as "contributing enough routes to the team" simply because a 

large part of the team does not need any more routes. Hence the stationary members of the 

team will be less inclined to help those robots still moving, despite the fact that, in a group 

with common goals, the stationary members of the team may be those with the most 

relevant knowledge (since they have found all the goals). So the robots left over will have 

their search time slowed down inordinately by this "I'm alright Jack" syndrome. If robot 2 

was judging requests from robot I using robot I's actual count of map contribution, then 

even when robot 2 was stationary, its opinion of robot 2 could still be incrcasing. But in the 

local approximation of this count, if exploration is increased by I route (i. e. robot I on 

average has to provide 1 more goal-ending chunk learned by experience to the other 14 

robots) then if half of those robots stop moving before robot I has provided them with I 

extra chunk, then robot I has only half the team left to persuade to help him in his goal. 

It should be emphasised that all of the above analyses are hypothetical, and that 

further experiments would need to be done to confirm them. 

4.2.2 Summary of the Effects of k on Co-operative Learning 

In terms of exploration, for values of k less than about 1.3 there will be an increase 

in average exploration, and decreasing k from just under 1.5 to 0.5 leads to a rise in this 

increase, as does decreasing k from 1 to 0. In terms of exploitation, for values of k less than 

about 1.9 there will be a decrease in average exploitation - decreasing k from 1.9 to 1 to 0, 

and from 1.5 to 0.5, decreases average exploitation at each decrease. 
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For k in the [0,4] range, k can be divided into 3 parts: [0,1.5], [1.5,2], and [2,4] in 

which both exploration and exploitation change, only exploitation changes, and neither 

change, respectively. So the effects of k are non-symmetric: it has more effect on 

exploitation than on exploration. This may be because for k in the range [1.5,2], robots' 

"for free" time provided by k only gives them a chance to gain help about auto-rooted goals 

as opposed to subgoals. A similar "for free" period occurs initially for all non-negativc 

values of k due to robots' initial 0 thresholds. 

Possible effects of lower k are robots pricing themselves out of market, and an 

increase in the inaccuracy of deterministic co-operative learning in developing pecr 

models. This is related to the problem in [Sen 1996] and suggests the possibility of using 

Sen's stochastic learning algorithm to make robot's models of each other more accurate for 

lower k, and possibly make the co-operative learning more stable. Another effect of 

deterministic co-operative learning is the "I'm alright Jacle' syndrome when robots have 

finished their tasks. 

4.2.3 Experiment 3- The Effect of Number of Goals on 

Co-operative Learning 

In the following experiments, the regions [0,1.5], [1.5,2], (2,4] will be represented 

by the values of k of 0.5,2 and 3.5. 

To test the effect of the different numbers of goals, the number of goals per robot 

was altered between 8 and 56 (going up in increments of 8). Each robot's n goals where the 

first n letters of the alphabet in red, green, yellow and blue. Thus the robots had common 

goals. Experiments 3a, 3b and 3c - where k--O. S, k--2 and k--3.5 respectively - examine tile 

effect of the number of goals. These results for increases in average map-contribution are 

shown in figures 1.5,1.6 and 1.7 respectively, with 90% error bars. 
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It can be seen that only Figure 1.5 indicates any significant increases in goal-ending 

routes learned by experience, i. e. when k=0.5. Co-operativc learning causes an inci-case in 

average map-contribution for 16 goals and above. Also ail increase in goals Froni 8 to 32 

and 16 to 56 will lead to an increase in the effects of-co-operative learning oil avcragc map- 

contributions. There is, however, no significant cliangc in avcrage niap-contribLilions as 

goals increase for k--2 and k---3.5. Neither is there any signilicalit 111cf-Casc III 111ap- 

contributions due to co-operative learning when k-2 ýIlld k 3.5. 

So why does an increase in goals lead to an increase In C1,11CCts of' co-opel"IMC 

leaming when k--0.5? In chapter 3, when developing the local approximation idcas, it \vas 

observed that the approximation of the count ofa robot's mal)-contribution dependcd on a 

significant aniount of interaction dLIC to Common goals, with a greatcl. allimilit oll 

interaction improving the accuracy of the approximation. Morc common goals nicans morc 

interaction and hence an improwment in the accuracy oftlic approximations. 

Another reason could be related to the mitial () tIll-CS11olds of' robots. (; I\, Cll a SYSICIII 
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of 3 robots, each with goals (A, B, C), suppose the robots have not interacted before and 

robot I finds a route to A. When robots 2 and 3 ask for a route to A, robot 3 will give them 

this route since its threshold will be 0 (since it has not received any routes). So every robot 

in the system now has a route to 33% of the goals. If there had been 8 goals, then they 

would only have routes to 13% of the goals. If robot 1 finds a route to B, and still has not 

received any chunks from other robots, then robots 2 and 3 will still get co-operation from 

robot 1, even though they have not contributed anything to the team and robot 1 has. Thus 

the team will have routes to 66% of the goals with only I robot having contributed. With 8 

goals this would only have been 25%. Thus an increase in the number of goals decreases 

the exploitatory effect of the 0 initial thresholds and local approximations, thus incrcasing 

exploration. This suggests that in systems where robots have very small numbers of goals, 

it may be necessary to use the full global algorithm described in chapter 3 rather than the 

local approximation. 

Moving now to the effects of the number of goals on the mission-time increasing 

effects of k are shown in Figures 1.8,1.9 and 1.10 respectively, with 90% error bars. Figure 

1.8 shows that when k=0.5 there will be an increase in mission time of at least 35,000 

steps, indicating a decrease in average exploitation. Figure 1.8 also shows that 32 goals 

leads to a greater decrease in exploitation than 8 and 24 goals, and that 48 and 56 goals 

lead to a greater decrease in exploitation than 8 goals. When k--2, figure 1.9 shows that for 

all numbers of goals there is a decrease in exploitation. For k=3.5 figure 1.10 shows there 

is a decrease in exploitation for 8 and 24 goals. 

The mission time figures (1.8,1.9,1.10) are very different to the goal-ending routes 

learned by experience figures (1.5,1.6,1.7). This is most noticeable when k=0.5, where 

figure 1.5 shows a clear trend of increasing ranges in number of goal-ending chunks 

learned by experience, whereas in figure 1.8 no such trend is detectable. 
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Effect of Number of Goals on Increase in Mission Time When k=0.5 
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Effect of Number of Goals on Mission Time Increase When k=3.5 
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4.2.4 Experiment 4- The Effect of Changes in Population Size 

The effects of changing the robot population from 3 to 15 (in steps of 3) were 

examined for k--0.5, k--2 and k=3.5. A graph ofthe effects of population size oil increase ill 

average map-contribution is shown in figure 1.11 with 90% error bars. 

It can be seen in figure LI I that when k=0.5 all populations experience all increase 

in average map-contribution per robot, but there is no significant difference M 111cse 

increases between population sizes. When k--2 and k=3.5 there is no significant 111creasc ill 

niap-contribution for any population size, and populations of size 3 experience no 

significant change in effects for different values of k. 

96 



Effects of Population Size on Increases in Map Contribution 

10 

8 

6 

4 

2 

0 

-2 

-4 

--- t 

Population Size 

Figure 1.11 Experiment 4 

140000 

120000 

100000 

80000 

c 
.2 60000 

40000 
C: 

20000 

0 

-20000 

-40000 

Figure 1.12 Experiment 4 

Effects of Population Size on Mission Time Increases 

k=0.5 

k=2 

k=3.5 

k=0.5 

k=2 

k=3.5 

97 

Number of Robots 



For populations 6 and upwards, co-operative learning with k--0.5 increases the 

number of goal-ending routes learned by experience per robot by at least 3, and these 

effects are significantly greater than the k--2 and k--3.5 scenarios. 

The changes in mission time for different populations are shown in figure 1.12. 

Figure 1.12 shows that for population 3, once again, the average effects of k on are such 

that the k--O. S, 2 and 3.5 are not significantly different in their effect, except for the fact 

that when k--0.5 leads to an increase in mission time. The effects of k--2 and k--3.5 are 

indistinguishable in terms of mission time increases, except when the population is 15. 

When the population 15 there is a mission time increase when k--2, and there is also a 

mission time increase for population 12 when k--2. When k--0.5 all populations experience 

an increase in mission time due to co-operative learning, with further increases in mission 

time moving from populations 3 to 9 to 15. 

The reasons why lower populations experience less significant increase in mission 

time may be related to the reasons given for populations with lower numbers of goals 

experiencing less map-contribution increase. The smaller the team is, the less interaction 

there will be, and hence the less accurate the distributed model will be. Suppose that given 

a3 robot team, robots 2 and 3 make one request each of robot 1 in a time period T. Then in 

that same time period T, in a 15 robot team, up to 14 robots could make requests from 

robot 1. Thus robot l's (lack of) knowledge would be "explored" 14 times rather than just 

twice, hence the distributed model can be more accurate. The other possible reason for 

smaller increases in mission time for smaller groups is that larger groups of robots will 

increase their thresholds above 0 more quickly because they are more likely to get answers 

to requests. This may reduce the 0 threshold over-generosity. 

As was mentioned at the end of experiment 2, it should be emphasised that the 

analyses for experiments 3 and 4 are hypothetical, and that further experiments would need 

to be done to confirm them. 
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4.3 Contrasting the Effects of Goals and Population 

When k--0.5, increasing number of goals shows a clear trend through the increase in 

average map-contribution (Figure 1.5), but a less clear trend in mission time (Figure 1.8). 

Conversely, increasing the population shows a clear trend for increase in mission time 

(Figure 1.12), but no clear trend for the increase in average map contribution (Figure 1.11). 

So population increases the effects of low k on mission time, and goals increase the effects 

of k on map contribution. 

This raises the issue of efficiency. Without co-operative learning, the system would 

be working at maximum exploitation (infinite k). The effect of co-operative learning is to 

allow a reduction in exploitation, giving a consequent increase in exploration. Reducing 

exploitation increases mission time, and usually the less time a mission takes the better. So 

an efficient system will get as much exploration as possible for the smallest reduction in 

exploitation possible. As population increases there are significant increases in mission 

time, without any significant increases in exploration. Hence co-operative learning is less 

efficient for larger populations. Furthermore, as the number of goals increases, co- 

operative learning gives more exploration with little significant increase in mission time. 

Thus co-operative learning is most efficient for higher numbers of common goals. So the 

ideal MRS for co-operative learning would involve smaller numbers of robots, with a large 

number of common goals. However, this is not to say that the system does not work for 

larger populations, or smaller goal numbers, as it clearly does. This is just an observation 

of which scenarios use co-operative learning most efficiently. 
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4.4 Summary of the Effects of Goals and Population Size on Co- 

operative Learning 

When k--0.5, co-operative learning causes an increase in exploration for 16 goals 

and above, and a decrease in exploitation (leading to an increase in mission time of at least 

35,000 steps for all numbers of goals). An increase in goals from 8 to 32 and 16 to 56 will 

lead to an increase in exploration, and 32,48 and 56 goals lead to a greater decrease in 

exploitation than 8 goals. Also 32 goals leads to a greater decrease in exploitation than 24 

goals. 

When k--2, all numbers of goals experience a decrease in exploitation, but there is 

no significant change in exploration, nor a trend in exploration as goal numbers increase. 

For k--3.5 there is a decrease in exploitation for 8 and 24 goals. But once again there is no 

significant change in exploration, nor any trend as goal numbers increase. 

So greater numbers of goals increase exploration - possibly because more common 

goals leads to more interactions and therefore better models, and because larger numbers of 

goals lessen the effects of the initial 0 threshold, though these ideas would need to be tested 

in further experiments. 

Moving on to the effects of population size, when k--0.5 all populations experience 

an increase in exploration, but there is no significant difference in these increases between 

population sizes. Similarly all populations experience a decrease in exploitation when 

k--0.5, but with a further decrease in exploitation moving from populations 3 to 12 and 9 to 

15. For k--2 and k--3.5 there is no significant increase in exploration for any population 

size, and populations of size 3 experience no significant change in effects for different 

values of k. Population 3 also has no significant difference it its effects on exploitation for 

different values of k, except that when k--0.5 there is a decrease in exploitation. For all 

populations, co-operative learning with k--0.5 increases the exploration. For k--0.5 with 
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populations greater than or equal to 6 average map-contribution per robot increases by at 

least 3, and these effects are significantly greater than the k--2 and k--3.5 scenarios. The 

effects of k--2 and k--3.5 are indistinguishable in terms of exploitation decreases, except for 

population 15, and for the fact that when the population is 12 and 15 there is an 

exploitation decrease when k--2. So low populations experience less significant decreases 

in exploitation, possibly for reasons similar to those which make populations with smaller 

numbers of goals experience smaller increases in exploitation. That is, because of less 

accurate models and a greater impact of the initial 0 threshold, though once again these 

ideas would need to be tested in continued experiments. 

In conclusion, it has been shown that map sharing between robots leads to a 

reduction in exploration. It has been further shown that co-operative learning allows an 

increase in, and the setting of, average levels of exploration for a wide range of populations 

and goals. In practice, looking at figures 1.3 and 1.4, possible settings for k could be: 

s k--0.2 Very High Exploration 

9 k-- 0.5 High Exploration 

s k--l. 3 Medium Exploration 

9 k--3 Low Exploration 

These settings are suggested for populations of 15 robots with 56 common goals each. For 

smaller populations of robots and smaller numbers of goals, the value of k needs to be 

decreased. 

It should be noted that reducing k has more effect on exploitation than exploration 

thus reducing efficiency. It is also worth noting that co-operative learning is most efficient 

for smaller numbers of robots with large numbers of common goals. 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

Multi-robot systems are an extremely useful tool, in particular systems of multiple 

mobile robots. In the dynamic and complex environment of the real world, these systems 

can develop and adapt their own models through goal-driven learning. In particular, mobile 

robots need to have dynamic route models. If robots in the team are able to exchange their 

information, then the speed at which the environment is learned and tasks achieved will be 

greatly increased. However, it will also lead to the tearn "locking in" to one version of a 

route learned by one robot, and not looking for shorter versions. One contribution of this 

thesis has been to observe, and show the existence of through experimentation, the 

Distributed Exploration vs. Exploitation dilemma, the dilemma of choosing between fast 

learning, and avoidance of lock-in. This dilemma has not been observed in any other work 

on multi-robot systems. 

The operator of a multi-robot system may wish to increase learning time to 

encourage exploration so robots experiment with possibly shorter routes to goals. A major 

aim of this thesis, in addressing the distributed exploration vs. exploitation dilemma, has 

been to provide a simple method for increasing and decreasing exploration in such 

circumstances; a method which could run in parallel with the robots normal 

leaming/exchanging/goal-achieving algorithms. It is clear that a controlled reduction of 

information exchange would achieve this, and it was observed that using the average map- 

contribution across all robots as a decision threshold as to whether robots interact or not, 

was a possible control. The major contribution of this thesis came from observing that this 
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average map-contribution threshold could be approximated locally using Co-operative 

Learning with a multiplying factor k. However, the comparative effects of the local 

approximation being used, as opposed to the global version discussed at the beginning of 

chapter 3, were not examined. 

A simulation of 15 robots was used to demonstrate that decreasing and increasing k 

within certain ranges would increase and decrease exploration, though not as efficiently as 

hoped since decreasing k decreased exploitation more than it increased exploration. It was 

further shown that these effects held true for a wide range of goals and populations. 

However, lower numbers of goals and robots required lower values of k, and co-operative 

learning was shown to be more efficient in cases of lower populations and higher numbers 

of goals. 

The main idea behind this work is that teams of robots can help their owners both by 

helping each other, and by not helping each other. Help too little and you waste the point of 

a tearn, help too much and you waste the powers of an individual. This point has only been 

addressed in detail in multi-robot systems in [Sen 1996], and Sen does not address its 

effects on task learning (only on task assigmnent), nor does he observe that it results in a 

special case of the exploration vs. exploitation dilemma. This thesis has done both, and 

demonstrated a concrete and simple method which can be used to set the balance between 

team and individual. 

5.2 Future Work 

The key contribution of this thesis was the been the use of a local approximation to 

model a robot's performance in a group. Therefore an important possible piece of further 

work would be to look at the effects that the use of a local approximation had on the results. 

Experiments 2,3 and 4 in chapter 4 could be run using the full global algorithm described 
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at the beginning of chapter 3. This would quantify the actual effect of the local 

approximation. It was suggested after experiment 3 in chapter 4 that the effect of number of 

goals and population size on distributed exploration and exploitation was due partly to the 

local approximation being used instead of a global one. The experiments suggested above 

would help to examine these ideas. 

A number of other areas of possible future work were raised in the discussion in 

Chapter 4. It was suggested that the asymmetric effect of k on exploration and exploitation 

was due to robots spending the majority of the mission time requesting subgoals. 

Experiments could be done examining the ratios of goals to subgoals for different values of 

k. If these experiments support the hypothesis then it may be that the asymmetry is a 

property of the enviromnent learning algorithm rather than co-operativc learning. 

Another helpful set of experiments would be to repeat the experiments in chapter 4, 

but using a probabilistic decision algorithm for when robots interact. Rather than robot I 

always interacting with robot 2 if robot 2's threshold is high enough, an algorithm could be 

designed such that robot 1 has a probability of interacting with robot 2. The higher robot 2's 

approximated map-contribution, the greater the chance of robot I helping robot 2. This 

would mean that robots who have finished their goals may still have a chance of helping 

robot's that are still moving, even if the moving robots are of low value to the finished 

robots. This may reduce the "I'm alright Jack" syndrome mentioned in Chapter 4. It may 

also improve robots' models of each other in general, since robots are being given more of a 

chance to "explore" their peers. The final effect would be that even when robots have 0 

threshold, they can be given a chance of refusing other robots, thus reducing the 0 thrcshold 

effects. 

It would be helpful to test the effectiveness of co-operative learning with more 

deterministic search algorithms. These would be algorithms which have some knowledge of 

where goals are likely to be, or which can detect goals are a distance and move towards 
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them. Such algorithms would give a clearer view of the effects of co-operative learning, 

instead of the "blurred" view given by a totally random algorithm. It would also be 

interesting to see if co-operative learning can be used in non-space Icarning multi-agent 

systems, for example in concept learning systems, or in non-physical space learning 

systems, e. g. WWW bots. Any such multi-agent system which can benefit from 

encouraging independent learning amongst its agents could theoretically benefit from co- 

operative learning. 

The distributed model of a robot across the team can actually be thought of as that 

robot's "utility" to the team. If the robot has a low utility, the team will not waste energy on 

it. This could be useful for detecting robot malfunction. If a robot has a slowed-down or 

broken-down motor or transmitter, then its utility will get lower and lower until the team 

ignores it. So an alarm system can be set up such that if a robot's average utility goes below 

a certain value an operator is informed of a possible malfunction. This could be made even 

more robust by modifying the co-operative learning system as follows. In the current 

system, robot 2 will increase its map-contribution count of robot 1 if robot I replies with a 

route. However, robot 2 does not distinguish between good and bad routes. If robot 2 finds 

that the route was incorrect, it could downgrade its route count of robot 1 appropriately. 

Thus if robot I has a damaged memory or sensory system it can be eventually detected due 

to other robots low utilities for it. 

This thesis has concentrated on task learning. However, by viewing a route count as 

a utility measure, systems with co-operative learning can also use the route count for task 

assignment purposes. The request in the robot model used in this thesis was RGC, request 

for goal co-operation. Another possible request is RTC - request for task co-operation. In 

this case robot I actually requests robot 2 to take on one of its goals, say A. If robot 2 

accepts then robot 1 views itself as having achieved the goal, and robot 2 views itself as 

having a new goal. There are 2 ways of viewing RTCs, and these are related to the criteria 
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of making and accepting requests. The most obvious criteria is for robot I only to make a 

request if it has a high utility for robot 2, i. e. if it thinks robot 2 is good enough to do the 

job. Of course, robot 2 may still not take on the job unless robot I has been helpful to it in 

the past (either by taking on jobs or by sharing information). This will prevent robots from 

palming off all their tasks onto other robots. So if robot 1 has a concept of its own utility, 

and believes that robot 2's utility is higher than its own - i. e. robot 2 can get the job done 

better or more easily - then it will request robot 2 does it. Robot l's concept of its own 

utility may be calculated as a function of how many requests it has successfully answered 

compared to how many it has successfully requested. 

Another way of viewing RTC is in terms of emerging hierarchies. If it is assumed 

that for robot 2 to accept robot l's request requires that robot 2's route count for robot 1 is 

twice the average route count, the RTCs will only have an effect if relatively "highly- 

knowledgeable" robots emerge. These robots may be "highly- knowledgeable" because of 

their physical or cognitive abilities. They are natural leaders, and will cause a hierarchy to 

emerge with the most intelligent robots at the top. They can be used by the operator to 

distribute goals around the team. Should this robot malfunction, its relative utility will 

degenerate, and another robot (possibly the next most intelligent) will take its place. Thus 

there is a robust dynamic hierarchy. 
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Appendix 

There now follows a proof that the 2 robot scenario in Section 2.11 in Chapter 2 

fulfills the 2nd requirement for being a Prisoners' Dilemma. This proof should be read in 

conjunction with the equations and inequalities in sections 2.11 and 2.11.1. 

The 2nd requirement for a Prisoners' Dilemma is R>(T+S)12, i. e. 

2 
r<1 1 

-+- 

ts 

L- Sav + Trans 
2 

I+I 
L- Sav L+ Trans 

L- Sav + Trans <2 L+ Trans+ L-Sav 
(L - Sav)(L + Trans) 

L- Sav + Trans < 
(L - Sav)(L + Trans) 

2L + Trans - Sav 

Since L> Sav we have 2L + Trans > Sav and therefore: 

(L - Sav + Trans)(2L + Trans - Sav) < (L - Sav)(L + Trans) 

Then, expanding out the brackets and collecting terms, we have: 

2LSav + 2LTrans - Trans. Sav - 2Sav + TranS2 ,ý0 

Sav(2L - Trans - 2) < -(2LTrans + TranS2) 
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Then, as long as 2L > (Trans + 2) we have the condition for the Prisoner's Dilemma: 

Sav 
2L Trans + TranS2 

2L - Trans -2 

If we assume L >> Trans and Trans is small then the condition becomes: 

Sav > 
2LTrans 
2L-2 

Sav >L Trans 
L-1 

Since L >> Trans we will also have Sav > Trans. And if L is large enough, we will have 

L-I which will mean that this Prisoner's Dilemma condition is fulfilled. However, 

even if L is not large enough so that L stý L-1, if it is large enough to make Sav >> Trans 

the condition will still be fulfilled. Thus we can see that for most practical situations, the 

two robot example fulfills the second requirement for the Prisoner's Dilemma. 
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